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ABSTRACT 

Iron-oxide copper gold (IOCG)-uranium deposits represent South Australia’s primary 

resource base for copper production. The presence of daughter radionuclides (RN) from the 238U 

decay series within the ores necessitates a detailed understanding of their mineralogical 

deportment as a pre-requisite for attempts to remove or reduce RN concentrations. Research 

presented in this thesis contributes towards this knowledge by identifying and characterising 

potential RN-carriers, migration of radiogenic lead via geological processes, and provides 

evidence for RN sorption during processing. Novel approaches to RN reduction are proposed 

based on mineralogical-geochemical results. 

Evidence for migration of Pb within the deposit and during processing is relevant for any 

assessment of RN deportment, especially since the Pb-chalcogenides galena, clausthalite (PbSe) 

and altaite (PbTe) are often hosted within Cu-(Fe)-sulphides. Lead isotope values measured in-

situ by laser ablation inductively coupled plasma mass spectrometry suggest an overwhelmingly 

radiogenic origin for Pb and thus extensive decoupling of radiogenic Pb from parent U- and Th-

minerals. Calculated 207Pb/206Pb ratios suggest Pb mobilisation during an event that postdates the 

initial Mesoproterozoic Fe-Cu-Au-U mineralisation event, an interpretation consistent with other 

studies in the Olympic Cu-Au province which indicate cycles of replacement-remobilization-

recrystallization. 

 A nanoscale study of the most common of the three Pb-chalcogenide minerals, clausthalite, 

by high-angle annular dark field scanning transmission electron microscopy, proved highly 

instructive for identifying mechanisms of remobilization and overprinting. Characteristic 

symplectite textures involving clausthalite and host Cu-(Fe)-sulphides are indicative of formation 

via reaction between Se that pre-existed in solid solution within Cu-(Fe)-sulphides and migrating 

Pb. Observed superstructuring of clausthalite nanoparticles within chalcopyrite provides a direct 

link between solid solution and symplectite formation.  

Sr-Ca-REE-bearing aluminium-phosphate-sulphates (APS) of the alunite supergroup are a 

minor component of the Olympic Dam orebody. They appear paragenetically late, often replacing 

earlier REE-minerals. Characterisation of these compositionally zoned phases allowed them to be 

defined as minerals that span the compositional fields of woodhouseite and svanbergite, and also 

a REE- and phosphate-dominant group displaying solid solution towards florencite. A nanoscale 

secondary ion mass spectrometry study of RN distributions in APS minerals in acid-leached 

copper concentrate revealed that APS minerals readily sorb products of 238U decay, notably 226Ra 

and 210Pb, whereas U remains in solution. Many APS phases, particularly those that are Pb-bearing, 

are stable over a wide range of pH and Eh conditions and at temperatures up to 450 °C. As such, 

synthetic APS phases represent viable candidates not only for the removal of radionuclides from 

metallurgical streams, but also for their safe storage and isolation from surrounding environments. 
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Ca-Sr-dominant phases display preferential enrichment by Pb (notably 210Pb) during flotation. 

210Pb uptake then increases during subsequent acid leaching. 

Mixed Ca- and Sr-bearing APS phases were synthesised by modifying existing recipes to test 

the role of compositional variability of APS phases on the sorption rate of Pb from dilute Pb(NO3)2 

solution. Lead incorporation by the synthetic APS phases was confirmed, whereby Pb replaces Ca, 

but not Sr, within the APS crystal structure. Extended X-ray absorption fine structure analysis of 

the resulting solids reveals the nature of Pb sorption by the synthesized material. The data showed 

that the dynamic incorporation of Pb by APS phases occurred overwhelmingly at pH 3.5, thus 

verifying that uptake of Pb by synthetic APS phases may represent a robust mechanism to achieve 

both reduction and immobilisation of 210Pb within metallurgical processing streams. 
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PREFACE 

This thesis is comprised of manuscripts which are published in, accepted, or submitted to 

international peer-reviewed journals, and an as yet unpublished manuscript presented as stand-

alone supplementary research. All of the research contained within this thesis is a contribution 

toward the ARC Research Hub for Australian Copper-Uranium. Research by the 30+ members of 

the Hub has been conducted with the goal of identifying pathways for removal of deleterious 

components from South Australian Cu-Au ores via a large-scale interdisciplinary approach. This 

thesis dissertation supports this goal by contributing towards a fundamental mineralogical 

approach combined with the investigation of geochemical pathways for the removal of non-target 

metals from Cu-processing streams. 

Chapters 2 (unpublished) and 3 (published) form a comprehensive study on the movement of 

radiogenic Pb within an economically mineralised zone of the Mt. Woods Inlier over geological 

time, and its intimate relationship with the Cu-(Fe)-sulphides through the formation of 

intragranular Pb-chalcogenides which are often hosted within the Cu-(Fe)-sulphides at the very 

finest scale. Chapter 4 (accepted for publication) contains the first part of a study on aluminium-

phosphate-sulphate (APS) minerals within the Olympic Dam Cu-processing circuit and the 

observed ability of naturally occurring APS mineral phases to scavenge radionuclides of 238U 

decay from 226Ra onwards. The second part of this study (Chapter 5, submitted for publication) 

pursues a geochemical approach for the reduction of Pb from solution by the addition of synthetic 

APS phases at varying pH and Pb concentration. The final chapter (Chapter 6) summarises all of 

the research contained within this dissertation, makes recommendations for the direction of future 

work and makes some concise concluding remarks. 
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Chapter 3. Owen, N., Ciobanu, C., Cook, N., Slattery, A., and Basak, A. (2018) Nanoscale 

study of clausthalite-bearing symplectites in Cu-Au-(U) ores: Implications for ore genesis. 

Minerals, 8(2), 67. 

Chapter 4. Owen. N.D., Cook, N.J., Rollog, M., Ehrig, K., Schmandt, D.S., Ram, R., Brugger, 

J., Ciobanu, C.L., Wade, B. and Guagliardo, P. (2019) REE-, Sr-, Ca-aluminum-phosphate-

sulfate minerals of the alunite supergroup and their role as hosts for radionuclides. American 

Mineralogist, 104, 1806–1819. 

Chapter 5. Owen, N.D., Brugger, J., Ram, R., Eschmann, B., Cook, N.J., Ehrig, K.J., Schmandt, 

D.S., Rollog, M., and Guagliardo, P. (2020) A sponge for radionuclides: a study on the dynamic 
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A discussion of the key findings and implications for this collection of research, and 
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1 INTRODUCTION 

Australia is the fourth largest copper producer globally with almost 75% of Australia’s economic 

Cu resource in South Australia. Despite this, South Australia only makes up for ~30% of national 

Cu production (www.ga.gov.au). The main style of Cu-mineralising systems in South Australia 

are Iron Oxide Copper Gold (IOCG) deposits (http://www.energymining.sa.gov.au/ 

minerals/mineral_commodities/copper), a relatively newly described class of magmatic-

hydrothermal deposit in which Fe-oxides are the dominant components (Hitzman et al. 1992; 

Hitzman 2000; Groves et al. 2010; Barton 2014). The South Australian Government is committed 

to boosting copper production three-fold by 2030. The ARC Research Hub for Australian Copper 

and Uranium, to which the research in this thesis contributes, was established to develop new 

knowledge and innovation to address one challenging technical issue, the presence of uranium and 

its short- to medium half-life daughter radionuclides (RN). A sound understanding of the physical 

distribution of these non-target components, notably 226Ra, 210Po and 210Pb, and their geochemical 

behaviour in ore and during processing is a critical first step for the development of innovative 

process designed to reduce or eliminate them in final products. 

As one project among several inter-related research projects within the broader Research Hub, the 

research questions addressed in this thesis fall into two main research areas, as follows: 

(1) Can minor phases, notably the Pb-chalcogenides, galena, clausthalite and altaite, host 

significant concentrations of radiogenic Pb, and can the mobility and chemical affiliation of 

radiogenic lead be modelled from a combination of quantitative isotope analysis and examination 

of mineralogical relationships at the nano- to micron-scales?  

(2) The second phase of the research combines mineralogy and geochemistry to target one group 

of minerals in South Australian IOCG ores shown to harbour significant concentrations of RN, 

and which may represent a fresh approach towards novel ways of extracting RN from metallurgical 

processing streams. Aluminium-phosphate-sulphate (APS) minerals of the alunite supergroup are 

indicated as potential hosts of RN from 226Ra onward with particular compatibility between 210Pb 

and (Ca,Sr)-bearing APS phases. The mechanism of Pb-uptake by the synthetic phases is 

investigated via Extended X-ray Absorption Fine Structure (EXAFS) analysis to determine the 

bonding environments of Pb that arise from Pb-bearing solutions under different conditions.  

2 BACKGROUND 

2.1 The Olympic Cu-Au Province 

The Olympic Cu-Au Province forms a ~500 km-long belt, striking approximately N-S along the 

eastern margin of the Gawler Craton (Figure 1.1). The province hosts a number of iron-oxide 

copper gold (IOCG) deposits including the world-class Olympic Dam deposit, as well as the 
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Prominent Hill and Carrapateena deposits, and the historic Cu-Au mining regions at Moonta and 

Wallaroo (Ferris et al. 2002; Skirrow et al. 2007; Conor et al. 2010; Reid 2019). Mineralisation 

throughout the Olympic Domain is broadly considered to be associated with emplacement of the 

1600-1580 Ma Hiltaba Suite granites, coeval with the Gawler Range Volcanics. Mineralisation 

related to this event has resulted in the largest known concentration of iron oxide, copper, gold and 

uranium of any geological province world-wide. While Cu is the primary economic commodity in 

the IOCG deposits, with by-product Au and Ag also exploited, most deposits contain some 

uranium. Olympic Dam is, however, is the only deposit containing U at economic concentrations 

within the ore.  

 

Figure 1.1: Simplified geological map showing the location of the Olympic Cu-Au Province 

within the Gawler Craton. The Olympic Cu-Au Province is host to the largest concentration of 

IOCG style mineralisation world-wide and includes Prominent Hill (PH), Olympic Dam (OD), 

Carrapateena (CAR) and the southern part of the district, encompassing Moonta-Wallaroo and 

Hillside (HS). Modified after Skirrow et al. (2018). 

Economic mineralisation in the Olympic Cu-Au Province is related to the Hiltaba Suite granites 

and associated Gawler Range Volcanics, which were emplaced during a major magmatic event 

(Hand et al. 2007; Reid and Hand 2012; Reid 2019), collectively termed the Gawler Siliceous 
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Large Igneous Province (Allen et al. 2008). Hand et al. (2007) suggest the Hiltaba Suite granites 

were intruded into an overall compressional regime, suggested to be driven by Olarian Orogenic 

events. However, observations from a seismic reflection transect across the Olympic Dam region 

indicates that the magmatic event was accommodated by a transpressional and locally extensional 

regime (Skirrow and Davidson 2007) during the development of the Olympic Dam Cu-Au 

Province, and at least partially negates the compressional environment proposed by Hand et al. 

(2007). Within some parts of the Olympic Cu-Au Province, Hiltaba Suite magmatism was 

associated with high metamorphic grades, reaching upper amphibolite to granulite facies in 

restricted areas in the southern part of the province (Hand et al. 2007; Reid and Hand 2012; Reid, 

2019). Importantly, however, rocks of lower-grade metamorphic facies, i.e. Moonta-Wallaroo-

aged metasedimentary and -volcanic rocks are widespread. There are also no high metamorphic-

grade rocks observed in the Olympic Dam district (including Wirrda Well, Acropolis, Oak Dam, 

and Carrapateena). Varying tectonic and alteration environments are expressed within the Olympic 

Cu-Au Province, resulting in the formation of the Mt Woods Inlier in the north, which contains 

the Prominent Hill deposit, the Olympic District, which hosts Olympic Dam, Carrapateena, and a 

dozen or more smaller prospects, and the Moonta-Wallaroo Cu-Au region in Yorke Peninsula, that 

includes the Hillside deposit. 

Some of the research described in this thesis was based on sample material from the Prominent 

Hill (Chapters 2 and 3) and Olympic Dam deposits (Chapter 4), necessitating a brief introduction 

to the two deposits. 

2.2 The Olympic Dam IOCG(U) deposit 

The giant Olympic Dam Deposit (Ehrig et al. 2012) is considered as the archetypal example of 

IOCG(U) mineralisation and is by far the largest in the Olympic Domain. The deposit has an 

estimated resource of 10,727 Mt @ 0.72% Cu, 0.3 g/t Au, 1.0 g/t Ag, 0.23 kg/t U3O8 (BHP Billiton 

2018). Although copper is the prime commodity of interest, the deposit contains sufficient 

concentrations of uranium for economic recovery of the element. 

The deposit is hosted by the Olympic Dam Breccia Complex, which is largely though not 

exclusively derived from the Roxby Downs Granite (RDG), a member of the ca. 1600-1585 Ma 

Hiltaba Suite. It has been suggested (e.g. Johnson and McCulloch 1995; Pollard 2006, Bastrakov 

et al. 2007; Ciobanu et al. 2013; Kontonikas-Charos et al. 2017; Verdugo-Ihl et al. 2019a) that the 

Roxby Downs Granite was a major fluid source for economic mineralisation, as evidenced by its 

strongly “granitophile” (U, Pb, W, Mo, Sn) signature of the ore and individual minerals (Ciobanu 

et al. 2013; Verdugo-Ihl et al. 2017, 2019a; Dmitrijeva et al. 2019a), and that initial deposit 

formation took place immediately following granite emplacement based on comparison of U-Pb 

ages for zircon and hematite (Cherry et al. 2018a; Courtney-Davies et al. 2019). The mineralogical 
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zonation of sulphides in the deposit from peripheries to core occurs as sphalerite → galena → 

pyrite → chalcopyrite → bornite → chalcocite → non-sulphide hematite and quartz rich core 

(Ehrig et al. 2012). This zoning helps define the geochemical signature of IOCG mineralization at 

Olympic Dam, which is mirrored by other deposits across the region (Dmitrijeva et al. 2019a, 

2019b). 

Events recognised at Olympic Dam and adjacent prospects which are suggested to have impacted 

on the evolution of the Olympic Dam deposit after initial formation include the ca. 1200-1100 Ma 

Musgravian Orogeny (Lu et al. 1996), emplacement of Gairdner dyke swarms at ca. 830 Ma, and 

the Delamerian Orogeny at 490-514 Ma. These events are all important as potential contributors 

to element and isotope mobility, which in turn impacts on radionuclide distributions within Cu-

Au ores. Numerous poorly constrained events in the interval 1400-1100 Ma have been identified 

(e.g. Davidson et al. 2008; Ciobanu et al. 2013). Evidence includes, but is not restricted to a 1370 

Ma monazite U-Pb age obtained from the Acropolis prospect, south of Olympic Dam (Cherry et 

al. 2018b). A hydrothermal event of possible Musgravian age is recorded at Olympic Dam from 

Re-Os analysis of pyrite-chalcopyrite mineral separates yielding ages of 1258 ±28 Ma (McInnes 

et al. 2008). Events of this age (~1300 Ma) are also reported by Mass et al. (2011) by the analysis 

of Sm-Nd data from step-leached ores from Olympic Dam. Additionally, Pb isotope data taken 

from isotopically zoned pyrite in mineralized clastic sediments and galena in the ore have common 

Pb model ages which suggest sediment deposition/diagenesis and U introduction no earlier than 

1.3-1.1 Ga (Mass et al. 2011). Further overprinting events within the Olympic Dam district include 

the emplacement of the Gairdner Dyke Swarms at ca. 830 Ma (Wingate et al. 1998; Huang et al. 

2015; Apukhtina et al. 2016; Bowden et al. 2017) and the Delemerian orogeny (~500 Ma) led to 

extensive faulting and late veining across the region. Recent fission track evidence (Hall et al. 

2018) suggests that tectonothermal effects continued until the Tertiary. Each of these events may 

have had an impact in the remobilisation of U, Pb, and other elements, throughout the Olympic 

Cu-Au province, leading to the various cycles of replacement, remobilization and recrystallization 

observed in several mineral groups from Olympic Dam (Macmillan et al. 2016a; Ciobanu et al. 

2017; Verdugo-Ihl et al. 2017, 2019b) and elsewhere (Cherry et al. 2018; Owen et al. 2018). 

The host Roxby Downs Granite is suggested to be the major source of U, indicated by U isotope 

ratios from Olympic Dam (Kirchenbauer et al. 2016). Uranium mainly occurs as uraninite, 

coffinite or brannerite (Macmillan et al. 2016a, 2017). In zones where U concentration is high (U 

> 500 ppm) the dominant mineral is uraninite while coffinite and brannerite tend to occur mainly 

in uranium poor (U < 500 ppm) zones (Ehrig et al. 2012, 2017). Macmillan et al. (2016a) identify 

four broad classes of uraninite evidencing U remobilisation and precipitation events throughout 

the evolution of the Olympic Dam deposit. Uranium minerals are often associated with zones of 

high-Fe alteration throughout the deposit and occur as massive aggregates, disseminations and 
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occasionally as microveinlets which cross-cut earlier lithology. Hematite, by far the most abundant 

mineral in the deposit, is the fourth most important uranium host (Ciobanu et al. 2013; Ehrig et al. 

2017; Verdugo-Ihl et al. 2017). The greater part of the hematite and contained U-minerals report 

to flotation tails from which uranium is recovered by sulphuric acid leaching. Uranium is also 

recovered by acid leaching of copper concentrates. 

2.3 The Prominent Hill deposit 

The Prominent Hill deposit is hosted within a large brecciated fault system in the Mount Woods 

Inlier in the northern part of the Olympic Domain and is overlain by 50-400 m of Mesozoic 

sediments (Belperio et al. 2007; Schlegel and Heinrich 2015; Schlegel et al. 2018). The deposit 

contains an estimated resource (as of the 30th of June, 2018) of 130 Mt at 1.1 % Cu, 0.6 g/t Au, 3 

g/t Ag (OZ Minerals 2018) and formed within steeply dipping hematite breccias with a Cu barren 

core at the central and eastern parts of the deposit (Schlegel and Heinrich 2015; Schlegel et al. 

2018). The ore-forming process at Prominent Hill is suggested to begin with the onset of Hiltaba 

and GRV igneous activity at ca. 1600-1575 Ma with related tectonothermal activity possibly 

continuing until 1570 Ma (Bowden et al. 2017). Economic chalcopyrite, chalcocite and bornite 

mineralisation is hosted within the brecciated wall rocks and are mainly associated with areas of 

intense hematite metasomatism. The accessibility and permeability of the brecciated wall rocks 

allowed for favourable alteration and mineralisation sites for later metasomatic and mineralising 

hydrothermal fluids. Using δ34SV-CTD values, Schlegel et al. (2017) have shown that the isotopic 

signature of all sulphur involved with Cu-(Fe)-sulphide mineralisation at Prominent Hill matches 

that of the Hiltaba Suite and The Gawler Range Volcanics. 

2.4 Uranium and stable radiogenic lead 

Uranium is compatible within a range of mineral crystal structures at multiple oxidation states 

from U2+ to U6+, and as such is able to reside in a large number of mineral species. Christy (2015) 

records more than 250 different U-bearing mineral species, while 5% of all known minerals 

contain U as an important structural constituent (Finch and Murakami 1999; Hazen et al. 2009), 

making it a very diverse element considering its relatively low crustal abundance. 

The U grade within an IOCG deposit can largely be related to the composition of the host rocks 

(Hitzman and Valenta 2005). This relationship can be demonstrated when considering Prominent 

Hill, which is largely hosted by metavolcanic rocks, and Olympic Dam, hosted almost entirely 

within the Roxby Downs Granite (Hiltaba Suite equivalent). These host rocks have grades of <5 

ppm, and 14 ppm U, respectively (Hitzman and Valenta 2005). In this instance the granitic host 

rocks of the Olympic Dam deposit are suggested to be major sources of mineralisation, an 

argument supported by the recognition of U-Pb-bearing hematite at Olympic Dam (Ciobanu et al. 

2013) with an age concordant with the host granite. Subsequent work (Courtney-Davies et al. 
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2016, 2019a, 2019b) has validated the U-Pb hematite geochronometer at Olympic Dam and 

elsewhere in the region. 

Hitzman and Valenta (2005) recognised three main U-bearing minerals, uraninite, coffinite and 

brannerite, host the bulk of U in IOCG style deposits. Within these three minerals U exists in its 

tetravalent state (U4+). Recently however, hematite within the Olympic Dam deposit has also been 

shown to host significant quantities of U (Ciobanu et al. 2013; Courtney-Davies et al. 2016; 

Verdugo-Ihl et al. 2017). Uranium minerals, uraninite, coffinite and brannerite, are more easily 

eliminated from processing streams via acid leaching, thus the relative proportion of U contained 

by hematite increases with processing. 

When high concentrations of U are incorporated into a mineral, the mineral’s structure becomes 

damaged via α-particle decay, in a process known as metamictization (Ewing et al., 2003). The 

degree of metamictization of a mineral increases systematically with U-Th content up to the point 

of total metamictization (Woodhead et al. 1991). In a crystal structure such as zircon, largely 

comprised of tightly bound silicate tetrahedra, metamictization will be preserved for a long time. 

Minerals such as uraninite, however, with its rapid annealing kinetics, can undergo multiple 

metamictization events yet be restored to near original form (Janeczek and Ewing 1991). This 

process makes U and its decay products more easily mobilised from such phases. 

Decoupling of parent U and daughter Pb isotopes may occur via the above process, or by 

dissolution of U-bearing minerals. The most common and most stable isotope resulting from the 

decay of 238U within the discussed IOCG systems is 206Pb. Thus, understanding the mineralogy of 

uranium (Macmillan et al. 2016a, 2017), deposit- and grain-scale U-Pb systematics (Kirchenbaur 

et al. 2016; Courtney-Davies et al. 2019), and lead isotope ratios of single minerals (Schmandt 

2019) provides valuable indirect information on the deportment of radioisotopes throughout the 

238U decay chain. Lead occurs within the Olympic Cu-Au Province as both common and 

radiogenic Pb. The primary Pb-bearing minerals consist of galena (PbS), clausthalite (PbSe), and 

altaite (PbTe). Within the Olympic Dam deposit, galena is present in larger quantities than 

clausthalite or altaite while in the Prominent Hill deposit the prevalence of Pb-bearing minerals 

occurs in the order clausthalite>galena>altaite (Owen et al. 2018), indicating that areas of the 

Prominent Hill deposit are slightly more enriched in Se. The majority contribution of radiogenic 

Pb (i.e. formed post-IOCG mineralisation) within these minerals make them useful not only for 

tracking radionuclide deportment, but also for identifying deposit-scale overprinting episodes 

which may have affected the distribution of Cu mineralisation, due to their intimate relationship 

with the Cu-(Fe)-sulphides (Owen et al. 2018). 

Minor amounts of uranium are contained within other accessory phases in Olympic Domain IOCG 

systems, notably REE-phosphates (monazite), fluorocarbonates (synchysite, bastnäsite), apatite 
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and baryte. Recent research by Schmandt et al. (2017, 2019a, 2019b) indicate their modest 

contribution to the overall RN budget within metallurgical processing streams. 

2.5 Deportment and mineralogical expression of Intermediate RN from the 238U decay series, 

fractionation and decoupling 

The 238U decay series comprises 15 decay events from parent to daughter isotopes until it reaches 

the stable 206Pb isotope (Figure 1.2). Intermediate RN are those that occur between parent 238U and 

the stable endmember daughter isotope 206Pb. Secular equilibrium between the parent and their 

daughter isotopes exists when the daughter isotope concentrations remain at a steady state because 

loss through decay is matched by formation from their parent isotopes; however, each daughter 

isotope belongs to a different chemical element than its parent, and hence both physical and 

chemical properties will differ. The different chemical properties of daughter isotopes, coupled 

with processes like metamictization, recrystallization or dissolution, may result in decoupling of 

daughter and parent isotopes. It is possible that decoupling of the daughter isotopes has occurred 

at multiple times during the evolution of both the Prominent Hill and Olympic Dam deposits as 

visible by the different phases of U minerals (Ciobanu et al. 2013; Macmillan et al. 2016a, 2016b, 

2016c, 2017) which represent a series of dissolution, remobilization and recrystallization events. 

The main isotopes addressed in this review are highlighted based on their physical properties, their 

mobility, their potential mineralogical hosts, and their ability to interact with each mineral phase. 

The elements and their respective isotopes are summarised as follows: 

226Ra forms from its parent isotope 230Th, which is insoluble in most conditions. When Ra forms 

the salt radium chloride (RaCl2), it becomes very mobile (Cowart and Burnett 1994), and is able 

to migrate from its source quite easily; as such, the mineral phases in which Ra resides are of great 

importance (Schmandt et al. 2019b). Radium has many similar properties to Ba, meaning that it 

can be readily co-precipitated along with Ba within minerals that contain Ba, notably baryte, 

forming so-called radiobarite (Lehto and Hou 2011). In a ToF-SIMS study in which baryte has 

been exposed to Ra-bearing solutions for a period of time, baryte has been shown to undergo a 

homogeneous uptake of Ra into the crystals (Klinkenberg et al. 2014). Radium also easily 

incorporates into chlorides, sulphates and carbonates (Cowart and Burnett 1994; Walther and 

Gupta 2015), however this is only preserved in young strata. 226Ra has a half-life of 1,600 years, 

after which it decays via alpha-decay to form 222Rn. 

When 222Rn forms as a decay product from 226Ra, an alpha particle is ejected which can damage 

the surrounding structure forming an alpha track (Semkow 1990). In a study of alpha-recoil 

damage on mineral structures, Fleischer (1982) shows that Rn, an inert gas, can successfully escape 

the crystal structure during this process. Accompanied by seismic pumping of fluids within cracks 

and interconnected pores, Rn may be transported far from its source before further decay. In a 
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study of a range of alpha-emitting minerals, Malczewski and Dziurowicz (2015) showed that 

uraninite had the lowest Rn emanation coefficient, despite having the highest U content of the 

minerals analysed. This could largely be due to the relatively simple crystal structure and chemical 

composition of uraninite facilitating a high rate of self-annealing (Janeczek and Ewing 1991; 

Janeczek et al. 1996; Malczewski and Dziurowicz 2015). 

 

Figure 1.2: The 238U decay series showing the progression of element isotopes from 238U through 

to stable 206Pb. Each alpha decay results in a decrease in atomic mass by four and atomic number 

by two; each beta decay results in an increase in atomic mass by one (Cook et al. 2018). 

Polonium occurs as three isotopes following the beta decay of 222Rn in the final stages of the 238U 

decay series, 218Po, 214Po and 210Po. Unlike Rn, Po is an extremely chemically active element, 

forming complexes with a large variety of mineral types such as oxides and hydroxides (Lehto and 

Hou 2011). 210Po, the most toxic naturally occurring radionuclide (Maxwell et al. 2013), was 

discovered by Pierre and Marie Curie in 1898 within the mineral pitchblende and was described 

to have similar properties to bismuth (Fry and Thoennessen 2013). 210Po has the longest half-life 

of the three Po isotopes in the 238U decay chain (138.4 days), while 218Po and 214Po have half-lives 

of 3.1 min and 0.0002 sec, respectively. As well as its short half-life, it is extremely reactive with 

acidic solutions and is extremely volatile, meaning that it is extremely difficult to detect. 

Polonium’s electron configuration in its neutral state resembles that of its fellow group members 
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on the periodic table, Se and Te can be considered analogous to the latter with a similar valence 

electron configuration (Ansoborlo et al. 2012). 

Like Po, there are three Pb isotopes in in the 238U decay series which form from a Po isotope via 

alpha decay; 214Pb, 210Pb and 206Pb. The natural abundance of common Pb is a subject that has 

required constant revision over the years. Recent TIMS analysis (Thirlwall 2000) on the renowned 

common lead standard, NIST SRM 981 revealed Pb isotope ratios of 206Pb/204Pb 16.9409(22), 

207Pb/204Pb 15.4956(26), 208Pb/204Pb 36.722(80), 207Pb/206Pb 0.91469(7) and 208Pb/206Pb 

2.16770(21) which widely agrees with a summary of NIST SRM 981 values (Platzner et al. 2001). 

Minerals containing highly radiogenic lead will be those which contain ratios of 206Pb, 207Pb and 

208Pb to 204Pb significantly larger than those stated above. 206Pb, 207Pb and 208Pb are the stable 

endmembers of the 238U, 235U and 232Th decay series, respectively. 210Pb is perhaps a more 

important target than its daughter 210Po for 210RN reduction as it has a much longer half-life (22.2 

years). Thus, if reduction of 210Pb is achieved, stemming the production of 210Po in the process, 

the radioactivity of the ore material will naturally decrease within an acceptable time frame. 

Prior to the start of research within the ARC Research Hub for Australian Copper-Uranium, much 

of the understanding of RN distribution in uranium-bearing copper ores and concentrates was 

based on indirect information, bulk measurement, or inspired guesswork based on known 

geochemical attributes of the isotopes concerned (Cook et al. 2018). Clearly, a large part of 

intermediate RN are hosted within U-being minerals capable of retaining the full decay chain 

(notably uraninite but also other minerals suitable for U-Pb geochronology such as zircon, hematite 

and apatite). Other potential hosts were more speculative and have been systematically addressed 

in this thesis and in related work. Development of nanoSIMS isotope mapping to directly visualise 

RN distributions at the grain-scale (Rollog et al. 2019a) and subsequent application to different 

mineral matrices (Rollog et al, 2019b, 2019c, 2019d) have proven pivotal for the much-improved 

knowledge currently available at the time of completing this thesis. 

2.6 Lead chalcogenides 

Lead forms an unusually large number of different minerals (Christy 2015). This mineralogical 

diversity is explained, largely, in terms of its outer electron configuration. Lead is a chalcophile 

element and as such preferentially forms minerals with heavier chalcogenides and pnictides, only 

forming oxycompounds upon subsequent oxidation (Christy 2015). Additionally, in its Pb(II) 

oxidation state, Pb contains a stereoactive lone pair of electrons, further adding to the variability, 

and also complexity, of its mineral species it. In the context of identifying the potential carriers of 

radiogenic lead within IOCG deposits, the three most common lead minerals, galena (PbS), 

clausthalite (PbSe) and altaite (PbTe), are of particular importance. All three are relatively 
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abundant within ores and their respective concentrates from Olympic Dam and Prominent Hill, 

and typically – although not exclusively – occur as inclusions within Cu-(Fe)-sulphides. 

Galena, clausthalite and altaite display partial solid solution as shown on the PbS-PbSe-PbTe 

ternary diagram (Figure 1.3). There are extensive miscibility gaps at temperatures below 300 oC 

but the PbS-PbSe and PbSe-PbTe pairs are miscible above 500oC (Chang and Liu 1994). 

Of the three minerals, galena is the more abundant at Olympic Dam. Schmandt (2019) has shown 

that whereas most of this galena has formed by decay from parent U-minerals, there also exists 

non-radiogenic galena that was likely crystallised together with other sulphides at the time of initial 

deposit formation. Within the Prominent Hill deposit, clausthalite is observed to be by far the most 

common of the three Pb-chalcogenides. Chapter 4 will demonstrate how formation of clausthalite 

can be linked to reaction between Se-enriched Cu-(Fe)-sulphides and migrating radiogenic lead. 

Formation of clausthalite over galena is favoured by the greater electronegativity of selenium. 

 

Figure 1.3: PbS-PbSe-PbTe ternary phase diagram with solidus lines between each phase, 

indicated at 100, 300 and 500 oC, as indicated. Note the larger field for PbSe at 100 oC compared 

with PbS and PbTe (after Chang and Liu 1994). 

2.7 Scavenging of 210RN  

The central focus of this work is the occurrence, mobility and interplay between the mineralogy 

and geochemistry of 210Pb and 210Po (hereafter referred to as 210RN) during the evolution of the 

ore bodies, as well as evidence for decoupling (secular disequilibrium) during mineral processing. 

210RN are relatively enriched in copper concentrates throughout the copper processing cycle at 

Olympic Dam (Lane et al. 2016; Cook et al. 2018). Sulphuric acid leaching efficiently removes a 

large part of U but it would appear that RN of concern readily re-adhere onto or diffuse into 

particles in the concentrate. Smelter feed (i.e. post-concentrate leach) is thus no longer in secular 

equilibrium. Furthermore, 210RN accumulate within the Cu-sulphate rich smelter dust; this is 

subsequently recycled into the leach phase of Cu-processing to maximise Cu-recovery. 
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The mineral hosts for 210RN were very poorly constrained at the start of the present project. It was 

presumed that they were present within parent U-bearing minerals, which also contain lead, 

notably uraninite (Macmillan et al. 2016a). They, and the complete decay chain, were also assumed 

to be contained within other minerals containing non-essential uranium and lead at concentrations 

of tens of parts-per-million to a few wt.%. Examples include zircon, apatite and hematite, all of 

which are dateable, albeit with evidence of open system behaviour in some mineral grains 

(Ciobanu et al. 2013; Krneta et al. 2017; Verdugo-Ihl et al. 2017; Courtney-Davies et al. 2019) 

Beyond this, the likely hosts for 210RN were largely speculative (Cook et al. 2018), based on the 

physical properties of their parent isotopes within the 238U decay series, as well as the geochemical 

behaviour of each element in the decay chain. This prompted investigation of several key mineral 

groups: (i) galena, clausthalite and altaite are initially targeted for analysis due to their high 

radiogenic Pb content; (ii) rare-earth fluorocarbonates and phosphates, since both groups can 

incorporate U and Pb (Schmandt et al. 2017, 2019a); baryte, known to host Ra and subsequent 

decay products (Schmandt et al. 2019b). NanoSIMS isotope mapping was identified as an efficient 

method to screen individual minerals for their potential as RN-carriers (Rollog et al. 2019a), 

Subsequent work addressed fluorapatite, fluorite, rutile, molybdenite, covellite and many others 

(Rollog et al. 2019b, 2019c, 2019d) in a focused effort to identify and isotopically map both 

expected major hosts and also minor minerals that may nevertheless prove surprisingly good RN 

hosts. 

Alongside baryte, aluminium-phosphate-sulphate (APS) minerals of the alunite supergroup stood 

out as good hosts for, and efficient scavengers for 226Ra and 210RN within the Olympic Dam Cu-

processing circuit (Rollog et al. 2019a, 2019b; Owen et al. 2019a, 2019b). This family of minerals 

had been noted in prior mineralogical studies of the deposit but had not previously been the subject 

of detailed investigation. They were, however, addressed in the present study due to their ability 

to host a wide variety of di-, and tri-valent cations, and thus represented potential hosts for RN. 

APS minerals of the alunite supergroup follow the general formula [MAl3(XO4)2(OH,H2O)6]. A 

broad array of solid solutions may be formed with exchange of mono-, di-, or trivalent cations in 

the M-site. Of great importance to the research reported here are the interplays between Ca, Sr and 

Pb cations at the M-site, where incorporated Pb may include 210Pb. Ca- and Sr-bearing APS phases 

have been shown to preferentially incorporate Pb at the expense of Ca and Sr within metallurgical 

processing streams (Owen et al. 2019). 

The crystal structures of APS phases fall within the same R3m or R3̅m space group, accordingly 

forming almost identical structures with slight deviations. The most significant deviations occur 

along the c-axis depending largely upon the properties of the M-site cation whereby M2+ cations 

with larger ionic radii cause lengthening whereas smaller cations result in contraction of the 
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structure. This is especially the case in crandallite-group minerals when considering Ca2+ which 

has a relatively small ionic radius, compared with Sr2+ and Pb2+. Its small ionic radius causes 

contraction of the crystal structure resulting in distortions among the sheets of AlO6 octahedra, 

however when Sr2+ and Pb2+ are substituted at the M-site, the structure becomes more relaxed, 

hence increasing stability. There is also apparent lengthening along the c-axis with addition of SO4 

in Ca-, Sr- and Pb-bearing endmembers which may lead to an increase in thermodynamic stability 

(Schwab et al. 2005). In Pb(II) compounds the electronic configuration of Pb is 6s2, resulting in 

distortions in the stereochemistry of some compounds, which is known to cause a reduction in 

crystal symmetry in some Pb-rich alunites (Kolitsch and Pring 2001), adding complexity to 

substitution of Ca and Sr by Pb. This may also be why we see such variation along the c-axis 

between Sr-, and Pb-bearing APS members, despite their similar ionic radii (Shannon 1976). 

3. RESEARCH OBJECTIVES AND THESIS STRUCTURE 

The research gaps outlined above provide a context for the research reported in this thesis. Results 

contribute to a better understanding of radionuclide distributions in ores and copper concentrates 

and the evolution of those distributions during processing, as well as adding to models for the 

formation and evolution of IOCG deposits over geological time. 

Research described has used different, complementary microanalytical tools to characterise the 

mineralogy within the ore feed and subsequent phases of the metallurgical processing cycle. 

Micron- to nanoscale imaging techniques used include backscatter electron imaging on a SEM 

platform, focused ion beam imaging and high-angle annular dark-field scanning transmission 

electron microscopy. Quantitative microanalysis using electron microprobe analysis, and laser 

ablation inductively coupled mass spectrometry. Additional data and interpretations were obtained 

using nanoscale secondary ion mass spectrometry (nanoSIMS) to provide qualitative information 

on RN distributions at the sub-micron scale, while a synchtrotron Extended X-ray Absorption Fine 

Structure (EXAFS) study of synthetic Ca-, and Sr-bearing APS phases provided valuable data on 

the incorporation dynamics of Pb via acidified solution at room temperatures.  

Each of the following thesis chapters are written independently as manuscripts for publication 

within peer reviewed journals. Approach, samples and analytical methods are outlined in the 

appropriate sections within each chapter: 

Chapter 2 (unpublished manuscript) addresses the mobility of and origin of Pb within the Pb-

chalcogenide minerals galena, clausthalite and altaite within representative samples from the 

Prominent Hill deposit. This work was undertaken primarily to track the distribution of the stable 

endmember isotope of 238U decay, 206Pb, as well as 207Pb and 208Pb from 235U and 232Th decay, 

with respect to Cu-(Fe)-sulphides within which the Pb-chalcogenides are often hosted. The degree 
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of decoupling between the radioisotopes between 238U, 235U and 232Th, and the stable Pb isotopes 

can then be assessed. 

Chapter 3 (published paper) describes a micron- to nanoscale study of clausthalite-bearing 

symplectites hosted within Cu-(Fe)-sulphides from the Prominent Hill deposit, from which a 

model for radiogenic Pb incorporation into Cu-(Fe)-sulphides is developed. The mechanism of Pb 

mobilisation within the deposit also adds to a growing body of evidence for one or more large-

scale overprints within the Olympic Cu-Au Province, helping to explain the mineralogical 

heterogeneity observed within South Australian IOCG deposits. 

Chapter 4 (submitted manuscript) addresses the petrography and chemistry of aluminium-

phosphate-sulphate (APS) phases of the alunite supergroup from the Olympic Dam deposit. Based 

on nanoSIMS isotope mapping, scavenging of RN by APS phases during mineral processing can 

be documented. This chapter also provides an interpretation of the genesis and paragenetic position 

of APS minerals within the ore, and their relationships with other ore minerals. This chapter forms 

the basis for the synthetic study described in Chapter 5. 

Chapter 5 (submitted manuscript) reports the results of an EXAFS study carried out at the 

Australian Synchrotron on synthetic Ca- and Sr-bearing APS phases and the incorporation 

dynamics of Pb via acidified solution at room temperature. The results carry significant 

implications for RN reduction and potential isolation from metallurgical processing streams. 

Controlled analysis of Pb-sorption by synthetic analogues of the APS phases enables investigation 

into their potential uses as sorbents for radionuclides within metallurgical processing streams. 

Here, we propose a method describing the addition of synthetically derived APS minerals to acidic 

Pb-bearing solutions with the aim of removing dissolved Pb from solution. We discuss how 

varying the composition of APS minerals, as well as changes to fluid conditions (pH and Pb 

concentration), effects Pb sorption. 

Chapter 6 summarises the key findings presented within the thesis and identifies a number of 

areas which may be expanded in the future. A series of concluding remarks are made at the end of 

this section. 

Chapter 7 is a compilation of other published material by the author of this thesis such as 

conference abstracts and co-authored publications. The chapter also contains appended material 

related to the published/submitted manuscripts in Chapters 2-5.  
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 Lead isotope data for Pb-chalcogenides 

1. Introduction 

Iron-oxide copper gold (IOCG) style deposits of Proterozoic age are among the most complex 

and enigmatic mineralising systems on Earth (Barton, 2014). Although much evidence has been 

accumulated to support genetic models and constrain the initial conditions of formation of these 

enigmatic deposits, less is known about the impacts of post-depositional tectonothermal 

reactivation on these deposits, and specifically, how an overprinting event or series of events will 

modify the fundamental mineralogy and geochemistry of the deposits. 

Uranium, a common component of many IOCG systems, is a particularly mobile element, 

especially under oxidising conditions (U6+). Evidence from the Olympic Dam ore system, South 

Australia, has shown that uranium mineralogy has evolved over time as a response to cycles of 

replacement, remobilization and recrystallization during the 1.6 Ga since initial formation 

(Macmillan et al., 2016, 2017). Similar phenomena are recognized among several other mineral 

groups in the deposit. This redistribution has, however, occurred without obliterating primary 

deposit-scale mineral zonation. 

Within the deepest parts of the cogenetic Olympic Dam Cu-Au-Ag-U deposit, a vein of massive 

galena has been reported (Meffre et al., 2010), which contains multiple growth zones with less 

radiogenic Pb occurring in the outer zone and highly radiogenic Pb in the central zone, revealing 

crustal growth ages of 1200-1400 Ma and 0 Ma respectively. These observations indicate that 

radiogenic Pb was likely mobile within deep parts of the deposit immediately subsequent to the 

introduction of U. The Pb-isotope signatures of Pb-chalcogenides have also been investigated in 

the Olympic Dam deposit (Schmandt, 2019), similarly suggesting highly radiogenic origins for 

Pb. Here, Pb-chalcogenides are often hosted within Cu-(Fe)-sulphides, thus supplying important 

information regarding the pervasiveness of cycles of Pb dissolution, remobilisation and 

recrystallisation throughout the evolution of the deposit following initial formation at ~1.6 Ga. 

Whereas the mobility of U within mineralised rocks is relatively well understood and 

documented in the literature, the comparative behaviour of the intermediate daughter products of 

uranium decay (i.e. between parent U and the stable daughter isotopes of Pb) during fluid-assisted 

tectonothermal overprinting is less widely reported due to the difficulty of accurately measuring 

concentrations of shorter half-life isotopes at extremely low concentrations. Evidence reported 

elsewhere in this thesis (Owen et al., 2018), and in other publications (Rollog et al., 2019a, 2019b; 

Schmandt, 2019), has shown that products of uranium decay, notably but not restricted to stable 

radiogenic lead (206Pb, 207Pb, 208Pb), may migrate from the parent U-mineral over distances ranging 

from nanometres upwards, and combine with available ligands to form ‘new’ minerals, or become 

incorporated into existing minerals. The grain-scale heterogeneity of U/Pb ratios in some hematite 
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grains from IOCG deposits (Courtney-Davies et al., 2019) is further evidence for mobility of U 

and/or Pb within individual minerals. Fluid-assisted remobilization occurs at an extremely fine 

scale, necessitating careful study using a combination of different analytical techniques that can 

bridge scales of observation. 

Galena (PbS) forms a complete solid solution series with clausthalite (PbSe) and also displays 

limited solid solution towards altaite (PbTe) (Chang and Liu, 1994). All three Pb-chalcogenides, 

along with a range of other selenides and tellurides, are common minor components of ~1590-

1585 Ma IOCG-style mineralization across the Olympic Cu-Au Province, South Australia. This 

contribution addresses the physical character and Pb-isotope signatures of Pb-chalcogenides in a 

effort to place constraints on the mobility of 238U-chain radionuclides and the evolution of Pb-

isotope systematics during hydrothermal overprinting following the initial mineralisation event. 

2. Sampling and analytical methodology  

The present study aimed at deriving insights into Pb-isotope ratios in Pb-chalcogenides and 

associated Cu-(Fe)-sulphides from one representative IOCG system within the Mt Woods Inlier. 

The sample suite, identical to that used by Owen et al. (2018), consisted of Cu-(Fe)-sulphide rich 

mineral separates. These laboratory-made concentrates were created via crushing and froth 

flotation of ore to remove the majority of gangue. Particle size within the samples is in the order 

of 20-300 µm. Each sample was prepared as a one inch-diameter round for petrographic and 

compositional analysis. 

2.1. Scanning Electron Microscopy 

Scanning electron microscopy (SEM) in backscatter electron (BSE) mode was used for basic 

mineral identification, to evaluate grain morphology and textural relationships between Pb-

chalcogenides and their hosts (e.g., sited in cracks or fissures, as inclusions, along mineral 

boundaries, or as symplectites with host sulphides). SEM study also provided an approximate 

estimation of the relative abundances of each Pb-chalcogenide. All SEM analysis was undertaken 

using a FEI Quanta 450 FEG Environmental Scanning Electron Microscope (Adelaide 

Microscopy, The University of Adelaide) operated in high-vacuum mode at 20 kV and a spot size 

of 4 to generate high spatial resolution (down to 0.1 μm). Semi-quantitative compositional data 

was obtained using the built-in energy-dispersive X-ray spectroscopy (EDS) detector. 

