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Abstract xvtl

ABSTRACT

An investigation has been made of an existing non-linear method of analysis for

reinforced concrete frames which takes into account material and geometric non-

linearities. To check the adequacy and accuracy of this method, comparisons have

been made between analytical results and published results for æst beams and frames.

Although poor correlation was achieved in some cases it was also noted that additional

effects due to tension stiffening and joint flexibility had not been taken into account.

Analytic models for these effects have proposed and incorporated in the non-linear

method of frame analysis. The method of analysis has also been modihed to allow for

sequential non-proportional loading, as well as proportional loading. Good correlation

has been achieved between analytical results and test data.

An analytical study of frames using the improved method of analysis has shown that

tension stiffening has a beneficial effect on stiffness, and a minor influence on -

strength. However, frame performance is highly dependent on the nature of the joint

detailing. Flexibility and reduction of strength in joints can adversely affect both frame

behaviour under load and load capacity. A study of several multi-storey frames for

proportional and non-proportional loading has shown that stiffness can be influenced

by the method of load application.

The accurate method of analysis has also been used to check the adequacy of the

simplified analysis and design procedures for slender columns of the Australian

Standard AS 3600. A series of unbraced sway frames were investigated by the

bottom-tier moment magnifier method and a middle-tier second order elastic approach.

The simplified approaches were found to give quite conservative results.

Several isolated pin-ended columns were analysed by the moment magnifier method

and also by a method of analysis for columns in non-sway frames mentioned in the

draft code Eurocode 2. Both these bottom-tier approaches gave accuraûe results for



Abstract xvlll

column capacities for stocky columns. Results for slender columns were more

conservative.
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Chapter 1

Introduction

L.L Background

Non-linear behaviour of reinforced concrete frames is evident at all slages of loading, -

including the working load range and up to the high overload levels. To study this

behaviour, accurate, rigorous methods of analysis must be developed, which serve an

additional important purpose: results from non-linear analyses can be used to calibrate

the more popular simplihed linear elastic methods.

Essential to the development of a non-linear method of frame analysis are material

stress-strain relationships and experimental results for individual frame components,

i.e. beams, columns and beam-column connections. This allows for the development

of individual numerical models which also form the basis for a general method of

frame analysis. Hence, the influence of the non-linea¡ behaviour of these components

on overall frame performance can be studied.

1
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1.2 Objectives and Scope

Described in this thesis is an investigation of the accuracy and adequacy of a non-linear

method of frame analysis, SAFRAME, proposed earlier by Wong (1989).

Advantages of this method, in terms of computational efficiency and storage

requirements, are discussed, and comparisons with experiment¿l results are made. In

particular, where poor correlation was achieved it was noted that additional non-linea¡

effects, due to tension stiffening and deformations within beam-column joints, were

not taken into account in the method of analysis. To study the influence of these non-

linear effects on frame behaviour, the following work has been undertaken in the

present siudy:

1. a study for the behaviour of flexural (beam) elements and isolated beam-

column connections and the performance of various test frames.

2. modifications to SAFRAME to include analyúc models for tension stiffening

in the beam elements, deformations in the beam-column joints, and-=

sequential non-proportional application of the vertical and horizontal loads.

3. a study of unbraced slender frames for non-linear behaviour, including the

influence of the non-linear effects mentioned at point 2. Analysis for post-

peak behaviour and modes of frame failure were investigaæd.

4. an investigation of the adequacy and accuracy of the simplified methods for

analysis and design of slender columns in AS 3600.

L.3 Layout and Content of Thesis

Chapter 2 is a review of non-linear methods of analysis for reinforced concrete frames.

Included in this review are details of a segmental method of frame analysis proposed
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by Wong (1989). Comparisons with test data are made and suggested improvements

to this method are discussed" These areas of improvement also form the basis for

investigations of reinforced concrete test beams and frames in Chapærs 3, 4 and 5.

Tension stiffening is described in Chapter 3 and, following a review of previous

methods, a model for tension stiffening in flexural elements is proposed. This model

has been incorporated in the segmental method of analysis and a study of the

behaviour of va¡ious single span and two-span beams is carried out.

Chapter 4 investigates the performance of isolated L-, T-, and X-joints for various

types of'detailing. A simplihed model to predict the reduction in strength and stiffness

of opening L-joints and top floor T-joints is proposed.

In Chapter 5, a method for non-proportional loading is developed. The validity of this

method is checked by comparing analytical predictions and experimental results for a

number of test frames. Typically, a set of vertical loads is applied to the structute,

followed by horizontal loading to failure.

Chapter 6 investigaæs the accuracy and adequacy of the moment magnifier method and

the second order elastic method of AS 3600. Various sway frames are analysed by

these simplified methods and results are compared with results determined from

rigorous non-linear analyses. The effects of tension stiffening and joint flexibility are

also investigated in a number of single storey frames.

In most real situations, dead loads are applied to the structure followed by the

application of horizontal wind loads. The assumption of applying these loads

proportionally is checked in Chapter 6 in a study of several multi-storey frames.

Results from non-linear analyses with proportional loading are compared with

predictions assuming non-proportional loading.

3



Chapter I : Introduction

Several isolaæd pin-ended columns are also analysed by two simplified approaches in

Chapær 6. Predicted column capacities by the moment magnifier method are

compared with predictions made by a method described in the draft Eurocode2.

A number of conclusions are drawn from the work carried out in the present study and

are summarised in Chapter 7. Recommendations for further work are also outlined in

Chapter 7.

4



Chapter 2

Non-linear Methods of Frame

Analysis

2.1 Introduction

In this chapter, various non-linear methods of analysis for reinforced concrete frames

are reviewed. The two sources of non-linearity, material and geometric effects, are

described in general terms in Section 2-2. As sectional behaviour depends on the level

of moment and axial thrust, procedures for developing M-r-N relations are discussed

in Section 2.3.

Techniques for solving the load-displacement relations are described in Section 2.4,

and analytical procedures for frame behaviour beyond the peak load are described in

Section 2.5. Although the behaviour of reinforced concrete is influenced by creep,

shrinkage and thermal effects, these are outside the scope of the present study. The

review of methods of frame analysis for material effects in Section 2.6 and for

5
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geometric effects in Section 2.7 assumes the load application is short term,

proportional and static.

Section 2.8 reviews a segmental method of frame analysis proposed by Wong (1989).

Computational time and storage requirements a¡e discussed and comparisons are made

between analytical and experimental results.

2.2 Non-linearities

2.2.1 Material Non-linearity

Non-linear material effects in reinforced concrete are attributed to the stress-strain

relationships for concrete and the reinforcing steel and also the bond breakdown

between steel and concrete. Although behaviour at sections within frames is often

characterised by multiaxial stress conditions, it is usual for non-linear frame analysis to

predict behaviour by assuming uniaxial stress-strain relationships. These may also- -

take into account the effect of conltnement by reinforcing stimrps.

Most often an elasto-plastic stress-strain relationship describes the tensile and

compressive behaviour of reinforcing steel. Strain hardening at higher strains is

allowed for by including further linear or curvilinear segments. Stress-strain

relationships for uniaxial compressive concrete have been proposed by various

investigators and will be mentioned in this chapter where appropriate. In addition,

stress-strain curves have been developed for tensile concrete in the vicinity of cracks,

but these will be discussed in Chapter 3, Tension Stiffening.

2.2.2 Geometric Non-linearity

A second type of non-linearity which influences frame behaviour is due to geometric

effects. As a frame deforms under increasing load, changes in geometry may induce

additional second order moments within members. These changes in geometry may be

6
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due to the movement at the ends of columns and also lateral deflections within the

length of columns. Non-linear geometric effects in a slender column may lead to a

stability failure which can occur well before material strength has been reached.

2.3 Moment-Curvature-Thrust Relations

2.3.1 Methods for Determining Moment-Curvature-Thrust

Relations

When reinforced concrete framed structures are subjected to increasing levels of load,

the flexural behaviour at sections within the structure is determined from moment-

curvature-thrust relations. The development of these theoretical (M - rc- M) curves is

based on assumed stress-strain curves for concrete and steel and a linear distribution of

strain at each section. Usually, the influence of shear deformations is ignored and a

uniaxial stress-strain relationship is used. Figure 2-I shows a rectangular section of

width, b, and depth, D, subjected to a moment and thrust. A linear strain distribution--

is assumed to exist across the section and the internal actions, thrust, N, and moment,

M, are found by solving Equations 2.I and2-2.

7

b
Êc

top steel

bottom steel

neutral

d Reference

do

N
D

Axís

M

strain

Figure 2.1: Assumed strain distribution for rectangula¡ section subjected to moment
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From Figure 2.1, curvature is related to stain by the following expression:

ec _Êc+es
dnd

I

6(y

v

u=bl
0

,=UÏ
0

o(y)dy

vdv)

(2.r)

(2.2)

(2.3)K

For a given strain distribution, Equations 2.1 and 2.2 are solved by one of two

methods:

(1) Direct integration

(2) Inægration using numerical techniques

The early approach by Broms and Viest (1958) involves direct integration to yield

analytical expressions for moment and axial force in a rectangular section. Based on

these expressions, Pfrang et al. (1964) obøined moment-curvature-thrust relations,

which were also used in a frames study by Breen (1964).

Kroenke et aI. (1973) extended the approach by Broms and Viest (1958) to allow for

the more general case of unequal areas of unsymmetrically placed compression and

tension steel. The strain hardening portion of the steel stress-strain curve was also

included. Berwanger (L975) found from experimental results that strain hardening can

have a significant effect on the load carrying capacity of columns.

Figure 2.2 shows the assumed strain distribution used by Kroenke et al., with

concrete strains €1 and €a and the steel strains s2 and €3. The stress-strain relationship

for concrete proposed by Hognestad (1951) and shown in Figure 2.3 is also used.
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Depending on the level of concrete strain, concrete compressive stress in Hognestad's

model is evaluated from either of the following expressions:

,,1- /. -. \l
r" = .f .11 - 0.15[ffiJ] ror eo < ec < Êu 

(2.5)

where eo is the concrete strain corresponding to maximum stress and equal to 0.002; e,

is the ultimate concrete strain and equal to 0.0038;1""=f'" = ultimate concrete

compressive strength;.Ê = stress in concrete; and e" = strain in concrete. The stress-

strain curve includes the following keypoints:

for 0< Ê"Seo

fr=8"8, for 0(e"Se,

Ír= fy for €y1êr3Esn

f " = E"Êy + E 
"(e" 

- Esn) for ts¡¡ 18,

(2.4)

(2.6)

(2.7)

(2.8)

where 
"ñ 

atrd tr are the stress and strain in the steel; fr, and e, are the yield stress and

yield straini s5¡¡ is the steel strain at the start of strain hardening, and greater than

0.0038; Es is the elastic modulus of steel; and Es¡¡ is the strain hardening modulus of

steel.

To allow for ease of integration, strain distributions are divided into ten discrete

regions. The four regions for the values of concrete strains ê1 and t4, ârd shown in

Figure 2.2, are given by:

1. Concrete Region 1 for 0atr aeo and 0(ea <t0

2. Concrete Region 2 for tr < 0 and 0 3 eo< eo

3. Concrete Region 3 for 0 ( €r ( eo and Eç1e01 ¿u

4. Concrete Region 4 lor sr <0 and e6 Seo3eu
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Kroenke et al. defined the following six regions for the steel strains s2 and €3 shown in

Figure 2.2:

1. SteelRegionl for er<sy and Etlty
2. Steel Region 2 f.or Êz 1Ey and e, ( e3

3. Steel Region 3 for trí Ezl Esn and e, < e,

4. Sæel Region 4 for Ey3 Ezl Esu and e, ( et

5. Steel Region 5 for Êsn 3 e, and Ê31 E,

6. Steel Region 6 for Êsn3e, and Ey3Es

Expressions for the resultant concrete force, C", and its location in the section, ), for

each of the four concrete strain regions can be found in the paper by Kroenke et aI.

The total resultant axial force, P, on a cross-section is given by the sum of the resultant

concrete force, C", and the force in each layer of steel, C" and C'":

P =C.* C"* C'": (2.e)

There are a number of disadvantages with this approach. Inelastic behaviour which

can arise from strain reversal in the concrete and steel is not accounted for. The

analytical expressions only apply to Hognestad's stress-strain relationship and the

concrete is assumed to have no tensile capacity. Hence, the beneficial effect of tension

stiffening is ignored. However, for ultimate strength calculations this may be a

reasonable assumpúon.

Sved (1988) also proposed a method of direct integration to solve for the moment and

curvature for a given axial force and concrete strain in the outermost (compressive)

fibre. The stress-strain relationship for concrete is represented by cubic splines.

Hence, any relationship can be used. The method involves developing expressions for

the total compression force in the concrete, C", and the moment of the concrete forces,

M", about the neutral axis.
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Shown in Figure 2.4 is the stress-strain curve for concrete in compression, and

moment and thrust is evaluated for the level of strain shown- The strain in the

outermost fibre is eoand the depth to the neutral axis is Y, as shown in Figure 2.5.

The strain æcis is drawn vertically to a scale so that eo equals Y.

dc

ea Ec

Figure 2.4: Stress-strain curve for concrete in compression

d c

E a

d t

f.- eaB I
I
D

l_

a

A c

AT

aa

oaa

Figure 2.5: Strain distribution
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The expressions for axial force, C", and moment, M", are given by:

(2.10)

(2.tt)

The integrals expressed in terms of y are replaced by integrals with eo as the

independent variable. To obtain C. and M",the following integrals are solved:

Ir(e) = Q.t2)

Iz(e)= (2.r3)

The first integral expresses the shaded area under the stress-strain curve in Figure 2.4

up to the value to, the strain in the outermost fibre. The second integral is the first

moment of area of this shaded region about the vertical (q) axis. To hnd the depth to -

the neutral axis, I, a quadratic equation is solved. The evaluation of the integrals

/r(e") and I2(q) are given in the paper by Sved.

'Warner (1969) noted that the analytical expressions for moment and thrust used by

Pfrang et al. are not feasible in the general case of a column in biaxial bending. A

direct summation technique for determining moment and thrust was proposed, but the

description here is for the particular case of a column in a plane frame with moment

applied about a single axis.

A section is divided into a sufficient number of thin layers of concrete and steel as in

Figure 2.6. From a given strain distribution across the section the average stress in

each layer can be evaluated from assumed stress-strain relationships for concrete and

sæel. Stress in the concrete layers is calculaæd at mid-depth.
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€m P

Yci
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Y'j M

concrete layer i
stram
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Fi gure 2.6: Lay ered cross-section

By summing the axial force in each layer, a resultant axial force, P, is found, which is

given by:

ncotac reteel

P = lf "iA",+ \¡",A",
j=L

= stress at mid-level of the i-th concrete layer;

= area of the Ëth concrete layer;

= stre.ss at mid-level of the j-¡þ steel layer; and

= area of the j-th steel layer.

(2.t4)
i=1

where

f,¡

A"¡

f'¡
Asj

The bending moment at the section is then given by:

u -'îr"¡A"¡!,¡*^ii¡oe;o Q.ts)
i=l j=L

where

lci = distance from the mid-level of the i-th concrete layer from the reference axis;

!,j = distance from the mid-level of thej-th steel layer from the reference axis;

nconc = total number of concrete layers; and

nsteel = total number of steel layers.
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For assumed values of curvature r and axial strain e, flexural and axial stiffnesses Ef

*rd M,are given by the following:

EI=Mlrc (2.16)

EA= P le (2.17)

Alternatively, the direct summation method can be used to formulate these stiffness

terms directly, which are given by the following:

nconc rcteel

Ð+= >E"¡A,i+ >E"jA,j
(2.18)

i=l
nconc

j=r
nsreel

EI = 28"¡!"i2A"i+ \8,,y,,2A,,
(2.1e)

i=1 j=r

where E¿¡and Er¡ are the maærial moduli for concrete and steel respectively

The direct summation method of determining moment and thrust is both easy to

understand and to implement in a computer program. There are also other major

advantages with this approach. Compressive and ænsile curves for both steel and

concrete ca¡r be used and inelastic unloading curves can easily be incorporated. Unlike

the direct integration method used by Broms and Viest, Pfrang et al. and Kroenke er

al., the summation approach is not limited to any one particular stress-strain

relationship for concrete.

Many investigators have since used direct summation in a section analysis routine of a

non-linea¡ frame analysis, including Aas-Jakobsen and Grenacher (L974),Bazant et

al. (L987a), Kang and Scordelis (1980), McAdie et al. (1987) and Wong (1989). In

the approach by McAdie et al., an additional stiffness term, the shear rigidity, was

calculated. This is given by:
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GA- LG",t",
(2.20)

i=l

The shear modulus, G, is relaæd to the Young's modulus by the following expression:

nconc

i=l

^E(Jr=-
2(I+ u)

where u is the poisson's ratio

nS = LE"¡!"iA"¡+ 18,,y,,A,,
j=r

Both Bazant et al. (1987a) and Kang and Scordelis (1980) introduced a stiffness term

to take into account the shift in the centroidal axis. This is given by:

nconc nsteel

(2.2r)

(2.22)

In the section analyses used by these investigators, three stiffness terms are calculated.

These are EA, ES and 81, which are sometimes rcfened as the zero, first and second

order stiffnesses.

Finally, M-tc-N relationships can be developed by numerical integration using

Gaussian quadrature. Virdi (1977) proposed a method for columns in biaxial bending,

but the description here is for the particular case of uniaxial bending of columns in

plane frames.

Gaussian integration involves the use of transformed coordinates so the function to be

integrated is between ttre limits +1 and -1. The definite integral is then replaced with a

weighted sum of the values of the integrand at two or more sampling points. The

formula is expressed as:

+lm

Jffe>ae =2*,f (o,)

-l i=l

where

14/¡ = weight factors

(2.23)
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d¡ = Gaussian sampling points

Values of w¡ and a¡ càî be found in suitable texts on numerical methods, (Chapra and

Canale, 1988; Isaacson and Keller, 1966). The size of concrete elements can be

chosen to locate a Gauss point level at the elevation of the steel layers. Alærnatively,

the area of reinforcement can be distribuæd to adjacent Gauss points which rcprcsent

the concrete, (Balakrishnan et a/., 1988).

Virdi found when the method is applied to biaxial bending computational time is

reduced by a factor of one third compared to the direct summation method. However,

no comparison was made for the uniaxial bending case. The approach has been used

in non-linear methods of frame analysis by Aldstedt and Bergan (1974), Ghoneim and

Ghali (1982) and Holzer et al. (1978).

2.3.2 Methods to Obtain Strain Distribution and Moment-

Curvature-Thrust Relations

In the determination of moment-curvature-thrust relations from a given strain

distribution, usually two variables are assigned values and numerical procedures

calculate values for the remaining two variables. The starting variables are

progressively updated with each iteration until a solution is obtained for moment,

thrust, curvature and strain distribution.

The Newton method has been used by Virdi and Dowling (1976) and El-Metwally and

Chen (1989a). The method as described by the latter, requires the following steps:

1. From an initial distribution of strain and curvature and using an integration

technique, determine an incremental load vector and the total load vector given by:

l",l=lro+æl
lurl luo+ tttl (2.24)
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P6and M6are thrust and moment from the previous load step, and AP and L'M are

the increment in load for the culTent cycle of the current step.

2. Using the central difference method, calculate the tangent stiffness matrix, [K,],

given by:

AP

L0
AM
LQ (2.2s)

The off-diagonal terms dehne the increase in curvature causerl by an increment of

axial load and the increase in centroidal strain caused by an incrcment of bending

moment. The influence of the off-diagonal terms becomes more significant as the

section approaches the plastic state.

3. Determine the incremental deformation vector given by:

rlffil (2.26)

AP

A,e

AM
Ae

lK,t

K_
t

4. Obtain the following sectional deformation vector:

Åel

^øl

lil=lå:l.lfil (2.27)

5. Calculate the load vector which corresponds to the deformation vector obtained

from Step 4. Compare this vector with the load vector obtained from Step l.

If the difference is within an acceptable tolerance, a solution is obtained for this load

increment. Otherwise, add the difference vector obtained from Step 5 to the

incremental load vector, and repeat Steps 3 through 5.
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To obtain the load-deformation relationship at Step 3, the tangent stiffness matrix must

be inverted. Hobbs and Jowharzedeh (1978) formulated an incremental method

directly in terms of a flexibility matrix, which avoids a computational step requiring the

stiffness matrix to be inverted.

Warner and Lambert (1974) developed a nested search procedure to find the extreme

fibre concrete compressive strain, Eo, Íìnd tensile strain 81. In the outer procedure,

called SEEKEI (see Figure 2-7), Eo is fixed and E1 is progressively adjusted until

upper and lower bounds, E1u and E1L, are found. These bounds correspond to

positive and negaúve values of F, which is the normalised thrust and equal to P,or/P.

The target thrust ís Pr, and the value of axial thrust, P, is determined by the direct

summation method from an assumed strain distribution with values of E1u and E1L.

The inner routine, called SEEKE0, uses a halving procedure to reduce the size of these

bounds by replacing either E1u or E1L with the midpoint, E1. A solution is found

when the difference between the desired thrust, Prn and calculated thrust, P, agrce to

an acceptable tolerance

Atthough the nested search procedure is not optimal it was found to be efficient and

reliable. It is also an easy method to implement in a computer program because of its

simple structure. Another advantage with this approach is that it can be implemented

in either a tangent or secant stiffness type of analysis. This search method has been

used by Ahmad and Warner (1984), Kgoboko (1987) and Wong (1989).

2.3.3 M-r-N Relations in Frame Analysis

Two different approaches have been used to develop M-tc-N relations for use in frame

analysis. In one approach, M-rc-N relations are generated at each step during frame

analysis, and in the other approach pre-generaæd values of. M-t<-N form part of the

input to a computerised frame analysis.
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In the first approach, which uses automatic generation of M-rc-N relations, a section

analysis forms part of the frame analysis progr¿rm. The section analysis uses any of

the integration methods described in Section 2.3.1, and an additional technique to

update the strain distribution as described in Section2.3.2.

Automatic generation of. M-r-N values is more accurate than using pre-generated

values, but consumes a significant portion of the overall program execution time in a

frame analysis. Automatic generation also requires large amounts of storage space.

Data usually stored are keypoints which define the history of stress and strain.

Keypoints are stored for all sections and take into account inelastic behaviour and

points of unloading and reloading along the stress-strain curves.

In the second approach, pre-generated values of moment-curvature-thust are used as

input to a computerised frame analysis. Previous studies have used pre-generated

curves from two sources: (1) experimental results; and (2) M-rc-N relations determined

from a section analysis program separate from the main structural analysis program.

Ofæn a moment-curvature curve is dehned by a large number of data points which are

then read as input for a structural analysis computer program. A family of moment-

curvature curves can be generated for a number of different levels of axial thrust. To

reduce the storage demands required for each data point, the curves can be fitted to

curvilinea¡ equations or piecewise linear equations.

The Ramberg-Osgood polynomial, given by Equation 2.28, has also been used by

Gunnin et aI. (1977) to represent moment-curvature relations in a frame analysis.

(2.28)

In this equation, @ is the curvature; a and r are curve constânts; M is the moment; El is

flexural stiffness; and M, (or Mp) is the yield moment or plastic moment capacity.
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Shown in Figure 2.8 is a family of curves derived from EquationZ.28.

1.5 Mp

-q-l

0.5 Mp

zgp

Curvaturc, q

Figure 2.8: Ramberg-Osgood moment-curvature relationship (Gunnin et aL,1977)

The Ramberg-Osgood M-rc relationship has also been refined to include inelastic

unloading portions, Equation 2-29. The unloading or secondary curve is included in

Figure 2.9.
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where(Ms,fr) are moment and curvature at the reversal poinr
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Figure 2.9: Ramberg-Osgood moment-curvatute relationship for moment reversal

(Graff and Eisenberger, 1991)
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An alternative to using curvilinear equations is to fit moment-curvature curves to

piecewise linear equations. Shown in Figure 2-lO are three possible representations

for M-t< curyes (Darvall and Mendis, 1985). The change in slope between the first

two linear segments of Figure 2.10c indicates that stiffness is influenced by tension

stiffening. In Figures 2.L0a and 2.10b, the linear portion up to the plastic moment

describes moment and curvature for an over-reinforced section. In these cases,

tension stiffening has little effect on stiffness. Note also the post-peak sofæning curye

is influenced by the percentage of reinforcement.

Darvall (1982) noted that the sofæning portion of the moment-curvature curves ls

important when determining the collapse load of indeterminate structures. The term

softening parameter, d, was used to express the sofæning slope in terms of the initial

elastic slope, Figure 2.11. For softening, the value for ø is a small negative number,

but for strain hardening the slope of the third line is positive. A steep softening slope

reduces both the number of hinges formed before collapse and the collapse load,

(Mendis and Darvall, 1988). Hsu ¿f ø/. (1981) included both ha¡dening and sofæning

portions for pre-generated M-rcurves in a non-linear method of frame analysis.

Softening curves have been obtained experimentally by Mendis (1986) and Tse and

Darvall (1988) using a deformation controlled test system for single and two-span

reinforced concrete beams. Softening behaviour can also be predicæd from M-tc-N

curves using a section analysis procedure. However, such curves are idealised.

Piecewise linear M-rc ctwes based on experimental beam results had been obtained

earlier by Monnier (1970), but these curyes do not include sofæning. Hence, they

may have limited application for determining collapse loads for indeterminate

structures subjected to high axial loads.

Pre-generated M-r-lü curves can be built up by section analyses in a computer

program separate from the main structural analysis program. M-r cuwes are

generated for a range of values of compressive and tensile thrust. Accuracy of this
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approach depends on the number of levels of thrust and also the method adopted for

curve fitting.

Pre-generated curves can be used to advantage in analysis when the structure has a

large number of members with uniform properties and section details. Sets of M-r-N

curyes can also be used when a large number of frames a¡e to be analysed.

Mp

Figure 2.10: Approximations for momentrurvaturc curves: (a) Elastic--Softening; (b)

Elastic-Plastic Sofæning; and (c) Elastic-Reduced Elastic-Plastic-Softening

(Darvall and Mendis, 1985)

oEf

øø
(c)(b)(a)

ø

Mp

øv øp ø

Figure 2.11: Assumptions for moment-curvature curve

(Darvall and Mendis, 1985)
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2.4 Solution Techniques for Non'Linear Frame
Analysis

Frame analysis for non-linear behaviour can be made either by simulating a load

control or deformation control test set-up. In the latter approach, a set of deformations

is incremented to the structure and the corresponding set of loads is calculated. In an

analysis for load control, a load pattern is incremented to the structure up to a peak

value. It should be noted that analysis beyond the peak load can only be made by

employing additional special ûechniques. Usually, iteraúve procedures are required to

achieve convergence for the load-deformation relationships and one of the following

three æchniques can be used:

(1) Tangent Stiffness method (also refened to as the Newton-Raphson method)

(2) Initiat Stiffness method (also referred to as the modified Newton-Raphson method)

(3) Secant Stiffness method

A typical load step in the tangent stiffness approach is illustrated in Figure 2.12. T\is

approach has been summarised by Zienkiewicz(1977) and de Araujo (1989).

Element stiffness matrices in local member coordinates a¡e transformed into a global

reference system, and using standard procedures (Coates, Coutie and Kong, 1980;

Zienkiewicz,ISTT) the global structural stiffness matrix, Ko, is formed. At the start of

the load step, element stiffnesses ars set to the values from the end of the previous

step. For commencement of the initial load step, element stiffnesses must have

assumed values. These are usually based on gross-sectional values. The incremental

load vector ÅP is applied to the structure and the global deformations ÂD1 are found

by solving the following equation:

[ro]la,l=l^Pl (2.30)



Chapter 2: Non-Iineor Methods of Framc Analysis %

Ko K2

ÂPr*

ÂP,*

D

Figure 2.I2: T angent Stiffness method

From the current deformed state of the structure, the nodal load vector, ÂP*, is

calculated. By considering existing non-linear effects a ne\r, tangent stiffness matrix,

K1, is assembled. Various methods for modelling material and geometric non-linear

behaviour in frame analysis will be discussed in Sections 2.6 and 2.7. The out-of-

balance load vector APr is calculated, which is the difference between the load vector

at the start of the lust iterative cycle and the system of loads from the current deformed

conhguration- This difference vector is given by:

^Pr 
=^P-^Pi (2.31)

A second iterative cycle commences by applying the out-of-balance loads, ÂP1, to the

structure and the incremental deformations, AD2, are found by solving Equation 2.32.

K

P

AP

ADAD

I

[K,]l^Drl= l¡p,l (2.32)
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A new tangent stiffness matrix K2 is assembled and the out-of-balance load vector is

given by:

LP2 = Nr- Mi (2.33)

At the end of the second and subsequent cycles, a check is made to see if the out-of-

balance loads are within an acceptable tolerance. When convergence has been

achieved after n cycles, the set of total deformations, which correspond to the total

load increment ÅP, is given by:

n

LD=IÀD,
(2.34)i=l

The values of ÂP and ÂD are added to existing quantities to give the total amount of

load and deformation in the structure. Structural analysis is carried out by

incrementing a system of loads up to a maximum load level, where the tangent

stiffness becomes zero. To analyse the structure beyond the limit point, additiona¡= 
_-

procedures must be adopted, which are discussed in the following section.

The initial stiffness method, which is also referred to as Newton-Raphson's modified

method, is shown in Figure 2.13. Two cycles are shown, where ÂP1 and AP2 are the

out-of-balance forces at the end of these cycles. Structural stiffness Ko is held

constant for the load step.

Calculation procedures for the initial stiffness method are the same as for the tangent

stiffness method, except the stiffnesses for the first cycle are held constant for each

iterative cycle of that particular load step. This reduces the amount of computational

time required to assemble each element stiffness matrix into a global stiffness matrix.

However, the number of iærative cycles required for convergence may be greater than

for the tangent stiffness method and has an additional disadvantage that the solution

may be less accurate.
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ÅPr*

ÂP,*

%

P

AP

Ko

Figure 2.13: Initial Stiffness method

The secant stiffness method, shown in Figure 2.14, requires secant flexural and axial

stiffnesses to be updated with each iterative cycle of the load step. This method differs

to the tangent and initial stiffness methods by applying a toøl load at each step. \Mhen

the method is used to simulate a deformation control control test sysùem, rather than

load control, behaviour beyond the peak load can be investigated. The set of forces

DAD

AP

ÂPz
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Fr,2...A correspond to direct values for deformations Dr,2...¡. In this method, the

stiffnesses are updated with each iteration.

F

a

rlDz-i
D¡----i

Figure 2.14: Secant Súffness method (Chajes and Churchill, 1987)

A number of investigators have proposed mixed-modified Newton-Raphson methods

of analysis, (de Araujo, 1989; Kao, 1974; Ma and May, 1986). In this type of

approach, the initial stiffness and tangent stiffness methods are combined to improve

the rate of convergence while maintaining accuracy of solution.

In the method proposed by Ma and May, the tangent stiffness matrix is updated at the

end of the first iteration, which is then used for each subsequent iterative cycle until

convergence is achieved. It was noted that formation of cracks also influenced the

change in stiffness of a member, which is usually predicted in the first cycle. If more

cracks are predicted, the tangential stiffness matrix is recalculated at the end of that

iteration.

D
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To improve the rate of convergence, Ma and May compared methods of analysis with

and without the use of acceleration techniques. It was found that mixed-modified

Newton-Raphson methods with accelerators gave much improved râtes of

convergence.

Crisfield's acceleration technique (1980) was investigated, and in this method the

displacements {^il}r are updated by an iterative change such that:

{u }¡*r = {u}¡ + {Âu'}, (2.3s)

where

{Âu.}¡ = a¡{Lu*l¡-r+ þ¡{Lul¡ (2.36)

and

[LuI¡= [Kr]-r{R}, (2.37)

In these expressions, [Kr] is the tangent stiffness matrix and {R}¡ is the out-of-balance

nodal load vector and ø¡ md þ¡ are acceleration scalars. Note that {u}¡ is the set of

total displacements at the end of the i-th load step. If ø,=g and p¡7, Equation 2.37 -

becomes the solution obtained by the tangent stiffness (or Newton-Raphson) method.

An automatic increment size method proposed by Crisfield (1980) was also examined

by Ma and May. This expression is given by:

^Pj 
= M¡tQ¿l la-r)

where I¿

I¿_t

^P,'-l

(2.38)

= the desired number of iærations;

= the number of iterations from the previous increment; and

= the size of load increment from the previous load step.

This approach gave a37o improvement in the predicæd collapse load, but there was no

improvement in computational time. The use of Crisfield's accelerator was most

efficient when applied with the initial stiffness method; computational time was

reduced by 50Vo and rate of convergence was good.
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de Araujo (1989) proposed a Newton-Raphson mixed method by using extrapolation

formulae to accelerate convergence. Tangent stiffness matrices are updated at the end

of the first cycle and held consüant during further iærative cycles. For the first cycle,

exûapolation is not required, but for subsequent cycles the extrapolation formulae are

inænded to give a better approximation of the amount of load required for each

iæration. de Araujo found that efficiency of this approach increases with problems

with increasing degrees of freedom.

2.5 Techniques for Post Peak Analysis

As the peak load value in frame analysis is reached, convergence problems may occur.

For post-peak analysis, an approximation can be made by inserting a plastic hinge

when a section has reached its yield strength, (Lazaro and Richards, 1973). Hence,

overall load-displacement response analysis is also cha¡acterised by a horizontal

plateau at the peak load. However, to predict sofæning after the peak load, additional

numerical techniques are required which are more complicated to implement in a -

computerised frame analysis. Two approaches, which are based on the tangent

stiffness and the initial stiffness methods, are described in the following.

Bergan (1980) described the "current stiffness parameteC', So, which quantifies the

overall non-linea¡ response of a structure as it undergoes loading. This dimensionless

scalar quantity is given by the following:

" - ¿p, lll'tll
", - 4p, ll^r,ll (2.3e)

where {pr is the load increment which gives rise to the set of displacements År1 for the

first load step. The load increment and change in displacements at the current load

level are given by Lp¡ and Âr¡ respectively. Displacement terms in Equation 2.39 are

expressed in the Euclidean norrn.
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The current stiffness parameter is useful for detecting limit points and changes sign

when passing such limit points. A typical load-displacement diagram of a snap-

through problem is shown in Figure 2.15, with llrll used as a measure of the

displacements. The corresponding curve for,So is also shown.

The initial value for the parameter So is always set to unity. The current stiffness

parameter decreases in magnitude until its value becomes zero, which corresponds to

the first limit point. The sign of the parameter 
^So 

then becomes negative until the

second second limit point is reached. At each limit point, the cunent stiffness

parameter becomes zero. For a linear elastic system, .So is always set to unity for

analysis.

A limit point is reached when the determinant of the tangent stiffness matrix changes

sign, which relies on very small increments of loads near the limit point. Negative

load increments are then applied until the next extremum point is reached. The size of

a new load increment is estimated from the following formula:

(2.40)

where À,So is a prescribed constant and Âp¡ and À,So,i are the most recent load

increment and associated current stiffness parameter.

Crisheld (1981) also proposed a method for traversing limit points which is based on a

solution procedure developed earlier by Riks (1979). A constraint equation which

fixes the size of the load increment is added to the equilibrium equations. The

procedure is used in conjunction with the initial stiffness method (or modified

Newton-Raphson method), but as noted by Bazant et al. (1987b), this approach is

complicated to program, particularly as a second limit point is traversed.

Both approaches by Bergan and Crisfield use load control rather than displacement

control and efficiency depends on the size of the load increment. Small incrcments are
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required as the peak load is approached. After the peak load, inaccuracies in the

tångent stiffness terms may occur, particularly if softening is characterised by a very

gradual slope.
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Figure 2.15: Variation of the current stiffness parameter (Bergan, 1980)

It should be noted that deformation controlled processes can be used to perform frame

analysis beyond the peak load. In the approach by Kayal (1984), analysis switches

from load control to strain control when the compressive strain at any Gaussian

sampling point reaches a value of 0.002. However, concrete is assumed to have no

tensile capacity and the stress-strain curve for concrete in compression is elastic.

These simplifications, although not accurate, are likely to improve the search for the

section with the maximum strain.

In the secant stiffness method of analysis by Aas-Jakobsen and Grenacher (1974), a

switch is also made from load to deformation control prior to the peak load.

Displacement is chosen as the controlling parameter, but relies on predetermining

where displacement is expected to be a maximum. Hence, this approach is only

suitable for simple frame or beam type problems.
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'Warner and Yeo (1984, 1986) describe a secant method of analysis which increments

a set of curvatures to the structure. A linear elastic frame analysis determines the

forces and deformations throughout the structure and a search is made for the'key

segment" where curvature is a maximum, absolute value. The curvature in this

segment is scaled to equal a predetermined target value. Hence, forces and

deformations throughout the structure are scaled by the same factor.

This method has also been incorporated in the segmental method of analysis proposed

by Wong (1989) and is discussed in further detail in Section 2.8.

2.6 Frame Analysis for Non-linear Material
Behaviour

Most methods of non-linear analysis for reinforced concrete frames formulate the load-

displacement relationships by employing a one dimensional straight beam element.--

Methods based on two dimensional finite elements, (Phillips and Zienkiewicz, L976),

model multi-directional cracking and the influence of shear deformations and provide

more accurate solutions. However, relatively large demands on storage and

computational time are required and these methods are more suitable for analysing

local behaviour, e.g. at beam-column joints.

Although the flexibility approach by Cranston (1965) was a popular method of

analysis for some years, it is limited to frames with a low order of indeterminacy. By

far the most common approach to solving the load-displacement relationships for a

structure is by the matrix displacement method. In many of these cases, the

conventional first order linear elastic stiffness matrix, k", given by Equation 2.41 has

formed the basis for non-linear methods of frame analysis.
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In a first order linear elastic frame analysis, the stiffness terms EI and EA of this

matrix are assumed to be constant throughout the analysis. When this matrix is used

in a non-linear frame analysis, stiffness terms are progressively updated. This also

implies that M- r-N relationships can be built up as loads are incremented to the

structure.

In the approach by Aas-Jakobsen and Grenacher (1974), each structural member is__ 
_-

divided into a sufficient number of elements so that variations in flexural stiffness

along the member can be calculated. Each element in the non-linear method is then

divided into a number of thin layers and section analyses determine M-t<-N relations

by the direct summation method for a given strain distribution. Secant stiffnesses E/

and EA are updated by the section analyses, where EI = M/t< and EA = N/e^. The

moment, M, axial thrust, N, and curvature, ¡ç are average values for the element The

axial strain, e-, is taken at the centroid of the section. By using the direct summation

method, described earlier in Section 2.3-I, the influence of axial force on flexural

stiffness and the effect, if any, of bending moment on axial stiffness are taken into

account.

A major disadvantage with the method by Aas-Jakobsen and Grenacher is that each

member must be represented by a number of elements, where the length of each

element should presumably represent the length of a potental hinge. Note also that

only nodal loads can be represented. Frame analysis requires the storage and
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manipulation of a large number of structural matrices, hence, this is an inefficient

approach and likely to increase program execution time. However, since frame

analysis is based on the fundamental first order linear elastic approach it is relatively

simple to understand and to implement in a computer progr¿rm. The method proposed

by Aas-Iakobsen and Grenacher has also been used by Corderoy (1978) to study non-

linear frame behaviour.

Kang and Scordelis (1980) and Bazant et al. (1987a) proposed non-linear method

methods of analysis which also use the standard first order member stiffness matrix

k", but with modifications. Additional stiffness terms are included in the off-diagonal

positions which take into account the change in position of the centroidal axis. The'se

terms are given by ES, where E is the Young's modulus and S is the first moment of

area of the section. The method developed by Kang and Scordelis is formulated

differently and the beam element and the unusual order of labelling the degrees of

freedom are shown in Figure 2.16. This method has been summarised in more detail

by Hellesland et aI. (1985).

v

f3

Í5

f4

12
x

L

Figure 2.16: Beam element used by Kang and Scordelis (1980)
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The element stiffness matrix used by Kang and Scordelis (1980) is given by:

EA
0 0

v

EA

L
_ ^E'S

L

ES_T

6EI

L'
6EI

r
2EI

L
4EI

L
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L

_ES
L

6EI

Ê
6EI

r
4EI

L

L
EA

L
0

12EI

0

12EI

Ê
12EI

(2.42)

SYMMETRIC

Note that the axial stiffness terms are clustered in the top left hand corner. It has been

shown by Graff and Eisenberger (1991) that problems with large axial stiffnesses

combined with small flexural stiffnesses can sometimes result in loss of numerical

accuracy. It is possible the order of the degrees of freedom was chosen by Kang and

Scordelis so that axial stiffness terms would be positioned on or adjacent to the main

diagonal- This may reduce inaccuracies in the solution which can arise from matrix--

manipulation.

The non-linear methods of analysis by Bazant et al. and Kang and Scordelis both

require discretising each structural member into a number of elements. Hence,

accuracy of solution depends on the number of elements taken. Riva and Cohn (1990)

noted the benefit of using variable element lengths. At critical sections, shorter lengths

should be used and as distance increases from the critical sections, elements with

larger lengths can be used.

The length of the critical section is often called the hinge length, but its predicted value

varies considerably for each type of reinforced concrete structure. The following have

proposed hinge length formulae based on experimental results: Cohn and Petcu

(1963), from tests on two-span continuous beams; Corley (1966) and Baker and

Amarakone (1964), based on tests of simply supported beams; and Park et al. (1982)

Ê

t
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who tested reinforced concrete columns. However, each formula yields different

results for hinge length.

