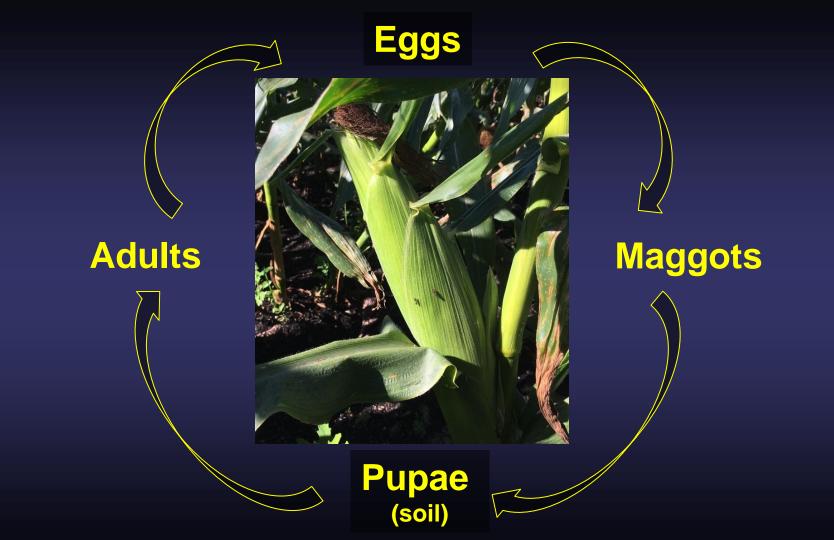
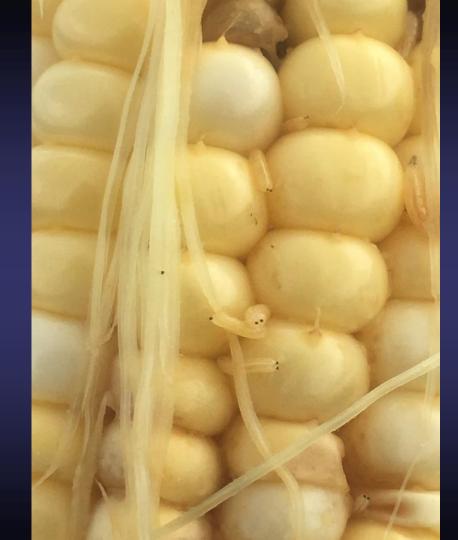
Sweet Corn Pest Management Workshop

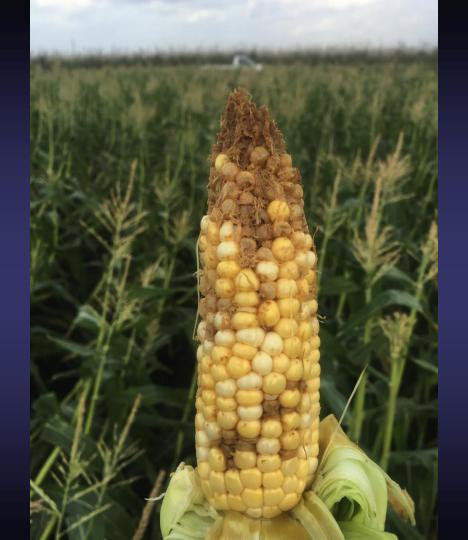
February 25, 2020 Belle Glade, FL

Corn silk fly identification, sampling, and management

Julien Beuzelin


Everglades Research and Education Center Belle Glade, FL




Corn silk fly management in sweet corn

- Frequent pyrethroid applications between first silk and harvest
 - PBO frequently added to increase efficacy
- Scouting, no formal action threshold
 Decision based primarily on adult presence
 3 fly species practically considered equivalent
- Management failures and load rejections occur: Need to improve corn silk fly sampling and management with insecticides

Corn silk fly identification

Euxesta stigmatias

Euxesta eluta

Chaetopsis massyla

Photos: Gaurav Goyal, UF/IFAS

Euxesta stigmatias

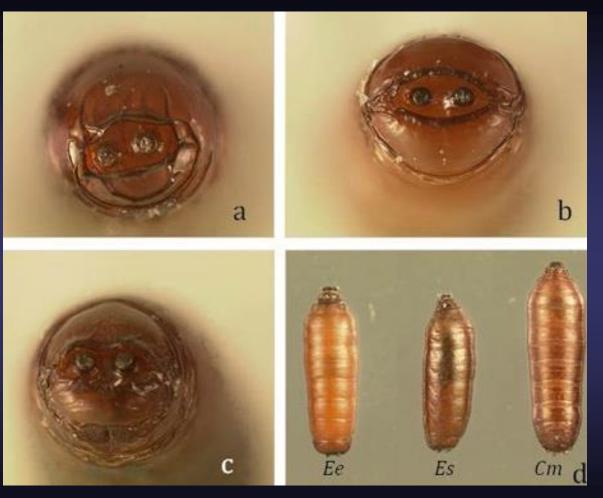
Euxesta eluta

Chaetopsis massyla

Euxesta stigmatias

Euxesta eluta

Chaetopsis massyla



Silk fly pupae

a. *C. massyla*b. *E. eluta*c. *E. stigmatias*

Photos: Gaurav Goyal, UF/IFAS

Why is species identification important?