2.2. Laser Ablation Inductively Coupled Mass Spectrometry  

Laser ablation inductively coupled mass spectrometry (LA-ICP-MS) is used for the quantitative 

analysis of trace elements and of relevant U, Pb and Th isotopes within individual target minerals. 

LA-ICP-MS analysis was undertaken using an Agilent 7700s mass spectrometer with attached ASI 

M-50 laser ablation system (Adelaide Microscopy, The University of Adelaide). The following 



29 

 

isotopes were monitored: 82Se, 125Te, 204Pb, 206Pb, 208Pb, 232Th, 235U and 238U, with isotopes of Ag, 

Sb, Hg, Tl and Bi also being measured to account for any overlapping spectral data. 

The main reference material used was a sample of Broken Hill galena for which published 

isotopic ratios are available (McFarlane et al., 2016), as well as the NIST610 and MASS-1 

reference standards. Standards were analysed at the start and end of each batch run, and after every 

15-20 unknowns. Total count times for each analysis ran for 30 sec with an additional 30 sec of 

background measured prior to ablation. Dwell times were 0.1 sec for Pb isotopes, 0.05 sec for Tl 

and Hg isotopes, 0.02 sec for Th and U isotopes, and 0.01 sec for Bi, Se and Te isotopes. Output 

data was analysed using correction software Igor and Iolite v3.4 (Paton et al., 2011). The data, 

comprising individual Pb isotope abundances and their calculated ratios, enables the isotopic 

fingerprints of each mineral phase to be established. 

For high-precision quantitative LA-ICP-MS analysis, a spot size of ~20 μm is desirable. 

However, many of the minerals targeted in this story ranged in size from 20 μm down to less than 

2 μm in diameter, which either precludes their use for analysis, or results in data carrying a greater 

than ideal error margin due to dilution of the signal by the surrounding host mineral. Some of the 

data obtained is thus semi-quantitative, and in such cases, LA-ICP-MS counts were interpreted 

only as a confirmation of the radiogenic/non-radiogenic nature of the target minerals.  

3. Results 

3.1. Sample mineralogy 

The mineralogy of the sample set consists of pyrite, chalcopyrite, bornite and chalcocite, 

accompanied by the U-minerals coffinite, brannerite and uraninite, and small quantities of gangue, 

mostly hematite. Baryte was observed in all samples, albeit in small quantities. Analogous to 

observations by Ciobanu et al. (2017) from Olympic Dam, the ore minerals generally show the 

following sequence of enrichment/replacement: pyrite → chalcopyrite → bornite and bornite → 

chalcocite. 

Lead-chalcogenides (galena, clausthalite and altaite) occur as inclusions in the Cu-(Fe)-

sulphides, infilling cracks in those minerals, along grain boundaries, and, as symplectites within 

chalcopyrite, bornite and chalcocite (and less commonly within pyrite). Close relationships 

between baryte and Pb-chalcogenides are rarely observed at the micron-scale. A range of other 

accessory sulphides and selenides are observed. Although most Co occurs as carrollite and 

cobaltite, or is incorporated within pyrite, the rare selenides tyrrellite, (Cu,Co,Ni)3Se4, and 

penroseite, (Ni,Co,Cu)Se2, were observed in trace quantities. Other chalcogenides (e.g. skippenite 

and hessite) were also observed as sub 5-μm-sized grains. 
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3.2. Mineral Textures 

Lead chalcogenides (galena, clausthalite and altaite) occur within the Cu-(Fe)-sulphides as 

inclusions down to the sub-micron scale and as such are recognised as intimately related to the 

evolution of the Pb-chalcogenides. A variety of textures between Pb-chalcogenides and their host 

minerals are observed. These are summarised in the BSE images shown as Figure 1. The Pb-

chalcogenides occur in order of abundance clausthalite > galena > altaite, and do not show any 

specific preference for any particular host Cu-(Fe)-sulphide. Rather, they display an overall 

preference for Cu-(Fe)-sulphide hosts in the order chalcopyrite > bornite > chalcocite. The Cu-

(Fe)-sulphides incorporate the Pb-chalcogenides as inclusions, along annealed grain boundaries, 

and, most commonly, as symplectite-type textures formed within the Cu-(Fe)-sulphides (Figure 

1c, d). Structures which are evident of diffusion of Pb into the Cu-(Fe)-sulphides are also noted 

and have been documented in detail elsewhere (Owen et al., 2018), and may result in the 

incorporation of homogenously spaced nano-inclusions throughout the sulphides, thus attributing 

to their Pb isotope makeup. Inclusion textures typically involve small ~1 µm-sized grains of Pb-

chalcogenides within Cu-(Fe)-sulphides and seemingly randomly located within the host minerals. 

Crack and grain boundary textures were observed by Pb-chalcogenide formation along annealed 

cracks and grain boundaries indicating the mobility of Pb within the system. Symplectite textures, 

usually between clausthalite and the Cu-(Fe)-sulphides, were most common and occur in all Cu-

(Fe)-sulphide hosts. These form complex structures with the Cu-(Fe)-sulphides at the sub-

micrometre scale, enabling extrapolation on formation environments and mechanisms. The range 

of textures recorded is diverse (Figure 1). Textures formed along the grain boundaries (Figure 1b) 

record formation history of the Cu-(Fe)-sulphides whereby small grains, in this case of bornite, 

form into larger aggregates trapping migrating Pb, thus indicating the presence of Pb during the 

final stages of the grain’s formation. Close inspection of clausthalite and altaite symplectite-style 

textures hosted in chalcopyrite (Figure 1c, d) indicate their prevalence within highly porous 

regions of chalcopyrite, indicating Pb incorporation via a reduced fluid phase post Cu-(Fe)-

sulphide formation. Symplectite textures formed by altaite were, however, less common than those 

formed by clausthalite, usually forming as small spotty inclusions at the single micron scale 

(Figure 1e). 
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Figure 1: SEM backscatter images of Pb chalcogenides within Cu-(Fe)-sulphides displaying various typical 

textures; (a) lamellae of chalcopyrite (Cp) in bornite (Bn) and small ‘inclusions’ of galena (Gn) within both 

minerals; (b) clausthalite (Cls) formed along annealed cracks or grain boundaries of bornite with nucleation 

points present as bright blebs; (c) clausthalite-bearing symplectite, the most common texture formed 

between clausthalite and the Cu-(Fe)-sulphides, frequently formed within porous regions (indicated by the 

dashed line) in chalcopyrite; (d) transition zone between a clausthalite-bearing symplectite and rare altaite 

(Alt) bearing symplectite in chalcopyrite; (e) rare fine-grained altaite irregularly disseminated within 

bornite. 

3.3. Pb-isotope analysis by LA-ICP-MS 

LA-ICP-MS Pb isotope data for each mineral analysed are given in Appendix A. Representative 

data are presented in Table 1 as geometric means, maxima and minima. Some data points have 

been removed, due to low counts of 204Pb preventing accurate ratio 206Pb/204Pb, 207Pb/204Pb and 

208Pb/204Pb calculations. As such, only data points with Pb isotope ratios with 10% or less error 

(calculated with the 2σ error value) were plotted. For reference, all data is plotted with the Stacey 

and Kramers (1975) common Pb model values 206Pb/204Pb = 18.700, 207Pb/204Pb = 15.628, and 

208Pb/204Pb = 38.63. Larger (~50-60 µm-diameter) spot sizes was used for analysis of the Cu-(Fe)-

sulphides as they consistently returned low total Pb counts. 

Data points are grouped by their mineralogical species (galena, clausthalite, altaite, or Cu-(Fe)-

sulphide) and plotted together to determine any trends in the data (Figure 2). Each mineral species 

contained a surprisingly wide variation in Pb isotope signatures making any definitive 

fingerprinting of an individual mineral species very difficult. In any case, some clustering of the 

data can, however, be recognized. All analysed Pb-minerals plot away from the primordial Pb 

signature, indicating degrees of radiogeneity ranging from moderate to strong, possibly via mixing 

with pre-existing common Pb in various proportions. Although a greater number of clausthalite 
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analyses are included here (four times as many as for galena), galena returned a wider range of Pb 

isotope compositions with a small group of analysis recording significantly higher 206Pb/204Pb and 

207Pb/204Pb values than those seen in any of the clausthalite grains analysed. LA-ICP-MS spots of 

Cu-(Fe)-sulphides were typically larger, often covering entire grains in order to measure Pb isotope 

compositions present in trace amounts within solid solution. No differential Pb isotope trends 

based on textural differences were observed with a homogenous broad range of isotopic signatures 

resulting from analysis of all textures. 

Table 1: Representative Pb isotope data for Pb-chalcogenides hosted within Cu-(Fe)-sulphides and for Cu-

(Fe)-sulphides without Pb-chalcogenide inclusions. 

Mineral 
208Pb/ 
204Pb 

% 
error 

207Pb/ 
204Pb 

% 
error 

206Pb/ 
204Pb 

% 
error 

208Pb/ 
206Pb 

% 
error 

207Pb/ 
206Pb 

% 
error 

204Pb/ 
206Pb 

% 
error 

Cls 54.40 8.3 17.16 4.5 39.60 5.6 1.2780 6.4 0.4270 4.4 0.0253 5.6 

Cls 43.40 3.2 16.13 3.3 39.10 3.1 1.1130 1.9 0.4196 2.1 0.0256 3.1 

Cls 52.63 1.5 18.60 2.8 51.44 1.8 1.0220 1.8 0.3610 3.3 0.0194 1.8 

Cls 57.00 8.4 19.60 8.2 57.90 9.2 1.0180 1.6 0.3393 2.0 0.0173 9.2 

Cls 49.60 7.3 16.70 7.8 51.10 9.4 0.9470 4.3 0.3300 6.4 0.0196 9.4 

Cls 54.30 3.7 18.77 2.6 61.80 2.6 0.8660 6.2 0.2990 4.7 0.0162 2.6 

Cls 56.40 2.3 18.92 1.7 65.08 1.5 0.8620 1.7 0.2916 1.4 0.0154 1.5 

Cls 54.20 4.1 19.83 3.4 84.30 2.7 0.6370 2.8 0.2322 1.7 0.0119 2.7 

Cls 61.60 7.8 24.50 7.3 135.00 8.1 0.4590 3.7 0.1848 2.5 0.0074 8.1 

Cls 54.40 8.6 19.30 8.3 107.10 6.3 0.4980 4.0 0.1783 3.4 0.0093 6.3 

Cls 54.20 8.7 37.90 9.5 234.00 9.0 0.2284 3.7 0.1584 2.0 0.0043 9.0 

Cls 53.30 9.8 26.20 9.9 177.00 9.0 0.3033 2.5 0.1504 1.8 0.0056 9.0 

Cls 56.50 8.7 32.10 8.4 228.00 7.5 0.2458 2.8 0.1376 2.3 0.0044 7.5 

Max 61.60 - 37.90 - 234.00 - 1.4700 - 0.4663 - 0.0271 - 

Min 43.40 - 15.93 - 36.90 - 0.2284 - 0.1376 - 0.0043 - 

GeoMean 54.28 - 18.86 - 57.07 - 0.9514 - 0.3306 - 0.0175 - 

Gn 54.60 6.2 17.39 4.9 42.30 3.5 1.2710 2.8 0.4078 1.8 0.0236 3.5 

Gn 62.90 5.6 19.21 3.2 61.10 4.1 1.0160 5.2 0.3150 6.0 0.0164 4.1 

Gn 50.50 4.2 20.06 3.3 99.30 2.6 0.5100 2.5 0.2040 1.6 0.0101 2.6 

Gn 39.30 5.3 40.90 6.1 363.00 6.9 0.1107 5.1 0.1127 1.8 0.0028 6.9 

Gn 56.50 3.5 142.4 3.4 1627 3.9 0.0339 3.2 0.0870 1.4 0.0006 3.9 

Max 62.90 - 142.4 - 1627 - 1.2710 - 0.4078 - 0.0236 - 

Min 39.30 - 16.81 - 42.30 - 0.0339 - 0.0868 - 0.0006 - 

GeoMean 53.31 - 24.80 - 118.69 - 0.4519 - 0.2093 - 0.0084 - 

Cu-(Fe)-S 50.70 6.5 17.60 6.3 55.80 6.3 0.9350 3.1 0.3200 3.1 0.0179 6.3 

Cu-(Fe)-S 49.90 6.2 23.10 6.5 78.60 6.6 0.6390 2.3 0.3007 2.3 0.0127 6.6 

Cu-(Fe)-S 56.40 8.7 26.30 8.7 136.00 8.8 0.4150 4.3 0.1881 3.1 0.0074 8.8 

Cu-(Fe)-S 61.20 6.9 25.70 6.2 140.70 6.5 0.4250 3.1 0.1824 2.4 0.0071 6.5 

Cu-(Fe)-S 56.70 6.0 25.00 6.0 144.80 6.1 0.3888 1.8 0.1736 2.6 0.0069 6.1 

Max 61.20 - 26.30 - 144.80 - 0.9350 - 0.3200 - 0.0179 - 

Min 49.90 - 17.60 - 55.80 - 0.3862 - 0.1736 - 0.0069 - 

GeoMean 55.55 - 22.91 - 99.48 - 0.5609 - 0.2311 - 0.0100 - 

Alt 53.20 5.5 17.78 5.5 52.30 5.2 1.0150 1.7 0.3383 1.3 0.0191 5.2 

Alt 52.10 4.8 17.59 4.3 56.20 4.4 0.9350 2.2 0.3132 2.4 0.0178 4.4 

Alt 53.60 5.0 18.70 5.3 73.80 7.3 0.7440 5.6 0.2569 3.9 0.0136 7.3 

Alt 58.00 6.9 22.40 6.7 99.70 4.2 0.5680 2.6 0.2193 2.7 0.0100 4.2 

Max 58.00 - 22.40 - 99.70 - 1.0150 - 0.3383 - 0.0191 - 

Min 52.10 - 17.59 - 52.30 - 0.5680 - 0.2193 - 0.0100 - 



33 

 

GeoMean 54.18 - 19.02 - 68.19 - 0.7958 - 0.2780 - 0.0147 - 

Common 
Pb 

38.64 - 15.63 - 18.70 - 2.0663 - 0.8357 - 0.0535 - 

Errors are calculated from the 2σ value and taken as a percentage of the total value for each ratio.  

Cls-clausthalite; Gn-galena; Alt-altaite; Cu-(Fe)-S - Cu-Fe-sulphides. 

Common Pb values from Stacey and Kramers (1975) are included for reference at the bottom of the table. 

 

Figure 2: Graphs showing the Pb-isotope composition of clausthalite, altaite, galena and Cu-(Fe)-sulphides. 

(a), (b) and (c) show 207Pb/204Pb, 206Pb/204Pb and 207Pb/206Pb vs. 208Pb/204Pb, respectively. Some outlier 

values are not plotted for better data viewing (refer to Table 1); (d) 206Pb/204Pb vs. 207Pb/204Pb. Note the lack 

of 204Pb compared to 206Pb and 207Pb in the majority of analyses; (e) and (f) show the variation of uranogenic 

Pb (207Pb/206Pb) plotted against 208Pb/206Pb and 204Pb/206Pb, respectively. The x-axis on (f) is set at zero, 

giving us the purely radiogenic signature of uranogenic 207Pb/206Pb; see also Figure 3. The position of 

common Pb (Stacey and Kramers, 1975) is plotted for reference. 
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4. Discussion 

Any points straying from the common Pb values indicated in Figure 2 are classed as radiogenic, 

however some grains show much larger degrees of radiogeneity than others. Such a large 

difference in variation of isotope values of Pb-bearing minerals can be attributed to varying 

amounts of mixing between radiogenic Pb with common Pb. Within IOCG deposits in the Olympic 

Cu-Au Province, only a minority of Pb is common in origin, with the majority of Pb being 

radiogenic, formed by the release of Pb produced via decay of U and Th in minerals such as 

uraninite, coffinite, brannerite, thorite, monazite, zircon, hematite, and others. Although some 

minerals readily reincorporate radiogenic Pb into their crystal structures (the size and charge of 

daughter radionuclides often differ markedly from parent U), others cannot rapidly self-heal or 

cannot accommodate larger or differently charged ions. In the presence of fluids, such products 

may be released and subsequently migrate over nanometres to potentially hundreds of metres 

where they are deposited as new minerals.  

The formation of the largely radiogenic Pb-chalcogenides is suggested to be a consequence of 

large scale Pb remobilisation. Such Pb remobilisation events, recorded by Pb isotope ratios, have 

been reported elsewhere, including the following examples: (1) Hydrothermal overprints are 

recorded in the Tomino and Birgilda deposits (both South Urals, Russia), by distinctly different 

sets of Pb isotope ratios measured within both Cu-(Fe)-sulphides and Pb-chalcogenides alike 

(Plotinskaya et al., 2017); (2) Dating of Pb-isotopes in early stratiform, and later framboidal pyrite, 

in the Sukhoi Log sediment hosted gold deposit, Russia, indicate events of mobilisation, and 

concentration of ore minerals, may have continued late into the deposit’s history (Meffre et al., 

2008). 

The radiogenic signatures presented here, however, do not cluster into individual or distinct 

groups, but rather form along a single ‘mixing trend’ with differing amounts of common Pb 

incorporation. Similar trends, in which Pb isotope ratios vary consistently between samples, are 

reported in a study attempting to develop origin analysis of yellowcake from various mines (Varga 

et al., 2009). The latter authors suggest that mineralogical variability, along with chemical 

separation of Pb during processing, is one of the main causes of the observed variability in Pb 

isotope ratios. 

Whereas galena is, overall, relatively enriched in 206Pb and 207Pb relative to clausthalite (Figure 

2a, b), altaite or the Cu-(Fe)-sulphides (Figure 2a, b), there is still a significant degree of overlap 

between the isotopic signatures for each mineral type. This suggests that the event (or events) 

responsible for Pb mobilisation was prolonged, and thus achieved a degree of homogenization, but 

also that differential fluid regimes and variations in fluid/rock ratio driven by permeability may 

have contributed to the measured variation. The few Pb isotope values for galena which are 
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strongly uranogenic (Figure 2a, b) likely formed by direct replacement of U-bearing minerals 

without significant mixing with Pb from other sources. 

The isotopic signatures and degree of radiogeneity of Pb-bearing minerals is, in part, dependent 

on the time at which the contained Pb becomes separated from its parent U and Th decay sources. 

Minerals formed later should record higher ratios of 206Pb/204Pb to 207Pb/204Pb. Additionally, fluid 

mixing and superimposed cycles of dissolution, recrystallization and reprecipitation result in the 

blending of distinct radiogenic signatures, as well as mixing with common Pb, if available (Figure 

2e, f). The relative solubility of uraninite with respect to the other minerals in the ore, and the 

typically metamict nature of brannerite, which allows Pb to freely migrate from its structure, 

suggests that such overprinting events need not necessarily be intense, but rather, could occur via 

the aid of low-temperature hydrothermal fluids. Radiogenic Pb may also be removed from 

uraninite without its complete dissolution, as shown in samples of Pb-zoned uraninite from 

Johangeorgenstadt Saxony, Germany (Ram et al., 2013). 

Using a nanoscale approach that examined textural relationships between the Pb-chalcogenides 

and Cu-(Fe)-sulphides, Owen et al. (2018) showed that Pb is likely remobilised during at least one 

stage after initial hydrothermal deposition. Similarly, within the cogenetic Olympic Dam deposit, 

Macmillan et al. (2016, 2017) discusses the formation of multiple generations of uraninite and 

coffinite from remobilised U, indicating a dynamic system of dissolution, remobilisation and 

precipitation. Given the heat generated by radioactive decay, this may possibly have been semi-

continuous over hundreds of millions of years rather than only during specific events. The result 

is repeated reworking and overprinting of ore mineral assemblages, leading to complex and often 

varied mineral chemistry, including significant variation of lead concentrations within the U-

minerals. 

Furthermore, Macmillan et al. (2016) note that primary fine-grained uraninite is observed 

mainly in relatively deeper parts of the deposit, whereas ‘younger’ uraninite is concentrated within 

veins representing the most U-rich zones This apparent zonation does not, however, correspond to 

patterns of Cu-(Fe)-sulphide distribution, indicating that fluids responsible for uranium mobility 

and redistribution of uraninite mineralisation did not impact on the zoning of Cu-(Fe)-sulphides in 

the deposit. The authors suggest that the late generation was migrated by fluids <250 °C. Here, we 

suggest that such low-temperature, oxidizing hydrothermal fluids were probably ubiquitous in all 

IOCG systems across the province, including those within the Mt Woods Inlier. While a complete 

reworking of the ore minerals did not take place, they must have been sufficiently strong to result 

in migration of U and Pb, and ultimately to drive Pb-diffusion into, and recrystallisation of the Cu-

(Fe)-sulphides (see also Owen et al., 2018). 
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Figure 3: Pb-Pb isochron constructed with Pb isotope data from the Pb-chalcogenides and Cu-(Fe)-

sulphides. A line of best fit is anchored through the isotopic composition of common Pb (Stacey and 

Kramers, 1975), returning a pure radiogenic 207Pb/206Pb ratio of 0.0721 at the y-intercept. 

Further evidence for the mobility of U and radiogenic Pb throughout the Olympic Cu-Au 

Province comes through an examination of Pb-Pb isochrons shown as Figure 3. By plotting 

207Pb/206Pb for all Pb-chalcogenides against 204Pb/206Pb, we can predict the purely radiogenic 

signature, i.e. without any common-Pb component. The resulting 207Pb/206Pb ratio, taken from the 

y-intercept where 204Pb is zero, is significantly lower, by several hundred million years, than the 

widely reported ages for igneous and hydrothermal zircon (Reeve et al., 1990; Creaser and Cooper, 

1993; Johnson and Cross, 1995; Jagodzinski, 2005, 2014; Courtney-Davies et al., 2019), and U-

Pb/Pb-Pb ages for hematite mineralisation (Ciobanu et al., 2013; Courtney-Davies et al., 2016, 

2019) reported from the region. This may indicate either an overprinting event, supplying uranium 

after the initial ~1590-1585 Ma mineralisation event, or alternatively, substantial loss of lead from 

the system. 

It should, however, be pointed out that calculated 207Pb/206Pb ratios do not allow for derivation 

of reliable ages, especially when Pb is no longer in equilibrium with parent U. For this reason, no 

precise geochronological ages are offered here. Confidence in such an interpretation is 

nevertheless strong as the sample suite and number of analysed points are relatively large, and 

furthermore that similar results have emerged from a similar study of Pb-isotope systematics in 

Pb-chalcogenides from Olympic Dam (Schmandt, 2019). Evidence from a variety of sources, 

including nanoSIMS mapping (Rollog et al., 2019a, 2019b), Pb-isotope mapping of single 

hematite grains (Courtney-Davies et al., 2019) and characterization of nanoparticles in hematite 

(Verdugo-Ihl et al., 2019), all pointing to mobility of Pb and/or U at scales from a few nanometres 

up to centimetres, if not hundreds of metres. The implications of these phenomena for U-Pb 

geochronology and for ore genesis will be examined elsewhere (Cook et al., in prep). 
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Several distinct tectonothermal events are suggested to have impacted on the Olympic Cu-Au 

Province following mineralization associated with intrusion of Hiltaba Suite Granites and eruption 

of Gawler Range Volcanics. Evidence has come from different geochronometers, on different 

minerals, and from different deposits across the region. 

Firstly, multiple, as-yet poorly-constrained events are recorded in the interval 1400-1100 Ma 

in several studies from different systems in the Olympic Cu-Au Province (Davidson et al., 2007; 

Maas et al. 2011 Ciobanu et al., 2013), including the most recent, 1370 Ma age obtained from U-

Pb dating of monazite and xenotime inclusions in apatite from the Acropolis prospect (Cherry et 

al., 2018). These may relate to far-field effects from the Laurentia Orogeny, and to extension 

following the 1300-1100 Ma Musgravian Orogeny respectively, and are indicated in the central 

part of the Mt Woods Inlier by northwest striking magnetic anomalies (Betts et al., 2003). A 

hydrothermal event of Musgravian age is recorded at Olympic Dam via the analysis of pyrite-

chalcopyrite mineral separates from a deep, low-Re zone, yielding Re-Os ages of 1258 ±28 Ma 

(McInnes et al., 2008). 

Secondly, emplacement of the Gairdner LIP (expressed by abundant dyke swarms at Olympic 

Dam and elsewhere) took place across the northern Olympic Cu-Au Province at ca. 830 Ma 

(Wingate et al., 1998; Huang et al., 2015; Apukhtina et al., 2017; Bowden et al., 2017). 

Thirdly, the Delamerian orogeny (~500 Ma) led to extensive faulting and late veining across 

the region. Recent fission track evidence (Hall et al., 2018) suggests that tectonothermal effects 

continued until the Tertiary. In addition to these, the Mount Woods Inlier may display evidence of 

metamorphism during the late Kararan Orogeny (1565-1540 Ma) via the formation of a weak 

fabric in the Balta Granite Suite plutons (Betts et al., 2003; Forbes et al., 2011). No recognizable 

impact of this event is seen at Olympic Dam, however. Each of these events may have had an 

impact in the remobilisation of U, Pb, and other elements, throughout the Olympic Cu-Au 

province, leading to the wide range of overprints observed in various mineral groups from Olympic 

Dam (Ciobanu et al., 2017; Macmillan et al., 2016; Verdugo-Ihl et al., 2017; Schmandt et al., 2019; 

Owen et al., 2019) and elsewhere in the Olympic Cu-Au Province (e.g., Cherry et al., 2018; Owen 

et al., 2018). 

5. Conclusions 

• Pb-isotope ratios in clausthalite, altaite and Cu-(Fe)-sulphides are indistinguishable from one 

another. All three, however, appear distinct from ratios exhibited by galena, which is relatively 

enriched, albeit to variable degrees, in (uranogenic) 206Pb and 207Pb. 

• The data shows incorporation of minor common Pb within all Pb-bearing minerals. Measured 

206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios suggest an overwhelmingly radiogenic origin. 
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• The purely radiogenic 207Pb/206Pb ratios calculated from the dataset suggest a scenario 

involving a remobilisation event (or events) postdating the initial deposition of Cu-Au-U 

mineralisation, in which radiogenic Pb released by parent U-bearing minerals became 

incorporated into Cu-(Fe)-sulphides (as included Pb-chalcogenides). 

• Homogenisation of Pb-isotope signatures seen in clausthalite, altaite and Cu-(Fe)-sulphides 

suggests prolonged interaction with hydrothermal fluid, or multiple fluids throughout the post-

mineralisation history of the northern Olympic Cu-Au Province. 

• The data presented here are consistent with other studies in the Olympic Cu-Au province which 

record the impact of one or more tectonothermal events younger than the 1600-1585 Ma ‘main’ 

mineralisation event. The data here suggests that at least one of these tectnothermal events was 

sufficiently strong to overprint pre-existing Cu-(Fe)-sulphide mineralisation and enable 

incorporation of radiogenic Pb within existing and new-formed minerals. 
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Abstract: Symplectites comprising clausthalite (PbSe) and host Cu-(Fe)-sulphides (chalcocite, bornite, and 

chalcopyrite) are instructive for constraining the genesis of Cu-Au-(U) ores if adequately addressed 

at the nanoscale. The present study is carried out on samples representative of all three Cu-(Fe)-

sulphides displaying clausthalite inclusions that vary in size, from a few µm down to the nm-scale 

(<5 nm), as well as in morphology and inclusion density. A Transmission Electron Microscopy (TEM) 

study was undertaken on foils prepared by Focussed Ion Beam and included atom-scale High-Angle 

Annular Dark-Field Scanning TEM (HAADF-STEM) imaging. Emphasis is placed on phase 

relationships and their changes in speciation during cooling, as well as on boundaries between 

inclusions and host sulphide. Three species from the chalcocite group (Cu2–xS) are identified as 6a digenite 

superstructure, monoclinic chalcocite, and djurleite. Bornite is represented by superstructures, of which 2a 

and 4a are discussed here, placing constraints for ore formation at T > 265 ◦C. A minimum temperature 

of 165 ◦C is considered for clausthalite-bearing symplectites from the relationships with antiphase 

boundaries in 6a digenite. The results show that alongside rods, blebs, and needle-like grains of 

clausthalite within the chalcocite that likely formed via exsolution, a second, overprinting set of 

replacement textures, extending down to the nanoscale, occurs and affects the primary symplectites. 

In addition, other reactions between pre-existing Se, present in solid solution within the Cu-(Fe)-

sulphides, and Pb, transported within a fluid phase, account for the formation of composite, commonly 

pore-attached PbSe and Bi-bearing nanoparticles within the chalcopyrite. The inferred reorganisation of 

PbSe nanoparticles into larger tetragonal superlattices represents a link between the solid solution and 

the symplectite formation and represents the first such example in natural materials. Epitaxial growth 

between clausthalite and monazite is further evidence for the interaction between pre-existing Cu ores 

and fluids carrying REE, P, and most likely Pb. In U-bearing ores, such Pb can form via decay of uranium 

within the ore, implying hydrothermal activity after the initial ore deposition. The U-Pb ages obtained 

for such ores therefore need to be carefully assessed as to whether they represent primary ore deposition 

or, more likely, an overprinting event. A latest phase of fluid infiltration is the recognised formation of Cu-

selenide bellidoite (Cu2Se), as well as Fe oxides. 

 
Keywords: lead chalcogenides; symplectites; transmission electron microscopy; HAADF-STEM 

 

1. Introduction 

Selenides, often with associated tellurides, are common accessories in a wide variety of base and precious 

metal mineral deposits [1–3]. Despite their modest proportions, their speciation and mineral 
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chemistry can be important sources of information that can help constrain conditions and mechanisms of 

ore genesis. 

The lead selenide, clausthalite (PbSe), is the most common selenide mineral [4] and a relatively common 

accessory phase in copper sulphide and uranium deposits  of  different  genetic  types (e.g., [5–7]). In 

hydrothermally derived ore systems, clausthalite may form synchronous to the initial  mineralization 

event from hydrothermal fluids, or within uranium-bearing deposits, in which clausthalite is formed from 

Pb, derived from the decay of U, and available selenium within the rock [8]. The occurrence of clausthalite 

within Cu-(Fe)-sulphides, notably bornite, is generally interpreted as exsolution related to the cooling of 

broader solid solution fields (e.g., [9]). Liu and Chang [10] described phase relations in the system PbS-PbSe-

PbTe, showing the temperature dependence of Pb-chalcogenide compositions, and thus their potential value 

as indicator minerals that can aid understanding of how an ore formed. Experimental studies of the system 

Pb-Se-Cu-(Fe)-S are, however, lacking, emphasizing the difficulty in modelling the evolution of observed 

assemblages in terms of phase relationships. 

Clausthalite, as well as other selenides and tellurides, have been noted as trace minerals in iron oxide 

copper gold (IOCG) deposits (e.g., [11]) and other ore systems with comparable sulphide mineralogy 

(e.g., the Polish Kupferschiefer) [12]. The Mesoproterozoic Olympic Cu-Au Province of South Australia 

[13] is arguably the world’s largest IOCG province and is host to the 10 billion-tonne Olympic Dam Cu-U-

Au-Ag deposit [14]. A dozen or so selenide and telluride mineral species, including clausthalite and 

altaite (PbTe), are documented from the Olympic Dam. A similar range of minerals are identified in other 

deposits or prospects within the province, although these are poorly documented in the published 

literature. Although seldom greater than a few microns in size, selenides and tellurides are typically 

hosted within Cu-(Fe)-sulphides throughout the province. 

In this contribution, we characterize world class examples of nano- to micron-scale symplectite 

intergrowths between clausthalite and Cu-(Fe)-sulphides (chalcocite, bornite, and chalcopyrite). Their 

small size necessitates an approach that bridges observations at the micron- and nanoscales. The 

overarching objective is to document the relationships between Pb-chalcogenides and host Cu-(Fe)-

sulphides down to the atomic scale. We demonstrate that Pb-chalcogenide morphology, speciation, and 

textural relationships with host minerals give valuable insights into processes of ore formation and can 

also provide information on the fundamental nature of trace element incorporation into minerals. We go 

on to discuss the implications that the prevailing symplectite textures have for ore evolution. 

2. Background 

Copper-Au mineralisation in the Olympic Cu-Au Province is suggested to have formed synchronous to 

the ca. 1600–1585 Ma emplacement of Hiltaba Suite granites and eruption of co-magmatic Gawler Range 

Volcanics (GRV) [13,15]. This event is associated with initial magmatic- hydrothermal activity leading to 

the deposition of Cu-Au mineralisation within the region. However, within the Olympic Dam Cu-Au-(U) 

deposit, there is widespread textural and isotopic evidence for later remobilisation, replacement, and 

recrystallization of ore-forming minerals, e.g., [16–18]. These phenomena may relate to one or more 

tectonothermal events, including the intrusion of the regional ~820 Ma Gairdner Dyke Swarm, which are 

recognised in the region [19,20]. 

Complete miscibility exists in the system PbS–PbSe-PbTe above 500 ◦C. Immiscibility between galena-

clausthalite and altaite is complete below 300 ◦C, with the critical temperature at which PbS and PbSe 

separate calculated at ~100 ◦C [10]. Hydrothermal origins with temperatures above 100 ◦C during Pb-

chalcogenide mineralisation should therefore result in the preservation of the complete PbS-PbSe 

series, giving access to both chalcogen elements S and Se, with miscibility gaps appearing below 100 ◦C 

[10]. 

Selenium, substituting  for  sulphur,  is  a  common  minor  element  in  most  common  sulphides.  In some 

cases, there is complete isomorphous solid solution between the sulphide and analogue selenide, e.g., 

chalcopyrite-eskebornite (CuFeS2-CuFeSe2). Trace element analysis of Cu-(Fe)-sulphides 
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typically show the presence of hundreds and, locally, thousands of mg/kg of Se within the crystal lattice 

[21–23]. In contrast, concentrations of lead in common Cu-(Fe)-sulphides are often erratic and readily 

interpretable in terms of inclusions of galena and other Pb-bearing minerals, rather than lattice-bound 

lead. 

Textural relationships among dominant Cu-(Fe)-sulphides (chalcopyrite, bornite, chalcocite) and the 

associated phases djurleite, digenite, and covellite at the micron- to nanoscale in Cu ores from the 

Olympic Dam have been described by Ciobanu et al. [24]. Analogous bornite-chalcocite, bornite-

chalcopyrite and chalcopyrite-pyrite assemblages are observed throughout the orebody from which the 

samples were taken (authors’ unpublished data). 

A summary of Cu-(Fe)-sulphide and associated species discussed in this contribution and their crystal 

structure parameters are presented in Table 1. High- and low-temperature species are listed with their 

corresponding symmetry groups. Within the Cu-(Fe)-sulphides, phase transitions from high to low T are well 

defined with either cubic (bornite, digenite) or hexagonal (chalcocite) symmetry, indicating the primitive 

parent structure [24]. Although other minerals listed in Table 1 may display slight variation in their cell 

parameters a, b, and c because of compositional changes via solid solution   of minor elements (e.g., in galena, 

clausthalite and altaite [25], and monazite [26]), they do not show changes in overall symmetry and remain 

within the same crystal system. 
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3. Sampling and Analytical Methodology 

This research was undertaken on a set of 30 different laboratory-prepared sulphide concentrates from 

representative crushed ore samples. All instrumentation used in this study is housed at Adelaide Microscopy, 

The University of Adelaide. Each sample was prepared as a polished block, one-inch in diameter. Polished 

blocks were examined in reflected light and in backscatter electron (BSE) mode using a FEI Quanta 450 Field 

Emission Gun  scanning  electron  microscope  (SEM)  (FEI,  Eindhoven, The Netherlands) equipped with a 

silicon-drift energy-dispersive X-ray spectrometer. 

Samples were quantitatively analysed using a Cameca SXFive Electron Microprobe running PeakSite 

software and equipped with 5 WDS X-ray detectors. The beam conditions were set at an accelerating 

voltage of 20 kV and 20 nA. Because of the small size of the minerals to be targeted,     a focussed 1 µm 

beam was used for the analysis. The calibration and data reduction were carried 
out in Probe for electron probe microanalyzer (EPMA) (Cameca, Paris, France), distributed by Probe 

Software Inc. The calibration was performed on certified natural and synthetic standards from Astimex 

Standards Ltd. (Toronto, ON, Canada) and P & H Associates (Table A1 in Appendix A). The total 

acquisition time of all elements on a single point was ~5 min. 

Initially, a set of 16 elements were measured: S Kα, Pb Mα, Cd Lα, Bi Mα, As Lα, Se Lα, Fe Kα, Cu Kα, 

Mn Kα, Ag Lα, Sb Lα, Te Lα, Hg Lα, Zn Kα, Ni Kα, Co Kα. This list was subsequently shorted by removing 

Cd, Hg, Ni, Co, as these elements were below DL in the samples. The average minimum 

detection limits (99% CI) in wt % for selenide analysis were: S (0.02), Pb (0.03), Cd (0.05), As (0.05), Se 

(0.02), Fe (0.02), Cu (0.04), Mn (0.02), Ag (0.06), Hg (0.07), Zn (0.03), Ni (0.03), Co (0.02), Sb (0.03), 

Te (0.03), Bi (0.07). 

Cross-section imaging and TEM sample preparation were performed on a FEI-Helios nanoLab Dual 

Focused Ion Beam and Scanning Electron Microscope (FIB-SEM). The procedures outlined by Ciobanu 

et al. [39] were followed in extraction and thinning, to 50–70 nm, of TEM foils by Ga+ ion milling. The 

TEM foils were attached to Cu or Mo grids via Pt welding. Images were obtained in immersion mode to 

obtain maximum resolution. 

High-resolution (HR)-TEM imaging in bright field (BF) mode and electron diffraction were performed 

using a Philips CM200 TEM. The instrument is equipped with a LaB6 source and operated at 200 kV and 

utilises a double-tilt holder and a Gatan Orius digital camera (Gatan Inc., Pleasanton, CA, USA). Energy-

dispersive X-ray spectra (EDS) were acquired using an Oxford Instruments X-Max 65T SDD detector 

running the Aztec software. 

High-Angle Annular Dark-Field Scanning Transmission Electron Microscope (HAADF-STEM) (FEI, 

Eindhoven, The Netherlands) imaging was performed using an ultra-high resolution, probe- corrected, 

FEI Titan Themis S/TEM. This instrument is equipped with the X-FEG Schottky source and Super-X EDS 

geometry (see also [40–42]) The Super-X EDS detector provides geometrically symmetric EDS detection 

with an effective solid angle of 0.8 Sr. Probe correction delivered sub-Ångstrom spatial resolution, and an 

inner collection angle greater than 50 mrad was used for HAADF experiments using the Fischione HAADF 

detector. 

The diffraction measurements were performed using DigitalMicrographTM  3.11.1 (Gatan Inc., 

Pleasanton, CA, USA) and Winwulff© 1.4.0 (JCrystalSoft, Livermore, CA, USA) software. Publicly 

available data from the American Mineralogist Crystal Structure Database [43] were used for indexing of 

the electron diffractions.  Crystal structure simulations were carried out using CrystalMaker® version 

9.2.7 (CrystalMaker Software Ltd., Begbroke, Oxon, UK) and STEMTM for xHREM software (HREM 

Research Inc., Higashimastuyama, Japan). 

4. Results 

4.1. Characterisation of Symplectite Textures 

All three Cu-(Fe)-sulphides (chalcopyrite, bornite, and chalcocite) display symplectitic textures 

containing clausthalite. The petrographic relationships within the symplectites were examined in 
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backscatter electron (BSE) and secondary electron (SE) modes (SEM and FIB-SEM, respectively), and 

show a wide range of textures with respect to the density of the component phases, size, distribution, etc. In 

the absence of other Cu-(Fe)-sulphide host minerals, chalcopyrite displays highly variable 

relationships with respect to the grain size of clausthalite, with some bleb-like grains of clausthalite as 

large as 10 µm but others down to fine lamella in the order of 0.01–0.1 µm. Fine lamellae of clausthalite are 

regularly associated with cracks and pore spaces within the chalcopyrite and tend to radiate from such 

features (Figure 1a,b). In one sample, chalcopyrite hosts a Cu-selenide phase, which is identified as 

bellidoite (see below). This appears blotchy and porous on the BSE images (Figure 1a), generally in 

the presence of coarse clausthalite. 

Bornite with coarse chalcopyrite lamellae was regularly observed containing clausthalite, as either relatively 

coarse (2–10 µm) blebs or fine (<1 µm) lamellae, with both the density of the lamellae and their size varying 

from grain to grain. In grains containing fine lamellae of clausthalite, these lamellae were roughly parallel to 

one another within specific domains of the grain but also traversed boundaries between bornite and 

chalcopyrite without any change in orientation (Figure 1c). The coarser blebs of clausthalite displayed only 

weak orientation with respect to the crystallographic domains in bornite, typically appearing slightly 

elongated in the direction of the chalcopyrite lamellae within bornite (Figure 1d). The aforementioned Cu-Se 

phase was observed in a chalcopyrite-bornite sample where it was associated with a clausthalite, forming a 

composite bleb (Figure 1d). 

 

 
Figure 1. (a,b) Backscatter electron (BSE) images of clausthalite-bearing symplectites hosted within 

chalcopyrite. The location of the Focused Ion Beam (FIB) cuts for TEM foil preparation is indicated by the dotted 

line in (a), with clausthalite forming a composite grain with a Cu-Se phase. (c,d) Two varieties of clausthalite-

bearing symplectites (fine vs. coarse grained) within coarser chalcopyrite-bornite symplectites. Clausthalite 

again forms a composite grain with a Cu-Se phase in (d). Abbreviations: Bn—bornite; Cls—clausthalite; Cp—

chalcopyrite. 
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Clausthalite hosted within chalcocite occurs as both fine (<1 µm) blebs and (<0.1 µm thick) lamellae. Coarser 

(>1 µm) blebs are less frequent than in chalcopyrite or bornite and are typically associated with a defect in 

the chalcocite host, such as cracks or  pores.  Clausthalite  lamellae  lie parallel to one another, forming 

discrete domains within the chalcocite host, identifiable by changes in clausthalite orientation (Figure 2). 

Symplectites-containing clausthalite are less common in samples containing both bornite and chalcocite 

than in any of the other host mineral assemblages. Within chalcocite, clausthalite mainly occurs as fine 

lamellae orientated roughly parallel to one another, forming discrete zones (similar to the clausthalite 

hosted entirely within chalcocite in the absence of bornite intergrowths, e.g., Figure 2). Clausthalite mainly 

appears as larger blebs within bornite. At high magnification, bornite is seen to feature nanoscale 

basket-weave intergrowths of bornite and djurleite and/or chalcopyrite (Figure 3). The location of the 

clausthalite blebs is associated with the orientation of the djurleite basket-weave texture, in that 

clausthalite blebs mostly occur along shifts of the basket-weave textural orientation (Figure 3d). 

Clausthalite blebs are regularly observed at the mutual boundaries between bornite and chalcocite. 

 

Figure 2. BSE image of clausthalite-bearing symplectite with chalcocite. Note the discrete zones of well-

orientated clausthalite lamellae. Abbreviations: Cc—chalcocite; Cls—clausthalite. 

 

Figure 3. (a,b) BSE images of clausthalite (Cls)-bearing symplectites hosted within coarser bornite (Bn)–

chalcocite (Cc) symplectites. The FIB slice taken from (b) (study case BnCcIII, see text below) is imaged in cross 

section in (c,d), revealing a very fine bornite-djurleite (Dj) symplectic “basket-weave” texture. The dashed line 

on (d) indicates a change in the orientation of the bornite-djurleite “basket-weave” texture, with clausthalite 

forming along the boundary. Abbreviations: Bn—bornite; Cc—chalcocite; Cls—clausthalite; Dj—djurleite; 

Mnz—monazite. 
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Symplectites preserved in bornite in the absence of either chalcopyrite or chalcocite occur as both randomly 

orientated and well aligned symplectite structures. Only rarely, however, do they contain clausthalite 

lamellae as fine as those observed in chalcopyrite or chalcocite. 

4.2. Compositional Data for Pb-Chalcogenides and Host Cu-(Fe)-Sulphides 

The small size and density of clausthalite within the symplectites makes it difficult to obtain high-quality 

compositional data by EPMA. Nevertheless, the data show: (1) the large (>5 µm) inclusions are end-

member clausthalite without measurable sulphur; (2) the absence, at measurable concentrations, of Ag, 

Sb, or Bi, the most common minor components of Pb-chalcogenides; (3) the presence of measurable Te 

in the range 0.06–0.17 wt % within all clausthalite analyses. Inclusions of galena in the same Cu-(Fe)-

sulphides outside of the symplectites contained no measurable Se. 

Compositional data for the bornite and chalcocite (Figure 4) show that both Cu-(Fe)-sulphides 

consistently deviate from the ideal stoichiometry. This is attributed to the presence of nanoscale 

intergrowths of other mineral species such chalcopyrite (or more rarely djurleite) in bornite (Figure 3c,d) and 

digenite in chalcocite. A similar non-stoichiometry is reported for Cu-(Fe)-sulphides from the Olympic 

Dam [24]. 

 

Figure 4. Diagram summarising the stoichiometry of bornite (brown) and chalcocite (blue). The 

measurements are presented as the ratio between the total metals measured (Me) and the total chalcogen elements 

(S, Se, and Te). The data are arranged in order of analysis only. An—anilite, Bn—bornite, Cc—chalcocite, Cp—

chalcopyrite, Dg—digenite, Dj—djurleite. 

