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4.1 Introduction

As inferred in the previous chapter there appears to be deviation between the
phylograms obtained from each facet of this study. The phylograms have limited
regions of homologous structure (as exemplified by small groups like section
Typhopsis the L. micrantha conglomeration, the bulk of thelL.
longifolia/confertifoliacomplex and the anticipated ingroup branches). Nevertheless,
the distribution of three of the four sections recognised by Lee and Macfarlane
(1986) over multiple branches of the molecular phylogeny (refer to Figure 2-13) is
notably different to the more classically congruent anatomical phylogenies. In this
final section of this study, the two apparently divergent data sets have been combined
into one large master matrix which has then been analysed with the same maximum
parsimony and bayesian inference methods as previously used in an attempt to
reconcile the two conflicting sources of information. This process of utilisation of
multiple domains of information for phylogenetic elucidation is correspondent to
those used in other studies, prior examples of which include BetulaceaediCilen
1999), Rubiaceae: Ixoroideae (Andreasen and Bremer, 2000) and notably in
Rubiaceae: Vanguerieae (Lantz and Bremer, 2004) where they utilised DNA regions
very similar to those in this study. The details of combining data and various
methods for dealing with partitioned data models with bayesian inference is
expounded in Nylandeet al (2004) with the analysis of the gall wasp family

Cynipidae.
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4.2 Materials and Methods

As with the previous examinations, the master matrix has been analysed with
two complementary software methods. Once again PAUP* version 4.10beta has
been utilised to perform maximum parsimony analysis; with MrBayes version 3.1.2
employed to perform bayesian inference. In contrast to the molecular aspect of this
work, in order to expedite the computational aspects of this project the combined
trees have been analysed with the less computationally intensive F81 model with
equal rate variation across sitése( nst=1 rates=equal Given the high degree of
similarity between the GTR and F81 results in the pure molecular phylogenies and
the significant reduction in the required processing time, the selection of the
dramatically faster model seems reasonable. Nevertheless, in order to quantify the
differences, a GTR moddkét nst=6 rates=invgammanalysis was undertaken and

produced a result which was indistinguishable from the spectrum of F81 results.

The complete data matrix was 1,618 characters long, with 52 coming from the
morphology/anatomy and 1,566 from the DNA sequence data. When the data are
loaded into MrBayes, the software reports 52 unique site patterns for the anatomical
data and 840 for the molecular data. PAUP* reports 850 constant characters, 273
parsimony-uninformative variable characters and 495 parsimony-informative

characters. In both analyses all characters were treated with equal weightings.
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4.3 Results and Discussion

At first observation, the trees presented in Figures 4-1, 4-2, 4-3, 4-5, and 4-6
appear to represent a median between the two disparate phylogenies. Unfortunately
the results generated by processing the combined data set must be considered
incomplete and thus unreliable at best. Compared to the analyses of the individual
information domains, all three process methods applied to the master matrix required
computer process time vastly in excess of what was anticipated. Furthermore, the
results generated were either of reduced resolution with larger polytomies as in the
case of maximum parsimony (Figure 4-1) or with reduced convergence diagnostic

values with any of the bayesian inference models (Figures 4-2 and 4-3).

As expected, at the sections where the anatomical and molecular phylogenies
agreed on structure, the confidence values for these branches were increased. This is
demonstrated by the ingroups branch where almost all confidence values from both
analysis methods were improved. The negative effect on the overall strength of the
phylogenetic arrangement becomes obvious when the analyses are repeated under
identical constraints and the results deliver subtle changes in the arrangement of the

larger groups.

Figure 4-3 demonstrates the effect the reduced convergence values have on
the results. Despite being an identical copy of the dataset and processed with
identical parameters, there are rearrangements of the main branches and subtle
changes in the structure and arrangement of the terminal clades. This variable result

is in stark contrast to the highly confident and extremely replicable molecular results,
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where repetition of the analysis produced virtually identical tree structures. The
phylogenies obtained from the molecular analysis are sufficiently reliable that by
changing the model or the process technique (bayesian inference to maximum
parsimony) the results have absolutely minimal variation (refer Chapter 2). When
performing these analyses, it was routine to repeat the processing in order to
eliminate the potential of stochastic error and confirm the result; however, despite
multiple iterations with the combined data matrix the results were never entirely
replicated as utterly precisely as the molecular data alone was able to be. The
lowered confidence and variability in the results is directly linked to the MrBayes
convergence diagnostic, which in this aspect of the study was unable to reach a
suitably low value. When replicating the maximum parsimony analyses, these also
were not able to reproduce identical results, although the variation seen between the

strict consensus trees was less than that observed with maximum parsimony.

The influence of each data source on the final generated trees is interesting.
The maximum parsimony analyses consistently place the ingréupsithocarpus
Chamaexerosand Romnalda together in a structure directly inherited from the
molecular work, but place the branch at the base of the tree, indicating that it may
have been ancestral tomandra Conversely, bayesian inference was more variable
in its placement of this branch, while the internal structure still has origin in the
molecular dataset. Bayesian inference consistently places the ingroups taxa as a sub-
branch ofLomandra but is variable in how deeply it is attached. In some analyses
(Figure 4-2) this group echoes the maximum parsimony results with the group
attached towards the baselafmandra however it differs in the co-attachment of

the primaryCapitataebranch to the same source location which has been influenced
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directly by the molecular results. This motif is common through all of the bayesian
trees, although its overall location and distance in steps from the root of the tree does
vary. The repeated analyses (Figure 4-3), the increased chain temperature analyses
(Figure 4-6), and the predefined maximum likelihood user tree (Figure 4-7) have all
exhibited the attachment of this particular complex as sister to the secondary
assembly oSparsifloraee andLomandrasections, rather than superior as in Figure 4-

2 and the molecular trees (Figure 2-13).