Both approaches by Bazant et aI. (I987a) and Kang and Scordelis (1980) employ a

layered element with a direct summation method to develop M-r-N relations and

updated values of the stiffnesses, EI, ES and EA. These terms are sometimes referred

as second, first and zero order stiffness terms respectively, and are given by Equations

2.18,2.19 and 2.22.

The advantage with the approach by Kang and Scordelis is that, in addition to

integrating stress and strain over the depth of the section, integration at three Gauss

points along the element is also performed. This allows for fewer elements to be taken

to represent each member and reduces the size of the global storage matrix. Aldstedt

and Bergan (I974) also employed Gaussian integration at two to four points along the

element.

It should be noted the derivation of the conventional first order stiffness matrix, given-

by Equation2.4l, is based on an element with six degrees of freedom (d.o.f.). The

shape functions describing the displacement field of this element are third order

polynomials for the transverse displacement, v, and a first order polynomial for the

longitudinal displacement, u. A number of investigators have developed stiffness

matrices using beam elements with additional degrees of freedom and shape functions

of higher order polynomials.

Both Blaauwendraad (1912) and Aldstedt and Bergan (1974) introduced a seven d.o.f.

element as shown in Figure 2.L7. The tangential displacement at mid-length of the

beam element raises the order of both the transverse and longitudinal displacement

fields.

Espion (1986) developed a nine d.o.f. beam element, shown in Figure 2.18, which

takes into account non-linear geometric effects. In this element formulation, and also

the methods by Blaauwendraad (1972) and Aldstedt and Bergan (L974), the equations
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of equilibrium can be reduced to a system of equations represented by a 6x6 element

stiffness matrix. This reduces the amount of storage required for a global stiffness

matrix and also the size of the problem to be solved. However, as pointed out by

Espion, these storage and time savings are offset by the number of operations required

for static condensation of the 9x9 stiffness matrix into a reduced 6x6 matrix.
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Figure 2.17:Beam element used by Aldstedt and Bergan (1974)
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Figure 2.18: Beam element developed by Espion (1986)

The equilibrium equations for the method proposed by Blaauwendraad (1972) are

given by Equation 2.43. The terms, 0¡ àrrd 0¡, in the displacement vector are the

rotations at the ends of the element and Å/ and u. are the axial extension and transverse

displacements at mid-length of the element.
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Srr 0

N

Mi

Mj

(2.43)

The terms comprising the stiffness matrix, S"0, al€ evaluated by solving the following

integrals, where ! = xJl:

)'Drr,JQ (2.44)

(2.4s)

(2.46)

Sto (2.47)

Szz (2.48)

S,, (2.4e)

srn
(2.50)

Sr¡ (2.s1)

sro
(2.s2)

Son (2.s3)

where

,,, = ji{o-*ø

,,, = ji{o-røÞrrdQ

Stt

(2.s4)

(2.ss)

(2.s6)

(2.s7)

Dr, = EA

D21= Y,EA

Dtz = Dzt

Dzz=u+fiM
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The matrix S"0 is formulated as a 4x4, but is reduced to a 3x3 matrix. It is important

to note each element stiffness matrix is symmetrical and therefore stored as a 3x3

matrix and not the usual 6x6. To assemble the element stiffness matrices into a

structural stiffness matrix, S", in local coordinates, the matrix multiplication is given

by Equation 2.58. Additional standard procedures are required to transform these

element matrices into a global coordinate system.

S" = Crs"oC (2.58)

In this equation, C is a combination matrix and given by:

c-
-1

0

0

I

0

0
I
L
I
z

0100
0

0

L

L

0

1

(2.se)

The combination matrix remains unchanged for the entire analysis and requircs that the

displacements be small for member chord rotation. This form of matrix manipulation --

can be implemented in any structural analysis progrÍLm where symmetrical stiffness

matrices exist.

Another popular approach for modelling non-linear material behaviour is the use of the

stability functions of Livesley and Chandler (1956). Equation 2.60 is the standard

first order stiffness matrix with coefficients, Qr Qz, @3 and @a, which modify the

flexural stiffness terms. These stability functions, or coefficients, are in fact a

modification to the first order matrix, k", to take into account the influence of axial

forces upon flexural behaviour. These coefficients depend on the current load level

and corresponding flexural stiffness in each element. By ignoring this effect, Equation

2.60 reduces to the first order matrix given by Equation2.4l. Expressions for these

stability functions can be found in standard textbooks on structural analysis, (Coates,

Coutie and Kong, 1980).
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El-Metwally and Chen (1989b) used the stiffness matrix given by Equation 2.60 to

describe the load-deformation relationship in a non-linear method of frame analysis.

Stiffness terms are updated by performing section analyses. A øngent stiffness

approach was adopted and the method can only be used up to the peak load. Special

techniques, such as those described earlier, would have to be implemented to allow

analysis in the post-peak region.

Goto and Chen (1987) noted the coefficients quoted above become indefiniæ as the --

axial force approaches zero, which causes numerical instability in a structural analysis.

They introduced a power series to replace the trigonometric functions which express

the stiffness coeff,rcients. It was found that the use of a power series avoids numerical

instability and is more convenient because the expressions by the series are the same

for all values of axial force.

Mendis (1986), also Mendis and Darvall (1988), modified the stability functions to

allow for softening at the ends of members. An element subjected to softening is

shown in Figure 2.19.

The terms, s and c, aÍe the stiffness factor and carry-over factor respectively, which

depend on the axial load. The rotational stiffness is & = EI/L, and the modifying factor

is t = sc. The symbols s and c are the stability functions, which have been derived by

integrating compatibility equations in terms of curvature. At the ends of the member
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are the potential hinge forming regions of length lr, and lo, which are determined by

experiment. The slope of the sofæning curve is given by the parameter ø, which has

been described ea¡lier. At critical softening, given by the value a""-the structure cannot

sustain further increases of load. This value has been calculated for a number of cases

by Darvall (1982, 1984).

t^-mf-Pl
lor=nlL

L

v

P P
sk s

sck = tk

I

;- -M-T- M- -oEI EI

-l-g-l

Figure 2.19: Member with softening at each end (Mendis and Darvall, 1988)

A major advantage with this approach is that each member does not have to be divided

into a number of elements for frame analysis. Terms comprising the element stiffness

matrix depend on the change in stiffness at the ends of the member, while the stiffness

along the member and between the hinges is assumed to be constant. This is a

reasonable assumption which relies on the accurate prediction of hinge locations within

the structure.

Moment and curvature in the hinge forming regions depends on the level of axial

thrust. The value of a", at far advanced curyature can be determined from a simple

relationship, as shown in Figure 2.20.

Note that in the initial elastic range, or where ¡n'{ ¿¡1d ¡x'=Q, the stability functions

proposed by Mendis (1986) reduce to the conventional stability functions of Livesley

and Chandler.

S

-l--r



,"-! - 
'o

Chapter 2: Non-linear Methods of Framc Analysis 4

P
e- pE

Figure 2.20; Cn:i1cal softening parameter at va¡ious levels of axial load, (Mendis and

Darvall, 1988)

2.7 Frame Analysis for Non-linear Geometric
Behaviour

The influence of deformed geometry on structural behaviour was the subject of early

investigations, including (Argyris, 1966; Turner, 1966). Non-linear load-deformation

relationships were developed using finite element æchniques and m44y studies have --

since followed, employing various member coordinates to formulate the equilibrium

equations. Shown in Figure 2.2L are the conf,rgurations AB and A*B* respectively of

a plane beam element before and afær deformation-
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Figure 2.2I: Gæmetry of beam element in Euler Member Coordinates, Lagrange

Member Coordinates and Global Coordinates (Wen and Rahimzadeh,1983)
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The quantiúes (g1, gz,--..ee) are taken to be the generalised displacements in global

coordinates. The initial member coordinates are given by x and y. Euler coordinate

axes afe denoted by t* and y* and the generalised displacements pt, Pz, and Â are

defined with reference to the chord of the deformed member. The terms Pr and Pzare

angular rotations and the change of chord length is Â. Lagrange member coordinates

are defined with reference to the chord before deformation and are given by the

quantities tlt, rt, Qr, ttz, vz, 92. The Lagrange system of coordinates has the

disadvantage that additional computations are required to transform the element

matrices into a global matrix. However, an approach using Lagrange coordinates

should give similar results as an approach using Euler coordinates.

Lagrange coordinates for small rotations (Lagrange-SR coordinates for short) assume

the chord rotation (qo in Figure 2-21) is small. Hence, transformation of the stiffness

matrices to the global coordinates is made through a fixed angle-

Wen and Rahimzadeh (1983) noted there are two approaches for representing the non-

linear geometric stiffness problem: the geometric stiffness matrix (also referred as the--

initial stiffness matrix; and the incremental stiffness matrix.

Argyris (1966) formulated a tangent incremental stiffness matrix in Euler coordinates-

The tangent stiffness matrix is evaluated at the initial position and behaviour is

assumed to be linear within the increment. Jennings (1968) and Powell (1969) also

developed incremental stiffness matrices in Euler coordinates. Mallett and Marcal

(1963) formulated incremental matrices in Lagrange-SR coordinates.

Large deflection analysis of elastic frames received early attention by Turner et al.

(1960) followed by Oran and Kassim ah (1976). Analysis of inelastic frames based on

the assumption of small deflections has been made by Oran (1973) and Saafan (1963).

However, the problem of large deflection analysis for inelastic frames appears to be

treated only recently (Bathe and Ozdemir,l975; Cichon, 1984; Kam, 1988).
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It is interesting to note that stiffness expressions, including geometric matrices,

corresponding to beam--column theory have been formulated in Euler coordinates by

Oran (1973), Oran and Kassimali (1976), Saafan (1963) and in Lagrange-SR

coordinates by Connor et aI. (1968). The developments by Oran (1973) improved

eaflier work by including the influence of flexure (bowing action) on member axial

strains and modifying stability functions to take into account members subjecæd to

compressive and tensile æcial forces.

A popular approach for modelling geometric non-linearity in reinforced concrete frame

analysis is to augment the standard hrst order stiffness matrix, k", with the geometric

stiffness matrix, k* given by Equation2.6l.

0 0 0

I 6 1

5L 10

1 I

15

0

I

10
(2.6r)

0

5L 10 10

2L1 I
10 15

where

N = cuffert level of element axial load; and

= length of the element.

This matrix is also referred to as the initial stress matrix and its derivation can be found

in a number of texts, including Przemieniecki (1985) and Martin and Carey (1973).

Derivation of the force-displacement equations yields both the geometric stiffness

matrix and the standa¡d first order linear elastic matrix. Hence, both matrices are often

0

0

0

0

0

0

c
k

0

0

0

6

5L

I
10

0

10

2L

6

0

0

0

0

30

0

I6

5L

I
3010

L



Chapter 2: Non-Iinear Methods of Framc Arnlysis 47

included in a non-linear frame analysis. Such studies include Aas-Jakobsen and

Grenacher (1974), Blaauwendraad (L972), Corderoy (1978), Kang and Scordelis

(1980), and Kulicki and Kostem (1974).

The derivation of F4uation 2.61 is based on the conventional element with six degress

of freedom, i.e. longinrdinal and transverse displacements and rotations at each end of

the element. Displacement fields within the element are also assumed. lVhen an

average constant slope is assumed over the element, this geometric stiffness matrix

reduces to the following:

0

N
L

(2.62)

N
L

0 0

Equation 2.62 is sometimes referred as the string stiffness matrix. Blaauwendraad

(1972) used the string stiffness and the following 3x3 matrix to model geometric non-

linearities in a frame analysis.

0 0

NL (2.63)
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Blaauweendraad adopted this approach so that variations in stiffness and shifting

centroidal axis could be confined to the 3x3 matrix, S"o. By performing the matrix

multiplication, CTS"nC + ÂS'o, the geometric stiffness matrix k. is obtained. The

symbol 
^Snn 

denotes the string stiffness matrix and C is the combination matrix

described earlier. This approach improves both convergence and computational time.

Chajes a¡rd Churchill (1937) summarised a non-linear method of frame analysis which

includes higher order geometric terms. Figure 2.22 summarises typical steps in the

analysis. The matrix [kn] is the initial stiffness matrix given by Equation2.6I and [kr]

and [k2] are geometric stiffness matrices originally developed by Mallett and Marcal

(1963). The matrices [k1] and [k2] are linear and quadratic functions of the

incremental element displacements and are updaûed during each iterative cycle.

The matrices fltu] and [kpì are only updaæd at the start of a given load step and are

used to determine the first estimate of the incremental displacements during that load

step. An obvious disadvantage with this method of analysis is the increase in storage

and computational time required for the additional geometric matrices,,-

Some of the problems encountered with frame analysis for large deformation are the

demands on computational time and storage for additional stiffness matrices. Some

investigators have overcome these problems with geometric nonlinearity by updating

the nodal geometry as the structure deforms. Hence, terms comprising the

transformation matrices are based on the most recent nodal deformations. This

approach has been used successfully by Aldstedt and Bergan (1974) and El-Metwally

and Chen (1989b). To ensure accuracy of solution, a sufficient number of node points

must be chosen to represent the structure.
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Form [ko] foreach element

Specify incrcment loads ÅF

Form [kn] and [Tì
from existing geometry and a:rial forces

Assemble element stiffness matrices

lk¡l = [ko] +[kp]

Assemble global stiffness matrix

lK¡lo = rllrtkollT]

= [^F]i=0and

i=i+l

IKr]i-r[^D]i = [ÂF]i-r
Solve

Obtain total displacements

[^D]¡ = ),=,tlul"
Obtain local displacements [Ad]

and form [kr] and [kt]

Form element stiffness matrix

[kr] = [ko] +[kp] +lkr] +[k2l

Assemble global stiffness matrix

IKr]¡

Solve for the force imbalance [ÂF]¡
using IK¡],[ADìi = [^F] -[AF]i

No
Is [ÂF] -[AF]r ( tolerance ?

Calculate values [D], [P], tEI by adding
increments to existing quantities

Figure 2.22:Non-linear analysis for first and second order incremental displacements
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2.8 Segmental Method of Frame Analysis

2.8.1 General Description

The segmental method of frame analysis developed by Wong (1989), and reported in

Wong, Yeo and Warner (1987, 1988) is a secant stiffness approach which allows full

range behaviour to be investigated. Analysis for two types of non-linearity can be

made. These are full geometric effects and material effects due to the stress-strain

relationships for concrete and steel.

The segmental method is based on an earlier idea by Warner (1975) in which structural

members are represented by a number of short segments. Typically, segment lengths

are between 0.5D and 1.0D, where D is the depth of the element. This follows

recommendations by Bazant et al. (1987a) and Warner and Yeo (1984) and ensures

that strain softening occurs over a hniæ length, often referred to as the hinge length.

In an earlier study of continuous beams by Warner and Yeo (1984, 1986) each--

segment was represented by an individual element. This requires the storage and

manipulation of large matrices which is undesirable for plane frame problems and led

to the development of the segmental element matrix. The derivation can be found in

several publications, (Wong, 1989; Wong, Yeo and Warner; 1987, 1988), and has

been reproduced in Appendix B of this study. The segmental element matrix takes into

consideration deformations within each segment in the element. To formulate the

problem, expressions for fixed end moments and shea¡ forces are based on the area-

moment method for an elastic member with a non-uniform section, (Bull and Sved,

1964). In this case, non-uniformity is also associated with variation in bending

stiffness along the element. Derivations for the fixed end forces are also given in

Appendix C of this study.

Frame analysis is performed by applying a unit load pattern to find forces and

displacements at the ends of all elements. Deformations within all segments a¡e found
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by integrating curvature along the element from the set of most recent secant flexural

stiffnesses. Hence, a set of unit curvatures is obtained.

A search is made of the unit curvatures to locate the segment with the maximum

absolute value which is designated as the "key segment". The search is carried out

assuming gross-sectional properties and also assuming the structure to be uncracked.

It was found in the present study that the segment with the maximum absolute

curvature can change at various stages of loading. To avoid numerical instabilities and

convergence problems, the search for the key segment is carried out at the

commencement of each computational step and, if necessary, the key segment iS

changed.

A deformation control test is simulated by imposing a set of increments in target

curvature, K*,y(l),...t<*"r(ISTEP),..-K*"y(NSTEP), on the key segment, where

NSTEP is a computational step in the post-collapse region. This approach has also

been used in studies of prestressed concrete continuous beams, (Campbell and Kodur,

1990; Moucessian and Campbell, 1988). All segmental forces and deformations are=

scaled so that the unit curvature in the key segment equals the target curvature.

A major advantage with this method of deformation control is that full range analysis

for loading up to and including the post-collapse (softening) region can be made. In

some frames analysed by Wong, snapback instability was observed.

2.8.2 Section Analysis Procedures

Secant stiffnesses for frame analysis are updated by a sectional analysis, using the

direct summation technique. This is done by assuming values of axial thrust, P, and

curvature, r,which are obtained from the frame analysis and segmental method of

analysis respectively. An extreme fibre axial strain, €o, and sectional moment, M, are

then calculated. The value of eo is updated by the search technique proposed by

Warner and Lambert (1974) and described earlier in this chapter. Moment-thrust-

curvature relationships are generated automatically to avoid the otherwise tedious
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process of pre-generating a range of moment-thrust-curvature relationships each time a

frame analysis is performed.

The section is divided into a number of thin layers of concrete and reinforcing steel as

was shown in Figure 2.1. lt was found that 15 layers could produce moment-thrust-

curvature relationships of acceptable accuracy. The stress-strain relationship for

concrete in compression and shown in Figure 2.23 is that proposed by V/amer (1969),

and includes a suitable unloading portion which is parallel to the initial loading curve.

The advantage with this type of curve is that the strain at peak stress is independent of

the concrete modulus, and the strain on the post-peak softening curve corresponding to

zero stress can be varied.

An elasto-plastic stress-strain relationship for steel is assumed and is shown in Figure

2.24. Unloading curves are assumed to be parallel to the initial loading curve.

r.0

1.0 T2

f"

rt

Figure 2.23: Stress-strain relationship for concrete in compression (Vy'amer, 1969)
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The following equations define the concrete stress-strain relationship:

53

E" < 0.0

0.0<%<1.0

1.0<8"<1,

E">Iz

l"
f"
Í"

i"

= T tE"+ (3 - 2T ,)8"' + (Tr - z\ø"t

= t - (l -28" * E"') t (t - zy, - y r')

= normalised strain equal to E"lE",,or;

= normalised stress equal to f"lfro*,;

= EoE"o-, If"^"ri

= modulus of elasticity for concrete;

= strength of concrete in a member; and

= strain corresponding to stressf,nra.r.

f,

1.0

-1.0

= 0.0

= 0.0

(2.64)

(2.6s)

(2.66)

(2.67)

where

Ec

f"
ï
Es

f"-tt
Ê. ot

€s

Figure 2.24: Elasto-plastic relationship for reinforcing steel

The following terms describe the steel stress-strain curve:

ê, = normalised strain equal to e"ler;

f. = normalised stress equal to f,lf"r;

Est = steel Yield strain; and

f,, = steel Yield stress'

-1.0
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2.8.3 Structural Analysis

A typical computational step ISTEP commences with trial segmental stiffnesses

EI,a(ISTEP,n) in all segments, n, and trial axial stiffnesses for the members, rt,

EA(ISTEP,¿) set to the values at the end of the previous step. Steps for a typical

cycle (also shown in Figure 2.26) are described as follows :

1. Form the segmental element stiffness matrices from the most recent secant

stiffness values. Using standard procedures, (Coates, Coutie and Kong,

1980; Meek, I99l; Vanderbilt, 1974), assemble the global stiffness matrix

tK] by transforming the element matrices from local coordinates to globa!

coordinates.

2. Apply a unit load pattern to the structure and form the nodal load matrix

lQ^i,\. Nodal loads from unit load patterns within the elements are based

on fîxed end moments which depend on the segmental stiffnesses.

3. Determine nodal deformations Å,n¡ by solving the following matrix

equation with Gauss-Jordan elimination and partial pivoting:

{QuniJ r lQouror-¡o¡} = [Kl {Âun¡r} (2.68)

{Q,ort-o¡-uù is the set of residual forces which is the difference in nodal

loads on the undeformed frame and the nodal loads compatible with the

displacements allowing for changes in frame geometry.

4. From the nodal deformations of the frame, and using standard procedures,

obtain deformations and forces at the ends of all the members. Based on

these and the unit load patterns within the members, determine the unit

curvatures K*,¡{ISTEP,n) in all segments due to the unit load pattern.
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(2.6e)

5. Calculaæ the scaling factor SF(/STEP) from the target curvature and the

curvahrre of the key segment due to the unit load pattern.

. Munit(ISTEP,n)Ku,ritUSTEP,n)=ffi

rc,-"(ISTEP)SF(ISTEP)=-L-- \--- / 
r.,tr(ISTEP,key) (2.70)

6. Obtain a set of trial segmental curvatures, K¡,¿¡(ISTEP,n), by multiplying

rcun¡,(ISTEP,n) by the scaling factor SF(ISTEP).

Kt¡ot(I STEP,n) = S F x rcun¡¡(ISTEP,n) (2.7r)

The trial curvature in the key segment is always equal to the target

curvature, K*y(I STEP).

7. Store the previous flexural stiffnesses :

O LD EI(I STEP,n) = EI ¡¡ot(I STEP tt) (2.72)

8. Perform sectional analyses for all segments to determine segmental

moments M ¡,¡o¡(I STEP ,n) which correspond to K¡r¡o¡(I STEP ,n).

Calculation of the stiffness EI for a typical segment is shown in Figure

2.25. New flexural stiffnesses are found :

EI,*,(ISTEP,n) (2.73)

The total axial deformation along the centroidal axis for each member is

obtained. New trial axial stiffnesses EA(/.STEP,m) are then determined

from the element axial thrust N(ISTEP,m) and axial strain {n).
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EA(I ST EP,m) = N (m) I 6(m)

56

(2.74)

(2.7s)

where 4m) =total axial deformation along member m;

4n) = axial strain of segment n along the reference axis; and

I(n) = length of segment n-

9. At the end of each iterative cycle, the change in flexural stiffness for all

segments is checked and convergence is achieved if the following

relationship is satisfied :

EI,ÅIQSTEP ,n)- OLDEI(ISTEP,n) 1g (2.76)
OLDEI(ISTEP,n)

where e is a specified tolerance, e.g. 1x10-2. Further cycles are required if

convergence is not achieved.

It was found in the present study that a maximum number of fifæen iterative cycles

could give sufficient accuracy, even though convergence may not be guaranteed in all

segments. Non-convergence can occur for a segment at a point of contraflexure.

However, this has a minor effect on the overall accuracy of solution.

Generally, convergence problems can be avoided by choosing a target curvature

increment for the early stages of loading which is not too large, e.g. using an

increment size < 0.001 m-1. As analysis is carried out into the post-peak region,

which corresponds to the formation of one or more hinge forming segments, the

increment size for the target curvature can be increased.

nseS

õ(m) -Le@)t(n)
i=l
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M(n)

Koi¡ (n) = SF*ruo¡t (n)

Figure 2.25 : Trial curvature

út

r(n)

EI"1¿ (n)
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Commence Sæp ISTEP

Set curvature of keY segment to
xaUSTEP)

Set EI(n)= OLDEI(n)

CYCLE = O

CYCLE=CYCI'E+l

Linear elastic analysis:
Obtain from unit load pattem
curvaturcs K-t'(n)

Calculate scaling factor

SF(/STEP)= rr,(ISTEP) I x*(n)

Obtain trial curvatures
K na (n) = SF(ISIEP )x r.¡' (n)

Obtain updated deformed nodal positions
and calculaæ out-of-balance nodal forces

Section analyses:

DetermineM u'(n) foreach tcl{n)
Obtain updated flexural stiffnesses

EIn¿Ø)=Moa@) I tcnu@)

and axial stiffnesses EA(m)

<e?

OLDEI(n) =Efu¡"dn)

No

ISTEP =ISTEP + L

Figure 2.26: Typical computational step
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2.8.4 Comparisons with Test Results

To check the accuracy of the segmental method of analysis, an investigation of æst

beams and frames was carried out in the present study. For discussion purposes, only

three frames have been chosen, and represent three areas of concern: (1) good

correlation, (2) poor correlation with stiffness underestimated; and (3) poor correlation

with strength and stiffness overestimated-

Shown in Figure 2.27 is frame F6 which was tested by Furlong (1963). The tensile

yield strengrh of the main reintbrcing steel for this frame is 350 MPa, and the average

concrete compressive strength from test cylinders is24.5 MPa. Note the area of beam

steel is considerably higher tha¡r the area of column steel, and it can be expected the

beams to be much stronger and stiffer than the columns-

P P
ûP CIP

1 tzlr2r 1

t626

2tE

2TÈ

fl 1,02

1

cP CIP

As(BEAM) = 506 **'
As(COLUMN) = 142 mm

cr = 0.0555

Figure 2.27:Testconfiguration and section details for frame F6 tested by

Furlong (1963)

2
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Under the given load pattern, the columns are bent in single curvature, and for

analysis, four elements have been chosen to represent the columns' This is done in

order to model non-lineaf effects due to overall changes in geometry along the column

lengths as the frame is subjecæd to increasing levels of applied load- The beams,

which are not likely to be subjected to geometric non-linearities, are represented by

single elements.

Analytical and experimental results for load versus lateral deflection at column mid-

height are shown in Figure 2.28. DefTection was measured for both columns of the

test frame, but as the magnitude of deflection at each level of load is very similar only a

single line is shown to represent experimental results'

1

50

0
0 10

Deflection (mm)
15 20

Figure 2.28: Comparison between experimental and analytical results

- good correlation

Frame failure corresponds to crushing of the concrete on the inside of the right hand

column at the peak load, P, of 193 kN, and a similar failure occurred shortly afær at

mid-height of the left hand column. Analytical results compare very well up to a load

of 50 kN, and as load increases up to a value of about 140 kN, stiffness is slightly

250

200
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--E= Experimental Result - LH col. & RH col'

--e- Predicted Result - SAITÙ\ME



Chapter 2: Non-linear Methods of Framc Analysis

underestimated. From this load level up to the peak load, stiffness is slightly

overestimated, but the peak failure load compares very well and the predicæd critical

sections also correspond to segments at mid-height of both columns.

The second type of comparison for analytical and experimental rcsults is shown in

Figtre 2.29. Beam 4, tested by Clark and Spiers (1978)' was subjected to

symmetrical loading under a load control test situation. A primary flexural crack fi¡st

developed at a midspan moment of approximately 19 kNm, and with increasing levels

of applied load beyond the cracking load, there is a reduction in beam stiffness- The

beam failed suddenly at a moment of 51-5 kNm-

Although the analytical results show a good prediction of the peak load value, stiffness

is clearly underestimated. It should also be noted if a deformation control test set-up

been employed, continuing deformation after the peak load could be expected.

l0

0.0E+00 5.08-03 1.0E-02

Curvature (1/m)
r.5E-02 2.0F-02

Figure 2.29:Comparison between experimental and anal¡ical results

- stiffness underestimated
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The third example of comparison for analytical and experimental results is for frame

L2 æsted by Ferguson and Breen (1966), and shown in Figure 2.30. A vertical load

was applied to the top of the left hand and right hand columns and a lateral load was

applied to the top of the right hand column. The section details are shown in Figure

2.31.

The beams are relatively stronger and stiffer than the columns, and failure can be

expected to occur in the columns. Under the given load pattern, the columns are also

bent in double curvature and failure is likely to occur at column ends, rather than

within the column lengths.

Experimental and predicted results for load versus sway deflection are shown in

Figure 2.32. This frame failed at a load, P, equal to ll2 kN, when concrete crushed

at the outside face at the top of the left hand column, i.e. at corner C. In comparison,

the analytical results predicted the formation of hinges at the ends of all four columns

prior to a peak load of 149 kN. The analysis overestimates the actual peak load by

33Vo andframe stiffness is also clearly overestimated. ---

1.01P 0.99P

C E* 0'06P

2t34

D A

2134

Figure 2.30: Test set-up for frame L2 tested by Ferguson and Breen (1966)
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Figure 2.31: Section details for frame L2 tested by Ferguson and Breen (1966)
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Figure 2.32: Comparison between experimental and anal¡ical results

- strength and stiffness overestimated
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2.8.5 Summary of Analytical Predictions by SAFRAME

Three different types of analytical prediction have been described in Section 2.8.4. In

two cases, analytical results compared poorly with actual test results, and in the third

case good correlation was achieved between analytical and experimental results.

However, in making these observations it should be noted that accuracy of solution

depends on limitations of the method of analysis. As poinæd out by Wong (1989), the

method does not take into account shear deformations or the beneficial effect of tension

stiffening, and predicæd deformations at any cross-section of a structure under load

are due to primary flexural cracks. Crack growth may also be assisted or restrained by

the presence of a tensile or compressive axial force respectively.

In the analysis of test beam 4 by Clark and Spiers, predicted strength compared well

with actual strength, and flexural cracking at midspan was accurately predicted.

However, stiffness was underestimated, and it was likely the tensile concrete had

contributed to flexural stiffness in the pre-cracking range and additional stiffness w¿ls

provided by concrete between cracks. However, the method of analysis ignores the-=

tensile capacity of concrete.

Both strength and stiffness have been overestimated in the analysis of test frame L2by

Ferguson and Breen. Although tensile concrete may have contributed to stiffness of

the column and beam elements, performance of this frame may have been controlled

by joint behaviour. The analysis predicts the formation of four hinges, one at each

column end, but actual frame failure corresponds to an insufficient number of hinges.

Finally, strength and stiffness and also the number and location of hinges compare

well for test frame F6 by Furlong. In contrast to frame L2by Ferguson and Breen, it

appears that joint behaviour may not have adversely affected frame performance in this

case. However, when assessing the performance of a beam-column connection, a

number of factors must be considered, including the type of detailing within the

connection, adequate anchorage of the reinforcement, and the direction of loading in

the beam and column elements.
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2.9 Summary and Conclusions

Va¡ious non-linear methods of analysis have been reviewed in this chapter, concluding

with a description of the segmental method of analysis, SAFRAME, proposed by

Wong (1989). A major advantage with the method is that full range behaviour, up to

and including the post-collapse region, can be investigated. This is done by simulating

a deformation control test set-up by incrementing curvature to a 'key segment' and

performing a secant stiffness type of frame analysis. Most previous methods of frame

analysis reviewed in this chapter simulate a load control test set-up in a tangent

stiffness approach and analysis is terminated when the peak load is reached. These

methods could be modified to include special techniques, such as those described in

Section 2.5, but they are complicated to program and additional storage space is

required.

Another advantage with SAFRAME is the treatment of geometric non-linearities by

updating the nodal geometry and the transformation matrices as the structure deforms

under load. Only one stiffness matrix per element is required in the formulation of the-=

force-displacement relationships for material and geometric non-linear behaviour.

Previous methods, some which have been described in this chapter, generally require

additional matrices in the formulation for geometric non-linear effects. This increases

the amount of storage and computational time for solution-

Although the method of section analysis in SAFRAME uses an elasto-plastic stress-

strain relationship for steel, the strain hardening curye can easily be incorporated.

Note also that any stress-strain relationship for concrete in compression and tension

can be implemented.

To test the accuracy of the method of frame analysis, a number of comparisons were

made between analytical predictions and actual results for test structures. Poor

correlation was achieved in some cases, although it was noted that additional effects

due to tension stiffening and deformations within beam-column connections had not
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been taken into account. These non-linearities are investigated in Chapær 3 and

Chapter 4 respectively of the present study, and numerical models for these effects a¡e

also proposed. These improvements to the segmental method of frame analysis have

also been summarised elsewhere, (Kenyon and warneri 1992,1993).

Finally, the segmental method of frame analysis proposed by Wong assumes that

loads are applied proportionally. In Chapter 5 of this thesis, the method of load

application is modified to allow for sequential, non-proportional loading. Test frames

with this type of loading are also investigated and the effects of tension stiffening and

joint behaviour are noted.



Chapter 3

Tension Stiffening

3.L Introduction

Tension stiffening in a flexural member is the additional stiffness provided by the --

tensile stress in the concrets between primary flexural cracks. The tensile force in the

concrete is transferred to the reinforcing steel until the breakdown of bond between the

concrete and steel occurs. As more primary cracks form, the region of concrete tensile

stress diminishes.

Although tension stiffening has a minor influence on flexural strength, additional

stiffness is provided at all sections, except right at the cracks, and this has a significant

effect in decreasing deflections. Consequently, an analysis which ignores the uniaxial

tensile strength of concrete and the effect of tension stiffening can overestimate

deflections in the pre-cracking and post-cracking range-

Furthermore, tension stiffening influences frame behaviour by providing additional

bending stiffness within beam and column elements and at beam-column connections-

Following a review of previous work, a tension stiffening model is presented in this
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chapter which uses a simplified stress-strain relationship for concrete in ænsion- This

is based on experimental results of beams tested by Clark and Spiers (1978). The

model is based on the results of beams which isolate the tension stiffening effect.

Shear deformations afe not considered in the tension stiffening model.

To check the accuracy of the model in a section analysis, results were compared with

further simply supported beams tested by Healey (1993), Mendis (1986) and Monnier

(1970). The behaviour of two-span continuous beams tested by Bachmann and

Thürlimann (1965) and Tse and Darvall (1988), were also investigaæd.

3.2 Behaviour of Concrete Between Cracked
S e cti ons

Tension stiffening is only effective if a bond mechanism can transfer a tensile force

between the steel and surrounding tensile concrete. The nature of the bond mechanism

also changes at various stages of loading.

At initial stages of loading, chemical adhesion at the concrete-steel interface assists

force t¡ansfer from concrete to steel, and vice versa. A radial compressive stress also

exists at the interface, caused by shrinkage of the concrete on drying. Lutz and

Gergely (1967) estimated a free shrinkage of 0.0003 produces a compressive

interfacial stress of 80 psi (0.6 MPa).

When a primary flexural crack forms and crosses the reinforcing steel, the concrete

adjacent to the crack slips against the steel. Slip, or bond-slip, is defined as the

relative movement between the steel and surrounding concrete. However, the concrete

in tension does not undergo immediate and rapid unloading. Tests by Goto (1971)

and Jiang et al. (1984) show that shortly after the formation of a primary crack,

secondary inclined cracks form at the surface of the reinforcement, (Figure 3.1a).

Concrete between secondary cracks is a comb-like structure which wedges behind the

68
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ribs. It offers frictional resistance to further slippage and assists the transfer of the

tensile force in the concrete to the steel.

Lomitudln¡l sccllon ol ¡rlôllv lo¡d.d sÞ.clmen CDst tællon

intarnal cr¡ck lorde on concrale

Pr m¡ry crâck lorca componcnl! on bðl

llgllanlng lorca on bår
ldúa lo wcdoa acllon and'aklormàllon- ol te.th ol
comb-llke coßralc)

Figure 3.1: Cracked region a¡ound reinforcing sæel, (a) longitudinal section; and (b)

cross-section (Goto, 197 1)

Bond-slip is also influenced by the grorwth of longitudinal cracks near the steel and by

crushing at points where concrete bears on the steel ribs. Ingraffea et al. (1984)

modelled secondary cracking as the most significant effect on bond-slip and Lutz - -

(1970) noted that secondary cracking inhibits the progress of splitting cracks.

As loading increases, extensive microcracking intersects primary and secondary cracks

and may create a cracked zone as in Figure 3.1b. Eventually, transfer of a tensile

concrete force to the steel becomes ineffective.

A relationship can be expressed between slip and the bond stress, u, at the bar-

concrete interface. Bond stress is defined as the shear force per unit area of bar

surface given by:

u_q
\o

(3.1)

= change of bar force over unit length

= nominal surface area of a bar of unit length

q

b¡r (wlth làler¡l lugs)

/r, r

where

h
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Shown in Figure 3.2 are curves of bond stress versus slip measured at four different

locations in an embedded reinforced bar tested by Nilson (1972). The curves typify

the non-linear and variable nature of bond-slip. In a more comprehensive study, Mirza

and Houde (lg7g) found the amount of slip is dependent on the concrete strength,

embedment length and concrete cover.
oo4 006

rO 20 fo
-5

SLIP IO INCHÉS

Figure 3.2: Bond stress-slip curves (Nilson, 1972)

3.3 Literature Review

3.3.1 Tensile Strength of Concrete

Essential to any tension stiffening model is an estimate of the tensile strength of

concrete in uniaxial tension and the post-peak softening response. Although this

strength is only I0-157o of the value for compressive strength, it is an important

parameter in any tension stiffening model because it determines the load level at which

a flexural crack forms. Tests for the tensile strength of plain concrete fall into one of

three classifications, each with its own characteristic set of results: (1) direct tension,

(2) flexural tension or modulus of rupture, and (3) indirect tension or splitting test

There are no standard tests for direct tension, but it has been the subject of previous

investigations partly because it is the only method which has allowed the post-peak

response to be investigated. Hence, a stress-strain relationship based on the behaviour

\
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of plain concrete in direct tension often forms the basis for modelling tension stiffening

in a reinforced concrete member. The ascending and descending branches of the

stress-strain curve can be obtained by using a æsting machine in which the strain rate

is controlled.

Specimen failure is caused by one crack propagating across the cross-section. A major

problem with this method of æsting is the difficulty in applying a pure tensile force to

plain concrete. Hence, tests results can be affected by secondary bending stresses

which may be induced by the grips. Prior to testing, the specimen is also allowed to

dry and tensile stresses are created by shrinkage strains. The stress-strain curve is also

affected by the location of the crack with respect to the length of strain gauge.

Evans and Marathe (1968) used a strain-controlled testing machine and the curyes

shown in Figure 3-3 arc typical of the non-linea¡ shape for the stress-strain response

they obtained for concrete in tension. Hughes and Chapman (1966) and Gopalaratnam

and Shah (1985) obtained curves of similar shape. Figure 3.4 shows unloading

portions for specimens tested under cyclic loading by the latter.

mix nl. oge

11l-1:1:2 045 65doys
'(il-1:2:4 0.60 270 '
ßl-1:3:6 0-9O 70 tt
t,l rsco

7I
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c
É

o
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t

cl
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longiludiao! tcnsilc stroin x1O6

2100

Figure 3.3: Stress-strain curves of plain concrete in tension

(Evans and Marathe, 1968)
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Figure 3.4: Stress-strain curves of plain concrete in tension

(Gopalaratnam and Shah, 1985)

In the modulus of rupture test, a simply supported beam is tested with either central-

point loading or third point loading. Test results depend on the dimensions of the

beam and the arrangement of the loading. The modulus of rupture is the maximum

tensile stress reached in the bottom fibre of the ûest beam and calculations are based on

elastic theory. Stress is assumed to be proportional to the distance from the neutral

axis of the beam, although the actual stress distribution is likely to be parabolic in

shape. Modulus of rupture has been said to give the highest estimate of tensile

strength and is the least preferred in analysis.

In the splitting test, a cylinder is loaded in compression on two diametrically opposiæ

pads, as in Figure 3.5. The concrete is in a biaxial (compression-tension) state of

stress and tensile failure occurs on the plane between the loaded pads. Tensile strength

is measured indirectly. The splitting test gives more uniform results than other tension

tests and is believed to give a strength which is closer to the true tensile strength of

concrete than the modulus of rupture, (Neville, 1981). However, like the modulus of
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rupture test, failure of the test specimen is sudden and a post-peak descending curve

cannot be measured.

Figure 3.5: The splitting æst

Tensile strength is often expressed mathematically as a function of compressive

strength, and depends on the test method for obtaining the tensile strength. In the

following Equations 3.2 to 3.6, the characteristic concrete compressive strcngth by

cylinder test is given byf,.

For an estimate of direct tensile strength (in MPa), ACI CommlttaezD (1982) suggest

the following for normal weight concrete:

ft = o.33r[î, in MPa (3.2)

The following formulae have also been suggested to estimate the modulus of rupture,

f,:

ACI318 Building Code (normal weight concrete):

P

73

(3.3)

P

f, = o.62r[fr , in MPa

Raphael (1984):

fr=0.44f"23, in MPa (3.4)
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Raphael (1984) proposed the following relationship between the tensile sftength from

the splitting test,J, and the compressive strength,/" :

ft= o-324 Í,'o, in MPu (3.s)

To account for concrete shrinkage before external load is applied, Collins and Mirche[

(1987) proposed the following:

ft = 0.33'[î

Raphael (1984) analysed results from several hundred tests for compressive strength

by cylindrical specimens and for tensile strength by the splitting, modulus of rupture

and direct tension tests. It was found that modulus of rupture gave results 30-507o

higher than the splitting test, compared to 4O-807o as reported in ACI Committee224

(1986). Raphael also found the direct tension test gave results 507" lower than the

splitting test.

3.3.2 Methods of Analysis for Tension Stiffening

An analysis for the effect of tension stiffening can be performed at any of three

different levels of complexity :

(1) at a microscopic level finite element methods of analysis are used to

investigate the local state of stress in reinforcing steel and surrounding

concrete;

(2) at a macroscopic level a modified stiffness approach uses "smeared"

moment-curvature relationships by ignoring interactive effects between

steel and concrete. The relationships are often empirically based; and

(3.6)
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(3) an intermediate layered element approach commonly treats tension

stiffening as properties of either the concrete or steel. It employs either a

modified steel stress-strain relationship or a stress-strain curve for tensile

concrete.