 
4.3. Nanoscale Characterisation (TEM Data) 

4.3.1. Host Sulphides 

Nanoscale studies were carried out on four study cases using bright-field TEM and HAADF-STEM imaging, 

electron diffraction, and EDS spot analysis and mapping on four FIB-prepared TEM foils (Figure 5). 
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The four study cases represent: (1) dense symplectites of clausthalite in chalcocite-digenite (CcI; Figure 

5a); (2) chalcopyrite with variable textures with respect to clausthalite inclusions (CpII; Figure 5b); (3) 

bornite-chalcocite with clausthalite and other mineral inclusions, notably monazite (BnCcIII; Figure 5c); 

(4) lamellar chalcopyrite in bornite with lesser clausthalite inclusions (BnCpIV; Figure 5d). The latter 

contains larger pore fillings comprising Fe oxides and a Cu-selenide (bellidoite). These study cases thus 

cover clausthalite hosted within both single and binary Cu-(Fe)-sulphides associations, with variability 

in morphology, size, and phase associations. 

 

Figure 5. High-Angle Annular Dark-Field Scanning Transmission Electron Microscope (HAADF-STEM) images 

showing the four analysed TEM foils. (a) Dense field of clausthalite as rods and blebs of variable orientation in 

chalcocite. (b) Coarse micron-scale clausthalite in chalcopyrite coexisting with finer swarms of rods and 

mottled areas of clausthalite inclusions. (c) Clausthalite of variable size mostly in the bornite domain. 

Monazite and iron oxide are present throughout both chalcocite and bornite. 

(d) Dense lamellae of chalcopyrite in bornite, with scattered inclusions of clausthalite. Micron-sized pores are 

filled by iron oxides and the Cu-selenide bellidoite. Note in both (c,d) the basket-weave appearance of bornite 

due to the presence of sub-micron-scale djurleite lamellae. Abbreviations: Bel—bellidoite; Bn—bornite; Cls—

clausthalite; Cp—chalcopyrite; Fe-ox—iron-oxides; Mnz—monazite. 
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The variability in textures throughout  the  study  cases  is  illustrated  in  Figure  6.  In  CcI,  this comprises 

fields of antiphase boundary (APB) domains with variable orientation (Figure 6a). Similar APB domains 

are observed also in chalcocite in BnCcIII. Fine 30–80 nm-wide clausthalite inclusions are embedded 

within, or crosscut these domains (Figure 6b,c). Larger (200–500 nm-sized) inclusions of clausthalite 

also exist outside the APB domains (Figure 6d). In CpII, mottled textures with dense, fine inclusions 

occur in domains that are outlined by fine fractures and coarser rods of clausthalite, or surrounding 

micron-sized pores (Figure 6e,f). Symplectites, as in CcI, are developed outside of such mottled areas 

(Figure 6g). Needles of chalcopyrite inclusions are found in the coarser clausthalite from such areas 

(Figure 6h). In BnCpIV, rounded, micron-sized blebs of clausthalite are found at the margins of 

chalcopyrite lamellae in bornite (Figure 6i). The basket-weave texture on the sample develops around 

the edges of such lamellae and in the surroundings of needles of djurleite (Figure 6j–l). Such needles can 

be present within the bornite or adjacent to the chalcopyrite lamellae. HAADF-STEM imaging reveals the 

patchiness in greyscale intensity across foil BnCpIV; some of this is due to the higher alteration in this 

case (see below) but also to the effect of FIB milling in and around inclusions and lamellae. EDS 

compositional data for host sulphides was determined in areas free of inclusions (Figure 6m) and 

indicates the presence of Se throughout the Cu-(Fe)-sulphides and of Pb in those cases where two 

sulphides are present (BnCcIII and BnCpIV). In the single phases, minor Pb is noted in Cc1, but very little 

in CpII. 

The identity of the species referred to above as “chalcocite” and “bornite”, as well as the characteristics of 

chalcopyrite in the mottled areas were studied in further detail via TEM imaging down to atomic scale and 

electron diffractions. In CcI, there are two co-existing species: digenite superstructure and monoclinic 

chalcocite (Figure 7). Digenite is present in the APB domains, whereas monoclinic chalcocite occurs outside. 

These domains are outlined in some cases by rods and blebs of clausthalite (Figure 7a) and are marked by 

different orientation of the sulphides.  The APB domains   are readily identified by strong contrast in BF-TEM 

imaging and are observed as dark ripples with variable morphology across internal subdomains (Figure 

7b,c). A finer sub-stricture develops in such subdomains,  particularly at  the tip  of the  coarser clausthalite  

inclusions (Figure 7d).  Selected  area  of electron diffraction (SAED) representative of the two species are 

shown in Figure 7e,f. Digenite is attributed to 6a superstructure on the basis of SAEDs showing an orthogonal 

lattice with ~12 × ~12 Å repeats, and intensity variation with brighter reflections indicative of a six-fold 

superlattice. SAEDs obtained over larger clausthalite inclusions (Figure 7g) indicate close-to-coherent 

orientation between digenite and clausthalite. 

Further details of the APB domains and the boundary relationships between clausthalite and digenite 

are shown as HR BF TEM images in Figure 8. There is a continuation of the lattice fringes across the 

dark ripples within the APBs on the [001] zone axis of digenite (Figure 8a), but atom-scale defects occur 

along such ripples (Figure 8b). The two types of boundary (sharp and scalloped) between clausthalite and 

digenite are clearly observed in BF TEM imaging (Figure 8c). In detail, the scalloped boundaries show a 

stepwise morphology (Figure 8d). 

Atomic-scale imaging of digenite (in CcI) and djurleite (in BnCpIV) is shown in Figure 9. HAADF-STEM 

imaging was undertaken on [111] zone axis in digenite, showing bright atomic arrays with an arrangement 

compatible with the 6a superstructure, as marked by the green atomic motif shown on Figure 9a. The 

superstructure is highlighted by the presence of satellite reflections with six-fold periodicity between main 

spots, as shown on Fast Fourier Transform (FFT) images (Figure 9b). The image in Figure 9a also shows 

defects (stacking faults?). A portion of the corresponding supercell motif for 6a digenite is outlined on Figure 

9c. A simplified crystal structural model for high-temperature digenite [37] shows that the distribution of the 

bright atoms relates to sites with dominant Cu occupancy (Figure 9d).  Djurleite down to the [031] zone axis 

(Figure 9e,f) shows a very different  atomic arrangement.  The detail in Figure 9g and the crystal model for a 

single unit cell (Figure 9h)  show again that the brighter spots are attributable to Cu atoms, even though the 

complexity of the crystal structure requires work beyond the scope of the present study. 
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Figure 6. Aspects of host sulphides and their compositions: Bright field (BF)-TEM (a,b); HAADF-STEM (c–l) 

images; energy-dispersive X-ray spectra (EDS) spectra (m). (a,b) Antiphase boundary (APB) domains with 

variable orientation in CcI. Note clausthalite inclusions embedded in (b). (c,d) Fine rods of clausthalite 

crosscutting APBs in CcI (c) and a coarser inclusion outside the APBs (d).       (e,f) Mottled areas in CpII 

developed in domains outlined by fine fractures filled by clausthalite. 

(g) Boundary between mottled and symplectite areas in CpII. Note the density of inclusions surrounding a micron-

sized pore. (h) Needle of chalcopyrite in clausthalite from an area with the coarser symplectites. 

(i) Clausthalite bleb adjacent to chalcopyrite lamellae in bornite (BnCpIV). Note the fine basket-weave texture 

surrounding the bleb. (j) Chalcopyrite in bornite, displaying marginal intensity variation relating to the 

development of the basket-weave texture. (k,l) Nanometre-sized needles of djurleite in bornite (k) and on the 

margin of chalcopyrite (l). (m) EDS spectra of the main sulphides hosting clausthalite.    Abbreviations:   APB—

AntiPhase  Boundaries;   Bn—bornite;   Cls—clausthalite; Cp— 

chalcopyrite; Dg—digenite; Dj—djurleite. 
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Figure 7. BF-TEM images (a–d) and selected area of electron diffraction (SAEDs) (e–g) showing aspects of 

sulphide and clausthalite in Foil CcI. (a) Rods of clausthalite along boundaries between APB domains with 

digenite and monoclinic chalcocite outside the APB domains. (b) Typical aspects of APB domains represented by 

dark ripples of variable morphology across subdomains. (c) Larger clausthalite inclusion with marginal variation 

from straight to slightly scalloped. (d) Internal sub-structure of APBs developed at the tip of clausthalite shown 

in (c). (e,f) Representative SAEDs of digenite and monoclinic chalcocite (areas shown in (a)) on zone axes as 

marked. 6a digenite is indexed using the Fd3m space group of Morimoto and Kullerud [36]. Indexing on (e) 

refers to the 1a digenite parent structure. SAEDS in (e,f) were obtained at the same specimen tilt angle indicating 

different orientation of the sulphides throughout CcI. (g) Relatively coherent intergrowth between clausthalite 

and digenite. Abbreviations: CcM—monoclinic chalcocite; Cls—clausthalite; Dg—digenite. 
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Figure 8. BF-high-resolution (HR)-TEM images of digenite and clausthalite in foil CcI. (a) APB domain characterised 

by dark ripples and continuation of lattice fringes across them. (b) Detail of the marked area in (a) showing an 

atom-wide defect along one of the dark ripples. (c) Sharp and scalloped boundaries of clausthalite (inclusion shown 

in Figure 7c). (d) Detail of the highlighted area in (c), showing the stepwise character of the scalloped boundary. 

Abbreviations: APB—AntiPhase Boundaries; Cls—clausthalite; Dg—digenite. 

 
Bornite in the two foils (BnCcIII and BnCpIV) is represented by various superstructures, of which 2a and 4a 

are common in both, and 6a was only identified in BnCcIII. Bornite superstructures are documented in Figure 

10 in an area highlighted in Figure 6k with the specimen titled to the [101] zone axis. These superstructures 

are imaged from areas outlined by djurleite needles (Figure 10a). Djurelite is coherently intergrown with the 

bornite, as shown by the FFT (inset on Figure 10a). A close-up of the bornite shows atomic arrays with 

partitioned spacings (Figure 10b) corresponding to superstructure ordering, as documented by the presence 

of satellite reflections on  the  FFTs  obtained  from  such  areas. Atomic-scale HAADF-STEM imaging shows 

subdomains with atom distribution periodicity attributable to the coexistence of 2a and 4a structures (Figure 

10c). Superlattice motifs are highlighted by yellow dots in the figure. A further close-up of the atomic 

arrangement in 4a bornite shows the distribution in a quarter of the unit cell (Figure 10d). Atom distribution 

arrangements down to [101] zone axis for the two superstructures are shown as STEM simulations and 

crystal-structural models in Figure 10e–h. The 4a superstructure model is based upon eight sites with 

variable Cu-Fe occupancy ratios as shown, whereas the 2a superstructure has distinct Cu and Fe sites (Figure 

10f,h). The STEM models clearly show the distinction between the two superstructures (Figure 10e,g), in 

which the 2a superstructure shows variable but high intensity for the Cu  atoms relative  to Fe atoms.  In  

contrast,  the 4a superstructure shows relatively even intensity of atoms with higher Cu occupancies (Figure 

10e). This is mirrored by the image in Figure 10d for 4a bornite analysed here. 
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Figure 9. Atomic-scale details images for digenite and djurleite in CcI and BnCpIV, respectively. 

(a) HAADF-STEM image showing atom arrangement in digenite on [111] zone axis as calculated from  the 

corresponding Fast Fourier Transform (FFT) in (b). In (a), the structural motif shown by green dots underlines the 

6a superstructure. Note this is also highlighted  by  atom-wide  defects  on  the  image. The superstructure is clearly 

highlighted by  the  six-fold  satellite  reflections  marked  in  yellow  dots on (b). (c) Close-up of an area in (a) 

showing the structural model consisting of bright atoms with a superstructure motif highlighted by green dots. (d) 

Simplified model of 1a (high-temperature) digenite on the [111] axis using data given in Will et al. [37]. This 

model includes two Cu sites with different 

occupancies, of which only Cu1 is shown here (0.3 occupancy). Note the correspondence between the bright 

spots on the image in (c) and the model in (d) for Cu. (e) HAADF-STEM image showing atom-scale distribution 

in djurleite down to [031] zone axis as calculated from FFT in (f). (g,h) Atom distribution in a single unit cell on 

[031] djurleite shown as a cropped imaged from (e) and a structural model (g) after Evans [34], respectively. 

Note that the distribution of bright spots resembles those of the Cu sites. Abbreviations: Dg—digenite; Dj—

djurleite. 
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Figure 10. Atomic-scale HAADF-STEM images (a–d) and models (e–h) of bornite superstructures down to the 

[101] zone axis in BnCpIV. (a) Bornite with marginal djurleite from an area highlighted on Figure 6k. FFT in the 

inset shows coherent intergrowths between 4a bornite and djurleite. (b) Close-up of the area marked in (a) 

showing domain heterogeneity throughout the bornite. Satellite reflections (FFT in inset) shows four-fold 

periodicity but with variation in intensity indicating the co-existence of 2a and 4a superstructures. (c) 2a and 4a 

superstructure domains in the area marked in (b). The yellow dots highlight the structural motifs for the two 

species. (d) Detail of the 4a superstructure showing atom distribution throughout the superlattice as marked 

by the yellow dots. Note faint variation in grey-scale intensity of the atoms that make the superstructure unit 

cell. (e,f) STEM simulation and crystal-structural model for the bornite 4a superstructure, respectively, using data 

for 4aI superstructure in Ding et al. [30]. Note the difference in the number of atoms in the STEM simulation 

relative to the crystal-structural model, whereby the very brightest atoms represent atomic sites with the 

highest Cu occupancy relative to Fe, and good correspondence between the simulation in (e) and the image in 

(d). (g,h) STEM simulation and crystal-structural model for the bornite 2a superstructure, respectively, using 

data 2aI superstructure in Ding et al. [31]. The yellow and green dots in (g) overlap with the Cu and Fe sites 

in (h). Sulphur atoms are ignored in both crystal-structural models. Abbreviations: Bn—bornite; Dj—

djurleite. 
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Chalcopyrite was studied in greater detail from mottled areas in foil CpII to better understand     the 

underlying reasons for such textures (Figure 11). SAEDs obtained from such areas show satellite reflections 

on two zone axes (Figure 11a,b,d). Chalcopyrite down to the [110] zone axis shows an increase in the number 

of satellite reflections and variable intensity with incommensurate distribution (Figure 11a,b). Image 

processing of selected areas from such SAEDs with highest density of satellites reveal an ordered pattern 

(Figure 11c). HAADF-STEM images of chalcopyrite down to the [221] zone axis display bright nm-scale blebs 

(Figure 11e), whose EDS spectra indicate they are high in Se, yet Pb  is at almost negligible concentrations 

(Figure 6m).  Nonetheless, such areas show satellite reflections  on both SAEDs and FFTs (Figure 11d and 

inset on Figure 11e).  Bright atoms on the HAADF-STEM  image (Figure 11f) correspond to Cu positions on 

the crystal-structural model (Figure 11g). There is, however, variable intensity in the bright atoms that could 

represent an overlap between different atom columns, as well as the presence of incipient ordering towards 

another Se-bearing phase,  since the  FFTs obtained from such areas show satellite reflections (Figure 11f, 

inset). 

 
 
Figure 11. Nanoscale aspects of chalcopyrite from mottled areas in foil CpII. (a) SAED down to the 

[110] zone axis showing satellite reflections (arrowed). (b) Close-up of SAED in (a), showing detail of satellite 

reflections and their incommensurate distribution. (c) Inverse FFT image obtained from (b), showing an 

ordered pattern. (d) SAED down to [221] zone axis, showing satellite reflection (arrowed). 

(e) HAADF-STEM image of chalcopyrite down to [221] zone axis with bright, nm-scale blebs and 

corresponding FFT (inset). (f) Atomic-scale HAADF-STEM image down to [221] zone axis, showing brightest 

atoms attributable to the Cu sites in the crystal-structural model [27] shown in (g). Note, however, the 

variation in intensity of such atoms and the presence of satellite reflections on FFTs 

obtained from such areas (inset). Abbreviation: Cp—chalcopyrite. 

 
4.3.2. Clausthalite and other Inclusions 

Although clausthalite-bearing symplectites are ubiquitous, their sizes and morphologies in each case 

described here represent a broad spectrum from simple, dense symplectites in foil Cc1 down to clustered 

nanoparticles in foil CpII and composite inclusions with other phases in bornite-bearing 
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samples. The nanoscale investigation is focussed on these three types of inclusions and their speciation in 

order to better understand the formation of the clausthalite-hosting sulphides. 

HAADF-STEM imaging and EDS were undertaken on several clausthalite inclusions (rods and blebs) in 

foil Cc1 to understand the relationships with host “chalcocite” (particularly in the digenite domains) in 

terms of orientation and boundary morphologies. Both types of boundaries (sharp  and scalloped) 

shown in Figure 8 were found to be typical throughout the symplectites (Figure 12). The orientation of 

the clausthalite relative to the [001] zone axis of digenite changes from [001] (Figure 12a–c) to [121] 

(Figure 12d–f), but retains the relatively coherent orientation between the two species (Figure 12c,f). One 

case of the scalloped boundaries was imaged at higher magnification (Figure 12g). This shows a ragged 

interface within the clausthalite edge with a decrease in the intensity of the Se signal,  as determined by 

EDS, from the clausthalite towards digenite.  The image shows    a darkening correlating with the 

decrease in Se, as well as well-defined darker strips within the Se-depleted part of the clausthalite 

(arrowed on Figure 12g). In detail, the clausthalite shows changes in the atomic arrays, from parallel 

rows of bright atoms (attributable to Pb, see below) in the less affected part of the clausthalite (Figure 

12h) to arrays in which some parts markedly miss the bright atoms, suggesting a localised Pb loss (Figure 

12i). Altogether, the darkening, Se depletion and the removal of Pb are interpretable as a replacement 

of clausthalite along scalloped boundaries. 

The mottled texture in chalcopyrite shown in Figure 6f consists  of  clusters  of  nanoparticles  (NPs) with 

variation in size from ~5 nm up to some tens of nm (Figure 13).   Some of the denser       fields of inclusions 

are observed around domain boundaries and, although dominated by PbSe, they  also include bismuth-

bearing NPs (Bi-NPs) as revealed by EDS mapping (Figure 14). The densest agglomeration of NPs is seen in 

areas also containing voids (Figure 13a). Peculiar to the PbSe-NPs and clusters is a bright, dotted appearance 

with rhombic arrangement relative to each cluster (Figure 13b,c). The smallest Bi-NPs are found within 

clusters of PbSe adjacent to voids (Figure 13c). Notably, such NPs reorganise their atomic arrangement under 

the electron beam (Figure 13d,e). The rhombic arrangement of the brighter spots in PbSe is associated with 

the occurrence of satellite reflections on FFTs obtained from such images (Figure 13f).  There is a marked 

coherence between the rhombic arrangement of      the bright spots within the PbSe and the atomic 

arrangement in host chalcopyrite down to the [221] zone axis (Figure 13g). These features suggest that the 

PbSe-NP clusters undergo ordering towards the formation of large (tens of nm) superstructures. The 

appearance of PbSe in these NP clusters is clearly distinct from those in symplectites and other coarser 

textures (e.g., in Figure 12). 

The middle part of the NP field in Figure 13a was mapped by STEM EDS (Figure 14) and clearly shows 

that most of the bright features are PbSe-NPs, whereas the darker features in the middle correlate with 

depletion in Cu and S. Bismuth is concentrated in the PbSe-NPs but also shows stronger signals 

indicative of discrete Bi-NPs as that imaged in Figure 13d, e. In contrast to lead, both Se and Bi show 

signals above background throughout the host chalcopyrite. 

In contrast to the single-phase sulphides, inclusions with more varied composition are found in  the bornite-

bearing sulphide assemblages (Figure 5c,d). These comprise iron oxides (in both BnCcIII and BnCpIV), and 

numerous nanoinclusions of  monazite  in  BnCcIII  and  a  Cu-selenide  in  BnCpIV.  The smallest monazite 

inclusions, associated or not with iron oxides, occur throughout the chalcocite domains in BnCcIII (Figure 

15a). The coarsest grains of monazite (hundreds of nm in size) are found associated with clausthalite within 

bornite, near the boundary to chalcocite (Figures 5c and 15b). Similar coarse inclusions are also located close 

to fractures. Monazite inclusions display a strong relief against the sulphides, with wedged boundaries. 

HAADF-STEM imaging along the mutual boundary between monazite and clausthalite (Figure  15d,e,  

respectively)  show  the  occurrence  of  dark  areas in clausthalite. A spectrum obtained with a smaller spot 

size (5–6 nm, smaller than the inclusion diameter) from such a darker domain (Figure 15c) indicates the 

presence of both phases, suggesting  the presence of monazite inclusions within clausthalite. 
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Figure 12. HAADF-STEM imaging and FFTs showing clausthalite boundaries and the relationship with host 

digenite in CcI. (a,b) Sharp and scalloped boundaries between clausthalite and digenite with the same [001] 

orientation, as inferred from the FFT in (c). (d,e) Sharp and scalloped boundaries with different orientations to 

one another, i.e., [121] in clausthalite and [001] for digenite, as depicted in the representative FFT (shown in f).  

Note the stepwise character of one of the sharp boundaries in (d). 

(g) Atom-scale image of clausthalite (area marked in e), showing modification in grey-scale intensity (distinct 

domains shown by dashed lines). (h) Unaffected clausthalite shows arrays of bright atoms with periodicities at 7 

× 4.4 Å. (i) Parts of the affected clausthalite show evidence of replacement of these arrays in which the bright 

atoms are missing. Note (in g) that the most affected part of the image also shows dark strips (arrowed) at two-

array periodicities.  Abbreviations:  Cls—clausthalite; Dg—digenite. 
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Figure 13. HAADF-STEM images showing NPs present in mottled areas in chalcopyrite from foil CpII. (a) Field 

of dense NP agglomeration. Note the presence of nanopores (dark) through the middle of the field, whereas the 

bright dots are the NPs. (b,c) Details of NPs (brighter dots with regular rhombic geometry). Note, in (c), Bi NP 

highlighted by a dashed outline occurring adjacent to one of the larger voids. (d,e) Square arrangement of bright 

atoms in Bi-NP, changing the orientation under the electron beam from (d) to (e). (f) Close-up of PbSe NP cluster 

showing a distribution of bright dots and corresponding FFT (inset). Note that the FFT shows satellite reflections 

within the chalcopyrite pattern down to the [221] zone axis, instead of reflections attributable to clausthalite 

structure (a = 6.1 Å). This suggests that the brighter dots correspond to a superlattice of clausthalite ordering 

within the NPs. (g) Atom-scale image of a PbSe-NP cluster showing continuity of atomic arrays from PbSe-NP 

cluster into chalcopyrite. Rhombic motifs (blue dots) overlap with the brighter dots in NPs arranged in 

continuation with similar rhombic motifs in chalcopyrite (green dots), suggesting continuity from NP lattice to 

host chalcopyrite during superstructure development in the clustered NPs. Abbreviations: Bi-NP—bismuth-

containing nanoparticle; Cp—chalcopyrite; NP—nanoparticles. 

 
Atomic-scale HAADF-STEM imaging of clausthalite and monazite from the binary inclusions in Figure 

15b are shown as different tilts in Figure 16. The atomic arrangement in clausthalite down to the 

[010] zone axis is compared with crystal-structural models in Figure 16a. The model shows the bright spots 

correspond to Pb atoms. Tilting the specimen to the [031] zone axis in clausthalite, the image shows 

continuity between the atomic arrays in clausthalite and monazite (Figure 16b). The atomic arrangement in 

monazite is compatible with monazite down to the [023] zone axis,  as  shown  in  Figure 16c. The crystal-

structural model shown for this zone axis in monazite indicates that the bright spots are Ce atoms. This is 

confirmed by the atomic arrangement in monazite down to the [113] zone axis (Figure 16d), where Ce and 

P atoms do not overlap on the model. We also note the continuation of atomic arrangements from monazite 

into clausthalite. 
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Figure 14. STEM EDS element maps (S, Cu, Se, Pb, and Se) of the middle part of the NP field shown in Figure 

13a. The corresponding HAADF-STEM image is shown top left. Abbreviations: Bi-NP— bismuth-containing 

nanoparticle; Cp—chalcopyrite; PbSe-NP—PbSe nanoparticle. 

 

Figure 15. BF-TEM image (a), HAADF images (b,c), and EDS spectra (d–f) of monazite and clausthalite inclusions 

in BnCcIII. (a) Field with smaller monazite nm-scale inclusions and iron oxides, some of which are attached to 

pores (arrowed). (b) Coarser monazite-clausthalite composite inclusion in bornite. Note the basket-weave 

pattern produced by FIB-milling in and around djurleite needles. 

(c) Close-up of boundary area between monazite and clausthalite showing the presence of darker spots 

attributable to monazite. (d–f) EDS spectra from inclusions in (b,c), as marked. In (f), Se and Pb peaks are 

attributable to the wedged monazite below the surface. Abbreviations: Cls, clausthalite; Fe-ox, iron oxides; 

Mnz, monazite. 
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Figure 16. Atomic-scale HAADF-STEM imaging and crystal-structural models for clausthalite (a,b) and monazite 

(c,d) on zone axes as marked. (a) Clausthalite on the [010] zone axis; as shown in FFT (inset), showing bright atoms 

with square arrangement corresponding to Pb positions in the crystal structure (data from [25]). (b) Clausthalite 

on the [031] zone axis (indexed from FFT, inset) and crystal-structural model, showing correspondence between 

brighter spots and Pb positions. The dashed line outlines the darker inclusions with EDS spectra in Figure 15f, 

attributable to monazite–(Ce) down to [023], as shown by images and model in (c).  Oxygen is excluded from the 

structural model built for monazite–(Ce)    from data given by Ni et al. [26].  (d) Monazite down to the [113] zone 

axis,  as indexed from FFT   (inset), showing a good correspondence between the brightest spots (Ce dumbbell site) 

and the fainter spots corresponding to single Ce atoms. The much lighter P atoms are not visible on the image. 

Abbreviations: Cls, clausthalite; Mnz, monazite. 

 
One of the micron-scale vugs in BnCpIV (Figure 5d) is filled with a lamellar aggregate of a Cu-selenide 

phase with a composition resembling ~Cu2Se (Figure 14a,b). HR HAADF-STEM imagining shows atom-

scale defects at the lamellae boundaries (Figure 17c) or NP inclusions with different orientations to the 

host (Figure 17d). By tilting the specimen on different zone axes, we obtained HAADF-STEM images 

(Figure 17e–g) and corresponding FFTs (Figure 17h–j). Assuming the bellidoite crystal structure [38], we 

could index the FFTs on three distinct zone axes, one of which is a second-order zone axis down to [101] 

(Figure 17e,h).  The other Cu2Se polymorph (berzelianite) is cubic,  with   a = 5.739 Å, smaller than the 

6.7 Å measured along [111]. The other two zone axes, although not major 

[231] and [253] (FFTs in Figure 17i,j), were obtained by rotating the specimen around (111)* lattice 

vector, with good spatial resolution of atom arrays on the images (Figure 17f,g). 
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Figure 17. Aspects of Cu-selenide identified as bellidoite from a coarser vug in BnCpIV. (a) HAADF- STEM 

image showing lamellar aggregate. (b) Corresponding representative EDS spectra. (c,d) HAADF- STEM images 

showing atom-scale defects between lamellae (arrowed) and NP inclusions (arrowed). (e–g) HAADF-STEM 

images of Cu-selenide on zones axes as indexed in (h–j). FFTs could be indexed using the P4/m space group for 

bellidoite [38]. Note the good correspondence between the measured distances on the FFT and images. 
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5. Discussion 

Few, if any, HAADF-STEM studies have been carried out previously on Cu-(Fe)-sulphide assemblages. 

The assemblages and features described here are clearly from ores that can be considered as extremely 

complex. The observations, however, carry broader applications for features observable in a wide range 

of copper deposits formed in diverse geological environments. The complexity and presence of different 

species requires that the intricate associations and relationships are investigated at the nanoscale. 

5.1. Evolution of Sulphide Assemblages 

The study presented here covers chalcogenide incorporation and release from host Cu-(Fe)- 

sulphides in ores comprising the three main minerals present in any similar ores (chalcocite, 

bornite, and chalcopyrite). Both “chalcocite” and bornite show evidence of high-temperature phases that 

undergo phase transformation and restructuring upon cooling. Bornite solid solutions [44], 

resulting in bornite-chalcocite and bornite-chalcopyrite assemblages, are comparable to those seen 

elsewhere [24,45]. The presence of bornite superstructures indicates that the minimum temperatures of 

formation above 265 ◦C can be inferred [29]. The co-existence of different bornite superstructure 

domains at the nanoscale in the same sample (Figure 10) is also reported in natural samples [24,31]. The 

present study also confirms the widespread presence of lamellar low-temperature djurleite, formed 

via cooling of bornite solid solutions, as documented elsewhere [24]. The typical basket-weave 

appearance of bornite containing djurleite in foils prepared for TEM (Figure 6i,k,l) is a characteristic 

induced by FIB-milling [24]. 

The type of APBs observed here are constrained within digenite-bearing domains even though monoclinic 

chalcocite is present beyond these domains. This suggests that the two species derive from a single high-

temperature digenite phase undergoing transformation during cooling via changes in the sulphur 

arrangement from cubic close-packed (ccp) to hexagonal close-packed [46] at temperatures below 120 ◦C 

[47]. The observed defects along the APBs (Figure 8b) are evidence in support of low-temperature 

transformation of the precursor digenite into either monoclinic chalcocite or djurleite at <103.5 ◦C and <93 
◦C, respectively [34]. The chalcocite-djurleite transformation may be continuous across lattice fringes and 

preserves stacking faults in the djurleite, as documented experimentally on CuxS films [48]. 

The intimate relationships between Cu-(Fe)-sulphides that extend down to the nanoscale (Figures 1–3 

and 5) account for the non-stoichiometry observed here (Figure 4) and are common in these type of 

ores [24]. 

5.2. Formation of Clausthalite in Cu-(Fe)-Sulphides 

The data presented here shows a continuum of textural aspects from smallest (<5 nm-sized) Se-rich 

areas in chalcopyrite, through nanoparticles and their reorganisation via superstructuring, to regular, 

dense symplectites, and isolated, relatively large blebs. The regular clausthalite rods in chalcocite and 

chalcopyrite would, at first, be considered as typical products of exsolution. If that is the case, the 

relationships between clausthalite and APBs in digenite should suggest that such exsolution took place 

prior to APB development (i.e., above 120 ◦C) but continued and coarsened thereafter, since the 

clausthalite rods crosscut the APB boundaries (Figure 6c). The close-to-coherent epitaxial orientation 

between clausthalite and host digenite is also an argument favouring an exsolution model, even though 

such symplectites can also occur via coupled dissolution-replacement reactions [49,50]. Nonetheless, the 

presence of two types of boundaries, expressed both morphologically and chemically (Figure 8c,d and 

Figure 12), are evidence of distinct processes: primary exsolution (sharp boundaries) and secondary 

replacement (scalloped boundaries). The latter is mostly observed around larger blebs or rods and is also 

associated with an increase in the offset in the orientation between clausthalite and the host. 
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The incorporation of chalcogens, such as Se within Cu-(Fe)-sulphides, and their release are best 

exemplified through the aspects observed in chalcopyrite, from areas rich in Se to the formation of 

clustered PbSe nanoparticles and their inferred superstructuring. The epitaxial relationships between the 

clustered NPs and the chalcopyrite on [221] (Figure 11e,f and Figure 13f,g) are interpretable in terms 

of a relationship between Se in solid solution and a PbSe superlattice, which in our case takes place via 

clustering NPs and maturation into coarser inclusions. 

Self-assembly of nanocrystals into superlattices has been documented experimentally in PbSe, with 

three types of atom packing, one of which is tetragonal [51]. However, the superlattices given by Quan et 

al. [51] are smaller than those observed here in the tetragonal chalcopyrite matrix. None of the FFTs or 

SAEDs obtained from the mottled areas show the simple lattice of clausthalite (as, for example in the CcI 

study case) but instead show satellite reflections on SAEDs, representative of chalcopyrite on different 

zone axes. We thus infer the reorganisation of PbSe NPs into larger tetragonal superlattices, the first such 

example in natural materials.  As chalcopyrite contains little or no Pb,  this infers   that the mottled areas 

represent the products of the interaction between the Se contained within the solid solution in the 

chalcopyrite with Pb supplied by infiltrating fluids. This leads to dense agglomerated fields of NPs that 

undergo further epitaxial superstructuring within the chalcopyrite. Further work, beyond the scope of the 

present report, is required to substantiate the PbSe superlattice(s). The presence of active and annealed 

microfractures, voids, and pores in the areas are, however, taken as evidence of fluid involvement. The 

relationships between the mottled areas and symplectites cannot be temporally constrained from the 

present data, although we point to the fact that it is more likely that the sympectites predate fluid 

infiltration and associated PbSe-NP formation. Further arguments supporting this hypothesis is the 

presence of Bi-NPs attached to pores in and around the PbSe. Such fluid-driven chalcogenide NP 

formation attached to pores is also documented from pyrite in ore systems elsewhere [52]. 

If such a scenario is feasible, it infers an overprint onto pre-existing symplectites, which can be related 

to the presence of chemically more complex assemblages, such as the monazite-clausthalite from 

BnCcIII. The monazite–clausthalite epitaxial relationships are further evidence for (potentially long-

lived) overprinting of Cu-(Fe)-sulphide ores, with incoming fluids transporting other components, including 

Pb, REE, and P (Figure 14). This is exemplified in the relationships between monazite and clausthalite 

in BnCcIII (Figures 15 and 16). Such aspects can be expected in U-bearing Cu ores in which Pb is produced 

during the decay of uranium. One significant implication is that attempts to date either monazite or Pb-

bearing Cu-(Fe)-sulphides by bulk U-Pb methods (e.g., [53,54]) will return the ages of the overprint rather 

than those of the primary ore formation. As-yet unpublished work by the present authors has shown that 

Pb within Pb-chalcogenides, including the clausthalite-bearing symplectites addressed here, is enriched 

in 206Pb relative to primordial values. 

The last stage of overprinting, driven by fluids percolating through the ores, is seen in the presence of vugs 

filled with “new”  phases,  such  as  the  bellidoite  documented  here  (Figure  17).  Bellidoite,  the tetragonal 

Cu2Se dimorph [38],  is a rare mineral formed at moderate to low temperature with  other hydrothermal 

selenides and sulphides (e.g., [55]). The present occurrence is the first in Australia, and the first from an iron 

oxide copper gold system. Other occurrences of bellidoite are described by Škácha et al. [56], including a 

recently observed occurrence within the Příbram uranium district, Czech Republic, in which it is 

intergrown with berzelianite. 

It is noteworthy that all study cases described here display evidence of overprinting. The nanoscale textural 

evidence presented here, suggesting multiple events of Pb mobilisation, as well as extended periods of 

reworking and recrystallization of the ore minerals, is in alignment with previous studies of ores within 

the Olympic Cu-Au Province. Such observations are, for example, concordant with evidence for multiple 

events of U dissolution and reprecipitation of U-minerals within the Olympic Dam deposit [17,18,57]. 

It is suggested here that remobilisation of U from U-bearing minerals led to a decoupling of Pb from at 

least some of the parent U- (and Th-)bearing minerals, resulting in the progressive uptake of Pb by Cu-

(Fe)-sulphides and in the formation of clausthalite inclusions within them. 
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Altogether, this study shows the importance of using combined advanced microbeam techniques on 

samples extracted on a site of petrogenetic interest to address the character of ore minerals and their 

formation [24,40–42]. 

6. Conclusions and Implications 

There are three main overarching conclusions that can be drawn from this study. Firstly, the results, as 

discussed here, challenge the classic origin of symplectites via unmixing or exsolution, suggesting that 

the symplectite textures could have formed by reaction between pre-existing Se present in solid 

solution within Cu-(Fe)-sulphides and migrating Pb (resulting from U and Th decay) from       a later 

fluid phase. Selenium was likely present within the host Cu-(Fe)-sulphides at the time of the initial 

deposition of sulphide mineralisation at relatively high-temperature conditions. Secondly, the 

introduction of Pb from an external source implies prolonged post-crystallization hydrothermal activity. The 

diffusion of Pb into Cu-(Fe)-sulphides to form clausthalite preserves evidence for episodes of significant 

U-Pb remobilisation within the sulphide ores. Such processes may have large implications for U-Pb 

isotope studies within the region. Thirdly, the observed superstructuring of nanoparticles within 

chalcopyrite represents a link between solid solution and symplectite formation and shows that Se 

within the Cu-(Fe)-sulphides reacts readily with Pb, acting as a sponge for the mobilised Pb within the 

mineralising system. As such, the symplectite textures presented and discussed within this study 

represent at least two stages of Pb mobilisation and subsequent incorporation into the Cu-(Fe)-

sulphides. 
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Appendix A 

 
Table A1. Elements analysed, peak/background positions, count times, and standards used for sulphide 

analysis. 

 

Element/Line    
Diffracting Peak Count Background 

Bkgd Points
 

Crystal/Sp Time (Sec) Type/Fit 
Acquired

 
Background 
Count Time 

 
Standard 

    (Lo/Hi) (Lo/Hi) (Sec)  

S Kα LPET/1 10 Multipoint 2/2 10/10 Astimex Marcasite 

Pb Mα LPET/1 200 Multipoint 4/3 20/20 P & H block Galena 

Cd Lα LPET/1 10 Multipoint 2/2 10/10 P & H block Greenockite 

Bi Mα LPET/1 10 Multipoint 2/2 10/10 P & H block Bi2Se3 

As Lα TAP/2 10 Multipoint 2/2 10/10 Astimex GaAs 

Se Lα TAP/2 20 Multipoint 2/3 20/20 P & H block Bi2Se3 

Fe Kα LLIF/3 10 Multipoint 2/2 10/10 P & H block Chalcopyrite 

Cu Kα LLIF/3 10 Linear - 5/5 P & H block Chalcopyrite 

Mn Kα LLIF/3 10 Multipoint 2/2 10/10 P & H block Rhodonite 

Ag Lα LPET/4 10 Multipoint 1/2 10/10 P & H block AgTe 

Sb Lα LPET/4 10 Multipoint 2/2 10/10 Astimex Stibnite 

Te Lα LPET/4 10 Multipoint 2/2 10/10 P & H block AgTe 

Hg Lα LLIF/5 10 Multipoint 3/3 15/15 P & H Cinnabar 

Zn Kα LLIF/5 10 Multipoint 2/2 10/10 P & H Spahlerite 

Ni Kα LLIF/5 10 Linear - 5/5 Astimex Pentlandite 

Co. Kα LLIF/5 10 Multipoint 2/2 10/10 Astimex Co. metal 
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ABSTRACT 

The ability of aluminium-phosphate-sulphate (APS) phases to preferentially sorb lead and its 

radionuclides, particularly 210Pb, from metallurgical processing streams has been recently 

recognized. This suggests that APS minerals may be suitable for the removal of radionuclides and 

heavy metals from environmental and anthropogenic processes. We investigated the Pb sorption 

capabilities of APS with different Ca:Sr and SO4:PO4 ratios over a range of Pb concentrations (10-

1000 ppm) and pH (1.5-5.5) typical of metallurgical processes and acid drainage conditions. 

Through a combination of characterization techniques including electron probe microanalysis, 

(laser ablation-) inductively coupled plasma mass spectrometry and x-ray absorption spectroscopy, 

we confirm the rapid incorporation of Pb into the crystal lattice of APS phases. We also provide a 

mechanistic pathway for the sorption mechanism, with Pb sorption favoured at pH 3.5-5.5 via the 
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direct replacement of lattice-bound Ca by Pb within the APS crystal structure. The observed Pb-

incorporation dynamics of APS minerals, along with their insolubility and high thermodynamic 

stabilities, support the use of APS minerals as a novel agent for the uptake of Pb, radiogenic and 

non-radiogenic, from process-, surface-, and groundwaters. Since 210Pb quickly enters the crystal 

structure of environmentally stable APS minerals, these phases have much potential for long-term 

storage of 210Pb waste. 

Keywords: aluminium-phosphate-sulphate phases; sorbtion; radionuclides; lead; waste storage; 

remediation 

1. Introduction 

Aluminium phosphate sulfate (APS) minerals, members of the alunite supergroup of minerals, 

have the nominal formula MAl3(PO4)y(SO4)2-y(OH,H2O)6 and form a broad range of solid 

solutions by varying ratios of phosphate-sulfate and incorporating mono-, di-, and trivalent cations 

(e.g. H3O
+, Na+, K+, Rb+, Ag+, Ca2+, Sr2+, Ba2+, Pb2+, Hg2+, Bi3+, REE3+) within their M-site 

(Kolitsch and Pring 2001). APS minerals, both natural and synthetic, have garnered significant 

interest as effective sorbents of deleterious products from mine waste streams (Monteagudo et al. 

2003; Owen et al. 2019) and nuclear fission (Dymkov et al. 1997).  

Since 2006, the International Atomic Energy Agency (IAEA) recommends that radionuclides 

from the U- and Th-series be regulated for products and wastes that contain >1 Bq.g−1 (IAEA 

2006). This includes large volumes of products and wastes from the mineral, coal, oil and gas 

industries that can contain higher activities (Ram et al. 2013, 2019; Cook et al. 2018), with 

particular reference to the relatively long half-life U-decay daughter product 210Pb (half-life–

21.2 y). It is thus essential to not only suppress mineral phases known to carry these radionuclides 

(RN) during processing, but also search for novel ways to eliminate or reduce 210Pb (and 210Po), 

e.g., via sequestration into a solid phase that can be separated, in industrial products and waste. 

Presently, a number of ion exchange resins, synthetic zeolites (Da̧browski et al. 2004; Draa et 

al. 2004), and mineral phases such as those in the pyrochlore supergroup (McMaster et al. 2018) 

have been investigated for the extraction of RN from industrial wastes within a range of operating 
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conditions. Their long-term stability is, however, still unknown and they also do not selectively 

favour Pb (and its isotopes) over other U and Th-daughter products. The use of inorganic 

adsorbents, namely phosphogypsum, clay, bauxite and barite, to extract RN from acid mine 

drainage water has been studied by Nascimento et al. (2006). The sulfate phases phosphogypsum 

and barite were shown to return the most promising results for 226Ra, 228Ra, and 210Pb. RN were 

however partially returned to solution with freshwater reversibility experiments, indicating that 

these minerals may not be viable as long-term storage solutions. 

Recently, Owen et al. (2019) showed that natural Ca- and Sr-bearing APS minerals act as hosts 

for 210Pb within the Cu-U-Au-Ag metallurgical processing plant at Olympic Dam, South Australia. 

This work demonstrated the potential of APS minerals for radionuclide removal, however the 

mechanism of Pb incorporation into APS minerals remains unconstrained. Most APS minerals are 

stable up to 400-500 °C and remain insoluble over a wide range of pH and Eh conditions (Kolitsch 

and Pring 2001). As such, if Pb is shown to rapidly become lattice-bound within synthetic APS 

phases through a diffusion and cation exchange mechanism, APS minerals may provide a highly 

effective extraction and long-term storage solution for 210Pb from industrial products and wastes. 

This study aims to identify the optimal conditions for Pb scavenging by APS minerals under 

conditions relevant for industrial mineral processing, and the mechanism of sorption and 

subsequent crystal incorporation of Pb into APS minerals. To this end, we performed experiments 

involving the addition of synthetic (Pb-free) APS minerals of varying composition to Pb-bearing 

solutions with varying pH, and constrained the mechanism of Pb removal using synchrotron X-

ray absorption spectroscopy (XAS) and additional characterisation techniques. 

2. Background 

2.1  APS crystallography  

Only solid-solutions between Ca-, Sr- and Pb-bearing APS phases were considered in this 

study. Crandallite group endmembers (MAl3X2(OH,H2O)6) contain PO4 in the X-site, while 

woodhouseite and other beudantite group endmembers contain equal amounts of SO4 and PO4. 
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Their crystal structure comprises hexagonal sheets of corner-sharing AlO2(OH)4 octahedra 

(Fig. 1a,b). Phosphate/sulfate tetrahedra lie above and below the octahedral sheets, corner-sharing 

three oxygens with the Al-octahedra; the remaining unshared O points alternatively into the 

hexagonal gaps formed by the Al-octahedra (Fig. 1a,b). Between these sheets lie 4-, 6-, and 12-

fold coordination M-sites (Fig. 1c) that can host cations of various ionic radii and charge, enabling 

the formation of a broad range of solid solutions. 

 

Figure 1: The crystal structure of APS minerals, down the [110] (a) and [001] (b) directions; and (c) 

coordination around the M-site, showing 6+6 coordination. Violet: M-site cations (Ca, Sr, Pb); maroon: Al; 

yellow/red: P/S; light grey: O(1); medium-grey: O(2); dark-grey: O(3) (OH/H2O). Note 12-fold 

coordination of M-site cations, electrostatically and H-bonded to OH, H2O and O within AlO2(OH)4 

octahedra and phosphate/sulfate tetrahedra. Data from Kato (1971). 

2.2. Evidence for radionuclide scavenging by natural APS minerals 

226Ra and 210Pb incorporation into natural APS from the acid leach stage of the Olympic Dam 

processing circuit has recently been highlighted on the basis of nanoSIMS results (Owen et al. 

