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Abstract 

In this thesis we develop rigorous theoretical models for the simulation of the iron 

sulfides mackinawite, greigite and cubic FeS using both ab initio and interatomic 

potential methods. 

 The mineral mackinawite (tetragonal FeS) takes a layered PbO-type structure, 

with Fe atoms coordinated tetrahedrally to S ligands. We have used GGA+U 

calculations to show that the inter-layer interaction is very difficult to accurately 

describe using this form of DFT, and instead a single-layer formulism is developed 

which allows the modelling of the electronic and magnetic properties of a single layer 

of mackinawite. These results are used to derive an interatomic potential to 

investigate the surfaces of this phase, and we use the calculated surface energies to 

successfully reproduce the observed crystal morphology of mackinawite. The effect of 

impurity atoms in the interlayer sites is investigated, and it is found that these 

contribute considerably to the stabilisation of the mackinawite structure. 

 Greigite (Fe3S4) is the iron sulfide analogue of the famous iron oxide 

magnetite. We use spin-polarised GGA+U calculations to model the magnetic and 

electronic structure of greigite, and this phase is found to be most accurately described 

using an applied Ueff value of 1 eV. Further calculations show that a Verwey-type low 

temperature transition in greigite is energetically unfavourable. 

 Cubic FeS takes the cubic sphalerite structure at room temperature. A low 

temperature transition to an antiferromagnetic orthorhombic structure has been 

observed experimentally. GGA+U calculations demonstrate that applying a value for 

the Hubbard Ueff parameter of 2 eV provides an excellent description of both the low- 

and high-temperature structures. It is found that the previously derived potential for 
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mackinawite predicts the cubic FeS structure as well as non-spin-polarised GGA. 

 The work described in this thesis has provided a greater understanding of the 

electronic, magnetic and structural properties of these iron sulfides. 
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1. Introduction 

 

 

 

The materials containing iron and sulfur are still a relatively infrequently studied 

group of compounds, whose importance in nature is only beginning to be widely 

recognised (Morse et al., 1987; Rickard et al., 2001; Rickard & Luther, 2006; Lill & 

Mühlenhoff, 2008). Due to their readiness to oxidise, these compounds were 

originally thought to play only a small role in natural processes; however recent 

investigations into the deep oceans of Earth, where the normally metastable phases of 

Fe-S minerals have been found to be stable over long timescales, have shown this 

assumption to be erroneous (Rickard & Morse, 2005). Iron sulfide clusters, complexes 

and solids are now considered to play major roles in the chemistry of marine systems 

(Rouxel et al., 2005), proto-planetary disks (Keller et al., 2002) and inorganic 

biochemistry (Rees & Howard, 2003). An excellent review of the literature is given in 

the book by Vaughan and Craig (1978) and the three review papers by Rickard et al. 

(2005; 2006; 2007). This thesis considers the solid phases in the Fe-S system, and is 

structured as follows: 

 Chapter one introduces the family of bulk iron sulfide materials, and discusses 

the moderately well studied phases pyrite and pyrrhotite; particular emphasis is placed 

on previous theoretical studies present in the literature. A discussion of current 

research into the role of Fe-S minerals in the origin of life, their occurrence around 

black smokers and their incorporation into biological systems is also presented. 

 Chapter two presents and explains the theoretical techniques used to build the 
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physical models of these materials, namely density functional theory (DFT) and 

interatomic potential (IP) methods. Extensions to the local density generalised 

gradient approximations, in particular the Hubbard U correction, are also discussed.  

 Chapter three examines the layered, tetragonal iron sulfide mackinawite (FeS) 

using DFT and IP techniques. The effect of impurity atoms in the interstitial 

octahedral sites between layers is also investigated using DFT. 

 Chapter four presents the investigation of the greigite (Fe3S4) spinel structure 

using DFT. In addition, a theoretical monoclinic form of greigite is investigated, 

analogous to that seen below the Verwey temperature in the isostructural iron oxide 

magnetite. 

 Chapter five details the modelling of the high- and low-temperature cubic FeS 

structures, with its magneto-structural transition, and Chapter 6 discusses the results 

of the previous chapters and suggests further avenues for research in this area. 

 

1.1 Iron-Sulfur Materials 

The only stable binary solids in the Fe-S system above 200°C and near ambient 

temperatures are the pyrrhotites, Fe1-xS (where x = 0 represents the stoichiometric 

end-member troilite, FeS), and pyrite, FeS2 (Taylor, 1980). Many of the metastable 

phases occur widely at lower temperatures, in both natural and artificial 

environments. Figure 1.1 illustrates the known system of iron sulfides. 

 Ward (1970) made the distinction between the sulfides of iron in which S-S 

chemical bonding is not a pronounced structural feature and those where it is 

important in the stabilisation of the structures. The members of the first of these 

categories have tended to be poorly studied, primarily due to their instability under 
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oxidising conditions and difficulty in their synthesis. This study will concentrate upon 

the minerals in this first category, namely mackinawite (FeS), greigite (Fe3S4) and 

cubic FeS. The latter category includes both pyrite and its polymorph marcasite; these 

structures are discussed in the next two sections. 

Figure 1.1 – Diagram showing the low temperature phase relations in the FeS system. 

Solid arrows indicate transformations that have been experimentally verified. 

Reproduced from Livens et al. (2004). Amorphous FeS and wurtzite FeS have not 

been observed. 

 

 Of the seven Fe-S materials known to exist, only troilite, pyrite and marcasite 

are to any extent well represented in the literature by either experimental or 

theoretical studies. Cubic FeS, mackinawite, and greigite have only patchy 

experimental data available. Very little data are available on the rhombohedral iron 

sulfide phase smythite, Fe9S11, (Fleet, 1982; Furukawa & Barnes, 1996) and due to 

confusion over its structure and composition this phase will not be considered in this 
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work. 

 A variety of other Fe-S phases have been suggested in addition to those listed 

above, most commonly by analogy with isomorphic Fe-O materials. For instance, 

although no conclusive evidence has been found that a haematite-analogue iron 

sulfide exists, it is on occasion reported in the literature; most recently as a hexagonal 

phase inside pyrrhotite samples (Farina et al., 1990). This phase would be assigned 

the formula α-Fe2S3, in analogy with the oxide. Similarly, an iron-sulfur analogue to 

the lacunary iron oxide maghemite (γ-Fe2O3), which would be assigned the formula γ-

Fe2S3, has been hypothesised to exist by Letard et al. (2005), and was suggested to 

form from the presence of ordered iron atom vacancies in greigite. 

 This thesis aims to provide theoretical descriptions of the mackinawite, 

greigite and cubic FeS phases. Before attention turns to these poorly understood 

materials, we briefly review previous studies of the pyrite and pyrrhotite phases. 

 

1.2 Pyrite (Cubic FeS2) and Marcasite (Orthorhombic FeS2) 

The chemical formula of the iron sulfide pyrite, FeS2, was determined at the 

beginning of the 19th century (Hatchett, 1804), and over a hundred years later this 

mineral was one of the first crystal structures determined by the X-ray diffraction 

method (Bragg, 1913). Since then a wide variety of empirical and theoretical studies 

have focussed on pyrite, predominately due to its high stability (Kullerud & Yoder, 

1959), ubiquity (about 5 million tons of pyrite are produced annually by the worlds 

oceans) (Rickard & Luther, 2007) and its importance as an ore mineral (Vaughan & 

Craig, 1978). The stability of this phase is the reason why pyrite is suspected to be the 

common end product which evolves from the other iron sulfides under normal 

conditions (Hunger & Benning, 2007), although this assertion remains to be proven 
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conclusively (Rickard & Luther, 2006). 

 Pyrite crystallises in the NaCl structure, with Fe2+ in the Na+ sites and the 

centre of mass of the dimeric sulfur S2
2- located at Cl- sites. The molecular axis of the 

S2
2- dimers is aligned along the four equivalent (111) directions (Huggins, 1922). This 

cubic structure possesses the lattice parameters a = b = c = 5.418 Å, with all iron 

atoms octahedrally arranged in relation to the sulfur ligands. Pyrite is diamagnetic (it 

exhibits magnetism only in a strong magnetic field), and as such its six Fe d-orbital 

electrons are paired and completely fill the t2g orbitals. This low-spin configuration of 

the Fe2+ is an indication of the strength of the ligand field due to the disulfide anions 

(Vaughan & Craig, 1978). Semiconducting properties are observed, with a measured 

energy gap of around 0.9eV (Schlegal & Wachter, 1979) and natural pyrite samples 

are known to exhibit both n- and p-type behaviour, on occasion within the same 

crystal (Rimstidt & Vaughan, 2003). It is this semiconducting behaviour which has 

attracted major interest in the use of pyrite for solar energy systems (Ellmer & 

Hopfner, 1997). 

 Experiments by Benning et al. (2000) suggested that below 100°C 

mackinawite is the precursor in the formation of pyrite, and that an oxidant is required 

for the formation to occur. The reaction was said to proceed via the intermediate, 

mixed valence (Fe2+/Fe3+) phase greigite (Fe3S4). The difficulty in determining 

reaction energies lies in the incorrect values used for the Gibbs free energy of 

formation for the hexaaqua Fe2+ ion (Parker & Khodkovskii, 1995). However, it has 

been noted that the solid-state transition of greigite to pyrite has not been observed 

conclusively, and is structurally and chemically improbable as a process; the 

considerable rearrangement of the S lattice which is required creates a massive energy 

barrier (Rickard & Luther, 2006). 
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 Density functional theory (Muscat et al., 2002), MO (Molecular Orbital) 

(Bither et al., 1968; Luther, 1987) and interatomic potential (de Leeuw et al., 2000) 

theoretical treatments have proved very useful in the description of the pyrite phase. 

Using classical interatomic potentials derived for the FeS2 structure, de Leeuw et al. 

(2000) determined surface stabilities, water adsorption energies and the effects of 

stepped-surfaces for the {100}, {110} and {111} surfaces. Muscat et al. (2002) found 

that DFT-GGA predicts to within a good accuracy the unit cell parameters, internal S 

coordinates and S-S bond distance of the FeS2 structure; however Hartree-Fock (HF) 

calculations failed to reproduce these properties, presumably due to an 

underestimation of the level of electron correlation present. It is also found that both 

GGA and HF incorrectly predict pyrite to be a conductor, presumably for the same 

reason. Further DFT studies using improved GGA formalisms have correctly 

predicted the bulk band-gap, and have advanced to the investigation of the (100) and 

(110) surfaces of pyrite to determine surface relaxations and energies (Hung et al., 

2002); a further study examined the (001) surface (Cai & Philpott, 2004). Other 

studies have extended these models to examine the behaviour of a variety of 

adsorbates on these surfaces, for example As(OH)3 (Blanchard et al., 2007), xanthate 

(Hung et al., 2004),  H2S (Stirling et al., 2003a) and water (Stirling et al., 2003b). 

 Marcasite is the sole known polymorph of pyrite, and this phase is also 

characterised by the presence of dimeric sulfur anions, S2
2-. Marcasite is orthorhombic 

with the lattice parameters a = 4.443 Å, b = 5.424 Å and c = 3.387 Å, and space group 

pnnm (Tossell & Vaughan, 1981). The formation mechanism of marcasite is unclear 

(Schoonen & Barnes, 1991), but the electronic structure has been modelled in much 

the same way as pyrite (Bullett, 1982; Reich & Becker, 2006), suggesting that 

theoretical methods, and DFT in particular, is successful in the description of both of 
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these phases. 

 

1.3 The Pyrrhotites 

The pyrrhotite minerals (Fe1-xS with 0 ≤ x ≤ 0.125) vary from the cation-deficient, 

monoclinic NiAs-structure Fe7S8 to the slightly-distorted NiAs-like structure troilite 

(the FeS end-member, where x = 0) (Vaughan & Craig, 1978). The members of this 

mineral family demonstrate a variety of magnetic behaviour depending on the 

stoichiometry. For example, the monoclinic form shows ferrimagnetism, while 

hexagonal pyrrhotite (Fe11S12) has an antiferromagnetic nature. The pyrrhotites are 

rarely seen in marine environments due to their propensity to convert to pyrite 

(Rickard & Luther, 2007). 

 Troilite has prompted a number of theoretical studies, mainly due to its 

discovery in meteorites (Takele & Hearne, 2001) and suspected presence in the cores 

of planets (Lie et al., 2001). Studies of troilite are of particular interest to the current 

work since DFT (Raybaud et al., 1997; Hobbs & Hafner, 1999) and also DFT+U 

(Rohrbach et al., 2003) techniques have been applied to this phase. These studies 

found that although the phase transition between the non-magnetic NiAs-type and the 

antiferromagnetic troilite phase is well described, the semiconducting gap is not 

predicted in a similar manner to that found in the pyrite studies. The addition of a 

Hubbard Ueff value of around 1 eV corrects this deficiency (to a degree), although 

different values of Ueff are needed to accurately predict different properties (See 

section 2.2.6 for a discussion of the Hubbard U parameter). Wells et al. (2004) studied 

the troilite, pyrrhotite and MnP structures using DFT in the generalised gradient 

approximation (GGA) approximation and found that this correctly predicted 

structures and transition pressure; however this study did not consider the band 
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structure in any way. 

 

1.4 Iron Sulfides and Black Smokers 

The floor of the deep ocean, along mid-ocean ridges, is home to a large number of 

hydrothermal vents, first discovered in 1977 and given the name “black smokers” 

(Jannasch & Wirsen, 1979), so called because the precipitated sulfides and sulphates 

colour the surrounding waters black. These particulates are formed when superheated 

water from beneath the Earth’s crust is emitted through the ocean floor, forming 

chimney-like structures with heights of up to 20 feet and temperatures of around 

350°C. This superheated water contains a large variety of minerals from the crust, 

most notably sulfide compounds. As the superheated water hits the cold marine waters 

a number of materials are deposited, including iron sulfides (Luther et al., 2001). 

Another striking property of the black smokers is the rich variety of elements and 

compounds they contain, including Cu, Fe, H2S, Zn, Na, Cl and Mg, which has 

important implications for the incorporation of impurities in sulfides (Von Damm, 

1990). As a result, the walls of black smokers consist of zinc sulfides, iron sulfides 

and copper-iron sulfides in the interstitial sites between deposits of anhydrite, CaSO4 

(Verati et al., 1999). 

 Black smokers lie at the centres of entire ecosystems, which, in the absence of 

light from the sun, derive their energy from either chemosynthesis or use the glow 

from the black smoker for photosynthesis (Takai et al., 2001). This had led to 

suggestions that life itself evolved in these environments and that Fe-S compounds are 

key components in this process; the so called “iron-sulfur world hypothesis” 

(Wächtershäuser, 2000). 
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1.5 The Role of Iron Sulfides in the Origin of Life 

It is accepted that three conditions needed to be satisfied for the creation of organic 

molecules upon the early Earth (Cairns-Smith et al., 1992): The presence of organic 

elements in sufficient concentrations; a highly reducing environment; and a suitable 

location far from the highly oxidizing UV radiation of the sun. The final criterion is 

thought to have been satisfied deep in the early ocean, while the donation of electrons 

through the oxidation of Fe(II) to Fe(III) is considered the most plausible source of 

electrons for reduction, since iron is the main constituent of the Earth’s core and, 

because of its two common valence states, may accept, store and transfer electrons 

under various conditions (Russell & Martin, 2004). It had been suggested 

(Wächtershäuser, 1997)  that the formation of pyrite was the principle energy source 

of a surface metabolist, however this was discounted on the grounds that the iron in 

pyrite is unable to partake in metabolism reactions (Schoonen et al., 1999). This 

prompted the investigation of other FeS compounds as the vital reactants.  

 Those compounds which conduct electrons, and where the valence state of 

iron can be switched readily, seem plausible contenders. These iron minerals include  

mackinawite (FeS) and the mixed valence, more oxidised greigite (Fe3S4). 

Development of this theory has led to the suggestion that life originated around deep 

ocean springs on the floor of the Hadean Ocean around 4.2 thousand million years 

ago (Russell et al., 1994, 1997, 2004). This hot, anaerobic deep sea environment 

contained both bi-sulfide bearing alkaline seepage waters from underwater vents and 

acidulous (due to high levels of CO2), Fe-bearing ocean water from which 

mackinawite (FeS) formed as a colloidal membrane at the redox and pH front where 

these waters met. It is thought that the incorporation of Ni leads to this semi-

permeable membrane acting as a catalytic surface / boundary for the transfer of 
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electrons for reduction reactions to form organic molecules. 

 The theory visualises that the mackinawite membrane expanded due to 

thermal differential effects until failure, when daughter bubbles of FeS were 

produced, which acted as permeable membranes. These bubbles would have 

encapsulated a highly reduced, high pH hydrothermal solution, separate from the low 

pH external solution. Empirical studies into the initial reactions of life have confirmed 

that high concentrations of organic molecules are required for the synthesis of amino 

acids, far higher than those present in the primordial ocean as a whole. The presence 

of these bubbles or coacervates (Walde et al., 1994) encapsulated by an iron sulfide 

membrane offer plausible “reaction chambers” within which sufficient concentrations 

of reactants would be able to congregate. 

 The earliest `living` organisms, distant ancestors of the modern prokaryote 

(and all life on Earth), are thought to have been anaerobic chemoautotrophic microbes 

(Thauer et al., 1977). Similar microbes around today utilise redox enzymes containing 

Ni-S and Fe-S clusters to metabolize hydrogen, carbon dioxide and carbon monoxide. 

These enzymes contain a variety of Ni-Fe-S compounds, and are likely to have 

evolved from primordial reactions. 

 The mackinawite membrane is envisaged to go through geochemical 

transformations, which formed the mixed-valence catalytic phases which use H2 as 

the primary electron donor. Russell and Hall (1997) suggested greigite (Fe3S4) and 

Violarite (FeNi2S4) in addition to mackinawite (Cody, 2004) as favourable catalysts, 

due to their similarity to the cubane structure (Fe4S4) with four iron ferrodoxins. FeS 

is a plausible catalyst, and has been shown to be a strong reactant (Heinen & Lauwers 

1996). It is the catalytic nature of these phases that is thought to promote the key 

redox chemistry necessary for metabolism. Practical interest in Fe-S materials and 
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cubane clusters centres on the possibility of their use in carbon fixation, since 

biological systems, such as Fe-S clusters, have been found to be capable of activating 

and converting the CO2 molecule into a range of organic materials despite its high 

thermodynamic stability (Russell & Martin 2004; Volbeda et al., 2005). The similarity 

in the structures of these cubane clusters to those of the iron sulfides mackinawite and 

greigite indicates that these minerals offer a valuable route of enquiry. 

 The implication of metastable iron sulfide compounds in the development of 

life highlights the need for a thorough understanding of these materials, their surface 

chemistry, and their propensity for both phase transitions and catalytic behaviour. 

 

1.6 Iron Sulfides in Biological Systems 

Both greigite and pyrite have been found in the shell of a deep-sea dwelling mollusc, 

which lives in the vicinity of black smokers (Goffredi et al., 2004). The presence of 

greigite provides a magnetic character to the snail’s shell, for reasons that are at 

present unclear. The iron sulfide scales do however bear strong resemblance to those 

found to belong to the very first complex animals, which lived in the Cambrian period 

(540-500 million years ago) (Yi et al., 1989). Indeed, the magnetic nature of greigite 

is used extensively by strains of magnetostatic bacteria, where the mineral is grown 

by the organism into magnetosome morphologies (Pósfai et al., 1998b). These needle-

like structures are used by the bacteria to align with the Earth’s geomagnetic field in 

order to navigate to regions of optimal oxygen concentration (Blakemore, 1975). 

 Iron sulfide clusters, which are very similar in structure to areas of the surfaces 

of the metastable Fe-S solid phases, are widespread in biochemistry where they make 

up the active centres of FeS proteins such as ferrodoxin (Nicolet et al., 1999). 
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1.7 Summary 

A review of the literature on iron sulfides suggests that there is a great deal of scope 

for further theoretical studies regarding these phases. Chapters three, four and five 

will examine in detail the current understanding of the iron sulfide phases in question 

(mackinawite, greigite and cubic FeS respectively), and describe the models we have 

developed for their description. The importance of working theoretical models for 

these iron sulfides should not be underestimated, since this would lay the groundwork 

for a more thorough understanding of iron sulfide chemistry, and provide a means to 

further examine the richness of the electronic and magnetic behaviour observed in 

these materials. The analogy of pyrite is instructive; once the DFT model was shown 

to provide a good description of the bulk solid, studies of the surfaces (and reactions 

which take place in the vicinity of those surfaces) were able to proceed and provide 

important insights. 
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2. Computational Methods 

 

 

 

Materials modelling methods can be divided into two categories, which differ in the 

level of physical theory which they implement. The classical interatomic potential 

(IP) methodology treats atoms as idealised nomological objects which possess no 

internal structure, and interact only according to different forms of potential energy 

relations; the second type, ab initio electronic structure methods, consider the 

electronic structure of materials using the modern mathematical framework of 

quantum mechanics. This study uses both methods, as each has its own distinct 

advantages for the purposes of describing different physical systems. In general, IP 

methods are able to deal with systems composed of a far greater number of atoms (of 

the order of 100,000) than ab initio techniques (which can manage up to around a 

100). They are, however, unable to provide any details regarding the electronic 

structure of the systems under consideration, which is the domain where ab initio 

techniques come into their own. 

 In this study, IP modelling is implemented within the programs GULP (the 

General Utility Lattice Program) and METADISE (Minimum Energy Techniques 

Applied to Dislocations, Interface and Surface Energies). GULP is a molecular 

modelling program which facilitates the fitting of interatomic potentials to energy 

surfaces and empirical data, in addition to the predictive modelling of material 

properties. METADISE is a surface modelling program that implements a two-region 

approach for the calculation of surface energies of planar, dislocated and other forms 
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of crystal surfaces. 

 The Ab initio density functional theory (DFT) techniques used in this thesis 

are implemented within the program VASP (Vienna Ab initio Simulation Package), a 

comprehensive computer modelling package for performing quantum mechanical 

energy minimisation and molecular dynamics simulations using the plane-augmented-

wave (PAW) method and a plane wave basis set. 

 This chapter gives an overview of the theoretical background and 

computational implementation of these methods. 

 

2.1 Interatomic Potential Techniques 

2.1.1 Interatomic Potential Models 

Interatomic potential techniques are based upon the Born model of solids (Born and 

Huang, 1954), which assumes that the ions in a crystal lattice interact solely through 

long- and short-range electrostatic forces. Although such simulations can provide no 

information relating to the electronic structure of materials, they do afford a powerful 

and tractable method for modelling crystal structures and physical phenomena such as 

surface stability, defect characteristics or crystal growth. The GULP program (Gale 

2003) permits the fitting of potential energy terms to either experimental data or data 

acquired from other, higher quality calculations, in order to provide an accurate 

physical model of the system in question. 

 The fitting of interatomic potential parameters uses the “sum of squares” 

method to measure the degree of agreement between the potential model and the 

known quantities which are to be fitted. This “fit” is denoted by the parameter F, and 

is defined according to: 
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 ( )2

sobservableall
calcideal ffWF ∑ −=       (2.1.1) 

where fcalc is the calculated quantity, fobs is the observed quantity and W is a weighting 

factor. The aim of the fit is to minimise this sum of squares by varying the potential 

parameters, where F = 0 corresponds to a perfect fit.  

 The potential energy relation between two ions takes the familiar form of the 

Coulomb potential: 

 φ
r
qq

U 21 +=         (2.1.2) 

where the first term on the right-hand side represents the long-range electrostatic 

interaction between atoms; q1 and q2 are the charges assigned to the first and second 

atoms respectively, and r is the separation between the atomic centres. The second 

term on the right-hand side, φ, represents the short-range forces acting between atoms. 

These short range interatomic forces, which include both the electrostatic repulsive 

forces and the Van der Waals interaction acting between neighbouring electron charge 

clouds, are described by simple analytical functions. The short range cation-anion and 

anion-anion interactions are described using an effective Buckingham potential: 
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where Φij represents the potential, rij the distance and Aij, ρij and Cij represent the 

potential parameters describing the interaction between an ion at site i and a second 

ion at site j. According to the classical picture of the atom, Aij and ρij correspond to the 

size and hardness of the ion, respectively. However, in an effective pair potential such 

as that used here, and in most other instances, the Aij and ρij parameters 

interdependently govern the first term, and are mathematically inseparable. In this 

case, the first term represents the short-range repulsive interaction between the ions, 
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while the second term represents the attractive Van der Waals (dispersive) forces. 

 The electronic polarisability of the sulfur ion is accounted for via the shell 

model of Dick and Overhausen (1958), in which each polarisable ion is represented 

by a core and a massless shell, connected by a theoretical “spring” with an associated 

spring constant. The polarisability of this core-shell system is determined by the 

spring constant and the charges assigned to the core and shell. The form of the 

interaction is that of a harmonic potential: 

 ( ) ( )2

0ijijij
shellcore

ij rrk
2
1

rΦ −=−       (2.1.4) 

where kij is the bond force constant, rij is the separation between cation i and anion j 

and r0 is the same separation at equilibrium. 

 Finally, the long-range Coulombic interactions between ions are calculated 

using Ewald summation (Ewald, 1921). Since bulk materials are considered to be 

composed of infinitely repeating unit cells, the inverse square form of the Coulomb 

interaction leads to the potential energy exponentially increasing outwards from a 

point. In order to prevent this infinity, the summation of the interaction energies is 

split into a short-range part and a long-range part, with the stipulations of charge 

neutrality and zero dipole moment. The Coulomb summation proceeds in real space 

over the short-range part, while the long-range summation is conducted over Fourier 

space, which has the advantage of converging rapidly (Kittel, 1986). 

 

2.1.2 Surface Calculations 

The treatment of surfaces in the IP calculations is implemented in the METADISE 

program (Watson et al., 1996), which is adept at dealing with the construction and re-

construction of polar surfaces. This code determines unrelaxed and relaxed surface 
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energies and surfaces structures, and follows the surface-typing scheme of Tasker 

(1979). In this formulism there are three possible ionic surface types, defined in the 

following way: 

1. Type I surfaces are uncharged and no dipole exists in the stacking plane; 

2. Type II surfaces have no dipole normal to the surface, but contain a net charge 

per stacking plane; 

3. Type III surfaces possess a dipole normal to the surface, and each stacking 

plane is alternately charged. 

  

 The Coulombic interactions are calculated using a variant of the Ewald sum, 

the Parry method (Parry, 1975). This considers the crystal as a series of charged 

planes of infinite size, terminating at the surface in question. Because the Parry sum 

will stretch to infinity if a net dipole exists normal to the surface, any type III surface 

must be reconstructed in such a way as to remove the surface dipole. 

 A useful measure of the stability of crystal surfaces is the surface energy, 

denoted by γ, which is defined as the energy per unit area that is required to form the 

crystal surface, relative to the bulk. This is given by: 

 
A

UU Bs −
=γ         (2.1.5) 

where Us represents the internal energy of region 1, UB represents the internal energy 

of an equivalent number of bulk atoms in region 2, and A is the surface area. The 

lower the surface energy, the more stable the surface. 

 Once the surface type has been characterised, the theory considers the crystal 

as consisting of charged stacks of planes of atoms periodic in two dimensions and 

parallel to the surface being investigated. A block of such stacks is chosen which 

extends into the crystal and models a specific area of surface. This block is further 
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separated into two regions: region 1 is the “near-surface” region, which includes the 

surface plane and a few layers underneath; and region 2 is a “bulk” region below 

region 1 (Figure 2.1). The atoms of region 1 are permitted to relax to their surface 

equilibrium positions, while those of the bulk are fixed at the bulk equilibrium 

positions. The sizes of both blocks are increased until the surface energy no longer 

varies, signifying convergence.  

   

Figure 2.1 – Schematic representation of the two region approach used to model a 

single surface block. 

 

 

2.2 Density Functional Theory 

2.2.1 Introduction 

Quantum theory describes the physical world on the atomic scale, where the 

quantization or “graininess” of quantities, such as energy, becomes apparent. This 

leads to the formulation of physical models on the nanoscale that are very different 

from those used in classical physics. The initial implementations of quantum 

mechanical calculations were based upon the determination of the wavefunction of a 

system, which due to the dual particle-wave nature of matter is required to describe 

Surface Region 1 

 
 

Region 2 Bulk 
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observed phenomena. It was soon discovered that systems with more than one 

electron, or “many-body” systems, were extremely difficult to solve (Lewars, 2003) 

and the accurate description of periodic solids practically impossible.  