The islands of classically defined sections and series have remained relatively
consistent from tree to tree across the spectrum of results. The inclusion of
anatomical data has had very little influence on this, although it must be remembered
that the purely anatomical trees were also not forming well resolved groups. In many
cases in the combined trees, the inclusion of anatomical data has induced minor
rearrangement in the branching; and in some cases re-orientated the branches to
group more anatomically similar specimens. The main example of this is the four
taxon clade ofL.. multiflora subsp.multiflora (Salvator Rosa) 70731.5'l.. glauca
(Broadleaf) 61207.1’,L. elongata70614.7’ and L. longifolia 61130.3" embedded
within the largesSparsifloraegrouping. In the molecular anatomy these species are
more widely distributed amongst this group, but in three of the four bayesian
analyses (Figures 4-3, 4-6 and 4-7), this group has been subtly rearranged to facilitate

the closer affinities of these specimens.

The placement of the monotypit. divaricatais broadly similar across the

methodologies, where it is placed in the lowest branch and grouped together with the

largestSparsifloraeclades. Maximum parsimony unexpectedly places this specimen
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in a small clade withL. glauca (Broadleaf) 61207.1" andL: elongata70614.7’

which is an arrangement not present in any of the individual phylogenies. Bayesian
inference however, takes its primary influence from the molecular data and arranges
Xerolirion divaricata towards the root of the largeSparsiflorae clade (which
encompasses all sampled members ofLth#liformis complex). As this branch is
rearranged from method to method, the precise location and affinXeraofirion
divaricata does change, but its relationship towards the root of this clade is fairly

consistent.
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FIGURE 4-1 (1 of 2): Lomandracomplex cladogram generated with maximum
parsimony methods on a combined anatomical and molecular dataset. Sections and
series per Lee and Macfarlane (1986) have been colour coded for clarity. Bootstrap
values of all uncollapsed branches are indicated. (Image continues next page.
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FIGURE 4-1 (2 of 2): Lomandracomplex cladogram generated with maximum
parsimony methods on a combined anatomical and molecular dataset. Sections and
series per Lee and Macfarlane (1986) have been colour coded for clarity. Bootstrap
values of all uncollapsed branches are indicated.

153



Laxmannia sguarrosa 70702.3
— Eustrephus lafifolius 70702.2

1.00 Arthropodium dyeri 70702.1

0.98\— Thysanofus exiliflorus 70702.4
Romnalda strobilacea 70617 7
L.00 Chamaexeros fimbriafa 70122.2
Fomnalda grallata 70122 1
Romnalda ophiopogonoides 70617.4
Chamaexeros longicaulis 70122.2
Chamaexeros serra 706143
Acanthocarpus parviflorus 70123.3
Acanthocarpus preissii 701234
Acanthocarpus sp. nov. 70617.7
Acanthocarpus canaliculatus 70617 5
Acanthocarpus canaliculatus 700176
L bovksii 70514 4
L. rupestris 70616.4
L vana (SE-5A) 70704.2
L collina (SE-5A) 70704.1
L obligua 70509.4
I nana 70102 1
L obligua 611702
I mucronata 70122 2
L. sonderi 61220.5
L
L
L
L
L
L
L

097

L ordii 70102.2
. siaveolens 61212.2
. suaveolens (Ferup) 70614.1
. briffavii 701031
. 5p. nov, (Perup) 708221
lara 80403 1
. nufans 70115.1
L pauciflora 701157
L preissii 6121323
L. hermaphrodifa 70122.4
L maritima 612132
L. suaveolens (Northern Sandplains) 70614.6
I odora 701023
L juncea 701035
L leucocephala leucocephala (Salvatore Rosa WNFP) 70731.4
L leucocephala robusta 70103.6
L. leucocephala leucocephala 705091
— L sparfea 61212.3
100 | sparfea 701153
L mulfiflora aff. (Salvafor Rosa NF) 70731.1

o.05— L. muififlora sp. afff 604041
{E L. multiflora mulfiflora 70103.7

EH L preissit 61129.1
oss| UYL confertifeliasp aff 706171
L multiflora aff (FN-QLD) 61207.3
L. patens (Alice Springs) 70501 3
L. patens (Mf. Annan) 705151
L sericea 61220 4
L. multiflora dura 612207
L collina 70i03.2

E L sororia 70115.2
LOOY— [ micrantha fitberculata 70710 2
L preissii 61212 4

E L hastilis 61212.1
o33 67— L drummondii 706172

L integra 612201
0.54 L effusa 612203
1,00 1.00 L micranthasp. aff 61123.2

I L purpurea 701154

0.53

FIGURE 4-2 (1 of 2): Lomandracomplex cladogram generated with bayesian
methods (F81 model) on a combined anatomical and molecular dataset. Sections and
series per Lee and Macfarlane (1986) have been colour coded for clarity. Posterior
probability values have been indicated. (Image continues nexj page.
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FIGURE 4-2 (2 of 2): Lomandracomplex cladogram generated with bayesian
methods (F81 model) on a combined anatomical and molecular dataset. Sections and
series per Lee and Macfarlane (1986) have been colour coded for clarity. Posterior
probability values have been indicated.
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FIGURE 4-3 (1 of 2): Lomandra complex cladogram generated with bayesian
methods (F81 model) on a combined anatomical and molecular dataset. Sections and
series per Lee and Macfarlane (1986) have been colour coded for clarity. Posterior
probability values have been indicated. Of note is the different result from Figure 4-
2, despite starting with identical initial data and bayesian process parameters. (Image
continues next page.
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FIGURE 4-3 (2 of 2): Lomandracomplex cladogram generated with bayesian
methods (F81 model) on a combined anatomical and molecular dataset. Sections and
series per Lee and Macfarlane (1986) have been colour coded for clarity. Posterior
probability values have been indicated. Of note is the different result from Figure 4-
2, despite starting with identical initial data and bayesian process parameters.
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Careful monitoring of MrBayes while it processed the master matrix revealed
a curious anomaly in the procession of the run and possible insight as to the poor
performance of the convergence diagnostic and resultant lowering of confidence.
Typically, the MrBayes process involves two simultaneous and completely
independent analyses starting from different randomly generated trees and undergoes
Markov-Chain-Monte-Carlo (MCMC) sampling (Ronquist, 2005). By default,
MrBayes uses Metropolis coupling to improve the MCMC sampling of the target
distribution and spreads this across four chains per process, three which have been
“heated” and one “cold” chain. As the two independent analyses proceed, they
should converge on the same (or extremely similar) resultant tree. MrBayes prints a
diagnostic value as part of its display output called “average standard deviation of the
split frequencies” which is an indication of how closely the two process threads have
become converged on the same solution and thus how close the entire process is to

acceptable completion.