2019). The giant Olympic Dam deposit currently contains the World’s largest U resource and the 

fifth largest copper resource (Ehrig et al. 2015). The leach conditions at Olympic Dam are ~55 °C, 

pH –1.5, Eh of ~640 mV, contact time 8–12 h (MacNaughton et al. 1999, 2000; Bhargava et al. 

2015); leaching also depends on the complex mineralogy of the initial feed (Ehrig et al. 2015). 

During the sulfuric acid leaching of copper sulphide concentrates, U-minerals and fluorite are 

dissolved. Daughter radionuclides hosted within these parent minerals are also released but 

become decoupled from their parent isotopes due to major differences in their chemical properties 
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(Cook et al. 2018). This is highlighted in Figure 2, which shows contrasting distributions of 238U, 

226Ra, 210Pb, non-radiogenic Pb represented by 204Pb, and 40Ca within a natural REE-Ca-Sr-bearing 

APS phase. The 210Pb distribution, mimicked to some extent by that of 226Ra, is closest to that of 

common Pb and Ca and unlike that of 238U. The results clearly show incorporation has taken place 

during the 8-12 h leach step, indicating the capacity of APS minerals to rapidly and preferentially 

scavenge radionuclides under process conditions.  

 

Figure 2: BSE image (top left) taken of a sample from the acid leach in the BHP Olympic Dam processing 

plant, showing natural APS grains surrounding grains of chalcopyrite (Cp) and sericite (Ser). Also imaged 

is a neighbouring bornite (Bn) grain with associated hematite (Hm). NanoSIMS data for 238U (blue), 226Ra 

(pink), 204Pb (yellow), 210Pb (cyan), and 40Ca (green) are overlayed onto the BSE image for reference. Note 

the occurrence of 226Ra within multiple mineral types compared to the more restricted distribution of 210Pb, 

and presence of common 204Pb within hematite and bornite where no 210Pb is observed. For data acquisition 

methods and sample descriptions refer to Owen et al. (2019). 

While APS phases form a broad range of solid solutions in nature, with named Ca-, Sr-, Ba-, 

Pb- and LREE-dominant endmembers, endmember compositions display significant differences 

with respect to their thermodynamic stability (ΔfG), with the Pb-bearing phases, plumbogummite 

(PbAl3(PO4)2(OH)5•(H2O)) and hinsdalite (PbAl3(PO4)(SO4)(OH)6), forming the most stable of 

these phases. The respective stabilities of Pb-bearing and the comparatively unstable Ca-bearing 

APS phases present the most significant of these differences (Schwab et al. 1993, 2005; Gaboreau 
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and Vieillard 2004), thus providing a ‘thermodynamic gradient’ that may be acted upon for the 

incorporation of Pb by Ca-bearing APS. APS crystal chemistry also explains the high selectivity 

of APS minerals towards Pb in Cu-rich environments; although Cu(II) can substitute on the Al-

site of alunite-group minerals (e.g., mineral Beaverite-(Cu), Pb(Fe3+
2Cu)(SO4)2(OH)6; Bayliss et 

al. 2010), APS minerals at Olympic Dam incorporate less than ~1 wt% CuO (Owen et al. 2019), 

although the process waters contain trace Pb(II) concentrations (≤ ~30 mg/L) but are enriched in 

Cu(II) (≥ 5-30 g/L). 

3. Materials and methods 

3.1. Synthesis of APS minerals 

APS phases were synthesised by modifying existing recipes (Schwab et al. 1991, 2004) to 

generate crystals with varying ratios of Ca:Sr and SO4:PO4, in order to test the role of 

compositional variability on the sorption of Pb. Reagent grade Ca(OH)2, Sr(OH)2 and Al(OH)3 

were added to 4 mL of 1 M H2SO4 + H3PO4 in order to obtain the desired product stoichiometry 

(Appendix D, Table 1; Equation 1). The mixtures were placed into 20 mL teflon-lined 

hydrothermal bombs, then diluted with milli-Q water (18.2 MΩ.cm resistivity), and placed in a 

200 °C oven at water saturated pressures (~15 bar) for 6 months. 

(1) M(OH)2 + 3Al(OH)3 + (2-x)H3PO4 + xH2SO4 → 

MAl3(PO4)2-y(SO4)y(OH,H2O)6 + nH2O 

3.2. Pb-sorption experiments 

Pb-sorption experiments were run via the addition of 50 mg dried APS powder into 50 mL of 

stock solution. Nine stock solutions with varied pH (1.5, 3.5, 5.5), prepared from reagent grade 

HNO3 and milli-Q water, and Pb concentrations [Pbaq]0 of 10, 100, and 1000 ppm were prepared; 

Pb was added as Pb(NO3)2. Pb(NO3)2 was chosen because it readily dissociates, and to limit the 

number of complexing ligands in solution, which may affect the uptake of Pb by APS phases with 

varying pH (Neumann 2012). The choice of pH was based on thermodynamic calculations by 

Schwab et al. (2005) who suggested that a pH ranging between 1.5 and 5.5 is optimal for the 
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formation of Pb-bearing APS phases. The choice of Pb concentrations were typical of those 

encountered in a range of natural and anthropogenic environments (Jaworowski 1967).  These 

mixtures were placed on an orbital shaker and sampled regularly up to a final time of 5 days. The 

sample powders were then rinsed and filtered using milli-Q water and ethanol and dried at ambient 

temperature (21 °C). 

Further experiments were conducted using natural woodhouseite from the type locality 

(Champion mine, California; Lemmon 1937). Grains ~200 µm in size were hand-picked under an 

optical microscope. Single grains were exposed to a 1000 ppm Pb (from Pb(NO3)2) solution at a 

pH of 3.5, at ambient-T (similar conditions to synthetic APS) and hydrothermal (200˚C) conditions 

in a teflon-lined autoclave. 

Note that all experiments were conducted using stable (non-radioactive) Pb from Pb(NO3)2 (i.e., 

a mixture of 52.4% 208Pb, 22.1% 207Pb, 24.1% 206Pb, and 1.4% 204Pb). However, the results do 

apply equally to the highly radioactive 210Pb isotope, as mass-dependant fractionation of Pb 

isotopes is negligible (<<1 per mill). 

3.3.Characterisation of solids and solutions 

Detailed information on analytical methods is provided in Appendix D. Solutions were 

analyzed by Inductively Coupled Mass Spectrometry (ICP-MS; Thermo Scientific iCAP-Q) 

following dilution to <1000 ppb into 50 mL vials of 2 wt% HNO3. Isotopes analysed were 27Al, 

44Ca, 88Sr, and Pb isotopes 204Pb, 206Pb, 207Pb and 208Pb (in equal concentration from native Pb 

source). Multiple Pb isotopes were measured to check data quality as isotope ratios were not 

expected to change between analyses. 

The phase purity of the solids was checked using X-ray powder diffraction (XRD; D8 Advance 

Eco with Co radiation source). Quantitative compositional data for Ca, Sr, Pb, Al, P and S were 

obtained using a Cameca SX-Five electron probe microanalyzer (EPMA), equipped with 5 

wavelength-dispersive spectrometers and operated at 15 keV, 20 nA. Laser Ablation Inductively 

Coupled Mass Spectrometry (LA-ICP-MS), with a spot diameter of 13 µm, was used for the 
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quantitative analysis of trace elements within individual mineral grains. For EMPA and LA-ICP-

MS analyses, samples were embedded in epoxy resin, cut, and polished. 

3.4. XAS data collection and analysis 

Lead LIII-edge (13.035 eV) X-ray Absorption Near Edge Structure (XANES) and Extended X-

ray Absorption Fine Structure (EXAFS) data were collected at the XAS beamline, Australian 

Synchrotron, Melbourne, Australia. Where possible, measurements were conducted in 

transmission mode (ion chambers), however, in samples with low Pb concentrations, fluorescence 

data were used (100 elements Canberra solid state Ge detector). A cryogenic holder (T ~ 5 K) was 

used for the prevention of beam damage and to reduce thermal motion. Repeat spectra showed no 

significant difference. XANES and EXAFS data were analysed with the HORAE package (Ravel 

and Newville, 2005) using FEFF version 9 (Rehr et al., 2009). 

4. Results 

4.1. Composition of synthesised APS phases 

XRD (Appendix D.1) confirms that the products consist predominantly of crystalline APS. Small 

amounts of augelite, anhydrite and celestine were present in all runs and could not be eliminated 

(Figure 3a,b). Based on EPMA micro-analyses (Appendix D, Tables 2, 3), the Sr-bearing phase, 

APS(I), regularly incorporated excess Al (up to 5.64 apfu); Sr was under-represented in the M-site 

(Figure 4a,c). In all APS phases, excess Al was associated with a reduction in ∑M2+, indicating 

occupancy of Al within the M-site. S was also elevated within these Al-rich compositions, 

resulting in low P/(S+P) ratios (Figure 4b,c). Many APS grains contained Al-S-rich cores, which 

evolve to stoichiometric APS at the rims (Figure 3b-d). In general, APS with elevated P over S 

and Al values close to the stoichiometric value of 3 incorporated the highest concentrations of Ca 

in their M-site (Figure 4e-f).  
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Figure 3: SEM-BSE images of synthetic APS phases showing (a) an overview of APS(I), note pseudo-

cubic morphology of the APS grains formed by the trigonal-hexagonal structure, and the presence of 

accessory augelite (Ag); and (b) grains from APS(II) which are distinctively backscatter zoned, with 

composition ranging from Ca, Sr and P rich APS at the rims (c) to dark cores that are Al and S rich (d). 

 

Figure 4: EPMA data for synthetic APS phases showing (a) the sum of metals in the M-site as a function 

of P/(S+P); (b) Al concentration as a function of P/(S+P); (c) the negative correlation between the sum of 

metals in the M-site and Al; (d) and (e) the relative concentrations Sr and Ca in the M-site (respectively) 

compared to P/(S+P); and (f) Relative Ca concentration compared with Al concentration. Compositions 

which trend towards ∑M2+= 1 and Al=3 apfu are indicated by the dotted lines on a, b, c and f. Stoichiometric 

values for endmember M2+-crandallite are indicated by the grey stars on (a) and (b). Symbols for sample 

types are provided in (a), closed symbols represent analyses that contain Pb while open symbols contained 

no Pb. Note APS(I) the presence of minor concentrations of Ca, likely due to contamination in the Sr(OH)2 

starting material. 
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4.2. Pb-sorption by synthetic APS phases 

A series of experiments were conducted in order to examine Pb-sorption onto APS minerals as 

a function of Pb concentration (10-1000 ppm) and solution pH (1.5-3.5). All experiments were 

conducted at ambient temperature for a period of 5 days; samples of the solutions were taken at 2, 

4, 8, 24 and 48 hours, 3 days, and finally after 5 days. The resulting changes in dissolved Pb 

concentration are compared to the initial Pb concentrations in Figure 5. 

 

 

Figure 5: Solution-ICP-MS data for experiments measuring Pb-sorption by synthetic APS phases (a-c) (Sr-

APS) APS(I), and (d-f) (CaSr-APS) APS(II). The experiments were run at ambient temperature with 

varying [Pbaq]0 (10, 100 and 1000 ppm) and pH (1.5, 3.5, 5.5) as indicated. Results are presented as a time 

series showing the percentage of Pb removed from solution. Note in experiments with initial conditions 

[Pbaq]0 = 1000 ppm and pH = 5.5, the presence of characteristic ‘humps’ following initial Pb sorption onto 

APS surfaces. 

Experiments at pH 1.5 showed negligible scavenging of Pb onto APS(I) (Figure 5a-c), 

irrespective of Pb concentration. This is likely due to a positive charge (i.e. by H+) bound to the 

mineral surfaces resulting in the rejection of Pb at this pH (Appendix D.2). Negligible Pb sorption 

took place at pH 1.5 and [Pbaq]0=10 ppm in the case of APS(II) (Figure 5d), but at higher [Pbaq]0 

(100-1000 ppm) Pb sorption increased up to 10-15% (Figures 5e,f). Although the (Ca,Sr)-bearing 
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phases retain some capacity for Pb sorption at pH 1.5, a pH of 1.5 is generally ineffective in 

promoting sorption of Pb onto APS minerals. 

APS(I) removed Pb from solution rapidly at pH 3.5, with most Pb-sorption occurring within 

the first 8 hours of contact. At [Pbaq]0=10 and 1000 ppm (Figure 5a,c), the rapid sorption of Pb by 

APS(I) was followed by a gradual return of Pb to solution, while a moderate downwards trend 

followed in solutions that contained 100 ppm [Pbaq]0 (Figure 5b), indicating in all cases a trend 

towards an equilibrium state between dissolved and sorbed Pb.  

Pb-sorption trends for APS(II) differed from APS(I) across all [Pbaq]0 ranges, showing small 

‘humps’ following the initial steep downwards trends. These ‘humps’ are typically observed 

within the first 4-24 hours of contact with Pb-bearing solution. At pH 3.5 and [Pbaq]0=10 ppm, 

APS(I) was most effective (Figure 5a), almost completely removing Pb from solution while at 

[Pbaq]0=100 ppm, APS(II) was almost twice as effective as APS(I) with 50% removal of Pb from 

solution (Figures 5e and b, respectively). In the experiment run at [Pbaq]0=1000 ppm and pH 3.5, 

APS(II) was still removing Pb from solution at the experiment cut-off time of 120 hours (Figure 

5f). 

At pH 5.5 and [Pbaq]0= 10 ppm, <10% Pb remained in solution after 24 hours for APS(I), and 

60 hours for APS(II). At 100 ppm Pb and pH 5.5, APS(I) was the most effective Pb-sorbing phase, 

removing ~60% of Pb compared with 30-35% for APS(II). At pH 5.5 and [Pbaq]0=1000 ppm, 

however, both APS phases performed equally, removing ~10% of Pb from solution, though 

APS(II)’s Pb-sorption trend was still clearly progressing downward at the experiment cut off time, 

indicating that the reaction had not yet come to an equilibrium state. Within pH 5.5 solution with 

[Pbaq]0=1000 ppm, Pb-sorption by APS(I/II) followed an undulating trend in which Pb is 

progressively sorbed by the APS phases and then returned to solution (Figure 5c,f).  

4.3. Composition of Pb-sorbed APS phases 

Targeted LA-ICP-MS coupled with EPMA analysis was selected as the best means for 

determining Pb concentration within the synthetic APS phases. Quantification via EPMA proved 

difficult, due to the small grain size of the synthesised crystals (15-50 µm, Figure 3), and to the 
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location of the highest Pb concentrations on the edges of the grains where analytical results were 

affected by complex interface effects in the electron-beam interaction volume. As such, EPMA 

data for Pb-concentration is spotty, and once bad totals had been removed, did not show clear 

overall trends with respect to fluid pH, aqueous Pb concentration, or host material. Nevertheless, 

the data (Appendix D, Table 3) showed that Pb concentrations in APS phases varied by orders of 

magnitude (50-1608 ppm), and formed clear trends according to concentrations of Al, P, S, Ca and 

Sr within individual grains (Figure 6). The highest Pb concentration, 4784 ppm Pb, occurred 

within (Ca,Sr)-bearing phases from [Pbaq]0= 1000 ppm solution and pH 5.5. Grains from APS(I) 

also showed high concentrations of Pb (up to 676 ppm PbO) within samples from pH 5.5. The 

sorption of Pb by APS phases appeared to depend greatly on the relative concentrations of P and 

S, with the highest Pb concentrations recorded in samples with elevated S/P (Figure 6a). Grain 

with excess Al and under-representation of M2+ in the M site (∑M2+<1) were also shown to 

incorporate Pb, indicating that Al3+ may be easily replaced from within the M-site (Figure 6b-c).  

 

Figure 6: Plots of EPMA data showing the relationship between the relative concentration of Pb and (a) 

phosphate-sulfate composition; (b) Al concentration (apfu); and (c) total M2+ (apfu), within synthetic APS 

phases. Closed symbols represent analyses that contain Pb while open symbols contained no Pb. Phases 

with the highest purity are those with compositions which trend towards ∑M2+= 1 and Al=3 apfu (indicated 

by the dotted lines on b and c). Symbols for sample types are provided in (a). 

 

A more comprehensive dataset for Pb incorporation into APS grains was obtained via LA-ICP-

MS spot analyses, linking fluid compositions (pH and [Pbaq]0) to Pb incorporation. While Ca and 

Sr are present in roughly equal amounts within low Pb analyses, the Ca concentrations decrease 
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upon introduction of more significant Pb (Figure 7a), though Ca occurs in only trace levels within 

the nominally Ca-free APS(I). On the other hand, Sr concentrations within the M-site in APS 

phases remain largely unaffected by the introduction of Pb, except in a few analyses (Figure 7b). 

This trend is amplified for experiments at pH ≥3.5 and higher [Pbaq]0, indicating that a certain 

threshold must be reached before the onset of rapid uptake of Pb by APS phases through cation 

exchange. Indeed, the majority of analyses from APS phases at pH 1.5 and any [Pbaq]0 show less 

than 1% Pb contribution of the total M-site, while APS phases at pH 3.5 and 5.5 recorded low 

(0.014-32.7%) and high (0.048-58.7%) values of M-site Pb occupancy, respectively. 

 

Figure 7: Graphs of targeted LA-ICP-MS spot analyses plotting the percentage of Pb incorporation in the 

M-site against (a) Ca % concentration in the M-site; and (b) Sr % concentration in the M-site. Symbols 

displaying solution pH (top row), the initial concentration of Pb in solution (middle row), and APS sample 

type (bottom row) are given in (a). All points are within 10% error, calculated from the 2SE value. 
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Relationships between Pb-incorporation into APS phases and the initial concentration of Pb 

within the reaction liquors ([Pbaq]0) were not as clear as those defined for pH, showing a broad 

range of compositions in each batch of experiments. Within APS grains exposed to [Pbaq]0=10, 

100 and 1000 ppm solutions, Pb concentrations varied between 0.010-41.3, 0.004-58.7, and 0.001-

34.5 % occupancy at the M-site, respectively. 

Data for the (Ca,Sr)-bearing sample, APS(II), showed a clearly defined Pb incorporation trend. 

In solutions where [Pbaq]0 was 100 ppm or greater, APS(II) showed an increase of Pb sorption from 

solution from pH 1.5-3.5, then decreasing again at pH 5.5, indicating Pb-incorporation is 

maximised at pH 3.5. At [Pbaq]0= 10 ppm, Pb incorporation increased with pH, indicating that Pb-

loading onto the crystal surfaces may be a contributing factor at low concentrations. 

4.4. Pb incorporation in natural woodhouseite 

To investigate the diffusion of Pb within the lattice of APS minerals, coarse-grained grains of 

natural woodhouseite were exposed to 1000 ppm Pb for 4 days at 25 (Grain 2) and 200˚C (Grain 3) 

at pH 3; the distribution of Pb and other elements was mapped using LA-ICP-MS (Figure 8a-d). 

This element mapping approach was not possible on the fine-grained synthetic APS phases. 

Unprocessed samples (Grain 1) display oscillatory zoning with respect to Sr and Pb, presumably 

preserving changes in the mineralising fluid’s composition during the growth of the mineral. In 

contrast, Grain 2 and 3 display distinctive Pb-rich rims. This is especially evident when the data is 

displayed as an empirical cumulative distribution function (ECDF) (Figure 8d, h, l). Here, the data 

is scaled according to a histogram of the distribution of the data, and while these maps are 

qualitative rather than quantitative, they reveal Pb-rich rims in both grains penetrating in the order 

of 10-50 µm depth. While Grain 2 predictably shows thicker Pb-rich rims than Grain 3 due to 

faster diffusion at elevated temperature, the chemical maps clearly indicate that Pb sorption readily 

occurs even at room temperature. 
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Figure 8: Laser ablation-ICP-MS maps of three natural woodhouseite grains, one without being exposed 

to Pb-bearing solution (Grain 1, top line); the second placed in [Pbaq]0=1000 ppm Pb-bearing solution at 

pH 3.5 in a hydrothermal bomb at 200 ̊C and 15 bar (Grain 2, middle line); and the third (Grain 3, bottom) 

placed in [Pbaq]0=1000 ppm solution at pH 3.5 at ambient temperature on an orbital shaker for 5 days. Note, 

maps (d), (h) and (l) are displayed with an empirical cumulative distribution function (ECDF) rather than 

log scale to highlight Pb sorption based on the data’s population trend (Rittner and Müller 2012). 

4.5. X-ray absorption spectroscopy of Pb in APS minerals 

XANES and EXAFS data were collected to further constrain the nature of Pb in APS minerals 

as a function of pH and Pb concentration. XANES (Figure 9) provides information on the 

oxidation state and coordination geometry of the target atom (Penner-Hahn 2005; Bunker 2010; 

Etschmann et al. 2018), while EXAFS spectra are sensitive to the atomic number of the 

neighbouring atoms and their distances, and their Fourier transforms provide information on 

electron density distributed away from the central Pb atom (Figure 10). 

The XANES spectra of the standards showed a characteristic peak for pyromorphite-like 

structure at 13.045 keV and hinsdalite-like at 13.049 keV (Figure 9). The XANES spectra of Pb-

sorbed APS phases differ with changing pH and Pb concentration. At pH 1.5, the XANES spectra 

for both APS(I) and APS(II) at 100 and 1000 ppm [Pbaq]0 are similar to the pyromorphite standard. 
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The formation of pyromorphite is an artefact introduced during drying of solid residues upon 

completion of the experiment to the insoluble pyromorphite phase; this is consistent with the 

higher Pb in solution data (Figure 5) and the poor APS sorption capacity at pH 1.5 (Appendix D, 

Table 4). At pH 3.5, APS(I) XANES spectra at all [Pbaq]0 concentrations were similar to the 

hinsdalite standard, suggesting lattice incorporation of Pb; this is consistent with the lower Pb 

concentration in solution reported in Figure 5. 

The XANES spectra for Pb-sorption tests at pH 5.5 showed significant change as a function of 

[Pbaq]0 concentration. In the case of APS(I), the XANES spectra showed a peak shift from 

hinsdalite to pyromorphite with increasing [Pbaq]0 from 100 to 1000 ppm, suggesting that at a pH 

of 5.5, the effective loading capacity of the APS(I) phase significantly decreased. This was further 

evident in the case of APS(II), where the XANES spectra showed a peak characteristic of 

hinsdalite at 10 ppm, with a consistent peak shift observed with increasing [Pbaq]0 to 100 ppm, 

where the XANES spectra showed a combined hinsdalite/pyromorphite peak, and finally, at 

1000 ppm, where the XANES spectra showed a characteristic peak for pyromorphite. Therefore, 

the XANES spectra showed that the effective operating window for APS sorption of Pb was 

optimal at a pH of 3.5 for both APS(I) and APS(II), independent of [Pb] concentration. 

Based on the XANES results, EXAFS spectra were fitted to either a hinsdalite or pyromorphite-

like structure (Appendix D, Tables 4,5). The EXAFS fit results confirm the interpretation of the 

XANES data. In the pyromorphite-like structures, short Pb-Pb distances (3.60 and 2.75 Å; Dai and 

Hughes 1989) are identified in the fits, with close to full occupancy, consistent with a 

pyromorphite-like (nano)-precipitate. In hinsdalite, however, the shortest Pb-Pb distances are 

>6.5 Å (Kolitsch et al. 1999), and therefore beyond the range of our EXAFS data. However, the 

EXAFS data indicate a well-ordered shell of Al and P/S atoms around the Pb atoms (Appendix D, 

Table 5), consistent with Pb incorporation in the APS crystal structure rather than adsorption. Note 

that analysis (11) contained a relatively large bromine K-edge, likely resulting from contamination 

of the Pb(NO3)2 used during the sorption experiments, and low Pb-concentration. As such the data 

is noisier and short range, and was difficult to fit. 



116 

 

5. Discussion 

The sorption data in Section 4.2 highlight the strong effect of pH and aqueous Pb loading on 

the removal of Pb from solution. In general, the Pb-removal increases with increasing pH (1.5 to 

5.5). Increasing [Pbaq]0 from 10 to 100 ppm results in increased Pb concentrations being recorded 

in APS phases. There is, however, a smaller difference in the amount of Pb sorbed by APS phases 

when increasing [Pbaq]0 from 100 to 1000 ppm, indicating a loading capacity for Pb onto APS 

phases at ~1 g APS in 1 L of [Pbaq]0=100 ppm solution. 

However, LA-ICP-MS spot analyses reveal a more complex picture of the pH dependence of 

Pb sorption as a function of APS composition: (Ca,Sr)-bearing APS phases incorporate large 

concentrations of Pb between pH 3.5 and 5.5, while APS(I) appears to be more effective at pH 5.5 

(Figure 7). This suggests that the effect of the pH-dependant surface charge on adsorption of 

cationic Pb is not the only factor controlling Pb uptake. Thermodynamic modelling shows that the 

ideal formation conditions for synthetic Ca-bearing woodhouseite occur between pH 3-5 (Schwab 

et al. 2005; Figure 11), with Pb-bearing phases becoming preferred as solution acidity increases, 

in agreement with the LA-ICP-MS data showing Pb-sorption at pH 3.5 out-performing pH 5.5. 

Hence, there is a clear link between the thermodynamic stability of APS minerals (Schwab et al. 

1993, 2005; Gaboreau and Vieillard 2004) and their capacity to incorporate Pb. A similar feature 

was noted by Monteagudo et al. (2003) with respect to the sorption of Hg from waste waters by 

APS phases, which also was optimal at pH ~3.5. 

These complex trends of Pb sorption with pH, solution and APS mineral compositions are 

interpreted to arise from the interplay between initial surface sorption and subsequent 

incorporation into APS phases. The presence of a ‘hump’ in many of the time-resolved sorption 

data (Figure 5), similar to those observed during the uptake of Ra by isostructural barite and 

celestine (Klinkenberg et al. 2018), can be explained in this framework, whereby Pb cations 

entering the APS structure must either replace Ca2+ or Sr2+, or fill otherwise unoccupied positions 

within the APS crystal structure, as may be the case in APS(I) in which no loss of Sr was observed 

with increasing Pb incorporation (Figure 7b). This observation can be explained by the relatively 
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weak thermodynamic gradient between Sr- and Pb-, compared with Ca- and Pb-APS endmembers.  

If Pb is interpreted to take the place of Ca2+ or Sr2+ within the APS structure, their displacement 

toward the surface of the APS grains will result in a reduction of the number of electrostatic 

binding sites previously available to Pb2+, thus causing surface-sorbed Pb to become detached and 

re-enter solution, producing the observed Pb-sorption trendlines.  

 

Figure 9: XANES data for Pb-sorbed synthetic APS phases. Phases correspond to either a hinsdalite or 

pyromorphite structure as indicated. Displayed for reference are patterns for the hinsdalite and 

pyromorphite standards in teal and purple respectively. Note that the normalised intensities of the standards 

have been shifted by 0.1. 

XANES and EXAFS data confirm the prevalence of Pb incorporation on the M-site of 

hinsdalite-like structures in the APS products from the sorption experiments. There is a clear trend 

showing hinsdalite-like structures as the major Pb-bearing phase from experiments with starting 

pH at 3.5, and experiments with starting pH at 5.5 occasionally showed hinsdalite as the major Pb-

bearing phase. None of the Pb-sorption experiments run at pH 1.5 showed hinsdalite-like features, 

thus indicating that the dynamic incorporation of Pb into Ca-, and Sr-bearing APS phases is 

preferred at pH 3.5 (Figures 9,10). As mentioned above, the data are in line with the 

thermodynamic modelling conducted by Schwab et al. (2005) (Figure 11): the formation 
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conditions of Pb-APS is likely to occur best when solution conditions are higher than pH 3.5 and 

less than 5.5, while residual Pb will otherwise dominate and bond to available PO4
3- ligands upon 

drying to form the observed pyromorphite-like structures. Here, PO4
3- ligands are suggested to 

result from partial dissolution of accessory augelite that is present within all samples. Samples (1) 

and (5) were exposed to the same conditions with respect to pH and [Pbaq]0, however sample (5) 

was more easily fitted with the hinsdalite structure in EXAFS, indicating that the analysed material 

was likely purer than that in sample (1). 

 

Figure 10: Modelled Pb LIII edge EXFAS data (dashed lines) plotted with the measured data (solid lines) 

of synthetic APS phases from Pb-sorption experiments (a-b); and their associated Fourier transforms (c-d). 

The APS phase and [Pbaq]0 of the solutions are listed on the figure. Dotted lines are fits corresponding to 

the parameters listed in Tables SUPP. 5,6. Note that differences in the R-space are due to difference in the 

useful data range in K-space, which depended on Pb concentrations and contamination by bromine. 

The importance of structural Pb incorporation relative to surface adsorption was further 

demonstrated by the mapping of Pb in coarse-grained natural woodhouseite crystals, showing 

formation of 50 µm thick Pb-rims at 200˚C, and still ~10 µm thick rims at 25˚C (Figure 8). 

Significant deviations occur along the c-axis of APS phases, depending largely upon the properties 

of the M-site cation whereby M2+ cations with larger ionic radii cause lengthening whereas smaller 

cations result in contraction of the structure. This is especially the case in crandallite group 

minerals when considering Ca2+ which has a relatively small ionic radius. Its small ionic radius 
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causes contraction of the crystal structure resulting in distortions among the sheets of AlO2(OH)4 

octahedra, however when Sr2+ and Pb2+ are substituted at the M-site, the structure becomes more 

relaxed, hence increasing stability. There is also apparent lengthening along the c-axis with 

addition of SO4 in Ca-, Sr-, and Pb-bearing endmembers (Appendix D, Table 7) which may lead 

to an increase in thermodynamic stability (Schwab et al. 2005). In Pb(II) compounds the electronic 

configuration of Pb is 6s2; the resulting lone electron pair is stereochemically active in many oxy-

compounds and complexes (Etschmann et al. 2018), and causes a reduction in crystal symmetry 

in some Pb-rich alunites (Kolitsch and Pring 2001), adding complexity to substitution of Ca and 

Sr by Pb, but explaining the high affinity of the APS structure for Pb2+ over other divalent cations. 

Additionally, the relative high electronegativity of Pb2+ cations over Ca2+ and Sr2+ (Gaboreau and 

Vieillard 2004) may aid in its incorporation by APS phases. The capacity of phosphate and sulfate 

minerals to quickly incorporate foreign ions into their structure has been illustrated recently in the 

case of radiobarite, (Ra,Ba)SO4 (Vinograd et al. 2018; Klinkenberg et al. 2018), the intermobility 

of Sr, Ba and Pb in isostructural celestine (SrSO4), barite and anglesite (PbSO4) (Rollog et al. 

2019), and As in apatite, Ca5(PO4)3(F,Cl,OH) (Liu et al. 2017). In the latter case, fast dynamic 

recrystallization was driven by the distortion of the crystal structure induced by the introduction 

of the arsenite ion; similar dynamic recrystallization in APS minerals may be driven by the Pb2+ 

stereochemistry. 
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Figure 11: A slice of the hypothetical Garrel-block-diagram for the system MO-Al2O3-P2O5-SO3-H2O at 

60˚C and [H3PO4]= 10-5.2 mol.L-1 and [M2+]=[Al]= 10-3 mol.L-1. The dashed line marks the probable 

equilibrium conditions with solution (pH ~3). After Schwab et al. (2005). 

6. Conclusions and implications 

APS minerals are attractive materials for the removal and long-term geological storage of a 

range of heavy metals and radioisotopes, due to the open nature of their crystal structure (Besold 

et al. 1992) and their thermodynamic stabilities (Schwab et al. 1993; Gaboreau and Vieillard 2004). 

Indeed, synthetic APS phases have been proposed as a tool for removal of contaminants from mine 

waste (As, Monteagudo et al. 2003; As, Pb, Se, Te, Lazareva et al. 2019); immobilisation of 

radioisotopes of La, Ce and Zr from nuclear fission of 235U (Eberly et al. 1996; Janeczek and Ewing 

1996; Dymkov et al. 1997); or to limit the bioavailability of toxic metals within soil horizons 

(Zheng et al. 2003; Dill 2001; El Agami et al. 2005). 

The results presented here, showing the dynamic incorporation of Pb at between pH 3.5-5.5 

combined with the insolubility of APS phases within acid leaching environments (Kolitsch and 

Pring 2001; Owen et al. 2019) compared with the target Cu-(Fe)-sulphides, underpins their 

viability as an additive to leach solutions, or elsewhere in the processing circuit, for the reduction 

of 210Pb from such streams. Indeed, Pb-bearing phases are the most thermodynamically stable APS 

phases under such conditions (Schwab et al., 2005), increasing their potential in acting as a sink 

for removal of deleterious Pb from environmental processes and waste streams (Manceau et al. 

2002). 

The most important result from our study is the demonstration that incorporation of Pb into the 

crystal structure of APS-minerals, by the replacement of lattice-bound Ca (observed via EPMA 

and LA-ICP-MS), is the major form of Pb scavenging under conditions relevant to acid leaching. 

Furthermore, the bulk of Pb scavenging was observed to occur over short time scales (hours to 

days) with a loading capacity of ~1 g APS in 1 L of [Pbaq]0=100 ppm solution, adding relevance 

to their potential application as RN extractants within industrial-scale processes.  In light of the 

environmental stability of APS minerals, this indicates their suitability not only for reducing the 
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load of Pb and its radioactive isotopes in processing circuits, but also for the long-term storage of 

these contaminants in geological waste repositories; the fact that Pb quickly enter the crystal lattice 

of APS minerals under process conditions, combined with the broad thermodynamic stability of 

the APS minerals under environmental conditions, makes them particularly attractive for waste 

storage (210Pb has a half-life of 22.3 years).  However, the viability of APS mineral phases towards 

industrial application are dependent on both sourcing and isolating natural mineral phases or 

modifying synthesis procedures of APS mineral phases (e.g. Gilkes and Palmer, 1983). 

In conclusion, synthetic APS phases, if cheaply manufactured, could be used to isolate and 

contain such toxic heavy metals from surrounding ecosystems, and are especially effective in the 

case of Pb2+. 
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1 SUMMARY 

The content of this thesis crosses themes that range from microanalytical characterisation of 

metallurgical samples, identification of target minerals for radionuclide (RN) deportment and 

fundamental geochemical experimentation that can guide RN reduction in South Australian Cu-

concentrates. Two main mineralogical topics were addressed. 

Firstly, the formation of Pb-chalcogenides, which are frequently hosted by Cu-(Fe)-sulphides 

in mineralised zones of the Mt Woods Inlier (Owen et al. 2018) and in the giant Olympic Dam 

(OD) deposit (Schmandt 2019) were investigated, providing fundamental information on the 

petrography and origin of the main Pb-bearing minerals in the deposits, Pb-isotope signatures 

within them, and the behaviour of Pb, radiogenic or otherwise, within the deposit over geological 

time. The complexity of the structures the Pb-minerals form with the Cu-(Fe)-sulphides 

necessitated a nanoscale approach and careful isotopic evaluation so that the conditions of 

formation could be accurately discussed. Micron- to nanoscale analysis of ore and gangue minerals 

within South Australian IOCG ores and their host rocks (e.g. Macmillan et al. 2016a, 2016b; 

Ciobanu et al. 2013, 2017a, 2107b; Kontonikas-Charos et al. 2018; Owen et al. 2018; Courtney-

Davies et al. 2019a, 2019b; Verdugo-Ihl et al. 2019a, 2019b) has revealed new evidence, allowing 

deposit-scale constraints on ore-formation conditions and post-mineralisation history. 

Secondly, a targeted approach to RN incorporation by gangue minerals was conducted (Rollog 

et al. 2018, 2019; Owen et al. 2019) giving insight into the migration of radiogenic Pb and 

associated RN from parent 238U during processing of IOCG ores. NanoSIMS isotope mapping has 

thus far proven to be the only method by which the grain-scale distribution of RN can be effectively 

observed. The recycling of Cu-sulphate rich smelter dust, which consequently contains high 

concentrations of RN, into the leach stage of processing (Lane et al. 2016; Cook et al. 2018) makes 

the nanoSIMS method particularly important as a tool to monitor the increased decoupling of 226Ra 

and 210Pb from uranium during processing. The research presented in this thesis allows for 

recognition of minerals such as the aluminium-phosphate-sulphates (APS) (Owen et al. 2019a, 

2019b) as scavengers of RN within the processing circuit. Microanalytical characterisation of this 

mineral group, which had not been carried out previously, also allows for new valuable 

information on the post-mineralisation history of the Olympic Dam deposit. Chemical 

experimentation and XAS analysis on synthetic APS phases enables an understanding of the 

mechanism by which APS phases can incorporate RN, specifically 210Pb, and highlights their 

potential as a novel way for reducing RN from processing streams. 

1.1 Migration of radiogenic Pb within Cu-Au-(U) deposits of the Olympic Cu-Au Province 

The first main question answered by this thesis was the confirmation that the Pb-chalcogenides, 

galena (PbS), clausthalite (PbSe) and altaite (PbTe), contain dominant radiogenic Pb generated by 
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decay of uranium and thorium. These results, obtained by a combination of quantitative isotope 

analysis and examination of mineralogical relationships at the nano- to micron-scales, imply the 

remobilization and migration of radiogenic Pb, consistent with the low-Pb concentrations 

measured in some U-minerals. 

At the initiation of research reported in this thesis, radionuclides of concern (principally 210Pb 

and 210Po) were suggested to be similarly distributed to 206Pb, the stable end product of 238U decay. 

It was hoped that the more abundant, and thus measurable 206Pb, would serve as a reliably proxy 

for 210Pb and 210Po, especially as all three Pb-chalcogenides are commonly hosted as inclusions 

within Cu-(Fe)-sulphides, highlighting their importance as potential carriers of RN into 

concentrates. Evidence for migration of Pb within the deposit over geological time was thus 

deemed relevant for assessment of RN deportment in ores. 

Lead isotope values measured in-situ by laser ablation inductively coupled plasma mass 

spectrometry (LA-ICP-MS) suggest an overwhelmingly radiogenic origin for Pb and thus 

extensive decoupling of radiogenic Pb from parent U- and Th-minerals. Calculated 207Pb/206Pb 

ratios are indicative of Pb mobilisation during an event (or events) that postdates the initial 

Mesoproterozoic Fe-Cu-Au-U mineralisation event, an interpretation consistent with many other 

studies from across the Olympic Cu-Au province, suggesting cycles of replacement-

remobilization-recrystallization (e.g., Davidson et al. 2007; McInnes et al. 2008; Ciobanu et al. 

2013; Huang et al. 2015; Apukhtina et al. 2017; Bowden et al. 2017). However, given the relatively 

short half-life of the 210Pb isotope, and the inability of Pb-chalcogenides to host significant 

concentrations of other longer lived radionuclides from 238U decay, e.g., 232Th or 226Ra (Rollog, 

unpublished nanoSIMS data), it is suggested that even if the Pb-chalcogenides were deemed to 

have once carried 210RN during their initial formation, these unsupported concentrations have long 

since diminished. Nevertheless, combining data from the isotope compositional study and the 

nanoscale study of Pb-chalcogenides proved instructive for uncovering mechanisms of Pb 

incorporation by Cu-(Fe)-sulphides. 

The incorporation of Pb to form the clausthalite symplectite structures analysed by Owen et al. 

(2018) were suggested to arise via migrating Pb from an external fluid source and Se which was 

pre-existing in solid solution in the Cu-(Fe)-sulphides. Clear diffusion textures are observed in 

porous zones within chalcopyrite by the formation of clausthalite nanoparticles, providing a link 

between diffusion of Pb and symplectite formation. The same ‘diffusion style’ textures were not 

visible within other Cu-(Fe)-sulphides, likely due to their ability to form superstructures during 

thermal overprinting episodes, thus allowing the migration of Pb from nanometres to microns 

within the hosting Cu-(Fe)-sulphides and the development of the spectacular symplectite textures 

observed. Further evidence for this formation mechanism is provided by the isotopic analysis of 

the different Pb-chalcogenides, whereby Pb-isotope trends for clausthalite and altaite lie along a 
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clear mixing trend between the pure radiogenic signature (with respect to 206Pb, 207Pb and 208Pb) 

and common Pb. Included grains of galena are, in contrast, variably enriched in uranogenic 206Pb 

and 207Pb, thus indicating that at least a portion of them likely formed from the products of U 

decay, in situ within the Cu-(Fe)-sulphides. 

 

1.2 Aluminium-phosphate-sulphates and RN deportment during metallurgical processing 

The second part of this thesis focuses on the ability of gangue minerals, specifically aluminium-

phosphate-sulphate phases within the alunite supergroup, to scavenge RN during minerals 

processing. Samples of Cu-concentrate were taken from the Olympic Dam Cu-processing circuit 

after flotation and subsequent acid leaching. Samples from the acid leach stage of processing were 

shown to contain significantly more RN (albeit only RN from 226Ra onwards in the decay chain) 

than equivalent flotation concentrates that had not been acid-leached. This relationship was 

especially pronounced for 210Pb. The recycling of Cu-sulphate rich dust from smelting of copper 

concentrates, which is consequently enriched in RN, into the leach stage of processing likely 

intensifies 210Pb incorporation by APS phases. The observations emphasize that measurable RN 

uptake into APS minerals takes place at plant conditions (~60 °C, pH = 1.5) and in a matter of just 

8-12 hours. 

Study of the broad range of solid solutions formed by the APS phases within the Olympic Dam 

ore provides geological information allowing new insights into, and additional constraints on, the 

formation of the deposit. It was revealed that the APS minerals are Sr-, and Ca-dominant with 

variable amounts of rare earth elements (REE), with some analyses plotting within the 

compositional fields of svanbergite and woodhouseite and others plotting closer to florencite-(Ce), 

suggestive of an (incomplete?) solid solution, or field of solid solutions, between the two groups 

(Owen et al. 2019). Florencite-(Ce) and the Ca-, Sr-dominant APS phases commonly replace the 

REE-fluorcarbonate, bastnäsite-(Ce), previously described by Schmandt et al. (2017). The Ca- and 

Sr-bearing APS phases contain more sulphate than their REE-bearing equivalents, with the sulphur 

derived from the local dissolution and replacement of Cu-(Fe)-sulphides. The observed 

replacement of Cu-(Fe)-sulphides, and the suggested replacement of bastnäsite-(Ce) by APS 

phases indicates that they are paragenetically late, likely forming during a low-temperature 

hydrothermal episode late in the history of the deposit. In any case, the resulting intimate textural 

relationship between APS phases and Cu-(Fe)-sulphides (Owen et al. 2019), along with the 

insolubility of APS phases (Kolitsch and Pring 2001) make them almost impossible to completely 

eliminate from copper concentrate by flotation or acid leaching. This has consequences in that Pb 

is clearly shown, at concentrations measurably by EPMA, to partition into available Ca- and Sr-

bearing phases, with a particularly strong correlation observed between Pb and Ca. The same 

relationship was observed by nanoSIMS isotope mapping in which the highest concentrations of 
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210Pb showed clear spatial relationships with Ca-enriched zones, meaning that Ca- and Sr-bearing 

APS phases may assist in the transport of 210Pb through to the very final stages of processing. 

Following from the recognition that natural APS phases could play a significant, if as-yet 

unquantified role in the distribution of 210Pb and changes in that distribution during processing, it 

was deemed necessary to undertake a synthetic experiment on pure, Pb-free, Ca- and Sr-bearing 

APS phases in order to model Pb uptake at different conditions with respect to fluid pH and 

concentrations of dissolved Pb (Owen et al. 2020). Synthesis of APS phases via modification of 

existing recipes (Schwab et al. 1991, 2004), proved difficult, taking six months equilibration time 

for a single batch, while always forming minor amounts of accessory augelite Al₂(OH)₃. 

Nevertheless, EPMA and LA-ICP-MS analyses of sample powders exposed to solutions 

containing dissolved Pb(NO3)2 in dilute HNO3 readily confirmed that the incorporation of Pb into 

the crystal structure of the synthetic APS phases occurred in the predicted way, whereby Pb 

replaces Ca within the APS crystal structure. Interestingly, compositional data did not show 

removal of Sr, even in phases which contained no Ca, indicating that cation exchange likely occurs 

between Ca and Pb only. This likely occurred due to the formation of distortions in the APS crystal 

structure, caused by its contraction to accommodate the relatively smaller ionic radii of Ca2+ 

cations. Extended X-ray absorption fine structure analysis of the resulting solids (Owen et al. 2020) 

reveals the nature of Pb sorption by the synthesized material. The data showed that the dynamic 

incorporation of Pb by APS phases occurred overwhelmingly at pH of 3.5, while the formation of 

pyromorphite from the dissolution of accessory augelite dominated at lower pH. The insolubility 

of APS phases (Kolitsch and Pring 2001) within acid leaching environments, compared with the 

target Cu-(Fe)-sulphides, highlights their viability as an additive to leach solutions, or elsewhere 

in the processing circuit, for the reduction of 210Pb from such streams, provided a mechanism can 

be engineered to later remove the APS phases and their contained RN. 