Investigations at the first level have contributed to an understanding of crack

development and propagation. Early approaches by Lutz (1970), Ngo and Scordelis

(1967), Nilson (1968) involved the idealisation of concrete and steel by a two

dimensional system of triangular finite elements. To take into account bond-slip

between the steel and concrete, Ngo and Scordelis used linkage elements to connect

steel and concrete elements. The linkage elements, which have no physical

dimensions, consist of two orthogonal linear springs. A disadvantage with these

approaches is that cracks must be predefined so that manual mesh adjustments can be

made.

Ingraffea et aI. (1984) assumed that the bond-slip relationship at the location where a

bar crosses a primary crack to be independent of the overall structural geometry. -

Interface elements model the effect of bond-slip and crack formation, and an updaæd

deformed mesh is generated as cracks propagate, (Figure 3.6).

75
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Figure 3.6: Deformed mesh from analysis by Ingraffea et al. (1984)

The second method of treating tension stiffening is by a modified stiffness method. It

is concerned with load and deformation in the global sense. A typical example of this
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approach is the trilinear moment-curvature curve proposed by Alwis (1990) and

shown in Figure 3.7.

My

EI*

Els

Kv

Curvature , K

Figure 3.7: Trilinear moment-curvature curve (Alwis, 1990)

The first point which defines the curve corresponds to the first crack. From bending --

theory:

M",
= lQrEc= tL

!t (3.7)
Is

where f = tensile strength; E" = elastic modulusi 1* = moment of inertia of the

uncracked section, including the area of steel; *d y, = the distance from the neutral

axis to the extreme concrete tensile fibre. The second coordinate point on the curye,

(My,Ky), corresponds to yielding of the tensile steel, and calculations are based on a

fully cracked section. The response after yield is Ítssumed to be perfectly plastic.

The triline ar M-t< c;llrve in Figure 3.7 describes behaviour up to the post-yield region.

At sections other than the hinge forming region, it is not uncommon for inelastic

unloading to occur. Trilinea¡ curves can also be modified to include a suitable

unloading portion so that behaviour at all sections can be analysed-

=
co
Ea
=

Mff

0r ,rtr
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Pre-generated M-t< curyes have been used in investigations by others. Jofriet and

McNiece (1971) used a bilinear moment-curvature relation for slabs based on flexural

rigidities derived from effective and cracked moments of inertia of beams. In a similar

approach, Bell and Elms (1971) assumed a rectangular bond strcss-slip relationship to

determine moment and curvature in the behaviour range betrveen cracking and yield of

the steel. Trilinear M-rc-N curves were used by Aguado et aI. (1981) in a non-linear

method of frame analysis.

The third method of modelling tension stiffening incorporates a tensile stress-strain

relationship for concrete or steel and is commonly described as a smea¡ed crack

approach. A stress-strain curve for concrete in tension comprises an ascending portion

which describes the uncracked behaviour of the concrete. The post-peak descending

portion of the curve takes into account the effects of secondary cracking and bond-slip.

The most simplified approach to modelling tension stiffening is the bilinear curve

proposed by Bazant and Oh (19S4) and shown in Figure 3.8. The first segment of

this curve corresponds to the pre-cracking range and is followed bya strain sofæning-

portion.

&

77

q

ft

E
I

t1

Figure 3.8: Uniaxial stress-strain curve for plain concrete in tension,

(Bazant and Oh, 1984)

It is common in analysis to represent stress-strain up to the peak stress as a linear

relationship of slope 8", the Young's modulus for concrete in compression. The direct



Chapter 3: Tension Stiffening I I

tensile strength, in psi, is given by f, . The tangent st¡ain-softening modulus, E, (in

psi) is given by:

Et -708c
57 +.f,

(3.8)

The curve is derived from direct tension tests, (Bazant and Oh, 1983). The area under

the curve is the strain energy released from the crack per unit width of fracture zone.

The strain energy can be measured from the testing device for tensile strength and the

width of fracture zone is simply estimated from the specimen. This type of

relationship models the non-linear fracture zone as a smeared crack band. Accuracy of

this approach was compared with Branson's formula for two theoretical cases: beams

with 27o and 4Vo tensile reinforcement.

Tension stiffening models for reinforced concrete bars have been developed by

Carreira and Chu (1986), Gupta and Maestrini (1990), Massicotte et al. (1990). These

models are based on a single reinforcing bar embedded in a concrete specimen. A

disadvantage with this approach is that the effects of bar spacing and embedment depth - -

are not considered.

Gupta and Maestrini (1990) derived a tension stiffening curve for reinforced concrete

bars and shown in Figure 3.9. A bilinea¡ bond stress-slip relationship was included as

a constitutive property based on a normalised bond stress-slip curve from the

experimental curves obtained by Nilson (1972). Due to its high variability, bond-

stress slip was eliminated from the formulation. Two assumptions were made: (l)

when a primary crack forms, the bond force is relatively high; and (2) when the steel

has yielded, bond between the steel and surrounding concrete is almost completely

lost.

Keypoints on the tension stiffening curve are given by A, B, C and D. The curve is

linear up to point A, where the first crack forms. At point A the bond force is

relatively much larger than the tensile concrete cracking force, Tensile stress decays to

point B. Between point B and point C, further cracks form along the bar and a
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uniform bond stress is assumed. At point C all bond is assumed to be completely lost

and ænsile stress decays rapidly to point D where the steel yields. At point D, tension

stiffening is assumed to have diminished.

The accuracy of this tension stiffening model \Ãras compared with load-deformation

and stress-strain results of reinforced concrete bars tested in uniaxial tension.

Although good correlation was obtained, no comparisons were made with the

performance of test beams.

o/t

Yc c

D

Xr Xa Xc t Ù8,

Figure 3.9: Tension stiffening model proposed by Gupta and Maestrini (1990)

Key points shown on the curve are:

A

19

(3.e)

B
YB

xo=*, Y¡=l; x.=d
Iv t- r, ('.ffi)'',='-

xc ,1nf,
= l---

2np fy

l+np
10

1

,Yc
2

where n is the modular ratio = Er/E", and p is the ratio of area of sæel to area of

concrete. The yield strain and yield stress re E and$ respectively, and the direct

tensile strength of the concrete isf.

The concrete tensile stress-strain relationship proposed by Massicotte et aI. (L990) is

based on experimental results for plain concrete tested in direct tension. From this

-l--
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relationship, a tension stiffening curve was developed and is shown in Figure 3-11.

The tension stiffening model assumes that a member consists of uncracked regions

between the cracks (region I) and fully cracked regions adjacent to the cracks (region

II), which are shown in Figure 3.10. In region I, both the concrete and steel behave

as if the concrete had an infiniæ tensile strength, i.e. linear elastic behaviour is

assumed. In region II, the reinforcing steel carries all the tensile force in the member

after cracking. The relative length of the two regions is given by a distribution

coefficient:

(=1- þtk(f*,/f,)2 (3.10)

where þt = l-0 for deformed bars; and B2 = 1.0 for first loading and 0.5 for long-æm

or cyclic loading. The termsf,", andf, are the steel stresses in region II at cracking and

after cracking, respectively, assuming no stress in the concrete for both cases. The

average strains in the steel over the length J,,¡ are:

e^= (I - 0q+ Çez (3.11) -_

where €1 and ezarc the reinforcement strains in regions I and II, respectively.

The tension stiffening curve is linear up to a cracking strain t . and peak stess /.t.

After a primary crack forms, stress in the concrete decreases to point ø, where

stabilised cracking is reached. The rate of decay of stress and strain depends on the

effective reinforcement ratio, p"t= A"/A""¡ where A" = the area of tensile steel and

A""¡is the effective concrete-embedment zone in the vicinity of a reinforcing bar and is

defined as the area of concrete of width and height equal to 15 times the bar diameter.

If the effective reinforcing ratio p"¡ is greater than psttt = fi, where n-L"/E",ïhe

modular ratio, then the st¡ain in region II remains equal to €cr at the cracking load level.

This corresponds to a heavily reinforced section. If the value of p"î is less than a

limiting value pn^,, whichis equal to #, then the strain at stabilised cracking is given

by:

80
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(3.12)

(3.13)

(3.14)

(3.1s)

(3.16)

(3.17)

(3.18)

Êr,e2

8",

t+!
np

When the effective reinforcing ratio is within the bounds,Pti-SP3Pstt, the tensile

concrete st¿bilises at a strain value given by the following:

E2
I7 +33np
33np -L

ÊT5", = (l- ("r)e", + ("r1r2 e",
,

frs",=G-Ç)f ,*(",f ,o2 f ,o

for the condition

Ç",=l- þrþr>b
.fm

trsv €,
l+np

f or = nPE"(er - €rsy)

When e2 is evaluated by Equations 3.12 or 3.13, the average strain and stress, which

correspond to point ø in Figure 3.11, are given by:

In this expression, the post-cracking distribution factor it Ç",, the width of the fracture

zone,wc, is taken to be three times the aggregate size and the crack spacing is s,'. The

concrete stress in region tr isf," and the maximum tensile stress of the plain concrete is

Í,. Point b in Figure 3.11 is the average strain and average stress at the onset of

yielding in region tr and are given by:

=nP* 
(,

where the distribution factor Ç is obtained by substituting f, for f, in Equation 3.10,

1e



Chapter 3: Tension Stiffening

fn = lnr+(fn",- lo, 1

Regron I 
-,Region 

ll,_ Ræron ¡ l

82

(3.1e)

(3.20)

asag€ strarn after crack¡ng 1m

Regron ll

sm

c) Strarn óistnbutron alter crackrng

(r=l-þrþre)'

A second order relationship defines the stress-strain relationship between points a and

b andis given by:

,I
a

where €. = the averago strain at which the concrete stress/¡5 is evaluatecl. A linear

relationship describes the average stress and strain between points b and c in Figure

3.11. Tension stiffening becomes ineffective when the strain e. equals the yield strain

in the steel, rr. The tension stiffening model was compÍued with results of direct

tension tests on reinforced concrete ba¡s.

I

strain at cracking.m
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Figure 3.10: Cracked regions for tension stiffening model by Massicotte et al. (1990)
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Figure 3.11: Tension stiffening model proposed by Massicotte et aI. (1990)
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The model by Massicotte et al- (1990) determines the relative weight of a cracked and

an uncracked region by a distribution factor. The length over which sofæning is

smeared can also be deærmined by a simple method proposed by Braam (1990).

Figure 3.12 shows a cracked section with a height of. h", and the smeared length is

given by:

h=2(h",- y) (3.2t)

N

fct

Figure 3.12: Section through cracked region, @raam, 1990)

The shape of the curve by Massicotte et al. (1990) is similar to the curve proposed by

Línft et al. (1989) and shown in Figure 3.13. The stress-strain curve for concrete in

tension comprises two second order polynomials after the peak tensile strength. An

immediate drop in stress occurs if the strain at the level of the steel reaches the steel

yield strain. In each model by Gupta and Maestrini (1990), Lirdr- et ¿/. (1989) and

Massicotte et al. (1990), tension stiffening is assumed to have diminished when the

steel has yielded.

Carreira and Chu (1986) proposed the relationship given by Equation3.22 ûo represent

the overall behaviour of reinforced concrete in tension. This exponential expression

takes into account the combined effects of cracking and slippage at cracks along the

reinforcement.

ô"
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f,

tcr t* ey e

Figure 3.13: Tension stiffening model proposed by Link et aI. (1989)

f,

where

q

84

(3.22)

e_T

erf,
-î

Í,

f;
8,,

þ

= the stress corresponding to the strain e

= the point of maximum süess, considered as the tensile strength

= the strain corresponding to the maximum stressf'

= a pÍìrameter that depends on the shape of the stress-strain diagram

Equation 3.22 is similar to a relationship for plain concrete in compression also

developed by Carreira and Chu. Predicted values of p were found to be in the range

1.56 to 2.26 and it is convenient to use a value of p which is the same for tension as

for compression. An average value of €,' equal to 0.00018 is recommended for

normal weight concrete.
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Various types of tension stiffening models were compared in a study by Gilbert and

Warner (1978). Three different concrete tensile stress-strain diagrams were examined

in a layered finite element study of slab deflections. Each stress-strain diagram in

Figure 3-14a,b,c assumes a separate curve for the layer containing the tensile steel and

cracked concrete layers once and twice removed from the ænsile steel. Layers more

than twice removed arc assumed not to carry any tensile stress. The curve shown in

Figure 3.l4ais similar to the stepped diagram used in an analysis of slab deflections

by Scanlon and Murray (1974). However, the method by Scanlon and Murray

assumes the same stress-strain relationship for all concrete layers.

The curves in Figure 3.14b are similar to the curve used by Lin and Scordelis (1975)

to analyse reinforced concrete shells. Gilbert and Warner also used a shear retention

factor, similar to that used in layered element approaches by Hand et al. (1973) and

Lin and Scordelis (1975). The shear retention factor modifies the concrete shear

modulus and accounts for aggregate interlock and dowel action from slippage at the

surface of the reinforcement.

Also considered by Gilbert and Warner are the piecewise linear diagrams with a

discontinuity at the initial cracking stress, as shown in Figure 3.14c. The types of

curves for concrete in tension proposed by Gilbert and Warner (1978) are well suiæd

to a sectional analysis routine. Each curve can be represented by a simple

mathematical formula and suitable unloading portions can be incorporated.

Gilbert and Warner also examined tension stiffening with a modified stress-strain

relationship for tensile steel which is assumed to carry the additional stress when the

concrete has cracked, (Figure 3.15). It was noted that results forthe discontinuous

unloading response stress-strain diagram, shown in Figure 3.14c, required an average

number of 8.3 iterations per load increment. This is compared to 2.7 iterations for the

modified stress-strain curye for steel. A likely reason for the large difference in the

rates of convergence is that the modified steel curve requires stress and strain to be

evaluated at a single layer, whereas the modified concrete curves require stress and

strain to be evaluated at three layers. Both approaches include sudden changes in the
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stress-strain curves which may also affect the rate of convergence and accuracy of

solution.
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Figure 3.14: Stress-strain diagrams for concrete in tensioq,

(Gilbert and'Warner, 1978)
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3.3.3 Summary and Conclusions

As described in this section, analysis for the effects of tension stiffening in a flexural

member can be carried out at any of three levels. The finiæ element approach is best

suiæd to the analysis for localised behaviour. It is not a practical option in a non-linear

frame analysis because large numbers of elements and computer storage demands are

required. Hence, a finite element approach was considered unsuitable for use in the

present study for overall structural behaviour.

The intermediate level which treats tension stiffening effects in a smeared crack

approach is well suited to the present method of frame analysis. A ænsile strcss-strain

curye for either steel or concrete can be incorporated in the section analysis routine.

This allows for the influence of tension stiffening on moment and curvature to be

investigated. The global approach which involves pre-generated moment-curvature

curves is recommended for further studies. Such curves need to be generated for

different levels of axial thrust.

Several tension stiffening models have been reviewed, including those based on a

tensile stress-strain curve for concrete in plain tension. However, there has been

limited comparison between predicted results from the analytical models and the results

from actual test beams. To determine a suitable tension stiffening model for the

present method of frame analysis, comparisons a¡e made between predicted analytical

results and test results in the following secúon.

3.4 Experimental Basis for Proposed Model

A series of beams tested by Clark and Spiers (1978) was chosen for analysis.

Fourteen beams with percentages of tensile reinforcement ranging ftom 0.44Vo to

I.99Vo were tested. Seven beams were designed with different section and material

properties, and each of these initial test beams had repeat test beams using the same

concrete mixes. All seven main beams were analysed plus three repeat beams, which
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had significantly different mean compressive strengths from their corresponding main

beams. Figure 3.16 shows the test set-up for all beams and section details and

material properties for beam 4 and beam 6R. Note that the loading configuration

creates a constant moment region.
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fc=22.9]l!''4.Pa
fcmax = 0.95fr= 2I-7 ]sdPa
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Material Properties
fc =27.6MPa
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k= 26270 MPa
fimax= 2.85 MPa
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Beam 6R

Figure 3.16: Test set-up for beams tested by Clark and Spiers (1978)

Materials

Reinforcing Steel

12, 16, 20 and 25 mm GK torbar deformed reinforcement was used by the

investigators and Figure 3.17 shows the stress-strain plots obtained from testing. The

steel becomes non-linear at a strain of 1400 to 1600 microstrain. For the present
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study, steel stress is assumed to reach a maximum value at a strain of 0.0035 and with

increasing strain the corresponding steel stress remains collstånl
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Figure 3.17: Stress-strain curves for reinforcing sæel used by Clark and Spiers (1978)

Concrete - Compressive Strength

The compressive strength for test samples was determined from cube specimens.

These samples were taken for each beam on the day of testing and the values reported

by the investigators are assumed to be average compressive strengths. An equivalent

cylinder compressive strength was determined from the ratio of cylinder-strength to

cube-srrength suggested by L'Hermite (1955) and cited by Neville (1981):

6cyt

6cube
(3.23)

where o¿uis the strength of the cube in pounds per square inch.

It is also common practice to assume that the cylinder strength is equal to four-fifths of

the cube strength, which is an approximation within 5 to \Vo of the ratio suggested by

= 0l6 + o.2tosrcffi

Es = 206 kN/mm2
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L'Hermite. All beams analysed were assumed to have a peak compressive stress,

f",no* equal to 0.95 times the mean cylinder strength. A factor of 0.95 to convert

concrete strength from a test safüple to strength in a horizontally cast structural member

has also been used by Ford, Chang and Breen (1981a). This value is used throughout

the present study in the investigations for test beams and frames. Although a factor of

0.85, which was proposed by Hognestad (1951), is used more widely, this value is

believed to be more applicable to vertically cast members.

The value for the concrete modulus, 8", used throughout this study is assumed to be

equal to 5000fr., where frmis the mean cylinder strength. Carse and Behan (1980)

showed the concrete modulus expressed as a function of the concrete compressive

strength has a 407o vanatîon. Klink (1985) noted the modulus varies considerably

across the section of the test specimen and the actual value is 50Vo higher than the

value obtained from a standard empirical formula. Nevertheless, the value for the

modulus in the present study is based on a conseryative empirical formula.

Concrete - Tensile Strength

Indirect tensile (splitting) tests were also carried out on three samples for each beam.

However, for the present study to determine the tensile strength, f,r-t, in a structural

member the following equation, based on Raphael's study, was used.

l,o^r= 0-324(f"r,.,¡23, in MPa (3.24)

where f.*-,= 0.95 xf,, in MPa

3.5 Application of Previous Tension Stiffening
Model in the Section Analysis

Initially, the simplified bilinear stress-strain curve for concrete in tension proposed by

Bazant and Oh (1984) was included in the section analysis routine- This tension

stiffening model is based on a maximum tensile stress in the concrete equal to the
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strength obtained from a direct tension test. For the present study, the strength

determined by the splitting test was chosen because it is believed to give a better

estimaæ of the strength in a structural member.

The results for moment-curvature plotted at midspan for beam 4, with 0.M1o ænsile

steel, are shown in Figure 3.18. Analytical results do not compare well with the

experimental results. Other test beams by Clark and Spiers were examined and similar

trends were observed. However, it was found that good correlation could be obtained

by adjusting the softening portion of the model by Bazant and Oh. Such modifications

led to the development of a tension stiffening model which is described in the

following section. This model is based on previous investigations, including Gilbert

and Warner (1978), Gupta and Maestrini (1990) and Massicottß et al. (1990).
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Figure 3.18: Analysis of test beam using concrete tension curve by

Bazant and Oh (1984)
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3.6 Development of Proposed Model

The tension stiffening model developed in this study uses a simplified stress-strain

relationship for tensile concrete, where each tensile layer has the same stress-strain

response. The stress-st¡ain relationship for concrete in compression is that proposed

by Wamer (1969) and has been discussed in Chapter 2. A suitable unloading portion

has also been included. The stress-strain relationship for the reinforcing steel was

modelled by a piecewise linea¡ curve with four linea¡ segments. It was found that by

modelling the section with 20 layers, including concrete and reinforcing steel, that

sufficient accuracy in anal¡ical results could be achieved.

Beam analyses were carried out by dividing a member into a number of segments.

The length of each segment is assumed to be equal to the depth of the beam, and

tension stiffening effects are assumed to be smeared over the segment length.

Initially, a piecewise linea¡ curve (Figure 3- 19) for concrete in tension, was chosen for

analysis, with an ascending portion of slope 8", similar to that in Figure 3.8. A

primary crack forms at a st¡ain of €", and corresponding maximum tensile stress.;[r,or.

This is followed by a discontinuity where the concrete tensile stress drops to a value of

0.41r,,,,. A softening portion then follows.

The commencement of tension softening is similar to the point of stabilised cracking

termed by Massicotte et aI. (1990). It was also found in the present study that the

slope of the softening portion depends on the percentage of tensile reinforcement.

Beams with high percentages of tensile steel are characterised by steeper sofæning

portions.

The strain at which tension stiffening diminishes is given by T,e". In previous studies,

tension stiffening is assumed to become ineffective at a strain which is either a multiple

of the tensile concrete cracking strain or a strain equal to the yield strain of the tensile

steel. Since the stress-strain curves for steel used by Clark and Spiers are non-linear
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with no obvious yietd point, it is more convenient to select a strain corresponding to a

multiple of the cracking strain qr.

The tension stiffening curye in Figure 3.19 also includes an unloading ponion which

is parallel to the initial tangent modulus. This is a reasonable assumption and is based

on the test curves obtained by Gopalaratnam and Shah (1985) and shown in Figure

3.4.

0.4f,

Et

Ytt"t
gr

Figure 3.19: A preliminary tension súffening curve

Figure 3.20 shows the relationship between Tand percentage of steel, p, for the ten

beams analysed. A simplified equation representing the line of best fit has been

adopted for the present study, where

q

f,

93

(3.2s)

(3.26)

1

€..

Tt=41 - I1p

T=7

or in terms of a tangent softening modulus :

, f.or 0.44Vo3 p32.0Vo

,f.or p > 2-0Vo

, for 0.44Vo 3 p 32.0Vo (3.27)
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_ -8" ,for p > 2-O7o
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Figure 3.20: Tension stiffening parameters for proposed model
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Figure 3.22 shows the experimental results for beam 4 and the results from two non-

linear analyses. The analysis with tension stiffening shows there is some contribution

from the tensile concrete to the strength of the member. It is doubtful whether this

occurs, and the proposed model has been modified to include a discontinuity at a strain

value of 10e"r, (Figure 3.22). Although the softening curve could be modelled with

further linea¡ segments, the modifications were considered unnecessary.

Tt€". ( lOe-

0.4f,

TtÊ". > 10e",

Ê". Ytt", er

Figure 3.22: Proposed tension stiffening model

The proposed tension stiffening model was used to analyse ten of the fouræen beams

tested by Clark and Spiers. Figures 3.23 and 3.24 compare experimental and

analytical results for beam 4 and beam 6R respectively. Analytical results compare

well with experimental results in the pre-cracking range and post-cracking range up to

the maximum moment.

It should be noted that test results for moment and curvature were only published up to

a corresponding level of steel strain of 0.002. Tests were based on a load control

testing device but published results show no indication of a maximum failure load

having been reached. In some cases, the analytical results predict a much higher

failure moment and in all cases continuing deformation after the peak moment is

predicted. Refer to Appendix D for beam details and analytical rrsults of remaining
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test beams by Clark and Spiers. The present method of analysis simulates a

deformation control test set-up, hence continuing deformation after the maximum

moment has also been Predicæd.
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Figure 3.23: Moment versus curyature for beam 4 tested by Clark and Spiers (1978)
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It is worth noting the amount of time to run an analysis for tension stiffening. The

compuúer runs for both analyses in Figure 3-24 were made on a Sun 41280 system.

The total CPU time for the analysis ignoring tension stiffening effects was 26.6 secs

with an average of 3.5 iterations per load step. The analysis including tension

stiffening effects required 43.7 secs of CPU time with an average of 4.5 iterations per

load step. A tot¿l of sixfy load steps were ca¡ried out for each case.

A factor influencing the increase in computational time to run the problem for tension

stiffening effects is the shape of the tension stiffening curve. As strain increases

beyond the cracking strain, an instantaneous drop in stress occurs at the peak stress. It

can be appreciated that such a change can affect convergence of the moment and axial

force during a sectional analysis.

3.7 Comparisons with Experimental Beam
Results

3.7.1 Introduction

To test the validity of the proposed tension stiffening model, beams tested by other

investigators were examined. The main parÍrmeters considered were type of loading

and percentage of steel. The non-linear behaviour of both single span and two-span

continuous beams was also examined.

3.7.2 Comparisons with Single'Span Beams

Three simply supported beams tested under double point loading by Monnier (1970)

were examined. The beams were subjected to cyclic loading at various stages prior to

yielding of the tensile steel and each test was performed over a period of three days.

The test set-up and section details are shown in Figure 3.25.
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Reinforcing details are given in Table 3.1 and two types of reinforcing bar were used.

Figure 3.26a shows the type of bar used in beam III, which becomes non-linear at a

stress of 3000 kglcmz (295 MPa). The stress-strain relationship for this type of bar

was modelled with four piecewise linear segments. Figure 3.26b shows the stress-

strain curves for bars used as main reinforcement in beams VItr and IX. These bars

are characterised by the more common elasto-plastic shape followed by a strain

hardening portion at higher strains.

Compressive strength for concrete in each test beam was determined from 20x20x20

mm cubes. For the present study, equivalent cylinder strength values were determined

from Equation 3.23. Concrete material properties for all three beams analysed are

given in Table 3.2.
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Figure 3.25 Test set-up and section details for beams æsted by Monnier (1970)
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Table 3.1: Reinforcing details for beams tested by Monnier (1970)

Table 3.2: Maærial properties of beams tested by Monnier (1970)

Bearn Concrete details

f.

(MPa)

f"-o

(MPa)

f,-.t

(MPa)

E

ç¡aea)

It q

trI

VItr

IX

25.8

31.9

25.8

24.5

24.3

24.5

2.73

2.7t

2.73

25390

25300

25390

2.07

2.08

2.07

-313

-322

-M5

Beam III has 0.44Vo tensile steel with a non-linear stress-strain relationship as shown

in Figure 3.26a. By ignoring the effects of tension stiffening, stiffness is obviously

underestimated, as shown in Figure 3.27. Analysis with tension stiffening effects

included, predicts a cracking moment of 8.4 kNm. V/ith further loading, cracks

develop and beam behaviour is characterised by a loss of flexural stiffness. Tension

stiffening also has some influence on ultimate strength. Beam III was also subjected

to unloading and reloading at two separate load levels, but the test results show that the

level of moment prior to unloading is uncoverable.

The effect of tension stiffening on beam VIII, with P =0'57o, is shown in Figure

3.28. It was shown in the analyses of beams tested by Clark and Spiers that tension

stiffening is most beneficial with low percentages of tensile steel. Tension stiffening
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has a noticeable improvement on bending stiffness for beam VIII. Moment and''' '

curvature compare well up to 20 kNm where tension stiffening begins to diminish.

There also appears to be some conuibution by tension stiffening to the moment at yield

for this beam.

Beam D( has a percentage of steel, P = I-07o, and results are shown in Figure 3'29'

The analysis, with tension stiffening included, predicts moment-curvature quite well

up to the maximum moment. This beam has good ductility which is also predicæd by

the analysis.
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Figure 3.27:Moment versus curyature for beam Itr æsted by Monnier (1970)
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Figure 3.28: Moment versus curvature for beam VItr æsæd by Monnier (1970)
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Analytical results for beams with tension stiffening generally compare well with

experimental results for beams tested by Monnier. Both strength and stiffness show

good correlation for all three cases. However, the analytical results show a higher

amount of ductility compared to the test results for moment and curvature. Although

tests were conducted under deformation cont¡ol conditions, it is difficult to judge

whether tests were carried out into the collapse region. It is worth noting that beams

tested by Monnier, and also Clark and Spiers, were subjected to loading which creates

a constant moment region. An advantage with this method of testing is that the load

plattens, under which disturbances are most significant, are located at a distance

removed from the measuring instruments.

Tests of beams subjected to single point loading have been carried out by many

investigators. The beams chosen for analysis in the present study have been tested by

Healey (1993) and Mendis (1986).

Mendis (1986) tested simply supported beams under single point loading at midspan.

Four beams were selected for analysis, and in general, the results did not compare

well. Only the results for beam A1 a¡e reported here, to illustrate particular areas of

concefn.

The configuration and section details for beam A1 are shown in Figure 3.30 and the

stress-strain relationship for the reinforcing steel is shown in Figure 3.31. The area of

two Y12 ba¡s is assumed tobe225 mmz and and this amount of steel is placed at three

separate depths. For the analysis for tension stiffening effects, beam A1 has an

equivalent percentage of tensile steel, p = 3.67o, which is based on an area of steel of

440 mmz and an effective depth, d, of. I53 mm. For beam 41, concrete compressive

strength, f",is37.4 MPa and Í"^o,is assumed to be 35.5 MPa, i.e. 0.95 f",,o,. Tl:'e

value of E" is assumed to be 30560 MPa and the remaining concrete par¿rmeters are:

f,^*= 3.49 MPa, Tt = 1.64, 'k= 3.0, T= 7.0.
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Figure 3.30: Test set-up and section details for beam A1 tesæd by Mendis (1986)
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Figure 3.31 Stress-strain relationship for reinforcing steel for beam A1 æsted by

Mendis (1986)

Figures 3.32 and 3.33 compare moment versus curvature and load versus deflection

respectively for beam 41. Tension stiffening has no noticeable effect on stiffness and

suggests that tension stiffening can be ignored in an analysis for heavily reinforced

members.
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Figure 3.32: Moment versus curvature for beam A1 tested by Mendis (1986)
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In general, the analytical and test results for this beams do not compare well. It is also

interesting to note that comparisons between analytical and experimental results for

load versus deflection show that stiffness is overcstimated. This is in contrast to the

underestimation of stiffness shown for moment and curvature, (Figure 3.32). 'When

considering the poor correlation between results, there are three a¡eas of potential

concern: (1) the reliability of the test measurements; (2) additional confinement effects

crcated by the load platten; and (3) the adequacy of the method of analysis.

Firstly, the reliability of the test measurements is given consideration. Figure 3.34,

from Burnett and Yu (1964), shows that for a beam under single point loading

measurement of curvature becomes non-linear at early stages of loading. Curvature is

the change in rotation over a distance between the two points where rotation is

measured. Therefore, the magnitude of curvature depends highly on the chosen

locations to measure rotation. In particular, curvature at midspan is most sensitive to

the location of rotation measuring devices. Measurement of curvature near the loading

platten can also be affected by disturbances during the application of load. These

considerations may explain the difference in stiffness between analytical and test

results.

Comparison of results for load versus deflection show that stiffness is underestimated.

Investigations by l'J-Zañ et al. (1990) show that stiffness depends on the distribution

of loading. Typical results are shown in Figure 3.35. The case for midspan loading

shows a noticeable loss of stiffness after the formation of the first crack, i.e. wherc Mo

equals M"r, whereas the case for third-point loading shows the best post-cracking

response. Analyses of beams tested by Monnier, which also had constant moment

regions, showed good correlation for stiffness. It is also apparent the present method

of analysis does not predict additional loss of stiffness due to the method of loading.

Unfortunately, some details relating to the test beams by Al-Zaid et aI. were not

published and these beams have not been analysed in the present study.
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Figure 3.34: Typical distribution of curvature for a beam with single point loading,

(Burnett and Yu, 1964)
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Although there is some inconsistency in the predicted results for stiffness, the

predicted peak load and peak moment for beam A1 by Mendis are both

underestimated. An earlier study of beaçns by Somes (1966) concluded that an

app¿uent increase in beam strength may be due to confinement effects by the loading

platten. Under these conditions, a triaxial state of stress develops, although

confinement effects diminish with increasing distance from the point of load

application- It has been shown that large increases in uniaxial compressive strcngth

can result from small confinement pressures, (Kotsovos, 1987). Bearing pressures

also depend on the stiffness of the load platæn, (Hawkins, 1970).

A number of investigators, including Kupfer et al. (1973) and Liu et al. (1972), have

proposed biaxial strength envelopes which can be used to determine the increase in

uniaxial stress and the influence of shear stress. Kupfer and Gerstle (1969) developed

strength envelopes for restrained and unrestrained specimens to take into account

friction between bearing plattens and the concrete surface.

To further investigate the behaviour of single span beams under mid-span loading, a

series of beams tested by Healey (1993) was chosen for analysis. Figure 3.36 shows

the test configuration and section details. The main reinforcing steel for these beams

has a yield stress offi = 502 MPa. Concrete compressive strength, f", is 42.6 IÑ4,Pa

andf"^^ is assumed to be 40.5 MPa, i.e.0.95f.r.r. The value of E" is assumed to be

32630 MPa and the remaining concrete parameters are: Tt = 1.6I, Tz= 3.0. The

percentage of sæel for tension stiffening analyses is assumed tobe l.3Vo.

Results for load versus deflection for beam 15 are shown in Figure 3.37. Both

analyses overestimate stiffness and underestimate the peak load. The amount of

continuing deformation after the peak load is also not well predicted. Similar trends

were observed in the analyses of beam Al by Mendis. The observed failure of beam

15 was not under the load platten, which corresponds to the peak moment region, but

adjacent to the platten. However, crushing was only observed to one side of the load

platten and suggests some variability in the beam properties.
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Figure 3.36: Test set-up and section details for beam tested by Healey (1993)

Inclined flexure-shear cracks were also observed at failure of beam 15. This beam has

a relatively small shear span ratio, a ld, where ø is distance to the point load and d is

the effective depth. Shear deformations are ignored in the proposed tension stiffening

model, although Balakrishnan and Munay (1988) proposed a relationship between the

shear modulus and the concrete uniaxial stress-strain curve. However, this type of

plane stress element increases the number of degrees of freedom for analysis, hence,

additional storage and computational demands are required.

Results for load versus deflection for beam 4 are shown in Figure 3.38. The analysis

for tension stiffening shows good correlation for stiffness, but the maximum load is

overestimated by 8Vo. Preliminary checks for beam 15 and beam 4 showed that

variations of +L57o for the peak compressive stress/",-. had very little effect on the

predicted strength and stiffness. However, it was found that predicted peak load is

sensitive to the value for effective depth.
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Figure 3.38: Load versus deflection for beam 4 æsted by Healey (1993)
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3.7.3 Comparisons with Two'Span Beams

A study of tension stiffening effects in two-span continuous beams tested by

Bachmann and Thürlimann (1965) and Tse and Darvall (1988) has also been carried

out-

Several beams tested by Bachmann and Thtirlimann (1965) have been analysed and the

results for beam 43, which are representive for these beams, are summarised. Figure

3.40 shows the test set-up and details for beam 43. Concrete compressive strength,

f", is 37.1MPa and/",no, is assumed to be 35.2 MPa, i.e. O-95f",*,. The value of E"

is assumed to be 29680 MPa. Elasto-plastic stress-strain relationships are assumed for

the reinforcing steel. For the steel in region A, the yield stress for the top steel is 461

MPa and the yield stress for the bottom steel is 400 MPa. The main reinforcement for

region B has a yield stress of 400 MPa for both layers.

Figure 3.41 plots moment and curvature at the middle support. The analysis with

tension stiffening taken into account some improvement in stiffness, but the maximum

moment is underestimated by about2ÙVo-

Experimental and analytical results for moment and curvature (Figure 3.41) and load

versus deflection (Figure 3.42) compare more favourably. Moment and curvature was

measured at a location L.625 m from the middle support and load versus deflection

was measured at a position 2.0 m from the middle support.

Results for load and deflection show that stiffness compares well, although the right

hand span is slightly more ductile. These experimental results are not typical for the

series and significant variation in the load-deflection response for adjacent spans was

observed in some of the remaining test beams.

Figure 3.42 shows the experimental peak load is 140 kN compared to the analytical

predicæd load of 130 kN; the difference is only 9Vo. There may be some influence on

peak load by confinement under the loading plates, but of particular interest is the
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influence the interior support has on confining the beam. Improvements to strength

and stiffness in two span beams were noted by Tse and Darvall (1988) in an

investigation of test beams. Results for beam 22,which has been chosen for analysis

in the present study, is representative of these beams. Beam 22 has I.lVo

reinforcement in the top face and 5.0Vo ste,el in the bottom face. Figure 3.43 shows

that by taking tension stiffening into account, there is some improvement in stiffness,

but the overall correlation between strcngth and stiffness is not good.

Tse and Darvall noted that restraint provided by the interior support may improve the

moment capacity at the support. It should be noted that as well as an increase in

strength due to the triaxial staæ of stress, an increase in stiffness may also be achieved.

The effectiveness of confinement depends on the area of contact between the support

and the member and the relative depth of the member, (Niyogi, I9l4; Kotsovos and

Newman, 1981). These conditions may also develop under loading plates due to

localised bearing pressures.
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Figure 3.39: Test set-up and details for beam A3 tesæd by Bachmann and Thürlimann
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3.8 Summary and Conclusions

A simptified tension stiffening model has been developed which is based on previous

investigations for tensile behaviour of reinforced concrete. The model is based on the

concrete tensile strength determined by a splitting test and includes a suitable post peak

sofæning curve. The stress-strain curve for tension stiffening has been implemented

in the section analysis routine for the non-linear frame analysis computer program and

the accuracy of the model has been checked with the performance of test beams.

Good correlation was achieved in some cases, but results have also indicated that, in

adclition to the concrete tensile capacity of concrete, strength and stiffness are

influenced by bearing pressures in local regions such as inærior supports of multi-span

beams and under loading plates. The prediction of beam performance was best

achieved with simply supported æst beams with constant moment regions. In these

cases, disturbance regions do not appear to affect overall structural behaviour.

The performance of single span beams under midspan loading and two-span

continuous beams was also investigated. For these cases, the results do not compare

well. The present method of analysis can be modihed to take into account additional

effects from shear deformation and conhnement. These areas of improvement to the

method of analysis have not been made and are recommended for further research. A

simple and economical solution is ttre use of modified moment-curvature relationships

for those regions where beam behaviour is affected by support restraint and the type of

loading distribution.

While it has been shown that tension stiffening has a minor influence on the strength

of flexural members, the tension stiffening model will be used to predict the

performance of reinforced concrete plane frames. Column strength is not only

influenced by the relative strength of adjoining members, but also the cracked and

uncracked stiffness of beam elements.
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The implementation of the proposed tension stiffening model into the general analysis

for plane frames also allows for the investigation ofjoint deformations and its effect on

frame performance. This type of non-linearity is examined in the following chapûer.
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Chapter 4

Joint Modelling

4.I Introduction

The strength and ductility of a concrete frame structure depend not only on the

properties of the component beams and columns, but also on the manner in which the

beam-to-column joints transfer forces between adjacent members. Extensive

laboratory tests have shown that strength and stiffness of joints vary considerably and

when premature failure occurs, the type of reinforcement detailing at the joint is

usually inadequate. Strength is also adversely affected by reinforcement which is

fabricated poorly or placed improperly.

Although joint detailing had been investigated in the decades prior to the 1960's, the

tests examined in this chapter have all been carried out following investigations by

Nilsson (1965). That study showed a common form of detailing for joints had

inadequate strength and ductility and this prompted a more comprehensive study of L-,

T- and X-joints, (Nilsson, 1968, 1969a, 1969b, 1973). Alternative designs for a
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range of joint types were tested with noúceable improvements in some cases. Several

studies followed by other investigators, including Balint and Taylor (1972), Burnett

and Jajoo (1971), Burnett and Trenberth (1972), Mayfield et aI. (1971, 1972),

Skettrup et al. (L984), Swann (1969), Taylor (L974) and Yuan et aI. (1982).

The discussion of joint behaviour in this chapter is restricted to those cases where the

loading is short-term and monotonic. Similarly, the review of methods of analysis for

joint behaviour is only for those methods which consider short-term loading. Finally,

a method for modelling joint deformations is proposed, which can be incorporaæd in

the segmenøl method of frame analysis.

4.2 Joint Effïciency

For statically loaded test joints, the assessment of joint perforrnance is more often

made in terms of strength rather than stiffness- This is usually done by evaluating

joint efficiency, 4, as given by Equation 4.1- The symbol 4 is used for the present

study.

efficiency,, = Æx 
100 (Vo)

Chapter 4: Joint Modelling tt7

(4.1)

This expression refers to the ratio of actual ultimate moment, M,o6from experiment to

the theoretical ultimate moment of the adjoining member determined from an analysis,

M"ot". The moment capacity, M-t", is determined for a section taken through the beam

element and a second calculation is performed on a section taken through the column.

The predicted moment at failure is then taken as the lower of the two values.

It should be noted that each analysis is usually performed by assuming there is no axial

thrust on the section and that moment only is acting. This is a simplified, approximate

approach which allows moment capacity to be calculated directly rather than an

iterative solution which considers the level of axial thrust.
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4.3 Behaviour of Test Joints

4.3.1 Introduction

Frame behaviour depends not only on the type of loading conditions, but also the

nature of the detailing within the corners. Tests on isolated L-, T- and X- joints with

various types of joint detailing have been the subject of many investigations, but only

those test joints with detailing which are found in common practice will be reviewed

here-

4.3.2 Behaviour of L-joints

The L-joint can be classihed into two types: the closing comer and the opening corner.

