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Abstract 20 
 21 
Despite their tremendous diversity and their medical and veterinary importance, details of egg 22 

ultrastructure among the digenean trematodes has been studied rather little.  The available 23 
literature is spread over several decades and several species, but has not been adequately 24 
reviewed to reveal patterns of similarity and divergence.  We present this review to synthesize 25 

and analyse what is known from the available literature reporting studies using both transmission 26 

electron microscopy (TEM) and scanning electron microscopy (SEM). To support our general 27 
review of existing literature, we also have synthesized our own previously published 28 
descriptions, and present herein our new previously unpublished data. From these new electron 29 

micrographs, we provide a comparative analysis of the intrauterine eggs of four digenean 30 
species, representing four genera and three families of the superfamily Microphalloidea, 31 

collected from four different host wildlife species in four European countries: 1) Mediogonimus 32 
jourdanei (Prosthogonimidae) from Myodes glareolus (Mammalia: Rodentia), collected in 33 

France; 2) Maritrema feliui (Microphallidae) from Crocidura russula (Mammalia: 34 
Soricimorpha), collected in Spain; 3) Brandesia turgida (Pleurogenidae) from Pelophylax 35 
ridibundus (Amphibia: Anura: Ranidae), collected in Russia; and 4) Prosotocus confusus 36 
(Pleurogenidae) from Rana lessonae (Amphibia: Anura: Ranidae), collected in Belarus. All were 37 

studied by preparing whole worms by various techniques for TEM, so that eggs could be studied 38 
in situ within the uterus of the  parent worm.  Based on the literature review and the new data 39 
presented here, we describe basic similarities in patterns of embryogenesis and egg formation 40 

among all trematode species, but substantial variations in timing of larvigenesis, sculpturing of 41 
egg shell surfaces, and some other features, especially including accessory cocoon coverings 42 
outside the egg shells of B. turgida and P. confusus.  In the future, many more studies are needed 43 
to explore egg ultrastructure in other digenean taxa, to explore potential phylogenetic patterns in 44 
egg development and structure, and to correlate structure with function in the life cycle. 45 
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 56 

Introduction 57 
 58 
Life cycle schematics have long played a prominent role in forming the conceptual framework of 59 

how parasites circulate in the environment between hosts.  Most published life cycle schematics, 60 
as well as written descriptions, primarily emphasize those developmental stages that occur within 61 

the hosts, or that directly invade hosts.  For digenean trematodes, this includes stages such as 62 
adults within vertebrate hosts, intramolluscan stages within gastropod molluscs, and 63 

metacercariae (Martin and Conn 1990) and other transitional stages (Conn 2007a, 2010; Goater 64 
et al. 2005; Conn et al. 2008) within various second-intermediate hosts. Secondary but 65 
significant emphasis has been placed on free-living stages that are directly infective to hosts, 66 

including miracidia that invade molluscs (Karatayev et al. 2012) and cercariae that invade either 67 
intermediate hosts (Conn and Conn 1995), or that directly invade definitive hosts (e.g., the 68 

extensively studied schistosomatids). In contrast, relatively little emphasis has been placed on the 69 
egg stage, although there has been an increase in the recognition that cestode eggs are highly 70 
diverse in both structure and role within the life cycle (see review by Conn and Świderski 2008).   71 

Because trematode eggs are very small – usually microscopic – little can be see using 72 

light microscopy methods.  Thus, electron microscopy is necessary to reveal the essential 73 
features of the structure of the eggs and the embryos or larvae they contain.  To further 74 
complicate their study, because the highly resistant trematode egg shells are designed to protect 75 

the embryo and larva from harsh environmental conditions outside the host and outside the 76 
parent worm, preparing trematode eggs for ultrastructural studies is technologically challenging.  77 

Thus, egg ultrastructure in this important group of parasites has received relatively little study, 78 
even when compared to their closely related class of parasitic Platyhelminthes, the cestodes (Burt 79 

1986; Świderski 1996; Świderski and Conn 2000, 2001; Conn 2007b, 2016). 80 
The purpose of this paper is to provide a brief review of the known studies on digenean 81 

trematode egg ultrastructure, while providing up-to-date context by reporting new comparative 82 
data and a new synthesis of information on four microphalloid trematodes from Europe, which 83 

until now have been the subject of only a cursory comparison (Świderski and Conn 2014). 84 
 85 
 86 