 

2 RECOMMENDATIONS 

Due to the extraordinary diversity of the mineralogical relationships observed within ores of 

the Olympic Cu-Au Province, the results outlined in this thesis comprises a valuable contribution 

toward the understanding of radionuclide deportment within IOCG ores and concentrates and 

evolution of those deportments from ore to smelter feed. Further characterisation of radionuclide 

deportment within the Cu-Au ores is certainly necessary in order to obtain improved understanding 

of the physical and chemical pathways available to mobilise RN and other penalty elements. Even 

so, within the bounds of this research, a number or recommendations can be made for future 

directions of study.  
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2.1 Recommendations for work on natural mineral phases 

The first would comprise a study of natural APS phases from Olympic Dam, and potentially 

the synthetic analogues, conducted at the nanoscale. Such a study was initiated during the 

candidature but with but poor results leading to the attempt being cut short. APS phases were 

discovered to be incredibly beam sensitive on the SEM, EPMA and FIB-SEM, even under very 

low currents and accelerating voltages. Traditional FIB milling with a Ga ion source resulted in 

non-representative TEM foils and mineral phases that had visibly melted during extraction and 

foil preparation. Similar beam sensitivity limitations are reported in studies on Ca-sulphates, 

anhydrite and gypsum (Lee 1993), and the Ca-phosphate hydroxyapatite (Mayer et al. 2008), in 

which TEM beam damage caused defragmentation of the crystalline phases within seconds of 

exposure. Cryo-FIB, a technique normally reserved for delicate biological samples, might thus be 

used to preserve mineral textural relationships and enable the extraction of foils thin enough (~20 

to 50 nm) for TEM analysis. Similarly, cryo-sample holders are available for atomic-resolution 

STEM microscopes such as the FEI Titan with high-angle annular dark-field (HAADF STEM) 

imaging capability, as used in Owen et al. (2018) for element mapping. 

Sample preparation permitting, such a technique would enable detailed study on the diversity 

of the solid solutions, in terms of crystal-structural response to compositional change, among not 

only the APS minerals, but also other minerals within the large alunite supergroup. In APS 

minerals, a relationship between higher concentrations of PO4
3- and OH, and incorporation of M3+ 

cations, such as the rare earth elements, has been established (Owen et al. 2019), however, the 

repeating motifs that make up the structural components of APS phases have not been previously 

imaged at high-resolution. A fundamental, and as yet unanswered, question is whether they occur 

in an ordered arrangement or completely random. Atomic-scale mapping, using methods offering 

high Z-contrast, such as HAADF STEM (e.g., Ciobanu et al. 2017; Verdugo-Ihl et al. 2019b) could 

prove extraordinarily useful to understand dimensions and limits of solid solution. If perfected for 

such beam-sensitive compounds, such techniques might also aid identification of new mineral 

phases within the alunite supergroup. Additionally, the ordering of individual motifs within an 

APS minerals structure may provide valuable information on the mechanisms of element 

incorporation. 

The observed diffusion textures exhibited by the uptake of Pb by Se-rich chalcopyrite (Figure 

1a), and the widely observed  formation of symplectite textures between the other Cu-(Fe)-

sulphides and clausthalite (Owen et al. 2018), are indicative of Pb remobilization during one or 

more geological events. Modelling this process via synthetic experiments on Pb uptake by Se-rich 

Cu-(Fe)-sulphides may prove instructive for the determination of the strength and chemical 

conditions of the hydrothermal fluids associated with such an event or events. As it stands, little 

research has been done on the fundamentals of Se behaviour within Cu-(Fe)-sulphides or the 
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significance for and relationships with Pb scavenging. Clausthalite-bearing symplectites hosted by 

chalcopyrite (Figure 1b-c) are frequently restricted to the cores of grains, indicating that for the 

grains in question, the first stage of growth was dominated by a Se-bearing hydrothermal fluid. 

Additionally, given that oxidized Se compounds tend to be isotopically heavier than reduced Se 

compounds (Stüeken et al. 2015, and references therein), analysis of fractionation of Se isotopes 

may reveal important information regarding the redox conditions that were present during initial 

Cu-(Fe)-sulphide formation. 

 

 

Figure 1: Backscatter electron images of (a) clausthalite (PbSe) and altaite (PbTe) symplectites 

hosted by a grain of chalcopyrite. Note the coarsening of the Pb-chalcogenides and more 

concentrated nature of altaite in the upper part of the image where the chalcopyrite grain becomes 

porous; and (b) and (c) clausthalite-bearing symplectites contained by zones within chalcopyrite. 

Extensive methodological development for the characterisation of RN deportment within 

mineral phases has been demonstrated within this thesis, and in those of Rollog (2019) and 

Schmandt (2019). Combined with other microanalytical routines developed within the ARC 

Research Hub for Australian Copper Uranium, there now exists an opportunity to attempt a semi-

quantitative mass balance model for RN within mineral phases of South Australian Cu-Au ores 

during metallurgical processing. The development of techniques, such as nanoSIMS isotope 

mapping for key radioisotopes which exist in minute concentrations within mineral phases, and 

the ongoing development of complementary techniques such as quantitative alpha tracking 

(Kalnins et al., 2019), combined with ‘user assisted’ mineral liberation analysis (MLA) data on 

the proportion of minerals may allow for such quantitative calculations. The application of 

synchrotron techniques such as x-ray fluorescence microscopy (XFM), which could be deployed 

to track U and Pb within grains quickly and at the sample scale (rather than grain by grain as was 

done with the SEM), may also prove useful in such an endeavour. This has proven impossible until 

now for two main reasons, the importance of which has become clear during the lifetime of the 

ARC Research Hub for Australian Copper Uranium. These are (i) the poorly constrained 

proportion of total RN that reside at grain boundaries, in nano- to microfractures, within pore 

spaces, and on mineral surfaces rather than contained within a given mineral; and (ii) the difficulty 
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of accurately determining the abundances of many of the finest-grained minerals that occur 

dominantly at the sub-micron-scale. 

 

2.2 Recommendations for work on APS phases 

Much additional work is possible to further explore the potential use of APS phases as 

scavengers of RN, the foremost being a simpler and faster method for their synthesis. The outline 

of a recipe to produce a crystalline crandallite phase, within a much shorter time frame than was 

needed for the synthesis of APS phases by Owen et al. (2020), is provided in Gilkes and Palmer 

(1983). Here, the recipe could be modified to form phosphate-sulphate bearing phases, allowing 

further testing of sorption dynamics and APS phase composition. A shorter method to synthesise 

APS phases would also make them much more commercially viable as additives to metallurgical 

processing streams for RN extraction. An additional method for the production of an ‘amorphous’ 

crandallite phase has been presented by Monteagudo et al. (2003), requiring only two weeks of 

synthesis time per batch at 70°C and atmospheric pressure. Preliminary data, not presented here, 

suggest that such a method could be modified for use in leach liquors for RN extraction via similar 

mechanisms to the crystalline APS phases. 

The sorption of RN by natural APS phases within Olympic Dam Cu-processing streams was 

not limited to isotopes of Pb alone. Via nanoSIMS, 226Ra was also observed, although with slightly 

different spatial distribution to that of 210Pb. As such, if a clear and simple method for the synthesis 

of crystalline APS phases can be established, a possible next step could be to determine the 

competitive sorption of all of daughter RN resulting from decay of U. Such an experiment could 

be done simply enough, by dissolving uraninite grains containing RN from 235U and 238U, in 

secular equilibrium. Analysis of the stock solutions by ICP-MS before and after exposure to the 

APS phases could give a grounding of which RN are compatible within the APS crystal structure, 

though further microanalytical characterisation on the RN-sorbed solids, such as the methods set 

out in Owen et al. (2020), would likely be required. 

The final step to validate the use of APS phases as a method for reduction of RN from mineral 

processing streams would involve testing them in situations which replicate processing plant 

conditions. Testing would be carried out within solutions that are representative of those found in 

the different stages of metallurgical processing. The aims of such a study would be to model the 

amount of synthetic APS (although naturally occurring Ca-bearing APS could be used if sourced 

cheaply enough) that would need to be added to metallurgical processing streams in order to cause 

a significant reduction in overall RN concentration, identify specific areas of the Cu-processing 

circuit in which addition of APS would be most effective, and, building on the results and 

discussions from previous studies, conduct an overall cost benefit analysis. A method for effective 

addition and removal of APS from the Cu-processing circuit would also have to be established. 
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One suggestion could be to use a permeable container, allowing solution to contact the APS while 

keeping it isolated from the ore material. Another method would be to crystallise APS directly 

onto a grid which could be lowered into Cu-processing liquors. Both cases would have to be 

sufficiently hardy to cope with exposure to the thick sludges and harsh solutions present in Cu-

processing circuits. Alternately, an additional floatation stage could be employed to remove APS 

after exposure. Beyond removal, APS minerals may have value as permanent immobilisers of RN, 

enabling safe long-term storage and isolation from surrounding environments. Previous studies 

(Landa, 2003) have discussed the potential of jarosite in this respect, similar to that proposed for 

apatite (Rigali et al. 2016). 

 

3 CONCLUDING REMARKS 

The research outlined in this thesis adds to an ever-growing body of knowledge on the 

mineralogy, ore genesis and geological evolution of IOCG style deposits in the Olympic Cu-Au 

Province. Characterization of the extraordinary complexity of mineral relationships all the way 

down to the nanoscale has necessitated the use of multiple microanalytical techniques. At present 

rates, the giant Olympic Dam Cu-Au-U deposit will continue production for the next 100 years 

and beyond, highlighting the critical need for understanding not only the complex mineralogical 

relationships that exist within the ore, but also how individual elements deport within each mineral 

phase in order to allow the most efficient extraction of target metals while avoiding, isolating or 

eliminating penalty elements. In the quest to develop a holistic understanding of Cu-Au ores in the 

Olympic Cu-Au province, the data and discussions on the mineral groups contained within this 

thesis supplement published research on other key mineral groups within these deposits, e.g., Cu-

(Fe)-sulphides (Ciobanu et al. 2017a), U-minerals (Macmillan et al. 2016a, 2016b, 2016c, 2017), 

apatite (Krneta et al. 2016, 2017, 2018), Fe-oxides (Ciobanu et al. 2013, 2019; Verdugo-Ihl et al. 

2017, 2019a, 2019b; Courtney-Davies et al. 2019a), REE-minerals (Schmandt et al. 2017, 2019a), 

or baryte (Schmandt et al. 2019b). 

An approach to extractive metallurgy that incorporates detailed mineralogical and geochemical 

characterization of an ore, has becoming increasingly recognised as one of the most important 

steps towards maximising recovery of economic elements while rejecting deleterious ore 

components. The management of deleterious components in the ore, such as the RN discussed in 

this thesis, can prove costly and may even present significant health and safety risks if not correctly 

monitored and handled with due care (IAEA 2006). The ARC Research Hub for Australian Copper 

Uranium, to which this research is a contribution, was established with the understanding of the 

need for an all-inclusive interpretation of the mineralogical, geochemical and metallurgical 

processes responsible for decoupling, mobilisation and deportment of RN throughout the 

processing circuit, and how this is ultimately controlled by mineralogy. The mineralogy and 
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mineralogical textures in South Australian Cu-Au ores, however, are diverse and complex down 

to the finest scale, necessitating integrated multi-scale, multi-technique approaches to develop this 

understanding. By taking a mineralogical approach, the research presented here, along with that 

of Schmandt (2019), Rollog (2019), and the publications contained within those theses, has had 

far reaching implications for metallurgical processes seeking to reduce RN from processing 

streams. 
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SUPPLEMENTARY MATERIAL A: APPENDIX FOR CHAPTER 2 

Table 1: Pb isotope LA-ICP-MS analysis of Pb-chalcogenides and Cu-(Fe)-sulphides from a Cu-

Au mineralised zone in the Mt Woods Inlier. 
Pb 
Mineral 

208Pb/ 
204Pb 

% 
error 

207Pb/ 
204Pb 

% 
error 

206Pb/ 
204Pb 

% 
error 

208Pb/ 
206Pb 

% 
error 

204Pb/ 
206Pb 

% 
error 

207Pb/ 
206Pb 

% 
error 

Alt 53.60 5 18.70 5 73.80 7 0.744 6 0.014 7 0.257 4 

Alt 58.00 7 22.40 7 99.70 4 0.568 3 0.010 4 0.219 3 

Cls 49.90 7 16.50 8 36.90 8 1.350 3 0.027 8 0.449 2 

Cls 55.50 5 17.61 4 37.50 3 1.454 3 0.027 3 0.462 1 

Cls 55.70 5 17.63 4 37.70 3 1.470 2 0.027 3 0.466 1 

Cls 55.90 4 17.59 5 38.50 4 1.423 3 0.026 4 0.458 2 

Cls 53.10 4 16.85 3 38.90 3 1.364 2 0.026 3 0.437 2 

Cls 46.90 5 16.72 4 38.90 4 1.208 2 0.026 4 0.431 2 

Cls 43.40 3 16.13 3 39.10 3 1.113 2 0.026 3 0.420 2 

Cls 53.84 1 17.88 1 39.42 1 1.372 1 0.025 1 0.454 1 

Cls 50.90 6 17.28 5 39.50 6 1.295 1 0.025 6 0.443 1 

Cls 54.40 8 17.16 5 39.60 6 1.278 6 0.025 6 0.427 4 

Cls 51.20 3 16.94 2 39.68 2 1.299 2 0.025 2 0.430 1 

Cls 49.70 9 17.10 8 40.00 5 1.261 4 0.025 5 0.428 3 

Cls 50.00 3 16.79 3 40.08 2 1.258 2 0.025 2 0.421 1 

Cls 53.60 7 17.43 5 40.10 4 1.307 4 0.025 4 0.441 3 

Cls 50.40 4 16.83 3 40.80 2 1.234 2 0.025 2 0.415 2 

Cls 54.50 2 17.40 1 40.83 1 1.343 2 0.024 1 0.429 1 

Cls 52.50 5 17.43 3 41.10 3 1.283 4 0.024 3 0.429 3 

Cls 54.70 4 17.41 3 41.22 2 1.311 2 0.024 2 0.419 2 

Cls 55.60 4 17.46 4 41.50 3 1.338 2 0.024 3 0.420 2 

Cls 51.80 3 17.24 2 41.55 2 1.250 2 0.024 2 0.417 1 

Cls 50.70 3 16.89 3 41.76 2 1.226 1 0.024 2 0.406 1 

Cls 51.80 7 17.48 3 41.80 3 1.258 4 0.024 3 0.420 4 

Cls 49.60 3 16.98 2 41.83 2 1.196 2 0.024 2 0.411 1 

Cls 55.20 4 17.95 4 41.90 5 1.298 5 0.024 5 0.416 2 

Cls 52.70 2 17.14 2 41.92 2 1.248 3 0.024 2 0.411 2 

Cls 50.50 4 17.06 3 42.10 3 1.200 2 0.024 3 0.409 1 

Cls 55.05 2 17.69 1 42.48 2 1.297 2 0.024 2 0.416 2 

Cls 55.10 3 17.66 2 42.58 2 1.296 2 0.023 2 0.416 2 

Cls 56.40 6 17.77 6 42.70 4 1.323 3 0.023 4 0.420 2 

Cls 51.30 4 17.47 4 42.70 4 1.215 3 0.023 4 0.409 2 

Cls 52.39 2 17.68 1 42.75 1 1.224 1 0.023 1 0.412 1 

Cls 53.90 2 17.25 2 42.80 2 1.259 2 0.023 2 0.404 2 

Cls 53.80 8 18.18 5 42.90 3 1.241 5 0.023 3 0.415 2 

Cls 55.50 2 18.06 2 42.91 1 1.270 2 0.023 1 0.415 1 

Cls 56.60 3 17.83 2 42.95 2 1.311 2 0.023 2 0.415 1 

Cls 55.80 6 17.70 4 43.00 4 1.324 4 0.023 4 0.419 2 

Cls 52.20 2 17.53 2 43.07 2 1.215 1 0.023 2 0.404 1 

Cls 54.90 5 17.55 4 43.10 3 1.281 3 0.023 3 0.411 2 

Cls 49.90 8 17.00 6 43.10 6 1.154 4 0.023 6 0.395 2 

Cls 52.30 2 17.79 2 43.12 2 1.215 1 0.023 2 0.410 1 

Cls 54.40 2 17.67 2 43.20 6 1.284 2 0.023 6 0.423 3 
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Cls 52.10 2 17.08 2 43.21 1 1.208 1 0.023 1 0.400 1 

Cls 54.10 4 17.40 3 43.47 2 1.246 3 0.023 2 0.401 2 

Cls 52.50 6 17.56 5 43.50 5 1.216 3 0.023 5 0.402 2 

Cls 53.70 2 17.61 1 43.54 1 1.229 2 0.023 1 0.406 1 

Cls 53.40 4 17.88 3 43.59 2 1.234 2 0.023 2 0.410 1 

Cls 57.30 4 17.98 3 43.71 2 1.305 2 0.023 2 0.412 1 

Cls 52.40 8 17.70 6 43.80 5 1.184 4 0.023 5 0.396 2 

Cls 55.80 3 18.02 2 43.88 1 1.282 2 0.023 1 0.407 1 

Cls 51.30 3 17.27 3 43.90 2 1.172 2 0.023 2 0.395 1 

Cls 55.39 2 17.91 3 44.10 2 1.261 2 0.023 2 0.406 2 

Cls 52.60 3 17.41 2 44.16 2 1.189 1 0.023 2 0.393 1 

Cls 53.70 4 17.80 3 44.36 2 1.209 2 0.023 2 0.401 2 

Cls 52.60 4 17.72 5 44.40 4 1.190 3 0.023 4 0.401 2 

Cls 51.50 3 17.32 3 44.50 3 1.150 2 0.022 3 0.386 1 

Cls 53.10 3 17.65 3 44.60 3 1.187 1 0.022 3 0.402 1 

Cls 53.71 2 17.99 1 44.74 1 1.205 1 0.022 1 0.405 1 

Cls 54.50 2 18.38 2 44.80 2 1.201 3 0.022 2 0.404 2 

Cls 53.00 2 17.92 2 44.83 1 1.181 1 0.022 1 0.398 1 

Cls 53.10 2 17.29 2 44.90 2 1.189 2 0.022 2 0.389 2 

Cls 55.20 3 17.79 2 44.93 2 1.236 3 0.022 2 0.396 2 

Cls 56.00 4 17.43 3 44.93 2 1.261 3 0.022 2 0.394 1 

Cls 49.60 3 17.17 4 45.00 4 1.120 2 0.022 4 0.386 2 

Cls 58.00 7 18.10 6 45.00 5 1.265 3 0.022 5 0.401 2 

Cls 54.50 3 17.18 3 45.01 2 1.209 3 0.022 2 0.382 1 

Cls 56.80 5 18.15 4 45.02 1 1.259 3 0.022 1 0.402 2 

Cls 52.00 2 17.68 2 45.09 1 1.150 2 0.022 1 0.389 1 

Cls 51.20 6 17.23 6 45.10 6 1.123 3 0.022 6 0.383 3 

Cls 55.40 3 17.66 2 45.11 2 1.237 3 0.022 2 0.395 2 

Cls 53.97 1 18.10 1 45.20 1 1.194 1 0.022 1 0.403 1 

Cls 49.60 5 17.12 5 45.30 3 1.095 3 0.022 3 0.372 2 

Cls 53.10 7 17.90 7 45.30 6 1.184 4 0.022 6 0.386 3 

Cls 53.02 2 17.29 2 45.30 2 1.153 2 0.022 2 0.381 1 

Cls 53.30 4 17.18 4 45.40 3 1.179 2 0.022 3 0.379 2 

Cls 52.30 3 17.41 3 45.40 3 1.147 1 0.022 3 0.387 1 

Cls 58.80 3 18.18 3 45.50 3 1.275 2 0.022 3 0.398 1 

Cls 54.40 4 18.02 4 45.60 4 1.173 2 0.022 4 0.390 2 

Cls 55.88 2 17.93 2 45.66 1 1.224 1 0.022 1 0.394 1 

Cls 53.60 4 18.29 3 45.70 5 1.191 5 0.022 5 0.404 6 

Cls 55.10 2 18.39 2 45.73 2 1.202 1 0.022 2 0.401 1 

Cls 57.30 3 18.08 2 45.79 2 1.237 2 0.022 2 0.394 1 

Cls 59.70 4 18.71 4 45.80 4 1.306 2 0.022 4 0.410 1 

Cls 52.51 2 17.91 2 45.83 2 1.156 1 0.022 2 0.391 1 

Cls 58.00 3 18.20 2 45.94 2 1.252 2 0.022 2 0.393 1 

Cls 53.67 2 18.20 2 46.21 1 1.162 2 0.022 1 0.391 2 

Cls 56.80 4 17.86 3 46.23 2 1.225 3 0.022 2 0.383 2 

Cls 55.90 3 17.63 2 46.29 2 1.201 3 0.022 2 0.381 2 

Cls 55.40 5 17.66 5 46.30 3 1.193 2 0.022 3 0.382 2 

Cls 57.30 5 18.50 6 46.40 8 1.241 6 0.022 8 0.399 4 
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Cls 55.50 3 17.78 2 46.59 2 1.188 1 0.021 2 0.382 1 

Cls 57.30 8 18.10 7 46.60 7 1.220 3 0.021 7 0.405 10 

Cls 56.60 4 17.91 3 46.60 3 1.209 4 0.021 3 0.381 2 

Cls 55.60 4 18.04 4 46.70 3 1.182 2 0.021 3 0.388 1 

Cls 51.50 3 17.38 3 46.93 2 1.095 2 0.021 2 0.370 1 

Cls 56.60 6 18.07 4 47.00 4 1.196 3 0.021 4 0.385 2 

Cls 53.70 4 18.07 4 47.00 4 1.108 7 0.021 4 0.384 4 

Cls 48.10 8 15.93 6 47.10 4 1.005 5 0.021 4 0.334 3 

Cls 54.80 9 17.73 5 47.30 7 1.153 7 0.021 7 0.377 5 

Cls 55.70 3 18.29 3 47.49 2 1.174 2 0.021 2 0.385 2 

Cls 54.90 3 18.08 4 47.50 3 1.163 3 0.021 3 0.378 3 

Cls 57.30 4 18.15 3 47.60 2 1.209 4 0.021 2 0.379 2 

Cls 54.20 4 17.24 4 47.60 3 1.177 3 0.021 3 0.370 2 

Cls 57.70 3 18.09 3 47.60 3 1.236 2 0.021 3 0.386 2 

Cls 52.30 6 17.98 5 47.90 6 1.095 5 0.021 6 0.373 4 

Cls 56.50 8 18.20 8 48.50 7 1.156 3 0.021 7 0.372 2 

Cls 55.90 3 18.14 2 48.68 2 1.158 2 0.021 2 0.376 1 

Cls 54.60 1 18.35 1 48.79 1 1.118 1 0.020 1 0.377 1 

Cls 52.10 3 17.62 2 48.98 2 1.056 2 0.020 2 0.358 2 

Cls 51.50 5 17.10 4 49.00 4 1.077 3 0.020 4 0.355 2 

Cls 52.80 4 17.37 3 49.10 2 1.077 4 0.020 2 0.355 2 

Cls 54.40 6 17.78 5 49.20 4 1.111 3 0.020 4 0.358 2 

Cls 59.60 6 18.60 6 49.30 5 1.204 2 0.020 5 0.380 2 

Cls 58.70 5 18.68 5 49.40 5 1.172 2 0.020 5 0.376 1 

Cls 54.60 3 18.12 2 49.73 1 1.099 2 0.020 1 0.365 1 

Cls 54.80 5 17.34 5 49.80 5 1.105 1 0.020 5 0.348 2 

Cls 57.80 4 18.36 3 49.80 3 1.155 3 0.020 3 0.370 2 

Cls 54.40 2 18.86 2 50.00 2 1.074 3 0.020 2 0.371 3 

Cls 57.40 6 17.60 3 50.60 3 1.128 2 0.020 3 0.350 1 

Cls 57.80 4 18.55 4 50.80 4 1.129 3 0.020 4 0.365 2 

Cls 51.80 8 17.20 8 50.90 9 1.041 4 0.020 9 0.354 3 

Cls 49.60 7 16.70 8 51.10 9 0.947 4 0.020 9 0.330 6 

Cls 53.00 3 18.12 2 51.10 2 1.035 1 0.020 2 0.352 1 

Cls 57.40 4 18.70 3 51.40 3 1.115 3 0.019 3 0.360 1 

Cls 52.63 1 18.60 3 51.44 2 1.022 2 0.019 2 0.361 3 

Cls 53.70 3 18.07 3 51.88 2 1.045 2 0.019 2 0.349 2 

Cls 51.40 7 17.30 6 52.10 6 0.991 5 0.019 6 0.334 2 

Cls 56.00 7 18.20 6 52.10 4 1.100 4 0.019 4 0.359 3 

Cls 53.30 4 18.24 3 52.20 2 1.017 3 0.019 2 0.346 2 

Cls 54.70 5 19.40 7 52.40 4 1.017 6 0.019 4 0.359 6 

Cls 54.30 4 18.34 3 52.80 2 1.018 4 0.019 2 0.349 2 

Cls 51.30 6 17.90 6 52.90 5 0.964 2 0.019 5 0.338 2 

Cls 54.50 4 17.91 5 53.60 5 1.046 4 0.019 5 0.335 3 

Cls 53.85 1 18.91 2 53.83 2 1.005 1 0.019 2 0.351 1 

Cls 57.30 4 18.54 3 54.20 3 1.080 2 0.018 3 0.348 1 

Cls 53.80 3 18.85 3 55.60 2 0.964 2 0.018 2 0.339 2 

Cls 55.80 8 18.60 7 56.40 10 1.001 5 0.018 10 0.332 5 

Cls 53.87 1 18.62 1 56.58 1 0.950 1 0.018 1 0.327 1 



 

149 

 

Cls 56.40 8 18.60 6 56.90 6 0.975 4 0.018 6 0.325 3 

Cls 56.40 6 18.60 6 57.10 4 0.994 4 0.018 4 0.320 3 

Cls 58.80 9 19.30 7 57.40 6 1.072 3 0.017 6 0.336 2 

Cls 56.20 7 18.80 6 57.80 6 0.975 2 0.017 6 0.328 2 

Cls 49.60 8 18.40 9 57.80 7 0.847 5 0.017 7 0.309 3 

Cls 51.20 7 16.90 7 57.80 7 0.876 2 0.017 7 0.295 3 

Cls 54.11 2 18.82 2 57.80 3 0.935 2 0.017 3 0.328 3 

Cls 57.00 8 19.60 8 57.90 9 1.018 2 0.017 9 0.339 2 

Cls 54.70 5 18.20 6 58.00 7 0.957 4 0.017 7 0.317 3 

Cls 54.00 4 20.10 5 58.10 4 0.936 1 0.017 4 0.333 2 

Cls 54.80 1 19.07 1 58.87 2 0.935 1 0.017 2 0.324 2 

Cls 57.20 9 19.30 9 59.10 9 0.958 6 0.017 9 0.329 4 

Cls 55.80 6 19.16 5 59.10 5 0.914 3 0.017 5 0.318 3 

Cls 58.00 9 19.70 6 59.40 6 0.930 5 0.017 6 0.323 5 

Cls 56.60 3 18.62 3 59.50 2 0.943 2 0.017 2 0.312 1 

Cls 52.10 6 18.21 5 60.70 4 0.850 3 0.016 4 0.301 2 

Cls 52.50 3 18.77 3 61.10 2 0.858 4 0.016 2 0.308 2 

Cls 51.20 6 18.50 4 61.60 4 0.834 7 0.016 4 0.301 5 

Cls 54.30 4 18.77 3 61.80 3 0.866 6 0.016 3 0.299 5 

Cls 56.70 8 19.30 8 63.80 8 0.910 3 0.016 8 0.301 3 

Cls 53.26 2 18.98 1 64.04 1 0.832 1 0.016 1 0.296 1 

Cls 57.30 3 19.21 2 65.00 2 0.865 1 0.015 2 0.293 1 

Cls 56.40 2 18.92 2 65.08 1 0.862 2 0.015 1 0.292 1 

Cls 60.60 4 20.02 4 65.10 4 0.949 2 0.015 4 0.310 2 

Cls 53.10 4 19.50 5 65.20 9 0.851 6 0.015 9 0.313 5 

Cls 59.30 9 19.70 9 65.90 9 0.869 4 0.015 9 0.297 3 

Cls 56.90 7 19.20 7 66.00 7 0.860 3 0.015 7 0.287 3 

Cls 59.00 3 19.51 3 66.90 2 0.885 2 0.015 2 0.295 2 

Cls 53.30 6 18.44 5 67.90 5 0.779 2 0.015 5 0.275 2 

Cls 54.80 6 19.74 4 72.70 5 0.763 5 0.014 5 0.274 4 

Cls 54.30 5 19.70 6 74.80 6 0.735 2 0.013 6 0.265 2 

Cls 52.90 3 20.32 3 77.80 4 0.674 3 0.013 4 0.254 3 

Cls 54.80 4 19.32 4 78.10 4 0.702 3 0.013 4 0.251 3 

Cls 51.50 8 19.70 8 78.60 9 0.675 6 0.013 9 0.258 4 

Cls 54.60 2 20.66 2 83.20 2 0.660 2 0.012 2 0.249 1 

Cls 54.20 4 19.83 3 84.30 3 0.637 3 0.012 3 0.232 2 

Cls 56.40 6 20.70 8 88.00 8 0.664 4 0.011 8 0.238 1 

Cls 46.30 6 19.90 8 93.00 8 0.505 5 0.011 8 0.213 4 

Cls 52.40 4 20.70 5 95.00 7 0.570 6 0.011 7 0.221 4 

Cls 57.60 7 22.20 8 97.70 8 0.601 3 0.010 8 0.226 3 

Cls 54.20 3 21.59 4 98.00 5 0.551 4 0.010 5 0.217 3 

Cls 49.10 5 19.94 4 98.90 4 0.485 3 0.010 4 0.201 2 

Cls 59.80 8 23.10 6 99.40 5 0.603 6 0.010 5 0.232 4 

Cls 53.90 4 20.63 3 100.70 3 0.539 2 0.010 3 0.206 2 

Cls 53.30 6 20.04 4 102.60 5 0.525 2 0.010 5 0.198 2 

Cls 56.40 6 21.20 6 104.60 5 0.537 2 0.010 5 0.203 1 

Cls 54.40 9 19.30 8 107.10 6 0.498 4 0.009 6 0.178 3 

Cls 61.50 9 22.80 8 109.90 8 0.573 5 0.009 8 0.213 4 
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Cls 60.00 6 24.40 6 111.30 6 0.551 5 0.009 6 0.218 3 

Cls 57.70 8 24.70 8 115.60 8 0.497 7 0.009 8 0.205 3 

Cls 51.10 6 22.30 7 120.00 10 0.441 8 0.008 10 0.188 5 

Cls 55.40 4 23.89 4 124.40 5 0.449 2 0.008 5 0.193 1 

Cls 56.10 9 21.80 8 124.60 8 0.445 2 0.008 8 0.174 2 

Cls 55.40 4 23.90 4 124.80 5 0.445 2 0.008 5 0.192 2 

Cls 53.10 7 22.20 6 128.20 7 0.413 2 0.008 7 0.175 2 

Cls 56.80 2 23.39 2 130.00 2 0.437 2 0.008 2 0.182 2 

Cls 53.12 1 23.94 1 131.90 3 0.403 3 0.008 3 0.181 2 

Cls 52.10 3 23.36 3 134.70 4 0.389 3 0.007 4 0.173 2 

Cls 61.60 8 24.50 7 135.00 8 0.459 4 0.007 8 0.185 2 

Cls 52.50 4 24.25 4 143.50 3 0.373 3 0.007 3 0.171 2 

Cls 54.60 7 25.00 7 152.00 7 0.356 2 0.007 7 0.167 2 

Cls 59.90 8 29.80 7 167.00 7 0.344 3 0.006 7 0.176 2 

Cls 53.30 10 26.20 10 177.00 9 0.303 2 0.006 9 0.150 2 

Cls 55.60 7 29.20 7 183.00 7 0.304 4 0.005 7 0.158 3 

Cls 51.80 5 26.81 3 184.20 5 0.288 5 0.005 5 0.143 2 

Cls 58.00 6 29.70 5 200.00 6 0.291 3 0.005 6 0.149 2 

Cls 56.80 4 29.40 5 211.00 7 0.271 5 0.005 7 0.142 4 

Cls 56.50 9 32.10 8 228.00 7 0.246 3 0.004 7 0.138 2 

Cls 54.20 9 37.90 9 234.00 9 0.228 4 0.004 9 0.158 2 

Cls/Alt 53.20 5 17.78 6 52.30 5 1.015 2 0.019 5 0.338 1 

Cls/Alt 52.10 5 17.59 4 56.20 4 0.935 2 0.018 4 0.313 2 

Gn 54.60 6 17.39 5 42.30 4 1.271 3 0.024 4 0.408 2 

Gn 52.00 3 17.44 2 43.92 2 1.207 2 0.023 2 0.403 1 

Gn 52.10 3 17.59 3 44.60 3 1.166 2 0.022 3 0.395 2 

Gn 55.60 5 17.14 3 45.20 3 1.227 3 0.022 3 0.384 2 

Gn 53.30 6 17.80 5 46.00 4 1.157 2 0.022 4 0.389 2 

Gn 54.71 2 18.38 1 48.32 1 1.140 2 0.021 1 0.381 1 

Gn 61.50 4 18.68 3 48.90 2 1.249 3 0.020 2 0.384 2 

Gn 51.10 4 17.46 3 52.40 2 0.982 3 0.019 2 0.341 1 

Gn 53.30 7 17.80 6 54.60 3 0.952 4 0.018 3 0.315 3 

Gn 53.50 5 19.20 3 55.70 3 0.972 2 0.018 3 0.349 1 

Gn 62.90 6 19.21 3 61.10 4 1.016 5 0.016 4 0.315 6 

Gn 53.70 6 18.16 5 66.00 6 0.855 5 0.015 6 0.277 3 

Gn 52.00 9 18.80 10 69.00 9 0.775 4 0.014 9 0.278 3 

Gn 45.00 8 16.81 5 69.40 6 0.658 7 0.014 6 0.245 3 

Gn 53.10 6 18.96 5 82.60 4 0.651 3 0.012 4 0.232 2 

Gn 54.20 3 21.45 2 94.50 2 0.580 3 0.011 2 0.228 2 

Gn 53.00 3 21.75 2 95.10 2 0.569 2 0.011 2 0.230 1 

Gn 50.50 4 20.06 3 99.30 3 0.510 3 0.010 3 0.204 2 

Gn 57.50 6 21.80 6 104.60 6 0.550 2 0.010 6 0.208 2 

Gn 52.70 5 22.90 4 131.40 4 0.403 2 0.008 4 0.174 2 

Gn 54.20 3 23.61 3 136.10 3 0.400 1 0.007 3 0.173 1 

Gn 54.10 6 25.00 7 153.00 10 0.361 6 0.007 10 0.164 4 

Gn 51.10 5 26.90 5 164.40 5 0.312 3 0.006 5 0.163 1 

Gn 50.70 7 23.70 7 166.00 6 0.310 4 0.006 6 0.145 3 

Gn 55.90 2 44.94 1 299.00 2 0.188 2 0.003 2 0.150 1 
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Gn 55.20 2 34.61 2 362.40 2 0.154 2 0.003 2 0.095 2 

Gn 39.30 5 40.90 6 363.00 7 0.111 5 0.003 7 0.113 2 

Gn 53.10 7 34.50 7 391.00 6 0.139 4 0.003 6 0.087 4 

Gn 54.40 3 40.90 3 419.70 2 0.130 2 0.002 2 0.097 2 

Gn 54.60 5 50.70 4 547.00 3 0.100 3 0.002 3 0.093 2 

Gn 55.60 5 52.70 5 581.00 3 0.096 3 0.002 3 0.091 2 

Gn 56.50 4 142.40 3 1627.00 4 0.034 3 0.001 4 0.087 1 

Sulphide 75.00 13 24.70 13 86.00 13 0.843 4 0.012 13 0.296 3 

Sulphide 56.40 9 26.30 9 136.00 9 0.415 4 0.007 9 0.188 3 

Sulphide 53.00 10 23.60 11 120.00 13 0.468 5 0.008 13 0.202 4 

Sulphide 87.00 25 37.50 23 217.00 24 0.377 5 0.005 24 0.176 5 

Sulphide 49.90 6 23.10 6 78.60 7 0.639 2 0.013 7 0.301 2 

Sulphide 56.20 9 25.70 10 144.00 9 0.386 2 0.007 9 0.174 2 

Sulphide 77.00 32 35.00 34 172.00 34 0.451 4 0.006 34 0.205 4 

Sulphide 56.10 7 20.00 7 70.30 8 0.799 3 0.014 8 0.290 2 

Sulphide 52.00 11 18.40 10 65.90 10 0.760 3 0.015 10 0.284 3 

Sulphide 54.00 19 20.80 16 76.00 20 0.725 9 0.013 20 0.272 5 

Sulphide 62.10 14 22.70 14 102.00 15 0.602 4 0.010 15 0.239 5 

Sulphide 53.70 5 21.70 6 73.40 8 0.775 6 0.014 8 0.299 4 

Sulphide 50.70 7 17.60 6 55.80 6 0.935 3 0.018 6 0.320 3 

Sulphide 57.70 14 20.50 14 69.60 14 0.852 3 0.014 14 0.307 4 

Sulphide 64.00 17 31.60 16 184.00 17 0.353 3 0.005 17 0.177 4 

Sulphide 65.30 11 28.20 9 142.00 24 0.429 5 0.007 24 0.189 3 

Sulphide 52.60 17 22.80 15 145.00 32 0.428 6 0.007 32 0.185 6 

Sulphide 59.00 34 26.00 42 177.00 40 0.327 5 0.006 40 0.159 4 

Sulphide 86.00 78 40.00 80 210.00 71 0.408 5 0.005 71 0.183 5 

Sulphide 85.00 40 32.00 38 150.00 35 0.539 4 0.007 35 0.214 4 

Sulphide 56.70 6 25.00 6 144.80 6 0.389 2 0.007 6 0.174 3 

Sulphide 72.00 24 33.00 23 212.00 25 0.339 3 0.005 25 0.158 3 

Sulphide 61.20 7 25.70 6 140.70 7 0.425 3 0.007 7 0.182 2 

Sulphide 58.00 29 29.40 23 153.00 31 0.388 5 0.007 31 0.172 5 

Sulphide 50.00 200 44.00 157 290.00 97 0.336 9 0.003 97 0.209 6 

Sulphide 60.10 7 22.70 6 105.70 6 0.561 3 0.009 6 0.217 2 

Sulphide 67.00 16 29.30 19 128.00 17 0.549 4 0.008 17 0.224 4 

Sulphide 62.00 95 50.00 126 470.00 106 0.123 3 0.002 106 0.121 2 

Sulphide 59.20 11 23.20 12 94.00 13 0.665 3 0.011 13 0.256 3 

Sulphide 68.00 25 27.10 25 137.00 26 0.463 4 0.007 26 0.200 3 

Sulphide 65.00 22 25.00 24 86.00 22 0.754 3 0.012 22 0.288 4 

Sulphide 59.60 10 25.50 9 148.00 10 0.400 5 0.007 10 0.173 3 

Sulphide 56.70 11 22.50 11 110.00 12 0.498 4 0.009 12 0.200 5 

Sulphide 54.00 20 21.70 18 130.00 18 0.386 6 0.008 18 0.167 5 

Sulphide 57.90 11 25.70 11 130.00 16 0.434 10 0.008 16 0.196 8 

Sulphide 69.00 39 39.00 49 146.00 20 0.382 5 0.007 20 0.169 6 

Sulphide 53.30 10 26.80 10 173.00 9 0.304 3 0.006 9 0.150 2 

Sulphide 64.00 34 28.70 30 147.00 30 0.491 6 0.007 30 0.202 5 
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SUPPLEMENTARY MATERIAL B: APPENDIX FOR CHAPTER 3 
Table 1: Elements analysed, peak/background positions, count times, and standards used for 

sulphide analysis. 

Element/line Diffracting 

Crystal/Sp# 

Peak 

count 

time 

(sec) 

Background 

type/fit* 

# bkgd points 

acquired 

(Lo/Hi) 

Background 

count time 

(Lo/Hi) 

(sec) 

Standard 

S Ka LPET/1 10 Multipoint 2/2 10/10 Astimex 

Marcasite 

Pb Ma LPET/1 30 Multipoint 4/3 20/15 P&H block 

Galena 

Cd La LPET/1 60 Multipoint 2/2 30/30 P&H block 

Grenockite 

Bi Ma LPET/1 30 Multipoint 2/2 20/20 P&H block 

Bi2Se3 

As La TAP/2 30 Multipoint 2/2 20/20 Astimex GaAs 

Se La TAP/2 100 Multipoint 2/3 60/60 P&H block 

Bi2Se3 

Fe Ka LLIF/3 10 Multipoint 2/2 10/10 P&H block 

Chalcopyrite 

Cu Ka LLIF/3 10 Linear - 10/10 P&H block 

Chalcopyrite 

Mn Ka LLIF/3 30 Multipoint 2/2 20/20 P&H block 

Rhodonite 

Ga Ka LLIF/3 20 Linear - 10/10 P&H block 

GaAs 

Ag La LPET/4 30 Multipoint 1/2 10/20 P&H block 

AgTe 

Sn La LPET/4 30 Multipoint 2/2 20/20 P&H 

Cassiterite 

In La LPET/4 30 Multipoint 2/1 20/10 Astimex metal 

Indium 

Sb La LPET/4 30 Multipoint 2/2 20/20 Astimex 

Stibnite 

Te La LPET/4 30 Multipoint 2/2 20/20 P&H block 

AgTe 

Tl Ma LPET/4 20 Linear - 10/10 Astimex 

Tl metal 

Hg La LLIF/5 100 Multipoint 3/3 60/60 P&H 

Cinnabar 

Zn Ka LLIF/5 30 Multipoint 2/2 10/10 P&H 

Spahlerite 

Ni Ka LLIF/5 30 Linear - 10/10 Astimex 

Pentlandite 

Co Ka LLIF/5 30 Multipoint 2/2 10/10 Astimex 

Co metal 

 

Table 2: Elemental overlap corrections used in sulphide package. 

Element/line Diffracting crystal Overlapping element/order Overlap standard 

S Ka LPET/1 Co III, Sb II, Hg I Astimex Co metal, Astimex 

Stibnite, Astimex Cinnabar 

Pb Ma LPET/1 Fe III, As V P&H block Chalcopyrite, 

Astimex GaAs 

Cd La LPET/1 Pb IV, Ag I, Se IV Astimex Galena, P&H block 

AgTe, Astimex Bi2Se3 

As La TAP/2 Sb III, Fe V, Co VI Astimex Stibnite, P&H 

Chalcopyrite, Astimex Co 

metal 

Se La TAP/2 As I, Te III, Co V, Ni IV Astimex GaAs, P&H AgTe, 

Astimex Co metal, Astimex Ni 

metal 

Fe Ka LLIF/3 Pb II P&H Galena 

Mn Ka LLIF/3 Hg II, As II P&H Cinnabar, P&H GaAs 

Ag La LPET/4 Hg IV, Cu III, Mn II P&H Cinnabar, P&H 

Chalcopyrite, P&H Rhodonite 

Sn La LPET/4 Co II, Hg IV Astimex Co metal, P&H 

Cinnabar 
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In La LPET/4 Cd I, Bi IV, Hg III P&H Grenockite, P&H Bi2Se3, 

P&H Cinnabar 

Co Ka LLIF/5 Hg II P&H Cinnabar 

Sb La LPET/4 Bi III P&H Bi2Se3 

Te La LPET/4 Sn I, Se III, Ni II P&H Cassiterite, P&H Bi2Se3, 

Astimex Pentlandite 

Bi Ma LPET/1 Pb I P&H Galena 

Tl Ma LPET/4 Hg I Astimex Cinnabar 

Ga Ka LLIF/3 Pb I P&H Galena 
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SUPPLEMENTARY MATERIAL C: APPENDIX FOR CHAPTER 4 

Table 1: Electron Microprobe setup with element analysis conditions and standard information. 

Element 
Count 

Time (sec) 

Hi 

(sec) 

Lo 

(sec) 

Diffracting 

Crystal (Sp no.) 