- Until the late 2000s, only *E. stigmatias* was considered a sweet corn pest
 - Euxesta eluta, Chaetopsis massyla relatively common
 - Euxesta annonae
- The 3 species are not interchangeable pests
 - Geographical range (E. stigmatias not in northern FL)
 - Adult behavior (E. stigmatias prefers silks for oviposition)
 - Insecticide susceptibility (*E. stigmatias* less susceptible)

Species identification should improve management decisions

Adult silk fly sampling

Lures for monitoring adult corn silk flies

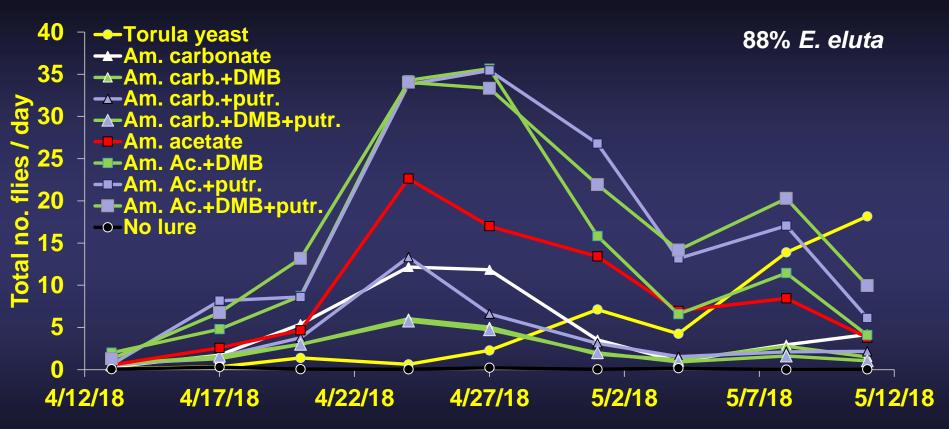
Evaluation of lures for monitoring silk flies (Diptera: Ulidiidae) in sweet corn

David Owens^{1,*}, Ron Cherry¹, Michael Karounos¹, and Gregg S. Nuessly¹

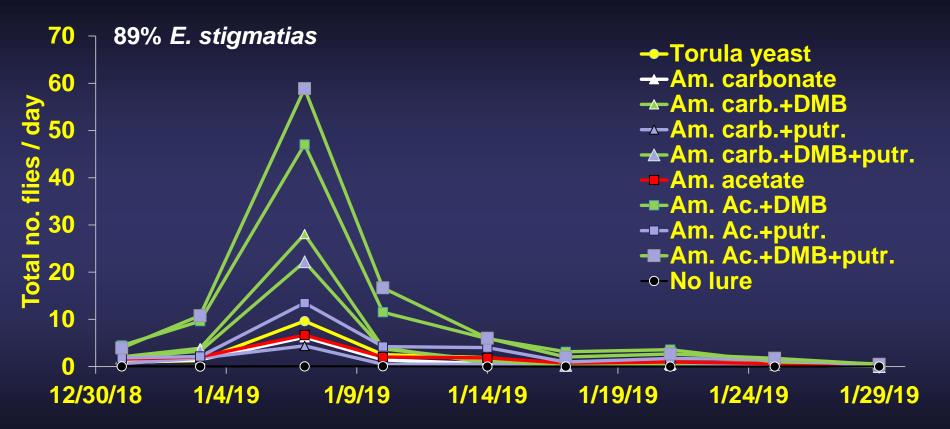
Abstract

Several morphologically similar species of picture-winged flies (the silk fly complex, Diptera: Ulidiidae) are severe primary pests of sweet corn (*Zea mays* L.; Poaceae) in Florida. Monitoring traps for these pests may aid threshold development and species complex determination in the field. This study evaluated floral lures, some previously used to monitor pest Lepidoptera, and liquid protein baits, used for other pest Diptera, for efficacy in attraction of silk flies. Baited universal moth traps were deployed for several weeks and placed in a summer fallow field (field trial 1), a fall sweet corn field (field trial 2), and a spring sweet corn field (field trial 3). Flies were removed weekly during each experiment. In field trial 1, traps baited with 1,4-dimethoxybenzene captured the most flies. The majority of flies captured were *Chaetopsis massyla* Walker. In field trial 2, aged torula yeast—baited traps captured more flies than other treatments, (1,4-dimethoxybenzene, geraniol, phenylacetaldehyde, and fresh torula yeast). The majority of captured flies were *Euxesta stigmatias* Loew. In field trial 3, the aged torula yeast treatment resulted in greater fly capture than all other treatments (1,4-dimethoxybenzene, acetoin, anisole, and benzaldehyde). *Euxesta eluta* Loew was the dominant species captured in the spring. More females than males were captured from all 3 experiments and all treatments. These experiments demonstrate that all 3 silk fly species can be captured in traps currently used for pest monitoring. Torula yeast was the best attractant evaluated, and further semiochemical investigations of torula yeast are warranted.

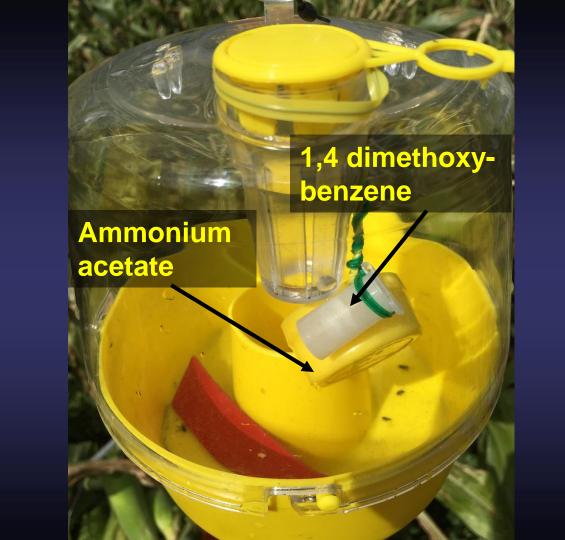
Owens et al. 2017. Fla. Entomol. 100: 251-256


