ISSN: 0970-0000

CONSERVATION THROUGH RESTORATION OF TWO ENDEMIC ENDANGERED TREES OF WESTERN GHATS OF KERALA

P.A. Jose P.K. Chandrasekhara Pillai

Kerala Forest Research Institute

Peechi Thrissur- 680653

January 2014

Cover page

Left top	: Drypetes malabarica- Infructescence
Left bottom	: Drypetes malabarica- Habit
Right top	: Hydnocarpus macrocarpa- Bisexual flower
Right bottom	n : Hydnocarpus macrocarpa- Habit showing fruits

CONSERVATION THROUGH RESTORATION OF TWO ENDEMIC ENDANGERED TREES OF WESTERN GHATS OF KERALA

By

P.A. Jose

P.K. Chandrasekhara Pillai

Kerala Forest Research Institute

Peechi, Thrissur-680 653

January 2014

PROJECT PARTICULARS

1.	Title of the project	:	Conservation through restoration of two endemic endangered trees of Western Ghats of Kerala
2.	Department/Organization implementing the project	:	Kerala Forest Research Institute, Peechi.
3.	Special Area of study	:	 i. Population structure ii. Population dynamics (Vegetative and Reproductive dynamics) iii. Climatic and Edaphic factors analysis iv. Conservation Strategies (Vegetative and Seed biological studies) v. Restoration and post restoration evaluation
4.	1. Name of the Principal Investigator	:	Dr. P.A. Jose Scientist E1, Forest Ecology Department Forest Ecology & Biodiversity Conservation Division
	2. Name of Project Associate		Dr. P.K. Chandrasekhara Pillai Scientist C, Silviculture Department Sustainable Forest Management Division
	3. Name of the Research Personnels	:	 Mr. A.J. Robi, Research Fellow (19/01/2011 - 07/03/2012) Mr. K. Jayaraj, Technical Assistant (01/04/2011 - 01/05/2012) Mr. Thomas K. Varghese, Research Fellow (02/04/2012 - 13/07/2012) Mr. Sanoop Surendran, Research Fellow (07/09/2012 - 09/11/2012) Mr. M. Sumod, Research Fellow (15/01/2013 - 30/11/2013)
5.	Name of the Funding Agency	:	Plan Grant of Kerala Forest Research Institute, Peechi, Thrissur
6. 7.	Duration of the Project Particulars of the Report	:	December 2010- November 2013 (3 years) Final Technical Report
	-		-

CONTENTS

Page No:

Acknowledgements		iv
Acknowledgements		10
Abstract		vi
1. Introduction		1
2. Objectives		4
3. Study area		5
4. Materials and Methods		7
4.1. Materials		7
4.2. Methods		10
5. Results		15
5.1. Drypetes malab	arica	15
5.2. Hydnocarpus m	acrocarpa	56
6. Discussion and Conclusion		
7. References		

ACKNOWLEDGEMENTS

The conduct of the project was made possible by the award of Plan grant of Kerala Forest Research Institute Peechi. The Principal Investigator expresses his deep sense of gratitude and thanks;

- to Dr. K.V. Sankaran, former Director; Dr. V.N. Rajasekhara Pillai, Executive Vice President, KSCSTE and Director, Kerala Forest Research Institute for constant encouragement, facilities and personal interest in implementing the project.
- to the Wildlife Warden/Divisional Forest Officers and Range Officers/Foresters of various Ranges/WLS such as Neriamangalam, Nagarampara, Sholayar, Aryankavu, Periya Palode and Shendurny for enthusiastic participation and providing logistic support in the field.
- to Dr. K. Swarupanandan, Dr. M. Balagopalan former Research Coordinators and, Dr. E.A. Jayson Research Coordinator, KFRI for academic support during the project period.
- to the Registrar, Deputy Registrar and to all the Staffs, KFRI for administrative and financial assistance.
- to Dr. N. Sasidharan, and Dr. K.K. Ramachandran, Scientists and former Programme Coordinators, FE & BC, KFRI for their constant support during the period of study.
- to Dr. Thomas P. Thomas, Programme Coordinator and Dr. S.
 Sandeep, Scientist, Soil Science Department, KFRI, for laboratory assistance and guidance for soil analysis.
- to Dr. U.M. Chandrasekhara, Scientist in Charge, Sub-centre Nilambur, Dr. R.C. Pandalai, Programme Coordinator, Extension and Training Centre, and in Charge Arboretum at

Peechi Campus; Dr. C.K. Soman, Scientist in Charge, FRC, Velupadam, for providing support for establishing *ex situ* conservation plots in respective areas.

- to Dr. (Mrs.) K.K. Seethalakshmi; Dr. George Mathew, former Programme Coordinators, Sustainable Forest Management Division and Forest Health Division respectively and Dr. E.M. Muralidharan, Scientist and Head, Forest Genetics and Biotechnology Department, KFRI, for facilities provided in their laboratories.
- to The Assistant Executive Engineer, Ground Water Department, Kureepuzha, Kollam, for providing meteorological and rainfall data of Thenmala Full Climatic Station.
- to The Assistant Executive Engineer, Kerala State Electricity Board, Research & Dam Safety sub Division No.II Vazhathope for providing weather data of Kulamavu station.
- to the staff, Wildlife, Forest Seed Centre, Physiology, Library, Herbarium and Engineering Department, KFRI, for their constant support during the course of study. Thanks are also to the Helpers, Mr. K.K. Muhammed Sub-centre Nilambur and Mr. K. Rajan, FRC, Velupadam for providing assistance in seedling planting in respective areas.
- to a number of Officers and Staffs of the Kerala Forest Department for their assistance in the field work in various regions of the forests in the State.
- to all my Division colleagues specially Mr. C.V. Ranjith, Research Fellow, R. Suganthasakthivel, Research Associate and other field men for their support and assistance to complete the project successfully.

Authors

Abstract

Owing to the importance and significance of conservation and management of Rare, Endangered and Threatened (RET) plants of the Western Ghats, in 2010, a three year study on the conservation through restoration of two endemic and endangered trees of Southern Western Ghats were conducted by receiving Plan grant of the Kerala Forest Research Institute (KFRI), Peechi.

The species studied are *Drypetes malabarica* (Fam. Euphorbiaceae) and Hydnocarpus macrocarpa (Fam. Flacourtiaceae). D. malabarica is a medium sized evergreen tree having patchy and isolated populations in Kerala and Tamil Nadu. The species was so far been unattended for any kind of studies and at the same time had prioritized for conservation by the IUCN. The wood was used by the local people for construction purpose and ripened fruits were food resource for various wildlife. Natural regeneration of the species was meager in its habitats. *H. macrocarpa* is another medium sized evergreen tree is also with fragmented and isolated populations in Kerala and Tamil Nadu. The matured fruits were overexploited by the local people for seeds as a Non Wood Forest Produce (NWFP) of industrial applications and therefore affected the natural regeneration drastically in its habitats. By considering the small size in populations and fewness in distribution nature, IUCN was categorized the species under Endangered for priority conservation efforts. Thus the present study was initiated with the objectives: (i) To study the population structure, diversity, dynamics including environmental factors and phenology of the two species.

(ii) To evolve suitable methods of conventional propagation and multiplication and to restore the species in their natural habitats by augmented seedling planting.

Population ecological, reproductive phenological, climatic and edaphical, propagation and restoration aspects were attempted of the two species. Distribution of the species was studied through intense field explorations. Phytosociological studies were conducted in quadrats of 33x33m² plot sizes with a total enumeration ranging from 5445-7623 m² for each species and arrived the Importance Value Index (IVI) of the species in respective ecosystems. Reproductive phenology was studied by periodic field visits and observations on different phenophases. Reproductive biological studies included anthesis, pollen fertility, P:O ratio, Sigma receptivity and identification of insect-pest associated. Propagation of the species through seeds, rooting of stem cuttings, air layering was attempted. The propagated seedlings/ ramets were augment planted in situ as well as ex situ sites and their survival and growth performance evaluated at 6month intervals for a period of 1.5 year.

The populations of *D. malabarica* were highly fragmented in nature and noticed in certain forest areas in Kerala. The moderately high altitude and habitat preference in adjacent water course along with unique association of tree species in the ecosystems were found integral for the biological functions of the species. The moderately lower number in pre reproductive individuals, lower dominant nature among associates was adding elements towards the rare occurrence of the species in the forest communities.

