Appendix 2: Abbreviations

Abbreviation	Description
АМН	Anatomically Modern Humans
AH	Archaic Homo Sapiens
EBA	Early Bronze Age
MBA	Middle Bronze Age
LBA	Late Bronze Age
EIA	Early Iron Age
MIA	Middle Iron Age
LIA	Late Iron Age
ВР	Before Present
BCE	Before Common Era
CE	Common Era
MFM	Masticatory Functinoal Hypothesis
РМЕ	Probable Mutation Effect
BMU	Bone Multicellular Units
MSM's	Muscular Skeletal Markers
DISH	Diffuse Idiopathic Skeletal Hyperostosis
GMM	Geometric Morphometrics
ТМЈ	Temporomandibular Joint
CSA	Cross Sectional Area
CVA	Canonical Variate Analysis
PCA	Principal Comonent Analysis
GPA	Generalised Procrustes Analysis
ME	Masticatory Efficiency
MP	Masticatory Performance
MBF	Maximum Bite Force
AMTL	Antemotem Tooth Loss
РС	Principal Components
CV	Canonical Variate
WHR	Waist to Hip Ratio

Abbreviation	Description
Bh	Body Height
Rh	Ramus Height
L1	Length 1
L2	Length 2
ConB	Condylar Breadth
CorB	Coronoid Breadth
N(F/M)	Neolithic females/males
IB(F/M	Bronze and Iron Age females/males
R(F/M)	Roman females/males
AS(F/M)	Anglo-Saxons females/males
M(F/M)	Medieval females/males
PM(F/M)	Post-Medieval females/males

Appendix 3: Skeletal Samples

The skeletal samples employed for this study were accessed from a number of universities, archaeological collections and museums. For the purposes of providing background information on these individuals this section will briefly discuss the excavation reports and relevant previously published research on these sites where they were available.

3.1 Fishergate House, York (Medieval)

Excavation was conducted by the Field Archaeology Specialists Ltd (FAS) on the grounds of Fishergate House in York between August 2000 and March 2001. Excavation by FAS quickly revealed many intercutting densely packed human graves, and 244 individuals were excavated from this site (Holst 2005). Adults and juvenile remains were buried together with no apparent order, and all the skeletons with one exception were buried in a supine extended position west-east. A small number of individuals were interred in coffins as identified by the presence of coffin nails. Only three burials included grave goods, and only one double burial was identified, in which two foetuses were interred in a single grave (Holst 2005). Stratigraphic analysis of the site and dating of the non-human material excavated indicated that the site was dated to the late medieval period. In addition to these late medieval inhumations four Roman cremations were excavated from the Fishergate site, dated between the 1st and early 2nd century, although none of the Roman individuals were sufficiently preserved (Holst 2005).

A study conducted by King and Henderson (2013) found that generally the individuals from Fishergate House in York were consistent with other low status late medieval British sites. Males were taller than females with a mean stature among males being 170cm and females 159cm, 60% of individuals were found to have periostitis with no difference between males and females while males were slightly more likely to have periosteal new growth on the maxillary sinus (34.5% males 31% females) and cribra orbitalia (14% males and 11.3% of females). Previous studies have also analysed weaning practices, with results finding that weaning was complete at 2 years of age which is consistent with previous studies of medieval British assemblages. Weaned children were found to have higher nitrogen levels compared to adult females suggesting a diet high in proteins such as marine fish and pork, an interesting finding considering that during medieval times children were considered to be low-status individuals (Burt, 2013). Other research has focussed on non-specific indicators of 'stress' (Watts 2011) or MSM's (Henderson 2005).

Burt, N., 2013. Stable isotope ratio analysis of breastfeeding and weaning practices of children from medieval Fishergate House York, UK. *American Journal of Physical Anthropology* 152 (3), 407-416.

Henderson, C.Y., 2005. Measuring Rotator Cuff Disease. Conference Paper: Paleopathology Association, 32nd Annual North America Meeting. Milwaukee, Wisconsin.

Holst, M., 2005. Artefacts and Environmental Evidence: Human Bone. Summary of Skeletal Analysis. In: C.A. Spall and N.J. Toop (eds). Blue Bridge Lane and Fishergate House, York. Report on Excavations: July 2000 to July 2002. Archaeological Planning Consultancy Ltd.

King, G., and Henderson, C., 2013. Living cheek by jowl: The pathoecology of medieval York. *Quaternary International* 1-12.

Watts, R., 2011. Non-specific indicators of stress and their association with age at death in Medieval York: Using stature and vertebral neural canal size to examine the effects of stress occurring during different periods of development. *International Journal of Osteoarchaeology* 21 (5), 568-576.

3.2 Coach Lane, North Shields, Tyne and Wear (Post-Medieval)

The Post-medieval Quaker burial ground at Coach Lane in North Shields is dated to between 1711 and 1857 CE. The site was excavated by Pre-construct Archaeology Ltd. During excavation at least 236 inhumations were identified with several additional disarticulated skeletal elements discovered. A full report for this site has not yet been published.

3.3 St Guthlac's Priory, Hereford (Medieval)

The Benedictine Priory of St Guthlac was founded between 1107 and 1122 CE in what is now modern-day Herefordshire. The site remained in use until is dissolution in 1539 CE. Previous excavations at the site exposed a portion of a monastic graveyard which was active between the mid-12th and 16th century. Between 1930 and 1940 during the construction of an extension to the hospital which now inhabits much of the site of St Guthlacs Priory, several inhumations were discovered. Several further excavations were conducted on the site, with 5 inhumations discovered in 1993, and a further 41 individuals between 2002 and 2003 (Herefordshire Council n.d)

Herefordshire Council., n.d. St Guthlac's Priory. Herefordshire Through Time, from World Wide Web: https://htt.herefordshire.gov.uk/her-search/monuments-search/search/Monument?ID=6498 [Accessed 27 February 2019].

3.4 Danebury Hill Fort (Bronze and Iron Age)

Excavations of Danebury Hill Fort took place between 1969 and 1988, during this excavation 73 roundhouses and 500 rectangular buildings were uncovered. It was purposed that the roundhouses were human accommodations and the rectangular buildings were store houses for commodities such as grain. In addition to these buildings, over 180,000 pieces of pottery, 240,000 pieces of animal bone and a number of stone objects such as querns as well as bone objects use for weaving were discovered (Hampshire County Council., 2013).

The remains from at least 58 individuals were excavated at Danebury. Isotopic analysis was conducted on the human remains at Danebury which suggested that the people ate a diet based

on terrestrial food items both animal and plant material, and marine or freshwater foods were not regularly consumed. These results also revealed very little variation in isotope levels within the sample, indicating that there was little variation within the Danebury population. These results are similar to the isotopic results of other Iron Age sites in central southern England (Stevens et al. 2010).

The hillfort at Danebury was positioned on an area of chalkland, covered by light soil, located near Stockbridge in Hampshire situated 145 meters above sea level. The area would have been valuable for early settlements, with a wide flood plain ideal for pastures (Stevens et al. 2010). Archaeobotanical remains from Danebury indicate that spelt wheat (*Triticum spelta*) and hulled sixrow barley (*Hordeum polystichum*) were the predominant flora species at the site. In addition to these crops wild carrots (*Daucus carota*) emmer (*triticum dicoccum*), bread wheat (*triticum aestivocompactum*) and hazelnuts (*Corylus avellana*) were all found at Danebury. This archaeobotanical evidence indicates that while other crops may have been consumed, extensive cereal processing and consumption occurred at the site, with large quantities of grains stored at the site (Stevens et al. 2010). Zooarchaeological remains at Danebury indicates that cattle, sheep, horses, pig, dog, goat cat, red deer, roe deer, fox, badger, fish and birds were all present at the site. Based on zooarchaeological analysis it is suggested that the predominant animals at the site were sheep, cattle and pig, which were used primarily for their secondary products such as milk, wool and traction (Stevens et al. 2010). These findings support the isotope analysis of the human remains.

Hampshire County Council., 2013. Danebury Iron Age Hill Fort Local Nature Reserve. Enjoy Hamphsire'sCountryside,fromWorldWideWeb:https://www.hants.gov.uk/thingstodo/countryside/finder/danebury [Accessed 27 February 2019].

Stevens, R., Lightfoot, E., Hamilton, J., Cunliffe, B., Hedges, R., 2010. Stable isotope investigations of the Danebury hillforts pit burials. *Oxford Journal of Archaeology* 29(4), 407-428.

3.5 Dixon Lane and George Street in York (Medieval)

In 2005 York Archaeological Trust (YAT) carried out an excavation at the junction between Dixon Lane and George Street in York, situated on an area of Bunter Sandstone east of the original course of the River Foss, prior to the development of the area. The discovery of human remains as part of the routine excavation resulted in a full-scale excavation of the site where a total of 118 human remains were discovered. While artefacts from several periods were discovered the majority of the finds were from the cemetery the church of St Stephen dated to the medieval period. The inhumations were generally well preserved, with some damage occurring during the construction of a brewery on the site in the 1800's as well as during early clearance of the site in 2005. Osteological analysis conducted on the inhumations from the site revealed that the population broadly reflected a normal age and sex distribution and with 91 of the individuals recorded as adults and 27 juvenile (McCormish, 2006, Keefe and Holst, 2016).

A pathological analysis of the material was conducted, Dental diseases were most commonly recorded pathology from the inhumations at George Street, from the 118 individuals excavated from the site 73 had surviving dentition which were assessed for dental pathology. 48 individuals had dental caries (66%) which were primarily located on the interproximal dental surfaces. 70 individuals (96% of individuals and 88% of the total number of dentition recorded) had dental calculus present. This report however, did not analyse dental pathology by tooth type and therefore results are highly affected by differential preservation of the dentition and therefore cannot be accurately compare to results from other sites (McCormish, 2006, Keefe and Holst, 2016). Relatively little is known about St Stephen's church, it was first cited in documents dating to between 1093-1094 and in is believed that St Stephen's church was demolished in 1331, which is supported by the fact that St Stephen's is not include in a list of churches complied by the city of York in 1428 (McCormish 2006, Keefe and Holst 2016).

McCormish, J., 2006. Land at the junction of Dixon lane and George Street, York Assessment report for an archaeological excavation. York Archaeological Trust Reports, York: York Archaeological Trust.

Keefe, K., Holst, M., 2016. Osteological Analysis Dixon Lane and George Street York North Yorkshire. York Archaeologcal Trust, York: York Osteology Ltd

3.6 Eggardon (Anglo-Saxon)

Excavations at Eggardon began in 1981, during this excavation a round barrow and an urn dated to the late Bronze Age period was unearthed. In the centre of the barrow three extended Anglo-Saxon inhumations were uncovered, no accompanying grave goods were discovered. The three inhumations were in a reasonable state of preservation although the skulls from all individuals were fragmentary. Age, sex and stature estimations were conducted using standard osteological methods and all individuals were estimated to be male. Stature was only estimated from two of the skeletons and ranged from 168cm and 170cm. two individuals were estimated to be in the age group between 35 and 45 years of age while the third individual was younger and estimated to be between 17 and 20 years. There was a good level of dental preservation from the Eggardon inhumations, and slight dental calculus was recorded among all individuals (Cherryson 2005).

Cherryson, A.K., 2005. Burial practices in the Wessex heartlands c.600-1100 AD. Unpublished PhD Thesis. University of Sheffield.

3.7 Quaker Burial, Kingston upon Thames (Post-Medieval)

Prior to construction on a vacant site at London Road, Kingston-upon-Thames a complete archaeological excavation was conducted by Archaeology South East in 1996. Previous reports

from the site indicated its use as a Quaker burial site. As previous literature on nonconformist communities is scares this site provides a valuable information regarding the life and death of these populations. Located at the base of Kingston Hill this site would have been positioned on the outskirts of the medieval town. The earliest reports of the Quaker burial ground at this site date to 1663 when 37 Quakers purchased a plot of land in an orchard, as orchards were favoured areas for Quaker burials and reports from the nearby parish describe the use of this land for burials of the non-conformist population of Kingston. This site was in use for burials from 1664 until 1814 and while records indicate that at least 497 individuals were interned there during this time, although the 316 of these burials had occurred before the end of 1700 (Bashford and Sibun 2007).

During the excavation of the site 364 individuals were recovered; preservation was extremely variable, with only 39 individual beings classed as well preserved, the poor preservation of the burials was influence by the large number of intercut graves, with 200 of the graves being intercut. Pathological analysis of the remains indicated some likely cases of venereal syphilis, DISH, anaemia, rickets and dental and joint disease, although no significant. Analysis of dental pathology revealed that 89% of the individuals had at least one instance of antemortem tooth loss, calculus, caries and periodontal disease was also a common feature among the assemblage (Bashford and Sibun 2007).

Bashford, L., and Sibun, L., 2013. Excavations at the Quaker Burial Ground, Kingston-upon-Thames, London. *Post-Medeival Archaeology* 41(1), 100-154.

3.8 Juniper Green (Bronze and Iron Age)

A crouched individual was discovered from a short cist at Juniper green in Edinburgh Midlothian in 1851. The grave was associated with grave goods dated to the early bronze period. The individual was estimated to be an adult male 40-55 years of age. Dentine was taken in 2004 for C14 dating which estimated the individual was 3797 ± 32 before present (Sheridan n.d, information from uncorroborated written records included with inhumations).

Sheridan, A., n.d. Juniper Green in the Bronze Age. Juniper Green 300. From World Wide Web: http://www.junipergreencc.org.uk/jg300-1/bronzeage.html [Accessed 28th February 2019].

3.9 Boatbridge Quarry (Bronze and Iron Age)

Excavation at Boatbridge quarry, Thankerton South Lancashire led to the discovery of a several cists and human remains. C14 dating was conducted in the 1970's and 1980's the most recent dating conducted by Mike parker Pearson as part of the Beaker peoples project dated skeleton 6 to 3824±32 (information from uncorroborated written records included with inhumations).

3.10 Dryburn Bridge (Bronze and Iron Age)

An Early bronze age cist was discovered at Dryburn bridge, East Lothian, several burials were excavated and a number of grave goods were found in association with these burials. Grave goods included a thumbnail scraper a plano-convex knife. C14 dated the remains to 3755±35 years before present (information from uncorroborated written records included with inhumations).

3.11 Tulloch (Neolithic)

Human skeletal remains were donated to the NMS by Dr Dorothy Lunt, the remains were from Tulloch of Assery at Loch Calder in Caithness. This material was discovered during a excavation of the chamber tombs in 1961 and 1963 (Corcoran and Scot 1964).

Corcoran, J., Scot, F., 1964. Excavation of three chambered cairns at Lock Calder, Caithness. Proceedings of the Society of Antiquaries of Scotland, 66, 1-75.

3.12 Gullane Links (Bronze and Iron Age)

In 1968 excavation at Gullane Links, no 3 golf course in east Lothian revealed a of long cist cemetery. The presence of upper rotatory quern stone nearby indicated the site was early historic (information from uncorroborated written records included with inhumations).

3.13 Broxmouth (Bronze and Iron Age)

Material from the site a Broxmouth East Lothian was C14 dated to 2175±30 before present (information from uncorroborated written records included with inhumations)

3.14 Galson (Roman)

The site of Galson Lewis 5 was excavated in 1974 where several human remains were recovered (information from uncorroborated written records included with inhumations)

3.15 Westness (Anglo-Saxon)

Skeletal material excavated from the Westness cemetery at Rousay Orkney was C14 dated to 1400±60 before present. The individuals from this site was also used in an isotope analysis conducted by James Barrett, results from this analysis have not yet been published (Sellevold 1999).

Sellvold, B.J., 1999. Picts and Vikings at Westness: Anthropological Investigations of the Skeletal Material from the Cemetery at Westness, Rousay, Orkney Islands. Oslo: NIKU (Scientific Report, 10, 1-62).

3.16 Cnip

In 1979 the grave of an adult females estimated to be 40+ years of age was excavated from Cnip, (information from uncorroborated written records included with inhumations).

3.17 East Hill (Roman)

The Romano-British site of East hill farm at Houghton Regis near Dunstable Bedfordshire was excavated by Dr Osman Hill in 1954 who subsequently donated the skeletal remains (information from uncorroborated written records included with inhumations).

3.18 Isle of May (Anglo-Saxon)

St Ethernan's Monastery also known as St Adrian's priory on the Isle of May in Fife (information from uncorroborated written records included with inhumations)

3.19 Colonsay (Anglo-Saxon)

Human remains excavated from a probable Viking grave from Colonsay Galloway (information from uncorroborated written records included with inhumations).

3.20 Brunton's Wireworks (Bronze and Iron Age)

In 1985 excavation conducted by Anne Clarke and Mary Kemp at Brunton's Wireworks, Inveress, Musselburgh in East Lothian led to the discovery of approximately 5 graves. Non-skeletal material found in association with the skeletal remains was dated to the second century CE, indicating the individuals excavated were probably Roman Iron Age (information from uncorroborated written records included with inhumations).

3.21 Longniddry (Bronze and Iron Age)

Skeleton excavated from Longniddry in east Lothian were C14 dated although these dates have been subsequently withdrawn with no explanation, the site however, is considered to be a possible middle bronze age (Baker 2003).

Baker, L., 2003. A Bronze Age burial ground at Longniddry, East Lothian. Proceedings of the Society of Antiquaries of Scotland 133, 125-136.

3.22 Near Meikle Kenny (Bronze and Iron Age)

A short cist was discovered as a result of quarrying near Meikle Keeny in Angus North West of the fairy hillock. No grave goods were uncovered and the skeletons were C14 date to 3634 ± 30 BCE (information from uncorroborated written records included with inhumations).

3.23 Near Seacliff House (Bronze and Iron Age)

A large communal cist thought to be Iron Age between 1-500CE was discovered in 1865 Near Seacliff House, North Berwick, East Lothian no further information can be found concerning the excavation and human burials (information from uncorroborated written records included with inhumations).

3.24 Eyemouth (Unknown)

Excavation conducted in 1896 led to the discovery of several human remains no further information can be found concerning the excavation and human burials (information from uncorroborated written records included with inhumations).

3.25 Dunbar (Bronze and Iron Age)

Human remains excavated from a long cist discovered in Dunbar Clyde villa, East Links were donated by Dorothy Lunt in 2005. No further information can be found concerning the excavation and human burials (information from uncorroborated written records included with inhumations).

3.26 Dounreay (Neolithic)

Excavation of the site was conducted in 1956, no further information is available (information from uncorroborated written records included with inhumations).

3.27 Skara Brae (Neolithic)

A long cist at Skara Brae Orkney was excavated by Vere Gordon Childe in 1930, no further information can be found concerning the excavation and human burials (information from uncorroborated written records included with inhumations).

3.28 Kingoodie (Bronze and Iron Age)

These skeletal remains were excavated from a long cist at Kingoodie, Longforgan, no further information is available (information from uncorroborated written records included with inhumations).

3.29 Keiss (Bronze and Iron Age)

A long cist burial mound site A Keiss in Caithness was dated to the first millennium CE, no further information can be found concerning the excavation and human burials (information from uncorroborated written records included with inhumations).

3.30 Penywyrlod: Llanigon (Neolithic)

An excavation conducted in 1921 led to the discovery of a chambered cairn and 20 individuals were exhumed. The chambers were made out of sandstone, and the largest chamber measured 18 by 9 meters. No further information concerning this site or the inhumations is available (information from uncorroborated written records included with inhumations).

3.31 Dinorben (Iron Age)

Dinorben Iron age hillfort was located near Abergele in North Wales, positioned on the northern edge of limestone hills which extend from Denbigh to Llanddulas. This site was mostly destroyed by quarrying activity between 1950 and 1980 run by Hanson Aggregates. Between 2005 and 2008

the NAA conducted a series of excavations on the site prior to extension of the quarry (Guilbert 2016, Pollock 2006).

Previous excavations conducted on the site from as early as 1912 suggested that the site had been occupied during the Mesolithic and remained occupied until the Iron Age. The site was then later reuse by Roman and medieval populations. Excavation by NAA revealed a large number of Neolithic features including pits and wells and well as a circular enclosed settlement dated to the Iron or Roman periods. Three male skeletons, one female and one juvenile skeleton were excavated from the site, these remains could not be precisely dates, but based on other material from the site are believed to date to between the Late Bronze and middle Iron Age (Guilbert 2016, Pollock 2006).

Pollock, K., 2006. The Evolution and Role of Burial Practices in Roman Wales. Unpublished PhD thesis Bangor University.

Guilbert, G., 2016. Dinorben - Illusion of a 'Bronze Age hillfort'? Internet Archaeology, 43.

3.32 Pipton (Neolithic)

No information could be found regarding the Pipton site and instead the notes from the NMW detailing this site as Neolithic had to be relied upon (information from uncorroborated written records included with inhumations).

3.33 Llantwit Major (Roman)

Llantwit major was a Roman villa which was excavated several times from 1887 until 1971. These excavations revealed the foundations of several fourth century buildings and courtyards. A number of human skeletons were exhumed from the site, are no radiocarbon dates are available, instead dating is based on the buildings and non-skeletal material associated with these burials (Rutherfood and Robinson 2014). Unfortunately, the excavation report for this site is not available

Rutherfoord, J., and Robinson, D., 2014. Llancarfan and Llantwit Major: Vale of Glamorgan, Wales. British Archaeological Association. From World Wide Web: https://thebaa.org/event/study-day-llancarfan-and-llantwit-major-vale-of-glamorgan/ [Accessed 27th February 2019]

3.34 Bulmore New Farm (Roman)

A Roman settlement at Great Bulmore was discovered in 1815, further excavations, revealed an extensive Roman settlement either side of the Roman road which linked Caerleon to Usk. Coins and pottery discovered at the site were dated to around 90CE, and the site is believed to have been abandoned at approximately 300CE. No further information concerning the site and human burials exhumed has been found (Boon 1975, Zienkiewicz 1934).

Boon, G.C., 1975. 'Three Caerleon sculptures', Bulletin of the Board of Celtic Studies 26, 227–30. Zienkiewicz, J.D., 1984. 'Great Bulmore', Archaeology in Wales 24, 57–8.

3.35 Culver Hole Cave (Neolithic)

The site is known to have been occupied during the Bronze Age, and human remains have been excavated from the site and were dated to this period. No further site information could be found, regarding the excavations or analysis of human remains (information from uncorroborated written records included with inhumations).

3.36 Tyddyn Bleiddyn Burial Chamber (Neolithic)

Two cairns dated to the Neolithic were excavated in the mid-19th century, during the excavation several inhumations were exhumed. The site is described as a long cairn with two side chamber, this is the only identified tomb in the Elwy valley. No further information can be found concerning the excavation and human burials at Tyddyn Bleiddyn (Gibson 1996, Prevett 2004).

Gibson, A.M., 1996. Cerfn Meiriadog Water Mains Refurbishment: archaeological watching brief. CPAT Reprot 207. Powys, Wales: The Clwyd-Powys Archaeological Trust.

Prevett, T., 2004. Tyddyn Leiddyn. The Megalithic portal. From World Wide Web: https://www.megalithic.co.uk/article.php?sid=10321 [Accessed 27th February 2019].

3.37 Barry Island (Bronze and Iron Age)

Evidence of flint tools indicates that Barry Island was occupied from the Mesolithic and Neolithic period, and the excavation of roundhouses and further structures indicates that the Island was inhabited throughout the Bronze Age. The specific Bronze Age skeleton included in this study cannot be identified among the numerous excavations and burials unearthed at Barry (Statton 2008).

Statton, M., 2008. Barry Island Pleasure Park, Bary. Archaeological desk-based assessment. Swansea, Wales: The Glamorgan-Gwent Archaeological Trust Ltd.

3.38 Ely Racecourse (Roman)

The remains of a Roman villa thought to be 1800 years old was excavated near at the centre of Trelai Park, near Ely racecourse. Several excavations were conducted on this side since the 1890's, and in 1920 a human burial, along with numerous iron workings and roman pottery. No further information concerning this burial could be found (RCAHMW 2014).

RCAHMW., 2014.Ely Roman Villa. Peoples Collection Wales, from World Wide Web: https://www.peoplescollection.wales/items/382921 [Accessed 28th February 2019].

3.39 Pwll Swil (Bronze and Iron Age)

Pwll Swil cist is located at the foot of the high part of Merthyr Mawr Warren and is positioned near a natural spring and two early Iron Age sites. Examination of the site led to the suggestion that it may have been a round barrow formed from wind-blown sand. While there is no direct evidence of dating for the barrow, the location and formation of the barrow has led to the suggestion that it was late Bronze to early Iron Age. No further information concerning the remains could be found and the records and NMW state that they

represent an early Bronze Age individual (information from uncorroborated written records included with inhumations).

3.40 Orchid Cave (Bronze and Iron Age)

Orchid cave was first excavated in 1981 by Tony King and the North Wales Caving club. Details concerning this excavation were either not recorded or were subsequently lost. Artefacts excavated from this site includes three human burials, and a decorated bone toggle. Radiocarbon dating was conducted on the human bone excavated from the site, which dated the burials to approximately 4830 BP.

Davies, M., 1981. Identification of bones from Orchid Cave, Maeshafn, Clwyd. Unpublished report. Guilbert, G., 1982. Orchid Cave. Archaeology in Wales 22, 15.

3.41 Ogof-yr-esgyrn

Little information could be found regarding the archaeological excavations at Ogof-yr-esgyrn, the only report that could be found detailed the finding of one set of human remains which are referenced to by male pronouns throughout the article, although it cannot be assumed this relate to osteological determination of sex and certainly no methods are discussed. In addition to the human remains, shards of pottery dated to the twelfth century were found in close physical proximity to the human remains. Decorative bronze copper and gold items are also mentioned, although no description concerning the quantity or form of this material is included. The report mentions that the cave has been extensively and repeatedly explored from the beginning of the twentieth century and as such this report may related to a different burial excavated from the site. As the material at NMW does not include further information concerning the date of excavation, individuals involved, or other non-skeletal material recovered it is not possible to say if this report details the same individual from Ogof-yr-esgyrn. The remains at the NMW describes that the remains could be dated between prehistoric to the Roman period and therefore do not shed any further light regarding the dating of this individual.

Mason, E. J., 1977. The archaeology of Ogof yr Esgyrn. Brit Cave Res Ass Trans 4 (1-2). Vol 4, pp. 343-344.

3.42 Castle Ditches (Bronze and Iron Age)

A small excavation was conducted on the ditch and rampart defences of a multivallate hillfort thought to date to around the 2^{nd} century BCE. During the excavation a single inhumation was recovered, the remains are described as female although no osteological report is available (Hogg 1976).

Hogg, A.H.A. 1976 'Castle Ditches, Llancarfan, Glamorgan', Archaeologia Cambrensis 125, 13-39.

3.43 Cowbridge (Roman)

No information concerning the Cowbridge site could be found, instead only the notes from the NMW which described the site of being dated to the Roman period (information from uncorroborated written records included with inhumations).

3.44 Caerwent (Bronze and Iron Age)

A number of excavations in the 1930's were conducted on the site of Llanmelin hillfort, a larger scale excavation was conducted in 2012 by Archaeology Wales. The excavations in the 1930's led to the exhumation of two human skeletons. Currently a report is not yet available from the 2012 study although the aim of this study is to more accurately date the site and exhumed material which is currently believed to date to the Iron Age (Barker and Driver 2015).

Barker, L., Driver, T., 2015. A new archaeological survey of Llanmelin Wood Hillfort, Caerwent. Heritage of Wales News. From World Wide Web: http://heritageofwalesnews.blogspot.com/2015/03/a-new-archaeological-survey-of.html [Accessed 28th February 2019].

3.45 Llanbergoch (Anglo-Saxon)

In 1989-199 five skeletons were uncovered at Llanbedrgoch in Anglesey. The skeletons were identified as two adolescents of unknown sex, two adult males and one female. Stable Isotope analysis suggested that the male individuals were not local to the area, but may have travelled from North Scotland or Scandinavia. Anglo Saxon coins from the site are dated to between 787 and 810CE. In 2012 a further burial was excavated from the site and silver and bronze items dated to the 7th century were found (National Museum Wales, 2012).

National Museum of Wales., 2012. New skeleton discovery at Llanbedrgoch, Anglesey sheds further light on the Vikings in Wales. Press Office. From World Wide Web: https://museum.wales/news/?article_id=777 [Accessed 28th February 2019].

3.46 Llandow (Bronze and Iron Age)

No information concerning the Llandow site could be found, instead only the notes from the NMW which described the site of being dated to the early Bronze Age (information from uncorroborated written records included with inhumations).

3.47 New House Farm St Fagans (Bronze and Iron Age)

No information concerning the New House St Fagans site could be found, instead only the notes from the NMW which described the site of being dated to the Iron or Bronze age (information from uncorroborated written records included with inhumations).

3.48 Llandough (Medieval)

Excavation was conducted in 1990 at the village of Llandough located 3.5km from Cardiff. The site was excavated by Glamorgan-Gwent Archaeological trust. Numerous burials were excavated from the site during further excavations, in total 814 individuals were exhumed. Dating of the non-skeletal material found in association with the burials led to the conclusion that the majority these individuals were from the early

medieval period. Radiocarbon dating however indicated that burial at this site starting the mid 7th century and that the cemetery continued to be in use until the 11th century (Holbrook and Thomas 2005).

Holbrook, N., and Thomas, A., 2005. An Early-medieval Monastic Cemetery at Llandough, Glamorgan: Excavations in 1994. *Journal of Medieval Archaeology* 49(1), 1-92.

3.49 Kempton (Roman)

The Roman settlement of Kempton located at the modern-day village by the same name was excavated during construction work at the site as part of the Bedford Southern Orbital Sewer. Prior to the Norman Conquest Kempton formed part of the estate of the earl of Tostig. The site was dated by typological dating and the dating of coins excavated from the site. The majority of the site dated to the Roman and spanned this period. Although there were a small number of Saxon inhumations dated by the presence of grave goods from this period. Charred plant and seed remains from the graves were identified which revealed that the majority of the plant material were weed seeds, cereal grain and cereal chaff. Triticum spelta was the most commonly occurring cereal at the site, but Triticum. Cf. dicoccum and triticum aestivum type (free threshing bread wheat), avena sp. And bromus/avena type were also present in small quantities. The dominance of spelt what in Iron and roman sites in Bedfordshire is consistent with other sites and historical data which indicates a preferences for this grain during these periods. Analysis of the faunal material from the site indicates that the most commonly occurring animal species were cattle (17.4) followed by sheep and goat (15.5%), horses, pig, chicken and other non-specified small mammals were present at the site although in small quantities. Dental pathology was analysed from the inhumations excavated from this site, which revealed that dental calculus was the most frequently occurring dental pathology with 75% of dentition from adult individuals being affected by dental calculus, while only 6.3% of adult dentition affected by dental caries (Dawson, 2004).

Dawson, M., 2004. Archaeology in the Bedford Region. Bedford Archaeology Monograph Series, 4.

3.50 Wetwang Slack, East Yorkshire (Bronze and Iron Age)

Between 1975 and 1979 the bronze and Iron Age site of Wetwang slack was excavated prior to commercial gravel extraction. Wetwang slack is located in the parish of Wetwang in the central section of the Yorkshire Wolds. The cemetery lay on the southern side of the valley 50m O.D. There is a shortage of surface water and the soil quality is poor which likely had an impact on the agricultural development at Wetwang Slack. The cemetery was only discovered after 5 years of excavation on the site, was discovered a large number of inhumations were excavated. In total a minimum of 450 individuals were excavated from the site (Dent, 1984).

Dent, J.S., 1984. Wetwang Slack : an Iron Age cemetery on the Yorkshire Wolds. MPhil thesis, University of Sheffield.

3.51 Baldock, Hertfordshire (Roman)

Between 1980 and 1985 the north Hertfordshire district council. Excavation revealed the California cemetery of Baldock, which was also known as the Upper Walls Common Cemetery, which was occupied between c200 and 550 CE (Applebaun 1932, Fitzpatrick-Matthews 2016).

Applebaum, E. S., 1932. Excavations at Baldock in 1932. Trans St Albans Architect Archaeol Soc , 244-58

Fitzpatrick-Matthews, K.J., 2016. The Cemeteries of Roman Baldock. Fragments Interdisciplinary Approaches to the Study of Ancient and Medieval Pasts, 5 from World Wide Web: http://hdl.handle.net/2027/spo.9772151.0005.002 [Accessed 28th February 2019].

3.52 Kingsholm, Gloucester (Roman)

The Roman fortress of Kingsholm is thought to have been established 49CE as part of a military campaign to supress the Silures tribe in South Wales. Skeletal remains were dated to between 240 and 386 CE (information from uncorroborated written records included with inhumations).

3.53 Eccles, Kent (Anglo-Saxon)

During the excavation of Eccles Roman Villa in Kent an earlier Iron Age farmstead and an Anglo-Saxon cemetery were discovered. A minimum of 200 graves were identified to form the Anglo-Saxon cemetery, with graves aligned from east-west (Historic England, 2016).

Historic England., 2016. Romano-British villa, Anglo-Saxon cemetery and associated remains at Eccles, from World Wide Web: https://historicengland.org.uk/listing/the-list/list-entry/1011770 [Accessed 28th February 2019].

3.54 Raunds, Northamptonshire (Anglo-Saxon)

The Anglo-Saxon church and churchyard at Raunds was continuously occupied from the sixth to the late fifteenth century (information from uncorroborated written records included with inhumations).

3.55 Blackfriars, Gloucester (Medieval)

The site of Blackfriars cemetery was excavated in 1991 by Gloucester city council excavation unit. A Dominican friary was in use at the site from between 1246 and 1539. While the site was principally used for the burial of mendicant friars, the cemetery also contained a varied population. A later medieval cemetery in use during the twelfth and sixteenth century (Historic England 2017).

Historic England., 2017. Gloucester Greater Blackfriars Publication Project Gloucester. Gloucester: Gloucester City Council.

3.56 St James and St Mary Magdalene, Chichester (Medieval)

The site of St James and St Mary Magdalene was excavated between 1986 and 1992 by Chichester District Archaeological Unit. The leprosarium was founded in 1118 CE and was in use until at least 1418 (Lee and Magilton 2010).

Lee, F., and Magilton, J., 1989. The cemetery of the hospital of St James and St Mary Magdalene, Chichester - a case study. *Journal of World Archaeology*21 (2), 273-282.

3.57 Hereford Cathedral (Medieval)

During building construction the site of Hereford Cathedral was discovered and subsequently excavated between 2009 and 2011. A minimum number of 6200 individuals were excavated from the site which included a charnel pit and a medieval cemetery. It is considered that approximately 200 of the 1200 individuals discovered from the cemetery came from a Black Grave mass grave. The burials excavated were determined to range between the 12th century and the early 19th century (Headland Archaeology, n.d).

Headland Archaeology, n.d. Hereford Cathedral. From World Wide Web: https://headlandarchaeology.com/project/hereford-cathedral/ [Accessed 28th February 2019].

3.58 Box Lane, Pontefract (Medieval)

No further information could be found

3.59 Towton (Medieval)

In 1996 as part of building construction in Towton a mass grave containing 37 individuals was discovered and subsequently excavated. The individuals from the mass grave are believed to have been casualties in the battle of Towton part of the war of the roses, during which 28,000 individuals died (Fiorato et al. 2007, University of Bradford n.d).

Fiorato, V., Boylston, A. and Knüsel C. 2007 Blood Red Roses. Oxford: Oxbow Books. (2nd edn.)

University of Bradford, n.d. Towton Mass Graves Project. Biological Anthropology Research Centre. From World Wide Web: https://www.bradford.ac.uk/life-sciences/arch-sci/research/biological-anthropology-research-centre/projects/towton-mass-grave-project/ [Accessed 28th February 2019].

3.60 St Peter's Wolverhampton (Post-Medieval)

St Peter's church in Wolverhampton has been a place of prominence in the area since Anglo-Saxon times and the Christian church present at the site dates to the late 13th century. Despite the early founding of the church, the human remains excavated from the site were dated to the 19th century. The gravestones recorded during groundwork were dated to between the mid-18th century and the early 19th century (Adams and Colls 2007).

Adams, J., Colls, K., 2007. Out of Darkness, Cometh Light: Life and Death in NineteenthCentury Wolverhampton: Excavation of the Overflow Burial Ground of St Peter's Collegiate Church, Wolverhampton 2001-2002. BAR British Series 442. Archeopress, Oxford, pp. 79-91.

3.61 Hickleton, South Yorkshire (Post-Medieval)

No further information could be found

3.62 E. Smithfield Black Death (Medeival)

Excavated between 1986 and 1988 the East Smithfield Black Death cemetery was used between 1348 and 1350 and was the first Black Death cemetery established in London and covered nearly 2 hectres of land. A total of 636 individuals were exhumed from the cemetery. The preservation of the material was good for adult individuals and poor for the sub-adults, in total 66.7% of the inhumations had a good level of preservation. Although completeness of the remains was poor preventing age estimations for 24.8% of the assemblage. Age estimation revealed that 27.8% were sub-adults and 72.2% were adults with the majority

of the adults dying before the age of 35. This age profile does not reflect a typical medieval cemetery populations and instead reflects the death curve of a catastrophe cemetery consistent with the records that this was a Black Death cemetery. Pathological analysis revealed that only a small number of individuals exhibited skeletal evidence of pathology, this may be related to the young age profile of the assemblage. High rates of dental pathology such as dental caries and dental calculus was recorded, which is consistent with other medieval populations (Bekvalac et al., 2007).

Bekvalac, J., Cowal, L., Mikilski, R., Kausmally, T., 2007. East Smithfield Black Death cemetery summary. Archaeology at the Museum of London. From the World Wide Web: http://archive.museumoflondon.org.uk/Centre-for-Human-Bioarchaeology/Database/Medieval+cemeteries/ESmithfieldBlackDeath.htm [Accessed 28th February

Bioarchaeology/Database/Medieval+cemeteries/ESmithfieldBlackDeath.htm [Accessed 28th February 2019].

3.63 Guildhall (Medieval)

The Guildhall Yard East site located on Basinghall Street was excavated by the Museum of London Archaeological Service between 1992 and 1997. This site is considered to have been the location of a medieval churchyard associated with St Lawrence Jewry with burials dating to the late 11th century. 68 individuals from this site were excavated and analysed by the Museum of London. While preservation of the remains was high, skeletal completeness was poor, preventing age and sex estimations for several individuals. Osteological analysis determined that 47 of the exhumed individuals were adults and there was no significant difference in sex estimation. Pathological analysis of the remains revealed that metabolic disease was the most frequently occurring pathology and trauma was more common among males (17%) compared to females (7%). Prevalence of dental pathology was low when compared to other medieval assemblages (Cowal 2007).

Cowal, L., 2007. Guildhall Yard cemetery summary. Archaeology at the Museum of London. From the World Wide Web: https://www.museumoflondon.org.uk/collections/other-collection-databases-and-libraries/centre-human-bioarchaeology/osteological-database/medieval-cemeteries/guildhall-yard-medieval [Accessed 28th February 2019].

3.64 St Brides Lower (Post-Medieval)

606 individuals were excavated from St Bride's lower cemetery at Farringdon Street. This cemetery was an overflow cemetery linked to St Brides church on Fleet Street and is believed to be dating to the 18th and 19th century (1770-1849). The cemetery is believed to have contained individuals from the nearby Fleet prison and the Bridewell workhouse, with the majority of the individuals at St Brides Lower of a low socioeconomic status. Detailed parish records include information concerning the individual information of each burial including cause of death, however, the lack of burial plates due to the socioeconomic status of the individuals makes matching records to skeletal remains impossible (Kausmally 2008).

Of the 606 individuals exhumed 544 were analysed, the preservation of this material was very good with 94.8% of individuals being in good condition and excellent completeness of the skeletal remains. 369 of the individuals analysed were adults. The average stature was estimated to be 160.5cm for females and 169cm for males. 65.6% of the individuals analysed had skeletal evidence of more than one pathological

condition. The most frequently occurring pathological conditions were metabolic diseases, while trauma was also a frequent occurrence, with rib and nasal fractures being the most common. Dental pathology was a frequent occurrence among the analysed skeletons, with high rates of dental caries, calculus and antemortem tooth loss (Kausmally 2008).

Kausmally, T., 2008. St. Bride's lower churchyard cemetery summary. From World Wide Web: http://archive.museumoflondon.org.uk/Centre-for-Human-Bioarchaeology/Database/Postmedieval+cemeteries/St+Brides+lower.htm [Accessed 28th February 2019].

3.65 Chelsea Old Church (Post-Medieval)

In 2000 excavations were conducted out by the Museum of London Archaeological Services prior to development work on the site of Chelsea old church, destroyed during the Second World War a rebuilt in 1950. Historical data indicates that that the cemetery was used principally by high status individuals living in Chelsea during the 18th and 19th century.

In total 290 inhumations were recovered from the site, although only 198 individuals were analysed. The majority of the graves were earth cut stacked graves and the coffins were typically wooden, although there were some cases of lead lined coffins at the site. The preservation of coffin plates in association with 25 individuals allowed at least partial identification of these remains. The dates of these coffin plates ranged between 1712 and 1842 (Cowie et al., 2008).

The exhumed material was well preserved with 88.9% of the material having a good level of preservation and only 2% being poorly preserved. Of the 198 individuals analysed, 168 were adults. Both the biographical and osteological data indicates that the majority of the individuals excavated from Chelsea old church lived into old age with 36.4% of individuals estimated to be over 46 years of age. The average stature was 163.4cm for females and 168.4cm for males. Pathological analysis of the remains indicates the presence of diseases typical among post medieval populations, residual rickets and osteomalacia among adults and metabolic disease among sub adults were some of the most prevalent pathology present. Among the exhumed individuals dental pathology was also typical compared to other post medieval populations, with high rates of antemortem tooth loss and dental caries.

Cowie, R., Bekvalac, J. and Kausmally, T. 2008. Late 17th to 19th century burial and earlier occupation at All Saints, Chelsea Old Church, Royal Borough of Kensington and Chelsea. London: MoLAS Archaeology Studies Series 18.

Bekvalac, J., Kausmally, T., 2009. Chelsea Old Church (post-medieval) cemetery summary. From World wide Web: https://www.museumoflondon.org.uk/collections/other-collection-databases-and-libraries/centre-human-bioarchaeology/osteological-database/post-medieval-cemeteries/chelsea-old-church-post-medieval [Accessed 28th February 2019]

3.66 Bow Baptist Church (Post-Medieval)

Between 2007 and 2010 265 human burials were excavated from the site, preservation of this material was high with 65% of the assemblage being over 50% complete. Preservation of adult material was better compared to subadult, with 86% of adults and 39.6% of subadults being at

least 50% complete. 254 individuals from this site were examined as part of an osteological report for the site, all further information refers to these 254 individuals (Henderson et al. 2013, Miles and Powers 2007).

Located on the western side of the river Lea, the Baptist church was established in 1785 bow was a village situated between the parish church of St Mary and the River Lea, population of Bow remained small with approximately 2000 inheritance recorded at the start of the 19th century. Towards the second half of the 19th century population boomed following the opening of multiple factories in the area, with populations in Bow more than doubling between 1861 and 1871 (Henderson et al. 2013, Miles and Powers 2007).

Henderson, M., Miles, A., Walker, D., Connell, B., Wroe-Brown, R., 2013. 'He being dead yet speaketh': excavations at three post-medieval burial grounds in Tower Hamlets, east London, 2004–10. London: Museum of London Archaeology.

Miles, A. and Powers, N., 2007. Bow Baptist Church Burial Ground, 2-25 Payne Road, London, E3. London Borough of Tower Hamlets. A Post-Excavation Assessment and Updated Project Design. London: Museum of London Archaeology.

3.67 All Saints, Fishergate, York (Medieval)

There is little historical information regarding All Saints church, the earliest mention of the church dates to between 1091 and 1095 where it was noted to be part of the Whitby Abbey cell. In 1539 as part of Henry VIII's dissolution of the monasteries, All Saint's church was lost. While city maps from the late 17th and 18th century show no indication of the church and instead only indicate the agricultural land at Fishergate. And early ordinance survey maps published in 1852 an approximation of the church's location was included within the site covered by the cattle market (McIntyre and Bruce 2010).

The All Saints church was excavated as part of a routine rescue excavation conducted in 2007 by On Site Archaeology, on a plot of land between Kent Street and Fawcett Street in York. The site was due for major redevelopment as part of the construction of residential housing, prior to this a cattle market built in 1820's had occupied the site. Documentation from previous construction described the disturbance of human remains, as such it was known before excavation began that human remains were present on the site (McIntyre and Bruce 2010).

The earliest material excavated from the site was dated to the Roman period and included 7 inhumations, these were identified as roman based on the orientation and position of the grave and the accompanying grave goods, which included bronze, ring, broaches and anklets. In addition to the inhumations, there was also fragments of cremated human bone (McIntyre and Bruce 2010).