Lure combinations for corn silk flies

- Spring 2018 and winter 2019
- Green/Yellow/White bucket traps
- Nine lures
 - Torula yeast
 - Ammonium carbonate
 - Am. carbonate + DMB, + putrescine, + DMB + putrescine
 - Ammonium acetate
 - Am. acetate + DMB, + putrescine, + DMB + putrescine
- Randomized complete block design with 6 blocks (traps 50 ft apart)



Lure combinations for corn silk flies

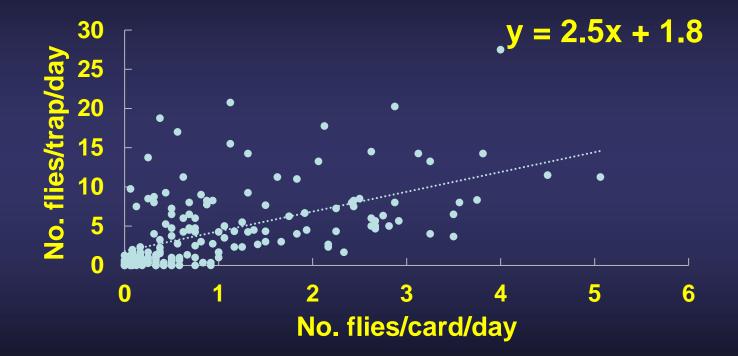


Repeated measures ANOVA (SAS PROC GLIMMIX): Lure P < 0.001, Date P < 0.001, Lure*Date P < 0.001

Lure combinations for corn silk flies

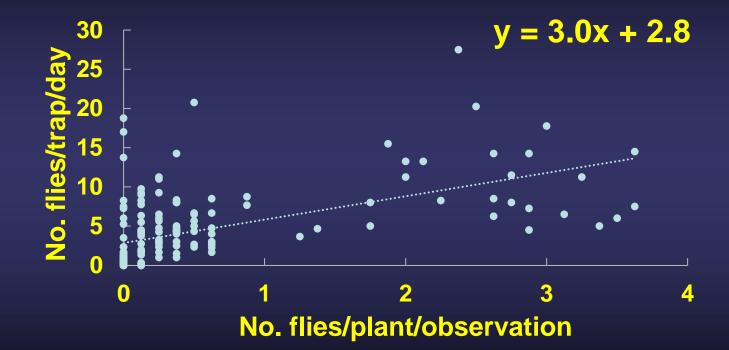
Repeated measures ANOVA (SAS PROC GLIMMIX): Lure P < 0.001, Date P < 0.001, Lure*Date P < 0.001

Relationship between trap captures and corn silk fly observations, spring & fall 2019

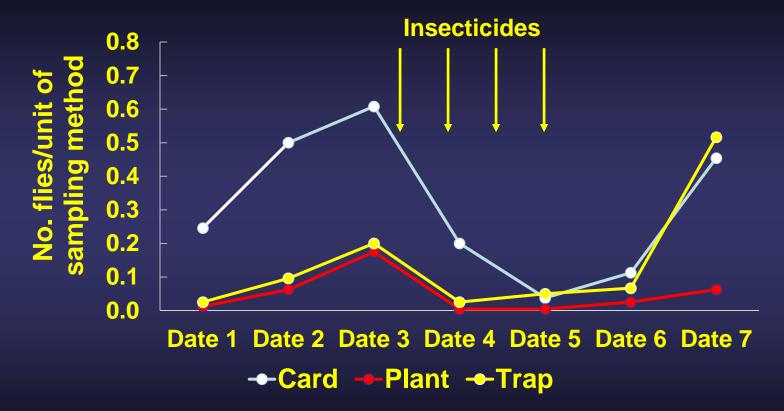

 24 or 16 plots (60' * 60') established in a sweet corn field (480' * 72 rows) at tassel push

Each plot

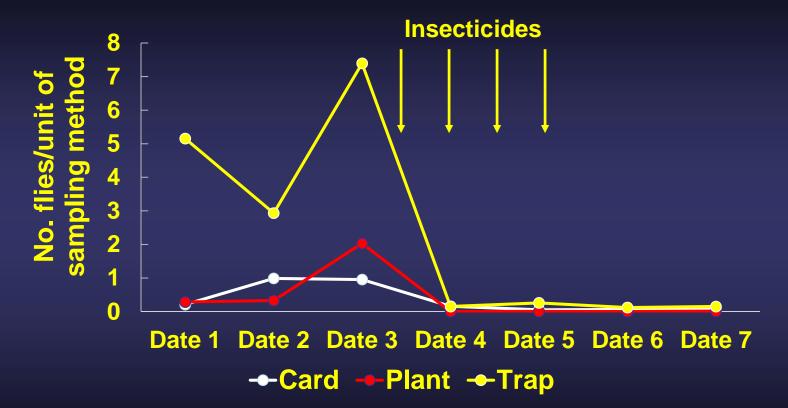
- 1 trap at the center
- 4 yellow sticky cards (3" * 5"), 15' from trap
- 2 plants adjacent to each sticky card (8 plants total)
- 7 or 8 samplings, every 3-4 days
- 4 or 5 pyrethroid applications within a week, between the 3rd and 5th samplings



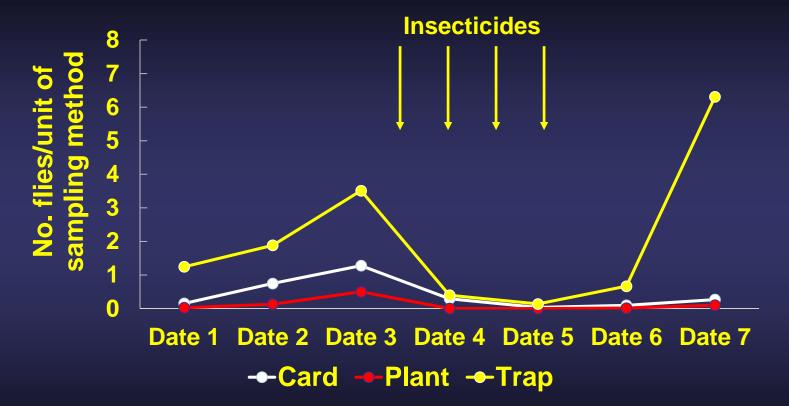
Relationship between trap captures and sticky card observations, spring 2019 (3 species)