The species diversity analysis of *D. malabarica* in each site (five quadrats of each sized 33x33m² covering a total enumerated area of 5445m² per site) has exhibited comparatively lower dominant nature of the *D.malabarica* among the associates in different sites. In Neriamangalam, out of 57 species enumerated in five quadrats, the species attained with 13th relative position among associates. Further, the area of occurrence of the species has calculated into 3km² and area of occupancy into 0.0036 km² along with 50 mature individuals in the particular forest segment. Similarly at Malakkapara, out of 69 species enumerated in five quadrats, the species attained with 11th relative position among its associated species. The area of occurrence of the species has calculated into 30km² and area of occupancy into 0.011 km² along with 150 mature individuals in the particular forest segment. Whereas, at Shenduruny, among 63 associated species identified, the species reaches at 26th relative position. The area of occurrence has calculated into 75km² and area of occupancy into 0.0047 km² along with 65 mature individuals in the particular forest segment. At Kulamavu MPCA, among 54 associated species, the species attained with 11th relative position. Further, the area of occurrence of the species has calculated into 1.7km² and area of occupancy into 0.015 km² with 200 mature individuals within the MPCA. The aggregation in area of occurrence and area occupancy of the species in four study sites thus revealed an extent of species in 110km² with 465 mature individuals under area of occupancy within 0.0343km². These values are found falling under 'Endangered' (EN) category of IUCN wherein the extent of species had given @ 5000km² with less than 2500 mature individuals under an area of occupancy of 500km².

viii

The flower wilting/falling during pollination period, underdeveloped/ aborted ovules in the ovary, short period in stigma receptivity, low pollen count/ ovule etc. suggest the pre or post fertilization complexities in the species. The insect- pest incidence in matured fruits, high level of aerial and ground level predation of ripened fruits were drastically reduced the natural regeneration and accelerated the rarity of the species in their habitats.

A significant observation was that a moderate level of auxin concentration of NAA 3000 ppm was found best rooting performance (100%),compared to lower and higher concentrations (1000 and 5000ppm). Whereas, Control set resulted only with 10-15% success only. In air layering, the auxins generally showed positive effect in rooting. A moderate level of auxin concentration such as IAA and IBA at 1000ppm and NAA at 3000ppm had resulted maximum rooting success (100%).

Seeds with initial moisture content of 46% lose its viability within two weeks at a Critical Moisture Content (CMC) level of 28-30% and were sensitive and shed viability during storage in lower temperature due to its intermediate seed type behaviour.

A total of 400 seedlings were reintroduced in four natural habitats (*in situ*) and 150 seedlings in three *ex situ*. The results were promising and supported for the enhancement of existing genetic stock and creation of alternate field banks for the species. Out of the four *in situ* areas where seedling planting done, 75-80% seedling survival along with 4-7 cm height

increment was recorded within 1.5 years of planting. Out of 6 *in* situ areas where seedling planting done for *H. macrocarpa*, 40-70% seedling survival along with 3-23 cm height increment was noticed within 1.5 years of seedling planting. Whereas, the seedling survival in *ex situ* was fairly better for both the species and noted @ 70-98% along with 3-6 cm height increment for *D. malabarica* and 80-94% along with 4-30 cm height increment within 1.5 years of seedling planting.

The populations of *H.macrocarpa* were also highly fragmented and confined to certain forest areas in Kerala. The moderately high altitude and habitat preference in adjacent water course along with unique association of tree species in the ecosystems found support for the biological functions of the species. The moderately lower number in pre reproductive individuals, lower dominant nature among associates was promoting the rare occurrence of the species in forest communities.

The species diversity analysis of *H. macrocarpa* at Malakkapara (5 quadrats, each sized of 30mx30m covering, a total enumerated area of 5445m^2) and 7 quadrats at Neriamangalam covering an enumerated area of 7623m^2 has shown moderately lower dominant nature among the associates. At, Malakkapara, out of 41 species enumerated in five quadrats, *H. macrocarpa* attained with 11^{th} position. Further, the area of occurrence of the species has calculated into 12 km^2 with an area of occupancy, 0.0045km^2 covering mature individuals of 55 numbers in the particular forest segment. Similarly, at Neriamangalam, out of 81 species enumerated in 7 quadrats, *H.*

Х

macrocarpa attained with 11th position among the associates. The area of occurrence has calculated into 3 km² with an area of occupancy of 0.012 km² with 150 mature individuals in the particular forest. The aggregation in area of occurrence and area of occupancy of the species in two study sites thus revealed an extent of species in 15 km² with 205 mature individuals under area of occupancy of 0.0165km². These values are falling under Critically Endangered (CR) category of IUCN wherein the extent of species is less than 100km² and with less than 250 mature individuals under an area of occupancy of occupancy of below 10km².

The flower wilting/falling during pollination period, short period in stigma receptivity, immature fruit fall etc. pointing towards the biological complexities associated with the species. The aerial and ground level seed predation, lack of efficient fruit dispersal methods etc. was limited the natural regeneration and confinement the populations in certain micro habitats. The overexploitation of matured fruits/ seeds as NWFP were heavily reduced the soil seed and seedling bank which in turn accelerated the rarity process as a continuing phenomenon in the species.

A moderately higher concentration of auxin (IBA 5000ppm) had resulted better stem rooting (66%) compared to control (30-35%). But during air layering, moderate auxin concentration (NAA 3000ppm) had resulted maximum success (100%).

The seeds were recalcitrant and therefore found sensitive towards both desiccation and chilling storage conditions. Seeds with initial moisture content of 45% lose its viability within one week at CMC level of 16-17%. However, seeds enabled for storage more than two months in the closed poly carbonate bottles kept at seed bank conditions maintained at 20° C and 40% RH.

Out of 6 *in situ* areas where seedling planting done for *H. macrocarpa*, 40-70% seedling survival along with 3-23 cm height increment was noticed within 1.5 years of seedling planting. But the seedling survival in *ex situ* conditions was fairly better for both the species and noted @ 70-98% along with 3-6 cm height increment for *D. malabarica* and 80-94% along with 4-30 cm height increment within 1.5 years of seedling planting.

1. Introduction

The Western Ghats is one among the ecologically richest regions of India. The Western Ghats comes next to the Himalayas in the diversity of biological species (Gadgil, 1984). Its singular geological history, and the relatively limited width of the hill ranges which are separated by narrow passes, have contributed to a high degree of endemism (Ahmedullah and Nayar, 1987; Nayar, 1996). The Western Ghats is also recognized as the centre of origin of several cultivated plants and gene centre for several orchid species. The Western Ghats also has a high percentage of medicinal plants. The Western Ghats is one of the 34 hotspots in the planet and supports 27% of the flowering plants of the Indian sub continent, of which, 1,500 are endemics. The southern part which corresponds to Travancore and the hills south of Palghat gap consists higher number of endemic tree species of the Western Ghats. Depending upon the amount of rainfall, soil type and climate, different vegetation types have been formed along the Western Ghats. The dominant vegetation types are West coast tropical evergreen forests, West coast semi-evergreen forests, Southern moist mixed deciduous forests, Southern dry mixed deciduous forests and Scrub jungles (Champion and Seth, 1968). Concomitantly, the area faces high degree of threat which affects diverse biota as well as the functioning of various species/ ecosystems it possesses.

Western Ghats of Kerala covers about 9400 km², of which 24 percent has been declared as Protected Areas by establishing Sanctuaries and National Parks for the conservation of rare and endangered plants and animals. It is estimated that about 27 percent of the area of Kerala state is under forest cover. The current decline in biodiversity is largely due to the result of human activity. The loss of the world's biological diversity mainly stems from habitat destruction, over-harvesting, pollution and inappropriate introduction of foreign plants and animals.

The populations of species having few individuals are more vulnerable to extinction. They are also more likely to experience genetic drift and inbreeding. (Fischer and Matthies, 1998; Keller and Waller, 2002). The ultimate result of a dwindling population and gene pool is extinction of the species. Within the natural process, two kinds of populations and situations led to extinction. In the first situation, opportunistic species invade new territories in different environments. These opportunistic species generally establish in the new habitat rapidly to utilize available resources efficiently. They are naturally short-lived with life spans usually less than one year, and they produce numerous offsprings that are disseminated over a wide area. In the second kind of extinction, large population exists in a stable environment, but at the maximum capacity the habitat can provide. These species tend to occupy the areas for many years on a continuous basis and individuals themselves may have relatively long life spans (Knees, 1990). Depending up on rarity (in terms of the population size) and a posited higher risk for extinction, the endemics constitute nine various categories by IUCN, viz., Critically Endangered (CR), Endangered (EN), Vulnerable (VU), Near Threatened (NT) etc.