 In view of these difficulties, it was first suggested by Thomas (1927) and 

Fermi (1928) and later elucidated by Kohn and Sham (1965) that the description of a 

system might be made in terms of the electronic charge density. This scalar quantity is 

dependent upon only a single spatial vector, instead of the vastly complicated many-

electron vector wavefunction. The electron density itself is intimately related to the 

ground state energy of the entire system of electrons and nuclei, and once this energy 

is known any physical property that can be related to a total energy, or to a difference 

between total energies, can be calculated. Such total-energy techniques have been 

used to predict such properties as equilibrium lattice constants, bulk moduli, phonon 

modes, piezoelectric constants, and phase-transition pressures and temperatures (see 

Payne et al. (1992) for a discussion). The quantum mechanical mathematical 

framework based upon the consideration of the electron charge density was named 

density functional theory (DFT). 

 DFT is, in principle, an exact theory, however in practice various 

approximations must be made in order to obtain a tractable form for the mathematics 

for real systems. These approximations all relate to the many-body interacting 

electron system, which by its nature is immensely complicated. This problem is 

approached by treating the many-body interactions as a simpler, one-body interaction, 

which describes an “imaginary” non-interacting electron system which possesses the 

same density as the real, interacting one. In turn, the many-body interactions are 

modelled using further approximations. The choices that must be made in DFT 

calculations, including the form of the exchange-correlation functional, the selection 
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of a basis-set for the expansion of the Kohn-Sham orbitals and the algorithms adopted 

for solving the Kohn-Sham equations and for calculating energies, forces and stresses 

are examined in the following sections. The degree to which the chosen functional 

accounts for many-electron correlations, and the completeness of the basis-set, 

determine the accuracy of the calculation whilst the numerical algorithms are decisive 

in regards to its efficiency (Hafner, 2007). 

 

2.2.2 Foundations of DFT 

DFT begins by considering the Hamiltonian, H, of a system of n interacting electrons 

acted upon by an electrostatic field: 

 VHVUTH 0 +=++=       (2.2.1) 

where T is the kinetic energy of the electrons, U is the mutual interaction energy of 

the electrons, H0 is the Hamiltonian of the interacting electron system (excluding the 

external field) and V is the interaction energy between the electron system and the 

external field due to the nuclei. The separation of the energy of the electrons from that 

of the external field is crucial, and follows from the Born-Oppenheimer 

approximation (Eckart, 1935), which proposes that, due to the large mass difference 

between nuclei and electrons, the nuclei can be assumed to be stationary in relation to 

the moving electrons. Thus the nuclei may be treated adiabatically, leading to a 

separation of the electronic and nuclear coordinates in the many body wavefunction 

(Note that in the quantum mechanical usage of the term, adiabatic signifies that the 

change in the Hamiltonian of a system is infinitely slow). In addition, relativistic 

effects relating to the valence electrons are assumed to be negligible, a justifiable 

simplification for lighter nuclei such as Fe or S, where the outer electrons do not reach 

relativistic energies (Engel, 1998). Any relativistic effects relating to the core 
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electrons are taken care of by pseudopotentials. 

 The two theorems of DFT may then be applied (Hohenburg & Kohn, 1964). 

Theorem 1 states that it is impossible that two different external potentials could ever 

give rise to the same ground state density distribution; this is equivalent to asserting 

that a ground state electron density distribution, n(r), must determine a unique 

external potential for that distribution, and hence must determine the many-body 

wavefunction also. To state this more succinctly, n(r) uniquely specifies the external 

potential ν(r), and hence the many-body wavefunction Ψ. 

 Theorem 2 (the variational principle) states that in order to find the ground 

state energy for a given potential, it is necessary to vary the electron density with 

respect to the energy of the system. The minimum in this energy corresponds to the 

ground state electron density, Eg[n(r)]. Thus by minimising Eg[n(r)] with respect to 

n(r) for a fixed v(r), the n(r) which yields the minimum energy must be the electron 

density in the ground state. Taken together, these two theorems provide the means to 

find the ground state energy for any given external potential. 

 Consideration of the components of the energy leads to the following total 

energy functional for the system: 

 [n]E[n]ET[n])r)n(r v(rd[n]E xcHtot +++= ∫     (2.2.2) 

The first term on the right-hand side represents the electrostatic interaction between 

the external field and the electrons, and the second term the total kinetic energy of the 

electrons. The third is the electrostatic energy of the charge distribution of the 

electrons (the Hartree energy), given by: 
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The last term on the right-hand side of Equation (2.2.2), Exc[n], is the exchange-



 32 

correlation energy, and accounts for all the electronic many-body interactions which 

are not included in the other terms. Thus the differences between the non-interacting 

electron model “state” and the true state are conglomerated into this term.  

 The Kohn-Sham potential, which corresponds to the scalar potential field 

which gives the ground state energy for the ground state electron density, is defined 

as: 
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 The many-body electronic problem is approached using a fictitious, one-

particle wavefunction, ψi. This effectively converts the interactions of all the electrons 

into an average interaction and from the minimisation of the non-interacting energy 

functional with respect to ψi* the following set of Schrödinger-like equations is found. 

These are the Kohn-Sham equations: 
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where the Hermeticity (an operator is Hermetic if it possesses an orthonormal basis in 

which the operator can be represented as a diagonal matrix, with entries of real 

numbers) of the operators ensures the possibility of choosing the constraints in such a 

way that the orthonormality conditions for the fictitious wavefunction are satisfied: 

 ijji δrd)r(ψ)r(*ψ =∫           (2.2.6) 

 In order to solve the Kohn-Sham equations, an iterative method is used with 

an initial “guess” for the wavefunctions. Application of the potential evolves both the 

electron density and energy into self-consistency. This method has obvious 

advantages, notably that it uses the mature field of matrix computational methods that 

are well suited to even relatively large systems (Gourley & Watson 1973). It is 
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important to note that the wavefunctions in this treatment have no physical meaning – 

they represent the eigenstates of the one-body density matrix and as such are 

wavefunctions of the fictitious non-interacting electron system.  

 The theoretical approach used so far can be expected to be very successful 

when the dominant part of the energy consists of the kinetic and electrostatic terms, 

described as they are without approximation. This leaves only the exchange-

correlation term in Equation (2.2.2) to consider. 

 

2.2.3 Exchange-Correlation and the LDA 

The exchange-correlation energy functional, [n]Exc , encompasses all electron-electron 

interactions other than the Coulomb interaction. An understanding of the nature of this 

functional is made possible by taking the well understood non-interacting system 

(Perdew et al. 1981) and gradually introducing the interactions, via an interaction 

parameter λ which is varied from 0 (non-interacting) to 1 (the physical system). This 

must be accompanied by an external potential Vλ adjusted such that n(r) is not a 

function of λ (Harris & Jones, 1974). The exchange-correlation energy can then be 

expressed as an integral over λ (Langreth & Perdew, 1975): 
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with  
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Where nxc is the exchange-correlation hole, which describes the effect of the 

interelectronic repulsion using the pair correlation function, ( )λ,', rrg . nxc can be 

considered as a measure of the effect where the presence of an electron at r reduces 
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the probability of finding another electron at r’. In turn, this provides a means of 

evaluating local (short-range) correlations between electrons. Thus the associated 

exchange-correlation energy can be viewed as the energy resulting from the 

interaction between an electron and its own exchange-correlation hole.  

 Determining the form of the exchange correlation functional requires the 

determination of the pair-correlation function, which can be found for model systems 

(Parr and Yang, 1989). These considerations lead to the local density approximation 

(LDA). The LDA assumes that the exchange-correlation energy of a real system 

behaves locally as a uniform, homogeneous electron gas of the same density. The 

exchange-correlation energy per unit volume at position r is given by n(r)εxc(n(r)), 

which in turn gives: 
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where ))r(n(ε hom
xc is the exchange-correlation energy of the homogeneous electron gas. 

The exchange-correlation potential can be obtained from the exchange-correlation 

energy functional: 
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where (n)nε(n)F hom
xcxc = . This approximation was intended to work with systems in 

which the electronic charge density is expected to be smooth (for example metals with 

nearly-free electrons). 

 The exchange-correlation energy can be further split into its component 

exchange and correlation parts, according to cxxc εεε += . The exchange energy in the 

LDA formulism, εx , is given by the Dirac formula (Dirac, 1930): 
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Where ( )( )1/3
s 4ππ3/r =  and n is the number of electrons per unit volume. The 

correlation part is much more complicated, and is commonly found from high-level 

Monte Carlo calculations for a homogeneous electron gas of various densities 

(Ceperley & Adler, 1980). For systems where magnetism is likely to play an 

important role it is possible to extend the LDA to magnetic systems by splitting the 

total population of electrons into two groups, the first with spin up and the second 

with spin down, and considering each group individually. The interaction between the 

two groups is treated separately. This approach is termed the local spin density 

approximation (LSDA). 

 

2.2.4 Local Spin Density Approximation 

The treatment of magnetic systems, where the number of spin-up electrons is not 

exactly balanced by the number of spin-down, is simplified by treating the exchange-

correlation functional as explicitly dependent on the two electron spin populations 

separately. In this case, the first three terms of Equation (2.2.2) remain the same, with 

the exception of the exchange correlation functional which becomes (Oliver & 

Perdew, 1979): 
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with the exchange-correlation potential: 
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The two spin populations interact through their mutual Hartree and exchange-

correlation energies, and the effective field acting upon one of them depends on the 

opposing spin charge density also. Equation (2.2.13) also illustrates that magnetic 
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phenomena in a system emerge solely from the exchange-correlation term, and that a 

reliable treatment of systems where magnetism is important requires a sound 

treatment of this term. 

 The exchange and correlation functionals of this spin dependent approach may 

also be split into exchange and correlation parts. The exchange contribution is 

obtained by extending the non-spin-polarised expression: 
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where LSDA
xF represents the same functional as used in the unpolarised LDA case and σ 

denotes the spin-populations. The spin-polarised correlation functional is obtained by 

interpolating the results for the homogeneous electron gas at different spin 

polarisations; the resulting functional can be expressed as dependent upon both the 

total charge density n(r) and the magnetisation m(r), which is defined as: 
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The magnetic polarisation can be defined by: 
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So that 0 ≤ ζ ≤ 1. The following contribution to the total energy results: 
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Where f(ζ) is a smooth interpolating function with f(0) = 0 and f(1) = 1. The 

functionals P
cε and U

cε  represent the correlation energy densities for the polarised and 

unpolarised systems respectively. This study uses the correlation functional of Vosko 

et al. (1980), which has met with considerable success in the description of a wide 

range of bulk materials (e.g. Clerc, 1998; Gibbs et al., 2005; Zope & Blundell, 2001). 

 The contribution to the Kohn-Sham potential from the exchange and 
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correlation functionals described so far correspond to an effective magnetic field. By 

calculating the first derivatives of these quantities with respect to the spin polarised 

charge densities, we obtain a first term, equal for the two spin polarisations, and a 

second term (depending upon the magnetisation) which has the same absolute value 

for both but changes sign according to the spin to which it is applied. This latter term 

introduces differences in the two effective fields, thus producing the spin imbalances 

from which the magnetic properties of the system emerge. 

 The L(S)DA has met with much success in the description of certain materials, 

particularly simple (nearly-free electron like) metals (Callaway & Wang, 1977), ionic 

solids (de Boer & de Groot, 1999) and covalent semiconductors (Salehpour & 

Satpathy, 1989). However, the L(S)DA has difficulty predicting the correct bond 

energies and bond lengths, often calculating lengths considerably shorter than those 

found in experiment (Ballone & Galli, 1990). There were also major discrepancies 

from experiment for some material properties, most notably the inability to predict the 

ferromagnetic ground state in bcc Fe (Wang et al., 1985). This prompted refinement 

of the LDA, and the development of the generalised gradient approximation (GGA). 

 

2.2.5 Generalised Gradient Approximation (GGA) 

An extension to the exchange-correlation energy approximation is offered by the 

GGA, which attempts to account for inhomogeneities within the electron density of 

real materials by including consideration of “local” gradients in the electron density. 

In order to account for non-uniform electron densities, the chosen exchange-

correlation energy functional must depend in some way upon the electron density 

gradient )rn(∇ . The inclusion of the GGA introduces the following term into the Exc 

functional: 
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which can be adjusted to include the spin populations: 
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 Several different formulations of the GGA exchange-correlation functional 

have been described (Filippi et al., 1994), which can be divided into two broad 

categories: 

 (i) “Semi-empirical” GGA functionals, such as BLYP. These are comprised of 

electron density terms with adjustable parameters, fitted to a range of experimental 

data. Such functionals have proved successful in the description of molecules and 

clusters (Boese & Handy, 2001). 

 (ii) “Parameter-free” GGA functionals that have been derived from first 

principles, based upon the LDA. Such functionals have proven to be very successful 

in the description of bulk materials. Calculations within this report use Perdew and 

Wang’s PW91 functional (Perdew & Wang, 1991). 

 In addition, hybrid functionals have also been developed which include a 

fraction of Hartree-Fock exact exchange, such as B3LYP (Glukhovtsev et al., 1997). 

 The GGA has achieved some significant successes in correctly predicting the 

properties of some non-homogeneous systems, most notably in the correct prediction 

of the ferromagnetic bcc ground state in bulk iron, where LDA incorrectly predicts a 

paramagnetic fcc structure (Ahuja et al., 1994). 

 Even with this refinement, however, DFT still has great difficulty dealing with 

the so-called “strongly correlated” materials, where a large degree of electron 

localisation occurs. It has been theorised that this is at least partly caused by the 

uniform electron gas description on which LDA is based, which is incommensurate 

with strongly bound valence electrons (Amador et al., 1992). In response to this 
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failure of the GGA for some materials (particularly transition metal oxides), further 

modifications to the exchange-correlation functional have been proposed. 

 

2.2.6 Hubbard U Correction 

Highly-correlated materials, where interactions between moving electrons account for 

an important fraction of the total system Hamiltonian, are difficult to describe using 

the GGA method. Highly-correlated materials tend to consist of elements with 

electrons that occupy 3d, 4f or 5f orbitals (Kotliar et al., 2006), implying that the 

transition metals, actinides and lanthanides pose particular problems for DFT. 

Transition metal oxides in particular tend to be subjected to strong on-site electron-

electron repulsions in the 3d band, with the narrow bandwidth a decisive factor.  

 One method that has been proposed to deal with failures in the description of 

highly-correlated materials in the GGA is the so called GGA+U approximation, for 

which different formulations have been devised (Anisimov et al., 1991; Ebert et al., 

2003). Whichever form is taken, the core concept is to correct the LSDA or GGA with 

a mean-field, Hubbard-like term (Hubbard, 1963), designed to improve the 

description of the electron correlations relating to on-site coulomb repulsions. A 

further correction term is also included to treat any “double counting” of 

contributions. Thus the U term can be thought of as an additional energy contribution, 

taken from the model Hamiltonians that represent the framework within which normal 

band theories treat strongly correlated materials. Anisimov and co-workers (Anisimov 

et al., 1991; Anisimov et al., 1993; Solovyev et al., 1994) introduced a basis-set 

independent formulation of GGA + U, where the energy functional takes the form: 
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where Iσ
mn  and Iσσ

m'n  are generalised atomic orbital occupations for the “Hubbard” atom 

(the atom with strongly correlated electrons) at site I, ∑=
σm,

I
mσ

I nn , and U is the 

Hubbard parameter describing the on-site correlations. Using this equation to derive 

the orbital energy with respect to the orbital occupation gives: 
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where ε0 is the corresponding LDA quantity. It is evident that a gap of width ≈ U 

opens between occupied ( 1n I
i ≈ ) and unoccupied ( 0n I

i ≈ ) orbitals.  

 This scheme was further developed to take account of the possible non-

spherical character of the effective interactions (the dependence of U on the magnetic 

quantum number m) and the exchange coupling. To solve these problems, and the 

further issue of making the theory rotationally invariant, a further formulation of GGA 

+ U was introduced (Liechtenstein et al., 1995) (Anisimov et al., 1997) and further 

developed into Dudarev’s approach (Dudarev et al., 1998). This treats the on-site 

Coulomb interaction energy as: 
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where nσ is the density matrix of the d electrons, σ is a spin index and U and J  are the 

spherically averaged matrix elements of the screened Coulomb and exchange 

interactions respectively. Only the difference ) JU(Ueff −=  is considered 

meaningful. A summary of the mathematical framework of this model is given by 

Rohrbach et al. (2003). 

 A drawback of the Ueff functional is that it is rarely possible to determine its 

value from any first-principle methods, and instead its value must be determined by 

agreement with experiment, in a semi-empirical way (Novák et al., 2001]. In this 
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study, a range of Ueff values will be tested for the materials simulated, and the results 

compared with empirically determined parameters to find the best agreement with 

experiment. 

2.2.7 Periodic Systems 

The description of bulk materials within DFT is based upon the assumption that the 

atoms are (at least within the Born-Oppenheimer approximation) at rest in their 

equilibrium positions and form an infinitely repeating structure of basic units. In 

mathematical terms the potential experienced by the electrons due to the ion cores 

may be represented by: 

 )rV()RrV( =+        (2.2.23) 

where R is a direct lattice vector corresponding to an integer linear combination of 

three fundamental vectors, which determine the periodicity of the lattice in three 

independent directions. The entire electronic Hamiltonian also shares the translational 

invariance of the lattice, which permits the application of the Bloch theorem (Bloch, 

1928): 

 )r(ue)r(ψ vk
rki

vk
•=        (2.2.24) 

where k is the crystal momentum of the electrons, v is the band index classifying all 

states corresponding to the same k-vector and ukv(r) is a function with the same 

periodicity as the crystal: 

 )r(u)Rr(u vkvk =+        (2.2.25) 

 The k-vectors are defined within the first Brillouin zone (BZ) of reciprocal 

space. This is a periodic structure of reciprocal lattice vectors, represented by bi, and 

is related to the real lattice vectors according to: 

 n2ub ji π=•   n = 1, 2, 3… i,j = 1, 2, 3   (2.2.26) 
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 The summations over electronic states which define many physical quantities, 

for instance the band energies, Eband, and the electron density, n(r), actually 

correspond to integrals over the BZ. Due to the translational invariance of the system, 

different k-points can be treated independently. Further, the symmetry of the crystal 

means that the integration can conveniently be confined to a smaller region of the BZ, 

named the irreducible wedge of the Brillouin zone (IBZ). This model can be further 

refined by the use of the special point integration technique, which allows the use of 

reciprocal space integration using a small set of k-vectors in the IBZ. These points 

may be chosen according to different formalisms, but for all calculations in this report 

the Monkhorst-Pack algorithm is used (Monkhorst & Pack, 1976), which is a 

rectangular grid of points spaced evenly through the BZ. 

 The special points technique encounters some difficulties when applied to 

metals, since the region around the Fermi energy needs to be sampled accurately; in 

general a larger number of sampling points is required to determine the partial 

occupancy present in these bands. This issue can be addressed by introducing a finite 

“smearing” of the Fermi distribution, with the effect of smoothing the weight of the 

states around this level and in turn avoiding large fluctuations in the calculated 

quantities. A variety of convoluting functions can be chosen (Methfessel & Paxton, 

1989), which are specified in this report as they are applied. These include Gaussian 

smearing (finite-temperature smearing) and the tetrahedron method with Blöchl 

corrections (Blöchl, 1994). The first of these methods uses a Gaussian function with a 

width given by a parameter, the smearing parameter. This smearing can be considered 

in the form of a finite temperature DFT method (Mermin, 1965) where the variational 

quantity is the electronic free energy. Phonon calculations use the convoluting 

function and smearing method of Methfessel and Paxton (1989). 
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 Ionic relaxations are undertaken after each electronic relaxation step as 

required. The minimisation proceeds via a conjugate-gradient technique (Press et al., 

1986). 

2.2.8 Plane Wave Basis Sets 

In order to solve the Kohn-Sham equations, the electronic wavefunction need to be 

built from simpler functions, termed the basis set. VASP uses a plane-wave basis set 

(Pickett, 1989) and implements efficient algorithms such as fast Fourier transforms 

(FFTs) to move between real and reciprocal space. In this formulism the Bloch 

electronic wavefunction takes the form: 

 
( )

( ) )Gk(ce
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)r(ψ v

G

rGki
vk += ∑ •+     (2.2.27) 

where Ω is the volume of the unit cell, N is the number of electrons, G represents the 

reciprocal lattice vectors, and the )Gk(cv + coefficients are normalised in such a way 

that: 

 ( )∑ =+
G

2

v 1Gkc        (2.2.28) 

 Using this expansion, the Kohn-Sham equations can be written in reciprocal 

space format: 
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          (2.2.29) 

This equation demonstrates that the Hamiltonian has block diagonal form with respect 

to the k vectors, and the diagonalisation can be performed within each of these blocks 

separately. For each k-point, only a finite number of the lowest-energy electronic 

states on which all the electrons of the system can be accommodated need to be 
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computed to obtain the charge density. This quantity is then used to construct a new 

“guess” of the potential to be reintroduced into the Kohn-Sham equations for the next 

step of the iterative diagonalisation. 

 The plane wave expansion is exact in the limit of an infinite number of G-

vectors. In practical calculations an energy cut-off is chosen, which can be thought of 

as including only the plane waves inside a sphere of maximum kinetic energy Ecut: 

 cut

2
2

EGk
2m
h

≤+        (2.2.30) 

Thus when Ecut is fixed, all the wavefunctions of the system whose variation takes 

place over distances larger than (and up to) 
cut2mE

h2π  can be well described.  

 A drawback of the plane-wave approach lies in its uniform resolution 

throughout all regions. This means that the description of ionic cores and the 

electronic states partially localised around them, require an impossibly great number 

of G vectors. This problem is avoided through the application of pseudopotentials. 

 

2.2.9 Pseudopotentials 

By assuming that the relevant properties of a chemical system are attributable to the 

valence electrons only, and that the ionic cores (the nuclei and core electrons) are 

frozen in their configurations, the atoms themselves may be split into these two 

regions. The valence electrons are considered to move in an effective potential 

produced by the ionic cores, and the pseudopotential attempts to reproduce the 

interaction between the true atomic potential and the valence states without explicitly 

including the core states in the DFT calculation. 

 In this thesis we have utilised the projector-augmented wave (PAW) method in 



 45 

order to account for ion-valence electron interactions. This formulism considers that 

the ion-electron system is composed of atomic orbitals and a set of “envelope 

functions” which describe the spaces between the atoms. The Fe pseudopotential 

considers the [Ne] inner electrons of the Fe atom, meaning that only the outer 3d
6 and 

4s
2 are considered as valence electrons described using plane waves, whilst the S 

pseudopotential describes the inner 1s
2 2s

2 2p
6 electrons, leaving only the outer 3s

2 

and 3p
4 to be represented by plane waves.  

 The implementation of the GGA+U method in the PAW scheme is 

summarised in Rohrbach et al. (2003) and VASP follows the adaptation of Kresse and 

Joubert (1999). 

 

2.2.10 Determining Elastic Constants 

Elastic constants relate a stress applied upon a crystal lattice to the resulting strain. 

Each elastic constant, cij, is defined as the second derivative of the energy density 

with respect to strain components: 
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=           (2.2.31) 

Where V is the volume of the unit cell, E is the internal energy of the unit cell, and εi 

and εj are lattice strain components. The tensor of elastic constants takes the form: 
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This may be simplified for a tetrahedral lattice, such as that of mackinawite, using 
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symmetry considerations. This becomes: 
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Of these constants, the most important with respect to experimental effects are those 

represented by A and B. 

 Focusing upon the determination of the constants A and B, consider a strain 

matrix of size (3x3): 
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In order to determine the constants A and B, two different strains must be applied. In 

the case of A, the appropriate tensor takes the form: 
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Where 
a
a

δ
′

=  is the dimensionless strain ratio, a’ is the deformed a lattice parameter 

and a is the undeformed a lattice parameter. This strain is depicted in figure 2.2. 
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Figure 2.2 – Applied strain on mackinawite structure corresponding to the strain of 

Equation (2.2.33). The strain is applied in the a direction. 

The expression for the internal energy of the unit cell as a function of this strain is 

given by a Taylor expansion about E(0): 
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Where a and b are the coefficient of a polynomial fit of E versus δ. Thus from 

Equation (2.2.31): 
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The calculation of B requires the following strain matrix to be applied: 
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This strain is depicted in figure 2.3. 

   

Figure 2.3 – Applied strain on mackinawite structure corresponding to the strain of  

Equation (2.2.36). The strain is applied in both the a and b directions simultaneously. 
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The energy expression associated with the applied strain of Equation (2.2.36) is given 

by: 

 ( ) ...δccccVE(0,0))ε,E(ε 2
212
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21 +++++=   (2.2.37) 

From the earlier symmetry considerations, c11 = c22 and c12 = c21, and this expression 

becomes: 
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Thus 

V
b

cc 1211 =+         (2.2.39) 

Therefore c12 may be found once c11 has been determined. 

 

2.2.11 Bader Charge Analysis 

Calculating the number of valence electrons associated with a particular ion in a 

periodic solid is a common problem in quantum chemistry. Traditionally, the 

summation would take place over a sphere with a radius equal to the Wigner-Seitz 

radius. This method provides a useful guide, however only s orbitals can be 

considered to be spherical in shape, and such spheres are poor approximations to the 

p, d and f orbitals.  

 Bader analysis was posited in response to this difficulty (Henkelman et al., 

2006). This method considers the electron density around an atom (or ion) as an 

analytical function, and demarcates the valence electron boundary as the surface 

where the charge density normal to the boundary is at a minimum. The volume 

enclosed by this surface is termed the Bader basin, inside of which the electron 
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density is summed in order to find the Bader charge for that atom. This technique also 

offers a durable solution to the problem of finding the charge on ions in mixed-

valence systems, and can be adapted to magnetic systems; the electronic magnetic 

moments contained within the Bader basins can be integrated in the same manner as 

the charge. 

 

2.2.12 Magnetic Coupling Parameters 

In ordered magnetic materials exchange interactions govern the alignment of 

neighbouring (or next-nearest neighbouring) magnetic moments. These interactions 

are quantitatively described using magnetic coupling parameters, termed the exchange 

constants, Jij. Regarding the magnetic interactions of the iron sulfide materials 

considered in this thesis, by far the most important magnetic interaction is that of 

superexchange, where the magnetic interactions between neighbouring Fe atoms is 

mediated via the non-magnetic S atoms. 

 The exchange constants may be calculated by converting spin-polarised DFT 

results into the magnetic Heisenberg Hamiltonian form: 

   
{ }
∑−=

ji,
jiij0 SS2JEH        (2.2.40) 

where H is the total internal energy of the system, E0 is the constant paramagnetic 

energy, the Si and Sj values for high spin Fe2+ are ± 4/2, and the indices {i, j} 

represent a sum over Fe-Fe pairs. When the interaction is of a ferromagnetic form the 

Jij parameter must be positive, and for an antiferromagnetic interaction Jij must be 

negative. 

 For the case of cubic FeS examined in this thesis, each Fe atom has 12 nearest 

Fe neighbours, with mediation of the exchange interaction occurring via the 
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neighbouring S atoms. The form of the Hamiltonian depends on the nature of the 

interaction between each neighbouring atom. Consideration of the Heisenberg 

Hamiltonian for Fe-Fe superexchange for three different antiferromagnetic scenarios, 

denoted by H(1), H(2) and H(3), and the ferromagnetic arrangement H(ferro) leads to four 

simultaneous equations of the same form as Equation (2.2.40), which describe these 

scenarios using the exchange constants J12, J13 and J14 and E0 : 
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 solving for J12, J13, J14 and E0 and combining into a matrix equation gives: 
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Where J12, J13 and J14 represent the exchange parameters between the Fe atoms. By 

rearrangement, J12, J13, J14 and E0 may be found. 