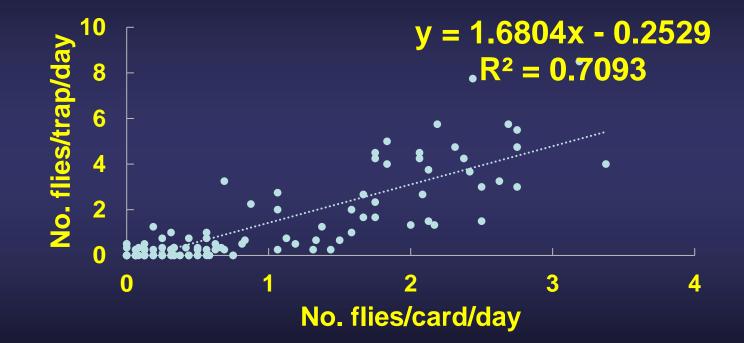

Linear regression (SAS PROC REG): P < 0.001, $R^2 = 0.302$

Relationship between trap captures and plant observations, spring 2019 (3 species)

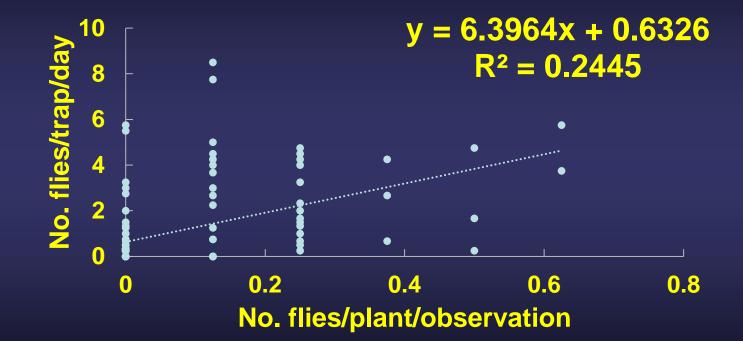


Linear regression (SAS PROC REG): P < 0.001, $R^2 = 0.313$

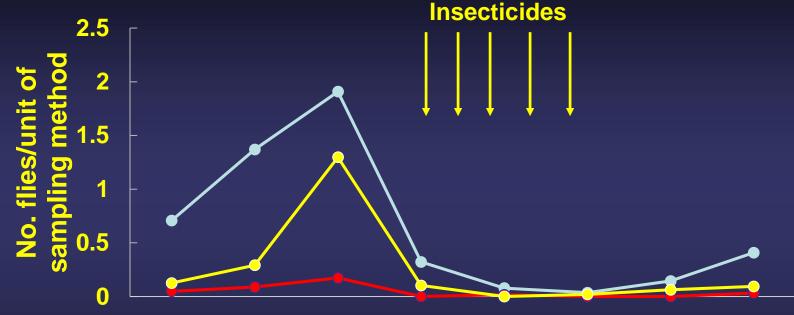

Comparison of *C. massyla* observations, spring 2019


Comparison of *E. eluta* observations, spring 2019

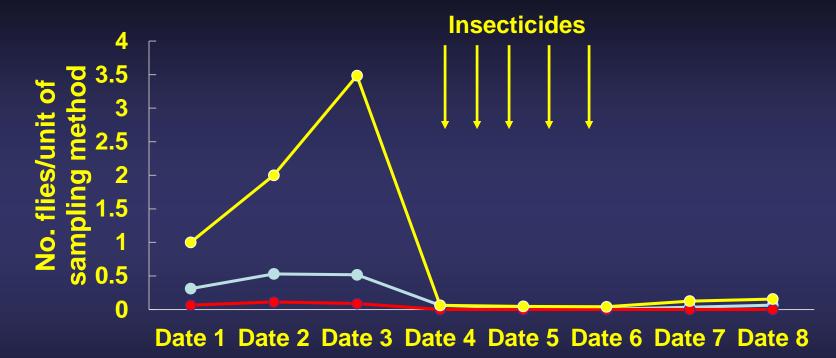
Comparison of *E. stigmatias* observations, spring 2019



Relationship between trap captures and sticky card observations, fall 2019 (3 species)


Linear regression (SAS PROC REG): P < 0.001, $R^2 = 0.709$

Relationship between trap captures and plant observations, fall 2019 (3 species)


Linear regression (SAS PROC REG): P < 0.001, $R^2 = 0.248$

Comparison of *C. massyla* observations, fall 2019

Date 1 Date 2 Date 3 Date 4 Date 5 Date 6 Date 7 Date 8 ---Card ---Plant ---Trap

Comparison of *E. stigmatias* observations, fall 2019

-Card --Plant --Trap

Conclusion: Traps for corn silk fly population monitoring

- Traps may assist with scouting.
- Further work is needed to better understand the relationship between trap captures and observations in the field.

