
Eurographics Symposium on Rendering (DL-only Track) (2021)
A. Bousseau and M. McGuire (Editors)

Fast Analytic Soft Shadows from Area Lights

Aakash KT1 , Parikshit Sakurikar1,2 , P. J. Narayanan1

1CVIT, KCIS, IIIT-Hyderabad
2DreamVu Inc.

Our result

Time: 25.5 s Time: 23.16 s Time: 23.0 s

MAE: 0.0326
RMSE: 0.0549

MAE: 0.0159
RMSE: 0.0313

MAE: 0.0134
RMSE: 0.0244

ReferenceOursRatio est.Direct illumination RT

Figure 1: Our method computes analytic shading and soft shadows for physically based BRDFs from arbitrary area lights. The scene shown
here has two area lights (Quad at the top, lamp at the left). Our result is completely noise free and has lesser MAE (Mean Absolute Error)
and RMSE (Root Mean Squared Error) as compared to direct illumination ray tracing and the Ratio Estimator [HHM18]. The reference is
rendered for a large number of samples per pixel (∼ 400 spp).

Abstract
In this paper, we present the first method to analytically compute shading and soft shadows for physically based BRDFs from
arbitrary area lights. We observe that for a given shading point, shadowed radiance can be computed by analytically integrating
over the visible portion of the light source using Linearly Transformed Cosines (LTCs). We present a structured approach to
project, re-order and horizon-clip spherical polygons of arbitrary lights and occluders. The visible portion is then computed by
multiple repetitive set difference operations. Our method produces noise-free shading and soft-shadows and outperforms ray-
tracing within the same compute budget. We further optimize our algorithm for convex light and occluder meshes by projecting
the silhouette edges as viewed from the shading point to a spherical polygon, and performing one set difference operation
thereby achieving a speedup of more than 2×. We analyze the run-time performance of our method and show rendering results
on several scenes with multiple light sources and complex occluders. We demonstrate superior results compared to prior work
that uses analytic shading with stochastic shadow computation for area lights.

CCS Concepts
• Computing methodologies → Visibility; Ray tracing;

1. Introduction

Achieving photorealism in rendered images requires intricate geo-
metric objects, rich material models, and versatile lighting. Com-
puter graphics has come a long way in rendering detailed 3D scenes
with rich and complex material and lighting models. Accurate ren-
dering of lighting effects, including accurate soft shadows is possi-
ble using ray tracing but requires huge computational effort. This

has spurred further research in reducing computational complexity
by tracing those rays to light sources that contribute the most to the
rendered image. In this paper, we address the problem of analyti-
cally computing shading and soft shadows with emissive 3D shapes
as area lights.

Ray tracing area light sources involves shooting multiple light
rays for each shading point. It would be convenient if the light-

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

DOI: 10.2312/sr.20211295 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-6615-2950
https://orcid.org/0000-0002-9523-5640
https://orcid.org/0000-0002-7164-4917
https://doi.org/10.2312/sr.20211295

A. KT, P. Sakurikar, P. J. Narayanan / Fast Analytic Soft Shadows from Area Lights

ing effects at a scene point can be computed analytically from the
geometry of the light source. Analytic solutions for direct lighting
from specific area light sources have been proposed before. Re-
cently, Heitz et al. 2016[HDHN16] proposed a method to analyti-
cally compute shading from a polygonal light source and later ex-
tended it to spherical lights [DHB17]. These methods, however, do
not directly handle general emissive 3D meshes for lights. They
also do not consider occlusions and shadows. Other work such
as [HHM18] incorporates soft shadows computed from stochas-
tic Monte Carlo (MC) techniques with analytic solutions. To our
knowledge, no prior work exists that analytically computes soft
shadows from area lights for physically based materials.

We propose a structured approach to analytically compute shad-
ing and soft shadows from light sources with arbitrary geome-
try. We extend the method of Heitz et al. 2016[HDHN16] to light
sources of arbitrary 3D shapes. We compute a spherical polygon of
the visible part of the light source by performing a set difference op-
eration on spherical polygons of light sources and occluders. This
polygon can be directly integrated over to compute the occluded ir-
radiance using Linearly Transformed Cosines (LTCs) [HDHN16].
Since we always integrate over polygonal domains that are visible,
our method can compute soft shadows. Finding the visible spher-
ical polygon of an arbitrary light source is a non-trivial operation.
We consider individual triangles of lights and occluders to find vis-
ible regions. Since this is computationally expensive, we further
propose an optimization for the case of convex lights and occlud-
ers. The contributions of this paper are: (a) A structured approach
to analytically compute soft shadows from spherical projections of
lights and occluders with any 3D shape and (b) A method to ef-
ficiently obtain spherical polygons of arbitrary convex geometry,
resulting in a speedup of more than 2×.

2. Related Work

Polygonal Area Light Shading. An analytical formula for inte-
grating clamped-cosine distributions over spherical polygons was
given by Lambert[Lam60] and Baum et al.[BRW89]. This was later
extended by Arvo[Arv95] to Phong distributions [Pho75], which
provide control over the sharpness using an exponent. Heitz et al.
2016[HDHN16] proposed a method to analytically integrate spher-
ical polygons over GGX microfacet distributions [WMLT07] using
Linearly Transformed Cosines (LTCs). Their method transforms ar-
bitrary GGX distributions to the clamped cosine distribution using
a pre-computed transformation matrix. They show that the same
matrix can be applied to the direction vectors of spherical polygons
to obtain a transformed spherical domain of integration. The ren-
dering equation can be analytically integrated over the transformed
domain to obtain shading. Concurrently, Lecocq et al.[LDSM16]
proposed an approximation for Phong-polygon integration with
O(n) complexity instead of O(e · n) as proposed by Arvo[Arv95]
(n being the number of polygon vertices and e the phong expo-
nent). A similar approach using 4D Möbius transformations for the
specific case of spherical area lights was proposed by Dupuy et al.
2017[DHB17]. In this work, we extend the method of Heitz et al.
2016[HDHN16] in two directions: (1) Analytically compute soft
shadows from general 3D lights and occluders, and (2) Efficient
computation for the case of convex meshes.