The foundations of a three celled masonry church the cobble and rubble foundations measured approximately 19m with a minimum width of 5m, the full width of the church cannot be estimated as this part of the church was partially covered by the adjacent pavement. The churches foundation had cut

through an early timber structure which is believed predate the church. Approximately 550 medieval burials were excavated in association with the church. The church and associated graveyard were in use for over 400 years and as such the earlier burials had been cut through by later burials (McIntyre and Bruce 2010).

Due to high rate of the graves being cut through only a small number of inhumations were intact, although preservation in general was good. The majority of graves were single inhumations with only a small number of double burials, suggested to represent family or community members who died at the same time. While the presence of grave goods was scarce, broaches and belts were present in some graves. The osteological analysis of age and sex profiles consistent with other medieval burial sites in the area (McIntyre and Bruce 2010).

During excavation of the medieval church and graveyard, 10 mass graves comprising of over a hundred skeletons were uncovered. These mass graves cut through the medieval cemetery graves, indicating that they were dug after the cemetery was in use. The mass graves varied in size, with the smallest grave containing 4 individuals and the largest 18. The skeletons were arranged in tightly packed parallel rows and the majority were in a prone position. The parallel organised position of the individuals is unusual for mass graves of this period. The positioning of the burials and the lack of non-skeletal objects in the grave, suggests that the individuals were stripped of clothing and belongings before burial. Osteological analysis revealed that of approximately 113 burials, 87 were estimated as male, 20 individuals were of indeterminate sex and only 6 were estimated to be female. Age estimation showed that age of the mass grave burials ranged from teenagers to 50 years of age, with the mean age group being between 35 and 49 years old. The demographic profiles of these mass grave burial in addition to the high prevalence of pathology associated the high levels of excessive physical activity, led to the suggestion that these individuals represented a military group. The lack of evidence of trauma on the mass grave individuals, however, contrasts with this theory. It is, however, possible that the individuals in this grave were casualties of infectious disease, which were documented among the sieging parliamentary forces in the siege of York in 1644 (McIntyre and Bruce 2010).

McIntyre, L., and Bruce, G. 2010. Excavating All Saint's: A Medieval Church Rediscovered. *Current* Archaeology 245: 30-7.

3.68 Black Gate Cemetery (Anglo-Saxon)

The Black Gate site was used over several periods and a number of buildings, burial and non-skeletal evidence have been found on the site. A Roman fort, An Anglo-Saxon motte and bailey castle and accompanying cemetery and a tower keep castle from medieval and postmediaeval periods have all been excavated from the site. The earliest finds from the site are prehistoric flint tools and a stone axe indicating that the site has been occupied frequently since the Neolithic period (Historic England 2002, Nolan 2010).

Overlaying and extending beyond the Roman fort the remains of an Anglo-Saxon cemetery was discovered during construction on the site as part of railway development in the 19th century. The site was then partially

excavated between 1977 and 1992. The cemetery appears to have been in used from the eighth century until the middle of the 12th century and in total approximately 660 inhumations were exhumed. These burials were dated based on coins found with the burials and. In addition to the burials the foundation of a stone building near the cemetery was excavated which is believed to have been the remains of a church or chapel that would have been associated with the graveyard. Historical documentation details a motte and bailey castle constructed in 1080 on the site of the Roman fort was built by Robert Duke of Normandy, the eldest son of William the Conqueror (Historic England 2002, Nolan 2010).

Historic England., 2002. Roman fort, Anglo-Saxon cemetery, motte and bailey castle and tower keep castle. From World Wide Web: https://historicengland.org.uk/listing/the-list/list-entry/1020126 [Accessed 28th February 2019].

Nolan, J., 2010. The early medieval cemetery at the Castle, Newcastle-upon-Tyne. *Archaeologia Aeliana* 39 147-287.

3.69 The Church of St Hilda, Coronation Street (Post-Medieval)

Excavation conducted by Oxford Archelogy North in 2006 unearthed a partial churchyard which was determined to be part of St Hilda's church built in the 18th century. This 18th century church replaced the previous medieval chapel on the grounds by the same name. This graveyard had been in use from the 1600's to 1855 when the church yard was closed. The site of the original churchyard had been cut through in the 1970's when Coronation Street was built, as such only a small area on the south side of the original graveyard could be excavated (The University of Sheffield n.d).

In total 124 burials were excavated, 117 of these were adult individual with 87 sub adult burials, it was estimated that 50 individuals were disarticulate Charnel burials. Pathological analysis indicated low levels of nutritional deficiency disease, while a high prevalence of dental disease such as caries, calculus and ante mortem tooth loss were recorded (Newman 2016, Raynor et al. 2001, The University of Sheffield n.d).

Raynor. C., McCarthy, R., and Clough, S. 2011. Coronation Street, South Shields, Tyne and Wear. Lancaster: Oxford Archaeology North.

Newman, S.L. 2016. The Growth of a Nation: Child health and development in the Industrial Revolution in England, c. AD 1750-1850, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/11508/

The University of Sheffield., n.d. Osteology Lab: Human Skeletal Collection. From world Wide Web: <u>https://www.sheffield.ac.uk/archaeology/research/osteology-lab/skeletal-collection</u> [Accessed 28th February 2019]

3.70 Carver Street (Post-Medieval)

The Carver Street Methodist chapel was constructed in 1805 at which time it was the largest chapel of its kind in Sheffield. The associate graveyard is the only known major burial ground for nonconformist individuals in Sheffield during the early 19th century (McIntyre and Willmott 2003, The University of Sheffield n.d). Burial records from the Carver street chapel indicate that is was in use between 1806 and 1855 during which time approximately 1,600 individuals were interned (Witkin and Belford, 2000). There

was evidence that the graves at Carver Street were frequently reused over time, with several cases of multiple stacked burials occurring. The burials at Carver Street are considered to represent a "good cross section of Sheffield's 19th century population" with members of different social classes and status's being represented (McIntyre and Willmott 2003, The University of Sheffield n.d).

McIntyre, L. and Willmott, H. 2003. Excavations at the Methodist Chapel, Carver Street, Sheffield. ARCUS 507

The University of Sheffield., n.d. Osteology Lab: Human Skeletal Collection. From world Wide Web: https://www.sheffield.ac.uk/archaeology/research/osteology-lab/skeletal-collection [Accessed 28th February 2019]

Witkin, A., and Belford, P., 2000. Skeletal Assessment of Carver Street Methodist Chapel, Sheffield, unpublished ARCUS report 507, 1.

3.71 Grimthorpe, E.R. York Iron Age (Bronze and Iron Age)

No information concerning this site beyond what was written on the box could be found, therefore only the location and Iron Age date is known about this individual.

3.72 Cherry Hinton War Ditches Cambridge (Bronze and Iron Age)

In 2008 Oxford archaeology east and the Cambridge antiquarian society subsequently conducted a excavation at the site. During this and subsequent excavations a number of Iron Age individuals were exhumed from a ditch to the east of the site, in addition to the human remains, pottery, fired clay, animal bones and flints were excavated. Radiocarbon dating was used to date human and animal bone as well as charcoal from this assemblage, which indicated that the ditch was dug between 575 and 385 BCE. Analysis of the faunal remains from the site, is consistent with other Iron Age sites witch cattle making up 42% of all faunal remains. Pig (28%) and sheep/goat (17%) where the next most frequently occurring animal remains. Earlier excavation reports did not always specify the number of remains excavated or the sex and age estimations of this material, more than 13 human remains were excavated from the site between 1893 and 2009 (Pickstone and Mortimer 2012).

Pickstone, A., Mortimer, R., 2012. War Ditches, Cherry Hinton: Revisiting an Iron Age hillfort. *Proceedings of the Cambridge Antiquarian Society.* 101, 31-60.

3.73 Northton, Isle of Harris (Bronze and Iron Age)

There was insufficient information was present to identify the site referenced on the box, as such no further information could be found.

3.74 Brewery Field, Baldock (Bronze and Iron Age)

Between the Neolithic and Iron Age the area of Baldock was extensively occupied by humans, and a number of Bronze Age cemeteries have been identified. No further information concerning the specific site these remains are from could be found. Archaeological data service., n.d. Baldock. From World Wide Web: http://archaeologydataservice.ac.uk/archiveDS/archiveDownload?t=arch-436-1/dissemination/pdf/baldock.pdf [Accessed 28th February 2019].

3.75 Tallington (Bronze and Iron Age)

There was insufficient information was present to identify the site referenced on the box, as such no further information could be found.

3.76 Aldwincle, Northhants (Bronze and Iron Age)

There was insufficient information was present to identify the site referenced on the box, as such no further information could be found.

3.77 Amesbury Barrow (Bronze and Iron Age)

There was insufficient information present to identify the site referenced on the box, as such no further information could be found.

3.78 Pin Farm, Gazeley Suffolk (Bronze and Iron Age)

An early Bronze Age cemetery was excavated in the south end of Breckland, at Pin Farm in Gazeley. A minimum of six individuals were excavated from the barrow centre and a further nine individuals from the periphery (Petersen n.d).

Petersen, F., n.d. The excavation of an Early Bronze Age cemetery at Pin Farm, Gazeley. Sufflok Institute of Archaeology, 19-41.

3.79 Waterhill Farm Chippenham (Bronze and Iron Age)

No further information beyond what was written on the box could be found.

3.80 Winterbourne Stoke, Barrow (Bronze and Iron Age)

A round barrow cemetery comprised of 19 later Neolithic to early Bronze Age round barrows was excavated by Sir Richard Colt Hoare in the early 19th century. During this excavation several burials dating to the Bronze age were identified, in addition to these inhumations other finds including cremations, food vessels, flints, bronze daggers and beads (Historic England n.d, Winterbourne Stoke Group, n.d).

Historic England., n.d. Winterbourne Stoke Crossroads Barrow Cemetery. PastScape. From World Wide Web: http://www.pastscape.org.uk/hob.aspx?hob_id=219525 [Accessed 28th February 2019].

Winterbourne Stoke Group., n.d. Stone Circle. From World Wide Web: http://www.stonecircles.org.uk/stone/winterstoke.htm [Accessed 28th February 2019].

3.81 Tooth Cave, Gower Pen, Wales (Bronze and Iron Age)

The Ancient Monument of tooth cave is the longest cave in Gower and was occupied during the Bronze Age, at least 8 individuals have been excavated from the site. Evidence of human activity

during the Bronze Age has been discovered at Tooth cave, this included funeral urns, pottery and human remains (Explore Gower, n.d)

Explore Gower., n.d. Tooth Cave- SS 5317 9092. Gower Caves. From World Wide Web: http://www.explore-gower.co.uk/gower-caves [Accessed 28th February 2019].

3.82 Burwell Fen (Bronze and Iron Age)

A human mandible was excavated as a stray find at Burwell Fen, Cambridgeshire England in 1992.

Radiocarbon dating was conducted and the remains were dated to the late Bronze Age (OxA - 4286 to -4291).

Archaeology data service., n.d. Radiocarbon date, Sample number OxA-4289. From World Wide Web: http://archaeologydataservice.ac.uk/archsearch/record.jsf?titleId=919262 [Accessed 28th February 2019]

3.83 Crichel Down Dorsetshire (Bronze and Iron Age)

A roman inhumation was excavated at Long Crichel in Dorset, no further information could be found regarding this individual.

3.84 Staxton East Riding, Yorkshire (Bronze and Iron Age)

There was insufficient information present to identify the site referenced on the box, as such no further information could be found.

3.85 Normanton Wilts (Bronze and Iron Age)

The barrows at Normanton down near Stonehenge are part of a series of Neolithic and Bronze Age barrows, although the majority are Bronze Age. There are several barrows which have been excavated at this site and it is not possible to determine the specific barrow or excavation.

3.86 LondAsh Lane Frampton Dorchester

There was insufficient information present to identify the site referenced on the box, as such no further information could be found.

3.87 St Neots (Bronze/Iron Age)

An Archaeological evaluation was conducted in 2005 by the Cambridge County Council Archaeological Field Unit at St Neots Community College (Cooper 2005).

Cooper, S., 2005. Prehistoric and Roman remains at St Neots Community College, Cambridgeshire: An Archaeological Evaluation. Archaeological Field Unit.

3.88 Shepherd Shore Wansdyke N wilts(Bronze and Iron Age)

There was insufficient information present to identify the site referenced on the box, as such no further information could be found.

3.89 Kennet Hill Wilts (Bronze/Iron Age)

The longest long barrow in southern England, west Kennet long barrows is over 100 meters long and is located along a ridge near River Kennet. Several excavations have been conducted on the site and six burials were excavated in 1859 and a further 40 burials were excavated in 1955-1956. The majority of these burials were disarticulated, and incomplete, radio-carbon dating was conducted on the human remains which indicated they were deposited around 3500BCE.

Darvill, T., 2013. West Kennet Long Barrow, Avebury, Wiltshire. From World Wide Web: http://digitaldigging.net/west-kennet-long-barrow-avebury-wiltshire/ [Accessed 28th February 2019].

3.90 Morgan Hill Wilts (Bronze/Iron Age)

There was insufficient information present to identify the site referenced on the box, as such no further information could be found.

3.91 Barrow Burials, Radley (Bronze/Iron Age)

The Barrow Hills site in Radley is a large archaeological site dated to the Bronze age period, the site was by Oxfordshire archaeological unit. Finds excavated from the site includes a number of flints and iron fragments, as well as animal skeletal remains and mollusc shells. The human skeleton was excavated from Section 3 of the barrows, age was estimated between seventeen and nineteen years based on epiphyseal fusion and eruption of the third molars (Parrington 1976).

Parrington, M., 1976. Excavations in Barrow Hills Field, Radley, Oxon, from World Wide Web: https://oxoniensia.org/volumes/1948/williams.pdf

3.92 Barrow Burials Cassington(Bronze/Iron Age)

An emergency excavation was conducted in 1943 on behalf of the Ashmolean Museum, during which two inhumations were recovered. This site is believed to date to the middle Bronze Age based on material finds and the treatment of the human remains (Parkinson et al. n.d)

Parkinson, A., Barclay, A., McKeague, P., n.d. The Excavations of two Bronze Age Barrows, Oxford. Oxford: Oxford Archaeology.

3.93 Barrow Burials Snailwell (Bronze/Iron Age)

There was insufficient information present to identify the site referenced on the box, as such no further information could be found.

3.94 Littleport Cambs (Bronze/Iron Age)

There was insufficient information present to identify the site referenced on the box, as such no further information could be found.

3.95 W. Monkton Wilts (Neolithic)

Excavations were conducted at the Neolithic chambered tomb in Winterbourne Monkton Wiltshire, further details concerning the excavation of human remains from this site could not be found.

3.96 Little Drew Lugbury N Wilts 1854 (Neolithic)

Several excavations had previously been conducted at the Lugbury site in Wiltshire. In 1854 a further excavation was carried out after ploughing revealed a four stone chamber where 26 inhumations were excavated from.

Andy, B., 2016. Lugbury- Chambered Tomb in Angland in Wiltshire. The Megolithic Portal. From World Wide Web: https://www.megalithic.co.uk/article.php?sid=1904481563 [Accessed 28th February 2019].

3.97 Lanhill (Neolithic)

There was insufficient information present to identify the site referenced on the box, as such no further information could be found.

3.98 Whitehorse Hill Berkshire (Roman)

There was insufficient information present to identify the excavation referenced on the box, as such no further information could be found.

3.99 Spittisbury Dorset (Roman)

There was insufficient information present to identify the site referenced on the box, as such no further information could be found.

3.100 Arbury Road (Roman)

In the 1950's a Roman building was discovered during construction of a water main. Excavation was conducted by Dr Alexander and Dr Trump from the University of Cambridge. During this excavation six skeletons buried in wooden and stone coffins (University of Cambridge 2007).

University of Cambridge., 2007. Arbury's Roman past revisited. https://www.cam.ac.uk/news/arburys-roman-past-revisited

3.101 Maxey Northamptonshire (Roman)

There was insufficient information present to identify the site referenced on the box, as such no further information could be found.

3.102 Great Casterton (Roman)

There was insufficient information present to identify the site referenced on the box, as such no further information could be found.

3.103 Sinnington Nr Rotherham Yorks

There was insufficient information present to identify the site referenced on the box, as such no further information could be found.

3.104 Ashwell Guilden Modern (Roman)

Ashwell has been occupied since Neolithic times, and during the Roman period a number of Roman farmsteads were present in the Ashwell parish. Roman finds in the area include a hoard of Roman silver coins, and near Ruddery Spring a Roman cemetery was excavated. A number of other Roman inhumations have been excavated from the Ashwell parish and it is not possible to determine which excavation the remains at the Duckworth were from (Ranson, 2012).

Ranson, C., 2012. Archaeological Test Pit Excavations in Ashwell, Hertfordshire, 2011 and 2012. Cambridge: Access Cambridge Archaeology.

3.105 Godmanchester (Roman)

There was insufficient information present to identify the site referenced on the box, as such no further information could be found.

3.106 Norton East Riding Yorkshire (Roman)

No further information beyond what was written on the box could be found.

3.107 Melbourn War Ditches (Roman)

There was insufficient information present to identify the site referenced on the box, as such no further information could be found.

3.108 Poundbury Dorset (Roman)

A Roman stone coffin dating to the 3rd or 4th century CE was excavated from Poundbury farm,

Poundbury, Dorset (Wessex Archaeology n.d)

Wessex Archaeology., n.d. Roman stone coffin form Poundbury Farm, from World Wide Web: http://www.wessexarch.co.uk/projects/dorset/poundbury [Accessed 28th February 2019]

3.109 Isleham Fen (Roman)

There was insufficient information present to identify the site referenced on the box, as such no further information could be found.

3.110 Combe Down (Roman)

There was insufficient information present to identify the site referenced on the box, as such no further information could be found.

3.111 York (Roman)

No information concerning this site beyond what was written on the box could be found, therefore only the location and Iron Age date is known about this individual.

3.112 Bletsoe (Roman)

No information concerning this site beyond what was written on the box could be found, therefore only the location and Iron Age date is known about this individual.

3.113 Zoological Collection, Royal College of Surgeons

All of the non-human material included in this study was sourced from the Odonatological collection at the RCS, species and sex and age group were provided in the museum catalogue, sub species and further information is not required for the purposes of this study.

3.114 Breedon-on-the-hill, Leicestershire (Anglo-Saxon)

Breedon-on-the-hill is located to the north-west of Leicestershire, as a result of large amounts of quarrying archaeological remains were uncovered. The site is positioned on a 400ft hill with access to the Soar and Trent River valleys making the location ideal for early British populations. While material uncovered at Breedon dates to as early as 3,000 BCE the majority of the material from the site is dated to the Iron Age approximately 300BCE when the hill fort is thought to have been constructed (Kenyon 1946).

23 graves were excavated at the site, they were very shallow and were positions in three parallel lines funning north to south with. The skeletons were in an extended supine positioned and were orientated east to west. The graves were for the most part well spread apart, with on average 1 foot between each grave, and there was only one case of a grave being cut through by a later burial. Only one grave had evidence of a possible coffin, with three iron nails recovered. There was potter present in the grave which was dated to the Iron Age and as no other grave goods from different periods were present it was concluded that these skeletons were Iron Age individuals. However, the proximity of these burial to an early Saxon church creating speculations that these may have been Saxon individuals (Kenyon 1946).

Osteological analysis was conducted on 14 of the inhumations excavated from the site, this included age and sex estimations. All of the individuals analysed were adults ranging between 17 to 50+ years of age. Stature varied between the individuals although specific statures estimates were not included and only descriptions such as "short stature" and "tall, muscular build" were provided. While dental wear and presence were described, this was not sufficiently detailed or standardised to allow analysis (Kenyon 1946).

Kenyon, K., 1946. Excavations at Breedon-on-the-Hill: Leicestershire Archaeological Society. Archaeologia, ixxvii, 18-82.

3.115 Guildford Friary (Medieval)

Excavations were conducted on a Dominican Friary in Guildford in 1974 and 1978, the site was first discovered during the demolition of the Friary Meux brewery. Based on historical evidence the friary is believed to have been founded in 1275 by Eleanor Provence. During the later excavation in 1978 human burials were discovered at the site, and a total of 113 were exhumed (Poulton and Woods 1984).

Poulton, R., and Woods, H., 1984. Excavations on the site of the Dominican Friary at Guildford in 1974 and 1978, Res Vol Surrey Archaeological Society 9, 83.

3.116 GW85 (Anglo-Saxon)

No information or matching site records could be found concerning the GW85 site at the Surrey Archaeological Trust, only an uncorroborated time period of Saxon is provided, as such this data shall be used tentatively.

3.117 Hurstbourne Priors Manor Farm

During construction of a latrine pit by a girl guides camp in 1988 a human femur was excavated. Upon further excavation of the site more human remains were excavated, along with Roman pottery and other material dated to the Roman period. At this point Andover Museum was contacted and a full excavation of the site was conducted. The human burial was determined to be that of an adult mail between 35 and 50 years of age and about 1.6 meters in height. The presence of over 50 iron nails indicates that this individual may have been buried in a coffin, which may account for the high preservation of the skeleton. This site was dated to between 200-280 based on analysis of the Roman pottery associated with the human remains (Allen 1992).

Allen, D., 1992. A Third Century Roman Burial from Manor Farm, Hurstbourne Priors. Proc Hants Field Club and Arch Soc, 47, 253-257.

3.118 United Reform (Anglo-Saxon)

This site is recorded as being dated to the Anglo-Saxon period, unfortunately there is no further information currently published for this site.

3.119 Westham Playing Fields (Roman)

This site is recorded as being dated to the Roman Age, unfortunately there is no further information currently published for this site.

3.120 Owslebury (Roman)

The site of Owslebury which was excavated between 1961 and 1972 is dated to the Roman period. A total of 50 inhumations were excavated from this site, 30 of which were juvenile. Of the adult remains sex was estimated from 17 individuals of which 14 were male. Unfortunately there is no further information currently published for this site.

Collis, J., 1968. Excavations at Owslebury, Hants: a first interim report, Antiq. J. 48, 18-31

3.121 Nutbane (Neolithic)

Nutbane longbarrow in Andover was excavated in 1957 after being discovered two years prior to excavation. Nutbane longbarrow was built and used about 3,500 BCE. The site had been worked for agricultural purposes prior to excavation, frequent ploughing reduced the height of the longbarrow structures to 0.75 meters in height. There were four human inhumations excavated from the east end of the site where a mortuary structure was identified. Of the burials three were estimated to be male adults ranging in age from 30-50 years old, while the fourth burial was a child

between 12 and 13 years of age. There were no grave goods excavated from this site, although it is possible that these materials decomposed. This site has been included in this study because it is one of very few Neolithic sites that have been fully excavated in Hampshire (de Mallett Morgan 1959)

de Mallett Morgan, F., 1959. The excavation of a Long Barrow at Nutbane, Hant. Proceedings of the Prehistoric Society 25, 15-51.

3.122 Droxford (Anglo-Saxon)

The Anglo-Saxon cemetery at Droxford was first discovered in 1900 during routine archaeological excavations as part of a railway line construction. After the excavation of several human bones and Iron Age objects the site was not fully excavated though until 1973 when it was rediscovered as a result of soil erosion near the railway lines. During this excavation a total of 41 graves were identified along with their accompanying grave goods(Aldsworth 1979).

Aldsworth, F.R. 1979. The Droxford Anglo-Saxon cemetery, Soberton, Hampshire. Proc Hampshire Field Club Archaeol Soc 35, 93-182.

3.123 Suddern Farm (Roman)

This site is recorded as being dated to the Roman period, unfortunately there is no further information currently published for this site.

3.124 Walworth Barrows (Bronze and Iron Age)

The Bronze Age site of Walworth Barrows in Andover dated to between 2000-1000BCE consists of two round barrows which were excavated in 1987 prior to scheduled development of the site. These round barrows were built very close together so that in an aerial view they form a figure eight. The barrows were built on land which was since extensively ploughed as farmland, until only the outer ditches remained. The site was constructed during the early Bronze Age and was in use until the late Bronze Age, after which the ditches were filled with silt. Several burial were excavated from the site, these burials included both inhumations and cremations (King 2015).

King, J., 2015. The excavations of two Bronze Age barrows on Walworth industrial estate, Andover in 1987. *Proc Hampshire Field Club Archaeological Soc*iety 70, 1-33.

3.125 Micheldelver Wood (Bronze and Iron Age)

This site is recorded as being dated to the Iron Age, unfortunately there is no further information currently published for this site.

3.126 Brighton Hill South (Medieval)

In 1984 and 1985 trial excavations were conducted at the site of an Iron Age enclosure at Brighton Hill South in Basingstoke, led to the unexpected discovery of a medieval church and the partial discovery of an associated settlement. Dating of the medieval settlement was conducted based on analysis of pottery material which ranged from the mid-11th century to the late 15th century. Of the graves excavated 6 human skeletons were retrieved and analysed from within the church building. Of these remains two were infants, one was juvenile and one was a mature adult male. Information concerning the other 2 skeletons were not available. Within the churchyard 258 graves were recorded although only 37 of these were excavated, due to a number of double burials at least 46 human skeletons were excavated as a result of this. It is not known from the published material why only such a small fraction of the graves were excavated. A high proportion of the burials were juvenile, with over half of the individuals being immature (Fasham et al. 1995).

Evidence of the nearby settlement shows that the accompanying timber buildings made up the ancient manor and church of Hatch, which is considered to have been quite a high status settlement during the 12th and 13th century's (Fasham et al. 1995).

Fasham, P.J., Keevill, G., and Coe, D., 1995. Brighton Hill South (Hatch Warren): an Iron Age farmstead and deserted medieval village in Hampshire. Wessex Archaeology Report No. 7.

3.127 Twyford Farm (Bronze and Iron Age)

Excavations were conducted at Twyford Down prior to construction of the M3, this work revealed a number of archaeological features ranging from Early Bronze Age to Early Roman period. In addition to numerous material and animal remains several human cremations and inhumations were excavated from the site, with over 6000 human bone fragments identified. From these remains 20 human inhumations were recorded and dated to the Bronze Age, preservation of these remains was for the majority good. Dating was conducting using radiocarbon testing from 6 samples of human bone (Anon 1993).

Anon., 1993. M3 Twyford Down, Winchester, Hampshire: Assessment Report and Updated Project Design Specification. Wessex Archaeology.

3.128 Shavards Lane (Anglo-Saxon)

This site is recorded as being dated to the Anglo-Saxon period, unfortunately there is no further information currently published for this site.

3.129 Winchester Street (Roman)

During the mid-1980's excavation took place at a site on the east side of Winchester street in Andover. During this excavation a number of medieval and post-medieval pits and cellars were discovered. In addition to the medieval and post medieval finds at the site a late roman cemetery was also uncovered. A total of nine human skeletons were excavated from the Roman cemetery between 1984 and 1987. The site of this Roman cemetery is 0.5 km from the Winchester to Cirencester Roman road, although there are no conferment Romano-British settlements within the nearby vicinity of the Winchester street cemetery (Jennings 2000 and Clarke 1979).

Jennings, K., 2000. The excavation of nine Romano-British burials at Andover, Hampshire Studies 55, 114 -132.

Clarke, G., 1979. The Roman Cemetery at Lankhills, Winchester Studies 3.

3.130 Kempshott Park (Iron and Bronze Age)

This site is recorded as being dated to the Bronze Age, unfortunately there is no further information currently published for this site.

3.131 Easton Lane (Iron and Bronze Age)

This site is recorded as being dated to the Bronze Age, unfortunately there is no further information currently published for this site.

3.132 Selborne Priory (Medieval)

Selborne priory was founded in 1233 by Peter des Roches the Bishop of Winchester and was in use until 1486 when it was dissolved by William Waynflete. The site was excavated between 1953 and 1971, early excavations were conducted by armatures, while later excavations and publications was by David Baker. During the excavations 13 human burials were discovered as well as numerous material finds (Baker n.d). This site is recorded as being dated to the Medieval, unfortunately there is no further information currently published for this site.

Baker, D., n.d. Selborne Priory: Excavations 1953-1971. Hampshire Field Club Monograph 12.

3.133 Breamore (Anglo-Saxon)

The Anglo-Saxon cemetery site at Breamore in Hampshire was first identified though a Geophysical Survey conducted in August 2000 which indicated the presence of at least three human burials (Hinton and Worrell 2017). Unfortunately, there is no further information currently published for this site.

Hinton, D.A., and Worrell, S., 2017. An Early Anglo-Saxon Cemetery and Archaeological Survey at Breamore, Hampshire, 1999–2006. Archaeological Journal 174(1), 68-145.

3.134 Easton Down (Bronze and Iron Age)

This site is recorded as being dated to the Bronze Age, unfortunately there is no further information currently published for this site.

3.135 Church Close Andover (Medieval)

In 1990 during the construction of a new church hall at Church Close in Andover led to the discovery of a peg-tile hearth and several other deposits. Later in 1990 a further site at Church Close was excavated during the construction of St Mary's medical centre led to the discovery of a number of human remains were discovered. While currently this excavation report has not been published the site is conserved to date to the King John (Allen et al. 2015, Stoodley 2013).

Allen, D., Gould, S., Johnson, L., King, J., Stone, P., 2015. Buried in time – Church Close and Newbury Street, Andover. *Hampshire Archaeology*. From World Wide Web: https://hampshirearchaeology.wordpress.com/2015/06/15/buried-in-time-church-close-and-newbury-street-andover/

Stoodley, N., 2013. The Archaeology of Andover: The Excavations of Andover Archaeological Society 1964-89. *AHAS*.

3.136 Portway East, Andover (Anglo-Saxon)

The 6th century Saxon cemetery at Portway east was excavated between 1973 and 1975 by the Andover Archaeological Society. The site contained 69 inhumations and 57 cremations, however the preservation of many of these remains was very poor due to damage caused by ploughing. A high prevalence of grave goods were excavated from the site, site reports also indicates a higher number of female burials compared to male burials. The cemetery was dated to the late 6th century based on the decorations of the grave goods excavated from the site (Cook and Dacre 1985).

Cook, A., and Dacre, W., 1985. Excavations at Portway, Andover, 1973–1975. Oxford : Oxford University Committee for Archaeology

3.137 St Andrews (Medieval)

Included from the collections at Chichester were four medieval individuals excavated from the Church of St. Andrew- in-the-Oxmarket. St Andrews church in Chichester is generally assigned to the 13th century based on architectural features. Although during excavation it was realised that the footings of the church may be earlier, although a date for these features is not provided (Down 1981, Salzman 1935).

In 1976 the Trustees of the Chichester Arts Centre gave permission for a limited excavation funded by the Department of the Environment, prior to scheduled building works in the church. The aim of this investigation was to determine if a Saxon church lay in the foundations of St Andrews. Excavation of the site later revealed no evidence to indicate the presence of any such Saxon church, however, features of a Roman house were identified. In addition to the Roman material discovered during the excavation further features of St. Andrews church were revealed, including human remains dated to the medieval period. The burials, however, were not discussed further in the published material (Down 1981, McCann 1978, Salzman 1935).

Salzman, L.F., 1935. 'Chichester: Advowsons', in A History of the County of Sussex: Volume 3, 164-166. British History, from World Wide Web: http://www.british-history.ac.uk/vch/sussex/vol3/pp164-166 [Accessed 28 February 2019].

Down, A., 1981. Excavations in St Andrew, Oxmarket, in Chichester Excavations V, Chichester. McCann, A., 1978. The History of the Church and Parish of St Andrew Oxmarket, Chichester.

3.138 Eastgate Needlemaker (Roman)

During an archaeological assessment conducted prior to the commencement of planned construction across the River Levant in Chichester in 1976 at a site, known as the Eastgate Needlemakers Site. During excavation 14 human burials and roman pottery were discovered and dated to the 4th-5th century (Lyne 2015).

Very little is included in the archaeological report regarding the skeletal remains excavated, with only general descriptions of the preservation included. The cemetery itself is thought to be late in the Roman period, and based on the presence of Roman coins and pottery has been dated to between the 4th and 5th century. These dates are further supported by the carbon 14 dating of burial 13 to the mid-4th century. Quicklime was discovered in two of the graves may indicate that these individuals were plague victims (Lyne 2015).

Lyne, M., 2015. The end of Roman Pottery Production in Southern Britain. Internet Archaeology 41 http://intarch.ac.uk/journal/issue41/index.html

3.139 Stocklund (Medieval)

No published reports concerning the excavation of the skeletal material from Stocklund were available, it was known based on informal written records accompanying the remains the remains were discovered in 1966 during the construction of Stocklund house in Chichester and the site was dated to the Medieval period.

3.140 Theological College (Roman)

Excavation were conducted in Chichester in 1985 and 1987 at the former site of the Theological College. At the north of this site 43 Roman skeletons were uncovered from a Roman inhumation cemetery, these burials are thought to represent only a small portion of a much larger cemetery beyond the North and East Gates. In addition to the cemetery the remains of two timber buildings were also discovered south of the cemetery (Hicks 2016).

Hicks, C., 2016. The Romans and Westgate. From the World Wide Web: http://www.westgatera.org.uk/2016/01/01/theromans/ [Accessed 28th February 2019].

3.141 Appledown Cemetery (AngloSaon)

The majority of the material analysed at Chichester was excavated from the Anglo-Saxon cemeteries of Appledown, Compton, West Sussex which was in use between the 5th and late 7th century. The site was discovered in 19822 through the activity of a metal detectorist, which led to the discovery of a number of Anglo-Saxon artefacts. This led to the subsequent excavation of the site by the Chichester excavation committee between 1982 and 1987. As part of these excavations two Anglo-Saxon cemeteries were uncovered (Lyne 2015, Tremless and Paine n.d).

Appledown is an elongated hill on the dipslope of the South Downs between the parishes of Compton and East, the hill top of Appledown was previously occupied by four Bronze Age barrows. The landscape of the Appledown site is typical downland, with landscape conditions which provides a variety of land uses including: pasture, arable and woodland. Chichester are believed to have been central to Aethelweaths kingdom, and several Anglo-Saxon sites have previously been excavated in Chichester. It was hoped that the excavation of this site would provide valuable information concerning the major gap in the archaeological record between the Roman occupation of Chichester and the late Anglo-Saxon period (Lyne 2015, Tremless and Paine n.d).

In addition to the human remains excavated from Apple down 33 timber structures were also identified, which are believed to have functioned as "houses for the dead". Of the human remains excavated from the site very young children were underrepresented. It was suggested that very young children may have been buried in shallower graves resulting in their comparatively poor preservation. Over 25% of the individuals from Appledown died before the age of 15, and 75% of men and 50% of women died before the age of 45 (Lyne 2015, Tremless and Paine n.d).

Lyne, M., 2015. The end of Roman Pottery Production in Southern Britain. Internet Archaeology 41 http://intarch.ac.uk/journal/issue41/index.html

Tremless, P., Paine, C., n.d. Apple Down Cemetery. The Novium museum. From World Wide Web: http://www.thenovium.org/article/28824/Apple-Down-Cemetery

3.142 St Gregory's Priory and Cemetery (Medieval)

Skeletal collections curated by the University of Kent, Canterbury were included in this study, with access granted by the collections curator Dr Patrick Mahoney. This skeletal collection includes over 1342 medieval individuals, with 91 burials excavated from St Gregory's cemetery and 45 from the priory. This collection was chosen due to it being known from previous research that the preservation of the material was high as well as the socio-economical division between the cemetery and priory collections being of specific interest for further analysis in this study.

The site of St. Gregory's Priory is located on the north side of Canterbury, outside of the medieval city walls. Excavation of the site was conducted by the Canterbury Archaeological Trust between 1988 and 1991, which uncovered two extensive ecclesiastical establishments identified as St Gregory's priory and to the south a cemetery. St Gregory's priory and cemetery was established during the 11th century by Lanfranc the Archbishop of Canterbury and remained open until the 16th century. The dates are further confirmed by 12 inhumations which were dated to this period as well as the analysis of non-human material excavated from the site. In addition the medieval

material, Prehistoric, Roman and Anglo-Saxon material was also discovered, although this material was not discussed further in the archaeological report written by Hicks and Hicks (2001).

Animal remains from St Gregory's cemetery and priory were analysed as a means of evaluating the diet of medieval Canterbury populations. Of the animal remains excavated the majority were identified as sheep/goat, followed by pig and cattle remains were the least frequently identified domestic animal excavated. The rates of domestic animals finds, were not recorded to vary significant over time at the site. Other domesticated food species, wild species and domestic non-food species were also identified from the material which included several fish and bird species.

A total of 1342 skeletal remains between the priory and the cemetery. Overall the preservation of the skeletal remains excavated from both the cemetery and the prior was very good, with 40% of inhumations estimated at over 75% complete (Hicks and Hicks, 2001, pg.338). Analysis of the skeletal material determined that 80% of the individuals from the priory were estimated to be male, while the cemetery had a more equal divide (Hicks and Hicks, 2001). Unfortunately material from St Gregory's cemetery is not analysed further in the published material, as due to a lack of funding instead only the remains from the priory were analysed in the archaeological report.

Archaeological and historical records indicate that there was a distinct socioeconomic divide between the cemetery and the priory (Hicks and Hicks, 2001). Previous studies which have analysed the effect of this socio-economic difference have found that there may have been dietary difference between these two groups. Although analysis of dental wear conducted by Dawson and Brown (2013) determined that there was not a significant difference in dental wear between the cemetery and the priory populations.

Hicks, M., and Hicks, A., 2001. St Gregory's Priory, Northgate, Canterbury Excavations 1988–1991. Canterbury: Canterbury Archaeological Trust.

Dawson, H., Brown, K., 2013. Exploring the relationship between dental wear and status in late medieval subadults from England. American Journal of Physical Anthropology 150, 433–441.

3.143 GOP Wales (Iron and Bronze Age)

One individual from the Manchester collection was from the Bronze Age Gop Caves which are located close to Hill Cairn site in Wales, the largest prehistoric monument in Wales. Located near Trelawnyd, Flitshire. Gop cave is a limestone cave with evidence of burning indicates the cave was in use during the Neolithic. The site was discovered during the primary excavation of the nearby cairn by Boyd Dawkins in 1886. During this early excavation 14 human skeletons dated to the Late Neolithic were excavated. In addition to the human remains many zooarchaeological skeletal remains were excavated and identified beneath the Neolithic deposits and dated to the Pleistocene period, these skeletal elements were identified as: hyaena, woolly rhinoceros, bison, horse and reindeer.

A later excavation conducted Moris, J and Glenn, A resulted in the discovery of a further 6 skeletons in the North West passage of the cave. In addition to the human remains several stone tools were discovered including a hand-axe made from Graid Lwyd rock from Penmaenmawr. Further excavations were conducted by Glenn, A and funded by the National museum of Wales, led to the discovery of further, human and animal remains as well as stone tools.

Walker, E., 1993. History of excavations at GOP cave, Clwyd archaeological news 3.

3.144 Wandlebury Hill-fort (Iron and Bronze Age)

Five individuals were excavated from Wandlebury Iron age hillfort after the remains were exposed during a storm in January 1976 which felled a tree. Five adult individuals were excavated three male, one probable female and one unsexed individual. No associated grave goods were found with the burials. One individual had evidence of sharp force trauma thought to be from a sword to the mandible (Historic England 1995).

Historic England., 1995. Wandlebury Camp: a multivallate hillfort, earlier univallate hillfort, Iron Age cemetery and 17th century formal garden remains. From World Wide Web: https://historicengland.org.uk/listing/the-list/list-entry/1009395 [Accessed 28th February 2019].

3.145 Craig-Y-nos (Bronze Age)

No further information could be found

3.146 Birsay, Orkney (Neolithic)

There are a number of Neolithic sites in the borough of Birsay in Orkney and unfortunately with not further information provided it was not possible to narrow down which site these remains are from

3.147 Bratton Camp, Bratton Down (Bronze Age)

The Bronze age Long Barrow at Bratton downs was first excavated in the 18th century, later excavations revealed three skeletons, pottery animals bones and beads unfortunately no more information could be found regarding these individuals (information from uncorroborated written records included with inhumations).

3.148 Chippenham (Iron/Bronze Age) No further information could be found

3.149 Grange Road (Roman) No further information could be found

Appendix 4: Results – Measurements

Appendix 4 details the results produced in SPSS when analysing the eman mandible measurements detailed in section 6.1 of the results.

4.1 Mansible measurements - males and females

Table 4.1.1: Results from a Shapiro-Wilk test for normality illustrating which mandible measurmenst are normally distributed among males and females. For the measurements where the results of a Shapiro-Wilk test indicate data were not normally distributed a Q-Q plot was created to further investigate this.

	rests of Normanty												
		Kolm	ogorov-Smiri	nov ^a		Shapiro-Wilk							
	MF	Statistic	df	Sig.	Statistic	df	Sig.						
CorB	Female	.090	103	.037	.963	103	.005						
	Male	.064	112	.200 [*]	.951	112	.000						
ConB	Female	.152	103	.000	.943	103	.000						
	Male	.145	112	.000	.929	112	.000						
L1	Female	.141	103	.000	.894	103	.000						
	Male	.171	112	.000	.939	112	.000						
BI	Female	.087	103	.052	.911	103	.000						
	Male	.091	112	.023	.941	112	.000						
Bh	Female	.055	103	.200 [*]	.988	103	.490						
	Male	.051	112	.200*	.987	112	.348						
Rh	Female	.096	103	.021	.979	103	.107						
	Male	.055	112	.200 [*]	.990	112	.613						
L2	Female	.060	103	.200 [*]	.977	103	.075						
	Male	.058	112	.200*	.987	112	.388						

Tests of Normality

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

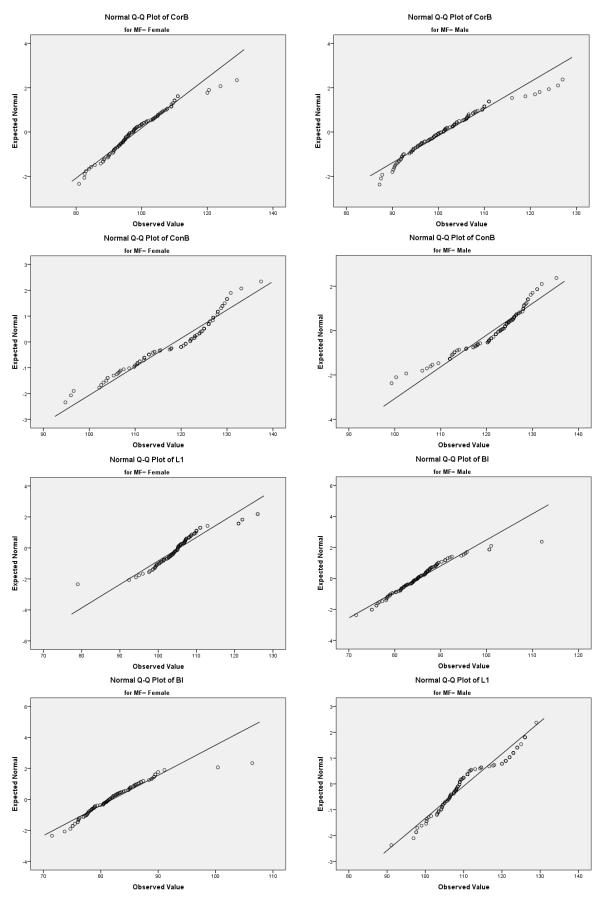


Figure 4.1.1: Q-Q plots illustrating that among males and female although not normally distributed based on a shapiro-wilk test it was determined that these data were close enough to normally distributed to allow analysis of the mean mandible measurement.

	Report												
MF		CorB	ConB	L1	BI	Bh	Rh	L2					
Female	Mean	98.34	118.18	105.71	81.71	30.27	62.60	79.53					
	Ν	158	130	250	253	261	249	250					
	Std. Deviation	8.108	9.223	7.343	5.455	3.165	5.602	5.892					
Male	Mean	101.69	121.23	111.42	86.11	32.51	67.08	83.49					
	Ν	163	154	312	319	325	319	312					
	Std. Deviation	8.476	7.729	8.862	5.535	3.487	5.730	6.357					
Total	Mean	100.04	119.83	108.88	84.16	31.51	65.12	81.73					
	Ν	321	284	562	572	586	568	562					
	Std. Deviation	8.452	8.566	8.692	5.914	3.526	6.089	6.456					

Table 4.1.2: Mean mandible measurements for females and males among all time periods

Table 4.1.3: Independant samples t-test comparing mean mandible measurements for males and females among all time periods.