Many of the endemic and RET plant species are either medicinal or economic importance and therefore pressure to

exploit these plants increased many fold. Tragically, endemics once lost, can never be replaced or regenerated. It is also predicted that by the time the population of India stabilizes approximately by 2025 AD, one fifth of our species would be on the way out or would become extinct. Therefore, it is high time to necessitate immediate action for protection and conservation of endemic and threatened plants on a priority basis (Nayar, 1996). Much often, the process of rarity stems from the ecological and biological aspects of the species (Reveal, 1981). Therefore, to understand factors responsible for the rarity of a species, a detailed knowledge of population structure, population dynamics along with the analysis of climatic and edaphic factors in its original habitat is inevitable.

The in the community, associate species relative dominance of each species, spatial and stratic distribution and the size of the population in general are the integral elements related to the study (Pascal, 1988; Pandurangan, 2003). Studies on the floral biology help in understanding the breeding behaviour and reproductive biology of the species. This includes flowering features, pollination, anthesis, pollen viability and fertility, stigmatic receptivity, pollen ovule ratio, rate of fertilization, etc. The dispersal and regeneration mechanism along with habitat conditions are of significant episodes regarding the dynamics of the species. Insects and pests are other determining factors on the population behaviuor of the species. Defoliators, leaf and floral eaters, fruit and seed borers, etc. are the major threats to the species distribution and survival (Pushpangadan, 1992).

On the basis of rarity and threatened species composition, the southern Western Ghats consists around 1,100 flowering species under Rare, Endangered and Threatened (RET) categories (Unpublished) among which 495 species are recorded from the Kerala and this covers 151 species of trees (Sasidharan, 2003). The major causes of plant rarity have been globally identified and are often associated with ecology and biology of the species which finally lead to the endangerment of the species. Efforts like species recovery studies are therefore needed urgently to conserve and maintain genes, species and ecosystems along with sustainable use of biological resources.

In this context, the present study was proposed to assess the extinction risks faced by two endemic and RET tree species of southern Western Ghats viz., *Drypetes malabarica* and *Hydnocarpus macrocarpa* by studying the population structure, population dynamics along with the analysis of climatic and edaphic factors *in situ*. In addition, development of conservation strategies such as standardization of clonal propagation methods, ideal seed storage practices and raising of planting stock as the outcome of propagation and multiplication studies are envisaged. Restoration through augmented seedling planting *in situ* and alternate genetic stock development *ex situ* and evaluation on post restoration seedling success is also proposed.

2. Objectives

i. To study the population structure, diversity, dynamics including environmental factors and phenology of the two

species (*Drypetes malabarica* (Bedd.) Airy Shaw and *Hydnocarpus macrocarpa* (Bedd.) Warb.

ii. To evolve suitable methods of conventional propagation and subsequent multiplication of the above two species and to restore the same in their natural habitats by augmented seedling planting.

3. Study area

The study areas were selected after referring species literature from district floras, herbaria and other leading publications. In addition, the field experiences of the investigators were also immensely supported to locate the sites.

3.1. Population sites of Drypetes malabarica

The populations of the *Drypets malabarica* were located in:

Kulamankuzhikudi, N 10°
 Wannar Division), 10 km
 Wannar Division), 10 km
 Waway from Neriamangalam
 town, towards Adimali, Alt.
 Marian Solutions are
 Solo and a semi-evergreen
 Secondary type forest patch.

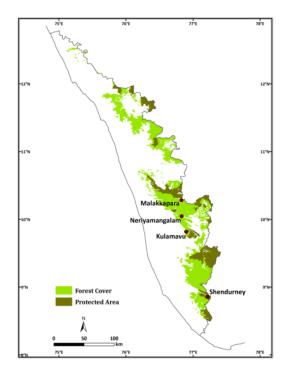
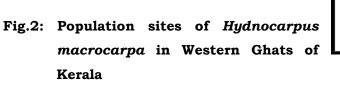


Fig.1: Population sites of *Drypetes* malabarica in Western Ghats of Kerala

The area is surrounded by human settlements and was subjected to encroachment, grazing of domestic animals, illegal firewood collection etc. Despite varied disturbances, this location documented large number of mature individuals.


2. Kulamavu MPCA (Medicinal Plant Conservation Area) N 9^o 49' 14.8" L, E 76^o 54' 17.6" (Nagarampara Range, Kotayam Division) Alt. 867m; the populations are located in the evergreen forests and disturbance rate is much lower.

3. Sholayar- Malakkapara, N 10^o 16' 43.1", E 76^o 50' 56.6" (Sholayar Range, Vazhachal Division) Alt. 849m. The populations are located within the evergreen forests and disturbance rate is also minimum.

4. Rosemala forest areas lies in N⁰ 08 16' 9.29" L, E 77⁰ 00' 1.75" (Shendurny WLS) Alt. 490m. The populations are identified in the evergreen forest and disturbance is poor. (Fig.1).

3.2. Population sites of Hydnocarpus macrocarpa

The populations of the Hydnocarpus macrocarpa are located in 1. Kulamankuzhikudi, N 10º 02' 43.8''L, Е 76° 50' 11.08" L. (Neriamangalam Range, Munnar Division), 10 km away from Neriamangalam town, towards Adimali Town, Alt. 565m.

The populations are located in a semi evergreen secondary type forest patch. The area is surrounded by human settlements and subject to encroachment, grazing by domestic animals, illegal firewood collection etc. Despite the disturbances, this location documented large number of mature individuals of the species.

2. Sholayar- Malakkapara forests lies in N 10^o 16' 43.1", E 76^o 50' 56.6" (Sholayar Range, Vazhachal Division) Alt.843m (Fig. 2). The populations are located within the evergreen forests and disturbance rate is minimum.

Also located a small population of the species at Kallar Forests (Palode Range, Thiruvananthapuram Division) Alt. 500m. The phenological observations of the species were carried out as an alternate site of the species.

4. Materials and Methods

4.1. Materials

Drypetes malabarica (Bedd.) Airy Shaw (Euphorbiaceae) and Hydnocarpus macrocarpa (Bedd.) Warb. (Flacourtiaceae) are the two endemic, endangered and economically important tree species selected for the study.

4.1.1. Species description

Drypetes malabarica (Bedd.) Airy Shaw, Kew Bull. 23: 56. 1969; Chandrab. in A. N. Henry *et al.*, Fl. Tamil Nadu Ser. I. Analy. 2: 226. 1987; M. Mohanan & Henry, Fl. Thiruvanthapuram 413. 1994; Sasidh. & Sivar., Fl. Pl. Thrissur For. 401. 1996; Sasidh., Fl. Shenduruny WLS 286. 1997;
Sasidh., Fl. Periyar Tiger Reserve 370. 1998; Chakrab. *et al.*,
Journ. Econ. Tax. Bot. 21: 269. 1997; Gopalan & Henry,
Endemic Pl. Agasthiyamala 142. 2000; Sasidh., Fl.
Parambikulam WLS 287. 2002. *Cyclostemon malabaricus* Bedd.,
Fl. Sylv. For. Man. Bot. 199. 1873 and Icon. Pl. Ind. Or. 41, t.
183. 1874; Hook. f., Fl. Brit. India 5:341.1887; Gamble, Fl. Pres.
Madras 1302. 1925 (2: 911. 1957 repr. ed.).

Trees, 10-15 m tall, rarely extend to 25-30 m height; branchlets angular, brown tomentose, terete, 2-5 mm thick Leaves alternate, simple; stipules ca 1 cm long, linear, pilose; petioles up to 1 cm long, grooved adaxially, pilose; lamina, 10-25 x 3-7.5 cm, oblong, coriaceous, pilose beneath, glabrous above, greenish brown when dry, oblique (acute on one side, rounded on other) at base, entire, abruptly acuminate (acuminate up to 2 cm long) at apex, penninerved; midrib raised beneath, more pilose on both surfaces, obscure and grooved above; nerves 6-10 pairs, prominent beneath, obscure above. Inflorescence cauliflorus, in clusters; pedicels 0.5-1.9 cm, brownish yellow tomentum.

Male flowers: pedicels 0.5-0.6 cm long, pilose; sepals 4, sub orbicular, $0.4-0.5 \ge 0.35-0.4$ cm, densely ochraceous-villous; stamens 0.3-0.4, 0.5-0.7 cm long; anthers oblong, ca 0.015 cm long; disk discoid, pubescent.

Female flowers: pedicels up to 1.9 cm long, pilose; sepals as in male flowers; ovary 2-loculed; ovules 2 in each locule; style very short or 0; stigmas 2, dilated, reniform or ellipsoid. Fruits subglobose-ovoid or oblong, ca 2.25 cm across, bilocular, thickwalled, fulvous tomentulous; fruiting pedicels ca 1 cm long. Seeds ovoid, ca $0.2 \ge 0.2$ cm, solitary in each locule, pendulous, smooth, minutely bilobed or notched at posterior end.