Normally as MrBayes performs the MCMC calculations, the standard
deviation starts as a high value (>0.25) and rapidly recedes towards zero. This value
of the standard deviation is used as a direct measure of the completeness of the
process run, with values under 0.05 being considered acceptable and values of less
than 0.01 being indicative of high levels of convergence and thus strong confidence

in the results (Hall, 2007).

When processing th&éomandra complex master matrix the convergence

diagnostic initially behaves as expected, but then as the process continues, exhibits

curious behaviour as the average standard deviation begins to pendulum between
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high (>0.25) and low<0.055) values. Normally only a small amount of variation of

this kind is exhibited in the very early iterations in a run (if at all) before the
convergence diagnostic steadily progresses towards zero. The tendency of this
dataset to induce oscillation of the convergence diagnostic has significant effect on
the end result as it greatly extends the required numbers of iterations to reach
confident convergence. In some analyses, it appears to increase the required number
of iterations to beyond reasonable if convergence is to be reached. Examples of
MrBayes diagnostic overlay plots can be found in Figures 4-4 and 4-5 which clearly
show the normal end result progression giving a random distribution of plot points
from the two process threads and the anomalous progression of the master matrix
where the two threads oscillate and are unable to achieve convergence despite a large

number of generations of analysis.

Given the time constraints of the project and the requirements for running
multiple iterations of the data analysis for confirmation of results, MrBayes was
limited to a maximum 100 million generations, an amount that was significantly
greater than what is required for convergence in either of the individual information
domains. This vastly increases the required processing time into rather inconvenient
months with currently available computing power, even when utilising the parallel
processing version of MrBayes (Altekat al 2004) on multiple CPU platforms.
Further experiments where the MrBayes process runs were limited to 25 million, 50
million, 300 million and 600 million generations, the results demonstrated no
variation outside of the spectrum of results obtained from the 100 million generation
analyses. With the oscillation behaviour induced by this data, we estimate that it is

likely to require many billions of generations to reach convergence, if it is even
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achievable at all. Equally, manipulating the maxtrees variable of the PAUP*
parameters with the same intentions and increasing it by factors of ten resulted in the
same conclusion: that gargantuan increases in processing time were incapable of

providing any additional resolution.

Overlay plot for both runs:
(1 = Run nunber 1; 2 = Run nunber 2; * = Both runs)
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2211 1 1 212 22 1 2 2 1
12 11 1 1 * 1 1 2
2 21 21 2 2 12 1 22

2 12 2* 221 2 1 22

FIGURE 4-4: MrBayes successful diagnostic overlay plot.
The output of a successful run where the result is a random distribution of points
indicating convergence between the two process threads as the plot points intermix.
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(1 = Run nunber 1; 2 = Run nunber 2; * = Both runs)
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FIGURE 4-5: MrBayes oscillation diagnostic overlay plot.

A low confidence plot output demonstrating the pendulum oscillation of two runs
that failed to reach convergence despite 100 million generations. The process threads
appear to continue to waver without apparent resolution virtually indefinitely.
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These issues with disparate data influences were not without a potential
solutions (Hall, 2007). Possible solutions included changing the temperature of the
heated chain from its default 0.20 to higher (0.25) or lower (0.15) values.
Experiments with changing the temperature to the higher value on our dataset proved
inconclusive with very little positive effect on the convergence diagnostic by the 100

millionth generation, or on its frustrating oscillation behaviour (Figure 4-5).

An alternative solution to trees which would not readily converge was to
supply a topology only maximum likelihood (ML) tree generated by PhyML
(Guindon, 2003) as a “usertree” variable in the MrBayes arguments. MrBayes will
then use this maximum likelihood tree as the default starting tree instead of its
normal random tree for each of the process threads. Given the maximum likelihood
tree to guide the analysis of the combined dataset MrBayes displayed a much-
improved initial behaviour with a strong trend for simple direct reduction of the
convergence diagnostic towards zero. Unfortunately in this case, specifying a
maximum likelihood tree reduces the oscillation effect to ranges typically between
0.15 and 0.055 but it does not entirely suppress the oscillation of the convergence
diagnostic sufficiently well to supply high confidence results. This again results in a
phylogeny with less resolution and lower confidence values (Figure 4-6).
Interestingly this maximum likelihood tree bears the greatest similarity to the

increased chain temperature tree.

| hypothesise that the conflicting dynamics of the two disparate information

domains was directly responsible for the inability of the software to resolve the

phylogeny with a high level of confidence. Comparison of the trees between
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individual domain results shows a greater affinity for these results with the molecular
phylogenies, which demonstrates the comparatively large effect the molecular data
exerts over the anatomical subset. With the application of the anatomy to the DNA, a
small amount of resolution is lost from the molecular results with the net gain
consisting mostly of stronger grouping via branch rotations of the classical
anatomical sections within DNA defined branches. This greater tendency to form
more homogenous classically defined clusters within the clades comes at the price of
overall detail; in particular thiongifolia / confertifolia complex and the most distal
Sparsifloraegroup both have lower levels of differentiation between species as they
blend into a broader polytomy. This reduction in intra-clade division does not
however, come with a concomitant solution to the islands of classically defined
sections being distributed amongst the terminal clades identified by the molecular
data. Nor does it provide any measure of alleviation of the anomalous individuals
(such asL. suaveolengNorthern Sandplains) 70614.6’) interrupting the otherwise

contiguous groupings.