	Independent Samples Test												
		Levene's	Test for										
		Equal	ity of										
		Varia	nces			t-tes	t for Equality	of Means					
						Sig.			95% Cor Interva	l of the			
		F	0:		-16	(2-	Mean	Std. Error	Differ				
		F	Sig.	t	df	tailed)	Difference		Lower	Upper			
CorB	Equal variances assumed	.180	.672	- 3.614	319	.000	-3.348	.926	-5.170	-1.525			
	Equal variances not assumed			- 3.617	318.945	.000	-3.348	.926	-5.169	-1.527			
ConB	Equal variances assumed	11.372	.001	- 3.028	282	.003	-3.046	1.006	-5.026	-1.066			
	Equal variances not assumed			- 2.984	252.461	.003	-3.046	1.021	-5.057	-1.035			
L1	Equal variances assumed	23.897	.000	- 8.191	560	.000	-5.716	.698	-7.086	-4.345			
	Equal variances not assumed			- 8.361	559.360	.000	-5.716	.684	-7.059	-4.373			
BI	Equal variances assumed	.004	.952	- 9.502	570	.000	-4.400	.463	-5.309	-3.490			
	Equal variances not assumed			- 9.518	544.089	.000	-4.400	.462	-5.308	-3.492			
Bh	Equal variances assumed	1.839	.176	- 8.067	584	.000	-2.245	.278	-2.791	-1.698			
	Equal variances not assumed			- 8.153	575.271	.000	-2.245	.275	-2.786	-1.704			

Independent Samples Test

Independent Samples Test

	Levene's Test for									
		Equa	lity of							
		Varia	inces			t-tes	t for Equality	of Means		
									95% Co	nfidence
						Sig.			Interva	I of the
						(2-	Mean	Std. Error	Diffe	rence
		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
Rh	Equal	.012	.912	-	566	.000	-4.477	.480	-5.419	-3.534
	variances			9.330						
	assumed									
	Equal			-	538.415	.000	-4.477	.478	-5.416	-3.537
	variances not			9.356						
	assumed									
L2	Equal	.317	.574	-	560	.000	-3.954	.522	-4.980	-2.928
	variances			7.569						
	assumed									
	Equal			-	548.257	.000	-3.954	.518	-4.972	-2.936
	variances not			7.632						
	assumed									

4.2 Mandible measurements – sex differences over time

Table 4.2.1: Results from a Shapiro-Wilk test for normality mandible measurements are normally distributed among males and females within each time period. As with previous cases the Q-Q plots were analysed and it was determined that data were close enough to normally distributed to allow analysis of the mean.

	Tests of Normanty											
			Kolm	ogorov-Smiri	nov ^a		Shapiro-Wilk					
Period		MF	Statistic	df	Sig.	Statistic	df	Sig.				
AS	CorB	Female	.149	15	.200*	.955	15	.604				
		Male	.176	16	.200	.894	16	.063				
	ConB	Female	.188	15	.161	.891	15	.069				
		Male	.140	16	.200*	.903	16	.089				
	L1	Female	.168	15	.200 [*]	.908	15	.125				
		Male	.258	16	.005	.816	16	.005				
	BI	Female	.121	15	.200 [*]	.953	15	.571				

Tests of Normality

Tests of Normality

			Kolm	ogorov-Smirr	lova	Shapiro-Wilk			
Period		MF	Statistic	df	Sig.	Statistic	df	Sig.	
		Male	.152	16	.200*	.948	16	.455	
	Bh	Female	.192	15	.144	.897	15	.085	
		Male	.155	16	.200*	.954	16	.551	
	Rh	Female	.197	15	.123	.925	15	.229	
		Male	.148	16	.200*	.919	16	.161	
	L2	Female	.183	15	.191	.944	15	.430	
		Male	.140	16	.200*	.939	16	.333	
IB	CorB	Female	.253	8	.142	.815	8	<mark>.042</mark>	
		Male	.194	10	.200*	.914	10	.306	
	ConB	Female	.224	8	.200*	.912	8	.368	
		Male	.200	10	.200*	.865	10	.087	
	L1	Female	.357	8	.003	.738	8	<mark>.006</mark>	
		Male	.246	10	.086	.829	10	<mark>.032</mark>	
	BI	Female	.204	8	.200*	.887	8	.221	
		Male	.243	10	.097	.749	10	<mark>.003</mark>	
	Bh	Female	.201	8	.200*	.893	8	.248	
		Male	.194	10	.200*	.956	10	.736	
	Rh	Female	.263	8	.111	.923	8	.452	
		Male	.269	10	.039	.848	10	.056	
	L2	Female	.159	8	.200*	.977	8	.946	
		Male	.201	10	.200*	.937	10	.519	
Μ	CorB	Female	.200	23	.018	.909	23	<mark>.040</mark>	
		Male	.190	26	.016	.894	26	<mark>.012</mark>	
	ConB	Female	.205	23	.013	.920	23	.065	
		Male	.245	26	.000	.891	26	<mark>.010</mark>	
	L1	Female	.155	23	.157	.918	23	.059	
		Male	.236	26	.001	.892	26	.010	
	BI	Female	.133	23	.200*	.947	23	.253	
		Male	.148	26	.151	.959	26	.378	
	Bh	Female	.139	23	.200*	.942	23	.197	
		Male	.106	26	.200*	.943	26	.161	
	Rh	Female	.142	23	.200*	.905	23	<mark>.032</mark>	
		Male	.140	26	.200*	.969	26	.596	
	L2	Female	.162	23	.119	.957	23	.410	
		Male	.108	26	.200 [*]	.978	26	.826	
N	CorB	Female	.260	2					
		Male	.362	3		.804	3	.124	
	ConB	Female	.260	2					

Tests of Normality

			Kolmo	ogorov-Smirn	ov ^a	S	hapiro-Wilk	
Period		MF	Statistic	df	Sig.	Statistic	df	Sig.
		Male	.245	3		.971	3	.672
	L1	Female	.260	2				
		Male	.385	3		.750	3	<mark>.000</mark>
	BI	Female	.260	2				
		Male	.356	3		.818	3	.157
	Bh	Female	.260	2				
		Male	.351	3		.828	3	.183
	Rh	Female	.260	2				
		Male	.245	3		.971	3	.672
	L2	Female	.260	2				
		Male	.186	3		.998	3	.921
PM	CorB	Female	.171	37	.008	.862	37	<mark>.000</mark>
		Male	.189	38	.001	.854	38	<mark>.000</mark>
	ConB	Female	.144	37	.052	.933	37	.029
		Male	.211	38	.000	.851	38	.000
	L1	Female	.144	37	.051	.889	37	.001
		Male	.208	38	.000	.913	38	.006
	BI	Female	.115	37	.200*	.972	37	.463
		Male	.092	38	.200*	.968	38	.339
	Bh	Female	.057	37	.200*	.983	37	.826
		Male	.083	38	.200*	.962	38	.219
	Rh	Female	.069	37	.200*	.988	37	.950
		Male	.094	38	.200*	.983	38	.817
	L2	Female	.075	37	.200*	.959	37	.182
		Male	.099	38	.200*	.969	38	.376
R	CorB	Female	.134	17	.200*	.918	17	.137
		Male	.232	10	.134	.913	10	.299
	ConB	Female	.268	17	.002	.855	17	.013
		Male	.180	10	.200*	.897	10	.202
	L1	Female	.245	17	.008	.859	17	<mark>.015</mark>
		Male	.195	10	.200*	.898	10	.209
	BI	Female	.168	17	.200*	.840	17	.008
		Male	.137	10	.200*	.970	10	.894
	Bh	Female	.109	17	.200*	.953	17	.497
		Male	.237	10	.116	.807	10	.018
	Rh	Female	.166	17	.200*	.942	17	.337
		Male	.239	10	.111	.910	10	.282
	L2	Female	.162	17	.200*	.935	17	.262

Tests of Normality

		Kolm	ogorov-Smir	nov ^a		Shapiro-Wilk	
Period	MF	Statistic	df	Sig.	Statistic	df	Sig.
	Male	.205	10	.200*	.930	10	.446

*. This is a lower bound of the true significance.

	Report											
Period		CorB	ConB	L1	BI	Bh	Rh	L2				
AS	Mean	98.78	120.96	109.71	85.29	31.67	65.92	81.90				
	Ν	73	69	133	138	138	138	132				
	Std. Deviation	7.736	7.380	8.834	5.120	3.695	5.894	6.019				
IB	Mean	97.34	120.34	108.76	85.37	31.91	63.94	81.03				
	Ν	41	36	80	80	81	78	80				
	Std. Deviation	8.114	10.630	10.056	6.612	3.449	6.896	5.131				
М	Mean	102.92	116.45	108.77	83.48	30.58	64.79	81.07				
	Ν	104	100	194	199	203	196	197				
	Std. Deviation	8.365	7.937	7.211	5.147	3.337	6.878	5.967				
Ν	Mean	100.05	121.23	106.49	85.30	32.11	63.49	81.26				
	Ν	6	7	14	15	15	17	13				
	Std. Deviation	7.038	4.854	10.813	4.586	3.949	5.529	5.198				
Р	Mean	96.37	121.93	114.68	87.04	30.87	66.36	83.42				
	Ν	12	9	13	14	14	14	13				
	Std. Deviation	5.824	7.518	9.459	6.650	3.607	5.648	4.767				
PM	Mean	99.17	118.30	106.77	82.23	31.12	64.78	81.47				
	Ν	123	106	197	196	197	199	190				
	Std. Deviation	8.626	8.736	7.464	6.073	3.421	6.074	6.566				
R	Mean	101.17	122.77	109.84	84.74	31.95	64.95	81.34				
	Ν	55	38	94	96	104	92	98				
	Std. Deviation	10.146	7.790	8.568	6.220	3.379	6.504	8.575				
U	Mean	99.22	121.36	108.54	89.81	32.99	64.64	86.20				
	Ν	6	5	9	9	9	9	9				
	Std. Deviation	6.095	8.871	13.455	5.967	3.398	5.396	4.678				

Table 4.2.2: Mean mandible measurements for males and females compariong all time periods

Table 4.2.3: Independent samples t-test showing significant differences in mean mandible measurements among time peroids between males and females

	Independent Samples Test ^a										
			Levene	's Test							
			for Equ	ality of							
			Varia	nces			t-test	for Equality	of Means		
										95	%
										Confid	dence
							Sig.			Interva	
							(2-	Mean	Std. Error	Differ	ence
Per	iod		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
AS	CorB	Equal	1.655	.205	-	42	.100	-3.924	2.336	-8.638	.790
		variances			1.680						
		assumed									
		Equal			-	34.404	.108	-3.924	2.378	-8.754	.907
		variances			1.650						
		not assumed									
	ConB	Equal	4.277	.045	715	39	.479	-1.684	2.356	-6.450	3.083
		variances									
		assumed									
		Equal			691	29.185	.495	-1.684	2.436	-6.665	3.298
		variances									
		not assumed									
	L1	Equal	.291	.591	-	79	.002	-6.758	2.093	-	-2.592
		variances			3.229					10.925	
		assumed									
		Equal			-	68.553	.002	-6.758	2.133	-	-2.502
		variances			3.168					11.014	
		not assumed									
	BI	Equal	.306	.582	-	83	.002	-3.178	1.003	-5.173	-1.182
		variances			3.168						
		assumed									
		Equal			-	77.733	.002	-3.178	1.003	-5.174	-1.181
		variances			3.169						
		not assumed									
	Bh	Equal	.474	.493	-	83	.001	-2.733	.756	-4.237	-1.228
		variances			3.613						
		assumed				70.403		0 705		4.007	4.635
		Equal			-	73.194	.001	-2.733	.767	-4.261	-1.205
		variances			3.564						
		not assumed									

			Levene	's Test							
			for Equ	ality of							
			Varia	nces			t-test	for Equality	of Means		
										95	%
										Confid	dence
							Sig.			Interva	l of the
							(2-	Mean	Std. Error	Differ	rence
Per	iod		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
	Rh	Equal	.542	.464	-	83	.000	-4.859	1.108	-7.063	-2.655
		variances			4.385						
		assumed									
		Equal			-	69.755	.000	-4.859	1.123	-7.098	-2.619
		variances			4.327						
		not assumed									
	L2	Equal	.132	.717	-	78	.021	-3.222	1.370	-5.950	494
		variances			2.351						
		assumed									
		Equal			-	72.833	.022	-3.222	1.372	-5.957	487
		variances			2.348						
		not assumed									
IB	CorB	Equal	.045	.833	.269	32	.790	.792	2.946	-5.210	6.793
		variances									
		assumed									
		Equal			.265	28.160	.793	.792	2.992	-5.335	6.918
		variances									
		not assumed									
	ConB	Equal	3.059	.092	-	27	.035	-9.077	4.084	-	698
		variances			2.223					17.456	
		assumed									
		Equal			-	17.269	.052	-9.077	4.351	-	.093
		variances			2.086					18.247	
		not assumed									
	L1	Equal	4.580	.036	-	60	.092	-4.486	2.616	-9.718	.747
		variances			1.715						
		assumed									
		Equal			-	59.949	.071	-4.486	2.440	-9.367	.396
		variances			1.838						
		not assumed									
	BI	Equal	.399	.530	-	61	.000	-5.822	1.543	-8.908	-2.736
		variances			3.773						
		assumed									

			Levene	e's Test							
			for Equ	ality of							
			Varia	inces			t-test	for Equality	of Means		
										95	%
										Confid	dence
							Sig.			Interva	l of the
							(2-	Mean	Std. Error	Differ	ence
Per	iod		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
		Equal			-	58.913	.000	-5.822	1.469	-8.762	-2.882
		variances			3.962						
		not assumed									
	Bh	Equal	1.666	.202	-	61	.010	-2.230	.833	-3.896	564
		variances			2.676						
		assumed									
		Equal			-	59.474	.006	-2.230	.789	-3.808	651
		variances			2.826						
		not assumed									
	Rh	Equal	.298	.587	-	60	.001	-5.893	1.668	-9.230	-2.556
		variances			3.532						
		assumed									
		Equal			-	57.553	.001	-5.893	1.634	-9.165	-2.621
		variances			3.606						
		not assumed									
	L2	Equal	3.616	.062	-	60	.054	-2.590	1.316	-5.222	.043
		variances			1.967						
		assumed									
		Equal			-	59.982	.039	-2.590	1.225	-5.040	139
		variances			2.113						
		not assumed									
М	CorB	Equal	.087	.768	-	69	.147	-2.785	1.898	-6.572	1.002
		variances			1.467						
		assumed									
		Equal			-	68.749	.146	-2.785	1.896	-6.567	.998
		variances			1.469						
		not assumed									
	ConB	Equal	.272	.603	672	68	.504	-1.328	1.976	-5.271	2.615
		variances									
		assumed									
		Equal			678	67.561	.500	-1.328	1.960	-5.239	2.583
		variances									
		not assumed									

			Levene	's Test							
			for Equ	ality of							
			Varia	nces			t-test	for Equality	of Means		
							Sig.			95 Confic Interva	dence I of the
							(2-	Mean	Std. Error	Differ	
Per			F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
	L1	Equal variances assumed	6.367	.013	- 3.498	141	.001	-4.510	1.289	-7.059	-1.961
		Equal variances not assumed			- 3.702	140.936	.000	-4.510	1.218	-6.918	-2.102
	BI	Equal variances assumed	.111	.739	- 3.486	146	.001	-2.856	.819	-4.476	-1.237
		Equal variances not assumed			- 3.517	133.220	.001	-2.856	.812	-4.463	-1.250
	Bh	Equal variances assumed	2.240	.137	- 2.681	150	.008	-1.451	.541	-2.521	382
		Equal variances not assumed			- 2.766	141.326	.006	-1.451	.525	-2.488	414
	Rh	Equal variances assumed	.455	.501	- 3.304	143	.001	-3.218	.974	-5.143	-1.293
		Equal variances not assumed			- 3.295	121.081	.001	-3.218	.977	-5.151	-1.284
	L2	Equal variances assumed	.797	.374	- 3.660	144	.000	-3.488	.953	-5.371	-1.604
		Equal variances not assumed			- 3.805	142.709	.000	-3.488	.917	-5.299	-1.676
N	CorB	Equal variances assumed	.839	.411	386	4	.719	-2.433	6.308	- 19.948	15.082

		Levene	's Test							
		for Equ	ality of							
		Varia	nces			t-test	for Equality	of Means		
						Sig.			Confie Interva	l of the
						(2-	Mean	Std. Error	Diffe	rence
Period		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
	Equal variances not assumed			386	3.175	.724	-2.433	6.308	- 21.898	17.031
ConB	Equal variances assumed	6.110	.056	- 1.103	5	.320	-4.017	3.643	- 13.381	5.347
	Equal variances not assumed			959	2.353	.426	-4.017	4.189	- 19.684	11.650
L1	Equal variances assumed	.563	.472	- 1.587	9	.147	-10.390	6.549	- 25.204	4.424
	Equal variances not assumed			- 1.531	6.931	.170	-10.390	6.789	- 26.475	5.695
BI	Equal variances assumed	11.737	.008	- 2.501	9	.034	-5.850	2.339	- 11.142	558
	Equal variances not assumed			- 2.311	4.858	.070	-5.850	2.531	- 12.414	.714
Bh	Equal variances assumed	1.226	.294	- 2.218	10	.051	-4.833	2.179	-9.689	.022
	Equal variances not assumed			- 2.218	9.534	.052	-4.833	2.179	-9.721	.055
Rh	Equal variances assumed	1.650	.228	- 3.239	10	.009	-6.850	2.115	- 11.562	-2.138
	Equal variances not assumed			- 3.239	7.199	.014	-6.850	2.115	- 11.823	-1.877

			Levene	s Test							
			for Equ	ality of							
			Varia	nces			t-test	for Equality	of Means		
							Sig.			95 Confic Interva	dence
							(2-	Mean	Std. Error	Differ	ence
Peri	od		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
	L2	Equal variances assumed	.056	.818	032	9	.975	060	1.863	-4.273	4.153
		Equal variances not assumed			032	8.737	.975	060	1.857	-4.280	4.160
PM	CorB	Equal variances assumed	.005	.943	- 2.461	103	.016	-3.876	1.575	-7.001	752
		Equal variances not assumed			- 2.460	101.987	.016	-3.876	1.576	-7.001	751
	ConB	Equal variances assumed	4.447	.038	- 1.760	92	.082	-3.081	1.750	-6.557	.395
		Equal variances not assumed			- 1.746	85.409	.084	-3.081	1.765	-6.589	.428
	L1	Equal variances assumed	6.524	.012	- 5.006	169	.000	-5.353	1.069	-7.464	-3.242
		Equal variances not assumed			- 5.027	162.855	.000	-5.353	1.065	-7.456	-3.250
	BI	Equal variances assumed	1.288	.258	- 7.080	168	.000	-5.929	.837	-7.582	-4.276
		Equal variances not assumed			- 7.111	164.893	.000	-5.929	.834	-7.575	-4.283
	Bh	Equal variances assumed	2.674	.104	- 5.996	169	.000	-2.904	.484	-3.860	-1.948

			Levene	s Test							
			for Equ	ality of							
			Varia	inces			t-test	for Equality	of Means		
										95	5%
										Confid	dence
							Sig.			Interva	l of the
							(2-	Mean	Std. Error	Differ	ence
Per	iod		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
		Equal			-	165.804	.000	-2.904	.483	-3.857	-1.951
		variances			6.015						
		not assumed									
	Rh	Equal	.465	.496	-	171	.000	-5.031	.850	-6.708	-3.355
		variances			5.923						
		assumed									
		Equal			-	170.177	.000	-5.031	.846	-6.702	-3.361
		variances			5.945						
		not assumed									
	L2	Equal	.060	.806	-	164	.000	-4.609	.982	-6.548	-2.670
		variances			4.693						
		assumed									
		Equal			-	163.836	.000	-4.609	.978	-6.540	-2.677
		variances			4.711						
		not assumed									
R	CorB	Equal	.097	.757	-	47	.003	-8.467	2.689	-	-3.056
		variances			3.148					13.877	
		assumed									
		Equal			-	39.234	.004	-8.467	2.751	-	-2.904
		variances			3.078					14.030	
		not assumed									
	ConB	Equal	2.940	.096	-	31	.169	-3.857	2.737	-9.440	1.725
		variances			1.409						
		assumed									
		Equal			-	28.411	.134	-3.857	2.503	-8.982	1.267
		variances			1.541						
		not assumed									
	L1	Equal	7.604	.007	-	78	.002	-5.783	1.843	-9.451	-2.115
		variances			3.139						
		assumed									
		Equal			-	75.546	.002	-5.783	1.832	-9.432	-2.134
		variances			3.157						
		not assumed			,						
	-										

BI Equal variances assumed 2.079 .153 153 79 .023 3.131 1.354 -5.827 153 Equal variances assumed Component of assumed<			Levene's	Test								
Period F Sig. t df tailed) Difference Lower Up BI Equal 2.079 .153 - 2.311 - 2.311 1.354 -5.827 - BI Equal 2.079 .153 - 779 .023 -3.131 1.354 -5.827 - Variances - 2.311 - 719 .023 -3.131 1.359 -5.841 - Variances - 2.303 - 71.913 .024 -3.131 1.359 -5.841 - Bh Equal .208 .649 - 877 -			for Equalit	ty of								
Period F Sig. t df tailed) Difference Difference Lower Up Bl Equal 2.079 .153 - 79 .023 -3.131 1.354 -5.827 - Equal 2.079 .153 - 2.311 -			Variance	es			t-test	for Equality	of Means			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										95	%	
Period F Sig. t df tailed) Difference Difference Lower Up Bl Equal 2.079 .153 - 79 .023 -3.131 1.354 -5.827 ssumed - 2.311 - 79 .023 -3.131 1.354 -5.827 Equal - 2.311 -										Confid	dence	
Period F Sig. t df tailed) Difference Difference Lower Up BI Equal 2.079 .153 - 79 .023 -3.131 1.354 -5.827 assumed - 2.311 -							Sig.			Interva	l of the	
BI Equal 2.079 .153 - 79 .023 -3.131 1.354 -5.827 assumed 2.311 2.311 - 2.311 - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>(2-</td><td>Mean</td><td>Std. Error</td><td>Differ</td><td>ence</td></t<>							(2-	Mean	Std. Error	Differ	ence	
variances assumed variances 2.311 variances	Period		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper	
assumed ich	BI	Equal	2.079	.153	-	79	.023	-3.131	1.354	-5.827	435	
Equal variances not assumed Equal variances Equal variances Second variances The second variances <ththe second<br="">variances The second varian</ththe>		variances			2.311							
variances not assumed 2.303 2.303		assumed										
Inot assumed Inot assumed<		Equal			-	71.913	.024	-3.131	1.359	-5.841	421	
Bh Equal .208 .649 - 87 .022 -1.648 .708 -3.054 assumed Equal .208 .649 2.329 86 .022 -1.648 .708 -3.054 Equal .208 .208 .649 .2329 86.996 .022 -1.648 .706 -3.051 Variances .2334 .2334 86.996 .022 -1.648 .706 -3.051 Not assumed .332 .566 - 75 .014 -3.527 1.408 -6.333		variances			2.303							
variances 2.329 2.329		not assumed										
assumed ich	Bh	Equal	.208	.649	-	87	.022	-1.648	.708	-3.054	242	
Equal variances not assumed Equal and assumed<		variances			2.329							
variances not assumed 2.334 L <thl< thr=""> <th l<="" t<="" td=""><td></td><td>assumed</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th></thl<>	<td></td> <td>assumed</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		assumed									
not assumed Image: Constant of the symbol Image: Constant of t		Equal			-	86.996	.022	-1.648	.706	-3.051	245	
Rh Equal .332 .566 - 75 .014 -3.527 1.408 -6.333		variances			2.334							
		not assumed										
variances 2.504	Rh	Equal	.332	.566	-	75	.014	-3.527	1.408	-6.333	721	
		variances			2.504							
assumed		assumed										
Equal - 73.234 .015 -3.527 1.411 -6.339		Equal			-	73.234	.015	-3.527	1.411	-6.339	715	
variances 2.500		variances			2.500							
not assumed		not assumed										
L2 Equal .076 .783 - 82 .003 -5.288 1.718 -8.705 -1.	L2	Equal	.076	.783	-	82	.003	-5.288	1.718	-8.705	-1.871	
variances 3.079		variances			3.079							
assumed		assumed										
Equal - 81.816 .003 -5.288 1.718 -8.705 -1.		Equal			-	81.816	.003	-5.288	1.718	-8.705	-1.871	
variances 3.079		variances			3.079							
not assumed												

MF			Sum of Squares	df	Mean Square	F	Sig.
Female	CorB	Between Groups	181.641	5	36.328	.545	.742
		Within Groups	10139.536	152	66.707		
		Total	10321.177	157			
	ConB	Between Groups	523.718	5	104.744	1.243	.293
		Within Groups	10450.536	124	84.279		
		Total	10974.254	129			
	L1	Between Groups	397.979	5	79.596	1.491	.193
		Within Groups	13027.096	244	53.390		
		Total	13425.076	249			
	BI	Between Groups	756.011	5	151.202	5.539	.000
		Within Groups	6743.090	247	27.300		
		Total	7499.101	252			
	Bh	Between Groups	108.941	5	21.788	2.226	.052
		Within Groups	2496.359	255	9.790		
		Total	2605.300	260			
	Rh	Between Groups	150.280	5	30.056	.957	.445
		Within Groups	7631.270	243	31.404		
		Total	7781.550	248			
	L2	Between Groups	46.284	5	9.257	.263	.933
		Within Groups	8597.091	244	35.234		
		Total	8643.374	249			
Male	CorB	Between Groups	1093.691	5	218.738	3.248	.008
		Within Groups	10437.088	155	67.336		
		Total	11530.779	160			
	ConB	Between Groups	712.822	5	142.564	2.538	.031
		Within Groups	8199.843	146	56.163		
		Total	8912.665	151			
	L1	Between Groups	407.955	5	81.591	1.041	.394
		Within Groups	23834.354	304	78.402		
		Total	24242.310	309			
	BI	Between Groups	401.017	5	80.203	2.671	.022
		Within Groups	9338.313	311	30.027		
		Total	9739.330	316			
	Bh	Between Groups	208.783	5	41.757	3.612	.003
		Within Groups	3664.637	317	11.560		
		Total	3873.419	322			

Table 4.2.4: ANOVA showing significant differences in mean mandible measurements among males and females between each time period.

		Sum of Squares	df	Mean Square	F	Sig.
Rh	Between Groups	164.517	5		.997	.420
				32.903		
	Within Groups	10264.616	311	33.005		
	Total	10429.133	316			
L2	Between Groups	124.757	5	24.951	.613	.690
	Within Groups	12366.959	304	40.681		
	· · · · · · · · · · · · · · · · · · ·	12491.715	309			
		Within Groups Total	RhBetween Groups164.517Within Groups10264.616Total10429.133L2Between Groups124.757Within Groups12366.959	Rh Between Groups 164.517 5 Within Groups 10264.616 311 Total 10429.133 316 L2 Between Groups 124.757 5 Within Groups 12366.959 304	Rh Between Groups 164.517 5 Within Groups 10264.616 311 33.005 Total 10429.133 316 L2 Between Groups 124.757 5 24.951 Within Groups 12366.959 304 40.681	Rh Between Groups 164.517 5 .997 Within Groups 10264.616 311 33.005 Total 10429.133 316 L2 Between Groups 124.757 5 24.951 .613 Within Groups 12366.959 304 40.681 40.681

Table 4.2.5: Boneferroni test showing significant differences in mean mandible measurements aamong males and females and between each time period

MF	Dependen	(I) Periodc	(J) Periodc	Mean Differenc	Std.	Sig.	95% Cor Inte	
	t Variable		(J) Fenduc	e (I-J)	Error	Sig.	Lower Bound	Upper Bound
			IronBronze Age	-4.861	4.294	1	-17.66	7.93
			Roman	-6.471	4.38	1	-19.52	6.58
		Neolithic	AngloSaxon	-6.165	4.084	1	-18.34	6.01
			Medieval	-4.675	4.09	1	-16.86	7.51
			Postmedieva I	-2.938	4.198	1	-15.45	9.57
			Neolithic	4.861	4.294	1	-7.93	17.66
			Roman	-1.61	2.454	1	-8.92	5.7
		IronBronze Age	AngloSaxon	-1.304	1.874	1	-6.89	4.28
			Medieval	0.187	1.888	1	-5.44	5.81
			Postmedieva I	1.923	2.111	1	-4.37	8.21
			Neolithic	6.471	4.38	1	-6.58	19.52
			IronBronze Age	1.61	2.454	1	-5.7	8.92
		Roman	AngloSaxon	0.307	2.065	1	-5.85	6.46
	L1		Medieval	1.797	2.077	1	-4.39	7.99
	LI		Postmedieva I	3.533	2.282	1	-3.27	10.33
			Neolithic	6.165	4.084	1	-6.01	18.34
			IronBronze Age	1.304	1.874	1	-4.28	6.89
		AngloSaxon	Roman	-0.307	2.065	1	-6.46	5.85
			Medieval	1.49	1.344	1	-2.52	5.5
			Postmedieva I	3.226	1.644	0.771	-1.67	8.12
			Neolithic	4.675	4.09	1	-7.51	16.86
			IronBronze Age	-0.187	1.888	1	-5.81	5.44
		Medieval	Roman	-1.797	2.077	1	-7.99	4.39
			AngloSaxon	-1.49	1.344	1	-5.5	2.52
			Postmedieva I	1.736	1.659	1		6.68
			Neolithic	2.938	4.198	1	-9.57	15.45
		Postmedieva I	IronBronze Age	-1.923	2.111	1	-8.21	4.37
			Roman	-3.533	2.282	1	-10.33	3.27

MF	Dependen	(I) Deriede		Mean	Std.	Cia	95% Cor Inte	
IVIE	t Variable	(I) Periodc	(J) Periodc	Differenc e (I-J)	Error	Sig.	Lower Bound	Upper Bound
			AngloSaxon	-3.226	1.644	0.771	-8.12	1.67
			Medieval	-1.736	1.659	1	-6.68	3.21
			IronBronze Age	0.465	3.038	1	-8.59	9.52
			Roman	1.287	3.077	1	-7.88	10.45
		Neolithic	AngloSaxon	-1.748	2.83	1	-10.18	6.68
			Medieval	0.61	2.839	1	-7.85	9.07
			Postmedieva I	2.238	2.936	1	-6.51	10.99
			Neolithic	-0.465	3.038	1	-9.52	8.59
			Roman	0.822	1.937	1	-4.95	6.59
		IronBronze Age	AngloSaxon	-2.213	1.514	1	-6.72	2.3
		1.90	Medieval	0.145	1.531	1	-4.42	4.71
			Postmedieva I	1.774	1.705	1	-3.31	6.85
			Neolithic	-1.287	3.077	1	-10.45	7.88
			IronBronze Age	-0.822	1.937	1	-6.59	4.95
		Roman	AngloSaxon	-3.035	1.59	0.87	-7.77	1.7
	BI		Medieval	-0.677	1.606	1	-5.46	4.11
	Ы		Postmedieva I	0.952	1.773	1	-4.33	6.23
			Neolithic	1.748	2.83	1	-6.68	10.18
			IronBronze Age	2.213	1.514	1	-2.3	6.72
		AngloSaxon	Roman	3.035	1.59	0.87	-1.7	7.77
			Medieval	2.358	1.058	0.409	-0.79	5.51
			Postmedieva I	3.987*	1.297	0.037	0.12	7.85
			Neolithic	-0.61	2.839	1	-9.07	7.85
			IronBronze Age	-0.145	1.531	1	-4.71	4.42
		Medieval	Roman	0.677	1.606	1	-4.11	5.46
			AngloSaxon	-2.358	1.058	0.409	-5.51	0.79
			Postmedieva I	1.629	1.318	1	-2.3	5.55
			Neolithic	-2.238	2.936	1	-10.99	6.51
		Postmedieva I	IronBronze Age	-1.774	1.705	1	-6.85	3.31
			Roman	-0.952	1.773	1	-6.23	4.33

MF	Dependen	(I) Deriede		Mean Differenc	Std.	Sig	95% Cor Inte	
IVIE	t Variable	(I) Periodc	(J) Periodc	e (I-J)	Error	Sig.	Lower Bound	Upper Bound
			AngloSaxon	-3.987*	1.297	0.037	-7.85	-0.12
			Medieval	-1.629	1.318	1	-5.55	2.3
			IronBronze Age	1.178	2.076	1	-5.01	7.36
			Roman	0.033	2.105	1	-6.24	6.3
		Neolithic	AngloSaxon	0.632	1.972	1	-5.24	6.51
			Medieval	1.418	1.977	1	-4.47	7.31
			Postmedieva I	0.392	2.029	1	-5.65	6.44
			Neolithic	-1.178	2.076	1	-7.36	5.01
			Roman	-1.144	1.164	1	-4.61	2.32
		IronBronze Age	AngloSaxon	-0.546	0.902	1	-3.23	2.14
		0	Medieval	0.24	0.912	1	-2.48	2.9
			Postmedieva I	-0.785	1.021	1	-3.83	2.2
			Neolithic	-0.033	2.105	1	-6.3	6.2
			IronBronze Age	1.144	1.164	1	-2.32	4.6
		Roman	AngloSaxon	0.599	0.968	1	-2.28	3.4
	Bh		Medieval	1.384	0.978	1	-1.53	4.
	Bii		Postmedieva I	0.359	1.079	1	-2.86	3.5
			Neolithic	-0.632	1.972	1	-6.51	5.2
			IronBronze Age	0.546	0.902	1	-2.14	3.2
		AngloSaxon	Roman	-0.599	0.968	1	-3.48	2.2
			Medieval	0.786	0.644	1	-1.13	2.
			Postmedieva I	-0.24	0.79	1	-2.59	2.1
			Neolithic	-1.418	1.977	1	-7.31	4.4
			IronBronze Age	-0.24	0.912	1	-2.96	2.4
		Medieval	Roman	-1.384	0.978	1	-4.3	1.5
			AngloSaxon	-0.786	0.644	1	-2.7	1.1
			Postmedieva I	-1.025	0.802	1	-3.41	1.3
			Neolithic	-0.392	2.029	1	-6.44	5.6
		Postmedieva I	IronBronze Age	0.785	1.021	1	-2.25	3.83
			Roman	-0.359	1.079	1	-3.57	2.8

MF	Dependen	(I) Periodc	(J) Periodc	Mean Differenc	Std.	Sig.	95% Cor Inte	
	t Variable			e (I-J)	Error	Sig.	Lower Bound	Upper Bound
			AngloSaxon	0.24	0.79	1	-2.11	2.59
			Medieval	1.025	0.802	1	-1.36	3.41
			IronBronze Age	0.544	3.716	1	-10.53	11.61
			Roman	-3.193	3.745	1	-14.35	7.96
		Neolithic	AngloSaxon	-2.123	3.385	1	-12.21	7.96
			Medieval	-0.804	3.399	1	-10.93	9.32
			Postmedieva I	1.627	3.542	1	-8.92	12.18
			Neolithic	-0.544	3.716	1	-11.61	10.53
			Roman	-3.737	2.606	1	-11.5	4.03
	IronE Age	IronBronze Age	AngloSaxon	-2.667	2.056	1	-8.79	3.46
		·	Medieval	-1.348	2.078	1	-7.54	4.84
			Postmedieva I	1.083	2.304	1	-5.78	7.95
			Neolithic	3.193	3.745	1	-7.96	14.35
			IronBronze Age	3.737	2.606	1	-4.03	11.5
		Roman	AngloSaxon	1.07	2.108	1	-5.21	7.35
	Rh		Medieval	2.389	2.13	1	-3.96	8.74
			Postmedieva I	4.82	2.351	0.63	-2.18	11.83
			Neolithic	2.123	3.385	1	-7.96	12.21
			IronBronze Age	2.667	2.056	1	-3.46	8.79
		AngloSaxon	Roman	-1.07	2.108	1	-7.35	5.21
			Medieval	1.319	1.404	1	-2.86	5.5
			Postmedieva I	3.75	1.721	0.462	-1.38	8.88
			Neolithic	0.804	3.399	1	-9.32	10.93
			IronBronze Age	1.348	2.078	1	-4.84	7.54
		Medieval	Roman	-2.389	2.13	1	-8.74	3.96
			AngloSaxon	-1.319	1.404	1	-5.5	2.86
			Postmedieva I	2.431	1.748	1	-2.78	7.64
			Neolithic	-1.627	3.542	1	-12.18	8.92
		Postmedieva I	IronBronze Age	-1.083	2.304	1	-7.95	5.78
			Roman	-4.82	2.351	0.63	-11.83	2.18

MF	Dependen	(I) Periodc	(J) Periodc	Mean Differenc	Std.	Sig	95% Cor Inte	
	t Variable	(I) Periodc	(J) Penode	e (I-J)	Error	Sig.	Lower Bound	Upper Bound
			AngloSaxon	-3.75	1.721	0.462	-8.88	1.38
			Medieval	-2.431	1.748	1	-7.64	2.78
			IronBronze Age	-3.422	4.586	1	-17.09	10.25
			Roman	-1.686	4.651	1	-15.55	12.18
		Neolithic	AngloSaxon	-5.435	4.429	1	-18.64	7.77
			Medieval	-2.563	4.435	1	-15.78	10.66
			Postmedieva I	-2.988	4.528	1	-16.48	10.51
			Neolithic	3.422	4.586	1	-10.25	17.09
			Roman	1.737	2.193	1	-4.8	8.27
		IronBronze Age	AngloSaxon	-2.012	1.671	1	-6.99	2.97
		0	Medieval	0.859	1.687	1	-4.17	5.89
			Postmedieva I	0.435	1.918	1	-5.28	6.15
			Neolithic	1.686	4.651	1	-12.18	15.55
			IronBronze Age	-1.737	2.193	1	-8.27	4.8
		Roman	AngloSaxon	-3.749	1.842	0.652	-9.24	1.74
	L2		Medieval	-0.877	1.856	1	-6.41	4.66
			Postmedieva I	-1.302	2.069	1	-7.47	4.87
			Neolithic	5.435	4.429	1	-7.77	18.64
			IronBronze Age	2.012	1.671	1	-2.97	6.99
		AngloSaxon	Roman	3.749	1.842	0.652	-1.74	9.24
			Medieval	2.872	1.196	0.263	-0.69	6.44
			Postmedieva I	2.447	1.505	1	-2.04	6.93
			Neolithic	2.563	4.435	1	-10.66	15.78
			IronBronze Age	-0.859	1.687	1	-5.89	4.17
		Medieval	Roman	0.877	1.856	1	-4.66	6.41
			AngloSaxon	-2.872	1.196	0.263	-6.44	0.69
			Postmedieva I	-0.425	1.523	1	-4.96	4.11
			Neolithic	2.988	4.528	1	-10.51	16.48
		Postmedieva I	IronBronze Age	-0.435	1.918	1	-6.15	5.28
			Roman	1.302	2.069	1	-4.87	7.47

MF	Dependen	(I) Periodc	(J) Periodc	Mean Differenc	Std.	Sig	95% Cor Inte	
IVIE	t Variable	(I) Periodc	(J) Penodo	e (I-J)	Error	Sig.	Lower Bound	Upper Bound
			AngloSaxon	-2.447	1.505	1	-6.93	2.04
			Medieval	0.425	1.523	1	-4.11	4.96
			IronBronze Age	-4.568	3.58	1	-15.18	6.04
			Roman	-5.137	3.471	1	-15.43	5.15
		Neolithic	AngloSaxon	-4.426	3.487	1	-14.76	5.91
			Medieval	-4.745	3.399	1	-14.82	5.33
			Postmedieva I	-2.364	3.364	1	-12.33	7.61
			Neolithic	4.568	3.58	1	-6.04	15.18
			Roman	-0.569	1.872	1	-6.12	4.98
		IronBronze Age	AngloSaxon	0.142	1.902	1	-5.5	5.78
			Medieval	-0.177	1.735	1	-5.32	4.97
			Postmedieva I	2.204	1.665	1	-2.73	7.14
			Neolithic	5.137	3.471	1	-5.15	15.43
			IronBronze Age	0.569	1.872	1	-4.98	6.12
		Roman	AngloSaxon	0.711	1.689	1	-4.29	5.72
Female	L1		Medieval	0.393	1.498	1	-4.05	4.83
remaie	LI		Postmedieva I	2.774	1.416	0.769	-1.42	6.97
			Neolithic	4.426	3.487	1	-5.91	14.76
			IronBronze Age	-0.142	1.902	1	-5.78	5.5
		AngloSaxon	Roman	-0.711	1.689	1	-5.72	4.29
			Medieval	-0.319	1.536	1	-4.87	4.23
			Postmedieva I	2.062	1.456	1	-2.25	6.38
			Neolithic	4.745	3.399	1	-5.33	14.82
			IronBronze Age	0.177	1.735	1	-4.97	5.32
		Medieval	Roman	-0.393	1.498	1	-4.83	4.05
			AngloSaxon	0.319	1.536	1	-4.23	4.87
			Postmedieva I	2.381	1.229	0.808	-1.26	6.02
			Neolithic	2.364	3.364	1	-7.61	12.33
		Postmedieva I	IronBronze Age	-2.204	1.665	1	-7.14	2.73
			Roman	-2.774	1.416	0.769	-6.97	1.42

MF	_ Dependen	(I) Periodc	(J) Periodc	Mean Differenc	Std.	Cia	95% Confidence Interval	
IVIE	t Variable		(J) Penodo	e (I-J)	Error	Sig.	Lower Bound	Upper Bound
			AngloSaxon	-2.062	1.456	1	-6.38	2.25
			Medieval	-2.381	1.229	0.808	-6.02	1.26
			IronBronze Age	0.28	2.56	1	-7.31	7.87
			Roman	-0.843	2.478	1	-8.19	6.5
		Neolithic	AngloSaxon	-0.643	2.49	1	-8.02	6.74
			Medieval	0.644	2.428	1	-6.55	7.84
			Postmedieva I	3.446	2.406	1	-3.69	10.58
			Neolithic	-0.28	2.56	1	-7.87	7.31
			Roman	-1.123	1.332	1	-5.07	2.83
		IronBronze Age	AngloSaxon	-0.923	1.353	1	-4.93	3.09
		1.90	Medieval	0.364	1.235	1	-3.3	4.03
			Postmedieva I	3.166	1.192	0.126	-0.37	6.7
		Roman	Neolithic	0.843	2.478	1	-6.5	8.19
			IronBronze Age	1.123	1.332	1	-2.83	5.07
			AngloSaxon	0.199	1.192	1	-3.33	3.73
	BI		Medieval	1.487	1.056	1	-1.64	4.62
	Bi		Postmedieva I	4.288 [*]	1.006	0	1.31	7.27
			Neolithic	0.643	2.49	1	-6.74	8.02
			IronBronze Age	0.923	1.353	1	-3.09	4.93
		AngloSaxon	Roman	-0.199	1.192	1	-3.73	3.33
			Medieval	1.288	1.082	1	-1.92	4.5
			Postmedieva I	4.089*	1.033	0.001	1.03	7.15
			Neolithic	-0.644	2.428	1	-7.84	6.55
			IronBronze Age	-0.364	1.235	1	-4.03	3.3
	M	Medieval	Roman	-1.487	1.056	1	-4.62	1.64
			AngloSaxon	-1.288	1.082	1	-4.5	1.92
			Postmedieva I	2.801*	0.873	0.023	0.21	5.39
			Neolithic	-3.446	2.406	1	-10.58	3.69
		Postmedieva I	IronBronze Age	-3.166	1.192	0.126	-6.7	0.37
			Roman	-4.288 [*]	1.006	0	-7.27	-1.31

MF	Dependen	(I) Periodc	(J) Periodc	Mean Differenc	Std.	Sig.	95% Cor Inte	
	t Variable			e (I-J)	Error	eig.	Lower Bound	Upper Bound
			AngloSaxon	-4.089 [*]	1.033	0.001	-7.15	-1.03
			Medieval	-2.801*	0.873	0.023	-5.39	-0.21
			IronBronze Age	-1.185	1.422	1	-5.4	3.03
			Roman	-1.39	1.358	1	-5.41	2.63
		Neolithic	AngloSaxon	-0.79	1.377	1	-4.87	3.29
			Medieval	0.016	1.337	1	-3.95	3.98
			Postmedieva I	0.207	1.322	1	-3.71	4.12
			Neolithic	1.185	1.422	1	-3.03	5.4
			Roman	-0.205	0.777	1	-2.51	2.1
		IronBronze Age	AngloSaxon	0.395	0.81	1	-2.01	2.8
		0	Medieval	1.201	0.74	1	-0.99	3.39
			Postmedieva I	1.392	0.713	0.778	-0.72	3.5
			Neolithic	1.39	1.358	1	-2.63	5.41
			IronBronze Age	0.205	0.777	1	-2.1	2.51
		Roman	AngloSaxon	0.6	0.691	1	-1.45	2.65
	Bh		Medieval	1.406	0.607	0.32	-0.39	3.2
	ы		Postmedieva I	1.597	0.574	0.087	-0.1	3.3
			Neolithic	0.79	1.377	1	-3.29	4.87
			IronBronze Age	-0.395	0.81	1	-2.8	2.01
		AngloSaxon	Roman	-0.6	0.691	1	-2.65	1.45
			Medieval	0.806	0.648	1	-1.11	2.73
			Postmedieva I	0.997	0.617	1	-0.83	2.83
			Neolithic	-0.016	1.337	1	-3.98	3.95
			IronBronze Age	-1.201	0.74	1	-3.39	0.99
		Medieval	Roman	-1.406	0.607	0.32	-3.2	0.39
			AngloSaxon	-0.806	0.648	1	-2.73	1.11
			Postmedieva I	0.191	0.521	1	-1.35	1.74
			Neolithic	-0.207	1.322	1	-4.12	3.71
		Postmedieva I	IronBronze Age	-1.392	0.713	0.778	-3.5	0.72
			Roman	-1.597	0.574	0.087	-3.3	0.1