Materials and methods 87 
 88 
Adult specimens of Brandesia turgida (Brandes, 1888) were obtained from crypts in the 89 
intestinal wall of naturally infected mars frogs, Pelophylax ridibundus (Pallas, 1771) (Amphibia: 90 
Ranidae), collected near the Rybinsk Reservoir on the Volga River, Russia during Adults of 91 
Maritrema feliui were collected live from the intestine of the greater white-toothed shrew, 92 
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Crocidura russula (Hermann, 1780) (Eulipotyphla: Soricidae), captured in La Ricarda, a marshy 93 

nature reserve close to the estuary of the River Llobregat (Barcelona, Spain), during October, 94 
2010. 95 

Naturally infected bank voles, Myodes glareolus (Schreber, 1780) (Rodentia: Cricetidae), 96 

were captured in the Nature Reserve of Py (Pyrenean Mountains, France) during June, 2009. 97 
Live mature specimens of Mediogonimus jourdanei Mas-Coma et Rocamora, 1978 were 98 
collected from the liver upon necropsy and dissection of voles at the laboratory of “Centres 99 
Científics i Tecnològics” of the University of Barcelona (CCiTUB) in order to apply high 100 
pressure freezing fixation and freeze substitution (see below). 101 

Adult, live specimens of Prosotocus confusus (Looss, 1894) were collected from the intestine of 102 
naturally infected pool frogs, Pelophylax lessonae (Camerano, 1882) (Amphibia: Ranidae), 103 
during April 2008 in the Bugskiy landscape reserve (Southwest Belarus). 104 
 105 

Conventional TEM methodology 106 
 107 

For Maritrema feliui and Prosotocus confusus, live worms were first placed in a 0.9 % NaCl 108 
solution. Later, they were fixed in cold (4 °C) 2 % paraformaldehyde and 2.5 % glutaraldehyde 109 

in a 0.1M sodium cacodylate buffer at pH 7.4 for a minimum of 2 h, rinsed in a 0.1M sodium 110 
cacodylate buffer at pH 7.4, postfixed in cold (4 °C) 1 % osmium tetroxide in the same buffer for 111 
1 h, rinsed in MilliQ water, dehydrated in an ethanol series and propylene oxide, and finally 112 

embedded in Spurr's resin. Ultrathin sections were obtained using a Reichert-Jung Ultracut E 113 
ultramicrotome, placed on copper grids and double-stained with uranyl acetate and lead citrate. 114 

Ultrathin sections were examined using a JEOL 1010 TEM operated at an accelerating voltage of 115 
80 kV in the CCiTUB (Barcelona, Spain). For Brandesia turgida, materials were embedded in a 116 
mixture of Araldite and Epon. Ultrathin sections were cut on a Leica Ultracut UCT 117 

ultramicrotome and, after staining, examined in JEOL 1011 TEM in Centre of Electron 118 

Microscopy, I.D. Papanin Institute for the Biology of Inland Waters, Russian Academy of 119 
Sciences, Borok, Russia. 120 
 121 

High pressure freezing, freeze substitution and infiltration with resin 122 
 123 

Live specimens of Mediogonimus jourdanei were cut open and pieces of uterus were selected in 124 
small Petri dishes under a stereomicroscope in PBS with 20% BSA. The sections of uterus were 125 

transferred to the cavity of a 200 μm-deep flat specimen carrier. The specimen holder was then 126 
inserted into the rapid transfer system, high pressure frozen using a Leica EM PACT and stored 127 
in liquid nitrogen. 128 

For freeze substitution in preparation of the M. jourdanei specimens, sample holders were 129 

transferred to precooled cryovials (–120°C) and freeze substitution was per-formed in anhydrous 130 
acetone containing 2% osmium tetroxide. Using a Leica EM AFS, samples were maintained for 131 
24 h at –90°C. Hereafter, the temperature was raised at a rate of 2°C/h to –60°C and then to –30° 132 

C. Samples were kept at each level for 9 h in the original substitution medium. Specimens were 133 
then washed three times for 10 min in fresh anhydrous acetone. After the washes, the 134 
temperature was gradually raised to room temperature and the specimens were infiltrated with 135 
Spurr resin (one part resin/three parts acetone) overnight; 1:1 for 4 h; 3:1 for 4 h and 100% resin 136 
for 4 h and then overnight. Polymerization was carried out by heat at 60°C for 72 h. Ultrathin 137 
sections were cut using a Reichert-Jung Ultracut E ultramicrotome, placed on copper grids and 138 
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poststained with uranyl acetate (2%) in methanol for 5 min and lead citrate for 4 min. Finally, 139 

ultrathin sections were examined using a JEOL 1010 TEM operated at an accelerating voltage of 140 
80 kV in the CCiTUB. 141 
 142 