A closing corner is created when the bending moments in the beam and column

elements tend to reduce the inside angle of the joint, and an opening corner is created

when the bending moments increase the inside angle of the joint. Illustrated in Figure

4-L are two frames with different combinations of opening and closing corners.

Figure 4.la shows a frame subjected to a lateral load in which both an opening corner

and a closing corner are created. The frame shown in Figure 4.1b is subjecæd to

vertical loading and closing corners are created at the ends of the beam element.

Assuming similar properties and detailing for the frames, the presence of the opening

comer in Figure 4.Lamay have an adverse affect on frame behaviour.

) rrr

\ I
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P

Figure 4.la: Portal frame with an opening corner and a closing comer
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Figure 4.lb: Portal frame with two closing corners

Swann (1969) and Mayfîeld et aI. (197I,1972) tested L-shaped corners with various

detailing under two load conditions, one tending to open the corner, and the other

tending to close the corner. The test conñguration for both studies is shown in Figure

4.2. 'îhe applied load, Por"n, opens the corner and the load given bY P"b"" will close

the corner. In these tests, when the applied load creates an opening corner there is a

tensile axial thrust in the column, and when the applied load creates a closing comer a

compressive axial thrust is present in the column. In neither case, is an axial force

present in the beam.

Pop"o

Pclose

Figure 4.2: Test configuration for corners tested by Mayheld et aI. and Swann

In all the tests by Swann (1969), the specimens had 3Vo tens\le steel. Table 4.1

summarises the corner reinforcement layout, crack patterns and efficieîc!,4, for two

types of detailing which are simila¡ to tho.se reported by Nilsson (1968, 1973).
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Table 4.1 shows that the crack patterns at failure for an opening corner are quite

different to the crack patterns of a closing corner at failure. The closing test corners

103 and 104 by Swann both developed flexural type cracks in the beam and column.

In the opening test corners 3 and 4, a tensile crack formed at the inside corner at an

early stage of loading. This was followed by the formation of an inclined (diagonal

sptitting) crack across the corner which spread to the main steel in the outside face.

Specimen failure was precipitated when concrete split from the beam and column steel.

This is shown by the longitudinal (splitting) cracks and are likely to have been caused

by the transfer of high radial tensile stresses to the surrounding concrete. A study by

Kemp and Wilhelm (1979) showed this premature type of failure depends on bar

spacing and concrete cover and that splitting cracks can be delayed by providing

stirrups. Similar longitudinal splitting cracks patterns at failure were observed in

frames with this type of detailing and tested by Nilsson (1968). In some cases,

outside corners actually spalled off completely, corresponding to a brittle failure.

The results in Table 4.1 show that each closing corner is more efficient than its

opening corner counterpart, i.e. the closing corner failed at a higher load. Corners

with other types of detailing were also tested, and in each case the closing corner was

more efficient than the opening comer.

While most investigations for joint performance concentrate on strength, it is also

useful to compare predictions of both strength and stiffness. Test corners 3 and 103

were selected in the present study for analysis by the segmental method of frame

analysis.

Two types of non-linear analysis were carried out for each test corner: an analysis

which ignores the effect of tension stiffening,'and an analysis which includes the

proposed tension stiffening model. Only the results for the case which includes

tension stiffening are presented here because there was no observed difference

between the two sets of results. It was shown in Chapter 3 that tension stiffening
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effects are less significant with increasing amounts of tensile steel and, for clarity,

results are presented here for the analysis which includes tension stiffening.

Table 4.1: Failure patterns of comers tested by Swann (1969)

Corner

Reinforcement

Opening Corner Closing Corner

Test

no

Crack

pattern

ïì

(Vo)

Test

no.

Crack

pattern

n

(Vo\

3 19 103 81

4 34 r04 77

Experimental and anal¡ical results of moment versus rotation for the two test corners

by Swann are shown in Figure 4.3 and Figure 4.4. Rotation is the change in the

measured angle between the beam and the column. Each test corner has 37o tensile

reinforcement.

The test results for closing corner 103 show a considerable loss in stiffness at a

moment of 2-5 kNm, when cracks are likely to have formed. The maximum moment

for the test corner is 13.5 kNm, whereas the analysis predicts a maximum moment of

16.5 kNm. In terms of strength, this corner is SlVo efficient. After the peak load the

test corner continues to deform, indicating that this type of detailing is reasonably

ductile. The amount of continuing deformation predicted by the analysis compares

quite poorþ.
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Figure 4.4 shows the results for the same detail, but test specimen 3 was subjecæd to a

load which tended to open the corner. The test corner reached a maximum moment of

2.9 kNm, compared to the predicæd mar<imum moment from the analysis of 15.3

kNm. In terms of strength, this corner is only l97o efftcient. This test specimen also

shows a higher degree of ductility than the predicted analytical results. Although it is

not clear from Figure 4.4,the test corner has undergone some loss in stiffness at about

half the maximum moment.
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Figure 4.3: Moment versus rotation for test no.103 by Swann (1969)
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Figure 4.4: Moment versus rotation for test no.3 by Swann (1969)

Swann also showed that strength is affected by placement elrors in the reinforcement.

A post-failure inspection of one particular test corner revealed that the main

reinforcement had sagged to the bottom of the mould during casting. A comparison of

the moment at failure in the experiment and the predicted failure moment showed this

specimen to have an efficiency of 537o. In a repeat test using the same type of

detailing, the efficiency of the comer was calculated to be \lVo. It was found that the

reinforcement had been well placed in the repeat test.

Mayfield et aI- (I971, 1972) also tested opening and closing corners with different

types of reinforcement detailing using a test set-up with the configuration shown in

Figure 4.2. Beam and column elements were encased in stirrups and a range of

percentages of tensile reinforcement were used for the tests.

Table 4.2 summarises the efficiencies for two types of deøil shown. All specimens

have l.\Vo tensile reinforcement. The results show there is some variability in actual

strength. The closing corner tests 2-3 and 2-4 both have the same detail, concrete

Ez
J1
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o
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strength and physical dimensions, but the efficiencies are 94Vo and IITVo respectively.

Similarly, closing corner tests 1-3 and 1-4 have efficiencies of l25%o and l37%o

respectively. It is likely that some variability in strength can be attributed to fabrication

and placement of the reinforcement in the corner.

Note that tests 1-3, 1-4 and 2-4have efficiencies greater than 100%, i.e. the corner

itsetf is stronger than the flexural strength predictions for the beam and column.

Concrete within the corners is confined by stirrups, and this effect is taken into

account in the concrete compressive stress-strain curve by Kent and Park (1971).

While the main reinforcement detailing also confines concrete, its primary purpose is

to provide a restraint to crack growth and propagation which appears to influence

strength. Restraint provided by the hairpin reinforcement appears to be most effective.

Table  .2:F;fficîencies of corners æsæd by Mayfield et al. (1971)

Corner

Reinforcement

Test

no.

f"

(MPa)

Main reinf

diam.

(mm) (Vo)

type of

corner

efficiency

(V")

1-l

l-2

r-3

t-4

20.6

20.6

20.6

20.6

t2

t2

t2

12

1.0

1.0

1.0

1.0

opening

opening

closing

closing

19

19

t25

r37

2-r

2-2

2-3

2-4

18.6

18.6

18.6

18.6

T2

t2

12

T2

1.0

1.0

1.0

1.0

opening

opening

closing

closing

M

48

94

IT7

Shown in Figure 4-5 are the crack patterns of four test corners by Mayfield et al. T\e

detailing of the corners are simila¡ to those used in tests by Swann (1969) and shown

in Table 4.1. Also indicated on the diagrams of crack patterns are the 'load raúos',
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which indicaæ the relative load level when the cracks were first observed. The 'load

ratio' is the ratio of the actual moment from the experiment when the cracks were

observed ûo the theoretical mærimum moment deærmined by an analysis.

The crack pattems for test 1-1 show that diagonal splitting cracks formed within the

corner at a load ratio of 12. Cracks then spread into both the beam and column and

total failu¡e occurred at a load ratio of 19. In test 1-3, flexural type cracks in the beam

and column ceased propagating at a load ratio of 83. Across the corner, a splitting

crack formed at a load ratio of 124 and appears to have spread rapidly and precipiøted

failure of the specimen. The maximum load ratio of 125, which corresponds to failure

of the specimen, indicates this is an effrcient detail.

The second detail shown in Figure 4.5 includes bars in the shape of hairpins. This

type of detailing confines the concrete in the corner and resists the growth and

spreading of cracks. It is a more efficient detail than the first detail shown. The

opening corner failed at a 'load ratio' of 48, whereas the closing corner failed at a 'load

ratio' of 117.

55

56

Opøning Closng

(a) æst 1-1 (b) æst 1-3

Opønirç Cbsing

(c) test2-2 (d) æst 2-4

Figure 4.5: Failure patterns of corners tested by Mayheld et al. (1971)
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Nilsson (1965, 1968, 1973) tested frames with the configuration shown in Figure 4.6.

The loading is symmetric and an opening corner is created at each joint. No axial

thrust is present in the columns, but the beam is subjected to a tensile axial thrust. A

load P was applied at the base of each column where lateral deflection was also

measured.

PP

Figure 4.6: Configuration of frames tesæd by Nilsson

Load versus deflection for frame IJ22 is shown in Figure 4.7. The percentage of sæel

in the beam and the columns is 0.897o and l.l57o respectively. Frame failure

occurred shortly after the formation of diagonal sptitting cracks across each corner and

at a load of 11 kN and deflection of 4 mm. The analysis for tension stiffening

compares well up to failure of the test specimen. However, the analysis predicts a

peak load of 40 kN and continuing deformation afær this load.

The results for frame U25, which has hairpin reinforcement, are shown in Figure 4.8.

This frame has 0.897o beam tensile steel and l.L57o column tensile steel. Analytical

results for this case compare more favourably than for frame U22. Clearly, tension

stiffening has a benefîcial effect on frame stiffness, but the predicted peak load of 42

kN overestimates the actual failure load of 36 kN by I77o. The improved peak load

and ductility for this frame, compared to frame U22,is probably due to the provision

of hairpin reinforcement. The discussion of test results obtained by Swann and

Mayfield et aI. in the present study has shown that hairpin reinforcement improves the

strength of a corner by confinement and additional restraint to crack growth. This

latter effect is also important for ductility requircments.
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Finally, Figure 4.9 and Figure 4-10 compare efficiency versus percentage of tensile

steel for two types of detail, and include some of the test corner results already

discussed in this section. In each case, the percentage of ænsile steel is the average

value for the beam and column element. Calculations are based on average values

because failure generally occurred within the corners, rather than in the beam or

column elements.
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Both graphs in Figures 4.9 and 4.10 show similar trends. In terms of strength,

closing comers are more efficient than opening corners, and efhciency improves as the

percentage of steel reduces. Somerville and Taylor (L972) noted that highest

efficiencies are achieved at very low amounts of steel because tensile strength

contributes to overall strength.

In general, the results cannot be related directly to the performance of L-joints within

frames because columns are subjected to various levels of axial forces. In all the test

cases, a transverse load was applied either to the column or the beam, but the effect of

axial loading applied directly to the columns was not included. However, the patterns

at failure discussed in this section show the type of deformations which develop within

opening and closing corners. Performance is likely to improve for columns in axial

compression.

Two types of joint detailing have been examined in this section and in some test cases

actual strength has compared poorly with strength predictions. Various alternative

corner details have been tested by Swann (1969), Mayfield et al. (197I, 1972),

Nilsson (1968, L969a,1973), and in many cases signihcant improvements in strength

were noted. Most of these types of detail are not used in practice because of

difficulties in construction. Notable exceptions are the test corners with haunches and

inclined reinforcement tested by Nilsson (1968, 1973). However, the development of

the joint model in this chapter is based on those cases where joint detailing and loading

conditions may adversely affect strength and stiffness of frames. A study of frames

which includes the joint model will be presented in Chapær 6.

4.3.3 Behaviour of T-Joints

T-joints are found in two different locations in a building frame, (see Figure 4.11).

The T-joint in the exterior column and the T-joint in the top floor beam both require

different construction techniques, and for this reason it is common to specify different

reinforcement detailing for each type of joint. Taylor (1974) tested the type of T-joint
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found in an exterior column and Nilsson (1973) tested various types of T-joints likely

to be used to connect top floor beams to an interior column-

Figure 4.11: Types of T-joints

Taylor tested T-joint specimens with the configuration shown in Figure 4.12.

Atthough four different types of detailing were tested, only the detail shown in Figure

4.12 is examined in the present study. Of the three details not considered here, one

detail was designed specifically for a reversed load test and the other two details are

not likely to be used in practice. For safety reasons, beams were loaded from the

underside, hence beam tensile reinforcement was placed in the bottom face.

In each test, compressive axial loads were applied to the column and at the right hand

end of the beam and incremented up to a predetermined level. These load levels were

chosen to simulate working load conditions. Lateral restraints were also provided at

the top and bottom of each column. Axial loads were then held constant as a

transverse loading was applied to the beam and incremented up to collapse.

Two types of failure were observed. All of the specimens with shallow beams, and

specimens with deep beams containing lower percentages of steel initially developed

flexural cracks in the beams. At later stages of loading, diagonal cracks developed

across the beam-column connections. Failure in these cases occurred when the beam

steel at the face of the column had yielded. Test specimens with deep beams and steel

percentages greater than2.ÙVo failed in joint shear, i.e. large diagonal cracks formed in
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Figure 4.12: Test configuration and detailing used by Taylor (1974)

Plotted in Figure 4.13 is efficiency versus percentage of tensile steel in the beam for

two different beam sizes. The calculation for theoretical moment M-¡"includes beam

thrust, and the values for effîciency reported by Taylor (1974) have been used in this

study. In all test specimens with shallow beams, i.e. 100 mm by 125 mm, joint

efficiency is greater than 1007o. The beams within these T-joints failed in flexure.

Since axial thrust is taken into account in the strength calculations, the apparent

increase in strength is due to other causes. Confinement within the beam-column

connections creates multiaxial states of strcss and increases in concrete compressive

strength from these stresses can be significant, (Kotsovos, 1987).
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the beam-column connections followed by concrete crushing at the outside face of the

columns.

The specimens with deep beams containing2.4To tensile beam steel have efficiencies

ranging from 507o to 877o. All of these T-joints failed after extensive shea¡ cracking

within the joints. The lowest efficiency corresponds to the lowest level of axial thrust

in the beam. For the T-joints with the lowest percentages of beam steel, joint

efficiency compares most favourably. In these tests, a flexural failure occurred in the

beams.

n

i-r
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Figure 4.|3 Bfftciency versus percentage of steel for T-joints tested by Taylor (1974)

Nilsson (1973) tested T-joints with the test set-up shown in Figure 4.14. Plotted in

Figure 4.15 is efficiency versus percentage of tensile steel in the column for the two

details shown. Detail I has column reinforcement splayed outwa¡ds into the top floor

beam. It is the preferred type of detailing because of the ease of constructability.

Detail 2 has bars which extend out of the columns and lap each other in the beams.

This is a less common method of detailing. The values of efficiency are those reported

by Nilsson (1973) and are based on Equation 4.1. The values for M,o¡" are based on

section analyses taken through the columns. The actual ultimate moment from the

experiments, Mt",t,is equal to the maximum applied force multiplied by the distance to

the centreline of the beams.
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Figure 4.14: Test configuration used by Nilsson (1973)
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Figure 4.15: Efficiency versus percentage of steel for T-joints æsæd by

Nilsson (1973)

In all of the T-joins tested by Nilsson a diagonal tension crack formed across the

joints, as in Figure 4.L6, and failure occurred when the concrete had split from the

steel in the outside face of the beams. It is assumed that higher failure loads, hence

higher efficiencies, were achieved for detail2 because the reinforcement detailing in

the joints was able to delay the formation of diagonal cracks.
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Figure 4.16: Post failure condition of T15 tested by Nilsson (1973)
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So far, the influence of joint detailing for T-joints has been described, it is important to

note that, similar to L-joints, loading conditions also determine the type of joint

deformations. Shown in Figure 4.17a are the direction of moments for the joints

tested by Taylor (1974). Diagonal cracking across the joint is due to the combination

of M" and Ms, while in Figure 4.17b, diagonal cracking is due to the moments, Ma

and M". For these combinations, the moments are of opposiæ sign. Note this type of

cracking pattern also occurs within opening corner L-joints when moments of opposite

sign are present.

M a M
c )

Mb

)*o

\,\2
M

M

(a) (b)

Figure 4.17: Moments acting in T-joints by (a) Taylor (I97Ð; and (b) Nilsson (1973)

4.3.4 Behaviour of X-Joints

Limited test data is available on the behaviour of X-joints under static loading,

although Nilsson (1973) tested to failure an X-joint under static loading and reported

joint efficiency to be greater than 1007o. The performance of X-joints has mainly

focussed on tests under cyclic loading, e.g. Meinheit and Jirsa (1981).

X-joints are usually designed with longitudinal reinforcement which is continuous

through the beam-column connections and go.od bond is usually achieved between

steel and concrete. Bond can still exist even as beam steel is close to yielding,

(Allwood, 1980). Bond deterioration becomes a problem with X-joints subjected to

reversed loadings, which contributes to lateral story drift, (Noguchi, 1981). Post-

yielding condiúons also show that strain hardening of reinforcement can be achieved

c
c
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(Burnett and Jajoo, 197l). Hence, failure moments can be much higher than moments

at yield.

For the prcsent study, the strength and stiffness of X-joints are assumed to be l00Vo

effrcient Hence, additional joint deformations and confinement effects will be ignored

for non-linear frame analyses.

4.3.5 Summary of Joint Behaviour

The investigation of isolated test joints in this section has shown that joint performance

is mainly influenced by the type of joint detailing and the loading conditions. Three

types of joint have been examined, L-, T- and X-joints.

Joint deformations are largely cha¡acterised by inclined or diagonal cracks and possible

locations can be determined by the sign of the moments in each member entering the

connections. These deformations are of most concern in opening L-joints and T-

joints. It is assumed the performance of X-joints is not adversely affected by joint

deformations. Longitudinal splitting cracks were also observed in some opening L-

joints, but the formation of these cracks can be prevented by suitably placed stimrps

around the main steel.

The performance of various common types of joint detailing has been investigated and

in some cases the detailing appears to be inadequate. Although not classified as a joint

detail it is worth considering the perfoffnance of joggled splices or lapped splices

which are often detailed within column lengths. Tests by Somerville and Taylor

(1972) showed that with proper placemenl ideal column capacity can be achieved.

The test joints examined in this section were not subjecæd to column axial loading. It

should be noted that the location of hinge forming sections is affected by the presence

of axial forces. It is also important to note that an analysis for joint deformations

which does not take axial loading into account may produce quiæ different results ûo an

analysis which considers the influence of axial loading on joint performance.



Chapter 4: Joint Modelling 136

4.4 Previous Methods of Analysis for Joint
Behaviour

4.4.1 Introduction

Most emphasis for the analysis of joint behaviour has been for joints subjecæd to

cyclic or reverse loading because the nature of joint deformations under these

conditions is potentially more severe. However, the present discussion of previous

methods of analysis is for those cases where static loading is applied. Such methods

are applicable to frames subjecæd to any combination of dead, live and wind loads.

4.4.2 Analytical Methods for Static Loading

Hall (1969a,b) described the block of material where beams and columns meet as the

Joint block'. Using an elastic finite element approach, curves were derived for L-, T-

and X- joints which can be used to determine the rigid portion of the joint block. The

curves a¡e functions of the cross-sectional dimensions of each column and beam and

are useful for determining the effective length of a member.

Rad (1972) also used a linear elastic finite element model and generated EI values for

closing and opening corners of frames with the configuration shown in Figure 4.18.

Rad noted that confinement under the bearing plate, through which the column ærial

loads were applied, induces biaxial stresses in the corner. This has a beneficial effect

which increases the uniaxial concrete compressive strength. The measurement of the

nodal displacements (rotations), 0¿ and 0¡, are for the closing corner shown in Figure

4.18. The average curvature, Qjo¡nuis given by:

(4.2)

The stiffness of the joint is taken to be the average moment for the two nodes where

displacement was measured, divided by the average curvature, Qjom. The stiffness of

Q¡oi*
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a joint member was found to be approximately five times the cracked stiffness of the

beam.

Rad calculated values for all four corners because confinement is provided by the base

supports, as well as by the bearing plates through which the vertical loads were

applied. These stiffness values werr used by Rad in a non-linear plane frame analysis

to investigate the behaviour of several test frames. These frames were subjecæd to

non-proportional loading and the experimental and anal¡ical results obtained by Rad

are discussed in Chapter 5, Non-Proportional Loading.

eL t l., gn

F

I

Figure 4.18: Measurement for rotation and moment for closing corner (Rad, 1972)

A common approach in the analysis and design of steel connections is the use of

experimental moment-rotation curves, (Attiogbe and Morris, l99l; Bjorhovde et aI-

1991). Blaauwendraad and de Groot (1983) used experimental moment-rotation

curyes for reinforced concrete T-joints to predict the strength of braced and unbraced

frames. Figure 4.19 shows a bilinear M - 0 plot for an ideal connection and also a

typical curye for an imperfect connection. The experimentally derived curves can be

linearised or represented by curvilinear expressions and then fed as input into a non-

linear structural analysis prog¿ìm.
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Figure 4.19: Moment-rotation curves by Blaauwendraad and de Groot (1983)

The behaviour of a T-joint in a frame is deærmined by the M-Q characteristics of the

beam and the column. Shown in Figure 4.19c is an experimentally derived M - Q

curve for a column connection and an M-Q curve for the beam component which is

calculated from a non-linear frame analysis.

Nilsson (L973) derived the following equation ûo predict the diagonal cracking moment

across an L-joint.

M¿" - 0.53dbI¿S[o" (4.3)

This equation is based on the assumption that the tensile stress distribution across the

diagonal crack agrees closely with a parabolq where /¿ is the length of the crack. The

effective depth is given by d and the width of the corner is b. The compressive cube

strength for concrete, %, is used in the equation. An equation was also derived for the

diagonal cracking moment for a T-joint. Table 4.3 compares results for the theoretical

diagonal cracking moment determined by Nilsson and Losberg Q976) and the results

from the tests on L-joints.
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Table 4.3: Diagonal cracking moments (Nilsson and Losberg, L976)

Test

no

M¿.,in (kltlm) Observed/

calculatedCalculated Observed

U1 46.9 54.9 t.I7

U2 31.5 32.8 1.04

U3 46.2 45.7 0_99

u20 9.9 10.0 1 0 I

U2T 12.0 9.7 0.81

u22 r0.1 11.9 1.11

u14 t2.4 t7.2 1.39

The ratio of observed moment to calculated moment varies between 0.81 to 1.39 and

suggests that the assumptions in deriving the expression for M¿,are very approximate.

It is also likely that the diagonal crack length l¿" and the distribution of stress varies

considerably in each case.

El-Metwally and Chen (1988) modelled a beam-column connection as a concentrated

rotational spring with a spring tangent stiffness, K, as shown in Figure 4.20 and given

by:

K_

L-tr (4.4)

where Ç is the initial rotational stiffness of the connection and a is a parameær which

depends on the amount of energy dissipated. The load factor, .i,, is given by )"= MlM"

where M is the moment at the connection at the current level of load and Mu is the

ultimate moment capacity of the connection.
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Moment

M

unloading curve

e Rotation

Figure 4.20 : Moment-rotation relationship for beam-column connection

The spring stiffness, K, carr be implemented into a member stiffness matrix for a non-

linear frame analysis. Moment and rotation at any load level is given by the following

relationship:

M=K0 (4.s)

To determine the ultimate moment capacity of the connection, Mu, r flexural strength

calculation is performed for each member which meets at the connection. Calculations

are based on limit analysis theory and assume perfect plastic behaviour of the concrete

and steel. The location of flexural hinges can be predicted by a method suggested by

Ehsani and Wight (1984).

If the flexural strength of the column element is less than the flexural strength of the

beam then a plastic hinge is expected to form in the column. Therefore, the ultimate

moment of the connection is equal to the strength of the column. If the flexural

strength of the column element is greater than 1.4 times the flexural srength of the

beam element, a plastic hinge is expected to form in the beam. The ultimate moment of

the connection is then set equal to the flexural strength of the column. If the flexural

strength of the column element is between 1.0 and 1.4 times the strength of the beam,

&
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failure is assumed to occur within the joint itself. In this case values for Mu and Ko

should be estimated from experimental data using a regression analysis.

This method of locating potential hinges is only approximate because strength of

individual members also depends on the level of compressive or tensile axial force.

However, it appears to assume that column flexural capacity is more likely to be

influenced by a compressive thrusl

Calculation of the initial rotational stiffness, Ko, is based on assumed linea¡ elastic

behaviour for the concrete and steel. The parameter Ko is for the member where a

flexural hinge is expected to form.

The parameteÍ, ø, depends on the amount of energy, Õ, dissipated from the inelastic

behaviour of the joinr The magnitude of ¿ v¿ries according to the level of load. The

total energy released, Õ, is given by :

¡ø+2
a = #ifua(na+2)(rn). +t)+2

l\6 z=l

(4.6)
(na+2

and is the sum of dissipated energy from three sources of material non-linearity.

These effects are: (1) deterioration of bond between the steel and concrete; (2) cracks

in the concrete; and (3) the inelastic behaviour of the steel and concrete.

The determination of the magnitude of the parameter ¿ for each level of load is a

complicated process involving three energy equations to be solved for each effect and

at each load level. However, it was suggested for simplicity that a.can assumed to be

constant and calculated for a predetermined load level. A satisfactory solution can be

found by choosing a load level which corresponds to a steel strain. The dissipated

energy from each source is then given by the following :
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1- Dissipated energy due to bond deterioration, Õ6 :

ar=y-ü- (kgr-cm) Ø.7)o - 556,433

where d" = stress in the steel and less than the yield stress, and d = diameter of

the ba¡.

2- Dissipaæd energy due to cracks in the concrete, Õ. :

Õ" = 15.68 
(f )o't *v(kgf -cm) (4-8)

"8"

where.f" = concrete compressive strength (kgf/cm2) and E, = modulus of

concrete (kgf/cm2). The theoretical volume in which cracks are assumed to

form is given by V - byh. '|he width of the section is b a¡rd the depth of the

section is given by y. The term /r is the length of a flexural hinge over which

the cracks form.

3. Dissipaæd energy due to material inelasticity, Ç.:

By choosing the strain level in the steel, e6, to be less then the yield strain, E,

there is no energy release due to inelastic behaviour of the steel. The energy

released due to the inelastic behaviour of the concrete can be found by

integrating the stress-strain curve of Soliman and Yu (1967) and shown in

Figure 4.2L. T};re integral functions can be found in the paper by El-Metwally

and Chen (1988).

The joint model was incorporated in a non-linear frame analysis by El-Metwally and

Chen (1989b) who examined two frames æsted by Ernst et al. (1973). Test frame

2D9H was subjected to sequential loading and the results of this analysis are discussed

in Chapter 5 of the present study. The results from five different analyses by El-

Metwally and Chen for frame 840 are shown in Figure 4.22. T\eir study assumed an

elasto-plastic relationship for the reinforcing steel, although test results showed strain
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hardening of the tensile steel at the top of the right hand column. The ænsile capacity

of the concrete and shea¡ deformations were also ignored.

Stress
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Figure 4.21: Stress-stain curve for concrete confined by rectangular hoops

(Soliman and Yu, 1967)
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The plot of load versus deflection for the first analysis, 'geometry + material' effects

compare well with the experimental results, although the maximum load is

underestimated slightly. When this plot is compared with the results 'geometry +

joint' and 'material + joint', the load versus deflection differs considerably for all

three, indicating that each non-linear effect has a significant contribution to frame

behaviour.

Load versus deflection compares best of all for the fifth analysis, which includes joint

modelling for the end of the beam, i.e. the analysis anticipates that a flexural hinge will

form first at the end of the beam. From the actual results of the test frame, a hinge

formed fir.st at the end of the beam followed by a second hinge at midspan. No hinges

formed in the columns of the test frame. Sectional analyses of frame B40 were carried

out in the present study and showed that the moment capacities of the column and at

midspan of the beam are approximately twice the moment capacity of the end of the

beam. The sectional analyses ignored the presence of any axial thrust. This suggests

that the joint model used in the fifth analysis has predicted accurately the location of the

critical hinge within the joinr

The results of the frfth analysis when compared to the second analysis, 'geometry +

material', show that prediction of frame capacity is improved by including the joint

model. Under the action of vertical loading, two closing corners are created in the

frame. It can be concluded from the fifth analysis by El-Metwally and Chen that the

closing corners are more than 1ü)7o efficient. Confinement effects are likely to

increase with increasing levels of axial thrust in the columns and beam. This in turn

improves the strength of the closing corners.

The fourth analysis by El-Metwally and Chen assumes joint deformations occur within

the joint and results don't compare well. Peak load is underestimated by 207o. T\is

fourth analysis shows the importance of predicting the hinge forming region at the

joints.



Chapter 4: Joitt Mc¡delling 145

Unfortunately, the analyses carried out by El-Metwally and Chen do not predict

continuing deflection after peak load. The method of frame analysis is based on a

tangent stiffness approach, and only determines the amount of deflection up to the

peak load. The method of analysis ignores the effect of tension stiffening and

therefore stiffness is likely to be underestimated.

Drysdale and Mirza (1974) also analysed a series of test frames with a similar

configuration as frame 840 tested by Ernst et aI. lt was noted that differences between

predicted and experimental results were due to the additional effects of joint rotation

and diagonal cracking, which had not been taken into account in their method.

Confinement effects were considered in a non-linear finite element method of analysis

by van Mier (1987). An element mesh with eight noded plane stress elements was

employed, and to model the multiaxial state of stress within closing comers of a portal

frame, the compressive strength of the concrete was increasedby 507o.

4.4.3 Summary and Conclusions

The methods for modelling joint behaviour described in this section are largely

concerned with increases in strength and stiffness which are characteristic of closing

L-joints. The method proposed by El-Metwally and Chen is based on constitutive

properties. Predictions compare well for frame with closing corners. However, the

method may not be suitable for the analysis of frames with T-joints a¡rd/or opening L-

joints.

The approaches taken by Rad (1912) and Blaauwendraad and de Groot (1983) use

load-deformation curves based on experimental results for test joints. However, the

approach by Rad is restricted to a particular series of test frames and the curyes

generated by the latter lack important information.

The multi-directional crack patterns of many of the test joints examined in this chapter

suggests that complex states of stress develop as these joints are subjected to
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increasing levels of load. Although this type of behaviour can be modelled in a finiæ

element approach, it is not suitable to the analysis of overall frame behaviour. A

convenient approach is the use of modified moment-curyature curves such as those

described in Chapter 3, Tension Stiffening. The development of these types of curves

are often based on experirnental results.

4.5 Proposed Model for Joint Behaviour

4.5.1 Introduction

The proposed model for joint behaviour is a global approach which involves

modifying ideal moment-curvature-thrust curves. Modified curyes can be developed

for joints to take into account increases or decreases in strength and stiffness.

However, in the present study M-rc-N curyes are only developed for two types of

joint with common types of detailing: the opening L-joint and the T-joint which

connects top floor beams to an interior column. The study of various joint types in

this chapter shows these joint types are inefhcient under certain loading conditions.

Other joint types a¡€ assumed tobe l00%o efhcient

The modified curves will be used in the non-linear method of frame analysis to

investigate the influence of joint deformations in frames. The study is described in

detail in Chapter 6 and is concerned with situations where joint deformations can

poæntially reduce frame strength and stiffness.

4.5.2 Joint Segments

For the present study, two segments which enter a joint are designated as Joint

segments'. Each joint segment has a length equal to D, where D is the depth of the

member. This is based on the test studies by Swann (1969) and Nilsson (1968, 1973)

where joint deformations were generally spread over a distance of D in the beam and a

distance of D in the column.
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The location of joint segments is found by first performing section analyses to

determine the theoretical moment capacities for the beam and columî, Muç*^¡ îÍtd

Mu("ot¡respectively. Section analyses assume zero axial force. For an L-joint, hinge

locations are found by comparing the relative strength of each member entering the

joint. This is based on the joint model developed by El-Metwally and Chen.

If the flexural strength of the beam is greater than the flexural strength of the column,

as given by Equation 4.9, two segments are placed at the top of the column. On the

other hand, two joint segments are inserted in the beam element if the moment capacity

of the column is greater than 1.4 times the moment capacity of the beam elemenl This

is given by Equation 4.10.

In some situations, a hinge may also form within the joint itself. This prediction is

made if the relative strengths of the connecting members is given by Equation 4.11.

Hence, to perform a non-linea¡ analysis for joint deformations, a joint segment is

placed at the top of the column and a segment is also placed at the end of the beam

P_,

Mu(col) < Mu(beam'¡ (4.e)

P+

Mu(cot) > L4MrQ^^) (4.r0)

P+

M 
u (b.an) 3 M u(*t> < I' 4 M uþ"*n) (4.11)



Clupter 4: Joint Modelling i48

For T-joints, special joint segments are only inserted in the beams. The investigation

of T-joints earlier in this chapter showed that regardless of the relative strength of

connecting members, joint deformations are largely confined to the beams. Figure

4.23 shows where joint segments are inserted and for the given loading conditions.

M"
)

Mb

M
\t

c

Figure 4.23: Jointsegments in a T-joint

4.5.3 Modified M-r-N Curves

The proposed method involves generating a family of ideal moment-thrust-curvature

curves for the joint segments using the sectional analysis procedures of the segmental

method of frame analysis. These curyes are then modified to take into account losses

of strength and stiffness which occur at joints. Note that an analysis for joint

deformations also takes tension stiffening into account. The process involved in

generating curves for joint modelling is as follows.

A sectional analysis routine generates a family of ten ideal M-r-N curves, in

increments from zero axial thrust up to 0.9Nr' where Nr" is the squash load. Figure

4.24 shows an ideal and a modified moment-curvature curve. The first curve is

generated by a section analysis and has three key points. The first key point (M¡ rc)

is the moment and curvature when the first crack forms and the second key point,

(Mz, Kz),is the moment and curvaturc at the ultimate moment. The final point on the

curve, (Mz, Kt), is the moment and curvature at the maximum curvature.

Moment and curvature representing the keypoints of the ideal curve are then modified

and have corresponding keypoints shown on the modified tri-linear curve.
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Figure 4.24:Ideal and modihed moment-curvature curves

4.5.4 Joint Model for Opening L-Joints

The development of the joint model for opening L-joints is based on a series of sway

frames tested by Ferguson and Breen (1966). Eight rectangular frames were tested,

and six frames have been chosen for analysis in the present study. Frame L8 was

tested under sustained load and was considered unsuitable for analysis. Frame L4

failed prematurely because some elements of the loading frame buckled near the

ultimate moment capacity and æst results were not published.

Figure 4.25 shows the test set-up, with vertical loads applied to the columns and a

horizontal load applied to the top of the left hand column. Loads were applied

proportionally up to failure. Table 4.4 summarises frame dimensions and material

strengths and Figure 4.26 shows the section details for the beams and columns in the

tests.
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Figure 4.25: Test conf,rguration of frames tested by Ferguson and Breen (1966)

Table 4.4: Frame dimensions and material properties of frames tested by

Ferguson and Breen (1966)

Frame h

(mm)

L

(mm)

ct, Êt þ, f.

(MPa)

f,r(col)

ç¡lPa)

f,r(beam)

(MPa)

L1

L2

L3

L5

L6

L7

2t34

2t34

2TT3

LI4T

tt4r
1097

2t34

2t34

2t34

2134

2134

2r34

0.02

0.06

0.02

0.12

0.04

0.04

1.01

1.01

1.01

1.03

1.02

t.02

0.99

0.99

0.99

0.97

0.95

0.98

27.4

28.8

22.1

28.0

25.5

20.6

383

408

389

398

384

393

362

3s9

403

359

359

382



Chnpter 4: Joint Modelling

153

125

Ast= 516 mmz

Beams L5,L6

153

151

153

-i zt

Jzt-t

1zz

I

t22

103

103

1zt

1lzt
-

1n

1n

I

Ast= 516 mm2

Beams Ll,Lz

153

A*t=142 mm2

All Columns

Ast= 516 mm2

Beams L3,L7

Figure 4.26: Section details of frames tested by Ferguson and Breen (1966)

Two types of failure mode were observed for these test fames. Frames Ll,L2 and L3

each failed by concrete crushing on the outside face of the column of corner A which is

an opening corner. Failure at other sections within these frames was not reported.

Frame L6 failed when the main reinforcement buckled between the ties in the columns

of both corners B and D, and concrete had been completely destroyed. These two

corners of frame L6 are closing corners. However, it was not mentioned whether this

failure mode is typical of frames L5 and L7. Deformations were not observed in the

beams in any of the six test frames analysed here, probably because the beams were

heavily reinforced and relatively much stronger than the columns"

In the proposed model for joint behaviour, no modihcations a¡e made to the ideal M-

r-N curves for closing corners. Although the closing corners of frame L6 failed

prematurely, this type of failure probably could have occurred at any of the four

corners. Figure 4.27 shows the type of detailing used in each of the frames tested by

Ast

Ast

Ast

Ast

Ast
Ast

Ast

Ast
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Ferguson and Breen. All columns have I.l7o tensile steel reinforcement and all beams

are heavily reinforced with a total area of sæel equal to \Vo of the gross sectional area.

Since the beams are relatively much stronger than the columns, joint segments have

been included in the columns only.

stimrps
at 52 mm

Figure 4.27: Comer detailing for frames (Ferguson and Breen, 1966)

To develop a family of modified M-r-N curves for the opening L-joint, shown in

Figure 4.27 , the modified curve corresponding to zero axial thrust is based on the

performance of frame U22 æsted by Nilsson (1973). This frame has similar joint

detaiting to the frames tested by Ferguson and Breen. Analytical and experimental

results for frame lJ22 are shown in Figure 4.28. The experimental results show that

sudden failure occuned at a load of 11 kN. The line of circles is for an analysis which

includes tension stiffening but the effect of joint deformations has been ignored. Load

versus deflection compares very well up to the experimental peak load, when the test

frame failed suddenly. This brittle type of failure could be attribuæd to two causes.

Firstly, the test was carried out under load control conditions and failure took place

when the peak load had been reached. Secondly, the main reinforcement is not well

not anchored and therefore as cracks develop within the corner, little or no restraint is

provided as the cracks extend well into the beam and column.

The plot showing the line of triangles assumes, in terms of strength, the joint is 30Vo

efficient. This analysis uses a modified M-rrelationship for the segment at the top of

the column and the segment at the end of the beam which joins the column. The peak

moment of the idealM-rcrelationship is reduced by approximateLy 707o-

1
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Figure 4-28'.Load versus deflection for frame U22 tested by Nilsson (1973)

Figure 4.29 shows families of ideal and modified M-t<-N curves, which have been

used to analyse frame L2 of Ferguson and Breen. Note with increasing levels of

thrust the ideal moment-curvature curves undergo softening beyond the peak moment.

All modified M-r-N curves in the present study are characterised by horizontal

plateaus after the peak moment. It was found that modified curves with post-peak

softening portions, similar to the ideal curves, gave poor correlation for predicting load

and sway deflection. Moment and curvature at intermediate values of thrust for the

modified curves can be obtained by interpolation.

Although the modified M-t<-N curves take into account reductions in flexural stiffness,

the joint segments are assumed to be axially rigid. Preliminary checks in the present

study showed this to be a reasonable assumption. Tensile axial forces, which may

occur in beam elements, are also ignored for the modified curves. It has been shown

that large ænsile axial forces assist the formation diagonal tension cracking (Mattock,

1969). However, for beam elements, the magnitude of these tensile forces are not

likely to be significant.

50
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Figure 4.29:Ideal and modified M-rc-N curves for frame L2

Summarised in Table 4.5 is the ratio of modified moment to ideal moment, given by

M*tM, and the ratio of modified curvature to ideal curvature, given by të/t<, for each

level of thrust. These ratios of. M+lM and r*/rwere used to analyse all six test frames

of Ferguson and Breen and in most cases gave reasonable predictions of load and

sway deflection.

Table 4.5: Ratios of modifîed to ideal moment and curvature

N/II,,.., M*/l\d r*/rc

0.0 0.3 1.5

0.1 0.45 1.5

0.2 0.6 1.5

0.3 0.75 1.5

0.4 0.7 1.5

0.5 0.65 1.5

0.6 0.6 1.5

0.7 0.55 1.5

8

6

4

É
z
J4

c)
Eo

0

-e- N/ì.Iuo = 0.0

-e- N/Nuo=0.1

-+- N/Nuo = 0.2

-ê- N/Nuo = 0.3
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The experimental and analytical results for load versus deflection for frames LL,L2,

L3,L5, L6 and L7 are shown in Figures 4.30a to 4.30f. Two types of analysis have

been made for these frames. The first analysis økes tension stiffening into account

and the second analysis includes the modified M-t<-N curves for the joint segments.

Two joint segments are included at the top of the left hand columns and two joint

segments have been included at the bottom of the right hand columns. This

corresponds to the two opening corners for these frames.

Stiffness and strength are overestimated for all the analyses which ignore the joint

model. Only the analysis for frame L3, with a slight overestimation for strength and

stiffness, compares well. Good correlation for this frame has also been achieved

previously by others, (Espion, 1986; Gunnin et aI., 1977; Wong, 1989). In each of

these non-linear analyses, tension stiffening was ignored to obøin a good estimate of

stiffness. In addition, the previous analyses also ignored joint deformations. To the

author's knowledge, previous investigations of frames Ll, L2, L5, L6 and L7 by

Ferguson and Breen have not been published.