PRT with Polygonal Area lights. Recent research has enabled
real-time polygonal area lighting in Pre-computed Radiance Trans-
fer (PRT) [SKS02] frameworks. Specifically, the work of Wang
et al.[WR18] and Belcour et al.[BXH*18] propose methods based
on zonal harmonic decomposition to compute spherical harmon-
ics (SH) coefficients for polygonal area lights. As is the norm,
the Light Transport Function (LTF) is pre-computed and projected
to SH and is combined at run-time with the SH computed for
area lighting. These methods were extended to efficiently handle
many lights in real-time [WCZR20]. PRT methods produce real-
time shading and soft-shadows from area lights but require pre-
computation and storage. Further, the PRT framework is limited by
the representational power of SH and performs poorly on specu-
lar materials. Our method in contrast requires no pre-computation
and produces soft shadows on the fly and can handle glossy and
specular materials correctly.

On the fly soft shadows. Dupuy et al. 2017[DHB17] use a pre-
computed representation of visibility (bent cones) to incorporate
soft shadows with an analytic solution for the specific case of spher-
ical lights. Such pre-computation based methods however do not
produce soft-shadows on the fly. Mora et al.[MAAG12] propose
to use the Plücker space to analytically represent visible and non-
visible portions of an area light source, which is then used to analyt-
ically compute soft shadows. Note that their method works only for
diffuse materials, and its extension for general materials or LTCs is
non-trivial. Heitz et al. 2018[HHM18] proposed to combine ana-
lytic solutions with stochastic methods using a ratio estimator for
shadow computation. Their ratio estimator uses Monte Carlo (MC)
estimation and combines it with the analytical solution of Heitz et
al. 2016[HDHN16]. The stochastic ratio estimator represents shad-
owed regions, which are independently denoised to preserve texture
and high frequency details. They focus on real-time applications
and hence only a few samples can be used. In contrast, we compute
shadows analytically, not stochastically and produce higher quality
shadows in equal compute budgets.

The concurrent work of Zhou et al. [ZWRY21] presents a similar
approach of using polygon operations for visibility computation.
They demonstrate that such exact visibility computations along
with LTC can not only be used to obtain analytic and noise free soft-
shadows but also noise-free gradients for differentiable rendering.
We note that their approach works on individual triangles (similar
to our per-triangle approach, Sect. 4.4). In this work, in addition to
the per-triangle approach, we also present an efficient algorithm for
convex meshes and demonstrate a 2× speedup in rendering.

3. Fast Analytic Soft Shadows

We first give a brief overview of the method of Heitz et al.
2016[HDHN16] to analytically compute shading from polygonal
light sources. Note that their method does not take occlusions
into account. Given a 3D point x to be shaded, the spatially con-
stant radiance L emitted by a diffuse area light source and the Bi-
directional Reflectance Distribution Function (BRDF) ρ, the radi-
ance I at x towards the viewing direction ωv is defined as an integral
over the spherical polygon P of the light source as [Kaj86]:

I = L
∫

P
ρ(ωv,ωl ,x)cosθldωl , (1)

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

112

A. KT, P. Sakurikar, P. J. Narayanan / Fast Analytic Soft Shadows from Area Lights

Analytic shading and soft shadows (a) Spherical Polygons with
silhouette edges (b) Clip to Horizon (c) Difference Polygon (d) Apply LTC

U
noccluded

Penum
bra

Figure 2: High-level steps of our algorithm to compute shading and soft shadows from area lights. Unit spheres at an unoccluded shading
point (yellow) and at a shading point in the penumbra (purple) are visualized with the corresponding spherical polygons of the light source
(icosphere, marked as blue polygon) and occluder (cube, marked as red polygon). (a) Obtain spherical polygons from silhouette edges,
(b) Clip the spherical polygons to the horizon, (c) Compute difference of the light source and the occluder polygon, (d) Apply Linearly
Transformed Cosines (LTC) [HDHN16], clip the result to the horizon and compute shading with analytic formula [BRW89].

where cosθl = ωl ·n, n being the surface normal and ωl being out-
going direction. Heitz et al. 2016[HDHN16] showed that given a
linear transformation matrix M that transforms the direction vec-
tors of the clamped cosine distribution to the direction vectors of
the a microfacet GGX BRDF ρ, the integral in Eq. 1 can be written
as:

I = L
∫

Po

1
π

cosθodωo = L E(Po), (2)

where Po = M−1P is the transformed spherical polygon, cosθo =

ωo ·n and ωo =
M−1

ωl
||M−1ωl || are the transformed direction vectors. The

irradiance integral E can be analytically computed using the closed
form expression given by Baum et al.[BRW89]. The matrix M is
precomputed and stored for a fixed number of samples of ωv and
α (roughness of the BRDF ρ). Heitz et al. 2016[HDHN16] then
use Eq. 2 with the precomputed matrix M to analytically compute
shading from diffuse polygonal light sources with no occlusion.

We consider generalizing the light source to an arbitrary 3D
shape given by a polygonal mesh. We observe that the radiance
I at a point x due to such a mesh can be computed by replacing P in
Eq. 1 with the spherical polygon P′ which is the projection of the
light source object on the unit sphere centered at x. The problem
thus reduces to finding the projected area represented as a spherical
polygon P′ for a given arbitrary light source. Our second obser-
vation concerns the impact on I of an arbitrary 3D mesh occluder
O, which also has a corresponding projected spherical polygon O′.
The light source is occluded in regions where O′ overlaps with the
light’s projection P′. Thus, P̂ = P′−O′ defines the projected area
of the visible portion of the light source. Transforming P̂ with M
and applying Eq. 2 yields the correct radiance at the shading point
x due to the light source.

Directly obtaining the projected area for a non-convex polygo-
nal mesh is non-trivial. We can instead treat individual triangles of

the mesh as its own separate object and project them to the unit
sphere. This can be done for both light sources and occluders one
polygon at a time to obtain P̂. This produces correct results but is in-
efficient if larger objects are used (per-triangle method, Sect. 4.4).
Estimating the projection of a shape onto the sphere can be effi-
ciently done for convex shapes, achieving more than 2× speedup
from the per-triangle method. Therefore, for most of this paper, we
assume both light sources and occluders to be convex 3D meshes.
As mentioned earlier, simple non-convex meshes can still be repre-
sented by a combination of independent convex parts, for example
the chair in Fig. 1 is made up of four rectangular cuboids. We dis-
cuss the per-triangle method in Sect. 4.4.

