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Dedicated to Prof. Miroslav Laitoch on his 60th birthday

M. Laitoch defined in [2] the n-th accompanying equation (n-natural) to a 2°¢
order linear differential equation

y'=00y (0)

(Q < 0Ois a continuous function on its definition interval i = E|) with a given basis
[, B], where o, B are given real constants, a> + B2 # 0. If u, v are two independent
integrals of (Q), then the function

au + fu’ V= av + po’
N Vo? - p2Q

form a basis of the space of all integrals of the first accompanying equation to (Q).

The present paper investigates the properties of a linear two-dimensional space
of continuous functions with the basis (o(au + pu’), o(av + pv’)), where (u, v) is
the base of a linear two-dimensional space of continuous functions with a continuous
first derivative, ¢ > 0 is a continuous function and «, § («* + B2 % 0) are given
real constants. There are investigated zeros of functions and extremes of phases
relative to this space and conditions are stated under which this space is of the 0%
class, i.e. it has no extreme points. It is referred to [3], [4] and [5] where the
linear two-dimensional spaces of continuous functions are studied from the point
of view of Academician O. Bortivka’s theory on transformations of solutions of
the 2" order linear differential equations and to [6], where the spaces of continuous
functions with a continuous first derivative are considered. We continue to use the
results of the works cited at the end of this article.
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0. In all what follows we are dealing with functions from C;(i), i < E,; y' € Co(i)
will always denote the derivative of the function y € C,(i).

Remark 0.1. Three cases arise for the function y € C{(i), ¥ # constant on i,
and its derivative (cf. definition 1.1 [3]):

1. y, y" are dependent on the interval i,

2. y,y" are independent on the interval 7,

3. y, ¥ are neither dependent or independent on the interval i.

Theorem 0.1. Let y € C,(i), y % constant on i. The functions y, y" are dependent
on the interval i exactly if y = ke on the interval i, € i, where k, ¢ are nonzero
constants.

Proof: L. Lect y, y' be functions dependent on i. Then there exist real numbers
a, b (a* + b* # 0) such that ay + by’ = 0 on i. If one of the numbers a, b were
equal to zero, then with respect to the assumption y == constant, the other number
would also be equal to zero, which would, however, contradict the assumption
a* + b* # 0. Thus it holds in the whole interval i that 3’ = cy, where ¢ = —a/b.
Next, it must hold for all ¢ € i that y(r) # 0. Namely, if there would exist a point
to €1 such that y(z,) = 0, then y'(¢,) = 0 would follow from equation y'(¢,) =
= cy(t,) and in view of this fact the equality ' = cy on i may be satisfied by the
functions y = 0 and " = 0 only, which again conflicts with our assumption that
y = constant. The function y = ke, where k # 0 is a constant, is the solution
of the equation '

Y =cy@®), tei
1I. If y = ke, tei, where k, ¢ are nonzero constants, we obtain y' = kce".

Then there exist numbers a, b, for instance a = —c¢, b = 1, and it holds ay +
+ by’ = 0 on i, hence y and y’ are dependent on i.

Corollary 0.1. Let ye C (i), y # constant on i. The functions y, )’ are in-
dependent on i exactly if y s ke, t €, holds on every interval j < i, where k, ¢
are nonzero constants.

Corollary 0.2. Let y € C,(i), y # constant on i. The function y, y’ are neither
dependent or independent on i exactly if there exists an interval j < i, j # i, where
y = ke, tej, and y = ke, t €i \ j, on the interval i \ j, where k, ¢ are nonzero
constants.

1. Zeros of functions of an accompanying space Pg[«, f]
to a space S

Let u,ve C;(i) and (u, v) be a basis of a linear two-dimensional space S (cf.
definition 1.2 [3]) whose range of definition is the interval i < E,. Let («', v') be
a basis of the linear two-dimensional space S’, where S’ is the set of derivatives
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of all functions of the space S. By Theorem 1.2 [6] no function y € S is equal to
a nonzero constant on any interval j < i.

Convention 1.1. We assume throughout that for every function y € S the functions
»,y" are independent on interval i. The functions identically equal to zero will be
excluded from our considerations.

Theorem 1.1. Let S be a space with a basis (i, v), 0(?), ¢ € i, be a function conti-
nuous and positive on the interval i, «, § are given real constants, a® + f2 # 0.
Then the set of all functions having the form () (ay(¢) + By'(¢)), where ¢ € i and
ye S, form a two-dimensional space of continuous functions with a basis
(o(ou + pu’), o(av + Bv’)) and with a definition interval i.

Proof: We show first that the functions g(c# + fu’) and g(av + Pv’) are in-
dependent on i. If they were not independent on i, then there would exist constants
a, b (a*> + b* # 0) and the interval j < i such that

ag(ou + Pu’) + bo(ow + ') =0 on j,
hence
a(au + bv) + P(au’ + bv') =0 on .

Because of the independence of functions u, v and because of the independence
of each function from S and its derivative, the above equality is satisfied for a = 0,
b = 0 only, whence it follows that g(au + fu’) and g(xv + Bv) are independent
on i.

Let y (= cqu + c,v) € S be an arbitrary function, ¢;, ¢, be real constants.
Then g(ay + By") = g(alc,u + cv) + Bleu’ + cv)) = c(elau + pu’)) +
+ c,(o(av + Pv’)). The set of all functions g(ay + By’) is thus a set of all linear
combinations ¢;o(au + pu’) + c,0(av + Pv’) and by definition 1.2 [3] it is a linear
two-dimensional space of continuous functions.

Corollary 1.1. The functions g(ay, + By}) and e(ay, + By3), where y;,y, €S,
are independent (dependent) exactly if y,, y, are independent (dependent).

Definition 1.1. The space from Theorem 1.1 of all functions g(ey + py’), where
y eSS, will be called an accompanying space to the space S with respect to the
number basis [«, f] with a weight ¢ and we denote it by Po[a, B]-

Lemma 1.1. To every function x € Pg[a, ] there exists exactly one function

ye Sory €S such that x = g(ay + By').