These variations in the results between analyses of the separated and
combined data compartments indicated that in the example ofLdheandra
complex, anatomy is not closely following the genetics and the internal familial

relationships are more complex than those predicted by prior anatomical studies.
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FIGURE 4-6 (1 of 2): Lomandra complex cladogram generated with bayesian
methods modified with higher chain temperature on a combined anatomical and
molecular dataset. Sections and series per Lee and Macfarlane (1986) have been
colour coded for clarity. Posterior probability values have been indicated. (Image
continues next page.
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FIGURE 4-6 (2 of 2): Lomandracomplex cladogram generated with bayesian
methods modified with higher chain temperature on a combined anatomical and
molecular dataset. Sections and series per Lee and Macfarlane (1986) have been
colour coded for clarity. Posterior probability values have been indicated.
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FIGURE 4-7 (1 of 2): Lomandracomplex cladogram generated with bayesian
methods modified with maximum likelihood usertree on a combined anatomical and
molecular dataset. Sections and series per Lee and Macfarlane (1986) have been
colour coded for clarity. Posterior probability values have been indicated. (Image
continues next page.
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FIGURE 4-7 (2 of 2): Lomandra complex cladogram generated with bayesian
methods modified with maximum likelihood usertree on a combined anatomical and

molecular dataset.
colour coded for clarity.

Sections and series per Lee and Macfarlane (1986) have been

Posterior probability values have been indicated.
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5. General Conclusions, Summary and Recommendations
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5.1 General Summary and Discussions

While there are limited regions of homology between the two opposing
phylogenies with small groups such as Tlyphopsisggroup, thel.. micranthagroup,
the bulk of theL. longifolia/confertifolia complex and the ingroups branch; the
subdivision of many of the four sectionslafmandraover multiple branches in the
molecular phylogeny and the resultant creation of numerous discrete islands (refer to
Figure 2-13) disagrees with the traditional section and series classification and
suggests that there is a manifestly more complex relationship between the species
represented in this study than was appreciated previously. The difficulty experienced
in reconciling the two data sources and the comparative relationship between the
combined phylogeny and each of the contributing phylogenies where the molecular
data adds resolution and resolves polytomies for the anatomical data, but the addition
of the anatomical data reduces the definition of the molecular data by reducing
segregated groups into polytomies suggests that one of the data sources is
misleading. The complexity experienced in rationalising a common phylogeny
indicates the inconsistent branching exerts an influence that competes against the
cumulative effects of the common branches. Considering an example such as the
Elephant Shrew where anatomical similarity was proven with molecular methods to
be highly misleading of affinity (Nishihara, 2005); | am inclined to assign greater
emphasis on the molecular results being the more appropriate interpretation of the

relationships and affinities within the@mandracomplex.

It is possible that some of the species utilised in this study were misidentified,

however efforts to retain and reuse the precise same sample for both molecular and
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morphological aspects of the work gives a high measure of certainty that the
correlations between anatomy and DNA are consistent, even if the actual specimens
themselves have been misidentified. This consistency between molecular and
morphological sampling lends weight to the morphological variability conclusions
drawn from the image maps (Figures 3-6 and 3-7) and clearly demonstrates the
anatomical inconsistency that can be found betweamandracomplex species that

are closely related at a genetic level. Reviewing the image maps of both transect
(Figure 3-6) and cuticle (Figure 3-7) also gives insight to the wide disparity of
microscopic features present in species aligned side-by-side by DNA methods. This
too adds weight to the argument that morphology and anatobhgmandraare only

a partial guide to the actual intra-species relationships.

Consideration of the DNA phylogram marked with respect to collection
location (Figure 2-14) clearly demonstrates only partial regionalisation of the genus,
with each of the four sub-clades defined in the tree containing representatives from
the wide habitats of the species. There does exist a measure of concurrence where
western species tend to group with central, and central species with eastern, however,
this grouping is not strictly enforced and again suggests a more complex evolutionary

distribution of the_.omandracomplex species.

The molecular and combined phylogenies imply the existence of four
ancestralLomandralineages; representing each of the main branches of the trees
and existing or spreading into virtually all of the locations in which modern species
are found. Over time, populations became isolated through geography or genetics

and ecological change has forced the ancestral species to adapt and evolve. The
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tendency of each of the classical sections (and hence inflorescence similarity) to
dominate one of the four branches of the phylogenies may represent each of the
ancestral forms, or it may demonstrate each ancestral species had an exaptation to
more readily adopt certain morphological features in response to environmental
influence. The anomalous presence of occasional other sections and series within
these larger groups may be indicative of species where environmental factors have
dictated a common successful form. With the common genetic heofagé
Lomandra this repeated development of homoplasious features is assumed to be an

example of parallel evolution, rather than convergent.

Alternatively, the anomalous specimens distributed throughout the
phylogenies may be examples of natural interspecies hybridisations. In the cases
where specimens were obtained from neighbouring regions this does not seem
entirely impossible, especially when considering that some specimens in this study
appear to be accidental hybrids (df. fongifolia LM300 70614.2") facilitated by
anthropomorphic intervention. However, in the examplelLofbanksii70614.4’
the large geographic distance between the collection location of this specimen and
the locations of those affiliated with it in both molecular and combined phylogenies
indicates hybridisation is improbable in this case. If hybridisation is occurring at
any significant frequency within the genus, this opens the possibility that the
complexity of the phylogenetic tree is due, at least in part, to lateral gene transfer

between species.