 143 

Results 144 
 145 
Side-by-side comparison of transmission electron micrographs (TEM) the in utero eggs within 146 
the intact parent of all four microphalloid species demonstrated significant similarities in the 147 

basic patterns of embryogenesis and ultimate structure of the egg shell and embryonic envelopes. 148 
However, substantial variation occurred among the four species, especially relating to the timing 149 
of postembryonic development into the fully formed miracidium (i.e., larvigenesis), and in the 150 
presence of unique structures enclosing each egg outside the egg shell. Most details have been 151 

reported previously for each individual species (Świderski et al. 2010, 2013a, 2013b, 2014, 152 
2015a).  To expand on these individual studies, our descriptions presented here provide new 153 

comparative data on these four representatives of the superfamily Microphalloidea.  Essential 154 
new data in the form of TEM micrographs for each species are shown in Figs. 1-5. General 155 

observations on comparative aspects are presented below and in Table 1. 156 
The eggs of all four species followed general aspects of the pattern that we and others 157 

have described previously for all trematodes and cestodes; however, there are some variations 158 

among species in details as well as in some more generalized features described here.   159 
 160 

 161 
Embryogenesis and embryonic envelopes 162 

 163 
In all four species, the early embryo (M. feliui and P. confusus) or the fully formed miracidium 164 

(M. jourdanei and B. turgida), is surrounded by two syncytial embryonic envelopes: 1) an inner 165 
embryonic envelope formed from mesomeres; 2) an outer embryonic envelope formed from 166 
macromeres and vitellocyte remnants. The maternally derived egg shell covers these and 167 

constitutes the outer protective layer of the enclosed embryo, and fully formed larva in the case 168 
of M. jourdanei and B. turgida. 169 

The macromeres forming the outer envelope initially have well-developed nuclei and 170 
complex perinuclear cytoplasm containing ribosomes and endomembrane elements.  These cells 171 

deteriorate very quickly in M. jourdanei, B. turgida, and P. confusus, but persist for longer in M. 172 
feliui, in which they undergo migration to the poles of the egg prior to forming a syncytium (Fig. 173 
2).  In all species, the embryo proper and ultimately the miracidium forms from micromeres.  174 
Some of these undergo apoptosis during early embryogenesis, but others persist through 175 

embryonic development, and ultimately their derivative cells form the completed miracidium 176 
larva, which develops completely within the in-utero egg in B. turgida (Fig. 1), and M. jourdanei 177 
(Fig. 4), in which fully developed cilia are easily visible. 178 

 179 
 180 
Larval development 181 
 182 
The micrographs presented here confirm the complete development of ciliated miracidia larvae 183 
within the intrauterine eggs of both B. turgida (Figs. 1, 2) and M. jourdanei (Fig. 4), thus 184 
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consitituting very late-stage ovoviviparity in these two species.  These do not attain true 185 

viviparity, as the miracidia never are released within the parent uterus.  In contrast to these two 186 
ovoviviparous species, the two other species, M. feliui and P. confusus, possess eggs containing 187 
only early embryos (Figs. 3, 5), thus constituting either oviparity or very early-stage 188 

ovoviviparity. 189 
 190 
 191 
Egg shell formation and structure 192 

 193 
All four species examined comparatively here possess an egg shell formed from secreted 194 
components of the parent worm, including vitellocytes and Mehlis‘ gland.  In all four species, the 195 
egg shell is thick and homogenous in composition within its primary layer. A single highly 196 
electron-dense layer constitutes the egg shell of P. confusus (Fig. 5), but the other three species 197 

have outer or inner layers that are more electron-dense than the central primary layer (Figs. 1-4). 198 
In M. jourdanei and M. feliui , the outermost layer appears membranous (Figs. 3, 4), and possibly 199 

constitutes a fixation artefact.  An operculum is clearly visible in both ovoviviparous B. turgida 200 
(Fig. 1, 2), as well as oviparous M. feliui (Fig. 3) presented here, and was present in all four 201 

species. 202 
 203 
 204 

Cocoons and extra-egg shell layers 205 
 206 

In addition to the egg shell, the eggs of B. turgida and P. confusus were enclosed by a thick layer 207 
external to the egg shell (Figs. 2, 5).  This layer consisted of a thick layer of electron-lucent 208 
material proximally and an irregular series of electron-dense islands distally, attached to 209 

a bounding membrane.  For this unique structure, which has not been described in any other 210 

trematode, we have coined the term „cocoon“.  Our examination did not reveal any information 211 
regarding the origin, composition, or function of this unique layer.  The uterine lumen outside 212 
this cocoon, and outside the egg shells of the M. feliui and M. jourdanei, contained amorphous 213 

material that appeared unassociated with the eggs or with the surrounding uterine epithelium 214 
(Figs. 1-5). 215 