Proof: Let y and 7 be two functions of the space S for which g(ay + ") =
= x = gy + By’). Then a(y — 7) + B(»' — ") = 0 and — because of the in-

dependence of each function y € S and its derivative — the above relation is
satisfied for y = 7 only and thus also y' = y".
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Theorem 1.2. The mapping of S on the space Po[, B] defined by the operator
D. =9 (oc. + ﬁdit) is an isomorphism of S onto Pg[a, B].

Proof: By definition Pg[a, f] we have DS = Pg[, B]. With respect to Lemma1.1
the mapping D is schlicht and it holds for y;, y, € S:

D(y, + y2) = ola(y; + y2) + By; +y3)) =
= o(ay; + Byy) + olay, + By;) = Dy, + Dy,
D(cy,) = olacy; + Peyy) = colay, + Byi) = cDyy.

Remark 1.1. With reference to Lemma 1.1 [6] we can in analogy prove that
the mapping of the space S’ onto the space Pg[«, B] defined by the operator
D'. = g(a | .dt + B.) is an isomorphism S’ onto Pg[«, f].

Convention 1.2. Since in the main zeros of functions of the space PQ[oc, ﬂ]
investigated throughout this paper, we shall assume « # 0 and B # 0. If there
namely were o = 0 or f = 0, we would investigate in fact the zeros of functions
of the space S or S’, which is the content of [5] and [6].

Convention 1.3. Let (u, v) be a basis of the space S, then in all what follows w
will stand for the Wronskian of functions u, v, i.e.

w= =uv' — u'v.

1o

u v

Lemma 1.2. Let 7,ei and let for the function g(xy + By’) € Po[«, f] hold
0(to) (ay(to) + B¥'(2o)) = 0. Then there arises exactly one of the possibilities for the
function y (e S):

1° y(to) = 0, y'(t,) = 0,

2° y(tg) # 0, y'(¢,) # 0 and y(to) _ @

o) B
Proof: The assertion follows directly from the equation g(¢o) (ay(te) + BY'(¢o)) =
= 0 and from the condition « # 0 and f # 0.

Definition 1.2. If y(z,) = 0 and y'(#,) = 0 holds for the function y € S and the
point ¢, € i, then we say that ¢, is the zero of the function g(xy + By") of the type 1.

Y'(to) = —2 holds for the function y e S and the point ¢, €,

¥(to) B
we say that ¢, is the zero of the function g(ay + By’) of the type 2.

If y(to) # 0 and

Lemma 1.3. Let ¢, € i. Then there exists a function y e S such that ¢z, is the zero
of the function g(ay + By’) of the type 1 exactly if w(z,) = 0.
Proof: The assertion follows from Theorem 1.7 [6].

Theorem 1.3. Let ¢, € i be a singular point of the space Pg[a, B]. Then w(t,) = 0.
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Proof: Any two independent functions g(au + pu’), e(av + Bv’) of the space
PQ[oc, ,3] have at ¢, a zero value, thus

au(to) + Pu'(ty) =0
av(te) + Po'(ty) = 0.

With respect of the assumption « # 0, f # 0 the above system of equations has
a zero determinant, i.e. -

0 = u(to) v'(to) — u'(to) v(te) = Wlto)-

Corollary 1.2. Let 7, €i and w(ty) # 0. Then ¢, is a regular point of the space
Po[a, B].

Theorem 1.4. Let ¢, € i, w(t,) = 0 and let y € S exist such that #, is a zero of the
function p(ay + By’) of the type 2. Then ¢, is a singular point of the space Pg[«, ].

Proof: From the assumption w(zy) = 0 now follows by 1.7 [6] that there exists
a function y, € S such that y,(¢o) = 0 and y;(f,) = 0. Since y;(f,) = 0 and
¥(to) # 0 are y,, y independent and by Corollary 1.1 the functions g(ey + By’)
and g(ay, + By}) are also independent. According to Theorem 1.3 [3] t, is a singular
point of the space Po[a, f].

Corollary 1.3. Let the assumptions of Theorem 1.4 be satisfied. Then there
exists a function y, € S independent on y such that ¢, is a zero of the function
o(ay, + By}) of the type 1.

Theorem 1.5. Let ¢, € i be a regular point of the spaces .S and S’. The point ¢,
is a singular point of the space Pg[a, f] exactly if there exist independent functions
Y1, Y2 € S such that ¢, is a zero of the function go(ay; + By}) of the type 1 and ¢, is
a zero of the function g(ay, + By3) of the type 2.

Proof: I Let #, be a singular point of Pg[«, ﬂ]. Then by Theorem 1.3 w(z,) = 0
and thus y, € S such that ¢, is a zero of the function g(ay, + By}) of the type 1.
If the function g(«y + B¥') € Po[a, B] had at #, a zero of the type 1, then there
would y(#,) = 0 and this is because of the assumption on regularity of S possible
only then, if y,, y are dependent. Hence it follows for a function y, € S independent
on y, that the function g(ay, + By3) contains a zero of the type 2 at ¢,.

IL If ¢, is a zero of the function g(ay, + By}) € Po[«, f] of the type 1 and the
function g(ay, + By3) ePQ[oc, [3] of the type 2, then the assertion follows from
Theorem 1.4 and from Corollary 1.3.

Corollary 1.4. Let ¢, € i be a singular point of the space Pg[a, §]. Then there
arises exactly one of the possibilities:
1° there exist functions y;, ¥, € S such that ¢, is a zero of the function
o(ay, + By}) of the type 1 and the function o(ay, + B¥2) of the type 2.
Then t, is a regular point of the spaces S and S'.
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2° ¢, is a zero of any function of the space Pg[, B] of the type 1. Then ¢, is
a singular point of the spaces S and S’.

Theorem 1.6. Let 7, €i be a singular point of the space S (S"). Then it holds
that either ¢, is a regular point of the spaces S’ and Pe[a, B] (S and Pg[a, B]) or £,
is a singular point of the spaces S’ and Pg[«, f] (S and Po[a, B]).

