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Abstract: Obesity-associated insulin resistance and hyperinsulinemia are two interrelated health conditions that have become 

increasingly prevalent in recent years. For many years, it has been thought that hyperinsulinemia comes after insulin resistance. 

The truth is that recent data suggests that insulin resistance can follow hyperinsulinemia and vice versa. Obesity is commonly 

associated with insulin resistance and hyperinsulinemia, but although some molecular mechanisms have been proposed, there 

is no clear evidence as to which condition occur before in humans. Despite much controversy over the timing of the onset of 

hyperinsulinemia in obesity, it is well established that the presence of insulin is necessary for obesity to occur and that chronically 

elevated insulin levels enhance diet-induced obesity. Therefore, the aim of this review is to provide a comprehensive up-to-date 

on the molecular mechanisms underlying hyperinsulinemia and the relationship between hyperinsulinemia and insulin 

resistance in obesity. In addition, we will examine the role hyperinsulinemia plays in cellular senescence, cancer and in 

dysregulating the insulin/IGF-1/GH axis. Finally, we will discuss possible current therapeutic strategies targeting 

hyperinsulinemia that are being used to treat obesity-associated insulin resistance, including current pharmacological therapies, 

the effects of multiple dietary interventions, physical exercise, and surgery. We conclude that hyperinsulinemia is a prevalent 

condition in obesity, but its time of occurrence and relationship with obesity are still under investigation. Dietary interventions, 

particularly low glycemic load diets and low carbohydrate diets, as well as regular exercise have shown promise in reducing 

hyperinsulinemia, while the long-term efficacy and potential side effects of pharmacological interventions require further study. 
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Hyperinsulinemia, Obesity, Insulin, Obese, Insulin clearance, Insulin signaling. 
 

Resum: L'obesitat associada a la resistència a la insulina i la hiperinsulinemia són dues condicions de salut interrelacionades 

que han esdevingut cada vegada més prevalents en els últims anys. Durant molts anys, s'ha pensat que la hiperinsulinèmia ve 

després de la resistència a la insulina. La veritat és que les dades recents suggereixen que la resistència a la insulina pot seguir 

la hiperinsulinèmia i viceversa. L'obesitat s'associa comunament amb la resistència a la insulina i la hiperinsulinèmia, però tot i 

que s'han proposat alguns mecanismes moleculars, no hi ha evidència clara de quina condició ocorre abans en els éssers 

humans. Malgrat molta controvèrsia sobre el moment de l'aparició de la hiperinsulinèmia en l'obesitat, està ben establert que 

la presència d'insulina és necessària perquè es produeixi l'obesitat i que els nivells d'insulina crònicament elevats promouen 

l'obesitat induïda per la dieta. Per tant, l'objectiu d'aquesta revisió és proporcionar una actualització completa dels mecanismes 

moleculars subjacents a la hiperinsulinèmia i la relació entre la hiperinsulinèmia i la resistència a la insulina en l’obesitat. A més 

a més, examinarem el paper de la hiperinsulinèmia en la senescència cel·lular, el càncer i en la desregulació de l'eix 

insulina/IGF-1/GH. Finalment, es discutiran possibles estratègies terapèutiques actuals dirigides a la hiperinsulinemia que 

s'estan utilitzant per tractar l'obesitat associada a la resistència a la insulina, incloent les teràpies farmacològiques actuals, els 

efectes de múltiples intervencions dietètiques, l’exercici físic i la cirurgia. Concloem que la hiperinsulinèmia és una condició 

prevalent en l'obesitat, però el seu inici i relació amb l'obesitat encara estan en investigació. Les intervencions dietètiques, en 

particular les dietes de baixa càrrega glucèmica i dietes baixes en carbohidrats, a més de l'exercici regular, han demostrat ser 

prometedores per reduir la hiperinsulinèmia, mentre que l'eficàcia a llarg termini i els possibles efectes secundaris de les 

intervencions farmacològiques requereixen un estudi addicional. 

PARAULES CLAU 

Hiperinsulinèmia, Obesitat, Insulina, Obès, Depuració d’insulina, Senyalització de la insulina. 

Sustainable Development Goals (SDG): The first of the SDG regarding the person field is Goal 3: Good health and well-being, 
especially the target 3.4, which focuses on reducing premature mortality from non-communicable diseases. Hyperinsulinemia, a 
condition prevalent in obesity, is strongly associated with the development of chronic diseases like type 2 diabetes, cardiovascular 
diseases, and certain cancers. Understanding the molecular mechanisms underlying hyperinsulinemia can contribute to the 
identification of new therapeutic targets and interventions primarily by reducing premature mortality and promoting good health 
and well-being, directly in line with indicator 3.4.1. Secondly, and also within the personal field, we find Goal 4: Quality education. 
This review is in line with objective 4.7, which focuses on the promotion of health and well-being through education, including 
disease prevention. The study of the molecular mechanisms of hyperinsulinemia helps to identify key factors involved in the 
pathophysiology of obesity-related metabolic disorders, thus linking to indicator 4.7.1. By integrating this review into educational 
programs, quality evidence is provided, thus providing effective educational initiatives and interventions aimed at reducing the 
burden of obesity-related diseases and promoting healthier populations. Finally, the next SDG is included in the prosperity field, 
which is Goal 8: Decent work and economic growth. Particularly, this work is based on the target 8.1 and more specifically with 
the indicator 8.1.1 based on the importance of promoting decent work and economic growth. Obesity-related conditions, including 
hyperinsulinemia, can have significant economic burdens due to healthcare costs, reduced productivity, and increased 
absenteeism. Moreover, obesity is a major risk factor for various chronic health conditions that require ongoing medical 
management, including medications, bariatric surgeries, regular check-ups, and hospitalization among other issues, leading to 
an increased in health costs. Furthermore, obesity is associated with an increased risk of mental health such as depression and 
anxiety, which can further increase healthcare expenses and therefore have a negative impact on overall economic productivity. 
Hence, the work it provides an overview of evidence-based approached which promotes sustained, inclusive, and sustainable 

economic growth, full and productive employment, and decent work for all.  

TYPE: Review 
PUBLISHED: 21 June 
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1. Introduction 

 
 Insulin is a hormone secreted by β cells of Langerhans islets 

located in the endocrine pancreas. It is responsible for regulating 

glucose metabolism as well as promoting actions such as lipogenesis, 

increase the transport of amino acids into the cell or decrease lipolysis. 

Also, it participates in multiple signaling transduction pathways 

(Rahman et al. 2021). Hyperinsulinemia is a condition characterized by 

abnormally high levels of insulin in the bloodstream. At the meantime, 

there is no universally defined range for hyperinsulinemia, although 

many studies have reported a wide range of values, typically falling 

between 5-13 µU/ml, ≤ 30 µU/ml and 18 a 173 pmol/l (3-28 µU/ ml). 

It is important to note that these values serve as general guidelines, and 

specific reference ranges may vary depending on the laboratory test 

used to conduct the analysis as well as the specific population being 

studied (Janssen, 2021; Tsujimoto et al., 2017).  

 Hyperinsulinemia is associated with higher comorbidities and 

mortality from cardiovascular complications in patients with obesity 

(D. D. Thomas et al., 2019), but it also has a multiple role in a variety 

of disorders such as metabolic syndrome, type 2 diabetes, and cancer 

(Huang et al., 2021). Hyperinsulinemia rarely shows symptomatology 

unless hypoglycemia is present. This may cause mental confusion, 

fatigue, temporary muscle weakness, visual problems, headache, 

tremors and/or thirst (Parker, 2020).  

 Obesity is a chronic condition that has increased substantially 

worldwide and will continue to expand in the future (Lustig et al. 2022). 

Typically, the development of obesity is described as a condition 

caused by an imbalance between energy intake and energy expenditure 

(Huang et al., 2021). Nevertheless, obesity is a multifactorial condition 

that can result from genetic, environmental, and behavioral factors 

(Kawai et al., 2021). Obesity is characterized by an excessive 

accumulation of body fat, which depending on its localization and 

extent is associated with a major health risk limiting the lifespan and 

life expectancy of the subject and is defined by World Health 

Organization (WHO) as a Body Mass Index (BMI) of ≥ 30kg/m².  

 To undertake this bibliographic review, it was conducted a 

systematic search to identify the most relevant studies on this subject, 

mainly in online databases such as PubMed and Cercabib, although 

they were also used SciELO and Scopus. The articles were selected 

based on the level of evidence, year of publication and reference 

authors proposed by the author’s tutor and others found during the 

bibliographic search. The keywords used for the search were: 

“hyperinsulinemia”, “obesity”, “obese”, “insulin”, “insulin clearance” 

and “insulin signaling”. Regarding the inclusion criteria, it has been 

mainly looked for reviews but also for journals, meta-analyses, and 

randomized controlled clinical trials among others. In general, it has 

been tried to exclude very old articles in order to take into account the 

most current evidence, with the majority being between 2017-2023. 

 

2. Functional role of insulin 
 

2.1. Insulin synthesis 

 
          Insulin is a polypeptide hormone composed of 51 amino acids. 

In humans, the family of insulin-like genes comprises a group of genes 

that share structural similarities with insulin and have important roles 

in various biological processes. This family includes insulin, two 

insulin-like growth factors (IGF-1 and IGF-2), and relaxins (RLN1, 

RLN2, and RLN3) (Patil et al., 2017). Insulin is synthesized from the 

insulin gene (INS gene) as a prohormone in the β cells of Langerhans 

islets. The human pancreas contains 1 to 2 million of pancreatic islets 

(Rahman et al., 2021). Contrary to humans, mice and rats have two 

insulin genes, INS1 and INS2. It has been discovered that there is a 

strong similarity between the rodent INS2 gene and the human INS 

gene.  