Tree is locally known as Kalladamba and Kaduvapudukkan. The species has an Endangered status (IUCN, 2000; Sasidharan, 2004; 2011). The medium sized tree inhabits the evergreen forests at altitude between 500-1500m. The tree is endemic to Kerala and Tamil Nadu along the Southern Western Ghats. The wood is moderately hard and used locally. Apart from the floristic documentations and limited herbarium representations, practically no study has so far been reported to the species.

Hydnocarpus macrocarpa (Bedd.) Warb. in Engl. & Prantl, Naturl. Pflanzenfam. 3(6a): 21. 1893; R.L. Mitra in B.D. Sharma & N.P. Balakr., Fl. India 2: 421. 1993; M. Monahan & Henry, Fl. Thiruvananthapuram 61. 1994; Sasidh. & Sivar. Fl. Pl. Thrissur For. 45. 1996; Sasidh., Fl. Shenduruny WLS 27. 1997; Sivar. & Mathew, Fl. Nilambur 59. 1997; Ravikumar & Ved, Illustr. Field Guide 100 Red Listed Med. Pl. 199. 2000. Asteriastigma macrocarpa Bedd., For. Man. Bot. t. 266. 1873 & Ic. t. 242. 1868-1874; Gamble, Fl. Pres. Madras 52(38). 1915. Taraktogenos macrocarpa (Bedd.) Balakr. Journ. Bombay Nat. Hist. Soc. 67: 57. 1970.

Trees, to 25 m tall; outer bark light brownish grey with aromatic cyanide-like smell; inner bark ca 0.5 cm thick, pale purple pink. Leaves alternate, oblong– lanceolate to oblanceolate, acute to shortly rounded at base, entire, rounded and abruptly caudate- acuminate at apex, 15-20 x 7-10 cm, coriaceous, dark, shining, green above; lateral nerves 6-8 pairs, arched, distinct above, raised and prominent beneath; tertiary nerves sub parallel and reticulations prominent beneath. Flowers polygamous, ca 2.5 cm across, in fascicles in leaf axils, leafless twigs or on old wood, greenish white, foetid petals shorter than sepals, ciliate, with 3-lobed scales at base inside. Stamens numerous, many-seriate. Ovary with many ovules on 6 or 7 parietal placenta and as many large sessile 2-lobed stigmas. Fruits globose, 12-16 cm, woody, dark brown; seeds many, oblong, angled, 3-3.5 x 2-2.5 cm, dark brown, embed in pulp.

Tree is locally known as Mala-marotti and Vella-nanku. The species has Endangered and Vulnerable status as per different authors (IUCN, 2000; Sasidharan, 2004; 2011). It is a moderate sized tree found distributed in areas adjacent the water course in evergreen forests at altitude between 500-900m. The tree is economically important for its medicinal and industrial values. The tree is endemic to Kerala and Tamil Nadu along the Southern Western Ghats. The species is also hardly attended for ecological and conservational studies.

4.2. Methods

The entire research programme has been divided into 5 tasks for operational reasons and they are discussed here under.

4.2.1. Population structure

The sampling quadrat size was worked out as per species area curve method to determine the vertical, horizontal, age wise distribution and crown projections of candidate species as well as associations in a community. Populations of the two species were studied in releves (sample plots) of 0.1 ha (33m x 33m) size. All trees having girth at breast height (gbh) \geq 30cm in the study plots were identified, enumerated and recorded (Swarupanandan et al, 2013). Each candidate species was enumerated in quadrats ranging 5445-7623 m² according to their availability within the forest areas in order to reach a realistic conclusion on the relative abundance of the species in a community. The floristic diversity in terms of relative frequency, relative density, relative dominance and IVI were calculated (Misra, 1968 and Sivaram et al., 2006). The Area of occurrence and area of occupancy were estimated as per IUCN norms. The mature individuals were physically counted in the sampled and non sampled areas.

Density: Number of individuals of a species per unit area gives its density (d). This is usually computed as trees per hectare (tr ha⁻¹).

Frequency: The chance of finding a species in a particular area in a particular trial sample is called its frequency (f) and is expressed as the number of quadrats in which a species is found per total number of quadrats studies.

Dominance (Basal area): Cover is usually the area covered by crown or shoot area, or the stem. For trees and shrubs, the

area occupied by the stem is taken as the cover and is known as the basal area. Basal area= πr^2 , r= gbh/2 π .

The *Importance Value Index* (IVI): It is defined as the sum of Relative Density (rd), Relative Frequency (rf) and Relative Dominance (rD) (Muller-Dombois and Ellenberg, 1974). This expresses the relative importance of the species in the community. Thus, IVI = rd + rf + rD, where,

rd = (Density of the species) / (Density of the stand)

rf = (Frequency of the species) / \sum (frequency of all the species)

rD = (Basal area of the species) / (Basal area of all species)

Strata were classified as per the height stands. Girth size was used to determine the age wise distribution. Populations were categorized into set of future, set of present and set of past depending upon the reproductive nature of the species. Crown projections were measured by four perpendicular radii of the tallest individuals of the species in the quadrat (Pascal, 1988; Parthasarathi and Sethi, 1997).

Extent of occurrence is the extent of distribution of a species within the shortest continuous imaginary boundary of the species.

Area of occupancy is the area occupied by the species within its extent of occurrence wherein the species satisfy its survival.

4.2.2. **Population Dynamics**

It covers both vegetative and reproductive stages of the species in their natural life cycle (Davy and Jefferies, 1981). Observations on vegetative dynamics were made for leaf initiation, growth, maturity, senescence and insect-pest associations. In reproductive dynamics, different episodes such as flowering, fruiting, seedlings including insect-pest, dispersal and regeneration phases were monitored and recorded. (Murali and Sukumar, 1994; Daniel and Jayanthi, 1996; Vivek Menon, 2003; Jose *et al.*, 2000; Jose and Pandurangan, 2002; Jose *et al.*, 2003, 2004).

4.2.3. Climatic and Edaphic Factors

The climatological data of the species covering atmosphere temperature (day and night -^oC) and atmospheric humidity (night - %) in three prominent seasons of a year (summer, monsoon and winter) were recorded and average values taken for representation.

The edaphological data on soil texture (from three soil depth levels such as surface, 15cm deep as middle and 30 cm deep as bottom), P^{H} , major macro nutrients such as N, P and K; soil moisture content and temperature in three seasons of a year were recorded and average values represented (Bawa, 1983; Gupta and Malik, 1996).

4.2.4. Conservation strategies

The infrastructural facilities such as two Low polytunnels with mist irrigation and Shade house were constructed for the large scale propagation, multiplication and establishment of seedlings in the nursery. Conventional rooting of stem cuttings through application of hormones, air layerings and seed germination studies were experimented with.

4.2.4.1. Vegetative propagation

Hormones were used to induce roots in stem cuttings. Stem cuttings along with auxins such as IAA, IBA and NAA of different concentrations such as 1000, 2000, 3000, 4000, 5000 ppm etc. were attempted. Similarly, air layering experiment was done along with in different contcentrations of IAA, IBA and NAA (Jose *et al.*, 1995; Jose and Thomas, 1998; Sharma *et al.*, 1995).

4.2.4.2. Seed biological studies

The seed collection, processing in relation to moisture content, storage, germination, extension of viability in different storage conditions were studied as part of longterm germplasm conservation of the species. Dormancy behaviour of the seeds was also analysed with appropriate physical and chemical treatments in order to enhance germination (Hong and Ellis, 1996; Hong and Ellis, 1998; Jose and Pandurangan, 2002; Jose and Pandurangan, 2011; Kamarudeenkunju, 2003)

4.2.5. Restoration

The propagules raised as byproduct of propagation and multiplication studies were used to implement the restoration of the species. Both *in situ* and *ex situ* planting of the species were carried out to ensure the survival of seedlings (Groombridge, 1992; Truman, 2000). The survival of planted seedlings in each site was monitored at 6 months intervals after planting. The height increments of each seedling were also taken during each visit. The planting sites in the natural forest areas have been permanently demarcated by fixing metal display boards with relevant information such as title of the project, funding agency, GPS details of the location, date and number of seedlings planted, etc.

