

What can we learn from sequencing mycetoma fungi?

Anastasia (Ana) Litvintseva, PhD

Mycotic Diseases Branch, Centers for Disease Control and Prevention, USA

11th ECTMIH, Liverpool 2019

C1214730-A

Advantages of WGS for mycetoma community

• Better understanding of etiology of mycetoma

• Identification of novel targets for new diagnostics methods

Understanding etiology of mycetoma: better species identification

Molecular methods based on a single gene do not always provide enough resolution for identification of species

134 WILEY - MILEY

F

Rojas et al.

TABLE 2 Phenotypic and molecular data from eumycetoma agents

	Morphological identification	Molecular identification	ITS		D1/D2	
			GenBank accession number		GenBank accession number	
Case			This study/Reference	Identity	This study/Reference	Identity
1	Madurella mycetomatis	Madurella pseudomycetomatis	KT834405/EU815933	596/597 (99%)	KX580969/EF600939	579/580 (99%)
2	Exophiala jeanselmei	Cyphellophora oxyspora	KT323976/KM396285	600/602 (99%)	KX580971/KF928530	435/436 (99%)
3	Exophiala sp.	Exophiala oligosperma	KT323978/DQ836792	655/655 (100%)	KX580972/KP938217	609/609 (100%)
4	Exophiala dermatitidis	Exophiala dermatitidis	KT323977/AY213651	657/657 (100%)	KX580974/AF050270	615/618 (99%)
5	Scedosporium apiospermum	Scedosporium apiospermum	KT323975/AB489076	636/639 (99%)	KX580973/FJ345358	380/382 (99%)
6	Aspergillus ustus	Aspergillus ustus	KT323974/EU326214	590/595 (99%)	KX580970/AY216676	594/595 (99%)

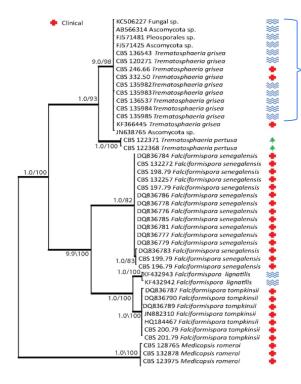

Require different genes for identification

TABLE 3 Phenotypic and molecular identification data from actinomycetoma agents

16S rDNA

Rojas et al, 2016

Understanding etiology: diversity within species

Trematosphaeriagrisea

ITS gene (values of ≥ 0.8 for Bayesian probability and ≥ 80 % for maximum likelihood are shown with **bold** branches). Medicopsis romerol v

Ahmed et al, 2014

F

Novel diagnostics

Ideal molecular target for DNA-based detection:

- Specific for mycetoma agents (does not cross-react with other soil fungi)
- Shared by different species/genera (*Madurella mycetomatis* and *Trematosphaeria grisea*)
- Present in multiple copies to increase sensitivity

This approach worked well for another fungus

AMERICAN SOCIETY FOR MICROBIOLOGY

search

Advanced Search

Home Articles For Authors About the Journal Subscribe

Mycology

Multicenter Clinical Validation of a Cartridge-Based Real-Time PCR System for Detection of *Coccidioides* spp. in Lower Respiratory Specimens

D POF

Michael A. Saubolle, Bette R. Wojack, Anne M. Wertheimer, Atahkang Z. Fuzyagem, Stephen Young, Brian A. Koeneman David W. Warnock, Editor

DOI: 10.1126/JCM.01277-17 🛛 🖲 Check for updates

Figures & Data

Article

Info & Metrics

search

Advanced Search

Eukaryotes

Genome Sequence of *Madurella mycetomatis* mm55, Isolated from a Human Mycetoma Case in Sudan

Sandra Smit, Martijn F. L. Derks, Sander Bervoets, Ahmed Fahal, Willem van Leeuwen, Alex van Belkum, Wendy W. J. van de Sande

36.7Mbp genome 804 scaffolds (N50 of 81.8 kb;G+C content of 54.9%).

Collaboration between Mycetoma Research Center, Sudan and CDC

Whole Genome Sequencing of fungal agents of Mycetoma

Study objectives

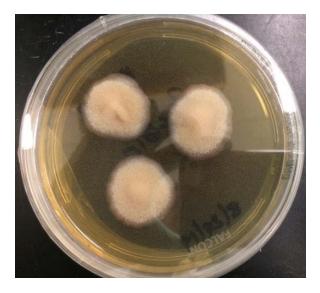
- Generate chromosomal quality annotated genomic assemblies of *M. mycetomatis* and *T. grisea* using long-read sequencing --- to provide a resource for community
- Generate WGS phylogeny of *M. mycetomatis* using clinical isolates from Sudan
 --- to understand the genetic diversity among isolates
- Use metagenomics to characterize "grains" from mycetoma patients--- to understand what pathogens actually are present in patients