Corn silk management with insecticides

E. stigmatias: Insecticide susceptibility

Spray booth (2013-2015)

Insecticide	Mortality	Morbidity	Alive
24 h			
Control	3.0 ± 1.1 g	0.0f	$97.0 \pm 1.1a$
Chlorpyrifos	100.0a	0.0f	0.0e
Methomyl	$65.7 \pm 5.7 \mathrm{b}$	22.6 ± 4.0b	11.7 ± 3.6cde
Carbaryl	8.7 ± 4.6 fg	0.0f	$91.3 \pm 4.6a$
Esfenvalerate	$48.7 \pm 5.3 bcd$	25.0 ± 2.7 abc	$26.3 \pm 3.4 \text{bc}$
Beta-cyfluthrin	33.2 ± 8.1 de	$34.0 \pm 5.7 ab$	$32.8 \pm 4.2b$
Bifenthrin	34.5 ± 9.5 cdef	$41.7 \pm 7.7a$	$23.7 \pm 8.6 bc$
Lambda-cyhalothrin	$54.9 \pm 5.9 \text{bcd}$	$22.0\pm5.7abcde$	23.2 ± 11.1 bcd
Zeta-cypermethrin	$64.3 \pm 6.0 \text{bc}$	$24.3 \pm 6.5 abcd$	11.4 ± 6.0 cde
Zeta-cypermethrin	76.5 ± 5.3 ab	$21.4 \pm 6.3 bcd$	2.0 ± 1.3 de
+ bifenthrin			
Carbaryl	8.7 ± 4.6 fg	0.0f	$91.3 \pm 4.6a$
Flubendiamide	$3.0 \pm 1.2g$	$2.3 \pm 2.1 def$	$94.7 \pm 2.3a$
Chlorantraniliprole	2.8 ± 1.3 g	0.0f	$97.2 \pm 1.3a$
Acetamiprid	3.9 ± 1.1 g	0.0f	96.1 ± 1.1a

E. eluta: Insecticide susceptibility

Spray booth (2013-2015)

Insecticide	Mortality	Morbidity	Alive
24 h			
Control	0.4 ± 0.3 g	0.0f	$99.6 \pm 0.3a$
Chlorpyrifos	100.0a	0.0f	0.0e
Methomyl	$95.8 \pm 1.9 a$	4.2 ± 1.9 ef	0.0e
Carbaryl	20.0 ± 13.7 fg	$1.7 \pm 2.0 \text{ef}$	$78.3 \pm 15.5 \text{bc}$
Esfenvalerate	$32.7 \pm 4.0 \text{ef}$	59.1 ± 5.1 a	$8.2 \pm 2.3e$
Beta-cyfluthrin	62.5 ± 4.8 cd	$36.5 \pm 4.4 \text{bc}$	$1.0 \pm 0.5e$
Bifenthrin	98.8 ± 1.1a	$1.2 \pm 1.1 \text{ef}$	0.0e
Lambda-cyhalothrin	47.2 ± 6.6 de	$48.9 \pm 5.5 ab$	$3.9 \pm 1.8e$
Zeta-cypermethrin	$76.5 \pm 4.8 \text{bc}$	$22.5 \pm 4.5 cd$	$1.0 \pm 0.4e$
Zeta-cypermethrin + bifenthrin	81.9 ± 1.6ab	18.1 ± 1.6 de	0.0e
Flubendiamide	6.8 ± 2.6 g	$14.5 \pm 7.3 def$	$78.7 \pm 8.3 bc$
Chlorantraniliprole	0.8 ± 0.8 g	$0.9 \pm 0.9 ef$	98.3 ± 1.0ab
Acetamiprid	16.1 ± 4.6 fg	$50.0 \pm 3.4 ab$	$33.9 \pm 7.5 d$

C. massyla: Insecticide susceptibility

Spray booth (2013-2015)

Insecticide	Mortality	Morbidity	Alive
24 h			
Control	2.9 ± 1.2e	$2.8 \pm 1.3e$	$94.3 \pm 2.1a$
Chlorpyrifos	100.0a	0.0e	0.0d
Malathion	100.0a	0.0e	0.0d
Methomyl	$97.7 \pm 1.5a$	$1.5 \pm 0.9e$	$0.8 \pm 0.8 d$
Carbaryl	21.3 ± 8.2 de	9.0 ± 6.0 cde	$69.7 \pm 12.7a$
Esfenvalerate	43.5 ± 8.1 cd	25.9 ± 1.8 b	$29.8 \pm 7.3 bc$
Beta-cyfluthrin	57.5 ± 3.1bc	$40.9 \pm 2.6a$	$1.6 \pm 1.6 cd$
Bifenthrin	43.6 ± 9.0 cd	$18.5 \pm 3.2 bc$	$37.9 \pm 8.4b$
Lambda-cyhalothrin	57.4 ± 2.4 bcd	$41.0 \pm 3.3a$	1.6 ± 1.6 cd
Zeta-cypermethrin	83.9 ± 3.9ab	$16.1 \pm 3.9 bcd$	0.0d
Zeta-cypermethrin	86.7 ± 1.9ab	13.3 ± 1.9 bcde	e 0.0d
+ bifenthrin			
Flubendiamide	$2.5 \pm 1.5e$	6.8 ± 1.6 cde	$90.7 \pm 2.5a$
Chlorantraniliprole	$5.3 \pm 1.5e$	$2.3 \pm 1.5e$	$92.4 \pm 2.8a$

Consider the use of PBO with pyrethroids

 PBO (piperonyl butoxide), a synergist to increases silk fly susceptibility to pyrethroids

	LC ₅₀ (ppm) β-cyfluthrin	LC ₅₀ (ppm) β-cyfluthrin + PBO	Increase in susceptibility
E. stigmatias	187	60	3.1-fold
E. eluta	23	14	1.7-fold
C. massyla	48	7	6.5-fold
LC ₅₀ is the insecticide concentration killing 50% of the			

population

Effect of pyrethroid application timing on silk fly injury and infestation levels