	Dependen	(I) Periodc	(J) Periodc	Mean Differenc	Std.	Cia	95% Confidence Interval	
MF	t Variable		(J) Penode	e (I-J)	Error	Sig.	Lower Bound	Upper Bound
			AngloSaxon	-0.997	0.617	1	-2.83	0.83
			Medieval	-0.191	0.521	1	-1.74	1.35
			IronBronze Age	-0.696	2.538	1	-8.22	6.83
			Roman	-2.747	2.462	1	-10.05	4.55
		Neolithic	AngloSaxon	-2.997	2.476	1	-10.34	4.34
			Medieval	-3.033	2.399	1	-10.15	4.08
			Postmedieva I	-2.54	2.368	1	-9.56	4.48
			Neolithic	0.696	2.538	1	-6.83	8.22
			Roman	-2.051	1.426	1	-6.28	2.18
	IronBronze Age	IronBronze	AngloSaxon	-2.301	1.451	1	-6.6	2
		Age	Medieval	-2.337	1.316	1	-6.24	1.56
			Postmedieva I	-1.844	1.258	1	-5.57	1.88
			Neolithic	2.747	2.462	1	-4.55	10.05
			IronBronze Age	2.051	1.426	1	-2.18	6.28
		Roman	AngloSaxon	-0.25	1.313	1	-4.14	3.64
	Rh		Medieval	-0.286	1.162	1	-3.73	3.16
	IXII		Postmedieva I	0.207	1.096	1	-3.04	3.45
			Neolithic	2.997	2.476	1	-4.34	10.34
			IronBronze Age	2.301	1.451	1	-2	6.6
		AngloSaxon	Roman	0.25	1.313	1	-3.64	4.14
			Medieval	-0.036	1.192	1	-3.57	3.5
			Postmedieva I	0.457	1.127	1	-2.89	3.8
			Neolithic	3.033	2.399	1	-4.08	10.15
			IronBronze Age	2.337	1.316	1	-1.56	6.24
		Medieval	Roman	0.286	1.162	1	-3.16	3.73
			AngloSaxon	0.036	1.192	1	-3.5	3.57
			Postmedieva I	0.493	0.947	1	-2.32	3.3
			Neolithic	2.54	2.368	1	-4.48	9.56
		Postmedieva I	IronBronze Age	1.844	1.258	1	-1.88	5.57
			Roman	-0.207	1.096	1	-3.45	3.04

MF	Dependen	(I) Periodc	(J) Periodc	Mean Differenc	Std.	Sig.	95% Cor Inte	
IVIE	t Variable		(J) Penodc	e (I-J)	Error	olg.	Lower Bound	Upper Bound
			AngloSaxon	-0.457	1.127	1	-3.8	2.89
			Medieval	-0.493	0.947	1	-3.3	2.32
			IronBronze Age	2.316	2.908	1	-6.3	10.94
			Roman	2.869	2.808	1	-5.46	11.19
		Neolithic	AngloSaxon	2.129	2.838	1	-6.28	10.54
			Medieval	2.488	2.758	1	-5.69	10.66
			Postmedieva I	2.714	2.736	1	-5.4	10.83
			Neolithic	-2.316	2.908	1	-10.94	6.3
			Roman	0.553	1.499	1	-3.89	5
		IronBronze Age	AngloSaxon	-0.187	1.554	1	-4.8	4.42
		0	Medieval	0.172	1.403	1	-3.99	4.33
			Postmedieva I	0.398	1.36	1	-3.63	4.43
			Neolithic	-2.869	2.808	1	-11.19	5.46
			IronBronze Age	-0.553	1.499	1	-5	3.89
		Roman	AngloSaxon	-0.74	1.359	1	-4.77	3.29
	L2		Medieval	-0.381	1.182	1	-3.89	3.12
	L		Postmedieva I	-0.155	1.131	1	-3.51	3.2
			Neolithic	-2.129	2.838	1	-10.54	6.28
			IronBronze Age	0.187	1.554	1	-4.42	4.8
		AngloSaxon	Roman	0.74	1.359	1	-3.29	4.77
			Medieval	0.359	1.251	1	-3.35	4.07
			Postmedieva I	0.585	1.203	1	-2.98	4.15
			Neolithic	-2.488	2.758	1	-10.66	5.69
			IronBronze Age	-0.172	1.403	1	-4.33	3.99
		Medieval	Roman	0.381	1.182	1	-3.12	3.89
			AngloSaxon	-0.359	1.251	1	-4.07	3.35
			Postmedieva I	0.226	1	1	-2.74	3.19
			Neolithic	-2.714	2.736	1	-10.83	5.4
		Postmedieva I	IronBronze Age	-0.398	1.36	1	-4.43	3.63
			Roman	0.155	1.131	1	-3.2	3.51

MF Depender	Dependen	(I) Periodc	(J) Periodc	Mean Differenc	Std.	Cia	95% Cor Inte	
IVIE	t Variable	(I) Periodc	(J) Penode	e (I-J)	Error	Sig.	Lower Bound	Upper Bound
			AngloSaxon	-0.585	1.203	1	-4.15	2.98
			Medieval	-0.226	1	1	-3.19	2.74
			IronBronze Age	1.008	5.139	1	-14.32	16.33
			Roman	0.39	4.962	1	-14.41	15.19
		Neolithic	AngloSaxon	0.533	5.014	1	-14.42	15.49
			Medieval	-1.182	4.898	1	-15.79	13.43
			Postmedieva I	1.673	4.855	1	-12.81	16.15
			Neolithic	-1.008	5.139	1	-16.33	14.32
			Roman	-0.618	2.56	1	-8.25	7.02
		IronBronze Age	AngloSaxon	-0.475	2.659	1	-8.4	7.45
			Medieval	-2.191	2.434	1	-9.45	5.07
			Postmedieva I	0.665	2.346	1	-6.33	7.66
			Neolithic	-0.39	4.962	1	-15.19	14.41
			IronBronze Age	0.618	2.56	1	-7.02	8.25
		Roman	AngloSaxon	0.143	2.298	1	-6.71	7
	CorB		Medieval	-1.573	2.034	1	-7.64	4.49
	COID		Postmedieva I	1.283	1.928	1	-4.47	7.03
			Neolithic	-0.533	5.014	1	-15.49	14.42
			IronBronze Age	0.475	2.659	1	-7.45	8.4
		AngloSaxon	Roman	-0.143	2.298	1	-7	6.71
			Medieval	-1.716	2.158	1	-8.15	4.72
			Postmedieva I	1.14	2.058	1	-5	7.28
			Neolithic	1.182	4.898	1	-13.43	15.79
			IronBronze Age	2.191	2.434	1	-5.07	9.45
		Medieval	Roman	1.573	2.034	1	-4.49	7.64
			AngloSaxon	1.716	2.158	1	-4.72	8.15
			Postmedieva I	2.856	1.758	1	-2.39	8.1
			Neolithic	-1.673	4.855	1	-16.15	12.81
		Postmedieva I	IronBronze Age	-0.665	2.346	1	-7.66	6.33
			Roman	-1.283	1.928	1	-7.03	4.47

MF	JF Dependen	(I) Periodc	(J) Periodc	Mean Differenc	Std.	Sig.	95% Confidence Interval	
IVII	t Variable			e (I-J)	Error	Sig.	Lower Bound	Upper Bound
			AngloSaxon	-1.14	2.058	1	-7.28	5
			Medieval	-2.856	1.758	1	-8.1	2.39
			IronBronze Age	4.188	5.98	1	-13.71	22.09
			Roman	-2.167	5.703	1	-19.24	14.9
		Neolithic	AngloSaxon	-2.119	5.703	1	-19.19	14.95
			Medieval	1.521	5.536	1	-15.05	18.09
			Postmedieva I	1.849	5.474	1	-14.54	18.23
			Neolithic	-4.188	5.98	1	-22.09	13.71
			Roman	-6.355	3.478	1	-16.77	4.06
	IronBronze Age		AngloSaxon	-6.307	3.478	1	-16.72	4.1
			Medieval	-2.667	3.196	1	-12.23	6.9
			Postmedieva I	-2.339	3.088	1	-11.58	6.9
			Neolithic	2.167	5.703	1	-14.9	19.24
			IronBronze Age	6.355	3.478	1	-4.06	16.77
		Roman	AngloSaxon	0.047	2.978	1	-8.87	8.96
	ConB		Medieval	3.688	2.644	1	-4.23	11.6
	COND		Postmedieva I	4.016	2.512	1	-3.5	11.53
			Neolithic	2.119	5.703	1	-14.95	19.19
			IronBronze Age	6.307	3.478	1	-4.1	16.72
		AngloSaxon	Roman	-0.047	2.978	1	-8.96	8.87
			Medieval	3.641	2.644	1	-4.27	11.55
			Postmedieva I	3.968	2.512	1	-3.55	11.49
			Neolithic	-1.521	5.536	1	-18.09	15.05
			IronBronze Age	2.667	3.196	1	-6.9	12.23
	Medieval	Medieval	Roman	-3.688	2.644	1	-11.6	4.23
		AngloSaxon	-3.641	2.644	1	-11.55	4.27	
			Postmedieva I	0.328	2.104	1	-5.97	6.63
			Neolithic	-1.849	5.474	1	-18.23	14.54
		Postmedieva I	IronBronze Age	2.339	3.088	1	-6.9	11.58
			Roman	-4.016	2.512	1	-11.53	3.5

	Dependen	(I) Periodc	(I) Deriede	Mean Differenc	Std.	Sig	95% Co Inte	
MF	t Variable	(I) Periodc	(J) Periodc	e (I-J)	Error	Sig.	Lower Bound	Upper Bound
			AngloSaxon	-3.968	2.512	1	-11.49	3.55
			Medieval	-0.328	2.104	1	-6.63	5.97
			IronBronze Age	1.336	3.897	1	-10.19	12.87
			Roman	-0.53	3.87	1	-11.98	10.92
		Neolithic	AngloSaxon	-0.917	3.83	1	-12.25	10.41
			Medieval	0.911	3.74	1	-10.15	11.98
			Postmedieva I	2.183	3.731	1	-8.86	13.22
			Neolithic	-1.336	3.897	1	-12.87	10.19
			Roman	-1.867	2.008	1	-7.81	4.07
		IronBronze Age	AngloSaxon	-2.254	1.928	1	-7.96	3.45
			Medieval	-0.425	1.744	1	-5.58	4.73
			Postmedieva I	0.846	1.724	1	-4.25	5.95
			Neolithic	0.53	3.87	1	-10.92	11.98
			IronBronze Age	1.867	2.008	1	-4.07	7.81
		Roman	AngloSaxon	-0.387	1.874	1	-5.93	5.16
Male	L1		Medieval	1.442	1.684	1	-3.54	6.42
maio			Postmedieva I	2.713	1.663	1	-2.21	7.63
			Neolithic	0.917	3.83	1	-10.41	12.25
			IronBronze Age	2.254	1.928	1	-3.45	7.96
		AngloSaxon	Roman	0.387	1.874	1	-5.16	5.93
			Medieval	1.829	1.588	1	-2.87	6.53
			Postmedieva I	3.1	1.566	0.73	-1.53	7.73
			Neolithic	-0.911	3.74	1	-11.98	10.15
			IronBronze Age	0.425	1.744	1	-4.73	5.58
		Medieval	Roman	-1.442	1.684	1	-6.42	3.54
			AngloSaxon	-1.829	1.588	1	-6.53	2.87
			Postmedieva I	1.271	1.332	1	-2.67	5.21
			Neolithic	-2.183	3.731	1	-13.22	8.86
		Postmedieva I	IronBronze Age	-0.846	1.724	1	-5.95	4.25
			Roman	-2.713	1.663	1	-7.63	2.21

MF	Dependen	(I) Periodc	(J) Periodc	Mean Differenc	Std.	Sig.	95% Cor Inte	
IVII	t Variable			e (I-J)	Error	Sig.	Lower Bound	Upper Bound
			AngloSaxon	-3.1	1.566	0.73	-7.73	1.53
			Medieval	-1.271	1.332	1	-5.21	2.67
			IronBronze Age	0.308	2.407	1	-6.81	7.43
			Roman	1.877	2.395	1	-5.21	8.96
		Neolithic	AngloSaxon	2.104	2.363	1	-4.88	9.09
			Medieval	3.722	2.312	1	-3.12	10.56
			Postmedieva I	3.031	2.309	1	-3.8	9.86
			Neolithic	-0.308	2.407	1	-7.43	6.81
			Roman	1.569	1.234	1	-2.08	5.22
		IronBronze Age	AngloSaxon	1.796	1.169	1	-1.66	5.26
		U U	Medieval	3.414*	1.064	0.022	0.27	6.56
			Postmedieva I	2.723	1.057	0.156	-0.4	5.85
			Neolithic	-1.877	2.395	1	-8.96	5.21
			IronBronze Age	-1.569	1.234	1	-5.22	2.08
		Roman	AngloSaxon	0.227	1.144	1	-3.16	3.61
	BI		Medieval	1.845	1.036	1	-1.22	4.91
	Di		Postmedieva I	1.154	1.029	1	-1.89	4.2
			Neolithic	-2.104	2.363	1	-9.09	4.88
			IronBronze Age	-1.796	1.169	1	-5.26	1.66
		AngloSaxon	Roman	-0.227	1.144	1	-3.61	3.16
			Medieval	1.618	0.958	1	-1.22	4.45
			Postmedieva I	0.927	0.951	1	-1.88	3.74
			Neolithic	-3.722	2.312	1	-10.56	3.12
			IronBronze Age	-3.414 [*]	1.064	0.022	-6.56	-0.27
		Medieval	Roman	-1.845	1.036	1	-4.91	1.22
			AngloSaxon	-1.618	0.958	1	-4.45	1.22
			Postmedieva I	-0.69	0.817	1	-3.11	1.73
			Neolithic	-3.031	2.309	1	-9.86	3.8
		Postmedieva I	IronBronze Age	-2.723	1.057	0.156	-5.85	0.4
			Roman	-1.154	1.029	1	-4.2	1.89

MF	Dependen	(I) Periodc	(J) Periodc	Mean Differenc	Std.	Sig.	95% Cor Inte	
IVIE	t Variable			e (I-J)	Error	eig.	Lower Bound	Upper Bound
			AngloSaxon	-0.927	0.951	1	-3.74	1.88
			Medieval	0.69	0.817	1	-1.73	3.11
			IronBronze Age	1.418	1.494	1	-3	5.84
			Roman	1.795	1.482	1	-2.59	6.18
		Neolithic	AngloSaxon	1.512	1.466	1	-2.82	5.85
			Medieval	3.357	1.433	0.296	-0.88	7.59
			Postmedieva I	2.06	1.433	1	-2.18	6.3
			Neolithic	-1.418	1.494	1	-5.84	3
			Roman	0.377	0.757	1	-1.86	2.62
		IronBronze Age	AngloSaxon	0.093	0.726	1	-2.05	2.24
		0	Medieval	1.938	0.656	0.05	0	3.88
			Postmedieva I	0.641	0.656	1	-1.3	2.58
			Neolithic	-1.795	1.482	1	-6.18	2.59
			IronBronze Age	-0.377	0.757	1	-2.62	1.86
		Roman	AngloSaxon	-0.284	0.701	1	-2.36	1.79
	Bh		Medieval	1.561	0.628	0.202	-0.3	3.42
	ы		Postmedieva I	0.264	0.628	1	-1.59	2.12
			Neolithic	-1.512	1.466	1	-5.85	2.82
			IronBronze Age	-0.093	0.726	1	-2.24	2.05
		AngloSaxon	Roman	0.284	0.701	1	-1.79	2.36
			Medieval	1.845 [*]	0.59	0.029	0.1	3.59
			Postmedieva I	0.548	0.59	1	-1.2	2.29
			Neolithic	-3.357	1.433	0.296	-7.59	0.88
			IronBronze Age	-1.938	0.656	0.05	-3.88	0
		Medieval	Roman	-1.561	0.628	0.202	-3.42	0.3
			AngloSaxon	-1.845 [*]	0.59	0.029	-3.59	-0.1
			Postmedieva I	-1.297	0.501	0.152	-2.78	0.19
			Neolithic	-2.06	1.433	1	-6.3	2.18
		Postmedieva I	IronBronze Age	-0.641	0.656	1	-2.58	1.3
			Roman	-0.264	0.628	1	-2.12	1.59

MF	Dependen	(I) Periodc	(J) Periodc	Mean Differenc	Std.	Sig.	95% Confidence Interval	
IVII	t Variable			e (I-J)	Error	Sig.	Lower Bound	Upper Bound
			AngloSaxon	-0.548	0.59	1	-2.29	1.2
			Medieval	1.297	0.501	0.152	-0.19	2.78
			IronBronze Age	0.261	2.533	1	-7.23	7.75
			Roman	0.576	2.519	1	-6.88	8.03
		Neolithic	AngloSaxon	-1.031	2.472	1	-8.34	6.28
			Medieval	0.68	2.424	1	-6.49	7.85
			Postmedieva I	-0.766	2.419	1	-7.92	6.39
			Neolithic	-0.261	2.533	1	-7.75	7.23
			Roman	0.315	1.328	1	-3.61	4.24
		IronBronze Age	AngloSaxon	-1.293	1.236	1	-4.95	2.36
		1.90	Medieval	0.418	1.137	1	-2.94	3.78
			Postmedieva I	-1.027	1.126	1	-4.36	2.3
			Neolithic	-0.576	2.519	1	-8.03	6.88
			IronBronze Age	-0.315	1.328	1	-4.24	3.61
		Roman	AngloSaxon	-1.607	1.207	1	-5.18	1.96
	Rh		Medieval	0.104	1.105	1	-3.17	3.37
			Postmedieva I	-1.342	1.094	1	-4.58	1.9
			Neolithic	1.031	2.472	1	-6.28	8.34
			IronBronze Age	1.293	1.236	1.105 1 1.094 1 2.472 1 1.236 1	-2.36	4.95
		AngloSaxon	Roman	1.607	1.207	1	-1.96	5.18
			Medieval	1.711	0.993	1	-1.23	4.65
			Postmedieva I	0.266	0.981	1	-2.64	3.17
			Neolithic	-0.68	2.424	1	-7.85	6.49
			IronBronze Age	-0.418	1.137	1	-3.78	2.94
		Medieval	Roman	-0.104	1.105	1	-3.37	3.17
			AngloSaxon	-1.711	0.993	1	-4.65	1.23
			Postmedieva I	-1.446	0.852	1	-3.97	1.08
			Neolithic	0.766	2.419	1	-6.39	7.92
		Postmedieva I	IronBronze Age	1.027	1.126	1	-2.3	4.36
			Roman	1.342	1.094	1	-1.9	4.58

MF	Dependen	(I) Periodc	(J) Periodc	Mean Differenc	Std.	Sig.	95% Cor Inte	
IVII	t Variable			e (I-J)	Error	Sig.	Lower Bound	Upper Bound
			AngloSaxon	-0.266	0.981	1	-3.17	2.64
			Medieval	1.446	0.852	1	-1.08	3.97
			IronBronze Age	-0.214	2.807	1	-8.52	8.09
			Roman	-2.36	2.784	1	-10.6	5.88
		Neolithic	AngloSaxon	-1.437	2.759	1	-9.6	6.73
			Medieval	-1.019	2.694	1	-8.99	6.95
			Postmedieva I	-1.736	2.688	1	-9.69	6.22
			Neolithic	0.214	2.807	1	-8.09	8.52
			Roman	-2.146	1.438	1	-6.4	2.11
		IronBronze Age	AngloSaxon	-1.223	1.389	1	-5.33	2.89
		, (90	Medieval	-0.805	1.256	1	-4.52	2.91
			Postmedieva I	-1.523	1.244	1	-5.2	2.16
			Neolithic	2.36	2.784	1	-5.88	10.6
			IronBronze Age	2.146	1.438	1	-2.11	6.4
		Roman	AngloSaxon	0.923	1.341	1	-3.05	4.89
	L2		Medieval	1.341	1.203	1	-2.22	4.9
	LZ		Postmedieva I	0.623	1.19	1	-2.9	4.14
			Neolithic	1.437	2.759	1	-6.73	9.6
			IronBronze Age	1.223	1.389	1	-2.89	5.33
		AngloSaxon	Roman	-0.923	1.341	1	-4.89	3.05
			Medieval	0.418	1.144	1	-2.97	3.8
			Postmedieva I	-0.3	1.13	1	-3.64	3.04
			Neolithic	1.019	2.694	1	-6.95	8.99
			IronBronze Age	0.805	1.256	1	-2.91	4.52
		Medieval	Roman	-1.341	1.203	1	-4.9	2.22
			AngloSaxon	-0.418	1.144	1	-3.8	2.97
			Postmedieva I	-0.717	0.962	1	-3.56	2.13
			Neolithic	1.736	2.688	1	-6.22	9.69
		Postmedieva I	IronBronze Age	1.523	1.244	1	-2.16	5.2
			Roman	-0.623	1.19	1	-4.14	2.9

MF	Dependen	(I) Periodc	(J) Periodc	Mean Differenc	Std.	Sig	95% Cor Inte	
IVIE	t Variable	(I) Pendac		e (I-J)	Error	Sig.	Lower Bound	Upper Bound
			AngloSaxon	0.3	1.13	1	-3.04	3.64
			Medieval	0.717	0.962	1	-2.13	3.56
			IronBronze Age	4.233	5.117	1	-11.02	19.49
			Roman	-5.643	5.065	1	-20.74	9.46
		Neolithic	AngloSaxon	-0.813	5.025	1	-15.79	14.17
			Medieval	-1.585	4.937	1	-16.3	13.13
			Postmedieva I	0.732	4.855	1	-13.74	15.21
			Neolithic	-4.233	5.117	1	-19.49	11.02
			Roman	-9.876 [*]	2.636	0.004	-17.73	-2.02
		IronBronze Age	AngloSaxon	-5.046	2.559	0.756	-12.67	2.58
		·	Medieval	-5.818	2.38	0.234	-12.91	1.28
			Postmedieva I	-3.502	2.205	1	-10.08	3.07
			Neolithic	5.643	5.065	1	-9.46	20.74
			IronBronze Age	9.876 [*]	2.636	0.004	2.02	17.73
		Roman	AngloSaxon	4.83	2.452	0.759	-2.48	12.14
	CorB		Medieval	4.058	2.265	1	-2.69	10.81
	OOID		Postmedieva I	6.375 [*]	2.081	0.039	0.17	12.58
			Neolithic	0.813	5.025	1	-14.17	15.79
			IronBronze Age	5.046	2.559	0.756	-2.58	12.67
		AngloSaxon	Roman	-4.83	2.452	0.759	-12.14	2.48
			Medieval	-0.772	2.175	1	-7.26	5.71
			Postmedieva I	1.544	1.982	1	-4.36	7.45
			Neolithic	1.585	4.937	1	-13.13	16.3
			IronBronze Age	5.818	2.38	0.234	-1.28	12.91
		Medieval	Roman	-4.058	2.265	1	-10.81	2.69
			AngloSaxon	0.772	2.175	1	-5.71	7.26
			Postmedieva I	2.316	1.745	1	-2.89	7.52
			Neolithic	-0.732	4.855	1	-15.21	13.74
		Postmedieva I	IronBronze Age	3.502	2.205	1	-3.07	10.08
			Roman	-6.375 [*]	2.081	0.039	-12.58	-0.17

MF	Dependen t Variable	(I) Periodc	(J) Periodc		Std.	Cia	95% Confidence Interval	
	t Variable	(I) Periodc	(J) Penodo	e (I-J)	Error	Sig.	Lower Bound	Upper Bound
			AngloSaxon	-1.544	1.982	1	-7.45	4.36
			Medieval	-2.316	1.745	1	-7.52	2.89
			IronBronze Age	-0.872	4.143	1	-13.23	11.49
			Roman	-2.007	4.249	1	-14.69	10.67
		Neolithic	AngloSaxon	-0.092	4.047	1	-12.17	11.99
			Medieval	4.416	3.939	1	-7.34	16.17
			Postmedieva I	2.476	3.883	1	-9.11	14.07
			Neolithic	0.872	4.143	1	-11.49	13.23
			Roman	-1.135	2.671	1	-9.1	6.83
		IronBronze Age	AngloSaxon	0.781	2.337	1	-6.19	7.75
			Medieval	5.288	5.288 2.144		-1.11	11.69
			Postmedieva I	3.348	2.04	1	-2.74	9.44
			Neolithic	2.007	4.249	1	-10.67	14.69
			IronBronze Age	1.135	2.671	1	-6.83	9.1
		Roman	AngloSaxon	1.915	2.52	1	-5.61	9.44
	ConB		Medieval	6.423	2.343	0.103	-0.57	13.42
	COND		Postmedieva I	4.483	2.248	0.719	-2.22	11.19
			Neolithic	0.092	4.047	1	-11.99	12.17
			IronBronze Age	-0.781	2.337	1	-7.75	6.19
		AngloSaxon	Roman	-1.915	2.52	1	-9.44	5.61
			Medieval	4.507	1.954	0.337	-1.32	10.34
			Postmedieva I	2.568	1.839	1	-2.92	8.05
			Neolithic	-4.416	3.939	1	-16.17	7.34
			IronBronze Age	-5.288	2.144	0.222	-11.69	1.11
		Medieval	Roman	-6.423	2.343	0.103	-13.42	0.57
			AngloSaxon	-4.507	1.954	0.337	-10.34	1.32
			Postmedieva I	-1.94	1.587	1	-6.68	2.8
			Neolithic	-2.476	3.883	1	-14.07	9.11
		Postmedieva I	IronBronze Age	-3.348	2.04	1	-9.44	2.74
			Roman	-4.483	2.248	0.719	-11.19	2.22

MF	Dependen		(I) Deriede	Mean	Std.	Sig		nfidence rval
	t Variable	(I) Periodc	(J) Periodc	Differenc e (I-J)	Error	Sig.	Lower Bound	Upper Bound
			AngloSaxon	-2.568	1.839	1	-8.05	2.92
			Medieval	1.94	1.587	1	-2.8	6.68

*. The mean difference is significant at the 0.05 level.

4.3 Mandible measurements – dental wear groups

Table 4.3.1: Results from a Shapiro-Wilk test for normality mandible measurements are normally distributed among females for each dental wear group. As with previous cases the Q-Q plots were analysed and it was determined that data were close enough to normally distributed to allow analysis of the mean.

			Kolmo	ogorov-Smirn	ov ^a		Shapiro-Wilk	
MF		AgeGroup	Statistic	df	Sig.	Statistic	df	Sig.
	CorB	1.00	.162	23	.121	.935	23	.141
		2.00	.164	31	.032	.916	31	.019
		3.00	.286	5	.200*	.813	5	.103
	ConB	1.00	.239	23	.001	.942	23	.199
		2.00	.140	31	.126	.939	31	.076
		3.00	.348	5	.048	.770	5	.045
	L1	1.00	.171	23	.078	.934	23	.130
		2.00	.186	31	.008	.776	31	.000
		3.00	.395	5	.010	.708	5	.012
	BI	1.00	.138	23	.200*	.960	23	.455
		2.00	.081	31	.200*	.960	31	.285
		3.00	.261	5	.200*	.846	5	.181
	Bh	1.00	.118	23	.200 [*]	.954	23	.347
		2.00	.116	31	.200*	.951	31	.166
		3.00	.207	5	.200*	.971	5	.880
	Rh	1.00	.120	23	.200*	.947	23	.258
		2.00	.144	31	.100	.942	31	.096
		3.00	.293	5	.185	.829	5	.137
	L2	1.00	.133	23	.200*	.954	23	.353
		2.00	.115	31	.200*	.972	31	.588
		3.00	.348	5	.047	.812	5	.100
Female	CorB	1.00	.100	35	.200*	.963	35	.283
		2.00	.096	41	.200*	.972	41	.398
		3.00	.223	9	.200*	.903	9	.270
	ConB	1.00	.150	35	.045	.913	35	.009
		2.00	.145	41	.031	.923	41	.008
		3.00	.314	9	.011	.663	9	.001
	L1	1.00	.152	35	.039	.865	35	.001
		2.00	.180	41	.002	.865	41	.000
		3.00	.152	9	.200*	.953	9	.724
	BI	1.00	.122	35	.200*	.902	35	.004
		2.00	.109	41	.200*	.900	41	.002
		3.00	.175	9	.200*	.936	9	.536

Tests of Normality

Tests of Normality

			Kolmo	gorov-Smirne	ov ^a	S	hapiro-Wilk	
MF		AgeGroup	Statistic	df	Sig.	Statistic	df	Sig.
	Bh	1.00	.119	35	.200*	.959	35	.219
		2.00	.091	41	.200*	.979	41	.623
		3.00	.227	9	.200*	.917	9	.364
	Rh	1.00	.108	35	.200*	.984	35	.872
		2.00	.116	41	.182	.959	41	.150
		3.00	.271	9	.056	.889	9	.193
	L2	1.00	.108	35	.200*	.967	35	.362
		2.00	.138	41	.048	.931	41	.015
		3.00	.202	9	.200*	.885	9	.175
Male	CorB	1.00	.145	36	.052	.907	36	.005
		2.00	.098	56	.200*	.951	56	.023
		3.00	.236	5	.200*	.835	5	.151
	ConB	1.00	.188	36	.002	.885	36	.001
		2.00	.126	56	.027	.908	56	.000
		3.00	.400	5	.009	.698	5	.009
	L1	1.00	.190	36	.002	.921	36	.014
		2.00	.198	56	.000	.900	56	.000
		3.00	.252	5	.200*	.865	5	.248
	BI	1.00	.148	36	.044	.943	36	.061
		2.00	.168	56	.000	.861	56	.000
		3.00	.345	5	.053	.722	5	.016
	Bh	1.00	.120	36	.200*	.943	36	.064
		2.00	.081	56	.200*	.981	56	.539
		3.00	.275	5	.200*	.839	5	.161
	Rh	1.00	.146	36	.051	.966	36	.325
		2.00	.093	56	.200*	.984	56	.670
		3.00	.286	5	.200*	.760	5	.037
	L2	1.00	.110	36	.200*	.971	36	.448
		2.00	.068	56	.200*	.989	56	.873
		3.00	.255	5	.200*	.832	5	.143

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Table 4.3.2: Mean mandible measurements among males and females for each dental wear group

				Rep	ort				
MF	AgeGi	oup	CorB	ConB	L1	BI	Bh	Rh	L2
	1.00	Mean	100.18	114.15	105.78	83.16	29.45	61.41	79.31
		Ν	29	25	47	49	49	49	47
		Std. Deviation	11.072	8.650	7.012	6.327	2.843	7.357	6.860
	2.00	Mean	99.80	118.36	108.06	83.79	31.44	65.78	80.56
		Ν	46	41	80	81	82	80	80
		Std. Deviation	8.116	7.270	7.583	5.260	3.379	7.060	6.164
	3.00	Mean	108.60	116.13	109.59	85.71	30.72	66.49	82.30
		Ν	5	6	10	10	10	11	10
		Std. Deviation	2.881	6.563	5.150	4.953	3.360	4.331	4.435
	Total	Mean	100.49	116.71	107.39	83.71	30.70	64.30	80.26
		Ν	80	72	137	140	141	140	137
		Std. Deviation	9.266	7.874	7.301	5.634	3.313	7.277	6.321
Female	1.00	Mean	95.10	114.38	104.45	81.14	30.20	61.35	79.52
		Ν	55	39	83	85	88	84	84
		Std. Deviation	6.688	8.199	6.494	5.499	2.903	5.625	5.523
	2.00	Mean	101.28	118.51	106.79	83.27	30.55	63.97	79.90
		Ν	57	52	90	89	95	90	91
		Std. Deviation	9.624	10.034	7.250	5.527	3.316	5.460	5.878
	-	Mean	98.52	124.01	106.52	81.60	30.15	62.76	78.92
		Ν	14	10	20	20	20	19	20
		Std. Deviation	5.344	7.502	5.048	3.755	2.309	5.006	4.897
	Total	Mean	98.28	117.46	105.75	82.17	30.36	62.71	79.64
		Ν	126	101	193	194	203	193	195
		Std. Deviation	8.506	9.514	6.797	5.434	3.046	5.603	5.614
Male	1.00	Mean	99.16	118.76	109.07	84.69	32.10	66.70	83.15
		Ν	51	42	80	80	83	81	79
		Std. Deviation	8.267	7.076	8.231	5.405	3.368	6.363	6.188
	2.00	Mean	102.74	122.44	111.61	86.48	32.98	67.41	83.48
		Ν	76	71	132	136	137	137	132
		Std. Deviation	8.149	6.583	8.329	5.654	3.730	5.586	5.540
	3.00	Mean	104.82	124.42	114.49	87.42	32.84	68.14	84.16
		Ν	12	12	35	37	38	34	37
		Std. Deviation	9.743	8.670	10.717	4.523	3.280	6.113	7.699
	Total	Mean	101.60	121.39	111.19	86.05	32.68	67.28	83.48
		Ν	139	125	247	253	258	252	248
		Std. Deviation	8.499	7.179	8.813	5.493	3.562	5.911	6.092

Table 4.3.3: ANOVA showing significant differences in mean mandible measurements among dental wear groups for males and females

			ANOV	4			
MF			Sum of Squares	df	Mean Square	F	Sig.
	CorB	Between Groups	353.348	2	176.674	2.116	.127
		Within Groups	6429.532	77	83.500		
		Total	6782.880	79			
	ConB	Between Groups	277.186	2	138.593	2.318	.106
		Within Groups	4124.897	69	59.781		
		Total	4402.083	71			
	L1	Between Groups	206.790	2	103.395	1.967	.144
		Within Groups	7042.803	134	52.558		
		Total	7249.594	136			
	BI	Between Groups	55.528	2	27.764	.873	.420
		Within Groups	4355.825	137	31.794		
		Total	4411.353	139			
	Bh	Between Groups	121.475	2	60.737	5.924	.003
		Within Groups	1414.774	138	10.252		
		Total	1536.248	140			
	Rh	Between Groups	637.791	2	318.896	6.499	.002
		Within Groups	6722.777	137	49.071		
		Total	7360.568	139			
	L2	Between Groups	90.558	2	45.279	1.136	.324
		Within Groups	5343.258	134	39.875		
		Total	5433.816	136			
Female	CorB	Between Groups	1070.803	2	535.401	8.259	.000
		Within Groups	7973.749	123	64.827		
		Total	9044.552	125			
	ConB	Between Groups	855.986	2	427.993	5.118	.008
		Within Groups	8195.561	98	83.628		
		Total	9051.547	100			
	L1	Between Groups	249.759	2	124.880	2.753	.066
		Within Groups	8619.642	190	45.367		
		Total	8869.401	192			
	BI	Between Groups	203.367	2	101.684	3.533	.031
		Within Groups	5496.472	191	28.777		
		Total	5699.839	193			
	Bh	Between Groups	6.614	2	3.307	.354	.702
		Within Groups	1868.064	200	9.340		
		Total	1874.678	202			

			ANOVA	A _			
MF			Sum of Squares	df	Mean Square	F	Sig.
	Rh	Between Groups	296.734	2	148.367	4.919	.008
		Within Groups	5730.673	190	30.161		
		Total	6027.407	192			
	L2	Between Groups	17.810	2	8.905	.280	.756
		Within Groups	6096.853	192	31.754		
		Total	6114.664	194			
Male	CorB	Between Groups	526.574	2	263.287	3.793	.025
		Within Groups	9441.416	136	69.422		
		Total	9967.989	138			
	ConB	Between Groups	477.057	2	238.528	4.921	.009
		Within Groups	5913.175	122	48.469		
		Total	6390.232	124			
	L1	Between Groups	762.136	2	381.068	5.068	.007
		Within Groups	18345.602	244	75.187		
		Total	19107.738	246			
	BI	Between Groups	243.669	2	121.835	4.138	.017
		Within Groups	7360.195	250	29.441		
		Total	7603.864	252			
	Bh	Between Groups	40.986	2	20.493	1.623	.199
		Within Groups	3219.892	255	12.627		
		Total	3260.878	257			
	Rh	Between Groups	54.713	2	27.357	.782	.459
		Within Groups	8716.288	249	35.005		
		Total	8771.001	251			
	L2	Between Groups	25.517	2	12.758	.342	.711
		Within Groups	9141.868	245	37.314		
		Total	9167.385	247			

ANOVA

Table 4.3.4: Boneferroni results showing significant differences in mean mandible measurements among among dental wear groups for males and females

Multiple Comparisons

Bonfer	roni				-			
				Mean			95% Confide	nce Interval
	Dependent	(I)	(J)	Difference	Std.		Lower	Upper
MF	Variable	AgeGroup	AgeGroup	(I-J)	Error	Sig.	Bound	Bound
	CorB	1.00	2.00	.372	2.167	1.000	-4.93	5.67
			3.00	-8.424	4.425	.182	-19.25	2.41
		2.00	1.00	372	2.167	1.000	-5.67	4.93
			3.00	-8.796	4.303	.133	-19.33	1.74
		3.00	1.00	8.424	4.425	.182	-2.41	19.25
			2.00	8.796	4.303	.133	Lower Bound 0 -4.93 2 -19.25 0 -5.67 3 -19.33 2 -2.41 3 -1.74 6 -9.02 0 -10.61 661 0 -6.07 0 -6.64 0 -10.52 651 0 -6.64 0 -10.52 651 0 -10.52 651 0 -4.37 0 -2.31 0 -7.42 0 -2.31 0 -4.37 0 -3.11 3 -7.30 0 -1.84 6 -6.50 3 -2.19 6 -2.66 2 -3.39 4 -3.96 2 .59 0 -1.88 4 -1.42 0 -3.32	19.33
	ConB	1.00	2.00	-4.208	1.962	.106	-9.02	.61
			3.00	-1.985	3.515	1.000	-10.61	6.64
		2.00	1.00	4.208	1.962	.106	61	9.02
			3.00	2.223	3.380	1.000	-6.07	10.52
		3.00	1.00	1.985	3.515	1.000	-6.64	10.61
			2.00	-2.223	3.380	1.000	-10.52	6.07
	L1	1.00	2.00	-2.285	1.332	.266	22 -19.25 40 -5.67 43 -19.33 42 -2.41 43 -1.74 46 -9.02 40 -10.61 46 -6.07 40 -6.07 40 -6.07 40 -6.07 40 -6.07 40 -7.42 40 -7.42 40 -7.42 40 -7.30 40 -7.30 40 -7.30 41 -2.66 42 -2.19 43 -2.19 44 -3.96 45 -2.66 46 -2.66 47 -3.96	.95
			3.00	-3.813	2.525	.400	-9.93	2.31
		2.00	1.00	2.285	1.332	.266	95	5.51
			3.00	-1.529	2.432	1.000	-10.61 61 607 -6.64 -10.52 -5.51 -9.93 95 -7.42 -2.31 -4.37 -3.11 -7.30 -1.84	4.37
		3.00	1.00	3.813	2.525	.400	-2.31	9.93
			2.00	1.529	2.432	1.000	-4.37	7.42
	BI	1.00	2.00	635	1.020	1.000	-3.11	1.84
			3.00	-2.553	1.957	.583	-7.30	2.19
		2.00	1.00	.635	1.020	1.000	-1.84	3.11
			3.00	-1.917	1.890	.936	-6.50	2.66
		3.00	1.00	2.553	1.957	.583	-2.19	7.30
			2.00	1.917	1.890	.936	-2.66	6.50
	Bh	1.00	2.00	-1.990*	.578	.002	-3.39	59
			3.00	-1.271	1.111	.764	-3.96	1.42
		2.00	1.00	1.990 [*]	.578	.002	.59	3.39
			3.00	.719	1.072	1.000	-1.88	3.32
		3.00	1.00	1.271	1.111	.764	-1.42	3.96
			2.00	719	1.072	1.000		1.88
	Rh	1.00	2.00	-4.371 [*]	1.271	.002	-7.45	-1.29
			3.00	-5.085	2.337	.094	-10.75	.58
		2.00	1.00	4.371 [*]	1.271	.002	1.29	7.45

Bonferroni

Bonterro	11			Mean			95% Confide	nce Interval
	Dependent	(1)	(J)	Difference	Std.			
MF	Variable		(3) AgeGroup	(I-J)	Error	Sig.		
	Vallable	Ageoloup	3.00	713	2.253	1.000		4.75
		3.00	1.00	5.085	2.337	.094	i i	10.75
			2.00	.713	2.253	1.000		6.17
	L2	1.00	2.00	-1.240	1.161	.862		1.57
			3.00	-2.985	2.199	.531	i i	2.35
		2.00	1.00	1.240	1.161	.862		4.05
			3.00	-1.745	2.118	1.000	i i	3.39
		3.00	1.00	2.985	2.199	.531	Í Í	8.32
			2.00	1.745	2.118	1.000	-3.39	6.88
Female	CorB	1.00	2.00	-6.182 [*]	1.522	.000	-9.88	-2.49
			3.00	-3.420	2.410	.475	-9.27	2.43
		2.00	1.00	6.182 [*]	1.522	.000	2.49	9.88
			3.00	2.763	2.402	.757	00 -6.17 4 94 58 10 00 -4.75 6 52 -4.05 1 31 -8.32 2 52 -1.57 4 00 -6.88 3 31 -2.35 8 00 -6.88 3 31 -2.35 8 00 -3.39 6 00 -9.88 -2 00 -9.88 -2 00 -9.88 -2 00 -9.88 -2 00 -9.88 -2 00 -9.88 -2 00 -9.89 3 00 -2.43 9 00 -3.76 4 01 -17.53 -1 07 59 8 03 -2.13 4 00 -3.76 4 00 -3.76 4 00 -3.67 2 00 <	8.59
		3.00	1.00	3.420	2.410	.475	-2.43	9.27
			2.00	-2.763	2.402	.757	-8.59	3.07
	ConB	1.00	2.00	-4.126	1.937	.107	-8.84	.59
			3.00	-9.631 [*]	3.241	.011	-17.53	-1.74
		2.00	1.00	4.126	1.937	.107	59	8.84
			3.00	-5.504	3.158	.253	-13.20	2.19
		3.00	1.00	9.631 [*]	3.241	.011	1.74	17.53
			2.00	5.504	3.158	.253	-2.19	13.20
	L1	1.00	2.00	-2.341	1.025	.070	-4.82	.13
			3.00	-2.074	1.678	.654	-6.13	1.98
		2.00	1.00	2.341	1.025	.070	13	4.82
			3.00	.267	1.665	1.000	-3.76	4.29
		3.00	1.00	2.074	1.678	.654	-1.98	6.13
			2.00	267	1.665	1.000	-4.29	3.76
	BI	1.00	2.00	-2.124*	.814	.029	-4.09	16
			3.00	450	1.333	1.000	-3.67	2.77
		2.00	1.00	2.124 [*]	.814	.029	.16	4.09
			3.00	1.674	1.327	.627	-1.53	4.88
		3.00	1.00	.450	1.333	1.000	-2.77	3.67
			2.00	-1.674	1.327	.627	-4.88	1.53
	Bh	1.00	2.00	349	.452	1.000	-1.44	.74
			3.00	.060	.757	1.000	-1.77	1.89
		2.00	1.00	.349	.452	1.000	74	1.44

Bonferro	oni							
				Mean			95% Confide	nce Interval
	Dependent	(I)	(J)	Difference	Std.		Lower	Upper
MF	Variable	AgeGroup	AgeGroup	(I-J)	Error	Sig.	Bound	Bound
			3.00	.409	.752	1.000	-1.41	2.22
		3.00	1.00	060	.757	1.000	-1.89	1.77
			2.00	409	.752	1.000	-2.22	1.41
	Rh	1.00	2.00	-2.613 [*]	.833	.006	-4.63	60
			3.00	-1.410	1.395	.941	-4.78	1.96
		2.00	1.00	2.613 [*]	.833	.006	.60	4.63
			3.00	1.204	1.387	1.000	-2.15	4.55
		3.00	1.00	1.410	1.395	.941	-1.96	4.78
			2.00	-1.204	1.387	1.000	-4.55	2.15
	L2	1.00	2.00	379	.853	1.000	-2.44	1.68
			3.00	.604	1.402	1.000	-2.78	3.99
		2.00	1.00	.379	.853	1.000	-1.68	2.44
			3.00	.983	1.392	1.000	-2.38	4.34
		3.00	1.00	604	1.402	1.000	-3.99	2.78
			2.00	983	1.392	1.000	-4.34	2.38
Male	CorB	1.00	2.00	-3.579	1.508	.057	-7.23	.08
			3.00	-5.660	2.673	.108	-12.14	.82
		2.00	1.00	3.579	1.508	.057	08	7.23
			3.00	-2.081	2.588	1.000	-8.35	4.19
		3.00	1.00	5.660	2.673	.108	82	12.14
			2.00	2.081	2.588	1.000	-4.19	8.35
	ConB	1.00	2.00	-3.671 [*]	1.355	.023	-6.96	38
			3.00	-5.652 [*]	2.279	.043	-11.18	12
		2.00	1.00	3.671 [*]	1.355	.023	.38	6.96
			3.00	-1.981	2.173	1.000	-7.26	3.29
		3.00	1.00	5.652 [*]	2.279	.043	.12	11.18
			2.00	1.981	2.173	1.000	-3.29	7.26
	L1	1.00	2.00	-2.535	1.229	.120	-5.50	.43
			3.00	-5.414*	1.757	.007	-9.65	-1.18
		2.00	1.00	2.535	1.229	.120	43	5.50
			3.00	-2.880	1.649	.246	-6.85	1.09
		3.00	1.00	5.414 [*]	1.757	.007	1.18	9.65
			2.00	2.880	1.649	.246	-1.09	6.85
	BI	1.00	2.00	-1.796	.765	.059	-3.64	.05
			3.00	-2.734 [*]	1.079	.036	-5.33	13
		2.00	1.00	1.796	.765	.059	05	3.64

Bonferro	Bonferroni									
				Mean			95% Confide	nce Interval		
	Dependent	(I)	(J)	Difference	Std.		Lower	Upper		
MF	Variable	AgeGroup	AgeGroup	(I-J)	Error	Sig.	Bound	Bound		
			3.00	938	1.006	1.000	-3.36	1.49		
		3.00	1.00	2.734 [*]	1.079	.036	.13	5.33		
			2.00	.938	1.006	1.000	-1.49	3.36		
	Bh	1.00	2.00	877	.494	.231	-2.07	.31		
			3.00	738	.696	.869	-2.42	.94		
		2.00	1.00	.877	.494	.231	31	2.07		
			3.00	.139	.652	1.000	-1.43	1.71		
		3.00	1.00	.738	.696	.869	94	2.42		
			2.00	139	.652	1.000	-1.71	1.43		
	Rh	1.00	2.00	712	.829	1.000	-2.71	1.29		
			3.00	-1.439	1.209	.705	-4.35	1.48		
		2.00	1.00	.712	.829	1.000	-1.29	2.71		
			3.00	727	1.134	1.000	-3.46	2.01		
		3.00	1.00	1.439	1.209	.705	-1.48	4.35		
			2.00	.727	1.134	1.000	-2.01	3.46		
	L2	1.00	2.00	323	.869	1.000	-2.42	1.77		
			3.00	-1.006	1.217	1.000	-3.94	1.93		
		2.00	1.00	.323	.869	1.000	-1.77	2.42		
			3.00	684	1.136	1.000	-3.42	2.06		
		3.00	1.00	1.006	1.217	1.000	-1.93	3.94		
			2.00	.684	1.136	1.000	-2.06	3.42		

*. The mean difference is significant at the 0.05 level.