 216 
 217 

Discussion 218 
 219 
Few detailed studies have been done on ultrastructural aspects of trematode eggs, probably 220 
because the technical difficulties encountered in processing the highly resistant eggs require 221 

advanced methodological experience and skill. Despite the paucity of detailed ultrastructural 222 
studies, scanning (SEM) and/or transmission electron microscopy (TEM) have been applied to 223 
very generalized reports of many species. Thus, the literature contains many very superficial 224 

descriptions, primarily of the fully formed egg shells of trematodes that are of some medical or 225 
veterinary importance. 226 

 227 
 228 
 229 
 230 
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General pattern for all trematode eggs 231 

 232 
A general overview of the published research on trematode egg structure, including the new data 233 
included in this present review, shows clear patterns of common origin and development among 234 

all the species examined, in both the Digenea and the Aspidogastrea (Świderski 2011, 2012). The 235 
common developmental pattern for each egg of each species, regardless of trematode taxon, 236 
consists of an embryo surrounded by an egg shell, with shell material deriving from vitellocyte 237 
secretions. This common pattern is very similar to that which occurs in the polylecithal eggs of 238 
pseudophyllidean (Korneva 2001), bothriocephalidean (Świderski 1993, 1994b; Mlocicki et al. 239 

2010a), caryophyllidean (Mlocicki et al. 2010b), spathebothriidean (Poddubnaya et al. 2005), 240 
and other cestodes (see reviews by Świderski 1994c; Świderski and Mackiewicz 2007; Conn and 241 
Świderski 2008), as well as in the phylogenetically more basal gyrocotylideans (Levron et al. 242 
2016), which may be more closely related to trematodes. A similar pattern occurs in least some 243 

neoophoran turbellarians (Shinn 1993), though critical comparisons between eggs of 244 
neodermatans and more basal Platyhelminthes are still lacking and need further study. 245 

 246 
 247 

Diversity in trematode egg shell surface ultrastructure 248 
 249 
As a technicality, ultrastructural studies are often as regarded as encompassing investigations 250 

that employ scanning (SEM) as well as transmission (TEM) electron microscopy.  However, true 251 
cellular ultrastructure requires either TEM or very specialized modified SEM that is coupled 252 

with cryofracturing or other methods to show internal structure.  Our comparative study 253 
presented here, as well as our earlier related work, employs TEM exclusively or primarily, as this 254 
is necessary to discern cellular and subcellular details.  Nevertheless, while SEM reveals few if 255 

any internal structures, and is not adequate for demonstrating embryogenetic details, it is a much 256 

easier and less expensive technique to use for general descriptive studies.  Thus many authors 257 
have published generalized SEM micrographs of various trematode eggs, so that some 258 
information is available on variations in egg shell surface features; in some cases this has been 259 

supplemented with TEM of only the egg shell, with no internal cellular features of the embryo or 260 
larva available, presumably due to inadequate penetration of the egg shell with fixative and 261 

embedding medium.  This generalized literature is far too voluminous to cover in this review, but 262 
some examples are presented here to demonstrate the variety of digenean egg shell surfaces.  263 

Krupa (1974) used SEM and TEM to show shallow ridges covering the surface of Cryptocotyle 264 
lingua eggs. In an early comparative SEM study of eggs from the three primary human 265 
schistosome species, Schistosoma haematobium, Schistosoma japonicum, and Schistosoma 266 
mansoni, Ford and Blankespoor (1979) showed interspecific variations in surface microspines.  267 

Bundy (1981) presented SEM and some TEM data showing filamentous extensions of the egg 268 
shell of Transverotrema patielense.  Fujino et al. (1989) used SEM and TEM to show complex 269 
ridges and folds in the eggs of two species each of the genera Haplorchis and Metagonimus.  270 

Their results were corroborated for these species, as well as other trematode parasites of humans 271 
in Thailand (Tesana et al., 1991). Ditrich et al. (1992) used extensive SEM and a single TEM to 272 
reveal extensive variation in the surface sculpturing of several medically important heterophyid 273 
and opisthorchiid flukes, including some with extensive and complex folding surface extensions; 274 
this was corroborated for Opishorchis viverrini by Scholz et al. (1992).  Krejci and Fried (1994) 275 
and Fujino et al. (2000) reported relatively smooth surfaces for the eggs of several 276 
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echinostomatid species.  Similarly, Eurytrema coelomatica eggs seem to have a nearly smooth or 277 

only slightly sculptured surface (Pinheiro et al. 2015). Shell sculpturing seems to be a consistent 278 
character for any given species, and its distinctive characteristics are identifiable even after 279 
thousands of years mummified within their deceases hosts (Shin et al. 2009).  This present 280 

review is not intended to review all of the known cases of surface SEM studies, as many are 281 
parts of cursory case studies in which ultrastructural examination was not the intended goal.  282 
Nevertheless, the literature contains much that has not yet been reviewed and synthesized, 283 
though the available material is primarily related to trematodes of human and veterinary 284 
significnce.  Analysis and synthesis of diverse egg shell surface form should be the main 285 

objective of a future literature review, of more original research on a broad range of trematode 286 
species. 287 
 288 
 289 