         Insulin mRNA is translated as a single-chain polypeptide 

precursor named preproinsulin of 110 amino acids, which is converted 

to proinsulin when the signal peptide is cleaved off in the cisternae of 

the endoplasmic reticulum resulting in proinsulin. Proinsulin consists 

sequentially of 3 domains: the N-terminal B-chain, the connecting C-

peptide and the C-terminal A-chain. Furthermore, it has 3 disulphide 

bonds, two of them between A-chain and B-chain and another 

disulphide bond within A-chain. The proteases that cleave proinsulin 

(proprotein convertases) are packaged with proinsulin inside secretory 

vesicles. Through proteolytic cleavage, the C-peptide is cut, and the 

mature hormone is formed.  The mature insulin consists of two chains, 

an α-chain and a β-chain, which are connected by disulphide bonds. 

Insulin is then stored as hexameric insulin/Zn2+ crystals within mature 

secretory granules. Upon stimulation, the secretory granules undergo 

exocytosis, leading to the release of the granule contents into the 

extracellular space (Koeppen & Staton, 2017). 

 

2.2. Regulation of insulin secretion 
 

         The major stimulus for insulin to be released by β cells is glucose 

through a process referred to as glucose-stimulated insulin secretion 

(GSIS) (Rahman et al., 2021).  Once glucose is in the bloodstream is 

distributed to all the tissues of the body including the pancreas, which 

means the concentration of glucose is high in the blood compared to the 

concentration of glucose in tissues. This leads to the transport of 

glucose through facilitated diffusion mediated by glucose transporter 2 

(GLUT2) (Rorsman & Ashcroft, 2018). Once glucose is inside the cell, 

glucokinase (GCK) will turn glucose into glucose-6-phosphate (G6P). 

GCK is an enzyme that is directly related with insulin secretion. Thus, 

it has been seen that an aberration or dysfunction of the GCK gene leads 

to a decrease in insulin release that can trigger diabetes. In contrast, an 

activating mutation of this gene is clinically manifested as congenital 

hyperinsulinism (Sternisha & Miller, 2019). G6P is then converted to 

pyruvate. Pyruvate dehydrogenase complex (PDHc) oxidates pyruvate 

into acetyl-CoA, which is oxidated in the TCA cycle. The resulting 

NADH and FADH2 are oxidated via the oxidative phosphorylation 

machinery resulting in an increase of ATP/ADP ratio, which causes an 

inhibition of ATP sensitive K+ channel, leading to depolarization of the 

cell with the opening of voltage-dependent Ca2+ channels and the 

entrance of calcium into the β-cell, followed by migration of insulin-

containing vesicles into the plasma membrane releasing insulin into the 

blood (Koeppen & Staton, 2017), Figure 1. It is important to note that 

glucose is not the only nutrient capable of stimulating insulin secretion, 

other molecules such as amino acids, free fatty acid (FFA), ketone 

bodies and even different hormones are known to promote insulin 

release (Fu et al., 2013). A variety of incretins can modulate and 

enhance insulin secretion, being the gastrointestinal polypeptide (GIP), 

pancreatic glucagon and glucagon-like peptides (GLP) the ones that 

have a major role. Whilst these hormones and nutrients may themselves 

stimulate insulin secretion, in the presence of glucose this mechanism 

is reinforced by a synergistic relationship (Pettinato et al., 2022).  
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2.3. Insulin receptor  
 

         The insulin receptor (InsR) is a tetrameric glycoprotein composed 

of two extracellular α-subunits and two β-subunits that have 

extracellular transmembrane and intracellular domains (Meyts, 2016). 

It belongs to the family of membrane receptors with intrinsic tyrosine 

kinase activity. The cytosolic region of β-subunit possesses several 

tyrosine residues. When insulin binds to the InsR, the α subunits will 

drive a conformational change of β-subunits that causes auto 

phosphorylation of various tyrosine residues in the β subunit, which 

serves as a signal for downstream signaling molecules to bind to the 

receptor and initiate further cellular responses. The α and β subunits are 

both derived from the INSR gene. It has two possible isoforms: IR-A 

and IR-B. The second is mainly involved in insulin-regulated metabolic 

processes in adults. IR-A, on the other hand, is relevant in prenatal 

growth and development. The two isoforms (IR-A, IR-B) are able to 

make hybrid complexes with insulin-like growth factor 1 receptor 

(IGF1R). In addition, IR-A is also capable of binding IGF-2. Insulin is 

therefore able to execute all its biological activities, either as a hormone 

or as a growth factor, by binding to its cell-surface receptor (Koeppen 

& Staton, 2017).  

 

2.4. Insulin signaling pathways 

 

         When insulin binds to its receptor, this results in 

autophosphorylation of tyrosine residues in the catalytic domains of 

the β-subunits (Koeppen & Staton, 2017). This leads to the activation 

and initiation of two main signaling pathways: the phosphatidylinositol  

3-kinase (PI3K)/protein kinase B (Akt) pathway and the mitogen-

activated protein kinase (MAPK) pathway. These two pathways 

modulate multiple actions of insulin associated with the regulation of 

gene expression, energy metabolism and mitogenic effects (Rahman et 

al., 2021).  

 

2.4.1. PI3K/AKT cell signaling pathway 
 

          It is the major mechanism by which insulin exerts its effects on 

glucose and lipid metabolism. Hormone-bound InsR will drive 

phosphorylation of insulin receptor substrate (IRS) on tyrosine 

residues, which act as SH2-domain docking sites for the recruitment of 

PI3K. The PI3K converts the phosphatidylinositol 4,5-bisphosphate 

(PIP2) into phosphatidylinositol 3,4,5-triphosphate (PIP3). PIP3 is a 

signaling lipid which attracts proteins to the membrane. In this 

pathway, phosphoinositide dependent protein kinase-1 (PDK-1) will 

bind to PIP3 and get activated. PDK-1 will then draw in the PKB/Akt 

and phosphorylate it (Rahman et al., 2021). Furthermore, PKB/Akt is 

also activated by the phosphorylation of mTORC2 (Titchenell et al., 

2017). PKB/Akt then is the responsible for regulating multiple 

metabolic actions of insulin in hepatocytes, skeletal muscle and 

adipocytes including protein synthesis (via mTORC1), gene 

transcription (via FOXO, SREBP1 among others), etc. (Fazakerley et 

al., 2019; Koeppen & Staton, 2017). 

 

2.4.2. MAPK cell signaling pathway 
 

         Insulin has its effects on the regulation of protein synthesis mainly 

through this pathway. The phosphorylation of IRS promotes the 

recruitment of the SH2 domain of Grb2 (adapter protein), which binds 

to phosphorylated tyrosine residues on IRS1, and this will eventually 

activate the MAPK pathway. Then, SOS protein binds to Grb2, leading 

FIGURE 1 

Mechanism of glucose-stimulated insulin secretion (GSIS). *Created with BioRender by the author. 
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to the recruitment of monomeric G protein (RAS). Once RAS is 

activated the Rapidly Accelerated Fibrosarcoma (RAF-1) will be 

recruited to the cellular membrane and activated. Activated RAF will 

phosphorylate another protein named Map Kinase Kinase (MEK), 

which in turn will phosphorylate and concomitantly activate 

Extracellular Regulated Kinase (ERK). ERK enters to the nucleus and 

phosphorylates nuclear transcription factors such as Elk1 or SRF, 

which induce a transcriptional program able to induce mitosis and thus 

promote cell division, protein synthesis and cell growth (Rahman et al., 

2021).   

 

2.5. Insulin journey through the body 

 
         It is crucial to understand the pathway of insulin since it allows 

us to appreciate how insulin production, release and elimination are 

tightly regulated to maintain a proper balance in the body. Any 

disruption in any of these processes can have significant 

consequences for metabolic homeostasis. When blood glucose level 

rises after a meal, β cells of the pancreas release insulin into the 

bloodstream. The release of insulin is tightly regulated and occurs 

in a pulsatile manner (Laurenti et al., 2021). At this point, the insulin 

travels through the portal circulation to the liver and 50% of its 

content is filtered by the hepatocytes during the first pass. The 

resulting insulin travels via venous circulation to the heart. 

Subsequently, insulin is distributed via arterial circulation 

throughout the body. Remaining circulating insulin is degraded by 

the kidney and excreted by urine (Tokarz et al., 2018), Figure 2.  

 

 

2.6. Metabolic effects of insulin 

 
Insulin is the main anabolic hormone that dominates the regulation of 

the metabolism during the digestive phase. It is also important to 

mention that glucagon is another relevant hormone which likewise 

plays a critical role in maintaining metabolic homeostasis and acts 

antagonistically to insulin. Therefore, glucagon acts mainly in the 

fasting state while insulin acts in the fed state. Hence, the primary 

actions of insulin are glucose utilization (glycolysis), storage of 

glucose as glycogen (glycogenesis), lipid synthesis (lipogenesis) and 

protein synthesis, as well as promoting the uptake of glucose into 

tissues (Templeman et al., 2017). Even though insulin acts on multiple 

tissues, there are three particular targets, which are the liver, skeletal 

muscle and adipose tissue (Koeppen & Staton, 2017; Titchenell et al., 

2017).    