3.1. Overview

We now present an overview of our method for convex area light
and convex occluder meshes. Note that the steps outlined below
can also be used on non-convex meshes by iterating over individual
triangles of the mesh (Sect. 4.4). Fig. 2 and Alg. 1 show high-level
steps of our algorithm. The key observation is that for a convex 3D
light source, the spherical polygon P in Eq. 1 can be obtained using
its silhouette edges as viewed from x. The silhouette edges can be
efficiently computed using front and back facing polygon detection
[IFH*03]. They are then projected to the unit sphere to obtain a
spherical polygon of the silhouette (Fig. 2(a) blue polygon, Alg. 1
line 4). We then clip the spherical polygon to the horizon (Fig. 2(b),
Alg. 1 line 5). Further, to obtain a polygon P that represents only the
visible region of the light source, we first compute silhouette edges
and corresponding spherical polygons for all potential occluders,
clip them to the horizon (Fig. 2(a) red polygon). The clipped light
and occluder polygons are then projected to a plane (Alg 1 line 6,
lines 8-11). The set difference between the light occluder polygon
represents the visible region of the light source from the point x
(Fig. 2(c), Alg 1 line 12). We perform this set difference for each

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

113

A. KT, P. Sakurikar, P. J. Narayanan / Fast Analytic Soft Shadows from Area Lights

ALGORITHM 1: Overview of our algorithm.
Input: L, B, x, n, ρ: List of light sources L, list of occluders B,

shading point x, normal vector n, BRDF ρ

Output: I: Outgoing radiance (Eq. 1)
1 I← Rgb(0.0) // Init. with black col.
2 p← vec3(0,0,1) // LookAt for plane proj.
/* Consider each light source separately */

3 for l in L do
4 l′ = SphPolySilhouette(l, x, n) // Light sph. poly
5 lclip

′ = ClipToHorizon(l′)
6 lxy

′ = project(lclip
′, p) // Project to plane

7 Bbw = GetBetween(x, l, B) // Occluders b/w x & l
/* Set diff. b/w light and occluders */

8 for b in Bbw do
9 b′ = SphPolySilhouette(b, x, n)

10 bclip
′ = ClipToHorizon(b′)

11 bxy
′ = project(bclip

′, p)
12 lxy

′ = SetDifference(lxy
′, bxy

′)

/* Apply LTC and integrate */
13 l′ = reproject(lxy

′, p) // Project back to sphere
14 lltc = ApplyLTC(l′, ρ)
15 lltc = ClipToHorizon(lltc)
16 I = I + AnalyticIntegrate(lltc, ρ)

occluder polygon. Finally, we reproject the resultant polygon to the
unit sphere, apply LTC and clip the result to the horizon, to obtain
Po for analytic evaluation of Eq. 2 (Fig. 2(d), Alg. 1 lines 13-16).
These steps are repeated for each light source in the scene (Alg. 1
line 3).

We elaborate on the following functions in the next sections:
project and reproject to project spherical polygons to a plane and
repreoject planar polygons to the unit sphere (Sect. 3.2), Sph-
PolySilhouette to obtain ordered spherical polygons (Sect. 3.3),
ClipToHorizon to clip spherical polygons to the horizon (Sect. 3.4),
GetBetween to prune objects that do not occlude the light source
(Sect. 3.5), SetDifference to obtain a polygon representing the visi-
ble area of the light (Sect. 3.6).

3.2. Projecting spherical polygons to a plane

Ordering edges and performing set operations on spherical poly-
gons have, to our knowledge, not been explored in the literature
and are non-trivial. Our purpose, however, is served by perform-
ing the ordering and set operations on a plane to which we project
spherical polygons. The modified polygon is then reprojected back
to the unit sphere. In the project function, the projection is done
using an appropriate look-at camera matrixM. The look-at vector
needs to be carefully chosen to avoid transformed vertices having
negative z-coordinates. We then apply perspective division to ob-
tain a correct planar projection and discard the z-coordinate. We
visualize this process in Fig. 3(a), for an arbitrary look-at vector
p. To reproject polygon vertices to the unit sphere, we first apply
the inverse camera matrixM−1, and then normalize the vectors of
each polygon vertex.

Projecting a sphere on to a plane has been previously explored,
in the context of map projections or sphere mapping. The closest

mapping operation to ours is the Gnomonic projection [Sny87].
However, for simplicity and ease of implementation, we opt for
the look-at transform with perspective camera projection.

ALGORITHM 2: SphPolySilhouette.
Input: G, x: Convex geometry G, shading point x
Output: Gsil : Ordered silhouette edges

1 G′ = ComputeSilhouette(G, x)
2 G′ = G′− x // Shift edges to x as origin
3 G′ = LocalShadingFrame(G′, x) // Normal vec aligned

with z-axis
4 G′ = ToUnitSphere(G′) // Spherical Poly
5 c = centroid(G′)
6 Gxy = project(G′, c)
/* Order edges clockwise or anti-clockwise */

7 Gord ← []
8 Gord .append(Gxy[0])
9 for e in Gord do

10 E = [{Len(e.v2− e′.v1),Len(e.v2− e′.v2)} ∀e′ ∈ Gxy−Gord]
11 next = min(E)
12 nextEdge = argmin(E)
13 if next[0] < next[1] then
14 Gord .append(nextEdge)

15 else if next[0] > next[1] then
16 Gord .append(nextEdge.reverse)

17 Gsil = reproject(Gord , c)

3.3. Spherical Polygons of Convex Shapes

We now describe SphPolySilhouette function from Alg. 1 which
performs two tasks: (1) Compute the spherical polygon of the sil-
houette in the local shading frame and (2) order the spherical poly-
gon (clockwise or anti-clockwise). The second task is important for
the correct functioning of the ClipToHorizon algorithm, SetDiffer-
ence operation and analytic LTC integration.

Lines 1-4 of Alg. 2 compute and project the silhouette edges to
the unit sphere to get a spherical polygon. They also shift the ori-
gin to the shading point x and transform them to the local shading
frame. In lines 4-6, we use the centroid of the geometry G as the
look-at vector for the project function. This projection results in
X-Y co-ordinates for all edges, which we order by finding consec-
utive edges and adding them to a list (lines 7-16). For each edge
e, we find another edge which has either of its two vertices clos-
est to the second vertex of e (line 10). Note that since edges may
not have vertices in the same direction, we reverse edges based on
which vertex follows the second vertex of e (lines 13-16). Finally,
we re-project the ordered edges to the unit sphere (line 17).