 The mean-field approximation equation for the Néel temperature is taken from 

Swendsen (1973), where the cubic FeS structure is type-I face-centred cubic 

antiferromagnet. Considering only the Fe nearest neighbour interactions gives: 

 ( )( )321 4441
3
2

JJJSST
MFA

N −−+=      (2.2.42) 

 Finally, it should be mentioned that this thesis does not consider any spin-orbit 

coupling terms in spin-polarised calculations due to the high computational demand 

of such calculations. 
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3. Mackinawite 

 

 

3.1 Introduction 

The iron sulfide mineral mackinawite (often referred to as tetragonal FeS) was first 

discovered in Snohomish County, Washington, USA, within the mine that bears its 

name (Evans et al., 1962; Evans et al., 1964).  Mackinawite has been found to be the 

precursor to the formation of nearly every other iron sulfide (Livens et al., 2004), it is 

able to form in recent sediments (Berner, 1967), is produced by certain bacteria 

(Watson et al., 2000) and, more interestingly, is found in active hydrothermal systems 

on or near mid-ocean ridges (Russell & Hall, 1997). Indeed, this phase of iron sulfide 

is the first to form in most ambient environments, and anoxic marine sediment pore 

waters are saturated with respect to disordered mackinawite (Wolthers et al., 2005). 

Investigations into the chemistry of mackinawite have served to highlight the 

significance of this phase in many important processes, where its reported ability to 

capture heavy metal atoms within its octahedral interlayer vacancies (Moyes et al., 

2002) and its possible role in the development of proto-metabolism (Russell & 

Martin, 2004) are particularly interesting. 

 The synthesis of mackinawite was first reported by Berner (1962, 1964). By 

immersing reagent grade metallic iron wire in a saturated aqueous solution of H2S, 

tetragonal FeS was precipitated. This solid phase was reported to possess a black 

colour when wet, to be soluble in concentrated HCl, to be unattracted by an ordinary 
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hand magnet and to oxidise rapidly in air to FeOOH (lepidocrocite) and orthorhombic 

sulfur. Due to this rapid reaction with oxygen the material properties of mackinawite, 

such as elastic constants and vibrational modes of the crystal lattice, are unknown.  

 A number of experimental studies on the stability of mackinawite have found 

that it converts to the more oxidised spinel phase greigite (Lennie et al., 1997), 

although it has been shown that if mackinawite is kept in a reducing atmosphere 

devoid of any reactant other than H2S it is stable and its transition to the greigite phase 

is inhibited over a wide range of pH and temperature (Benning et al., 2000). The 

upper limit for the thermal stability of mackinawite is thought to be around 130ºC 

(Taylor & Finger, 1980). In solution, lattice expansions of up to 54% by volume, 

relative to crystalline mackinawite, have been observed caused by intercalation of 

water molecules between the lattice sheets (Wolthers et al., 2005). Recent research 

has found that mackinawite forms between 1 and 10 ms after the Fe(II) and S(-II) 

solutions are admixed. 

 Finally, naturally occurring mackinawite has been reported to be non-

stoichiometric, postulated to result from an S deficiency (Kostov & Minceva-

Stefanova, 1982). As such its formula is conventionally written FeS1-x (where 

typically 0 ≤ x ≤ 0.07). Synthetic mackinawite has, however, been found to have a 

formula very close to the stoichiometric end-member FeS (Mullett et al., 2002) and it 

is likely that poorly formed samples or interstitial Fe explains any non-stoichiometry 

(Rickard & Luther, 2007). 

 

3.1.1 Structure 

The structure of mackinawite is that of a distorted cubic-packed array of sulfur atoms, 

with iron in some of the tetrahedral interstices and vacancies in the larger octahedral 
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spaces (Taylor & Finger, 1970). This arrangement corresponds to a tetragonal PbO 

structure. The space group is p4nmm (129) (Kuovo et al., 1963), where the iron atoms 

lie at the centre of slightly distorted tetrahedra with sharing edges, forming sheets 

stacked along the c axis. These sheets are bonded via weak Van Der Waals forces 

(Figure 3.1). 

 

Figure 3.1 – The structure of mackinawite. The iron atoms are represented in dark 

grey and the sulfur in light grey. Note the close Fe-Fe separation in the basal plane 

compared to the interlayer distances. 

 

 The layered structure is unusual in that it permits very close metal-metal 

distances in the basal plane (2.485 Ǻ) where the iron atoms are coordinated 

tetrahedrally to four equidistant sulfur atoms.  

 

 Table 3.1 – Summary of experimentally determined values for the lattice parameters 

of mackinawite. 

  

 

 

Author a (Å) c (Å) 
Lennie et al., (1997) 3.6647   ± 0.0013 4.9971    ± 0.0019 

Uda, (1968) 3.68 5.04 
Mullet  et al. (2002) 3.67 5.05 

Berner, (1962) 3.679     ± 0.002 5.047    ± 0.002 
Lennie  et al. (1995) 3.6735   ± 0.0001 5.0328  ± 0.0001 
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 Table 3.1 shows all published experimentally determined values for the lattice 

parameters of mackinawite. It has been reported that the tetrahedra in stoichiometric 

mackinawite are very nearly perfect, with Fe-S-Fe angles very close to 109.47° 

(Lennie et al., 1995). 

 

3.1.2 Interstitial Impurities 

It has been reported that naturally occurring mackinawite samples frequently contain 

substantial amounts of other transition metals (Clark, 1970a; Clark, 1970b; Vaughan, 

1969), presumed to be present within the large interlayer vacancies of the structure 

(Vaughan & Ridout, 1971). Such impurities include up to 10% of either Cr or Cu, and 

up to 20% each of either Co or Ni (Clark, 1970a; Vaughan, 1969; Sarkar, 1971). It is 

further suggested that these interstitial atoms tend to enhance the stability of the 

structure (Takeno, 1965; Clark 1966; Takeno & Clark, 1967) It is in regards to the 

ability of mackinawite to accommodate impurities in the octahedral vacancy sites 

between layers that applications for this material as a sink for heavy metal atoms has 

been suggested (Moyes et al., 2002; Mullet et al., 2004; Livens et al., 2004; Liu et al., 

2008). 

 

3.1.3 Formation and Nucleation of Mackinawite 

Taylor (1980) suggested that the homogeneous nucleation of mackinawite is facile, 

based upon the ease of precipitation of fine-grained (< 1µm) crystals. The formation is 

thought to proceed by complexation of Fe2+ and SH-: 

 Fe2+ + SH- → FeSH+ 

followed by dimerisation polymerisation of FeSH+ with elimination of protons and 
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water of solvation: 

 2FeSH+ → Fe2S2 +2H+  

Tesselation of these Fe2S2 rings leads to the formation of mackinawite.  

 

3.1.4 Experimental Studies 

Of all the experimental techniques used to investigate Fe compounds, Mössbauer 

analysis has proved to be the most useful and versatile for the determination of the 

electronic structure (X-ray diffraction (XRD) is of course paramount in structural 

determination) (Vaughan & Craig, 1978). The first Mössbauer study of mackinawite 

determined the spectra to consist of overlapping magnetic hyperfine patterns (Morice 

et al., 1969), attributed to impurities and the presence of other sulfide phases in the 

samples. A more detailed Mössbauer study dealing with more stoichiometric 

mackinawite was undertaken by Vaughan & Ridout (1971), and confirmed the 

absence of any internal field, and also indicated that mackinawite is comprised solely 

of low-spin Fe2+. It was further suggested that the d electrons in mackinawite may be 

delocalised extensively in the basal plane, forming metallic bands, and that the close 

Fe-Fe distances in mackinawite (0.259 nm) give rise to magnetic coupling and the 

absence of a net magnetisation. The formal oxidation state of iron in the tetrahedral 

sites is considered to be less than +2 due to this delocalisation. However, it should be 

mentioned that an earlier study of Bertaut et al. (1965) had found no evidence of 

metallic behaviour. 

 Mullett et al. (2002) characterised a fabricated sample of mackinawite using 

XRD, transmission electron microscopy (TEM), transmission Mössbauer 

spectroscopy (TMS) and X-ray photon spectroscopy (XPS). The TEM data showed 

the Fe:S atomic ratio to be 0.99 with a standard deviation of 0.08, in agreement with 
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the conventional formula of FeS1-x where 0 < x < 0.07. The TMS experiments 

permitted the investigation of the bulk properties of the material, and at room 

temperature one singlet and two doublets were found in the spectra; this corresponds 

to a superposition of elemental sub-spectra. This suggests that iron is likely to be 

present in another oxidation state other than Fe2+, presumed to be Fe3+. The relative 

abundance of Fe2+ to Fe3+ is found to be 4:1. XPS is sensitive only to the sample 

surface, and it was found that the Fe3+ is present chiefly upon the surface of the 

crystal. It is proposed that the surface of mackinawite possesses a greigite structure (a 

weathered layer) where some of the Fe2+ has oxidised to Fe3+, which may be an 

important consideration in the phase change of mackinawite to greigite. Oxidation 

from the ferrous state in mackinawite to the ferric state in greigite would be facilitated 

by electronic conduction along the iron bands in the mackinawite. As the ferrous iron 

loses electrons, the reduced radius of the ferric iron allows their diffusion, and 

mackinawite is transformed to greigite (Krupp, 1994). A variety of experimental 

studies have dealt with the conversion of mackinawite to greigite (Boursiquot et al., 

2001; Lennie et al., 1997) and pyrrhotite (Lennie et al., 1995) although the exact 

mechanisms of each are still unclear. 

 Berner (1967) studied the solubility product constants and, by derivation, the 

standard free energy of formation of both mackinawite and greigite, leading to the 

following reaction paths and values for the free energy transitions: 

 3FeSmackinawite+Srhombic → Fe3S4greigite   ∆Freaction= -2.5 kcal/mole 

 Fe3S4greigite +3FeSmackinawite → FeS2pyrite  ∆Freaction= -13.5 kcal/mole 

These are solid state reactions at 25°C. However, the reliance of these calculations 

upon the questionable G°f(Fe2+
(aq)) value (Rickard & Luther, 2007) means that these 

values cannot be completely trusted. Benning (2000) calculated the Gibbs free energy 
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of formation for greigite and mackinawite as: 

 Greigite (Fe3S4)    ∆G0
f,298.15 = -273.8 kJ/mol 

 Mackinawite (FeS)    ∆G0
f,298.15 = -87.7 kJ/mol 

These values are thought to be a more reliable guide to formation energies.  

 An electron diffraction study of mackinawite by Lennie et al. (1997) found, 

for approximately stoichiometric single crystals of mackinawite, patterns consistent 

with mackinawite lying with its {001} surface parallel to the carbon film substrate 

onto which it was deposited. The morphology of mackinawite crystals has been 

studied by Rickard and Ohfuji (2006) who found using selected area electron 

diffraction (SAED) that, for both freeze-dried and precipitated samples of FeS, the 

{001} surface is the most stable followed in decreasing stability by the {101}, {200} 

(equivalent to the {100} surface) and {111} surfaces. The resultant crystals are 

described as being thin and tabular in form. 

 

3.1.5 Computational Studies 

In general, computational studies of the iron sulfides have tended to focus on pyrite 

(e.g. Muscat et al., 2002; de Leeuw et al., 2000). The sole exception is the study of 

Welz and Rosenberg (1987), who undertook the modelling of iron sulfide tetrahedra 

using self-consistent linear muffin tin orbital calculations with local density 

approximations. Describing the tetragonal phase as a planar stack of sheets of edge-

sharing tetrahedra, they noted the absence of an iron magnetic moment, in contrast to 

other iron sulfide tetragonal compounds (e.g. CuFeS2). The Fermi level is seen to cut 

the continuous Fe 3d band, suggesting that the compound is metallic. From a 

consideration of the electronic contribution of Fe and S to the Fe-S bond, they 

concluded that there is a low degree of covalent mixing and that this bond is 
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predominantly ionic. Considering the spin-polarised band structure using the Stoner 

model of itinerant magnetism (Martin, 1967), where the d electrons of a transition 

metal govern the magnetism, the theory predicts that mackinawite will be non-

magnetic. It is suggested that the absence of magnetism is due to some form of Fe-Fe 

interaction, which causes the low density of states by rearranging the Fe d bands in 

the vicinity of the Fermi level. This conclusion is also suggested by the short Fe-Fe 

bond length of 2.65 Ǻ (close to the metallic Fe bond length of 2.485 Ǻ). The magnetic 

behaviour of mackinawite is given as Pauli paramagnetic, where the paramagnetism 

arises from the magnetic moments associated with the spins of the conduction 

electrons (usually found in metallic materials).  

 It is important to note that this study considered only isolated FeS4 tetrahedra, 

describing compounds with exclusively corner sharing units. For compounds 

displaying chains of edge-sharing tetrahedral (such as mackinawite) the writers do not 

have a simple binary compound of a type similar to tetragonal iron monosulfide, 

indicating that this study is unable to describe mackinawite in a rigorous way. A 

rigorous quantum mechanical study of mackinawite is clearly desirable in order to 

study its properties and predict its behaviour. 

 

 

3.2 GGA+U Study of Mackinawite 

3.2.1 Introduction 

The aim of this part of the study is to determine to what degree DFT, in the form of 

the GGA or GGA+U methodologies as implemented within the VASP code, is capable 
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of correctly reproducing the known structure and properties of mackinawite.  The first 

section will put particular emphasis upon reproducing the crystal structure and the 

known electronic and magnetic behaviour of mackinawite. In order to determine the 

spin-ordered state with the lowest energy, calculations are undertaken for each of 

three ordered magnetic arrangements:  

 (i) non-magnetic – no initial magnetic moments on either Fe atom in the unit 

cell, which corresponds to only low-spin Fe present in the structure;  

 (ii) ferromagnetic – magnetic moments of 4µB on each Fe atom, aligned in a 

parallel manner to each other; and  

 (iii) antiferromagnetic – magnetic moments of 4µB on each Fe atom, aligned 

in an anti-parallel manner. 

  Both ferromagnetic and antiferromagnetic arrangements consider the presence 

of high-spin Fe only. These calculations are repeated with Ueff parameter values of 2 

eV and 4 eV in order to investigate the effect of enhanced Fe on-site electron 

correlation on the model. 

 Once an acceptable level of accuracy and agreement with experiment has been 

determined, the model will be used to predict further characteristics of this material, 

specifically the elastic constants and phonon modes. It will be shown that GGA and 

GGA+U are incapable of providing an adequate description of the interlayer 

interaction in mackinawite, but instead are able to offer a very good description of the 

structure, electronic and magnetic properties of a single mackinawite layer. 

 

3.2.2 Preliminary Calculations 

The bulk mackinawite structure is modelled using the experimentally determined 
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structure of Lennie et al. (1995), with a = b = 3.6735 Å and c = 5.0328 Å. A non-spin-

polarised singlepoint calculation, where the lattice parameters and ionic coordinates 

are fixed to the experimentally determined values and only the electronic degrees of 

freedom are allowed to relax, is used to determine the accuracy of the GGA 

description. 

 A dense k-point grid of 11x11x11 was used in conjunction with Gaussian 

smearing around the Fermi level, with a smearing parameter of 0.02 eV. The 

electronic convergence was checked and was confirmed when the total free energy 

change and the band structure energy difference between two ionic relaxation steps 

are both smaller than 10-5 eV. With these parameters set, the wavefunction basis set 

cut-off energy (ENCUT) is varied in order to determine the value at which 

convergence occurs. The results of these calculations are presented in table 3.2. 

 

Table 3.2 – Internal energy convergence with basis set cut-off energy for the 

experimental mackinawite structure. 

ENCUT (eV) Internal Energy (eV) 
300 -26.448 
400 -26.475 
500 -26.475 
600 -26.475 

 

 These results demonstrate that an ENCUT value of 400 eV is sufficient to 

ensure convergence of the energy to within 1 meV. Each of these calculations result in 

very large stresses (greater than 10 GPa) occurring within the unit cell, indicating that 

the experimental structure simulated here does not represent a minimum on the 

potential energy surface calculated by DFT.  

 A relaxation of the ionic internal coordinates was then undertaken for each of 

the three magnetic arrangements, using the conjugate-gradients method to find the 
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minimum energy ionic arrangement. The structure as defined by Lennie et al. (1995) 

was again used, along with the same calculation parameters as above and a basis set 

energy cut-off of 400eV. The non-magnetic case yields a structure with internal 

energy -26.754 eV and a large internal stress within the unit cell of -2.4GPa. This 

indicates that relaxation of the ions leads to a decrease in the internal energy of the 

structure of around 0.28 eV, a substantial reduction which highlights the importance 

of ionic relaxations in the determination of the final energy of simulated structures. 

 Further calculations introduce the different possible spin orientations of the 

magnetic moments present on the two Fe atoms in the unit cell of mackinawite. For 

magnetic moments aligned in opposing directions (the antiferromagnetic 

arrangement), ionic relaxation followed by an electronic singlepoint calculation finds 

that the structure is unable to support an antiferromagnetic spin arrangement. Instead, 

the resulting structure possesses no magnetic moments on the Fe atoms and has the 

same energy and ionic coordinates as the non-magnetic starting arrangement. For an 

initial magnetic arrangement in which the magnetic moments on both Fe atoms are 

parallel (the ferromagnetic arrangement), the calculation also converges to the non-

magnetic solution. If the magnetic moments are fixed to 4 on each Fe atom, the same 

calculations result in a ferromagnetic solution with an internal pressure of 9.6 GPa, 

indicating very large stresses within the unit cell. The internal energies of these 

calculations are given in table 3.3. The non-magnetic arrangement is more stable by 

1.7 eV, a considerable margin, and the fact that all calculations converge to this 

arrangement unless forced otherwise suggests this is by far the preferred magnetic 

state for the system. 
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Table 3.3 – Internal energies (IE), magnetic moment (MM) on the Fe atoms and 

residual internal stress (IS) of the unrelaxed mackinawite structure for both non-

magnetic and ferromagnetic arrangements. 

 IE (eV) Fe MM (µB) IS (GPa) 
Non-Magnetic -26.475 - -2.4 
Ferromagnetic -24.782   3.36  9.6 

 

  

 These results confirm that a method for relaxing both the unit cell and the 

internal coordinates is required in order to determine the mackinawite ground state 

structure. 

 

3.2.3 Unit Cell Relaxation Calculations  

For a great many bulk materials it is possible to perform a full relaxation of the unit 

cell (both shape and volume, via the three lattice parameters and three angles between 

each) together with the internal coordinates at an increased basis set energy cut-off (in 

order to avoid any Pulay stresses on the cell) to obtain the ground state ionic structure. 

We have performed such a procedure on the experimentally determined mackinawite 

unit cell, with the same calculation parameters as before but with an increased basis 

set energy cut-off value of 520 eV. Performing this calculation for the non-magnetic, 

ferromagnetic and antiferromagnetic arrangements, it is found that, as before, all 

simulations converge to the non-magnetic arrangement. The ferromagnetic structure 

can only be simulated by forcing the magnetic moments into parallel alignment, each 

with an initial magnetic moment of 4 µB. This results in a structure with an internal 

energy over 1.6 eV higher than the non-magnetic case, and a magnetic moment on 

each Fe atom of 3.46 µB, summed over the calculated Fe bader volume. The resultant 
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structures are described in table 3.4. 

 

Table 3.4 – Final structural parameters, S atom coordinate, Fe magnetic moment 

(MM) and internal energy (IE) of the mackinawite cell for non-magnetic (NM) and 

ferromagnetic (FM) arrangements. The experimental structure of Lennie et al. (1995) 

is also given. 

 NM FM Exp. 
a (Å) 3.599 3.917 3.6735 
b (Å) 3.599 3.917 3.6735 
c (Å) 5.625 5.762 5.0328 
S coordinate 0.2162 0.2310 0.2602 
MM (µB) - 3.46 - 
IE (eV) -26.821 -25.190 - 

 

 These results demonstrate that a full cell relaxation calculation is unable to 

adequately describe the attractive dispersive forces between the layers, instead leading 

to an underbinding effect between the layers and a resultant overestimation of the c 

lattice parameter and an underestimation of the S coordinate, which is the fractional 

position of the first S atom in the z-direction. It is also possible that due to unphysical 

inter-layer interactions (those that cannot reasonably be expected to arise from 

dispersive forces) there is an associated slight underestimation of the a and b lattice 

parameters. When the structure is forced to become ferromagnetic the predicted a and 

b lattice parameters increase by around 9%, and the c parameter also shows an 

increase, suggesting that the presence of magnetic ordering radically affects the 

structure. 

 This calculation highlights a very important caveat to the use of DFT 

techniques, namely the difficulty in describing the dispersive forces acting between 

atoms or molecules. It is well known that the majority of DFT methodologies fail to 

take account of these interactions, and the incorrect simulation of the Van der Waal’s 
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forces which act between the layers in mackinawite is a further example of this failure 

of DFT. 

 

3.2.4 Interlayer Distance: GGA 

It is clear from the preliminary DFT simulations of the mackinawite structure that a 

closer inspection of the behaviour of the inter-layer distance is required. To this end, a 

series of calculations were performed to determine the total energy as a function of 

the c lattice parameter. The a and b lattice parameters are kept constant at the 

experimentally determined value of 3.6735 Å, while the c parameter is varied between 

values of 3 Å and 7 Å in intervals of 0.1 Å with a constant unit cell shape and volume 

for each of these individual calculations. In order to accurately determine the correct 

internal ionic coordinates for each calculation, two simulations were undertaken for 

each interval: the first to relax the ions into their lowest energy coordination; these 

non-spin-polarised calculations use the same calculation parameters as in previous 

calculations, with a basis set energy cut-off of 400eV. The second calculations take 

these relaxed structures and relax only the electronic degrees of freedom, to ensure 

convergence of the internal energy. 

 Figure 3.2 plots the resulting internal energy versus c parameter relationship, 

and definitively shows that this form of DFT is incapable of correctly predicting the 

interlayer distance and instead the layers continue to repel one another at the 

experimentally determined c parameter of 5.0328 Å. There is no positive gradient to 

the energy curve for any c parameter simulated, indicating that the layers do not 

attract each other at any interlayer separation distance in the range tested. This is 

clearly unphysical and proves that the GGA is unable to account for the attraction 

between the layers, in accord with previous studies of dispersive forces in DFT 
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(Kristyán and Pulay, 1994). The next section tests the effect of introducing the Ueff 

parameter into the GGA calculations of the mackinawite structure. 
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Figure 3.2 – Simulation of the variation of internal energy of the unit cell with the c 

lattice parameter for the non-magnetic GGA calculations for the mackinawite 

structure. The experimentally determined value for c (Lennie et al. 1995) is denoted 

by the dashed line. 

 

3.2.5 Interlayer Distance: GGA + U 

In order to assess whether the introduction of the Hubbard Ueff parameter can aid in 

the description of the mackinawite structure, four Ueff values are tested in full cell 

relaxations of the mackinawite structure. It has been determined that in Fe oxides a 
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Ueff value of around 4 eV tends to give an optimum description of material properties 

(Grau-Crespo et al., 2006; Anisimov et al. 1997; Piekarz et al., 2007), and so Ueff 

values of 1, 2, 3 and 4 eV are selected, in accord with the observation that correlation 

effects in sulfides are lower than those seen in the analogous oxides (Rohrbach et al., 

2003).  All calculations are non-spin-polarised, with an energy cut-off of 520 eV. It is 

important to note that it is meaningless to compare internal energies between 

calculations which use differing Ueff values, due to the different parameterisations of 

the Hamiltonian for each. 

 Tables 3.5 and 3.6 present the results for the fully relaxed non-magnetic and 

ferromagnetic structures respectively.  

 

Table 3.5 – Predicted lattice parameters and S coordinate for the non-magnetic case 

with a range of values of the Hubbard Ueff parameter 

Ueff (eV) 0.0 1.0 2.0 3.0 4.0 Experimental 
a (Å) 3.599 3.589 3.586 3.580 3.565 3.6735 
b (Å) 3.599 3.589 3.586 3.580 3.565 3.6735 
c (Å) 5.625 7.407 5.531 5.373 5.707 5.0328 

S coordinate 0.2162 0.1636 0.2178 0.2233 0.2104 0.2602 
 

 

Table 3.6 – Predicted lattice parameters, S coordinate and Fe magnetic moments for 

the ferromagnetic case with a range of values of the Hubbard Ueff parameter 

Ueff (eV) 0.0 1.0 2.0 3.0 4.0 Experimental 
a (Å) 3.917 3.799 3.926 4.078 4.124 3.6735 
b (Å) 3.917 3.799 3.926 4.078 4.124 3.6735 
c (Å) 5.762 5.694 5.759 5.578 5.394 5.0328 

S coordinate 0.2310 0.2415 0.2345 0.2349 0.2411 0.2602 
Fe MM (µB) 3.46 3.22 3.56 3.65 3.70 - 

  

 

 Table 3.5 demonstrates the inability of the Ueff parameter to improve the 
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description of the interlayer interaction in mackinawite for the non-magnetic case. 

The predicted a parameter decreases with increasing Ueff, away from the experimental 

value, and the c parameter is also incorrectly predicted by a significant margin 

compared with the experimental value. Table 3.6 shows that the ferromagnetic 

structure calculations predict a parameters and c parameters that are too large, for all 

Ueff values tested. For all calculations regardless of the Ueff value applied the structure 

is unable to support an antiferromagnetic arrangement, suggesting that increased 

electron correlation does not favour an antiferromagnetic arrangement for the 

mackinawite structure in preference to the non-magnetic case.  

 

3.2.6 Fixed Interlayer Distance Calculations 

In order to find the most energetically favourable value for the a (and b) lattice 

parameter of the mackinawite structure at the experimental interlayer distance, a 

relaxation of the positions of the ions within the unit cell of mackinawite is 

undertaken for a range of a lattice parameter values. The range chosen is from a = b = 

3.4 Å to 4.25 Å, with each measurement taken at an interval of 0.05 Å from the last. 

These calculations are repeated for the three magnetic arrangements, each simulated 

with applied Ueff values of 0, 2 and 4 eV. The c parameter is fixed at the 

experimentally determined value of 5.0328 Å for all calculations. 

 Figure 3.3 shows the Ueff = 0 eV case for the three magnetic arrangements, 

where the lines correspond to a parabolic fit to each set of data. The non-magnetic 

case is found to be more stable than the ferromagnetic for all a values tested in this 

case. The minimum energy of the non-magnetic structure corresponds to an a lattice 

parameter of 3.612 Å, in good agreement with the experimentally reported 

measurement of 3.6735 ± 0.002 Å, an error of less than 2%. The ferromagnetic 
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solution possesses a minimum in energy at a = 3.972 Å, an overestimation of 10 % 

compared with the experimentally determined value. The results have been extended 

for the ferromagnetic case in order to meaningfully show the region around the 

minimum. It is important to note that the antiferromagnetic and non-magnetic 

energies are not degenerate; instead the mackinawite unit cell is unable to support an 

anti-ferromagnetic arrangement of spins on the Fe atoms, and it collapses to the non-

magnetic structure. 
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Figure 3.3 – Graph of the variation of the total energy with the a lattice parameter for 

mackinawite (at fixed c parameter) at Ueff = 0 eV. 

 

 Figure 3.4 shows that for the case of Ueff = 2 eV the non-magnetic case is no 

longer the lowest energy arrangement. Instead, the antiferromagnetic arrangement 

possesses the lowest energy, but at a lattice parameter value of 3.85Å and above this 

arrangement cannot be supported and collapses to the non-magnetic case, in a similar 
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manner to that seen for the Ueff = 0 eV case. Therefore there is no true minimum in the 

energy for the antiferromagnetic arrangement, which explains the observation in the 

full geometrical optimisations of the previous section where the antiferromagnetic 

arrangement cannot be supported. The ferromagnetic energy minimum leads to a 

structure with a lattice constant a of 3.988 Å, a large overestimation compared with 

the experimental value but very close to the value calculated for the Ueff = 0 eV case. 

In fact, between Ueff = 0 eV and 2 eV both the non-magnetic and ferromagnetic cases 

show little variation in the location of their respective energy minima as a function of 

the a parameter.  
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Figure 3.4 – Graph of the variation of the total energy with the a lattice parameter for 

mackinawite (at fixed c parameter) at Ueff = 2 eV. 