Proof: Let #, be a singular point of the space S. Then it holds for any function
o(@y + By’) € Pola, B] that o(to) (ay(to) + By'(t0)) = e(to) By'(t,) whence the
assertion follows. Entirely analogous is the proof for #, being a singular point
of §'.

Theorem 1.7. Let ¢, € i be a regular point of the space Pg[o, ] and let a function
y € S exist such that ¢, is a zero of the function g(ay + By’) of the type 2. Then
w(ty) # 0.

Proof: Let the function y, € S, y,(t,) # O, be independent on y. Then it fol-

lows from
¥'(to) - _* d yi(to) _x

an ’
W(to) B y1(to) B
that y'(to) y,(to) — ¥1(to) ¥(t5) # 0 and because of Lemma 1.2 [6] w(z,) # 0.

Corollary 1.5. Let the assertions of Theorem 1.7 be satisfied. Then no function
of the space Pg[«, ] has a zero of the type 1 at f,.

Theorem 1.8. Let ¢, € i be a regular point of the spaces S and S'. Then for any
function g(ay + By’) € Po[«, B], for which o(t,) (ay(ty) + By'(to)) = 0 holds, ¢, is
a zero of the type 1 exactly if 7, is a regular point of the space Pg[«, ] and w(ty) = 0.

Proof: I. Let any function of the space Pg[a, f], having a zero value at #,,
have a zero of the type 1 at ¢,. Then by Theorem 1.7 [6] w(t,) = 0 and because
of Theorem 1.5 ¢, is a regular point of Po[o, B]-

II. If ¢, is a regular point of the space Po[«, ] and w(t,) = 0, then with respect
to Theorem 1.7 [6] there exists a function of the space Pg[a, f] such that 7, is its
zero of the type 1 and by Theorem 1.5 no function of the space Pg[a, ] has a zero
of the type 2 at ¢,.

Theorem 1.9. Let 7, € i be a regular point of the spaces S and S'. The point ¢,
is a regular point of the space Pg[oc, B] exactly if there holds one of the assertions
below:
1° w(ty) = 0 and for any function g(xy + fy’) € Po[a, f] having a zero value
at ty, t; is a zero of the type 1.

2° w(to) # 0 (said otherwise: for any function g(ay + By’) € Po[a, B] having
a zero value at ¢, t, is a zero of the type 2).

Proof: The assertion is the corollary of the previous theorems.
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Theorem 1.10. Let 7, € i be a regular point of the spaces S, S’, Po[«, B] and
w(ty) = 0. Then there exist real constants 4, u, 4 # 0, u # 0such that ¢, is a singular
point of the accompanying space Pv[4, y] to the space S, where v > 0 is a function
continuous on the interval i.

Proof: Accordmg to Theorem 1.9, for any function y € S for which y(f,) # 0

Y(to) # — . Let us write 2 (1) = —i. Then t, is a zero of the function
W(to) ﬂ ¥(to)

v(Ay + ') of the type 2 and by Theorem 1.4 1, is a singular point of the space
Pv[4, u].

2. Extreme points of the space Po[«, f]

Lemma 2.1. Let ¢, € i and y € C,(i) be such that y(¢,) = 0. Let ¢, not be a limit
point of zeros either of the function y nor y’. Then there exists 6 > 0 such that

y'(t) @
0 EON
Proof: With respect to the assumptions of our Lemma there exists § > 0 such
that y(f) # 0 holds for te (¢ — 6, t, + 9), t # t, and likewise y'(¢) # 0. Let for
te(ty — 9, t,) hold:
1. y(#) < 0, then y is increasing and thus y'(¢) > 0,
2. y(t) > 0, then y is decreasing and thus y'(¢) < O,
y'(1)
¥
Let for 1 e (¢y, t, + ) hold:
1. y(¢) < 0, then y is decreasing and thus y'(¢) < 0,
2. y(¢) > 0, then y is increasing and thus y'(z) > 0,
y'(t)
¥(®)

Theorem 2.1. Let t, € i and y € C,(i) such that y(¢,) = 0 and »'(f,) # 0. Then it
holds:

for te(ty, — 8, ty) < 0 and for t€ (¢, 1y + 9) D

whence it follows that - < 0 for te(ty — 0, ty).

whence it follows that > 0 for te (¢, ty + 9).

y'(@® .y
lim = 4+ and lim —~ =
tot0+ V(1) to1o- V(D)

Proof: The assertion follows with respect to Lemma 2.1 from the assumption
of y'(ty) # 0.

Corollary 2.1. Let ¢,,17, €i, t; < t,, be the neighbouring zeros of the function
ye C,(i) and let y'(;) # 0 and y'(#,) # 0 hold. Then the function L maps the
interval (¢, t,) onto the interval (—oo, +c0). g

Theorem 2.2. Let t,ei and y € C,(i) such that y(¢y) = 0 and y'(¢,) = 0. Let
t, not be a limit point of zeros either of the function y nor y" and let ¢, not be a limit
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point of extremes of the function y’. Then

AU . Y'()
lim =—~= +o00  and lim —2 =

t—to+ y(t) t-to— ()
Proof: With respect to the assumptions of the Theorem there exists § > 0
such that y(¢) # 0, y'(t) # 0 holds for # € (¢y, ¢, + J) and the functions y(f) and

y'(t) are strictly monotone in the interval (¢y, f, + 6). Let us restrict ourselves

to the case that y(z) > 0, y'(f) > O for (¢,, to, + J) and let us investigate lim —yy—((’—tj)—
t—to+

The functions y(f), y'(t) are thus increasing on the interval <t,, t, + 6> and the

function y is strictly convex. Let 2 be a number, 0 < & < §, then by the mean

value theorem there exists 7 € (¢, ¢, + J) such that

Wto + h) = y(to) = ¥'(®) h. 2.1

Because of y’ being increasing on the interval <{t,, t, + 0), the point ¢ from (2.1)
is uniquely determined and it is obviously the function A. Let ¢ = T(h) for he
€ (0, 6) and T(0) = ¢,. Then for 4 € (0, §) we have

_on=t1 [ Yt + B) — y(t5)
O

and

h=0+ h=0+ h

lim T(h) = (/)" ( jim 2o T h) — y(’°>) = () (V1) = to.