It is interesting to note that all analyses by the present method which ignore joint

deformations actually predict formation of hinges at the top and bottom of both

columns as the peak frame load is reached. However, the tests showed that in all

cases an insufficient number of hinges had formed. The analyses which include joint

modelling predict the formation of hinges in the columns of the opening corners.

Summarised in Table 4.6 are the peak frame loads from each analysis and the

experimental failure loads. All analyses take tension stiffening into account- Results

show that the analyses which include joint modelling overestimate peak load in three

cases. These are l6Vo, 16%o and L27o for frames LI,L6 andL7. The analyses which

ignore joint modelling overestimate peak loads of these frames by 44Vo,377o and

347o, respectively- Clearly there is an improvement in predicted behaviour by

including the joint model in the non-linear frame analyses. Predicted stiffness

compares well for frame L7 but the stiffness of frames Ll and L7 is considerably

overestimated by the non-linea¡ analysis which includes joint modelling.
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The analyses for joint modelling for the other three frames L2, L3 and L5 have

underestimated peak load by 7Vo,8Vo andTVo respectively. The best improvement is

for frame L2 where the analysis ignoring joint effects overestimated peak load by

33%. Noæ that stiffness for frames L\L3 and L5 as determined by the analyses with

the joint model compares well with the experimental results- For frame L2, both

strength and stiffness are underestimated.

Although the analyses for joint deformations show an overall improvement in

predicted behaviour, the correlation for two frames, Ll and L6, is not good. It should

be noted that modihcations have not been made for any of the beam elements, mainly

because no mention was made in the published results of the condition of the beams at

failure. A preliminary check showed that modified M-rc-N curves at beam ends within

closing corners improved the anatytical results for frames Ll and L6.

It was also shown earlier in this chapter that joint performance can tre highly variable,

depending targely on adequate placement of the joint detailing. To take this into

account, comparisons were made with further reductions in strength and stiffness to

the modifìed M-tc-N curves for the columns. This appeared to give better correlation

in some cases. However, these further changes to the joint model are not justified.

Note that for all analyses, the joint segment length, which is also the length over which

failure is expected to occur, is equal to the depth of the section of the column member-

A number of investigators, including Corley (1966), Park et al. (1982) and Warner

and Yeo (1984), have proposed mathematical formulae to predict this hinge length or

contamination length, but the value determined by each formula can vary considerably.

It should also be noted that tests on opening joints, such as those by Nilsson, show

the extent of the failure region within members entering a joint can be highly variable.

It was found in the present study of the frames by Ferguson and Breen that predicûed

results are sensitive to the length of joint segments. However, a value for the joint

segment length equal to the depth of the column member appears to be reasonable.
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Table 4.6: Ulúmate frame loads for frames tested by Ferguson and Breen (1966)

Frame Experimental

result

(kN)

Joint model

ignored

(kl'Ð

Joint model

included

(kN)

LT

L2

L3

L5

r,6

L7

165

L12

r42

190

243

r77

237

t49

148

2t3

333

238

t92

104

130

r76

28r
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Figure 4:30: Load versus deflection for frames tested by Ferguson and Breen (1966)

4.5.5 Joint Model for T-joints

The joint model proposed in this section is based on experimental results for T-joints

tested by Nilsson (1973). Test results showed that a common type of detailing can fail

prematurely due to the formation of an inclined crack across the beam-column

connection. For analysis, joint segments are included in the beams as shown in Figure

4.23. Although cracks initially formed within the joints, they tended to spread to the

outer main steel in a beam element, rather than to the columns. In some tests, columns

were preloaded with a 2000 kg axial load, but application of this load did not prevent

the formation of inclined cracks. There also appeared to be little improvement in

strength. These T-joints have not been analysed.

Table 4.7 summarises strength predictions for three frames tested by Nilsson. The

values for M"o¡, are the theoretical moment capacities for the beams and columns

assuming no axial force. Beam capacities for frames T11 and T25 are 0.71 of the

column capacities, whereas the beam capacity for frame T25 is 2.65 times greater than

the beam strength. Unlike the opening L-joints, where failure is controlled by the

relative member strengths, strength of T-joints are controlled by beam deformations.

zx
À
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0 l0

+ Experimilhl Rsulr
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Column (4) in Table 4.1 is the predicted maximum moment in the beams, based on

modified M-rc relatíonships. Hence, beam efficiencies are given in column (5).

Table 4.7: Strength predictions for T-joints

Test

(1) (2) (3) (4) (5)

Mcalc

beam

(kNm)

Mcalc

column

(kNm)

(1)
(2)

9o\

Mtest

beam

(kNm)

(4)
(1)

(Vo\

T11

T15

T25

33.5

16.7

155

4'1.4

23.6

58.6

0.71

0.71

2_65

4.8

3.9

9.3

t4

23

6

Shown in Figure 4.31 is load versus deflection for T15 and T16 tested by Nilsson

(1973). Test joint T16 has a higher load capacity because the type of detail delays the

formation of inclined cracks. The predicted peak load for the analysis which ignores

joint modelling compares well with the actual peak load for this test joint. The analysis

overestimates stiffness at 5 kN when cracks within the joint are likely to have formed.

The analysis which ignores joint modelling compares poorly with the experimental

results for test joint T15. Note that both T15 and T16 have similar material and section

properties. The difference between the two T-joints is the manner in which the column

steel is anchored in the beams. The analysis which includes joint modelling assumes

the beam is only 237o efltcient in terms of strength.

Results for load versus deflection for test joints T25 and T27 are shown in Figure

4.32. Ttre ratio of theoretical beam to column strengths for these T-joints is 2.65 and

the difference between these two test joints is the detailing within the beam-column

connections. Similar to test T16, the detailing for test T27 greatly improves joint

capacity. The analysis which includes joint modelling assumes the beam is only 6Vo

efficient. Predicted strength compares well with the capacity of test T25, but stiffness
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is underestimated. This is because curvature has been modihed by the same amount as

for test T15. The ratio of ideal curvature to modified curvature is 0.02.
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Figure 4.31: Load versus deflection for frames Tl5 and T16 tested by Nilsson (1973)

10

0
0 40 60

Deflection (mm)
80 100

20

7
O.

'o(!
oJ

806020

50

230
cl
o<

!('
Szo

20

Tl6

Tt5

------ Experimental Result - Tl6
---- Expcrimental Result - Tl5
-e- Analysis - without joint modelling
--e- Analysis - joint modelling included

T27 T25

----- Experimental Result - T27

---- Expcrimental Resu'lt - T25
--g: Analysis - without joint modelling

-e- Analysis - joint modelling included

Figure 4-32:Load versus deflection for frames T25 and T27 tested by Nilsson (L973)
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4.5.6 Summary of Proposed Joint Model

To develop the proposed joint model, a global approach has been taken, which

requires modified M-rc-N relations for joint segments. These are obtained by fitting

curves to limited experimental dat¿.

The present study is concerned with situations where strength and stiffness are

reduced by joint deformations, the nature of the detailing and the loading conditions.

Hence, M-rc-N curves are developed for opening L-joints and T-joints. The proposed

model could also be used for joints which are greater than 1007o efficient for strength

and stiffness. However, the present joint model is concerned with joint deformations

which can adversely affect frame behaviour. This will be investigated further in a

study of frames in Chapter 6.

The use of modified M-rc-N rclations can be used to develop M-N strength interaction

diagrams. Figure 4.33 shows an ideal and a modified strength interaction diagram.

The relationship between the two curves, M*lM (modihed moment to ideal moment) at

different levels of thrust, is similar in principle to the strength reduction factor, p,

dehned by the Australian Standard AS 3600.

ideal curve
(kl'Ð

modihed curve

M (kNm)

N

Figure 4.33: Strength interaction diagrams
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4.6 Analysis of Frames with Closing Corners

4.6.1 [ntroduction

This section investigates the non-linear behaviour of various test frames with closing

L-joints. These types of frames have been tested by a number of investigators,

including, (Blomeier, 1968; Breen, L962; Ernst et aI.,1973; Furlong, 1963). In all

cases, vertical load patterns were incremented proportionally. Unless noted otherwise,

anal¡ic al predictions include tension stiffening effects.

4.6.2 Frames Tested by Furlong (1963)

Furlong (1963) tested seven rectangular frames which were also reported by Furlong

and Ferguson (1966). Frames F2,F3, F4, F6 were chosen for the present analysis.

Frame F7 was subjected to a sustained load for a period of 102 days, and is not

suitable for analysis in the present study. Testing of frame F5 was complicated by a

leaking pump in the test equipment and load-deflection data were not published.

In the present study, each frame is analysed as a half structure due to symmetry in the

load patterns, frame dimensions and sectional properties. This is shown in Figure

4.34 along with the section details. Beams and columns in all frames are 152 mm

wide and 102 mm deep in section. All columns have 1.17o steel in each face and all

beams are heavily reinforced with 4.IVo steel in each face.

Frames F2 and F4 have been examined in non-linear frame analyses by Wong (1989)

and Gunnin et aI. (1977). In both studies, tension stiffening and joint behaviour were

not taken into account. To take into account lateral deflections within the columns,

Wong (1989) compared two and four elements per column, but there was only a minor

difference in results between the two cases. Hence, it was decided for the present

study to include only two elements per column for frame analyses.
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Figure 4.34: Test configuration and section details of frames tested by Furlong (1963)

Table 4.8 lists the physical properties for each frame examined. The average

compressive strength of the concrete from a cylinder test is "ñ and each frame was

tested on the eighth day after casting. The reinforcing bars in each test have a modulus

of 2x105 MPa with an average yield strength which is given by f,y. In each frame

analysed, the concrete compressive strength in each member is assumed to be 0.95f,

and a corresponding strain of 0.002. Concrete modulus is assumed to be 5000frand

a maximum compressive strain of 0.006 is assumed. Tension stiffening is also taken

into account.

aP

Lt2

Ast
Ast
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Table 4.8: Frame details and maærial properties of frames tested by Furlong (1963)

Frame h

(mm)

L

(mm)

pL

(mm)

c[ f"

(MPa)

f.y

ç¡Aea)

F2

F3

F4

F6

2t34

2r34

2t34

t626

3150

3150

t727

3759

r067

1067

457

t2t9

0.0256

0.0814

0.15

0.0555

29.7

23.0

22.3

24.5

379

394

312

350

Figures 4.35 to 4.38 show experimental and analytical re.sults for load versus

deflection at column mid-height. The most noticeable aspect is the inconsistency

between experimental and analytical results. Stiffness for frame F2 compares well up

to the actual peak load, but the strength of this frame is overestimated by about207o.

On the other hand, stiffness for frames F3 and F4 is underestimated, although the

predicted strengths compare well. Finally, frame F6 has reasonably good agreement

for stiffness and failure load.

5 l0 l5
Deflection (mm)

z
J
À
É
oJ

€- Experinent - LH @lumn

+ Expcrimat - RH column
-+- Analysis - including teßion stiffening

Figure 4-35: Load versus deflection for frame F2 tested by Furlong (1963)
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Figure 4.36: Load versus deflection for frame F3 tested by Furlong (1963)

50

0 l5 20

Figure 4.37:Loadversus deflection for frame F4 æsted by Furlong (1963)
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Figure 4.38: Load versus deflection for frame F6 tested by Furlong (1963)
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In each frame, failure was initiated by crushing of the concrete on the inside face at

approximately mid-height of one of the columns. The measured compressive strain at

failure varied from 0.002 for frame F2 to 0.0038 for frame F6. In frames F4 and F6,

a second failure then occurred at approximately mid-height in the other column. There

was no second failure in frame F3, but in frame F2 a second failure occurred when the

concrete crushed at the top of the left hand column where a maximum compressive

strain of 0.008 was recorded. It is worth noting that the beams were relatively much

stiffer than the columns and there was no incidence of failure occurring in a beam

element. The tests were also performed under load control conditions, and it can be

expected that higher strains would have been recorded if deformation control testing

had been used.

Load and deflection was measured at mid-height for both columns within the test

frames. Although columns for each test are theoretically identical, there is a noticeable

difference in experimental results for frames F2 and F4. Wong (1989) poinæd out that

differences in lateral deflection in each column of a test frame was possibly due to the

difhculty in applying a symmetrical load pattern. Other factors may have also affected

test results.

In the present study, and in the investigations by Wong (1989) and Gunnin et al.

(1977) the influence of the beam stubs and lateral restraint were ignored, i.e. it has

been assumed that vertical movement and rotation are free from any restraint.

However, it is possible that the stub and roller abutting the lateral load cell, as in

Figure 4.39, may influence stiffness. The short stub, which is an extension of the

beam, allows for adequate anchorage of the steel in the corner. Load is applied

vertically through a load cell, and there is also some conhnement here. It is has been

noted in Chapter 3 that strength and stiffness are influenced by load transfer through

plates and internal supports.

Stiffness and strength may also be affected by placement errors in the reinforcing steel.

Although cover to sæel can vary along the length of the member, this is not likely to be

a problem in a laboratory test situation where it is usual to monitor construction.
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However, it is often difficult to achieve perfect fabrication of steel and placement

within joints, even in a carefully monitored situation. It is likely that joint detailing

also influenced the stiffness of the frame either by improving or reducing stiffness.

Lo¡o ÊLL

Rocrep

ôearn

Figure 4.39:Loadcell and column restraint for frames tested by Furlong (1963)

4.6.3 Frames Tested by Ernst, smith, Riveland and Pierce

(re73)

A second series of frames, tested by Ernst et aI. (197 3), was chosen for analysis.

Twelve portal frames were tested under proportional loading. A further three frames

were tested under non-proportional loading, and the results of these frames will be

discussed in Chapter 5. Alt twelve frames with proportional loading were analysed,

but only the results of four frames are reported here. The results are representative and

show the different type of prediction of frame response to loading. Each frame was

subjected to vertical loads which were applied at third points on the beam element, as

shown in Figure 4.40. The physical properties are summarised in Table 4.9. The

mean compressive strength of the concrete from a cylinder test is given by/r, and for

each frame analysis, the compressive strength of concrete in each member is assumed

to be 0.95/" with a corresponding strain of 0.002. Concrete modulus is assumed to be

5000üand a maximum compressive strain of 0.006 is assumed- Tension stiffening

is also taken into account.

t:
l'

RoLLE.R

T

rt
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Figure 4.40: Test conf,tguration and section parameters for frames tested

by Ernst et aI. (1973)

Details of the different types of main reinforcement for the frame elements are given in

Table 4.10. Note thatfris the yield stress for the bar which corresponds to a strain of

er. The strain at initial strain-hardening of the steel is €"¿. The slope of the tensile

stress-strain curve at the initiation of strain-hardening is E¡ andfr¡ is the ultimate

tensile strength of the bar. For bars designated Type II to Type VIII, the terms are

shown on a stress-strain diagram in Figure 4.41-

Type I bar, a #3 deformed bar, is not characterised by a stress-sttain curve with a yield

plateau followed by strain-hardening, and is assumed to be characterised by the top

curve in Figure 4.42, whichis taken from Park and Paulay (1975). In each test frame

by Ernst et aI., a number of types of bar were used for main reinforcement and are

summarised in Table 4.10. Different grades of steel were used in each face of the

beam and column elements and this has been taken into account in each frame anaþsis.

L
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Table 4.9: Frame, section and material properties of frames tested by

Ernst ef aI. (1973)

Er,

Êy €sh

Figure 4.41:Líneansed curve for reinforcing steel used by Ernst ¿f al. (1973)

120

004 0.08 o.12 0.1 6

Strain

r70

I

Ê,s

^ 100

E
c.:80

=c
;60
.9

g40
o

Ø
20

(800)

(600)

(400)

(200)

0
o20

Frame Span Heieht Beam Column Concrete

L

(mm)

h

(mm)

b

(mm)

D

(mm)

4
(mm)

b

(mm)

D

(mm)

4
(mm)

f"

(MPa)

440

840

2D12

2D125

3658

3658

3658

3658

1830

1830

1830

1830

tr4
tt4
152

r52

203

203

229

229

38

38

38

38

IL4

TI4

152

r52

203

203

r52

t52

38

38

25

25

29.1

29.r

40.8

43.2

Figure 4.42: Stress-strain relationship for Type I bar (Park and Paulay,l975)
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Table 4.10: Stress-strain data for reinforcing bars used by Ernst et aI. (1973)

Type Diam

(mm)

fy

(MPa)

c
rr.rlt

MPa)

Err,

¡¡Aea)

E tsh

I

tr

III

IV

V

VI

VII

\rltr

9.5

t3

t3

13

16

16

19

19

472

348

396

455

353

425

359

44r

837

538

675

'702

527

700

590

791

5583

5927

9649

5927

1 1580

5720

15300

0.00171

0.00203

0.00218

0.00185

0_00234

0.00184

0.00225

0.0140

0.0082

0.0092

0.0150

0.0068

0.0145

0.0043

Table 4.11: Member reinforcing details (Emst et al.,1973)

l7 I

Frame Beam Column

Top face Bottom face Outside face Inside face

Typ no diam Tvp no. diam Typ no diam Tvp no. diam

A40

840

2Dt2

2DI2S

V

II

ry

ry

2

2

2

2

16

13

13

l3

V

VII

IV

IV

2

.,

2

2

16

t9

9.5

9.5

V

V

I

I

2

2

3

3

16

16

13

t3

V

VII

IV

IV

2

2

2

2

16

19

t3

t3



Chapter 4: Joint Modelling 172

Figures 4.43 to 4.45 compare the experimental and analytical results for each frame.

Also shown in each figure is a diagram showing gauge locations where strain in the

reinforcing steel was measured in the tests. In each case, the reinforcing steel was

strained in tension. Locations 1 and 5 refer to the steel in the outside face at the top of

the column. Locations 2 and 4 refer to steel in the top face at the ends of the beams

and location 3 refers to steel in the bottom face at midspan of the beam. Noted on the

graphs are Yl,Y2,...Y5 which indicate when the reinforcing steel at locations L,2,..-5

had reached their yield strength. Similarly, SHl, SH2,...SH5 indicate the onset of

strain hardening.

40

10

0
20

230
êt
Ê.
dcl

S20

0 8040
Vertical Deflection (mm)

60

t = from analysis

Y3* \

Y5

Y3

Y4

Yl r,Y5+ Y2r,Y4+

-g- Experimental Resull

-e- Analysis - tension stiffening included

\
YI,Y2

Figure 4.43:Load versus deflection for frame 440 tesæd by Ernst et aI. (1973)
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20 40
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Figure 4.45:Load versus deflection for frames 2Dl2 and 2Dl2S

æsted by Ernst et al. (1973)
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Figure 4-M:Load versus deflection for frame 840 tested by Ernst et aI- (1973)
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Experimental results and analytical predictions for frame 440 are shown in Figure

4.43. Peakload is predicted accurately, but stiffness only compares well up to 22 kN-

At this load level, additional joint deformations may have occurred which have not

been predicæd. Note the sequence of yielding of the tensile steel at each location

compares well with the actual results.

Results for frame 840 are shown in Figure 4.44. Analytical results, which include

tension stiffening, compare well up to the load when the steel yielded in the middle of

the beam. Peak load is underestimated by approximately 87o. This strength increase

may be due to strain hardening, which has not been predicted. Note that yielding of

the beam steel was f,rrst observed at the strain gauge location 4. Although this frame is

assumed to be symmetrical, yielding was not observed at the other end of the beam at

location 2.

Figure 4.45 compa¡es results from test frame 2Dl2- Also shown a¡e the results for

frame 2Dl2S. These two frames have the same dimensions, section details, main

reinforcement and similar concrete strengths. However, frame 2DL2 has

reinforcement which is continuous and anchored at the knee, whereas frame 2DI2S

has reinforcement detailing which is not continuous and not anchored. The test results

for frame 2D12S show a brittle failure at approximately half the maximum load of

frame 2DI2. A loss in stiffness is also evident from the commencement of loading.

Although the joint detailing for frame 2Dl2S is inadequate, it is interesting to note that

failure took place soon after the tensile steel had yielded at midspan of the beam. The

brittle type failure most likely corresponds to severe cracking within the corners. As

no reinforcement was placed in the corners, restraint against cracking is not possible.

Although the peak load for frame 2Dl2 is underestimated by only 5Vo, the analysis for

tension stiffening effects, has overestimated stiffness. By ignoring tension stiffening

effects, load and deflection compare more favourably. It is possible the value for

concrete tensile strength, which can be highly variable, is much less than the assumed

value for this analysis. It is also likely the actual stiffness for the closing corners is
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much less than predicted. This is worth noting because joint stiffness has a large

influence on the overall frame stiffness.

4.6.4 Summary of Frames \üith Closing Corners

In this section, several frames with closing L-shaped corners have been analysed.

Tension stiffening was taken into account, but joint modelling was ignored, and

generally analytical and experimental results compared well. Some variability in

results was observed which can be attributed to several causes. Most notably,

performance is affected by the quality of detailing. Confinement provided by detailing

within the corners and also under loading plates may be responsible for increases in

strength and stiffness.

4.7 Summary and Conclusions

Tests for various X-, T- and X- joints have shown that joint perforrnance depends

largely on the type of detailing and the loading conditions. In some cases, strength

and stiffness can be adversely affected, while in other cases there are noticeable

improvements.

The condition of joints at various stages of loading up to failure suggests that complex

states of stress develop, and to accurately predict these deformations requires a finite

element type of analysis. For the present study, a simplified global approach for

modelling joint behaviour has been adopted which uses modified M-rc-N relations to

describe behaviour at joints. This method of treating joint behaviour is similar to a

smeared approach for modelling tension stiffening and described in the previous

chapter. It has suitable application in the segmental method of frame analysis because

it uses the existing section analysis procedures.
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Modified M-rc-N relations have been developed for opening L-joints and T-joints but

as experimental data is limited, comparisons with test frames have not been made. A

number of theoretical frames with these joint types will be investigated in Chapær 6.

A study of various frames with closing L-joints showed that modifications to these

types of joints are not necessary- Tests for X-joints and T-joints connecting external

columns also showed these joint types are efficient.

Test joints and frames subjected to proportional loading were chosen for analysis to

isolate the effect of joint deformations. In the following chapter, frames will be

investigated for sequential loading and the influence of joint deformations in the hrst

and second loading systems will be taken into account.



Chapter 5

Non-proportional Loading

5.L Introduction

An assumption of the simplified linear elastic methods of analysis of most design

codes and standards, such as AS 3600, is that load patterns are applied to the structure

simultaneously and proportionally. However, in many real situations load patterns are

applied in sequence, or in a non-proportional manner. Because of the highly non-

linear, and inelastic response of reinforced concrete, the assumption that load patterns

can be superimposed needs to be investigated.

In the present study, the effects of two sequences of applied load on frame behaviour

are considered. The first loading pattern consists of a set of external loads which are

increased progressively to a predetermined level and then held constant. A second

separate loading pattern is then incremented until the strength of the structure is

reached.

r77
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EA(lsys, m)

EI(lsys,i,n)

EIo¡flsys,i,n)

EI¡r¡o¡(Isys,i,n)

= axial stiffness for member ln under load system /sys;

= flexural stiffness in the n-th segment at convergence of the í-th

step under load system /sys ;

= stored flexural stiffness;

= flexural stiffness in the n-th segment from a sectional analysis;
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The analysis for non-proportional loading developed in this chapter uses the segmental

method of frame analysis proposed by Wong (1989). To check the accuracy of the

proposed method, analytical results have been compared with results for non-

proportional loading of actual test frames.

5.2 Proposed Method of Analysis for
Non-proportional Loading

5.2.1 Introduction

Two load systems are considered, and denoted as I and II. Analysis under the first

load system is made by simulating a load control test. Initially, the second load system

also simulates load control, but as the peak frame load is approached frame analysis

switches to deformation control. This allows conditions at collapse and in the post

collapse (softening range) to be handled without numerical insøbilities.

At the commencement of deformation control, a "key segment" is located which has

the maximum absolute increment of curvature from the application of the second load

system. This curvature is scaled so that it equals a predetermined target curvature. A

set of curvatures in all segments corresponding to the curyatures under load system I

and the scaled increment of curvatures under load system II are applied to the

structure.

5.2.2 Notation
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EI{n)

ßtep

kry,

/sys

M(Isys,i,n)

M"(lsys,i,n)

M¡¿o¡(Isys,i,n)

M(n)

ncycle

nstep

plcstep

Q-øG)

QtQ)

QzQ)

Q,to-*

Q,a,*

sF(Ð

SF¡;¿(i)

^tryr,i
At^ot

= flexural stiffness for the n-th segment at the end of the

application of load system 1;

= a typical computational stepl

- key segment under load system 2;

= 1 or 2; refers to an analysis under load system I ot 2;

= moment in the n-th segment at convergence of the i-th step

under load system /sys ;

= moment in the n-th segment from a linear elastic analysis in the

i-th step under load system lsys;

= moment in the n-th segment from a sectional analysis in the Ëth

step under load system lsys ;

= moment in the n-th segment at the end of application of load

system 1;

= number of iterative cycles for convergence of a computational

step;

= final load step for analysis under /sys;

= final analytical step under load control for load system 2;

= the set of combined loads at convergence of the Ëth step under

load system 2, equal to the sum of Qt,-'and Qz(i):

= the set of applied loads for load system 1 which creates the set

of curvatures K(1,i,n) and other deformations;

= the set of external loads for the second load pattern when

applied with Q1,,-,creates the set of curvatures td2,i,n);

= load system 1; a set of predetermined loads which are applied to

the structure and then held constant while load system 2 is

applied;

= set of peak loads for load system 2;

= scale factor f.or Q2,,.,rcorresponding to convergence of the i-th

step;

= trial value for scale factor for second load system Qarr"r;

= set of global deformations at the Ëth step for load system /sys;

= set of global deformations at the end of load sysæm 1;

t79
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AQz

AKkyz

r(/sys,i,n )

rc"(lsys,i,n)

K¡"yr(2,i)

rc¡¡o¡(2,i,n)

= increment in load for load system 2;

= increment in target curvature for load system 2;

= curvature in the n-th segment at convergence of the Ëth step

under load system /sys;

= curvature in the n-th segment from a linear elastic analysis at the

i-th step under load system þs;
= target curvature at the Ëth step under load system 2;

= trial curvature in the n-th segment required for a sectional

analysis at the i-th step under load system 2;

= curvature in the n-th segment at the end of application of load

system 1;
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rcr0z)

5.2.3 Analysis Under Load System No.L

Application of the first load system involves subjecting the structure to increasing

levels of a proportional load pattern, QJI),...Q.QSTEP),...Q.(NSTEP). At the final

load step, NSTEP, the predetermined set of loads, Qt*o', is applied to the stmcture

and held constant.

For the commencement of the first step, flexural and axial stiffnesses are set to values

corresponding to gross sectional values. The trial flexural stiffnesses, EI¡r¡¿(l,l,n),

are given by Elrrorr(n). These nominal gross sectional values are updated with

sectional analyses for all segments throughout the structure.

Procedures required for a typical computational step are as follows :

1. Assemble the global stiffness matrix ÍKttv1pl from element matrices

Íhsrpp) and transformation matrices [Z] with most recent global

displacements, AtJsrpp. For the start of the first step, the

undeformed nodal geometry is used.
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[Kr,rsr¿p] = [Z] Tkr,rs rtplÍT"l

181

(s.1)

2. Form the nodal load matrices {Qtsrpp} and {Qt,ouçtat,tsrøp}. The

matrix {Qt,tsr1pl is assembled from the set of applied loads,

Qr(ISTEP). Expressions for f,rxed end moments and shears due to

loads applied within the elements are given in Appendix C. The

matrix {Qt'urtor,ts¡6p} comprises the out-of-balance nodal loads

corresponding to the changes in structural geometry during the load

step.

3. Obtain the set of global element deformations {Á1,¡51¿p} by solving

the following matrix equation:

{Qusrepl r {Q\out-totlsrspl = lKr,rsr¿p] {Atrrppl (s.2)

4. Calculate the displacements { ôr,rrrp} at the ends of elements and in

the local member reference system. Terms comprising the

transformation matrix, [fl, are based on the most recent global nodal

displacements {/1,¡s¡6p} obtained by Equation 5.2.

{ ôr,nr¿p} = lT\{Avsrrpl (s.3)

5. Using standard procedures, obtain the forces {q,srøpl at the ends of

elements and in the local member reference system.

l q t Jsrspl = fk utsrcpf{ ôr,¡sr¿p } (5.4)
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6. Based on the local element forces and displacements obtained from

steps 4 and 5, obtain moments and curvatures, M"(1 ,ISTEP,n) and

K.(|,ISTEP,n), within all segments. Calculations are based on the

most recent values for segmental stiffnesses EInot(lJSTEPÐ.

7. Store the previous stiffnesses before segmental stiffnesses are

updated:

EI 
"¡¿(1, 

I STEP,n) = EI ¡,¡o¡(1, I ST EP,n) (s.6)

8. Sectional analyses of all segments are carried out to determine trial

segmental moments M,¿ot(\, ISTEP,n) from the set of curvatures,

tç(l,ISTEP,n). Updated flexural stiffnesses a¡e obtained :

rc -Í^- ISTEP.T', = 
M 

"(L'ISTEP'n)c' EI,rr¡(l,ISTEP,n)

EI' - -' 0' I srEP' n¡ = 
M t'at(r' I srEP' n)

'rul \ ' rc"(r,ISTEP,n)

EI,¡ot(|, I STEP,n) - EI,a(I, I STEP,n) .,
EI"¡¿(l,ISTEP,n)

(s.7)

Axial stiffnesses EA(|, m) in all elements are also updated from the

sectional analyses.

9. Calculate the out-of-balance nodal forces {Qt,out-tartsrøp!. These

forces correspond to the difference in the deformed state at the

beginning of the iterative cycle and nodal deformations at the end of

the cycle.

10. Check for convergence for all segmental stiffnesses

(s.s)

(s.8)
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If convergence is not achieved a further iterative cycle commences and steps 1 to 10

are repeated. At least two iterative cycles are required and the stiffnesses for the

commencement of a new cycle are set to the most recent values obtained from sectional

analyses. When convergence is achieved between successive cycles of the

computational step ISTEP, the moment, curvature and stiffness in segmentn îte:

In the final computational step, NSTEP, under the hrst load system, the applied loads

are set to the predetermined values of Qtr,,o. This is given by:

Q(NSTEP) = Qt,,o' (s.12)

At convergence of this hnal step, moment, curvature and stiffness in segmentn are :

M(1, ISTEP,n) = M r¡o1(1, I STEP,n)

<1, ISTEP,n) =K"(L, ISTEP,n)

EI(\, ISTEP,n) = EI ¡,¿¡(I, ISTEP,n)

M(n) = Mnot(|, NSTEP,n)

K1(n) = r"(1, NSTEP,n)

EI(n) = EI¡;o¡(1, NSTEP,n)

(s.e)

(s.10)

(s.11)

(5.13)

(s.14)

(s.15)

An analysis which includes geometric non-linea¡ities must take into account the global

nodal displacements {/1,y5¡¿p} corresponding to the set of loads Qt,,o,. Hence, for

subsequent analytical steps, under the second load system, these structural

deformations are given by:

{At,,-'l = {A¡usrøpl (s. l6)

Note also that the set of out-of-balance nodal loads at this final step are required for

analysis under the second load system. These are given by:

{ Q t,ourbol,moxl = { Qt,"u, -bal N ITEPI (5.17)
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5.2.4 Analysis Under Load System No.2

5.2.4.1 Analysis for Load Control

Analysis for combined loading involves applying increments AQ2 of the second load

pattern with the set of constant loads Qt*n until the peak structural load Qz^* is

reached. To ensure good convergence, the increment size for AQz should not be too

large. For the commencement of the hrst step, the trial stiffnesses Ed¿"¡(2,1,n) are set

equal to the values EIt@) at convergence of NSTEP of the analysis for the first load

system.

Analysis up to PKSTEP simulates a load control test set-up and procedures for a

typical step are as follows:

1- Assemble the global stiffness matrix, lKz,tsrsp). The element

stiffness matrices, fkzlsrppl, for all elements are based on the

updated secant stiffnesses EI and EA. The transformation matrices,

[fl, for all elements are based on the most recent global nodal

displacements. For the commencement of the first step, the

displacements {/1r.r} are used.

2. Form the nodal load matrix, {Qzlnnpl, from the applied loads Q1o*

and QzQSTEP) and also the nodal load matrix due to the out-of-

balance loads. The set of loads comprising the second load system

is given by:

S¡QSTEP) = S¡QSTEP- l) + AQ2

184

(s. r8)

For the first step Qz$) is set equal to AQz.
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3. Obtain the displacements lAztsrppl by performing a linear elastic

analysis-

{ Qz I sr spl r { Qz,o u ç øor, nr ø rI = fKz, rcrø pf { Áz,nrn pI (s.1e)

4. Displacéments lõzlsrøp! at the ends of elements and in the local

member reference system are found. The terms comprising the

transformation matrix, [7], are based on the most recent global nodal

displacements due to the first and second load systems, i.e.

{Az,tsrspl- Note the transformation matrices are also updated with

these global displacements.

{ ùlsrnpl = U1{ Aztsrrpl (s.20)

5. Forces {qzlsr1p} at the ends of elements and in the local member

reference system are found-

{ qz,tsrøpl = nkz, ßr spl { ù.J sr s pl (s.21)

6. From the end forces {qz,rcrtpl and end displacements {ô2,¡sr¿p}

perform a segmental method of analysis to determine moments,

M"(2,ISTEP,n) and curvatures, K"(z,ISTEP,n) in all segments.

This is shown in Figure 5.1.

7- Store previous stiffnesses before calculating updated values.

EI,¡12, I STEP,n) = EI 6o¡(2, I STEP,n) (s.22)

8. Sectional analyses are performed to determine segmental moments

and curvatures. A new set oftrial stiffnesses is found :
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(s.2s)

(s.26)

(s.27)

EI.- -, ( 2 - I srEP. n\ - M'*t(2' I srE P' n)
"uL 

\ ' rc.(2,ISTEP,n) (s.23)

9. Calculate the out-of-balance nodal forces {Qz,o,rtot,rrnrl. These

forces correspond to the difference in the deformed state at the

beginning of the iterative cycle and nodal deformations at the end of

the cycle.

10. Check convergence in all segments by comparing the updated trial

stiffnesses with previous values for stiffness.

EI,à"l2,ISTEP,n) _ EI^,, (2,ISTEP,n) 1¿
EI,¡o(2,ISTEP,n) (s.24)

If convergence does not occur for all segments then a further iterative cycle

commences. At convergence of. ISTEP, the moment, curvature and stiffness in

segment n are:

M (2, I STEP,fl) = M triat(Z, I STEP,n)

K2, I STEP,n) = K"(2, I STEP,n)

EI(z, I STEP,n) = EI ¡¿¡(2, I STEP,n)

To avoid non-convergence problems, analysis switches from load control to

deformation control just before the peak frame load is reached. The final step under

load control is given by PKSTEP.

5.2.4.2 Analysis for Deformation Control

The structure is analysed for combined loading under deformation control in which

increments in target curvature, 
^Kk"r2, 

are imposed upon a "key segment". The key

segment has the maximum absolute curvature due to the second load system. Stiffness
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values for the commencement of this analysis, EI¡¿¡(Z, PKSTEP + I,n), are set equal

to the values, EI(z, PKSTEP,n), at convergence of the previous step.

At the commencement of each load step, an estimate is made for the proportion of the

second load system, so that combined loads, SF,,i,1QSTEP)xQ2@KSTEP) and Qtnn,

are applied to the structure. Initially, the estimated loads for structural analysis is the

set of loads Q2(PKSTEP). This means the value for SF,,¿¡(/STEP) is set equal to 1.0

for ISTEP = PKSTEP+|.

For the commencement of subsequent load steps in the analysis under load system 2,

the new stiffnesses are set equal to the values from the end of the previous step.

Typical steps required for convergence under deformation control for the second load

system are as follows (also summarised in Figure 5.3):

1. Assemble the global stiffness matrix, ÍKztsrppl- The element

stiffness matrices, lkzlsrrp), for all elements are based on the

updated secant stiffnesses EI and E¡|. The transformation matrices,

[7], for all elements are based on the most recent global nodal

displacements.

2. Set the value for the trial scale factor equal to the scale factor at

convergence of the previous step.

SFn¿( ISTEP) = SF( ISTEP-I ) (s.28)

For the commencement of computational step PKSTEP+\ the trial

scale factor, ,SF¡;¿(1+PKSTEP), is set equal to 1.0.

3. Form the nodal load matrix {Qztsrtpl from the applied loads Q1n*,

and SF,,¿¡( ISTEP) xQ2@KSTEP). The nodal load matrix from the

out-of-balance nodal loads is also formed and given by:

t81
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Q t,o u t -bat, nøx + SF¡"¿( I S TE P)xlQl,o ut -bal,I sr E P - Q t,ou t- tot,,r-)

4. From the following linear elastic analysis obtain the displacements,

AzJsrBp.

{ Qu srøpl * { Qz,ourbot ¡srør} = fKz,tsrl pf { Az,tsrt pI (s.2e)

5. Displacements {õzlsrtpl at the ends of elements and in the local

member reference system are found. The terms comprising the

transformation matrix, [fl, are based on the global deformations

{An",l from the end of load system 1 and the most recent global

nodal displacements due to the second load system. These are given

bY At,., + SF,,i",(/STEP)xlAzlsrBp - Ato,o')-

{ ù.tsrlp} = lTl { Ausrppl (5.30)

6. Forces {qz,tsrspl at the ends of elements and in the local member

reference system are found as follows:

{ qz¡srø p} = fkz¡srppl { ù.t sre pl (s.31)

7. From the end forces {qztsrppl and end displacements { ù,¡srsp}

perform a segmental method of analysis to determine moments,

M.(2,ISTEP,n) and curvatures, lç(2, ISTEP,n) in all segments.

8. A search is carried out to locate the key segment, n=keyz, which has

the maximum absolute curvature from the application of the second

load pattern, i.e.
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Maxlr"(2, I STEP,n) - n(n)l
(s_32)

= 1rc"(2,ISTEP,key) - rc{key)l

8. Curvature rd2,ISTEP-l,key2) in the key segment at the end of the

previous step is incremented by the target increment in curyature,

AKøn This is given by the following:

If r"(2,ISTEP,keyz) > 0, the target curvature is given by :

K*"yz(2, ISTEP) = t<2, I STEP - l,key) * AK¡,"n

I1 rc"(Z,ISTEP,keyz) < 0, the target curvature is given by :

Kr"yz(2, I STEP) = K(2, ISTEP - l,key2) - AKkeyz

10. A new value for the scale factor SFø,t(ISTEP) is calculated :

K k"y2(2, I STEP) - rcr(keyr)(lZt /rC'7'DD\ttø'\ K.(2,ISTEP,keyr)-K{keyz) (s.33)

11. Trial curyatures are determined for all segments.

rc¡,¡o¡(2,ISTEP,n)
(s.34)

= rr(n) + S4"¿(/STEP) xlr"(2,ISTEP,n) - q(n))

The trial curvature in the key segment, K¡r¡o¡(2,ISTEP,key2), will

always equal the target curvature, Kr"yz(2, ISTEP)- Figure 5.2

shows trial curvature in the softening region.

12. Store the previous stiffnesses prior to calculating updated values.

EI,¡12, I STEP,n) = EI 6o¡(2, ISTEP,n) (s.3s)
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13. Sectional analyses are performed to determine trial segmental

moments and curvatures. A new set of trial stiffnesses is found :

EI.- -, (z - I srEP.nr - M'*'(2' I srEP'n)
'ru'\ ' rcr^(2,ISTEP,n)

(s.36)

(s.40)

(s.41)

14. Calculate the out-of-balance nodal loads { Q2,ourbat,rsr1p} due to the

frrst and second load systems.

15. Check convergence in all segments by comparing the updated trial

stiffnesses with the stiffnesses used at the start of the cycle.

EIn;ol(z, I STEP,n) - EI.rÅ (2, I STEP, n) 1¿
EIor(2,ISTEP,n) (s.37)

At convergence of ISTEP for the analysis under combined loading, the moment,

curvature and secant stiffness in segment n are:

M(2,ISTEP,n) = M(n) + SF( ISTEP) xnM"(2,ISTEP,n) - M(n)l (s.38)

r(2, ISTEP,n) = Kt(n) + SF( ISTEP) x frc"(2, ISTEP,n) - rr(n)l (s.3e)

Note that the scale factor at convergence, ^SF(.LSTEP), is given by the most recent

value for trial scale factor, .SF¡;o¡(lSfEP). The corresponding applied loads for the

computational step ISTEP greater than PKSTEP are :

EI(z, I STEP,n) = EI ¡,¿¡(2, I STEP,n)

Q",,*(I STEP) =Q to-, + QzQ STEP)

where

Qz(I STEP) = S F(I STEP) x Qz@ KSTEP) (s.42)
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Figure 5.1: Moment and curvature for a typical segment

M

Mr

191

M

Ml

K

Kl

- rr)

Ke

K

Krt

EI o"*

Figure 5.2: Analysis for softening
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ISTìIP = PKSTEP+1

SF(I+PKSTEP) = 1.0

Commence Step ISTEP

Set curvature of key segment to

K key2 = r(ISTEP- 1) + Ár ¡"r2

Set EI(n)=Pls1¿1¡;

Set ICYCLE--=O

ICYCLE=ICYCLE+1

Apply Qtmax+ Str(ISTEP) x Q2max:
perform a frame analysis and obtain values for r"(n)

Calculate scaling factor:

sF(lsTEP)=
Kk"y2 -Kl(key2)

xe(key _K (key

Segmental Method of Analysis -
obtain t¡ial curvatures for all segments:

Kt u(n) = rr (n)+ SF(ISTEP) r"(key2) -rr(n)

EIold(nþ-EI(n)

Section Analyses: to obtain updated stiffnesses

EI rior(n) = Mt,id (n) / r¡¡n¡ (n) and EA(m) = N(m) / e

Check convergence :

Is [Elrria(n) - EIola(n)]ÆIold(n) < lolerance

ISTEP=ISTEP+1

SF(ISTEP) = SF(ISTEP-1)

Figure 5.3: Steps for analysis under deformation control
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5.2.4.3 Local Unloading Effects

It has been noted earlier, (Birnstiel and Iffland, 1980; De Donato and Maier, 1972),

that the order of application of vertical and horizontal load patterns influences the

response of inelastic structures. It is not unusual for a segment to unload during the

application of the fi¡st load system and then reload with an internal moment of opposiæ

sign during the second load system. To take into account inelastic response, it is

necessary to define secant stiffness when complete unloading occurs.