Standard 

no. 
Standard Name 

Ca ka  20 10 10 LPET (1) 535 Astimex Plagioclase 

K ka 20 10 10 LPET (1) 541 Astimex Sanidine 

Ti ka 30 15 15 LPET (1) 559 Rutile 

U mb 60 30 30 LPET (1) 631 UO2 

La la 20 10 10 LPET (1) 1200 Lanthanum Phosphate (Ch) 

Ce la 20 10 10 LPET (1) 1201 Cerium Phosphate (Ch) 

Ba la 20 10 10 LPET (1) 554 Barite 

F ka 20 40 30 PC0 (2) 2001 Astimex Apatite 

Fe ka 20 10 10 LIFF (3) 502 Astimex Almandine Garnet 

Mn ka 20 10 10 LIFF (3) 557 Rhodonite 

Cu ka 20 10 10 LIFF (3) 556 Chalcopyrite 

Ho lb 20 10 10 LIFF (3) 1209 Holmium Phosphate (Ch) 

Yb la 20 10 10 LIFF (3) 1212 Ytterbium Phosphate (Ch) 

Tm la 20 10 10 LIFF (3) 1211 Thulium Phosphate (Ch) 

Er la 20 10 10 LIFF (3) 1210 Erbium Phosphate (Ch) 

Gd lb 20 10 10 LIFF (3) 1206 Gadolinium Phosphate (Ch) 

Dy la 20 10 10 LIFF (3) 1208 Dysprosium Phosphate (Ch) 

Tb la 20 10 10 LIFF (3) 1207 Terbium Phosphate (Ch) 

Sm lb 20 10 10 LIFF (3) 1204 Samarium Phosphate (Ch) 

Eu la 20 10 10 LIFF (3) 1205 Europium Phosphate (Ch) 

Nd lb 20 10 10 LIFF (3) 1203 Neodymium Phosphate (Ch) 

Pr lb 20 10 10 LIFF (3) 1202 Praseodymium Phosphate (Ch) 

Na ka 20 10 10 TAP (4) 501 Astimex Albite 

Si ka 20 10 10 TAP (4) 501 Astimex Albite 

Mg ka 20 10 10 TAP (4) 502 Astimex Almandine Garnet 

Al ka 20 10 10 TAP (4) 501 Astimex Albite 

Sr la 20 10 10 TAP (4) 513 Astimex Celestine 

As la 30 15 15 TAP (4) 562 Gallium Arsenide 

P ka 20 10 10 LPET (5) 504 Astimex Apatite 

S ka 20 10 10 LPET (5) 513 Astimex Celestine 

Cl ka 20 10 10 LPET (5) 545 Astimex Tugtupite 

Th ma 30 15 15 LPET (5) 629 Huttonite 

Pb mb 20 10 10 LPET (5) 627 K227 

Y la 30 15 15 LPET (5) 1214 Yttrium Phosphate (Ch) 

Nb la 30 15 15 LPET (5) 616 Niobium 

Zr la 30 15 15 LPET (5) 599 Zirconium 
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V ka 30 15 15 LIFF (3) 608 Vanadium 

W la 30 15 15 LIFF (3) 596 Tungsten 

Ta la 30 15 15 LIFF (3) 601 Tantalum 

Bi ma 30 15 15 LPET (5) 568 Bi2Se3 

 

Table 2: The complete Electron Microprobe dataset in weight percent concentration. Note, to 

allow for the composition of H3O
+, H2O and OH- within APS minerals, only analysis with totals 

summing to 75-95 wt% were used. FT=Floatation concentrate, CLD=Concentrate leach discharge.  
Element/ 

Oxide 
Concentration (wt%) 

Material FT FT FT FT FT FT FT FT FT FT FT FT FT 

Na2O 0.000 0.000 0.000 0.000 0.000 0.135 0.103 0.035 0.107 0.000 0.262 0.109 0.028 

K2O 0.083 0.192 0.029 0.014 0.012 0.228 0.272 0.063 0.400 0.024 0.997 0.565 0.062 

CaO 0.125 0.151 0.182 0.199 0.201 0.218 0.307 0.332 0.332 0.376 0.402 0.599 0.783 

SrO 1.489 1.485 2.115 2.155 2.380 3.239 10.197 2.277 1.484 1.611 12.853 12.704 7.713 

BaO              

Y2O3 0.000 0.023 0.026 0.055 0.044 0.051 0.000 0.051 0.000 0.021 0.000 0.000 0.000 

ZrO2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

La2O3 10.091 8.716 9.908 6.734 9.434 11.440 3.430 13.639 6.605 8.966 3.315 1.993 5.358 

Ce2O3 13.558 13.952 11.564 14.264 14.589 10.285 4.145 12.931 8.113 15.722 3.065 2.287 8.002 

Pr2O3 0.800 1.259 0.470 1.467 1.034 0.405 0.326 0.601 0.420 1.383 0.099 0.106 0.579 

Nd2O3 1.890 3.082 0.618 4.688 2.241 0.632 0.868 0.983 0.782 3.570 0.224 0.291 1.834 

Sm2O3 0.000 0.122 0.000 0.357 0.000 0.000 0.103 0.000 0.000 0.212 0.000 0.106 0.221 

Eu2O3 0.000 0.038 0.000 0.086 0.000 0.000 0.000 0.000 0.000 0.046 0.000 0.000 0.000 

Gd2O3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Tb2O3 0.000 0.000 0.054 0.000 0.000 0.000 0.000 0.000 0.072 0.000 0.000 0.039 0.000 

Dy2O3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Ho2O3 0.000 0.000 0.116 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Er2O3 0.000 0.000 0.069 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Tm2O3 0.000 0.000 0.065 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Yb2O3 0.000 0.000 0.000 0.000 0.000 0.000 0.249 0.327 0.000 0.000 0.000 0.000 0.000 

Bi2O3              

PbO 0.000 0.000 0.000 0.027 0.000 0.000 0.182 0.000 0.000 0.000 0.171 0.139 0.000 

ThO2 0.042 0.061 0.028 0.020 0.000 0.000 0.083 0.000 0.000 0.000 0.027 0.045 0.127 

UO2 0.000 0.000 0.063 0.000 0.000 0.054 0.023 0.000 0.173 0.000 0.000 0.000 0.000 

MgO              

Al2O3 28.411 28.876 29.197 28.859 29.776 25.336 30.988 30.401 29.276 29.768 32.194 33.704 31.438 

TiO2              

V2O5              

MnO              

Fe2O3 0.904 0.681 0.315 3.304 3.149 3.822 14.073 2.635 2.863 1.331 0.982 0.694 7.152 

Cu2O              

Nb2O5 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.000 

Ta2O5              

WO3              

SiO2 0.000 0.000 0.000 0.000 0.000 2.363 3.890 0.000 2.233 0.000 2.026 1.960 0.000 

P2O5 20.229 20.422 19.546 19.498 17.264 14.040 11.109 19.290 18.294 19.753 16.453 15.597 19.033 

SO2 0.877 0.766 1.525 0.672 1.487 2.373 7.409 1.563 2.133 0.718 11.796 12.046 4.307 

As2O3 0.182 0.000 0.435 0.688 0.156 0.000 0.000 0.031 0.020 0.000 0.037 0.000 0.022 

F 0.085 0.064 0.267 0.061 0.218 0.611 0.307 0.219 0.217 0.265 1.187 1.293 0.505 

Cl 0.018 0.097 0.050 0.035 0.073 0.037 0.065 0.030 0.035 0.031 0.143 0.045 0.028 

Total 78.807 79.988 76.643 83.184 82.057 75.268 88.128 85.407 73.559 83.795 86.234 84.343 87.192 

Material FT FT FT FT FC FC FC FC FC FC FC FC FC 

Na2O 0.143 0.133 0.181 0.135 0.000 0.000 0.131 0.061 0.035 0.058 0.082 0.047 0.139 

K2O 0.216 0.258 0.294 0.150 0.009 0.044 0.258 0.108 0.102 0.359 0.202 0.071 0.271 

CaO 0.876 0.936 0.950 1.241 0.276 0.532 0.615 0.852 0.953 0.958 0.980 1.006 1.052 

SrO 9.004 9.961 3.145 10.810 2.244 8.680 13.027 8.707 8.723 14.447 11.946 9.469 12.607 

BaO     0.062 0.177 0.182 0.174 0.516 0.328 0.459 0.557 0.331 

Y2O3 0.000 0.035 0.034 0.043 0.000 0.078 0.000 0.059 0.120 0.028 0.053 0.176 0.165 

ZrO2 0.000 0.000 0.000 0.000 0.040 0.028 0.039 0.064 0.051 0.000 0.047 0.071 0.050 

La2O3 4.507 3.753 10.082 3.033 7.820 4.793 2.691 4.144 5.780 1.730 2.020 4.787 2.462 

Ce2O3 6.288 4.846 10.985 5.904 11.685 8.238 3.652 8.046 8.684 3.207 4.989 6.680 5.152 

Pr2O3 0.333 0.398 0.711 0.476 0.904 0.714 0.391 0.881 0.406 0.210 0.327 0.545 0.410 

Nd2O3 0.741 1.049 1.313 1.683 2.577 2.160 0.661 2.101 1.247 0.908 1.176 0.919 0.834 

Sm2O3 0.000 0.000 0.083 0.156 0.189 0.185 0.176 0.154 0.000 0.000 0.080 0.087 0.000 

Eu2O3 0.000 0.000 0.000 0.079 0.000 0.103 0.000 0.122 0.000 0.000 0.040 0.081 0.000 

Gd2O3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.068 0.000 0.000 0.000 

Tb2O3 0.000 0.000 0.000 0.000 0.000 0.062 0.049 0.068 0.000 0.000 0.000 0.000 0.000 

Dy2O3 0.044 0.000 0.000 0.000 0.000         

Ho2O3 0.000 0.098 0.000 0.000 0.000         

Er2O3 0.000 0.000 0.000 0.000 0.000         
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Tm2O3 0.000 0.000 0.000 0.000 0.000         

Yb2O3 0.000 0.000 0.000 0.000 0.000         

Bi2O3     0.000 0.000 0.081 0.000 0.000 0.000 0.000 0.046 0.000 

PbO 0.110 0.112 0.027 0.090 0.000 0.000 0.146 0.220 0.000 0.340 0.267 0.000 0.262 

ThO2 0.132 0.164 0.037 0.152 0.000 0.000 0.119 0.000 0.000 0.116 0.105 0.000 0.120 

UO2 0.000 0.027 0.041 0.000 0.041 0.000 0.027 0.000 0.000 0.000 0.046 0.032 0.021 

MgO     0.015 0.000 0.041 0.069 0.000 0.033 0.026 0.000 0.032 

Al2O3 30.117 32.408 29.739 29.975 29.364 33.562 34.717 33.071 33.199 35.817 31.267 30.480 35.109 

TiO2     0.000 0.028 0.042 0.018 0.013 0.000 0.000 0.025 0.000 

V2O5     0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

MnO     0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.033 

Fe2O3 1.083 1.604 4.444 1.389 9.642 4.553 1.229 2.471 1.360 0.879 1.573 1.674 0.947 

Cu2O     0.942 0.295 0.845 0.838 0.248 0.568 0.228 0.470 0.422 

Nb2O5 0.020 0.000 0.000 0.000 0.023 0.000 0.000 0.026 0.000 0.022 0.000 0.000 0.000 

Ta2O5     0.000 0.000 0.126 0.078 0.000 0.000 0.063 0.000 0.000 

WO3     0.000 0.071 0.092 0.000 0.000 0.000 0.000 0.000 0.000 

SiO2 0.000 0.000 0.000 0.000 0.718 0.187 0.286 0.744 0.359 0.246 0.278 0.542 0.228 

P2O5 17.537 17.174 16.133 19.746 18.747 19.204 18.091 18.807 19.414 18.062 20.055 20.421 17.824 

SO2 6.079 7.967 1.180 4.455 1.420 4.487 11.031 6.299 3.787 10.716 7.134 4.258 10.041 

As2O3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

F 0.584 0.973 0.584 1.866 0.000 0.402 0.353 0.706 2.498 0.836 2.014 2.745 1.573 

Cl 0.094 0.073 0.127 0.052 0.031 0.047 0.032 0.035 0.000 0.030 0.052 0.000 0.036 

Total 77.908 81.969 80.092 81.434 86.747 88.626 89.131 88.923 87.497 89.968 85.508 85.188 90.121 

Material FC FC FC FC FC FC FC FC FC FC FC FC FC 

Na2O 0.077 0.076 0.049 0.127 0.139 0.084 0.136 0.000 0.147 0.094 0.102 0.072 0.119 

K2O 0.233 0.146 0.134 0.204 0.243 0.124 0.235 0.185 0.203 0.217 0.160 0.085 0.205 

CaO 1.069 1.136 1.288 1.307 1.442 1.478 1.507 1.521 1.531 1.544 1.602 1.602 1.610 

SrO 14.077 13.571 9.584 11.347 10.100 10.952 10.059 8.614 10.530 12.744 11.778 10.601 11.220 

BaO 0.382 0.439 0.420 0.691 0.510 0.398 0.471 0.443 0.505 0.619 0.740 0.508 0.624 

Y2O3 0.048 0.053 0.230 0.100 0.152 0.109 0.164 0.298 0.104 0.120 0.115 0.377 0.144 

ZrO2 0.051 0.052 0.052 0.056 0.069 0.036 0.044 0.075 0.067 0.057 0.059 0.058 0.067 

La2O3 1.544 1.983 3.941 2.640 2.782 3.287 4.947 4.332 3.230 2.616 2.806 4.096 2.941 

Ce2O3 3.332 3.934 8.354 5.044 5.887 5.675 5.848 7.893 5.353 4.670 5.449 6.478 5.202 

Pr2O3 0.375 0.461 0.871 0.409 0.341 0.570 0.327 0.681 0.557 0.442 0.543 0.641 0.342 

Nd2O3 0.896 1.072 1.832 1.410 1.138 1.118 0.895 1.946 1.162 0.932 0.999 1.107 0.994 

Sm2O3 0.000 0.000 0.203 0.000 0.000 0.095 0.000 0.132 0.113 0.129 0.128 0.174 0.000 

Eu2O3 0.000 0.000 0.055 0.000 0.049 0.000 0.000 0.067 0.146 0.086 0.093 0.059 0.051 

Gd2O3 0.076 0.072 0.000 0.000 0.000 0.000 0.000 0.098 0.089 0.000 0.000 0.000 0.091 

Tb2O3 0.000 0.000 0.065 0.000 0.000 0.000 0.000 0.049 0.000 0.000 0.000 0.066 0.000 

Dy2O3      0.000   0.042     

Ho2O3      0.000   0.000     

Er2O3      0.000   0.051     

Tm2O3      0.000   0.000     

Yb2O3      0.000   0.000     

Bi2O3 0.000 0.000 0.092 0.000 0.000 0.000 0.000 0.000 0.046 0.000 0.000 0.000 0.000 

PbO 0.311 0.340 0.000 0.172 0.167 0.222 0.140 0.000 0.236 0.207 0.185 0.000 0.239 

ThO2 0.082 0.107 0.000 0.082 0.107 0.000 0.077 0.000 0.098 0.084 0.139 0.000 0.095 

UO2 0.000 0.000 0.000 0.000 0.038 0.059 0.035 0.076 0.020 0.036 0.000 0.027 0.000 

MgO 0.034 0.034 0.026 0.019 0.070 0.088 0.040 0.000 0.093 0.047 0.047 0.012 0.055 

Al2O3 35.325 34.205 34.872 33.037 34.563 32.098 32.119 34.491 33.944 34.957 34.900 32.563 32.908 

TiO2 0.000 0.015 0.016 0.046 0.000 0.020 0.000 0.022 0.034 0.039 0.000 0.033 0.017 

V2O5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

MnO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Fe2O3 0.859 1.108 1.444 1.456 3.922 1.043 1.196 4.208 1.298 1.342 1.411 2.180 1.347 

Cu2O 0.387 0.473 0.626 0.461 0.481 0.538 0.510 0.521 0.733 0.563 0.533 0.320 0.562 

Nb2O5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.034 0.000 0.000 0.000 0.026 0.000 

Ta2O5 0.000 0.000 0.000 0.000 0.000 0.083 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

WO3 0.000 0.000 0.000 0.000 0.000 0.071 0.000 0.000 0.128 0.066 0.000 0.071 0.000 

SiO2 0.206 0.220 0.933 0.268 0.457 0.644 0.567 0.507 0.489 0.353 0.402 0.499 0.391 

P2O5 19.241 18.876 19.957 20.470 18.976 19.259 19.557 20.168 18.459 19.595 19.546 20.606 19.673 

SO2 9.764 9.184 3.752 6.331 6.973 7.011 5.187 3.995 7.787 8.400 7.737 3.896 7.018 

As2O3 0.000 0.023 0.000 0.000 0.024 0.000 0.065 0.000 0.000 0.000 0.000 0.000 0.000 

F 1.537 1.279 2.065 1.977 1.584 1.661 2.797 1.336 1.727 1.602 1.395 3.051 1.744 

Cl 0.045 0.038 0.030 0.089 0.092 0.068 0.040 0.016 0.059 0.065 0.092 0.000 0.097 

Total 89.952 88.897 90.892 87.743 90.304 86.790 86.963 91.707 88.983 91.627 90.960 89.209 87.754 

Material FC FC FC FC FC FC FC FC FC FC FC FC FC 

Na2O 0.094 0.133 0.166 0.157 0.129 0.081 0.064 0.125 0.112 0.081 0.101 0.119 0.000 

K2O 0.236 0.168 0.144 0.231 0.303 0.317 0.362 0.340 0.283 0.274 0.563 0.340 0.071 

CaO 1.637 1.764 1.765 1.821 2.203 2.247 2.369 2.371 2.574 2.799 2.916 3.156 6.165 

SrO 12.860 9.884 10.613 8.810 13.863 13.904 13.419 14.219 11.456 13.323 10.413 11.234 9.860 

BaO 0.540 0.420 0.539 0.471 0.477 0.375 0.363 0.578 0.527 0.296 0.499 0.412 0.197 

Y2O3 0.058 0.095 0.119 0.161 0.154 0.114 0.047 0.132 0.085 0.027 0.085 0.037 0.158 

ZrO2 0.055 0.000 0.040 0.051 0.066 0.051 0.075 0.070 0.062 0.055 0.050 0.073 0.052 

La2O3 2.966 5.138 3.118 5.375 1.500 1.586 1.344 1.329 3.053 1.158 2.285 1.649 3.609 

Ce2O3 3.926 6.455 5.077 6.091 2.437 2.626 2.217 2.240 4.641 2.068 3.687 3.240 7.409 

Pr2O3 0.361 0.431 0.257 0.367 0.157 0.225 0.260 0.227 0.422 0.100 0.416 0.435 0.659 

Nd2O3 0.791 0.956 1.561 1.027 0.686 0.677 0.549 0.582 0.804 0.526 0.896 1.124 1.649 
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Sm2O3 0.000 0.000 0.057 0.074 0.065 0.115 0.000 0.000 0.103 0.000 0.079 0.136 0.129 

Eu2O3 0.051 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.062 0.000 0.107 0.138 0.000 

Gd2O3 0.000 0.000 0.000 0.068 0.000 0.000 0.000 0.000 0.000 0.114 0.147 0.082 0.000 

Tb2O3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.054 

Dy2O3   0.000        0.061 0.062  

Ho2O3   0.093        0.000 0.000  

Er2O3   0.000        0.000 0.000  

Tm2O3   0.000        0.000 0.000  

Yb2O3   0.000        0.000 0.000  

Bi2O3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.032 0.000 

PbO 0.188 0.139 0.329 0.178 0.233 0.274 0.454 0.292 0.000 0.270 0.223 0.315 0.000 

ThO2 0.077 0.112 0.087 0.107 0.027 0.000 0.000 0.000 0.061 0.031 0.023 0.000 0.000 

UO2 0.072 0.148 0.038 0.000 0.019 0.039 0.021 0.000 0.066 0.000 0.070 0.024 0.000 

MgO 0.022 0.127 0.101 0.077 0.067 0.030 0.040 0.018 0.014 0.016 0.084 0.027 0.013 

Al2O3 33.276 33.437 33.017 32.610 34.333 35.368 35.397 36.253 32.668 36.158 34.830 36.203 30.524 

TiO2 0.000 0.000 0.000 0.000 0.000 0.000 0.018 0.000 0.019 0.015 0.036 0.021 0.014 

V2O5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

MnO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.040 0.000 0.000 0.000 0.000 0.000 

Fe2O3 2.223 1.369 1.218 1.469 1.271 1.046 0.896 0.836 1.532 1.280 1.503 1.554 2.480 

Cu2O 0.315 0.714 0.376 0.522 0.524 0.622 0.510 0.638 0.251 0.589 0.415 0.385 0.303 

Nb2O5 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.035 0.000 0.000 0.000 0.000 0.000 

Ta2O5 0.000 0.000 0.000 0.059 0.000 0.000 0.000 0.047 0.000 0.000 0.090 0.000 0.000 

WO3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.136 0.086 0.000 

SiO2 0.265 0.616 0.716 0.682 0.227 0.242 0.609 0.176 0.225 0.322 0.560 0.967 0.659 

P2O5 19.463 17.768 19.257 17.423 22.127 20.763 20.782 22.017 19.756 20.059 19.515 19.789 18.460 

SO2 7.801 6.581 6.170 7.211 5.753 7.378 9.234 6.563 7.330 9.551 7.966 8.601 4.681 

As2O3 0.022 0.000 0.000 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.024 

F 2.703 1.734 1.402 1.638 3.432 2.654 1.995 3.042 3.100 1.277 1.167 1.451 3.255 

Cl 0.041 0.091 0.119 0.082 0.000 0.027 0.038 0.016 0.034 0.021 0.059 0.031 0.000 

Total 90.045 88.279 86.380 86.785 90.076 90.760 91.064 92.188 89.241 90.408 88.983 91.726 90.427 

Material CLD CLD CLD CLD CLD CLD CLD CLD CLD CLD CLD CLD CLD 

Na2O 0.035 0.000 0.000 0.000 0.000 0.033 0.000 0.000 0.064 0.061 0.108 0.084 0.134 

K2O 0.189 0.000 0.018 0.009 0.000 0.365 0.105 0.018 0.103 0.033 0.038 0.310 0.093 

CaO 0.256 0.261 0.261 0.281 0.285 0.435 0.492 0.541 0.566 0.679 0.865 1.097 1.534 

SrO 5.096 2.530 5.786 2.190 2.529 6.189 11.441 2.582 6.698 7.321 6.620 13.012 11.812 

BaO 0.160 0.196 0.101 0.096 0.493 0.196 0.178 0.155 0.168 0.259 0.226 0.408 0.465 

Y2O3 0.033 0.022 0.000 0.000 0.040 0.000 0.062 0.092 0.047 0.053 0.041 0.036 0.052 

ZrO2 0.063 0.028 0.069 0.034 0.057 0.066 0.066 0.054 0.075 0.057 0.047 0.000 0.065 

La2O3 7.478 11.094 7.043 11.233 11.211 6.940 4.218 9.407 5.209 5.159 5.083 2.216 2.726 

Ce2O3 10.644 12.873 11.099 13.415 12.682 10.169 6.218 13.735 9.132 9.520 8.550 3.024 4.644 

Pr2O3 0.893 0.674 0.859 0.701 0.758 0.917 0.611 1.073 1.099 1.011 0.986 0.106 0.453 

Nd2O3 1.943 1.182 2.168 1.106 1.092 1.885 1.133 1.960 2.564 2.719 2.434 0.732 1.340 

Sm2O3 0.000 0.082 0.088 0.075 0.000 0.132 0.138 0.000 0.258 0.126 0.224 0.000 0.193 

Eu2O3 0.046 0.000 0.087 0.000 0.041 0.113 0.083 0.000 0.000 0.147 0.111 0.000 0.080 

Gd2O3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.103 0.083 0.000 0.000 0.120 

Tb2O3 0.000 0.000 0.000 0.000 0.048 0.000 0.046 0.000 0.000 0.000 0.059 0.000 0.000 

Dy2O3 0.000 0.000 0.000 0.000 0.000 0.000  0.055 0.000 0.000 0.077   

Ho2O3 0.000 0.203 0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000   

Er2O3 0.000 0.000 0.000 0.000 0.000 0.000  0.000 0.000 0.054 0.000   

Tm2O3 0.000 0.000 0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000   

Yb2O3 0.000 0.000 0.000 0.000 0.000 0.000  0.000 0.176 0.340 0.205   

Bi2O3 0.000 0.000 0.000 0.000 0.032 0.024 0.040 0.000 0.000 0.081 0.086 0.000 0.000 

PbO 0.000 0.184 0.000 0.000 0.145 0.241 0.000 0.245 0.000 0.166 0.176 0.457 0.172 

ThO2 0.000 0.000 0.203 0.000 0.000 0.160 0.078 0.000 0.080 0.086 0.084 0.088 0.053 

UO2 0.022 0.000 0.022 0.019 0.000 0.000 0.000 0.037 0.000 0.000 0.000 0.000 0.000 

MgO 0.000 0.000 0.000 0.000 0.000 0.022 0.047 0.035 0.037 0.060 0.095 0.033 0.047 

Al2O3 32.889 31.715 31.687 32.552 31.738 33.875 34.142 32.227 32.551 33.838 34.112 35.541 35.828 

TiO2 0.032 0.000 0.077 0.000 0.036 0.071 0.054 0.045 0.041 0.041 0.036 0.015 0.023 

V2O5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.022 0.000 0.000 0.000 

MnO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Fe2O3 3.283 0.755 1.856 0.733 0.647 0.949 1.075 1.091 1.908 1.705 1.268 1.499 1.713 

Cu2O 0.693 0.687 0.811 0.710 0.593 0.850 0.951 0.648 0.760 0.957 0.782 0.548 0.699 

Nb2O5 0.026 0.028 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.020 0.000 

Ta2O5 0.107 0.089 0.073 0.000 0.000 0.117 0.000 0.000 0.141 0.103 0.125 0.000 0.000 

WO3 0.109 0.000 0.000 0.000 0.115 0.106 0.080 0.000 0.000 0.000 0.000 0.000 0.000 

SiO2 0.803 0.306 0.299 0.399 0.341 0.574 0.175 0.460 0.394 0.315 0.559 0.705 0.254 

P2O5 19.172 19.982 19.248 19.552 20.083 19.216 18.823 19.575 19.212 18.909 18.897 17.702 19.422 

SO2 3.734 2.002 4.140 1.833 2.089 4.295 8.956 1.541 5.075 4.830 4.705 11.073 7.837 

As2O3 0.070 0.280 0.000 0.293 0.225 0.000 0.000 0.030 0.000 0.033 0.026 0.020 0.000 

F 0.119 0.224 0.395 0.235 0.208 0.550 0.523 0.335 0.441 0.618 0.619 0.933 1.382 

Cl 0.025 0.024 0.000 0.025 0.027 0.025 0.016 0.056 0.022 0.035 0.053 0.027 0.029 

Total 87.918 85.422 86.390 85.490 85.514 88.515 89.752 85.999 86.923 89.418 87.295 89.687 91.172 

Material CLD CLD CLD CLD CLD CLD CLD CLD CLD     

Na2O 0.054 0.095 0.079 0.052 0.056 0.082 0.114 0.061 0.151     

K2O 0.040 0.605 0.198 0.066 0.067 0.176 0.169 0.286 0.267     

CaO 1.603 1.610 1.815 1.873 1.893 2.019 2.545 3.664 3.750     

SrO 9.249 12.371 12.641 12.788 8.353 10.002 10.805 8.958 10.104     
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BaO 0.123 0.385 0.409 0.250 0.157 0.352 0.522 0.305 0.361     

Y2O3 0.000 0.069 0.109 0.025 0.031 0.043 0.192 0.101 0.061     

ZrO2 0.000 0.036 0.049 0.072 0.077 0.065 0.071 0.070 0.045     

La2O3 3.786 2.681 3.281 1.601 4.147 3.471 2.757 2.374 1.598     

Ce2O3 6.676 4.990 4.407 3.189 7.160 5.075 5.971 3.373 2.939     

Pr2O3 0.632 0.252 0.349 0.423 0.745 0.291 0.624 0.373 0.285     

Nd2O3 1.609 1.386 0.927 0.956 1.582 1.277 1.702 0.902 0.959     

Sm2O3 0.107 0.000 0.091 0.162 0.137 0.000 0.169 0.104 0.106     

Eu2O3 0.074 0.000 0.121 0.077 0.072 0.000 0.078 0.091 0.043     

Gd2O3 0.099 0.000 0.000 0.000 0.000 0.000 0.104 0.101 0.000     

Tb2O3 0.000 0.000 0.000 0.000 0.000 0.000 0.042 0.000 0.000     

Dy2O3  0.000 0.070   0.000  0.060 0.000     

Ho2O3  0.112 0.000   0.189  0.000 0.000     

Er2O3  0.000 0.000   0.000  0.052 0.000     

Tm2O3  0.000 0.000   0.000  0.000 0.000     

Yb2O3  0.000 0.000   0.000  0.000 0.000     

Bi2O3 0.000 0.000 0.091 0.094 0.053 0.000 0.000 0.000 0.000     

PbO 0.268 0.453 0.517 0.413 0.217 0.719 0.250 0.356 0.688     

ThO2 0.000 0.077 0.000 0.000 0.000 0.000 0.000 0.021 0.022     

UO2 0.000 0.000 0.037 0.000 0.000 0.000 0.023 0.058 0.000     

MgO 0.021 0.186 0.038 0.028 0.042 0.038 0.029 0.051 0.043     

Al2O3 32.497 35.094 35.494 32.350 32.560 34.015 35.827 34.318 34.661     

TiO2 0.037 0.046 0.065 0.021 0.049 0.048 0.025 0.014 0.016     

V2O5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000     

MnO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000     

Fe2O3 2.039 1.063 0.938 0.901 1.316 1.295 0.892 1.057 0.886     

Cu2O 0.837 0.966 0.975 0.930 0.847 0.622 0.971 0.574 0.640     

Nb2O5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000     

Ta2O5 0.000 0.000 0.110 0.000 0.000 0.000 0.000 0.058 0.000     

WO3 0.000 0.000 0.155 0.089 0.098 0.000 0.000 0.000 0.000     

SiO2 0.398 0.752 0.302 0.117 0.578 0.409 0.271 0.259 0.295     

P2O5 18.748 19.910 18.469 18.504 19.101 20.057 18.010 20.194 21.209     

SO2 6.843 7.055 8.434 10.826 6.505 7.161 6.537 6.479 8.119     

As2O3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000     

F 0.811 2.125 1.673 0.522 0.737 2.307 2.624 1.990 1.788     

Cl 0.039 0.046 0.056 0.027 0.070 0.026 0.041 0.045 0.048     

Total 86.590 92.364 91.901 86.358 86.649 89.740 91.362 86.347 89.086     
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SUPPLEMENTARY MATERIAL D: APPENDIX FOR CHAPTER 5 

Appendix D.1: Extended methods 

Electron probe micro analysis (EPMA) 

Quantitative compositional data was obtained using a Cameca SX-Five electron probe 

microanalyzer (EPMA), equipped with 5 tunable wavelength-dispersive spectrometers. The 

instrument uses PeakSite software for microscope operation, and Probe for EPMA software 

(distributed by Probe Software Inc.) for data acquisition and processing. Six elements (Ca, Sr, Pb, 

A, P and S) were analyzed. Operating conditions were 15 keV and 20 nA, further operating 

parameters are listed in Table 1. 

Table 1: EPMA operating parameters for the analysis of synthetic APS phases. 

Element 

Count 

time 

(sec) 

Hi 

(sec) 

Lo 

(sec) 

Diffracting 

Crystal (Sp no.) 

Standard 

no. 
Standard name 

Ca Ka 15 10 10 LPET (5) 535 Astimex Plagioclase 

P Ka 15 10 10 PET (2) 504 Astimex Apatite 

S Ka 15 10 10 LPET (4) 513 Astimex Celestine 

Al Ka 15 10 10 LTAP (1) 535 Astimex Plagioclase 

Sr La 15 10 10 LTAP (1) 513 Astimex Celestine 

Pb Ma 120 60 60 LPET (5) 627 K227 

 

Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) 

LA-ICP-MS analysis was undertaken at AM using an Agilent 7700s mass spectrometer with 

attached ASI M-50 laser ablation system (Adelaide Microscopy) using a spot size of 15 µm, 

repetition rate of 5 Hz, at 65 mJ energy, with an attenuation of 50 %T and fluence of 3.5 J.cm-2. 

The following isotopes were monitored for analysis: 27Al, 31P, 34S, 43Ca, 88Sr, 208Pb. 137Ba was also 

measured to account for any overlapping spectral data. The standard NIST 212 was analysed using 

a spot size of 50 µm at the start and end of each batch run, and after every 15-20 unknown analyses. 

An additional GSD standard was run in parallel with the APS samples with spot sizes of 50 and 

15 µm to measure any related discrepancy associated with the use of a smaller spot size. Total 

count times for each analysis ran for 40 sec with an additional 30 sec of background measured 

prior to ablation. Output data was analysed using correction software Igor and Iolite v3.4 (Paton 

et al. 2011). Averaged Al values, gained via EPMA, were used as an internal standard. 

X-ray absorption spectroscopy (XAS) Data collection 

The AS is a 3 GeV ring and was operated in top-up mode with a current of 200 mA. The XAS 

beamline has a Si(111) double crystal monochromator and an effective energy resolution ( E/E) of 
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~ 10−  5 at 10 keV. A focused beam size of FWHM 0.7 × 0.9 mm2 was used. The incident and 

transmitted beam intensities I0 and I1 were measured with Si diodes, and a Canberra 30 element 

solid state fluorescence detector was used for detecting fluorescence data. The beam energy was 

calibrated with a Pb foil, such that the maximum of the first derivative was at 13,035 eV.    

X-ray absorption near edge structure (XANES) spectra were measured for Pb-bearing APS Phases 

to be used as standards. The respective Pb-APS standards, pyromorphite Pb5(PO4)3OH 

(synthesized) and hinsdalite PbAl3(PO4)(SO4)(OH)6 (natural sample, donated by the Melbourne 

Museum), were confirmed via X-ray diffraction. 

The EXAFS spectra represent a final state interference effect arising from the scattering of the 

outgoing photoelectron from neighbouring atoms and are therefore sensitive to the atomic number 

of the neighbouring atoms and their distances. Similar to the XANES, the EXAFS was obtained 

on the Pb-sorbed APS phases. The Fourier transforms of the EXAFS oscillations, k (Å-1), provide 

information on electron density distributed away from the central Pb atom in radial distance (Å). 

The data was found to fit either a hinsdalite or pyromorphite-like structure within reasonable 

certainty, such that the EXAFS data identifies the most dominant Pb-bearing phase. 

References (Appendix D.1) 

Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J. (2011) Iolite: Freeware for the visualisation 

and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26(12), 2508–

2518.  
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Appendix D.2: Supplementary tables 

Table 1: The relative concentrations of reactants for synthesis of APS phases. 

Starting material molar ratios 

APS M-Site 

CaOH 

(%) 

SrOH 

(%) H3PO4:H2SO4 

I Sr - 100 1:1 

II (Ca,Sr) 50 50 1:1 

 

Table 2: Representative EPMA data of synthetic Ca- and Sr-bearing phases listed as wt% per 

oxide and atoms per formula unit to fit the general formula MAl3(XO4)2(OH,H2O)6. All values 

have been normalised so that P+S = 2 apfu. Averaged values are taken from the full dataset 

(Appendix D, Table 1). 

Material APS(I) APS(I) APS(I) Ave APS(II) APS(II) APS(II) Ave 

Oxides (wt%) 

CaO 0.54 0.60 0.39 0.50 4.36 6.86 5.58 4.76 

SrO 15.02 12.26 7.76 12.30 13.37 6.16 7.92 8.83 

P2O5 11.35 8.85 11.31 8.92 16.03 29.12 17.70 16.03 

SO3 23.09 28.51 28.45 27.46 19.40 6.70 16.76 15.97 

Al2O3 39.79 49.86 55.90 48.91 40.47 33.89 39.34 39.63 

Total 89.79 100.09 103.81 98.09 91.47 82.74 87.30 87.94 

Formula (apfu) 

Ca 0.04 0.04 0.03 0.04 0.35 0.50 0.43 0.38 

Sr 0.65 0.49 0.29 0.51 0.59 0.24 0.33 0.38 

∑M2+ 0.69 0.54 0.32 0.55 0.94 0.74 0.77 0.76 

S 1.29 1.48 1.38 1.46 1.11 0.34 0.91 0.89 

P 0.71 0.52 0.62 0.54 0.89 1.66 1.09 1.01 

∑X 2 2 2 2 2 2 2 2 

Al 3.48 4.07 4.26 4.09 3.63 2.69 3.36 3.46 
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Table 3: Representative averaged data from EPMA analyses of Pb-sorbed APS phases. Solution 

conditions for Pb-sorption experiments are given. Note, [Pbaq]0 is measured in ppm. 

Mat
erial 

AP
S(I) 

AP
S(I) 

AP
S(I) 

AP
S(I) 

AP
S(I) 

AP
S(I) 

AP
S(I) 

APS
(II) 

APS
(II) 

APS
(II) 

APS
(II) 

APS
(II) 

APS
(II) 

APS
(II) 

APS
(II) 

APS
(II) 

pH 1.5 3.5 1.5 5.5 1.5 3.5 5.5 1.5 3.5 5.5 1.5 3.5 5.5 1.5 3.5 5.5 

[Pbaq

]0 
(pp
m) 

10 10 
10
0 

10
0 

10
00 

10
00 

10
00 

10 10 10 100 100 100 
100

0 
100

0 
100

0 

Oxides (wt%) 

CaO 
0.3
6 

0.3
5 

0.4
4 

0.4
0 

0.2
1 

0.2
6 

0.4
4 

4.8
6 

5.7
5 

8.3
4 

5.5
6 

5.8
7 

6.8
5 

5.5
1 

7.0
5 

5.0
2 

SrO 
4.0
6 

3.4
7 

9.3
4 

12.
06 

3.7
6 

7.7
6 

10.
40 

9.3
8 

8.9
4 

6.9
3 

9.6
5 

10.
46 

7.5
0 

10.
23 

7.5
6 

9.9
7 

PbO 
(pp
m) 

51
8 

23
1 

43
7 

10
14 

11
01 

50
1 

80
0 

201 305 400 184 277 339 695 913 
110

9 

P2O5 
2.5
2 

3.6
6 

6.0
7 

7.7
1 

4.4
8 

7.0
8 

7.9
7 

24.
55 

19.
06 

25.
28 

18.
99 

21.
17 

20.
87 

18.
68 

21.
69 

18.
68 

SO3 
28.
96 

27.
74 

26.
69 

22.
41 

30.
56 

26.
77 

24.
71 

8.9
5 

13.
56 

7.6
5 

13.
22 

11.
65 

11.
31 

14.
51 

11.
34 

14.
26 

Al2O

3 
56.
98 

56.
45 

49.
90 

48.
49 

53.
41 

47.
88 

45.
78 

33.
33 

34.
27 

33.
55 

34.
62 

34.
72 

34.
62 

34.
08 

34.
18 

34.
95 

Total 
92.
93 

91.
69 

92.
48 

91.
16 

92.
52 

89.
80 

89.
39 

81.
09 

81.
61 

81.
78 

82.
06 

83.
89 

81.
19 

83.
09 

81.
92 

83.
00 

Formula (atoms per formula unit) 

Ca 
0.0
3 

0.0
3 

0.0
4 

0.0
4 

0.0
2 

0.0
2 

0.0
4 

0.3
8 

0.4
7 

0.6
6 

0.4
5 

0.4
7 

0.5
6 

0.4
4 

0.5
6 

0.4
0 

Sr 
0.2
0 

0.1
7 

0.4
3 

0.6
3 

0.1
6 

0.3
6 

0.4
7 

0.4
0 

0.3
9 

0.3
0 

0.4
4 

0.4
6 

0.3
4 

0.4
5 

0.3
3 

0.4
4 

Pb 
0.0
0 

0.0
0 

0.0
0 

0.0
0 

0.0
0 

0.0
0 

0.0
0 

0.0
0 

0.0
0 

0.0
0 

0.0
0 

0.0
0 

0.0
0 

0.0
0 

0.0
0 

0.0
0 

Total 
0.2
3 

0.2
0 

0.4
7 

0.6
7 

0.1
8 

0.3
9 

0.5
1 

0.7
8 

0.8
6 

0.9
5 

0.8
9 

0.9
3 

0.8
9 

0.8
9 

0.8
9 

0.8
4 

S 
1.8
2 

1.7
4 

1.5
9 

1.4
1 

1.7
2 

1.5
5 

1.4
7 

0.4
9 

0.7
8 

0.4
3 

0.7
7 

0.6
6 

0.6
6 

0.8
2 

0.6
4 

0.8
1 

P 
0.1
8 

0.2
6 

0.4
1 

0.5
9 

0.2
8 

0.4
5 

0.5
3 

1.5
1 

1.2
2 

1.5
7 

1.2
3 

1.3
4 

1.3
4 

1.1
8 

1.3
6 

1.1
9 

Total 
2.0
0 

2.0
0 

2.0
0 

2.0
0 

2.0
0 

2.0
0 

2.0
0 

2.0
0 

2.0
0 

2.0
0 

2.0
0 

2.0
0 

2.0
0 

2.0
0 

2.0
0 

2.0
0 

Al 
5.6
4 

5.5
6 

4.6
7 

4.9
3 

4.7
2 

4.3
7 

4.2
9 

2.8
6 

3.0
7 

2.9
2 

3.1
4 

3.0
7 

3.1
3 

3.0
1 

3.0
0 

3.1
1 
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Table 4: Representative LA-ICP-MS spot analyses of synthetic APS phases which have 

undergone Pb-sorption from Pb-loaded solutions. Conditions of the reaction solutions are given.  

Material pH 
[Pbaq]0 

(ppm) 

P 

(wt%) 

% 

error 

Ca 

(wt%) 

% 

error 

Sr 

(wt%) 

% 

error 

Pb 

(wt%) 

% 

error 

Pb (% 

M-

site) 

APS(I) 3.5 10 3.708 7 3.814 6 14.251 5 0.187 12 1.025 

APS(I) 3.5 10 4.614 5 3.219 8 10.873 6 0.033 8 0.234 

Average 4.161 6 3.517 7 12.562 5 0.110 10 0.679 

APS(I) 5.5 10 1.825 10 3.760 8 13.143 7 0.020 9 0.118 

APS(I) 5.5 10 4.614 8 2.525 12 7.308 7 0.007 6 0.071 

APS(I) 5.5 10 3.571 8 2.633 17 8.700 4 0.005 10 0.044 

Average 3.336 9 2.973 13 9.717 6 0.011 8 0.087 

APS(I) 1.5 100 2.652 9 3.138 18 10.252 4 0.035 15 0.261 

APS(I) 5.5 1000 7.722 7 1.506 13 5.498 7 3.685 7 34.475 

APS(I) 5.5 1000 3.473 12 4.491 19 13.152 5 0.206 33 1.154 

APS(I) 5.5 1000 7.644 10 1.488 9 5.720 8 0.600 15 7.684 

Average 6.280 10 2.495 14 8.123 7 1.497 19 12.357 

APS(II) 1.5 10 6.223 8 3.553 19 7.272 6 0.006 7 0.055 

APS(II) 1.5 10 8.282 4 5.455 8 4.647 4 0.007 9 0.069 

APS(II) 1.5 10 9.169 6 7.250 8 4.062 5 0.004 9 0.035 

Average 7.432 6 6.662 8 5.173 5 0.006 10 0.052 

APS(II) 3.5 10 7.181 5 5.609 7 6.820 6 0.347 12 2.716 

APS(II) 3.5 10 6.425 6 7.944 6 9.161 11 0.469 36 2.669 

APS(II) 3.5 10 6.745 4 8.007 4 2.324 2 0.169 21 1.610 

Average 6.778 6 6.892 8 5.780 5 0.158 16 1.230 

APS(II) 5.5 10 6.386 3 4.969 7 4.949 7 0.453 9 4.368 

APS(II) 5.5 10 7.136 3 4.283 12 3.450 12 1.107 10 12.523 

APS(II) 5.5 10 8.067 6 8.386 7 5.693 5 0.170 11 1.193 

Average 7.561 6 6.009 16 4.574 6 0.429 14 3.893 

APS(II) 1.5 100 5.845 3 7.638 3 4.824 5 0.010 14 0.080 

APS(II) 1.5 100 8.198 6 8.161 4 3.893 7 0.073 7 0.602 

APS(II) 1.5 100 7.435 7 6.871 10 3.175 6 0.021 12 0.209 

Average 7.460 6 6.259 10 4.773 7 0.107 16 0.957 

APS(II) 3.5 100 7.083 3 7.737 3 8.789 4 0.083 20 0.500 

APS(II) 3.5 100 8.263 5 7.133 8 3.707 12 0.967 17 8.190 

APS(II) 3.5 100 8.217 3 8.395 3 4.727 3 0.186 12 1.398 

Average 7.143 4 6.772 7 6.380 6 0.945 15 6.706 

APS(II) 5.5 100 7.344 7 1.840 24 2.474 8 0.513 14 10.628 

APS(II) 5.5 100 5.904 5 6.492 5 8.177 3 0.156 15 1.052 

APS(II) 5.5 100 7.865 4 8.215 4 5.640 4 1.730 6 11.100 

Average 6.695 7 5.299 15 5.219 7 0.621 21 5.574 

APS(II) 1.5 1000 5.624 4 7.367 4 8.638 3 0.006 9 0.037 

APS(II) 1.5 1000 8.191 4 7.998 4 6.465 4 0.076 15 0.523 

APS(II) 1.5 1000 7.566 4 8.079 4 5.215 4 0.027 7 0.203 

Average 7.076 4 6.484 9 5.919 5 0.083 16 0.667 

APS(II) 3.5 1000 8.061 4 7.493 9 6.704 11 1.213 8 7.872 

APS(II) 3.5 1000 6.125 6 6.186 11 5.631 4 0.067 22 0.564 

APS(II) 3.5 1000 7.716 3 6.745 4 3.494 6 1.191 12 10.420 

Average 7.379 5 5.897 8 5.151 7 1.616 13 12.758 

APS(II) 5.5 1000 8.211 13 4.689 51 6.554 11 4.288 21 27.609 

APS(II) 5.5 1000 6.705 4 7.061 7 10.970 3 0.363 7 1.973 

APS(II) 5.5 1000 8.830 3 8.855 4 5.268 4 1.240 23 8.071 

Average 6.655 7 6.777 14 7.771 5 1.219 22 7.731 
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Table 7: Cell parameters of natural Ca-, Sr-, and Pb-bearing members of the crandallite group 

and woodhouseite series. Note that while the a-axis remains fixed, the c-axis expands with 

increasing ionic radii of the M-site metal, and with the replacement of a PO4 group with SO4. All 

phases are isomorphic and crystallize in the R3m or R3̅m space group. 