         It has been suggested that insulin exerts its effects on the liver 

through direct and indirect mechanisms. It primarily acts indirectly by 

inhibiting lipolysis, promoting glucose uptake by peripheral tissues 

such as skeletal muscle and adipose tissue in addition to lowering 

glucagon secretion and increasing glycogen synthesis as well as 

influencing neural signals that affect liver metabolism. On the other 

hand, the direct mechanisms of insulin action in the liver involve its 

binding to InsR located on the surface of hepatocytes which 

subsequently activates insulin signaling pathways in the liver. Both 

intrahepatic and extrahepatic pathways control insulin regulation of 

glucose and lipid metabolism (Rahman et al., 2021), Figure 3. 

 

2.6.1. Metabolic effects on the liver 

 
         The liver is the principal organ for insulin action. Glucose can 

enter the liver via GLUT2 transporters, which are independent of 

insulin. Nonetheless, insulin increases hepatic glucose utilization and 

retention by increasing the expression of GCK in the liver through 

activation of the transcription factor sterol regulatory element-binding 

protein-1c (SREBP-1c). In addition, insulin is able to inhibit the 

expression of the G6Pase enzyme gene via FOX01, resulting in the 

inhibition of gluconeogenesis. Alternatively, insulin represses the 

expression of genes for the gluconeogenic enzymes pyruvate 

carboxylase (PC) and phosphoenolpyruvate carboxylase (PEPCK). 

Insulin inactivates hepatic phosphorylase, an enzyme responsible for 

degrading hepatic glycogen to glucose, thereby inhibiting 

glycogenolysis. Insulin increases the expression of GCK, which 

converts glucose to G6P, thus preventing the degradation of stored 

glycogen, since G6P is the main substrate used by glycogen synthase 

(GS) for glycogen synthesis in the liver. Furthermore, GS can be 

activated by insulin through the phosphorylation and inhibition of 

glycogen synthase kinase 3 (GSK3). Moreover, with the action of 

specific protein phosphatases, such as protein phosphatase 1 (PP1), 

GS can be dephosphorylated and activated, leading to increased 

glycogen synthesis in the liver (Vargas et al., 2022). Insulin via Akt 

activates protein phosphatases which can stimulate glycolysis, 

gluconeogenesis, and de novo lipogenesis (DNL). In glycolysis, 

insulin-mediated activation of protein phosphatases promotes the 

dephosphorylation and activation of enzymes such as 

phosphofructokinase-1 (PFK1) and pyruvate kinase (PK), leading to 

increased glycolytic flux and glucose utilization. In DNL, insulin 

promotes the activation of protein phosphatases that dephosphorylate 

and activate key enzymes involved in fatty acid synthesis, such as 

FIGURE 2 

Simplification of the main organs and tissues through which insulin 

circulates and acts. *Created with BioRender by the author. 
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acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS). This 

leads to an increase in the production of fatty acids from glucose, 

contributing to lipid synthesis and storage. Furthermore, Akt activates 

mTORC1 (mammalian target of rapamycin complex 1) stimulating 

protein synthesis and inhibiting protein degradation and autophagy. 

Additionally, FOX01, is also responsible for inducing the expression 

of proteins implicated in the assembly and export of VLDL. 

Moreover, by activating mTORC1 and inhibiting FOX01, Akt also 

regulates genetic expression through the activation of SREBP-1c, 

which regulates glycolysis and DNL to produce phospholipids, 

triglycerides, and fatty acids in situations of excess glucose and 

fructose (Koeppen & Staton, 2017).   

 

2.6.2. Metabolic effects on the skeletal muscle 
          

         In the skeletal muscle the activation of Akt/PKB increases the 

translocation of glucose transporter type 4 (GLUT4) to the cell 

membrane in order to promote the entrance of glucose (Vargas et al., 

2022). Akt is responsible for inhibiting GSK3 thereby removing its 

inhibitory effect on GS, thus promoting glycogen synthesis for energy 

storage (Rahman et al., 2021). Another fraction will be used for ATP 

production in glycolysis.  Akt also stimulates protein synthesis by 

activating the mTORC1 pathway, leading to muscle protein synthesis. 

Moreover, it also inhibits protein breakdown (proteolysis) since it 

decreases the activity of proteolytic systems such as the ubiquitin-

proteasome and autophagy-lysosome pathways (Cohen et al., 2014; 

Sylow et al., 2021). Lastly, insulin is capable of inhibiting lipolysis in 

muscle cells by suppressing the activity of hormone-sensitive lipase 

(HSL) and it also promotes lipogenesis via the Akt pathway, 

stimulating the ACC, which converts acetyl-CoA into malonyl-CoA, 

the latter being a key precursor for fatty acid synthesis (Sylow et al., 

2021).  

2.6.3. Metabolic effects on the adipose tissue 
 

         Insulin signaling in adipocytes, as in skeletal muscle, leads to 

the translocation of GLUT4, leading to increased glucose influx into 

the cell. In addition to increasing glucose transport, it also suppresses 

lipolysis by Akt (Fazakerley et al., 2019), which phosphorylates and 

inactivates HSL, an enzyme responsible for the breakdown of stored 

triglycerides into FFA during lipolysis, thus preventing the release of 

fatty acids (Lan et al., 2019). Another important downstream target of 

insulin signaling in adipose tissue is the transcription factor SREBP-

1c, which activates the transcription of genes involved in fatty acid 

and triglyceride synthesis, promoting DNL (Song et al., 2018). 

Glycolysis in adipose tissue has a dual function: it provides energy in 

the form of ATP and generates glycerol-3-phosphate (G3P) necessary 

for the esterification of fatty acids to triglycerides. These metabolic 

processes are essential for the storage of energy in the form of fat in 

adipose tissue (Czech et al., 2013).  

 

3. Possible  molecular  mechanisms 

implicated  on  the  development  of 

hyperinsulinemia  in  obesity 

 

3.1. Insulin resistance 

 
         Insulin resistance is defined as a condition in which cells 

throughout the body become less responsive to the effects of insulin 

(Sarwar et al., 2022). Nevertheless, other investigators go beyond the 

classical definition of insulin resistance by saying that is a phenomenon 

where there is reduced insulin signaling at the cellular level but also 

FIGURE 3 

Simplification of the main insulin-dependent signaling pathways (PI3K/AKT and MAPK) and the metabolic effects induced by the activation of Akt/PKB. 

*Created with BioRender by the author. 
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hyperinsulinemia, arguing that hyperinsulinemia always accompanies 

insulin resistance and often even precedes it (Janssen, 2021; Shanik et 

al., 2008; Fryk et al., 2021; Kahn & Flier, 2000; Kobayashi & Olefsky, 

1978; Marín-Juez et al., 2014; Martin et al., 2011; Rizza et al., 1985) 

saying that both conditions tend to coexist as one condition leads to the 

other and vice versa. For a long time, it was firmly believed that insulin 

resistance was the initial event and preceded hyperinsulinemia. From 

this perspective, hyperinsulinemia was considered to be a 

compensatory response to counteract insulin resistance in the body and 

insulin resistance the main factor in the development of obesity, type 2 

diabetes, cardiovascular disease and cancer. Nowadays, this has been 

much debated and it appears that hyperinsulinemia may precede insulin 

resistance in obesity in some cases (Abdul-Ghani & DeFronzo, 2023; 

M. K. Kim et al., 2017; Sarwar et al., 2022; van Vliet et al., 2020). It is 

even shown to be a causal factor in that insulin hypersecretion from 

beta cells is the major deficiency and will subsequently lead to insulin 

resistance. Additionally, research indicates that hyperinsulinemia leads 

to a decrease in receptor affinity and number, favoring the development 

of insulin resistance (van Vliet et al., 2020). However, there is still 

much contradiction between the timing of the onset of these two events 

(Araújo et al., 2013; Chen et al., 1994; Najjar et al., 2022; RAO, 2001; 

Sbraccia et al., 2021; Shinozaki et al., 1996). The possible sequences of 

events regarding the onset of hyperinsulinemia and insulin resistance 

will be discussed in more depth below along with the two theories of 

origin of hyperinsulinemia in people with obesity in section 4.2. 

 

3.2. Adipose tissue inflammation 

 
         Insulin is known to regulate white adipose tissue (WAT) 

accumulation through inhibition of lipolysis and stimulation of both 

fatty acid uptake and triglyceride synthesis (lipogenesis). It also 

increases the expression of genes involved in fatty acid uptake and 

storage. In the long term, it has been observed that insulin signaling 

drives adipogenesis in adipose tissue. In experimental studies in mice, 

hyperinsulinemia promotes inflammation of adipose tissue leading to 

disruption of various metabolic processes. Additionally, a deletion of 

InsR in WAT was shown to protect rats from obesity. This shows the 

indispensability of insulin for adipocyte differentiation and/or 

hypertrophy and/or hyperplasia (Templeman et al., 2015, 2017). High-

calorie diets and overfeeding were seen to cause an inflammatory state 

(De Vries et al., 2014; Herieka & Erridge, 2014). In obesity, the chronic 

accumulation of excess energy in adipose tissue initiates pathological 

changes that elicit an immune response characterized by inflammation. 