The function T'(#) is thus continuous on the interval <0, §). For any 4 € (0, §)
we have

W(to + h)
. —>1
V(T (h)
and thus
Wio +h) _ 1
y(T(h))h h-°
. .1 . Y(te + h) .
Since lim — = 400 we have lim = - = +4o0. In applying (2.1
hao+ B h—0+ y(T(h))h n applying (2.1) we
obtain
b= lim Yot R —yto) _ o y(IW)h e y(TW) o

woos  WIM)A hoos VIR haos WIR)

Let us now show that the function 7(/) is schlicht — increasing on the interval
0, 8). If it namely were for h, < h, T(h,) = T(h,), i.e. t; = t,, where 1, = T(hy),
t, = T(hy) € (¢, to + ) and since y'(¢;) = y'(£,), then it would be:

Wt + hy) - Wto + hy)
hy = h, i
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which is impossible with respect to y being strictly convex on the interval (¢,, t, + 9).
Thus there exists an inverse function T7(f) and we have

lim T7(t) = T7(t,) = 0.

t—1tg

Inserting A = T~1(¢) into (2.2) we get

P ¢ {(0) I Y 0
too=lm SSw) O w

which was to be proved.
In case of y(r) < 0 and y'(¢) < O for t € (¢, ty + O) let us denote z(r) = —y(t)

) , Z'() _ Yy :
and z'(Y) = —y'(r) then for all te(ty,ty + 6) = which are the
0r e FOET0)
conditions of the previous case.
The assertion lim 0] = —oo I8 to be proved in analogy to lim Y@ =
t—to— V() t—to+ ()

= +00.

Corollary 2.2. Let the assumptions of Theorem 2.1 or Theorem 2.2 be satisfied.
‘Then

lim M =0
t—to y'(t)
holds.

Theorem 2.3. Let ¢,,1, €i, t; < t,, be the neighbouring zeros of the function
y € C,(i). Let next the sequence of zeros of the function y’ from the interval (¢, ¢,)
not have any limit point ¢, or ¢, and in case of y'(¢;) = 0 or y'(¢;) = 0, let ¢, or'z,
not be a limit point of extremes of the function y’ from the interval (¢,, ¢,). Then

the function yT maps the interval (¢,, ¢,) onto the interval (—oo, + 00).

Proof: The assertion follows from Theorems 2.1 and 2.2.

Convention 2.1. We shall concern ourselves in what follows with regular spaces
of a certain type on i only. It means two independent functions of the space S
or S’ or Pg[a, ] have no zeros in commun and no function of the space S or S’
or Pg[«, B] has not any limit point of zeros inside the definition interval i. For
short we shall call the zero ¢, € i of the function g(ay + By’) € Pg[a, B] of type 1
or type 2 the zero of type 1 or type 2. We shall exclude from our considerations the
zeros of type 1 which are the limit points of extremes of the function from the space
S’ having at these points a zero value, i.e. we assume that for any z, € i there exist

the Timits Tim 2 and tim 2
10+ V(1) 1ot V(D)

Lemma 2.2. Let ¢t,,1, €1, t; < t,, be the neighbouring zeros of the function

where y € S.
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o(ay + By’) € Po[«, B]. Then the function y has in the interval (¢,, ¢,) one zero
at most.

Proof: Let us assume there exist at least two zeros of the function y in the interval
(ty, t;). Let us denote by 3, t, € (¢, t,), t3 < t,, the neighbouring zeros of the

’

function y. Then by Theorem 2.3 the function -—};7- assumes the value —%— on

the interval (¢5, t,) and by Lemma 1.2 there exist in (¢, ¢,) a zero of the function
e(ay + By’), contrary to our assumption.

Theorem 2.4. Let 1,1, €1, t; < t,, be the neighbouring zeros of the function
o(ey + By’) € Po[a, B]. Let the function y have in the interval (¢, f,) exactly one
zero, then ¢, and ¢, are the zeros of type 2.

Proof: Let us denote by ¢, € (¢, ,) the zero of the function y. If the point ¢,

y'(t)

were the zero of type 1, then by Theorem 2.2 lim = +o0 and since by

o+ V(D)

Theorem 2.1 lim - ) =
t-to— (1)
on the interval (z,, ¢t,) and by Lemma 1.2 the zero of the function g(ay + Sy)
would be in the interval (7., #,). This, however, contradicts our assumption. The

proof for the point ¢, proceeds similarly.

— o0, the function —J-;— would assume the value —%—

Corollary 2.3. Let t,, t, € i, t; # t,, be the neighbouring conjugate points of the
space Po[o, f]. Then ¢, and ¢, are not the zeros of type 1 simultaneously.

Remark 2.1. In the following Lemma 2.3, Theorem 2.5 and in its Corollary 2.4
the assumption S < C,(i) is not necessary and S = C,(i) suffices. This assertion
is true for any two-dimensional regular space of continuous functions of a certain
type on its definition interval.

Lemma 2.3. Let (u, v) be a basis of the space S. Let ¢,,¢,€i, t;, < t,, be the
neighbouring zeros of the function u. Let v # 0 in the interval (¢, ¢,) or let v have
at least two zeros in the interval (¢,, ¢,). Then at least one extreme point of the
space S lies in the interval (¢,, t,).

Proof: The assertion follows from Theorem 5 [5].

Theorem 2.5. The point #, € i is an extreme point of the space S exactly if the
function y € S, for which y(¢,) = 0, does not change the sign at ¢,.

Proof: According to Lemma 1 [5] every point ¢4 € i is the zero of a function
from the space S. Hence, let y(t,) = 0 hold for y € S. With respect to the regularity
of the space S y,(¢,) # 0 holds for any function y, € S, independent on y.