Table 4.3.5: Cosstabulation showing wear groups for each time period

				AgeGroup		
			1.00	2.00	3.00	Total
Periodc	Neolithic	Count	2	8	5	15
		Expected Count	5.3	7.9	1.8	15.0
	IronBronze Age	Count	28	59	11	98
		Expected Count	34.7	51.6	11.7	98.0
	Roman	Count	29	61	5	95
		Expected Count	33.6	50.1	11.3	95.0
	AngloSaxon	Count	32	77	19	128
		Expected Count	45.3	67.5	15.3	128.0
	Medieval	Count	66	89	30	185
		Expected Count	65.4	97.5	22.1	185.0
	Postmedieval	Count	92	77	14	183
		Expected Count	64.7	96.4	21.8	183.0
Total		Count	249	371	84	704
		Expected Count	249.0	371.0	84.0	704.0

Periodc * AgeGroup Crosstabulation

Table 4.3.6: Chi-squared results showing that dental wear groups wee significantly different between time periods

Chi-Square Tests

			Asymptotic
			Significance (2-
	Value	df	sided)
Pearson Chi-Square	44.712 ^a	10	.000
Likelihood Ratio	43.741	10	.000
Linear-by-Linear Association	13.904	1	.000
N of Valid Cases	704		

a. 1 cells (5.6%) have expected count less than 5. The minimum

expected count is 1.79.

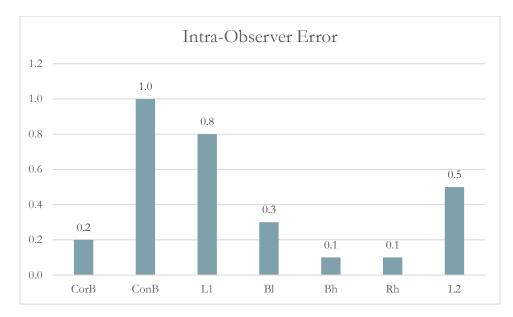


Figure 4.3.1. Bar graph illustrating the mean intra-observer error for each measurement.

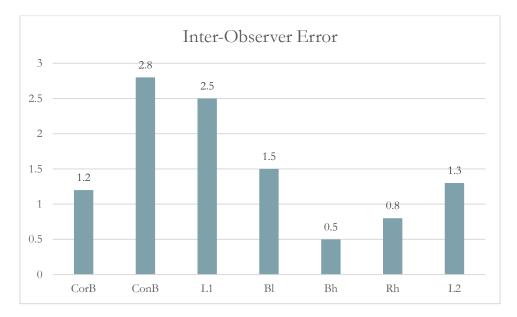


Figure 4.3.2 Bar graph illustrating the mean inter-observer error for each measurement.

Appendix 5: Results – 3D

Appendix 5 details the results produced during 3D geogrtic morphometric analysis that were not included in section 6.2 of the results chapter.

5.1 Centroid size

Table 5.1.1: Results from a Shapiro-Wilk test for normality to determine if centroid size was normally distributed among females for all time periods

		Kolm	Kolmogorov-Smirnov ^a			Shapiro-Wilk			
	MF	Statistic	df	Sig.	Statistic	df	Sig.		
Centroidsize	Female	.045	269	.200*	.994	269	.390		
	Male	.034	328	.200*	.995	328	.336		

Tests of Normality

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Table 5.1.2: Mean centroid size among females for all time periods

Report

Centroidsize	Centroidsize									
MF	Mean	Ν	Std. Deviation							
Female	335.4622	269	16.18374							
Male	350.0895	328	14.91646							
Total	343.4986	597	17.11449							

Table 5.1.3: Independent samples t-test showing significant differences in centroid size among for males and females for all time periods

				liuehei	iuent Sa	ampies	5 1631			
		Leve	ne's							
		Test	for							
Equality of										
Variances						t-te	st for Equalit	y of Means		
									95% Co	nfidence
						Sig.			Interva	l of the
						(2-	Mean	Std. Error	Diffe	rence
		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
Centroidsize	Equal	2.275	.132	-	595	.000	-14.62728	1.27500	-	-
	variances			11.472					17.13132	12.12324
	assumed									
	Equal			-	551.947	.000	-14.62728	1.28531	-	-
	variances			11.380					17.15197	12.10259
	not									
	assumed									

Independent Samples Test

Table 5.1.4: Results from a Shapiro-Wilk test for normality to determine if centroid size was normally distributed among among males and females among each individual time period

			16212 01	Normanty					
			Kolm	ogorov-Smirr	nov ^a		Shapiro-Wilk	napiro-Wilk	
MF		Periodc	Statistic	df	Sig.	Statistic	df	Sig.	
	Centroidsize	Neolithic	.221	5	.200 [*]	.941	5	.673	
		IronBronze Age	.091	17	.200 [*]	.970	17	.818	
		Roman	.200	16	.086	.963	16	.709	
		AngloSaxon	.077	66	.200*	.975	66	.197	
		Medieval	.073	56	.200*	.975	56	.306	
		Postmedieval	.120	29	.200*	.962	29	.362	
Female	Centroidsize	Neolithic	.169	4		.996	4	.988	
		IronBronze Age	.081	31	.200*	.974	31	.643	
		Roman	.091	37	.200*	.954	37	.131	
		AngloSaxon	.094	38	.200*	.975	38	.533	
		Medieval	.063	64	.200*	.989	64	.850	
		Postmedieval	.083	91	.161	.986	91	.424	
Male	Centroidsize	Neolithic	.260	5	.200*	.908	5	.456	
		IronBronze Age	.119	37	.200*	.944	37	.061	
		Roman	.081	40	.200*	.971	40	.393	
		AngloSaxon	.094	51	.200*	.979	51	.494	
		Medieval	.060	93	.200*	.987	93	.505	
		Postmedieval	.044	94	.200*	.991	94	.795	

Tests of Normality

 $^{\ast}\!.$ This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Table 5.1.5: Mean centroid size among males and females among males among each individual time period

Centroidsi	Centroidsize									
MF	Periodc	Mean	Ν	Std. Deviation						
	Neolithic	337.8016	5	19.15213						
	IronBronze Age	349.8149	17	16.59867						
	Roman	344.1312	16	16.38277						
	AngloSaxon	347.4532	66	15.13297						
	Medieval	342.1079	56	19.80941						
	Postmedieval	339.4394	29	18.72068						
	Total	344.3156	189	17.64327						
Female	Neolithic	356.1392	4	12.03406						
	IronBronze Age	336.8282	31	16.81677						
	Roman	341.0897	37	16.49674						
	AngloSaxon	339.6039	38	17.49246						
	Medieval	335.2918	64	13.99210						
	Postmedieval	330.3018	91	15.32427						
	Total	335.5005	265	16.22785						
Male	Neolithic	352.1399	5	6.82305						
	IronBronze Age	354.3233	37	16.54746						
	Roman	349.8812	40	17.16543						
	AngloSaxon	350.1506	51	14.77286						
	Medieval	351.8876	93	15.42178						
	Postmedieval	347.2992	94	12.72166						
	Total	350.2977	320	14.92757						

Report

Table 5.1.6: ANOVA showing significant differences in centroid size among among males among each individual time period

ANOVA

Centroidsi	ze					
MF		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	2339.048	5	467.810	1.524	.184
	Within Groups	56182.520	183	307.008		
	Total	58521.567	188			
Female	Between Groups	6016.386	5	1203.277	4.907	.000
	Within Groups	63506.229	259	245.198		
	Total	69522.615	264			
Male	Between Groups	1704.869	5	340.974	1.543	.176
	Within Groups	69378.633	314	220.951		
	Total	71083.502	319			

Table 5.1.7: Boneferroni results showing significant differences in centroid size among among males among each individual time period

Multiple Comparisons

Dependent Variable: Centroidsize Bonferroni

			Mean Difference (I-			95% Confide	ence Interval	
MF	(I) Periodc	(J) Periodc	J)	Std. Error	Sig.	Lower Bound	Upper Bound	
	Neolithic	IronBronze Age	-12.01331	8.91409	1.000	-38.5258	14.4992	
		Roman	-6.32968	8.97718	1.000	-33.0298	20.3705	
		AngloSaxon	-9.65162	8.12732	1.000	-33.8241	14.5209	
		Medieval	-4.30631	8.17826	1.000	-28.6303	20.0177	
		Postmedieval	-1.63782	8.48458	1.000	-26.8729	23.5973	
	IronBronze	Neolithic	12.01331	8.91409	1.000	-14.4992	38.5258	
	Age	Roman	5.68363	6.10306	1.000	-12.4683	23.8355	
		AngloSaxon	2.36170	4.76560	1.000	-11.8123	16.5357	
		Medieval	7.70701	4.85197	1.000	-6.7239	22.1379	
		Postmedieval	10.37549	5.35218	.811	-5.5431	26.2941	
	Roman	Neolithic	6.32968	8.97718	1.000	-20.3705	33.0298	
		IronBronze Age	-5.68363	6.10306	1.000	-23.8355	12.4683	
		AngloSaxon	-3.32194	4.88259	1.000	-17.8439	11.2000	
		Medieval	2.02337	4.96692	1.000	-12.7494	16.7961	
		Postmedieval	4.69186	5.45660	1.000	-11.5373	20.9210	
	AngloSaxon	Neolithic	9.65162	8.12732	1.000	-14.5209	33.8241	
		IronBronze Age	-2.36170	4.76560	1.000	-16.5357	11.8123	
		Roman	3.32194	4.88259	1.000	-11.2000	17.8439	
		Medieval	5.34531	3.18338	1.000	-4.1228	14.8134	
		Postmedieval	8.01380	3.90361	.623	-3.5964	19.6240	
	Medieval	Neolithic	4.30631	8.17826	1.000	-20.0177	28.6303	
		IronBronze Age	-7.70701	4.85197	1.000	-22.1379	6.7239	
		Roman	-2.02337	4.96692	1.000	-16.7961	12.7494	
		AngloSaxon	-5.34531	3.18338	1.000	-14.8134	4.1228	
		Postmedieval	2.66849	4.00859	1.000	-9.2540	14.5909	
	Postmedieval	Neolithic	1.63782	8.48458	1.000	-23.5973	26.8729	
		IronBronze	-10.37549	5.35218	.811	-26.2941	5.5431	
		Age						

Dependent Variable: Centroidsize Bonferroni

Mean Difference/ Difference/ Difference/ Difference/ AgeSid. ErrorSid. Er	Bonferror	ni						
MF(1) Periodc()Std. ErrorSig.Lower BoundUpper BoundRoman-4.691665.456601.000-20.921011.5373AngloSaxon-8.013803.903616.23-19.62403.5964Medieval-2.668494.008591.000-14.59099.2240FemaleNeolithicIronBronze19.310998.3120-3.16-5.336143.9581AgeRoman15.049528.241751.000-9.368139.4672AngloSaxon16.535348.231166.684-7.850940.9216Medieval20.847388.07036-155-3.062544.7572Postmedieval25.837457.999620.212.137249.5377IronBronzeNeolithic-19.310998.31920-3.16-43.95815.3361Age-10.00-15.55727.03431.65533.268751.000-15.5572AngloSaxon-2.775643.789751.000-3.615211.6880Postmedieval6.526473.25396.91-3.121216.1741Roman1.456333.616561.000-7.034315.5572Age				Mean			95% Confide	ence Interval
Roman -4.69186 5.45660 1.000 -2.0.9210 11.5373 AngloSaxon -8.01380 3.90361 6.623 -19.6240 3.5964 Medieval -2.66849 4.00859 1.000 -14.5909 9.2540 Female Neolithic IronBronze 19.31099 8.31920 .316 -5.3361 43.9581 Age				Difference (I-				
AngloSaxon -8.01380 3.90361 6.623 -19.6240 3.5964 Medieval -2.66649 4.00859 1.000 -14.5909 9.2540 Female Neolithic IronBronze 19.31099 8.31920 3.316 -5.3361 43.9581 Age	MF	(I) Periodc	(J) Periodc	J)	Std. Error	Sig.	Lower Bound	Upper Bound
Medieval -2.66849 4.00859 1.000 -14.5909 9.2540 Female Neolithic IronBronze 19.31099 8.31920 .316 -5.3361 43.9581 Age			Roman	-4.69186	5.45660	1.000	-20.9210	11.5373
Female Neolithic IronBronze 19.31099 8.31920 .316 .5.3361 43.9581 Age Roman 15.04952 8.24175 1.000 -9.3681 39.4672 AngloSaxon 16.53534 8.23116 684 -7.8509 40.9216 Medieval 20.84738 8.07036 .155 -3.0625 44.7572 Postmedieval 25.83745' 7.99962 .021 2.1372 49.5377 IronBronze Neolithic -19.31099 8.31920 .316 -43.9581 5.3361 Age Roman -4.26147 3.81269 1.000 -15.5572 7.0343 AngloSaxon -2.77564 3.78975 1.000 -8.6152 11.6880 Postmedieval 6.52647 3.26639 681 -3.1212 16.1741 Roman Neolithic -15.04952 8.24175 1.000 -3.7382 15.572 ArgloSaxon 1.48583 3.61656 1.000 -7.0343 15.5572 ArgloSaxon			AngloSaxon	-8.01380	3.90361	.623	-19.6240	3.5964
Age Nome Performant 15.04952 8.24175 1.000 -9.3681 39.4672 AngloSaxon 16.53534 8.23116 .684 -7.8509 40.9216 Medieval 20.84738 8.07036 .155 -3.0625 44.7572 Postmedieval 25.83745' 7.99962 .021 2.1372 49.5377 IronBronze Neolithic -19.31099 8.31920 .316 -43.9581 5.3361 Age Roman -4.26147 3.81269 1.000 -15.5572 7.0343 ArgloSaxon -2.77564 3.78975 1.000 -39.4672 9.3681 Postmedieval 6.52647 3.25639 .691 -31.212 16.1741 Roman 14.50492 8.24175 1.000 -39.4672 9.3681 IronBronze 4.26147 3.81269 1.000 -7.0343 15.5572 Age			Medieval	-2.66849	4.00859	1.000	-14.5909	9.2540
Roman 15.04952 8.24175 1.000 -9.3681 39.4672 AngloSaxon 16.53534 8.23116 6.684 -7.8509 40.9216 Medieval 20.84738 8.07036 .155 -3.0625 44.7572 Postmedieval 25.83745 7.99962 .021 2.1372 49.5377 IronBronze Neolithic -19.31099 8.31920 .316 -43.9581 5.3361 Age Roman -4.26147 3.81269 1.000 -15.5572 7.0343 AngloSaxon -2.77564 3.78975 1.000 -43.0581 5.3361 Medieval 6.52647 3.25639 .691 -3.1212 16.1741 Roman Neolithic -15.04952 8.24175 1.000 -9.289 12.2005 Age	Female	Neolithic	IronBronze	19.31099	8.31920	.316	-5.3361	43.9581
AngloSaxon 16.53534 8.23116 .684 -7.8509 40.9216 Medieval 20.84738 8.07036 .155 -3.0625 44.7572 Postmedieval 25.83745' 7.99962 .021 2.1372 49.5377 IronBronze Neolithic .19.31099 8.31920 .316 -43.9581 5.3361 Age Roman -4.26147 3.81269 1.000 .15.5572 7.0343 AngloSaxon -2.77564 3.78975 1.000 -8.6152 11.6880 Postmedieval 6.52647 3.25639 6.91 -3.1212 16.1741 Roman Neolithic -15.04952 8.24175 1.000 -7.0343 15.5572 Age - - - - - - - AgioSaxon 1.48583 3.61656 1.000 -7.0343 15.5572 Age - - - - - - - - - - - - -			Age					
Medieval20.847388.07036.155-3.062544.7572Postmedieval25.83745'7.99962.0212.137249.5377IronBronzeNeolithic.19.310998.31920.316-43.95815.3361AgeRoman-4.261473.812691.000.15.55727.0343AngloSaxon-2.775643.789751.000.14.00348.4522Medieval1.536393.426491.000-8.615211.6880Postmedieval6.526473.256396.91-3.121216.1741RomanNeolithic-15.049528.241751.000-7.034315.5572AgeAngloSaxon1.485833.616561.000-7.034315.5572AgeAngloSaxon1.485833.616561.000-9.228912.2005Medieval5.797663.233911.000-3.783215.3789Postmedleval10.78794'3.053100.071.742619.8333AngloSaxonNeolithic-16.535348.231166.84-40.92167.8509IronBronze2.775643.789751.000-5.188813.8128AgeRoman-1.485833.616561.000-12.20059.2289Medieval4.312033.206831.000-5.188813.8128			Roman	15.04952	8.24175	1.000	-9.3681	39.4672
Postmedieval 25.83745' 7.99962 0.021 2.1372 49.5377 IronBronze Age Neolithic 19.31099 8.3120 .316 -43.9581 5.3361 Age Roman -4.26147 3.81269 1.000 -15.5572 7.0343 AngloSaxon -2.77564 3.78975 1.000 -14.0034 8.4522 Medieval 1.53639 3.42649 1.000 -8.6152 11.6880 Postmedieval 6.52647 3.25639 6.691 -3.1212 16.1741 Roman Neolithic -15.04952 8.24175 1.000 -3.9.4672 9.3681 IronBronze 4.26147 3.81269 1.000 -7.0343 15.5572 Age - - - - - Age - - - - - Age - - - - - - Age - - - - - - - -			AngloSaxon	16.53534	8.23116	.684	-7.8509	40.9216
IronBronze Age Neolithic -19.31099 8.31920 .316 -43.9581 5.3361 Age Roman -4.26147 3.81269 1.000 -15.5572 7.0343 AngloSaxon -2.77564 3.78975 1.000 -14.0034 8.4522 Medieval 1.53639 3.42449 1.000 -8.6152 11.6880 Postmedieval 6.52647 3.25639 .691 -3.1212 16.1741 Roman Neolithic -15.04952 8.24175 1.000 -7.0343 15.5572 Age			Medieval	20.84738	8.07036	.155	-3.0625	44.7572
Age Roman -4.26147 3.81269 1.000 -15.5572 7.0343 AngloSaxon -2.77564 3.78975 1.000 -14.0034 8.4522 Medieval 1.53639 3.42649 1.000 -8.6152 11.6880 Postmedieval 6.52647 3.25639 6.691 -3.1212 16.1741 Roman Neolithic -15.04952 8.24175 1.000 -39.4672 9.3681 IronBronze 4.26147 3.81269 1.000 -7.0343 15.5572 Age			Postmedieval	25.83745*	7.99962	.021	2.1372	49.5377
AngloSaxon -2.77564 3.78975 1.000 -14.0034 8.4522 Medieval 1.53639 3.42649 1.000 -8.6152 11.6880 Postmedieval 6.52647 3.25639 6.91 -3.1212 16.1741 Roman Neolithic -15.04952 8.24175 1.000 -39.4672 9.3681 IronBronze 4.26147 3.8169 1.000 -7.0343 15.5572 Age - - - - - AngloSaxon 1.48583 3.61656 1.000 -9.2289 12.2005 Medieval 5.79786 3.23391 1.000 -3.7832 15.3789 Postmedieval 10.78794' 3.05310 .007 1.7426 19.8333 AngloSaxon Neolithic -16.53534 8.23116 .684 -40.9216 7.8509 IronBronze 2.77564 3.78975 1.000 -8.4522 14.0034 Age - - - - - -		IronBronze	Neolithic	-19.31099	8.31920	.316	-43.9581	5.3361
Medieval 1.53639 3.42649 1.000 -8.6152 11.6880 Postmedieval 6.52647 3.25639 691 -3.1212 16.1741 Roman Neolithic -15.04952 8.24175 1.000 -39.4672 9.3681 IronBronze 4.26147 3.81269 1.000 -7.0343 15.5572 Age - - - - - - ArgloSaxon 1.48583 3.61656 1.000 -9.2289 12.2005 Medieval 5.79786 3.23391 1.000 -3.7832 15.3789 Postmedieval 10.78794' 3.05310 .007 1.7426 19.8333 AngloSaxon Neolithic -16.53534 8.23116 .684 -40.9216 7.8509 IronBronze 2.77564 3.78975 1.000 -8.4522 14.0034 Age - - - - - - Roman -1.48583 3.61656 1.000 -15.1888 13.8128		Age	Roman	-4.26147	3.81269	1.000	-15.5572	7.0343
Postmedieval 6.52647 3.25639 .691 -3.1212 16.1741 Roman Neolithic -15.04952 8.24175 1.000 -39.4672 9.3681 IronBronze 4.26147 3.81269 1.000 -7.0343 15.5572 Age			AngloSaxon	-2.77564	3.78975	1.000	-14.0034	8.4522
Roman Neolithic -15.04952 8.24175 1.000 -39.4672 9.3681 IronBronze 4.26147 3.81269 1.000 -7.0343 15.5572 Age			Medieval	1.53639	3.42649	1.000	-8.6152	11.6880
IronBronze 4.26147 3.81269 1.000 -7.0343 15.5572 Age -			Postmedieval	6.52647	3.25639	.691	-3.1212	16.1741
Age Image I		Roman	Neolithic	-15.04952	8.24175	1.000	-39.4672	9.3681
AngloSaxon 1.48583 3.61656 1.000 -9.2289 12.2005 Medieval 5.79786 3.23391 1.000 -3.7832 15.3789 Postmedieval 10.78794' 3.05310 .007 1.7426 19.8333 AngloSaxon Neolithic -16.53534 8.23116 .684 -40.9216 7.8509 IronBronze 2.77564 3.78975 1.000 -8.4522 14.0034 Age			IronBronze	4.26147	3.81269	1.000	-7.0343	15.5572
Medieval 5.79786 3.23391 1.000 -3.7832 15.3789 Postmedieval 10.78794' 3.05310 .007 1.7426 19.8333 AngloSaxon Neolithic -16.53534 8.23116 .684 -40.9216 7.8509 IronBronze 2.77564 3.78975 1.000 -8.4522 14.0034 Age			Age					
Postmedieval 10.78794' 3.05310 .007 1.7426 19.8333 AngloSaxon Neolithic -16.53534 8.23116 .684 -40.9216 7.8509 IronBronze 2.77564 3.78975 1.000 -8.4522 14.0034 Age			AngloSaxon	1.48583	3.61656	1.000	-9.2289	12.2005
AngloSaxon Neolithic -16.53534 8.23116 .684 -40.9216 7.8509 IronBronze 2.77564 3.78975 1.000 -8.4522 14.0034 Age			Medieval	5.79786	3.23391	1.000	-3.7832	15.3789
IronBronze 2.77564 3.78975 1.000 -8.4522 14.0034 Age Roman -1.48583 3.61656 1.000 -12.2005 9.2289 Medieval 4.31203 3.20683 1.000 -5.1888 13.8128 Postmedieval 9.30211* 3.02441 .035 .3418 18.2625 Medieval Neolithic -20.84738 8.07036 .155 -44.7572 3.0625 Medieval Neolithic -20.84738 3.23391 1.000 -11.6880 8.6152 Age			Postmedieval	10.78794*	3.05310	.007	1.7426	19.8333
Age Image I		AngloSaxon	Neolithic	-16.53534	8.23116	.684	-40.9216	7.8509
Roman 1.48583 3.61656 1.000 12.2005 9.2289 Medieval 4.31203 3.20683 1.000 -5.1888 13.8128 Postmedieval 9.30211* 3.02441 .035 .3418 18.2625 Medieval Neolithic -20.84738 8.07036 .155 -44.7572 3.0625 IronBronze -1.53639 3.42649 1.000 -11.6880 8.6152 Age - - - - - - Roman -5.79786 3.23391 1.000 -15.3789 3.7832 AngloSaxon -4.31203 3.20683 1.000 -13.8128 5.1888 Postmedieval 4.99007 2.55454 .778 -2.5782 12.5584 Postmedieval 4.99007 2.55454 .778 -2.5782 12.5584 IronBronze -6.52647 3.25639 .691 -16.1741 3.1212			IronBronze	2.77564	3.78975	1.000	-8.4522	14.0034
Medieval 4.31203 3.20683 1.000 -5.1888 13.8128 Postmedieval 9.30211* 3.02441 .035 .3418 18.2625 Medieval Neolithic -20.84738 8.07036 .155 -44.7572 3.0625 IronBronze -1.53639 3.42649 1.000 -11.6880 8.6152 Age Roman -5.79786 3.23391 1.000 -15.3789 3.7832 AngloSaxon -4.31203 3.20683 1.000 -15.3789 3.7832 Postmedieval Meolithic -25.83745* 7.99962 .021 -49.5377 -2.1372 IronBronze -6.52647 3.25639 .691 -16.1741 3.1212			Age					
Postmedieval 9.30211 [*] 3.02441 .035 .3418 18.2625 Medieval Neolithic -20.84738 8.07036 .155 -44.7572 3.0625 IronBronze -1.53639 3.42649 1.000 -11.6880 8.6152 Age - - - - - Roman -5.79786 3.23391 1.000 -15.3789 3.7832 AngloSaxon -4.31203 3.20683 1.000 -13.8128 5.1888 Postmedieval 4.99007 2.55454 .778 -2.5782 12.5584 Postmedieval Neolithic -25.83745 [*] 7.99962 .021 -49.5377 -2.1372 IronBronze -6.52647 3.25639 .691 -16.1741 3.1212			Roman	-1.48583	3.61656	1.000	-12.2005	9.2289
Medieval Neolithic 20.84738 8.07036 .155 44.7572 3.0625 IronBronze -1.53639 3.42649 1.000 -11.6880 8.6152 Age			Medieval	4.31203	3.20683	1.000	-5.1888	13.8128
IronBronze -1.53639 3.42649 1.000 -11.6880 8.6152 Age Roman -5.79786 3.23391 1.000 -15.3789 3.7832 AngloSaxon -4.31203 3.20683 1.000 -13.8128 5.1888 Postmedieval 4.99007 2.55454 .778 -2.5782 12.5584 Postmedieval Neolithic -25.83745* 7.99962 .021 -49.5377 -2.1372 IronBronze -6.52647 3.25639 .691 -16.1741 3.1212			Postmedieval	9.30211*	3.02441	.035	.3418	18.2625
Age Image I		Medieval	Neolithic	-20.84738	8.07036	.155	-44.7572	3.0625
Roman -5.79786 3.23391 1.000 -15.3789 3.7832 AngloSaxon -4.31203 3.20683 1.000 -13.8128 5.1888 Postmedieval 4.99007 2.55454 .778 -2.5782 12.5584 Postmedieval Neolithic -25.83745* 7.99962 .021 -49.5377 -2.1372 IronBronze -6.52647 3.25639 .691 -16.1741 3.1212			IronBronze	-1.53639	3.42649	1.000	-11.6880	8.6152
AngloSaxon -4.31203 3.20683 1.000 -13.8128 5.1888 Postmedieval 4.99007 2.55454 .778 -2.5782 12.5584 Postmedieval Neolithic -25.83745* 7.99962 .021 -49.5377 -2.1372 IronBronze -6.52647 3.25639 .691 -16.1741 3.1212			Age					
Postmedieval 4.99007 2.55454 .778 -2.5782 12.5584 Postmedieval Neolithic -25.83745* 7.99962 .021 -49.5377 -2.1372 IronBronze -6.52647 3.25639 .691 -16.1741 3.1212			Roman	-5.79786	3.23391	1.000	-15.3789	3.7832
Postmedieval Neolithic -25.83745* 7.99962 .021 -49.5377 -2.1372 IronBronze -6.52647 3.25639 .691 -16.1741 3.1212			AngloSaxon	-4.31203	3.20683	1.000	-13.8128	5.1888
IronBronze -6.52647 3.25639 .691 -16.1741 3.1212			Postmedieval	4.99007	2.55454	.778	-2.5782	12.5584
		Postmedieval	Neolithic	-25.83745*	7.99962	.021	-49.5377	-2.1372
Age			IronBronze	-6.52647	3.25639	.691	-16.1741	3.1212
			Age					

Dependent Variable: Centroidsize Bonferroni

Mean Difference/ 95% Confidence Interval Difference/ MF (I) Periodc (I) Periodc (I) Periodc (I) Periodc Sid. Error Sig. Cover Bau (I) Oper Bau (I) (I) Periodc MF (I) Periodc J Sid. Error Sig. Cover Bau (I) Oper Bau (I) (I) Periodc J Sid. Error Sig. Cover Bau (I) Oper Bau (I) (I) Periodc J <th>Bonferro</th> <th>oni</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Bonferro	oni						
MF(1) Periode() Periode				Mean			95% Confide	ence Interval
Roman -10.78794' 3.05310 0.07 -19.8333 -1.7426 AngloSaxon -9.30211' 3.02441 0.035 -18.2625 3418 Medieval -4.99007 2.55454 7.78 -12.5584 2.5782 Male Neolithic IonBronze -2.18343 7.08250 1.000 -23.1323 18.7654 Age				Difference (I-				
AngloSaxon-9.30211'3.02441.0.35-18.26253418Medieval4.990072.55454.7781.12.55842.5782MaleNoolithicIronBronze-2.183437.082501.000-23.132318.7654Age	MF	(I) Periodc	(J) Periodc	J)	Std. Error	Sig.	Lower Bound	Upper Bound
Medieval-4.990072.55454.778-12.55842.5782MaleNeolithicIronBronze-2.183437.082501.000-23.132318.7654Age <td></td> <td></td> <td>Roman</td> <td>-10.78794*</td> <td>3.05310</td> <td>.007</td> <td>-19.8333</td> <td>-1.7426</td>			Roman	-10.78794*	3.05310	.007	-19.8333	-1.7426
Nale Neolithic IronBronze -2.18343 7.08250 1.000 -23.1323 18.7654 Age Roman 2.25870 7.05081 1.000 -18.5964 23.1138 AngloSaxon 1.98930 6.96582 1.000 -18.6144 22.5930 Medieval 2.2524 6.82393 1.000 -18.6144 22.5930 Postmedieval 4.84069 6.8208 1.000 -16.7654 23.1323 Age Roman 4.44213 3.39049 1.000 -5.5864 1.4.7663 Age Roman 4.44213 3.39049 1.000 -5.5864 14.47663 Age 7.02411 2.8482 2.32 -1.5087 15.5569 Roman Neolithic -2.25870 7.05081 1.000 -2.3.1138 18.5964 Age 7.02411 2.8482 2.32 -1.5087 15.5569 Roman Neolithic -2.25870 7.05081 1.000 -2.3.1138 18.5964 IronBronze			AngloSaxon	-9.30211*	3.02441	.035	-18.2625	3418
AgeImage: constraint of the section of th			Medieval	-4.99007	2.55454	.778	-12.5584	2.5782
Roman 2.25870 7.05081 1.000 -18.5964 23.1138 AngloSaxon 1.98930 6.96582 1.000 -18.6144 22.5930 Medieval .25224 6.82393 1.000 -19.9318 20.4363 Postmedieval 4.84069 6.82208 1.000 -15.3379 25.0192 IronBronze Neolithic 2.18343 7.08250 1.000 -18.7654 23.1323 Age Roman 4.44213 3.39049 1.000 -5.864 14.4706 AngloSaxon 4.17273 3.20999 1.000 -6.1101 10.9814 Postmedieval 7.02411 2.88482 232 -1.5087 15.5569 Roman Neolithic -2.25870 7.05081 1.000 -23.1138 18.5964 IronBronze -4.44213 3.39049 1.000 -14.4706 5.5864 Age	Male	Neolithic	IronBronze	-2.18343	7.08250	1.000	-23.1323	18.7654
AngloSaxon 1.98930 6.96582 1.000 -18.6144 22.5930 Medieval .25224 6.82393 1.000 -19.9318 20.4363 Postmedieval 4.84069 6.82208 1.000 -16.3379 25.0192 IronBronze Neolithic 2.18343 7.08250 1.000 -18.7654 23.1323 Age Roman 4.44213 3.39049 1.000 -5.5864 14.4706 AngloSaxon 4.17273 3.20999 1.000 -6.1101 10.9814 Postmedieval 7.02411 2.88482 2.32 -1.5087 15.569 Roman Neolithic -2.25870 7.05081 1.000 -23.1138 18.5964 IronBronze -4.44213 3.39049 1.000 -14.4706 5.5864 Age			Age					
Medieval 25224 6.82393 1.000 .19.9318 20.4363 Postmedieval 4.84099 6.82208 1.000 .15.3379 25.0192 IronBronze Neolithic 2.18343 7.08250 1.000 .18.7654 23.1323 Age Roman 4.44213 3.39049 1.000 .5.5864 14.4706 AngloSaxon 4.17273 3.2099 1.000 .6.1101 10.9814 Postmedieval 7.02411 2.88482 .232 .1.5087 15.5569 Roman Neolithic -2.25870 7.05081 1.000 -2.3.1138 18.5964 IronBronze 4.44213 3.39049 1.000 .14.4706 5.5864 Age			Roman	2.25870	7.05081	1.000	-18.5964	23.1138
Postmedieval 4.84069 6.82208 1.000 -15.3379 25.0192 IronBronze Age Neolithic 2.18343 7.08250 1.000 -18.7654 23.1323 Age Roman 4.44213 3.39049 1.000 -5.5864 14.4706 AngloSaxon 4.17273 3.2099 1.000 -6.1101 10.9814 Postmedieval 7.02411 2.88482 2.32 -1.5087 15.5569 Roman Neolithic -2.25870 7.05081 1.000 -2.31138 18.5964 IronBronze -4.44213 3.39049 1.000 -14.4706 5.5864 Age			AngloSaxon	1.98930	6.96582	1.000	-18.6144	22.5930
IronBronze Age Neolithic 2.18343 7.08250 1.000 -18.7654 23.1323 Age Roman 4.44213 3.39049 1.000 -5.5864 14.4706 AngloSaxon 4.17273 3.20999 1.000 -5.3219 13.6673 Medieval 2.43567 2.88920 1.000 -6.1101 10.9814 Postmedieval 7.02411 2.88482 .232 -1.5087 15.5569 Roman Neolithic -2.25870 7.05081 1.000 -23.1138 18.5964 IronBronze -4.44213 3.39049 1.000 -23.1138 18.5964 Age			Medieval	.25224	6.82393	1.000	-19.9318	20.4363
Age Roman 4.44213 3.39049 1.000 5.5864 14.4706 AngloSaxon 4.17273 3.20999 1.000 -5.3219 13.6673 Medieval 2.43567 2.88920 1.000 -6.1101 10.9814 Postmedieval 7.02411 2.88482 2.32 -1.5087 15.5569 Roman Neolithic -2.25870 7.05081 1.000 -23.1138 18.5964 Age			Postmedieval	4.84069	6.82208	1.000	-15.3379	25.0192
AngloSaxon 4.17273 3.20999 1.000 -5.3219 13.6673 Medieval 2.43567 2.88920 1.000 -6.1101 10.9814 Postmedieval 7.02411 2.88482 .232 -1.5087 15.5569 Roman Neolithic -2.25870 7.05081 1.000 -23.1138 18.5964 Age		IronBronze	Neolithic	2.18343	7.08250	1.000	-18.7654	23.1323
Medieval 2.43567 2.88920 1.000 -6.1101 10.9814 Postmedieval 7.02411 2.88482 2.32 -1.5087 15.5569 Roman Neolithic -2.25870 7.05081 1.000 -23.1138 18.5964 IronBronze -4.44213 3.39049 1.000 -14.4706 5.5864 Age - - - - - - AngloSaxon 26940 3.13945 1.000 -9.5554 9.0166 Medieval -2.00647 2.81062 1.000 -10.3198 6.3069 Postmedieval 2.58198 2.80612 1.000 -5.7180 10.8820 AngloSaxon Neolithic -1.98930 6.96582 1.000 -22.5930 18.6144 IronBronze -4.17273 3.20999 1.000 -13.6673 5.3219 Age - - - - - - Roman .26940 3.13945 1.000 -4.7950 10.4978 <td></td> <td>Age</td> <td>Roman</td> <td>4.44213</td> <td>3.39049</td> <td>1.000</td> <td>-5.5864</td> <td>14.4706</td>		Age	Roman	4.44213	3.39049	1.000	-5.5864	14.4706
Postmedieval7.024112.884822.32-1.508715.5569RomanNeolithic-2.258707.050811.000-23.113818.5964IronBronze-4.442133.390491.000-14.47065.5864AgeAngloSaxon269403.139451.000-9.55549.0166Medieval-2.006472.810621.000-10.31986.3069Postmedieval2.581982.806121.000-5.718010.8820AngloSaxonNeolithic-1.989306.965821.000-22.593018.6144IronBronze-4.172733.20991.000-13.66735.3219AgeRoman.269403.139451.000-9.01669.5554Medieval-1.737062.590021.000-9.39795.9238Postmedieval2.851392.585131.000-4.795010.4978Medieval-1.737062.590021.000-20.436319.9318IronBronze-2.435672.889201.000-6.306910.3198AgeRoman2.006472.810621.000-6.306910.3198IronBronze-2.435672.899201.000-6.306910.3198AgeRoman2.006472.810621.000-6.306910.3198Age-			AngloSaxon	4.17273	3.20999	1.000	-5.3219	13.6673
Roman Neolithic -2.25870 7.05081 1.000 -23.1138 18.5964 IronBronze -4.44213 3.39049 1.000 -14.4706 5.5864 Age - 1.000 - - - 10.8820 - - - - 10.8820 - - - - - - 10.8820 - - - 10.8820 - - - - - - - - - - - - - - - -			Medieval	2.43567	2.88920	1.000	-6.1101	10.9814
IronBronze -4.44213 3.39049 1.000 -14.4706 5.5864 Age -<			Postmedieval	7.02411	2.88482	.232	-1.5087	15.5569
AgeImageImageAngloSaxon269403.139451.000-9.55549.0166Medieval-2.006472.810621.000-10.31986.3069Postmedieval2.581982.806121.000-5.718010.8820AngloSaxonNeolithic-1.989306.965821.000-22.593018.6144IronBronze-4.172733.209991.000-13.66735.3219AgeRoman.269403.139451.000-9.01669.5554Medieval-1.737062.590021.000-9.39795.9238Postmedieval2.851392.585131.000-4.795010.4978Medieval-1.737062.89021.000-20.436319.9318IronBronze-2.435672.889201.000-6.306910.3198AgeRoman2.006472.810621.000-6.306910.3198AngloSaxon1.737062.590021.000-6.306910.3198AngloSaxon1.737062.590021.000-5.92389.3979Postmedieval4.588452.17402.534-1.841911.0188Postmedieval-4.840696.822081.000-25.019215.3379IronBronze-7.024112.88482.232-15.5691.5087		Roman	Neolithic	-2.25870	7.05081	1.000	-23.1138	18.5964
AngloSaxon 26940 3.13945 1.000 -9.5554 9.0166 Medieval -2.00647 2.81062 1.000 -10.3198 6.3069 Postmedieval 2.58198 2.80612 1.000 -5.7180 10.8820 AngloSaxon Neolithic -1.98930 6.96582 1.000 -22.5930 18.6144 IronBronze -4.17273 3.20999 1.000 -13.6673 5.3219 Age - - - - - - Age - <td< td=""><td></td><td></td><td>IronBronze</td><td>-4.44213</td><td>3.39049</td><td>1.000</td><td>-14.4706</td><td>5.5864</td></td<>			IronBronze	-4.44213	3.39049	1.000	-14.4706	5.5864
Medieval -2.00647 2.81062 1.000 -10.3198 6.3069 Postmedieval 2.58198 2.80612 1.000 -5.7180 10.8820 AngloSaxon Neolithic -1.98930 6.96582 1.000 -22.5930 18.6144 IronBronze -4.17273 3.20999 1.000 -13.6673 5.3219 Age			Age					
Postmedieval 2.58198 2.80612 1.000 -5.7180 10.8820 AngloSaxon Neolithic -1.98930 6.96582 1.000 -22.5930 18.6144 IronBronze -4.17273 3.20999 1.000 -13.6673 5.3219 Age - - - - - Roman .26940 3.13945 1.000 -9.0166 9.5554 Medieval -1.73706 2.59002 1.000 -4.7950 10.4978 Medieval Neolithic 25224 6.82393 1.000 -4.7950 10.4978 Medieval Neolithic -2.43567 2.88920 1.000 -10.9814 6.1101 Age - - - - - - </td <td></td> <td></td> <td>AngloSaxon</td> <td>26940</td> <td>3.13945</td> <td>1.000</td> <td>-9.5554</td> <td>9.0166</td>			AngloSaxon	26940	3.13945	1.000	-9.5554	9.0166
AngloSaxon Neolithic -1.98930 6.96582 1.000 -22.5930 18.6144 IronBronze -4.17273 3.20999 1.000 -13.6673 5.3219 Age			Medieval	-2.00647	2.81062	1.000	-10.3198	6.3069
IronBronze -4.17273 3.20999 1.000 -13.6673 5.3219 Age Roman .26940 3.13945 1.000 -9.0166 9.5554 Medieval -1.73706 2.59002 1.000 -9.3979 5.9238 Postmedieval 2.85139 2.58513 1.000 -4.7950 10.4978 Medieval Neolithic 25224 6.82393 1.000 -20.4363 19.9318 IronBronze -2.43567 2.88920 1.000 -10.9814 6.1101 Age Roman 2.00647 2.81062 1.000 -6.3069 10.3198 AngloSaxon 1.73706 2.59002 1.000 -5.9238 9.3979 Postmedieval 4.58845 2.17402 5.34 -1.8419 11.0188 Postmedieval Neolithic -4.84069 6.82208 1.000 -25.0192 15.3379 IronBronze -7.02411 2.88482 2.32 -15.5569 1.5087			Postmedieval	2.58198	2.80612	1.000	-5.7180	10.8820
Age Image I		AngloSaxon	Neolithic	-1.98930	6.96582	1.000	-22.5930	18.6144
Roman			IronBronze	-4.17273	3.20999	1.000	-13.6673	5.3219
Medieval -1.73706 2.59002 1.000 -9.3979 5.9238 Postmedieval 2.85139 2.58513 1.000 -4.7950 10.4978 Medieval Neolithic 25224 6.82393 1.000 -20.4363 19.9318 IronBronze -2.43567 2.88920 1.000 -10.9814 6.1101 Age - - - - - - - Roman 2.00647 2.81062 1.000 -6.3069 10.3198 - AngloSaxon 1.73706 2.59002 1.000 -5.9238 9.3979 - Postmedieval 4.58845 2.17402 5.534 -1.8419 11.0188 Postmedieval Neolithic -4.84069 6.82208 1.000 -25.0192 15.3379 IronBronze -7.02411 2.88482 .232 -15.5569 1.5087			Age					
Postmedieval 2.85139 2.58513 1.000 -4.7950 10.4978 Medieval Neolithic 25224 6.82393 1.000 -20.4363 19.9318 IronBronze -2.43567 2.88920 1.000 -10.9814 6.1101 Age Roman 2.00647 2.81062 1.000 -6.3069 10.3198 AngloSaxon 1.73706 2.59002 1.000 -5.9238 9.3979 Postmedieval 4.58845 2.17402 5.534 -1.8419 11.0188 Postmedieval Neolithic -4.84069 6.82208 1.000 -25.0192 15.3379 IronBronze -7.02411 2.88482 .232 -15.5569 1.5087			Roman	.26940	3.13945	1.000	-9.0166	9.5554
Medieval Neolithic 25224 6.82393 1.000 -20.4363 19.9318 IronBronze -2.43567 2.88920 1.000 -10.9814 6.1101 Age - - - - - - 6.3069 10.3198 AngloSaxon 1.73706 2.59002 1.000 -6.3069 10.3198 Postmedieval 4.58845 2.17402 .534 -1.8419 11.0188 Postmedieval Neolithic -4.84069 6.82208 1.000 -25.0192 15.3379 IronBronze -7.02411 2.88482 .232 -15.5569 1.5087			Medieval	-1.73706	2.59002	1.000	-9.3979	5.9238
IronBronze -2.43567 2.88920 1.000 -10.9814 6.1101 Age Roman 2.00647 2.81062 1.000 -6.3069 10.3198 AngloSaxon 1.73706 2.59002 1.000 -5.9238 9.3979 Postmedieval 4.58845 2.17402 .534 -1.8419 11.0188 Postmedieval Neolithic -4.84069 6.82208 1.000 -25.0192 15.3379 IronBronze -7.02411 2.88482 .232 -15.5569 1.5087			Postmedieval	2.85139	2.58513	1.000	-4.7950	10.4978
Age Image I		Medieval	Neolithic	25224	6.82393	1.000	-20.4363	19.9318
Roman 2.00647 2.81062 1.000 -6.3069 10.3198 AngloSaxon 1.73706 2.59002 1.000 -5.9238 9.3979 Postmedieval 4.58845 2.17402 .534 -1.8419 11.0188 Postmedieval Neolithic -4.84069 6.82208 1.000 -25.0192 15.3379 IronBronze -7.02411 2.88482 .232 -15.5569 1.5087			IronBronze	-2.43567	2.88920	1.000	-10.9814	6.1101
AngloSaxon 1.73706 2.59002 1.000 -5.9238 9.3979 Postmedieval 4.58845 2.17402 .534 -1.8419 11.0188 Postmedieval Neolithic -4.84069 6.82208 1.000 -25.0192 15.3379 IronBronze -7.02411 2.88482 .232 -15.5569 1.5087			Age					
Postmedieval 4.58845 2.17402 .534 -1.8419 11.0188 Postmedieval Neolithic -4.84069 6.82208 1.000 -25.0192 15.3379 IronBronze -7.02411 2.88482 .232 -15.5569 1.5087			Roman	2.00647	2.81062	1.000	-6.3069	10.3198
Postmedieval Neolithic -4.84069 6.82208 1.000 -25.0192 15.3379 IronBronze -7.02411 2.88482 .232 -15.5569 1.5087			AngloSaxon	1.73706	2.59002	1.000	-5.9238	9.3979
Postmedieval Neolithic -4.84069 6.82208 1.000 -25.0192 15.3379 IronBronze -7.02411 2.88482 .232 -15.5569 1.5087			Postmedieval	4.58845	2.17402	.534	-1.8419	11.0188
		Postmedieval	Neolithic	-4.84069	6.82208	1.000	-25.0192	15.3379
			IronBronze	-7.02411	2.88482	.232	-15.5569	1.5087
······			Age					

Dependent Variable: Centroidsize Bonferroni

			Mean			95% Confide	ence Interval
			Difference (I-				
MF	(I) Periodc	(J) Periodc	J)	Std. Error	Sig.	Lower Bound	Upper Bound
		Roman	-2.58198	2.80612	1.000	-10.8820	5.7180
		AngloSaxon	-2.85139	2.58513	1.000	-10.4978	4.7950
		Medieval	-4.58845	2.17402	.534	-11.0188	1.8419

*. The mean difference is significant at the 0.05 level.