3.4. Clipping to Horizon

Heitz et al. 2016[HDHN16] assumed a four sided spherical poly-
gon, which on clipping results in either three or five edges. We need
a more general clipping algorithm since silhouette edge projections
could result in an N sided spherical polygon. We present a gen-
eral algorithm to clip arbitrary spherical polygons to the horizon
ClipToHorizon in Alg. 3. This algorithm takes as input a spherical
polygon with ordered edges and outputs a horizon clipped spherical

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

114

A. KT, P. Sakurikar, P. J. Narayanan / Fast Analytic Soft Shadows from Area Lights

ALGORITHM 3: Clip to Horizon.
Input: S: Spherical polygon S
Output: Sclip: Spherical polygon clipped to horizon

1 Sclip← []
2 n← vec3(0,0,1) // Normal vec (local shad. fra.)
/* Iterate over edges of sph. poly */

3 for e in S do
4 d p1 = Dot(e.v1, n)
5 d p2 = Dot(e.v2, n)
6 if d p1 > 0.0 and d p2 > 0.0 then
7 Sclip.append(e)

8 else if d p1 <= 0.0 and d p2 <= 0.0 then
9 continue

10 else
11 newEdge← Edge()

/* Intersect. of edge & horizon arc */
12 i = IntersectHorizon(e)
13 if d p1 < 0.0 then
14 newEdge.v1 = i
15 newEdge.v2 = e.v2

16 else
17 newEdge.v1 = e.v1
18 newEdge.v2 = i

19 Sclip.append(newEdge)

20 Sclip = CloseVertices(Sclip) // Add edges on horizon

polygon while preserving the edge order. For each edge that crosses
the horizon, we check whether it’s vertices are above or below the
horizon. If the edge is completely above the horizon (line 6), we
add it to the final list (line 7) and if it is completely below (line
8), we ignore it (line 9). For an edge intersecting with the horizon
(line 10), we find the intersection point using standard algorithms
for intersection of spherical arcs (line 12). Note that we find inter-
section between the edge arc (defined by its two vertices) and the
full horizon arc. We then replace one vertex of this edge with the
intersection point. Which vertex gets replaced depends on which
one of the two vertices are below the horizon (lines 13-18). In the
final step on line 20, we close vertex pairs that are consecutively
on the horizon, which in effect adds missing edges on the horizon.
The algorithm preserves the order of edges and results in a spheri-
cal polygon clipped to the horizon.

3.5. Pruning Non-Occluding Objects

In this section, we describe the GetBetween function of Alg 1 to
prune out objects that cannot occlude the radiance from the light
source. This avoids extra processing for objects that have no contri-
bution to the occluded radiance. As shown in Fig. 3(b), we discard
objects that are outside the frustum defined by the shading point
and the light source. Note that in our implementation, we use frus-
tum culling with spherical bounding boxes and a tetrahedral conic
frustum, but any other suitable method could be used for this step.

p

Projection plane

Spherical polygon

Projected polygon
n

x

Occluders

Light source

(a) (b)

x

Figure 3: (a) Projection of a spherical polygon (dotted) to a cam-
era plane defined by the look-at vector p. The camera origin is at
the shading point x. (b) Pruning objects that do not occlude the
light source (green box) using a tetrahedral frustum defined by the
shading point x and a plane at the light source (yellow).

3.6. Set operations on spherical polygons

We apply SetDifference operation after projecting spherical poly-
gons to a plane, using the projection function defined in Sect. 3.2.
Note that we use the z-axis as the look-at vector for this projec-
tion. The reason for this is that all spherical polygons are clipped
to the horizon before projection, and using z-axis as the look-at
vector ensures that no vertex has a negative z-coordinate after the
look-at camera transform. Choosing any other look-at vector could
potentially result in negative z-coordinates for either the light or oc-
cluder polygon. Negative z-coordinates result in wrong projections
which distort the polygon shape, thus affecting the set operations.
After projection, we take the set difference between the light poly-
gon and each occluder polygon, progressiely modifying the same
light polygon. The result of these operations is a polygon, which
represents the region of the light source which is visible.

4. Results, Evaluation and Comparisons

The entire approach presented in this paper is implemented as an in-
tegrator plugin in PBRT-v3 [PJH16]. We use the publicly available
pre-computed LTC matrices M from [HDHN16]. Our implementa-
tion requires that light sources and occluders are marked appropri-
ately, which is done with a flag in the scene description file. This is
necessary since it avoids wasteful computations, for example, the
walls in a room scene are not occluders for light sources within the
room. We use standard frustum culling to get occluders that lie be-
tween the shading point and the light source (Alg. 1 line 5). The
frustum is a five sided tetrahedral cone, with the apex being the
shading point and the bottom face at the light source (Fig. 3 (b)).
To compute the set difference operation on polygons, we use the
Greiner-Hormann polygon clipping algorithm [GH98]. The main
advantage of this algorithm over other algorithms such as [Vat92]
is the ease of implementation, fast run-time and out-of-the-box sup-
port for set operations. Note that although we use Greiner-Hormann
in our implementation, our method is independent of the choice of
the polygon clipping algorithm. We plan to release the full source
code and scenes used in this paper.

To study the run-time of our method, we first analyze its be-
haviour with varying number of light and occluder vertices. We
then provide a comparison of our results with direct illumination
ray tracing and the control variate ratio estimator of Heitz et al.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

115

A. KT, P. Sakurikar, P. J. Narayanan / Fast Analytic Soft Shadows from Area Lights

Time: 0.8 s Time: 1.5 s Time: 2.3 s

Time: 1.2 s Time: 2.3 s Time: 3.0 s

Time: 2.0 s Time: 3.0 s Time: 4.0 s

Time: 4.5 s Time: 6.0 s Time: 7.5 s

One Light Two Lights Three Lights

Th
re

e
oc

cl
ud

er
s

Tw
o

oc
cl

ud
er

s
O

ne
 o

cc
lu

de
r

N
o

oc
cl

ud
er

Figure 4: Test scenes with varying number and geometric complex-
ity of light sources and occluders. Each image is rendered at a res-
olution of 1000×1000 using our method. Run-times are reported
at the top right. We use three kinds of light sources: Plane (four
vertices), Cylinder and Truncated cone (20 vertices each). We sim-
ilarly use three kinds of occluders:Cube (eight vertices), Icosphere
(16 vertices) and Ellipsoid (154 vertices)

2018[HHM18] on four realistic scenes having varying complexity.
In addition, we compare our method to a naïve extension of Heitz et
al. 2016[HDHN16] for general 3D meshes to highlight the need for
silhouette edge computation. Lastly, we compare to a variation of
our method that can handle non-convex 3D meshes. All scenes are
rendered on a workstation with a AMD Ryzen 5 CPU having eight
cores. PBRT correspondingly utilizes all eight cores for rendering.