I. Let t, be an extreme point of the space S. Then by Theorem 3.2 [3] lim };1(?)) =
t—to
= +o0 or lim y:(®) = —o0. Since y;(fy) # 0, there exists a neighbourhood of the

1o V()
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point ¢, at which y, is positive or negative so that, for the above limits to be valid,
y cannot change its sign at ¢,.
II. Let the function y € S not change the sign at its zero #,. Taking the function

y, € S independent on y, we obtain lim yi(t)
t—=to y(t)
by Theorem 3.2 [3] ¢, is an extreme point of the space S.

being equal to 4+ or —oo and

Corollary 2.4. The point ¢, € i is an ordinary point of the space S exactly if the
function y € S, for which y(¢,) = 0, does not change its sign at ¢,.

Theorem 2.6. Let there exist a neighbourhood U(z,) of the point ¢, € i such that
w(ty) = 0 and w(z) # 0 holds for all ¢ € U(ty), t # t,. Then

a) if w changes its sign at #,, then 7, is an extreme point of the space S.

b) if w does not change its sign at ¢,, then ¢, is an extreme point of the space S’.

Proof: By Theorem 1.10 [6] the first phase A(¢), ¢ € i, of the basis (u, v) from
the space S has the continuous first derivative

A = Ttmz'_ :
u”(t) + v*(r)

For A(#) to have an extreme at ¢, it is necessary that w changes its sign at ¢,.
Further, by Lemma 1.4 [6] the point #,, where w(t,) = 0, is either an extreme
point of the space S or an extreme point of the space S’ — thus if w does not
change its sign at ¢y, then ¢, is an extreme point of the space S’.

Theorem 2.7. Let w(t,) = 0, where ¢, € i. The point 7, is an extreme point of the
space Po[ua, ] exactly if #, is an extreme point of the space S'.

Proof: Assuming that w(¢,) = O then, by Lemma 1.3, there exists the function
y € S such that y(t,) = 0 and y'(¢,) = 0.

I. Let 7, be an extreme point of the space Po[«, f]. Then it follows, by Lemma 2.5,
that for the function g(ay + By’) there exists §, > 0 such that for te(t, — 6, 1, + 5,),
t # ty, we have o(t) (ap(t) + By'(2)) > 0 or o(t) (oay() + By’ (1)) < 0. It suffices to
assume next o(¢) (ay(t) + By'(¢)) > 0, thus ay(t) + By'() > 0. By Lemma 2.1 there
exists d, > 0 such that for ze(t, — J,,ty) either y'(f) <0 and y(tf) > 0 or
y'(t) > 0and y(¢) < 0 and for 7 € (¢4, 1, + J,) there is either y'(r) > 0 and y(¢) > 0
or y'(f) < 0 and y(r) < 0. Let us take 6 = min (J,, §,).

I.Let f > 0. Then it follows from ay + By’ > 0 that y' > ——%y. Since

. (¢ . ! .. .
lim _y);((t_)) = —o0, the function %’7 cannot be lower limited on the interval
t1p—
(to — 0, tp), it must hold there y < 0 and consequently y" > 0. Next it holds
. "t !
lim 2 ® y

~——2> = + 0, thus the function —— cannot be upper limited on the interval
t-to+ y(t) y
(to, to + 0) and it must hold there y > 0 and consequently y’ > 0. Herefrom we
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see that the function y changes the sign in its zero ¢, and thus ¢, is by Corollary 2.4
an ordinary point of the space .S and the function y’ does not change the sign in its
zero t, and thus ¢, is by Theorem 2.5 the extreme point of the space S'.

2. Let f < 0. Then it follows from ay + By’ > 0 that y < ——;—y and in

analogy with part 1. we get y(r) > 0, y'(t) < 0 for e (¢, — 0, t,) and y(f) < 0,
y'(® < 0 for te(ty, ty + J). With respect to Corollary 2.4 and to Theorem 2.5
to is again an ordinary point of the space S and an extreme point of the space S’.

II. Let ¢, be an extreme point of the space S’. Then by Theorem 2.5 there exists
for the function y’ that §; > 0 such that y'(#) > 0 or y'(¢) <0 for te(ty — 6y, to + 6,),
t # ty. Next it suffices to assume that y’'(f) > 0. With respect to Lemma 2.1 there
exists 0, > 0 such that y(r) <0 for ¢t € (¢, — 0, 1) and y(¢) > 0 for t € (¢, to + J,)-
Let us take 6 = min (J,, J,).

1. Let § > 0. Since lim 2. & —

——~ = —o0, there exists 6; > 0 such that the ine-
t-to— ()

’

quality —';— < —% is satisfied on the interval (¢, — d5, t,) < (¢ — 6, t,) whence
it follows that ay + By’ < 0 on the interval (¢, — 6, #,) and consequently the
function o(r) (y()) + By'(1) < O for te(ty — b, ;). Since lim L = 4o,

¥’ o Iotot (@)
there exists §, > 0 such that the inequality —y—> -7 is satisfied on the

interval (¢, t, + 64) = (20, ¢, + 0) whence it follows that ay + Sy’ < 0 on the
interval (¢, t, + &), hence the function o(f) (ay() + By'(¢)) < 0 for t e (o,
to + 8). Since o(t,) (ay(t,) + By'(t,)) = 0, we get by Theorem 2.5 that ¢, is an
extreme point of the space Pg[oc, ﬁ].

2. Let B < 0. Then proceeding analogous as in part 1. we get ay(f) + By'(f) > 0
for te(ty — 6,1, and ap(t) + By'(t) > 0 for te(ty,ty + ). The function
o(ay + By’) € Po[«, B] does not change the sign at its zero ¢, so that by Theorem 2.5
1o is an extreme point of the space Po[a, f].

Corollary 2.5. Let w(t,) = 0, o €, and ¢, is an extreme point of the space §'.
Then t, is an extreme point of any accompanying space Pv[ A, u] to the space S,
where A, p # 0 are arbitrary numbers and v > 0 is a function continuous on the
interval i.

Theorem 2.8. Let 7, € i and w(z,) # 0. Then ¢, is an extreme point of the space
Po[«, B] if and only if it holds for the function y e S, for which (o) (xy(to) +

+ By'(ty)) = 0, that —J;—- has an extreme at ¢,.