The phylogenies developed in this study lead me to suggest there may be

examples of both situations within th®@mandracomplex. Individual examples
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are discussed in section 5.2. The multiple islands of inflorescence type are not the
only morphological features to demonstrate this patterningoimandra Leaf
anatomical features also demonstrate this clustering effect, particularly with some
stomatal features such as the overhanging or bridging papillae and the creasing or
invagination of the leaf surface. The majority of invaginated-leaved specimens
form an exclusive clade within both the molecular and combined phylogenies
which spans vast geographic separation and encompasses three classically defined
sections. This character also appears sporadically elsewhere in the phylogeny, well
removed from this main clade. It even manages to cross genera, appearing in
Acanthocarpus In total, this character occurs in three widely separated branches
on the phylogenies, which implies that it has either arisen independently three times
through accumulation of unknown numbers of mutations to leaf structure genes, or
that the underlying genetic potential already exists inlLalnandra and just
requires a comparatively simple mutation to be activated in concert with favourable
environmental conditions to persist. The resolution of the precise genetic
mechanism of this unique character may give indications of genetic inheritance

patterns across the genus.

Hypothesising parallel evolution withibomandraraises the question of the
mechanisms by which this may operate. With their common genetic heritage, it does
not seem unreasonable to suggest that across the species the same genes and/or gene
expression patterns are responsible for influencing the same anatomical character.
However, the nature and complexity of the mutation(s) leading to particular
anatomical features in tHeomandracomplex currently remains unknown. This is

however, not without possible resolution. Developmental genetics has a well
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established history in plants, and there have been many candidate genes identified in
various species that may make excellent subjects for further research in the nature of
the adaptability otomandra By elucidating the genes which effect development of
the observed.omandracharacters, it may be possible to determine if the features
distributed around the molecular phylogeny are examples of parallel evolution.
There exists numerous prior examples on which this additional research could be
based; the recent review by Theissen and Meltzer (2007) summarises the current
knowledge of inflorescence developmental genetics. Correspondingly, Fleming
(2005) reviewed formation and development of leaves; with practical examples
including McHale (1993) witiNicotiana (Solanaceae). With a firmer grasp of the
mechanism(s) controlling the observed anatomical features, it may be possible to
improve comprehension of the relationships between the anatomical and molecular

phylogenies.

The innate diversity of anatomical form exhibited bgymandraand its
allies is proposed to be a confounding factor in the construction of an anatomical
phylogeny of the group. The presence of wide diversification of leaf and flower
morphology within each of the four primary molecular based clades — features
which are controlled both by environmental influences as well as genetics,

obfuscate the true relationships.

Additional sequence data may assist to unlock the incongruence between the
phylogenies and better understand the relationship. Supplementary molecular data
from other organelles (such as the mitochondria) may be suitable. Preliminary

review of cpDNArbcL sequence data from selected species in our study and from
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related species with data obtained from Genbank, suggest that despite the highly
conserved nature of the gene which generally confines it to discerning higher level
taxonomy, therbcL in the Lomandracomplex may be sufficiently varied to add
further refinement to the phylogenies. Expanding the molecular data to include
additional genes with different rates of conservation, such as the maturase K
(maK) gene with an estimated mutation rate some three times thiatlofHilu et

al., 2003), or the chloroplast nicotinamide dehydrogenase subunit rgefeat

twice the rate (Sugiura, 1989; Olmstead and Sweere, 1994) may be more

informative again than the addition of a single sequence.
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5.2 Unexpected Species Placements

In the course of this study, a number of specimens appeared in the molecular
and combined phylogenies with unexpected affinities outside of the classically
defined sections and series. Intriguingly, some of these specimens grouped by
molecular data have become associated together with other specimens in small
groups possessing consistent leaf anatomical structures. Some of these specimens
may represent hitherto unknown species. They will benefit from further attention to
properly elucidate their taxonomic individuality and where required, appropriate
descriptions and recognition as new species. Specific examples from the molecular

phylogeny have been discussed below.

5.2.1 L. banksii 70614.4’

The placement ofLomandra series specimenL: banksii 70614.4’ was
unexpected. This specimen had very different leaf morphology from the other
specimens which resolved to this branch, however molecular data from both nuclear
and chloroplast organelles firmly locates it to this point. Given the anatomy,
classical affiliations and ranges, this species was expected to be more closely allied to
L. multiflora species. However, given its tropical distribution, specifically far
northern Cape York, New Guinea and New Caledonia (where it is segregdted as
insularis see Jaffréet al 2001) and the inflorescence anatomy of sedtmmandra
the broad thin leaves and the inflorescence structule imanksiimay represent
adaptations to tropical conditions and/or pollination strategies, although this would

require further investigation.
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5.2.2 L. sonderi 61220.5" and L. ordii 70102.2

These two specimens from sect. Sparsiflorae were placed unexpectedly within
the largestCapitatae assembly in thetrnL C-D analysis. This is strongly
corroborated by thanL E—F and also broadly supported by the ITS2 phylogeny as
well. Anatomically, these specimens have thicker, broader leaves than the specimens
surrounding them which tend towards fine leaf profile. Unlikebanksii70614.4’
these species share geographic location with those Capitatae with which they have

been associated.

5.2.3 L. brittanii 70103.1"

This specimen resolves distantly from the primary or secorfsipaysiflorae
clades and shows significant affinity with the suaveolensclade. The clade
branching structure of this section is a duplicate of that found in the ITS2 results,
which is loosely supported with the polytomy members of this branch in both of the
trnL phylogenies. Anatomically, the three other specimens of this brabckp(
nov. (Perup) 70922.1'L" suaveolen$1212.2’ andL.. suaveolengPerup) 70614.1")
all have very similar fine leaves, with five vascular bundles in eath.brittanii
70103.1’ appears very similar, except with a thinner and finer leaf section again and

only three vascular bundles.
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5.2.4 L. multifloradura 61220.7’ and L. collina 70103.2’

These species initially seem to be a somewhat eclectic combination; however,
closer anatomical examination reveals that in cross sedtiorcollina has
resemblance as a laterally abbreviatednultifiora subsp.dura These specimens
also have very similar cuticle surfaces, with stomata appearing to be embedded
below the leaf surface and protected by protrusions (possibly papillae) from the
longitudinally adjacent epidermal cells. This grouping is directly derived froin
C-D, is poorly supported in thenL E—F and absent in ITS2 molecular phylogenies.
While these species do have potentially overlapping geographic domains, the
specimen otf.. collina used in this study was sourced from western populations, well
removed from the central location of themultiflora subsp.dura collection site. It
is also possible that the (sterile) sampled plant represented a juler@las these can

look like plants of collina.