4.1. Run-time Analysis

We first demonstrate results and analyze our method’s run-time on
simple test scenes, as shown in Fig. 4. We vary the number and geo-
metric complexity of light sources along the columns, starting from
one to three (first to third column). We use three 3D meshes with
varying complexity for light sources: Plane (four vertices), Cylin-
der and Truncated cone (20 vertices each). We follow the same
variation for occluders along the rows, starting from zero to three
(first to fourth row). We use three occluders: Cube (eight vertices),
Icosphere (16 vertices) and Ellipsoid (154 vertices). Thus, the bot-

(a) Run-time v/s No. of light vertices

(b) Run-time v/s No. of occluder vertices

Figure 5: Plot of #vertices vs. runtime for light sources (a) and
occluders (b), for scenes like in Fig. 4. Our method is roughly linear
in the #vertices of light sources and occluders.

tom right scene of Fig. 4 has the maximal complexity (three light
sources and three occluders). We render 1000×1000 images for
each variation. Note that the shadows become softer on addition
of new light sources, and in the penumbra region on the ground
and on occluders. Our method is able to produce plausible, realistic
and accurate soft-shadows in presence of multiple area lights and
occluders.

We further plot the run-times for each of the test scenes against
the total number of vertices of the light sources and occluders. Fig.
5(a) shows the plot of number of light source vertices against the
run-time and 5(b) shows the plot of number of occluder vertices
against the run-time. To obtain more data points for the plot, we
duplicate each light source and occluder and place them at a new
location in the scene. Both plots show that our method is linear in
the number of light source and occluder vertices.

4.2. Comparisons

We now show results of our method and compare with direct il-
lumination ray tracing (RT) and the control variate ratio estimator
(Ratio est.) of Heitz et al. 2018[HHM18]. We implement the Heitz
et al. 2018 method as an integrator plugin in PBRT. Specifically, we
use three integrators which separately compute SN , UN and U . We
then denoise SN and UN separately with a bilateral filter, and com-
bine all three terms. The run-time is a summation of the time taken
to render SN plus the time taken to render U and denoising. Note

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

116

A. KT, P. Sakurikar, P. J. Narayanan / Fast Analytic Soft Shadows from Area Lights

ReferenceOursRatio est.Direct illumination RT

Time: 17.5 s Time: 17.3 s Time: 18.0 s

MAE: 0.0201
RMSE: 0.0329

MAE: 0.0117
RMSE: 0.0215

MAE: 0.0095
RMSE: 0.0152

D
in

in
g

R
oo

m

Direct Illumination RT Ratio est. Ours Reference

Time: 23.5 s Time: 24.38 s Time: 25.0 s

MAE: 0.0079
RMSE: 0.0282

MAE: 0.0057
RMSE: 0.0167

MAE: 0.0041
RMSE: 0.0171

Time: 26.5 s Time: 22.5 s Time: 21.0 s

MAE: 0.0113
RMSE: 0.0328

MAE: 0.0082
RMSE: 0.035

MAE: 0.0056
RMSE: 0.0253

Time: 23.5 s Time: 25.52 s Time: 25.0 s

MAE: 0.0047
RMSE: 0.02

MAE: 0.005
RMSE: 0.015

MAE: 0.0036
RMSE: 0.014

O
ut

do
or

 B
en

ch
 1

O
ut

do
or

 B
en

ch
 2

Ta
bl

e

Direct Illumination RT Ratio est. Ours Reference

Direct Illumination RT Ratio est. Ours Reference

Direct Illumination RT Ratio est. Ours Reference

Figure 6: Roughly equal time comparison of our method with direct illumination Ray Tracing (RT) and the ratio estimator (Ratio est.) of
Heitz et al. 2018[HHM18]. Run-times and quantitative values of MAE (Mean Absolute Error) and RMSE (Root Mean Squared Error) are
shown in insets. Each scene is rendered at a resolution of 1920×1080. Our method outperforms RT and and Ratio est. in terms of both
quality and quantitative metrics.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

117

A. KT, P. Sakurikar, P. J. Narayanan / Fast Analytic Soft Shadows from Area Lights

slop
e=0

.02
96

slope=
0.013

5

Figure 7: Run-time comparison of our method with a naïve exten-
sion of Heitz et al. 2016[HDHN16], for a simple scene having only
one icosahedral light source, a specular ground plane and no oc-
cluders. We progressively sub-divide the light source geometry to
plot run-time.

that we ignore the time taken to render UN , since it could poten-
tially use the same rays that are used for SN . We request the reader
to refer to their paper for the explanation of these terms.

We use four realistic scenes for this comparison: Dining Room,
Living Room, Outdoor Bench and Table. We render each scene at a
resolution of 1920×1080. Note that we set the number of samples
for RT and Ratio est. such that their rendering time is roughly equal
to ours. The results and comparisons are shown in Fig. 6. The Table
scene has a circular planar light source with a circular occluder just
in front, which our method is correctly able to handle. The quan-
titative metrics along with roughly equal run-times are shown in
the insets. Since our method analytically computes soft shadows,
our renderings have no noise or blurring artefacts caused due to
denoising. Our method thus also achieves lower MAE (Mean ab-
solute error) and RMSE (Root mean squared error) as compared
to RT and Ratio est. The attached video shows more renderings of
these scenes.

4.3. Naïve extension of Heitz et al. 2016

In this section we highlight the necessity of computing silhouette
edges for obtaining spherical polygons. The method proposed by
Heitz et al. 2016[HDHN16] can be naïvely extended to arbitrary
emissive meshes, by iterating over individual faces of the geometry.
Each face can be treated as an independent polygonal light source
for which shading can be obtained with their method. Note that
in this case, a per triangle check to determine whether its normal
vector points towards the shading point is necessary. We also need
to sort each polygon’s edges either clock-wise or anti-clockwise for
correctness of the LTC integration.