Diversity of trematode intrauterine structures outside the egg shell  290 

 291 
This report corroborates and extends information from recent individual reports (Świderski et al. 292 
2013b, 2015a) that B. turgida and P. confusus possess a unique bilayered structure outside the 293 

egg shell, separating it from the uterine lumen contents.  This distinctive structure, which we 294 
designate as a "cocoon", is of undetermined function, though we suggest that it is protective.  No 295 
other extra-egg-shell structure has been described from any other trematode. 296 

To the contrary, such structures have been described from many cestodes, although none 297 
has the same appearance as those described for the two trematodes.  Outside the vitelline capsule 298 

and egg shell, or uterine-derived capsule in the case of oligolecithal cestodes (Conn and 299 
Świderski 2008), some cestode eggs are further surrounded by diverse uterine, parenchymal, or 300 
utero-parenchymal structures (Świderski et al. 2016b).  Such complex parental structures appear 301 

to be confined to certain members of the cestode order Cyclophyllidea.  No trematode to date has 302 

been demonstrated to possess such parental structures outside the basic reproductive system.  303 
The cocoons reported here for B. turgida  and P. confusus are clearly within the uterus, and thus 304 
unlike the somatic protective structures  described for cestodes such as Mesocestoides spp., 305 

nematotaeniids, and davaineids (Conn et al. 1984; Conn 1999; Świderski and Conn 2004; 306 
Świderski et al. 2015b).  However, they are somewhat similar to the intrauterine capsules present 307 

in Oochoristica anolis (Conn and Etges 1984; Conn 1985) The two species described in this 308 
report are the only trematode species for which any additional layer outside the egg shell has 309 

been described.  Both of these trematode species belong to the microphalloid family 310 
Pleurogenidae, and this cocoon structure may be a feature specific to this family.  However, 311 
detailed ultrastructure of potential extra-egg intra-uterine structures has been examined for very 312 
few trematode families, even in comparison to the number of such studies among the cestodes 313 

(Conn 1985; Świderski and Conn 2004). Wittrock (1982) used TEM and SEM to demonstrate a 314 
double-layered egg shell for Quinqueserialis quinqueserialis, a notocotylid digenean, but the 315 
exact nature of the outer layer was not elucidated in that study, and may have been extraneous 316 

uterine secretion on the surface of the vitelline-derived egg shell. Detailed ultrastructural studies 317 
of the eggs, uterine epithelium, and uterine contents of a wider taxonomic variety of trematodes 318 
should be a high priority in the future to understand both phylogenetic and functional 319 
morphological aspects of these and similar structures. 320 
 321 
 322 
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Diversity in trematode vitellocyte number and contribution 323 

 324 
 By far the majority of trematode eggs conform to the polylecithal pattern, in which very 325 
many vitellocytes accompany the oocyte and sperm into the ootype, and are subsequently 326 

enclosed by the vitelline membrane and finally the egg shell.  Indeed, in terms of organelle 327 
volume, the primary function of vitellocytes seems to contribution of egg shell precursor 328 
materials by secretion from numerous egg shell vesicles (Björkman and Thorsell 1963; Sato et 329 
al. 1966; Irwin and Threadgold 1970, 1972; Justine and Mattei 1984; Conn 2000; Meepool et al. 330 
2006).  In the plagiorchiid trematode, Plagitura salamandra, it was shown that a malformed 331 

worm lacking connections between the vitelline ducts and the ootype resulted in normal 332 
vitellocytes and normal oocytes and embryos, but no secretion of egg shell materials and thus no 333 
formation of egg shells (Conn and Etges 1983).  Thus, the reference to “lecithality” among 334 
trematodes, and even the use of the term “vitellocyte”, are perhaps misnomers, as both terms 335 

imply the typically nutritive function of yolk in other animals.  Conversely, ectolecithal animals 336 
such as the trematodes, cestodes, and all neoophoran Platyhelminthes (see review by Conn 337 

2000), appear to supply nutrients to the developing embryo primarily through the autolysis of 338 
blastomeres and their later resorption by differentiating embryonic cells (Świderski et al. 2012).  339 