5. Results

5.1. Drypetes malabarica

5.1.1. Population structure

The population structure and floristic diversity analysis in the four study areas viz., **Neriamangalam, Malakkapara, Shenduruney WLS** and **Kulamavu MPCA** are detailed below.

i. Neriamangalam

The vegetation profile (Vertical) of the population located at Neriamangalam showed the occurrence of major tree species apart from *Drypetes malabarica* (Bedd.) Airy Shaw, such as *Elaeocarpus tuberculatus* Roxb., *Poeciloneuron indicum* Bedd.,

Vateria indica L , Holigarna grahamii (Wight) Kurz, Bischofia javanica Blume, Palaquim ellipticum (Dalz.) Baill. and Dysoxylum malabaricum Bedd. ex Hiern as first layer/storey, reaching a height range of 31-40 m. The second storey represented by Drypetes malabarica (Bedd.), Hydnocarpus macrocarpa (Bedd.) Warb., Knema attenuata (Hook. f. & Thoms.) Warb., Mesua thwaitesii Planch. & Triana, Paracroton pendulus (Hassk.) Miq. ssp. zeylanicus (Thw.) Balakr. & Chakrab., Vateria indica L, Dysoxylum malabaricum Bedd., Otonephilium stipulaceum (Bedd.) Radlk., Macaranga peltata (Roxb.) Muell.-Arg., Turpinia malabarica Gamble, Mallotus tetracoccus (Roxb.) Kurz, Mastixia arborea (Wight) Bedd., Walsura trifolia (A. Juss.) Harms, Aglaia periviridis Hiern, Aglaia lawii (Wight) Saldanha, Margaritaria indica (Dalz.) Airy Shaw, Terminalia travancorensis Wight & Arn. and Syzygium gardneri Thw., with a height of 21-30 m. The third storey occupied by the species of Turpinia malabarica Gamble, Aqlaia lawii (Wight) Saldanha, Knema attenuata (Hook. f. & Thoms.) Warb., Diospyros paniculata Dalz., Macaranga peltata (Roxb.) Muell.-Arg., Myristica beddomei King, Canarium strictum Hydnocarpus macrocarpa (Bedd.) Warb., Drypetes Roxb.. malabarica (Bedd.), Aglaia periviridis Hiern, Paracroton pendulus ssp. zeylanicus (Hassk.) Miq., Otonephilum stipulaceum (Bedd.) Radlk., Vateria indica L., Trewia nudiflora L., Vernonia arborea Buch.-Ham., Dimocarpus longan Lour., Toona ciliata Roem., Dysoxylum malabaricum Bedd. ex Hiern, Cyathocalyx zeylanicus Champ. ex Hook. f. & Thoms., Poeciloneuron indicum Bedd., Hydnocapus pentandra (Buch.-Ham.) Oken, Walsura trifolia (A. Juss.) Harms, Polyalthhia fragrans (Dalz.) Bedd., Macarnga indica Wight, Canarium strictum Roxb., with 10-20 m. The third layer consists of species such as Arenga wightii Griff., Vernonia

arborea Buch.-Ham., Leea indica (Burm. f.) Merr., Antiaris toxicaria Lesch., Artocarpus hirsutus Lam., Xanthophyllum arnottianum Wight, Memecylon umbellatum Burm.f., Caryota urens L., Baccaurea courtallensis (Wight) Muell.-Arg., Strombosia ceylanica Gard., Wrightia arborea (Dennst.) Mabb., Mangifera indica L., Callicarpa tomentosa (L.) L., Syzygium laetum (Buch.-Ham.) Gandhi, Cipadessa baccifera (Roth) Miq., Mallotus philippensis (Lam.) Muell.-Arg. The herbs, shrubs, and climbers include Stachyphrynium spicatum (Roxb.) Schum., Elatostema lineolatum Wight, Bolbitis sp., Pteris sp., Oberonia mucronata (D. Don) Ormerod & Seidenf., Sonerila rheedei Wight & Arn., Asplenium nidus, Hydrocotyle javanica Thunb., Remusatia vivipara (Roxb.) Schott, Peperomia blanda (Jacq.) Kunth, Psychotria anamalayana Bedd., Sarcandra chloranthoides Gard., Lepisanthes erecta (Thw.) Leenh., Leea indica (Burm. f.) Merr., Thottea siliquosa (Lam.) Ding Hou, Schumannianthus virgatus (Roxb.) Rolfe, Lepianthus umbellata (L.) Rafin., Ventilago bombaiensis, Erythropalum scandens Blume, Ancistrocladus heyneanus Wall. ex Graham, Sarcostigma kleinii Wight & Arn. and Coscinium fenestratum (Gaertn.) Colebr. are seen.

The spatial view of the population site exhibited the arrangement of individuals of *Drypetes malabarica* in a scattered manner along with their associates along the sides of watercourse. The ground is characterized by slopes, rock boulders, fallen woods, stream etc. The age profile have shown 6 individuals of candidate species consisted of two numbers as set of present (reproductive phase), three numbers of set of future (pre-reproductive phase) and one number of set of past (post reproductive phase) covering a height range from 4-24 m. The

vertical crown projections shows the placement of individuals such as *Cullenia exarillata, Turpinia malabarica, Hydnocarpus macrocarpa* and *Vateria indica* etc. just below the tallest individual (Canopy) of *Dysoxylum malabaricum*. The horizontal crown projections had displayed the overlapping canopy coverages under the canopy of tallest individual, *D.malabaricum*.

The population structure of *Drypetes malabarica* was analyzed by recording GBH, basal area, basal cover, age phases, and height of the each individual (Table 1). The floristic diversity analysis covered 57 species of GBH \geq 30 cm size of 245 individuals in 5445 sq.m. The aggregated values of relative frequency (rf), relative density (rd) and relative dominance (rD) of each species in the quadrat were worked out and noted that *Hydnocarpus macrocarpa* has highest index value of 0.4035 and thus became the dominant species in the particular quadrat whereas, the *Drypetes malabarica* represented 13th position with IVI of 0.0691 (Table 2). In addition, it is noted that female trees are very less in numbers than male trees in the study area.

The area of occurrence of the species in the particular forest area was found to be approximately 3 km² and the area of occupancy (area sampled plus non-sampled area) was 0.0036 km² and nearly 50 mature trees were seen in the forest patch.

ii. Malakkapara

The vegetation profile (Vertical) of the population located at Malakkapara showed the occurrence of major tree species apart from *Drypetes malabarica* (Bedd.) Airy Shaw, such as *Palaquium*

ellipticum (Dalz.) Baill., Cullenia exarillata Robyns,, Elaeocarpus tuberculatus Roxb., Myristica beddomei King, Actinodaphne tadulingamii Gamble, Mesua ferrea var. ferrea L., Semecarpus travancoricum Bedd., Ficus nervosa Heyne ex Roth, Persea macrantha (Nees) Kosterm., Poeciloneuron indicum Bedd, as first layer/storey, reaching a height range of 31-40 m. The second storey consists of Myristica beddomei King, Cullenia exarillata Robyns, Aglaia periviridis Hiern, Artocarpus heterophyllus Lam., Palaquium ellipticum (Dalz.) Baill., Ficus nervosa Heyne ex Roth, Antiaris toxicaria Lesch., Mesua ferrea var. ferrea L., Hopea parvifolia Bedd., with a height of 21-30 m. The third storey is occupied by Polyalthia fragrans (Dalz.) Bedd., Actinodaphne malabarica Balakr., Otonephilum stipulaceum (Bedd.) Radlk., Turpinia malabarica Gamble, Aglaia lawii (Wight) Saldanha, Melicope lunu-ankenda (Gaertn.) Hartley, Semecarpus travancorica Bedd., Ochlandra travancorica (Bedd.) Benth. ex Gamble, Aglaia periviridis Hiern, Holigarna arnottiana Hook. f., Croton malabaricus Bedd., Canarium strictum Roxb., Aglaia tomentosa Teijsm. & Binn., Drypetes venusta (Wight) Pax & Hoffm., Holigarnia grahamii (Wight) Kurz, Epiprinus mallotiformis (Muell.-Arg.) Croizat,, Agrostistachys borneensis Becc., Knema Warb., attenuata (Hook.f. & Thoms.) Macaranga indica, Antidesma montanum Blume, Dimocarpus longan Lour., Memecylon umbellatum Burm.f., Apollonias arnottii Nees, Mastixia arborea (Wight) Bedd., Anacolosa densiflora Bedd. with 10-20m height.

The spatial view of the population site exhibited the arrangement of individuals of *Drypetes malabarica* in a scattered manner along with their associates adjacent to the water course.