5.2 t-tests for canonical variates

Levene's Test

An ANOVA was conducted which determined that there was no significant difference in CV1-CV5 between sex estimation groups, with the exception of CV4 and CV5 among the Post-Medieval individuals

Table 5.2.1: Independent samples t-test comparing mean CV score produced during time period analysis among males and females

			for Equa								
			Varian				t-te	est for Equali	tv of Means		
			vanan				Sig. (2-	Mean	Std. Error	95% Cor Interval Differe	of the
PE	ERIOD)	F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
		Equal variances assumed	.026	.873	435	112	.665	07624	.17544	42386	.27138
		Equal variances not assumed			435	99.154	.665	07624	.17545	42436	.27188
	CV2	Equal variances assumed	.643	.424	.619	112	.537	.10949	.17680	24081	.45979
		Equal variances not assumed			.614	96.213	.541	.10949	.17825	24433	.46331
	CV3	Equal variances assumed	.542	.463	.706	112	.482	.12690	.17979	22933	.48313
		Equal variances not assumed			.702	96.997	.485	.12690	.18088	23210	.48590
	CV4	Equal variances assumed	1.196	.276	.990	112	.324	.18349	.18534	18373	.55071
		Equal variances not assumed			.968	90.994	.335	.18349	.18949	19291	.55989
	CV5	Equal variances assumed	.926	.338	659	112	.512	12179	.18494	48822	.24465
		Equal variances not assumed			642	89.884	.522	12179	.18964	49855	.25497
I	CV1	variances assumed	.104	.749	765	53	.448	18915	.24725	68508	.30678
		Equal variances not assumed			761	36.185	.452	18915	.24862	69330	.31500
	CV2	Equal variances assumed	1.535	.221	.366	53	.716	.10451	.28544	46800	.67703

Independent Samples Test^a

Independent Samples Test^a

		for Equa								
		Varian	ces			t-te	est for Equali	ty of Means		
						Sig.			95% Cor Interval	
						(2-	Mean	Std. Error	Differ	
PERIO	C	F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
	Equal			.403	47.425	.689	.10451	.25922	41686	.62588
	variances									
	not assumed									
CV3	Equal	1.507	.225	-	53	.120	55318	.34966	-1.25451	.14814
	variances			1.582						
	assumed									
	Equal variances			- 1.704	44.950	.095	55318	.32472	-1.20723	.10086
	not			1.704						
	assumed									
CV4	Equal	.128	.722	831	53	.410	21203	.25515	72379	.29973
	variances assumed									
	Equal			841	37.988	.406	21203	.25214	72247	.29841
	variances			.011	01.000		.2.1200	.20211		.20011
	not									
	assumed	.242	.625	1.187	50	044	22074	20020	00454	04007
005	Equal variances	.242	.025	1.107	53	.241	.33971	.28630	23454	.91397
	assumed									
	Equal			1.142	33.045	.262	.33971	.29752	26556	.94498
	variances									
	not assumed									
M CV1		1.091	.298	740	146	.461	13005	.17581	47751	.21740
	variances									
	assumed			720	110.891	469	13005	17040	40257	.22346
	Equal variances			729	110.691	.468	13005	.17840	48357	.22340
	not									
	assumed									
CV2	Equal variances	.002	.964	.558	146	.578	.09894	.17736	25159	.44947
	assumed									
	Equal			.549	110.360	.584	.09894	.18024	25825	.45613
	variances									
	not assumed									
CV3	Equal	2.235	.137	.525	146	.600	.08630	.16424	23829	.41089
0.00	variances			.010						
	assumed									
	Equal variances			.547	130.859	.585	.08630	.15779	22585	.39845
	not									
	assumed									
CV4	Equal	.015	.902	461	146	.645	07786	.16880	41147	.25574
	variances assumed									
	Equal			470	123.242	.639	07786	.16567	40578	.25005
	variances									
	not assumed									
CV5	Equal	1.828	.178	306	146	.760	05420	.17705	40412	.29571
0.00	variances				110		100 120	,00	. 10 112	
	assumed									

Independent Samples Test^a

			for Equa								
			Varian				t-te	est for Equali	ty of Means		
							Sig.			95% Cor Interva	
							(2-	Mean	Std. Error	Differ	
PE	RIOD)	F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
		Equal			300	109.086	.765	05420	.18056	41207	.30366
		variances									
		not assumed									
N	CV1	Equal	.072	.795	-	8	.335	50681	.49357	-1.64497	.63136
	••••	variances			1.027	Ū					
		assumed									
		Equal			-	6.964	.339	50681	.49357	-1.67513	.66152
		variances not			1.027						
		assumed									
	CV2	Equal	20.241	.002	-	8	.089	-1.09960	.56886	-2.41139	.21218
		variances			1.933						
		assumed				1 651	.115	1 00060	E6006	2 50556	20625
		Equal variances			- 1.933	4.651	.115	-1.09960	.56886	-2.59556	.39635
		not			1.000						
		assumed									
	CV3	Equal	.001	.979	1.230	8	.253	.69414	.56415	60680	1.99507
		variances assumed									
		Equal			1.230	7.869	.254	.69414	.56415	61059	1.99887
		variances									
		not .									
	<u>C)/4</u>	assumed	3.325	.106	1.330	0	220	00660	67407	65770	2 45102
	674	Equal variances	3.323	.100	1.550	8	.220	.89662	.67407	65779	2.45103
		assumed									
		Equal			1.330	5.637	.235	.89662	.67407	77886	2.57210
		variances									
		not assumed									
	CV5	Equal	.079	.786	990	8	.351	63253	.63886	-2.10573	.84068
		variances									
		assumed			000	7 500	050	00050	00000	0.40400	05000
		Equal variances			990	7.529	.353	63253	.63886	-2.12193	.85688
		not									
		assumed									
Ρ	CV1	Equal	1.658	.200	.782	127	.436	.19272	.24651	29509	.68052
		variances assumed									
		Equal			.890	60.311	.377	.19272	.21662	24054	.62597
		variances				001011				1001	
		not									
	C)/2	assumed	1.065	262	101	407	670	00460	04647	50004	.33668
	6v2	Equal variances	1.265	.263	424	127	.673	09168	.21647	52004	.33008
		assumed									
		Equal			463	55.713	.645	09168	.19810	48856	.30520
		variances									
		not assumed									
	CV3	Equal	1.155	.285	.611	127	.543	.13116	.21478	29386	.55618
	-	variances									
		assumed									

Independent Samples Test^a

			for Equa								
			Varian				t-te	est for Equali	tv of Means		
							Sig.			95% Cor Interval	of the
	PERIOD	`	F	Sig.	t	df	(2- tailed)	Mean Difference	Std. Error Difference	Differ	
1	ERIOL	Equal	Г	Sig.	.618	48.786	.540	.13116	.21236	Lower 29564	Upper .55796
		variances not assumed									
	CV4	Equal variances assumed	.994	.321	3.353	127	<mark>.001</mark>	.67675	.20183	.27738	1.07613
		Equal variances not assumed			3.588	53.608	<mark>.001</mark>	.67675	.18863	.29851	1.05500
	CV5	Equal variances assumed	.005	.941	2.608	127	<mark>.010</mark>	.45305	.17369	.10934	.79676
		Equal variances not assumed			2.628	48.492	<mark>.011</mark>	.45305	.17240	.10651	.79959
F	R CV1	Equal variances assumed	.505	.480	.913	54	.365	.22880	.25066	27375	.73135
		Equal variances not assumed			.848	28.071	.404	.22880	.26995	32409	.78170
	CV2	Equal variances assumed	.397	.532	1.322	54	.192	.37189	.28127	19202	.93581
		Equal variances not assumed			1.309	32.656	.200	.37189	.28406	20627	.95005
	CV3	Equal variances assumed	6.430	.014	111	54	.912	03363	.30258	64027	.57300
		Equal variances not assumed			131	50.353	.896	03363	.25589	54752	.48025
	CV4	Equal variances assumed	.012	.911	1.427	54	.159	.38284	.26836	15519	.92087
		Equal variances not assumed			1.411	32.547	.168	.38284	.27139	16960	.93528
	CV5	Equal variances assumed	6.679	.012	479	54	.634	15528	.32387	80461	.49404
		Equal variances not assumed			424	25.327	.675	15528	.36613	90884	.59827

No Significant differences were reported in CV1 between sex estimation groups for all period comparisons with the exception of the Medieval and Neolithic

Table 5.2.2: Independent samples t-test comparing difference among males and females in mean CV1 produced in comparison between the Neolithc and Roman individuals.

				ndep	endent	Sample	es Test			
		Equa	Test for lity of ances				t-test for Equ	ality of Means		
						Sig. (2-	Mean	Std. Error	95% Conf Interval Differe	of the
PERIOD)	F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
N CV1	Equal variances assumed	.030	.867	- .779	7	.461	37972	.48722	-1.53182	.77239
	Equal variances not assumed			- .757	5.715	.479	37972	.50130	-1.62134	.86191
R CV1	Equal variances assumed	.492	.485	- .182	73	.856	04125	.22705	49376	.41126
	Equal variances not assumed			- .182	72.993	.856	04125	.22700	49366	.41116

Table 5.2.3: Independent samples t-test comparing difference among males and females in mean CV1 produced in comparison between the Medieval and Post-Medieval indiviudals.

	Independent Samples Test										
	Equa	s Test for ality of									
	Varia	ances	t-test for Equality of Means 95% Confidence Interval of the Sig. (2- Mean Std. Error Difference								
PERIOD	F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper		
M CV1 Equal variances assumed Equal	.736	.392	.227	157 150.934	.820	.03466	.15236 .14951	26627 26074	.33559 .33006		
variances r assumed	ot										
P CV1 Equal variances assumed	.048	.827	- .555	185	.579	08805	.15852	40079	.22469		
Equal variances r assumed	ot		- .558	184.632	.578	08805	.15783	39944	.22334		

Table 5.2.4: Independent samples t-test comparing difference among males and females in mean CV1 produced in comparison between the Anglo-Saxon and Medieval individuals.

	Independent Samples Test											
			Test for lity of			-						
		Varia	ances			t	-test for Equal	ity of Means				
					95% Confidence Interval of the							
						Sig. (2-	Mean	Std. Error	Differ	ence		
PERIOD)	F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper		
A CV1	Equal variances assumed	.163	.687	.081	84	.936	.01883	.23306	44463	.48230		
	Equal variances not assumed			.079	72.385	.937	.01883	.23786	45529	.49296		
M CV1	Equal variances assumed	.239	.626	- 1.216	157	.226	18911	.15558	49641	.11819		
	Equal variances not assumed			- 1.230	148.078	.221	18911	.15374	49292	.11470		

Table 5.2.5: Independent samples t-test comparing difference among males and females in mean CV1 produced in comparison between the Post-Medieval and Roman individuals.

			In	depei	ndent S	ample	s Test ^a					
		Levene's Equali				-						
		Variar	nces	t-test for Equality of Means								
		95% Confidence Interval of the Sig. (2- Mean Std. Error Difference								l of the		
PERIOD		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper		
Ň	Equal variances assumed	1.184	.278	196	185	.845	02963	.15143	32838	.26911		
N N	Equal variances not assumed			197	184.999	.844	02963	.15035	32626	.26699		
N N	Equal variances assumed	1.330	.253	1.577	73	.119	.38470	.24392	10142	.87083		
Ň	Equal variances not assumed			1.582	69.843	.118	.38470	.24313	10023	.86964		

Table 5.2.6: Independent samples t-test comparing difference among males and females in mean CV1 produced in comparison between the Medieval and Roman indiviudals.

			li li	ndep	endent \$	Samples	s Test ^a			
		Levene's Equali				-				
		Variar	nces				t-test for Equa	ality of Means		
									95% Con Interval	
						Sig. (2-	Mean	Std. Error	Differe	ence
PERIOD)	F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
M CV1	Equal variances assumed	2.892	.091	.538	157	.591	.07891	.14669	21084	.36866
	Equal variances not assumed			.555	154.889	.580	.07891	.14213	20185	.35967
R CV1	Equal variances assumed	.007	.931	- .602	119	.548	23377	.38827	-1.00259	.53504
	Equal variances not assumed			- .600	116.385	.549	23377	.38935	-1.00491	.53736

a. No statistics are computed for one or more split files

Table 5.2.7: Independent samples t-test comparing difference among males and females in mean CV1 produced in comparison between the Anglo-Saxon and Roman indiviudals.

			li li	ndepe	ndent	Samples	s Test ^a				
		Levene's Equa	Test for lity of			-					
		Varia	inces				t-test for Equa	lity of Means			
				95% Confidence Interval of the							
						Sig. (2-	Mean	Std. Error	Differ	ence	
PERIOD)	F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper	
A CV1	Equal	.002	.962	1.873	84	.065	.37152	.19836	02295	.76598	
	variances assumed										
	Equal variances not assumed			1.852	76.720	.068	.37152	.20063	02802	.77105	
R CV1	Equal variances assumed	.017	.895	.747	73	.457	.17956	.24034	29944	.65856	
	Equal variances not assumed			.748	72.959	.457	.17956	.24018	29911	.65824	

Table 5.2.8: Independent samples t-test comparing difference among males and females in mean CV1 produced in comparison between the Iron and Bronze Age and Roman indiviudals.

	Independent Samples Test ^a											
		Levene's Equali				-						
		Variar	nces				t-test for Equa	lity of Means				
									95% Cor Interva	of the		
						Sig. (2-	Mean	Std. Error	Differ			
PERIOD		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper		
I CV1	Equal variances assumed	1.509	.224	- 1.773	63	.081	45560	.25702	96921	.05802		
	Equal variances not assumed			- 1.755	57.423	.085	45560	.25965	97545	.06426		
R CV1	Equal variances assumed	.011	.919	1.009	73	.316	.22656	.22450	22085	.67398		
	Equal variances not assumed			1.008	72.442	.317	.22656	.22468	22128	.67441		

a. No statistics are computed for one or more split files

Table 5.2.9: Independent samples t-test comparing difference among males and females in mean CV1 produced in comparison between the Post-Medieval and Iron and Bronze Age indiviudals.

	Independent Samples Test ^a												
			Levene's Equali	ty of			-						
Variances					·	-16	Sig. (2-	-test for Equal Mean	Std. Error	95% Cor Interva Differ	l of the ence		
	PERIOD		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper		
1	CV1	Equal variances assumed	1.440	.235	1.763	63	.083	43303	.24558	92378	.05771		
		Equal variances not assumed			- 1.739	56.394	.087	43303	.24894	93165	.06558		
P	P CV1	Equal variances assumed	.023	.878	882	185	.379	13243	.15021	42876	.16391		
		Equal variances not assumed			884	184.106	.378	13243	.14977	42792	.16306		

Table 5.2.10: Independent samples t-test comparing difference among males and females in mean CV1 produced in comparison between the Post-Medieval and Neolithic indiviudals.

	Independent Samples Test ^a											
		Levene's Equali				-						
		Variar	nces				t-test for Equ	ality of Means				
									95% Cor Interval	of the		
						Sig. (2-	Mean	Std. Error	Differ			
PERIO)	F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper		
N CV1	Equal variances assumed	1.330	.287	- .743	7	.482	52112	.70145	-2.17979	1.13755		
	Equal variances not assumed			- .701	4.738	.516	52112	.74377	-2.46531	1.42307		
P CV1	Equal variances assumed	1.722	.191	.148	185	.882	.02149	.14501	26461	.30758		
	Equal variances not assumed			.147	175.552	.883	.02149	.14600	26665	.30963		

a. No statistics are computed for one or more split files

Table 5.2.11: Independent samples t-test comparing difference among males and females in mean CV1 produced in comparison between the Anglo-Saxon and Neolithic indiviudals.

			li li	ndepe	ndent \$	Samples	s Test ^a			
		Levene's Equali				-				
		Variar	nces				t-test for Equa	ality of Means		
									95% Confidence Interval of the	
						Sig. (2-	Mean	Std. Error	Differe	nce
PERIOD		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
A CV1	Equal variances assumed	.534	.467	824	84	.412	17885	.21693	61024	.25253
	Equal variances not assumed			820	79.369	.414	17885	.21801	61276	.25506
N CV1	Equal variances assumed	1.272	.297	- 1.318	7	.229	64974	.49299	-1.81547	.51600
	Equal variances not assumed			- 1.376	6.937	.212	64974	.47229	-1.76859	.46912

Table 5.2.12: Independent samples t-test comparing difference among males and females in mean CV1 produced in comparison between the Post-Medieval and Anglo-Saxon individuals.

Independent Samples Test											
	Equa	s Test for ality of ances				t-test for Equa	lity of Means				
PERIOD F Sig.				df	Sig. (2- tailed)	Mean Difference	Std. Error Difference	95% Cor Interval Differ Lower	of the		
A CV1 Equal variances assumed	.638	.427	.279	84	.781	.06088	.21859	37380	.49556		
Equal variances r assumed	ot		.281	83.146	.780	.06088	.21679	37030	.49207		
P CV1 Equal variances assumed	.029	.865	- .460	185	.646	07087	.15397	37463	.23288		
Equal variances r assumed	ot		.463	184.860	.644	07087	.15314	37301	.23126		

Table 5.2.13: Independent samples t-test comparing difference among males and females in mean CV1 produced in comparison between the Anglo-Saxon and Iron/Bronze Age individuals.

Independent Samples Test ^a												
	Levene's Equal Varia	ity of			-	t-test for Equa	lity of Means					
PERIOD F Sig.				df	Sig. (2- tailed)	Mean	Std. Error Difference	95% Cor Interva Differ Lower				
A CV1 Equal variances assumed	3.424	.068	970	84	.335	21000	.21647	64048	.22048			
Equal variances not assumed			950	72.124	.345	21000	.22105	65064	.23064			
I CV1 Equal variances assumed	.118	.733	- 1.744	63	.086	43262	.24806	92832	.06309			
Equal variances not assumed			- 1.721	56.570	.091	43262	.25131	93594	.07071			

Table 5.2.14: Independent samples t-test comparing difference among males and females in mean CV1 produced in comparison between the Iron/Bronze Age and Medieval individuals.

	Independent Samples Test ^a											
		Levene's Equali	ty of			-						
		Variar	nces			t	-test for Equal	ity of Means	050/ 000	Calava a a		
					Sig. (2-	Mean	Std. Error	95% Cont Interval Differe	of the			
PERIOD		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper		
I CV1	Equal variances assumed	2.538	.118	- 1.040	43	.304	34353	.33034	-1.00974	.32267		
	Equal variances not assumed			- 1.174	41.737	.247	34353	.29263	93419	.24712		
M CV1	Equal variances assumed	4.194	.042	- 1.157	157	.249	18555	.16041	50239	.13130		
	Equal variances not assumed			- 1.189	153.919	.236	18555	.15600	49372	.12263		

a. No statistics are computed for one or more split files

Table 5.2.15: Independent samples t-test comparing difference among males and females in mean CV1 produced in comparison between the Iron/Bronze Age and Neolithic individuals.

	Independent Samples Test ^a											
		Equa	s Test for lity of			-						
Variances						Sig. (2-	Mean	ality of Means Std. Error	95% Confide of the Di	fference		
PERIO)	F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper		
I CV1	Equal variances assumed	.418	.520	- .977	63	.332	24260	.24840	73900	.25380		
	Equal variances not assumed			- .993	62.732	.324	24260	.24428	73080	.24560		
N CV1	Equal variances assumed	.533	.489	- .185	7	.859	14841	.80434	-2.05038	1.75356		
	Equal variances not assumed			- .199	6.084	.849	14841	.74552	-1.96651	1.66970		

a. No statistics are computed for one or more split files

Significant differences were reported in CV1 between males and females from the Medieval period, this comparison therefore was not used for any further discussion of results

Table 5.2.16: Independent samples t-test comparing difference among males and females in mean CV1 produced in comparison between the Medieval and Neolithic individuals.

Independent Samples Test ^a										
Levene's Test for Equality of Variances										
			t-test for Equality of Means							
									95% Cor Interval	
					Sig. (2-		Mean Std. Error		Difference	
PERIOD		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
	ual iances sumed	5.773	.017	.959	157	.339	.15896	.16574	16841	.48633
	ual iances not sumed			.917	116.926	.361	.15896	.17325	18417	.50208
	ual iances sumed	1.128	.323	- .313	7	.764	29737	.95136	-2.54698	1.95225
	ual iances not sumed			- .330	6.775	.752	29737	.90232	-2.44545	1.85071

a. No statistics are computed for one or more split files

Appendix 6: R Scripts

6.1 Time Period: Comparison All

#Period differences showing labels
setwd("C:/Users/Cara Hirst/Desktop/Analysis")
require(geomorph)
require(Morpho)
require(abind)
require(xlsx)
A<-read.morphologika("DataNlabel.txt")
#gpa analysis
coords<-A\$coords
label<-A\$labels
Y.gpa<-gpagen(coords, curves = NULL, surfaces = NULL, PrinAxes = TRUE,max.iter = NULL, ProcD = TRUE,
Proj = TRUE, print.progress = TRUE)</pre>

#labels

period<- substr(A\$label,1,1)
group <-factor(paste(A\$coords))
levels(group)</pre>

new.coords<-coords.subset(A= A\$coords, group= period)

names(new.coords)

labels.N<-subset(period, period == 'N')</pre>

labels.I<-subset(period, period == 'I')

labels.R<-subset(period, period == 'R')</pre>

labels.A<-subset(period, period == 'A')

labels.M<-subset(period, period == 'M')

labels.P<-subset(period, period == 'P')

PERIOD<- abind (new.coords\$'N', new.coords\$'I', new.coords\$'R', new.coords\$'A', new.coords\$'A', new.coords\$'P')

PERIOD.l <- rbind(labels.N, labels.I, labels.R, labels.A, labels.M, labels.P)

PERIOD.gpa<- gpagen(PERIOD)

#PCA

PERIOD.PCA<-plotTangentSpace(PERIOD.gpa\$coords, axis1 = 1, axis2 = 2, warpgrids = TRUE) write.xlsx(PERIOD.PCA\$pc.scores, "C:/Users/Cara Hirst/Desktop/Analysis/PERIOD.PCA.xlsx") PERIOD.PCA\$pc.summary PERIOD.PCA\$sdev

#LABELS

write.xlsx(PERIOD.l, "C:/Users/Cara Hirst/Desktop/Analysis/PERIOD.PCAlabels.xlsx")

#CVA

PERIOD.PCA<-procSym(PERIOD) CVA.PERIOD<-CVA(PERIOD.PCA\$orpdata, PERIOD.l) write.xlsx(CVA.PERIOD\$CVscores, "C:/Users/Cara Hirst/Desktop/Analysis/PERIOD.CVscores.xlsx") write.xlsx(CVA.PERIOD\$groupmeans, "C:/Users/Cara Hirst/Desktop/Analysis/PERIOD.CVAgroupmeans.xlsx")

#OTHER

CVA.PERIOD

CVA.PERIOD\$Dis

CVA.PERIOD\$Var

#visulisation cv1

<->cvvis10 5*matrix(CVA.PERIOD\$CVvis[,1],nrow(CVA.PERIOD\$Grandm),ncol(CVA.PERIOD\$Grandm))+CVA.PERIO D\$Grandm

cvvisNeg10 <-5*matrix(CVA.PERIOD\$CVvis[,1],nrow(CVA.PERIOD\$Grandm),ncol(CVA.PERIOD\$Grandm))+CVA.PERIO D\$Grandm

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/PERIOD.1cvvis5.xlsx")

write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/PERIOD.1cvvisNeg5.xlsx")

#visulisation cv2

<-5*matrix(CVA.PERIOD\$CVvis[,2],nrow(CVA.PERIOD\$Grandm),ncol(CVA.PERIOD\$Grandm))+CVA.PERIO D\$Grandm

cvvisNeg10 <-5*matrix(CVA.PERIOD\$CVvis[,2],nrow(CVA.PERIOD\$Grandm),ncol(CVA.PERIOD\$Grandm))+CVA.PERIO D\$Grandm

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/PERIOD.2cvvis5.xlsx") write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/PERIOD.2cvvisNeg5.xlsx")

#visulisation cv1

<->cvvis10 5*matrix(CVA.PERIOD\$CVvis[,3],nrow(CVA.PERIOD\$Grandm),ncol(CVA.PERIOD\$Grandm))+CVA.PERIO D\$Grandm

<- <- 5*matrix(CVA.PERIOD\$CVvis[,3],nrow(CVA.PERIOD\$Grandm),ncol(CVA.PERIOD\$Grandm))+CVA.PERIO D\$Grandm

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/PERIOD.3cvvis5.xlsx") write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/PERIOD.3cvvisNeg5.xlsx")

#visulisation cv1

<-5*matrix(CVA.PERIOD\$CVvis[,4],nrow(CVA.PERIOD\$Grandm),ncol(CVA.PERIOD\$Grandm))+CVA.PERIO D\$Grandm

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/PERIOD.4cvvis5.xlsx") write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/PERIOD.4cvvisNeg5.xlsx")

6.2 Sex Estimation: Individual Periods

#open data
setwd("C:/Users/Cara Hirst/Desktop/Analysis/DATA")
require(geomorph)
require(Morpho)
require(abind)
require(xlsx)
A<-read.morphologika("DataOLD.txt")</pre>

#Newlabels PeriodSex

PeriodSex<- substr(A\$label,1,3)

group <-factor(paste(A\$coords)) levels(group)

new.coords<-coords.subset(A= A\$coords, group= PeriodSex)
names(new.coords)</pre>

#Neolithic

labels.NF<-subset(A\$labels, A\$labels == 'NF') labels.NM<-subset(A\$labels, A\$labels == 'NM') NEO<- abind (new.coords\$'NF', new.coords\$'NM') NEO.l<- rbind(labels.NF, labels.NM) NEO.gpa<- gpagen(NEO)

#PCA and CVA NEO.PCA <-procSym(NEO) write.xlsx(NEO.PCA\$pc.scores, "C:/Users/Cara Hirst/Desktop/Analysis/ NEO.PCA.PCA.xlsx") NEO.PCA \$pc.summary NEO.PCA\$sdev

CVA.NEO<-CVA(NEO.PCA\$orpdata,NEO.l)

write.xlsx(CVA.NEO \$groupmeans, "C:/Users/Cara Hirst/Desktop/Analysis/ CVA.NEO.CVAgroupmeans.xlsx") write.xlsx(CVA.NEO\$CVscores, "C:/Users/Cara Hirst/Desktop/Analysis/NEO.CVscores.xlsx") CVA.NEO \$Var

#labels write.xlsx(NEO.l, "C:/Users/Cara Hirst/Desktop/Analysis/NEO.PCAlabels.xlsx")

#Iron and Bronze Age

labels.IBF<-subset(A\$labels, A\$labels == 'IBF')
labels.IBM<-subset(A\$labels, A\$labels == 'IBM')
IB<- abind (new.coords\$'IBF', new.coords\$'IBM')
IB.l<- rbind(labels.IBF, labels.IBM)
IB.gpa<- gpagen(IB)</pre>

#PCA and CVA

IB.PCA <-procSym(IB) write.xlsx(IB.PCA\$pc.scores, "C:/Users/Cara Hirst/Desktop/Analysis/ IB.PCA.PCA.xlsx") IB.PCA \$pc.summary IB.PCA\$sdev

CVA.IB<-CVA(IB.PCA\$orpdata,IB.l)

write.xlsx(CVA.IB \$groupmeans, "C:/Users/Cara Hirst/Desktop/Analysis/ CVA.IB.CVAgroupmeans.xlsx") write.xlsx(CVA.IB\$CVscores, "C:/Users/Cara Hirst/Desktop/Analysis/IB.CVscores.xlsx") CVA.IB \$Var

#labels

write.xlsx(IB.l, "C:/Users/Cara Hirst/Desktop/Analysis/IB.PCAlabels.xlsx")

#Roman

labels.RF<-subset(A\$labels, A\$labels == 'RF')
labels.RM<-subset(A\$labels, A\$labels == 'RM')
R<- abind (new.coords\$'RF', new.coords\$'RM')
R.l<- rbind(labels.RF, labels.RM)
R.gpa<- gpagen(R)</pre>

#PCA and CVA
R.PCA <-procSym(R)
write.xlsx(R.PCA\$pc.scores, "C:/Users/Cara Hirst/Desktop/Analysis/ R.PCA.PCA.xlsx")
R.PCA \$pc.summary
R.PCA\$sdev</pre>

CVA.R<-CVA(R.PCA\$orpdata,R.l) write.xlsx(CVA.R \$groupmeans, "C:/Users/Cara Hirst/Desktop/Analysis/ CVA.R.CVAgroupmeans.xlsx") write.xlsx(CVA.R\$CVscores, "C:/Users/Cara Hirst/Desktop/Analysis/R.CVscores.xlsx") CVA.R \$Var

#Anglo-Saxon

labels.ASF<-subset(A\$labels, A\$labels == 'ASF') labels.ASM<-subset(A\$labels, A\$labels == 'ASM') AS<- abind (new.coords\$'ASF', new.coords\$'ASM') AS.l<- rbind(labels.ASF, labels.ASM) AS.gpa<- gpagen(AS)

#PCA and CVA
AS.PCA <-procSym(AS)
write.xlsx(AS.PCA\$pc.scores, "C:/Users/Cara Hirst/Desktop/Analysis/ AS.PCA.PCA.xlsx")
AS.PCA \$pc.summary
AS.PCA\$sdev</pre>

CVA.AS<-CVA(AS.PCA\$orpdata,AS.l) write.xlsx(CVA.AS \$groupmeans, "C:/Users/Cara Hirst/Desktop/Analysis/ CVA.AS.CVAgroupmeans.xlsx") write.xlsx(CVA.AS\$CVscores, "C:/Users/Cara Hirst/Desktop/Analysis/AS.CVscores.xlsx") CVA.AS \$Var

#Medieval

labels.MF<-subset(A\$labels, A\$labels == 'MF')
labels.MM<-subset(A\$labels, A\$labels == 'MM')
M<- abind (new.coords\$'MF', new.coords\$'MM')
M.l<- rbind(labels.MF, labels.MM)
M.gpa<- gpagen(M)</pre>

#PCA and CVA M.PCA <-procSym(M) write.xlsx(M.PCA\$pc.scores, "C:/Users/Cara Hirst/Desktop/Analysis/ M.PCA.PCA.xlsx") M.PCA \$pc.summary M.PCA\$sdev

CVA.M<-CVA(M.PCA\$orpdata,M.l) write.xlsx(CVA.M \$groupmeans, "C:/Users/Cara Hirst/Desktop/Analysis/ CVA.M.CVAgroupmeans.xlsx") write.xlsx(CVA.M\$CVscores, "C:/Users/Cara Hirst/Desktop/Analysis/M.CVscores.xlsx") CVA.M \$Var

#Post-Medieval

labels.PMF<-subset(A\$labels, A\$labels == 'PMF')

labels.PMM<-subset(A\$labels, A\$labels == 'PMM') PM<- abind (new.coords\$'PMF', new.coords\$'PMM') PM.l<- rbind(labels.PMF, labels.PMM) PM.gpa<- gpagen(PM)

#PCA and CVA
PM.PCA <-procSym(PM)
write.xlsx(PM.PCA\$pc.scores, "C:/Users/Cara Hirst/Desktop/Analysis/ PM.PCA.PCA.xlsx")
PM.PCA \$pc.summary
PM.PCA\$sdev</pre>

CVA.PM<-CVA(PM.PCA\$orpdata,PM.l) write.xlsx(CVA.PM \$groupmeans, "C:/Users/Cara Hirst/Desktop/Analysis/ CVA.PM.CVAgroupmeans.xlsx") write.xlsx(CVA.PM\$CVscores, "C:/Users/Cara Hirst/Desktop/Analysis/PM.CVscores.xlsx") CVA.PM \$Var

6.3 Dental Wear Groups: Comparison

#open data
setwd("C:/Users/Cara Hirst/Desktop/Analysis")
require(geomorph)
require(Morpho)
require(abind)
require(xlsx)
A<-read.morphologika("DataNlabel.txt")</pre>

#gpa analysis

coords<-A\$coords

label<-A\$labels

Y.gpa<-gpagen(coords, curves = NULL, surfaces = NULL, PrinAxes = TRUE,max.iter = NULL, ProcD = TRUE, Proj = TRUE, print.progress = TRUE)

#create subsets
group <-factor(paste(A\$coords))
levels(group)
new.coords<-coords.subset(A= A\$coords, group= WEAR)</pre>

names(new.coords)

WEAR<- substr(A\$label,2,2) #WEAR labels.W1<-subset(WEAR, WEAR== '1') labels.W2<-subset(WEAR, WEAR == '2') labels.W3<-subset(WEAR, WEAR == '3')

WEARCOM<- abind (new.coords\$'1', new.coords\$'2', new.coords\$'3')
WEARCOM.l<- rbind(labels.W1, labels.W2, labels.W3)
WEARCOM.gpa<- gpagen(WEARCOM)</pre>

#PCA

WEARCOM.PCA<-plotTangentSpace(WEARCOM.gpa\$coords, axis1 = 1, axis2 = 2, warpgrids = TRUE) write.xlsx(WEARCOM.PCA\$pc.scores, "C:/Users/Cara Hirst/Desktop/Analysis/WEARCOM.PCA.xlsx") WEARCOM.PCA\$pc.summary WEARCOM.PCA\$sdev

#LABELS

write.xlsx(WEARCOM.l, "C:/Users/Cara Hirst/Desktop/Analysis/WEARCOM.PCAlabels.xlsx")

#CVA

WEARCOM.PCA<-procSym(WEARCOM)

CVA.WEARCOM<-CVA(WEARCOM.PCA\$orpdata,WEARCOM.l)

write.xlsx(CVA.WEARCOM\$CVscores, "C:/Users/Cara Hirst/Desktop/Analysis/WEARCOM.CVscores.xlsx")

"C:/Users/Cara

write.xlsx(CVA.WEARCOM\$groupmeans, Hirst/Desktop/Analysis/WEARCOM.CVAgroupmeans.xlsx")

CVA.WEARCOM<-\$Var

#visulisation cv1

<-10*matrix(CVA.WEARCOM\$CVvis[,1],nrow(CVA.WEARCOM\$Grandm),ncol(CVA.WEARCOM\$Grandm))+C VA.WEARCOM\$Grandm

cvvisNeg10 <-10*matrix(CVA.WEARCOM\$CVvis[,1],nrow(CVA.WEARCOM\$Grandm),ncol(CVA.WEARCOM\$Grandm))+C VA.WEARCOM\$Grandm

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARCOM.1cvvis10.xlsx") write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARCOM.1cvvisNeg10.xlsx")

#visulisation cv2

<-10*matrix(CVA.WEARCOM\$CVvis[,2],nrow(CVA.WEARCOM\$Grandm),ncol(CVA.WEARCOM\$Grandm))+C VA.WEARCOM\$Grandm

cvvisNeg210 <-10*matrix(CVA.WEARCOM\$CVvis[,2],nrow(CVA.WEARCOM\$Grandm),ncol(CVA.WEARCOM\$Grandm))+C VA.WEARCOM\$Grandm

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARCOM.2cvvis10.xlsx") write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARCOM.2cvvisNeg10.xlsx")

6.4 Dental Wear Groups: Sex Estimation

A<-read.morphologika("testingdata.txt")

WEAR<- substr(A\$label,1,2) #create subsets group <-factor(paste(A\$coords)) levels(group) new.coords<-coords.subset(A= A\$coords, group= WEAR) names(new.coords)

#WEAR

labels.F1<-subset(WEAR, WEAR== 'F1') labels.F2<-subset(WEAR, WEAR == 'F2') labels.F3<-subset(WEAR, WEAR == 'F3') labels.M1<-subset(WEAR, WEAR== 'M1') labels.M2<-subset(WEAR, WEAR == 'M2') labels.M3<-subset(WEAR, WEAR == 'M3')

WEARSEX<- abind (new.coords\$'F1', new.coords\$'F2', new.coords\$'F3', new.coords\$'M1', new.coords\$'M2', new.coords\$'M3')

WEARSEX.l<- rbind(labels.F1, labels.F2, labels.F3, labels.M1, labels.M2, labels.M3) WEARSEX.gpa<- gpagen(WEARSEX)

#PCA

WEARSEX.PCA<-plotTangentSpace(WEARSEX.gpa\$coords, axis1 = 1, axis2 = 2, warpgrids = TRUE) write.xlsx(WEARSEX.PCA\$pc.scores, "C:/Users/Cara Hirst/Desktop/Analysis/WEARSEX.PCA.xlsx") WEARSEX.PCA\$pc.summary WEARSEX.PCA\$sdev

#LABELS

write.xlsx(WEARSEX.l, "C:/Users/Cara Hirst/Desktop/Analysis/WEARSEX.PCAlabels.xlsx")

#CVA

WEARSEX.PCA<-procSym(WEARSEX)

CVA.WEARSEX<-CVA(WEARSEX.PCA\$orpdata,WEARSEX.l)

write.xlsx(CVA.WEARSEX\$CVscores, "C:/Users/Cara Hirst/Desktop/Analysis/WEARSEX.CVscores.xlsx")

write.xlsx(CVA.WEARSEX\$groupmeans, Hirst/Desktop/Analysis/WEARSEX.CVAgroupmeans.xlsx") "C:/Users/Cara

#OTHER

CVA.WEARSEX

CVA.WEARSEX\$Dis

CVA.WEARSEX\$Var

#visulisation cv1

<-10*matrix(CVA.WEARSEX\$CVvis[,1],nrow(CVA.WEARSEX\$Grandm),ncol(CVA.WEARSEX\$Grandm))+CVA. WEARSEX\$Grandm

cvvisNeg10 <- - - - - - 10*matrix(CVA.WEARSEX\$CVvis[,1],nrow(CVA.WEARSEX\$Grandm),ncol(CVA.WEARSEX\$Grandm))+CVA.WEARSEX\$Grandm

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARSEX.1cvvis10.xlsx")

write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARSEX.1cvvisNeg10.xlsx")

#visulisation cv2

cvvis10 <_ 10*matrix(CVA.WEARSEX\$CVvis[,2],nrow(CVA.WEARSEX\$Grandm),ncol(CVA.WEARSEX\$Grandm))+CVA. WEARSEX\$Grandm

cvvisNeg10 < -10*matrix(CVA.WEARSEX\$CVvis[,2],nrow(CVA.WEARSEX\$Grandm),ncol(CVA.WEARSEX\$Grandm))+CVA. WEARSEX\$Grandm

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARSEX.2cvvis10.xlsx")

write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARSEX.2cvvisNeg10.xlsx")

#visulisation cv3

cvvis10

10*matrix(CVA.WEARSEX\$CVvis[,3],nrow(CVA.WEARSEX\$Grandm),ncol(CVA.WEARSEX\$Grandm))+CVA. WEARSEX\$Grandm

<-

cvvisNeg10 < -10*matrix(CVA.WEARSEX\$CVvis[,3],nrow(CVA.WEARSEX\$Grandm),ncol(CVA.WEARSEX\$Grandm))+CVA. WEARSEX\$Grandm

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARSEX.3cvvis10.xlsx")

write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARSEX.3cvvisNeg10.xlsx")

#visulisation cv4

cvvis10

<-10*matrix(CVA.WEARSEX\$CVvis[,4],nrow(CVA.WEARSEX\$Grandm),ncol(CVA.WEARSEX\$Grandm))+CVA. WEARSEX\$Grandm

cvvisNeg10 10*matrix(CVA.WEARSEX\$CVvis[,4],nrow(CVA.WEARSEX\$Grandm),ncol(CVA.WEARSEX\$Grandm))+CVA. WEARSEX\$Grandm

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARSEX.4cvvis10.xlsx")

write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARSEX.4cvvisNeg10.xlsx")

6.5 Dental Wear Groups: Time Period

A<-read.morphologika("DataNlabel.txt")

WEARperiod<- substr(A\$label,1,2)