This inflammatory response hinders the normal tissue remodeling 

processes, including angiogenesis and tissue repair, which are essential 

for healthy expansion of adipose tissue. Consequently, adipocytes 

undergo hypertrophy and exhibit heightened expression and secretion 

of proinflammatory cytokines, which then promote serine 

phosphorylation of IRS-1 through signaling pathways involving 

nuclear factor kappa β (NF-kβ) and Jun N-terminal kinase (JNK), 

ultimately leading to the development of insulin resistance (Choe et al., 

2016; Hirosumi et al., 2002; Yung & Giacca, 2020). When cells do not 

respond adequately to insulin, they cause a rise in blood glucose, which 

increases insulin production and secretion by pancreatic beta cells in an 

attempt to compensate normal glucose levels in the blood (Ahmed et 

al., 2021). What is known for sure is that hyperinsulinemia plays an 

important role in adipose tissue inflammation and insulin sensitivity, as 

a reduction in hyperinsulinemia shows a significant improvement in 

both functions (Abdul-Ghani & DeFronzo, 2023; Pedersen et al., 2015). 

3.3. Loss of pulsatile insulin secretion 

 
         Insulin is a pulsatile hormone; this means that its release into the 

bloodstream occurs in the form of intermittent pulses rather than a 

continuous and steady secretion over time. The pulsatile pattern of 

insulin is essential for accurate regulation of blood glucose levels and 

serve as an indicator of β-cell health (Laurenti et al., 2021). When 

glucose levels rise after a meal, there is a sharp increase in insulin 

secretion in the form of a pulse. This insulin pulse helps to facilitate 

glucose uptake by peripheral tissues, such as muscle and adipose tissue, 

but in addition to glycemic control it is important for preserving normal 

hepatic insulin signaling function and preserving insulin sensitivity 

(Laurenti et al., 2021; Matveyenko et al., 2012; Žarković et al., 2000). 

Loss of pulsatile insulin secretion is one of the first defects detected in 

individuals at risk for T2DM (O’Rahilly et al., 1988; Wahren & Kallas, 

2012). It is known that the way the pancreas releases insulin dictates 

hepatic insulin clearance as the liver primarily removes insulin 

administered in pulses (Meier et al., 2005). While a short-term rise in 

insulin levels activates the InsR, prolonged and continuous elevation of 

insulin leads to the desensitization of the InsR. This desensitization 

process involves a decrease in the number of InsR on the cell surface 

due to increased internalization and degradation, thus contributing to 

insulin resistance (Janssen, 2021).  

 

3.4. Decreased insulin clearance 
 

         Insulin has a short half-life of about 5 minutes and is rapidly 

degraded in the liver, kidney and other tissues by the insulin-degrading 

enzyme (IDE) although there are other minority insulin degradation 

systems such as protein disulphide isomerase and lysosomal cathepsin 

D. The primary event in the degradation of insulin is the binding to 

InsR, which then makes it a substrate for the IDE, located in the 

endosomes. The liver is the main place for insulin clearance where 

approximately a 50% is eliminated before arriving at peripheric 

circulation (Najjar et al., 2022; Valera Mora et al., 2013). As 

determinants of insulin clearance, we find both the expression of the 

basal InsR and the supply of insulin to insulin-clearing tissues (Najjar 

et al., 2022). Insulin resistance has been identified in some clinical trials 

as a causal factor for the reduced insulin clearance rate (Gastaldelli et 

al., 2021; M. K. Kim et al., 2015). Other studies even propose the 

reduction of hepatic insulin clearance as the primary cause of peripheral 

hyperinsulinemia (Bojsen-Møller et al., 2018). It has been seen that 

people with obesity have a reduction in the number of cell surface InsR 

on the major tissues of insulin clearance (Kolterman et al., 1979; 

Wondmkun, 2020) which can result in a reduction of insulin clearance. 

This places hyperinsulinemia at least partly responsible for the 

reduction of InsR expression in cell membrane in subjects with obesity 

(Najjar et al., 2022). For example, Kim et al. found that individuals with 

obesity, regardless of the degree of insulin resistance, tend to have 

elevated insulin levels in the bloodstream and increased insulin 

secretion and that reduced insulin clearance is observed specifically in 

those individuals with insulin resistance (M. K. Kim et al., 2017). In 

addition, they previously demonstrated that obese individuals, 

regardless of their insulin sensitivity or resistance, exhibit fasting 

hyperinsulinemia, but those with obesity and insulin resistance had the 

greatest increase in hyperinsulinemia (M. K. Kim et al., 2015). 

Moreover, Bergman et al. propose that impaired liver insulin clearance 

contributes to sustained elevation of insulin levels in the bloodstream, 
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leading to insulin resistance and eventually the inability of beta cells to 

adequately compensate for the insulin resistance through increased 

secretion. This progressive dysfunction of beta cells ultimately results 

in persistent hyperglycemia over time (Bergman et al., 2019, 2022). 

         Obesity is also associated with a reduction of the 

Carcinoembryonic antigen-related cell adhesion molecule 1 

(CEACAM1) expression in the liver, a transmembrane protein of the 

InsR in liver that promotes insulin clearance (Deangelis et al., 2008; 

Fosam et al., 2020; Poy et al., 2002) and negatively regulates insulin 

effects on hepatic de novo lipogenesis through fatty acid synthase 

(Heinrich et al., 2017). Therefore, a significant decrease or a mutation 

of CEACAM1 in the liver leads to a reduction of insulin clearance, 

resulting in hyperinsulinemia with subsequent insulin resistance. This 

results in increased hepatic lipogenesis, which in turn promotes the 

deposition of visceral adiposity leading to hyperleptinemia, which will 

then stimulate food intake and energy imbalance, two factors that play 

a highly significant role in obesity (Heinrich et al., 2017). Although it 

has been shown that insulin clearance is often impaired in obese 

subjects with hyperinsulinemia there are some conflicting studies as to 

the specific mechanisms involved, which does not provide us with a 

clear result as to the relationship between insulin clearance and 

hyperinsulinemia (Consortium et al., 2018; Faber et al., 1981; Flier et 

al., 1982; Meistas et al., 1983; Polonsky et al., 1988; Robertson et al., 

1992). It is therefore essential to determine why a reduction in insulin 

clearance is observed in individuals with obesity and hyperinsulinemia, 

and the role that insulin resistance plays in this equation.  

 

3.5. Influence of different molecules on insulin 

secretion 
 

         Insulin secretion is a process that can be influenced by various 

nutrients and other circulating factors. The combined sensing of 

nutrients and the metabolic products resulting from the metabolism of 

glucose, amino acids and fatty acids triggers several metabolic factors 

involved in signaling insulin release. These metabolic factors (e.g. 

ATP, NADPH, glutamate, long-chain acyl-CoA and diacylglycerol) are 

involved in the process of insulin exocytosis. Carbohydrates, especially 

glucose, is the major secretagogue, although fructose is also capable of 

stimulating insulin secretion (Newsholme & Krause, 2012). However, 

arginine is a potent insulin secretagogue and it has been proposed that 

it may act directly and indirectly on the beta cell. Indirectly, since it can 

increase nitric oxide production, which acts as a signaling molecule that 

enhances insulin release. But also, directly by entering to the beta cells 

through cationic amino acid transporters and undergoing metabolism. 

In both animal models and patients with obesity, it has also been shown 

to lower blood glucose levels, reduce adiposity and improve insulin 

sensitivity (Forzano et al., 2023; Halperin et al., 2022; Leiss et al., 

2014). Others amino acids such as leucine, alanine and glutamine can 

also be potent insulin secretagogues through various molecular 

mechanisms (Newsholme et al., 2015). On the other hand, it is thought 

that FFA acutely stimulate insulin secretion (Cen et al., 2016; Ježek et 

al., 2018; Staaf et al., 2016). The mechanisms proposed through which 

fatty acids can stimulate insulin secretion are either through the 

generation of LC acyl-CoA or by the stimulation of signal transduction 

events (Newsholme & Krause, 2012). Yet, others suggest that FFA only 

stimulate insulin secretion via GSIS (Losada-Barragán, 2021; Rahman 

et al., 2021; Salehi et al., 2005).  It is important to note that both fatty 

and amino acids can stimulate insulin secretion individually or in 

conjunction with elevated glucose levels, although there will always be 

a greater increase in insulin secretion when glucose is present. (Losada-

Barragán, 2021; Templeman et al., 2017). Apart from that, 

neurohormonal signals also can regulate insulin secretion. One 

important group of signals are the incretin hormones, such as glucagon-

like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide 

(GIP) in addition to autonomic innervation. These hormones are 

released from the gut in response to nutrient ingestion, particularly 

carbohydrates. When these incretin hormones bind to their receptors on 

pancreatic beta cells, they stimulate insulin secretion in a glucose-

dependent manner. This ensure an increase in insulin release through 

modulation of signal transduction and/or ion channel activity when 

blood glucose levels are elevated, promoting glucose uptake and 

utilization by peripheral tissues (Newsholme et al., 2015). 