Proof: 1. Let #, be an extreme point of the space Po[«, 8]. Then it holds for the
function g(ay + By') € Po[«, B] having the zero value at #, that y(f) # 0 and
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¥'(to) # 0, hence it exists §, > 0 such that y(¢) # 0 for te (t, — 6, to + 6,) and
it holds further 6, > 0 such that o(¢) (ay(¢) + BY'(£)) > 0 or o(?) (ay(t) + By'(¢)) <0
for te(ty — 8,,t, + 8,), t # t,. Let us take § = min (J;, J,) and we can next
assume that o(¢) (ap(¢) + By'(r)) > 0 for te(ty — 8,15 + 0), t # 1.

1. Let B > 0. From the relation g(ay + Sy") > 0 on the interval (¢, — 6, t5) U
U (o, to + 6) we get: if y > 0 on the interval (¢, — J, f, + J), then it holds

y'(t) o . y'(to) o

> —— for te(ty, — 6,1ty U (ty,to + 6) and since = —— holds,
O (to = 0, 10) v (fo o )
X has its minimum at ¢,; if y < 0 holds on the interval (¢, — 9, #, + J), then the

’

function %;«_has its maximum at ¢,.

2. Let B < 0. The proof proceeds analogous to that of part 1. and we get that

r

—%— hasatz,fory > Oon (¢, — 0, t, + 6)its maximum and for y < 0 its minimum.

’

II. Let the function yT, where o(t,) (ay(to) + By'(¢,)) = 0, have its extrem

at the point ¢,; it suffices to assume that it has the maximum. Thus, there exists

6 > 0 such that y(f) # 0 and J;((tt)) < ~% for te(ty — o0,ty + 0), t # 1y,
y'(to) o
where by Lemma 1.2 = ——,
g W) B

I.Let $>0. If y >0 (y <0) on the interval (¢, — 9, ¢, + 8) then o(¢) x
X (ay(t) + By’ (@) < 0 (e(@) (y(®) + By'(1)) > 0) for te(ty — d,4 + ), t # to,
and thus the function g(¢y + By") does not change the sign at its zero t,. By
Theorem 2.5 ¢, is an extreme point of the space Pg[a, £].

2.Let f<0. If >0 (y <0) on the interval (¢, — 5,2, + 0) is for te
€(to — 0,10 + 9), t # 1o, 0(t) (y(1) + By'(1)) > 0 (e(®) (ay() + By'(1)) < 0) and
thus by Theorem 2.5 7, is an extreme point of the space Pg[a, f].

Theorem 2.9. Let 5 ei and w(t,) # 0. Let a function ye S, y(t,) # 0, exist
such that the function %))—— has the extreme at #,. Then there exist real constants 4,

p # 0 such that ¢, is an extreme point of the accompanying space Pv[ 4, u] to the
space S, where v > 0 is a function continuous on i.

Proof: Since y(¢;) # 0 the function yT has its finite value at ¢,. Let us denote

it ——i— , where p # 0. By Theorem 2.8 ¢, is an extreme point of the space Pv[4, u]
*

Theorem 2.10. Let ¢,, ¢, €, t; < t,, be the neighbouring zeros of the function

o(ay + By’) € Po[a, B] and for all £ € {t,, t,> let y(¢) # 0 and w(¢) % 0. Then there
lies at least one extreme point Pg[a, B] in the interval (¢, t,).
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Proof: Assuming y # 0 on the interval {¢,, ¢, it follows that —’;— is continuous

-on {t;, t,), hence also limited on <¢,, #,>. Assuming w # 0 on the interval {¢,, £,
it follows that every point on <¢,, t,) is a zero of type 2 and for every function
yi(0) % y'(@®)
y1(®) ()
1o € (1, t;) be a zero of the function g(«y, + By;) € Pola, B]. If o(oy, + Py;) does
not change its sign at ¢,, then, by Theorem 2.5, ¢, is an extreme point of the space
Po[a, f] and there is nothing more do prove. Thus let the function e(xy, + By;)
ya(t)
ya(1) *
there must exist at least one point T # ¢,, T € (¢, t,), such that

y1 € S independent on y

for all t e {t;,t,)> where y,(f) # 0. Let

change its sign at ¢,. Then, because of the fact that for every te {t,, t;)
y'(®) )
# TN 0
¥(®)
o(T) ((T) + By5(T)) = 0. By Lemma 2.3 at least one extreme point of the space
Pg[a, B] exists in the interval (¢, ).

Theorem 2.11. Let ¢y, ¢, €4, ty < t; (t, > t,), be neighbouring conjugate points
of the space Po[a, f] and let w(zy) = 0 and w(r) # 0 for t e (ty, 1, (t € {ty, tg)).
Let l;—((%) < —%(};((tt:)) > —%) hold for the function y € S, where y(z,) # 0.
Then at least one extreme point of the space Pg[a, B] lies in the interval (zo, ;)
(21, t0))-

Proof: Let ¢,,¢, €i, t, < {;, are the neighbouring zeros of the function
o(ax + Bx’) € Po[a, B]. Then ¢, is a zero of type 1, ¢, is a zero of type 2, and by
Theorem 2.4 and Lemma 2.2, we get x 5 0 on the interval (¢,, ¢, >. By Lemma I [5]
there exists to every point T, €(ty,,) = i a function o(ay, + By}) € Po[o, f]
such that o(T,) (ap(T,) + Byi(T,)) = 0. If o(ay; + By}) does not change its sign
at Ty, then by Theorem 2.5 T, is an extreme point of the space Pg[a, f]. Let

o(ay, + Py}) change its sign at 7,. Then, with respect to the Yilto) < -2 and

y1(to) B

w # 0 on (¢, t, ), there exists at least one point 7, € (¢, t,), T, # T,, such that
o(Ty) (ey(T,) + Byi(T,)) = 0. By Lemma 2.3 at least one extreme point of the
space Po[w, B] lies in the interval (z,, t,).

Completely analogous proceeds the proof for ¢, > ¢, and

yito)

¥(to) B
Corollary 2.6. Let 1, €i and w(ty) = 0. Let next w(f) # 0 for all tei, t # t,.