Early AM, early PM, late PM, non-treated - 50' by 50' plots, 6 replications - 3 pyrethroid applications / week for 3 weeks - 10 GPA at 30 PSI

Effect of pyrethroid application timing on silk fly injury and infestation levels

	Ear injury	% ear area	No. maggots
	rating	injured	/ear
Early AM	2.4b	1.3b	4.5b
Early PM	1.8bc	0.9b	3.3b
Late PM	1.7c	0.9b	3.3b
Non-treated	3.4a	5.8 a	13.5a
F	28.2	7.9	5.9
P > F	<0.001	0.002	0.007

Means in a column followed by the same letter are not different (Tukey-Kramer adjustment, $\alpha = 0.05$)

Develop alternatives to pyrethroids

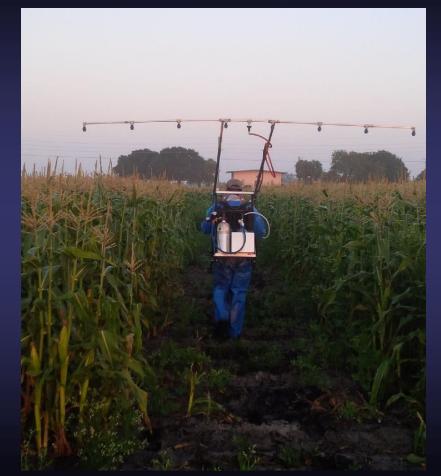
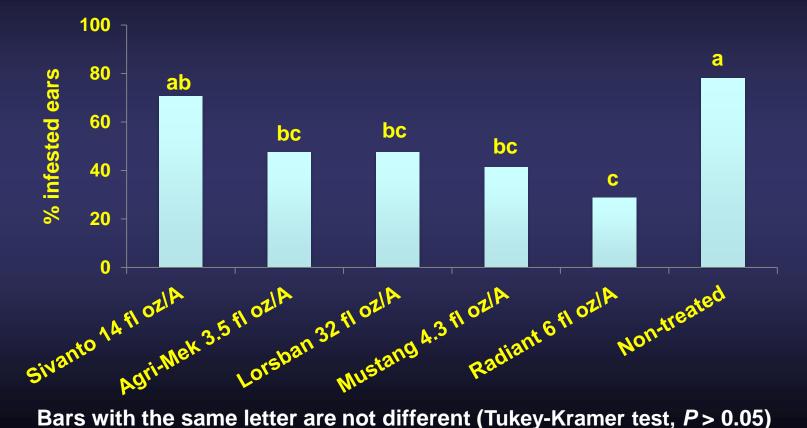
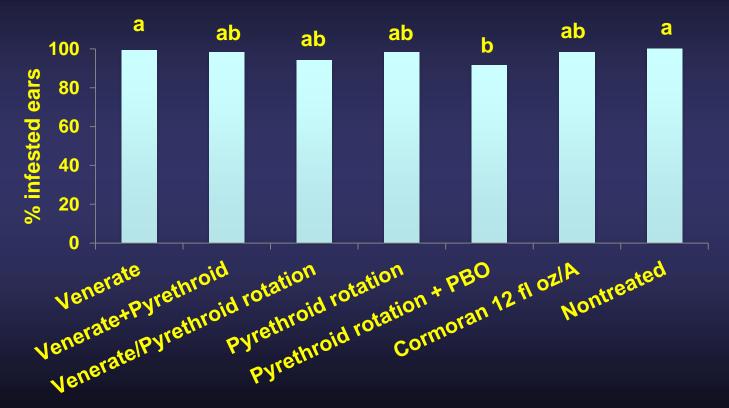
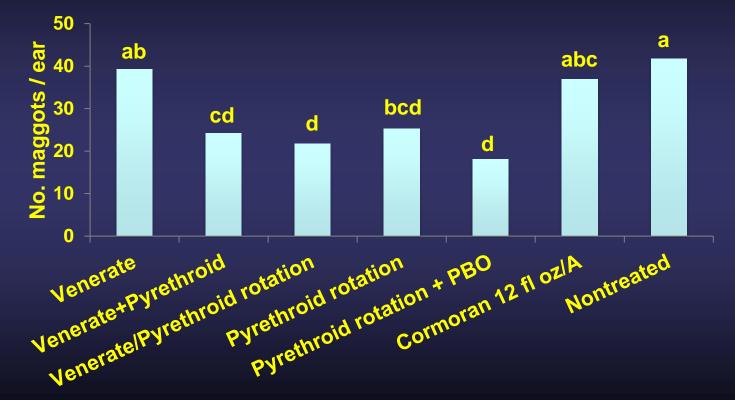
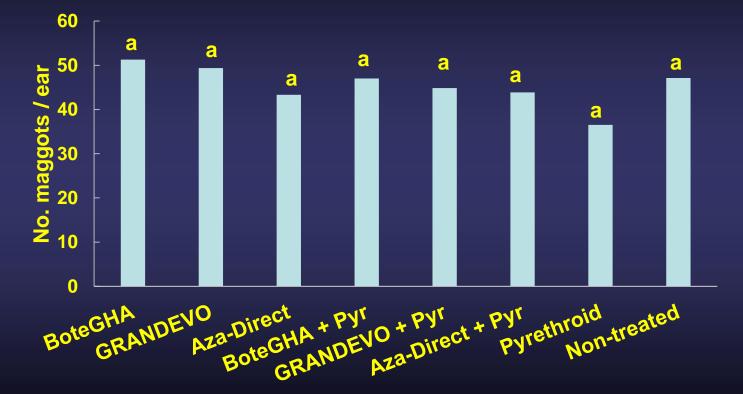
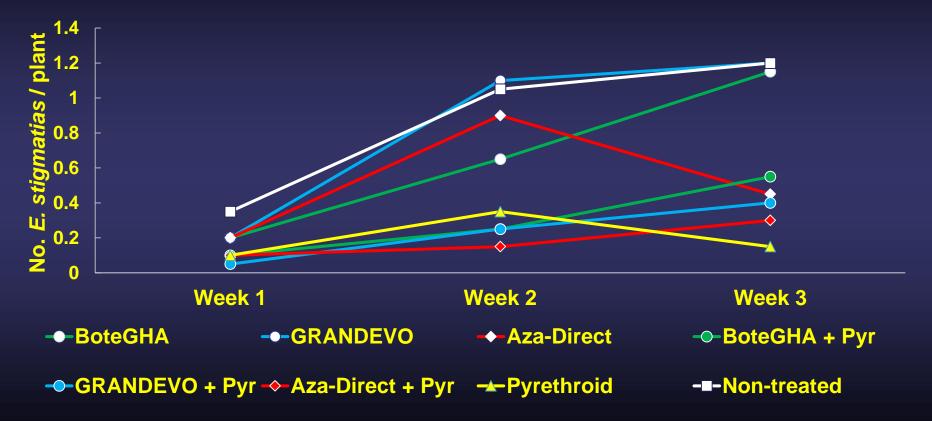