 

 Figure 3.5 demonstrates the increasing instability of the non-magnetic case 
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with increasing Ueff. Instead, the ferromagnetic case is by far the most stable 

arrangement when Ueff = 4 eV, and predicts a structure with a lattice constant of 

around 4.2 Å, far greater than that seen experimentally. This suggests that increasing 

the level of electron correlation favours the ferromagnetic arrangement, and the Fe-Fe 

distances must increase accordingly, as would be expected from the exclusion 

principle. As in the Ueff = 2 eV case, the structure is unable to support an 

antiferromagnetic arrangement for any value of a greater than around 3.9 Å. The 

energy difference of 3.2 eV between the non-magnetic and ferromagnetic minimum 

energies is significant. 
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Figure 3.5 – Graph of the variation of the total energy with a parameter for 

mackinawite (fixed c parameter) at Ueff = 4 eV 

  

 Figures 3.3, 3.4 and 3.5 provide evidence that the most suitable value for Ueff,  

that is the value which reproduces the experimental structure and non-magnetic nature 



 72 

of the individual layers of mackinawite most faithfully, is Ueff = 0 eV. The inability of 

the mackinawite structure to support a stable antiferromagnetic arrangement over a 

reasonable range of a parameters, regardless of the level of electron correlation 

present, leaves only the non-magnetic and ferromagnetic arrangements for the 

mackinawite structure. A summary of the minimum locations for each Ueff value and 

magnetic structure is given in table 3.7. 

 

Table 3.7 – Minimum internal energies, a lattice parameters, Fe-Fe and Fe-S bond 

lengths and magnetic moments per Fe atom for the non-magnetic (NM) and 

ferromagnetic (FM) arrangements, for the Ueff = 0, 2 and 4eV cases. 

 Ueff = 0 eV Ueff = 2 eV Ueff = 4 eV 
 FM NM FM NM FM NM 

E0 (eV) -25.145 -26.775 -22.817 -22.339 -21.274 -17.991 
a0 (Å) 3.972 3.612 3.988 3.597 4.209 3.580 

Fe-Fe distance (Å) 2.81 2.55 2.82 2.54 2.98 2.53 
Fe-S distance (Å) 2.29 2.23 2.39 2.23 2.48 2.22 

MM/f.u. (µB) 4.00 - 4.00 - 4.00 - 
 

 Our results show that the calculated relative stability of each arrangement is 

very sensitive to the Ueff parameter applied. For low levels of electron correlation, 

corresponding to low Ueff values, the non-magnetic arrangement is the most stable. 

For higher values of Ueff, the ferromagnetic state is more stable. The Ueff = 0 eV 

calculations accurately reproduce the experimentally determined structure of 

mackinawite, and correctly predict the non-magnetic behaviour. Further, this case 

predicts an Fe-Fe atomic separation of 2.55 Å and a Fe-S bond length of 2.23 Å, and 

these values agree very well with the experimentally determined Fe-Fe distance of 

2.598 Å and the Fe-S bond distance of 2.256 Å (Lennie et al., 1995). The lack of 

stability of the non-magnetic arrangement as the electron correlation is increased via 

the Ueff parameter suggests that mackinawite does not require a non-zero Hubbard Ueff 
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parameter, and hence that Fe on-site electron correlation is of much lesser importance 

than in similar simulations of iron oxide materials. In fact, for this case it can be 

deduced that the Ueff parameter is actually detrimental to the description of 

mackinawite. 

 A Bader charge analysis of the non-magnetic Ueff = 0 eV case is given in table 

3.8. The Bader charges for both atoms fall short of the formal oxidation states of these 

atoms in this coordination. This can be explained by the large degree of covalency 

associated with the Fe-S bond, where the difference in the oxidation states of the Fe 

atom and the S atom is 0.30 electrons. This may be compared to an iron oxide such as 

magnetite, where calculations show a difference in Bader valence of around 0.9 – 1.0 

electrons between Fe atoms and O (Wenzel & Steinle-Neumann, 2007). 

 

Table 3.8 – Calculated Bader charges for non-magnetic Ueff = 0 eV case in 

mackinawite. 

Atom Bader Charge (e) 
Fe1 0.85 
Fe2 0.85 
S1 -0.85 
S2 -0.85 

 

3.2.7 Density of States 

Further information regarding the electronic structure is provided by the electronic 

density of states (DOS). Accurate singlepoint calculations were undertaken for both 

non-magnetic and ferromagnetic arrangements, at Ueff values of 0, 2 and 4 eV, using 

the minimum energy structures determined in the previous section and given in table 

3.7. The electronic energy smearing was changed from Gaussian to the tetrahedron 

method with Blöchl corrections (Blöchl et al., 1994) to improve the DOS description, 
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Ueff = 0 
eV 

Ueff = 2 
eV 

Ueff = 4 
eV 

since this method has been found to improve the summation of the electronic states in 

the BZ. Figure 3.6 shows a summary of the DOS for all the stable arrangements 

found. 
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Figure 3.6 – Electronic DOS graphs for non-magnetic and ferromagnetic conditions 

for each Ueff value at T= 0 K. Each graph shows the total DOS and the contributions 

from the iron d-orbitals and the sulfur p-orbitals. 

 

 The non-magnetic electronic DOS graphs confirm a property hinted at in the 

literature, namely that mackinawite has a metallic nature in the plane of the layers. 

The Fermi energy is seen to cut a band of the Fe d-orbital roughly in the centre of a 

local minimum between the t2 and e tetrahedrally split sub-orbitals, indicating the 

presence of mobile charge carriers. This finding is in agreement with the experimental 

findings of Vaughan and Ridout (1971). Regardless of the magnitude of the Ueff 

Non-Magnetic Ferromagnetic 
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parameter, the non-magnetic DOS has a very similar appearance, indicating that the 

mackinawite structure is metallic regardless of the amount of electron correlation 

imposed upon the Fe atoms. The contribution to the DOS at the Fermi level from the 

S atoms is negligible. This is another success for the Ueff = 0 eV simulation, which has 

correctly predicted the metallic nature of mackinawite within the individual layers.  

 

3.2.8 Expanded-Layer Formalism 

In order to overcome the problems inherent in the description of the dispersive forces 

in the mackinawite structure, a new method for relaxing the unit cell is required, 

which builds upon the successful description of individual layers of the structure. A 

logical way to proceed involves breaking down the relaxation into parts, beginning 

with a relaxation of only the a (and hence also the b) lattice parameters. This is 

achieved by fixing the c parameter to three times that of the experimental value, 

thereby removing any spurious interactions between the layers which would affect the 

calculation of second derivative properties of the mackinawite, such as the phonon 

frequencies. This new structure is depicted in figure 3.7. 

 

5.032 Å 

15.096 Å 
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Figure 3.7 – Expanded formulism of the layers within mackinawite in order to remove 

spurious interlayer interactions. The c parameter is tripled. 

  

 The Fe-S bond length remains unchanged. Calculations in this formulism can 

be considered to determine the properties of a single layer of the mackinawite 

structure only. 

 

3.2.9 Single-Layer Elastic Constant Calculations 

Elastic constants are an important property of any material, relating as they do an 

applied stress on the crystal lattice to the resultant strain. In order to determine from 

first principles the elastic constants for the mackinawite crystal, the expanded-layer 

structure with Ueff = 0 eV and no initial applied magnetic arrangement is chosen, due 

to its excellent agreement with experiment. By conducting only electronic relaxations 

and refusing to allow the ions to relax, the measured energy density on the unit cell 

for a given strain (deformation of the lattice) gives the elastic constants, which are  

found from the second derivative of the energy versus strain on the unit cell (See 

section 2.2.10).  

 The calculated elastic constants depend on the direction of the applied strain 

tensor. A given one-dimensional strain, represented by a dimensionless quantity and 

denoted by δ, is the ratio of any strained lattice parameter to the equilibrium value. In 

order to find the minimum of this relation a fitting procedure is used, which fits a 

parabola to a set of strains and the resultant increase in the internal energy for each 

discrete value for the applied strain. Figure 3.8 shows the fit to the internal energy 

versus applied strain for the strain corresponding to Equation (2.2.33) in section 

(2.2.10). With this fit c11 is determined according to Equation (2.2.35): 
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Figure 3.8 – Graph of the fitting of the c11 elastic constant to the internal energy of the 

expanded-layer mackinawite unit cell versus applied strain. The fit is a parabola with 

equation E(δ) = E(0) + k2(δ-a0)
2, where k2 corresponds to a in Equation (2.2.35). 

  

 c12 is determined by applying a strain in both directions of the plane of the 

mackinawite layer (See figure 2.3). Figure 3.9 shows the fit to the internal energy 

versus strain for the applied strain in the form of Equation (2.2.36). With this fit c12 

can be found from Equation (2.2.39): 
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 Figure 3.9 – Plot of the fitting of the c12 elastic constant. The fit is again a parabola of 

equation E(δ) = E(0) + k2(δ-a0)
2, where k2 corresponds to b in Equation (2.2.39). 

 

3.2.10 Single-Layer Phonon Mode Calculations 

Phonon modes, the quantized modes of vibration of a crystal lattice, are a very 

important property of a crystal lattice. Phonon mode calculations on the calculated 

expanded-layer, non-magnetic Ueff = 0 eV mackinawite structure are undertaken using 
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a stringent electronic self-consistent global break condition of 10-6 eV and an ionic 

relaxation loop break condition of 10-5 eV. This allows the accurate calculation of 

phonon modes for a single mackinawite layer. These are calculated by displacing each 

of the four atoms in the unit cell in each direction along the Cartesian axes, with 

displacements of 0.03 Å in both directions. 

 In these calculations, the Hessian matrix, a matrix of the second partial 

derivatives of the energy with respect to the atomic positions, is calculated for each of 

the possible arrangements of atomic displacements. The associated forces on the 

atoms are found by division by the applicable atomic mass, and from these forces the 

vibrational frequencies may be found. From the symmetry of the lattice and the fact 

that the mackinawite unit cell contains four atoms, there are 12 vibrational modes of 

mackinawite, with the first three corresponding to translational displacement of the 

entire lattice. The frequencies of these modes are given in table 3.9. 

 

Table 3.9 – Vibrational frequencies of a single layer of mackinawite, found from DFT 

calculations. 

ν1 (cm-1) 0 
ν2 (cm-1) 0 
ν3 (cm-1) 0 
ν4 (cm-1) 187 
ν5 (cm-1) 267 
ν6 (cm-1) 267 
ν7 (cm-1) 368 
ν8 (cm-1) 377 
ν9 (cm-1) 389 
ν10 (cm-1) 397 
ν11 (cm-1) 400 
ν12 (cm-1) 414 

 

 The first three phonon modes are zero, in accord with their status as 

translational modes of the lattice. No imaginary modes are observed, which is 
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encouraging since any imaginary phonon modes for this lattice would imply that the 

structure is unstable, which is contrary to experimental observations. 



 81 

3.2.11 Summary 

This section has examined the modelling of the mackinawite structure using both 

GGA and GGA+U methods. Preliminary calculations on the unit cell showed that a 

straightforward relaxation of the ionic and electronic degrees of freedom using the 

experimentally determined structure fails to find a minimum energy configuration. 

Indeed, even a full relaxation of the unit cell, including the lattice parameters, predicts 

an incorrect structure, with a large overestimation of the interlayer distance due to the 

incorrect treatment of dispersive forces. Simulations leading to a non-magnetic 

structure yields a configuration with an Fe-Fe distance and a and b lattice parameters 

close to those measured experimentally, while forcing a ferromagnetic nature to the 

structure leads to a large overestimation of the a and b parameters. An 

antiferromagnetic magnetic arrangement cannot be supported by the structure. 

Applying Ueff values from 1eV to 4eV has no effect on correcting the problems with 

the interlayer interaction for any of the magnetic arrangements. 

 Instead, a range of a lattice parameters are tested and the c parameter is fixed. 

It is found that the non-magnetic Ueff = 0 eV case gives the best agreement with the 

experimental structure within the mackinawite layer, and an examination of the 

electronic density of states of mackinawite indicates that it is metallic in the plane of 

the layers for this case, with delocalised electrons in the Fe-d orbitals explaining the 

metallic nature. It is likely that the close Fe-Fe distances within the layers of 

mackinawite give rise to this behaviour.  

 A new formulism is postulated to model the mackinawite structure. Expanding 

the inter-layer distance by a factor of three effectively converts the calculations from 

bulk to a consideration of a single layer of mackinawite only. Using this new unit cell, 

the elastic constants and phonon modes of a single layer of mackinawite are found 
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from first principles. 

 

 

3.3 Interatomic Potential Simulations 

3.3.1 Interatomic Potential Parameter Fitting 

Due to the absence of experimentally confirmed, quantified physical data for 

mackinawite, no potential models exist for this structure in the literature. Indeed, to 

the authors’ knowledge no parameterised potential model between Fe2+ and S2- has yet 

been developed. However, the success of the DFT calculations in the previous section 

make possible the fitting of interatomic potentials to the structure using the predicted 

elastic constants and phonon modes for the expanded-layer form of mackinawite and 

the experimentally determined mackinawite structure itself. The aim is to determine a 

set of interatomic potentials which successfully reproduce the structures and 

properties of both the expanded and experimental mackinawite structures to a high 

accuracy. 

 A variety of different potential models were tested to determine their 

suitability for this task. After a great deal of trial and error in the fitting and 

optimisation of the potentials and their parameters to the properties, a very close fit to 

the structures and properties is obtained. It was found that a potential term taking into 

account of the S-Fe-S 3-body “bond-bending” of the covalent bond was not required. 

Instead, two Buckingham potentials, each modelling the interaction between S-S and 

Fe-S ions, were sufficient to accurately reproduce the mackinawite structure. A further 

term includes a shell- and spring- model with an associated spring constant to account 

for the polarisability of the S atoms. 
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 Table 3.10 presents the derived parameters for the interatomic potential 

describing mackinawite. The high polarisability of the sulfur atom is evidenced by the 

small value for the spring constant between the core and shell of 23.0 eV Å-2, as 

compared with the value for k of 62.9 eV Å-2 in Fe-O (Lewis & Catlow, 1985). 

 

Table 3.10 – Derived interatomic potentials for the mackinawite structure. An 

effective cut-off distance of 15 Ǻ is applied to the Buckingham potentials. 

Buckingham Potential A (eV) ρ (Ǻ) C (eV·Ǻ6) 
Fe-S 1000.00 0.3201 0.0 
S-S 9201.82 0.3147 130.0 

 
Spring Potential k (eV·Ǻ-2) 
S core – S shell 23.0 

 
Ion Charges Charge (e) 

Fe core +2.000 
S core +1.357 
S shell -3.357 

 
 

 Table 3.11 lists the predictions of the structure and elastic constants of 

mackinawite compared with available experimental data. Table 3.12 presents the 

properties from the ab initio calculations and the interatomic potential simulations of 

the single layer, compared to experiment. The fitting to structural parameters for both 

the expanded layer and experimental structures is excellent, as is the fit to the elastic 

constants and phonon modes. 
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Table 3.11 – Comparison of interatomic potential calculations and experimental 

structure for mackinawite.  

 Potential Experiment 
a, b (Ǻ) 3.667 3.674 
c (Ǻ) 5.033 5.033 
c11, c22 (GPa) 145.6 - 
c12, c21 (GPa)   99.1 - 
c13, c23, c31, c23 (GPa)     8.5 - 
c33 (GPa)   13.0 - 
c44, c55     3.8 - 
c66 185.8 - 

 
 

Table 3.12 – Comparison of potential model and ab initio calculated properties of an 

isolated layer of mackinawite. 

 Potential  ab initio 
a, b (Ǻ) 3.661 3.599 
c (Ǻ) 15.098 15.098 
c11 (GPa) 48.6 46.9 
c12 (GPa) 32.5 29.5 
ν1 (cm-1) 0.00 0.00 
ν2 (cm-1) 0.00 0.00 
ν3 (cm-1) 0.00 0.00 
ν4 (cm-1) 124 187 
ν5 (cm-1) 191 267 
ν6 (cm-1) 245 267 
ν7 (cm-1) 245 368 
ν8 (cm-1) 302 377 
ν9 (cm-1) 323 389 
ν10 (cm-1) 323 397 
ν11 (cm-1) 329 400 
ν12 (cm-1) 413 414 

 

 

 The prediction by the ab initio methods of the conductivity of mackinawite 

suggests that there exists within the Fe basal plane a degree of electron delocalisation, 

which may be interpreted as a form of metallic bonding between the iron cations. This 

is not reproduced by the interatomic potential, which provides a possible explanation 
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for the small discrepancies in elastic constants and phonon modes when compared to 

the ab initio predictions.   

 

3.3.2 Surface Geometry and Analysis 

Using the interatomic potential derived in the previous section, it is now possible to 

examine the stability and structure of the surfaces of mackinawite in a rigorous 

manner. To this end, the crystal structure produced from the interatomic potential 

calculations was “cut” in a number of different directions to produce the {100}, 

{010}, {001}, {110}, {101}, {011} and {111} surfaces of mackinawite. The 

symmetry of the crystal in the a and b directions leads to the equivalence of the {100} 

and {010} pair of surfaces, and also the {101} and {011} surfaces. Using the 

procedure described in section 2.1.2, the unrelaxed and relaxed surface energies 

predicted by the derived potential are calculated, and these values are presented in 

Table 3.13. In addition, it should be noted that every one of these surfaces possesses 

only a single, unique repeat unit each. with the exception of the {001} surface which 

has two. 

  

Table 3.13 – Unrelaxed and relaxed surface energies for mackinawite, calculated 

using the derived interatomic potential. The suffixes –S and –Fe denote the 

termination of a surface at a plane of that species of atoms. 

Surface 001-S 011 101 100 010 111 110 001-Fe 
γunrelaxed (Jm-2) 0.07 1.14 1.14 1.25 1.25 3.35 3.72 6.41 
γrelaxed (Jm-2) 0.07 0.60 0.60 0.71 0.71 0.75 1.16 2.64 

 

  Figure 3.10 (a), (b) shows the relaxed structures of the {001} surface, two 

distinct orderings corresponding to two different repeat units. The {001}-S surface 
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(figure 3.10(a)) corresponds to a splitting of the layers at the interlayer mid-point, 

leaving a typical terminated surface of S atoms, as seen in the bulk structure, whereas 

the {001}-Fe surface (figure 3.10(b)) cuts the bulk structure mid-layer leaving a 

partially vacant layer of Fe atoms at the surface. This is a type-III surface, 

reconstructed to a type-II. 

 The {001}-S surface is by far the most important surface in mackinawite. The 

very low surface energy associated with this surface is due to the breaking of only the 

weak interlayer Van der Waal’s S-S bonding between the S atoms, which results in 

only negligible relaxation of the surface species. The {001}-Fe termination divides 

the Fe-Fe basal plane into a reconstructed type-III surface, and as such breaks the 

greatest number of Fe-S bonds, leading to a high surface energy of 6.41 Jm-2 prior to 

relaxation. Upon relaxation the surface atoms experience large displacements, with 

the Fe-S bond length decreasing from 2.24 Å to 1.89 Å and the Fe-S-Fe bond angle 

increasing from 110.0º to 152.8º. 

 

(a) (b)  

Figure 3.10 (a), (b) – Schematic of the (a) relaxed {001}-S and (b) {001}-Fe surfaces. 

Both diagrams show a bulk layer beneath the surface and are viewed along the a axis. 
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 The next most stable surfaces are the identical {011} and {101} planes, which 

possess only a single repeat unit (figures 3.11(a), (b)) which terminates in a Fe atom at 

the surface. These surfaces possess a surface energy of 1.14 Jm-2 prior to relaxation 

and 0.60 Jm-2
 afterwards, a decrease of 47%. This is accompanied by a displacement 

of the surface Fe atom of 0.27 Å into the surface.  

(a) (b)  

Figure 3.11 (a), (b) – The (a) unrelaxed and (b) relaxed surface structure of the {011} 

surface, viewed along the b axis. 

 

 The {100} (and {010}) surface possesses only one repeat unit (figures 3.12 (a) 

and 3.12 (b)), which demonstrates a large reduction in the surface energy upon 

relaxation, of the order of 40%, with a displacement of the surface sulfur atom out of 

the plane of the surface by 0.09 Å (figure 3.12(a), (b) and 3.13(a), (b)). 

(a) (b)  

Figure 3.12 (a), (b) – The (a) unrelaxed and (b) relaxed surface structure of the {100} 

surface, viewed along the a axis. 
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(a) (b)  

Figure 3.13 (a), (b) – The (a) unrelaxed and (b) relaxed surface structure of the {100} 

surface, viewed along the b axis.  

 In the case of the {111} surfaces, two repeat units are possible. However the 

first is a type-II (Figure 3.14(a), (b)) and the second a type-III, which reverts to the 

type-II surface upon reconstruction. A very large relaxation is seen for the {110} 

surface, where a decrease in surface energy of 70% occurs upon energy minimisation, 

whereas the {111} surface demonstrates an even larger decrease of 78%. These large 

reductions in surface energy upon relaxation demonstrate the relatively high 

instability of these surfaces and the requirement for a significant relocation of both S 

and Fe atoms at the surface. The {110} surface in particular demonstrates a notable 

reconstruction of the mackinawite structure upon relaxation (figures 3.15(a), (b) and 

3.16(a), (b)), as does the {111} surface (figure 3.14(a), (b)). 
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(a) (b)  

Figure 3.14 (a), (b) – The (a) unrelaxed and (b) relaxed {111} structure viewed along 

the b axis. 

(a) (b)  

Figure 3.15 (a), (b) – The (a) unrelaxed {110} structure viewed along the a axis and 

(b) relaxed {110} viewed in the same direction. 

(a) (b)  

Figure 3.16 (a), (b) – The (a) unrelaxed {110} surface structure viewed along the b 

axis and (b) relaxed {110} surface structure viewed along the b axis. 
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 Examining the electron diffraction experiments of Lennie et al. (1995), single 

crystals of approximately stoichiometric mackinawite were found to produce patterns 

consistent with mackinawite lying with its {001} plane parallel to the carbon film 

substrate on which it was deposited. This to some extent confirms our finding that the 

{001} surface is the most chemically important surface in terms of stability and hence 

in the crystal morphology of mackinawite. The selected area electron diffraction 

(SAED) patterns obtained by Ohfuji & Rickard (2006) of both freeze-dried and 

precipitated mackinawite show clearly the {001} to be the most stable surface, 

followed in decreasing stability by the {101}, {200} (equivalent to the {100} surface) 

and {111} planes. These findings are in excellent agreement with the hierarchy of 

surface energies predicted by our derived potential model. The failure to observe 

experimentally the {110} surface reflections is explained by its relatively high surface 

energy, causing this surface not to be expressed in the calculated crystal morphology, 

as shown in figure 3.17. The faint occurrence of the {111} surface reflection can be 

explained via its relatively higher surface energy compared to the {100} and {101} 

surface and its relatively small contribution to the crystal morphology. 

 

 

Figure 3.17 – The calculated crystal morphology of mackinawite, from the derived 

FeS potential. The crystals grow in tabular forms, with the {001} surface highly 

prominent. 
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  Ohfuji & Rickard (2006) describe the mackinawite crystals grown as being 

thin and tabular in form, in excellent agreement with the calculated morphology. 

 

3.3.3 Summary 

This section has taken the values predicted from the previous DFT calculations of the 

phonon modes and elastic constants of a single mackinawite layer and, together with 

the experimental structural parameters, fitted them to interatomic potential parameters 

which reproduce these values accurately. This IP is then used to find the unrelaxed 

and relaxed surface energies and structures of lower-order surfaces of mackinawite, 

and from these the crystal morphology is calculated. The predicted morphology is in 

excellent agreement with that observed experimentally. 

 

 

3.4 Impurities in Mackinawite 

3.4.1 Introduction 

As mentioned in section 3.1.2, naturally occurring mackinawite, such as that located 

in lake sediments, is often found with transition metal atoms incorporated into the 

structure. Studies have found that these impurities include Ni (up to 20%), Co (up to 

20%), Cu (up to 10%) and Cr (up to 10%) (Clark, 1969; Vaughan, 1969). More 

recently, a number of studies have found that mackinawite is able to capture heavy 

metal atoms on both the (001) surface and inside the octahedral interstitial sites 

(Moyes et al., 2002, Liu et al., 2008, Mullett et al., 2004). It is also plausible that any 

surplus Fe in the structure would occupy these sites, and this may explain why the 
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composition of naturally occurring mackinawite is Fe-rich or S-deficient with the 

formula Fe1-xS (where 0 < x < 0.07) (Vaughan & Ridout, 1971). Previous work found 

that the hardness of mackinawite increases with increasing impurity content 

(Vaughan, 1969; Clark, 1970a) even for small amounts of impurities, an effect 

ascribed to the substitution of transition metal impurities into the Fe spaces (Clark, 

1969). Studies have also indicated that increasing Co concentration (up to 20-25%) in 

the mackinawite structure leads to a decrease in both the a and c lattice parameters, 

opposite to that found for Ni where the lattice parameters increased with the impurity 

concentration. As to the location of the impurity atoms in the mackinawite structure, 

Vaughan (1970) noted that the layered structure of mackinawite allows the 

incorporation of additional interstitial layers between the Fe-S, which has opened up 

the possibility of introducing novel new layers into these locations (Peng et al., 2009). 

 In order to ascertain the effects of the presence of these interstitial impurities 

on the mackinawite structure, GGA calculations were undertaken with impurity atoms 

introduced into the interstitial octahedral positions. The bonding, or lack thereof, of 

the impurity atoms and the S atoms will be examined. Based on the calculations of the 

pure mackinawite structure, non-magnetic GGA calculations with no applied Ueff 

value are used in all simulations. As it was also determined that, for a range of Ni-S 

materials, a Ueff value is not required in order to achieve a good description of the 

material properties (Wang et al., 2007), no Ueff value is applied to the Ni atom in these 

simulations. The same can be argued for Cu impurities, since work (Sadtler et al., 

2009) using the VASP code and pure GGA has provided an excellent description of 

the CuS2 (chalcocite) phase, and similarly the sulfide compounds of both Co and Cr 

modelled by Hobbs and Hafner (1999). 
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3.4.2 Interstitial Nickel 

A doping level of 20% interstitial nickel is equivalent to one nickel atom per unit cell, 

giving a compound with the formula Ni0.5FeS. To simulate this scenario a single Ni 

atom is placed at the centre of the unit cell, located at the interstitial octahedral site in 

the mackinawite structure (Figure 3.18). 

 

Figure 3.18 – Ni atom placed at the centre of the mackinawite unit cell. Fe atoms are 

shown in dark gray, S atoms in light gray. 

  

 The c lattice parameter is fixed at the experimental value of 5.033 Å, in the 

same manner as the simulations of the pure mackinawite unit cell in section 3.2.4, and 

both the a and b parameters are varied from 3.40 Å to 4.0 Å in order to determine the 

minimum internal energy for this atomic configuration. The cell volume and size are 

fixed in each calculation, and only the internal ionic coordinates are permitted to 

relax. An energy cut-off of 400 eV is used in this instance, with a dense Monkhorst-

Pack k-point mesh of 11x11x11, a Gaussian smearing parameter of 0.02 eV and an 

electronic self-consistent loop break condition of 10-5. Figure 3.19 presents the results 

of these calculations. 

Ni 
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Figure 3.19 – Plot of the internal energy of the Ni0.5FeS structure versus a (and b) 

lattice parameter for ionic coordinate relaxation only. The c parameter is fixed at 

5.033 Å. The line of best fit is a 5th order polynomial. 

 

 The energy minimum of figure 3.19 occurs at an a parameter of 3.664 Å, 

which is very close to the quoted experimental a parameter for the undoped 

mackinawite structure, 3.6735 (± 0.0001) Å, and is closer to this experimental value 

than that calculated for the undoped mackinawite a parameter (3.612 Å) in section 

3.2.4. It is noted that the variation in the internal energy is not symmetrical about its 

minimum, and at values of a lower than the minimum in energy the gradient of the 

curve is greater than at higher values, indicating that the presence of the Ni atom 

makes compression of the structure in the plane of the layers more difficult than 

expansion in the same plane. 

 The effect of the Ni interstitial atom on the stability of the c parameter of the 
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mackinawite structure is also important. In order to test the GGA description of this 

relation, the a and b parameters were fixed to the calculated value of 3.664 Å and the 

c parameter varied in order to determine the most energetically favourable value for c. 

The same simulation parameters are used as in the previous case. The results of these 

calculations are presented in figure 3.20. 
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Figure 3.20 – Variation of internal energy with c parameter for Ni doped mackinawite.  