This strategy is however inefficient with a run-time linear in the
number of faces of the light source. In comparison, the run-time
of our method which obtains one spherical polygon for the light
source using silhouette edges is linear in the number of silhouette
edges of the light source, which are expected to be small (around√

e, where e is the total number of edges [OZ06]). Note that our

Time: 12 s Time: 13.5 s

Time: 2.5 sTime: 2.2 s

Ours (Silhouette)

Ours (Per Polygon)

Direct illumination RT

Direct illumination RT

Figure 8: Comparison of the per-triangle method (Sect. 4.4) with
direct illumination GT (top) and our method (silhouette edges) with
direct illumination GT, run for equal time in both cases. Note that
the per-triangle method exhibits instability due to degeneracies
caused by vertices at the same location.

method incurs an additional fixed cost of silhouette edge computa-
tion for each shading point. We demonstrate this in Fig. 7, with a
simple scene having only one icosahedral light source, a specular
ground plane and no occluders. We repeatedly subdivide the icosa-
hedral light source to increase the number of vertices and plot the
run-time against it. Both methods are linear in the number of ver-
tices, however, the rate of increase of naïve method is more than
twice to ours.

4.4. Variation of our method for non-convex meshes

Fig. 9 shows the possible problems that occur when using silhou-
ette edges for non-convex meshes. The silhouette edges are esti-
mated wrongly, resulting in incorrect shading and shadows. To han-
dle simple non-convex meshes, we can decompose them into a set
of convex parts, as shown in Fig. 6 for the table in the Dining Room
scene and bench in the Outdoor Bench scene. For direct handling of
arbitrary non-convex meshes, we can modify our approach in Alg.
1, where the listLwill instead be a list containing all triangles of all
light sources and B will be a list containing all triangles of all oc-
cluders. Note that in this case, the function SphPolySilhouette will
only shift the origin and transform the triangle to the local shad-
ing frame and exit. We refer to this approach as the per-triangle
method.

We compare the per-triangle approach with ours and with equal
time direct illumination ray tracing. The result is shown in Fig. 8,
for a scene having a chair like object and a four sided polygonal
light. Note that for the bottom left rendering of our method, the ob-
ject is decomposed into two convex shapes (the bottom portion and
the top portion). The per-triangle method takes much more time

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

118

A. KT, P. Sakurikar, P. J. Narayanan / Fast Analytic Soft Shadows from Area Lights

(a) Reference

(c) Obtained silhouette

(d) Ideal silhouette(b) Our output (silhouette edge)

Figure 9: (a) Reference image rendered with direct illumination
ray tracing. (b) Output of our method with silhouette edges. (c)
shows the silhouette edges at a shading point (marked in purple)
and (d) shows the ideal/expected silhouette. Due to the definition
of silhouette edges, we get extra edges (marked in green and yel-
low), which results in incorrect outputs of our algorithm and in-
correct LTC integration. Also note the missing shadow in the blue
insets. Non-convex meshes result in self-occlusions, which need to
be projected and handled separately, since direct silhouette edge
projection will result in wrong shading.

than our method, for which equal time direct illumination (shown
in the left column) is almost noise free. Furthermore, we would like
to note that the per-triangle approach in unstable, mainly due to de-
generacies arising from vertices at the same location (for example
two triangles sharing a common edge). This ultimately leads to a
failure case for the setDifference and other geometric operations.
Thus, there is a trade-off between using our per-triangle approach
with arbitrary meshes, at the cost of high run-time versus our ap-
proach for convex meshes at a lower run-time.

5. Discussion and Conclusions

We presented a method to analytically compute shading and soft
shadows from light sources with general 3D shapes. We futher
demonstrated several examples of efficiently rendering high-quality
scenes with realistic soft-shadows when light source and occluders
are convex meshes. One limitation of our method is its inability to
directly handle non-convex shapes, though a simple variation can
handle them at much reduced speeds. Another limitation is that our
approach has a memory footprint that is not predictable, especially
for the setDifference and the clipToHorizon functions, which poses
a challenge for efficient GPU implementation. Finally, since we use
LTCs which are itself an approximation to the true BRDF, our result
may not exactly match the ground truth rendered with ray-tracing.

An interesting future direction of our work is to obtain proper sil-
houettes even for non-convex shapes. This would lead to increase
in generality of our algorithm at acceptable run-time. Another area
of future work is to improve the speed of computation of each step
of our algorithm. It is also possible to obtain and exploit reason-
able upper bounds on the memory required for each step of our
algorithm for an efficient GPU implementation. We would further
like to investigate and exploit the continuity of spherical projections
between adjacent shading points to improve efficiency. Lastly, we
would like to investigate the integration of analytic solutions like
ours with methods like [BWP*20], which re-use spatial and tem-
poral information to drastically reduce variance.

Acknowledgements

We thank the anonymous reviewers for their valuable feedback.
This work was partially funded by the "Kohli Fellowship" of KCIS.

References
[Arv95] ARVO, JAMES. “Applications of Irradiance Tensors to the Simu-

lation of Non-Lambertian Phenomena”. Proceedings of the 22nd Annual
Conference on Computer Graphics and Interactive Techniques. SIG-
GRAPH ’95. New York, NY, USA: Association for Computing Machin-
ery, 1995, 335–342. ISBN: 0897917014. DOI: 10.1145/218380.
218467 2.

[BRW89] BAUM, D. R., RUSHMEIER, H. E., and WINGET, J. M. “Im-
proving Radiosity Solutions through the Use of Analytically Determined
Form-Factors”. Proceedings of the 16th Annual Conference on Com-
puter Graphics and Interactive Techniques. SIGGRAPH ’89. New York,
NY, USA: Association for Computing Machinery, 1989, 325–334. ISBN:
0897913124. DOI: 10.1145/74333.74367. URL: https://doi.
org/10.1145/74333.74367 2, 3.

[BWP*20] BITTERLI, BENEDIKT, WYMAN, CHRIS, PHARR, MATT, et
al. “Spatiotemporal reservoir resampling for real-time ray tracing with
dynamic direct lighting”. ACM Transactions on Graphics (Proceedings
of SIGGRAPH) 39.4 (July 2020). DOI: 10/gg8xc7 9.