Figure 5.4 shows the moment, M¡ and curvature, K1, at the end of the first load

system. At the point of complete unloading, where curvature becomes zero, primary

cracks are assumed to have closed completely and the secant flexural stiffness is reset

to the gross sectional value assuming an uncracked section. As loading of the

structure continues, cracks may develop in the opposiæ face.

M

Kl EI

K

Ml

Figure 5.4: Secant stiffness for reversed loading
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De Donato and Maier (1972) used pre-generated moment-rotation curves for non-

proportional loading, which are similar in shape to the moment-curvature curve in

Figure 5.4. This type of curve could be considered to form the first cycle of a

hysteresis loop. A structure undergoing one or more cycle of loading requires

additional storage requirements during analysis, i.e. keypoints defining points of

unloading and reloading need to be stored.

5.3 Comparisons \ilith Results for Test Frames

5.3.1 Introduction

To check the validity of the proposed method of analysis, predicted results were

compared with experimental results for several frames. Tension stiffening was

included and two types of analysis were made for these frames. Firstly, load systems

were applied in the same manner as in the tests. This involved incrementing a system

of vertical loads up to a predetermined level which were then held constant. A pattern

of horizontal loads was then incremented up to failure. This is more usual than

incrementing horizontal loads followed by a set of vertical loads, because of the

difhculty involved in subjecting a structure solely to a set of horizontal loads. Note

also that actual conditions are simulated, i.e. dead loads (or live loads) are placed on

the structure followed by a system lateral loads which may, for example, represent

wind loading.

The second type of analysis is for proportional loading. In this case, the vertical loads

and horizontal loads were applied simultaneously. The ratio in which these loads

were applied was based on the predetermined magnitude for the vertical loads and the

peak values for the horizontal Loads, Ho,o*.

In all frames analysed, geometric non-linearities were taken into account by updating

the nodal geometry of the frames as increasing levels of load were applied. A

preliminary check showed there was very little influence on secondary moments by
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including additional nodes within the length of columns. For clarity, results shown

here are only for secondary effects due to lateral movement at the ends of columns.

5.3.2 Frames tested by Ernst, Smith, Riveland and Pierce

(1e73)

Details for two frames tested by Ernst et al. (1973) are shown in Figure 5.5. Concrete

properties for these frames are as follows: average compressive strength, .f'n=28.8

MPa, f"^o,= 27 -6 MPa, i.e. O.95f"* and E" = 26830 MPa. Note that a factor of 0.95

has been used to convert concrete cylinder strength to strength within a structural

member. This value has been chosen because the frames were cast horizontally.

Concrete modulus is based on a value of 5000rfl"r. Two different grades of steel

were used for these frames; details which have been summarised in Chapter 4 in the

investigation of frames tested by Ernst et aI- under proportional loading.

Two types of non-linear analysis were made in the present study for the frames tested

by Ernst et al. One analysis is for non-proportional loading and the other for

proportional loading. In both cases, tension stiffening and full geometric effects are

taken into account, but neither analysis includes the proposed joint model. Under non-

proportional loading, the vertical loads create closing corners within both L-joints.

V/ith application of the horizontal load, unloading occurs at the right L-joint, but the

opening moments which develop are very small in magnitude- In the other L-joint, the

left joint, closing moments develop under both load systems. A preliminary check

showed there was only a minor influence on stiffness by including the joint model.

Shown in Figure 5.6 are results for frame 2D9H- For the non-proportional loading

analysis the vertical beam loads, P, were incremented up to 24.9 kN and then held

constant while the horizontal load,.Í/, was incremented into the post-peak region. The

predicted peak value for Ho-, is 12.1 kN compared to the experimental peak load of

13.0 kN. Hence for the proportional loading analysis the horizontal load and vertical

loads were applied in this ratio, i.e. H lP = 2.08. This analysis also predicts a peak

horizontal load of 12.1 kN. The apparent difference in the two sets of analytical
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results is shown by the predicted stiffness. The non-proportional loading analysis

provides the best estimate for stiffness.

<_H

h=l830 mm

L

Frame 2D9H :L=2143 mm

Frame ZDI2Ij: L = 3658 mm

196

PP

U3Lt3Lt3

38I
,t+

Ast(outer)

Ast(inner)

Beams

As(outer) =266-*t , TYPe IV steel

Ast(inner) = 'r-1mm2 , TYPe IV sæel

Columns

Ar(outer) = 400r¡*', Type I steel

As(inner) = 133 ñfr2 , Type IV sæel

t52

,t+

,tl I52
Ast(outer)

Ast(inner)

r52

Figure 5.5: Section details and configuration for frames tested by Ernst et al. (1973)

Also shown in Figure 5.6 are results for three separate analyses by El-Metwally and

Chen (1989b). However, no mention was made whether the analyses are for

proportional or non-proportional loading. Results for 'geometry+material' take into

account geometric non-linearities but ignore tension stiffening. The joints are assumed

to be fully rigid and results for this analysis provide the most accurate predictions.
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The analysis for 'geometry+material+joint' assumes that additional joint deformations

occur within the joint. This analysis slightly overestimates peak frame load- The

analysis for 'geometry+material+joint for clear span' assumes a flexural hinge occurs

within the beam element at the joint. Results for this analysis compare poorly. It is

interesting to note the actual test results showed a hinge formed first in the column at

the joint. Unfortunately, a non-linear analysis with joint modelling for the columns at

the joints was not carried out by El-Metwally and Chen.

15

0
0 20 40

Sway Deflection (mm)
60

Figure 5.6: Horizontal load versus sway deflection for frame 2D9H tested by

Ernst et aI. (1973)

Shown in Figure 5.7 arc analytical and experimental results for frame 2Dl2H. This

frame has the same reinforcing details, concrete properties and section details as frame

2D9H. The important difference is that frame 2Dl2H has a clear beam span, L, of

3.658 m (or 9 feet) whereas frame zDgIJhas a beam span, L, of 2.743 m (or 6 feet)-

The vertical loads for test frame ZDIàIj were held constant at a value of 17.5 kN. For

the non-proportional loading analysis, beam loads were incremented up to this same

load level. This analysis predicts a maximum frame load under horizontal loading of

z
èt
tr{
d
(Ë
oJ

10

5

80

--E¡ Experimental Result

-€- Present Study - proportional loading

-+- Present Study - non-proportional loading

--s- E&Chen -'geometry + material'

-x- E&Chen - 'geometry + material + joint'

-+- E&Chen - 'geometry + material + joint for clear span'
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12.5 kN which is l\Vo less than the test peak load of I3.7 kN. Note also stiffness is

underestimated. The analysis for proportional loading assumes the horizontal and

vertical loads are applied in the ratio 17.5 to 12.5, or H = L-3P. The predicted

stiffness and ultimate load of 13.4 kN compare very well with the experimental

results.

In general, results for load and stiffness for both frames 2D9H and 2Dl2H by non-

proportional loading are more conservative than the proportional loading results.

However, both methods of analysis appear to be satisfactory.

15

0
20 40 60 80

Sway Deflection (mm)
r00 t20

Figure 5.7: Horizontal load versus deflection for frame 2Dl2H tested by

Ernst ¿f al. (1973)

5.3.3 Frames tested by Rad (1972)

Five frames were tested under short term sequential loading by Rad (1972), also

discussed by Rad and Furlong (1980). However, only the performance of frame 43,

with the configuration shown in Figure 5.8, is investigated in the present study. All

test frames were subjected to vertical loads which were held constant, followed by

increments of horizontal loading up to collapse. The results for load and deflection for

198
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--g- Experimenlal Result

+ Analysis - proportional loading

=À- Analysis - non-proportional loading
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frames other than A3 showed significant laæral deflection from the application of the

vertical loads. While some lateral movement at the tops of columns due to vertical

loading can be expected, it was also noted by Rad that member misalignment had

occuned afær casting. Such construction ellors are common in practice.

It was also noted by Rad that some error in the alignment of the column loads had

occurred. A misalignment of + 0.1 degrees in these frames can induce a horizontal

force component of I kN. It was verified in the present study that this amount of error

influences frame stiffness, but has no affect on overall strength. Note that errors in

member or load alignment can in some cases be beneficial.

Frame details for frame A3 are shown in Figure 5.8. Concrete properties for this

horizontally cast frame are as follows: average compressive strength,.¡f,. = 30.8 MPa,

f"^o" = 29.3MPa, i.e. 0.95f,- and E" = 277 50 MPa. Steel in the columns has a higher

yield strength than steel placed in the beams.

Frame A3 was subjected to vertical loads before the horizontal load was applied.

Column loads were P7= 304 kN and Pn= 258 kN, and the load Q = 8.5 kN was

applied at third points on the beams. The maximum horizontal load for the test frame

was Ho,or= 11.2 kN.

Analytical and experimental results for load versus deflection for frame A3 are shown

in Figure 5.9. The analyses in the present study are for non-proportional and

proportional loading and include tension stiffening but ignore joint modelling. A

preliminary check, under non-proportional loading, showed that one of the two

opening corners which developed under the first load system unloaded during the

second load system and developed into a closing corner. However, at the other

opening corner, at ihe bottom of the right hand column, moment and curvature

increase monotonically during both the hrst and second load systems. Although joint

modelling hasn't been included it may have improved the prediction for stiffness

during the second load system of non-proportional loading.
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Analytical predictions for the frames by Rad show good correlation was achieved by

ignoring joint modelling. It can be concluded the type of corner detailing in these

frames was more efficient than the detailing used in the frames by Ferguson and

Breen, which are also the basis for the joint model for opening L-joints.

Unfortunately, the joint detailing used in the test frames by Rad was not published.

Both analyses in the present study accurately predict the peak horizontal load, but the

proportional loading analysis overestimates stiffness. This was also observed in the

analyses for the frames by Ernst et aI. Shown in Figure 5.9 are the predicted results

by Rad (1912), which are also reported by Gunnin et al. (1977). The analysis

'without stiffened joirits' compares poorly with the experimental results. The other

two analyses include the joint model discussed in Chapter 4. The model by Rad

assumes that a small portion of the beam and column at each joint has a higher strength

and five times higher stiffness due to confïnement under the loading plates and the

base supports. Results show an improvement in overall strength and stiffness.

However, the analytical predictions for non-proportional loading in the present study,

which ignores joint deformations, compares most favourably.

The remaining frames by Rad were examined in the present study. In all cases, there

was little difference in the predicted horizontal peak load, H*, for the proportional

loading and non-proportional loading analyses and the experimental peak load. The

proportional loading results tended to overestimate frame stiffness.

Figure 5.10 shows frame A3 with potential hinge forming regions marked A to I.

Resulæ for moment and curvature from the non-proportional analysis are shown in

Figures 5.11 to 5.14. The vertical load pattern was incremented up to a load level

corresponding to an estimated column axial load of 75Vo of the squash load. Actual

frame failure corresponds to the formation of hinges in segment C in the top beam and

segment I in the bottom beam. The analytical results show that moment and curvature

in segments C and I increase monotonically until the peak frame load is reached,

although failure in these segments does not occur.
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Figure 5.8: Conf,rguration for frame A3 tested by Rad (1972)
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Figure 5.9: Horizontal load versus deflection for frame A3 æsæd by Rad (1972)

The moment-curvature plots for segment A (left end of the top beam) and segment H

(left end of the bottom beam) show that cracks form at a coffesponding moment of

about 1.0 kNm, and when the first load system is finally incremented there is a

considerable loss in stiffness. Elastic unloading takes place during application of the

second load system, which is evident by moment and curvature passing through the

origin. At this point, cracks are assumed to have closed and as loading continues, the

shape of the M-rccwve indicates that cracks form in the opposite face.

Under the vertical load pattern, both columns are bent in double curvature but response

to horizontal loading for the left column is quiæ different to that for the right column .

Segments D and E of the left column actually undergo inelastic unloading and with

further increments of the horizontal load moment and curvature actually change sign.

The magnitude of moment and curvature in ttre right column continue to increase

monotonically with the second load system, and segment F eventually undergoes

softening.
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--g- Experimental Result

-g+ Present Study - Proportional Loading
--À- Present Study - Non-proportional Loading
--a- Rad(1972) - without stiffened joints

-re- Rad(1972) - stiffened joints & fcmax=O.85f c

---l- Rad(1972) - stiffened joints & fcmax=1.0f c
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Figure 5.10: Potential hinge forming regions for frame A3
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Figure 5.12: Moment curvature relations for bottom beam of frame A3
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5.3.4 Frames tested by Ford (L977)

Frame FC-7 tested by Ford has been chosen for analysis and frame details are shown

in Figure 5.15. Concrete properties for this frame are as follows: average compressive

strength, l"* = 42.2 MPa, f"^o, = 40 MPa, t.e. 0-95f"* and E" = 32480 MPa. A

number of different grades of steel were used for this frame and the yield strengths are

summarised in Table 5.1. The Young's modulus for all types of reinforcing steel is

assumed to be 2x1ff MPa and the stress-strain relationships are elasto-plastic.

The first load system comprised the vertical loads, P,a"1P, cr2P and Q, wherc

uFl.23, uz=0.77, and Q lP = 0.011. These loads were incremented proportionally

up to the values of 476 kN,587 kN,369 kN and 5.1 kN respectively and held

constant as a horizontal load was applied to the top of the column. The test frame

reached a maximum horizontal load, Hro*, of l7 kN, followed by noticeable softening

after the peak load.

Table 5.1: Section details for frame FC-7

Member b

(mm)

D

(mm)

dst

(mm)

Ast

(mm2)

fsy

(MPa)

Beams 1-3,8-10

Column 4

Column 5

Column 6

Column 7

r52

t52

152

r52

r52

102

t02

127

t02

81

2l

t9

19

19

t]

142

r42

t42

t42

84

395

441

507

445

494

Results for load and deflection for frame FC-7 are shown in Figure 5.16, and joint

modelling for the T-joints has been ignored for the analyses in the present study. The

discussion of T-joints in Chapter 4 showed that joint deformations depend on the

direction of the moments acting in each element at the connection. Such deformations
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can be expected when the sign of the column moment is the opposite sign to either of

the beam moments. A check for the segmental moments at T-joints under the flust and

second load systems showed that joint deformations are not expected to occur. Hence,

joint modelling was not carried out for the present analysis of frame FC-7.

GrP P a2P

Lt3 U3 U3

1.02 m

L=2.03m L=2.03 m L=2.03 m

P

H

d",+

ASI

Ast

b

Figure 5.15: Configuration for frame FC-7 æsted by Ford (1977)

The results for proportional loading give the best estimate for the maximum frame

load, although frame stiffness is overestimated. Vertical and horizontal loads were

applied in ratios given by the peak loads for the test specimen. The non-proportional

loading analysis withf",,*, equal to 0.95f,^ gives a more conservative estimate for load

and deflection. The peak load of 14 kN is 2l Vo less than the experimental peak load.

This analysis also gives a better estimate for stiffness. There appears to be very little

difference in results whenfin-,equals l-Isf"^ -

It is possible joint performance is improved by conhnement due to the applied loading

and support conditions. These aspects were considered in the analyses by Ford

(1977). Ford proposed a modified stress-strain curve for concrete in compression, as

shown in Figure 5.17. This curve is based on the well known curve proposed ea¡lier

by Hognestad (1951).

d",l T

_l'
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The maximum compressive stress 1r" at all sections, except within the joints, is t¿ken

as 0.95/"' for horizontally cast columns, where -f,' is the characteristic cylinder

strength. The corresponding softening portion of the modified curye, with a slope

index of. m= 20, is based on curye fitting to experimental results. The ultimate strain

eu includes a term in brackets which takes into account confinement by reinforcing

hoops or stimrps. The second term in the expression for ultimate strain, 0.02b/2,

depends on the width of the confined concreto, b, and the distance between the point

of maximum moment and zero moment which is given by z. The equation for e, is

similar to an equation proposed by Corley (1966).

For concrete within the joints, the uniaxial strength is artificially increased by

assuming the value for fi" is equal to 1.15f,'. The corresponding slope index, t2, has

a value of 5, (Ford, Chang and Breen, 1981b).

15

5

0
0 l0

z

d('
o
rl

20

0I

5 15 20

Sway Deflection (mm)'
25 30 35

-€¡ Experimental Result

-<¡- Present Study - proportional loading
-+- Present Study - non-prop. loading, fcmax=0.95f c
-c- Present Study - non-prop. loading, fcmax=l.l5I'c
--x- Ford (1977)

Figure 5.16: Horizontal load versus deflection for frame FC-7 tested by Ford (1977)
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Figure 5.17: Modifîed concrete compressive stress-strain curve,

(Ford, 1977; Ford, Chang and Breen, 198la)

Shown in Figure 5.16 are the analytical predictions by Ford, also reported in Ford ¿r

ø1. (1981c). Results from this analysis compare favourably with the experimental

results- Remaining test frames were also analysed by Ford and good correlation was

achieved. In each case, the concrete properties within the joints were adjusted to

reflect the improvement in strength and stiffness from confinement. Note also that

special spring supports were included in the analyses to account for increases in

stiffness when the specimens made contact with the base safety frames. Neither of

these effects were modelled in the present study, hence analytical results for some of

these frames underestimated strength and stiffness considerably. Results for frame

FC-7 gave the best predictions by the present method of analysis for non-proportional

loading.

5.3.5 Summary of Analytical Predictions

Several test frames have been analysed for proportional and non-proportional loading.

Good correlation has been achieved and results indicate, that by assuming proportional

loading, strength and stiffness may be only overestimated slightly. Predictions by

other investigators have also been discussed. It is interesting to note that in each case
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increases in strength and stiffness at joints had been taken into account by various

means- Such improvements in behaviour have been ignored in the present study,

although these effects can be treated in future studies by modifying the proposed joint

model of Chapter 4.

The test comparisons showed only minor differences between proportional and non-

proportional loading. This may not always be the case, and to investigate the situation

further a number of theoretical frames are analysed by both methods in the following

sectron.

5.4 Frame Behaviour Under Non-proportional
Loading

5.4.1 Introduction

Analytical results for three frames for proportional and non-proportional loading are

presented in this section. The frames are two single-storey and one multi-storey.

Several other frames had been analysed, but comparisons for strength and stiffness

were very similar and of little interest for discussion-

In each case, the first load system in the non-proportional loading analysis comprises a

set of vertical loads with a magnitude equal to the maximum vertical load under

proportional loading. It has been noted previously, (Mo, 1986), that moment

redistribution and ultimate load are influenced by the loading history of the structure.

It can also be appreciated that as the magnitude of the first load system reduces, frame

strength and stiffness is governed by the second load system. Hence, comparisons

betrveen proportional and non-proportional loading become less significant-

Concrete parameters for the three selected frames are:. f"^=28.6 MPa, fr**=27.2
MPa, E"=26740 MPa and T=2.08. Reinforcing steel has a yield strength,/"r, equal

to 460 MPa and a yield strain, €"r, of 0.0023. Beam and column members are 300
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mm by 300 mm in section and the total area of steel for all members is2Vo of the gross

sectional area. This steel is distributed equally to two layers and the cover to the centre

of the bars is 40 mm in each face.

5.4.2 Single-storey Frames

Load configurations for frame A and frame B are shown in Figure 5.18. The amount

of horizontal load for proportional loading analyses is 0.lwl, and 0.05wL

respectively, where w is the verticai uniformly distributed ioad to be applied to the

beam. The maximum vertical and horizontal loads for frame A are wmat= 50 kN/m

and H,,",= 30 kN respectively. Analysis for frame B under proportional loading also

predicts a maximum vertical load of wmax= 50 kN/m, but for horizontal loading, Hr-,

is equal to 15 kN.

For the non-proportional loading analysis for frame A, the beam loading was

incremented up to 50 kN/m and held constant as the horizontal load, /1, was

incremented up to a peak value, H^o* of 30 kN. This is the same value for peak load

as determined by the proportional loading analysis.

Horizontal load versus sway deflection for frame A are shown in Figure 5.19. Noted

on the plot for proportional loading are the load steps at which flexural hinges occur.

This analysis predicts the formation of four hinges for the frame, i.e. a full plastic

collapse mechanism occurs. The locations for potental hinge forming regions for

frame A and frame B are also shown in Figure 5.20.

It is also useful to compare the bending moment in each segment and axial force in

each member at various stages of loading. Shown in Figure 5.21a are these moments

and member axial forces at the peak load under proportional loading. Figure 5-2Ib

shows two sets of moments and axial forces for non-proportional loading: one at the

end of the first load system and the other, with values in brackets, at the peak load for

the second load system. Note that compressive axial forces are acting in all members

and the moment diagram is ploned on the tension face.

210
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Figure 5.18: Portal frame
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The analysis for non-proportional loading predicts the formation of hinges in segments

B, D and F at the completion of the frrst load system, i.e. with the beam loading fully

incremented to 50 kN/m. Note that the distribution of moments for proportional

loading and non-proportional loading arÞ very similar.

At the end of the first load system for non-proportional loading, maximum moment

has just been reached in segments B, D and F, and corresponds to the formation of

flexural hinges. Of particular interest is the predicted behaviour in segment E and G at

the base of each column under non-proportional loading.

At the end of the first load system, the moments in segments E and G are both equal to

60 kNm, and as expected the bending moment and axial force diagrams are

symmetrical. With application of the second load patærn, segment E unloads. On the

other hand, moment and curvature for segment G continue to increase monotically.

The maximum moment for this segment is reached as the peak frame load, H,*,,

reaches 30 kN. At this point, a full plastic collapse mechanism has formed with a set

of four hinges. A similar collapse mechanism develops under proportional loading.
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Figure S.22:Moment and curvature for segment E of frame A
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The major difference in segmental behaviour for these two analyses is shown by the

plot of moment and curvature for segment E in Figure 5.22. Under proportional

loading, this segment reaches a peak moment of 17.5 kNm, but as the first hinge

forms in segment F at a load, I1, of 26 kN, unloading takes place in segment E. This

segment also unloads during non-proportional loading, but at the end of the first load

system the segmental moment is 60 kNm. For both analyses, the unloading for

segment E appears to be elastic.

It is interesting to note that as the peak fiame load is reached for non-proportional and

proportional loading the set of axial forces and moments in the key hinge forming

regions are very similar- The overall difference is the distribution of moments in the

left column.

Although there is no noticeable difference in the peak load for proportional and non-

proportional loading, there is a difference in the predicted stiffnesses. The

proportional loading analysis gives a higher estimate for stiffness. In neither case is

softening evident afær the peak load.

Shown in Figure 5.23 is load versus deflection for frame B. This frame has the same

properties as frame A, but has a lower ratio of horizontal to vertical load. The

maximum loads under proportional loading for frame B are 50 kN/m for the beam load

and 15 kN for the horizontal load. Under non-proportional loading, the peak

horizontal load is 30 kN. This represents a lOÙVo improvement in frame capacity.

Note also the analysis for proportional loading overestimates stiffness considerably.

It should be noted that the first load system with a beam load, w, equal to 50 kN/m is

actually the maximum value for vertical load this structure can sustain. It is most

unlikely a real structure would be subjected to this level of vertical load before

application of a second loading system. However, this theoretical example illustrates a

case where both strength and stiffness are influenced by the application of non-

proportional loading.

2t5
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Figure 5.23:Load versus deflection for frame B

5.4.3 Multi-storey Frame

Both frames A and B were subjected to relatively low axial forces in the columns.

Frame C with nine storeys, as shown in Figure 5.24, has columns in the lower storeys

which are subjected to much higher axial loads.

Under proportional loading, the maximum vertical load, wr-', is 24.7 kN/m and the

maximum horizontal load, H,,-,,, is 3-7 kN. Load versus deflection for this analysis is

shown in Figure 5-25. For non-proportional loading, the vertical load, lt, was

incremented up to 24.7 lù{/m. These loads were held constant as the horizontal load at

each floor level was incremented up to a maximum value of fI equal to 3.6 kN. There

is no noticeable difference in strength for each analysis, although analysis for

proportional loading predicts a higher stiffness.
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5.5 Summary and Conclusions

A method of analysis for sequential non-proportional loading of a reinforced concrete

frame structure has been developed for the purposes of investigating this effect. The

method allows for post-peak behaviour under the second load system by incrementing

deformations to the structure. Reversal of loading during the second load system is

also allowed for.

Good correlation was achieved between analytical predictions and results for

experimental frames subjected to sequential loading. Comparisons were also made

between analytical predictions for non-proportional loading and analyses with

equivalent systems of proportional loads. In each case, predicted strengths were

similar, although non-proportional loading tended to give more conservative estimates

for stiffness.

Several theoretical frames were compared for proportional loading and for non-

proportional loading. The first load system under non-proportional loading was

incremented up to a maximum value for vertical load and the second load system

incremented horizontal load up to a maximum. Results suggest the assumption of

proportional loading is reasonable.
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Chapter 6

Inves tigation of the Accuracy of

the S implified Methods of

Analysis lDesign of Slender

Columns

6.1 Introduction

The Australian Standard AS 3600 allows for three levels of sophistication for the

analysis and design ofreinforced concrete structures. In order ofincreasing accuracy,

these approaches are defined here as the bottom-tier, middle-tier and top-tier methods.

The bottom-tier method when applied to slender columns is referred to as the moment

magniher method. It is an approximate method of analysis and is the most popular

because of its simplihed procedures.

2r9
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The middle-tier approach requires a second order elasúc analysis which takes into

consideration geometric non-linearities. This type of analysis is more complicated than

a first order analysis, but its increasing popularity can be attributed to increasing

availability of second order analysis computer programs.

Finally, AS 3600 recommends that all relevant material and geometric non-linearities

be taken into aOcount in a rigorous structural analysis. For the present study, this type

of analysis is referred as a top-tier approach. Although the analysis and design of a

structure by a top-tier approach is not usually carried out in practice, the development

of a rigorous method of analysis assists in the evaluation of the accuracy and adequacy

of the middle-tier and bottom-tier methods.

Both the moment magnifier method and the second order elastic method are described

in this chapter, as well as the bottom-tier 'model column method'. This latter method

is the basis of the column analysiVdesign procedures for columns in non-sway frames

mentioned in the draft European code, EN 1992 Eurocode EC2. The results of

previous investigations of the moment magnifier method and the middle-tier method

are also summarised in this chapter.

In the study of frames described in this chapter, the peak loads of a wide range of

sway frames were predicted by the bottom-tier moment magnifier and middle-tier

methods. Comparisons were made with predictions obtained by the accurate

segmental method of frame analysis incorporating the non-linea¡ models developed in

Chapters 3,4, and 5. This accurate method of analysis is referred in this chapter as a

top-tier approach.

Frames chosen for analysis cover a range of practical design examples and various

non-linea¡ effects a¡e investigated. Full geometric non-linear effects were taken into

account in all frames analysed.

For discussion purposes the frames are categorised into a number of series. In Series

I, the influence of two types of material non-linearity on the behaviour of several
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single storey frames is investigated. These effects are tension stiffening and joint

flexibility and are included in the top-tier non-linear method of analysis. Ultimaæ

strength predictions are also made by the simplified bottom-tier and middle-tier

methods of AS 3600. All safety coefficients and capacity reduction factors are

removed from the calculations. Material properties a¡e based on average values and

not characteristic values.

The study in Series II includes three five-storey frames which are subjected to beam

loading and lateral loading applied at each floor level. In this series, two types of

analysis are made for the bottom, middle and top-tier accurate methods. Firstly,

ultimate strength predictions are made and, secondly, comparisons are made with

design strength predictions, whereby all safety coefficients are included, and material

properties are based on characteristic values. Series III investigates the effect of

chequerboard loading by comparing proportional and non-proportional loading in top

tier non-linear analyses. Finally, Series IV involves ultimate and design strength

predictions for a ten storey frame.

Following the study. of frames is a study of several isolated pin-ended columns.

Analytical predictions by the moment magnifier and the model column method

methods are compared with those obtained by top-tier analyses.

6.2 The Moment Magnifïer Method

6.2.1 The Effective Length Concept

Analysis and design by the moment magnifier method involves a linea¡ elastic frame

analysis with assumed stiffness values, EI and EA, for each member. Load patterns

are assumed to be applied to the structure simultaneously and proportionally, to obtain

first order forces and moments. To account for the increase in bending moments in a

compression member due to lateral displacements, the first order moments are
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increased by one of two moment magnifiers. These two moment magnifiers are

described in Sections 6.2.2 and 6.2.3.

Before calculating the column moment magnifiers, the column under consideration is

isolated and reduced to a standard equivalent pin-ended column with equal end

eccentricities. This involves determining an effective length,2", which is equal to kh.

The effective length factor, k, is obtained from the Jackson-Moreland charts and Zu is

the unsupported length of the column. Evaluation of the effective length factor takes

into account the relative rotational stiffnesses of the connecting members at each end of

the column. However, the calculation for the end restraints is based on geometric

properties and does not take into consideration the percentage of steel of the connecting

beams and columns-

Breen et al- (1972) showed that EI values based on gross-sectional values are accurate

only for a limited number of cases. An earlier study by Pagay et al. (1970) found that

beam stiffness can have r great effect on column strength. Beams with low

percentages of reinforcement tend to be more flexible than beams with higher amounts

of reinforcement. A further analytical study by Okamura et aI. (1970) showed that the

reduced stiffness of cracked beams also affects the strength of columns.

6.2.2 Moment Magnifier for a Braced Column

From the linear elastic analysis the design moments at the ends of each column arc Mf
and M2+, where M2* is greater than M1*. The design axial force is given by N*. The

moment M2* is then magnified by the braced moment magnifier, ô6. There is no

magnifîcation of the design axial force. The value of ô6 depends on the ratios of

M2*lM¡* and N*/N", where N" is the elastic critical buckling load, given by the

following equation:

(6.1)
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In Equation 6.1, the equivalent stiffness E.I is evaluated as Mr6lrr¡, which

coresponds to the balanced point on the strength interaction diagram. Although

iterative procedures, such as those by Chang (1967) and van den Beukel (L977), can

be used to deærmine the critical buckling load a single represent¿tive value for E/ is

recommended by AS 3600. This value, which is chosen for convenience, is based on

the studies of Menn (1974), and MacGre1of et al. (1975), and Oelhafen(1974).

By taking the neutral axis depth equal to 0.6d and the maximum compressive strain in

the outer concrete fibre equal to 0.003, the value of E/ is expressed by 200dM,6. The

tem., L", is the effective length of the column. Also included in Equation 6.1 is the

design strength reduction factor @ and creep factor þ¿. T\e relationship between Q nd

the design strength interaction curve is shown in Figure 6.1.

N(kN)

Nuo

N,ru 0.6

M (kNm)

Figure 6.1: Strength reduction factor, 0

Second order moments due to geometric effects are taken into account by the

determination of the braced moment magnifier, which is given by:

0.6

0

0.8
Mub

õø=

N" (6.2)
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where k^ = 0.6 - 0.4 MflM2*. If the value of ô¿ by Equation 6.2 isless then unity,

the maximum moment occurs at the end of the column and no magnification is needed.

In this case, ô¡ equals 1.0. A minimum value of 0.4 applies to /<. and accounts for

unwinding under high axial loads. This may occtu in columns bent in double

curvature, where O.5 < Mi t M; .1.0. Tests of reinforced concrete columns bent in

double curvature by MacGregor and Barter (1966) and Ma¡in and Olivieri (1966)

showed that columns under high axial loads tended to unwind rather suddenly with

columns approaching the instability mode. The drastic change from double to single

curvature is referred to as unwrapping or unwinding.

The moment magnifier method by AS 3600 is siniilar in principle to the approach

given by the American concrete standard ACI 318-83. However, in the determination

of the elastic critical buckling load and the effective length factor /< for columns by the

latter, it is recommended for short term loading the stiffness EI be evaluated by

Equation 6.3, which is derived from the study by MacGregor et al. (I97O).

where E,Iu is the contribution of the reinforcing steel to flexural stiffness. An

alternative expression which gives more conservative results is the following:

þ+z',r,"

E"Is

2.5

(6.3)

(6.4)

6.2.3 Moment Magnifier for an Unbraced Column

To check the failure of a structure in the sidesway mode, the effect of all columns

within each storey is taken into account in the calculation of a¡r unbraced moment

magnifier.
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This 'sway' moment magnifier is given by:

4

n5

(6.s)

Based on the findings of MacGregor and Hage (1977), if the value of ô" exceeds 1.5,

an insøbility failure mode may occur and the moment magnifier method should not be

used for column analysis.

6.2.4 Overall Frame Stability

Simplified calculations can be made to check the critical loads of tall frames. Ba.sed on

the second order analyses by Rosenblueth (1965) and Stevens (1967), the following

approximate expression for the critical load on the i-th storey in a sway frame was

suggested by MacGregor and Hage (L977):

HihKt¡h¡P"= (6.6)
v T At¡

In these expressions, å¡ is the height of the i-th storey, 7is a factor which varies from

1.0 for stiff columns and flexible beams to l-22 for flexible columns and stiff beams.

In general, Tapproaches 1.0 in the lower storey of a tall building. The lateral stiffness

of the i-th storey is K1¡ = Hi/A¡ where.Fl¡ is the horizontal load above the Ëth storey

and /¡ is the f,rrst order lateral deflection within the height /r¡.

6.3 The Model Column Method

The draft publication, EN 1992 Eurocode 2: Design of Concrete Structures, describes

the model column method for the analysiVdesign of columns in braced frames. This is

a first order approach and, like the moment magniher method, involves the effective

length concept to isolate a column member from a frame. However, the method uses a
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direct calculation of the second order moment by performing an equivalent strength

calculation to deærmine column capacity.

The "model column" is represented by a cantilever column, as in Figure 6.2, with a

tot¿l eccentricity due to three effects. These are a first order eccentricity, ê¿, ã second

order lateral deflection, ê2, rîd an eccentricity, ea, due to misalignment of columns

during construction.

P

ee

T_

e

Figure 6.2: Model column

The total eccentricity , €¡o¡, is given by:

êtot=€o*e"*e, (6.7)

It has been shown by MacGregor (1979) that column eccentricity due to out-of-plumb

columns can be significant. The previous Australian Standa¡d for concrete structures,

AS 1480-1982, allowed for this effect, but unfortunately, no provision is made in the

current standard, AS 3600, for such an additional eccentricity. This effect is ignored

in the present study as it does not affect the comparisons being made.

The term, e", given by Equation 6.8 is the initial eccentricity in the model column and

is calculaæd from the end eccentricities in the real column.

lo
2

-/
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e" = 0-6es, -tO-4eç, ) 0-4es,

2:7

In this expression , e^and eo2aÍe the eccentricities at the ends of the column, where

l"orl=l"o,l. Calculation of the eccentricit!, êe, is similar to the evaluation of the

coefficient, k^,in the moment magnifier method, i.e. first order end eccentricities a¡e

replaced with an equivalent eccentricity of constant magnitude along the length of the

column.

Second order column deflections are derived from a parabolic distribution for

deflection along the model column length. The maximum deflectiorr, €2, which occurs

at the base of the column is given by the following :

(6.8)

(6.e)€2 Kr ß!
10r

where /6 is the column effecúve length and llr is the curvature from equilibrium based

on a strength calculation. This value for curvature is determined from the assumed

strain distribution at failure for the given level of axial compression under

consideration.

The reduction factor K¡ is given by either Equation 6.10 or 6.11, and depends on the

column slenderness ratio, Â.

K, = ()" I 20)- 0.75, 15 < )" <35 (6.r0)

Kt=1, 1>35 (6.11)

In the simplified model column method, curvature can be evaluated from the following

expression:

1 _2K2eya
r 0.9d

(6.12)
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In this expression, €r¿ is the design yield strain of the steel reinforcsment, d is the

effective depth, and K2is given by the following:

K2- Nu¿ - N.çd
< 1.0

Nu¿- N*t

where, N,¿ is the design axial load capacity, Ns¿ is the design axial force, and N¿o¡ is

the axial load at the balanced moment capacity. The term, K2, takes into account the

decrease in curvature with increasing axial force in a section. In lieu of Equation 6.12,

a conseryative estimate for K2is 1.0.

A column is considered to be slender if the slenderness ratio of the column, å, is

greater than 25 o, 16r, whichever is the greater. In the second expression, the

longitudinal force coeff,rcient for the column element, ou, is given by the following:

vr = Nsd l (4"f 
"¿)

(6.13)

(6.14)

This expression is the ratio of the design axial force to the contribution of the

unfactored area of concrete in the calculation for the column squash load. Second

order effects can be ignored in isolated slender columns in non-sway frame structures

if the slenderness ratio is less than the critical slenderness ratio and given by Equation

6.15.

L",it =25(2-eo, leor) (6.1s)

A column is assumed to be stable if the following conditions are satished:

Nn¿ 2 Ns¿

and

Mn¿> NRdent

(6.16)

(6.t7)
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where Nn¿ and Mp¿ are the axial force and moment from the strength interaction curve

and N5¿ is the first order axial force in the model column.

6.4 The Middle-Tier Method

According to AS 3600 analysis of frames by the middle-tier method can be carried out

if the relative displacement at the ends of compression members is less then L,1250

under the design loads for strength. Based on the findings of MacGregor and Hage

(L977), an instability failure may occur if the calculated relative displacement is greater

than this ratio.

Material non-linear effects are taken into account by using EI values which are

representative of the deflections at the factored design loads. Based on the

recommendations by MacGregor and Hage (1977), the stiffness of beam members is

assumed tobeO-4E"I* and for columns, 0.8EJs, where E, is the Young's modulus for

concrete and I, is the second moment of area- Calculation for axial stiffness is given

by En{.

Since the column procedures of AS 3600 are similar in application to its American

counterpart, ACI 318-83, it is of interest to compare calculation of stiffnesses. Based

on the studies by MacGregor, Oelhafen and Hage (1975) and Oelhafen (1974), the

ACI concrete code, ACI 318-83 recommends Elvalues to be taken as 0.58J, for

beams and E,Ir(0.2+L.2ptElE") for columns. In the evaluation of column stiffness,

the percentage of reinforcement is taken into account by the term p,. The stiffness

terms recommended by AS 3600 and ACI 318-83 arc not representative of all cases,

but are inænded to provide a margin of safety for column design.

In a second order elastic analysis, geometric non-linea¡ effects due to the lateral

displacement of joints must be taken into account. For convenience, second order

elastic methods of analysi$ for geometric effects can be categorised as either direct or

iterative methods.
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The direct deter-mination of second order moments, shears and deflections can be

found by using a method proposed by Fey (1966) and Parme (1966). Based on these

same approaches, Wood et aI. (1976a, b) proposed an iterative second order method

which is intended to provide a more accurate solution. The following steps are

required:

(1) Perform a first order frame analysis to determine the first order lateral

deflections A1¡ in each storey, (see Figure 6.3).

(2) Obtain an estimate of the total storey dnft, A2¡, which includes second

order effects. The total storey drift is given by the following

expression:

Lr¡

(6.18)

where I,P¡ - sum of the axial forces in the column at the i-th sûorey

å¡ = height of the i-th storey

//¡ = shear in the i-th storey

(3) Obtain the additional storey shea¡s due to the vertical loads, as shown

in Figure 6.3. The sway force at each floor level is the sum of the

storey shears from the columns above and below the floor.

(4) Perform a first order analysis by adding the sway forces to the applied

vertical and lateral loads to obtain the total moment, shears and

displacements. Further iterative cycles may be required to obtain a

converged solution for A2¡

H¡l+
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Figure 6.3: Calculation of storey sheat, (MacGregor and Hage,1977)

MacGregor and Hage found that the methods by Fey, Parme and Wood et al. gave

accurate results provided the columns developed material failures. A stability index

was proposed which determines if a second order analysis is appropriaæ. The stability

index, Q, is given by the following formula:

hh¡

P¡

When Q <0.0475, second order effects can be ignored and the structure can be treated

as a braced frame. For Q between 0.047 5 and 0.2, a second order analysis can be

performed. Frames with Q >0.2 are likely to fail by instability and a second order

elastic analysis is not likely to yield accurate results.