Mineral a (pm) c (pm) Reference 

Crandallite 700.2 1620 Owens et al. (1960) 

CaAl3(PO4)2(OH)5•(H2O) 701.7 1625.2 Blanchard (1972) 
 700.5 1619.2 Blount (1974) 
 700 1619.4 Schwab et al. (2004) 
 699.9 1616.4 Schwab et al. (2004) 

mean 700.4 1620  

Goyazite 702.1 1650.5 Kato and Radoslovich (1968) 

SrAl3(PO4)2(OH)5•(H2O) 698.1 1648.7 Guillemin (1955) 
 698.2 1654 McKie (1962) 

mean 699.4 1651  

Plumbogummite 703.9 1676.1 Kolitsch et al. (1999) 

PbAl3(PO4)2(OH)5•(H2O) 701.8 1678.4 Botinelly (1976) 
 701.9 1679.2 Frost et al. (2013) 
 701.4 1675 Frost et al. (2013) 

mean 702.2 1677.1  

Woodhouseite 697.9 1621.4 Blanchard (1986) 

CaAl3(PO4)(SO4)(OH)6 697.5 1630 Pabst (1947) 
 697.6 1623.5 Kato and Radoslovich (1968) 

mean 697.7 1625  

Svanbergite 699.6 1652.8 Schwab et al. (2005) 

CaAl3(PO4)(SO4)(OH)6 697.53 1659.7 Kato and Miura (1977) 
 696 1680 Botinelly (1976) 
 697.3 1654.9 Botinelly (1976) 
 709.3 1685 Kato and Radoslovich (1968) 

mean 699.9 1666.5  

Hinsdalite 700.6 1683.1 Botinelly (1976) 

PbAl3(PO4)(SO4)(OH)6 699 1672.5 Kato and Radoslovich (1968) 
 699 1680 Nicolas and De Rosen 1963 
 702.9 1678.9 Kolitsch et al. (1999) 

mean 700.4 1678.6   
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Appendix D.3: Supplementary figures (figures labelled as per Chapter 5) 

 

 

Appendix C.1: Preliminary semi-quantitative XRD pattern showing all phases precipitated during 

synthesis of APS(I) as a percentage of the bulk analysis. 

 

Appendix C.2: A simple geochemical model showing the solubility of Pb in water at varying pH. 

The green box indicates the conditions tested during the Pb-sorption experiments. 
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Appendix D.4: Complete datasets (EPMA and LA-ICP-MS) 

Table 1: Complete EPMA dataset comprising of spot analysis on synthetic Sr-, and (Ca,Sr)-

bearing APS phases before and after Pb sorption experiments. Analyses that were below detection 

limit are labelled b.d.l. 

Material pH 
[Pbaq]0 

(ppm) 

CaO 

(wt%) 

P2O5 

(wt%) 

SO3 

(wt%) 

Al2O3 

(wt%) 

SrO 

(wt%) 

PbO 

(wt%) 
TOTAL 

APS(I) 1.5 10 0.27 3.05 28.15 57.16 3.09 b.d.l. 91.72 

APS(I) 1.5 10 0.39 2.59 30.03 55.64 3.60 0.07 92.33 

APS(I) 1.5 10 0.32 2.44 27.89 58.32 4.52 0.03 93.53 

APS(I) 3.5 10 0.26 11.07 20.12 54.68 3.51 b.d.l. 89.64 

APS(I) 3.5 10 0.23 2.26 31.87 54.49 5.02 b.d.l. 93.86 

APS(I) 3.5 10 0.35 3.66 27.74 56.45 3.47 0.02 91.69 

APS(I) 5.5 10 0.66 8.65 20.16 41.93 12.34 b.d.l. 83.75 

APS(I) 5.5 10 0.42 10.54 20.43 39.73 14.92 b.d.l. 86.04 

APS(I) 5.5 10 0.49 12.49 19.86 51.20 7.70 b.d.l. 91.74 

APS(I) 5.5 10 0.44 6.47 25.48 49.28 12.74 b.d.l. 94.41 

APS(I) 5.5 10 0.30 4.95 28.78 53.84 6.99 b.d.l. 94.86 

APS(I) 1.5 100 0.34 6.71 25.91 48.40 11.59 b.d.l. 92.96 

APS(I) 3.5 100 0.45 8.54 23.22 47.12 11.29 b.d.l. 90.63 

APS(I) 3.5 100 0.26 2.81 30.28 55.21 6.42 b.d.l. 94.98 

APS(I) 3.5 100 0.39 4.50 29.62 52.07 7.22 0.06 93.86 

APS(I) 3.5 100 0.49 7.64 23.76 47.73 11.45 0.03 91.10 

APS(I) 5.5 100 0.28 5.78 26.74 52.28 7.26 b.d.l. 92.35 

APS(I) 5.5 100 0.59 10.58 16.05 46.84 16.03 0.18 90.27 

APS(I) 5.5 100 0.21 4.84 28.77 50.14 8.08 0.02 92.06 

APS(I) 1.5 1000 0.52 10.80 21.97 37.87 14.30 b.d.l. 85.45 

APS(I) 1.5 1000 0.28 5.83 24.83 44.40 11.92 b.d.l. 87.26 

APS(I) 1.5 1000 0.29 4.18 30.49 45.55 7.31 b.d.l. 87.81 

APS(I) 1.5 1000 0.19 1.85 32.17 54.03 3.53 0.11 91.89 

APS(I) 1.5 1000 0.22 7.10 28.95 52.80 3.98 0.11 93.15 

APS(I) 3.5 1000 0.41 6.21 24.55 48.13 9.97 b.d.l. 89.27 

APS(I) 3.5 1000 0.19 15.78 23.95 49.72 4.59 0.13 94.36 

APS(I) 3.5 1000 0.33 7.00 23.90 43.59 12.80 0.05 87.66 

APS(I) 3.5 1000 0.33 6.02 22.61 46.48 9.01 0.03 84.48 

APS(I) 3.5 1000 0.19 2.64 33.36 51.67 4.17 0.02 92.05 

APS(I) 3.5 1000 0.26 3.98 30.02 47.91 8.22 0.02 90.43 

APS(I) 5.5 1000 0.53 7.86 25.33 44.30 10.90 b.d.l. 88.93 

APS(I) 5.5 1000 0.34 10.04 25.25 49.59 6.89 b.d.l. 92.10 

APS(I) 5.5 1000 0.47 6.93 26.00 46.79 10.22 0.15 90.56 

APS(I) 5.5 1000 0.49 11.75 21.46 41.71 11.81 0.11 87.33 

APS(I) 5.5 1000 0.59 10.42 22.57 40.05 13.48 0.03 87.14 

APS(I) 5.5 1000 0.22 2.79 28.83 54.56 6.09 0.02 92.52 

APS(I) n/a n/a 0.49 7.76 22.88 39.57 10.57 b.d.l. 81.27 

APS(I) n/a n/a 0.45 5.82 27.50 46.52 9.17 b.d.l. 89.46 

APS(I) n/a n/a 0.15 2.94 31.76 54.72 3.74 b.d.l. 93.31 

APS(I) n/a n/a 0.28 4.26 29.81 53.42 6.38 b.d.l. 94.15 

APS(I) n/a n/a 0.39 5.03 26.31 50.95 7.79 b.d.l. 90.50 

APS(II) 1.5 10 6.14 20.26 11.20 34.76 8.19 b.d.l. 80.54 

APS(II) 1.5 10 5.49 17.00 15.64 37.59 7.22 b.d.l. 82.93 

APS(II) 1.5 10 9.18 22.16 6.96 40.19 6.73 b.d.l. 85.22 

APS(II) 1.5 10 7.59 32.22 7.41 37.50 6.82 b.d.l. 91.54 

APS(II) 1.5 10 4.86 24.55 8.95 33.33 9.38 0.02 81.09 

APS(II) 3.5 10 9.15 27.14 5.16 34.76 4.93 b.d.l. 81.14 

APS(II) 3.5 10 5.92 19.72 12.07 34.11 10.46 b.d.l. 82.29 

APS(II) 3.5 10 5.75 21.12 11.81 33.04 10.63 b.d.l. 82.35 
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APS(II) 3.5 10 6.84 21.37 12.01 34.63 7.98 b.d.l. 82.83 

APS(II) 3.5 10 4.15 13.85 19.92 35.43 10.80 b.d.l. 84.15 

APS(II) 3.5 10 2.45 6.63 25.94 43.90 5.31 b.d.l. 84.23 

APS(II) 3.5 10 1.72 7.78 24.83 43.51 6.89 b.d.l. 84.71 

APS(II) 3.5 10 3.10 9.59 23.55 45.11 6.14 b.d.l. 87.49 

APS(II) 3.5 10 5.85 16.91 16.12 34.03 9.01 0.04 81.95 

APS(II) 5.5 10 5.40 18.57 11.71 37.09 7.73 b.d.l. 80.50 

APS(II) 5.5 10 4.16 13.69 17.14 39.69 6.92 b.d.l. 81.60 

APS(II) 5.5 10 6.63 20.77 13.21 31.84 9.19 b.d.l. 81.63 

APS(II) 5.5 10 3.97 10.97 21.80 40.55 7.85 b.d.l. 85.15 

APS(II) 5.5 10 1.78 6.07 26.85 52.51 5.38 b.d.l. 92.60 

APS(II) 5.5 10 2.67 7.28 26.61 49.98 6.28 b.d.l. 92.82 

APS(II) 5.5 10 3.12 9.08 24.91 48.67 7.19 b.d.l. 92.96 

APS(II) 5.5 10 6.36 21.36 10.79 33.66 9.44 0.07 81.68 

APS(II) 5.5 10 7.62 23.99 10.00 31.98 9.93 0.05 83.57 

APS(II) 5.5 10 1.82 7.78 13.78 60.99 3.36 0.02 87.76 

APS(II) 5.5 10 8.74 26.17 5.80 35.23 5.04 0.02 80.99 

APS(II) 5.5 10 10.62 29.60 4.03 33.33 3.30 0.02 80.90 

APS(II) 1.5 100 8.28 23.63 7.07 36.49 5.72 b.d.l. 81.19 

APS(II) 1.5 100 2.56 14.02 17.98 35.92 14.95 0.04 85.47 

APS(II) 1.5 100 8.98 27.42 5.33 35.34 5.19 0.03 82.28 

APS(II) 1.5 100 5.08 20.89 12.66 33.84 12.82 0.02 85.32 

APS(II) 1.5 100 6.84 22.37 10.63 33.78 8.86 0.02 82.50 

APS(II) 3.5 100 7.42 23.83 8.66 34.59 6.82 b.d.l. 81.33 

APS(II) 3.5 100 2.27 6.10 26.94 50.00 5.69 0.03 91.02 

APS(II) 3.5 100 1.75 16.27 12.99 32.34 17.63 0.02 81.00 

APS(II) 3.5 100 7.51 20.04 13.07 34.83 7.07 0.02 82.54 

APS(II) 3.5 100 6.12 20.09 12.97 34.34 10.07 0.02 83.60 

APS(II) 3.5 100 8.93 28.03 4.18 34.58 4.60 0.01 80.33 

APS(II) 3.5 100 3.40 11.48 21.39 44.15 5.52 0.01 85.94 

APS(II) 5.5 100 7.89 20.56 10.42 35.12 6.71 b.d.l. 80.70 

APS(II) 5.5 100 7.23 24.16 8.07 33.24 8.48 b.d.l. 81.17 

APS(II) 5.5 100 4.24 17.77 15.32 35.73 12.06 b.d.l. 85.14 

APS(II) 5.5 100 2.37 12.29 20.17 42.05 12.85 b.d.l. 89.75 

APS(II) 1.5 1000 5.34 15.30 18.53 38.60 7.27 b.d.l. 85.04 

APS(II) 1.5 1000 3.50 12.31 23.38 29.79 18.12 0.28 87.37 

APS(II) 1.5 1000 5.61 18.34 13.84 35.04 8.93 0.18 81.94 

APS(II) 1.5 1000 6.53 21.25 10.41 33.30 9.32 0.06 80.87 

APS(II) 1.5 1000 6.76 20.03 13.26 33.10 7.72 0.05 80.92 

APS(II) 1.5 1000 5.91 19.25 15.13 34.77 9.83 0.03 84.93 

APS(II) 1.5 1000 6.41 20.26 13.27 32.22 9.65 0.03 81.85 

APS(II) 3.5 1000 5.14 16.66 16.56 33.72 9.63 0.19 81.91 

APS(II) 3.5 1000 3.35 8.18 25.91 44.71 6.09 0.17 88.42 

APS(II) 3.5 1000 8.98 26.40 6.63 32.81 6.70 0.15 81.67 

APS(II) 3.5 1000 8.42 25.67 6.80 33.37 6.39 0.14 80.80 

APS(II) 3.5 1000 7.54 22.72 9.54 32.34 9.16 0.04 81.34 

APS(II) 5.5 1000 1.89 5.73 27.47 43.20 5.60 0.05 83.94 

APS(II) 5.5 1000 3.97 15.57 17.07 34.83 10.67 0.03 82.15 

APS(II) 5.5 1000 4.59 18.89 13.70 33.60 12.22 0.03 83.03 

APS(II) 5.5 1000 6.25 23.89 9.88 32.64 10.82 0.03 83.51 

APS(II) n/a n/a 3.12 12.74 17.97 38.14 9.64 b.d.l. 81.61 

APS(II) n/a n/a 5.45 17.27 16.35 38.39 7.73 b.d.l. 85.20 

APS(II) n/a n/a 2.93 7.68 26.83 45.75 6.17 b.d.l. 89.37 

APS(II) n/a n/a 1.20 3.12 30.69 51.36 4.00 b.d.l. 90.38 

APS(II) n/a n/a 1.33 2.91 30.81 53.67 4.41 b.d.l. 93.13 

APS(II) n/a n/a 1.83 2.19 32.63 51.82 4.74 b.d.l. 93.21 

APS(II) n/a n/a 1.71 4.52 29.96 52.67 4.89 b.d.l. 93.75 

APS(II) n/a n/a 1.53 2.42 31.36 55.19 4.01 b.d.l. 94.50 
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Table 2:Complete LA-ICP-MS dataset comprised of spot analysis on synthetic Sr-, and (Ca,Sr)-

bearing APS phases before and after Pb sorption experiments. 

Material pH [Pbaq]0 Ca (ppm) 2SE Sr (ppm) 2SE Pb (ppm) 2SE 

APS(I) 1.5 10 2146 780 4753 870 10 1.5 

APS(I) 1.5 10 1389 660 3547 170 28 2.2 

APS(I) 3.5 10 38143 2300 142514 6600 1871 220 

APS(I) 3.5 10 32192 2700 108726 6600 333 26 

APS(I) 5.5 10 37602 3100 131429 9100 195 17 

APS(I) 5.5 10 25248 3100 73075 5000 74 4.7 

APS(I) 5.5 10 26330 4500 86998 3400 55 5.4 

APS(I) 1.5 100 31380 5600 102518 3900 347 51 

APS(I) 1.5 100 39766 6200 136573 19000 2284 170 

APS(I) 1.5 100 28855 2200 95157 6200 186 36 

APS(I) 1.5 100 4202 920 15342 1400 404 86 

APS(I) 1.5 1000 24798 3900 89570 15000 877 93 

APS(I) 1.5 1000 18035 2400 77155 10000 511 58 

APS(I) 1.5 1000 14879 2500 56491 9800 535 61 

APS(I) 1.5 1000 14518 2200 46914 3500 1005 62 

APS(I) 1.5 1000 2254 1000 12682 1300 561 56 

APS(I) 5.5 1000 15059 1900 54984 3800 36852 2400 

APS(I) 5.5 1000 44906 8700 131518 7100 2060 690 

APS(I) 5.5 1000 14879 1400 57201 4500 6004 930 

APS(I) n/a n/a 29306 2200 97641 5000 4 1.1 

APS(I) n/a n/a 30929 6500 100390 7300 4 1.5 

APS(I) n/a n/a 27954 14000 81411 5000 6 6.6 

APS(II) 1.5 10 35528 6700 72720 4700 63 4.2 

APS(II) 1.5 10 52210 6200 47268 5900 49 7.5 

APS(II) 1.5 10 54555 4100 46470 1900 74 6.7 

APS(II) 1.5 10 45267 3000 32636 1800 28 1.4 

APS(II) 1.5 10 77909 2200 55959 1900 39 3 

APS(II) 1.5 10 75745 3200 54186 2200 25 1.8 

APS(II) 1.5 10 75655 2600 48953 2800 48 4.4 

APS(II) 1.5 10 33995 5200 19510 2400 24 2.3 

APS(II) 1.5 10 72499 5900 40617 2200 38 3.6 

APS(II) 1.5 10 59965 3600 23678 1200 113 11 

APS(II) 1.5 10 67449 7500 26339 1500 85 5.9 

APS(II) 1.5 10 89902 13000 18455 350 163 23 

APS(II) 3.5 10 12714 2000 28467 2200 15063 7900 

APS(II) 3.5 10 80254 8600 114402 5500 6621 730 

APS(II) 3.5 10 56088 4100 68198 3800 3475 420 

APS(II) 3.5 10 79442 4600 91610 9900 4694 1700 

APS(II) 3.5 10 66367 2700 65448 1900 666 140 

APS(II) 3.5 10 93870 3400 90635 6300 306 36 

APS(II) 3.5 10 84041 4800 67045 4000 1240 390 

APS(II) 3.5 10 71327 3700 55427 3200 109 14 

APS(II) 3.5 10 76376 1900 58176 1700 18 2.2 

APS(II) 3.5 10 76917 5000 54806 5500 450 95 

APS(II) 3.5 10 73942 5800 40706 1700 221 15 

APS(II) 3.5 10 82779 4100 45317 2800 292 22 

APS(II) 3.5 10 74843 2700 34764 1400 156 8.7 

APS(II) 3.5 10 55907 14000 21905 1200 151 14 

APS(II) 3.5 10 80705 2600 30436 750 425 50 

APS(II) 3.5 10 80074 3000 23244 580 1688 350 

APS(II) 5.5 10 49685 3500 49485 3300 4533 400 

APS(II) 5.5 10 42832 5100 34498 4300 11069 1100 

APS(II) 5.5 10 45988 23000 24069 900 24101 3000 

APS(II) 5.5 10 19477 6100 2288 300 15343 3000 
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APS(II) 5.5 10 98649 6200 85136 4600 1674 140 

APS(II) 5.5 10 58342 8500 45849 3200 946 130 

APS(II) 5.5 10 16592 2200 8593 960 3517 280 

APS(II) 5.5 10 83861 5900 56935 2700 1702 180 

APS(II) 5.5 10 21822 2000 8496 290 3195 890 

APS(II) 5.5 10 4779 3600 484 21 1559 93 

APS(II) 1.5 100 5140 2700 18180 4200 386 58 

APS(II) 1.5 100 48242 4500 65714 6200 195 19 

APS(II) 1.5 100 62219 13000 69705 3400 58 8.6 

APS(II) 1.5 100 31921 4100 32458 3300 264 47 

APS(II) 1.5 100 33544 6500 22614 3100 1990 580 

APS(II) 1.5 100 76286 2300 55605 3500 25 3 

APS(II) 1.5 100 62580 4300 45495 3000 73 5.1 

APS(II) 1.5 100 65015 3300 37158 2600 4190 860 

APS(II) 1.5 100 76376 2600 48244 2300 101 14 

APS(II) 1.5 100 56809 4700 33522 2700 36 4.3 

APS(II) 1.5 100 71597 3100 39464 2200 62 8.7 

APS(II) 1.5 100 61498 5300 30596 1600 34 3.1 

APS(II) 1.5 100 81606 3500 38932 2900 735 54 

APS(II) 1.5 100 63662 6600 30507 1300 32 3.6 

APS(II) 1.5 100 68712 6900 31749 1800 212 25 

APS(II) 3.5 100 13526 2700 27935 2700 7959 670 

APS(II) 3.5 100 63392 3700 91078 6000 327 60 

APS(II) 3.5 100 77368 2500 87885 3400 834 170 

APS(II) 3.5 100 78901 3000 73696 2400 12380 980 

APS(II) 3.5 100 55907 8800 57467 2400 823 75 

APS(II) 3.5 100 78631 2400 66069 3000 3370 390 

APS(II) 3.5 100 71327 5400 37070 4400 9668 1600 

APS(II) 3.5 100 83951 2500 47268 1300 1857 220 

APS(II) 3.5 100 84402 3600 44608 4700 1541 290 

APS(II) 5.5 100 2705 1600 3015 1100 8127 1700 

APS(II) 5.5 100 21371 2800 20309 1100 26763 2100 

APS(II) 5.5 100 18395 4400 24743 2100 5128 700 

APS(II) 5.5 100 64924 3400 81766 2400 1555 230 

APS(II) 5.5 100 66728 3000 80081 2300 904 680 

APS(II) 5.5 100 10640 2800 8425 1400 3713 780 

APS(II) 5.5 100 74753 3300 70237 3000 302 26 

APS(II) 5.5 100 82147 3600 56403 2400 17305 1000 

APS(II) 5.5 100 48693 22000 22969 1200 17305 2000 

APS(II) 5.5 100 64924 3400 81766 2400 1555 230 

APS(II) 5.5 100 66728 3000 80081 2300 904 680 

APS(II) 5.5 100 74753 3300 70237 3000 302 26 

APS(II) 5.5 100 82147 3600 56403 2400 17305 1000 

APS(II) 5.5 100 48693 22000 22969 1200 17305 2000 

APS(II) 1.5 1000 63842 2300 87353 2100 15 2.5 

APS(II) 1.5 1000 730 410 612 120 259 27 

APS(II) 1.5 1000 73671 3000 86378 2500 59 5.1 

APS(II) 1.5 1000 79983 3300 64650 2300 757 110 

APS(II) 1.5 1000 76467 2500 57112 3900 64 9.6 

APS(II) 1.5 1000 80795 3400 52146 2100 274 18 

APS(II) 1.5 1000 76016 3100 46559 2000 21 4.4 

APS(II) 1.5 1000 88189 4200 45415 790 84 6.1 

APS(II) 1.5 1000 46078 6600 16052 1400 347 40 

APS(II) 3.5 1000 29757 2800 108637 8300 67258 13000 

APS(II) 3.5 1000 14608 1800 32281 3900 14152 1000 

APS(II) 3.5 1000 22994 2500 40794 3000 7707 1200 

APS(II) 3.5 1000 74934 6500 67045 7200 12134 990 

APS(II) 3.5 1000 61859 7000 56314 2400 673 150 

APS(II) 3.5 1000 67449 2700 34941 2000 11910 1400 
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APS(II) 3.5 1000 85664 3600 28379 1600 1191 100 

APS(II) 5.5 1000 46890 24000 65537 7200 42877 9200 

APS(II) 5.5 1000 70605 4700 109701 2800 3629 260 

APS(II) 5.5 1000 88550 3100 52678 2300 12401 2900 

APS(II) n/a n/a 42021 7100 87797 13000 3 1.3 

APS(II) n/a n/a 83320 4300 112362 7200 3 0.84 

APS(II) n/a n/a 71237 2700 95423 5100 1 0.16 

APS(II) n/a n/a 25068 5000 28733 4000 2 0.64 

APS(II) n/a n/a 72950 3700 82653 3700 1 0.19 

APS(II) n/a n/a 42471 6100 31837 3800 1 0.17 

APS(II) n/a n/a 84041 3600 55516 2100 1 0.28 

APS(II) n/a n/a 111814 8900 62256 3300 1 0.32 

APS(II) n/a n/a 45267 3000 23058 1300 1 0.24 

APS(II) n/a n/a 85123 4200 39908 2000 1 0.2 

APS(II) n/a n/a 88099 4100 39109 2100 1 0.37 
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Abstract: The distributions of 210Pb and 210Po, short half-life products of 238U decay, in geological and 

related anthropogenic materials are reviewed, with emphasis on their geochemical behaviours and likely 

mineral hosts. Concentrations of natural 210Pb and 210Po in igneous and related hydrothermal 

environments are governed by release from crustal reservoirs. 210Po may undergo volatilisation, 

inducing disequilibrium in magmatic systems. In sedimentary environments (marine, lacustrine, deltaic 

and fluvial), as in soils, concentrations of 210Pb and 210Po are commonly derived from a combination of 

natural and anthropogenic sources. Enhanced concentrations of both radionuclides are reported in 

media from a variety of industrial operations, including uranium mill tailings, waste from phosphoric 

acid production, oil and gas exploitation and energy production from coals, as well as in residues from 

the mining and smelting of uranium-bearing copper ores. Although the mineral hosts of the two 

radionuclides in most solid media are readily defined as those containing parent 238U and 226Ra, their 

distributions in some hydrothermal U-bearing ores and the products of processing those ores are much 

less well constrained. Much of the present understanding of these radionuclides is based on indirect data 

rather than direct observation and potential hosts are likely to be diverse, with deportments depending on 

the local geochemical environment. Some predictions can nevertheless be made based on the 

geochemical properties of 210Pb and 210Po and those of the intermediate products of 238U decay, 

including isotopes of Ra and Rn. Alongside all U-bearing minerals, the potential hosts of 210Pb and 210Po 

may include Pb-bearing chalcogenides such as galena, as well as a range of sulphates, carbonates, and Fe-

oxides. 210Pb and 210Po are also likely to occur as nanoparticles adsorbed onto the surface of other 

minerals, such as clays, Fe-(hydr)oxides and possibly also carbonates. In rocks, unsupported 210Pb- 

and/or 210Po-bearing nanoparticles may also be present within micro-fractures in minerals and at the 

interfaces of mineral grains. Despite forming under very limited and special conditions, the local-scale 

isotopic disequilibrium they infer is highly relevant for understanding their distributions in mineralized 

rocks and processing products. 
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1. Introduction 

210Pb and 210Po are intermediate isotopes within the 238U decay-series (Figure 1) and occur in minute 

amounts in nature [1]. Details of the uranium (238U, 235U) and thorium (232Th) decay-series 

radionuclides are concisely provided in the review by Cowart and Burnett (1994) [2]. 
210Pb has a half-life of 22.2 years and is generated via: (i) the decay of atmospheric 222Rn gas 

(“unsupported” 210Pb); and (ii) via the continuous production of 222Rn from natural 226Ra contained in 

crustal materials (“supported” 210Pb). 210Pb decays to 210Bi by emission of a beta particle. 210Pb is useful 

for determining the age of a recent sediment in that, provided that the atmospheric flux is constant, the 

decay profile relates directly to sedimentation rate. Hence, 210Pb is useful for dating sediments up to a 

century or so old. 

Polonium has no stable isotope [3,4]. 210Po is by far the longest-lived of the 7 naturally-occurring Po isotopes 

in the U and Th decay-series (half-life = 138.376 days). 210Po is generated via beta decay from 210Bi (half-life 

5.01 days) and decays to 206Pb by emission of an alpha particle. It has a high  specific activity (1.66 1014 Bq 

g−1) and is highly toxic [5] and one of the most radioactive natural radioisotopes; 1  mg  of  210Po  emits  as  

many  alpha  particles  per  second  as  5  g  226Ra.  Its  toxicity in nature is, however,  limited  by  its  vanishingly  

small  mass  concentration,  even  compared  to  226Ra.  As  an  energy-generating  alpha  emitter,  210Po  has  

been  used  as  a  lightweight  heat  source  to power thermoelectric cells, for example in the Russian Lunokhod 

lunar rovers to keep their internal components warm during the lunar nights. The principal source of both 
210Pb and 210Po in the environment is natural 222Rn gas which escapes to the atmosphere and undergoes 

radioactive decay. Airborne particles containing sorbed amounts of these highly particle-reactive  decay  

products  of  222Rn fall to the land or water surface and either dissolve, are deposited onto soils, or become 

subject   to sedimentation. 
 

 

Figure 1. The uranium (radium series) decay chain, indicating half-lives, adapted from various publicly available 

sources. 
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Both radionuclides are, however, found in trace amounts in a range of solid media, both natural and 

anthropogenic in origin. 210Pb and 210Po are present in higher activity concentrations relative to crustal 

averages in uranium-bearing ores, and in the products of mining and processing from such deposits, 

including concentrates and wastes. While polonium concentrations are extremely low (< 0.1 mg/tonne 

even in high-grade uranium ores [6]), the presence of short half-life radionuclides (RN) can impact on the 

treatment, processing and transport of ore and resulting concentrates. In mining operations in which 

uranium is present, whether exploited or not, a knowledge of the geochemical behaviour of 210Pb and 
210Po during mineral processing is critical to ensure that produced concentrates are as clean as possible. 

These radionuclides, whether occurring together with parent uranium in the mineralized rocks, or 

spatially decoupled from it as U-bearing minerals begin to break down, may represent a non-target 

element that could attract a financial penalty when sold on the open market. If present at high enough 

concentrations, saleability of that product may be prevented altogether (e.g., [7]). More extensive, and 

expensive, safety protocols and transport measures may also be required [8]. 

A comprehensive understanding of  the  geochemical  behaviour  and  mineralogical  distribution of 226Ra,  
210Pb and 210Po during ore processing is a pre-requisite for the development of methods        to remove or 

reduce their concentration in products from minerals processing, and provides the motivation behind the 

present study.   The following review of the distributions of 210Pb and 210Po   (and of parent 226Ra) in a broad 

range of geological materials builds on existing reviews of various length [9–12],  many of which have 

emphasised the environmental and health risks that 210Pb and  210Po present. Our emphasis is on the 

concentrations and distributions of 210Pb and 210Po in solid media, with focus on mineralized rocks and ores, 

and in anthropogenic materials resulting from the exploitation of natural resources. An assessment of the 

likely mineral hosts for both 210Pb and 210Po in critical geological environments, including ores and in non-

nuclear industrial sources (technologically enhanced naturally occurring radionuclide material (TENORM; 

[11]) follows. 

2. Crustal Distribution of 210Pb and 210Po 

210Pb and 210Po are widely dispersed in a large variety of natural  media  because  they  often mimic the 

distributions of parental 238U, 226Ra, or 222Rn. Much of the literature on 210Pb and 210Po distributions in 

nature is focused on their concentrations in the  atmosphere  (e.g.,  [13]),  in  oceans (e.g., [14–17]), rivers 

(e.g., [18]),  lakes  (e.g.,  [19]),  groundwaters  (e.g.,  [20–23]),  drinking  waters (e.g., [24–26]), and soils [27–

29]. Attention has also been given to mosses and lichens, which efficiently capture atmospheric 210Pb and 
210Po, peat bogs (also anomalous with respect to 210Pb and 210Po), and in the animal and human food chains, 

e.g., milk or berries, and particularly seafood (e.g., [12,30–32]).     A smaller body of data is available for some 

natural environments, notably hydrothermal ore deposits  or active volcanic fumaroles, where there is 

evidence for the selective fractionation of 210Pb and 210Po from other 238U decay products, and where 210Pb 

and 210Po are concentrated in “new” precipitates. These particle-sensitive decay product isotopes are always 

fractionated from gaseous parent 222Rn that has extreme dispersion and mobility in the environment, 

particularly in the atmosphere. 

There is a large body of data addressing the distribution and behaviour of 210Pb and 210Po in 

both magmatic and marine/lacustrine sedimentary environments, as well as in relation to the mining, 

processing and smelting of uranium-bearing ores, processing of phosphate ores for phosphoric acid 

production and other human activity. Somewhat less well documented are concentrations of 226Ra, 210Pb and 
210Po in other anthropogenic materials such as coal ash (e.g., [33,34]), and as scales and sludges associated 

with oil and gas production [35–37]. Not infrequently,  observed distributions are  the product of a complex 

interplay between natural and anthropogenic 226Ra, 210Pb and 210Po from different mining and non-mining 

sources, the effects of which can only be elucidated by high-quality analysis and a good understanding of the 

physical and historical context of the samples in question  (e.g., [38,39]). There is generally a strong link 

between the distributions of 210Pb and 210Po and that of parent 226Ra in many industrial wastes (uranium 

mill tailings, phosphogypsum, coal fly ash, oilfield 
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scales and sludges) such that understanding the mode-of-occurrence of 226Ra will enable prediction of 210Pb 

and 210Po behaviour. There are, however, some exceptions in which selective fractionation and concentration 

of 210Pb and 210Po takes place, as will be shown below. 

A detailed treatment of analytical techniques for the determination of short-lived isotopes at 

concentrations of small fractions of parts-per-billion, and quantification of 210Pb and 210Po in rocks, 

minerals, concentrates and leachates, lie beyond the scope of this contribution. The reader is referred to 

References [1,40,41], in which comprehensive reviews of methodologies used for the determination of 
210Po in environmental materials are provided, building on earlier studies [42] and others. Clayton and 

Bradley (1995) [43] describe their methodology to measure 210Pb and 210Po in a range of environmental 

materials. In a series of papers, Jia and co-authors [44–46] have put forward procedures for analysis of 
210Pb and 210Po in mineral, biological and soil samples. Particularly relevant to our focus on 210Pb and 
210Po distributions in ores and ore processing residues are separation techniques outlined by 

Prud’homme et al. (1999) [47] for fine-grained multi-phase materials. 

2.1. Magmatic Rocks and Related Hydrothermal Systems 

Volcanoes represent the largest single contributor of atmospheric 210Pb and 210Po. For example, Allard et 

al. [48] document extremely high fluxes from the Ambrym basaltic volcano, Vanuatu Island Arc, in the 

South Pacific Ocean. Based on direct measurements, these authors maintain that this volcano is among 

the most powerful volcanic gas emitters on Earth, producing between 5% and  9% of current estimates 

for global subaerial volcanic emissions of 210Pb and 210Po. Data for both dissolved and emitted magmatic 

volatiles are used to estimate the depth, size and degassing rate of the basaltic magma reservoir that 

sustains the eruptive activity [48]. In the aforementioned paper, Allard et al. note radioactive 

disequilibrium of 210Pb, 210Bi and 210Po in the volcanic gas phase and use this to constrain the renewal 

rate and dynamic time scales of the magma reservoir. Extensive radioactive disequilibrium between the 

three radionuclides reported in Ambrym volcanic gas is concordant with observations from other basaltic 

volcanoes [49,50]. The radioisotopic disequilibrium is attributed by Allard et al. [48] to the very different 

volatilisation rates of the three radionuclides during high-temperature basalt degassing (210Po > 210Bi > 
210Pb). All 210Po is volatilised, whereas the emanation rate is two orders of magnitude lower. 210Po–
210Pb geochronology is routinely used to date recent volcanic eruptions (e.g., [51]). Measurable activity 

of 210Pb, 210Bi and 210Po is not restricted to basaltic volcanoes. The volatility of all three radionuclides 

have been studied in andesitic gases from Merapi Volcano, Indonesia [52], although the authors note that 

the emanation coefficients are significantly lower than observed at basaltic volcanoes, a feature 

attributed to lower magma temperatures. The same authors state that the radionuclides are mainly 

transported in the volcanic gases as Pb-chlorides, and as “Bi- and Po-metallic species”. 

The radionuclide systematics of igneous activity nevertheless differ considerably with respect to 

tectonic environments [53]. Enrichment of 210Po and 226Ra relative to 230Th is noted to be more common 

and greater in island arcs than in continental margin subduction environments.  Levels   of enrichment 

tend to decrease with differentiation. Differences were attributed [53] to variations in the process of 

melt extraction,  changes in bulk partition coefficients within the mantle wedge,  or preferential addition 

of U from subducted lithosphere. 

Interest in the activity of 210Pb and relationships with parent radionuclides in young volcanic 

rocks centres on the useful geochronological information the radioisotope distributions can provide. The 

literature reveals substantial debate about the possible causes of observed isotopic disequilibria in many 

young volcanic rocks (e.g., [54]). The observed 210Pb deficits relative to 226Ra are attributed to magma 

degassing over decades rather than partial melting or interaction with cumulates [55]. 
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Most igneous rocks contain both U and Th, with concentrations increasing as silica content increases. 

Granites are thus the rock type with the highest concentration of all daughter radionuclides, which remain 

in secular equilibrium until weathered. Uranium, Th and daughter radionuclides are important heat 

producers in granitic rocks [56]. 

Radionuclide concentrations have been examined in volcanic fumaroles from La Fossa cone, Vulcano 

Island, Italy [57,58]. Sulphur and sulphide incrustations show relative but variable enrichments in 210Po 

(as high as 500 Bq·g−1), and in 210Pb relative to 226Ra, which are related to degassing of the fumarolic 

fluids. The published data record mobility of sublimates within the fumaroles. 210Po is almost fully 

volatilised due to the relatively high velocity of the gas, even though temperatures did not exceed 280–

350 ◦C. Much 210Po may therefore be present in gaseous form within the fumarole. Sublimates at La Fossa 

Crater, Aeolian Islands, Italy [59] contain an abundance of  rare Pb–Bi-sulphosalt mineral species (e.g., 

wittite, cannizzarite, mozgovaite, etc. [60,61]). Several of sulphosalts, including Cl- and Br-bearing 

species (e.g., vurroite [62]) have been first described from the locality. 

The unusually high sulphur-reducing environments offered by deep-sea hydrothermal vents display 
210Pb and 210Po enrichment relative to 226Ra. Boisson et al. (2001) [63], for example, describe the relative 

enrichment in naturally-occurring 210Po and 210Pb associated with the high particle fluxes brought about 

by hydrothermal venting off the island of Milos, Aegean Sea. 210Po levels in organisms living on or near 

the microbial mat in the vent zone were higher than from non-vent areas. It was, however, stressed [63] 

that input of 210Po and 210Pb to oceans through venting activity is probably not significant compared to 

that of atmospheric origin. High levels of natural radioactivity, including 210Po–210Pb, in vent biota from 

both the East Pacific Rise and Mid-Atlantic Ridge have been confirmed [64]. 

2.2. Sedimentary Environments 

Measurable concentrations of 210Pb and 210Po in sedimentary environments, whether marine, 

lacustrine, deltaic or fluvial have proven invaluable for understanding age relationships of sediments on 

the decade-scale and for calculation of rates of sedimentation.  Many dozens of case studies,  e.g., [65–

68], document the spatial distributions of 210Pb and 210Po, and successfully separate natural from 

anthropogenic sources. Activities of 210Pb and 210Po have also proven valuable for studies of glaciation 

and the accumulation and melting rates of ice sheets [69]. Remarkably few of these studies have 

addressed the mineralogy of the sediments, and the likely host(s) of 210Pb and 210Po. 

A key feature of many studies of sediments and water columns in marine or lake waters is the recognition 

of disequilibrium between 210Pb and 210Po that is linked to differential cycling patterns, rates of 

sequestration by sediments, as well as the contributions of atmospheric deposition, particularly for 210Po. 

Some sedimentary rocks contain anomalous radionuclide concentrations. Of particular note are 

restricted marine and estuary environments supplied by organic- and clay-rich sediment. Under 

reducing conditions, uranium is readily adsorbed onto the organics and/or clay particles. 

Sedimentary rocks are also the host for many of the World’s largest and richest uranium deposits, formed 

via migration of dissolved U6+ in oxidising waters along paleoaquifers and deposited in reduced rocks. 

The genesis of such deposits has been amply described elsewhere [70]. 

3. 210Pb and 210Po from Anthropogenic Sources 

The mining of uranium, smelting of copper and polymetallic ores, phosphoric acid and oil/gas 

production and combustion of coal (and peat) are the main extractive activities leading to generation of 

materials with high contents of 210Pb, 210Po, and other RN. Surveys of the generation of Naturally 

Occurring Radioactive Materials (NORM) from industrial operations [71–75] also cover other industrial 

sectors, including manufacture of zirconia, titanium dioxide pigment production, cement production and 

alumina and iron and steel production. 
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3.1. 210Pb and 210Po in Uranium Mill Tailings 

The radiological risks associated with management of uranium mill tailings have been discussed by [76–

79], among many others. Several authors have suggested that 226Ra occurs in radium-bearing sulphate 

minerals in uranium mill tailings [80–82]. Landa et al. [83] examined uranium mill tailings from 

Monticello, Utah. 226Ra was found to be associated with particles and colloids of alkaline-earth sulphates, 

alkaline-earth carbonates, and surfaces of quartz, clay, and feldspar. Landa [77] inferred from the 

leaching behaviour of uranium mill tailings that 226Ra occurs with hydrous oxides of    iron and 

manganese. In one study specially aimed at understanding the mineralogy of 210Po [84], material from 

three uranium mill sites in the USA were examined to establish where contaminants reside as a 

prerequisite for modelling contaminant mobilisation. Four mineral hosts were suggested using a 

combination of electron probe microanalysis, thin-section petrography, α-emission mapping, and 

selective chemical extractions (although none of these techniques can identify mineral hosts for specific 

radioactive decay products): uranium minerals, authigenic siliceous material, Ba–Sr-sulphates, and Fe–Ti–V-

oxides. These themes are explored further by Landa and Bush [79], who recognised a redistribution of 

radium by particle size during milling but also of the components in the tailings onto which radionuclides 

are adsorbed. The following potential sorbents were identified: clay minerals, Fe- and Al-oxides, 

feldspars, fluorite, barite, jarosite, coal, and volcanic glass. Both 226Ra and 210Pb showed both higher 

degrees of adsorption than either 238U or 230Th, attributable to either selective adsorption or ingrowth 

of 210Pb daughter isotopes in minerals containing substituted radium (e.g., Ra2+ for Ca2+). 

In a review of the mineralogical controls on radionuclide mobility in uranium mill tailings [78],   the 

importance of amorphous silica, carbonates and phosphates, and microbial reduction processes is noted.  The 

same publication also examines radionuclide behaviour (although not mentioning 210Pb   and 210Po in this 

context) during in-situ leach (ISL) recovery operations. Jarosite [KFe3(SO4)2(OH)6], which may precipitate and 

severely restrict permeability along ISL aquifers, is said to be a significant host for radium. The presence of 

sulphides and Fe-(hydr)oxides will also impact on recovery dependent on the extracting agent used. These 

ideas are expanded in a more  recent  study  of  uranium  mill tailings [85] that also stresses the potential role 

of sulphates and secondary galena as hosts for 210Pb.    It is reasonable to infer that these minerals scavenge 
210Pb dissolved within pore fluids. 

Radionuclide distributions, including 210Pb deposition rates and inventories, have been examined in and 

around the Ranger Uranium Mine,  N.T.,  Australia [86].  Natural redistributions of 222Rn   and 210Pb occur 

via atmospheric dispersion of 222Rn, (seasonal) deposition of 210Pb on surfaces, and eventual migration 

creating 210Pb depth profiles prior to decay to 206Pb. A net loss of 210Pb from the region occurs during the 

dry season by attachment to aerosols. 

3.2. 210Pb and 210Po in Copper and Polymetallic Ores and Products of Their Mining and Processing 

Some copper ores contain anomalously high concentrations of RN, meaning that daughter radionuclides 

are present in products of mining and smelting, and within wastes resulting from those activities. Due 

to selective volatilization/condensation of 210Pb and 210Po, smelter dusts tend to be enriched in 210Pb 

and 210Po compared to 226Ra, compared to their activity concentrations in the original ore feed, and 

compared to their activity concentrations in other solids produced during processing. Such a scenario is 

documented for the Olympic Dam copper mining and smelting operation, South Australia [87]. The 

behaviour of 210Pb and 210Po during concentration and smelting of copper ores, and their preferential 

partitioning into smelter flue dusts where they may accumulate, has been documented in several studies. 

One of the best studied examples is the contamination generated through centuries of exploitation of 

copper-bearing bituminous shales (Kupferschiefer) in the Mansfeld district of eastern Germany. A 

characterisation of scrubber dust slurries (Theisenschlamm) containing 210Pb and 210Po, which were 

produced as a by-product of the Mansfeld smelting operations, is given in [88]. Around 220,000 tonnes of 

these sludges are deposited at several sites and continue to represent a serious environmental risk [89–

92]. The material contains: 18% Zn (as sphalerite and wurtzite); 
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14% Pb (as galena and secondary anglesite); a wide variety of hazardous (As, Tl, Cd) elements and    rare 

metals (Ag, Ge, Re); polycyclic aromatic hydrocarbons and other organic compounds, as well as radionuclides. 
210Pb and 210Po are concentrated in the finest size fractions, typically of sub-micron size and combined as 

aggregates with mean diameter of 1.25 µm [88]. Additional characterisation of the Theisenschlamm is 

provided by Morency et al. [93], with experimental evidence in support of oxidative processes designed to 

immobilize elements and isotopes of concern. Of relevance to the overarching aim of the present study is the 

observation that almost all 210Pb and 210Po can be concentrated into        a lead sulphate phase. Ores of 

comparable age and origin, albeit with generally lower associated radioactivity, are currently mined in the 

Lubin region, Poland [94]. The highly selective enrichment of 210Pb and 210Po compared to 226Ra in certain 

wastes from copper smelting highlights the importance   of understanding the distribution of these isotopes 

when designing plant operations or planning waste clean-up or handling. 