In trematode eggs, the nutritive role is minor, being secondary to egg shell production and 340 
perhaps to other functions surrounding fertilization and embryogenesis (Wittrock 1982; Conn 341 
and Etges 1983; Holy and Wittrock 1986; Orido 1988; Colhoun et al. 1998; Khampoosa et al. 342 

2011).  It has been proposed, with some ultrastructural evidence, that vitelline secretions of at 343 
least some oligolecithal cestodes may function in polyspermy prevention (Conn 1988); however, 344 

this has been scarcely studied for cestodes, and not at all for trematodes, and thus is a prime 345 
subject in need of new research. 346 
 347 

 348 

Diversity in trematode embryogenesis and larvigenesis 349 

 350 
The basic events of cleavage and embryonic development are remarkable uniform in all 351 

species of neodermatans that have been studied. In all, the early macromeres break away from 352 
the blastomere mass to form the syncytial outer envelope.  This is followed by a similar 353 

separation of mesomeres from the remaining mass to form the syncytial inner envelope in all 354 
groups studied thus far except the aspidogastreans, which form a discrete inner vitelline 355 

syncytium and no inner embryonic envelope; this unusual pattern has been described for 356 
Aspidogaster limacoides, only one aspidogastrean thus far studied in detail (Świderski et al. 357 
2011, 2012).  Possibly similar to A. limacoides, Levron et al. (2016) described the cestodarian 358 
Gyrocotyle urna as having only a single embryonic envelope, at least in early development, but 359 

cautioned that two envelopes may differentiate in later stages than those examined in their study.  360 
This point of variation among embryonic envelopes of neodermatan taxa needs further study of 361 
more species and at more developmental stages. 362 

For all neodermatan taxa studied to date, the embryo proper is thus formed exclusively 363 
from the remaining micromeres, and develops into the hexacanth (Cestoda), decacanth 364 
(Cestodaria), miracidium (Digenea), oncomiracidium (Monogenea), or cotylocidium 365 
(Aspidogastrea) larva (Burt 1987; Conn 2000; Conn et al. 2007; Levron et al. 2016).  The 366 
blastomere mass and later embryonic stages differentiate into the larva at a rate and in a location 367 
that varies among different taxa.  In cestodes, the usual pattern results in a fully formed 368 
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hexacanth larva within the parent worm’s gravid uterus, thus constituting ovoviviparous 369 

development (Conn and Świderski 2008). Similarly, monogenean oncomiracidia frequently are 370 
ovoviviparous (Tinsley 1993; Cable and Tinsley 1991; Cable et al. 1997), as is the 371 
aspidogastrean A. limacoides (Świderski et al. 2012).  However, among neodermatan flatworms, 372 

viviparity has been confirmed only for a few gyrodactylid monogeneans (Cable et al. 1996), and 373 
never for any digenean.  Among digeneans, some are ovoviviparous, including B. turgida and M. 374 
jourdanei described here, along with a few others studied recently (Swiderski et al. 2017a, 375 
2017b).  However, many others, like P. confusus and M. feliui described here, are oviparous.  376 
Ovoviparity may be the most common pattern among digeneans, whether the eggs develop in the 377 

external environment (Born-Torrijos et al. 2017), or within the body of the definitive hosts, such 378 
as the extensively studied schistosomatids (Eklu-Natey et al. 1982; Neill et al. 1988; Ashton et 379 
al. 2001; Jones et al. 2008; Jurberg et al. 2009; Świderski 1984, 1985, 1986, 1988, 1994a; 380 
Świderski et al. 1980). 381 

 382 
 383 

Conclusions 384 

 385 
Our new data have shown remarkable diversity among the eggs of four closely related 386 
microphalloidean trematodes, from similar habitats, and all native to the Eurasian contiguous 387 
land mass (see Table 1). In this case, variation in definitive host (amphibian vs. mammal), host 388 

habitat (freshwater vs. terrestrial) and trematode family are not the apparent bases of these 389 
variations.  These new data reflect the growing understanding of trematode eggs as being very 390 

diverse in structure and developmental timing of larvigenesis, while conserving much basic 391 
similarity in terms of fundamental embryogenetic patterns and essential contributions from the 392 
female reproductive system of the parent worm. Clearly, a broad taxonomic range of trematode 393 

eggs is in need of much more detailed study that can only be accomplished through electron 394 

microscopy of cellular and subcellular characteristics. As we have observed in the past two 395 
decades with cestodes (reviewed by Conn and Świderski 2008), further studies of trematode eggs 396 
are likely to reveal that, contrary to past assumption, the microscopic but highly complex and 397 

varied eggs are likely to provide much greater insight into the population and community 398 
dynamics of the trematodes and their gastropod and vertebrate hosts.  399 
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 660 