The methods described so far ignore the influence of axial compression on flexural

stiffness. For structures with very slender members, this effect can be signihcant. Lai

and MacGregor (1983) proposed a method in which two types of non-linear geometric

effects are take into account. Firstly, the second order effect of lateral loading on

columns in sway frames and secondly, the interactive effect of axial load on flexural

behaviour and flexural forces on axial stiffness. A frame is decomposed into a fully

braced non-sway frame and a sway frame with the final force resultants obtained by
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superposition, (Lai, MacGregor and Hellesland, 1983). Axial forces in the members

of the non-sway frame and the sway frame are equal to the set of axial forces of the

original frame and at the current state of loading. The traditional stability functions are

used in a first order elastic analysis and are updated as loads are applied to the

structure.

Fraser (1983) also considered the influence of axial compression on flexural stiffness

in a second order analysis. In this approach, the determination of effective length

factors takes into account the reduced stiffness of restraining members due to axial

forces.

6.5 Previous Investigations of the Bottom and
Middle-Tier Methods

6.5.1 Investigations of Isolated Pin-ended Columns

Smith and Bridge (1984) checked the accuracy of the moment magnifier method by

modelling isolated pin-ended columns with eccentric loading. It was found that

Equation 6.2 is accurate for columns with a slenderness ratio Llr <4O;at higher

slenderness ratios the method becomes increasingly conservative. Bridge and Pham

(1987) checked the reliability of the moment magnifier method for isolated pin-ended

columns and found it gave a consistent margin of safety, particularly for long beam-

columns.

6.5.2 Investigations of Columns in Slender Frames

Wong (1989) carried out a comprehensive study of the moment magnifier method and

the middle-tier method by investigating columns within frames. Results for the

moment magniher method were also published in Wong, Yeo and Warner (1990) and

the middle-tier method was also reported in Wong and Warner (1990).
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In the study by Wong (1989), braced and unbraced portal frames and several multi-

storey frames were examined. To limit the number of va¡iables, all beams and

columns were assumed to be 300 mm by 300 mm in section. In the series of portal

frames, the following parameters were va¡ied:

type of loading : four different loading patterns were used, (see

Figure 6.4)

column reinforcement:. 2 and 4 per cent of the gross sectional a¡ea

beam reinforcement : 0.5, l, 2, 3, 4 and 5 per cent of the gross

sectional area

column height : 3m, 6m and 9m, with corresponding slenderness

ratios l"lr (based on AS 3600) of 48, 88 and 127

0.5wL 0.5wL

crwL +

height=
variable

a= 0.02,0.2

6m

P P

dP+

height=
variable

u= 0.02,0.2

L=6m

Figure 6.4: Configuration of unbraced portal frames analysed by rWong (1989)
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A wide range of values for beam reinforcement was used in the study by Wong to

allow the influence of beam reinforcement on column strength to be investigated. An

earlier study by Pagay et al. (1970) showed that beam reinforcement has a significant

effect on column strength.

To compare analytical results between the top, middle and bottom-tier methods, two

types of strength prediction were made. These approaches were termed ultimaæ

strength and design strength predictions. In the ultimate strength prediction, material

properties were based on average (not characteristic) values. For concrete, the average

compressive strength, jf"., was 35 MPa, with a peak strength, f"* = 0.851.. The

average yield stress for steel was fi, = 460 MPa. All strength capacity reduction

factors were removed. For the moment magnifier method, there was no upper limit

for the unbraced storey magnifier, ô", and for the middle-tier approach, second order

analyses were performed without any limitation on the relative displacements of

compression members.

For design strength predictions, material properties were based on characteristic

values. The characteristic strength for concreta, f ", 
was assumed to be 30 MPa and

the yield strength of the reinforcement was assumed to be 400 MPa. To check the

design strength of frames by the bottom-tier and middle-tier methods, the strength

reduction factor, 0, was included in each analysis. For the moment magnif,rer method,

an upper limit of ô" equal to 1.5 was imposed. AS 3600 restricts a second order elastic

analysis to frames where the relative displacement of the ends of compression

members is L,1250. Unfortunately, the design strength predictions by Wong appear to

have been made assuming no limit to the relative displacements.

To enable comparisons between the top-tier method and the two simplified methods

for design strength prediction, a global strength reduction factor was applied to the

load determined by the top-tier method. This was deemed to be more appropriate than

applying the factor to the section strength because ultimate frame load does not

necessarily occur when the ultimate strength of a single cross section is first reached.
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The global strength reduction factor was assumed to be equal to the strength reduction

factor, @, at the critical section governing the design strength of the bottom-tier or

middle-tier methods. Even for the simplest of frames this is a crude approach, which

does not take into account the degree of indeterminacy, (Warner, 1993).

Analytical results for all unbraced frames are summarised in the four histograms in

Figures 6.5 and 6.6. Plotted along the horizontal axis is the ratio of ultimate load

predicted by the middle-tier or bottom-tier method to the ultimate load determined by

the top-tier method. A ratio greater than 1.0 indicates the simplified method is

unconservative. The vertical axis, labelled frequency, is the number of times each

ratio occurred.
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Figure 6.5: Histograms for bottom-tier method
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Figure 6.6: Histograms for middle-tier method

Figure 6.5a shows that 6.3% or 9 of the I44 frames yielded unconservative results for

prediction of ultimate strength by the bottom-tier method. All nine frames had no

beam loading and were subjected to horizontal loads of 0.02P, where P is the column

urial load. It is possible the mode of failure in each case \ry¿¡s a stability failure. Of the

144 frames analysed, bottom-tier beam failure occurred in 55 frames, and 89 frames

were limiæd by bottom-tier column failure.

Comparisons of bottom-tier design strength predictions for the unbraced frames are

shown in Figure 6.5b. The results show that 38 frames were eliminated because the
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storey moment magnifier was greater than 1.5. In these cases, a bottom-tier method of

design and analysis is unsuitable and a rigorous method of analysis is required.

However, the comparison ratios of the remaining 106 frames, show that the bottom-

tier method is conservative. The frames with very conservative comparison ratios,

e.g. ratios which are less than 0.5, have bottom-tier beam failures as limiting criteria

for peak load.

To a carry out a second order elastic analysis, computer program NEIVTONR was

developed by V/ong. The method involves augmenting the standard first order linear

elastic stiffness matrix with a geometric matrix proposed by Jennings (1968). This

latter matrix takes into account changes in nodal positions of a structure under load,

but not the displacements which can develop within the length of columns. Material

effects are taken into consideration with constant values of EA and the modified

flexural stiffness values for beam and columns of 0.48 I" and 0.88 I* respectively.

Comparison ratios for ultimate strength prediction for the middle-tier method are

shown in Figure 6.6a- A total of 17 (or ll.8Vo) frames out of the set of 144 frames

produced unconservative results. The bottom-tier method also predicted

unconservative results for these frames. In all cases, the column axial loads and lateral

loads are likely to induce significant second order effects. Middle-tier beam failure

occurred in 83 frames and column failure occurred in 61 frames. This varies

considerably from the bottom-tier predictions of 55 frames with beam failure and 89

frames with column failures corresponding to the peak loads on the structures. One

reason is that both approaches assume different values for beam and column flexural

stiffness.

The results for design strength by the middle-tier method are summarised in Figure

6.6b and show that 3l (or 21.77o) of the 144 frames analysed give unconservative

results. In addition, 30 of these frames have horizontal and column axial loading but

no beam loading. Unfortunately, no mention was made that the method should only

be used if the relative end displacement of the columns is less than L,1250. Four of

these frames are re-examined in the present study to determine whether middle-tier
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analyses are appropriate. The properties of the frames are summarised in Table 6.1

and each frame is subjected to column axial loading, P, and horizontal loading, 0-02P-

Table 6.1: Portal frames analysed by middle-tier method

For all four frames summarised in Table 6.1, the peak load predicted by middle-tier

analyses is greater than the peak load predicted by top-tier analyses, i.e. the

comparison ratios P^¿lP¡", are greater than 1.0. This indicates the middle-tier results

are unconservative. However, for FRAME2, FRAME3 and FRAME4 the column

lateral displacement from middle-tier analyses is greater than the recommended limit of

L,t250. Note that FRAME1 has a column sway deflection of 10 mm at the peak load

which is just less than the allowable limit of 12 mm. AS 3600 also recommends the

simplified methods should only be used if the column slenderness ratio is less than

120; FRAME2 has a slenderness ratio of I27.

The middle-tier anal¡ical results suggest a stability failure may have occuned in these

frames. It is interesting to note that top-tier anal¡ical results predicted frame instability

in all four frames. It can be concluded from these results that an upper limit of LJ250

for column displacements is a reasonable estimate for predicting an instability failure in

a middle-tier analysis.

Frame

height

Iet Reinforcement P^¡/Ptop LJ2s0

(mm)

Sway

Deflection

(mm)

Beam

(%oBIJ)

Column

ØoBH)

FRAMEl 3m 48 5.0 2.0 t.28 T2 10

FRAME2 9m 127 3.0 2.0 1 3 1 36 100

FRAME3 3m 48 4.O 4.0 1.28 t2 13

FFu{ME4 6m 88 3.0 4.0 1.23 24 68
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A series of braced frames was also examined in the study by V/ong (1989).

Predictions of ultimate and design strength for middle-tier and bottom-tier methods

were made and in all cases the comparison ratios were conservative, i.e. the failure

loads predicted by the simplified methods were lower than the peak loads determined

by the top-tier method of analysis.

6.5.3 Conclusions

Previous investigations for the accuracy and adequacy of the simplified methods have

been made for isolated pin-ended columns and for columns in braced and unbraced

frames. In the study of frames by Wong (1989), the moment magnifier method and

the second order elastic method gave satisfactory results. Results in some cases were

overconservative, i.e.307o to 507o of the top-tier predicted results. Unconservative

strength predictions were nade for a number of frames, but in these cases the

allowable [mits of ô" = 1.5 for the storey moment magnifier and LJ25O for the second

order method were exceeded. Hence, these two simplified approaches appear to be

satisfactory.

Two three-storey two-bay frames with 300 mm by 300 mm beam and column sections

were also analysed by Wong. Although the dimensions for the beam secúons appear

to be unrealistic for multi-storey frames, both the moment magnifier method and the

middle-tier method gave conservative results for the two frames analysed.

In the frames study by Wong, non-linear behaviour due to concrete compressive and

steel stress-strain relationships and geometric effects were taken into account.

However, tension stiffening and the influence of joint deformations on frame strength

were ignored. The effect of these non-linearities on frame strength are investigated in

the following section. Columns within multi-storey frames and multi-bay frames are

also examined in Section 6.6.
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6.6 Present lnvestigation of Slender Columns
in Sway Frames

6.6.1 Introduction

Frames chosen for analysis are divided into a number of series to investigate various

non-linear effects. The frames are described in Sections 6.6.3 to 6.6.6.

6.6.2 Analytical Models

To investigate frame behaviour and strength predicúons by the moment magnifìer and

middle-tier approaches, two types of strength prediction made. These are: (1) ultimate

strength; and (2) design strength predictions.

Ultimate strength predictions are based on average values for material properties and

all safety coefficients and strength reduction factors are ignored. This allows second

order predictions to be compared directly with results from a rigorous method of

analysis.

Construction of the strength interaction diagram is based on a @ factor set equal to 1.0.

To determine frame capacity by either the middle-tier or moment magnifier methods,

each individual beam and column member is checked for its capacity. Frame capacity

corresponds to the lowest value of peak load in a member. This approach differs to

ultimate frame load determined by a top-tier analysis, where strength in one or more

sections may have been reached before the ultimate frame load is reached.

Design strength predictions are made in order to investigate the effect of safety

coefficients and design values for material properties. Similar to the study by Wong

(1989), a global strength reduction factor is applied to the peak load deærmined by the

top-tier method. This value is assumed, for convenience, to be equal to the strength
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reduction factor, @, at the critical section governing the design strength of the bottom-

tier or middle-tier methods.

The code recommended limis of ô" equal to 1.5 for the moment magnifier method and

Lul250 for the middle-tier method only apply to design strength calculations. No limit

applies where ultimate strength calculations are made.

V/here a member is subjected to bending and axial tension, a simplified strength

interaction diagram is constructed, as in Figure 6.7. A straight line is drawn between

the ultimate strength in bending, M,o, and the ultimate strength in tension without

bending, for an axially loaded cross-section, Nuo¡. The value of Nuo, assumes the

concrete to have no tensile capacity.

N

Nuo

M
Nuot

Figure 6.7: Strength interaction diagram for a member in tension

All frames analysed in this section are unbraced against sidesway. Beam and column

elements have reinforcement which is 2.0Vo of the gross sectional area and, for

convenience, the reinforcing steel is assumed to be distributed equally to two layers.

UO
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Various non-linear effects are taken into account in each rigorous method of analysis.

The following anal¡ical models are used to describe increasing levels of material non-

linearity:

. Model I : tension stiffening is ignored

o Model II : tension stiffening effects are included

o Model Itr : tension stiffening and joint modelling are included

In all cases, full geometric etTects are allowed for, and is done so by inserting a

sufficient number of nodes in the column members. This takes into account lateral

movement at the column ends and also within the length of the columns. Second order

effects are not usually a problem in beams. Hence, they are represented by single

elements.

Material properties for ultimaæ strength are given by the following:

Concrete

. average compressive strength :

. peak strength in a member :

. elastic modulus :

Steel

. average yield stress :

. elastic modulus :

Maærial properties for design strength are:

Concrete

o characteristic strength :

. peak strength in a member:

f"^=37 MPa;

f"**= 0.85f,r;

E"= 5000,[Í"^,f"^îndE" in MPa

f'y = 460 MPa;

4 = 200,000 MPa

f '" = 32MPa;

f",,-r= 0.85/'r;
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. elastic modulus :

Steel

o design yield stress :

o elastic modulus :

E" = 5000rfT f ', andE" in Mpa

f"y = 400 MPa;

E" = 200,0(X) MPa

2A3

6.6.3 Series f Frames

6.6.3.1 fntroduction

Frame capacities by ultimate strength predictions are calculated for several single
storey frames. strength predictions are also made by top-tier models I, II and ltr.

Frames are either single bay or have five bays and all column sections are 400 mm by
400 mm' To investigate the influence of tension stiffening and joint flexibility on
frame behaviour, two types of beam section have been chosen. Beams which are
relatively stronger and stiffer are 400 mm by g00 mm deep. The orher type of beam,
which is 400 mm by 400 mm deep, is more flexible.

Although it is usual to ignore tension stiffening in ultimaæ strength predictions, a
previous study by okamu'¿ et al. (1970) showed that cracked beam stiffness has an
influence on column strength. Top-tier model I ignores tension stiffening and top-tier
model tr includes the tension stiffening model developed in chapter 3 .

Frames in series I are also analysed for joint deformations by including in the non-
linear frame analysis the joint model for T-joints and L-joints which has been
developed in chapter 4. This analysis is top-tier model III. The study of test corners
and test frames in chapter 4 showed that the performance of L-joints and T-joints can
be adversely affected by certain loading conditions.
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6.6.3.2 Configuration of Frames

Frames 141 and 1A2, which have columns with fixed bases, ate shown in Figure 6.8.

Columns in frame 141 have a slenderness ratio of M, and frame 142 with shallow

beams has columns with a slenderness ratio of 51. Frames lAl and lA2 arc analysed

for joint deformations because opening corners a¡e created under the given loading

conditions. An opening corner is created at the left hand L-joint and a closing corner is

created at the right hand L-joint. Beam loading has not been included because

application of beam loading reduces the magnitude of opening corner moments. At

higher ratios of vertical load to horizontal load, the moments in the left hand L-joints

actually change sign and closing corner moments are created.

All members of frames in Series I have percentages of steel, p, of.l.lVo, wherep =

A$ lbd. Note in this expression the effective depth d has been used. From the study

of beam sections in Chapter 3, it can be expected tension stiffening to be significant at

this percentage of tensile reinforcement.

Alt of the five-bay frames, 181, 182, lCl and lC2, have pinned feet. Frames 181

and lCl have identical structural properties and all columns have a slenderness ratio of

66. Frames 182 and 1C2, with shallow beams, have external columns with a

slenderness ratio of 75 and internal columns with a slenderness ratio of 68.

Frames lBl and 182, shown in Figure 6.9, are also analysed for joint deformations.

These frames are subjected to column axial loading and lateral loading which create

opening corners in the left hand L-joints. An inspection of the moments in each

member entering the T-joints showed that joint deformations can also be expected to

occur within these joints.

Shown in Figure 6.10 are frames lC1 and 1C2, which are subjected to beam loading.

These frames are not analysed by top-tier model III because joint deformations do not

develop under the given loading pattern. Application of the beam loading tends to
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close the angle between each beam and column element of the L-joints and T-joints,

thus preventing the formation of inclined cracks.

PP

Frame 1Al
800

400
¡- IIJ
400400

0.1P

0.1P -_>

4.5m Beams

Frame 142 400
6m 400

Beams and
Columns

Figure 6.8: Configuration of single bay portal frames, 141 and 142
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Figure 6.9: Configuration of multi-bay frames 181 and lB2
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Figure 6.10: Configuration of multi-bay frames lCl and lC2

6.6.3.3 Analytical Results for Series I Frames

As shown in Table 6.2, the top-tier model II analysis predicts a peak load of 3163 kN

for frame 1Al. This analysis includes the influence of tension stiffening, but ignores

additional joint deformations. Top-tier model I which ignores the effect of tension

stiffening, predicts a peak frame load of 3125 kN. This analysis underestimates the

peak load of model II by only 1.07o.

Shown in Figure 6.11 is load versus deflection of frame 141 for analyses by top-tier

model II and model III. At the peak load of model II, material strength has been

reached in a segment at the bottom of column 3. With increasing deformation, a

softening hinge forms in this critical 'section- Frame instability failure occurs,

corresponding to the formation of an insuff,rcient number of hinges. This frame also

has limited ductility.
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Table 6.2: Comparison ratio of Pu¡ for each analysis to P¡1¡ by top-tier (model If) for

frames lAl and 142

Method of

Analysis

Frame 141 Frame 142

Pult

ftl.o

ratro Pult

(kN)

ratio

Top-tier (model I)

Top-tier (model tr)

Top-tier (model Itr)

Middle-tier

Moment magnifier

3r25

3r63

2904

3024

2738

0.99

1.0

0.92

0.96

0.87

2597

26t8

2t76

2504

2374

0.99

1.0

0.83

0.96

0.9

3500
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2000

1500

1000

0
0 l0 40 50

Figure 6.11: Load versus deflection for frame 1Al

Top-tier model Itr analysis includes joint modelling for the left hand L-joint where an

opening corner is created. A sectional analysis for the beam element and a separate

calculation for a section through the column element showed that beam strength is

greater than 1.4 times the strength of the column. Note also that beam depth is twice

z.v
0*
!
oJ

500

20 30

Sway Deflection (mm)

-+- Analysis - Model [I
--6- Analysis - Motlcl III
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the column thickness. Based on the joint model by El-Metwally and Chen (1988), and

discussed in Chapter 4, a hinge is expected to form at the top of the column- Hence,

analysis for joint deformations by the proposed joint model in the present study

includes two segments at the top of column 2, where joint deformations ¿ue expected

to occur. This analysis predicts a peak load of 2904 kN, but frame capacity is only

reduced by 87o due to joint deformations.

Table 6.2 shows that the peak load predicted by the moment magnifier method is2738

kN and the critical section occurs within column 3. The middle-tier analysis predicts a

peak load of 3024 kN, which is an underestimation of the peak load of top-tier model

llby 4Vo. The middle-tier analysis also predicts the critical section to occur at the base

of column 3.

3500
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0 40 60
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Figure 6.12:Load versus deflection for Frame 1A2

Table 6.2 shows that by ignoring tension stiffening (i.e. model I), the peak frame load

for frame 142 is underestimated by only IVo. Figure 6.12 shows that for top-tier

model II the frame undergoes load softening afær the peak load of 2618 kN. The peak

load also corresponds to the formation of softening hinges at three locations: the left

hand of the beam and at the bases of column 2 and column 3.

--e- Analysis - Model II
--e- Analysis - Model III
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The top-tier analysis for joint deformations is given by model IfI. Under the given

loading configuration, an opening corner is created at the top of column 2. Since the

beam and column elements have the same section properties, hence the same flexural

strength, a joint segment is inserted at the left hand end of the beam element and a joint

segment is included at the top of column 2. A considerable reduction in stiffness due

to joint deformations is evident. The maximum load for this analysis is 2176 kN and

frame capacity is also reduced by I77o due to joint deformations.

It is inæresting to note that in this analysis overall frame behaviour is controlled by the

load-deformâtion response of the segment at the top of column 2, which enters the

opening corner. This is in contrast to the top-tier analyses by model I and model II,

where the critical sections are at the base of column 3.

The predicted peak frame load by the moment magnifier method is2374 kN, which is

10% less than the peak value determined by the top-tier model tr analysis. The critical

section by the moment magnifier method is within column 3. The middle-tier analysis

underestimates frame capacity by 47o, and although frame instability has occurred, the

middle-tier analysis provides an accurate prediction of the frame peak load.

Table 6.3: Comparison ratio of P¡¡ for each analysis b Putt by top-tier (model Ð for

frames lB1 and 182

Method of

Analysis

Frame 18l Frame lB2

Pult

(kl\Ð

ratro Pult

(kN)

ratio

Top-tier (model I)

Top-tier (model tr)

Top-tier (model Itr)

Middle-tier

Moment magnifier

2860

2932

2890

2883

2567

0.98

1.0

0.99

0.98

0.88

2088

2153

1465

2t84

2320

0.98

1.0

0.68

1.01

1.08
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Figure 6.13: Load versus deflection for frame lB 1

Analytical results for frame 181 are shown in Table 6.3. The non-linear analysis

ignoring tension stiffening predicts a peak load of 2860 kN, compared to a peak frame

load of 2932 kN as predicted by the analysis including tension stiffening effects. The

difference here is only 27o. Just prior to the peak load of model II, a softening hinge

forms at the top of column 7. Hinges also form shortly after at the tops of columns 8,

9 and 10. Failure within the beams does not occur. One likely reason is that the

beams are 8ü) mm deep and relatively much stronger than the columns which a¡e 400

mm deep. Note also that the columns are subjected to significant axial loading,

whereas the beams act primarily as flexural elements.

Shown in Figure 6.13 is load versus deflection for analyses by top-tier model II and

model III. Analysis by the latter takes into account joint deformations and has

predicted a peak load of 2890 kN. Frame capacity is only reduced by 1.07o and there

appears to be no noticeable loss of stiffness under increasing load. The study of T-

joints in Chapter 4 showed that, regardless of relative member sizes, joint

deformations are largely confined to the beam element. Joint segments have been
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inserted in the beam elements of frame 18 1 for the model III analysis, but the beams

appear to have sufficient residual strength and stiffness so that frame performance is

not adversely affected by joint deformations.

The moment magnifier method predicts a peak load of 2567 kN and the critical section

occurs in column 7. Frame capacity is underestimated by 127o.

The peak load of 2883 kN for frame 18 1 by the middle-tier analysis is only a 27o

underestimation of the value predicted by the top-tier model II analysis. The critical

section also occurs at the top of column 7.
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Figure 6.14: Load versus deflection for frame 182

Analytical results for frame lB2 are also summa¡ised in Table 6.3. Top-tier analytical

model I, which ignores tension stiffening effects, only underestimates frame capacity

of top-tier model IIby 2Vo. Analysis by model II showed that, although significant

deformations occur in the beam elements, frame failure corresponds to the formation

of an insufficient number of hinges.

--g- Analysis - Model II
-e- Analysis - Modcl III
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Figure 6.14 shows load versus deflection for frame 182. Unlike frame 181, the

effect of joint deformations on frame behaviour is noticeable here. A gradual loss in

frame stiffness can be observed with increasing load and the overall strength of the

frame is reduced from 2153 kN to 1465 kN, i.e. a reduction of 32Vo. Notn that frame

lB2 has beams which are 400 mm deep, compared to frame 181 with 8fi) mm deep

beams. It is apparent the effect of inefficient T-joints on frame behaviour is most

severe with relatively shallow beams.

The moment magnifier method overestimaæs peak load by ïVo and the critical section

occurs within column 7. In contrast, the middle-tier analysis shows a very good

estimate of peak load of 2184 kN, which is within I7o of the top-tier model II

prediction of 2153 kN. The critical section by the middle-tier analysis occurs within

beam 1, which is also the location of the first formed hinge by the top-tier analysis.

The middle-tier analysis also predicts column capacities of all internal columns which

are within 37o of the capacity of the critical section. This compares well with the top-

tier analytical results, which showed hinges had formed at the top of columns 7 and 8.

Table 6.4: Comparison ratio of w¡1¡ for each analysis to yyulr by top-tier (model II) for

frames lCl and 1C2

Method of

Analysis

Frame lCl Frame lC2

wult

ftN/m)

raío wult

(kN/m)

ratio

Top-tier (model I)

Top-tier (model tr)

Middle-tier

Momentmagnifier

303

308

l9l
240

0.98

1.0

0.62

0.65

t04

106

63

6l

0.98

1.0

0.6

0.58

Table 6.4 summarises the analytical results for frames lCl and 1C2, which are single-

storey five-bay frames. Top-tier model III analyses for joint deformations were not
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performed because under the given loading configuration opening corners are not

created in the L-joints, and the moments in the beam elements entering the T-joints also

tend to close these joints. In both frames lCl and 1C2, the analyses which ignore

tension stiffening only underestimate the frame peak loads by top-tier model llby 2Vo.

The load versus deflection results for frame lCl are shown in Figure 6.15. This

frame displays a catastrophic failure after the peak frame load of 308 kN/m. Two

column sections have failed: at the top of column 6 and the top of column 11. Frame

failure is sudden, and there is no obvious failure of the beams.

The moment magnifier method predicts the critical section to occur within column 11,

and the corresponding peak load of 200 kN/m underestimates the peak load by top-tier

model II analysis by 357o.

The middle-tier analysis predicts an ultimate frame load of 191 ld.{/m corresponding to

a critical section in column 11. This is a conservative estimate for peak load and is

627o of the top-tier model II prediction of ultimate load. Lateral displacement of

columns is 28 mm at the peak load which is considerably less than the deflection at

peak load of 90 mm predicæd by the top-tier model [I analysis. It is worth noting that,

while this analysis gives a conservative prediction of frame strength, the predicted

capacities in remaining members are more than 407o higher than the capacity of the

critical section. This point illustrates the importance of choosing the critical section as

the basis for deærmining frame capacity.

Top-tier model II analysis for frame 1C2 (Figure 6.16) shows that a series of beam

hinges form as loading increases up to the peak load of 106 kN/m. Failure within the

columns is not predicted. Although the analysis was not carried out into the collapse

region, results showed that after the peak load all columns had undergone unloading of

moment and curvature.

The moment magnifier method predicts the critical section to occur in beam l. The

failure load for this element is 61 kN/m which is 58% of the top-tier model II
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prediction for frame strength. The predicted capacity by the bottom-tier method for

beam 4 is 66 kN/m. Figure 6.16 shows that a hinge forms in beam 1 at a load of 75

kN/m followed shortly by a second hinge in beam 4. Predicted column capacities are

considerably higher than the capacity of the critical section. These predictions appear

to be reasonable.

The middle-tier analysis also predicts a conservative estimate of peak load. The value

of 63 kN/m is 607o of the top-tier model II value. Middle-tier results also show that

the critical section occurs within beam 1 and the predicted capacity for beam 4 ís 67

kN/m. This suggests that the middle-tier method has provided a reliable prediction for

frame capacity and column analysis.
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Figure 6.15: Load versus deflection for frame lCl
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Figure 6.16: Load versus deflection for frame lC2

6.6.3.4 Summary and Conclusions

Beams and columns within frames in Series I contained relatively low percentages of

steel, hence the effect of tension stiffening on stiffness w¿rs beneficial. It was aslo

shown in this section that frame strength was increased by l-2%o due to tension

stiffening effects. It had been shown in an earlier study by Okamura et al. (1970) that

cracked beam stiffness affects the strength of adjoining column members.

Usually, tension stiffening is ignored in strength calculations, which is reasonable for

simple beams. It is also a reasonable assumption for frames with high percentages of

steel, e.g- where members have greater than about 2-5-3.ïVo tensile steel.
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The influence of joint deformations on frame performance was also investigated in

Series I. It was shown that both strength and stiffness can be adversely affected by

the behaviour of T-joints and L-joints of single-storey frames. This occurred in

frames with columns and beams of simila¡ section reinforcing details and section size.

Frames with deeper beams, e.g. where beam depth is twice the column thickness,

have additional beam stiffness to resist lateral loading.

Frame 141, with an 800 mm deep beam, had a 8% strength reduction due to joint

deformations in the opening L-joint. This compares with a l77o strength reduction in

frame 142 due to joint deformations. This frame has a 400 mm deep beam.

Multi-bay frame 1B 1, with 800 mm deep beams, was analysed for deformations in the

T-joints. Capacity reduction for this frame was only l%o, and results for load versus

deflection showed a very minor loss in stiffness due to joint flexibility. However,

frame 182, with 400 mm deep beams, was severely affected by joint deformations.

Strength was reducedby 32Vo and the gradual reduction in stiffness became noticeable

at about half the peak frame load.

Of the six frames analysed in Series I, slightly unconseryative results by the simplified

methods only occurred for frame 182. The comparison ratio by the middle-tier and

moment magnifier methods, by ultimate strength predictions, were 1.01 and 1.08

respectively. However, the top-tier model II analysis, which included tension

stiffening but ignored joint modelling, showed this frame failed by instability.

Unfortunately, neither simplified approach can determine a stability failure. The code

restriction that the unbraced moment magnifier ô" must be less than 1.5 and the column

sway deflection in a second order elastic analysis must be less than Lul250 only apply

if design strength predictions are made. However, the ultimate strength calculations

by the two simplihed methods predicted significant second order moments. Taking

into account the code recommended limits just mentioned, it is very likely that design

strength calculations would have indicaæd stability failures.
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6.6.4 Series II Frames

6.6.4.1 Introduction

In this series, three five-storey frames are analysed and both ultimate strength and

design strength predictions are made. Each frame is also analysed by top-tier model

II, which includes tension stiffening, but ignores the effect of joint deformations.

Although the frames analysed in Series I showed that by ignoring tension stiffening

effects frame capacity is only understimated by 1.0 to 2-07o, all top-tier analyses in

Series tr include tension stiffening to allow more accurate predictions of overall frame

performance to be made.

A preliminary check of the frames in this series showed that joint deformations are not

likely to occur within the L-joints and the top floor T-joints. The loading conditions

imposed on each frame tend to close the beam elements of these joint types, thus

preventing the formation of any inclined cracks.

6.6.4.2 Configuration of Frames

All frames have uniform beam and column sizes throughout. Beam sizes differ with

each frame type, but columns within all storeys of each frame are 400 mm by 400 mm

in section. Beams and columns have reinforcing steel which is 2.07o of the gross-

sectional areas, and steel is distributed equally between two layers. The cover to

reinforcing layers is 50 mm for all sections, except for the 300 mm deep beams of

frame 2C which have cover of 40 mm. Such uniformity throughout a structure is not

usually encountered in practice, but has been done for the present study to restrict the

number of variables which may influence frame behaviour.

Frame 24, and shown in Figure 6.17, has beams spanning 8 metres. All columns are

4 metres in height and slenderness ratios are reasonably uniform. Columns within the

first storey have l, /r ratios between 40 and 42, while columns within the second to
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fifth storeys have l"lr ratios in the range 36 to 4L. This frame has a relatively low ratio

of lateral load to vertical beam load.

Frame 28, and shown in Figure 6.18, has relatively stiffer beams than frames 2A and

2C and also a relatively higher ratio of lateral load to beam load. Columns within the

first storey are 6 metres in height and have l"lr ratios between 60 and 61. Columns

within the second to fifth storeys are relatively stocky with l, /r ratios in the range 25 to

29.

Structural geometry and section sizes for frame 2C are shown in Figure 6.19. This

frame has the same beam spans and column heights as frame 28. However, the

beams of frame 2C arc more flexible and have a relatively lower flexural strength.

This frame is subjected to a relatively low ratio of lateral to vertical loading. Columns

within the first storey of frame 2C are the most slender of all columns analysed in this

series, with slenderness ratios between 65 and 71. Columns in the second to fifth

storeys are not so slender, with lrlr ratios in the range 32 to 46.
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Figure 6.17: Configuration of frame 2A
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Figure 6.20: Member numbering for five storey frames

6.6.4.3 Analytical Results by Ultimate Strength Predictions

Results for peak frame loads by ultimate strength predictions for each method are

shown in Table 6.5. The peak load for frame 2{by top-tier model II is 147 kN/m.

The plot of load versus deflection (Figure 6.21) for this analysis also shows that frame

failure is caøstrophic. Prior to the peak load, hinges have formed at the top and

bottom of the first storey internal columns 33 and 34. However, these columns are

subjected to significant axial forces and at the peak load of 147 kN/m the axial force in

column 33 is approximately 0.98Nrr.

The middle-tier analysis predicts the critical section to occur within column 7. This

column fails by primary tension and frame capacity corresponds to a load of 97 kN/m

or 0.6 of the peak load predicted by top-tier model II. Column 4 fails at a frame load

of 103 kN/m. Similar to the top-tier model II predictions, the middle-tier analysis also
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predicts member capacity of column 33 to be reached at 147 kN/m. However, frame

capacity by this simplified approach must be taken as the lowest value for any

member.

It is interesting to note that the top-tier analysis chooses the key segment at the top of

column 7. Although significant deformation occurs within this column, and also

within column 4, frame failure by the top-tier analysis is due to the heavy axial loading

of columns 33 and 34. These columns have limited ductility which contributes to the

instability failure of this frame.

The bottom-tier moment magnifier method also predictsthe critical section to occur

within column 7, and frame strength is assumed to be reached at a load of 120 kN/m,

or 0.82 of the top-tier predicted maximum load. This method also predicts columns 33

and 34 to reach capacity loads of 137 and 143 kN/m respectively.

Table 6.5: Ratio of wu¡¡ for each analysis to w¡1¡ by top-tier (model II) for Series tr

frames

Method of

Analysis

Frame 2A Frame 28 Frame 2C

Ìryult

ftN/m)

ratio Ìtlult

ftN/m)

ratio l,l/ult

Od.{/m)

rauo

Top-tier (model II)

Middle-tier

Moment magnifier

r47

97

120

1.0

0.66

0.82

61

48

M

1.0

0.79

0.72

177

118

r29

1.0

0.67

0.73
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Figure 6.21:Load versus deflection for frame 2A

The load versus deflection results for frame 2B by top-tier model II are shown in

Figure 6.22. Hinges form in several first storey columns before the peak frame load

of 61 kN/m is reached. However, unlike frame 24, columns within frame 2B are not

subjected to significant axial forces. Note that frame 2B is also subjecæd to a higher

ratio of lateral load to vertical load, which tends to increase the level of moment and

reduce the amount of compressive axial force within the frst storey columns.

The middle-tier analysis predicts a frame peak load of 48 kN/m corresponding to a

critical section at the base of column 32. This value is 79Vo of the top-tier value of 6l

kN/m. Hence, the middle-tier results appear to be satisfactory.

Based on a braced moment magnifier of 1.0, the moment magnifier method predicts

the capacity of column 32 to be 55 kN/m. However, frame capacity by this approach

is determined by the unbraced moment magnifier for column 32 andthe predicted peak

load is 44 kN/m. The value for ð'" is 1.19.

30
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Figure 6.22:Load versus deflection for frame 28

The results of load versus deflection for frame 2C are shown in Figure 6.23. Failure

of this frame is catastrophic and, similar to frame 24, the first floor internal columns

are subjected to very high axial forces. Compared to frame 28, both frame 2A and

frame 2Chave relatively low lateral load to vertical load ratios.

The middle-tier analysis predicts a peak frame load for frame 2C of 118 kN/m and the

corresponding critical section is within column 7. This analysis also predicts the

capacities of columns 33 and 34 to be 177 kN/m and 180 kN/m respectively. The

ultimate frame load for this frame by the top-tier analysis is L77 kN/m.

The moment magnifier method also predicts the critical section to occur within column

7. Predicted frame capacity is 129 kN/m which is73Vo of the top-tier maximum frame

load of 177 kN/m. The unbraced moment magnifier, ôr, for this column is 1.04. It is

noted that values for ô, for the columns within the hrst storey are all greater than 3.0.
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Figure 6.23:Load versus deflection for frame 2C

6.6.4.4 Analytical Results for Design Strength Predictions

Design strength calculations for frames2{,2B and 2C have been made by the middle-

tier a¡rd moment magnifier methods and results for each frame are summarised in

Tables 6.6,6.7 and 6.8, respectively. Material properties used in the top, middle and

bottom-tier methods are based on characteristic values. Member capacity by the

simplified methods corresponds to the intersection of the M-N loading curve and the

design strength M-N interaction curve. Frame capacity, w¿s5, is then taken to be the

lowest value of all member capacities.

To determine design strength by the top-tier model II analysis, a strength reduction

factor must be applied to the peak load. However, its value is difficult to determine

because one or more hinges may form before the peak load is reached. For the present

study, the 'global strength reduction factor' applied to the peak load by the top-tier
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analysis is that value corresponding to the critical section by the given simplified

method.

Summarised in Tables 6.6,6.7 and 6.8 are the design strength loads, w¿"r, determined

by each simplified method and the values of @ are the corresponding strength reduction

factors for the critical sections. The comparison ratio is then given by the ratio of the

value for w¿", to the value of @ multiplied by the top-tier peak load.

Table 6.6: Design strength predictions for frame 2A

Method of analysis Ìvdes

(kN/m)

a Comparison

ratio

Middle-tier

Moment magnifier

63

75

0.78

0.77

0.65

0.79

The moment magnifier method predicts a design strength of 75 kN/m for frame 24,

(Table 6.6), which corresponds to a critical section within column 7. The comparison

ratio of 0.79 indicaæs that the top-tier design strength is 95 kN/m. Calculation of the

storey moment magnifier, ô", for this column is 1.06, which is less than the allowable

limit of 1.5. Furthermore, the moment magnifier method also gives a conservative

estimate of frame capacity, hence it is a satisfactory approach.

The middle-tier analysis also determines the critical section to occur within column 7,

but this analysis gives a more conservative estimate of the maximum design load for

this frame. The comparison ratio of 0.65 corresponds to a top-tier peak load of 97

kN/m. In both the moment magnifier and the second order middle-tier analyses, the

factor, @, indicates that column 7 fails by primary tension. All columns within this

frame are 4 m high and the displacement calculation, Lu1250, for these columns is 16

mm. The maximum relative displacement for any column by the middle-tier analysis is
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2 mm. This is less than the recommended allowable limit of 16 mm. This approach

also gives a conservative estimate for frame strength and the method can be considered

satisfactory.

Table 6.7: Design strength predictions for frame 28

Method of analysis l?des

(kN/m)

0 Comparison

ratio

Middle-tier

Moment magnifier

3T

20

0.77

0.7

0.14

0.53

Table 6.7 summarises the design strength predictions for frame 28. The moment

magnifier method predicts the critical section to occur within column 33 in the first

storey. The design strength is 20 kN/m and the storey moment magnifier, ôr, is 1.26.

The global strength reduction factor, @, equals 0.7 and when applied to the top-tier

peak load, yields a corresponding design strength of 38 kN/m. Hence, the

comparison ratio is 0.53.

The middle-tier analytical results also show that overall frame performance is

controlled by the member capacities of the hrst-storey external columns 32 and35.

The comparison ratio for this analysis is 0.74 and suggests the analysis is

conservative. The permissible limit, Lul250, is 24 mm for the first storey columns and

12 mm for the columns in the second to fifth storeys. The maximum relative

displacement of any column is 27 mm, which occurs in column 32. Although the

middle-tier analysis prediction for strength is conservative, AS 3600 suggests a

column stability failure may occur and a rigorous method of analysis should be used.

Obviously, the permissible limit, L" 1250, for a second order analysis is on the

conservative side.
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Table 6.8: Design strength predictions for frame 2C

Method of analysis ÌT des

(kN/m)

o Comparison

ratio

Middle-tier

Moment magniher

76

72

0.77

0.68

0.64

0.69

Results tbr frame 2C are summarised in Table 6.8. The moment magnifier method

predicts the design strength member capacity for column 33 is72 kN/m. The strength

reduction factor, @, is 0.68. The value for the unbraced moment magnifier, ô", for this

column is 2.95, which is greater than the permissible value of 1.5. AS 3600 states

that above this value a column stability failure may occur and a rigorous method of

analysis should be performed to predict column capacity. However, the comparison

ratio, 0.69, for this frame analysis is conservative, i.e. less than unity. Although a

column stability failure cannot be determined by a design strength prediction, the

results for frame 2C suggest that the maximum value for moment magnifier of 1.5 is

conservative.

The allowable limit of L,1250 for the columns of frame 2C are 24 mm for the first

storey columns and 12 mm for the columns in the second to fifth storeys. The middle-

tier results show that relative column displacements are 2 mm for column 4, within the

fifth storey, and 10 mm for column 32 in the bottom storey. These values are

acceptable and, as suggested by AS 3600, a second order linear elastic analysis can be

used. The critical columns by this analysis are columns 4 and 7, and design strength

capacities are 76 kN/m and 80 kN/m respectively. The comparison ratio of 0.64

suggests this analysis is conservative.