Hypogene tin ores are generally genetically related to granites and often contain anomalous concentrations 

of Cu, Pb, Bi, U and Te relative to crustal averages. They may contain measurable concentrations of 210Pb, 210Po 

and 210Bi. The smelter process, for which feedstock may not only comprise tin ores/concentrates but also tin-

rich residues from other processes, involves a molten metal stream and separation into tin, lead and lead-

bismuth alloys. 210Po will rapidly volatilise, and according to Martin et al. [71], can be highly enriched in 

smelter fumes (200,000 Bq·kg−1). Slags will contain the non-volatile radionuclides but also some 210Pb and 
210Po (10,000 Bq·kg−1). Within the bismuth metal, short-lived 210Bi rapidly decays to 210Pb, which may have 

activity concentrations up to 100,000 Bq·kg−1. Hipkin and Paynter (1991) [95] address activity concentrations 

of materials and the radiation exposures of workers in the tin industries of Bolivia and SE Asia, while 

background data on 210Pb and 210Po behaviour during the tin smelting and electro-refining process are given 

by Harvey et al. [96].  210Pb  and 210Po activities in and around a large, now-closed, tin smelter in northern 

England are discussed   by Baxter et al. [97].  Here, over the course of ca.  55 years of tin production, about 

30% of the 210Po  was isolated in tellurium dross, 48% decayed within the refinery, 19% went to waste slag, 

and 2% was released into the atmosphere. 

3.3. 210Pb and 210Po in Mining and Processing of Phosphates 

Many phosphate formations exploited for the fertiliser industry contain concentrations of naturally occurring 

radionuclides of the uranium and thorium decay series that exceed those in other rocks. The risks 

associated with mining, milling and manufacturing of phosphoric acid and phosphate fertilizers have 

been widely documented at different sites around the world. Solid waste products of the phosphate 

industry, notably gypsum (CaSO4 2H2O), termed phosphogypsum, but also dusts generated during 

milling, can carry particularly high concentrations of 226Rn,  210Pb and 210Po  (e.g., [74,98–109]. Although 

waste from the phosphate industry has, in some cases, been disposed of in the marine environment (e.g., 

[101]), elsewhere, most spectacularly in Florida, where the World’s largest phosphoric acid industry is 

centred, huge waste piles (gypstacks) have been generated, creating serious waste management issues. 

In the manufacture of phosphoric acid, an important industrial chemical, phosphate rock (which typically 

contains U within apatite or other phosphates) is treated with sulphuric acid, resulting in by-product 

gypsum in volumes three times greater than the phosphoric acid (Figure 2). The reaction involved in 

phosphoric acid production can be simplified, after Burnett et al. [103], as: 

 
Ca10(PO4)6F2 + 10H2SO4 + 20H2O → 10CaSO4·2H2O +6H3PO4 + 2HF 

The above reaction creates disequilibrium between U, Th and Ra. The majority of U if found in the 

phosphoric acid, ca. 90% of the 226Ra, and effectively all the 210Pb and 210Po, will be preferentially 

concentrated within the phosphogypsum (e.g., [110]), with 210Pb and 210Po in secular equilibrium [111]. The 
210Pb and 210Po activities in phosphogypsum are typically a few hundreds of Bq·kg−1. For example, 
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Brasilian phosphogypsum described by Mazzilli et al. [106] shows concentration ranges of 47–894 

Bq·kg−1 and 53–677 Bq·kg−1 for 210Pb and 210Po, respectively. These activities depend on the uranium 

concentrations in the phosphate ore, which can vary over as much as an order of magnitude. For 

comparison, phosphate rocks in Florida, Morocco and Jordan, three important producing areas, contain 

1300–1850 Bq kg−1 U [112]. In the phosphate rocks, U (and Th) is present mostly within the mineral 

apatite. U4+ has a similar ionic radius to Ca2+ (0.97 and 0.99 Å, respectively) and readily substitutes into 

the apatite lattice, resulting in less abundant uraninite in some ores. 

The physical distribution of 226Ra and 210Pb in phosphogypsum waste piles is addressed by Rutherford 

et al. [100], who note heterogeneity in which 210Pb is concentrated in the finest fraction (no more than 

a few microns). In studies of Florida phosphogypsum, 210Pb/210Po disequilibrium in mature 

phosphogypsum samples has been demonstrated [104], suggesting that 210Pb was more mobile than either 
210Po or 226Ra. Although none of the phosphogypsum research has demonstrated that the mineral hosts 

for each radionuclide differ (phosphogypsum is, in any case essentially monomineralic with around 1% 

impurities), these observations are indirect evidence to the suggestion that 210Pb may be less well bound 

within the crystal lattice of gypsum. 

 

 
Figure 2. Schematic diagram showing RN behaviour during phosphate production. 

 
3.4. 210Pb and 210Po Associated with Oil and Gas Production 

Radioactive scales and sludges associated with offshore oil  and  gas  production  often  contain 

anomalously high concentrations of 226Ra, 210Pb and 210Po, and have been well documented [35–

37,113,114]. After the mixture of oil, gas and water is brought to the surface, and the gas and formation 

waters are separated from the oil, hard scales will build up on the internal surfaces of the oil field 

extraction and production equipment. Well fluids (saline formation waters that are co-produced with oil 

and gas and require separate handling) are characteristically enriched in Ca, Sr, Ba and associated Ra. 

Pipes and tanks that come into contact with these waters are subject to scale and sludge build-up. The 

relative amounts of solid waste (sludges and sands) vary with the production area due to the different 

geological and fluid characteristics of the reservoirs. 226Ra, 210Pb and 210Po-enriched scales precipitate as 

solids directly from the formation waters following changes in temperature, pressure and salinity. 
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The volumes of these materials are, however, generally rather small and typically comprise a mixture of 

carbonate and sulphate compounds of calcium, strontium and barium. Generation of 210Pb and 210Po is 

due to the presence of parent U and Th in the oil/gas source rocks,  which decays to  Ra that dissolves 

within the saline formation waters that also contain P, Sr, Ba and Ca. The radium isotopes, 226Ra and 
228Ra, co-precipitate with the salts of these elements, enriching the sludges and, particularly, scales in 

radium and products of radium decay, including radon isotopes, 210Pb and 210Po. The relatively longer-

lived decay products such as 210Pb, will accumulate as very thin films and deposits in gas handling 

equipment and storage tanks. 

3.5. 210Pb and 210Po from Combustion of Coal and Other Solid Fuels 

The combustion of solid fuels such as coal for heat and power applications is an important source of 

atmospheric 210Pb and 210Po and has been  studied in detail in various parts of the  World.  During   the 

combustion of solid fuels, trace elements, including 210Pb and 210Po, partially volatilise along with organic 

constituents in the fuel matrix. The remaining trace elements remain in the fuel bed and are eventually 

collected as bottom ash. The volatilised fraction generally condenses on fly ash particles in the flue gases as 

the flue gases are cooled [115]. Fly ash samples collected from coal-fired power stations have been reported 

to contain elevated concentrations of 210Pb and 210Po, when compared with the original feedstocks [116], 

indicating that these two radionuclides volatilise to a large extent during the combustion of solid fuels. The 

United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) provide further evidence 

for the enrichment of 210Pb and 210Po relative to precursor RN     in fly ashes during solid fuel combustion in 

their survey on the activity concentrations of radionuclides in coal samples sourced from a wide range of 

geographical locations and in fly ashes sourced from various coal-fired power stations [117]. Country-

averaged activity concentrations for coal were all within 50 Bq·kg−1 for both 210Pb and 210Po. Average 

concentrations of 210Pb and 210Po in the fly ash samples were much higher by comparison (930 Bq kg−1 for 
210Pb and 1700 Bq kg−1 for 210Po). Studies on the size distribution of radionuclides in fly ash show 210Pb and 
210Po to preferentially condense on fine particles below 10 microns in size [118,119]. This makes the capture 

of 210Pb and 210Po difficult, since conventional particulate control devices (e.g., electrostatic precipitators and 

bag filters) generally become less effective with diminishing particle size [119]. Consequently, a small but 

nevertheless not insignificant fraction of the 210Pb and 210Po in solid fuels is emitted from the stack into the 

atmosphere. According to Roeck et al. [120], in old coal-fired power plants, ca. 3% of the initial radioactivity 

will be discharged from the stack but this proportion is no more than 0.5% in modern plants. UNSCEAR [121] 

state that annual emissions from a “typical” 600 MW coal fired power station was 0.4 GBq for 210Pb    and 0.8 

GBq for 210Pb. 210Pb and 210Po may also accumulate in deposits on furnace walls and on the fireside of boiler 

tubes. 

The amounts of 210Pb and 210Po released into the different product streams during solid fuel 

combustion not only depend on processing parameters (e.g., combustion temperature and gas 

atmosphere) but also on the properties of the  feedstock,  particularly the  activity concentrations of 
210Pb and 210Po. Most coals contain small amounts of parent U and Th but their concentrations can vary 

over several orders of magnitude from deposit to deposit. There is a substantial volume of literature on 

naturally occurring radionuclide distributions in coals and fly ash [116,122–125]. Coal is formed via 

reduction of organic material, in which uranium is trapped or adsorbed onto clay particles, carbonaceous 

matter, pyrite and organic matter. In contrast, Th occurs within minerals such as monazite or apatite. 

Since organic matter is an effective reductant, coal horizons may accumulate additional uranium over 

time by extracting dissolved uranium from circulating groundwaters [126]. Lower rank sub-bituminous 

coals, brown coals, and lignites may contain higher concentrations of parent U and Th ([125] and 

references therein). Unconsolidated analogues, including peats, may also contain anomalous RN 

concentrations. 
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Enhanced atmospheric 210Po in  urban  areas  may  be  attributed  to  coal-fired  power  stations [127,128]. 

In a comparison of emissions from power plants fuelled by different hydrocarbon fuels, Häsänen et al. 

[129] point out that the greatest emissions of 210Po per burnt volume of fuel were from combustion of 

peat. 

3.6. 210Pb and 210Po from Exploitation of Mineral Sands 

Anomalous concentrations of 210Pb and 210Po are associated with exploitation of mineral sands for 

production of zircon and zirconia, titanium dioxide and rare earth elements. Radiological risks 

associated with such ores (and corresponding products and wastes) are generally low (around 10,000 

Bq·kg−1 [71]). This could, however, be an area in which 210Pb and 210Po release is set to increase, since 

demand for these commodities, especially REE, is booming, and new mineral sands operations are being 

established around the globe. 

Mineral sands are of particular interest because of the indirect information they provide on potential 

mineral hosts for 210Pb and 210Po. The minerals within such sands (zircon, baddeleyite, monazite, 

xenotime, ilmenite, rutile, etc.) all host trace to minor amounts of uranium and thorium (varying up to as 

much as 1 wt % depending on primary source) and are all highly refractory. Despite this, there are 

relatively few published studies detailing 210Pb and 210Po geochemistry in mineral sands enabling an 

understanding of whether daughter radionuclides are retained in the crystal structures. The 

manufacture of zirconia for glazes and ceramics involves production of small volumes (~1% of feed) of 

highly RN-enriched waste, as well as volatilisation of 210Pb and 210Po. 

Titanium oxide pigment production, from rutile, a mineral that also commonly contains primary minor U 

and Th, also results in a RN-enriched solid waste residue. 

3.7. 210Pb and 210Po in Other Anthropogenic Materials 

Most iron ores contain only low concentrations of 210Pb and 210Po and thus accumulation of 

radioactivity in waste materials produced by iron and steel production are mostly attributable to other 

feed materials (coal/coke and limestone). 210Pb and 210Po tend to accumulate in the sinter plant in dust 

collected from the gas cleaning systems and are generally very low or absent in saleable products. 

According to Martin et al. [71], for every million tonnes of steel produced, 2000 tonnes  of contaminated 

dust will be generated. In a study of sinter plant radioactivity in the Port Kembla foundry, NSW, Australia, 

Brown et al., in a report cited by Martin et al. [71], report activities of 18,900 and 15,600 Bq·kg−1 for 
210Pb and 210Po, respectively, in ductwork dust. 

Production of the elements niobium and tantalum is also associated with generation of RN-rich residues. 

Like tin ores, Nb–Ta ores are granite-related and commonly contain minor amounts of other elements 

including uranium (and thorium). Pyrochlore, a primary ore mineral of niobium and tantalum, will often 

contain actinides at measurable concentrations. 210Pb activities as high as 16,700 Bq kg−1 in slags from 

a Brasilian niobium processing facility are reported [11]. 

Martin et al. (1997) [71] compiled information on 210Pb and 210Po in cement, bricks and other building 

materials, and provide activity concentrations for 226Ra and 232Th.  They note that activities  are only of 

concern if substantial amounts of waste materials in which 210Pb and 210Po are concentrated are added into 

the materials.  Examples include the common addition of copper slag in concrete (in     the former East  

Germany),  phosphogypsum  waste in  wallboard and  road  construction,  and  fly-ash in bricks and some 

cements. Lightweight building blocks may contain both slag and fly-ash. Several publications detail 

representative 210Pb and 210Po activity concentration data for building materials, focussing on eastern 

European countries where the practice of adding smelter slags and fly-ash was commonplace [130–132]. The 

environmental impact of radionuclide release during processing of granite rock for ornamental stone has also 

been explored [133].  In this paper,  Guillén et al.  suggest  that even basic mechanical processing of granites 

can lead to increased levels of 210Po and 210Pb in the surrounding environment, as dusts, solid waste and 

slurries. 
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Numerous studies have sought to demonstrate the impact of historical human industrial activity by  

monitoring  the  levels  of  lead  isotopes  in  peat  bogs,  salt  marsh,  lakes  and estuarine sediments 

[38,134–140]. 

4. Mineral Repositories for 210Pb and 210Po 

The literature contains extensive reference to the potential mineral repositories for 210Pb and 210Po, 

although much of this evidence has been obtained indirectly. Very few studies to date have been able to 

provide direct confirmation that a given phase contains these RN. This is largely due to those RN with 

relatively short half-lives being present at minute concentrations well below minimum detection limits of 

conventional microanalysis. 

Polonium has no non-radioactive isotope and does not occur naturally as a metal or essential component 

of naturally occurring compounds, although the compound PbPo has been reported [141] and has been 

attributed to natural alpha decay of polonium to form lead. Polonium is readily vaporised, forming Po2 

molecules even well below the melting and boiling points (254 and 962 ◦C, respectively) via small clusters 

of polonium atoms spalled off by alpha decay. These particles are readily adsorbed. Chemically, polonium 

displays similar behaviour to that of tellurium and bismuth [141,142]. More than 50 polonium compounds 

have been synthesized including metal polonides, polonium hydride, the two oxides PoO2 and PoO3, 

halides and sulphates. Various oxidation states, including 2+, 4+ and 2−, are known. 

Valuable insights into the behaviour of 210Pb and 210Po in polymetallic ores are provided by 

Golubev et al. [143]. By comparative analysis of different volumes of ore within a single vein-type 

uranium orebody, these authors provide  critical  evidence  for  migration  of  238U  and,  critically, of 

intermediate decay products within an effectively open system, creating disturbances of U–Pb 

systematics, expressed as local enrichments or depletions in 206Pb, giving rise to discrepancies between ages 

based on 206Pb/238U and 207Pb/235U ratios. The authors note the presence of zones with low U contents 

but with excess 206Pb. These contain pyrite/marcasite onto which migrating longer-lived radionuclides, 

including 210Po and 210Pb, are considered to accumulate, effectively playing the role of geochemical 

barriers within the system. 

In a study attempting to identify the solid-phase partitioning of 210Po and 210Pb in anoxic marine sediments 

[144], the influence of early diagenetic processes on distribution patterns is documented.     In  sediment,  
210Po  was  found  to  be  either  bound  to  organic  matter,  sulphides  such  as  pyrite,   clay minerals or 

refractory oxides. 210Po was found not to be significantly bound to acid volatile sulphides in sediment, even if 

the authors considered that 210Po initially bound to acid volatile sulphides may have been redistributed by 

bioturbation. 

Because of the extremely low concentrations and the difficulty of separating fine-grained minerals, there is 

a paucity of published concentration data for 210Pb and 210Po in individual minerals. Identification of the 

potential mineral repositories for either radionuclide, except for post-decay reincorporation of daughter 

RN into parent U-minerals is therefore reliant on indirect observation. Good indications as to potential 

hosts can nevertheless be made based on the literature we have summarised above (Table 1). 
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4.1. Re-Incorporation of Radionuclides into Parent Minerals 

All minerals originally containing uranium will host daughter RN if those products do not migrate from the 

parent. Plausible 210Pb and 210Po carriers thus include the more common uranium minerals, such as 

uraninite, coffinite, uranothorite and brannerite, as well as the large number of minerals which carry trace 

to minor amounts of uranium. The latter include REE-fluorocarbonates and phosphates (monazite, 

bastnäsite, synchysite, florencite, xenotime, etc.), and common accessory minerals in rocks and ores such 

as apatite, allanite, zircon, titanite and rutile). The assumption that 210Pb and 210Po can be found in these 

minerals, however, infers that all decay chain products, including 234Th, 226Ra and 222Rn, are retained 

within the parent mineral, either within the crystal lattice, or as inclusions. 

In the case of the  mineral  uraninite,  strong  supporting  evidence  for  this  emerges  from  our own 

recent  research  on  the  Olympic  Dam  Cu–U–Au–Ag  ore  deposit,  South  Australia,  where (re-

)incorporation of radiogenic lead within the crystal lattice of uraninite is recognised [145–147]. Lead 

concentrations in Olympic Dam uraninite can, locally exceed 10 wt % in solid solution within the uraninite 

structure. This contradicts the findings of Janeczek and Ewing [148], where it is maintained that Pb2+ is 

incompatible within the fluorite-type uraninite structure at concentrations greater than a few wt %. 

Other U-minerals will also contain Pb, albeit at lower concentrations, e.g., coffinite and 
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brannerite from Olympic Dam [149]. Lower Pb concentrations relative to contained U suggest these 

structures accommodate daughter RN less well than uraninite. 

The presence of radiogenic lead is also well known in minerals such as monazite and zircon where it directly 

substitutes into the crystal structure (e.g., [150,151]). The ratios between parent uranium, thorium and 

radiogenic lead underpin U–Pb geochronology. In the Olympic Dam deposit, both U and Pb (206Pb) are 

also noted in a characteristic oscillatory-zoned textural type of hematite [152,153]. Hematite is the most 

abundant gangue mineral in the deposit. Within this hematite, uranium and lead isotopes, both in solid 

solution and as nanoparticle inclusions [154] are in apparent secular equilibrium, indicating a closed system 

and providing a basis for U–Pb geochronology using hematite [152,155,156]. 

4.2. Migration and Precipitation as New Minerals 

During radioactive decay of U-bearing minerals, metamictisation will take place. This is a natural process  

occurring over geological time (millions  to billions of years) in  which the crystal structure      of the parent 

mineral is gradually, and ultimately completely, destroyed, rendering that mineral amorphous [157]. During 

that process, any impurities may be  expelled  from  the  metamict  phase. Even if a portion of the 210Pb and 
210Po is retained within the U-bearing parent mineral, migration of daughter isotopes and other trace 

elements initially incorporated within the parent mineral (Th, REE, Nb, etc.) is widely observed to take place 

following metamictisation, alteration and recrystallization.  The radionuclides are either precipitated as new 

minerals, or alternatively, are incorporated into other existing minerals at distances ranging from microns to 

metres from the parent phase. Such phenomena are particularly common in hydrothermal ores, in which 

transport is assisted by permeability and       the presence of fluids. There thus exist several potential mineral 

hosts for daughter RN. Obvious products resulting from 210Pb and 210Po migration include the common lead 

mineral, galena, which is often observed within,  or immediately adjacent to parent U-minerals ([158,159],  

and many others).  For example, nanometre-scale galena is documented within uraninite in parts of grains in 

which Cu-sulphides and fluorite fill sub-micron-scale fractures [145]. Finch and Murakami [160]  have  

outlined how galena will form in close association with uraninite if the sulphur activity is high enough. Direct 

evidence for the presence of 210Pb within galena is limited but has been shown within recently formed galena 

from burning heaps associated with coal mining in the Lower Silesian basin, Czech Republic, [161]. Migrating 

radiogenic lead may also combine with Se or Te, either within existing minerals or from fluid, to form 

clausthalite (PbSe) or altaite (PbTe). Owen et al. [162] have recently documented the formation of 206Pb-

enriched nanoscale inclusions of clausthalite in Cu–(Fe)-sulphides, which formed via interaction between 

migrating Pb in fluids with Se initially hosted in solid solution within the sulphides. These may be as small as 

1–2 nm in size but display coarsening. 

Rollog et al. [163] have used nanoSIMS mapping to directly observe the sub-micron-scale distributions 

of 210RN in copper ores and flotation concentrates from Olympic Dam; measurements are the sum of 210Po 

+ 210Bi + 210Pb but are overwhelmingly dominated by 210Pb. Although concentrated within U-bearing 

minerals, migration of 210RN away from the parent is observed on the scale of microns, with formation of 

nanoinclusions of “new” phases at sulphide grain boundaries, within microfractures, and within 

micropores in a range of host minerals. This phenomenon leads to daughter 210RN becoming readily 

trapped within their host phases and accompanying those hosts through processing. Figure 3 shows an 

example of this innovative method to visualise RN distributions within individual mineral grains. 
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Figure 3. nanoSIMS map, modified from Rollog et al. [163] confirming the presence of 210RN in apatite that is 

compositionally-zoned with respect to REE. Green = Fe, blue = Ca, pink = 210RN. 

 
4.3. Sulphates, Carbonates, and Other Potential Hosts 

Sulphates, notably barite (BaSO4), celestine (SrSO4), anglesite (PbSO4) and gypsum are commonly 

considered as hosts for radium and subsequent daughter radionuclides including 210Pb and 210Po. Prieto 

et al. [164] provide compelling experimental evidence for (Ba,Pb)SO4 solid solution. We are nevertheless 

unaware of empirical proof for the presence of 210Pb and 210Po in these sulphates. 

The similarity in chemical behaviour between Ra and Ba, and to some extent also Pb, makes sulphates a 

good host for 210Pb and, potentially, for 210Po. For example, Al Attar et al. [114] report barite-strontianite 

solid solution and hokutolite [(Ba,Pb)SO4] as the main mineral components of radionuclide-containing 

scales associated with oil production. Extensive solid solution between isostructural Ba- and Ra-

sulphates (so called radiobarite, (Ba,Ra)SO4 [165–174] has been modelled, and a number of natural 

occurrences have been documented e.g., [175,176]. In a detailed mineralogical insight into radionuclide 

host phases, Landa and Bush [79] document intense alpha particle activity associated with the presence 

of  210Pb  within  micron-scale  inclusions  of  anglesite  within  laths of gypsum. 

Other possible candidates as hosts for 210Pb and 210Po in natural samples include common 

carbonates,  notably the Pb-carbonate cerussite (PbCO3).  Reactions of dissolved Ra and Ba onto  the 

surfaces of different carbonate minerals were examined by Jones et al. [177]. Calcite, dolomite, 

strontianite, rhodochrosite, ankerite and witherite all showed evidence of a co-precipitation reaction 

(increased uptake with increasing Ra concentration), siderite, magnesite and ankerite demonstrated a 

behaviour suggesting simple sorption. Magnesite showed a particularly high sorption capacity.  An 

extensive treatment of the principles and mechanisms of co-precipitation with application to 

radionuclide incorporation within, and onto carbonate substrates, is given by Curti [178]. 

The role played by tellurium-bearing minerals, notably altaite (PbTe) and bismuth tellurides, as hosts for 
210Pb and/or 210Po is unknown at the present time. These phases, as well as the selenide analogue of 

galena, clausthalite (PbSe) are minor yet persistent components of many hydrothermal ores, could potentially 

be important carriers of either radionuclide, especially given the similar chemistry of Po and Te. The 

environmental geochemistry of tellurium itself is only recently beginning to become better understood 

[179]. There may be a number of less obvious candidate hosts for 210Pb and 210Po. We can reasonably 

speculate that these will include those minerals capable of trapping gaseous radon within pore spaces 

during, or subsequent to growth. 

4.4. Clay Minerals, Iron-Manganese-Oxides and Organics 

Clay minerals, Fe–Mn oxy-hydroxides, and organic matter are well known sorbants for dissolved uranium 

and radium. 210Pb and 210Po sorption may not be primary and abundances may relate to 
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in-situ decay of the sorbed U and Ra. As an alternative, sorption of 222Rn daughter isotopes, including 
210Po and 210Pb may follow their generation via decay of dissolved 222Rn. 

In a study of a range of sites on the River Danube, preferential accumulation of 210Po in sediments that are 

rich in clay minerals has been shown [180]. These authors invoked the ion exchange and adsorption 

characteristics of different types of clay minerals, suggesting that they may  represent both  a sink or a source 

for 210Pb and 210Po and other contaminants, as element mobilities are influenced by evolving physical, 

chemical and biological conditions. 

A strong association between 210Po and 210Pb and iron oxide minerals is demonstrated in 

beach sands [181], even if other, far more voluminous hosts contained the majority of these and other 

radionuclides. Yang et al. [182] report on the adsorption properties of 210Po and 210Pb onto micro-

particles and reported that Fe- and Mn-oxides were stronger sorbents of 210Po and 210Pb than SiO2 and 

CaCO3. They did, however, note preferential adsorption of 210Po over 210Pb onto both SiO2 and CaCO3. In 

the presence of the protein BSA; acid polysaccharides appeared to produce the opposite effect, enhancing 
210Pb adsorption. 

Interaction, by both adsorption and incorporation, between Pb and Fe(III) (oxyhydr) oxide minerals, has 

been demonstrated by Yang et al. [183], who considered that the presence or absence of these minerals 

plays a major influence on the partitioning and transport of lead. They have shown how Pb is both surface-

adsorbed and incorporated within ferrihydrite during crystallisation to hematite and goethite, 

depending on pH conditions. 

Further evidence for the importance of both organic compounds and nanoparticles is given by  Yang et al. 

[184], who have documented adsorption and fractionation of 210Po and 210Pb onto chemically simple oxide 

and carbonate nanoparticles in the presence or absence of various macromolecular organic compounds 

(MOCs) in natural seawater. MOCs were found to enhance sorption of selected nuclides on most nanoparticles 

(partition coefficients for 210Po and 210Pb increasing 2.9- and 5-fold, respectively), even if adsorption was 

largely dependent on particle composition. 

In soils, 210Po is adsorbed onto clay particles and organic material [9,185]. Sequential leaching techniques 

enable insights into the speciation of 210Pb and 210Po in soils to be gained [46]. Of the five fractions into which 
210Pb and 210Po were fractionated, they found the majority of both 210Pb (67.2%) and 210Po (77.4%) bound 

to the insoluble residue. Small, but still significant fractions of the total 210Pb (14.3%) and 210Po (21.0%) were 

extracted with NH2OH HCl in 25% v/v acetic acid, which may indicate partial association of the radionuclides 

with Fe–Mn-oxides [186]. The bio-reactivity of 210Pb and 210Po was demonstrated by Kim and Kim [187], who 

asserted that colloids play a major role in their cycling within oceans. 

Further supporting evidence for the affinity of 210Pb and 210Po for Fe-oxides comes from the Talvivaara 

mine, Eastern Finland, where microbe-induced heap leaching is used to recover Ni and by-product Zn, 

Cu, Co from a black schist [188,189]. Non-target metals in the deposit include uranium (as uraninite) and 

its daughter isotopes. The behaviour of 226Ra, 210Pb and 210Po were studied in the mining process. It was 

found that they mostly remain in the heaps during leaching, where they are associated with jarosite, 

goethite and gypsum. 

5. Discussion 

5.1. Geochemical Behaviour of Daughter Radionuclides 

Considerations of the likely mineral hosts for 210Pb and 210Po needs to include not only the geochemistry 

of each specific radionuclide, but the geochemical behaviour of the entire 238U decay chain in the context 

of half-lives that range from fractions of a seconds (214Po) to billions of years (238U 

4.5 × 109 years). The geochemical behaviours of each  daughter  radionuclide  differ  fundamentally from 

those of parent uranium, and thus, if released from the parent mineral and able to migrate, even    if only at 

the sub-micron-scale, they will be readily incorporated, by virtue of ionic size and/or charge, into  quite  

different  minerals.   They  may  potentially  even  undergo  several  “metamorphoses” before 
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accumulation of stable radiogenic lead within minerals such as galena or clausthalite that which do not 

necessarily coexist with the parent phases. Geochemical differences are particularly pronounced between 

U and Th, between Th and Ra, between Ra and Rn, and between Rn and Pb [2]. Figure 4 is a schematic 

diagram that attempts to illustrate how RN behaviour in different minerals may be viewed, also indicating 

how decoupling of RN within the decay chain might be achieved. 

 

Figure 4. Schematic illustration of RN (red dots) behaviour in selected minerals within a mineralized rock, 

including reincorporation into parent mineral (a); grain-scale migration of daughter RN (b); fluid-assisted 

migration to be incorporated into new minerals (c) and potential adsorption of decoupled species (d). 

 
Uranium can form a great variety of stable phases with different ligands. No less than 262 different uranium 

minerals are currently recognised, one of the largest numbers for any element in the periodic table [190]. 

Uranium thus belongs among a small group of elements whose mineralogical diversity is anomalous 

compared to its low crustal abundance. The unusual mineralogical behaviour of uranium is attributable 

to the unique combination of relatively large-size, high-valence and unusual coordination geometry 

displayed by the U6+ ion [191]. The hexavalent oxidation state is dominant in most U-minerals although 

U occurs in the tetravalent state in the most common minerals, including uraninite. Uranium mineral 

diversity has been amplified by Earth evolution over time with respect to oxidation state [192]. Although 

U4+ is not especially mobile, U6+ is highly mobile under oxidising conditions when it will readily 

dissolve, re-precipitating upon contact with reductants such as 
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sulphides or graphite. Certain minerals containing uranium undergo a process of structural breakdown 

(metamictisation), during which daughter radionuclides are not normally captured within the host 

lattice but rather migrate within or outside the mineral (e.g., [157]). In the case of uraninite, rapid 

annealing kinetics (e.g., [145,193]), do, however, allow for repair of radiation damage, allowing for 

sustained inclusion of decay product radionuclides in the mineral. 

A good example of how daughter products differ geochemically from their parents is the ability for 

radium (226Ra), unlike U or Th, to be readily enriched in the common Ba-sulphate mineral, barite. This, as 

examined above, takes place via direct ionic substitution (Ra2+ for Ba2+) due to its comparable geochemical 

behaviour to barium with respect to charge, electronegativity and ionic size (0.143 and 

0.134 nm for Ra and Ba, respectively). Although less well constrained, the potential incorporation of 
210Pb into galena and other Pb-bearing minerals, and of 210Bi and 210Po into bismuth minerals (including 

tellurides and other chalcogenides) may be viewed in the same way. 

Decay of 226Ra involves production of 222Rn, a gas, which will seek to escape from the host mineral. 

Malczewski and Malczewski [194] have provided empirical data on 222Rn and 220Rn emanations from a 

range of metamict oxides, phosphates and silicates. These data demonstrate exponential differences in 

emanation rates among common minerals. Moreover, these rates vary as a function of many factors [195] 

closely linked to crystal structure and placing important controls on the decoupling of post-222Rn decay 

products from parent 238U. Significantly, minerals with the  highest 
238U concentrations, notably uraninite and brannerite, showed some of the lowest 222Rn and 220Rn 

emanation coefficients. We believe that these rates—which are closely linked to crystal structure—place 

important controls on the decoupling of post-222Rn daughter isotopes, including 210Po and 210Pb, from 

parent 238U. This decoupling is expressed as secular disequilibrium on the small scale yet may not be 

noticed in bulk samples, or on the scale of a mineral deposit. The importance of the “radon stage” is 

illustrated in detailed mineralogical-isotopic study on a weathered aplite dyke [196], which showed 

significant (>40%) release of radon, leading to significant differences in the absolute concentrations of 

distributions of pre-Ra and post-Ra radionuclides. 

Several studies cited in this review have given compelling evidence that particles of, or containing, 210Pb 

and 210Po are readily adsorbed onto the surfaces of clay minerals, Fe-oxides, and potentially also other 

minerals that can readily adsorb heavy atoms. This raises the possibility that the two radionuclides may 

not necessarily occur within the crystal structures of mineral phases. Evidence from disparate sources 

suggests that any study addressing the mineralogical deportment of 210Po and 210Pb must also consider 

that these radionuclides, or at least a significant part thereof, may not be hosted within minerals at all, 

but largely as nanoparticles of unknown speciation, which are adsorbed onto the surface of other 

minerals, such as clays, and probably, Fe-(hydr)oxides. In solid rocks, such nanoparticles may be present 

within micro-fractures in minerals and/or at the interfaces of mineral grains. We also believe that the 

affinity of 210Po and 210Pb for organic matter, and the potential role of organic complexes in the transport 

and sequestration of 210Pb and 210Po (e.g., biopolymers [197], should also be taken into consideration in any 

effort to derive a quantitative mineralogical balance for 
210Pb and 210Po. 

The physical process involved in radionuclide decay has profound consequences for understanding the 

mineralogical location of each daughter radionuclide. An alpha particle comprises two protons and two 

neutrons,  the nucleus of a helium atom.   When alpha decay takes place,      the energy of the nucleus 

recoiling from alpha decay is sufficient to break chemical bonds [198], and the newly-formed nucleus 

(with new geochemical behaviour) will be deposited at a different site in the damaged crystal. This new 

position and matrix damage may make the nucleus more vulnerable to mobilisation or leaching [2]. A 

newly-formed radionuclide may thus migrate and be incorporated into another mineral, although this 

may be limited if the half-life is short, e.g., for 222Rn (3.83 days) or 210Bi (5 days). Cowart and Burnett [2], 

citing Reference [199], also make the valuable point that, if sited close to a grain boundary, the resulting 

nucleus may be recoiled across the grain boundary and end up in an entirely different matrix. 
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Roudil et al. [200] explored the creation of “bubbles” in uranium minerals from production of radiogenic 

helium as a product of alpha decay. This He may be concentrated in the mineral grains, or trapped at grain 

boundaries, also generating matrix damage. Their measurements of He outgassing from a uranium ore 

showed that less than 5% of the He produced was conserved, and that one-third of the residual He is 

occluded in the matrix and vacancy defects, and two-thirds occurred as bubbles observable by high-

resolution transmission electron microscopy. 

5.2. Research Trends and Future Directions 

A large part of the existing literature on 210Pb and 210Po and their distributions in rocks and minerals 

concerns radioactive contamination resulting from nuclear weapons testing, uranium mining, energy 

generation and industrial production of fertilisers and other products from materials containing RN. These 

issues remain serious but have attracted markedly less research attention in the 21st century literature as 

industrial practices have improved. This has been compounded no doubt by the relatively short half-lives 

of 210Pb and 210Po such that their concentrations, in at least some materials produced by human activity in 

the past, have declined to safer levels. The contemporary literature also reflects the many ways in which 

radioactive waste can be efficiently treated and immobilised ([201] and references therein). Indeed, the 

“benefits” of man-made contamination have been highlighted in the more recent literature, notably the 

potential of short-lived anthropogenic radionuclides, including 210Pb and 210Po, as geochemical tracers for 

understanding processes and rates of sedimentation (e.g., [67]). 

The toxicological risks from exposure to 210Pb and 210Po in materials from a wide range of terrestrial 

and marine environments are likely to remain a research focus. As older anthropogenic sources of air- 

and water-borne radionuclides (e.g., nuclear testing, energy generation) begin to diminish in 

significance, others emerge, e.g., 210Po release from large-scale burning of forest biomass (e.g., [202]), or 

even ingestion of 210Pb from calcium dietary supplements [203]. It should, however, be borne in mind 

that natural sources of 210Pb and 210Po are more significant in scale than man-made sources, e.g., from 

volcanic eruption. Indeed, a study of radionuclide hazards in seafood from the NW Pacific fishing area 

contaminated following the 2011 Fukushima nuclear accident [204] showed that despite elevated 

Fukushima-derived 90Sr, 134Cs and 137Cs, these were exponentially subordinate in dose terms to natural 
210Pb and 210Po in the same ocean area. 

Despite the relative slowdown in the construction of nuclear power stations in the aftermath of the 

Fukushima nuclear accident, production of uranium for power generation continues to increase. Nuclear 

power is currently advanced as a possible low-carbon emission “green” energy alternative among the 

conservationist movement (e.g., [205]). In the absence of available technology to process thorium (a 

potential alternative fuel; [206]), increased demand necessitates a continued supply of uranium, and 

inevitably, as for other commodities, a need to exploit lower-grade resources, and to optimise extraction 

from deposits in which uranium occurs alongside other metals, notably copper, as in giant iron-oxide 

copper gold deposits such as Olympic Dam, South Australia. 

6. Conclusions 

This review has highlighted some of the many advances made in understanding the distribution of 

radionuclides in the environment during the past three decades. It also highlights that although the 

deportment and behaviour of 210Pb and 210Po at the scale of individual minerals is reasonably well 

understood, or at least predictable to some degree, there remains a paucity of direct observational data at 

the nano- to micron-scales to support these models. This is particularly true for metal ores and the 

products of their processing, for which there is an outstanding gap in knowledge. Bridging this gap is 

essential for generation of clean concentrates from a range of uranium-bearing ores. 

Characterisation of short half-life radionuclides down to the atomic scale is now possible via use  of a 

combination of nanoscale techniques: nanoSIMS isotope mapping [163]; scanning transmission electron 

microscopy with electron energy-loss spectroscopy (e.g., [207]); and high angle annular dark-field scanning 

transmission electron microscopy on foils prepared in-situ using focused ion 
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beam methods (e.g., [162,208,209]). Valuable additional constraints on RN deportment may also come 

from the application of nanoscale analysis techniques to radioisotope dating of minerals within 

hydrothermal mineral deposits forming on the present-day seafloor [210,211]. Despite these crucial 

advances, a fully quantitative understanding of the physical form of 210Pb and 210Po, and the quantitative 

mineral deportment of these RN in solid media, remains elusive. Researchers can, however, expect to 

respond to these outstanding challenges by capitalising on micro-/nanoanalytical technology, which is 

rapidly advancing in terms of both spatial resolution and analytical sensitivity. This will enable reliable, 

predictive information on the physical state of 210Pb, 210Po and other RN to be communicated to 

stakeholders, including mining companies and environmental authorities. 
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Nanoscale investigation of symplectites comprising clausthalite (PbSe) 

and host Cu-(Fe)-sulfides (chalcocite, bornite and chalcopyrite) are 

instructive for understanding the genesis of South Australian 

Mesoproterozoic Cu-Au-(U) ores. High-resolution Focussed Ion Beam 

(FIB)–SEM imaging and Transmission Electron Microscopy study of 

FIB- prepared foils reveal that clausthalite ‘inclusions’ vary in size from 

a few µm to down to nm-scale (<5 nm), and are present as rods, blebs or 

needles in any of the aforementioned sulfides. The Cu-(Fe)-sulfides 

outside inclusion areas still contain measurable Se; these are highest in 

chalcopyrite. Pb is, however, absent from these areas, suggesting 

formation from solid solution in the system Cu-Fe-S-Se with Pb supplied 

from an external source. Although the orientation of swarms of smaller 

clausthalite inclusions is broadly congruent with the host, there is an 

orientation offset with host sulfide that increases with bleb coarsening, 

nm-scale inclusions of other phases, and with boundary 

corrosion/displacements. These are particularly apparent in 2a bornite 

and high-T chalcocite. Such decrease in the degree of crystallographic 

congruency with the host sulfide indicates that the symplectites record 

superimposed thermal event(s). Moreover, trace element re- 

mobilisation within the ores is concordant with sulfide recrystallization 

within nanoscale domains during fluid percolation as observed by 

presence of pores, nucleation of multi-component inclusions along 

boundaries between low-T chalcocite and bornite, etc. Although 

clausthalite may have initially exsolved from Cu-(Fe)-sulfides, cyclic 

solid-state diffusion processes, also facilitating incorporation of mobilized 

radiogenic Pb released from U-(Th)-bearing minerals, have 

progressively modified primary structures. Such observations are 

concordant with preliminary LA-ICP-MS Pb-isotope data for Pb-

chalcogenides, which reveal Pb-Pb ages younger than the initial ~1590 

Ma mineralisation event. 
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Iron-oxide copper gold (IOCG) deposits such as Olympic Dam represent the primary resource 

for copper production in South Australia. Uranium and the daughter products of 238U decay, 2226Ra, 

210Po and 210Pb, are present in copper concentrates produced from IOCG ores. Ongoing efforts to 

identify novel solutions to remove or reduce concentrations of these radionuclides (RN) are 

benefitting from empirical mineralogical research on ores and concentrates and experimental 

studies targeting the geochemical behaviour of RN at conditions similar to those in the processing 

plant. 

Aluminum-phosphate-sulfate (APS) minerals within the alunite supergroup have the general 

formula MAl3(PO4)2-x(SO4)x(OH,H2O)6, and are known to form a broad solid solution series, 

housing a range of mono-, di- or trivalent cations within their M-sites. Within the Olympic Dam 

metallurgical circuit, APS minerals of the alunite supergroup were shown to sorb products of 238U 

decay, notably 226Ra and 210Pb (Rollog et al. 2019; Owen et al. in review) both over geological 

time within the deposit and during ore processing. Many APS phases remain stable over a wide 

range of pH and Eh and temperatures up to 450 °C (Kolitsch and Pring 2001; Schwab et al. 2005). 

As such synthetic APS phases present as viable candidates not only for the removal of 

radionuclides from metallurgical streams, but also for their safe storage and isolation from 

surrounding environments. 

The genesis of natural APS mineral phases within the Olympic Dam deposit are shown to be 

paragenetically late, forming via replacement of earlier REE-bearing phosphates (fluorapatite, 

monazite and xenotime), and local dissolution and replacement of sulphides, with the development 

of two distinct compositional groups: Ca-Sr-dominant, sulfate-enriched APS minerals that that lie 

within the woodhouseite and svanbergite compositional fields; and a REE- and phosphate-

dominant group trending towards florencite in composition, similar to that reported by Schmandt 

et al. (2019). Of the two groups, Pb, both commonly sourced and radiogenic in origin, is shown to 

favor the Ca-Sr-dominated APS phases. Enrichment of these phases by Pb (including 210Pb) is 

suggested to increase throughout the acid leach stages of processing, as evidenced by electron 

probe microanalysis and NanoSIMS isotope mapping. The data suggests that Pb-incorporation 

occurs with the replacement of Ca by Pb within the APS crystal structure, an interpretation in 

agreement with thermodynamic modelling given by Schwab et al. (2005). The same authors show 

that the thermodynamic stability of Ca-, Sr-, and Pb-bearing APS phases increases in the order 

Pb>Sr>Ca. 

Ca- and Sr-bearing APS phases were synthesised by modifying existing recipes (Schwab et 

al. 2004) to generate mixed crystals. Ca/Sr ratios were varied according to the below reaction in 

order to test the role of compositional variability of mixed APS phases on the sorption of Pb via 

dilute PbNO3 solution.  

M(OH)2 + 3Al(OH)3 + H3PO4 + H2SO4 → 

MAl3(PO4)(SO4)(OH,H2O)6 + nH2O 

Phases which are Sr-, and (Ca,Sr)-bearing were produced. Accessory augelite, Al2(PO4)(OH)3, 

was also formed within all samples, albeit in minor to moderate concentrations. APS crystals 
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showed compositional zoning with Al-, and S-rich cores with <1 apfu at the M-site, to 

stoichiometric APS at the rims with roughly equal concentrations of P and S. 

Pb-sorption experiments were run by placing the synthesized APS phases in reaction vessels 

containing solutions of Pb(NO3)2 and diluted HNO3 for a period of 5 days. The concentration of 

Pb ([Pbaq]0) in the reaction fluid was set at 10, 100 and 1000 ppm and a pH range of 1.5, 3.5 and 

5.5 was tested. 

Solution-ICP-MS, EPMA, LA-ICP-MS and EXAFS analysis confirm the sorption of Pb by 

the synthetic APS phases, with Pb sorbtion favoured at pH 3.5 and above. EPMA spot analyses 

indicate the preferential sorption of Pb by phases which trend towards higher S/P ratios, as well as 

those that deviate from ideal stoichiometry (i.e. Al>3 apfu and ∑M2+<1). Targeted LA-ICP-MS 

analyses comparing the ratios of M-site cations indicate minimal change of Sr concentration with 

increasing Pb incorporation within both Sr-, and (Ca,Sr)-bearing APS phases, while Ca 

concentration within (Ca,Sr)-bearing phases subsides with increasing Pb incorporation, indicating 

direct replacement of Ca by Pb within the crystal structure of APS phases. Sr-bearing phases more 

commonly displayed non-stoichiometric values of ∑M2+, indicating that Pb incorporation into 

such phases may arise via occupancy of sites that were previously vacant, or otherwise held by H+ 

or excess Al within the structure. 

An EXAFS study on the resulting Pb-sorbed solids was conducted, revealing the nature of Pb 

sorption by the synthesized APS material. The data showed that the dynamic incorporation of Pb 

by APS phases occurred overwhelmingly at pH 3.5. Some experiments run at pH 5.5 also favored 

the formation of Pb-bearing APS whereas other conditions favored dissolution and replacement of 

augelite to form a pyromorphite-like structure. Fairly featureless patterns in R-space were 

frequently observed in experiments run at high [Pbaq]0 (100-1000 ppm) with slightly shifted peaks 

indicating the prevalence of surface-sorbed Pb. Here, however, solution-ICP-MS data regularly 

showed undulating sorption trends, particularly in (Ca,Sr)-bearing material, indicating that 

equilibration between solution and solid may have not yet been achieved. Thus, synthetic APS 

phases may provide a novel approach to reducing radionuclides, particularly 210Pb, from 

metallurgical streams. 
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