[BXH*18] BELCOUR, LAURENT, XIE, GUOFU, HERY, CHRISTOPHE, et
al. “Integrating clipped spherical harmonics expansions”. ACM Trans-
actions on Graphics (Presented at SIGGRAPH) 37.2 (Mar. 2018). DOI:
10/gd52pf 2.

[DHB17] DUPUY, JONATHAN, HEITZ, ERIC, and BELCOUR, LAURENT.
“A Spherical Cap Preserving Parameterization for Spherical Distribu-
tions”. ACM Trans. Graph. 36.4 (July 2017). ISSN: 0730-0301. DOI:
10.1145/3072959.3073694. URL: https://doi.org/10.
1145/3072959.3073694 2.

[GH98] GREINER, GÜNTHER and HORMANN, KAI. “Efficient clipping
of arbitrary polygons”. ACM Transactions on Graphics (TOG) 17.2
(1998), 71–83 5, 10.

[HDHN16] HEITZ, ERIC, DUPUY, JONATHAN, HILL, STEPHEN, and
NEUBELT, DAVID. “Real-Time Polygonal-Light Shading with Linearly
Transformed Cosines”. ACM Trans. Graph. 35.4 (July 2016). ISSN:
0730-0301. DOI: 10.1145/2897824.2925895. URL: https:
//doi.org/10.1145/2897824.2925895 2–6, 8.

[HHM18] HEITZ, ERIC, HILL, STEPHEN, and MCGUIRE, MORGAN.
“Combining Analytic Direct Illumination and Stochastic Shadows”. Pro-
ceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graph-
ics and Games. I3D ’18. Montreal, Quebec, Canada: Association for
Computing Machinery, 2018. ISBN: 9781450357050. DOI: 10.1145/
3190834 . 3190852. URL: https : / / doi . org / 10 . 1145 /
3190834.3190852 1, 2, 6, 7.

[IFH*03] ISENBERG, TOBIAS, FREUDENBERG, BERT, HALPER, NICK,
et al. “A Developer’s Guide to Silhouette Algorithms for Polygonal Mod-
els”. IEEE Comput. Graph. Appl. 23.4 (July 2003), 28–37. ISSN: 0272-
1716. DOI: 10.1109/MCG.2003.1210862. URL: https://doi.
org/10.1109/MCG.2003.1210862 3.

[Kaj86] KAJIYA, JAMES T. “The Rendering Equation”. Proceedings of the
13th Annual Conference on Computer Graphics and Interactive Tech-
niques. SIGGRAPH ’86. New York, NY, USA: Association for Comput-
ing Machinery, 1986, 143–150. ISBN: 0897911962. DOI: 10.1145/
15922.15902. URL: https://doi.org/10.1145/15922.
15902 2.

[Lam60] LAMBERT, I. H. “Photometria sive de mensura et gradibus lu-
minis, colorum et umbrae”. (1760). DOI: https://doi.org/10.
3931/e-rara-9488/ 2.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

119

https://doi.org/10.1145/218380.218467
https://doi.org/10.1145/218380.218467
https://doi.org/10.1145/74333.74367
https://doi.org/10.1145/74333.74367
https://doi.org/10.1145/74333.74367
https://doi.org/10/gg8xc7
https://doi.org/10/gd52pf
https://doi.org/10.1145/3072959.3073694
https://doi.org/10.1145/3072959.3073694
https://doi.org/10.1145/3072959.3073694
https://doi.org/10.1145/2897824.2925895
https://doi.org/10.1145/2897824.2925895
https://doi.org/10.1145/2897824.2925895
https://doi.org/10.1145/3190834.3190852
https://doi.org/10.1145/3190834.3190852
https://doi.org/10.1145/3190834.3190852
https://doi.org/10.1145/3190834.3190852
https://doi.org/10.1109/MCG.2003.1210862
https://doi.org/10.1109/MCG.2003.1210862
https://doi.org/10.1109/MCG.2003.1210862
https://doi.org/10.1145/15922.15902
https://doi.org/10.1145/15922.15902
https://doi.org/10.1145/15922.15902
https://doi.org/10.1145/15922.15902
https://doi.org/https://doi.org/10.3931/e-rara-9488 /
https://doi.org/https://doi.org/10.3931/e-rara-9488 /

A. KT, P. Sakurikar, P. J. Narayanan / Fast Analytic Soft Shadows from Area Lights

while unprocessed intersecting points in subject polygon
 current = first unprocessed intersecting point of subject polygon
 newPolygon
 newVertex(current)
 repeat
 if current->entry
 repeat
 current = current->next
 newVertex(current)
 until current->intersect
 else
 repeat
 current = current->prev
 newVertex(current)
 until current->intersect
 end if
 current = current->neighbor
 until PolygonClosed
end while

for both polygons P do
 if P0 inside other polygon
 status = exit
 else
 status = entry
 end if
 for each vertex Pi of polygon do
 if Pi->intersect then
 Pi->entry_exit = status
 toggle status
 end if
 end for
end for

Phase Three

Phase Two

for each vertex Si of subject polygon do
 for each vertex Cj of clip polygon do
 if intersect(Si,Si+1,Cj,Cj+1,a,b)
 I1 = CreateVertex(Si,Si+1,a)
 I2 = CreateVertex(Cj,Cj+1,b)
 link intersection points I1 and I2
 sort I1 into subject polygon
 sort I2 into clip polygon
 end if
 end for
end for

Phase One

C1 C2 C3 I1
entry

I2
exit

I3
entry

I4
exit C4

S1 I1
entry S2 I2

exit S3 I3
entry S4 I4

exit S5

neighbour
neighbour

neighbour
neighbour

subject polygon S

clip polygon C

I1 S2 I2

I3 S4 I4

nextPoly

clipped polygon I

S4 S2

I4 I3
S3

I2 I1

S5 S1

C4

C1 C2

C3

struct Vertex {
 float x, y;
 Vertex *next, *prev;
 Vertex *nextPoly;
 bool intersect;
 bool entry_exit;
 Vertex *neighbour;
 float alpha;
};

Vertex datastructure

Figure 10: Left: Pseudocode for the three phases of Greiner-Hormann polygon clipping algorithm along with the vertex datastructure.
Right: Example of a doubly linked list of the Vertex datastructure, representing the clip and subject polygons. The intersection points (I1,
I2..) are generated by phase one, entry and exit is marked by phase two and the final clipped polygon (top right) is generated by phase three.
The algorithms and the example are directly adapted from [GH98].