 

3.6. Adiponectin and leptin: two critical 

hormones in adipose tissue 

 
         The WAT secretes various molecules including adiponectin, 

TNF-alpha, resistin, interleukins, leptin, among others. Leptin is a 

hormone that transmits signals to the hypothalamus participating in the 

suppression of appetite and energy expenditure. In obesity, there is a 

disruption in the response to leptin. This condition is known as leptin 

resistance. As fat accumulation increases, leptin levels in the blood also 

rise, but the brain becomes less responsive to its signals, leading to an 

excessive appetite and reduced energy expenditure. Interestingly, 

insulin and leptin interact with each other since leptin has the ability to 

inhibit insulin, while insulin promotes the synthesis and release of 

leptin.  Leptin also enhances insulin sensitivity by reducing adiposity 

(fat accumulation) and the lipotoxicity caused by excessive fat as well 

as exerting insulin-independent effects both in the central nervous 

system and in peripheral tissues, further enhancing insulin sensitivity 

(Paz-Filho et al., 2012). Leptin may also interact with insulin signaling 

and affect the function of insulin-producing pancreatic beta cells 

(Cochrane & Shyng, 2019). Adiponectin is a hormone that plays an 

important role in regulating insulin sensitivity and glucose and lipid 

metabolism. Under normal conditions, adiponectin levels are elevated 

and help to improve insulin sensitivity and reduce inflammation 

(Nguyen, 2020). Leptin resistance and decreased adiponectin were 

associated with the risk of insulin resistance and obesity (Agostinis-

Sobrinho et al., 2022; Cochrane & Shyng, 2019; Shih et al., 2022; 

Yadav et al., 2013; Funcke & Scherer, 2019; Stern et al., 2016). 

Hyperinsulinemia may also be part of this equation, since it was found 

that, in young non-obese men, hyperinsulinemia was shown to increase 

leptin levels (Boden et al., 1997) and is even proposed as the first event 

before insulin resistance and obesity (Denroche et al., 2012). Still, there 

is little evidence to support this hypothesis and there is a lack of human 

studies demonstrating the mechanisms by which hormones such as 

leptin and adiponectin may contribute to hyperinsulinemia and obesity. 

 
3.7. Influence of physiological, genetic, 

dietary and environmental factors 

 
         The influence of racial and ethnic differences between people in 

insulin sensitivity, beta cell function and insulin clearance has been 

observed in many studies (Goodarzi et al., 2014; Guo et al., 2012; 

Harris et al., 2002; Hasson et al., 2015). Furthermore, genetic factors 

are associated with insulin secretion and clearance (Bergman et al., 
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2019). For instance, black children and adolescents were found to have 

significantly higher insulin responses than whites, suggesting that they 

are more susceptible to hyperinsulinemia (D. Thomas et al., 2019). In 

addition, the occurrence of insulin resistance and hyperinsulinemia is 

higher in black African women when compared to white women 

(Goedecke et al., 2009) . Moreover, there are genetic variants such as 

FTO gene that may contribute to develop obesity since it has been 

associated with insulin resistance, insulin sensitivity and adiposity. 

However, the mechanisms by which FTO influences obesity is still not 

fully understood and requires further research (Do et al., 2008; Iskandar 

et al., 2018; Jacobsson et al., 2008).  

           In terms of physiological factors, sex and age have been shown 

to influence the distribution of adipose tissue. For instance, central 

adiposity tends to increase with age and men tend to have more visceral 

tissue than women (Nauli & Matin, 2019). It also has been suggested 

that the prenatal and adolescent period are determinants of the 

metabolic characteristics of adipose tissue in the future and that with 

poor habits they will be more susceptible to obesity in the future 

(Templeman et al., 2017).  

         Furthermore, environmental factors such as air pollution can 

influence adipose tissue inflammation, insulin resistance and it has also 

been linked to obesity (Dendup et al., 2018). Also poor dietary choices, 

especially a diet high in refined carbohydrates, sugar and saturated fat 

can contribute to hyperinsulinemia by decreasing insulin pulses 

(Janssen, 2021; D. D. Thomas et al., 2019) as well as lack of physical 

activity and a sedentary lifestyle (Park et al., 2020). 

         Research has uncovered interesting insights into the relationship 

between gut microbiota and obesity, who exhibit an imbalance in their 

gut microbiota composition, characterized by a reduction in beneficial 

bacteria and an increase in harmful bacteria, known as dysbiosis. 

Specific bacteria in the gut can ferment dietary fibers, giving rise to the 

production of short-chain fatty acids (SCFAs) like acetate, propionate, 

and butyrate (C. H. Kim et al., 2014). These SCFAs have been found 

to impact insulin signaling and glucose metabolism. In mice it was 

found that gut microbes regulate insulin clearance during diet-induced 

obesity (K. P. Foley et al., 2020). Additionally, SCFAs can stimulate 

the release of gut hormones, such as GLP-1 and GIP, which play a 

crucial role in regulating insulin secretion (B.-N. Liu et al., 2021). 

Lastly, a dysbiosis leads to an increase in pro-inflammatory bacteria, 

which can secrete endotoxins such as lipopolysaccharides (LPS). These 

molecules can translocate from the gut lumen into the bloodstream, 

initiating an immune response, affecting the gut barrier function and 

increase intestinal permeability (often referred to as leaky gut) and 

finally triggering a state of low-grade chronic inflammation. This 

inflammation disrupts insulin signaling pathways, leading to insulin 

resistance and impaired gut hormone secretion, indirectly influencing 

insulin secretion (Aoun et al., 2020; Boulangé et al., 2016; Sarmiento-

Andrade et al., 2022; Scheithauer et al., 2020; Vetrani et al., 2022; Xu 

et al., 2021), Figure 4.  

 

4. Role of hyperinsulinemia in obesity 

 

4.1. Proposed theories for the pathogenesis of 

obesity 

 
         Currently, there are two paradigms regarding the pathogenesis of 

obesity, the carbohydrate-insulin model (CIM) and the energy balance 

model (EBM), which are two theoretical frameworks that provide 

different perspectives on the factors influencing weight regulation and 

the development of obesity (Ludwig et al., 2022).  Despite the fact that 

there is some level of contradiction between these models, it's important 

to note that they are not necessarily mutually exclusive, and both have 

contributed to our better understanding of the onset/development of 

obesity. While CIM emphasizes the role of hormonal responses to 

carbohydrate consumption, the EBM is focused on the overall energy 

balance between energy intake and energy expenditure as the primary 

determinant of body weight. The EBM is based on the brain controlling 

food intake to regulate body weight through complex metabolic, 

endocrine, and nervous system signals as well as environmental 

influences. In this model obesity is caused by the total calories 

consumed through energy-dense, ultra-processed foods high in portion 

size, fat, sugar and low in protein and fiber, resulting in overeating, and 

ultimately excess energy being deposited in body fat. However, the 

CIM proposes that high-glycemic load and high-sugar diets, 

particularly in the form of refined carbohydrates and added sugars, 

leads to a rapid and excessive rise in blood glucose levels. This results 

FIGURE 4 
Possible etiologies of hyperinsulinemia in the context of obesity. *Created with BioRender by the author. 
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in a large increase in insulin and GIP secretion, a highly anabolic profile 

that leads to fat deposition. By shifting substrate partitioning towards 

deposition, less energy is left available for metabolically active tissue. 

In response to this, the brain activates pathways to promote energy 

intake (Holsen et al., 2021), and when we restrict ourselves to the 

impulse of eating, it leads to a conservation of metabolic fuels through 

a reduction in energy expenditure. This manifests itself as fatigue, 

decreased thermogenesis, an increase in muscle efficiency, among 

others contributing to positive energy balance and thus weight gain. 

Concerning hyperinsulinemia, the CIM proposes a diet-phenotype 

interaction, where people with high endogenous insulin secretion 

would be more susceptible to the adverse metabolic effects of a high 

glycemic index diet. Accordingly, this model proposes a stronger link 

between hyperinsulinemia and obesity, as it focuses on excessive 

consumption of carbohydrates, the nutrient that stimulates insulin the 

most (Henquin, 2000; Losada-Barragán, 2021). In contrast, EBM has 

some limitations such as not considering the effects of different 

macronutrients and ignores the influence of hormones in the regulation 

of metabolism. Therefore, on the basis of the CIM, chronically elevated 

insulin levels, caused by repeated spikes in blood glucose due to high 

carbohydrate intake, could lead to the inhibition of fat mobilization 

(lipolysis) and the promotion of fat deposition in adipose tissue 

resulting in obesity (Ludwig et al., 2022; Soto-Mota et al., 2023). 

 

4.2. Contrasting recent evidence: two main 

hypotheses of the effect of obesity on 

hyperinsulinemia 
 

         There are two main theories that may explain how 

hyperinsulinemia occurs in obesity. Both suggested theories emphasize 

the complex interaction between obesity, hyperinsulinemia, and insulin 

resistance. In one theory, chronic inflammation may play a key role in 

the development of insulin resistance, while in the other, excessive 

stimulation of beta cells due to dietary intake may contribute to 

hyperinsulinemia. 