#create subsets

group <-factor(paste(A\$coords))

new.coords<-coords.subset(A= A\$coords, group= WEARperiod) names(new.coords)

labels.N1<-subset(WEARperiod, WEARperiod== 'N1')
labels.N2<-subset(WEARperiod, WEARperiod == 'N2')
labels.N3<-subset(WEARperiod, WEARperiod == 'N3')
labels.I1<-subset(WEARperiod, WEARperiod== 'I1')
labels.I2<-subset(WEARperiod, WEARperiod == 'I2')
labels.R1<-subset(WEARperiod, WEARperiod == 'R1')
labels.R2<-subset(WEARperiod, WEARperiod == 'R2')</pre>

labels.R3<-subset(WEARperiod, WEARperiod == 'R3') labels.A1<-subset(WEARperiod, WEARperiod== 'A1') labels.A2<-subset(WEARperiod, WEARperiod == 'A2') labels.A3<-subset(WEARperiod, WEARperiod == 'A3') labels.M1<-subset(WEARperiod, WEARperiod== 'M1') labels.M2<-subset(WEARperiod, WEARperiod == 'M2') labels.M3<-subset(WEARperiod, WEARperiod == 'M3') labels.P1<-subset(WEARperiod, WEARperiod== 'P1') labels.P2<-subset(WEARperiod, WEARperiod == 'P2') labels.P3<-subset(WEARperiod, WEARperiod == 'P3')

#allperiods wear1

WEAR1PERIOD<- abind (new.coords\$'N1', new.coords\$'I1', new.coords\$'R1', new.coords\$'A1', new.coords\$'M1', new.coords\$'P1')

WEAR1PERIOD.I <- rbind(labels.N1, labels.I1, labels.R1, labels.A1, labels.M1, labels.P1)

WEAR1PERIOD.gpa<- gpagen(WEAR1PERIOD)

#PCA

WEAR1PERIOD.PCA<-plotTangentSpace(WEAR1PERIOD.gpa\$coords, axis1 = 1, axis2 = 2, warpgrids = TRUE)

write.xlsx(WEAR1PERIOD.PCA\$pc.scores, Hirst/Desktop/Analysis/WEAR1PERIOD.PCA.xlsx") "C:/Users/Cara

WEAR1PERIOD.PCA\$pc.summary

WEAR1PERIOD.PCA\$sdev

#LABELS

write.xlsx(WEAR1PERIOD.l, "C:/Users/Cara Hirst/Desktop/Analysis/WEAR1PERIOD.PCAlabels.xlsx")

#CVA

WEAR1PERIOD.PCA<-procSym(WEAR1PERIOD)

CVA.WEAR1PERIOD <- CVA(WEAR1PERIOD.PCA\$orpdata,WEAR1PERIOD.I)

write.xlsx(CVA.WEAR1PERIOD\$CVscores, Hirst/Desktop/Analysis/WEAR1PERIOD.CVscores.xlsx")

write.xlsx(CVA.WEAR1PERIOD\$groupmeans, Hirst/Desktop/Analysis/WEAR1PERIOD.CVAgroupmeans.xlsx") "C:/Users/Cara

"C:/Users/Cara

<-

#OTHER

CVA.WEAR1PERIOD

CVA.WEAR1PERIOD\$Dis

CVA.WEAR1PERIOD\$Var

#visulisation cv1

cvvis10

15*matrix(CVA.WEAR1PERIOD\$CVvis[,1],nrow(CVA.WEAR1PERIOD\$Grandm),ncol(CVA.WEAR1PERIOD \$Grandm))+CVA.WEAR1PERIOD\$Grandm

cvvisNeg10

<-15*matrix(CVA.WEAR1PERIOD\$CVvis[,1],nrow(CVA.WEAR1PERIOD\$Grandm),ncol(CVA.WEAR1PERIOD \$Grandm))+CVA.WEAR1PERIOD\$Grandm

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/WEAR1PERIOD.1cvvis15.xlsx")

write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/WEAR1PERIOD.1cvvisNeg15.xlsx")

#visulisation cv2

<cvvis10 15*matrix(CVA.WEAR1PERIOD\$CVvis[,2],nrow(CVA.WEAR1PERIOD\$Grandm),ncol(CVA.WEAR1PERIOD \$Grandm))+CVA.WEAR1PERIOD\$Grandm

cvvisNeg10 <_ 15*matrix(CVA.WEAR1PERIOD\$CVvis[,2],nrow(CVA.WEAR1PERIOD\$Grandm),ncol(CVA.WEAR1PERIOD \$Grandm))+CVA.WEAR1PERIOD\$Grandm

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/WEAR1PERIOD.2cvvis15.xlsx")

write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/WEAR1PERIOD.2cvvisNeg15.xlsx")

#visulisation cv3

cvvis10

15*matrix(CVA.WEAR1PERIOD\$CVvis[,3],nrow(CVA.WEAR1PERIOD\$Grandm),ncol(CVA.WEAR1PERIOD \$Grandm))+CVA.WEAR1PERIOD\$Grandm

<_

"C:/Users/Cara

cvvisNeg10 <- - - - - - 15*matrix(CVA.WEAR1PERIOD\$CVvis[,3],nrow(CVA.WEAR1PERIOD\$Grandm),ncol(CVA.WEAR1PERIOD\$Grandm))+CVA.WEAR1PERIOD\$Grandm</pre>

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/WEAR1PERIOD.3cvvis15.xlsx") write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/WEAR1PERIOD.3cvvisNeg15.xlsx")

#visulisation cv4

cvvis10

15*matrix(CVA.WEAR1PERIOD\$CVvis[,4],nrow(CVA.WEAR1PERIOD\$Grandm),ncol(CVA.WEAR1PERIOD \$Grandm))+CVA.WEAR1PERIOD\$Grandm

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/WEAR1PERIOD.4cvvis15.xlsx")

write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/WEAR1PERIOD.4cvvisNeg15.xlsx")

#all periods wear2

WEAR2PERIOD<- abind (new.coords\$'N2', new.coords\$'I2', new.coords\$'R2', new.coords\$'A2', new.coords\$'M2', new.coords\$'P2')

WEAR2PERIOD.I<- rbind(labels.N2, labels.I2, labels.R2, labels.A2, labels.M2, labels.P2)

WEAR2PERIOD.gpa<- gpagen(WEAR2PERIOD)

#PCA

WEAR2PERIOD.PCA<-plotTangentSpace(WEAR2PERIOD.gpa\$coords, axis1 = 1, axis2 = 2, warpgrids = TRUE)

write.xlsx(WEAR2PERIOD.PCA\$pc.scores, Hirst/Desktop/Analysis/WEAR2PERIOD.PCA.xlsx")

WEAR2PERIOD.PCA\$pc.summary

WEAR2PERIOD.PCA\$sdev

#LABELS

write.xlsx(WEAR2PERIOD.l, "C:/Users/Cara Hirst/Desktop/Analysis/WEAR2PERIOD.PCAlabels.xlsx")

#CVA

WEAR2PERIOD.PCA<-procSym(WEAR2PERIOD)

Hirst/Desktop/Analysis/WEAR2PERIOD.CVAgroupmeans.xlsx")

CVA.WEAR2PERIOD<-CVA(WEAR2PERIOD.PCA\$orpdata,WEAR2PERIOD.!)

write.xlsx(CVA.WEAR2PERIOD\$CVscores,
Hirst/Desktop/Analysis/WEAR2PERIOD.CVscores.xlsx")"C:/Users/Carawrite.xlsx(CVA.WEAR2PERIOD\$groupmeans,"C:/Users/Cara

#OTHER

CVA.WEAR2PERIOD

CVA.WEAR2PERIOD\$Dis

CVA.WEAR2PERIOD\$Var

#visulisation cv1

cvvis10

15*matrix(CVA.WEAR2PERIOD\$CVvis[,1],nrow(CVA.WEAR2PERIOD\$Grandm),ncol(CVA.WEAR2PERIOD \$Grandm))+CVA.WEAR2PERIOD\$Grandm

<-

<-

<-

cvvisNeg10

15*matrix(CVA.WEAR2PERIOD\$CVvis[,1],nrow(CVA.WEAR2PERIOD\$Grandm),ncol(CVA.WEAR2PERIOD \$Grandm))+CVA.WEAR2PERIOD\$Grandm

<-

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/WEAR2PERIOD.1cvvis15.xlsx")

write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/WEAR2PERIOD.1cvvisNeg15.xlsx")

#visulisation cv2

cvvis10

15*matrix(CVA.WEAR2PERIOD\$CVvis[,2],nrow(CVA.WEAR2PERIOD\$Grandm),ncol(CVA.WEAR2PERIOD \$Grandm))+CVA.WEAR2PERIOD\$Grandm

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/WEAR2PERIOD.2cvvis15.xlsx")

write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/WEAR2PERIOD.2cvvisNeg15.xlsx")

#visulisation cv3

cvvis10

15*matrix(CVA.WEAR2PERIOD\$CVvis[,3],nrow(CVA.WEAR2PERIOD\$Grandm),ncol(CVA.WEAR2PERIOD \$Grandm))+CVA.WEAR2PERIOD\$Grandm

cvvisNeg10 <- - - - - - - - - 15*matrix(CVA.WEAR2PERIOD\$CVvis[,3],nrow(CVA.WEAR2PERIOD\$Grandm),ncol(CVA.WEAR2PERIOD\$Grandm)+CVA.WEAR2PERIOD\$Grandm

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/WEAR2PERIOD.3cvvis15.xlsx")

write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/WEAR2PERIOD.3cvvisNeg15.xlsx")

#visulisation cv4

cvvis10

15*matrix(CVA.WEAR2PERIOD\$CVvis[,4],nrow(CVA.WEAR2PERIOD\$Grandm),ncol(CVA.WEAR2PERIOD \$Grandm))+CVA.WEAR2PERIOD\$Grandm

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/WEAR2PERIOD.4cvvis15.xlsx")

write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/WEAR2PERIOD.4cvvisNeg15.xlsx")

#all periods wear3

WEAR3PERIOD<- abind (new.coords\$'N3', new.coords\$'I3', new.coords\$'R3', new.coords\$'A3', new.coords\$'A3', new.coords\$'P3')

WEAR3PERIOD.I<- rbind(labels.N3, labels.I3, labels.R3, labels.A3, labels.M3, labels.P3)

WEAR3PERIOD.gpa<- gpagen(WEAR3PERIOD)

#PCA

WEAR3PERIOD.PCA<-plotTangentSpace(WEAR3PERIOD.gpa\$coords, axis1 = 1, axis2 = 2, warpgrids = TRUE)

write.xlsx(WEAR3PERIOD.PCA\$pc.scores, Hirst/Desktop/Analysis/WEAR3PERIOD.PCA.xlsx") "C:/Users/Cara

<_

WEAR3PERIOD.PCA\$pc.summary

WEAR3PERIOD.PCA\$sdev

#LABELS

write.xlsx(WEAR3PERIOD.l, "C:/Users/Cara Hirst/Desktop/Analysis/WEAR3PERIOD.PCAlabels.xlsx")

#CVA

WEAR3PERIOD.PCA<-procSym(WEAR3PERIOD)

CVA.WEAR3PERIOD <- CVA(WEAR3PERIOD.PCA\$orpdata,WEAR3PERIOD.I)

write.xlsx(CVA.WEAR3PERIOD\$CVscores, Hirst/Desktop/Analysis/WEAR3PERIOD.CVscores.xlsx")

write.xlsx(CVA.WEAR3PERIOD\$groupmeans, Hirst/Desktop/Analysis/WEAR3PERIOD.CVAgroupmeans.xlsx") "C:/Users/Cara

"C:/Users/Cara

<_

<-

#OTHER

CVA.WEAR3PERIOD

CVA.WEAR3PERIOD\$Dis

CVA.WEAR3PERIOD\$Var

#visulisation cv1

cvvis10

15*matrix(CVA.WEAR3PERIOD\$CVvis[,1],nrow(CVA.WEAR3PERIOD\$Grandm),ncol(CVA.WEAR3PERIOD \$Grandm))+CVA.WEAR3PERIOD\$Grandm

cvvisNeg10 <- - - - - 15*matrix(CVA.WEAR3PERIOD\$CVvis[,1],nrow(CVA.WEAR3PERIOD\$Grandm),ncol(CVA.WEAR3PERIOD\$Grandm))+CVA.WEAR3PERIOD\$Grandm

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/WEAR3PERIOD.1cvvis15.xlsx")

write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/WEAR3PERIOD.1cvvisNeg15.xlsx")

#visulisation cv2

cvvis10

15*matrix(CVA.WEAR3PERIOD\$CVvis[,2],nrow(CVA.WEAR3PERIOD\$Grandm),ncol(CVA.WEAR3PERIOD \$Grandm))+CVA.WEAR3PERIOD\$Grandm

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/WEAR3PERIOD.2cvvis15.xlsx")

write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/WEAR3PERIOD.2cvvisNeg15.xlsx")

#visulisation cv3

<-15*matrix(CVA.WEAR3PERIOD\$CVvis[,3],nrow(CVA.WEAR3PERIOD\$Grandm),ncol(CVA.WEAR3PERIOD \$Grandm))+CVA.WEAR3PERIOD\$Grandm

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/WEAR3PERIOD.3cvvis15.xlsx") write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/WEAR3PERIOD.3cvvisNeg15.xlsx")

#visulisation cv4

<-15*matrix(CVA.WEAR3PERIOD\$CVvis[,4],nrow(CVA.WEAR3PERIOD\$Grandm),ncol(CVA.WEAR3PERIOD \$Grandm))+CVA.WEAR3PERIOD\$Grandm

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/WEAR3PERIOD.4cvvis15.xlsx") write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/WEAR3PERIOD.4cvvisNeg15.xlsx")

6.6 Dental Wear Group: Neolithic

WEARNEO <- abind (new.coords\$'N1', new.coords\$'N2', new.coords\$'N3')

WEARNEO.l<- rbind(labels.N1, labels.N2, labels.N3)

WEARNEO.gpa<- gpagen(WEARNEO)

#PCA

WEARNEO.PCA<-plotTangentSpace(WEARNEO.gpa\$coords, axis1 = 1, axis2 = 2, warpgrids = TRUE) write.xlsx(WEARNEO.PCA\$pc.scores, "C:/Users/Cara Hirst/Desktop/Analysis/WEARNEO.PCA.xlsx") WEARNEO.PCA\$pc.summary WEARNEO.PCA\$sdev

#LABELS

write.xlsx(WEARNEO.l, "C:/Users/Cara Hirst/Desktop/Analysis/WEARNEO.PCAlabels.xlsx")

#CVA

WEARNEO.PCA<-procSym(WEARNEO) CVA.WEARNEO<-CVA(WEARNEO.PCA\$orpdata,WEARNEO.l) write.xlsx(CVA.WEARNEO\$CVscores, "C:/Users/Cara Hirst/Desktop/Analysis/WEARNEO.CVscores.xlsx") write.xlsx(CVA.WEARNEO\$groupmeans, "C:/Users/Cara Hirst/Desktop/Analysis/WEARNEO.CVAgroupmeans.xlsx")

#OTHER

CVA.WEARNEO

CVA.WEARNEO\$Dis

CVA.WEARNEO\$Var

#visulisation cv1

cvvis10

10*matrix(CVA.WEARIB\$CVvis[,1],nrow(CVA.WEARIB\$Grandm),ncol(CVA.WEARIB\$Grandm))+CVA.WEARIB\$Grandm

<-

cvvisNeg10 <- - - - 10*matrix(CVA.WEARIB\$CVvis[,1],nrow(CVA.WEARIB\$Grandm),ncol(CVA.WEARIB\$Grandm))+CVA.WEAR IB\$Grandm

plot(cvvis10,asp=1)

points(cvvisNeg10,col=2)

for (i in 1:nrow(cvvisNeg10))

lines(rbind(cvvis10[i,],cvvisNeg10[i,]))

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARN.1cvvis15.xlsx")

write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARN.1cvvisNeg15.xlsx")

#visulisation cv2

<--10*matrix(CVA.WEARN\$CVvis[,2],nrow(CVA.WEARN\$Grandm),ncol(CVA.WEARN\$Grandm))+CVA.WEAR N\$Grandm

plot(cvvis10,asp=1)

points(cvvisNeg10,col=2)

for (i in 1:nrow(cvvisNeg10))

lines(rbind(cvvis10[i,],cvvisNeg10[i,]))

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARIB.2cvvis15.xlsx") write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARIB.2cvvisNeg15.xlsx")

6.7 Dental Wear Group: Iron and Bronze Age

WEARIB<- abind (new.coords\$'I1', new.coords\$'I2', new.coords\$'I3')

WEARIB.l<- rbind(labels.I1, labels.I2, labels.I3)

WEARIB.gpa<- gpagen(WEARIB)

PCA

WEARIB.PCA<-plotTangentSpace(WEARIB.gpa\$coords, axis1 = 1, axis2 = 2, warpgrids = TRUE) write.xlsx(WEARIB.PCA\$pc.scores, "C:/Users/Cara Hirst/Desktop/Analysis/WEARIB.PCA.xlsx") WEARIB.PCA\$pc.summary WEARIB.PCA\$sdev

#LABELS

write.xlsx(WEARIB.l, "C:/Users/Cara Hirst/Desktop/Analysis/WEARIB.PCAlabels.xlsx")

#CVA

WEARIB.PCA<-procSym(WEARIB)

CVA.WEARIB<-CVA(WEARIB.PCA\$orpdata,WEARIB.l)

write.xlsx(CVA.WEARIB\$CVscores, "C:/Users/Cara Hirst/Desktop/Analysis/WEARIB.CVscores.xlsx")

write.xlsx(CVA.WEARIB\$groupmeans, Hirst/Desktop/Analysis/WEARIB.CVAgroupmeans.xlsx") "C:/Users/Cara

<_

#OTHER

CVA.WEARIB

CVA.WEARIB\$Dis

CVA.WEARIB\$Var

#visulisation cv1

cvvis10

10*matrix(CVA.WEARIB\$CVvis[,1],nrow(CVA.WEARIB\$Grandm),ncol(CVA.WEARIB\$Grandm))+CVA.WEAR IB\$Grandm

plot(cvvis10,asp=1)

points(cvvisNeg10,col=2)

for (i in 1:nrow(cvvisNeg10))

lines(rbind(cvvis10[i,],cvvisNeg10[i,]))

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARIB.1cvvis15.xlsx") write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARIB.1cvvisNeg15.xlsx") #visulisation cv2

cvvis10 <--10*matrix(CVA.WEARIB\$CVvis[,2],nrow(CVA.WEARIB\$Grandm),ncol(CVA.WEARIB\$Grandm))+CVA.WEAR IB\$Grandm cvvisNeg10 <--10*matrix(CVA.WEARIB\$CVvis[,2],nrow(CVA.WEARIB\$Grandm),ncol(CVA.WEARIB\$Grandm))+CVA.WEAR IB\$Grandm plot(cvvis10,asp=1) points(cvvisNeg10,col=2) for (i in 1:nrow(cvvisNeg10)) lines(rbind(cvvis10[i,],cvvisNeg10[i,]))

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARIB.2cvvis15.xlsx") write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARIB.2cvvisNeg15.xlsx")

6.8 Dental Wear Group: Roman

WEARROM<- abind (new.coords\$'R1', new.coords\$'R2', new.coords\$'R3') WEARROM.I<- rbind(labels.R1, labels.R2, labels.R3) WEARROM.gpa<- gpagen(WEARROM)

#PCA

WEARROM.PCA<-plotTangentSpace(WEARROM.gpa\$coords, axis1 = 1, axis2 = 2, warpgrids = TRUE) write.xlsx(WEARROM.PCA\$pc.scores, "C:/Users/Cara Hirst/Desktop/Analysis/WEARROM.PCA.xlsx") WEARROM.PCA\$pc.summary WEARROM.PCA\$sdev

#LABELS

write.xlsx(WEARROM.l, "C:/Users/Cara Hirst/Desktop/Analysis/WEARROM.PCAlabels.xlsx")

#CVA

WEARROM.PCA<-procSym(WEARROM) CVA.WEARROM<-CVA(WEARROM.PCA\$orpdata,WEARROM.l) write.xlsx(CVA.WEARROM\$CVscores, "C:/Users/Cara Hirst/Desktop/Analysis/WEARROM.CVscores.xlsx") write.xlsx(CVA.WEARROM\$groupmeans, "C:/Users/Cara Hirst/Desktop/Analysis/WEARROM.CVAgroupmeans.xlsx")

#OTHER

CVA.WEARROM

CVA.WEARROM\$Dis

CVA.WEARROM\$Var

#visulisation cv1

cvvis10

 $10* matrix (CVA.WEARROM \\ CVvis[,1], nrow (CVA.WEARROM \\ Grandm), ncol (CVA.WEARROM \\ Grandm)) + CVA.WEARROM \\ Grandm$

<-

cvvisNeg10 <- - - - 10*matrix(CVA.WEARROM\$CVvis[,1],nrow(CVA.WEARROM\$Grandm),ncol(CVA.WEARROM\$Grandm))+CV A.WEARROM\$Grandm

plot(cvvis10,asp=1)

points(cvvisNeg10,col=2)

for (i in 1:nrow(cvvisNeg10))

lines(rbind(cvvis10[i,],cvvisNeg10[i,]))

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARROM.1cvvis15.xlsx")

write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARROM.1cvvisNeg15.xlsx")

#visulisation cv2

<-10*matrix(CVA.WEARROM\$CVvis[,2],nrow(CVA.WEARROM\$Grandm),ncol(CVA.WEARROM\$Grandm))+CV A.WEARROM\$Grandm

cvvisNeg10 <- - - 10*matrix(CVA.WEARROM\$CVvis[,2],nrow(CVA.WEARROM\$Grandm),ncol(CVA.WEARROM\$Grandm))+CV A.WEARROM\$Grandm

plot(cvvis10,asp=1)

points(cvvisNeg10,col=2)

for (i in 1:nrow(cvvisNeg10))

lines(rbind(cvvis10[i,],cvvisNeg10[i,]))

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARROM.2cvvis15.xlsx") write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARROM.2cvvisNeg15.xlsx")

6.9 Dental Wear Group: Anglo-Saxon

WEARAS<- abind (new.coords\$'A1', new.coords\$'A2', new.coords\$'A3')

WEARAS.l<- rbind(labels.A1, labels.A2, labels.A3)

WEARAS.gpa<- gpagen(WEARAS)

#PCA

WEARAS.PCA<-plotTangentSpace(WEARAS.gpa\$coords, axis1 = 1, axis2 = 2, warpgrids = TRUE) write.xlsx(WEARAS.PCA\$pc.scores, "C:/Users/Cara Hirst/Desktop/Analysis/WEARAS.PCA.xlsx") WEARAS.PCA\$pc.summary WEARAS.PCA\$sdev

#LABELS

write.xlsx(WEARAS.l, "C:/Users/Cara Hirst/Desktop/Analysis/WEARAS.PCAlabels.xlsx")

#CVA

WEARAS.PCA<-procSym(WEARAS)

CVA.WEARAS<-CVA(WEARAS.PCA\$orpdata,WEARAS.l)

write.xlsx(CVA.WEARAS\$CVscores, "C:/Users/Cara Hirst/Desktop/Analysis/WEARAS.CVscores.xlsx")

write.xlsx(CVA.WEARAS\$groupmeans, Hirst/Desktop/Analysis/WEARAS.CVAgroupmeans.xlsx") "C:/Users/Cara

#OTHER

CVA.WEARAS

CVA.WEARAS\$Dis

CVA.WEARAS\$Var

#visulisation cv1

<-10*matrix(CVA.WEARAS\$CVvis[,1],nrow(CVA.WEARAS\$Grandm),ncol(CVA.WEARAS\$Grandm))+CVA.WEA RAS\$Grandm

cvvisNeg10 <- - - - - 10*matrix(CVA.WEARAS\$CVvis[,1],nrow(CVA.WEARAS\$Grandm),ncol(CVA.WEARAS\$Grandm))+CVA.WEARAS\$Grandm

plot(cvvis10,asp=1)

points(cvvisNeg10,col=2)

for (i in 1:nrow(cvvisNeg10))

lines(rbind(cvvis10[i,],cvvisNeg10[i,]))

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARAS.1cvvis15.xlsx") write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARAS.1cvvisNeg15.xlsx") #visulisation cv2

lines(rbind(cvvis10[i,],cvvisNeg10[i,]))

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARAS.2cvvis15.xlsx") write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARAS.2cvvisNeg15.xlsx")

6.10 Dental Wear Group: Medieval

WEARMED<- abind (new.coords\$'M1', new.coords\$'M2', new.coords\$'M3') WEARMED.l<- rbind(labels.M1, labels.M2, labels.M3) WEARMED.gpa<- gpagen(WEARMED)

#PCA

WEARMED.PCA<-plotTangentSpace(WEARMED.gpa\$coords, axis1 = 1, axis2 = 2, warpgrids = TRUE) write.xlsx(WEARMED.PCA\$pc.scores, "C:/Users/Cara Hirst/Desktop/Analysis/WEARMED.PCA.xlsx") WEARMED.PCA\$pc.summary WEARMED.PCA\$sdev

#LABELS

write.xlsx(WEARMED.l, "C:/Users/Cara Hirst/Desktop/Analysis/WEARMED.PCAlabels.xlsx")

#CVA

WEARMED.PCA<-procSym(WEARMED) CVA.WEARMED<-CVA(WEARMED.PCA\$orpdata,WEARMED.l) write.xlsx(CVA.WEARMED\$CVscores, "C:/Users/Cara Hirst/Desktop/Analysis/WEARMED.CVscores.xlsx") write.xlsx(CVA.WEARMED\$groupmeans, "C:/Users/Cara Hirst/Desktop/Analysis/WEARMED.CVAgroupmeans.xlsx")

#OTHER

CVA.WEARMED

CVA.WEARMED\$Dis

CVA.WEARMED\$Var

#visulisation cv1

cvvis10

10*matrix(CVA.WEARMED\$CVvis[,1],nrow(CVA.WEARMED\$Grandm),ncol(CVA.WEARMED\$Grandm))+CVA.WEARMED\$Grandm

<-

cvvisNeg10 <-10*matrix(CVA.WEARMED\$CVvis[,1],nrow(CVA.WEARMED\$Grandm),ncol(CVA.WEARMED\$Grandm))+C VA.WEARMED\$Grandm

plot(cvvis10,asp=1)

points(cvvisNeg10,col=2)

for (i in 1:nrow(cvvisNeg10))

lines(rbind(cvvis10[i,],cvvisNeg10[i,]))

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARMED.1cvvis15.xlsx")

write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARMED.1cvvisNeg15.xlsx")

#visulisation cv2

cvvisNeg10 <-10*matrix(CVA.WEARMED\$CVvis[,2],nrow(CVA.WEARMED\$Grandm),ncol(CVA.WEARMED\$Grandm))+C VA.WEARMED\$Grandm

plot(cvvis10,asp=1)

points(cvvisNeg10,col=2)

for (i in 1:nrow(cvvisNeg10))

lines(rbind(cvvis10[i,],cvvisNeg10[i,]))

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARMED.2cvvis15.xlsx") write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARMED.2cvvisNeg15.xlsx")

6.11 Dental Wear Group: Post-Medieval

WEARPOSTMED<- abind (new.coords\$'P1', new.coords\$'P2', new.coords\$'P3')

WEARPOSTMED.l <- rbind(labels.P1, labels.P2, labels.P3)

WEARPOSTMED.gpa<- gpagen(WEARPOSTMED)

#PCA

#PCA	
WEARPOSTMED.PCA<-plotTangentSpace(WEARPOSTMED.gpa\$coords, axis1 = 1, axis2 TRUE)	= 2, warpgrids =
write.xlsx(WEARPOSTMED.PCA\$pc.scores, Hirst/Desktop/Analysis/WEARPOSTMED.PCA.xlsx")	"C:/Users/Cara
WEARPOSTMED.PCA\$pc.summary	
WEARPOSTMED.PCA\$sdev	
#LABELS	
write.xlsx(WEARPOSTMED.l, "C:/Users/Cara Hirst/Desktop/Analysis/WEARPOSTMED.PO	CAlabels.xlsx")
#CVA	
WEARPOSTMED.PCA<-procSym(WEARPOSTMED)	
CVA.WEARPOSTMED<-CVA(WEARPOSTMED.PCA\$orpdata,WEARPOSTMED.l)	
write.xlsx(CVA.WEARPOSTMED\$CVscores, Hirst/Desktop/Analysis/WEARPOSTMED.CVscores.xlsx")	"C:/Users/Cara
write.xlsx(CVA.WEARPOSTMED\$groupmeans, Hirst/Desktop/Analysis/WEARPOSTMED.CVAgroupmeans.xlsx")	"C:/Users/Cara
#OTHER	
CVA.WEARPOSTMED	
CVA.WEARPOSTMED\$Dis	
CVA.WEARPOSTMED\$Var	
#visulisation cv1	
cvvis10	<-
10*matrix(CVA.WEARPOSTMED\$CVvis[,1],nrow(CVA.WEARPOSTMED\$Grandm),ncol(CVED\$Grandm))+CVA.WEARPOSTMED\$Grandm	A.WEARPOSTM
cvvisNeg10 <- 10*matrix(CVA.WEARPOSTMED\$CVvis[,1],nrow(CVA.WEARPOSTMED\$Grandm),ncol(CV ED\$Grandm))+CVA.WEARPOSTMED\$Grandm	A.WEARPOSTM
plot(cvvis10,asp=1)	
points(cvvisNeg10,col=2)	

for (i in 1:nrow(cvvisNeg10))

lines(rbind(cvvis10[i,],cvvisNeg10[i,]))

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARPOSTMED.1cvvis15.xlsx") write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARPOSTMED.1cvvisNeg15.xlsx")

#visulisation cv2

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARPOSTMED.2cvvis15.xlsx") write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/WEARPOSTMED.2cvvisNeg15.xlsx")

6.12 Individual Period Comparisons

#open data
setwd("C:/Users/Cara Hirst/Desktop/Analysis/DATA")
require(geomorph)
require(Morpho)
require(abind)
require(xlsx)
A<-read.morphologika("Data.txt")</pre>

#gpa analysis

coords<-A\$coords

label<-A\$labels

Y.gpa<-gpagen(coords, curves = NULL, surfaces = NULL, PrinAxes = TRUE,max.iter = NULL, ProcD = TRUE, Proj = TRUE, print.progress = TRUE)

period<- substr(A\$label,1,1)

#create subsets

```
group <-factor(paste(A$coords))
```

levels(group) new.coords<-coords.subset(A= A\$coords, group=period) names(new.coords)

#N and IB

labels.N<-subset(period, period== 'N')
labels.I<-subset(period, period == 'I')</pre>

NEOIRONBRONZ<- abind (new.coords\$'N', new.coords\$'I')

NEOIRONBRONZ.l <- rbind(labels.N, labels.I)

NEOIRONBRONZ.gpa<- gpagen(NEOIRONBRONZ)

#PCA

NEOIRONBRONZ.PCA<-plotTangentSpace(NEOIRONBRONZ.gpa\$coords, axis1 = 1, axis2 = 2, warpgrids = TRUE)

"C:/Users/Cara

write.xlsx(NEOIRONBRONZ.PCA\$pc.scores, Hirst/Desktop/Analysis/NEOIRONBRONZ.PCA.xlsx")

NEOIRONBRONZ.PCA\$pc.summary

NEOIRONBRONZ.PCA\$sdev

#LABELS

write.xlsx(NEOIRONBRONZ.l, "C:/Users/Cara Hirst/Desktop/Analysis/NEOIRONBRONZ.PCAlabels.xlsx")

#CVA

NEOIRONBRONZ.PCA<-procSym(NEOIRONBRONZ) CVA.NEOIRONBRONZ<-CVA(NEOIRONBRONZ.PCA\$orpdata,NEOIRONBRONZ.l) write.xlsx(CVA.NEOIRONBRONZ\$CVscores, "C:/Users/Cara Hirst/Desktop/Analysis/NEOIRONBRONZ.CVscores.xlsx") write.xlsx(CVA.NEOIRONBRONZ\$groupmeans, "C:/Users/Cara Hirst/Desktop/Analysis/NEOIRONBRONZ\$cVAgroupmeans.xlsx")

#OTHER

CVA.NEOIRONBRONZ

CVA.NEOIRONBRONZ\$Dis

 $\label{eq:cva.neoironBRONZ$Var} CVA.NEOIRONBRONZ$Var$

#visulisation cv1

cvvis10
15*matrix(CVA.NEOIRONBRONZ\$CVvis[,1],nrow(CVA.NEOIRONBRONZ\$Grandm),ncol(CVA.NEOIRON
BRONZ\$Grandm))+CVA.NEOIRONBRONZ\$Grandm
cvvisNeg10

plot(cvvis10,asp=1)

points(cvvisNeg10,col=2)

for (i in 1:nrow(cvvisNeg10))

lines(rbind(cvvis10[i,],cvvisNeg10[i,]))

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/NEOIRONBRONZ.2cvvis15.xlsx")

write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/NEOIRONBRONZ.2cvvisNeg15.xlsx")

#N and R labels.N<-subset(period, period == 'N')

labels.R<-subset(period, period == 'R')</pre>

NEOROMAN<- abind (new.coords\$'N', new.coords\$'R') NEOROMAN.l<- rbind(labels.N, labels.R) NEOROMAN.gpa<- gpagen(NEOROMAN)

#PCA

NEOROMAN.PCA<-plotTangentSpace(NEOROMAN.gpa\$coords, axis1 = 1, axis2 = 2, warpgrids = TRUE) write.xlsx(NEOROMAN.PCA\$pc.scores, "C:/Users/Cara Hirst/Desktop/Analysis/NEOROMAN.PCA.xlsx") NEOROMAN.PCA\$pc.summary NEOROMAN.PCA\$sdev

#LABELS

write.xlsx(NEOROMAN.l, "C:/Users/Cara Hirst/Desktop/Analysis/NEOROMAN.PCAlabels.xlsx")

#CVA

NEOROMAN.PCA<-procSym(NEOROMAN) CVA.NEOROMAN<-CVA(NEOROMAN.PCA\$orpdata, NEOROMAN.I) write.xlsx(CVA.NEOROMAN\$CVscores,

Hirst/Desktop/Analysis/NEOROMAN.CVscores.xlsx")

"C:/Users/Cara

write.xlsx(CVA.NEOROMAN\$groupmeans, Hirst/Desktop/Analysis/NEOROMAN.CVAgroupmeans.xlsx") "C:/Users/Cara

#OTHER

CVA.NEOROMAN

CVA.NEOROMAN\$Dis

CVA.NEOROMAN\$Var

#visulisation cv1

cvvis10

<-15*matrix(CVA.NEOROMAN\$CVvis[,1],nrow(CVA.NEOROMAN\$Grandm),ncol(CVA.NEOROMAN\$Grandm))+CVA.NEOROMAN\$Grandm

cvvisNeg10 <_ 15*matrix(CVA.NEOROMAN\$CVvis[,1],nrow(CVA.NEOROMAN\$Grandm),ncol(CVA.NEOROMAN\$Grandm))+CVA.NEOROMAN\$Grandm

plot(cvvis10,asp=1)

points(cvvisNeg10,col=2)

for (i in 1:nrow(cvvisNeg10))

lines(rbind(cvvis10[i,],cvvisNeg10[i,]))

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/NEOROMAN.1cvvis15.xlsx") write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/NEOROMAN.1cvvisNeg15.xlsx")

#N and AS

labels.N <-subset(period, period == 'N')labels.A<-subset(period, period == 'A') NEOANGLO <- abind (new.coords\$'N', new.coords\$'A') NEOANGLO.I <- rbind(labels.N, labels.A) NEOANGLO.gpa<- gpagen(NEOANGLO)

#PCA

NEOANGLO.PCA<-plotTangentSpace(NEOANGLO.gpa\$coords, axis1 = 1, axis2 = 2, warpgrids = TRUE) write.xlsx(NEOANGLO.PCA\$pc.scores, "C:/Users/Cara Hirst/Desktop/Analysis/NEOANGLO.PCA.xlsx") NEOANGLO.PCA\$pc.summary NEOANGLO.PCA\$sdev

#LABELS

write.xlsx(NEOANGLO.l, "C:/Users/Cara Hirst/Desktop/Analysis/NEOANGLO.PCAlabels.xlsx")

#CVA

NEOANGLO.PCA<-procSym(NEOANGLO)

CVA.NEOANGLO<-CVA(NEOANGLO.PCA\$orpdata, NEOANGLO.l)

write.xlsx(CVA.NEOANGLO\$CVscores, "C:/Users/Cara Hirst/Desktop/Analysis/NEOANGLO.CVscores.xlsx")

write.xlsx(CVA.NEOANGLO\$groupmeans, Hirst/Desktop/Analysis/NEOANGLO.CVAgroupmeans.xlsx") "C:/Users/Cara

<-

#OTHER

CVA.NEOANGLO

CVA.NEOANGLO\$Dis

CVA.NEOANGLO\$Var

#visulisation cv1

cvvis10

15*matrix(CVA.NEOANGLO\$CVvis[,1],nrow(CVA.NEOANGLO\$Grandm),ncol(CVA.NEOANGLO\$Grandm))+CVA.NEOANGLO\$Grandm

cvvisNeg10

15*matrix(CVA.NEOANGLO\$CVvis[,1],nrow(CVA.NEOANGLO\$Grandm),ncol(CVA.NEOANGLO\$Grandm))+CVA.NEOANGLO\$Grandm

<-

plot(cvvis10,asp=1)

points(cvvisNeg10,col=2)

for (i in 1:nrow(cvvisNeg10))

lines(rbind(cvvis10[i,],cvvisNeg10[i,]))

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/NEOANGLO.1cvvis15.xlsx") write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/NEOANGLO.1cvvisNeg15.xlsx")

#N and M

labels.N<-subset(period, period == 'N') labels.M<-subset(period, period == 'M') NEOMEDIEVAL<- abind (new.coords\$'N', new.coords\$'M') NEOMEDIEVAL.l<- rbind(labels.N, labels.M) NEOMEDIEVAL.gpa<- gpagen(NEOMEDIEVAL)

#PCA

NEOMEDIEVAL.PCA<-plotTangentSpace(NEOMEDIEVAL.gpa\$coords, axis1 = 1, axis2 = 2, warpgrids = TRUE)

write.xlsx(NEOMEDIEVAL.PCA\$pc.scores, Hirst/Desktop/Analysis/NEOMEDIEVAL.PCA.xlsx") "C:/Users/Cara

NEOMEDIEVAL.PCA\$pc.summary

NEOMEDIEVAL.PCA\$sdev

#LABELS

write.xlsx(NEOMEDIEVAL.l, "C:/Users/Cara Hirst/Desktop/Analysis/NEOMEDIEVAL.PCAlabels.xlsx")

#CVA

NEOMEDIEVAL.PCA<-procSym(NEOMEDIEVAL)

CVA.NEOMEDIEVAL<-CVA(NEOMEDIEVAL.PCA\$orpdata, NEOMEDIEVAL.)

write.xlsx(CVA.NEOMEDIEVAL\$CVscores, Hirst/Desktop/Analysis/NEOMEDIEVAL.CVscores.xlsx") "C:/Users/Cara "C:/Users/Cara

<-

write.xlsx(CVA.NEOMEDIEVAL\$groupmeans, Hirst/Desktop/Analysis/NEOMEDIEVAL.CVAgroupmeans.xlsx")

#OTHER

CVA.NEOMEDIEVAL

CVA.NEOMEDIEVAL\$Dis

CVA.NEOMEDIEVAL\$Var

#visulisation cv1

cvvis10

15*matrix(CVA.NEOMEDIEVAL\$CVvis[,1],nrow(CVA.NEOMEDIEVAL\$Grandm),ncol(CVA.NEOMEDIEVAL\$Grandm))+CVA.NEOMEDIEVAL\$Grandm

cvvisNeg10 <- <- . 15*matrix(CVA.NEOMEDIEVAL\$CVvis[,1],nrow(CVA.NEOMEDIEVAL\$Grandm),ncol(CVA.NEOMEDIEVAL\$Grandm))+CVA.NEOMEDIEVAL\$Grandm

plot(cvvis10,asp=1)

points(cvvisNeg10,col=2)

for (i in 1:nrow(cvvisNeg10))

lines(rbind(cvvis10[i,],cvvisNeg10[i,]))

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/NEOMEDIEVAL.1cvvis15.xlsx")

write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/NEOMEDIEVAL.1cvvisNeg15.xlsx")

#N and PM

labels.N<-subset(period, period == 'N') labels.P<-subset(period, period == 'P') NEOPOSTMED<- abind (new.coords\$'N', new.coords\$'P') NEOPOSTMED.l<- rbind(labels.N, labels.P) NEOPOSTMED.gpa<- gpagen(NEOPOSTMED)

#PCA

NEOPOSTMED.PCA<-plotTangentSpace(NEOPOSTMED.gpa\$coords, axis1 = 1, axis2 = 2, warpgrids = TRUE)

write.xlsx(NEOPOSTMED.PCA\$pc.scores, Hirst/Desktop/Analysis/NEOPOSTMED.PCA.xlsx") "C:/Users/Cara

"C:/Users/Cara

"C:/Users/Cara

<-

NEOPOSTMED.PCA\$pc.summary

NEOPOSTMED.PCA\$sdev

#LABELS

write.xlsx(NEOPOSTMED.l, "C:/Users/Cara Hirst/Desktop/Analysis/NEOPOSTMED.PCAlabels.xlsx")

#CVA

NEOPOSTMED.PCA<-procSym(NEOPOSTMED)

CVA.NEOPOSTMED<-CVA(NEOPOSTMED.PCA\$orpdata, NEOPOSTMED.I)

write.xlsx(CVA.NEOPOSTMED\$CVscores, Hirst/Desktop/Analysis/NEOPOSTMED.CVscores.xlsx")

write.xlsx(CVA.NEOPOSTMED\$groupmeans,	
Hirst/Desktop/Analysis/NEOPOSTMED.CVAgroupmeans.xlsx")	

#OTHER

CVA.NEOPOSTMED

CVA.NEOPOSTMED\$Dis

CVA.NEOPOSTMED\$Var

#visulisation cv1

cvvis10

15*matrix(CVA.NEOPOSTMED\$CVvis[,1],nrow(CVA.NEOPOSTMED\$Grandm),ncol(CVA.NEOPOSTMED\$Grandm))+CVA.NEOPOSTMED\$Grandm

cvvisNeg10

15*matrix(CVA.NEOPOSTMED\$CVvis[,1],nrow(CVA.NEOPOSTMED\$Grandm),ncol(CVA.NEOPOSTMED\$Grandm))+CVA.NEOPOSTMED\$Grandm

<-

plot(cvvis10,asp=1)

points(cvvisNeg10,col=2)

for (i in 1:nrow(cvvisNeg10))
lines(rbind(cvvis10[i,],cvvisNeg10[i,]))

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/NEOPOSTMED.1cvvis15.xlsx") write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/NEOPOSTMED.1cvvisNeg15.xlsx")

#IB and R

labels.I<-subset(period, period == 'I')
labels.R<-subset(period, period == 'R')
IRONROMAN<- abind (new.coords\$'I', new.coords\$'R')
IRONROMAN.l<- rbind(labels.I, labels.R)
IRONROMAN.gpa<- gpagen(IRONROMAN)</pre>

#PCA

IRONROMAN.PCA<-plotTangentSpace(IRONROMAN.gpa\$coords, axis1 = 1, axis2 = 2, warpgrids = TRUE) write.xlsx(IRONROMAN.PCA\$pc.scores, "C:/Users/Cara Hirst/Desktop/Analysis/IRONROMAN.PCA.xlsx") IRONROMAN.PCA\$pc.summary IRONROMAN.PCA\$sdev

#LABELS

write.xlsx(IRONROMAN.l, "C:/Users/Cara Hirst/Desktop/Analysis/IRONROMAN.PCAlabels.xlsx")

#CVA

IRONROMAN.PCA<-procSym(IRONROMAN) CVA.IRONROMAN<-CVA(IRONROMAN.PCA\$orpdata, IRONROMAN.I) write.xlsx(CVA.IRONROMAN\$CVscores, "C:/Users/Cara Hirst/Desktop/Analysis/IRONROMAN.CVscores.xlsx") write.xlsx(CVA.IRONROMAN\$groupmeans, "C:/Users/Cara Hirst/Desktop/Analysis/IRONROMAN.CVAgroupmeans.xlsx")

#OTHER CVA.IRONROMAN CVA.IRONROMAN\$Dis CVA.IRONROMAN\$Var

#visulisation cv1

15*matrix(CVA.IRONROMAN\$CVvis[,1],nrow(CVA.IRONROMAN\$Grandm),ncol(CVA.IRONROMAN\$Grandm))+CVA.IRONROMAN\$Grandm

plot(cvvis10,asp=1)

points(cvvisNeg10,col=2)

for (i in 1:nrow(cvvisNeg10))

lines(rbind(cvvis10[i,],cvvisNeg10[i,]))