Photo: D. Larsen


Silk fly insecticide field evaluation, spring 2017, **Belle Glade, FL**

Silk fly insecticide field evaluation, spring 2018, Belle Glade, FL


Silk fly insecticide field evaluation, spring 2018, Belle Glade, FL



Silk fly insecticide field evaluation, spring 2019, Belle Glade, FL – Ear infestations

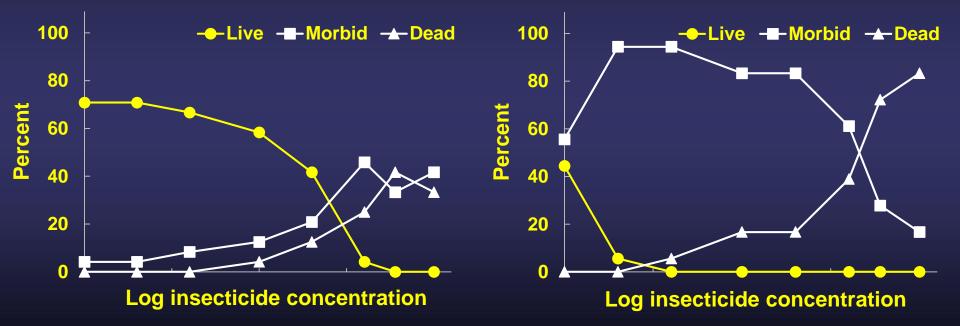
Silk fly insecticide field evaluation, spring 2019, Belle Glade, FL – Adults

Spray booth work, 2020-2021

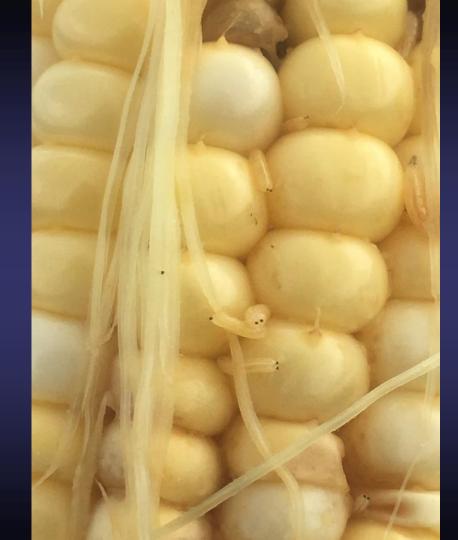
Spray booth first results, February 2020

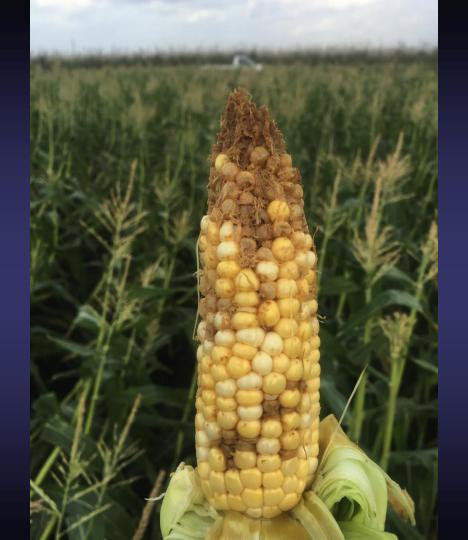
- E. stigmatias collected at EREC in early 2020
- 75% full rate applied to adults at 5 GPA

	% live	% moribund	% dead
Mustang Maxx	1.0c	3.0ab	96.0a
Brigade	7.3c	7.2a	85.6b
Radiant	89.4b	2.1ab	8.6c
Water check	99.0a	0.0b	1.0c
F	640.5	6.7	717.9
<u> </u>	<0.001	0.012	<0.001


Means in a column followed by the same letter are not different (Tukey-Kramer adjustment, $\alpha = 0.05$)

Development of adult vial assays (AVTs)


- Use glass vials treated with a pyrethroid to determine susceptibility in silk fly populations
 Beta-cyfluthrin
- AVTs are: Simple, inexpensive, portable
- Determine pyrethroid susceptibility as affected by silk fly species, geographical region, and season: What is the threat of pyrethroid resistance?


Adult vial assay first results, February 2020

Corn silk management with cultural practices

Cultural practices for silk fly management

- Avoid late spring planting in problematic fields
- Avoid weedy fields and borders
- Avoid decaying crop residue, cull piles
- Consider prompt sweet corn crop residue destruction, flooding
 - Silk fly adults emerge from standing, harvested fields for >4-5 weeks
 - Max. emergence of >700 adults/sq. ft in a day

Owens et al. 2017. Fla. Entomol. 100: 422-425.