The ground is characterized by slopes, rock boulders, fallen woods, stream etc. The age profile have shown 11 individuals of candidate species consisted of four numbers as set of present (reproductive phase), four numbers of set of future (prereproductive phase) and three number of set of past (post reproductive phase) covering a height range from 10-26 m. The vertical crown projections shows the placement of individuals such as *Turpinia malabarica* Gamble, *Polyalthia fragrans, Aglaia lawii, Semecarpus travancorica, Drypetes malabarica, Ochlandra travancorica* etc. just below the tallest individual (Canopy), *Cullenia exarillata.* The horizontal crown projections displayed the overlapping canopy coverage's under the canopy of tallest individual, *Cullenia exarillata.*

The population structure of *Drypetes malabarica* was analyzed by recording GBH, basal area, basal cover, age phases and height of the each individual (Table 3). The floristic diversity analysis covered 69 species of GBH \geq 30 cm size of 419 individuals in 5445 sq.m. The aggregated values of relative frequency (rf), relative density (rd) and relative dominance (rD) of each species in the quadrat were worked out and noted that *Ficus nervosa* had highest index value of 0.285359 and thus became the dominant species in the particular quadrat. Whereas, *Drypetes malabarica* represented 11th position with IVI of 0.077139 (Table 4). In addition, it is noted that female trees are very less in number than male trees in the study area.

The area of occurrence of the species in the forest area was found to be approximately 30 km^2 and the area of occupancy

(area sampled plus non-sampled area) 0.011 km² and nearly 150 mature trees were seen in the site.

iii. Shenduruny WLS

The vegetation profile (Vertical) of the population located at Shenduruny WLS had shown the occurrence of major tree species apart from Drypetes malabarica (Bedd.) Airy Shaw, such as Lophopetalum wightianum Arn., Hopea racophloea, Anacolosa densiflora Bedd., Vateria indica L., Dipterocarpus indicus L., Syzigium lanceolatum (Lam.) Wight & Arn., Kingiodendron pinnatum (Roxb. ex DC.) Bischofia javanica Blume, Ficus microcarpa L., Tetrameles nudiflora R. Br., Cullenia exarillata Robyns, Calophyllum polyanthum Wall. ex Choisy, Gluta travancorica Bedd., Terminalia bellirica (Gaertn.) Roxb. as first layer/storey, reaching the height range 31-40 m. The second storev is represented along with Drypetes malabarica, Pterospermum diversifolium Blume, Flacourtia montana Graham, Hydnocarpus pentandra (Buch.-Ham.) Oken, Myristica beddomei King, Filicium decipiens (Wight & Arn.) Thw., Litsea floribunda (Blume) Gamble, Holigarna arnottiana Hook. f., Diospyros candolleana Wight, Glochidion ellipticum Wight, Cynometra travancorica Bedd. with a height of 21-30 m. The third storey is occupied by Aglaia periviridis Hiern, Ixora brachiata Roxb. ex DC., Dimocarpus longan Lour., Polyalthia coffeoides (Thw. ex Hook. f. & Thoms.) Hook. f. & Thoms., Dimorphocalyx glabellus var. lawianus (Muell.-Arg.) Chakrab. & Balakr., Polyalthia fragrans (Dalz.) Bedd., Sageraea thwaitesii Hook.f. and Thomson, Baccaurea courtallensis (Wight) Muell.-Arg., Hopea erosa (Bedd.) Van Sloot., Turpinia malabarica Gamble, Meiogyne pannosa

(Dalz.) Sinclair, Cryptocarya wightiana Thw., Garcinia spicata (Wight & Arn.) Hook. f., Vitex altissima L. f., Macranga indica Wight, Xanthophyllum arnottianum Wight with 10-20 m, and below which herbs, shrubs and climbers such as Arisaema leschenaultia Blume, Ophiorrhiza rugosa Wall. var. prostrata, Rungia pectinata (L.). The shrubs include Psychotria nudiflora Wight & Arn., Calamus shendurunii Anto, Renuka & Sreek., Calamus lakshmanae Renuka, and climbers include Ancistrocladus heyneanus Wall. ex Graham, Premna sp., Pothos scandens L., Pothos armatus C.E.C. Fisch. etc.

The spatial view of the population site exhibited the arrangement of individuals of *Drypetes malabarica* in a scattered manner along with their associates adjacent to the watercourse. The ground is characterized by slopes, rock boulders, fallen woods, stream etc. The age profile has shown 4 individuals of candidate species consisted of three numbers as set of present (reproductive phase), one number of set of future (pre-reproductive phase) and no set of past (post reproductive phase) covering height range from 10-26 m. The vertical crown projections had shown the placement of individuals such as *Cullenia exarillata, Ardisia* sp., *Xanthophyllum arnottianum, Meiogyne ramarowii, Drypetes malabarica* etc. just below the tallest individual (Canopy) *Gluta travancorica.* The horizontal crown projections had displayed the overlapping canopy coverage's under the canopy of tallest individual, *G. travancorica.*

The population structure of *Drypetes malabarica* was analyzed by recording GBH, basal area, basal cover, age phases and height of the each individual (Table 5). The floristic diversity

analysis covered 63 species of GBH \geq 30 cm size of 254 individuals in 5445 sq.m. The aggregated values of relative frequency (rf), relative density (rd) and relative dominance (rD) of each species in the quadrat were worked out and noted that *Terminalia bellirica* had highest index value of 0.19567 and thus became the dominant species. Whereas, *Drypetes malabarica* represent 26th position with IVI of 0.03695 (Table 6). In addition, it is noted that female trees are very less in numbers than male trees in the study area.

The area of occurrence of the species in the forest area was found to be approximately 75 km² and the area of occupancy (area sampled plus non-sampled area) was 0.0047 km² and nearly 65 mature trees were seen in the Sanctuary.

iv. Kulamavu MPCA

The vegetation profile (Vertical) of the population located at Kulamavu MPCA had shown the occurrence of major tree species apart from Drypetes malabarica (Bedd.) Airy Shaw, such as Calophyllum polyanthum Wall. ex Choisy, Semecarpus travancorica Bedd., Elaeocarpus tuberculatus Roxb., Poeciloneuron indicum Bedd., Dimocarpus longan Lour., Bischofia Syzygium gardneri Thw., Cinnamomum *javanica* Blume, macrocarpum Hook. f., as first layer/storey, reaching height range of 31-40 m. The second storey is represented by Knema attenuata (Hook. f. & Thoms.) Warb., Diospyros paniculata Dalz., Gordonia obtusa Wall.ex Wight & Arn., Dimorphocalyx glabellus var.lawianus (Muell.-Arg.) Chakrab. & Balakr., Mastixia arborea (Wight) Bedd., Turpinia malabarica Gamble, with height of 21-30

m. The third storey is occupied by *Myristica beddomei* King, *Garcinia morella* (Gaertn.) Desv., *Aglaia tomentosa* Teijsm. & Binn., *Apollonias arnotti* Nees, *Croton malabaricus* Bedd., *Syzigium cumini* (L.) Skeels, *Otenophillium stipulaceum* (Bedd.) Radlk. with 10-20 m, and below which species such as *Phoebe lanceolata* Nees, *Vernonia arborea* Buch.-Ham., *Mesua ferrea* L., *Agalai lawii* (Wight) Saldanha, *Litsea bourdilloni* Gamble, *Aphanamyxis polystachya* (Wall.) Parker, *Cryptocarya wightiana* Thw. and *Glochidion ellipticum* Wight.

The spatial view of the population site exhibited the arrangement of individuals of *Drypetes malabarica* in a scattered manner along with their associates, adjacent to the watercourse. The ground is characterized by slopes, rock boulders, fallen woods, streams etc. The age profile shows 7 individuals of candidate species consist of three numbers as set of present (reproductive phase), three numbers of set of future (prereproductive phase) and one number of set of past (post reproductive phase) covering height range from 4-20 m. The vertical crown projections had shown the placement of species Vernonia arborea, Vateria indica, Hydnocarpus such as, macrocarpa etc. just below the tallest individual (Canopy) of Mesua ferrea. The horizontal crown projections had displayed the overlapping canopy coverage's under the canopy of tallest individual, Mesua ferrea.

The population structure of *Drypetes malabarica* was analyzed by recording GBH, basal area, basal cover, age phases, sex ratios and height of the each individual (Table7). The floristic

24

diversity analysis covered 54 species of GBH ≥30 cm size of 223 individuals in 5445 sq.m.

The aggregated values of relative frequency (rf), relative density (rd) and relative dominance (rD) of each species in the quadrat were worked out and noted that *Calophyllum polyanthum* has highest index value of 0.3151 and thus became the dominant species. Whereas, *Drypetes malabarica* represented 11th position with IVI of 0.075015 (Table 8). In addition, it is noted that female trees are very less in numbers than male trees in the study area.

The area of occurrence of the species in the MPCA was found to be approximately 1.7 km² and the area of occupancy (area sampled plus non-sampled area) was 0.015 km² and nearly 200 mature trees were seen in the MPCA.