5.2.5 L. suaveolens (Northern Sandplains) 70614.6’

Located in a separate node of the phylogeny and thus distantly removed from
the Capitataeclade, this species has distinct differences in both molecular and leaf
anatomy from the othdr. suaveolenspecimens. This location is primarily from the
trnL E—F, but bothtrnL C-D and ITS2 place this group very distant to the other two
L. suaveolenspecies, the affinities of which are well supported across all domains of
information obtained for this study. This specimen is one of the unusual “comb
section” leaves, with thickened epidermis and stomata only on one side located at the

bottom of channels in the leaf surface. This species is also basal to this arm of the
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phylogeny which is heavily characterised by leaf surface invagination. More than
half of the invaginated-leaved specimens found in this study occur in this exclusive
branch of the phylogeny. For these reasons, this accession from the northern,
exposed sandy heath near Eneabba in Western Australia is suspected to be a new
species ofLomandra different fromL. suaveolensand further characterisation of

this species including detailed flower morphology is highly recommended,

particularly as the collections on which this study was based are sterile.

5.2.6 L. maritima 61213.2’ and L. odora 70102.7’

As with ‘L. suaveolengNorthern Sandplains) 70614.6’ these two examples of
Sparsifloraeseem misplaced, however as with the previous example, these species
form a clade characterised by surface invagination. Individual molecular results do
not specifically define this branching, although as a point of interest the ITS2 result
placesL. odoraimmediately withL. nutans a species which has a high degree of

similarity in its leaf cross sections and cuticld_tamdora

5.2.7 L. longifolia (LM300)’

This species is a commercial cultivar, described in its patent (US Patent
PP15420) as being discovered as an anomalous specimen in a large scale cultivar of
Lomandra longifoliavar katrinus’ (an unpublished, horticulturally-derived name). It
is noted as being unable to produce viable seed, and requiring asexual techniques
(division or tissue culture) to be propagated. The high-confidence value affiliation

with ‘L. confertifoliasubsppallida 61129.4’, has been primarily influenced from the
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trnL E—F region results, partially by the common grouping presemhinC—-D and

only at a broad series level in the ITS2. When the close affiliation kith
confertifoliais taken into context with the apparent sterility of this species, this may
be a potent indicator of an interspecific hybrid, possibly facilitated by the dioecious
nature of the genus and the artificially close proximity of other species in commercial
production facilities. In a natural environment, a sterile species such as LM300 is
highly unlikely to survive very long, whereas this unique event and anthropomorphic
intervention has allowed it to persist whiaiyen the uniqueness of the specimen,
may give it extraordinary utility. Chromosomal studies, particularly karyology or
further molecular work covering alternative organelle genomes may provide the
answer to the habit of this unusual specimen, and in turn, this may give insight to the
reproductive patterns @fomandra Assuming that LM300 is a hybrid &f longifolia

and L. confertifolia, it would confirm the ability of disjunct species to hybridise and
additionally suggests that imomandra, the chloroplast genome is paternally inherited
which is rare in angiosperms (Birky, 1995) but not unknown, as in the example

described by Yang (2000) for creosdtarfea: Zygophyllaceae).

5.2.8 L. glauca (Potato Point) 70501.5

This specimen has resolved to a branch of the tree distant from the main
group of theCapitatae This arrangement is moderately supported across all three
DNA domains and not sufficiently refuted by anatomical observations to be
repositioned elsewhere in the phylogerig. placement in the analyses suggests that it
may be an aberrant. confertifolia form, but the sample was sterile at the time of

collection
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5.29 L. hadtilis61212.1°

As the sole representative of sectibfacrostachya the position of this
species in the middle of an otherwise compfgparsifloraebranch was unexpected.
This placement of this specimen is consistent over all three individual molecular
domains. When leaf anatomy is considered, this specimen with its distinct leaf
margin consisting of large non-staining fibres is associated with a number of other
species with similar features. This suggests that the molecular results are consistent
and correct. The inclusion of the othilacrostachyaspecies l(omandra teres,
which wasunfortunately unobtainable for this study) may assist to further elucidate

this relationship.

5.2.10 Xerolirion divaricata 70122.1’

The placement ofXerolirion divaricata within the primary Sparsiflorae
branch is supported by all three DNA regions. The unique anatomy of this species of
reduction of leaves to virtual points on long stems and the terminal unisexual flowers
suggests thaXerolirion represents a highly specialised and aridity-adapted species.
The position of X. divaricata inside the lowest branch dfomandra makes a
compelling argument for the reclassification of this species and direct inclusion as a
member of the.omandragenus. This result reinforces commentary made by Rudall
and Chase (1996), who noted that unpubligted sequence data placegrolirion

within Lomandra
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5.2.11 L. elongata 70614.7’

This specimen resolves away from its section and was allied closely with
another similarly displaced specimeh, fongifolia 61130.3’. These species were all
obtained from the same general geographic region, although since this spans very
large areas, this is of low relevance. In their anatomyelongata70614.7" andL.
longifolia 61130.3" share a number of leaf section features, including a distinctive
diamond shape to the vascular bundles caused by gross enlargement of the
parenchymatous outer bundle sheath cells. This affiliation also receives strong
support fromtrnL E—F and ITS2 molecular trees with weaker generalised grouping
from trnL C-D, which suggests this affiliation of disjunct species is correct and that

the identification of these vouchers may be erroneous.