Silk fly-soil interaction laboratory studies

• E. eluta laboratory colony

- UF/IFAS Everglades REC, Belle Glade, FL
- Maintained at 26°C, 40-60% RH and a photoperiod of L12:D12
- 3 experiments (depth, soil type, flooding)
 - 4 treatments evaluated per experiment
 - 2 or 3 assays for each experiment
 - Treatments replicated 4 times in each assay (RBD)

Silk fly-soil interaction laboratory studies

1-quart plastic buckets

20 pupae / bucket

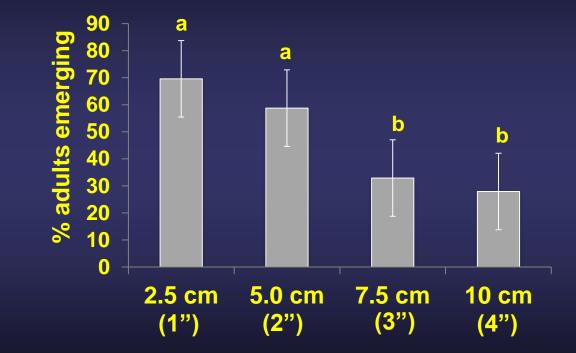
Silk fly-soil interaction laboratory studies

Buckets were individually placed into screen cages

Adult emergence as affected by the depth of pupae in organic soil

4 depths from the soil surface

- 1" (standard fly behavior)
- 2"


- 3"

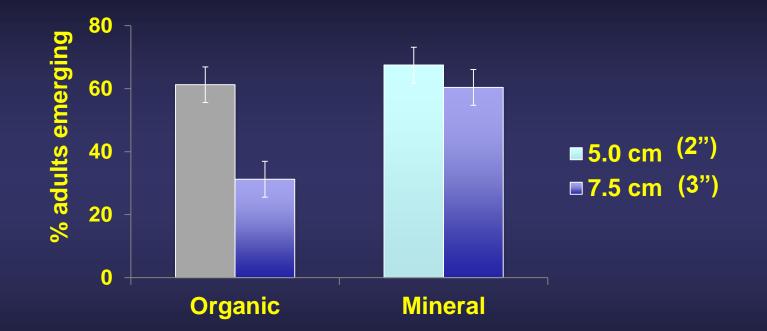
- 4"
- Local organic soil

 > 65% organic matter
 Dry and sifted

Adult emergence as affected by the depth of pupae in organic soil

Linear mixed model (SAS PROC GLIMMIX): Bars with the same letter are not different (Tukey-Kramer Adjustment, *P* > 0.05)

Adult emergence as affected by soil type

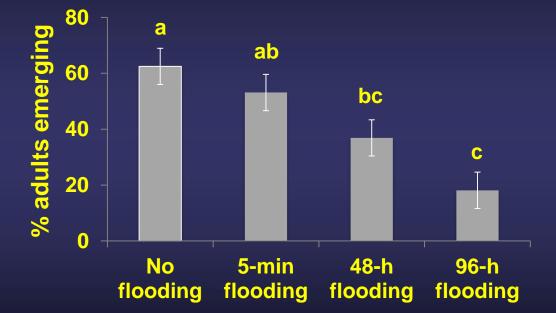

- 2 soil types (dry, sifted)
 Local organic soil (> 65% OM)
 Local mineral soil (< 10% OM)
- 2 depths for pupae

- 2"

- 3"

DR. JULIEN SAMO 11-17-17

Adult emergence as affected by soil type


Linear mixed model (SAS PROC GLIMMIX): Soil type: F = 10.9; P = 0.002; Depth: F = 11.9; P = 0.001; Soil type*Depth: F = 4.6; P = 0.001

Adult emergence as affected by flooding in organic soil

- 4 flooding regimes
 No flooding
 5-min flooding
 48-h flooding
 96-h flooding
- Local organic soil

Adult emergence as affected by flooding in organic soil

Linear mixed model (SAS PROC GLIMMIX: Bars with the same letter are not different (Tukey-Kramer Adjustment, *P* > 0.05)

Corn silk fly-soil interactions and management

- Cultural practices burying late larval instars or pupae
 > 10 cm below the soil surface may substantially decrease adult emergence from organic soils
- Soil type influences silk fly adult emergence, with mineral soils providing more favorable conditions than organic soils
- Flooding ≥ 48 h decreases silk fly adult emergence from organic soils

Acknowledgments

- Graduate students: Erik Roldán, Wilfrid Calvin, Annie Mills, Eric Schwan
- Technical assistance: Donna Larsen, Amir Avila, Roberto Ramirez, Gil Villareal, Daniel Vital, Adrian Alanis, Leonard Fox
- Crop consultants: Glades Crop Care, Kevin Short, Jason Dyess
- Financial and product gifts: ADAMA USA, Bayer Crop Science, Certis USA, Corteva Agriscience, FMC Corp., Gowan Co., Marrone Bio Innovations, Syngenta Crop Protection, Vestaron Corp.
- This work was supported in part by: UF/IFAS equipment and infrastructure award (2019), UF/IFAS early career scientist seed grant award (2020-2021), FDACS SCBGP grant 024846 (2018-2020), FDACS SCBGP grant 025800 (2019-2021), USDA NIFA CPPM project pending (2020-2022), USDA NIFA Hatch project 1014391 (2018-2022)

Corn silk fly identification, sampling, and management

Julien Beuzelin Phone: 561-993-1559 E-mail: jbeuzelin@ufl.edu