[LDSM16] LECOCQ, PASCAL, DUFAY, ARTHUR, SOURIMANT, GAËL,
and MARVIE, JEAN-EUDES. “Accurate Analytic Approximations for
Real-Time Specular Area Lighting”. Proceedings of the 20th ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games. I3D
’16. Redmond, Washington: Association for Computing Machinery,
2016, 113–120. ISBN: 9781450340434. DOI: 10.1145/2856400.
2856403 2.

[MAAG12] MORA, F., AVENEAU, L., APOSTU, O., and GHAZANFAR-
POUR, D. “Lazy Visibility Evaluation for Exact Soft Shadows”. Com-
puter Graphics Forum 31.1 (2012), 132–145. DOI: https://doi.
org/10.1111/j.1467-8659.2011.02089.x. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1111/j.
1467-8659.2011.02089.x 2.

[OZ06] OLSON, MATT and ZHANG, HAO. “Silhouette Extraction in
Hough Space”. Comput. Graph. Forum 25 (Sept. 2006), 273–282. DOI:
10.1111/j.1467-8659.2006.00946.x 8.

[Pho75] PHONG, BUI TUONG. “Illumination for Computer Generated Pic-
tures”. Commun. ACM 18.6 (June 1975), 311–317. ISSN: 0001-0782.
DOI: 10.1145/360825.360839. URL: https://doi.org/10.
1145/360825.360839 2.

[PJH16] PHARR, MATT, JAKOB, WENZEL, and HUMPHREYS, GREG.
Physically based rendering: From theory to implementation. Morgan
Kaufmann, 2016 5.

[SKS02] SLOAN, PETER-PIKE, KAUTZ, JAN, and SNYDER, JOHN. “Pre-
computed Radiance Transfer for Real-Time Rendering in Dynamic,
Low-Frequency Lighting Environments”. ACM Trans. Graph. 21.3 (July
2002), 527–536. ISSN: 0730-0301. DOI: 10.1145/566654.566612.
URL: https://doi.org/10.1145/566654.566612 2.

[Sny87] SNYDER, JOHN PARR. Map projections–A working manual.
Vol. 1395. US Government Printing Office, 1987 4.

[Vat92] VATTI, BALA R. “A Generic Solution to Polygon Clipping”. Com-
mun. ACM 35.7 (July 1992), 56–63. ISSN: 0001-0782. DOI: 10.1145/
129902 . 129906. URL: https : / / doi . org / 10 . 1145 /
129902.129906 5.

[WCZR20] WU, LIFAN, CAI, GUANGYAN, ZHAO, SHUANG, and RA-
MAMOORTHI, RAVI. “Analytic Spherical Harmonic Gradients for Real-
Time Rendering with Many Polygonal Area Lights”. ACM Trans. Graph.
39.4 (July 2020). ISSN: 0730-0301. DOI: 10 . 1145 / 3386569 .
3392373 2.

[WMLT07] WALTER, BRUCE, MARSCHNER, STEPHEN R., LI, HONG-
SONG, and TORRANCE, KENNETH E. “Microfacet Models for Refrac-
tion through Rough Surfaces”. Proceedings of the 18th Eurographics
Conference on Rendering Techniques. EGSR’07. Grenoble, France: Eu-
rographics Association, 2007, 195–206. ISBN: 9783905673524 2.

[WR18] WANG, JINGWEN and RAMAMOORTHI, RAVI. “Analytic Spher-
ical Harmonic Coefficients for Polygonal Area Lights”. ACM Trans.
Graph. 37.4 (July 2018). ISSN: 0730-0301. DOI: 10.1145/3197517.
3201291 2.

[ZWRY21] ZHOU, YANG, WU, LIFAN, RAMAMOORTHI, RAVI, and YAN,
LING-QI. “Vectorization for Fast, Analytic, and Differentiable Visibil-
ity”. ACM Trans. Graph. 40.3 (2021), 27:1–27:21 2.

A. Appendix

We provide the implementation details of the setDifference function
using the Greiner-Hormann polygon clipping algorithm for com-
pleteness. This algorithm relies on a doubly linked list of vertices to
represent polygons. Consecutive nodes in the list point to the next
vertex, defining an implicit order, which is used in the algorithm.
It considers two polygons, which are denoted as the subject and
the clip polygon (the subject polygon is clipped) and proceeds in
three phases. Detailed steps and the vertex datastructure are given
in Fig. 10. The first phase is responsible for the determination and
storage of edge intersection points of the subject and the clip poly-
gon. The algorithm terminates if no-intersection points are found.
Note that, the subject polygon could also be completely inside the
clip polygon and vice-versa, which can be easily determined. The
second phase is responsible for marking entry and exit points of in-
tersection vertices of each polygon, which is done by looping over
each vertex of a polygon and testing whether it enters or leaves.
Note that this assumes contiguous ordering of polygon vertices,
which we perform in the SphPolySilhouette function (Alg. 2). In
the final phase, the previous computations are used to filter out the
clipped polygon. This is done by jumping to the other polygon’s
vertex at each entry or exit vertex, starting from a random vertex
of the clip polygon, effectively tracing the clipped polygon edges
(Fig. 10, right). For more details, please refer to the original paper
[GH98].

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

120

https://doi.org/10.1145/2856400.2856403
https://doi.org/10.1145/2856400.2856403
https://doi.org/https://doi.org/10.1111/j.1467-8659.2011.02089.x
https://doi.org/https://doi.org/10.1111/j.1467-8659.2011.02089.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2011.02089.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2011.02089.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2011.02089.x
https://doi.org/10.1111/j.1467-8659.2006.00946.x
https://doi.org/10.1145/360825.360839
https://doi.org/10.1145/360825.360839
https://doi.org/10.1145/360825.360839
https://doi.org/10.1145/566654.566612
https://doi.org/10.1145/566654.566612
https://doi.org/10.1145/129902.129906
https://doi.org/10.1145/129902.129906
https://doi.org/10.1145/129902.129906
https://doi.org/10.1145/129902.129906
https://doi.org/10.1145/3386569.3392373
https://doi.org/10.1145/3386569.3392373
https://doi.org/10.1145/3197517.3201291
https://doi.org/10.1145/3197517.3201291