 

4.2.1. Proinflammatory state and insulin 

resistance 
 

         Concerning the first theory and the one that was formerly thought 

to be the only possible one, obesity causes an inflammatory state in the 

adipose tissue called low-grade chronic inflammation (LGCI). In 

obesity, the excessive accumulation of fat in WAT results in a 

phenotypic change characterized by hypertrophy of adipose cells, 

leading to inflamed and dysfunctional adipocytes along with infiltration 

of immune cells into the vascular fraction of stroma. There is a more 

complex and intense inflammatory reaction in visceral adipose tissue 

compared to subcutaneous adipose tissue due to the higher 

accumulation of immune cells, the increased release of pro-

inflammatory adipokines and the greater capacity to produce FFA 

(Ibrahim, 2010; Kawai et al., 2021). In order to compensate this 

proinflammatory state, adipose tissue starts to recruit monocytes, which 

become differentiated into proinflammatory macrophages M1 (Lumeng 

et al., 2007). With the tissue enlargement, the adipocytes and 

macrophages release FFA together with reactive oxygen species (ROS) 

and pro-inflammatory cytokines and adipokines. Cytokines act both 

locally and systemically, some of them are tumor necrosis factor-alpha 

(TNF-α), interleukin-6 (IL-6) and monocyte chemoattractant protein-1 

(MCP-1). Additionally, the excess of FFA into circulation results in 

their incorporation into the cells of non-adipose tissues, thereby 

producing lipotoxicity, which will begin to deregulate multiple cellular 

organelles that will subsequently release pro-inflammatory cytokines 

and ROS. Consequently, the systemic pro-inflammatory state is 

generated (Khan et al., 2020), where many molecules are altered, 

including the hormones adiponectin, leptin and resistin (Choe et al., 

2016; G. R. Kim et al., 2020). Chronic inflammation in adipose tissue 

can result in increased release of FFA into the circulation. In some 

studies, FFA are positioned as the main cause of insulin resistance, 

rather than glucose, since it has been observed that there is a 

disconnection between hyperinsulinemia and hyperglycemia in some 

obese individuals, as they may have hyperinsulinemia but still maintain 

normal glucose tolerance. This finding has prompted a reassessment of 

the conventional understanding that elevated levels of FFA are the 

primary metabolic disturbance responsible for the presence of fasting 

hyperinsulinemia in individuals with obesity but normal glycemic 

control, which later can induce insulin resistance (Fryk et al., 2021). 

Nevertheless, further research is needed to prove this hypothesis. What 

is clear, however, is that FFA may contribute to insulin resistance 

(Boden, 2001; Chueire & Muscelli, 2020; Jiang et al., 2020; Sears & 

Perry, 2015; Stefanovski et al., 2021; Xin et al., 2019). 

          This inflammatory state also activates specific signaling 

pathways involving the JNK, IκB kinase (IKK) and RNA-activated 

protein kinase (PKR), which may cause insulin resistance in the context 

of obesity and a high-fat diet (Feng et al., 2020; Nakamura et al., 2010; 

Nandipati et al., 2017). In obesity, conditions such as increased pro-

inflammatory cytokines (TNF-α and some interleukins), FFA, ROS or 

endoplasmic reticulum stress (ERS) exacerbate the activity of these 

three kinases, inhibiting InsR signaling via serine phosphorylation of 

IRS-1. Consequently, this phosphorylation event triggers 

ubiquitination and subsequent degradation of IRS-1, effectively 

preventing the downstream effects of insulin following receptor 

activation and finally inducing insulin resistance in obesity. 

Furthermore, these kinases have the ability to trigger inflammatory 

reaction through the activation of key transcription factors such as AP-

1, NF-κB and IRF (Gal-Ben-Ari et al., 2019; Gregor & Hotamisligil, 

2011; Khalid et al., 2021), Figure 5.  

 

FIGURE 5 

The mechanisms through which obesity-induced kinase activation leads to 

insulin resistance. *Created with BioRender by the author. 
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         In short then, depending on the individual, this resistance may be 

caused by some of these factors or even by a combination of all of them: 

impaired insulin signaling, disrupted glucose homeostasis, systemic 

dysregulation and elevated FFA (Ahmed et al., 2021; Kolb, 2022; Wu 

& Ballantyne, 2020). As insulin resistance develops, pancreatic beta 

cells attempt to compensate for this resistance by producing and 

releasing more insulin in an attempt to maintain blood glucose levels 

within a normal range.  However, chronic inflammation and other 

factors such as lipotoxicity and oxidative stress can affect beta cell 

function and survival, resulting in a reduced ability to respond 

adequately to increased insulin demand. This leads to insufficient beta-

cell compensation and an increase in blood insulin levels, which we 

define as compensatory hyperinsulinemia (Bergman et al., 2019; 

Czech, 2017), Figure 6A.  

 

4.2.2. High-glycemic load diets 

 
         Regarding the second and more recent theory, is being closely 

linked to the CIM. This theory is based on the fact that high-glycemic 

load diets (HGLD) are a major driver to obesity (Astley et al., 2018; Ss, 

2022). This type of diet is characterized by foods rich in refined 

carbohydrates and simple sugars, such as white bread, pasta, white rice, 

baked goods, sugary drinks, etc. These foods are absorbed more quickly 

into the bloodstream, causing hyperglycemia during the early 

postprandial stage (0-2 hours) due to their rapid digestion and 

absorption (Chiu & Taylor, 2011; Onna Lo, 2018). This causes the 

pancreas to release an excessive amount of insulin to compensate for 

the elevated glucose levels, resulting in an overstimulation of 

pancreatic beta cells causing hyperinsulinemia. The main purpose of 

this hypersecretion of insulin is to lower blood glucose levels, allowing 

glucose to enter the cells for use as an energy source, storage as 

glycogen in the liver and muscles, and conversion to fat for storage in 

adipose tissue. Additionally, this glucose spikes lead to reactive 

hypoglycemia during the late postprandial phase (3-6 hours), resulting 

in an activation of lipolysis as a compensatory mechanism to release 

fatty acids and provide an alternative source of energy in the absence 

of sufficient glucose (Bernroider et al., 2005; Brun et al., 2019; Stuart 

et al., 2013). However, in obese individuals, adipose tissue is already 

saturated with fatty acids due to excess fat storage. Therefore, this can 

lead to an increased release of FFA into the bloodstream, which can 

interfere with insulin action in peripheral tissues such as muscle and 

liver, known as insulin resistance. The counter-regulatory hormonal 

response following hypoglycemia (glucagon, cortisol and growth 

hormone) with sustained hyperinsulinemia and constant glucose 

availability was found to induce resistance by stimulating lipolysis 

(Fanelli et al., 1992). Also, it has been demonstrated that, during 

hypoglycemia, the PKA pathway is activated in adipose tissue, leading 

to activation of the HSL enzyme and the release of fatty acids from 

adipose tissue into the blood via lipolysis (Voss et al., 2017). In the face 

of insulin resistance, the pancreas attempts to compensate by secreting 

even more insulin to overcome this lack of response from peripheral 

tissues. Continued abuse of these dietary habits results in chronic 

hypersecretion of insulin to overcome the unresponsiveness of 

peripheral tissues to the hormone. Both the existence of 

hyperinsulinemia and insulin resistance ultimately cause stress on 

pancreatic beta cells, which in the long term can lead to beta cell 

dysfunction and T2DM (Esser et al., 2020; Furth-Lavi et al., 2022; 

Willett et al., 2002), Figure 6B.  

FIGURE 6 
The two main hypotheses of hyperinsulinemia in obesity. *Created with BioRender by the author. 
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4.3. Insulin/IGF-1/GH axis 

 
         The insulin-GH-IGF axis is a complex hormonal system that 

regulates various physiological processes, including growth, 

metabolism, and nutrient utilization. Growth hormone (GH) is known 

to enhance lipolysis and increase the metabolic rate, leading to greater 

energy expenditure. IGF-1 is produced mostly in the liver in response 

to GH stimulation and acts as a key mediator of GH effects in peripheral 

tissues. In healthy people there is a state of balance in the insulin-GH-

IGF-I axis, functioning in a coordinated and harmonious way where 

insulin and GH stimulate IGF-1 production in the liver, and once 

secreted it feeds back negatively to suppress both insulin and GH 

secretion (Huang et al., 2021). Hyperinsulinemia increases IGF-1 

secretion (Brugts et al., 2010), which inhibits GH secretion, and within 

a few days of overeating insulin is able to suppress GH synthesis and 

release from the pituitary gland (Cornford et al., 2011). Additionally, 

hyperinsulinemia induces loss of pulsatile insulin secretion, 

contributing to insulin resistance, which intensifies lipolysis in 

adipocytes by increasing FFA release, further inhibiting GH 

(Kreitschmann-Andermahr et al., 2010). Consequently, the insulin-GH 

ratio becomes skewed towards insulin dominance. This promotes 

energy storage and lipid synthesis and inhibits lipid breakdown, leading 

to a reduced energy expenditure, coupled with increased energy 

storage, favoring weight gain and obesity (Huang et al., 2020; Janssen, 

2021; Sbraccia et al., 2021), Figure 7.  

 

4.4. Other roles (senescence and cancer) 

 
         In normal conditions, insulin exerts autocrine effects by 

promoting beta-cell growth to ensure a sufficient mass of beta-cells to 

produce and secrete insulin. Moreover, it supports the survival and 

prevents the apoptosis of beta-cell as well as influencing its own 

production and secretion when beta-cells are exposed to elevated 

glucose levels (Mehran et al., 2012; Templeman et al., 2017). In people 

with obesity, however, this has been found to be altered. In situations 

of chronic hyperinsulinemia, even in nonproliferating cells, this 

prolonged mitogenic signal can trigger the reentry of the cell cycle. 

This, when combined with cellular stress, leads to the induction of 

senescence in mature adipocytes (Li et al., 2021). Basically, as we 

accumulate fat and obesity increases, leading to hypertrophy of 

adipocytes (Choe et al., 2016). Hyperinsulinemia has been shown to 

cause a phenomenon called endo-reduplication (duplication of genomic 

DNA without chromosome segregation during mitosis) in these 

hypertrophied adipocytes, which results in cellular senescence. “Endo 

reduplicated” adipocytes start to secrete increased amounts of pro-

inflammatory cytokines which promote a state of chronic inflammation 

in adipose tissue and finally throughout the body. This can trigger 

systemic inflammatory responses and contribute to the development of 

several metabolic diseases and neurodegenerative disorders (Baboota 

et al., 2022; Chow et al., 2019; Meijnikman et al., 2022; Narasimhan et 

al., 2022; Rodriguez-Cuenca & Vidal-Puig, 2021), Figure 8A.  