  

 Figure 3.20 shows a clear energy minimum for the c parameter, located at 

5.034 Å, in contrast with the situation found for the undoped mackinawite case, where 

no clear minimum in the energy was found (figure 3.2). The predicted c parameter at 

minimum internal energy is close to that of the experimental undoped mackinawite 

structure, c = 5.0328 (± 0.0001) Å. 

 These results, showing clear energy minima with respect to all three lattice 

directions, indicate that a full relaxation of the unit cell and internal coordinates of 

this structure is possible without errors arising from the GGA method being unable to 
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account for the interlayer dispersive forces. Full cell relaxations at a range of basis set 

cut-off energies were undertaken for both spin-polarised and non-spin-polarised 

situations, followed by relaxations of only the internal ionic coordinates and a final 

singlepoint electronic relaxation to obtain the ground state energy. The results of these 

calculations, and their convergence with basis set cutoff energy, are presented in Table 

3.14. 

 

Table 3.14 – Lattice parameters and internal energies for both non-spin-polarised and 

spin-polarised Ni doped mackinawite structure relaxation calculations. 

Non-spin polarised Spin-polarised Cutoff 
(eV) a (Å) c (Å) Internal Energy 

(eV) 
a (Å) c (Å) Internal Energy 

(eV) 
400 3.657 5.042 -31.899 3.658 5.041 -31.899 
500 3.661 5.047 -31.909 3.659 5.047 -31.909 
600 3.661 5.047 -31.909 3.659 5.047 -31.909 
700 3.661 5.047 -31.909 3.661 5.047 -31.909 
800 3.661 5.047 -31.909 3.661 5.047 -31.909 

 

 Convergence occurs at an energy cutoff of 500eV for the non-spin polarised 

case. No final magnetic moment on either the Fe or Ni atoms is found to be supported 

in the spin-polarised calculations for any basis set cut-off energy. The full relaxation 

of both the unit cell dimensions and the internal coordinates yields a unit cell with 

lattice parameters a = b = 3.661 Å and c = 5.047 Å, and the first S coordinate is found 

to be 0.2369. 

 The final singlepoint calculation has used the tetrahedral method with Blöchl 

corrections in order to produce the electronic DOS for this structure (Figure 3.21). A 

sampling space of 3000 energy data points was used. 
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Figure 3.21 – Electronic DOS graph for mackinawite structure with 20% interlayer Ni 

atoms. The Fe contribution is shown with a solid black line, the S contribution a 

dotted line and the Ni contribution a dashed line. 

  

 The DOS for the Ni-doped mackinawite structure demonstrates that both the 

Ni atom and the Fe atoms provide accessible bands at the Fermi level, indicating that 

the electrons are delocalised, and that the Ni atom contributes considerably to this 

delocalisation. 

 The comparison of the Bader populations of Ni0.5FeS and pure mackinawite 

(table 3.15) shows that the introduction of the Ni atom has the effect of breaking the 

charge symmetry of the two Fe atoms to a small degree, such that the Fe atom at (0, 0, 

0) has 0.07 electrons less than the Fe at (0, 0.5, 0.5).  
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Table 3.15 – Calculated Bader populations of Ni0.5FeS structure. FeS Bader charges 

for FeS are shown for comparison (from section 3.2.4). 

Atom Ni0.5FeS Bader Charge (e) FeS Bader Charge (e) 
Fe1 +0.82 +0.85 
Fe2 +0.75 +0.85 
S1 -1.02 -0.85 
S2 -1.02 -0.85 
Ni +0.47 - 

 

 The Ni atom has a Bader charge of +0.47, an appreciable level of oxidation 

and comparable to that found by Wang et al. (2007) when they modelled a range of 

Ni-S materials. By analogy with the predominantly covalent materials, it can be 

deduced that there is a high level of covalent nature predicted for the Ni-S bonds in 

Ni0.5FeS. The Bader analysis also shows that both the Fe atoms, to different degrees, 

have an increased Bader population in the doped Ni structure relative to pure 

mackinawite, suggesting that the presence of the Ni atom in the octahedral site affects 

both Fe. The calculated Ni0.5FeS structure predicts a Ni-Fe distance of 2.524 Å; this is 

actually slightly lower than the Fe-Fe distance of 2.589 Å The distance between Ni-Ni 

atoms in the plane of the layers is found to be 3.661 Å, indicating that direct 

conduction between these species is unlikely for this level of doping, and the 

delocalisation of the Ni valence electrons is unlikely to be caused by direct Ni-Ni 

interaction. 

 With the method to reliably find the ground state of 20% doped FeS 

determined, the other impurity atoms that have been found in natural mackinawite are 

tested to investigate the effect each has on the properties of mackinawite. 
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3.4.3 Interstitial Cobalt 

Replacing the interstitial Ni atom with a Co atom, the relaxation on both unit cell and 

internal coordinates at a variety of basis-set cut-off energies and both spin-polarised 

and non-spin-polarised cases are repeated. The results of these calculations at a range 

of basis set cutoff energies are presented in table 3.16. 

 

Table 3.16 – Calculated lattice parameters and internal energies for both non-spin-

polarised and spin-polarised Co doped mackinawite structure relaxation calculations. 

Non-spin polarised Spin-polarised ENCUT (eV) 
a (Å) c (Å) Internal Energy (eV) a (Å) c (Å) Internal Energy (eV) 

400 3.623 5.004 -33.226 3.623 5.005 -33.226 
500 3.626 5.009 -33.238 3.626 5.009 -33.238 
600 3.626 5.009 -33.239 3.626 5.009 -33.239 
700 3.626 5.009 -33.239 3.626 5.009 -33.239 
 

  

 The relaxed lattice parameters are determined to be a = 3.626 Å and c = 5.009 

Å, with no observable difference between non-spin-polarised and spin-polarised 

calculations suggesting that the system cannot support a net magnetisation. 

Convergence occurs at a basis set cutoff energy of 500eV. 

  The calculated electronic DOS (figure 3.22) is similar in form to that 

found in the case of Ni; however the Co atom is noted to provide a slightly larger 

number of available states at the Fermi level compared to the Ni-doped case. 
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Figure 3.22 - Calculated electronic DOS for Co0.5FeS. 

 

Bader analysis of the electronic ground state for Co0.5FeS is given in table 3.17. 

 

Table 3.17 – Calculated Bader populations of Co0.5FeS structure. 

Atom Co0.5FeS Bader Charge (e) FeS Bader Charge (e) 
Fe1 +0.80 +0.85 
Fe2 +0.71 +0.85 
S1 -1.04 -0.85 
S2 -1.05 -0.85 
Co +0.58 - 

 

 A greater fraction of electrons are donated from the Co atom to the S atoms 

compared to the Ni case, suggesting that the bond is likely to be stronger. This is also 

indicated by the slightly reduced c parameter, which suggests that the Co atom has 

more of a binding effect with the layers than the Ni atoms, and by the calculated Co-

Fe bond length of 2.505 Å, slightly shorter than that found for Ni0.5FeS. The 
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calculated charge difference between the two Fe atoms for Co0.5FeS is almost 0.1 

electrons, a significant difference. According to the Bader calculations, the Co atom 

has donated 0.58 electrons to the Fe-S system. 

 

3.4.4 Interstitial Copper 

Cu is introduced into the structure in the same manner as Ni and Co. Convergence 

with basis set cutoff energy is found to occur at 500eV, where the relaxed structure is 

found to possess the lattice parameters a = b = 3.689 Å and c = 5.266 Å. Bader charge 

analysis of the electronic ground for this structure state is presented in table 3.18. 

 

 

Table 3.18 – Calculated Bader populations of Cu0.5FeS structure. 

Atom Cu0.5FeS Bader Charge (e) FeS Bader Charge (e) 
Fe1 +0.80 +0.85 
Fe2 +0.73 +0.85 
S1 -1.03 -0.85 
S2 -1.03 -0.85 
Cu +0.53 - 

  

 The Bader charge analysis of Cu0.5FeS indicates that, in a similar manner to 

that seen for Ni and Co, the Cu atom contributes significant electron density to the Fe-

S system. The calculated electronic DOS for the Cu0.5FeS structure is given in figure 

3.23. 
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Figure 3.23 – Calculated electronic DOS for Cu0.5FeS. 

 

 The Fermi energy cuts the conduction band of the Fe atoms, with little 

contribution from the Cu or S atoms. This is in marked contrast to the Ni and Co 

doped cases, where the interstitial transition metal ions contributed a number of states 

at the Fermi level. It is noted in this respect that the Cu-Fe distance is 2.633, which is 

around 0.1 Å longer than either the Ni-Fe or Co-Fe distances. 

 

3.4.5 Interstitial Chromium 

Finally, full cell relaxations are repeated for a Cr dopant atom in the interstitial 

octahedral site. Convergence occurs at a basis set cutoff of 600eV, which produces a 

tetrahedral structure with the lattice parameters a = b = 3.595 Å and c = 5.241 Å. A 

Bader analysis of the electronic groundstate of this structure is given in table 3.19. 
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Table 3.19 – Bader charge analysis for Cr0.5FeS. 

Atom Cr0.5FeS Bader Charge (e) FeS Bader Charge (e) 
Fe1 +0.75 +0.85 
Fe2 +0.63 +0.85 
S1 -1.33 -0.85 
S2 -1.33 -0.85 
Cr +1.28 - 

 

 The Bader charge analysis for this structure shows that the Cr atoms are 

oxidised to a greater extent than those calculated for the other impurities; 1.28 

electrons have been removed from the Cr atom, which suggests that the Cr ion in 

mackinawite exists in an oxidation state greater than +2, the posited oxidation state 

for the other impurities tested.  
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Figure 3.24 – Calculated electronic DOS for Cr0.5FeS. 

 

 The calculated electronic DOS for Cr0.5FeS is depicted in figure 3.24. The Cr 
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atoms contribute roughly as many states at the Fermi level as the Fe atoms, with a Cr-

Fe bond distance of 2.621 Å. 

 

3.4.6 Summary 

The results for the 20% Ni-, Co-, Cr- and Cu-doped FeS calculations are summarised 

in table 3.20. 

 

Table 3.20 – Calculated lattice parameters, oxidation states for each atom and M-Fe 

bond lengths for the doped mackinawite structure, where M = Ni, Co, Cr and Cu. The 

charge is calculated from the Bader population on each atom. 

Lattice Parameters Net Bader Charge (e)  
a (Å) c (Å) Fe1 Fe2 S M M-Fe Bond Length (Å) 

Ni 3.661 5.048 +0.815 +0.742 -1.014 +0.474 2.524 
Co 3.626 5.009 +0.801 +0.712 -1.045 +0.577 2.505 
Cu 3.689 5.266 +0.805 +0.729 -1.032 +0.531 2.633 
Cr 3.595 5.241 +0.752 +0.628 -1.330 +1.280 2.621 

  

 These results show that the inclusion of impurity atoms into the mackinawite 

structure is likely to have only a small effect on the lattice parameters, compared to 

the undoped mackinawite case. An increase in the c parameter for the Cu- and Cr- 

doped structures of around 0.2 Å is the most significant effect measurable using 

crystallographic methods. This is further shown by the longer M-Fe bond lengths for 

these dopants. 

 From the calculated Bader charges, the approximate oxidation states of the 

atoms can be estimated. The Fe atoms within the layers show only small variations 

from the pure mackinawite case, indicating that these remain in the 2+ state regardless 

of the dopant atom species. The Ni, Co and Cu atoms bader charges are 
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approximately half of that calculated for Fe, suggesting that these atoms are in the 1+ 

formal oxidation state. Finally, the Cr atom has a bader charge of around three times 

that of the Ni, Co and Cu, suggesting that Cr3+ is present. 

 The finding that there is a direct interaction between the interstitial doping 

atom and the neighbouring S atoms in the plane of the layer leads to the conclusion 

that, when such impurities are present the interstitial impurities acting to stabilise the 

mackinawite structure, by replacing the weak dispersive forces between layers with 

chemically bonded interactions between the S and the doping atoms. This is likely to 

have a significant impact upon the surface energies of the doped mackinawite 

structure compared to the undoped, and the crystal habit of doped mackinawite will 

deviate from that of figure 3.17. Similarly, the transition of mackinawite to other Fe-S 

structures will likely be affected by the presence of impurities, particularly the 

transition to the greigite structure which chiefly involves movement of the Fe sub-

lattice. 

 The DOS for each of these indicates that doping with Cr will lead to the 

greatest number of available states at the Fermi level. The Cr atom is also oxidised to 

a greater extent that that other impurities tested, evidenced by the oxidation state of 

+1.28. The bulk of these electrons have transferred to the S atoms, which are 

appreciably more reduced by Cr than for the other impurities tested. 

 It is noted that the calculated M-Fe bond lengths are close to the Fe-Fe bond 

length (2.65 Å) in the layers which leads to the metallic behaviour of mackinawite. 
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3.5 Conclusions 

DFT-GGA calculations used to simulate the mackinawite structure have shown that 

the energetically most favourable stable arrangement is the metallic non-magnetic 

case. The DOS calculations show that at all values for the Ueff parameter in the 

GGA+U formalism the Fermi level of mackinawite cuts the Fe d-orbital band, 

indicating the presence of mobile charge carriers in the plane of the mackinawite 

layers. In comparison with iron oxides, GGA predictions regarding mackinawite are 

most precise without an applied Ueff parameter, a fact ascribed to the delocalisation of 

the Fe 3d electrons in the individual mackinawite layers. In more highly correlated 

materials the d electrons usually need to be localised by the Ueff parameter, but in 

mackinawite values other than Ueff = 0 eV give incorrect predictions of the magnetic 

nature. Rohrbach et al. (2003) indicates three aspects of the GGA modelling of 

transition metal sulfides that are predicted incorrectly; semiconducting gap, too low 

magnetic moment and too small an equilibrium volume. All these properties are 

improved by the inclusion of the Hubbard Ueff parameter. Mackinawite, however, is a 

non-magnetic metallic compound, where inclusion of the changes associated with Ueff 

values would be incorrect. 

 The physical parameters predicted using a single layer structure were utilised 

for the fitting of an interatomic potential, which predicts the elastic constants of the 

normal mackinawite structure to be c11 = 145.6 GPa, c12 = 99.1 GPa, c13 = 8.5 GPa 

and c31 =13.0 GPa. Calculations of both relaxed and unrelaxed surface energies have 

highlighted the stability of the {001} surface with S atom termination compared to all 

other surfaces, indicating that this surface is the most important in the crystal 

morphology. The calculated surface energies and resulting morphology are in 

excellent agreement with experimental findings regarding the most stable surfaces of 
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synthetic crystals of mackinawite. Finally, the derived interatomic potential model is 

an excellent basis for future work on crystal growth and adsorption processes at the 

surfaces of mackinawite. 

 Calculations show that the presence of transition metal impurity atoms in the 

octahedral interstitial site has the effect of stabilising the mackinawite structure, and 

the ionic bonding due to the M-S interaction dominates the interlayer attraction, over 

and above that of the Van der Waal’s forces between S atoms, where M = Ni, Co, Cu 

or Cr. This would seem to indicate that the presence of interstitial transition metal 

atoms is a notable factor in the stabilisation of the mackinawite structure. 
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4. Greigite 

 

 

4.1 Introduction 

The iron sulfide mineral greigite (Fe3S4) was first defined as a mineral by Skinner et 

al. (1964) from a Californian lacustrine sediment sequence and has since been found 

in many natural environments with ages of up to several million years (Dekkers et al., 

2000). Due to its ubiquity in sedimentary rocks, greigite is now considered to be a 

common magnetic material (Roberts, 2005). 

 This phase has been implicated as an important catalyst in the development of 

proto-metabolism due to its similarity with the cubane cluster structure Fe4S4 (Russell 

and Hall, 1997), which is widespread in the active sites of a variety of enzymes (Nair 

2008). In addition, greigite has been found in magnetotactic bacteria (Pósfai et al., 

1998a), where the magnetic nature of the mineral causes the bacteria to orientate 

along geomagnetic field lines. It is believed that a similar property explains its 

presence in the scales of a deep sea gastropod (Suzuki et al., 2006). Due to its 

ferrimagnetic behaviour, it is an important material in paleomagnetism (Letard et al., 

2005), where it holds a record of the Earth’s magnetic field. Biogenic Fe3S4 has also 

been found in soil samples (Stanjek et al., 1994).  
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4.1.1 Structure 

Greigite is the sulfide analogue of the iron oxide mineral magnetite (Fe3O4), and 

possesses the same cubic crystalline spinel structure (Letard et al., 2005) with space 

group Fd3m (227). As such, the unit cell of greigite contains 56 atoms of which 24 are 

Fe and 32 are S. The Fe atoms are divided into two sub-lattices, with 8 Fe occupying 

tetrahedrally coordinated sites (hereafter referred to as A sites) and 16 on octahedral 

sites (B sites). In turn, the sulfur anions are bonded in a close-packed cubic lattice 

(Uda, 1965). The greigite unit cell structure is depicted in figure 4.1. 

 

Figure 4.1 – Structure of Greigite, viewed along the c-axis (left) and off-axis (right)). 

The S atoms are shown in light gray and the Fe atoms dark gray. 

 

 It is not clear to what level impurities occur in natural greigite samples. It has 

been suggested that greigite possesses localised valence electrons, and that this limits 

the amount of transition metal impurities, such as Ni, Cu or Co in the greigite 

structure, since stable solid solutions could not be formed (Rickard & Luther, 2007). 
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4.1.2 Formation of Greigite 

Prior to its discovery in nature, greigite was successfully synthesized in its pure form 

by Yamaguchi & Katsurai (1960) and later by Uda (1967), the latter as a precipitate of 

the reaction between Mohr’s salt and sodium sulphate, and since then greigite has 

been successfully synthesised many times (e.g. Horiuchi et al., 1970; Horiuchi et al., 

1974; Wada, 1977; Lennie et al., 1995). Recently, both 1-dimensional rods (He et al., 

2006) and 2-dimensional nanosheets (Han & Guo, 2008) of greigite have been 

successfully synthesised. The micro-rods of greigite were selectively assembled using 

an in situ magnetic-field-assisted hydrothermal route using S precursors, of which 

cysteine was found to effectively produce exclusively Fe3S4. The presence of a 

magnetic field of 45 mT was found to contribute to the formation of Fe3S4 at higher 

temperature, and to have a large effect on the morphology of the crystals grown. In 

regard to the synthesised nanosheets, reaction temperature and precursor were again 

found to be the key factors in the phase of iron sulfide formed. It was found by Chang 

et al. (2008) that synthetic greigite, which is judged to be stoichiometric, grows in 

particles with equi-dimensional cubo-octahedral crystal habits, with elongation of the 

[111] or [100] crystallographic habits. This leads to the growth of plate-like or prism-

like crystals. 

 In anhydrous condition, the greigite phase is believed to form only from 

mackinawite (Fe2+S2-) via oxidation of two-thirds of the Fe2+ cations, together with re-

arrangement about the close-cubic packed S anions (Lennie et al., 1997) which in turn 

undergoes a small volume reduction of around 12% (Lennie et al., 1995). In the 

absence of any other species, this solid state transformation is thought to proceed 

according to the equation: 

 4FeSmack = Fe3S4 + Fe(0)   ∆Gr°  =  +84.5 kJ mol-1 
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at 25°C (Rickard & Luther, 2007), making this thermodynamically unlikely. It is 

possible that O2 present in the reaction chamber will catalyse this reaction (Lennie et 

al., 1995). 

 In solvated environments the transition from FeSmack to Fe3S4 is thought to 

take the form (Rickard & Luther, 2007): 

 3FeSmack + S0 = Fe3S4    ∆Gr°  =  -13.7 kJ mol-1 

at 25°C, and that this is much more probable in freshwater than marine environments, 

explaining the ubiquity of greigite in these milieus.  

 

4.1.3 Experimental Studies: Electronic Structure 

A number of studies of greigite are detailed in the literature, performed on both 

naturally occurring and synthetically fabricated Fe3S4 samples. The first Mössbauer 

spectroscopy study of synthetic greigite was conducted by Morice et al. (1969) who 

found that at room temperature, magnetic hyperfine structure is present and that the 

hyperfine fields found are consistent with the assignment of covalent ferrous (Fe2+) 

iron. Vaughan and Ridout (1970) also synthesised greigite for Mössbauer 

measurements to investigate the spectra down to temperatures of 4.2K. The spectrum 

at 4.2K is interpreted to consist of three sets of magnetic hyperfine spectra, 

corresponding to iron in three different crystallographic positions in the spinel 

structure. The isomer shifts, quadrupole splitting and hyperfine fields of these three 

different types of iron suggests the presence of high-spin Fe3+ in tetrahedral and 

octahedral sites, and high-spin Fe2+ occupying only octahedral sites. This magnetic 

arrangement corresponds to that of an inverse spinel with the formula 

(Fe3+)A(Fe2+Fe3+)BS4. The tetrahedral and octahedral sub-lattices are aligned in an 

anti-parallel manner, rendering greigite ferrimagnetic. 
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 The magnetisation, electrical conductivity and Mössbauer spectra of greigite 

were investigated by Spender et al. (1972), although the stoichiometry and quality of 

the samples used in this study are in some doubt, since both octahedral-site vacancies 

and water absorbed on particulate surfaces may have corrupted the Fe3S4. 

Magnetisation measurements were taken from 4.2K up to 300K, and the magnetic 

moment for three separate non-stoichiometric samples of greigite was measured to be 

2.05, 2.04 and 1.58 µB / formula unit (f.u.), corrected to give an estimated value of  

2.2 ± 0.3 µB / f.u. for pure stoichiometric greigite. The Mössbauer study on the purest 

samples at 4.2 K produces a complex spectrum, which is resolved to two magnetic 

sub-lattices.  The moments on these sub-lattices are antiparallel, and the extrapolated 

zero field data indicates that the hyperfine field is almost the same for both tetrahedral 

and octahedral sites, counter to a previous finding (Morice et al., 1969) that greigite 

contains both ferric and ferrous Fe on B sites. Electrical conductivity measurements 

found that the conductivity decreased by a factor of four from 300K to 4.2K, and that 

no sharp changes were found, suggesting that no Verwey-type transition is present, or 

can be evidenced from conductivity measurements. In order to explain the electronic 

structure of Fe3S4, two band schemes are suggested to explain the reduced magnetic 

moment:  

 (i) The first scheme is based upon the assertion that greigite has an average of 

ferric and ferrous Fe on B sites. Using the suggestion of Goodenough (1969) for the 

Ni3S4 and Co3S4, covalency effects in the sulfides can be accounted for by the t2(A) 

and eg(B) electrons becoming delocalised into a σ* band, which itself is unpolarised. 

For the case of greigite, the t2g(B)↓ band overlaps σ*. The conduction mechanism 

would be due to electrons in the σ* band, different to that seen in magnetite where it 

is caused by the single t2g(B)↓ electron (Coey et al., 1971). This band scheme is 
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pictured in figure 4.2, and is similar to that found in magnetite (Sasaki, 1997). This 

scheme suggests that Fe3S4 is semi-metallic in nature, due to electron hopping 

between ferric and ferrous octahedral sites. 

 

 

Figure 4.2 – Proposed one electron band scheme for greigite, band scheme (i). 

Adapted from Spender et al. (1972). The unoccupied 3d↑(A) and eg↑(B) are not 

shown. 

 

 (ii) The second band scheme derives from the assertion that greigite possesses 

only Fe2+ iron on B sites, and is schematically depicted in figure 4.3. In this case the S 

present in one Fe3S4 unit must reduce one Fe3+ ion per molecule (Fe3S4) to the Fe2+ 

state, and this leads to one hole in the valence band per Fe3S4 formula unit. In this 

scenario the Fe2+ levels are below the top of this band, and conduction in this model is 

attributed to the holes in the valence band. It is further hypothesised that when Fe is 

coordinated with S in a lattice environment, the iron is always reduced to Fe2+ and 
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where necessary charge neutrality is achieved via holes in the valence band. This 

scheme implies that greigite is not semi-metallic in nature. 

 

Figure 4.3 – Band scheme for the (ii) scenario of Spender. There is one hole per 

formula unit, responsible for conduction (note the location of the Fermi level within 

the S3p band). The ionic terms only are shown, not the one-electron orbitals of figure 

4.2. UA and UB are the energy required to promote electrons to bands Fe2+
↓(A) and 

Fe1+
↑(B) respectively. 

  

 Spender et al. were unable to determine which, if either, of these band 

schemes is correct.  

 A further Mössbauer study of naturally occurring greigite was conducted by 

Vandenberghe et al. (1991) at a range of temperatures from 4.2K up to 500K. It was 

found that the hyperfine fields for A and B sites “cross-over” at around 300K, and at 

5K isomer shifts of 0.37 mm/s for A sites and 0.71 mm/s for B sites were detected, 

which is interpreted as Fe3+ on the A sites and either Fe2+ or a mix of Fe2+ and Fe3+ in 
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B sites. It is also found that these greigite samples were thermodynamically stable up 

to at least 480K. In this study no evidence for a low temperature transition was found, 

and a further study also detected no such transition (Roberts, 1995). 

 It was suggested by Mott (1980) and tested for greigite by Dekkers et al. 

(2000) that it is possible that many spinel structures do not show a Verwey-type 

transition upon cooling due to insufficiently stoichiometry samples. Any B-site 

vacancies present in the structure will lead to the occurrence of localised FeS2
2- via 

induced non-stoichiometry. It is also possible that such a transition would not be seen 

using magnetic detection techniques on the greigite samples, although the lack of any 

abrupt changes in the conductivity upon cooling would seem to suggest that there is 

no transition (Dekkers et al., 2000). The magnetic behaviour of greigite at low 

temperatures revealed that the saturation remnant magnetisation increases slowly by 

20-30 percent on cooling from room temperature to 4K, with a broad maximum 

observed at 10K, indicating that a low-temperature transition may be present. 

 Letard et al. (2005) explored the possibility that Fe vacancies, leading to non-

stoichiometry in the greigite structure, are the reason for the low value of the observed 

magnetic moment. They note from their X-ray magnetic circular dichroism (XMCD) 

spectra that of the two samples they examine, one natural and one synthetic, both 

present similar isotropic cross sections, although their XCMD spectra differ. The 

XMCD spectrum shows clear signs of Fe-S hybridization. They conclude that the 

Fe3S4 structure may be capable of accommodating various electronic and 

crystallographic modifications (Fe3+/Fe2+ ratio or presence of vacancies) so that 

similar phases could yield quite different XMCD spectra. This is illustrated by an 

analogy to maghemite (γ-Fe2O3) and magnetite (Fe3O4), where the XMCD signals of 

γ-Fe2O3 and Fe3O4 are quite different although they are almost indistinguishable by 
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X-ray diffraction techniques. They attribute features of the difference between Fe3S4 

and Fe3O4 to a contribution of Fe2+ in octahedral sites weaker in Fe3S4 than in Fe3O4. 

It is concluded that the difference observed between the XMCD spectra of Fe3S4 and 

Fe3O4 can be explained by the presence of iron vacancies in Fe3S4 leading to a 

lacunary iron sulfide similar to the lacunary iron oxide maghemite γ-Fe2O3. 

 The most recent study of Chang et al. (2008) has transformed the 

understanding of the magnetic behaviour of greigite. It was found that, presumably 

due to poor stoichiometry of previous samples, the magnetic moment of greigite has 

been underestimated to a considerable degree. Measurements via high-field 

experiments give a room temperature value of 3.13 µB / f.u., which increases to 3.35 

µB / f.u when extrapolated to 0 K, due to decreased thermal excitation. This contrasts 

greatly with the value measured previously by Spender et al. (1972). Both of these 

measured values fall short of the value of 4.0 µB / f.u. measured in magnetite (Aragón, 

1992), which is also the value predicted from a purely ionic model (4 µB on Fe2+ and 

5 µB on Fe3+). Using the Bloch spin wave expansion method the spin wave stiffness of 

Fe3S4 was estimated to be around 193 meV·Å2 from low-temperature saturation 

magnetisation measurements. The corresponding exchange constant, which quantifies 

the super-exchange coupling between the two Fe sub-lattices via intermediate S 

atoms, is estimated to be JAB ≈ 1.03 meV. This value is also lower than that 

determined for magnetite (Where JAB ≈ 2.88 meV) (Uhl & Siberchicot 1995), which is 

indicative of a smaller degree of magnetic coupling in the sulfide. 