Table 1. Comparative host-parasite data and ultrastructure of the intrauterine eggs in some 661 

European Microphalloidea. 662 

PARASITE AND HOST DATA 

DIGENEAN SPECIES Maritrema 

feliui 

Mediogonimus 

jourdanei 

Brandesia 

turgida 

Prosotocus 

confusus 

DIGENEAN FAMILY Microphallidae Prosthogonimidae Pleurogenidae Pleurogenidae 

DEFINITIVE HOST Crocidura 

russula 

Myodes glareolus Pelophylax 

ridibundus 

Pelophylax 

lessonae 

HOST 

SYSTEMATICS 

Mammalia: 

Soricimorpha 

Mammalia: 

Rodentia 

Amphibia: 

Anura 

Amphibia: 

Anura 

HOST HABITAT Terrestrial Terrestrial Aquatic Aquatic 

HOST LOCALITY La Ricarda, 

Barcelona 

(Spain) 

Nature Reserve of 

Py 

(France) 

Rybinsk 

Reservoir 

(Russia) 

Bugskiy 

landscape 

reserve 

(Belarus) 

ULTRASTRUCTURAL DATA 

EGG SHELL TYPE Oligolecithal Polylecithal  Polylecithal Polylecithal 

EGG SHELL ORIGIN  Vitellocytes and 

Mehlis 

Vitellocytes and 

Mehlis 

Vitellocytes 

and Mehlis 

Vitellocytes 

and Mehlis 

EXTRA-EGG SHELL 

“COCOON”  

No No Yes Yes 

“COCOON” ORIGIN  N/A N/A Undetermined Undetermined 

DEVELOPMENTAL 

STAGE 

Early embryo Fully formed 

miracidium 

Fully formed 

miracidium 

Early embryo 

OUTER ENVELOPE Macromeres 

persist into later 

development 

Macromere nuclei 

degenerate early 

Macromere 

nuclei 

degenerate 

early 

Macromere 

nuclei 

degenerate 

early 

INNER ENVELOPE Mesomere 

syncytium? 

Mesomere 

syncytium 

Persistent 

mesomere 

syncytium 

Mesomere 

syncytium? 

N/A not applicable 663 

  664 



17 
 

Abbreviations to all figures: AG – apical gland, Bl – blastomere, C – cilia, DI – dense islands 665 

of electron-dense material at peripheral membrane of external, electron lucent cocoon, DB – 666 

dense bodies, DM – degenerating micromeres, ES – egg shell, FA – possible fixation artefacts, 667 

FCD - areas of focal cytoplasmic degradation, GER-B – granular endoplasmic reticulum body, gl 668 

– glycogen, α-gl – alpha-glycogen rosettes, β-gl – beta-glycogen particles, HCh – 669 

heterochromatin islands, L – lipid droplets, LG – lateral gland, m – mitochondria, MaN – 670 

macromere nucleus, Mi – miracidium, MiG – miracidial gland, N – nucleus, np – nuclear pore, 671 

Op – operculum, SG – secretory granules,  Sp – spermatozoa, SR – striated rootlets, TL – 672 

transparent layer of external electron-lucent cocoon. 673 

 674 

Fig. 1A and B. TEM micrographs of differentiating eggs of Brandesia turgida. A – Low power 675 

TEM micrograph illustrating the general topography of a mature intrauterine egg in the distal 676 

part of the uterus. Note: (1) an outer anucleate layer, situated externally to the egg shell and 677 

forming a thick cocoon composed of a transparent, electron-lucent substance; and (2) numerous 678 

small, electron dense islands irregularly dispersed around the egg surface and attached to its 679 

peripheral membrane. B – Operculated pole of a mature, intrauterine egg showing details of the 680 

three egg envelopes, the operculum and the apical part of a ciliated miracidium. Note: (1) the 681 

very close contact between the operculum and the flat discs of the peripheral islands of electron 682 

dense material situated at the surface of the transparent, electron-lucent cocoon. 683 

 684 

Fig. 2A and B. TEM micrographs of the apical region of differentiating eggs of Brandesia 685 

turgida. A – Anterior part of a mature egg containing a fully formed, ciliated miracidium. Note: 686 

(1) the characteristic apical gland with large nucleus containing heterochromatin islands and (2) 687 

numerous cilia and their striated rootlets embedded in the peripheral layer of the miracidium 688 

providing an evidence for the miracidial maturity in the intrauterine eggs. B – High power 689 

micrograph showing details of the apical part of ciliated miracidium. Note numerous secretory 690 

granules and elongated mitochondria in the apical gland cytoplasm and the several cross section 691 

of cilia and oblique section of their striated ciliary rootlets. 692 

 693 

Fig. 3A, B, C and D. TEM micrographs of differentiating eggs of Maritrema feliui. A and B – 694 