Plate 1: Drypetes malabarica (Bedd.) Airy Shaw- Population Structure

Habit: Different views from Malakkapara forest

View of habit and habitats from Shenduruney WLS

Habit- Different views from Kulamavu MPCA Quadrat marking Soil sample collection

5.1.2. Population Dynamics

5.1.2.1. Vegetative phenology

Flushing of new leaves along with matured leaves were noted in November and the process continued up to March. On attaining half matured stage of the new leaves, the trees began to flower. The young foliage is pale yellowish in colour, are seen in branch tips which later turned to light green and finally to dark green. The leaves are alternate, light green on lower surface. New flushing were often infested and fed by caterpillars (Catterpillar couldn't rear up for adult). Bark is pale yellowish brown in colour with shining smooth surface.

5.1.2.2. Reproductive phenology

The tree is dioecious in nature. Therefore, male and female flowers are seen in separate trees. Flowers are cauliflorous. Male flower bud initiation noted from 1st week of March along with flushing. Flower buds took around 10-12 days for development and blooming. Blooming noted during night hours. The number of flower buds in a single fascicle ranged from 3-32 and blooming was in acropetal manner. The period of blooming extended from 20 to 25 days. The male flowering process in different populations could be seen up to the end of April with slight degree of variations in the intensity of flowering. The flower bud started its blooming between 7- 8pm and completes the process between 12pm -1am. Mature flower buds are globular and brownish in colour. Flowers are creamy white with an unpleasant odour during peak flowering. Four petals are spread in the base and anthers arranged in an erect position of the centrally located thalamus which is oily and wet on surface. The anthers remain fresh for 12-18 hours and yellow in colour with white filaments, thereafter turns to brown colour and withers. Around 30-40 stamens are present in a single flower. Small honey bees (*Apis cumin*) were seen in large numbers during peak of blooming and other insects or flies were seldom observed.

Female flower bud initiation was noted from 1st week of March along with flushing. Fascicles of different sizes were noted and each fascicle ranged from 2-13 flower buds. Flower buds are yellowish in colour and slightly bigger than the male flower. Similarly flower stalks are also longer than the male. During flowering, few flowers are found withered and fall off. This may be due to false pollination as in the case of Jack tree. The presence of one undeveloped ovule on majority of mature fruits is confirming the ineffective pollination mechanism in the species. Blooming started around 10pm and completes by 1am. During receptive time, stigma was sticky and yellowish white in colour and turned to black when non receptive. Receptivity of stigma lasts 6-8 hours. The female flowering could be seen up to last week of April. During flowering, honey bees were found forage the flowers. Occasional flowering was also noted during the month June. Fruit initiation noted from middle of April.

5.1.2.3. Pollen-Ovule (P:O) ratio

As per Haemocytometer reading, one anther contained 508 pollen grains. It was noted that 48 anthers were presented per flower. Therefore a single flower will have around 24,384 pollen grains. A female flower had 4 ovules and hence the P: O ratio is 6096:1.

5.1.2.4. Pollen fertility

The acetocarmine staining technique showed that 98% fertile pollens are fertile.

5.1.2.5. Fruit development

Fruit initiation was noted during April middle and extended up to October- November. It will take 6-7 months for fruit maturity. The young fruits are pale brown and on maturity turns to moderately dark brown in colour. The fruit is basically a drupe, A mature fruit have 27-32x 23-27mm, ovoid to ellipsoid, weighs 10-13 gm containing 1 or 2 seeds. Each seed weighs 1-2 gram and calculated into 400-500 seeds holds 1kg. Fruits are found often attacked by insect-pest. Fruits of 2-3 months old were found punctured on surface by the insect pest. On dissection, it is found that the endosperm was eaten by caterpillars. About 40% fruits get destroyed by the incidence of insect pest. We could not collect or rear the pest for adult identity. Fruits of 5-6 months old were found largely predated by Malabar Grey Horn Bill (Tockus griseus), Flying squirrel (Petaurista philippensis), Giant squirrel (Ratufa indica) etc. The fallen fruits were also found attacked by caterpillars and which led to the total degradation of seeds and arrest natural regeneration.

5.1.3. Causal factors for population reduction

- The low area of occurrance and preproductive individuals in the respective communities indicate its fewness among associates.
- Fruit infestation by insect pest was noted to be around 30-40%.
- Ripened fruit and seed predation was noted to be 60-70%
- Fallen fruits/seeds were predated to be 10-20% by Spiny dormouse (*Platacanthomys lasiurus*) as ground predator.
- Pollination/ Fertilization problems leading to underdeveloped seed in the ovary cells.

5.1.4. Climatic and Edaphic Factors

Climatological and Edaphological data of the species were collected in three seasons of the year and were recorded and tabulated. Average value of climatic data such as atmospheric day temperature, atmospheric humidity as well as night temperature, night humidity of each season is presented in Table 9, 11, 13 &15. Similarly soil samples from three levels (such as surface, 15cm deep as middle and 30cm deep as bottom) were collected and data on texture, pH, nutrients, etc. were also recorded. Soil moisture content, soil temperature of each seasons were also collected and presented in Table 10, 12, 14, & 16.

Plate 2: Drypetes malabarica (Bedd.) Airy Shaw- Population Dynamics

Leaf flushing - A view

Male inflorescence

Female inflorescence

Matured fruits

L.S. of fruits showing seed infestation and undeveloped ovules

Disintegration of fallen fruits Inset: Caterpillar infested fruit

5.1.5. Conservation Strategies

5.1.5.1. Vegetative propagation

Propagation through stem cuttings and air layering were tried for vegetative multiplication of the species. Stem cuttings along with auxins such as IAA, IBA and NAA of different concentrations were attempted for root initiation. Aged branch cuttings were found difficult for rooting however, juvenile stem cuttings taken from 2-3 years old saplings have shown callus initiation and subsequent rooting. Rooting was recorded 32-93 days after planting the cuttings and 100% success achieved with NAA 3000ppm whereas only 13% success for control (Table 17). In the case of air layering, young stands of 2 years old, responded positively and rooted within 22-131 days. Layering with 1000ppm IAA gave 100% success whereas only 50% success noted in the control (Table 18). The plant has also exhibited reiterating ability which ensures the growth of the parent plants even after separation of air layered rooted portion from the main stock.

5.1.5.2. Seed propagation

The ripened fruits were collected and removed the fleshy fruit rind. The processed seeds were analyzed for initial moisture content and associated germination studies. The fresh seeds with initial moisture content of 46% were found with 50% germination in 28-32 days using river sand as the sowing medium in nursery conditions. The seeds lost viability within two weeks when kept in open plastic trays in ambient conditions (control). Critical MC was noted as 28-30% with 20%

32

germination (Table 19). The germination type is hypogeal and seedlings exhibited heterophylly in their early stages of growth. The seeds were found tolerant to desiccation and at the same time sensitive towards chilling condition. Therefore, the seeds were categorized as intermediate type. In order to break the dormancy of seeds, both physical and chemical pre-treatments were tried. This includes soaking of seeds in cold water over night, hot water (80°C) for 5 minutes and acid (H₂SO₄) scarification for 5 minutes. The seed germination of 50% was resulted in the acid treatment within 20-31 days compared to 28-32 days in control. (Table 20). The extream predation of ripened fruits caused limited seed avaibility and therefore discontinued the seed storage trials further.

Rooting of stem cuttings with the aid of auxins

A view of air Layering in natural stands

Views of air Layering success

Processed seeds

Seed Germination

Seedling stock in the nursery

5.1.6. Restoration

Four natural evergreen ecosystems in the Western Ghats of Kerala region were selected for *in-situ* recovery planting. In addition to these, three more sites were selected for *ex situ* planting. (Table 21 and 22).

A total of 400 seedlings were reintroduced in four natural habitats (*in situ*). Fully established 2-yr old polybagged seedlings having an average height of 22-33cm were transported from the nursery to the planting sites. Pits were prepared in tune with canopy gaps in the population areas. Each seedling was tagmarked for monitoring. Planting of the seedlings was done during June-July. Further, 35 seedlings were casualty planted in three sites. The establishment and survival performance of the seedlings were carried out on half yearly basis. The seedlings was noticed in the planted areas due to the poor South West monsoon in the planting year.

1. Neriamangalam

One hundred seedlings of 1.0 - 1.5 years old were planted at Kulamankuzhikudi, near Neriamangalam. The mean height of seedlings during planting was 26cm and the maximum height was 41 cm. The seedlings showed 80% survival alongwith average height of 33cm and maximum height of 50cm after 1.5 years of planting. The seedling survival in the site was found affected by poor monsoon.