 Greigite has been reported to possess a very high gyromagnetic remanence 

(Stephenson & Snowball, 2001), higher than any other material in the literature, and 

10 times greater than that observed in magnetite. The gyromagnetic remanence of a 

material is related to a predominant sense of flip of moments inside the sample as it 
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rotates in a magnetic field. The origin of this behaviour in greigite is unknown. 

 It is further reported that the easy axis of greigite is that of the [100] axis 

(Yamaguchi, 1961), as opposed to the [111] axis seen in magnetite (Heywood et al., 

1990). It is unclear how this change in the magnetisation axis arises. No value for the 

Curie temperature (TC) has been determined for greigite, due to thermal 

decomposition of this material at elevated temperature (See Dekkers et al., 2000 for a 

review). 

 

4.1.4 Theoretical Studies 

Theoretical studies on the greigite structure have met with limited success. Braga et 

al. (1988) undertook spin-polarised multiple scattering calculations for FeS6
n-(where n 

= 8, 9, 10) clusters, where the iron is octahedrally coordinated with the sulfur atoms. 

This method was unable to offer much insight into the band structure of greigite, and 

does not answer the questions regarding the origins of electrical conductivity, cation 

valences or the Fe magnetic moment(s). It does indicate, however, that the Fe-S 

bonding in greigite is predominately covalent. This would be expected from the 

simple Pauling model of electro-negativity (Pauling, 1988), which predicts around 

20% ionic character for the chemical Fe-S bond, compared to about 50% for the Fe-O 

bond. It was further suggested by McCammon et al. (1992), by analogy with cubanite 

(CuFe2S3), that the valences of the Fe atoms represent a rapid electron transfer of 

delocalised electrons between Fe2+ and Fe3+ for the greigite octahedra, lending 

greigite a metallic nature. 

 It was indicated by Gibbs et al. (2007) that the tetrahedral Fe ions in greigite 

may be tetravalent (4+), based upon considerations of the Fe-S bond length of 2.147 

Å and the calculated electron density distributions, ρ(r). The evidence is far from 
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conclusive, although they venture that the presence of Fe4+ would explain the 

reactivity of greigite. Using the CRYSTAL98 program, the electronic structure was 

relaxed and bond lengths and theoretical electron density distributions were found. It 

is determined that the calculated electron density for the tetrahedral Fe-S bond in 

greigite (0.73e/Å3) was commensurate with the oxidation state of the tetrahedrally 

coordinated Fe in greigite taking the value 4+, although no attempts were made to 

optimise the structure or account for magnetic moments. By analogy with the H4FeS4 

molecule, which has tetravalent Fe4+, they find a very similar bond length (2.130 Å) 

and electron density (0.73e/Å3) to that observed for greigite, while the Laplacian 

)(2
crρ∇  for greigite (4.88 e/ Å5) is overestimated by about 15% to that found for the 

H4FeS4 molecule (4.30 e/ Å5). Bader charges of the Fe atoms in the sulfides are 

determined and values of Fe0.93+Fe2
1.03+S4

0.75-
 are found for greigite. This is again 

compared to the H4FeS4 molecule with values of H4
0.02+Fe0.88+S4

0.20+. It is noted 

however that as the atomic basins for a gas-phase molecule like H4FeS4 are of infinite 

dimension and those for a crystal like greigite are finite, it is not clear to what extent 

the charges for the two systems can be compared. 

 

4.1.5 Monoclinic Fe3S4 

Fleet et al. (1982) studied a new phase of Fe3S4, termed monoclinic Fe3S4, found in 

pyrrhotite grains. This phase was found to be isostructural with monoclinic Fe3Se4 

(Okazaki and Hirakawa, 1956) and monoclinic Cr3S4 (Jellinek, 1957), which both 

take a derivative NiAs structure. This phase consists of Fe2S2 layers alternating with 

vacancy layers (figure 4.4), producing a layered structure of sheets. Although this 

phase of monoclinic Fe3S4 is polymorphic with greigite, it is extremely unlikely that 
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this phase is related to any reversible low-temperature transition in greigite, due to the 

massive structural rearrangement which would be required. 

 

Figure 4.4 – Structure of monoclinic Fe3S4, determined by Fleet (1982), viewed along 

the y axis. 

 

4.1.6 The Verwey Transition 

Upon cooling at ambient pressure, magnetite (Fe3O4) undergoes a Verwey transition at 

121K (Verwey & Haayman, 1941) where resistivity drops 2 order of magnitude, a 

band gap of ~0.14eV opens and the spinel structure (Fd3m) lowers its symmetry to 

the monoclinic Cc structure. The resulting structure is depicted in figures 4.5(a), (b) 

and (c).  

   

(a) (b) 
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Figure 4.5 (a), (b), (c) – Monoclinic structure of magnetite viewed along the x (a), y (b) 

and z (c) axes (Wright, 2002). Fe atoms are shown in light gray, S atoms in dark gray. 

 

 This monoclinic form of Fe3O4 has a 28-atom unit cell, due to a halving in the 

c lattice parameter, and its electronic and magnetic structure is a major research topic 

in solid state physics. It would be of interest to investigate whether a similar transition 

takes place in isostructural greigite, Fe3S4. 

 

 

4.2 Greigite Modelling: Spinel Structure 

4.2.1 Introduction 

There remain a number of important questions regarding the properties and behaviour 

of greigite which are well suited to investigate by using DFT techniques. Both the 

electronic and magnetic behaviour remain unclear, with reports of inverse spinel 

behaviour in the majority, but a confusing variety of Mössbauer spectroscopy data 

which has proved difficult to interpret. In addition, the most recent measure of the 

magnetic moment per formula unit has substantially increased the estimate of its value 

from 2.2 µB to 3.35 µB, and theories developed to explain the former value require 

(c) 
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revision. Low-temperature studies of greigite have been unable to provide a definitive 

confirmation of the existence of any structural transition in greigite, analogous to the 

Verwey transition in magnetite. It is also possible that such a transition may not be 

discernable using the empirical methods applied so far. 

 The central aim of this chapter will be to investigate the electronic structure of 

Fe3S4. In the same vein as recent studies into magnetite (Anisimov et al., 1997; Pinto 

& Elliot, 2006; Piekarz et al., 2007), the importance of on-site Fe electronic 

correlation, represented by the Hubbard Ueff parameter, is investigated. A monoclinic 

form of greigite is proposed in analogy to that found in low-temperature magnetite, 

and its electronic structure is determined. 

 

4.2.2 Spinel Structure 

This section uses the GGA and GGA+U formalisms of DFT in order to reproduce the 

experimental properties of greigite, and hence to offer an insight into this iron sulfide. 

The experimental greigite structure of Uda is taken as the starting point (Uda, 1965). 

The tetrahedrally coordinated Fe are henceforth referred to as FeA, and the octahedral 

as FeB. 

 

4.2.3 Preliminary GGA Results 

The first calculations perform full relaxations of the unit cell volume and shape, in 

addition to the ionic and electronic coordinates. The Hubbard Ueff is set to 0 eV, and 

three initial magnetic arrangements are:  

1. Non-magnetic arrangement – No magnetic moments specified. 
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2. Normal spinel arrangement – 8 Fe3+ in tetrahedral coordination (5 

electrons) and 16 Fe2+
 in octahedral coordination.  

3. Inverse spinel arrangement – Possesses 8 Fe2+ in tetrahedral coordination 

and 16 Fe2.5+ in octahedral coordination.  

  

 A Monkhorst-Pack grid of even numbers of k-points is tested for convergence, 

along with the Gaussian smearing method with a smearing parameter of 0.02 eV. The 

electronic convergence condition is set to 0.0001 eV and energy cutoff values of 500, 

600 and 700eV are selected in order to test for convergence with respect to basis set 

size. 

  

Table 4.1 – Summary of results for Ueff = 0 eV fully relaxed greigite spinel structure 

with ENCUT = 500 eV for the three initial magnetic arrangements. a is from (Skinner 

et al., 1964) and b from (Chang et al., 2008). 

 a (Å) S coordinate Mag mo. (µB / f. u.) Energy (eV) 
NM 9.48 0.2549 2.08 -351.37 

Inverse 9.48 0.2549 2.08 -351.37 
Normal 9.48 0.2549 2.08 -351.37 
Expt. 9.88  0.2505a   3.35b  

 

  

 Table 4.1 presents the results of the relaxations for the three initial magnetic 

arrangements using a basis set energy cutoff of 500eV. All initial magnetic 

arrangements produce the same ferrimagnetic final structure, which is cubic with a 

relaxed lattice parameter of 9.48Å, in fair agreement with the experimentally 

determined Fe3S4 structure. Table 4.2 repeats the relaxation of the greigite structure 

using a basis set energy cutoff of 600 eV. 
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Table 4.2 – Summary of results for U = 0 eV fully relaxed greigite spinel structure 

with ENCUT = 600 eV. a is from (Skinner et al., 1964) and b from (Chang et al., 

2008). 

MAGMOM a (Å) Mag mo. (µB / f. u.) Energy (eV) 
NO 9.48 2.17 -351.39 

INVERSE 9.48 2.17 -351.39 
NORMAL 9.48 2.17 -351.39 

Expt. 9.88a 3.35b 
 

 As for the case with ENCUT = 500 eV, all initial starting magnetic 

arrangements relax to the same ferrimagnetic structure. The same relaxations were 

undertaken at 700eV, and exactly the same results were obtained, indicating that 

convergence with basis set cutoff energy occurs at 600 eV. 

 The convergence of the k-point grids was tested for Monkhorst-Pack grids of 

2x2x2, 4x4x4 and 6x6x6, for cell relaxations at a basis set cutoff energy of 600eV. 

The results of these calculations are given in table 4.3. 

 

Table 4.3 – Convergence of lattice parameters and internal energies with k-point grid. 

  Full Cell Relax Ionic Relax Singlepoint 
k-points a (Å) Energy (eV) Energy (eV) Energy (eV) 

2x2x2 9.48 -351.53 -351.51 -351.51 
4x4x4 9.48 -351.40 -351.39 -351.39 
6x6x6 9.47 -351.42 -351.40 -351.40 

 

 The simulations demonstrate good convergence using a k-point grid of 4x4x4, 

which provides a good balance between accuracy and efficient use of processor time. 

The relaxation using a k-point grid of 6x6x6 was found to be computationally 

expensive and was unnecessary for the very small improvement in convergence.  

 In summary, all of these results demonstrate that the calculations are well 

converged using a k-point grid of 4x4x4 and a basis set energy cutoff of 600 eV. The 
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lattice parameters predicted from this simulation fall short of the experimentally 

determined values by 4%, and the unit cell volume by a considerable 13%. In addition 

to the difficulties in predicting the structure, the calculated magnetic moment of 2.17 

µB / f.u. is also underestimated compared with the value of 3.35 µB / f.u. predicted by 

Chang et al., (2008). The calculated magnetic moment can be broken down into 

individual contributions from each sub-lattice (table 4.4). 

 

Table 4.4 – Bader charges and magnetic moments for atomic sites in greigite spinel 

for pure GGA calculations 

Sub-lattice Population Bader Charge (e) Mag. Mo. (µB) 
Fetet 8 +1.00 -1.68 

Feoct
(1) 4 +1.15 +1.88 

Feoct
(2) 4 +1.15 +1.93 

Feoct
(3) 8 +1.15 +1.95 

S 32 -0.83 +0.00 
 

 The Bader charges associated with each atom indicate that a lower number of 

electrons is associated with the Fe atoms on tetrahedral sites, and these can be 

considered roughly as Fe3+. Greater numbers of electrons are associated with the 

octahedral sites, and these are presumably Fe2+. Thus for the Ueff = 0 eV case, greigite 

could be described as having character closer to normal spinel than inverse. There is 

no breaking of the S sub-lattice atom electronic symmetry; all S atoms reduce 0.83 e- 

from the Fe sublattice. The FeB sites show a very small variability with regard to 

magnetic moment, but none with respect to Bader charge. 

 These results show that pure GGA is unable to describe the greigite structure 

or magnetic arrangement accurately. The investigation is extended to test the 

application of a Hubbard U value to these calculations. 
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4.2.4 GGA+U Simulations 

In order to determine whether the introduction of a Ueff parameter improves the GGA 

description of greigite, suitable values for this parameter are introduced into full cell 

relaxation simulations for this structure. The same procedure is used as in the pure 

GGA simulations described in section 4.2.3, with a full relaxation of cell size, shape 

and internal coordinates, followed by a relaxation of only the internal ionic 

coordinates and a final single-point relaxation of the electronic energy only. Ueff 

values from 0.5 eV to 5 eV are applied, in intervals of 0.5 eV. The calculation 

parameters which ensured convergence in the pure GGA case of section 4.2.3 are 

used: a basis set cut-off energy of 600 eV and a k-point grid of 4x4x4. 

 The cell relaxations produce a cubic unit cell structure for all Ueff values 

tested, with all three lattice parameters equal and all angles at 90°. As was seen in the 

Ueff = 0 eV simulation, the initial applied magnetic moment has no impact on the 

eventual result; as long as the calculations are spin-polarised and sensible magnetic 

moments are set, the calculations converge to identical structures. Magnetically, stable 

ferrimagnetic structures are found for all Ueff values under investigation. The 

calculated lattice parameters for each value of Ueff are shown in figure 4.6. 

 The introduction of the Ueff parameter has a significant impact upon the 

predicted lattice parameters, acting to compensate for the overbinding effect seen in 

the pure GGA case and yielding the experimentally determined lattice parameters at a 

Ueff of between 1 and 1.5 eV. 
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Figure 4.6 – Plot of the calculated lattice parameter for the cubic spinel structure of 

greigite as a function of the effective Hubbard parameter Ueff. The dashed line shows 

the experimentally determined value for the a lattice parameter (Uda, 1965). 

 

 It is worth noting that this value is similar to the value of Ueff found to give an 

accurate description of troilite (Hexagonal FeS); indeed the relationship between 

predicted unit cell volume (the cube of figure 4.6) and Ueff is similar to that seen for 

troilite (Rohrbach et al., 2003). The experimental value for the S u parameter 

(0.2505), which represents the first internal S coordinate within the unit cell, is well 

reproduced for all Ueff values. 

 A plot of the magnetization per formula unit versus Ueff for the spinel structure 

is given in figure 4.7(a), and a plot of the magnitude of the individual magnetic 

moment from each sublattice is shown in figure 4.7(b). 
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Figure 4.7 (a), (b) – (a) Magnetisation per formula unit versus Ueff for the spinel 

structure of greigite. The dashed line gives the experimental value of Chang et al. 

(2008) and the dotted line the value of Spender et al. (1972). (b) Magnitude of the 

magnetic moments on each sublattice of greigite versus Ueff. Note that the tetrahedral 

and octahedral moments are aligned in an anti-parallel manner. 

 

The magnetic moment on each site is found using a Bader analysis, where the electron 

spin density associated with each atom is integrated over the Bader volume of the 

atom in question (Bader et al., 1987). The use of Bader analysis is justified by the fact 

that the effective radius of an ion changes with the oxidation state, and therefore it is 

not correct to perform the integration around a sphere of constant radius, when 

considering mixed-valence systems such as greigite. This eliminates one source of 

arbitrariness arising from variable atomic radius. 

 The magnetic moments associated with the Fe atoms in the Ueff = 0 eV 
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simulation are calculated to be much lower than either the value reported for the 

tetrahedral sites in the case of magnetite of -3.82 µB (there are no reported values for 

the octahedral sites) (Rakcecha and Satya Murthy, 1978) or those which would occur 

in the purely ionic case of integer unpaired electrons (4.0 µB / f.u.). In total, these 

moments give a net magnetisation per formula unit of only 60 % the experimentally 

determined value (Chang et al., 2008). It is concluded that this low value arises from 

an overestimation of the covalency of the Fe-S bond by the pure GGA, leading to 

unphysical pairing of electrons. 

 Introducing the Ueff parameter leads to a marked increase in the total 

magnetisation, caused by an underlying increase in the magnetic moments on both the 

FeA and FeB sites. For an applied Ueff value of 2 eV, the total magnetisation reaches a 

maximum of 3.9 µB / f.u., close to the value of 4 µB / f.u. predicted by a purely ionic 

model. At this Ueff value the magnetic moments associated with the FeA and FeB 

atoms are determined as -3.26 µB / f.u. and 3.44 µB / f.u. respectively. The magnetic 

moment on the octahedral Fe atoms reaches a maximum magnitude of 3.61 µB at Ueff 

= 3.5 eV, and at this point the magnetic moments of both the tetrahedral and 

octahedral sites are equal in magnitude. For the range of applied Ueff from 0 to 3.5 eV 

the S atoms possess negligible magnetic moments; however from Ueff = 4 eV upwards 

each S atom possesses a nonzero magnetic moment of magnitude 0.2 µB, parallel in 

direction to that of the FeA atoms. Associated with this, a difference of 0.44 µB 

develops between the magnetic moments of the Fe atoms on the tetrahedral and 

octahedral sites, with magnitudes of 3.84 µB and 3.30 µB on the tetrahedral and 

octahedral sites respectively. These two factors act to reduce the net total magnetic 

moment to a value of only 2.0 µB / f.u. for values of Ueff ≥ 4eV. It is noted that the 

experimentally determined value for the magnetic moment of 3.35 µB/f.u. is achieved 
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at around Ueff = 0.5 or 3.7 eV. 

 The variation in the Bader charge population associated with the FeA, FeB, and 

S sites with the applied Ueff parameter is shown in figure 4.8. 
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Figure 4.8 – FeA and FeB atomic Bader valences versus Ueff value. 

 

 For the case of Ueff = 0 eV, these populations indicate that there is a greater 

number of electrons on the FeA atoms than the FeB; such an arrangement corresponds 

to the electronic structure of a normal spinel (based on the assumption that the greater 

number of electrons signifies a valence of Fe2+ and a lesser number of electrons 

denotes a share of Fe2+ and Fe3+). The introduction of the Ueff parameter, even a value 

of only 0.5 eV, causes the valence of the FeA sites to increase relative to those of the 

FeB sites with the effect that there is a crossover of the valences of these sub-lattices. 

Thus more valence electrons are associated with the B sites than the A sites, a 

situation which corresponds to that of an inverse spinel. This remains true for all 

simulations that apply non-zero Ueff values. It can be inferred from these results that 
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the introduction of the Ueff parameter has the effect of shifting the electronic structure 

of greigite from that of the normal spinel to that of the inverse spinel. Since it is the 

inverse spinel that is observed experimentally, this is a strong indication of the 

importance of the Ueff parameter in the description of greigite. Between values of Ueff 

= 3.5 and Ueff = 4 eV, the FeB atoms experience a sudden increase in Bader valence, 

where 0.06 FeB electrons are transferred to the S atoms (the S act to reduce the FeB). 

This scenario is noted to correspond to the second band picture suggested by Spender 

et al. (1972), where the FeB are reduced by S. 

 Figures 4.9(a), (b), (c) show the electronic density of states (DOS) of the 

spinel form of greigite for the Ueff = 0, 1 and 5 eV cases respectively. The DOS 

determined in the case where Ueff = 0 eV (figure 4.9(a)) shows that the available states 

at the Fermi level arise from both the spin-down FeB sites and the spin-up FeA sites. 

This situation is very different from that seen in similar simulations of the magnetite 

structure using Ueff = 0 eV (Piekarz et al., 2006), where even for the pure GGA the 

FeA do not contribute available states at the Fermi level. 

 The strong effect of the Ueff parameter upon the FeA bands around the Fermi 

level is clearly seen in the DOS for the Ueff = 1 eV case (figure 4.9(b)). In this case a 

gap of 0.3 eV opens between the e and t2 3d energy levels of the FeA band, while the 

FeB band is largely unaffected compared to Ueff = 0 eV. This leads to a semi-metallic 

band structure for greigite, with the spin-down FeA minority band providing states at 

the Fermi energy and a band gap in the FeA spin-up band. 
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Figure 4.9 (a), (b), (c) – Electronic DOS for the spinel form of greigite for (a) Ueff = 0 

eV, (b) Ueff = 1 eV and (c) Ueff = 5 eV. The contributions from each sublattice are 

plotted. 

 

 Figure 4.9(c) shows the DOS for simulations with an applied Ueff = 5 eV, and 

this shows that for large Ueff values a splitting of the spin-down FeB band occurs, 

clearly revealing the t2g and eg energy levels of the 3d orbital. The FeB d-orbital spin-

down band no longer occupies the energies around the Fermi level, and the semi-

metallic behaviour seen in the Ueff = 1 eV case disappears. The majority of states are 

provided by holes in the spin-up S band, with small spin-up contributions from both 

the tetrahedral and octahedral Fe sub-lattices. 
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4.3 Greigite Modelling: Monoclinic Structure 

4.3.1 Introduction 

As mentioned in section 4.1.3, experimental investigations carried out at low 

temperature have been unable to provide a definitive answer as to the existence of any 

Verwey-type temperature-dependent transition in the greigite structure. The 

difficulties which arise when examining this problem theoretically stem from the lack 

of any starting structure that a hypothetical form of low-temperature Fe3S4 may take.  

 It is noted that studies using the GGA+U theoretical framework have proved 

successful in the description of the low temperature monoclinic form of magnetite 

(Piekarz et al., 2007). DFT calculations with a suitable applied Ueff parameter 

working at 0 K have successfully simulated the monoclinic structure and 

demonstrated that it possess a lower energy than the spinel. Ueff values of 3.2 eV 

(Piekarz et al., 2007) and 3.8 eV (Pinto & Elliot, 2006) have provided good matches 

to structural and electronic properties in both spinel and monoclinic Fe3O4.  It is 

logical that if a low-temperature form of greigite does exist, it would be close to 

isostructural with its oxide relative. By analogy with this structure, a hypothetical 

monoclinic form of greigite is postulated, and GGA+U simulations are used to 

determine its energetic stability compared to the spinel structure. 

 The postulated monoclinic Fe3S4 structure is based upon the monoclinic Fe3O4 

structure determined by Wright et al. (2002) (figure 4.5(a), (b), (c)). In order to 

account for the larger anion radius in the sulfide compared to the oxide the lattice 

parameters are scaled accordingly. The scaling constant for each orthogonal lattice 

direction is given by the ratio of the Fe3S4 spinel lattice constant agrei to that of the 

corresponding Fe3O4 spinel lattice constant amag, giving 1.189.88/8.39/aa maggrei == . 
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Scaling each monoclinic Fe3O4 lattice parameter by this factor gives values of a = 

6.99 Å, b = 6.98 Å and c = 19.75Å for the hypothetical monoclinic Fe3S4 structure. 

The β angle applied to the structure is the same as that seen in monoclinic magnetite, 

90.237° (Wright et al., 2002).  

 

4.3.2 GGA+U Simulations 

The same simulation procedure as for the spinel structures are repeated for a range of 

Ueff values from 0 eV to 5 eV, in steps of 1 eV. The applied basis set cutoff energy is 

600eV, and the k-point grid is adjusted to 4x4x2 to account for the doubling of the 

lattice in the c lattice direction. A supercell of 1x1x2 is used so that the correct 56 

atoms are considered, and the results directly comparable with the spinel case. All 

relaxations yield stable monoclinic structures, with lattice parameters given in Table 

4.5. The angle β is predicted to be very close to 90° for all applied Ueff value. 

 

Table 4.5 – Calculated lattice parameters and band gap width for the theoretical 

monoclinic form of greigite, for a range of Ueff tested. The differences in the internal 

energies ∆E of the 56-atom unit cells of the spinel and monoclinic forms of greigite 

over the range of Ueff values modelled are also given. 

Ueff (eV) a (Å) b (Å) c (Å) Band Gap (eV) ∆E (eV) 
0 6.57 6.75 18.99 0.00 1.15 
1 6.79 6.87 19.52 0.00 2.69 
2 6.93 6.96 19.84 0.06 3.69 
3 6.96 6.99 20.02 0.16 4.55 
4 7.09 7.16 20.21 0.14 2.71 
5 7.29 7.24 20.61 0.29 0.92 

  

 The variation in total magnetisation per formula unit for the 56-atom 

monoclinic unit cell of greigite with Ueff is shown in figure 4.10. For values of Ueff 
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less than 4eV monoclinic structures with net magnetisations of 1.7 to 2 µB / f.u. are 

found (figure 4.10), indicating that if a transition to this structure did occur at low 

temperatures it would be accompanied by a large, observable reduction in the 

magnetic moment. 
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Figure 4.10 – Plot of magnetisation per formula unit versus applied Ueff value. 

  

 For values of Ueff of 4eV and greater, the predicted magnetisation is around 

3.7 µB / f.u., similar to that seen in the spinel case. Examining the sub-lattice 

contributions to the magnetisation per formula unit, it is noted that for low Ueff values 

there is a splitting of the symmetry of the FeB sites to the degree that the magnetic 

moment of half of these sites is 60% greater than that of the other half. For values of 

Ueff ≥ 4eV, the electronic structure becomes even more complex, with four groups of 

four FeB sites. This symmetry splitting occurs in a manner similar to the charge 

disproportionation seen in the low-temperature phase of magnetite (Pinto & Elliot, 

2006). The values of the band gap for each Ueff value are listed in Table 4.5.  
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 The electronic DOS for the monoclinic form of greigite for Ueff values of 0 eV, 

1eV and 5 eV are shown in figures 4.11(a), (b) and (c) respectively.  
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Figure. 4.11 (a), (b), (c) – Electronic DOS for the monoclinic form of greigite with (a) 

Ueff = 0 eV, (b) Ueff = 1 eV and (c) Ueff = 5 eV. Contributions from each of the atomic 

sublattices are plotted. 

 

 For the case of Ueff = 0eV, the available states at the Fermi level are all up-

spin, with contributions from FeA, FeB and S sub-lattices. As Ueff is increased to 1 eV 

a band gap is seen to open in the FeA band. For Ueff = 5 eV a band gap for both FeA 

and FeB sub-lattices opens and the structure becomes insulating, similar to that 
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observed in simulations of monoclinic magnetite (Piekarz et al., 2007). 

 The difference in the internal energies of the spinel and monoclinic structures 

(∆E) for the range of Ueff values is given in Table 4.5. This shows that from the 

calculated total energies of the two structures the monoclinic form is only metastable 

with respect to the spinel. The precise energy difference between the two depends on 

the values of Ueff, but for all values the spinel structure is energetically favoured.  

 

4.4 Summary 

In this section a rigorous GGA+U approach has been used to investigate the energetic, 

electronic and magnetic properties of spinel and calculated monoclinic form of Fe3S4. 

Simulations of the spinel structure over the range 0 eV ≤ Ueff ≤ 5 eV result in stable 

ferrimagnetic structures, with Fe atoms on the tetrahedral and octahedral sub-lattices 

aligned in an anti-parallel manner in accord with published experimental findings. 

GGA in the absence of any Ueff correction leads to a large underestimation of the 

lattice parameter and the magnetic moment, as well as an electronic arrangement 

whereby the Bader charges of the tetrahedral and octahedral Fe sites form a normal 

spinel arrangement. These errors are thought to arise from the GGA failing to take 

into account the electron correlation associated with the Fe atoms. The experimentally 

determined inverse spinel structure is correctly simulated upon the introduction of the 

local Coulomb interaction accounted for by Ueff. Small values of Ueff, of the order of  

1 eV, produce a crucial improvement in the description of greigite, with the 

experimentally determined values for the lattice parameters and magnetic moments 

reproduced accurately. Ueff values greater than 3 eV produce solutions where the net 

magnetic moment is reduced by the occurrence of a magnetic moment on individual S 
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atoms, anti-parallel to that found on the octahedral Fe sites. This is accompanied by a 

decrease in the number of electrons associated with the octahedral Fe atoms, which 

are transferred to the S atoms.  

 The two band schemes suggested by Spender et al. (1972) for the electronic 

structure of greigite can now be reconsidered in the light of these results. The first 

scheme, where the octahedral Fe sites of greigite are occupied by a combination of 

ferric and ferrous iron is the scenario supported by our calculations for Ueff ≤ 3 eV. 

The second scheme, where the S ions reduce the ferric Fe ions so that all Fe in 

greigite is ferrous, is seen when Ueff ≥ 3.5 eV. It is not possible to discern the most 

correct value of Ueff, based only on the results presented here. However, since the 

experimental magnetisation and the cell parameters are better reproduced at low Ueff 

values, we would suggest the use of Ueff = 1 eV for the GGA+U modelling of greigite. 