Then there exist the constants A, u # 0 such that at least one extreme point of the

accompanying space Pv[4, u] to the space S lies in the interval i, being different

from t,, where v > 0 is a function continuous on i.

Convention 2.2. The two-dimensional space of contthuous functions whose
definition interval does not contain any extreme point will be called a space of the
0" class on its definition domain.
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Theorem 2.12. Let w # 0 on the interval i = (a, b). The space Pg[a, B] is the

space of the 0™ class on the interval (q, ) if and only if every function ly‘ , where

y € S, takes on the value —% exactly once between the neighbouring zeros of the

function y and, so far the smallest zero ¢, € (a, b) or the greatest zero ¢, € (a, b) of

’

. . o . .
the function y exists, then R takes on the value —F once at most in the interval
LI y

(a, t)) or (t5, b).
Proof: With respect to Lemma 1.2 and to Corollary 2.1, the assertion follows
from Theorems 3, 4, 5 [5].

Theorem 2.13. Let w 5 0 on the interval i. Every space Pv[4, u], where A, p
(A* + p? # 0) are arbitrary constants and v > 0 is a function continuous on i,

’

is a space of the 0™ class on i if and only if every function —yy—— , y € S, is monotone

on every interval j < i where it is defined.
Proof: The assertion follows from Theorem 2.9.

’

Remark 2.2. If the function yTis monotoneinj < i, thenin view of Corollary2.1,

it is obviously decreasing.

Remark 2.3. Evidently, the set of all integrals of the 2nd order differential
equation of the Jacobi type :

Yy =00y, (%)

where Q(?), t € i, is a continuous function on the interval i, forms a two-dimensional
space of continuous functions with a definition interval i (in the sense of definition
1.2 [3]). By Theorem 1.16 [6] the set of derivatives of all integrals of (Q) forms
a two-dimensional space with a definition interval i if and only if Q = 0 on every
interval j < i.

Lemma 2.4. Let Q be continuous on i and Q % 0 on every interval j = i. Then
there exists a solution u of (Q) for which u, 4’ are dependent on i exactly if Q = k&
on i, where k > 0 is a constant.

Proof: I. Let u, u’ be dependent on i. Then by Theorem 0.1 u = c,e%, tei,
where ¢, , ¢ are nonzero constants. Let for the solution v of (Q) hold that u, v are
independent on i. Then we obtain for v from the equation for differentiation of the
Wronskian of the functions u, v the equation

v = c%v

whence it follows that Q = ¢? on i.
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II. The function e ﬁ, t € i, is the solution of the differential equation
' =ky
on the interval i, where k > O is a constant. The assertion follows directly from this

with respect to Theorem 0.1.

Theorem 2.14. Let Q be continuous on i and Q = 0 on every interval j < i. It
holds for every solution y of (Q) that y, y' are independent on i exactly if Q = k
on every interval j < i, where k£ > 0 is a constant.

Proof: The assertion follows from Lemma 2.4 with respect to Corollary 0.1.

Remark 2.4. M. Laitoch defined in [2] the first accompanying equation
V=0 Q)

corresponding to a basis [o, B] of the equation (Q), where @ < 0 is a continuous
function on i, and «, f are arbitrary constants satisfying the condition «®> + 2 # 0,
the carrier being of the form

1 n
Ql = Q + + \/05 (ﬁ) .
Vi - BQ

By appealing to Theorem 4.1 [2] it holds that if u is a solution of (Q), then the
solution
_au+ pu’

Jo? - 20

is a solution of (Q,).

Theorem 2.15. The set of all integrals of the first accompanying equation (Q;)
corresponding to the [«, B] of (Q) forms a two-dimensional accompanying space
Po[a, B] to the space S of the integrals of the equation (Q), where

1
Vo — 7Q

Proof: Because of the assumption Q < 0 on i, it holds (by Theorem 2.14) for
every solution of (Q) that y, y’ are independent on i. Obviously a> — 2 Q > 0

and consequently ¢ is continuous and positive on i. Let u, v be two independent
solution of (Q). Then, with respect to Theorem 4.1 [2]

u, = o(ou + pu’), v, = g(av + pv")

are two independent solution of (Q) whence (with respect to Theorem 1.1) the
assertion follows.
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Souhrn

PRUVODNI PROSTORY K LINEARNIMU
DVOJROZMERNEMU PROSTORU SPOJITYCH
FUNKCI SE SPOJITOU PRVNI DERIVACI

JITKA KOJECKA

Necht S = C,(i) je dvojrozmérny prostor spojitych funkci a necht pro kaZdou
funkci y € S plati, Ze funkce y a y’, kde y’ je derivace funkce y, jsou nezavislé na in-
tervalu i. Pak mnoZina vSech funkci tvaru g(ay + By'), ¥y € S, kde ¢ > 0 je spojita
funkce na intervalu i a «, f jsou dané realné konstanty («? + % # 0) tvoii dvoj-
rozmérny prostor spojitych funkci s definiénim intervalem i. Nazyvame ho priivodni
prostor k prostoru S vzhledem k &iselné bazi [«, f] s vahou ¢ a znalime ho
Po[a, B].

V &asti 1 jsou zkouméany nulové body funkei prostoru Pola, B] a singularnost
a reguldrnost prostoru Po[a, f]. ,

V &asti 2 je predpokladano, Ze prostory S, S’ (mnoZina derivaci vSech funkci
prostoru S) a Po[«, ] jsou regularni prostory urcitého typu na intervalu i (viz [3]).
Jsou vysetfovany extrémni body prostoru Pg[«, B] (tj. body intervalu i, ve kterych
méa faze prostoru Po[a, B] extrém). Nechf w je wronskian funkci baze (u, v) pro-
storu S, pak dostavame tyto vysledky:

Véta 2.7. Necht w(t,) = 0, kde 7, € i. Bod ¢, je extrémni bod prostoru Pg[o, ]
pravé tehdy, kdyz je ¢, extrémni bod prostoru S’.