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/IRONROMAN.1cvvis15.xlsx") write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/IRONROMAN.1cvvisNeg15.xlsx")

#IB and AS

labels.I<-subset(period, period == 'I')
labels.A<-subset(period, period == 'A')
IRONANGLO<- abind (new.coords\$'I', new.coords\$'A')
IRONANGLO.I<- rbind(labels.I, labels.A)
IRONANGLO.gpa<- gpagen(IRONANGLO)</pre>

#PCA

IRONANGLO.PCA<-plotTangentSpace(IRONANGLO.gpa\$coords, axis1 = 1, axis2 = 2, warpgrids = TRUE) write.xlsx(IRONANGLO.PCA\$pc.scores, "C:/Users/Cara Hirst/Desktop/Analysis/IRONANGLO.PCA.xlsx") IRONANGLO.PCA\$pc.summary IRONANGLO.PCA\$sdev

#LABELS

write.xlsx(IRONANGLO.l, "C:/Users/Cara Hirst/Desktop/Analysis/IRONANGLO.PCAlabels.xlsx")

#CVA

IRONANGLO.PCA<-procSym(IRONANGLO)	
CVA.IRONANGLO<-CVA(IRONANGLO.PCA\$orpdata, IRONANGLO.I)	
write.xlsx(CVA.IRONANGLO\$CVscores, Hirst/Desktop/Analysis/IRONANGLO.CVscores.xlsx")	"C:/Users/Cara
write.xlsx(CVA.IRONANGLO\$groupmeans, Hirst/Desktop/Analysis/IRONANGLO.CVAgroupmeans.xlsx")	"C:/Users/Cara

#OTHER

CVA.IRONANGLO

CVA.IRONANGLO\$Dis

CVA.IRONANGLO\$Var

#visulisation cv1

cvvis10

15*matrix(CVA.IRONANGLO\$CVvis[,1],nrow(CVA.IRONANGLO\$Grandm),ncol(CVA.IRONANGLO\$Grandm))+CVA.IRONANGLO\$Grandm

cvvisNeg10 <- - - - - 15*matrix(CVA.IRONANGLO\$CVvis[,1],nrow(CVA.IRONANGLO\$Grandm),ncol(CVA.IRONANGLO\$Grandm))+CVA.IRONANGLO\$Grandm</pre>

plot(cvvis10,asp=1)

points(cvvisNeg10,col=2)

for (i in 1:nrow(cvvisNeg10))

lines(rbind(cvvis10[i,],cvvisNeg10[i,]))

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/IRONANGLO.1cvvis15.xlsx")

write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/IRONANGLO.1cvvisNeg15.xlsx")

#IB and M

labels.I<-subset(period, period == 'I')
labels.M<-subset(period, period == 'M')
IRONMEDIEVAL<- abind (new.coords\$'I', new.coords\$'M')
IRONMEDIEVAL.I<- rbind(labels.I, labels.M)
IRONMEDIEVAL.gpa<- gpagen(IRONMEDIEVAL)</pre>

#PCA

IRONMEDIEVAL.PCA<-plotTangentSpace(IRONMEDIEVAL.gpa\$coords, axis1 = 1, axis2 = 2, warpgrids = TRUE)

write.xlsx(IRONMEDIEVAL.PCA\$pc.scores, Hirst/Desktop/Analysis/IRONMEDIEVAL.PCA.xlsx")

IRONMEDIEVAL.PCA\$pc.summary

IRONMEDIEVAL.PCA\$sdev

#LABELS

"C:/Users/Cara

<_

write.xlsx(IRONMEDIEVAL.l, "C:/Users/Cara Hirst/Desktop/Analysis/IRONMEDIEVAL.PCAlabels.xlsx")

#CVA

IRONMEDIEVAL.PCA<-procSym(IRONMEDIEVAL)

CVA.IRONMEDIEVAL<-CVA(IRONMEDIEVAL.PCA\$orpdata, IRONMEDIEVAL.l)

write.xlsx(CVA.IRONMEDIEVAL\$CVscores, Hirst/Desktop/Analysis/IRONMEDIEVAL.CVscores.xlsx")

write.xlsx(CVA.IRONMEDIEVAL\$groupmeans, Hirst/Desktop/Analysis/IRONMEDIEVAL.CVAgroupmeans.xlsx") "C:/Users/Cara

"C:/Users/Cara

<-

#OTHER

CVA.IRONMEDIEVAL

CVA.IRONMEDIEVAL\$Dis

CVA.IRONMEDIEVAL\$Var

#visulisation cv1

cvvis10

15*matrix(CVA.IRONMEDIEVAL\$CVvis[,1],nrow(CVA.IRONMEDIEVAL\$Grandm),ncol(CVA.IRONMEDIE VAL\$Grandm))+CVA.IRONMEDIEVAL\$Grandm

plot(cvvis10,asp=1)

points(cvvisNeg10,col=2)

for (i in 1:nrow(cvvisNeg10))

lines(rbind(cvvis10[i,],cvvisNeg10[i,]))

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/IRONMEDIEVAL.1cvvis15.xlsx") write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/IRONMEDIEVAL.1cvvisNeg15.xlsx")

#IB and PM

labels.I<-subset(period, period == 'T')
labels.P<-subset(period, period == 'P')
IRONPOSTMED<- abind (new.coords\$'I', new.coords\$'P')
IRONPOSTMED.l<- rbind(labels.I, labels.P)
IRONPOSTMED.gpa<- gpagen(IRONPOSTMED)</pre>

#PCA

IRONPOSTMED.PCA<-plotTangentSpace(IRONPOSTMED.gpa\$coords, axis1 = 1, axis2 = TRUE)	2, warpgrids =	
write.xlsx(IRONPOSTMED.PCA\$pc.scores, Hirst/Desktop/Analysis/IRONPOSTMED.PCA.xlsx")	"C:/Users/Cara	
IRONPOSTMED.PCA\$pc.summary		
IRONPOSTMED.PCA\$sdev		
#LABELS		
write.xlsx(IRONPOSTMED.l, "C:/Users/Cara Hirst/Desktop/Analysis/IRONPOSTMED.PCAlabels.xlsx")		
#CVA		
IRONPOSTMED.PCA<-procSym(IRONPOSTMED)		
CVA.IRONPOSTMED<-CVA(IRONPOSTMED.PCA\$orpdata, IRONPOSTMED.l)		
write.xlsx(CVA.IRONPOSTMED\$CVscores, Hirst/Desktop/Analysis/IRONPOSTMED.CVscores.xlsx")	"C:/Users/Cara	
write.xlsx(CVA.IRONPOSTMED\$groupmeans, Hirst/Desktop/Analysis/IRONPOSTMED.CVAgroupmeans.xlsx")	"C:/Users/Cara	
#OTHER		
CVA.IRONPOSTMED		
CVA.IRONPOSTMED\$Dis		
CVA.IRONPOSTMED\$Var		
#visulisation cv1		
cvvis10 15*matrix(CVA.IRONPOSTMED\$CVvis[,1],nrow(CVA.IRONPOSTMED\$Grandm),ncol(CVA.IR D\$Grandm))+CVA.IRONPOSTMED\$Grandm	<- RONPOSTME	
cvvisNeg10 <- 15*matrix(CVA.IRONPOSTMED\$CVvis[,1],nrow(CVA.IRONPOSTMED\$Grandm),ncol(CVA.IR D\$Grandm))+CVA.IRONPOSTMED\$Grandm	- CONPOSTME	
plot(cvvis10,asp=1)		
points(cvvisNeg10,col=2)		
for (i in 1:nrow(cvvisNeg10))		
lines(rbind(cvvis10[i,],cvvisNeg10[i,]))		
#WRITE.VISULISATION		
write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/IRONPOSTMED.1cvvis15.xlsx")		
write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/IRONPOSTMED.1cvvisNeg15.xl	sx")	

#R and AS

labels.RF<-subset(period, period == 'R')</pre>

labels.ASM<-subset(period, period == 'A')

ROMANANGLO<- abind (new.coords\$'R', new.coords\$'A')

ROMANANGLO.l<- rbind(labels.R, labels.A)

ROMANANGLO.gpa<- gpagen(ROMANANGLO)

#PCA

ROMANANGLO.PCA<-plotTangentSpace(ROMANANGLO.gpa\$coords, axis1 = 1, axis2 = 2, warpgrids = TRUE)

write.xlsx(ROMANANGLO.PCA\$pc.scores, Hirst/Desktop/Analysis/ROMANANGLO.PCA.xlsx") "C:/Users/Cara

"C:/Users/Cara

"C:/Users/Cara

<_

ROMANANGLO.PCA\$pc.summary

ROMANANGLO.PCA\$sdev

#LABELS

write.xlsx(ROMANANGLO.l, "C:/Users/Cara Hirst/Desktop/Analysis/ROMANANGLO.PCAlabels.xlsx")

#CVA

ROMANANGLO.PCA<-procSym(ROMANANGLO)

CVA.ROMANANGLO<-CVA(ROMANANGLO.PCA\$orpdata, ROMANANGLO.I)

write.xlsx(CVA.ROMANANGLO\$CVscores, Hirst/Desktop/Analysis/ROMANANGLO.CVscores.xlsx")

write.xlsx(CVA.ROMANANGLO\$groupmeans, Hirst/Desktop/Analysis/ROMANANGLO.CVAgroupmeans.xlsx")

#OTHER

CVA.ROMANANGLO

CVA.ROMANANGLO\$Dis

CVA.ROMANANGLO\$Var

#visulisation cv1

cvvis10

15*matrix(CVA.ROMANANGLO\$CVvis[,1],nrow(CVA.ROMANANGLO\$Grandm),ncol(CVA.ROMANANGLO\$Grandm))+CVA.ROMANANGLO\$Grandm

cvvisNeg10 <- 15*matrix(CVA.ROMANANGLO\$CVvis[,1],nrow(CVA.ROMANANGLO\$Grandm),ncol(CVA.ROMANANGLO \$Grandm))+CVA.ROMANANGLO\$Grandm plot(cvvis10,asp=1) points(cvvisNeg10,col=2) for (i in 1:nrow(cvvisNeg10)) lines(rbind(cvvis10[i,],cvvisNeg10[i,]))

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/ROMANANGLO.1cvvis15.xlsx") write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/ROMANANGLO.1cvvisNeg15.xlsx")

#R and M

labels.R<-subset(period, period == 'R')
labels.M<-subset(period, period == 'M')
ROMANMED<- abind (new.coords\$'R', new.coords\$'M')
ROMANMED.l<- rbind(labels.R, labels.M)
ROMANMED.gpa<- gpagen(ROMANMED)</pre>

#PCA

ROMANMED.PCA<-plotTangentSpace(ROMANMED.gpa\$coords, axis1 = 1, axis2 = 2, warpgrids = TRUE) write.xlsx(ROMANMED.PCA\$pc.scores, "C:/Users/Cara Hirst/Desktop/Analysis/ROMANMED.PCA.xlsx") ROMANMED.PCA\$pc.summary ROMANMED.PCA\$sdev

#LABELS

write.xlsx(ROMANMED.l, "C:/Users/Cara Hirst/Desktop/Analysis/ROMANMED.PCAlabels.xlsx")

#CVA

ROMANMED.PCA<-procSym(ROMANMED) CVA.ROMANMED<-CVA(ROMANMED.PCA\$orpdata, ROMANMED.l) write.xlsx(CVA.ROMANMED\$CVscores, Hirst/Desktop/Analysis/ROMANMED.CVscores.xlsx") write xlsx(CVA ROMANMED\$groupmeans

write.xlsx(CVA.ROMANMED\$groupmeans, Hirst/Desktop/Analysis/ROMANMED.CVAgroupmeans.xlsx")

#OTHER CVA.ROMANMED

CVA.ROMANMED\$Dis

CVA.ROMANMED\$Var

"C:/Users/Cara

"C:/Users/Cara

#visulisation cv1

cvvis10
<15*matrix(CVA.ROMANMED\$CVvis[,1],nrow(CVA.ROMANMED\$Grandm),ncol(CVA.ROMANMED\$Grandm
m))+CVA.ROMANMED\$Grandm
cvvisNeg10 <-15*matrix(CVA.ROMANMED\$CVvis[,1],nrow(CVA.ROMANMED\$Grandm),ncol(CVA.ROMANMED\$Grandm
m))+CVA.ROMANMED\$Grandm
plot(cvvis10,asp=1)
points(cvvisNeg10,col=2)</pre>

for (i in 1:nrow(cvvisNeg10))

lines(rbind(cvvis10[i,],cvvisNeg10[i,]))

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/ROMANMED.1cvvis15.xlsx") write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/ROMANMED.1cvvisNeg15.xlsx")

#R and PM

labels.R<-subset(period, period == 'R')
labels.P<-subset(period, period == 'P')
ROMANPOST<- abind (new.coords\$'R', new.coords\$'P')
ROMANPOST.l<- rbind(labels.R, labels.P)
ROMANPOST.gpa<- gpagen(ROMANPOST)</pre>

#PCA

ROMANPOST.PCA<-plotTangentSpace(ROMANPOST.gpa\$coords, axis1 = 1, axis2 = 2, warpgrids = TRUE) write.xlsx(ROMANPOST.PCA\$pc.scores, "C:/Users/Cara Hirst/Desktop/Analysis/ROMANPOST.PCA.xlsx") ROMANPOST.PCA\$pc.summary ROMANPOST.PCA\$sdev

#LABELS

write.xlsx(ROMANPOST.l, "C:/Users/Cara Hirst/Desktop/Analysis/ROMANPOST.PCAlabels.xlsx")

#CVA

ROMANPOST.PCA<-procSym(ROMANPOST) CVA.ROMANPOST<-CVA(ROMANPOST.PCA\$orpdata, ROMANPOST.I) write.xlsx(CVA.ROMANPOST\$CVscores, Hirst/Desktop/Analysis/ROMANPOST.CVscores.xlsx")

"C:/Users/Cara

write.xlsx(CVA.ROMANPOST\$groupmeans, Hirst/Desktop/Analysis/ROMANPOST.CVAgroupmeans.xlsx") "C:/Users/Cara

<-

#OTHER

CVA.ROMANPOST

CVA.ROMANPOST\$Dis

CVA.ROMANPOST\$Var

#visulisation cv1

cvvis10

15*matrix(CVA.ROMANPOST\$CVvis[,1],nrow(CVA.ROMANPOST\$Grandm),ncol(CVA.ROMANPOST\$Grandm))+CVA.ROMANPOST\$Grandm

cvvisNeg10 <- - - - - 15*matrix(CVA.ROMANPOST\$CVvis[,1],nrow(CVA.ROMANPOST\$Grandm),ncol(CVA.ROMANPOST\$Grandm))+CVA.ROMANPOST\$Grandm</pre>

plot(cvvis10,asp=1)

points(cvvisNeg10,col=2)

for (i in 1:nrow(cvvisNeg10))

lines(rbind(cvvis10[i,],cvvisNeg10[i,]))

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/ROMANPOST.1cvvis15.xlsx") write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/ROMANPOST.1cvvisNeg15.xlsx")

#AS and M

labels.M<-subset(period, period == 'M') labels.A<-subset(period, period == 'A') MEDANGLO<- abind (new.coords\$'M', new.coords\$'A') MEDANGLO.l<- rbind(labels.M, labels.A) MEDANGLO.gpa<- gpagen(MEDANGLO)

#PCA

MEDANGLO.PCA<-plotTangentSpace(MEDANGLO.gpa\$coords, axis1 = 1, axis2 = 2, warpgrids = TRUE) write.xlsx(MEDANGLO.PCA\$pc.scores, "C:/Users/Cara Hirst/Desktop/Analysis/MEDANGLO.PCA.xlsx") MEDANGLO.PCA\$pc.summary MEDANGLO.PCA\$sdev

#LABELS

write.xlsx(MEDANGLO.l, "C:/Users/Cara Hirst/Desktop/Analysis/MEDANGLO.PCAlabels.xlsx")

#CVA

MEDANGLO.PCA<-procSym(MEDANGLO)

CVA.MEDANGLO<-CVA(MEDANGLO.PCA\$orpdata, MEDANGLO.])

write.xlsx(CVA.MEDANGLO\$CVscores, Hirst/Desktop/Analysis/MEDANGLO.CVscores.xlsx")

write.xlsx(CVA.MEDANGLO\$groupmeans, Hirst/Desktop/Analysis/MEDANGLO.CVAgroupmeans.xlsx") "C:/Users/Cara

"C:/Users/Cara

<-

#OTHER

CVA.MEDANGLO

CVA.MEDANGLO\$Dis

CVA.MEDANGLO\$Var

#visulisation cv1

cvvis10

15*matrix(CVA.MEDANGLO\$CVvis[,1],nrow(CVA.MEDANGLO\$Grandm),ncol(CVA.MEDANGLO\$Grandm))+CVA.MEDANGLO\$Grandm

cvvisNeg10 <- - - 15*matrix(CVA.MEDANGLO\$CVvis[,1],nrow(CVA.MEDANGLO\$Grandm),ncol(CVA.MEDANGLO\$Grandm))+CVA.MEDANGLO\$Grandm

plot(cvvis10,asp=1)

points(cvvisNeg10,col=2)

for (i in 1:nrow(cvvisNeg10))

lines(rbind(cvvis10[i,],cvvisNeg10[i,]))

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/MEDANGLO.1cvvis15.xlsx") write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/MEDANGLO.1cvvisNeg15.xlsx")

#AS and PM

labels.P<-subset(period, period == 'P') labels.A<-subset(period, period == 'A') ANGLOPOSTMED<- abind (new.coords\$'P', new.coords\$'A') ANGLOPOSTMED.I<- rbind(labels.P, labels.A)) ANGLOPOSTMED.gpa<- gpagen(ANGLOPOSTMED) #PCA

ANGLOPOSTMED.PCA<-plotTangentSpace(ANGLOPOSTMED.gpa\$coords, axis1 = 1, axis2 = 2, warpgrids = TRUE)		
write.xlsx(ANGLOPOSTMED.PCA\$pc.scores, Hirst/Desktop/Analysis/ANGLOPOSTMED.PCA.xlsx")	"C:/Users/Cara	
ANGLOPOSTMED.PCA\$pc.summary		
ANGLOPOSTMED.PCA\$sdev		
#LABELS		
write.xlsx(ANGLOPOSTMED.l, "C:/Users/Cara Hirst/Desktop/Analysis/ANGLOPOSTMEI	O.PCAlabels.xlsx")	
#CVA		
ANGLOPOSTMED.PCA<-procSym(ANGLOPOSTMED)		
$\label{eq:cva.anglopostmed} CVA. ANGLOPOSTMED. PCA \$ orpdata, ANGLOPOSTMED. I)$		
write.xlsx(CVA.ANGLOPOSTMED\$CVscores, Hirst/Desktop/Analysis/ANGLOPOSTMED.CVscores.xlsx")	"C:/Users/Cara	
write.xlsx(CVA.ANGLOPOSTMED\$groupmeans, Hirst/Desktop/Analysis/ANGLOPOSTMED.CVAgroupmeans.xlsx")	"C:/Users/Cara	
#OTHER		
CVA.ANGLOPOSTMED		
CVA.ANGLOPOSTMED\$Dis		
CVA.ANGLOPOSTMED\$Var		
#visulisation cv1		
cvvis10 15*matrix(CVA.ANGLOPOSTMED\$CVvis[,1],nrow(CVA.ANGLOPOSTMED\$Grandm),ncol STMED\$Grandm))+CVA.ANGLOPOSTMED\$Grandm	<- I(CVA.ANGLOPO	
cvvisNeg10 <- 15*matrix(CVA.ANGLOPOSTMED\$CVvis[,1],nrow(CVA.ANGLOPOSTMED\$Grandm),ncol STMED\$Grandm))+CVA.ANGLOPOSTMED\$Grandm	- I(CVA.ANGLOPO	
plot(cvvis10,asp=1)		
points(cvvisNeg10,col=2)		
for (i in 1:nrow(cvvisNeg10))		
lines(rbind(cvvis10[i,],cvvisNeg10[i,]))		
#WRITE.VISULISATION		
write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/ANGLOPOSTMED.1cvvis15.xlsx")		

write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/ANGLOPOSTMED.1cvvisNeg15.xlsx")

#M and PM

labels.M<-subset(period, period == 'M')
labels.P<-subset(period, period == 'P')
MEDPOSTMED<- abind (new.coords\$'M', new.coords\$'P')
MEDPOSTMED.l<- rbind(labels.M, labels.P)
MEDPOSTMED.gpa<- gpagen(MEDPOSTMED)</pre>

#PCA

MEDPOSTMED.PCA<-plotTangentSpace(MEDPOSTMED.gpa\$coords, axis1 = 1, axis2 = 2, warpgrids = TRUE)

write.xlsx(MEDPOSTMED.PCA\$pc.scores, Hirst/Desktop/Analysis/MEDPOSTMED.PCA.xlsx")

MEDPOSTMED.PCA\$pc.summary

MEDPOSTMED.PCA\$sdev

#LABELS

write.xlsx(MEDPOSTMED.l, "C:/Users/Cara Hirst/Desktop/Analysis/MEDPOSTMED.PCAlabels.xlsx")

#CVA

MEDPOSTMED.PCA<-procSym(MEDPOSTMED)

CVA.MEDPOSTMED<-CVA(MEDPOSTMED.PCA\$orpdata, MEDPOSTMED.l)

write.xlsx(CVA.MEDPOSTMED\$CVscores, Hirst/Desktop/Analysis/MEDPOSTMED.CVscores.xlsx") "C:/Users/Cara

"C:/Users/Cara

<_

"C:/Users/Cara

write.xlsx(CVA.MEDPOSTMED\$groupmeans, Hirst/Desktop/Analysis/MEDPOSTMED.CVAgroupmeans.xlsx")

#OTHER

CVA.MEDPOSTMED

CVA.MEDPOSTMED\$Dis

CVA.MEDPOSTMED\$Var

#visulisation cv1

cvvis10

15*matrix(CVA.MEDPOSTMED\$CVvis[,1],nrow(CVA.MEDPOSTMED\$Grandm),ncol(CVA.MEDPOSTMED\$Grandm))+CVA.MEDPOSTMED\$Grandm

plot(cvvis10,asp=1)

points(cvvisNeg10,col=2)
for (i in 1:nrow(cvvisNeg10))
lines(rbind(cvvis10[i,],cvvisNeg10[i,]))

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/MEDPOSTMED.1cvvis15.xlsx") write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/MEDPOSTMED.1cvvisNeg15.xlsx")

British Time Periods and Geographic Comparison

labels.N<-subset(period, period == 'N')</pre>

labels.I<-subset(period, period == 'I')</pre>

labels.R<-subset(period, period == 'R')</pre>

labels.A<-subset(period, period == 'A')</pre>

labels.M<-subset(period, period == 'M')

labels.P<-subset(period, period == 'P')

labels.G <-subset(period, period == 'G')

 $\label{eq:period} PERIODG<-\ abind\ (new.coords\$'N',\ new.coords\$'I',\ new.coords\$'A',\ new.coordsa',\ new.coordsa$

PERIODG.I<- rbind(labels.N, labels.I, labels.R, labels.A, labels.M, labels.P, labels.G)

PERIODG.gpa<- gpagen(PERIODG)

#PCA

PERIODG.PCA<-plotTangentSpace(PERIODG.gpa\$coords, axis1 = 1, axis2 = 2, warpgrids = TRUE) write.xlsx(PERIODG.PCA\$pc.scores, "C:/Users/Cara Hirst/Desktop/Analysis/PERIODG.PCA.xlsx") PERIODG.PCA\$pc.summary PERIODG.PCA\$sdev

#LABELS

write.xlsx(PERIODG.l, "C:/Users/Cara Hirst/Desktop/Analysis/PERIODG.PCAlabels.xlsx")

#CVA

PERIODG.PCA<-procSym(PERIODG) CVA.PERIODG<-CVA(PERIODG.PCA\$orpdata, PERIODG.l) write.xlsx(CVA.PERIODG\$CVscores, "C:/Users/Cara Hirst/Desktop/Analysis/PERIODG.CVscores.xlsx") write.xlsx(CVA.PERIODG\$groupmeans, "C:/Users/Cara Hirst/Desktop/Analysis/PERIODG.CVAgroupmeans.xlsx")

#OTHER

CVA.PERIODG

CVA.PERIODG\$Dis

CVA.PERIODG\$Var

#visulisation cv1

<-5*matrix(CVA.PERIODG\$CVvis[,1],nrow(CVA.PERIODG\$Grandm),ncol(CVA.PERIODG\$Grandm))+CVA.PE RIODG\$Grandm

cvvisNeg10 <- - - - - 5*matrix(CVA.PERIODG\$CVvis[,1],nrow(CVA.PERIODG\$Grandm),ncol(CVA.PERIODG\$Grandm))+CVA.PE RIODG\$Grandm

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/PERIODG.1cvvis5.xlsx")

write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/PERIODG.1cvvisNeg5.xlsx")

#visulisation cv2

cvvis10

5*matrix(CVA.PERIODG\$CVvis[,2],nrow(CVA.PERIODG\$Grandm),ncol(CVA.PERIODG\$Grandm))+CVA.PE RIODG\$Grandm

<-

cvvisNeg10 <- - - - - 5*matrix(CVA.PERIODG\$CVvis[,2],nrow(CVA.PERIODG\$Grandm),ncol(CVA.PERIODG\$Grandm))+CVA.PE RIODG\$Grandm

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/PERIODG.2cvvis5.xlsx")

write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/PERIODG.2cvvisNeg5.xlsx")

#visulisation cv3

<->cvvis10 5*matrix(CVA.PERIODG\$CVvis[,3],nrow(CVA.PERIODG\$Grandm),ncol(CVA.PERIODG\$Grandm))+CVA.PE RIODG\$Grandm

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/PERIODG.3cvvis5.xlsx")

write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/PERIODG.3cvvisNeg5.xlsx")

#visulisation cv4

<-5*matrix(CVA.PERIODG\$CVvis[,4],nrow(CVA.PERIODG\$Grandm),ncol(CVA.PERIODG\$Grandm))+CVA.PE RIODG\$Grandm

cvvisNeg10 <- - - - - 5*matrix(CVA.PERIODG\$CVvis[,4],nrow(CVA.PERIODG\$Grandm),ncol(CVA.PERIODG\$Grandm))+CVA.PE RIODG\$Grandm

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/PERIODG.4cvvis5.xlsx") write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/PERIODG.4cvvisNeg5.xlsx")

6.12 Time Period: Sex Estimation

#open data

setwd("C:/Users/Cara Hirst/Desktop/Analysis/DATA")

require(geomorph)

require(Morpho)

require(abind)

require(xlsx)

A<-read.morphologika("DataOLD.txt")

#gpa analysis

coords<-A\$coords

label<-A\$labels

Y.gpa<-gpagen(coords, curves = NULL, surfaces = NULL, PrinAxes = TRUE,max.iter = NULL, ProcD = TRUE, Proj = TRUE, print.progress = TRUE)

#create subsets
group <-factor(paste(A\$coords))
levels(group)
new.coords<-coords.subset(A= A\$coords, group= A\$labels)
names(new.coords)</pre>

#Males all periods

labels.NM<-subset(A\$labels, A\$labels == 'NM') labels.IBM<-subset(A\$labels, A\$labels == 'IBM') labels.RM<-subset(A\$labels, A\$labels == 'RM') labels.ASM<-subset(A\$labels, A\$labels == 'ASM') labels.MM<-subset(A\$labels, A\$labels == 'MM') labels.PMM<-subset(A\$labels, A\$labels == 'PMM') MALES <- abind (new.coords\$'NM', new.coords\$'IBM', new.coords\$'RM', new.coords\$'ASM', new.coords\$'PMM') MALES.L <- rbind(labels.NM, labels.IBM, labels.RM, labels.ASM, labels.MM, labels.PMM) MALES.gpa<- gpagen(MALES)

#PC scores

MALES.PCA<-plotTangentSpace(MALES.gpa\$coords, axis1 = 1, axis2 = 2, warpgrids = TRUE) write.xlsx(MALES.PCA\$pc.scores, "C:/Users/Cara Hirst/Desktop/Analysis/MALES.PCA.xlsx") MALES.PCA\$pc.summary

#labels

write.xlsx(MALES.L, "C:/Users/Cara Hirst/Desktop/Analysis/PERIODM.labels.xlsx")

#CVA scores

MALES.PCA<-procSym(MALES)

CVA.MALES<-CVA(MALES.PCA\$orpdata, MALES.L)

write.xlsx(CVA.MALES\$CVscores, "C:/Users/Cara Hirst/Desktop/Analysis/MALES.CVscores.xlsx")

write.xlsx(CVA.MALES\$groupmeans, "C:/Users/Cara Hirst/Desktop/Analysis/MALES.CVAgroupmeans.xlsx")

#other data

CVA.MALES

CVA.MALES\$Dis

CVA.MALES\$Var

#visulisation cv1

<> 15*matrix(CVA.MALES\$CVvis[,1],nrow(CVA.MALES\$Grandm),ncol(CVA.MALES\$Grandm))+CVA.MALES\$G randm

cvvisNeg10 <- - - - - - - 15*matrix(CVA.MALES\$CVvis[,1],nrow(CVA.MALES\$Grandm),ncol(CVA.MALES\$Grandm))+CVA.MALES\$G randm</p>

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/MALES.1cvvis15.xlsx") write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/MALES.1cvvisNeg15.xlsx")

#visulisation cv2

cvvis10

<_ 15*matrix(CVA.MALES\$CVvis[,2],nrow(CVA.MALES\$Grandm),ncol(CVA.MALES\$Grandm))+CVA.MALES\$G randm

cvvisNeg10 < -15*matrix(CVA.MALES\$CVvis[,2],nrow(CVA.MALES\$Grandm),ncol(CVA.MALES\$Grandm))+CVA.MALES\$G randm

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/MALES.2cvvis15.xlsx")

write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/MALES.2cvvisNeg15.xlsx")

#visulisation cv3

cvvis10

15*matrix(CVA.MALES\$CVvis[,3],nrow(CVA.MALES\$Grandm),ncol(CVA.MALES\$Grandm))+CVA.MALES\$G randm

<-

cvvisNeg10 < 15*matrix(CVA.MALES\$CVvis[,3],nrow(CVA.MALES\$Grandm),ncol(CVA.MALES\$Grandm))+CVA.MALES\$G randm

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/MALES.3cvvis15.xlsx")

write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/MALES.3cvvisNeg15.xlsx")

#visulisation cv4

cvvis10 <-15*matrix(CVA.MALES\$CVvis[,4],nrow(CVA.MALES\$Grandm),ncol(CVA.MALES\$Grandm))+CVA.MALES\$G randm

cvvisNeg10 <-15*matrix(CVA.MALES\$CVvis[,4],nrow(CVA.MALES\$Grandm),ncol(CVA.MALES\$Grandm))+CVA.MALES\$G randm

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/MALES.4cvvis5.xlsx") write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/MALES.4cvvisNeg15.xlsx")

#Females all periods labels.NF<-subset(A\$labels, A\$labels == 'NF') labels.IBF<-subset(A labels, A labels == 'IBF') labels.RF<-subset(A\$labels, A\$labels == 'RF') labels.ASF <-subset(A labels, A labels == 'ASF')labels.MF<-subset(A\$labels, A\$labels == 'MF') labels.PMF<-subset(A\$labels, A\$labels == 'PMF') FEMALES<- abind (new.coords\$'NF', new.coords\$'IBF', new.coords\$'RF', new.coords\$'ASF', new.coords\$'MF', new.coords\$'PMF') FEMALESL <- rbind(labels.NF, labels.IBF, labels.RF, labels.ASF, labels.MF, labels.PMF)</pre>

FEMALES.gpa<- gpagen(FEMALES)</pre>

#PC scores

FEMALES.PCA<-plotTangentSpace(FEMALES.gpa\$coords, axis1 = 1, axis2 = 2, warpgrids = TRUE) write.xlsx(FEMALES.PCA\$pc.scores, "C:/Users/Cara Hirst/Desktop/Analysis/FEMALES.PCA.xlsx")

#labels

write.xlsx(FEMALESL, "C:/Users/Cara Hirst/Desktop/Analysis/FEMALES.labels.xlsx")

#CVA scores

FEMALES.PCA<-procSym(FEMALES)

CVA.FEMALES<-CVA(FEMALES.PCA\$orpdata, FEMALESL)

write.xlsx(CVA.FEMALES\$CVscores, "C:/Users/Cara Hirst/Desktop/Analysis/FEMALES.CVscores.xlsx")

write.xlsx(CVA.FEMALES\$groupmeans, Hirst/Desktop/Analysis/FEMALES.CVAgroupmeans.xlsx") "C:/Users/Cara

#other data

CVA.FEMALES

CVA.FEMALES\$Dis

CVA.FEMALES\$Var

#visulisation cv1

<-15*matrix(CVA.FEMALES\$CVvis[,1],nrow(CVA.FEMALES\$Grandm),ncol(CVA.FEMALES\$Grandm))+CVA.F EMALES\$Grandm

cvvisNeg10 <-15*matrix(CVA.FEMALES\$CVvis[,1],nrow(CVA.FEMALES\$Grandm),ncol(CVA.FEMALES\$Grandm))+CVA.F EMALES\$Grandm

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/FEMALES.1cvvis15.xlsx") write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/FEMALES.1cvvisNeg15.xlsx")

#visulisation cv2

<-15*matrix(CVA.FEMALES\$CVvis[,2],nrow(CVA.FEMALES\$Grandm),ncol(CVA.FEMALES\$Grandm))+CVA.F EMALES\$Grandm

cvvisNeg10 <- - - - - - - - - - - 15*matrix(CVA.FEMALES\$CVvis[,2],nrow(CVA.FEMALES\$Grandm),ncol(CVA.FEMALES\$Grandm))+CVA.F EMALES\$Grandm

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/FEMALES.2cvvis15.xlsx")

write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/FEMALES.2cvvisNeg15.xlsx")

#visulisation cv3

<-15*matrix(CVA.FEMALES\$CVvis[,3],nrow(CVA.FEMALES\$Grandm),ncol(CVA.FEMALES\$Grandm))+CVA.F EMALES\$Grandm

cvvisNeg10 <- - - - - 15*matrix(CVA.FEMALES\$CVvis[,3],nrow(CVA.FEMALES\$Grandm),ncol(CVA.FEMALES\$Grandm))+CVA.F EMALES\$Grandm

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/FEMALES.3cvvis15.xlsx")

write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/FEMALES.3cvvisNeg15.xlsx")

#visulisation cv4

<-15*matrix(CVA.FEMALES\$CVvis[,4],nrow(CVA.FEMALES\$Grandm),ncol(CVA.FEMALES\$Grandm))+CVA.F EMALES\$Grandm

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/FEMALES.4cvvis5.xlsx") write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/FEMALES.4cvvisNeg15.xlsx")

6.13 Sex Differences: Total Sample

SEX<- substr(A\$label, 3,3)

#create subsets

group <-factor(paste(A\$coords))</pre>

new.coords<-coords.subset(A= A\$coords, group= SEX)
names(new.coords)</pre>

#SEX

labels.F<-subset(SEX, SEX== 'F')
labels.M<-subset(SEX, SEX == 'M')</pre>

SEXSEX<- abind (new.coords\$'F', new.coords\$'M') SEXSEX.l<- rbind(labels.F, labels.M) SEXSEX.gpa<- gpagen(SEXSEX)

#PCA

SEXSEX.PCA<-plotTangentSpace(SEXSEX.gpa\$coords, axis1 = 1, axis2 = 2, warpgrids = TRUE) write.xlsx(SEXSEX.PCA\$pc.scores, "C:/Users/Cara Hirst/Desktop/Analysis/SEXSEX.PCA.xlsx") SEXSEX.PCA\$pc.summary SEXSEX.PCA\$sdev

#LABELS

write.xlsx(SEXSEX.l, "C:/Users/Cara Hirst/Desktop/Analysis/SEXSEX.PCAlabels.xlsx")

#CVA

SEXSEX.PCA<-procSym(SEXSEX) CVA.SEXSEX<-CVA(SEXSEX.PCA\$orpdata,SEXSEX.l) write.xlsx(CVA.SEXSEX\$CVscores, "C:/Users/Cara Hirst/Desktop/Analysis/SEXSEX.CVscores.xlsx") write.xlsx(CVA.SEXSEX\$groupmeans, "C:/Users/Cara Hirst/Desktop/Analysis/SEXSEX.CVAgroupmeans.xlsx")

#OTHER CVA.SEXSEX CVA.SEXSEX\$Dis CVA.SEXSEX\$Var

#visulisation cv1

cvvis10
8*matrix(CVA.SEXSEX\$CVvis[,1],nrow(CVA.SEXSEX\$Grandm),ncol(CVA.SEXSEX\$Grandm))+CVA.SEXSEX\$Grandm)

cvvisNeg10
 8*matrix(CVA.SEXSEX\$CVvis[,1],nrow(CVA.SEXSEX\$Grandm),ncol(CVA.SEXSEX\$Grandm))+CVA.SEXSEX\$Grandm

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/SEXSEX.1cvvis8.xlsx") write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/SEXSEX.1cvvisNeg8.xlsx")

6.14 Status Comparison

#open data
setwd("C:/Users/Cara Hirst/Desktop/Analysis")
require(geomorph)
require(Morpho)
require(abind)
require(xlsx)
A<-read.morphologika("Data.txt")</pre>

#gpa analysis

coords<-A\$coords

label<-A\$labels

Y.gpa<-gpagen(coords, curves = NULL, surfaces = NULL, PrinAxes = TRUE,max.iter = NULL, ProcD = TRUE, Proj = TRUE, print.progress = TRUE)

STATUS<- substr(A\$label,6,6) group <-factor(paste(A\$coords)) new.coords<-coords.subset(A= A\$coords, group= STATUS) names(new.coords)

labels.H<-subset(STATUS, STATUS== 'H')
labels.L<-subset(STATUS, STATUS == 'L')</pre>

STATUS<- abind (new.coords\$'H', new.coords\$'L') STATUS.l<- rbind(labels.H, labels.L) STATUS.gpa<- gpagen(STATUS)

#PCA

STATUS.PCA<-plotTangentSpace(STATUS.gpa\$coords, axis1 = 1, axis2 = 2, warpgrids = TRUE) write.xlsx(STATUS.PCA\$pc.scores, "C:/Users/Cara Hirst/Desktop/Analysis/STATUS.PCA.xlsx") STATUS.PCA\$pc.summary STATUS.PCA\$sdev

#LABELS

write.xlsx(STATUS.l, "C:/Users/Cara Hirst/Desktop/Analysis/STATUS.PCAlabels.xlsx")

#CVA

STATUS.PCA<-procSym(STATUS) CVA.STATUS<-CVA(STATUS.PCA\$orpdata,STATUS.l) write.xlsx(CVA.STATUS\$CVscores, "C:/Users/Cara Hirst/Desktop/Analysis/STATUS.CVscores.xlsx") write.xlsx(CVA.STATUS\$groupmeans, "C:/Users/Cara Hirst/Desktop/Analysis/STATUS.CVAgroupmeans.xlsx")

#OTHER

CVA.STATUS

CVA.STATUS\$Dis

CVA.STATUS\$Var

#visulisation cv1

<-10*matrix(CVA.STATUS\$CVvis[,1],nrow(CVA.STATUS\$Grandm),ncol(CVA.STATUS\$Grandm))+CVA.STATUS \$Grandm

cvvisNeg10 <- - - - - 10*matrix(CVA.STATUS\$CVvis[,1],nrow(CVA.STATUS\$Grandm),ncol(CVA.STATUS\$Grandm))+CVA.STATUS\$Grandm
 \$Grandm

plot(cvvis10,asp=1)

points(cvvisNeg10,col=2)

for (i in 1:nrow(cvvisNeg10))

lines(rbind(cvvis10[i,],cvvisNeg10[i,]))

#WRITE.VISULISATION

write.xlsx(cvvis10, "C:/Users/Cara Hirst/Desktop/Analysis/STATUS.1cvvis15.xlsx") write.xlsx(cvvisNeg10, "C:/Users/Cara Hirst/Desktop/Analysis/STATUS.1cvvisNeg15.xlsx")

6.15 Status: Sex Comparison

#open data
setwd("C:/Users/Cara Hirst/Desktop/Analysis/DATA")
require(geomorph)
require(Morpho)
require(abind)
require(xlsx)
A<-read.morphologika("DatastatusSEX.txt")</pre>

#gpa analysis

coords<-A\$coords

label<-A\$labels

```
Y.gpa<-gpagen(coords, curves = NULL, surfaces = NULL, PrinAxes = TRUE,max.iter = NULL, ProcD = TRUE,
Proj = TRUE, print.progress = TRUE)
```

STATUSSEX<- substr(A\$label,4,5) group <-factor(paste(A\$coords)) new.coords<-coords.subset(A= A\$coords, group= STATUSSEX) names(new.coords)

labels.FH<-subset(STATUSSEX, STATUSSEX== 'FH')
labels.FL<-subset(STATUSSEX, STATUSSEX == 'FL')
labels.MH<-subset(STATUSSEX, STATUSSEX == 'MH')
labels.ML<-subset(STATUSSEX, STATUSSEX == 'ML')</pre>

STATUSSEX<- abind (new.coords\$'FH', new.coords\$'FL', new.coords\$'MH', new.coords\$'ML') STATUSSEX.l<- rbind(labels.FH, labels.FL, labels.MH, labels.ML) STATUSSEX.gpa<- gpagen(STATUSSEX)

#PCA

STATUSSEX.PCA<-plotTangentSpace(STATUSSEX.gpa\$coords, axis1 = 1, axis2 = 2, warpgrids = TRUE) write.xlsx(STATUSSEX.PCA\$pc.scores, "C:/Users/Cara Hirst/Desktop/Analysis/STATUSSEX.PCA.xlsx") STATUSSEX.PCA\$pc.summary STATUSSEX.PCA\$sdev

#LABELS

write.xlsx(STATUSSEX.l, "C:/Users/Cara Hirst/Desktop/Analysis/STATUSSEX.PCAlabels.xlsx")

#CVA

STATUSSEX.PCA<-procSym(STATUSSEX) CVA.STATUSSEX<-CVA(STATUSSEX.PCA\$orpdata,STATUSSEX.l) write.xlsx(CVA.STATUSSEX\$CVscores, "C:/Users/Cara Hirst/Desktop/Analysis/STATUSSEX.CVscores.xlsx") write.xlsx(CVA.STATUSSEX\$groupmeans, "C:/Users/Cara Hirst/Desktop/Analysis/STATUSSEX.CVAgroupmeans.xlsx")

#OTHER

CVA.STATUSSEX

CVA.STATUSSEX\$Dis

CVA.STATUSSEX\$Var

#visulisation cv1

cvvis5

5*matrix(CVA.STATUSSEX\$CVvis[,1],nrow(CVA.STATUSSEX\$Grandm),ncol(CVA.STATUSSEX\$Grandm))+CVA.STATUSSEX\$Grandm

<-

cvvisNeg5 <- -- -- -- 5*matrix(CVA.STATUSSEX\$CVvis[,1],nrow(CVA.STATUSSEX\$Grandm),ncol(CVA.STATUSSEX\$Grandm))+C VA.STATUSSEX\$Grandm

#WRITE.VISULISATION

write.xlsx(cvvis5, "C:/Users/Cara Hirst/Desktop/Analysis/STATUSSEX.1cvvis15.xlsx")

write.xlsx(cvvisNeg5, "C:/Users/Cara Hirst/Desktop/Analysis/STATUSSEX.1cvvisNeg15.xlsx")

#visulisation cv2

<->cvvis5 5*matrix(CVA.STATUSSEX\$CVvis[,2],nrow(CVA.STATUSSEX\$Grandm),ncol(CVA.STATUSSEX\$Grandm))+C VA.STATUSSEX\$Grandm

#WRITE.VISULISATION

write.xlsx(cvvis5, "C:/Users/Cara Hirst/Desktop/Analysis/STATUSSEX.2cvvis15.xlsx")

write.xlsx(cvvisNeg5, "C:/Users/Cara Hirst/Desktop/Analysis/STATUSSEX.2cvvisNeg15.xlsx")

#visulisation cv3

cvvis5 5*matrix(CVA.STATUSSEX\$CVvis[,3],nrow(CVA.STATUSSEX\$Grandm),ncol(CVA.STATUSSEX\$Grandm))+C VA.STATUSSEX\$Grandm

#WRITE.VISULISATION

write.xlsx(cvvis5, "C:/Users/Cara Hirst/Desktop/Analysis/STATUSSEX.3cvvis15.xlsx") write.xlsx(cvvisNeg5, "C:/Users/Cara Hirst/Desktop/Analysis/STATUSSEX.3cvvisNeg15.xlsx")