For this Ueff value the band structure calculations show greigite to be a semi-metal, 

with the minority-spin band of the Fe octahedral sites providing charge carriers at the 

Fermi level. Further experimental investigations would be necessary in order to test 

this prediction. 

 Simulations of the theoretical monoclinic structure of greigite, based upon the 

low-temperature magnetite structure, have shown that this form is not energetically 

favourable compared to the spinel structure for any Ueff values between 0 eV and 5 

eV, indicating that greigite should not experience any Verwey-type transition to a 

monoclinic structure at low temperatures. Whilst the mechanics of the Verwey 

transition are still an open area of research with many unanswered questions, previous 

ab initio calculations (Piekarz et al., 2007) have highlighted the importance of 

electron correlations in the transition, represented by a Ueff correction of around 3.2 

eV or greater. Our calculations have shown that the stabilisation of the monoclinic 
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greigite structure with respect to the spinel would require unrealistically high values 

of Ueff > 5 eV. Since it has been shown in this study that an accurate description of 

greigite is provided by a much lower Ueff value of 1 eV, it is postulated that the 

electron correlation associated with the Fe atoms in greigite is insufficient to facilitate 

a Verwey-type transition. 

 The finding that greigite is a ferrimagnetic semi-metal, which conducts in only 

one spin-polarisation, places greigite within a very select group of materials with 

important applications in the field of spintronics (Wolf et al., 2001), which could be 

particularly relevant since iron sulfides offer scope for doping and other 

manipulations not possible in oxides (Katsnelson et al., 2008). In addition, greigite 

offers a much better example of a low-temperature iron spinel than magnetite, since it 

does not undergo a spinel transformation at low temperature. 
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5. Cubic FeS 

 

 

5.1 Introduction 

The iron sulfide mineral “cubic FeS” was first identified by de Médicis (1970) as a 

corrosion product of metallic Fe in aqueous H2S solution and the absence of air; the 

product was found to be metastable when not in contact with the H2S solution. Cubic 

FeS has since been found in certain strains of magnetotactic bacteria, and its presence 

is thought to explain the puzzling identification of pyrite in some magnetosome 

crystals (Mann et al., 1990), presumably due to the difficulty in distinguishing 

between pyrite and cubic FeS using SAED (Selected Area Electron Diffraction) 

patterns (Pósfai et al., 1998b). The observation that this phase may be a biogenic 

material (Rickard & Morse, 2005) proved to be an important factor in the 

interpretation of FeS minerals found in the Martian meteorite ALH84001 (Pósfai et 

al., 1998a). 

 

5.1.1 Room-Temperature Structure 

Cubic FeS is the Fe end-member of the sphalerite series, Zn1-xFexS, where  

x = 1 corresponds to cubic FeS. This phase takes the same ambient temperature 

sphalerite structure as the other members of this mineral family, zincblende ( mF 34 ; 

space group 216; face centered cubic unit cell). XRD measurements by de Médicis 
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(1970) found this phase possesses the lattice parameters a = b = c = 5.423 ± 0.001 Å 

at 25ºC, with a Fe-S bond length of 2.348 Å. This structure is depicted in figure 5.1. 

(a) (b)  

Figure 5.1 (a), (b) – The sphalerite (zincblende) structure of cubic FeS at ambient 

temperature, viewed along the a axis (a), and off-axis (b). The S atoms are arranged 

on the nodes of a face-centered cubic lattice, while one half of the tetrahedral holes 

are occupied by the Fe atoms (de Médicis, 1970). 

 

 Cubic FeS was also reported by Takeno et al., (1970), who found (at room 

temperature) the strongest X-ray diffraction reflections from the (111), (220) and 

(311) planes of cubic FeS together with a lattice parameter of a = 5.417 ± 0.004 Å, 

confirming the structure predicted by de Médicis. A small non-stoichiometry in favour 

of Fe surplus was found (a range of Fe1.003S to Fe1.102S). A later study using 

Mössbauer spectroscopy (Wintenberger et al., 1978) found the Fe atoms in cubic FeS 

to be exclusively high-spin and in the +2 oxidation state. The high-temperature 

magnetic structure was determined to be that of a paramagnet. 

 Little empirical research exists on the electrical behaviour of cubic FeS, 

however it was found by Deulkar et al. (2002) that the electronic bandgap in Fe-rich 

sphalerite decreases with increasing Fe concentration, suggesting either 

semiconducting or metallic behaviour for the cubic FeS endmember. 
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5.1.2 Formation of Cubic FeS 

Murowchick & Barnes (1986) studied the formation of cubic FeS crystals from iron 

metal in H2S solution. This phase was found to compete with both troilite and 

mackinawite, with the best-formed cubic FeS crystals deposited at pH between 4 and 

5, and temperatures between 35°C and 60°C. The resulting cubic FeS crystals took 

slightly modified tetrahedral, negative tetrahedral, and on rare occasions cubic, crystal 

habits. It is suspected that cubic FeS is a significant corrosion product of steel pipes 

when in contact with hydrogen sulfide saturated water, although cubic FeS tends to 

only form in situations of short timescales and is rarely observed (Shoesmith et al., 

1980). 

 

5.1.3 Conversion to other FeS phases 

It has been found that cubic FeS converts to greigite via the mackinawite phase 

(Murowchick & Barnes, 1986). Investigations into the transformation of cubic FeS 

into mackinawite found that this was a solid-state process, and occurred over a period 

of 35 to 96 hours at 21°C; incomplete conversion leads to the presence of cubic FeS 

grains in mackinawite crystals and their existence was found to stabilise the thermal 

decomposition of the resulting mackinawite (Shoesmith et al., 1980). It has been 

noted that Cubic FeS only differs significantly from the tetrahedral mackinawite 

structure in the distribution of Fe atoms, and the close structural similarity between 

these structures is considered to account for the ease of transition between these 

phases (Murrowchick & Barnes, 1986). 
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5.1.4 Low Temperature Transition 

Wintenberger et al. (1978) studied cooled samples of cubic FeS using XRD and 

determined that this phase undergoes a first order crystallographic transition at 234K. 

This takes the form of a structural symmetry change from cubic to orthorhombic, with 

the unit cell lattice parameters becoming: 

   a’ = 5.54 Å b’ = 5.487 Å c’ = 5.195 Å 

when measured at 81K. The only space group corresponding to this observed unit cell 

is F222 (symmetry number 22) with Fe in 4a(000) symmetry 222 (D2) and S in 4c 

Wyckoff positions. The Fe-S bond length was found to be 2.342 Å. 

 Further to these measurements, Mössbauer spectroscopy and neutron 

diffraction measurements (Wintenberger & Buevoz, 1978) of this orthorhombic phase 

have shown that a first order magnetic transition occurs around 237K, and below this 

temperature the Mössbauer spectra is indicative of an ordered magnetic phase. The 

first order magnetic transition at 237K and the first order crystallographic transition at 

234K are almost certainly related, and the suggestion that there is a range of transition 

temperatures due to slight non-stoichiometry suggests with reasonable certainty that 

there is a simultaneous crystallographic and magnetic first order transition around 

234K. The Mössbauer data of the low temperature phase show that every Fe atom 

behaves like a standard ferrous (Fe2+) ion. The neutron diffraction measurements 

indicate that the magnetic moments are either parallel or anti-parallel to the a axis, 

aligned in ferromagnetic (001) planes that couple antiferromagnetically. The magnetic 

moment of the iron atoms in the orthorhombic low temperature structure is reported 

as 3.45 ± 0.15 µB at a temperature of 40 K. This falls short of the saturation moment 

of the Fe2+ ion of 4 µB, indicating a degree of covalency in the Fe-S bond. The 

magnetic space group is reported to be F22’2’. The experimentally determined 
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structure and magnetic moment arrangement for this low-temperature orthorhombic 

structure is shown in figure 5.2. 

 

Figure 5.2 – Crystal structure of the antiferromagnetic low-temperature orthorhombic 

phase of cubic FeS. The directions of the magnetic moments of the Fe atoms are 

shown with arrows. The different Fe atoms in the unit cell are denoted by the indices 

1-4. 

 

 Wintenberger et al. (1978) suggested three possible mechanisms for the cubic 

to orthorhombic low-temperature transition: (i) Generalised exchange interactions in 

the presence of orbital degeneracy; (2) Exchange magnetostriction in the presence of 

Jahn-Teller coupling; and (3) Spin-orbit coupling of magnetisation and Jahn-Teller 

distortions. Of these explanations, (1) is considered to be possible, whilst the other 

two mechanisms are unlikely to be sufficiently strong to cause a structural transition. 

 

5.1.5 Computational Studies 

Welz and Rosenberg (1987) undertook the modelling of cubic FeS using the linear 
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muffin tin orbital approach of DFT. Non-magnetic calculations found the structure to 

be a conductor of electrons, with the Fermi level cutting the continuous Fe 3d band. 

The Fe-S bond is considered to be of predominantly ionic character, and differences 

between this phase of FeS and mackinawite are chiefly attributed to the Fe-Fe 

interaction in mackinawite. Spin-polarised calculations on the cubic FeS structure 

reveal two stable self-consistent magnetic solutions, where the result depends on the 

initial splitting of the bands. Both of these cases are ferromagnetic, and the moments 

on the Fe atoms are given as 0.78 µB and 3.34 µB respectively, with the smaller value 

obtained for an initial splitting below 1 µB. They attribute the slightly lower than 

expected value for pure Fe2+ as due to the contribution of Fe d electrons to the Fe-S 

bond. In the case of ferromagnetic spin polarisation the phase remains metallic, but 

this does not definitely preclude the possibility that a gap opens for antiferromagnetic 

polarisation as observed for the transition-metal monoxides (Terakura et al., 1984) or 

chalcopyrite (Hamajima, 1981). Calculations on Fe-S clusters by Lie & Taft (1983) 

gave a similar outcome, where an isolated (FeS4) cluster was found to possess a 

moment of 3.43 µB.  

 Neither of these studies is able to account for the low-temperature 

orthorhombic distortion, and in addition to reproducing the experimentally determined 

antiferromagnetic polarisation with planes of uniform spin orientation parallel to one 

of the cubic faces, a realistic magnetic calculation should also take into account the 

orthorhombic distortion of the low-temperature magnetically ordered state. It is of 

note that DFT has met with good success in the description of sphalerite, ZnS (Steele 

et al., 2003), however it should be noted that the magnetic ordering of cubic FeS 

poses many extra challenges to its description. The next section will apply the 

computational techniques used in previous sections to the description of both the 
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high- and low-temperature structures of cubic FeS.  

 

 

5.2 Cubic FeS: Modelling 

5.2.1 Introduction 

In the previous sections it has been demonstrated that, with suitably applied Ueff 

parameters, the GGA+U method is able to provide a successful description of the Fe-

S materials mackinawite and greigite. The following section will apply this method, in 

addition to the interatomic potential derived for mackinawite (section 3.3), in the 

description of the both the cubic FeS high-temperature and the orthorhombic FeS low-

temperature structures. 

 Two sets of GGA+U calculations are performed. The first use the high-

temperature cubic FeS structure of de Médicis (1970) as the initial structure; the 

second begin with the low-temperature orthorhombic FeS structure determined by 

Wintenberger et al. (1978). Each of these structures is simulated using 4 different 

starting magnetic arrangements: 

1. Non-magnetic – non-spin-polarised; 

2. Spin-polarised with no initial magnetic moments on the Fe atoms; 

3. Ferromagnetic - all Fe magnetic moments are aligned in a parallel manner. 

Since the Fe atoms are thought to occur in the +2 oxidation state there are 6 d-

orbital electrons present, of which 4 are unpaired in the high spin 

configuration. Thus a magnetic moment of +4 µB is applied to each Fe atom; 

4. Antiferromagnetic – Due to the presence of four Fe atoms in the unit cell, there 
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exist 3 possible antiferromagnetic arrangements, consisting of two sets of two 

opposing Fe magnetic moments. In these calculations the spin arrangement 

experimentally determined by Wintenberger & Buevoz (1978) is used, and it is 

this arrangement which is illustrated in figure 5.2. The other possible 

antiferromagnetic arrangements are presented in figure 5.3. 

 

(a) (b)  

Figure 5.3 (a), (b) – Antiferromagnetic magnetic moment arrangements for the 

orthorhombic FeS structure. (a) is henceforth referred to as scenario (2), and (b) 

scenario (3). 

  

 Each of these four magnetic arrangements will be tested in both the pure GGA 

and GGA+U formulations of DFT. A dense Monkhorst-Pack k-point grid of 11x11x11 

is used in all calculations, along with Gaussian smearing of the electronic free energy 

in the vicinity of the Fermi level, where a smearing parameter of 0.02 eV is applied.  

 All calculations perform, in the following order: 

1. Full cell relaxations of the unit cell dimensions, unit cell shape and internal 

ionic coordinates, together with relaxation of the electronic structure of cubic 

FeS; 

2. This is followed by full relaxations of the ionic coordinates in order to obtain 
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the ground state ionic configuration; 

3. A final relaxation, of the electronic structure only, is undertaken in order to 

obtain the ground state. 

 

5.2.2 Cubic FeS Calculations: Basis Set Convergence 

This section details the GGA convergence tests of the basis set cutoff energy for each 

magnetic arrangement of cubic FeS. Table 5.1 presents the convergence test 

simulations of the non-spin polarised cubic FeS structure.  

 

Table 5.1 – Basis set cut-off energy with predicted lattice parameter and calculated 

internal energies for the cubic FeS structure, modelled using non-spin-polarised GGA. 

The three phases of relaxation of the structure described in the previous section give 

the calculated lattice parameter and internal energy and given by (1) (cell shape and 

volume, ionic coordinates and electronic structure), (2) (ionic coordinates and 

electronic structure) and (3) (electronic structure only). 

 (1) (2) (3) 
ENCUT (eV) a (Å) Energy (eV) Energy (eV) Energy (eV) 

400 4.945 -51.972 -51.926 -51.930 
500 4.946 -51.940 -51.940 -51.944 
600 4.946 -51.946 -51.946 -51.944 
700 4.946 -51.942 -51.940 -51.944 

 

  

 An energy cutoff of 500 eV is found to be sufficient in order to prevent any 

Pulay stresses on the unit cell, to obtain convergence of the cell parameters and to 

ensure convergence of the internal energy of the unit cell to within 1 meV.  

 Table 5.2 presents the results of the convergence calculations using GGA spin-

polarised simulations of the cubic FeS structure with no initial Fe magnetic moment. 
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Table 5.2 – Basis set cut-off energy with predicted lattice parameter, internal energies 

and Fe magnetic moments for the cubic FeS structure, modelled using spin-polarised 

GGA with no applied magnetic moment. 

 Full Relax Internal Relax Singlepoint 
ENCUT (eV) a (Å) Energy (eV) Energy (eV) Energy (eV) MM/Fe (µB) 

400 4.947 -51.972 -51.926 -51.941 0.42 
500 4.946 -51.949 -51.940 -51.954 0.42 
600 4.946 -51.946 -51.941 -51.944 0.00 
700 4.946 -51.961 -51.959 -51.944 0.00 

  

 Convergence of all parameters occurs at an energy cutoff of 600eV, and the 

resulting structure is precisely the same as that found in the non-spin-polarised 

calculation. This suggests that it will be necessary to introduce initial magnetic 

moments onto the Fe atoms in order to obtain ordered magnetic arrangements in the 

pure GGA simulations. 

 The next convergence test calculations apply magnetic moments to each Fe 

atom, and these moments are aligned in a ferromagnetic arrangement. The calculated 

lattice parameters, internal energies and magnetic moments for a range of basis set 

cutoff energies are given in table 5.3. 

 

Table 5.3 – Basis set cut-off energy with predicted lattice parameters, internal energies 

and Fe magnetic moments for the cubic FeS structure, modelled using spin-polarised 

GGA with an applied ferromagnetic magnetic moment. 

 Full Relax Internal Relax Singlepoint 
ENCUT (eV) a (Å) Energy (eV) Energy (eV) Energy (eV) MM/Fe (µB) 

400 4.952 -51.968 -51.945 -51.942 0.43 
500 4.967 -51.938 -51.932 -51.953 0.46 
600 4.968 -51.936 -51.932 -51.935 0.48 
700 4.968 -51.933 -51.932 -51.935 0.48 
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 These calculations show that the ferromagnetic nature of the structure is only 

supported in a low-spin form, with very low magnetic moments on each Fe atom of 

0.48 µB. 

 The final convergence calculations of the cubic FeS structure in the GGA 

apply the antiferromagnetic starting magnetic moment arrangement.  The results of 

these calculations are presented in table 5.4.  

 

 

Table 5.4 – Basis set cut-off energy with predicted lattice parameters, internal energies 

and Fe magnetic moments for the cubic FeS structure, modelled using spin-polarised 

GGA with an applied antiferromagnetic magnetic moment arrangement. 

 Full Relax Internal Relax Singlepoint 
ENCUT 

(eV) 
a (Å) b (Å) c (Å) Energy 

(eV) 
Energy (eV) Energy 

(eV) 
MM/Fe 

(µB) 
400 4.979 4.979 5.062 -52.028 -51.986 -51.986 1.41 
500 4.985 4.985 5.069 -52.006 -51.999 -51.999 1.45 
600 4.988 4.988 5.090 -51.999 -51.999 -51.999 1.54 
700 4.988 4.988 5.090 -51.999 -51.999 -51.999 1.54 

 

 It is noted that convergence occurs at 600 eV, and since this ensures 

convergence for all magnetic arrangements tested this value will be used in all 

calculations throughout this chapter. 

 

5.2.3 GGA Simulations 

The calculations on the cubic FeS structure for the non-magnetic, spin-polarised 

(without initial Fe magnetic moments), ferromagnetic and antiferromagnetic 

arrangements all converge well to ground states. The calculated lattice parameters, 

internal energies and magnetic moments for each relaxed structure are presented in 
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table 5.5.  

 

Table 5.5 – Summary of GGA calculations of the cubic FeS structure. The resulting 

magnetic structures, lattice parameters, internal energies and magnetic moments of the 

Fe atoms are shown. aThe experimental data of de Médicis (1970). 

 a (Å) b (Å) c (Å) Energy (eV) MM/Fe (µB) 
Non-Magnetic 4.946 4.946 4.946 -51.944 - 
Ferromagnetic 4.968 4.968 4.968 -51.953 0.48 

Antiferromagnetic 4.988 4.988 5.093 -51.999 1.54 
aExp.  5.423 5.423 5.423 - - 

 The non-spin-polarised, and spin-polarised with no applied magnetic moment, 

calculations both converge to the same non-magnetic solution; as such these results 

are henceforth labelled the relaxed non-magnetic structure. For this non-magnetic 

case the predicted lattice parameter of 4.946 Å and the Fe-S bond distance, calculated 

to be 2.142 Å (compared to the experimental value of 2.348 Å), indicate a large 

degree of overbinding predicted in this structure by pure GGA. The non-magnetic 

calculations also predict Bader charges of 0.93 e for each Fe and -1.07 e for each S 

atom, indicating that the difference in the charges on each ion is less than 0.15e, and 

only half the value determined in the non-magnetic pure GGA mackinawite 

simulations of section 3.2.6. This suggests that the predicted character of the Fe-S 

bond for the non-magnetic arrangement is more covalent than ionic, and this may 

cause the overbinding demonstrated in the GGA cubic FeS calculations. 

 Both the non-magnetic and ferromagnetic starting arrangements converge to 

similar cubic structures, with no magnetic moment present on the Fe atoms in the 

non-magnetic starting arrangement and a small magnetic moment of 0.48 µB on the 

ferromagnetic structure. This is thought to correspond to a low-spin Fe solution for 

these simulations. The predicted ferromagnetic structure, in a very similar manner to 

that seen in the non-magnetic case, underestimates the lattice parameters by 12%; this 
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indicates a large degree of overbinding in the ferromagnetic pure GGA case.  

 The predicted structure for the antiferromagnetic arrangement also displays 

overbinding of the lattice parameters, similar to the non-magnetic and ferromagnetic 

arrangements. The relaxed antiferromagnetic arrangement also demonstrates a very 

small tetrahedral distortion from the cubic structure, where the c parameter is slightly 

expanded in relation to the a and b parameters. A magnetic moment of 1.5 µB is found 

on the Fe atoms, which may also indicate low-spin Fe, although this value is three 

times that found for the ferromagnetic Fe arrangement, suggesting some kind of 

intermediate spin state. 

 The large discrepancies between the experimentally determined lattice 

parameters and those calculated using the pure GGA indicates that this method is 

unable to give a good description of cubic FeS in the high-temperature cubic form, 

regardless of the applied magnetic arrangement. 

 

5.2.4 GGA+U Calculations 

This section introduces the Ueff parameter into the GGA method to test whether this 

additional term improves the DFT description of the high temperature cubic FeS 

phase. A range of Ueff values, from 0 eV and 4 eV are tested, a range in accordance 

with previous studies of Fe oxides (Piekarz et al., 2007; Grau-Crespo et al., 2006). All 

calculations were performed using a basis set cutoff energy of 600eV, with the range 

of Ueff values from 0 to 4 eV separated into intervals of 0.5 eV. 

 

5.2.5 Non-Magnetic GGA+U 

The predicted lattice parameters and Bader charges for the GGA+U non-magnetic 
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calculations are given in table 5.6. All simulations, regardless of the applied Ueff 

value, predict cubic structures with a = b = c. For all values of the applied Ueff 

parameter the predicted lattice parameters are substantially underestimated. This 

shows that the overbinding seen in the non-magnetic pure GGA simulations of cubic 

FeS is not corrected by the introduction of the Ueff parameter; in fact the introduction 

of the Ueff parameter to the non-magnetic arrangement has almost no effect upon the 

description of this material. This is further demonstrated by the lack of any correlation 

between the applied Ueff value and the Bader charge associated with the Fe atoms, 

which stays fairly constant regardless of the Ueff value applied. 

 

Table 5.6 – Calculated a lattice parameter and Fe Bader charges from the non-

magnetic GGA+U calculations for Cubic FeS. 

Ueff (eV) a (Å) Fe Bader Charge (e) 
0 4.946 0.93 

0.5 4.943 0.97 
1 4.942 0.98 

1.5 4.940 0.98 
2 4.939 0.98 

2.5 4.941 0.96 
3 4.943 0.96 

3.5 4.949 0.93 
4 4.956 0.98 
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Figure 5.4 (a), (b), (c) – Atomic site contributions to the electronic DOS graphs for the 

non-magnetic GGA+U calculations with Ueff values of (a) 0, (b) 2 and (c) 4 eV for the 

cubic form of FeS. 

 The electronic DOS for the non-magnetic cubic FeS GGA+U simulations with 

U = 0, 2 and 4 eV is presented in figures 5.4(a), (b) and (c). These plots demonstrate 

that the Ueff parameter has little effect on the electronic structure of the non-magnetic 

arrangement. It is noted that the predicted band structure is similar in form to that 

found for mackinawite in section 3.2.7, with available Fe bands at the Fermi level 

indicating a metallic nature. 

  

5.2.6 Spin-Polarised GGA+U 

Further calculations test the GGA+U method using spin-polarised calculations 
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without initial Fe magnetic moments for the cubic FeS structure. The results of these 

calculations are presented in table 5.7.  

 

Table 5.7 – Calculated a lattice parameter and Fe magnetic moments from the spin-

polarised GGA+U calculations (with no initial Fe magnetic moments) for Cubic FeS. 

Ueff (eV) a (Å) MM / Fe (µB) 
0 4.946 0.00 

0.5 4.945 0.00 
1 4.943 0.00 

1.5 4.940 0.00 
2 4.941 0.00 

2.5 5.430 3.63 
3 5.501 3.65 

3.5 5.442 3.67 
4 5.528 3.70 

 

 All simulations, regardless of the applied Ueff value, predict cubic structures 

with a = b = c. The introduction of the Ueff parameter into GGA+U spin-polarised 

calculations (with no initial Fe magnetic moment applied) leads to a non-magnetic 

result for values of Ueff less than 2.5 eV. The structures predicted in this case have Fe-

S bond lengths and structural lattice parameters which are underestimated compared 

with experimental values.  

 Higher values of Ueff, those greater than 2.5 eV, predict ferromagnetic 

structures with high-spin Fe, which possess lattice parameters very close to those seen 

experimentally for the high-temperature, paramagnetic cubic FeS phase. 

 

5.2.7 Ferromagnetic GGA+U 

Figures 5.5(a) and 5.5(b) (over the page) show the variation of the calculated lattice 

parameters and Fe magnetic moment, respectively, for the ferromagnetic cubic FeS 
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arrangement with the range of Ueff values applied. For all Ueff values the relaxed 

structures are cubic. Figure 5.5(a) shows that the predicted structures show dramatic 

increases in both the predicted lattice parameters of the structure and the magnetic 

moment on each Fe atom due to the introduction of the Ueff parameter, and this trend 

applies even for small values of Ueff. The predicted lattice parameters for values of 

Ueff between 1.5 eV and 4 eV are very close to those found experimentally, with a 

value of Ueff = 2 eV providing the most accurate match to the experimental value.  

 Figure 5.5(b) demonstrates that the cubic FeS structure is found to support 

high-spin Fe magnetic moments for any applied Ueff greater than zero. It is further 

noted, however, that the predicted values for the magnetic moment on the Fe atoms is 

less than would be expected if all the Fe d-orbital electrons were involved in the 

magnetic moment, suggesting that there is either a degree of covalency in the Fe-S 

bonds, or that there exists a degree of delocalisation of these electrons, which would 

be evidenced by a metallic nature similar to that observed in the mackinawite 

structure. 
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Figures 5.5 (a), (b) – Plots of calculated (a) lattice parameter and (b) magnetic 

moment encapsulated within Fe Bader basin for the ferromagnetic arrangement of 

cubic FeS for the range of Ueff values tested. The experimentally determined lattice 

parameter (de Médicis, 1970) for the paramagnetic high-temperature cubic structure is 

denoted by the dotted line. 

 

 Comparing the dramatic difference in the lattice parameters predicted for the 

non-magnetic and ferromagnetic structures studied so far indicates that, contrary to 

finding of a previous study (Welz & Rosenberg, 1986), the presence of spin-

polarisation has a signficant effect upon the predicted cubic FeS structure, and leads 

to a far better agreement between the predictions of the lattice parameters in the 

ferromagnetic case and the experimental values than for the non-magnetic case. 

 The electronic DOS for the ferromagnetic simulations of the cubic FeS 

structure are plotted in figures 5.6(a), (b) and (c) for Ueff values of 0, 2 and 4 eV 



 157 

respectively. 
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Figure 5.6(a), (b), (c) – Atomic site contributions to the electronic DOS graphs for the 

ferromagnetic calculations, with Ueff values of (a) 0, (b) 2 and (c) 4 eV respectively, 

for the cubic form of FeS. 

 

 The ferromagnetic electronic DOS provide a more nuanced band picture than 

that of the non-magnetic case. The introduction of the Ueff value splits the symmetry 

of the up- and down- spin polarised bands of the Fe d-orbitals. For Ueff values of both 

2 eV and 4 eV the predicted band structure is that of a semi-metal, where the available 

states at the Fermi level lie solely in one spin polarisation, with a band gap of 

approximately 4 eV opening in the other spin direction. However, due to the 

paramagnetic nature of the high-temperature phase, this would not be seen 

experimentally due to rapidly changing spin directions in actual samples from thermal 
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effects. There is no contribution from any S orbitals at the Fermi level, suggesting that 

conduction arises solely from the electrons occupying Fe d-orbitals. 

 

5.2.8 Antiferromagnetic GGA+U 

Figure 5.7(a) shows the variation of the lattice parameters with Ueff in the cubic FeS 

structure with an initial antiferromagnetic moment arrangement, while figure 5.7(b) 

shows the analogous relationship between the Fe magnetic moment and Ueff. 
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Figures 5.7 (a), (b) – Plots of calculated (a) lattice parameters a and c and (b) Fe 

magnetic moment encapsulated within the Bader basin for range of Ueff values, for the 

antiferromagnetic arrangement of cubic FeS. 

 
 At all Ueff values less than 4 eV a tetrahedral unit cell is predicted, with a = b. 