Véta 2.8. Bud toei a w(ty) # 0. Bod t, je extrémni bod prostoru Pg[a, 8]

59



pravé tehdy, kdyZ pro funkci y e S, pro kterou je o(t,) (@y(to) + By'(o)) = 0,

plati, 7e funkce —);— ma v t, extrém.

Dale je uvedeno, za jakych predpokladii nema prostor Po[a, B] extrémni body,
tj. Po[a, B] je nulté t¥idy na intervalu i (véta 2.12) a za jakych pfedpokladd je kazdy
pritvodni prostor Pv[4, u] k prostoru S nulté t¥idy na intervalu i (véta 2.13).

V zavéru prace je ukdzana souvislost privodniho prostoru Pe[a, f] a prostoru
viech integrali prvni privodni rovnice y” = Q,y pfi bazi [a, B] k diferencialni
rovnici y” = Qy, kde Q < 0 je funkce spojita na intervalu i (viz [2]). Plati nésledu-
jici:

Véta 2.15. MnoZina vSech integral@ prvni priivodni rovnice (Q;) p¥i bazi [«, f]
k rovnici (Q) tvofi dvojrozmérny privodni prostor Pg[u, B] k prostoru S integrali
rovnice (@), kde

1

TR pe

Pesrome

COIIPOBOXJAIOIME MPOCTPAHCTBA
K JUHENHOMY OBYXPA3ZSMEPHOMY
IMIPOCTPAHCTBY HEINPEPBLIBHBIX ®VHKI[UN
C HEITPEPLIBHOM IIPOM3BOJHOM
IIEPBOTIO INOPA KA

MUTKA KOMELKA

Tlycts S < Cy(i) ecTs ABYXpa3MepHOe NPOCTPAHCTBO HENMPEPHIBHBIX (GYyHKIUi
M IIyCTh I Kaxao# GyHKuun y € S uMeeT MeCTO, YTO y M y’ He3aBHCHMBI HA MHTEP-
Base i. Torna MuaoxectBo GyHkuuu Buga ooy + fy°), y € S, roe ¢ > 0 ecTb Henpe-
phiBHas GYHKIWMS Ha MHTepBaje [ ¥ o, § JaHHbIE BELIECTBEHHbBIE MOCTOSHHBIE, 06pa-
3yeT OBYXpasMEpHO€ IMPOCTPAHCTBO HENPEPHIBHBIX (YHKIMHA, ONpenesIeHHBIX Ha
WHTEpBAJIE i. DTO MPOCTPAHCTBO HA3BIBAEM COIPOBOXIAIOUIMM K TIPOCTPAHCTBY S
0 OTHOIIEHMH K Gasucy [«, f] ¢ BecoMm ¢ u obo3Hayaem Polo, f1.

B mepBoit yacTu MCCIIEAYIOTCS HyJeBble TOYKM (GYHKIUiA mpocTpaHcTBa Po o, f]
M CHHTYJISIDHOCTb ¥ PETYJIIpHOCTH IpocTpaHctBa Pola, B].

Bo BTOpPO# yacTd Tpenmojaraercs, YyTo mpocrpaHcTBa S, S’ (MHOXECTBO IIpO-
u3BoAHBIX GyHKImI pocTpancTBa S) u Pola, f] peryispHble MPOCTPaHCTBA ONpe-
IeneHHoro tuma Ha mHTepBaje i (cMm. [3]). MccmenyroTcst skCTpeMasibHbIe TOYKU
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npocrpancTBa Pgla, ] T.e. Toukum wHTepBala i, B KOTOPHIX HMeeT (a3a MpoCTpaH-
crBa Pg[a, B] axctpeMm. Ilycts w ecTh ompeneurets Bpouckoro ¢gyHknuii 6asuca
(», v) npocTpancTBa S, TOrAA MOJIY4AEM CIIEAYIONINE TEOPEMBI:

Teopema 2.7. Ilycts w(t,) = 0, rue t, € i. Touka t, 3KCTpeMaslbHAs TOUKA MPO-
ctpanctBa Pglx, f] Torma m TONBKO TOrma, KOTAA I, SABISIETCA 3KCTPEMANBHOMN
TOYKO# mpocTpaHcTBa S’.

Teopema 2.8. Ilycts t,ei u w(f,) # 0. Touka t, €CcTb IKCTpeMajbHAs TOYKA
npocTpascTBa Pola, f] Toraa u Toxpko TOrma, Xoraa mis GYyHKIEH y € S, yOoBie-

’

TBOpSIFOLIEH PaBeHCTBY (1) (ay(ty) + By(t,)) = 0 mmeeT MecTo, 4TO _y;_ JOCTHTaeT

B TOYKE !, 3KCTpeMasibHOe 3HAYECHHE.

Idanee npufdAATCS yCA0BMA, TPH KOTOPHIX MpPOCTpaHCcTBO Pglx, B] He mmeer
9KCTpeMallbHble TOYKH, T.e. Pgla, B] HyneBoro kiacca Ha MHTepBaye [ (TeopeMa
2.12).

B sawioyeHre paGoThl MOXKa3aHa 3aBUCHMOCTb COIIPOBOXTAIOUIErO IPOCTpaH-
ctBa Pgla, f] w mpocTpaHcTBa BCEX HHTETPAJIOB IEPBOrO COMPOBOMXKIAIOIIETO
ypaBHeHus y” = Q,y c¢ 6asucoMm [a, f] ypaBHeHus y” = Qy, rae Q < 0 sBisercs
HempepsIBHON (yHkuumeit Ha unteppaje i (cm. [2]).

Hmeer MecTo cremyrolee:

Teopema 2.5. MHOXeCTBO BCEX MHTErPajioB NEPBOTO COMPOBOXIAIOMIETO YpaB-
Herust (Q,) ¢ 6asucom [«, B] k ypaBHEHUIO (Q) 06pa3yeT OByXpa3MEpPHOE MIPOCTPaH-
ctBO Pgla, B] k mpocTpaHcTBY S MHTerpajios ypasaenus (Q), rae

1

RCET
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