Study Samples

- Received from Prof. Fahal's group:
 - 128 DNA from grains
 - 50 cultures of *M. mycetomatis*

• Two isolates (one *M. mycetomatis* and one *T. grisea*) from CDC collection

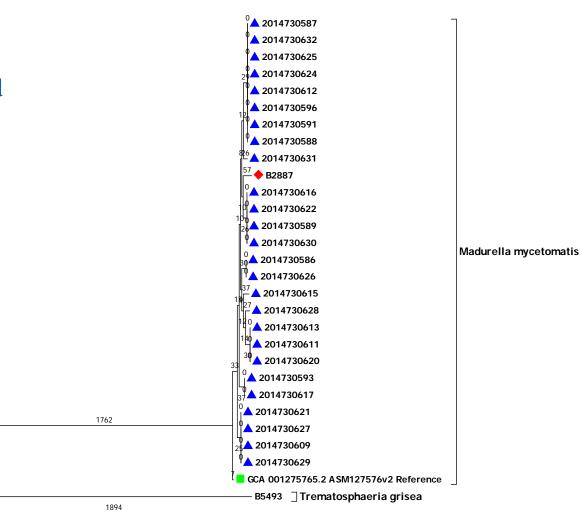
Preliminary PCR analysis of grain samples (ITS and 16S)


Organism	no 16S amplification	Actinomadura sp.	Uncultured/ unsequenced	S. pyogenes
M. mycetomatis	92	0	19	2
M. fahalii	1	0	0	0
Falciformispora thompkinsii	1	0	0	0
Falciformispora senegalensis	1	0	0	0
Cladosporium sp.	2	0	0	0
Curvularia sp.	1	0	0	0
Fusarium solani	1	0	0	0
no ITS amplification	4	7	5	0

Of 126, 88 passed DNA quality control for WGS and good quality reads were obtained – analysis pending

Cultures

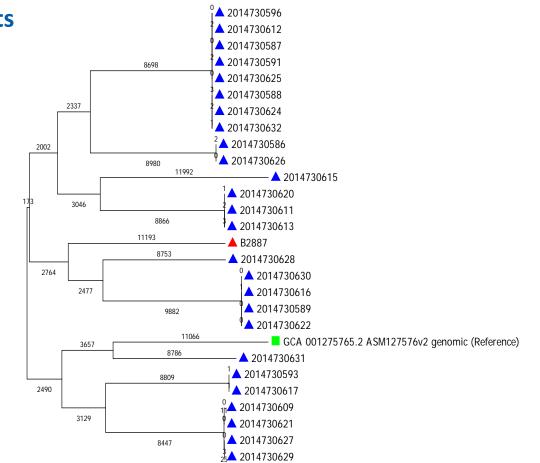
- Of 50, 29 cultures grew
- 26 were sent for WGS
- 3 are slow growing


M. mycetomatis

T. grisea

Preliminary WGS results

*Madurellamycetomatis*and *Trematosphaeriagrisea*


Isolates from Sudan
 CDC Collection
 NCBI Reference

Preliminary WGS results

*M.mycetomatis*only

Isolates from Sudan
 CDC Collection
 NCBI Reference

Next steps

- PacBio sequencing of 5 isolates, *T. grisea* and four *M. mycetomatis*
- Long-read assembly and annotation
- WGS phylogeny of *M. mycetomatis*
- Identification of potential PCR targets
- Collaboration of developing molecular tests
- WGS of isolates from other regions and other genera?

Acknowledgments

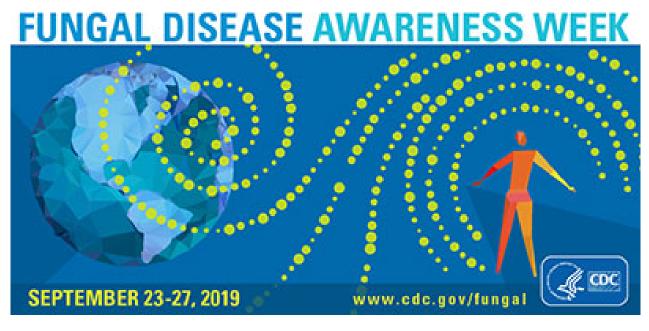
mint a horsestal.

Mycetoma Research Center, Sudan

Prof. Ahmed Fahal Sahar Bakhiet

00

WHO Collaborating Center on Myoetoma


Mycotic Diseases Branch, CDC

Lalitha Gade Steven Hurst Karlyn Beer Tom Chiller

For more information, contact CDC 1-800-CDC-INFO (232-4636) TTY: 1-888-232-6348 www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