         Obesity is associated with an increased risk of developing certain 

types of cancer (Lauby-Secretan et al., 2016; Leitner et al., 2022), 

including breast, colorectal, liver, esophageal, gallbladder, kidney, 

uterine and pancreatic cancer (Gunter et al., 2009; Pati et al., 2023; 

Zhang et al., 2022). Hyperinsulinemia is thought to be one of the key 

mechanisms linking obesity and cancer (Gallagher & LeRoith, 2020; 

Vigneri et al., 2020). Numerous systemic factors that experience 

dysregulation in conditions like obesity have been identified as 

potential contributors to the development and progression of cancer. 

These factors encompass insulin, IGF-1, glucose, lipids, inflammatory 

cytokines, immune cells, steroids, the autonomic nervous system, 

adipokines, and the microbiome (Avgerinos et al., 2019; Gleeson, 

2019). The mechanism by which insulin is able to contribute to tumor 

formation/progression is through the activation of PI3K, initiating 

downstream Akt/mTOR network signaling as well as MAPK pathway. 

Is demonstrated that PI3K/Akt pathway activates NF-kβ, which is 

responsible for increasing the production of inflammatory cytokines 

(e.g. TNF-α, IL-1, IL-6 and chemokines) finally resulting in a low-

grade inflammation. MAPK is mainly responsible for activating several 

transcription factors that induce elevated expression of c-fos and its 

binding to the activator protein-1 (AP-1) (De Marco et al., 2015), which 

can lead to altered of cellular dynamics characterized by an acceleration 

of the cell cycle, decreased apoptosis and increased angiogenesis and 

FIGURE 7 
Simplification of hormonal imbalance (high insulin and IGF-1 and low GH) caused by hyperinsulinemia and its effect on obesity. *Created with BioRender by 
the author. 
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metastasis (Yee et al., 2020). Importantly, IGF-1 shares common 

signaling pathways with insulin so it can also promote cancer 

progression by binding to the InsR and activating both signaling 

pathways (Cai et al., 2017), Figure 8B.  

 

5. Current strategies and emerging 

approaches to reduce hyperinsulinemia in 

obesity 
 

         It has been demonstrated that hyperinsulinemia is required for 

weight gain and that lower insulin levels increase energy 

expenditure, therefore it could be assumed that a reduction in 

circulating insulin will help to control/reduce obesity (Kolb et al., 

2018; Page & Johnson, 2018; Templeman et al., 2015, 2017; 

Velasquez-Mieyer et al., 2003). 

 

5.1. Pharmacological options 
 

         In individuals with obesity but without diabetes, the addition of 

liraglutide (GLP-1 analogue) to diet and exercise resulted in decreased 

body weight, reduced fasting insulin levels, and a lower incidence of 

prediabetes (Astrup et al., 2011; Pi-Sunyer et al., 2015; Wadden et al., 

2013).  However, it has been associated with many side effects such as 

acute pancreatitis, gallbladder, liver disease and some cancers (Seo, 

2021). For this reason, we need more conclusive trials to demonstrate a 

causal effect. Another drug used is fenofibrate, a PPARα agonist. 

Studies in mice have shown that fenofibrate has the ability to increase 

fat oxidation and reduce both insulin clearance and insulin secretion 

when administered in conjunction with a high-fat diet (Ramakrishnan 

et al., 2016). Also it is worth noting that the use of rosiglitazone, a 

PPARγ receptor agonist, in individuals with type 2 diabetes showed a 

significantly increase insulin clearance, even in the absence of 

significant weight loss (Tiikkainen et al., 2004). Other widely used drug 

is diazoxide, which activates ATP-sensitive potassium channels and 

exerts inhibitory effects on insulin secretion in pancreatic cells. In 

experimental studies, it has demonstrated an improvement in insulin 

secretion and insulin sensitivity, and a preventive effect on obesity with 

a significant weight loss (Alemzadeh et al., 1998, 2008; Sato et al., 

1995) and they have proposed the use of diazoxide could potentially 

normalize GH secretion and enhance the metabolism of substrates and 

energy (Huang et al., 2021). Its use has also been studied in humans, 

clearly reducing body weight and improving insulin resistance, but 

there is still much contraindication to its treatment of hyperinsulinemia 

in obesity (Brar et al., 2020; Lustig et al., 2006). Moreover, tirzepatide, 

a novel glucose-dependent insulinotropic polypeptide and glucagon-

like peptide-1 receptor agonist, has also been suggested for use in the 

treatment of obesity, resulting in a decrease in body weight which 

improves fasting insulin levels (Jastreboff et al., 2022). Finally, 

metformin is a drug typically used for the treatment of type 2 diabetes 

although it has also been investigated for use in obese people with 

hyperinsulinemia. It acts mainly by reducing hepatic glucose 

production and improving insulin sensitivity in peripheral tissues, such 

as muscle and adipose tissue. Metformin may help control elevated 

insulin levels by reducing insulin resistance and decreasing excessive 

insulin production by the pancreas (Atabek & Pirgon, 2008; Herman et 

al., 2022; Hundal et al., 2000; Patanè et al., 2000; Velazquez et al., 

1994). However, there are conflicting studies that say that although 

metformin contributes to weight loss in obesity, there is no 

improvement in insulin resistance, fasting insulin, and insulin 

sensitivity in obesity (Pau et al., 2014; Sun et al., 2019). In brief, while 

pharmacological therapies exist, their efficacy in the long term may be 

limited compared to sustained lifestyle changes. Furthermore, the vast 

majority of these drugs aim to increase insulin levels to lower blood 

glucose, thus further worsening hyperinsulinemia. Therefore, only 

drugs that reduce insulin secretion should be used in conjunction with 

lifestyle modifications and not as stand-alone treatments, as this will 

have a much more significant effect (Aaseth et al., 2021; Gadde & 

Allison, 2009). 

FIGURE 9 
9A: Simplified explanation of how hyperinsulinemia activates premature adipocyte senescence and inflammation in obesity. 9B: Key pathways through which 
insulin and InsR signaling may promote cancer progression. *Created with BioRender by the author. 
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5.2. Dietetic interventions 

 
         A wide range of dietary interventions have been proposed to 

reduce hyperinsulinemia in obesity, the most studied being the low-

carbohydrate diet (LCD), low-fat diet (LFD), ketogenic diet (KD) and 

low-glycemic load diet (LGLD).  

         Regarding the LCD, it is generally accepted that it should contain 

less than 130g/day of carbohydrates or <20 % of total energy intake, 

although there is no clearly defined limit. Reducing carbohydrate intake 

seems to be a safe dietary approach to improve hyperinsulinemia 

among other conditions associated with obesity (Berger & Thorn, 2022; 

P. J. Foley, 2021; Hron et al., 2015). KD often contain less than 50g of 

carbohydrate/day and it is also associated with a greater long-term 

weight loss, an improvement in fasting insulin and lipid profile (Bueno 

et al., 2013; Michalczyk et al., 2020). LCD has been shown to 

contribute to reduced hepatic glucose production and increased insulin 

clearance among other benefits on lipid profile (Lundsgaard et al., 

2019; Suzuki et al., 2019). 

         In terms of a LGLD, it has been found that produces a more 

significant increase in weight loss compared to a low-fat diet (Chaput 

et al., 2008) as well reducing the risk of several complications 

associated with hyperinsulinemia (Ebbeling et al., 2007; Ludwig et al., 

2000; Perin et al., 2022). It has been shown that reducing glycemic load 

can be particularly important in achieving weight loss among 

individuals with high insulin secretion (Ebbeling et al., 2007; Pittas et 

al., 2005; Rasaei et al., 2023; Sipe et al., 2022; D. E. Thomas et al., 

2007). However, other studies support that there is probably no causal 

relationship between high-glycemic diets and obesity associated with 

hyperinsulinemia (Aston et al., 2008; Gaesser et al., 2021; Milton et al., 

2007; Vega-López et al., 2018). One possible explanation for this 

contradiction is confounding factors such as the use of food frequency 

questionnaires in self-reported observational studies or the fiber content 

of low GI diets as well as physical activity among others. On the 

contrary, there are no relevant studies showing that a LGLD does not 

have beneficial effects such as weight loss or enhanced insulin levels. 

         On the other hand, there is the LFD, which is one of the most 

widely analyzed dietary interventions. Despite a reduction in insulin 

levels and body weight (among other parameters), this reduction is not 

as clear-cut as in the case of LCD (Mancini et al., 2016). Other dietary 

interventions used in obesity management include calorie restriction 

(CR) and time-restricted eating, the latter being a type of intermittent 

fasting (Soliman, 2022). CR has shown a significant weight loss and an 

improvement in hyperinsulinemia and insulin sensitivity (Michalczyk 

et al., 2020; Siklova-Vitkova et al., 2009), but it is important to consider 

their negative impact on muscle mass, bone density, and overall health 

(Ard et al., 2018; Dorling et al., 2021; Most et al., 2017). In contrast, 

the long-term weight loss effects of time-restricted eating are still 

unknown, and its other demonstrated beneficial effects do not outweigh 

those of calorie restriction since it has inconsistent effects concerning 

insulin levels and sensitivity to insulin in obese people (Andriessen et 

al., 2022; D. Liu et al., 2022). 