An elongated c parameter with respect to a is found for values of Ueff < 1 eV. This 

situation is reversed for values of Ueff ≥ 1 eV, where it is predicted that the structure is 
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instead elongated in both the a and b direction compared to the c direction, due to a 

significant extension in the a and b parameters rather than any major change in the c 

direction. At a Ueff value of 4 eV, a ferromagnetic cubic structure is predicted, 

suggesting that applying a large degree of on-site Fe electronic correlation induces a 

high level of lattice symmetry, making the antiferromagnetic structure collapse to the 

more symmetric ferromagnetic. None of the values of Ueff tested show evidence of 

causing any orthorhombic distortion in the structure, since for all cases a = b. For the 

antiferromagnetic arrangement, increasing Ueff leads to the magnetic moment on each 

Fe atom increasing in a roughly linear fashion. 

 Figures 5.8 (a) and (b) show the electronic DOS for the antiferromagnetic 

arrangement of the cubic FeS structure at Ueff values of 0 and 2 eV (the Ueff = 4 eV 

antiferromagnetic arrangement does not exist) respectively. 
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Figure 5.8 (a), (b) – Atomic site contributions to the electronic DOS graphs for the 

antiferromagnetic case with Ueff values of (a) 0 and (b) 2 eV for the cubic form of 

FeS. Only the electronic DOS for a single spin-polarisation is shown in each case. 
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 The antiferromagnetic electronic DOS demonstrates a similar splitting of the 

up and down Fe d-bands to the ferromagnetic arrangement, where the introduction of 

the Ueff parameter causes the opening of a band-gap, slightly above the Fermi level, in 

the case of Ueff = 2 eV. Since this DOS applies to only one spin-polarisation, it is 

concluded that the antiferromagnetic structure consists of planes of parallel-polarised 

Fe atoms behaving in this manner. 

 

5.2.9 Comparison of Structures 

Figure 5.9 shows the normalised energy differences between the calculated magnetic 

arrangements for the range of Ueff values tested.  
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Figure 5.9 – Plot of unit cell internal energy against Ueff value for the three magnetic 

arrangements of the Cubic FeS structure. All energies are normalised to the non-

magnetic energies. 
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 With the exception of Ueff = 0 eV and 4 eV the antiferromagnetic structure 

possesses the lowest energy, by a roughly constant margin of around 1.5 eV compared 

with the ferromagnetic arrangement. The non-magnetic case is the least stable for all 

Ueff values tested with the exception of Ueff = 0.5 eV, where the ferromagnetic 

arrangement is the least stable. These results indicate that the ferrous ion in cubic FeS 

has a strong preference for a high-spin electron configuration for all Ueff values tested, 

even if this leads to a breaking of the cubic symmetry of the lattice. For Ueff = 4 eV, 

the structure is unable to support an antiferromagnetic arrangement and instead 

collapses to the ferromagnetic structure. The relaxed structures calculated for the non-

magnetic case show only negligible changes upon introduction of the Ueff parameter; 

the lattice parameters remain underestimated to the same degree as in the pure GGA 

simulations. 

 

5.2.10 Interatomic Potential Model: Cubic FeS Structure 

Following from the GGA+U calculations of the cubic FeS sturcture, the interatomic 

potential derived for the mackinawite structure is used to simulate cubic FeS. Since 

the formal oxidation states of the Fe and S atoms present in cubic FeS are the same as 

those found in mackinawite, the potential may be applied in this way. It is a measure 

of the success of a potential that it is transferable to other structures of the same 

atoms. For this purpose, both the unit cell and the internal coordinates were relaxed. 

This produces the cubic structure correctly, although the predicted lattice parameter is 

underestimated at a = b = c = 4.86 Å, i.e. within 0.1 Å of the non-spin-polarised 

structure that the GGA simulations predict, indicating that the presence of the 

magnetic moment has considerable magneto-structural effects associated with it; the 

non-magnetic FeS potential derived for mackinawite is unable to account for such 
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effects. However, the fact that the interatomic potential predicts the cubic structures to 

within 0.1 Å of the non-magnetic GGA value is a considerable success for the Fe2+, 

S2- potential derived in this thesis. 

 

 

5.3 Orthorhombic FeS: Modelling 

5.3.1 Introduction 

These calculations use the orthorhombic experimental structure of Wintenberger et al. 

(1978) in order to test if, from this initial structure which does not possess cubic 

symmetry, the GGA or GGA+U methods are capable of predicting and describing the 

low-temperature structure. As before, the simulations apply the four initial Fe 

magnetic moment arrangements. Finally the interatomic potential is tested to 

determine its ability to predict the orthorhombic structure. 

 

5.3.2 GGA Simulations 

The first calculations test the GGA method without the Ueff parameter, and the results 

are presented in table 5.8. The pure GGA calculations show the same overbinding 

tendency in the description of the orthorhombic FeS structure as in the cubic structure, 

which for all three initial magnetic arrangements leads to a considerable 

underestimation of each lattice parameter. A very small orthorhombic distortion is 

seen in the antiferromagnetic simulation, with an elongated c parameter and a slightly 

reduced b parameter compared to a. The predicted magnetic moments in each case are 

similar to those found for the initial cubic FeS starting structure. 
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Table 5.8 – GGA simulation results for the orthorhombic FeS structure. Resulting 

magnetic structures, lattice parameters, internal energies and magnetic moments of the 

Fe atoms are shown. 

 a (Å) b (Å) c (Å) Energy (eV) MM/Fe (µB) 
Non-Magnetic 4.952 4.949 4.937 -51.944 - 
Ferromagnetic 4.955 4.955 4.954 -51.956 0.45 

Antiferromagnetic 4.984 4.981 5.079 -51.999 1.48 
 

 These results show that, for the pure GGA, both the cubic and orthorhombic 

FeS starting structures relax in similar ways for each magnetic arrangement, but that 

the lower symmetry of the orthorhombic structure gives relaxed structures which are 

also orthorhombic. 

 

5.3.3 Non-Magnetic GGA+U 

The effect of the Hubbard Ueff parameter in the GGA calculations for the non-

magnetic orthorhombic FeS system is simulated. These spin-polarised calculations, 

with no initial applied magnetic moment, may relax to configurations that are not seen 

should non-magnetic or high-spin initial starting conditions be applied. As before, a 

range of Ueff values from 0.5 eV to 4 eV are tested in steps of 0.5 eV, for each of the 

three magnetic arrangements. The results of these calculations are presented in table 

5.9. 

 These results demonstrate, in a similar manner to the cubic FeS starting 

structure, that the Ueff value does not improve the non-magnetic description of the 

orthorhombic FeS structure if no magnetic moments are applied to the Fe atoms. Both 

the predicted lattice parameters and the Fe Bader charges show no trend with the Ueff 

parameter. 
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Table 5.9 – Calculated a, b and c lattice parameters and Fe Bader charges from the 

non-magnetic GGA+U calculations for orthorhombic FeS. 

Ueff (eV) a (Å) b (Å) c (Å) Fe Bader Charge (e) 
0 4.952 4.949 4.937 0.93 

0.5 4.947 4.943 4.938 0.92 
1 4.942 4.941 4.938 0.92 

1.5 4.943 4.940 4.935 0.91 
2 4.940 4.925 4.950 0.91 

2.5 4.944 4.941 4.936 0.93 
3 4.941 4.950 4.941 0.93 

3.5 4.953 4.950 4.945 0.93 
4 4.957 4.957 4.956 0.92 

   

 Figures 5.10 (a), (b) and (c) show the calculated electronic DOS for the 

orthorhombic FeS structures, for Ueff = 0, 2 and 4 eV respectively, in the non-

magnetic arrangement. 
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Figure 5.10 (a), (b), (c) – Electronic DOS graphs for the calculations on the 
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orthorhombic low-temperature structure of cubic FeS. The non-magnetic, 

ferromagnetic and antiferromagnetic cases are shown for Ueff values of (a) 0, (b) 2 and 

(c) 4 eV. 

 

 The non-magnetic orthorhombic FeS DOS plots show very similar behaviour 

to their cubic FeS counterparts for corresponding Ueff values. 

 

5.3.4 Spin-Polarised GGA+U 

Further calculations test the GGA+U method using spin-polarised calculations, 

without initial Fe magnetic moments, for the orthorhombic FeS structure. The results 

of these calculations are presented in table 5.10. 

 

Table 5.10 – Calculated a, b and c lattice parameters and Fe magnetic moments from 

the spin-polarised GGA+U calculations with no initial Fe magnetic moments for 

orthorhombic FeS. 

Ueff (eV) a (Å) b (Å) c (Å) MM / Fe (µB) 
0 4.954 4.954 4.955 0.44 

0.5 4.958 4.956 4.954 0.58 
1 4.963 4.960 4.965 0.68 

1.5 4.987 4.985 4.982 0.92 
2 5.462 5.338 5.465 3.60 

2.5 5.240 5.237 5.234 2.11 
3 5.936 5.347 5.348 3.66 

3.5 5.520 5.517 5.513 3.68 
4 5.743 5.743 5.239 3.69 

 

 The structures predicted by these calculations demonstrate a clear change in 

both lattice parameters and magnetic moment between Ueff values of 1.5 and 2 eV, 

even though all calculations predict ferromagnetic arrangements of Fe magnetic 
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moments. Below Ueff = 2 eV the lattice parameters are underestimated as in the non-

magnetic calculations, along with small Fe magnetic moments of less than 1 µB. For 

Ueff ≥ 2 eV antiferromagnetic arrangements are predicted, where both the predicted 

lattice parameters and the Fe magnetic moments are increased, although the relative 

sizes of each of the three lattice parameters show little correlation with the Ueff 

parameter.  

 

5.3.5 Ferromagnetic GGA+U 

Figure 5.11(a) and (b) shows the effect of the Ueff parameter on the predicted lattice 

parameters and Fe magnetic moments, respectively, for the initial orthorhombic FeS 

structure with a ferromagnetic magnetisation as initial arrangement.  

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

5.0

5.2

5.4

5.6

5.8

6.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

U
eff

 (eV)

L
at

tic
e 

Pa
ra

m
et

er
 (

Å
)  a 

 b
 c

(b)

M
ag

ne
tic

 M
om

en
t (

µ
B
/F

e)

(a)

 

Figures 5.11 (a), (b) – Plots of calculated (a) lattice parameters a and c and (b) 

magnetic moment encapsulated within Fe Bader basin for range of Ueff values applied 
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to calculations of the ferromagnetic arrangement of orthorhombic FeS. 

 

 The predicted lattice parameters and magnetic moments for the ferromagnetic 

arrangements show a dramatic increase in both the lattice parameters and magnetic 

moments with non-zero Ueff. The lattice parameters show a tendency to either form a 

cubic structure or show a slight distortion from that cubic structure with an elongated 

c (Ueff = 2 eV) or b direction (Ueff = 3 eV). The magnetic moments show a similar 

trend to that seen in the cubic case, where the introduction of the Ueff parameter leads 

to a large increase in the magnetic moment. Such an increase can be described in 

terms of a shift from low-spin Fe for Ueff = 0 eV to high-spin Fe for all non-zero Ueff 

values. 

 Figures 5.12 (a), (b) and (c) show the calculated electronic DOS of the 

ferromagnetic orthorhombic FeS structure, for Ueff = 0, 2 and 4 eV respectively. 
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 Figure 5.12 (a), (b), (c) – Electronic DOS graphs for the calculations of the 

ferromagnetic orthorhombic FeS structure for Ueff values of (a) 0, (b) 2 and (c) 4 eV. 

  

 The ferromagnetic DOS plots show very similar behaviour to their cubic FeS 

counterparts for corresponding Ueff values for the ferromagnetic arrangements, with 

their semi-metallic appearance when Ueff = 2 or 4 eV where the available states at the 

Fermi level are provided by the spin-down Fe band. 

 

5.3.6 Antiferromagnetic GGA+U 

The antiferromagnetic calculations of the lattice parameters and Fe magnetic moment 

are given in figures 5.13 (a) and (b) respectively.  
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Fig 5.13 (a), (b) – (a) plots the calculated magnetic moment encapsulated within the 

Fe Bader basins and (b) the lattice parameters a and c for range of Ueff values for the 
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antiferromagnetic arrangement of orthorhombic FeS. The experimentally determined 

values of Wintenberger et al. (1978) for the lattice parameters a’, b’ and c’ of the low-

temperature orthorhombic structure are shown in (a) by solid, dashed and dotted lines 

respectively. The experimentally determined value for the magnetic moment, 

including the associated error in this value, is shaded in (b). 

 These plots demonstrate the importance of electron correlations in the form of 

the Ueff parameter for the GGA+U description of the low-temperature form of cubic 

FeS. The antiferromagnetic arrangement predicts orthorhombic structures for all Ueff 

values tested. The increase in the Fe magnetic moments is very similar to that seen in 

all other magnetic cases upon introduction of the Ueff parameter. The a and b lattice 

parameters show a small amount of orthorhombic distortion for all Ueff values, and for 

Ueff = 2 eV the predicted a, b and c lattice parameters and the predicted Fe magnetic 

moment are in excellent agreement with the experimentally determined values. From 

these calculations it is apparent that the introduction of the Ueff parameter correctly 

predicts the orthorhombic structure when used in conjunction with the experimental 

antiferromagnetic structure, and that a Ueff value of 2 eV provides an excellent 

prediction of all three lattice parameters and the magnetic moment on each Fe atom; 

in fact all of these properties are predicted to within experimental error. 

 Figure 5.14 (a), (b) and (c) shows the calculated electronic DOS for the 

orthorhombic FeS structures, with Ueff = 0, 2 and 4 eV respectively, in the 

antiferromagnetic arrangement. The electronic DOS for the case where Ueff = 2 eV 

shows a band-gap opening with width 0.7 eV, at 0.1 eV above the Fermi level, which 

for Ueff = 4 eV, has increased to a width of 2 eV.  

 Assuming, based upon the correct description provided of the lattice 

parameters and magnetic moment, that a Ueff value of 2 eV is correct the DOS 
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calculations suggest that the low-temperature orthorhombic phase of cubic FeS is 

metallic at 0 K. It is important to note that the antiferromagnetic electronic DOS plot 

of figure 5.14 (b) only shows one spin-polarisation of the Fe atoms, suggesting that 

this corresponds to the DOS for one layer of Fe atoms, which lie in the ab plane. The 

next layer of Fe atoms have magnetic moments aligned in the opposing direction, and 

would have an electronic DOS equivalent to a mirror image, reflected in the y = 0 

plane. 
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 Figure 5.14 (a), (b), (c) – Electronic DOS graphs for the calculations on the 

antiferromagnetic arrangement of orthorhombic FeS. The cases shown are for Ueff 

values of (a) 0, (b) 2 and (c) 4 eV. 
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5.3.7 Comparison of Structures 

Figure 5.15 shows the relative internal energies for the three magnetic arrangements 

of the initial orthorhombic structure. It is clear from this relationship that the 

antiferromagnetic arrangement is the most stable for all Ueff values tested, and the 

relative internal energies are similar to that found previously for the cubic structure, 

with the ferromagnetic structure more stable than the non-magnetic for all but Ueff = 

0.5 eV. 
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Figure 5.15 – Plot of the relative internal energies of the non-magnetic, ferromagnetic 

and antiferromagnetic arrangements for the low-temperature orthorhombic FeS 

structure for a range of Ueff. All energies are normalised to the non-magnetic energies 

  

 Increasing the applied Ueff value leads to the non-magnetic solution becoming 

increasingly higher in energy than either the ferromagnetic or antiferromagnetic 
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solutions, suggesting that greater electron correlation make magnetic solutions far 

more likely. The finding that the antiferromagnetic arrangement is the most stable at 

Ueff = 2 eV is in excellent accord with experiment. 

 

5.3.8 Exchange Constant Calculations 

Further calculations were undertaken to examine the exchange interactions between 

Fe-Fe nearest-neighbours for the antiferromagnetic and ferromagnetic phases, using 

the relaxed antiferromagnetic structure corresponding to scenario (1) (figure 5.2) and 

undertaking further calculations using scenarios (2) (figure 5.3 (a)) and (3) (figure 5.3 

(b)). The internal energies of the resultant structures can then be used to predict the 

exchange constants Jij and constant paramagnetic energy H0 for a range of Ueff values 

using Equation (2.2.41). Table 5.11 shows that the predicted exchange constants agree 

with the proposed |J12| < |J13| and |J12| < |J14| stipulations of Wintenberger & Buevoz 

(1978) for Ueff values of 2, 2.5, 3 and 4 eV only. 

 The predictions of the Néel temperature using Equation (2.2.42) for all but Ueff 

= 0 eV lead to overestimations for this quantity, with Ueff = 2 eV predicting TN to be  

2178 K. These overestimations are almost certainly due to the failure of the mean 

field approximation when applied to Fe materials, and possibly the omission of Fe 

next-nearest-neighbour interactions (Swendsen, 1973) 
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Table 5.11 – Calculated exchange constants and constant paramagnetic energy H0 for 

varying Ueff for the orthorhombic FeS structure. 

U(eV) J12 (K) J13 (K) J14 (K) H0 (eV) 
0 -5.431 -5.396 -4.440 -25.982 

0.5 -48.727 -48.675 -48.263 -25.004 
1 -46.374 -46.488 -45.573 -24.351 

1.5 -52.999 -52.920 -45.994 -23.791 
2 -57.833 -68.025 -57.893 -23.311 

2.5 -75.838 -75.984 -75.952 -22.881 
3 -91.263 -91.429 -92.494 -22.471 

3.5 -108.806 -108.568 -110.826 -22.087 
4 -127.586 -127.708 -130.854 -21.728 

 

 

5.3.9 Interatomic Potential Model: Orthorhombic FeS 

The interatomic potential model originally derived for the mackinawite structure is 

applied to the FeS orthorhombic structure. Starting with the experimental structure of 

Wintenberger et al. (1978), the calculated lattice parameters and angles of the relaxed 

structure are given in table 5.12. 

 

Table 5.12 – lattice parameters and angles of orthorhombic FeS calculated using the 

Fe-S interatomic potential. 

a (Å) b (Å) c (Å) α (°) β (°) γ (°) 
5.30 5.74 4.63 89.94 89.98 90.00 

  

 There are large discrepancies between the experimentally observed lattice 

parameters and those calculated by the potential model. It is highly likely that the lack 

of any description of magnetism within the potential model leads to the large 

inaccuracies observed in the predicated structure since, as has been shown previously, 

the orthorhombic transition is magnetic in nature. Extension of the potential model to 
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include magnetic effects would be required to describe this effect using this method. 

 

  

5.4 Summary 

This study has sought to test the applicability of the GGA+U method in the 

description of both the high- and low-temperature structures of cubic FeS. For both 

structures it has been shown that pure GGA in the absence of a Ueff value is unable to 

provide an adequate description, evidenced by large underestimations in both the 

lattice parameters and Fe magnetic moment. This is true regardless of the initial or 

resulting Fe magnetic moment arrangements, and in all cases the relaxed structures 

are predicted to possess cubic or very slightly distorted cubic structures, to be metallic 

in nature and to consist of low-spin Fe. These calculations clearly demonstrate that 

pure GGA is unable to accurately reproduce the experimentally determined lattice 

structure or the Fe magnetic moment for either the low- or high- temperature FeS 

structures. An interatomic potential treatment of the cubic structure, which does not 

consider magnetic interactions, is shown to agree well with these GGA results, 

suggesting that magneto-structural effects within the structure play a major role. 

 Upon introduction of the Ueff parameter it is found that the antiferromagnetic 

arrangement of Fe magnetic moments is considerably more stable than the non-

magnetic or the ferromagnetic for both cubic and orthorhombic structures, and that 

this holds for all Ueff values between and including 0.5 eV and 4 eV. The non-

magnetic solutions are the least stable arrangements for almost all Ueff values tested, 

demonstrating the preference of the Fe atom to relax into the high-spin configuration 

in these structures. It is noted in all simulations that the introduction of the Ueff 



 175 

parameter has very little effect upon the structure unless it is accompanied by an 

ordered configuration of magnetic moments. In the case of the cubic structure, the 

symmetry of the ferromagnetic arrangement preserves the cubic symmetry of the unit 

cell; this situation provides an analogy to the high-temperature paramagnetic structure 

where thermal fluctuations cause the Fe magnetic moments to randomise and lead to 

the cubic structural symmetry. The experimentally determined values for the lattice 

parameters of this structure are most accurately reproduced with an applied Ueff of  

2 eV, and for this value the predicted magnetic moment associated with each Fe atom 

is 3.63 µB.  

 For all Ueff values tested, relaxation of the cubic structure with an 

antiferromagnetic magnetic moment arrangement predicts a tetrahedrally distorted 

structure with a = b ≠ c. Ueff values below 1 eV produce a tetrahedral distortion such 

that the c parameter is shorter than the a parameter; for Ueff values greater than 1 eV 

the opposite is true and the c parameter is elongated compared to the a parameter. 

This behaviour has little correlation to the magnetic moments present on each Fe 

atom, suggesting that it is instead related to the applied Ueff value and hence the level 

of electron correlation on the Fe atoms.  

 For the low-temperature orthorhombic structure, introduction of the Ueff 

parameter leads to similar predictions to that seen in the cubic case. The 

antiferromagnetic solution is the most stable for all Ueff values tested. It is noted that 

even the ferromagnetic solution gives orthorhombic structures for Ueff values of 2 eV 

and 3eV, suggesting an asymmetry introduced into the structure by this parameter 

regardless of the orientations of the applied magnetic moments. Consideration of the 

relaxed structures produced by antiferromagnetic magnetic arrangements show that 

the correct orthorhombic structure, where a > b > c, is correctly predicted for a Ueff 
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value of 2 eV. This value also leads to predictions for the lattice parameters and Fe 

magnetic moments for the low-temperature orthorhombic structures to within the 

error of the experimental methods used. Since this requires all three lattice parameters 

to assume different values this is an impressively accurate set of predictions by the 

GGA+U formulism of DFT. 

 Using the value of 2 eV to determine the electronic structure of the high-

temperature form of cubic FeS, the electronic DOS demonstrates that the 

ferromagnetic form is semi-metallic. However this would not be seen experimentally 

since the spins are randomised, and instead metallic behaviour should be expected. 

The predicted electronic structure of the low-temperature antiferromagnetic 

orthorhombic phase is also metallic, with the Fermi level residing 0.1 eV from the top 

of a Fe d-band, and a band-gap of width 0.7 eV above this band. 

 Comparing the energies of the two phases for each magnetic arrangement, we 

note that the differences in energies between the cubic and orthorhombic structures 

are many times smaller than those between different magnetic arrangements. This 

may indicate that the transition between the two phases is likely to be driven by the 

ordering of the magnetic moments below the transition temperature. The suggestion 

that the orthorhombic phase of FeS contains low-spin Fe has been proved to be 

incorrect, and instead the Fe must be high spin, in the antiferromagnetic coordination 

of figure 5.2, in order to precipitate the experimentally observed transition. This 

would appear to support the first mechanism proposed for the transition 

(Wintenberger et al., 1978) where it is caused by generalised exchange interactions in 

the presence of orbital degeneracy. Finally, the three exchange constants for the low-

temperature orthorhombic structure have been determined at all Ueff values tested, 

with a Ueff value of 2 eV giving J12 = -25.70 K, J13 = -30.23 K and J14 = -25.73 K. 
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Experimental scrutiny of these value would provide an excellent test of the model 

presented in this work. 
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6. Summary 

 

 

 

This thesis has used both interatomic potential and ab initio materials modelling 

methods to provide descriptions of the iron sulfides mackinawite, greigite and cubic 

FeS. The materials examined have been found to demonstrate a wide range of 

properties and behaviour, and as such the models developed for each are individual to 

each material. 

 Simulations of mackinawite, FeS, have shown that DFT-GGA gives an 

excellent description of individual layers of this sulfide, with correct predictions for 

the metallic and non-magnetic behaviour. However, it has been found that GGA and 

GGA+U fail to account for the dispersive forces acting between layers. In response to 

this difficulty an interatomic potential has been derived which describes the {100}, 

{010}, {001}, {110}, {101}, {011} and {111} surfaces of mackinawite, and from 

considerations of the surface energies, reproduces the observed crystal morphology 

accurately. The GGA model is extended to examine the introduction of transition 

metal impurity atoms in the interstitial sites between layers. It is found that the 

impurity atoms contribute to the metallic behaviour of the mackinawite, where it is 

found that these atoms bond to the neighbouring S atoms. 

 The greigite (Fe3S4) structure has been examined using both the GGA and 

GGA+U DFT formalisms, where the experimentally determined lattice parameters, 

inverse spinel structure and magnetic moment are reproduced most accurately when a 

Ueff value of 1 eV is applied. This phase is determined to be semi-metallic in nature, 
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similar to magnetite. A low-temperature monoclinic form of greigite is postulated, in 

analogy to that seen in magnetite below the Verwey transition, to test the existence of 

any low-temperature structural transition in the sulfide. Although this phase is found 

to exist at a potential energy surface minimum, it is found to be energetically 

unfavourable compared to the spinel form for all Ueff values tested. 

 Cubic FeS is simulated using all three methods previously mentioned, namely 

GGA, GGA+U and the interatomic potential derived previously for mackinawite. It is 

found that GGA provides a poor description of both the high-temperature cubic and 

low-temperature orthorhombic structures, regardless of the magnetic ordering initially 

applied. This situation is seen to change dramatically upon introduction of the Ueff 

parameter, where a value of 2 eV gives an excellent description of the high-

temperature cubic lattice parameters, using a ferromagnetic ordered arrangement. This 

preserves the cubic symmetry seen experimentally in the paramagnetic structure, 

where the magnetic moments align in random directions. A Ueff value of 2 eV (with 

the antiferromagnetic moment alignment) also provides a description of the low-

temperature orthorhombic structure, providing predictions of all three lattice 

parameters and the Fe magnetic moment to within experimental error. The exchange 

parameters are calculated for the low-temperature structure, although the mean-field 

approximation is seen to predict the Néel temperature to be too high. 

 The range of properties these iron sulfides display has offered an excellent test 

of the theoretical methods implemented. Whilst DFT and IP methods have proved 

successful in previous studies of the iron sulfides pyrite and troilite, the metastable 

phases examined in this thesis are much more complex. The Ueff parameter was 

originally designed to improve the description of Fe in oxidess; we have shown that 

its application to sulfides improves the description of these phases immensely, even 
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more so than in the oxides, although different Ueff values are required to describe 

different material properties. This may be related to the lower level of electron 

correlation associated with the Fe atoms in the sulfides compared to the oxides, as  

evidenced by the lower values of Ueff (0, 1 and 2 eV for mackinawite, greigite and 

cubic FeS respectively) required in the descriptions of the sulfides compared to the 

oxides (around 4 eV for magnetite (Piekarz et al. 2007) and hematite (Rollman et al., 

2004), and values of 3 or 5 for wüstite (Persson et al., 2006)). 

 The complex magnetic behaviour of the iron sulfide family makes a complete 

description very difficult. For instance, the formation and transitions between the iron 

sulfides examined here could be predicted if the models for each were in the same 

form; unfortunately, what works for mackinawite, namely a non-magnetic interatomic 

potential description, is insufficient to describe either greigite or cubic FeS, where it 

has been shown that magnetism plays a major role. In fact, considering only the DFT 

descriptions of the three materials, the requirement for a different Ueff value in each 

case means that the energies produced for each phase by these models can not be 

compared in any meaningful way. 

 The success of the models in the prediction of the Fe-S materials investigated 

in this thesis provides a platform on which further research can be undertaken. The 

description of greigite provided by the GGA+U simulations affords the opportunity of 

investigating the surfaces of this mineral, including its potential application as a 

catalyst. The simulations of the incorporation of impurity atoms into the mackinawite 

structure, Ni in particular, suggest that it should be straightforward to also dope the 

greigite structure with Ni impurities, offering the possibility of simulating the surfaces 

of greigite which resembles the “cubane clusters” and other ferrodoxin-type structures 

which are used in a many enzymes found in nature. 
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 The success of the incorporation of impurities into the mackinawite structure 

suggests that research into removing heavy metals ions, including actinide atoms, 

from solution should be possible. Even without individual interatomic potentials for 

each impurity, small scale DFT calculations can be undertaken. Application of a 

previous DFT description of polydymite (Ni3S4) (Wang et al., 2007), together with the 

description of greigite presented here opens up the possibility of studying both Fe-

doped polydymite and Ni-doped greigite, as well as the intermediate phase violarite 

(Fe2+Ni2
3+S), an economically important constituent of Ni ores. 
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