5.2.12 L. glauca (Broadleaf) 61207.1’

Another commercial cultivar, this specimen has very different anatomy and
genetics to the othér. glaucaspecimen used in this study. This specimen is thought
to represent a probable error in identification or naming by the commercial entity,
although as with previous commercial examples it may also represent an accidental
hybridisation influenced by the artificial proximity of unrelated species during
industrial propagation. As withL: longifolia (LM300)' the association of this
specimen with other taxa is primarily driven bylL data, which when working
under the assumption of functional hybridisation and assuming accidental pollination,
again suggests thabmandraspecies inherit chloroplasts from the staminate parent.

Uniparental inheritance of non-nuclear DNA compartments is commonplace for
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living systems. For reviews of this phenomenon, refer to Birky (1995, 2001), and Xu

(2005).

5.2.13 L. sonderi 61212.4

With two accessions df. sonderiin this study with highly congruent leaf
anatomies, the vast distance between the locations of these specimens was entirely
unexpected. The association of both species into their respective clades is supported
on all three individual molecular phylogenies. Anatomically,sonderi61212.4’ is
very different from L. micranthasubsp.teretifolia 70115.6’, however they were
obtained from the same western region. This association may represent a natural

hybrid, and will require further work to define clearly.

5.2.14 Salvator Rosa/Carnarvon National Park Specimens

Five specimens from the Salvator Rosa section of Carnarvon National Park in
the Queensland central tablelands were obtained as part of this study.

‘L. multiflora sp. aff. (Salvator Rosa) 70731.1’

‘L. filiformis aff. (Salvator Rosa) 70731.2’

‘L. longifolia aff. (Salvator Rosa) 70731.3’

‘L. leucocephalaubspleucocephalgSalvator Rosa) 70731.4’

‘L. multiflora subsp multiflora (Salvator Rosa) 70731.5’

Of these specimensl..' longifolia aff. 70731.3" andL. leucocephalasubsp.

leucocephalar0731.4’ appear the most appropriately organised, as both resolve into
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clades with related taxa. In contrast, the affiliations of the other samples are not quite
so apparent. In the molecular phylogehy multiflora sp. aff. 70731.1" grouped
strongly with L. multiflora subsp. multiflora 70103.7’, although the close
relationship here within thé. multiflora and L. patensspecies complex at both
genetic and anatomic level makes absolute identification difficult. Nevertheless,
based on these results this specimen has been inferredLtonbeltiflora subsp.

multiflora, as has the.. multiflora sp. aff. 60404.1’ specimen in the same branch.

Similarly, ‘L. filiformis aff. 70731.2’ appears nested deep within the lowest
filiformis complex, but unlike the previous example, this specimen is strongly
associated with two other examplesLoffiliformis subsp.coriacea Unexpectedly,

‘L. multiflora subsp. multiflora 70731.5’ resolves to the same branch of the
molecular phylogeny despite its tentatlvemultiflora identification. The molecular
results are all consistent in their placement of these two taxa within the larger
filiformis species cluster. Conversely, when considering the leaf anatomy of this
group, the broad flatL. multiflora sp. aff. 70731.5" appears to be more similar to
surrounding species whereds filiformis aff. 707031.2" showed a highly-unusual
semi-ovoid leaf transect. It is important to note the significant homology between the
cuticles of either of these specimens, and also how closely they resemble the cuticle
of the seemingly more appropriately placdd longifolia aff. (Salvator Rosa)
(70731.3)'. The relative geographic isolation of this national park may be
influencing the evolution of common characters from shared environmental
pressures. Additionally, the intermix of genetics and anatomy with these species may
represent long periods of isolation from external gene pools and repeated

hybridisation events. These specimens may benefit from additional attention over
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other genes and propagation of flowering specimens to determine their precise

affiliations.

5.2.15Lomandra preissii (various specimens)

Lomandra preissiiwas sampled independently three times for this study.
Two of the putative.. preissiispecimens (61313.3 and 61213.4) resolved with other
Sparsifloraetaxa on the molecular phylogenies. Although separated into the two
clades encompassing this Section they do bear some anatomical similarity to those
specimens associated with them. Converdelpreissii61129.1’ occurs in a branch
with closer affinity to L. preissii 61213.3', but as a sole representative of
Sparsiflorae amidst the smaller sect.omandra clade of the phylogeny. The
distribution of these three specimens over the entire phylogeny is influenced by all
three DNA domains and the notable differences in their leaf anatomy (refer to
Appendix A for sections and cuticle preparation imagek). pfeissii61129.1’ and
‘L. preissii 61213.4° have some similarities in their leaf anatomy, howelker °
preissii61213.3’ is strikingly different from either; having a significant thickening of
the abaxial surface which is lacking stomata, visible rhombohedral crystals in both
surface cuticle preparations and short to medium length papillae on both sides of the
leaf. The abaxial side of the leaf is mildly corrugated with stomata primarily
restricted to the lower regions of the corrugations; however these are not as well
developed as the deep invaginations present on a high proportion of specimens in this
branch of the phylogeny. The genetic and anatomical diversity of thgseissii

specimens strongly suggest that a single species epithet is insufficient to describe this

group of specimens and warrants further investigation.
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5.3 Summary and Conclusions

The phylogeny of the.omandracomplex is vastly more complex than the
Flora of Australiareview of the group by Lee and Macfarlane (1986) would suggest.
The distribution of species with widely varied leaf morphology which shows
precious little comprehensive pattern forming; combined with the non-contiguous
arrangements of the anatomically derived sections and series as defined by Lee and
Macfarlane implies a complex ancestry and evolutionary patterning across the genus.
The morphological similarity of species that appear to be only genetically distant is
interpreted as the direct result of environmental selection pressures favouring a
particular leaf design, or the presence of a particular reproductive strategy selecting
for a generalised flower structure in a process analogous to “convergent evolution”.
Convergent evolution is often quoted as the “fly in the ointment” of morphology
based studies (Chase 2004) and his review of the monocot relationships noted that
not all molecular studies had morphological support. Returning to the example of the
Elephant ShrewMacroscelididag examined by Nishihara (2005), environmental
adaptations can be a powerful force in the shape and development of organisms and
this must always be considered, especially when examples have relatively recent

common ancestors.