         In a nutshell, the first result in all the diets mentioned is the loss 

of body weight. Even so, the LFD can be seen to have a lack of long-

term efficacy compared to other interventions such as LCD and KD. 

Even knowing that carbohydrates (specially glucose) are the nutrient 

that most stimulates insulin secretion at first sight we could assume that 

the implementation of diets that reduce both the amount of 

carbohydrates and the glycemic index will have better results on 

hyperinsulinemia in obesity (Ebbeling et al., 2007). However, it is 

necessary to take into account that various nutrients and other 

compounds may stimulate insulin secretion differently in each 

individual, this could mean that a LCD will not be sufficient for all 

people. Therefore, the origin of the onset of obesity in each individual 

should be analyzed, in order to make a more complex and 

individualized approach for better optimization and bear in mind that 

there is no universally healthy diet which can be uniformly prescribed 

to treat hyperinsulinemia in obesity.  

 

 

 

 

 LCD/KD  LFD LGLD CR 

Weight loss ↑↑ ↑ ↑↑ ↑↑ 

Fasting insulin 

Insulin sensitivity 

↓↓ 

↑ 

↓ 

--- 

↓↓ 

↑ 

↓ 

↑ 

Lipid profile 

 

 

Total fat content 

↑ HDL  

↑ LDL 

↓ TG 

↓ 

--- 

↓ LDL 

--- 

↓ 

↑ HDL 

---  

↓ TG 

↓ 

↑ HDL  

↓ LDL 

↓ TG 

↓ 

 

5.3. Physical activity 

 
         Physical activity is considered to be a determinant factor of 

hyperinsulinemia for many years (Feskens et al., 1994). It can 

significantly lower insulin levels and improve insulin sensitivity (Lin 

et al., 2022; Vetrivel Venkatasamy et al., 2013). Physical activity has 

an effect on insulin sensitivity by enhancing glucose transport in 

skeletal muscle via pathways dependent on both the GLUT4 transporter 

protein and the response to hypoxia, as well as increasing skeletal 

muscle vascularization and tissue mass, distributing intracellular fat 

more efficiently and contributing to fat mass loss (Balkau et al., 2008). 

In some experimental studies with rats, they found that strength 

exercise effectively protected against hyperinsulinemia, insulin 

resistance, and inflammation, regardless of any changes in body weight 

(Botezelli et al., 2016; Muñoz et al., 2022). Moreover, in a randomized 

controlled trial of African women, they saw also an increase in insulin 

sensitivity, while there were no concurrent changes in insulin 

secretion/clearance or central and ectopic fat deposits (Fortuin-De 

Smidt et al., 2020). 

 

 
 

 

 

Physical activity  
 

↓ Body weight  

↓ Fasting insulin 

↑ Insulin sensitivity 

Improves lipid profile and total fat content 

↑ Muscular mass (strength exercise) 

… 
 

 

 

TABLE 1 
 
Simple comparison of the effects of current dietary interventions in obesity. 
Created by the author. 

TABLE 2 
 
The effects of physical activity in obesity. Created by the author. 
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5.4. Bariatric surgery 
 

         Bariatric surgery has been shown to improve insulin sensitivity 

and pancreatic beta-cell function in obese non-diabetic subjects when 

they lost weight. The curious thing is that it seems to be that losing 

weight is the main trigger for these improvements, independently of the 

type of surgery. It has also been observed that both insulin and fasting 

glucose levels improved after the intervention (Bradley et al., 2012; 

Lima et al., 2010; Y. Liu et al., 2022; Malik et al., 2016). Bariatric 

surgery has also been associated with a decrease in systemic 

inflammation markers, such as C-reactive protein (CRP), TNF-α and 

IL-6, indicating a potential anti-inflammatory effect (Biobaku et al., 

2020; Hafida et al., 2016; Rao, 2012; Villarreal-Calderon et al., 2021). 

Overall, bariatric surgery has demonstrated significant benefits in 

reducing hyperinsulinemia, improving insulin sensitivity, increasing 

insulin clearance and promoting metabolic health in individuals with 

obesity (Bojsen-Møller et al., 2014; Erion & Corkey, 2017; D. D. 

Thomas et al., 2019). Some research also suggests that changes in gut 

microbiota composition after bariatric surgery may play a role in 

improving insulin sensitivity and reducing hyperinsulinemia among 

other benefits (Ulker & Yildiran, 2019).  

 

6. Insulin measurement methods 
 

         In the clinical practice, despite methodological advances over 

the last half century, the measurement of insulin in blood still poses 

numerous analytical and clinical challenges. Accurate insulin 

measurements are crucial for both clinical and research purposes. 

However, there is currently no standardized reference method to 

compare insulin assays from different manufacturers and laboratories 

(Taylor et al., 2016). Insulin secretion occurs in pulses, causing 

fluctuations in blood insulin concentrations every 5-15 minutes 

(Pørksen et al., 2002). To obtain a reliable fasting insulin level, it is 

recommended to calculate the mean of three blood samples taken at 5-

minute intervals (Crofts et al., 2015). Unfortunately, this practice is 

rarely followed in clinical settings and epidemiological studies (De 

León & Stanley, 2013; Janssen, 2021). Hence, two proposed markers 

for diagnosing hyperinsulinemia in obese patients are C-peptide and 

fasting insulin. While the liver does not remove C-peptide to any 

significant extent during its first passage, the kidney is primarily 

responsible for removing it from the bloodstream. This unique 

clearance pattern makes peripheral C-peptide concentrations a more 

accurate measure of insulin secretion from the pancreas via the portal 

vein than peripheral plasma insulin concentrations. For this reason, 

peripheral C-peptide levels are often used as a measure of beta-cell 

secretory activity in a wide range of clinical situations. However, 

because C-peptide has a longer half-life (approximately 35 minutes) 

than insulin (3-8 minutes), this can dampen oscillations and decrease 

pulsatility, making insulin the preferred choice when studying insulin 

secretory dynamics (Venugopal et al., 2022). 

         It should also be understood that obesity is a disease that, if left 

untreated, can lead to a pre-diabetic state (Miao et al., 2020). A 

common medical error regarding the identification of prediabetes is that 

blood glucose levels are looked at instead of fasting insulin or C-

peptide, the latter being of greater validity for diagnosing prediabetes 

(Gedebjerg et al., 2023; Leighton et al., 2017; Ohkura et al., 2013). But 

it should be noted that in this specific context, when blood glucose 

levels are normal it may be because insulin is acting compensatory to 

reduce hyperglycemia, thus producing hyperinsulinemia. For this 

reason, when some health professionals see a decent glucose range, 

they will probably assume that there is no metabolic problem. 

Therefore, it would be much better to look at the hormone insulin in the 

blood and C-peptide, as elevated glucose levels are simply a 

manifestation of poor insulin action (Saisho, 2016). 

 

7. Conclusions 
 

         Hyperinsulinemia is a condition normally found in people with 

obesity. Having reviewed and compared multiple reviews and clinical 

trials and so forth, there is a lot of contradiction regarding the timing of 

the onset of hyperinsulinemia in obesity and it turns to be a topic of 

ongoing research and debate. Therefore, it is required further 

interventional studies to establish a causal or non-causal relationship of 

hyperinsulinemia in obesity. To accomplish this, it is also essential to 

determine the causal mechanisms of insulin resistance and 

hyperinsulinemia in obesity, in order to be clear about the precise 

moment of occurrence for each one. A possible underlying explanation 

for this controversy over the results may be due to differences in the 

metabolic status of the participants and the large variability in the 

methods used for assessing hyperinsulinemia among other causes.  

Nevertheless, it is known that hyperinsulinemia is capable of inducing 

insulin resistance, it has been proposed that it may do so by reducing 

the affinity and number of insulin receptors. Moreover, overnutrition 

can directly stimulate insulin hypersecretion leading to reduced 

peripheral insulin sensitivity. In addition, high insulin levels have been 

linked to a range of pathological conditions, including cancer and 

diabetes, highlighting the importance of addressing elevated insulin 

levels in obesity. However, regarding the strategies to reduce 

hyperinsulinemia in patients with obesity, there is still a lack of 

knowledge about its long-term effectiveness. Diet is placed as one of 

the most powerful variables, with LGLD and LCD appearing to have 

the greatest effect, both of which have shown promising results in 

improving obesity, hyperinsulinemia, and diabetes risk. Additionally, 

incorporating regular exercise alongside dietary changes has been 

found to have the greatest impact on reducing insulin levels. In terms 

of the wide range of pharmacological interventions available, it is 

noteworthy that a considerable proportion operate on the premise of 

increasing insulin levels as a means of improving blood glucose 

concentrations. Paradoxically, this approach tends to exacerbate the 

existing scenario, culminating in the development of chronic 

hyperinsulinemia and insulin resistance, along with a multitude of 

associated adverse effects. It is therefore far more effective to employ 

pharmacotherapeutic agents that attenuate excessive insulin secretion. 

Nevertheless, it is worth noting that long-term efficacy and potential 

side effects of the majority of these drugs warrant further investigation. 

In brief, it is necessary to understand that both hyperinsulinemia and 

obesity are complex conditions with multifactorial origins, which 

contribute to the challenges of studying their molecular mechanisms. 

Understanding the interplay between various factors involved in the 

development of these two conditions is crucial for developing effective 

treatment strategies.  
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