6.6.4.5 Summary and Conclusions

The ultimate strength analyses of frames 2A,28 and 2C by top-tier model II show that

frames 2A and 2C are characterised by a sudden catastrophic failure, whereas frame
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28 softens markedly afær the peak frame load. In making these comparisons, it is

interesting to note the ratio of horizontal load to vertical load for each frame. Frames

2Aand2Chave relatively low ratios, and frame 28 ha.s a much higher ratio. Moments

caused by the horizontal loading tend to act in the opposiæ direction to the moments

corresponding to the vertical load pattern. The horizontal loads also tend to reduce the

level of compressive ærial load in the bottom storey columns.

The catastrophic failure of frames 2A and 2C corresponds to high column axial loads

combined with small moments in the bottom storey columns. The bottom storey

columns of frame 2B were subjected to a lower level of axial load. At the peak frame

load, the axial compressive thnlst in column 32 was approximately 0.3Nuo. External

columns in the top floor of all frames were also heavily loaded. However, these

columns tended to carry relatively high moments and low column axial loads, and

when failure occurred this was characterised by a primary tension type failure.

Failure type for all three frames is a partial collapse mechanism because a full set of

hinges had not developed by the final collapse.

There is some inconsistency in the use of the code recommended limits for stability by

the simplified methods. The values of ô" for the critical sections for frames 2A,28,

2C arc 1.06, 1.26,2.95 respectively. For these frames, AS 3600 recommends the

moment magnifier method should not be used to analyse frame 2C because 6, is

greater than 1.5. On the other hand, only the value of L,1250 for frame 2B by the

middle-tier method is exceeded. Hence, AS 3600 suggests the middle-tier method

should not be used to analyse frame 28.

It is interesting to note that the comparison ratio for design strength was more

conservative than the comparison ratio for ultimate strength for each frame analysed.

A global strength reduction factor was taken for top-tier design strength predictions

and its value was assumed to lie between the values of 0.6 and 0.8.
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6.6.5 Series III Frames

6.6.5.1 Introduction

In the design and analysis of structures subjected to sequential loading, e.g.

combinations of dead + live load or dead + wind load, it is common practice in the

calculation for strength to assume linear elastic behaviour and that load systems can be

superimposed. In this section, non-linear analytical predictions are performed and the

adequacy of this approach is investigated.

6.6.5.2 Analytical Results

Two frames have been chosen for analysis which have identical structural geometries,

material and sectional properties as frames 28 and 2C from Series II. For Series III,

these two frames are named frame 38 and frame 3C. The frames are analysed for

sequential loading by applying a uniform load pattern to all beams which may simulate

dead load. This first load system is held constant followed by a second load system

which is incremented until the strength of the structure is reached. The second load

system comprises a checkerboard beam load pattern, which could simulate live load,

and a set of lateral loads applied at each floor level which simulates wind loading.

Analyses for sequential loading are made with the non-proportional method of analysis

developed in Chapter 5. Results are compared with proportional load analyses with

equivalent systems of loads.

As already mentioned, these frames have been analysed in Series II, but under

different loading conditions. Figure 6.24 shows the load patterns for analysis by non-

proportional loading- The first load system, w1n, is incremented up to a

predetermined magnitude, given by wrn*. Since the value of w1n* for each non-

proportional loading analysis must be predetermined, two separate analyses were made

to determine the ultimate values, w1n(max), under this load pattern. The peak load for

frame 38, with all beam spans loaded, is 198 kN/m. The corresponding peak load,
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w1n(max), for frame 3C with all beam spans loaded, is 209 kN/m. The predetermined

magnitudes of load system l, l,rltn*, for frames 3B and 3C are given in Table 6.9 and

are approximately 257o of. the ultimate load of w1n(max) for each frame-

When the first load system is fully incremented to w1n* it is held constant and the

second load system is applied. The vertical load pattern, Ìe2¡, is applied to alternate

spans and the horizontal load pattern, Hn, given by crnw2nl-, is applied at each floor

level. The peak frame load for non-proportional loading corresponds to w2n(max) and

¡Ir(max) from the second load system. These values are summarised in Table 6.9.

For the proportional loading analyses lbr frarnes 38 and 3C, three loading patterns are

applied to the structures. Shown in Figure 6.25 are two load patterns, w1p and w2r,

applied to the beams and a system of lateral loads, F1o, given by, crnwlnl., applied at

each floor level. The relative proportions in which these loads are incremented is

determined from the magnitude of wln* and the peak values, w2n(max) and f/n(max),

for load system 2 from the non-proportional loading analyses.

The ratio, \!1pi\tt2p, in which the vertical loads are applied for proportional loading

analyses is in the same ratio as yrln*:yy2n(max). The magnitudes for w1n* and

w2n(max) for frame 38 are 40 kN/m and 20 kN/m respectively, therefore the vertical

load patterns for the proportional loading are given by wzp - 0.5w1p. From the non-

proportional loading analysis for frame 3C, the vertical loads at frame capacity are:

vr'ln* = 50 kN/m and w2n(max) - 156 kN/m. Hence, the relationship between the

vertical loads for the proportional loading analysis is given by wzp=3-l2wÞ.

The relative proportion between the horizontal loads and the vertical loads for

proportional loading are based on the magnitude of loads at the peak frame loads from

the non-proportional loading analyses. The following equation is used to calculate the

factor, c[,n.

üo (6.20)
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In this expression, Z is the beam span. For frames 3B and 3C, all beam spans are 6m.

From the non-proportional loading analysis of frame 38, the magnitude of w1n* is 40

kN/m and for F/n(max) the value is 96 kN. Hence, for proportional loading analysis

an is 0.4. For frame 3C, the factor crn for the proportional loading analysis is equal to

0.17. This is based on magnitudes of 50 kl.[/m and 50 kN for w1n* and I/n(max)

respectively.

laltn (all beams)

Load
Sysæm 1

l4lzn (alternate beams)

A.nW2nL +

Load
System 2 :

a,nW2nL --r-

d,W2"L 
--------->

a{znL +

CJWznL ------------>

L=6m

.t..t. tt tl

tt tl tt

I .t..t-

J.L J.L tt

JJ JJ tt

J J.L

Jtt

ttt

l. .t. .t.

J JJ

Figure 6 -24: Lo adin g config uration for non-proportional loadin g
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Table 6.10 summarises the peak loads for the proportional loading analyses for frames

38 and 3C. By comparing values of w1n(max) and ^F/n(max) with corresponding

values for w1n* andFln(max) in Table 6.9, there is very little difference in frame

capacity for the analyses for non-proportional loading and proportional loading. The

non-proportional loading analyses showed that member capacity had not been reached

in any member. It should be noted that w1n* for both non-proportional loading

analyses are257o of the maximum possible values for w1n. It was shown in Chapter

5 that frame capacity depends on the amount of load applied by the first load system to

the structure. With higher values of w1n*, it can be expected the deformed structure

may influence the amount of load applied by the second load sysúem.

wtp (all beams)

w2n (alternaûe beams)

fi.pw ryL

a,nW¡nL I

dpW tp L 
-->

U,pW ryL 
--=r-

apW 4L

L= 6m

6m 6m 6m

.t_.t_ .t_.t.

.LJ .t..t- .t..t.

JJ
tt tt .t J.

J¿ .tJ
tt tt .t.t.

Ji.
tt tt tt

.t..t. tt
tt ttJJ

Figure 6.25: Loading configuration for proportional loading
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Table 6.9: Peak loads for non-proportional loading

Table 6.10: Peak loads under proportional loading

6.6.5.3 Summary and Conclusions

The difference in the predicted peak frame load for non-proportional and proportional

loading for the two frames considered is minor. Results suggest that sequential load

systems can be replaced by an equivalent set of proportional loads. However, this

study does not cover all possible cases and there may be situations where this is not a

reasonable assumption. A more comprehensive study is recommended for further

investigations.

lt 1n*

(kN/m)

w2n(max)

(kN/m)

c[n //.(max)

(kl\Ð

Frame 38

Frame 3C

40

50

20

156

0.8

0.053

96

50

w1n(max)

(kN/m)

w2o(max)

(kN/m)

ctp I1n(max)

(kN)

Frame 3B

Frame 3C

39

49

59

205

0.4

0.t7

95

49



Chapter 6: Accuracy of Simplified Methods n4

6.6.6 Series IV Frame

6.6.6.1 Introduction

In this section, ultimate strength and design strength analyses are made to predict the

capacity of a ten storey frame. This frame has the same beam and column properties

as frame 2C which has been shown in Figure 6.19. Frame 4 has a uniform loading

pattern, w (kN/m), on all beam spans and a lateral load,0.027wL, applied to each

storey. Columns within the first storey a¡e 6 m high and columns within the second to

tenth storeys are 3 m high. For discussion purposes, the first storey columns are

numbered 6l to 7 0 and the columns within the tenth storey are numbere d 4 to 7 .

6.6.6.2 Analytical Results by Ultimate Strength Predictions

Analytical results for the top-tier model II, middle-tier and the bottom-tier moment

magnifier methods are summarised in Table 6.11. The top-tier analysis predicts a peak

frame load of 92 kN/m. Frame failure is catastrophic (Figure 6-26) and occurs shortly

after the strengths of the first storey interior columns 68 and 69 arc reached. These

columns carry high axial loads, approximately 0.85N- at failure, and consequently

have poor ductility. Hinges have not formed in any of the remaining columns or

beams.

The middle-tier analysis also predicts frame strength is controlled by the capacity of

columns 68 and 69. The peak load of 88 kN/m corresponds to the member capacity

for both these columns.

The moment magnifier method gives the most conservative estimate for frame

capacity. The peak load of 58 kN/m corresponds to the critical section occurring

within column 70 in the first storey. Note that the capacity of columns 68 and 69 is 59

kN/m. The unbraced moment magnifier ô. for column 70 is 2.4, indicating the

development of significant second order moments.
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Table 6.11: Ratio of w¡1¡ for each analysis to w¡1¡ by top-tier (model II) for frame 4

Method of Analysis ltult

ûùI/m)

Comparison

ratio

Top-tier (model II)

Middle-tier

Moment magniher

92

88

58

1.0

0.96

0.63

0 40 60

Sway Deflection (mm)
80 100

Figure 6-26:Load versus deflection for frame 4

6.6.6.3 Analytical Results by Design Strength Predictions

Design strength predictions for frame 4 have been made for the moment magnifier and

middle-tier methods. These results are summarised in Table 6.12. The moment

magnifier analysis gives a design strength load of 39 kN/m for frame 4 and the critical

n5

z
J¿

È
dñ
J

100

80

60

40

20

0
20

6BB,698
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section is within column 70. Both columns 68 and 69 are also highly loaded and have

calculated capacities of 42 kN/m. The value of the moment magniher, [, for column

70 is 3.83. This is much greater than the allowable limit of 1.5 for design purposes,

although the strength comparison ratio of 0.l2indicates this analysis is conservative.

The middle-tier method is slightly unconservative, with a comparison ratio of 1.02.

This method predicts the critical section is within column 7 with a capacity of 65

kN/m, while the capacity of columns 68 and 69 is 69 kN/m. The value of L"1250 for

all first storey columns is 24 mm and the maximum relative displacement for columns

within this storey is 21 mm. This value for displacement is less than the allowable

limit and is in contrast to the condition applying to the moment magnifier method

where the value of ô" is much greater than the limit of 1.5.

Table 6.12: Design strength predictions for frame 4

6.6.6.4 Summary and Conclusions

The ultimate strength and design strength predictions by the two simplified approaches

have yielded quite different results. The moment magnifier method is more

conservative, with comparison ratios of 0.63 and 0.72 for ultimate and design

strengths respectively, in contrast to the middle-tier results of 0.96 and 1.02. The

moment magnifier method also indicates that a stability failure has occurred, whereas

the magnitude of column sway deflections by the middle-tier method show that a

stability failure does not occur.

Method of Analysis wdes

(kN/m)

a Comparison

ratio

Middle-tier

Moment magnif,rer

65

39

0.78

0.66

t.o2

0.72
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6.7 Present Investigation of the Simplified
Methods for Isolated Pin-ended Columns

In Section 6.6, columns within unbraced frames were investigaæd. In all cases, the

unbraced moment magnifier was the governing criterion for determining strength by

the bottom-tier approach of AS 3600. In this section, the ultimate strength of isolated

pin-ended columns is determined by the braced moment magnifier method, the model

column method and top-tier model II. The columns have equal end eccentricities as

shorvn in Figure 6.27.

P

e

L e

4{X)

400

f on = 37 lvlPla

f "* = 0-85f 
"^ =32lvpa

Ast = 1600mm2
cover = 50 mm
I'y = 460 MPa

P

Ast

Ast

Figure 6.27 : Pin-ended column
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Table 6.13: Top-úer model II results for columns with l"lr =25

column eccentricity

e

(mm)

Top-tier results

Mult

(kNm)

Nult

(kN)

A1

A2

A3

40

120

200

223

391

441

4796

3008

209s

Shown in Table 6.13 are the results obtained by the top-tier model II for three

columns, Al, A2 and 43, with increasing values for eccentricity. Each column is

relatively stocky with a slenderness ratio of 25. Top-tier model tr predicts a material

failure in each column which is shown by the intersection of the M-N loading lines and

the solid line representing the strength interaction curve in Figure 6.28.

Loading lines are also plotted in Figure 6.28 for the results obtained by the braced

moment magnifier. Ultimate moment and thrust are found from the intersection of

each line and the strength interaction curve, and the value of ô¿ for columns Al, A2

and A3 are 1.16, 1.1 and 1-06 respectively. Ultimate moment and thrust by the model

column method, which are found by iteration, are shown by the three single circles.

In all cases, ultimate moment and thrust by these simplified methods are only I to 3Vo

higher than the results by top-tier model II. Second order moments in these columns

are not significant, although for column A1 the moment magnifier predicts a 167o

contribution due to second order eft-ects
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Figure 6.28: Results for columns Al, A2 and A3

A study of slender columns with slenderness ratios of 75 was also made. Results for

these columns 81, 82 and 83, with eccentricities of 40 mm, 120 mm and 200 mm

respectively, are shown in Figures 6-29 to 6.3I.

Results for column B 1, which has an eccentricity of 40mm, are shown in Figure 6.29.

The top-tier model II predicts a peak thrust of 3394 kN at a moment of 332 kNm. A

column stability failure occurs and is followed by significant softening, i.e. moment

and thrust decrease in value afier the peak load.

The moment magnifier method predicts an ultimate moment and thrust of 419 kNm

and 2840 kN respectively. The braced moment magnifier value of 3.98 is very high,

but this method cannot determine if a stability failure has occurred. For unbraced

frames, the sway moment magnifier has a limiting value of ô, equal to 1.5. Above this

value a stability failure may occur. Peak moment by the braced moment magnifier is

26Vo hrgher than the value determined by top-tier model tr.

e=120mm

e=40mm

e=200mm

----- Top tier
--x- Moment Magnifier
o Model Column
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The line of uiangles represents calculations for predicûed strength by the model column

method. However, this does not represent a loading line and has only been plotæd to

reflect the iterative nature of the model column method. The only point which is of

interest occurs at the intersection of the strength interaction curve where ultimaæ

moment and thrust are 405 kN and 3102Id{ respectively. Peak moment in this case is

227o htgher than the top-tier value for peak momenl Similar to the moment magniher

method, this method has predicted a column material failure, whereas the top-tier

method has predicted a stability failure.
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Figure 6.29: Results for column B 1

Results for column 82, which has an eccentricity of 120 mm, are shown in Figure

6.30. Top-tier model II has predicted a peak moment of 447 kNm and peak thrust of

1891 kN. A material failure has occurred at column mid-height and this is followed by

softening. The braced moment magnifier, ô¿, has a value of 1.98. However, the

moment magnifier method predicts a failure moment of 456 kNm whichis only 27o

higher than the predicted top-tier value. The peak thrust value of 1925 kN is also 2Vo

higher than the top-tier value at failure. Hence, results by the moment magnifier

method are satisfactory.

zx
z

-g- Top tier

-€- Moment Magnifier

-*- Model Column
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The model column method results also compare very well. The ultimate moment is

446 kNm and the corresponding thrust value of L754 kN is only 7Vo less than the top-

tier value of 1925 kN.
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Figure 6.30: Results for column 82

Column 83, with an eccentricity of 200 mm, is characterised by a primary

compression failure as shown in Figure 6-31. At failure, the predicted top-tier ultimaæ

moment is 392 kNm. The corresponding thrust value of 1285 kN is equal to 0.2N*,

where Nu, is the squash load value of 6500 kN. Softening after the peak load has also

occurred.

The braced moment magnifier value is 1.53 and the ultimate moment and thrust values

are both only 5Vo higher than the predicted top-tier values. Similar to column 42,

results for column A3 by the moment magnifier method are satisfactory.

z
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The model column method predicts an ultimate moment and thrust which are 0.9 and

0.64 of the corresponding top-tier values. Results by this simplified approach are

conservative, yet satisfactory.
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Figure 6.31: Results for column 83

6.8 Summary and Conclusions

In this chapter, four series of unbraced slender frames have been analysed for vanous

non-linear effects. The non-linear method of frame analysis has been used to

investigate the influence of tension stiffening and joint deformations on frame

performance in Series I. The adequacy of representing sequential loads by a system of

proportional loads has been investigated in Series Itr. Ultimate and design strength

predictions were made by top-tier, middle-tier and bottom-tier methods of analysis in

Series I, II and IV. Finally, several pin-ended columns were analysed by the top-tier,

moment magnifier and model column methods. From the results of the study in this

chapter, a number of conclusions have been drawn.

z
'l1
z
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1. Tension stiffening effects can be ignored in the calculation for strength. Non-

linear analytical results of two portal frames and six single-storey five-bay

frames showed that by ignoring the effects of ænsion stiffening ultimaæ frame

load is underestimated by only 1,0 to 2.07o. Previous studies have tended to

ignore tension stiffening in strength calculations.

2. Joint deformations within opening L-joints of portal frames reduce frame

stiffness and strength. Reductions in strength and stiffness are greater for

frames with relatively shallow beams, i.e. where the beam depth equals column

thickness.

3. Deformations within top floor T-joints of single storey frames are not likely to

have an adverse effect on frame strength and stiffness, if the beam depth is

twice the column thickness. However, strength can be reduced by 30Vo and

stiffness also reduced significantly if beams and columns at T-joints are the

same size.

4. Analytical results by the top-tier method showed that frame stability failure

occurred in most frames. Furthermore, hinge formation in the single storey-

frames was controlled by the presence of inefficient joints. Failure in the multi-

storey frames occuffed in the bottom-storey columns, which were subjected to

the highest levels of axial loading, corresponding to primary compression or

stability failures. Extemal columns in the top-storeys were also heavily loaded

and tended to be characterised by primary tension failure, i.e. material failure

below the balanced condition.

5. For most frames, the middle-tier and moment magnifier methods accurately

predicted the critical sections within frames. Generally this occurred within

bottom-storey and top-storey external columns of the multi-storey frames and

columns on the windward face of the single-storey sway frames.
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6. A previous study by Wong (1989) showed that design strength predictions by

the middle-tier method were unconservative for a number of sway frames.

Further investigation of these frames in the present study showed that column

sway deflections were greater than the allowable limit of LulzsÙ. Under this

condition, the use of the middle-tier method is not recommended by AS 3600.

Results by the top-tier non-linear method of analysis also suggested that

stability failures may have occurred in some cases. Hence, the middle-tier

method can be used safely if column deflections a¡e less than a value of Lrl250.

7. Ultimate strength predictions by the moment magnifier and middle-tier methods

were found to be satisfactory for all but one c¿ìse. Strength was overestimated

by \Vo and IVo respectively, for a single-storey five-bay frame with relatively

shallow beams. Top-tier'results indicated a stability failure.

8. Design strength comparison ratios were less than unity for all cases, except for

the ten storey frame. However, the middle-tier method overestimated frame

capacity by only 2 Vo. Both the moment magnifier and middle tier methods can

be considered to provide satisfactory predictions for design strength.

9. Comparisons were made for three unbraced five-storey frames and one

unbraced ten-storey frame. Comparisons of ultimate and design strength

predictions by top, middle and bottom methods for each frame analysed

showed that design strength predictions tended to be more conservative than

ultimate strength predictions. However, large differences in frame capacity

were observed when comparing the middle-tier and moment magnifier

methods. For example, ultimate strength capacity of frame 2A (five storeys) by

the moment magnifier method was 24Vo higher than the middle-tier result. On

the other hand, ultimate strength capacity of frame 4 (ten storeys) by the

middle-tier method was 52 Vohigher than the moment magniher result.

10. The allowable limits suggested by AS 3600 of L,1250 for design strength by the

middle-tier method and ô, for design strength by the unbraced moment
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magnifier method appear to be satisfactory. If these values are exceeded, it is

suggested a stability failure may occur and a rigorous method of analysis

should be used. However, in some cases, these limiting values may be

conservative.

11. An inconsistency exists with the bottom-tier magnifier method in the calculation

of the parameter & for the effective length and for the stiffness E/ for the elastic

critical buckling load. The effective length is based on gross-sectional values

for beam and column stiffnesses, but the critical buckling load is calculated

from a column stiffness value for the balanced condition. Although

conservative results have been achieved for strength predictions by the bottom-

tier moment magnifier method in the present study, there is no rationale for the

assumed values of stiffness. A previous study by Wong (1989) showed that

the amount of beam reinforcement influences frame strength. It should also be

mentioned that column strength is influenced by the level of axial thrust.

12. An over-simplified approach in the calculation of member stiffnesses is also

adopted by the middle-tier method. Reduced stiffness values of 0.481for beam

elements and 0.88/for column elements are assumed to represent condiúons at

the ultimate state. These values also ignore the presence of reinforcing steel.

No reduction in axial stiffnesses are made, and gross-sectional values for EA

are assumed for all sections throughout the structure.

13. A study of pin-ended columns showed that the moment magnifier method and

the model column method gave satisfactory results for columns with

slenderness ratios of 25 and 75. Although AS 3600 does not place a limit on

the magnitude for the braced moment magnifier, an upper timit of ôÞ equal to

1.5 would be satisfactory, to guard against stability failure.



Chapter 7

Conclusions and

Recommendations

7.1 Conclusions

A study of the non-linear behaviour of reinforced concrete frames has been described

in this thesis. Following a discussion of an existing non-linear method of analysis,

which included comparisons with test data, improvements to the method were

proposed. An investigation of the performance of various multi-storey and single

storey frames was carried out and comparisons with predictions by code recommended

simplified elastic methods of design/analysis were also made. The following major

points summarise the work undertaken:

1. Refinements have been made to a non-linear method of frame analysis

developed by Wong (1989)- These include provisions for sequential, non-

proportional loading and short-term material non-linearities due to tension

stiffening and joint deformations. Each effect was modelled by considering

286
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compatibility with existing analytic procedures. Hence, good accuracy and

computational efficiency were achieved.

2. A study of simple test beams showed that tension stiffening has a beneficial

effect on flexural stiffness for beams with low percentages of ænsile sæel.

V/ith increasing amounts of steel, the contribution of tensile concrete to overall

stiffness reduces. Tension stiffening is most signihcant in the loading region

up to the formation of primary cracks and diminishes gradually as the yield

moment is reached. For deflection calculations, tension stiffening effects can

be ignored for beams with greater than 37o tensile reinforcing steel. The study

of frames in Chapter 6 showed the increase in frame strength due to tension

stiffening is only between l%o to 2Vo.

3. In the study of test beams for tension súffening, strength and stiffness were

underestimated in several cases. This was attributed to additional, beneficial

effects due to confinement under load plattens and at internal supports of two-

span continuous beams, neither which had been taken into account.

Recommendations for modelling these effects are mentioned in Sectionl.2.

4. The study of beam-column connections in Chapter 4 showed that joint

deformations, characterised by inclined and longitudinal cracking, are

poæntially more severe in two types of joints: opening L-joints and top floor T-

joints. Joint deformations are also influenced by the relative size and strength

of the beams and columns entering the joint. The behaviour of the joint

depends very much on the detailing of the reinforcement in the region, and in

particular whether or not well-anchored steel is located correctly to carry the

internal tensile forces.

5. Joint deformations in opening L-joints and T-joints are most likely to occur in

single-storey frames with a high ratio of lateral load to vertical load. The

application of vertical beam loading tends to reduce the severity of joint

deformations. Frames with relatively shallow beams have greater reductions in
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strength and stiffness than frames with relatively deep beams, e.g. where beam

depth is twice the column thickness.

6. The assumption that a system of vertical loads followed by horizontal loads can

be replaced by an equivalent system of proportional loads appears to be

reasonable for multi-storey frames.

7. The code restrictions that ô, < 1.5 for the unbraced moment magnifier and

relative end displacements of column members for the middle-tier method must

not be greater than L"1250 provide an adequate safeguard against stability

failure for design strength. In some cases, the restriction placed on the use of

the moment magnifier method was conservative.

8. In most cases, the simplified methods accurately predicted critical sections

within frames at ultimate strength- In all but one frame, these occurred within

column members. The most critically loaded columns in the multi-storey

frames tended to be in the top storey and the bottom storey.

9. Top+ier results for ultimate strength generally showed, other than for the portal

frames, the formation of an insufficient number of hinges at ultimate load. An

instability failure was evident in a number of these frames.

10. Ultimate strength predictions by the moment magnifier and middle tier methods

for all frames analysed gave satisfactory results- However, neither approach

can predict stability failure.

I 1. Design strength predictions for three five-storey frames and one ten-storey by

the simplified methods were satisfactory. In these cases, comparison ratios

were less than 1.0, although the middle tier method comparison ratio for the ten

storey frame was 1.02. However, two of the frames analysed by the moment

magnifier method showed ô, > 1.5 and one frame analysed by the middle tier
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method showed relative end displacements > Lul250- In these cases AS 3600

recommends the simplified approaches should not be used.

12. Comparisons for design strength between the moment magnifier and middle tier

methods varied considerably. Although these strength predictions were

satisfactory, the simplified methods do not adequately take into account the

influence of material and geometric non-linear effects. In particular, neither

method considers the amount of reinforcement in the calculation of stiffness.

13. Analytical results for six pin-ended isolated columns showed that both the

moment magnifier method of AS 3600 and the model column method of the

draft Eurocode gave reasonably accurate predictions for strength. These

columns had slenderness ratios of 25 and75-

7.2 Recommendations for Further Research

To study further the non-linear behaviour of reinforced concrete frames, the following

recommendations are made:

. Development of a suitable model for the influence of confinement due to method

of loading and support conditions on strength and stiffness. A global approach

can be made by adjusting the ideal M-rcurves for beam elements.

. Limited information is available for the behaviour of beam-column connections

under varying levels of axial load. Further testing needs to be carried out,

particularly for connections which are inefficient under zmo axial loading.

o Carry out a study of slab-column connections and develop a suitable model for

predicting behaviour in frames.
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. A numerical model for creep and shrinkage effects can be included in the method

of frame analysis to allow for investigation of long-term behaviour in frames.
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Shown in Figure 4.1 is a two dimensional beam element in a local coordinate system

(Przemieniecki, 1985). The element has six degrees of freedom, with transverse

displacements and rotations only-

The displacement functions for this element are given by the following:

[;;] 
= 

[' ;*
a(e - e,)n

l-3(2 +2Ç3

(-t+ a6, -t€')tq Ë 6(-€ * €')q
(4,-2Ë' * E'l o 382 -2q,3

(zE -zq')ht
(-6' * Ë')r

ul

u2

u3

u4

U5

u6

(4.1)

where Ltt,....,Lt6 are the end displacements as shown in Figure 4.1. The non-

dimensional parameters are given by:

x
(4.2)n=T,

5
T

The normal strain e$ at a distance r given by:

,*=#-#,.+(*)' (4.3)

where y is measured from the neutral axis of the beam and z6 denotes the .x

displacement at y = 0. In the calculation of the strain energy U¡, shearing strains are

neglected and only the normal strains are considered.
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ui |1,'*' a'

293

=iLl*-#,.+(*)'f'0,

= ï 1. =,r ^(*)' 
.(#)',' . i(*)' -, * tua r,

#(*)"**(*)'*^

The higher-order terrr'i. ltãur l ãx)a can be neglected in this expression. Integrating

over the cross-sectional area A and noting that since y is measured from the neutral

axis, all integrals of the form lydA must vanish, hence

u' = + I:(*)' *. + I:(#Þ. + f*(*)' * (4.4)

where / is the moment inertia of the cross section. The first two integrals in Equation

4.4 are contributions from the linear strain energy and the third integral is the

contribution from the non-linear strain component. The following expressions are

obtained from Equation 4.1:

ãro

àx

l.
7(-ul * ro)

(4.5)
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* =|t^-e + 42)uz+(1- 44 +3É2)Iu3+6(( - €')rr+(18+zÇz¡tuuf

þtuf-t 
+ 2()u, + 2(-2 + 3Ç)tur+ 6(1 - 26)us + 2(-r + 3()tuu]

(A.6)

tu_'t2dx

Substituting Equations 4.5, 4.6 and 4.7 into 4.4 gives the following:

(4.7)

(4.8)

U,=#furz -zuruoruo')

*ff {zrr' + I2ur2 + 3u52 + 12 u62 + 3lu"u, - 6u2u5 + 3luruu

-3luru, + 12 uru6 - 3lu5u6)

EA
@o - rr)(1,rr' + l|urz +?urz * ]-Puu'+

P 5 r5 5 15

1 6 Lhruu-!furrr-f-I'u.ruu-lluruu¡*-1u24- 
,urut* ,u lo 30 lo

f = fffuo - 
u¡) =constant

Equation 4.9 is obtained by noting the elemental axial force is constant.

(A.e)

By applying Castigliano's theroem (part I) to the strain energy expression of Equation

4.8, the following element force-displacement equation is obtained.
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This last equation can be written as:

S=(k"+k*)u (4.11)

where k" is the first order linear elastic matrix, and k, is the geometrical stiffness

matrix. The force and displacement vectors are given by S and u respectively.
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Derivation of the Stiffness Matrix

for a Segmented Element

An element of length L is divided into ,?seg segments as shown in Figure B.l.

Variations in tlexural stiffness within the element are derived from the moment and

curvature at mid-length of the segments. Forces and displacements at mid-segment are

assumed to be average values for the segment.

The following forces and displacements are shown in Figure 8.1 :

Vo, V"nd = shear forces at the left end and right end;

Mo, M"rd - bending moments at the left end and right end;

Ayo, Ay"nd = transverse displacements at the left end and right end;

0i = change in rotation and measured at mid-point of segment i ;

@- @"n¿ = rotations at the left end and right end.
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Figure 8.1: Typical Segmented Element

It can be shown that the change in rotation 4 is related to ttre sum of the moments,

Mo-Vúi, at mid-point of segment i and the stiffness terrn^S¡ by the following

expression :

X

(B.1)

where

S¡= EIilLi i and

/¡ = length of segment i

From Figure 8.1, the slope and displacement at the right end of a typical segment i are:

@¡ = @o - 01- 0z-...- 0¡ (8.2)

L,¡=Lyo* @oL¡- Ø(L¡- x) - 9z(L¡- xù - ...- 0¡(L¡- x¡) (8.3)

In Equation B.3 the distance from the left end of the element to the end of the segment

i is given by L¡. By assuming small rotational changes, the term tan0¡ is replaced by
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0; in Equation 8.3. Hence it can be shown the deformations at the right hand end of

the element are :

@"nd = @o - 0t - 0z- -.-- 0¡ - e, (8.4)

Lyend=Lro+ @oL- ù(L - xr) - ...- 0¡(L - x¡)- ...- 0^(L - x") (B.s)

Substituting Equation B.l into Equations 8.4 and 8.5 yields the following

expressions:

nseS nseS

@end= @o - Moà #. u,à fr

5*rþt-@o-M,:i ¡.+å, f *v":f i ?Z*
nseS nseS nseS t

LetCl= I +,Cz=L f;and Cr= I F
i=l oi i=l oi i=l ùi

(8.6)

(8.7)

(8.8)

(8.10)

Combining Equations 8.6 and 8.7 gives :

@"r¿ - @o= -MoC1t VoC2

(B.e)

Solving Equations B.8 and B.9 gives the following expressions for moment and shear

force at the left end of the element:

^=+ - @o - -Moct *?r+ vsc2 y,

Mo
¡| _ ,;fC2\yo 

+ C3@o+ C2\yend+ (C2L - Cù@"n¿)

Vo = _ _L _; lCl/-yo + C2@s + C¡Ly"nd + (CLL - Cz)@"n¿l
C7C3 - C2¿ (8.11)



Appendix B: Segmented Element Matrix 299

From equilibrium M",¿andV"n¿arc obtained from the following :

Vo+V"n¿ - Q (8.12)

Mo+ M"n¿ -V"L = 0
(8.13)

The axial stiffness, ,S(m), is ¿rssumed to be constant for the element and combining this

and Equations 8.10, B.1I,B-I2 and B.13 gives the element stiffness matrix shown

below:

lKl x

where [K] is the segmented elemental stiffness matrix shown below :

S(m) 0

Po

vo

Mo

Purl

V"nl

M"r¿

Ss¡

Lro

Lro

@,

Lt"nd

Ly.nd

@r¿

(B.14)

(B.rs)

Szz

SYM-

METRIC

0

Sz¡

S¡¡

-s(m)

0

0

s(m)

0

- Szz

- sz,

0

Szz

=Cl
cLq - c;

0

LS22- 523

LSn- &3

0

527- LS22

L2Szz-2LSy+ 531

=Czc{3 - c}
/-

where Szz = ---!t ^ ,

CLq - Ci
Sz¡

For the same values for flexural stiffness, EI,in all segments, Equation B.15 reduces

to the standard hrst-order linear elastic stiffness matrix.
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f)erivation of Fixed End Moments

for a Segmented Element

The calculation for fixed end moments and shears for a segmented element take into

account contributions from tranverse loads applied within the element. These fixed

end moments are shown in Figure C.1.

The variation in moment and stiffness along the element is plotted on the horizontal

axis. By using the moment aÍea method and taking a tangent which passes through

point A and point B, the following expressions are given:

[to-"n, 
,f 

#diagram 
uuou, a]' 0

(c.1)

[to-"n, 
,r 

ffdiagram 
uuout n]' -0

300
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Figure C.1: Fixed end moments for segmented element

The bending moment, M,¡, zt mid-length of segment i, given by point G, is found by

summing two bending moments. The contribution from the bending moment given by

Mppt assumes the element is acting simply supported. The bending moment resulting

from the end moments M¡n and Ms¡is given by the following expression:

(c.3)

The total moment at G is the sum of Mppi and M¡ and given by:

(X+
(c.+¡Mri=Mpp¡*Mot- Mor+ Mro]

L

Combining Equations C.3 and C.4 with Equations C.1 and C.2 gives the following

two expressions:

)
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ä{l* -, 
* M ¡n - 6 !x¡) (M ¡n *, Ðf X+x,

EIi
-0

-0 (c.6)

By choosing point N as the centroid for the llEI diagram the distance X is given by:

nseS

I(y, t EI)
X _ l=l (:c.7)nseS

\[ru,)

(c.s)

(c.8)

(c.e)

(c.11)

j=l

and

nseeïå =ou,o EI,

Let p= I^"' 1 
-R = Y^"8 *7 

.s =)^"s 
yB'- 

T = !^'8 Mpp¡x¡
.-¿i=L EJ.' t-ti=t EJ.' ,.-¿i=t EI, .L¿i=L EI,

Equations C.5 and C.6 become:

XS +T *MN'
L lx(r- x)P - Rl lxzr+R]=g

[¿ - x]s - r + ?lp - x)' p* R] - þl*ft - x)p- Rl = o

- 
MB^

L

(c.10)

By solving Equations C.9 and C.10 simultaneously, the fixed end moments M¡s and

MB¡ ara given by:

M¡n =
XT _S
.RP

Mro (c.r2)
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Tension S tiffening in B eams

Tested by Clark and Spiers

Table D.1: Concrete parameters for beams tested by Clark and Spiers (1978)

Beam Concrete Properties

Name Wrdth

(mm)

Depth

(mm)
f"

(MPa)
f",no

(MPa)
f*o,'

(MPa)
E

(MPa) Tt Yt

1

1R

2

2R

3

4

5

6

6R

7R

203

202

203

204

204

204

203

203

203

204

4t0

412

408

408

407

409

204

306

308

511

27.3

28.1

26.8

32.5

3l.l
22.9

23.3

20.7

27.6

23.3

25.9

26.7

25.5

30.9

29.s

21.7

22_I

19.6'

26.2

22.1

2.83

2.89

2.80

3.18

3.09

2.52

2.55

2.35

2.8s

2.55

26120

26500

25250

28500

279r0

239m

24r40

22750

26270

24r40

2.02

1.99

1.98

1.85

1.89

2.20

2.18

2.32

2.00

2.18

8.5

7.1

t9.2

19.6

27.6

33.s

r0.7

22.1

22.5

30.3

303



Beam Top Steel Bottom Steel

Name Wrdth

(mm)

Depth

(mm)

No.
of

bars

Diam

(mm)

Arcå

(mm2)

Depth

(mm)

No.
of

bars

DÉm

(mm)

Arca

(mm2)

Depth

(mm)

Amt.

(v")

I

1R

2

2R

-l

4

5

6

6R

7R

203

202

203

204

204

204

203

203

203

204

4r0

412

408

408

407

409

204

306

308

511

2

2

2

2

2

2

2

2

2

2

t6
16

8

8

8

8

t2

8

8

8

402

402

101

101

101

101

226

101

101

101

37

35

20

24

33

35

26

30

30

32

3

3

3

3

3

3

3

3

3

3

25

25

20

20

16

t2
16

16

I6
16

1472

1472

943

943

603

339

603

603

603

603

380

368

363

367

373

319

167

268

273

473

1.91

1.99

1.28

1.26

0.79

0.44

1.78

1.11

1.09

0.63

Appendix D: Tension Stffining in Beann Tested by Clark and Spiers

Table D.2: Reinforcing details for beams tested by Clark and Spiers (1978)
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In the third sentence, "control" to read once.

In line 4, "degress" to read "degrees".

Second par:rgraph third sentence, delete "... much stronger and stiffer than

the columns." and replace with "... much stronger than the columns under

no axial thrust."

After the last sentence of the second paragraph, add the following

sentence: "Section details lbr this test beam are given in Appendix D and

also in Figure 3.16."

Delete the second sentence of the third paragraph, and replace with "It

should also be noted the maximum moment and curvature from the

published experimental results collespond to a steel strain of 200

microstrains. Actual load deformation response for this beam, or any of

the other test beams by Clalk and Spiers, at levels of steel strain beyond

200 microstrains was not mentioned."

Delete the first sentence of the third paragraph, and replace with "In the

numelical model fbr bond-slip behaviour developed by Ingraîfea et aI.

(1984), secondary radial cracking was considered the dominant

mechanism in bond-slip."

Third sentence aftet "E, = elastic modulus;" inseft'7* = trroment of inertia

oI the cracked section;".

Delete the second sentence of the second paragraph, and replace with

"Good correlation was obtained with results of reinforced concrete test

specimens."

Delete the third sentence of the first paragraph, and replace with "Ford,

Chang and Breen (198la) have also used a value of 0.95 for the ratio of

og PH
KtsbA
c_,1

Page 28

Page 47

Page 59

Page 61

Page 6l

Page 75

Page76

Page79

Page 90



Page 9l

Page92

Page 92

Page 95

Page 105

Page 110

Page 110

Page 110

Page 110

Page I 15

Page 129

Page 133

Page 135

concrete stfength in a member of a horizontally cast beam or frame to the

mean strength of a plain concrete cylinder test."

Delete the second sentence of the first paragraph, and replace with ,.For the

pfesent study, the strength determined by the splitting test was chosen

because it was considered to give the best estimate of tensile strength in a

beam or frame subjected to in-plane bending actions."

Delete the first sentence of the fourth paragraph, and replace with ,,Similar

to the model developed by Gupta and Maestrini (1990), the tension

softening portion is linear."

Delete the tìrst sentence of the fifth paragraph, and replace with ,,The 
strain

at which tension stil'lening is no longer effective is given by y,e"rJ'

Delete the third sentence of the first paragraph, and replace with .Although

this may occur, the proposed model has been modified, as in Figur e 3.22,
to include a discontinuity at a strain value of 10e", to give better

corelation."

Line 1, "beams" to read "bgam".

Line 5, "replesentive" to read "representative".

Line 6, "3.40" to read "3-39".

Line 12,"3.41" to read "3.40".

In the first sentence of the fourth paragraph, insert "within the span" after

"... momgnt and curvature".

Line2, delete "its el't'ect" and replace with "any influence,'.

Delete the rhird sentence of the first paragraph, ancl replace with
"However, as noted by Somerville and raylor (lgi2), at very low

percentages of steel, tensile concrete tends to contribute mainly to overall

strength."

In the second sentence, delete "... delay the formation of diagonal cracks"

and replace with "... resist internal stresses as cracks developecl."

Delete the second sentence of the fifth paragraph, and replace with .,It is

also worth considering the performance of jogglecl splices within column

lengths."

Line 16, delete "not".Page 152



Page 240

Page24I

Page242

Prye255

Page 288

In the first sentence of the second paragraph, insert "are" after "strength"

and before "prediction".

Delete the third sentence of the third paragraph, and replace with "In the

calculation of N*,, any contribution of the tensile concrete is ignored."

Line 7, delete ", and is done so".

Line2, "aslo" to read "also".

Delete the third sentenco of the second paragraph.