The possibility of hybrids (natural or otherwise) in the genus as suggested by
the data gathered foL. longifolia LM300' and L. glauca (Broadleaf) 61207.1’
specimens may be a source of the complexity of the phylogeny. Given the basic
assumptions in phylogenetic studies of rare natural hybrids and consistent biparental

inheritance of genomic domains, if hybrids have been occurring and persisting
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naturally, these will have significant effect on the interpretation of the data, as
discussed in Hanseet al. (2007) and exemplified by Chat al (2004) in their
assessment of KiwifruitActinidia: Actinidiaceae). Determining inheritance patterns

of organelles with discrete genomes and expanding the sampled gene regions to
encompass mitochondrial (Larocéeal 1997) and additional nuclear regions (Small

et al 2004, and Syringt al. 2005) may resolve this difficulty.

The combination of molecular phylogeny with leaf anatomy identified a
number of specimens with unexpected placements and features. These specimens
may represent putative new specied.ofmandra Some, as in the examples &f
suaveolengNorthern Sandplains) 70614.6’ ard preissii61213.3' encompass both
leaf features and positions in the molecular phylogeny that reinforces the unique
nature of these specimens. Others, such as the Salvator Rosa section of Carnarvon
National Park specimens.’ multifiora subsp.multiflora 70731.5’ and L. filiformis
aff. 70731.2" have unique leaf anatomy that contrasts their position within the

molecular phylogeny.

This study has shown that the assumptions of evolutionary relationships
within Lomandraon the basis of staminate inflorescence and the consequential
division of the Lomandrainto four sections and two series is erroneous (Choo
1969). While the anatomy of théomandra is extremely useful for the
identification of species and not diminished in the slightest by the results of this
study, the fragmented island distribution of the classically defined sections and
series across the molecular phylogeny advocates that these anatomical divisions

within Lomandra are unreliable indicators of phylogeny. The parallel or
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convergent evolution of multiple concurrehbmandra lineages under similar
environmental conditions towards homologous anatomy suggests an intrinsic
genetic variability and extensive adaptability embedded in_.tmandragenome;

and that the anatomical variability used in the prior segregation of the genus may be
obscured by the adaptive response to dynamic environmental conditions rather than

a specific inherited character.

Expansion of the anatomical analysis to encompass leaf anatomy also does
not provide a useful phylogeny dfomandra As noted in Chapter 3, broad
macroscopic-scale leaf anatomy is too plastic to be useful for phylogenetic
reconstruction. Investigations of microscopic scale features showed similar results to
inflorescence characters, where small islands of characters occasionally occur, but
there is no underlying relationship between leaf anatomy and molecular phylogeny.
However, as with inflorescence, the use of microscopic features of both the mid-leaf
section and the leaf cuticle, in particular the stomatal structures, has proved useful for
the identification of individual species. A key has been generated on the basis of this

data and has been presented in Appendip. B41)

The other genera grouped wittbomandra (Acanthocarpus Chamaexerqgs
Romnaldaand Xerolirion) by Conran (1998) as the informdldmandracomplex”
all fall within Lomandraon the molecular phylogeny, which is highly supportive for
the formal recognition of theL'omandracomplex”. Three of the four genera
(AcanthocarpusChamaexerosnd Romnalda group together on a single branch of
the phylogeny. Within this branchAcanthocarpusforms a close-knit, well-

supported clade; however the relationships between the other ingroup genera are less
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well defined. The representative specimens frGhmmaexerosand Romnalda
intergrade in this study which is suggestive of a closer relationship between these
genera which may benefit from additional study with additional gene sequences. The
affiliation of these bisexual, hermaphroditic genera within the unisexual, dioecious
Lomandra clade supports the recognition of theomandracomplex’ but as an
expanded.omandraand likely represents an example of sexual evolution and then
reversion. This association of hermaphroditic taxa within bisexual taxa, and the
apparent reversal of sexual development represent an opportunity for further

exploration of the underlying mechanisms in the evolution of plant sexuality.

The results of this study are supportive of previous affiliations of these taxa as
per Kunth (1903), wherAcanthocarpusand Chamaexerosre placed as sections of
Lomandraand Lauterbach (1913), where the type species of what iRmowalda
was described as a species withimmandra The location ofXerolirion within
Lomandraon the molecular phylogeny, along with strong measures of confidence
indicates that a monotypic generic rank for this species is unwarranted. | propose
that Xerolirion be reduced to synonymy and reassigned as a new combination:

Lomandra divaricata

Molecular systematics has proved invaluable for the determination of the
phylogeny ofLomandra It has revealed putative new species as well as some
surprising affiliations with other genera and has been an important step forward in
the understanding of the true structure of the Laxmanniaceae. This study has
highlighted the difficulty that can be encountered when attempting to combine

morphological features with gene sequence data and the potential error that may

187



occur when relying on a single domain of information. Determination of the manner
in which the genes controlling anatomical features have evolved across the
Lomandramay answer how the separate branchedsarhandrahave arrived at
morphologically similar adaptations to ecological opportunities that have resulted in
the cladistically confounding classical sections and series. The circumscription of
Lomandra should be revised to includXerolirion, with further investigation
encompassing additional molecular markers ought to be devoted to the taxonomic
status of Acanthocarpus Chamaexerosand Romnaldaas these taxa potentially

should also be redefined under synonymy as part of an exphadethdra

This study has successfully resolved the relationships withirLdhgandra
and revealed unexpectedly close associations within Libimandra complex
subsection of Laxmanniaceae. The molecular results presented advocate a complex
evolutionary history where prior groups derived from anatomical features were
mostly polyphyletic. The results also suggest that intra-species hybridisation may
have influenced the modern relationships of taxa; however, the precise method by
which the four main branches of th®mandraappear to have evolved so many
common characters was indeterminate. Additionally, this study has also successfully
determined leaf features useful for species identification and generated an

identification key fol.omandrabased on microscopic leaf features.
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