Low-power TEM micrographs of two eggs with early embryos comprising only a very few 695 

blastomeres but already exhibiting the degenerating, pycnotic nuclei of micromeres undergoing 696 

apoptosis. C and D – TEM micrographs showing details of the apical pole of differentiating 697 

eggs. Note: (1) a well-defined operculum in the shell of each egg, (2) numerous spermatozoa in 698 

the uterine lumen, frequently surrounding the egg shell surfaces, and (3) a peeling of the egg 699 

shell surface, possibly a fixation artefact. 700 

 701 

Fig. 4A, B, C and D. TEM micrographs of mature eggs of Mediogonimus jourdanei. A – The 702 

general topography of the mature egg. Note: (1) peeling of the outer surface of the egg shell, 703 
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possibly representing fixation artefacts, (2) flattened nucleus of the mesomere and several 704 

spherical lipid droplets in the inner envelope cytoplasm, and (3) a great number of cilia which 705 

occupy all the space between the egg envelopes and miracidium. B – Part of the egg showing the 706 

miracidium surrounded by numerous cilia and miracidial gland with numerous electron-dense 707 

secretory granules in the central part of the micrograph. C – High-power TEM micrograph 708 

showing details of the miracidial gland nucleus. Note: (1) numerous large heterochromatin 709 

islands situated around the nuclear membrane and in the central part of the nucleoplasm, and (2) 710 

numerous nuclear pores around the nuclear membrane. D – Peripheral cytoplasm of the 711 

miracidium. Note: (1) several electron-dense secretory granules of different sizes, (2) numerous 712 

cross-sectioned at different levels miracidial cilia, and (3) heavy accumulation of alpha-glycogen 713 

rosettes and beta-glycogen particles. 714 

 715 

Fig. 5 A and B. TEM micrographs of differentiating eggs of Prosotocus confusus. A – Low-716 

magnification micrograph illustrating the general topography of three differentiating eggs in the 717 

proximal part of the uterus. Note: (1) an outer anucleate layer situated externally to the egg shell 718 

of each egg, forming a thin layer of cocoon composed of a transparent, electron-lucent substance; 719 

(2) numerous small, electron-dense islands irregularly dispersed around the egg surface, all 720 

attached to its peripheral membrane; and (3) dense bodies representing mainly degenerating early 721 

blastomeres and/or their nuclei undergoing apoptosis. B – Enlarged micrograph showing entire 722 

egg in early stage of embryonic development showing already three large areas of focal 723 

degradation and adjacent to a few small GER bodies, representing evident signs of cellular 724 

apoptosis. 725 



Table 1. Comparative host-parasite data and ultrastructure of the intrauterine eggs in some European Microphalloidea. 

PARASITE AND HOST DATA 

DIGENEAN SPECIES Maritrema feliui Mediogonimus jourdanei Brandesia turgida Prosotocus confusus 

DIGENEAN FAMILY Microphallidae Prosthogonimidae Pleurogenidae Pleurogenidae 

DEFINITIVE HOST Crocidura russula Myodes glareolus Pelophylax ridibundus Pelophylax lessonae 

HOST SYSTEMATICS Mammalia: Soricimorpha Mammalia: Rodentia Amphibia: Anura Amphibia: Anura 

HOST HABITAT Terrestrial Terrestrial Aquatic Aquatic 

HOST LOCALITY La Ricarda, Barcelona 

(Spain) 

Nature Reserve of Py 

(France) 

Rybinsk Reservoir 

(Russia) 

Bugskiy landscape reserve 

(Belarus) 

ULTRASTRUCTURAL DATA 

EGGSHELL TYPE Oligolecithal Polylecithal  Polylecithal Polylecithal 

EGGSHELL ORIGIN  Vitellocytes and Mehlis Vitellocytes and Mehlis Vitellocytes and Mehlis Vitellocytes and Mehlis 

EXTRA-EGGSHELL “COCOON”  No No Yes Yes 

“COCOON” ORIGIN  N/A N/A Undetermined Undetermined 

DEVELOPMENTAL STAGE Early embryo Fully formed miracidium Fully formed miracidium Early embryo 

OUTER ENVELOPE Macromeres 

persist into later 

development 

Macromere nuclei 

degenerate early 

Macromere nuclei 

degenerate early 

Macromere nuclei 

degenerate early 

INNER ENVELOPE Mesomere syncytium? Mesomere syncytium Persistent 

mesomere syncytium 

Mesomere syncytium? 

N/A not applicable 
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