35

2. Kulamavu MPCA

One hundred seedlings of 1.0 - 1.5 years old were planted in the site. The mean height of seedlings during planting was 29cm and the maximum height was 44 cm. The seedlings showed 82% survival along with average height of 33cm and a maximum height of 51cm after 1.5 years of planting. Shortage of SW monsoon, elephant trampling etc. contributed to the mortality of seedlings in the site.

3. Rosemala

One hundred seedlings of 1.0 - 1.5 years old were planted in the site. The mean height of seedlings during planting was 22cm and the maximum height recorded was 37 cm. The seedlings showed 74% survival along with average height of 29cm and a maximum height of 51cm after 1.5 years of field planting. In addition to the poor SW monsoon, the survival of plants was found affected by wildlife interventions particularly browsing by deer.

4. Malakkapara

One hundred seedlings of 1.0 - 1.5 years old were planted at Pathadipalam, near Malakkapara. The mean height of seedlings during planting was 24cm and the maximum height was 45 cm. The seedlings showed 74% survival along with average height of 28cm and a maximum height of 52cm after 1.5 years of planting. The shortage of rain, wildlife interventions along with caterpillar leaf infestation affected the survival of seedlings in the site.

36

Plate 4: Drypetes malabarica (Bedd.) Airy Shaw- Restoration in situ

Views of seedling transportation, planting and display board: Neriamangalam

Views at Malakkapara

Views at Rosemala

Views at Kulamavu MPCA

A total of 150 seedlings of the species were also planted in three *ex situ* viz.,

1. FRC Velupadam

Fifty seedlings of *Drypetes malabarica* were planted at FRC (Field Research Centre) Velupadam. The mean seedling height during planting was 32cm and the maximum height was 51cm. The seedlings showed 98% survival after 3 months. Few seedlings were found affected by deer browsing.

2. Sub-centre Nilambur

Fifty seedlings were planted at KFRI Sub-centre, Nilambur. The mean seedling height during planting was 33cm and the maximum height was 52cm. The seedlings showed 96% survival after 3 months. Few seedlings were found affected by wild boar browsing.

3. KFRI Arboretum, Peechi

Fifty seedlings were planted at KFRI Arboretum, Peechi. The mean seedling height during planting was 27cm and the maximum height was 44cm. The seedlings showed 76% survival after 4 months. Few seedlings were found affected by cattle browsing. Plate 5: Drypetes malabarica (Bedd.) Airy Shaw- Planting ex situ

Different views of seeding planting, protection work and evaluation: FRC Velupadam

Different views of seeding planting, protection work and evaluation: Sub centre Nilambur

Different views of seeding growing: KFRI Arboretum

Table: 1 Population Structure of Drypetes malabarica: Neriamangalam (List of individuals with G≥30 cm represented)

S1. No.	GBH (cm)	r (cm)	Basal area (cm²)	Basal Cover (m)	Age Phase	First branching seen at (m)	Height of Stand (m)
1.	121	19.27	1165.99	14	Set of present	5.0	24
2.	142	22.61	1605.21	13	Set of past	6.0	20
3.	70	11.15	390.37	8	Set of future	5.0	12
4.	30	4.78	71.74	4	Set of future	3.0	4
5.	85	13.54	575.66	8	Set of present	1.5	12
6.	35	05.57	97.42	4	Set of future	2.0	4

Table: 2 Floristic diversity/Importance Value Index of Drypetes malabarica: Neriamangalam

(List of individuals with $G \ge 30$ cm represented)

S1. No.	Name of species	Family	rf (%)	rd (%)	rD (%)	IVI
1	Hydnocarpus macrocarpa	Flacourtiaceae	0.0425	0.2163	0.1561	0.4150
2	Dysoxylum malabaricum	Meliaceae	0.0425	0.0326	0.1147	0.1899
3	Knema attenuata	Myristicaceae	0.0531	0.0653	0.0516	0.1701
4	Poeciloneuron indicum	Clusiaceae	0.0319	0.0122	0.0935	0.1377
5	Aglaia lawii	Meliaceae	0.0319	0.0489	0.0393	0.1201
6	Elaeocarpus tuberculatus	Elaeocarpaceae	0.0106	0.0081	0.0906	0.1094
7	Aglaia periviridis	Meliaceae	0.0319	0.0367	0.0346	0.1033
8	Polyalthia fragrans	Annonaceae	0.0212	0.0653	0.0090	0.0956
9	Vateria indica	Dipterocarpaceae	0.0319	0.0244	0.0349	0.0913
10	Bischofia javanica	Euphorbiaceae	0.0106	0.0081	0.0625	0.0813
11	Myristica beddomei	Myristiaceae	0.0319	0.0285	0.0100	0.0705
12	Otonephelium stipulaceum	Sapindaceae	0.0212	0.0204	0.0275	0.0691
13	Drypetes malabarica	Euphorbiaceae	0.0319	0.0244	0.0127	0.0691
14	Mesua thwaitesii	Clusiaceae	0.0212	0.0122	0.0336	0.0672
15	Turpinia malabarica	Staphyleaceae	0.0212	0.0204	0.0237	0.0654
16	Diospyros paniculata	Ebenaceae	0.0319	0.0163	0.0136	0.0618
17	Vernonia arborea	Asteraceae	0.0212	0.0285	0.0079	0.0577
18	Paracroton pendulus ssp. zeylanicus	Euphorbiaceae	0.0212	0.0204	0.0127	0.0544

19	Macaranga peltata	Euphorbiaceae	0.0212	0.0163	0.0159	0.0535
20	Hydnocarpus	Flacourtiaceae	0.0212	0.0163	0.0090	0.0466
	pentandra					
21	Canarium strictum	Burseraceae	0.0319	0.0122	0.0015	0.0456
22	Palaquium ellipticum	Sapotaceae	0.0106	0.0244	0.0077	0.0428
23	Baccaurea courtallensis	Euphorbiaceae	0.0212	0.0204	0.0009	0.0426
24	Mallotus tetracoccus	Euphorbiaceae	0.0106	0.0081	0.0232	0.0421
25	Walsura trifolia	Meliaceae	0.0106	0.0163	0.0120	0.0390
26	Cyathocalyx zeylanica	Annonaceae	0.0106	0.0204	0.0056	0.0367
27	Otonephilium stipulaceum	Sapindaceae	0.0106	0.0081	0.0169	0.0357
28	Antiaris toxicaria	Moraceae	0.0212	0.0122	0.0015	0.0350
29	Palaquium ellipticum	Sapotaceae	0.0106	0.0040	0.0179	0.0327
30	Dimocarpus longan	Sapindaceae	0.0212	0.0081	0.0013	0.0308
31	Terminalia travancorensis	Combretaceae	0.0106	0.0081	0.0110	0.0298
32	Holigarna grahamii	Anacardiaceae	0.0106	0.0081	0.0096	0.0284
33	Memecylon umbellatum	Melastomataceae	0.0106	0.0122	0.0026	0.0255
34	Arenga wightii	Areacaceae	0.0106	0.0122	0.0023	0.0252
35	Margaritaria indica	Euphorbiaceae	0.0106	0.0040	0.0081	0.0228
36	Toona ciliata	Meliaceae	0.0106	0.0081	0.0009	0.0197
37	Cipadessa baccifera	Meliaceae	0.0106	0.0081	0.0007	0.0195
38	Mastixia arborea	Cornaceae	0.0106	0.0040	0.0034	0.0182
39	Syzygium gardneri	Mytaceae	0.0106	0.0040	0.0034	0.0182
40	Trewia nudiflora	Euphorbiaceae	0.0106	0.0040	0.0031	0.0178
41	Syzygium laetum	Myrtaceae	0.0106	0.0040	0.0022	0.0169
42	Antidesma montanum	Euphorbiaceae	0.0106	0.0040	0.0020	0.0167
43	Leea indica	Leeaceae	0.0106	0.0040	0.0010	0.0158
44	Actinodaphne malabarica	Lauraceae	0.0106	0.0040	0.0009	0.0156
45	Xanthophyllum arnottianum	Polygalaceae	0.0106	0.0040	0.0009	0.0156
46	Glochidion ellipticum	Euphorbiaceae	0.0106	0.0040	0.0007	0.0154
47	Memecylon	Melastomataceae	0.0106	0.0040	0.0005	0.0152
	umbellatum Xanthophyllum					
48	arnottianum	Polygalaceae	0.0106	0.0040	0.0004	0.0151
49	Mallotus philippensis	Euphorbiaceae	0.0106	0.0040	0.0003	0.0150
50	Aporosa cardiosperma	Euphorbiaceae	0.0106	0.0040	0.0003	0.0150
51	Holigarna arnottiana	Anacardiaceae	0.0106	0.0040	0.0003	0.0150
52	Caryota urens	Arecaceae	0.0106	0.0040	0.0003	0.0150
53	Artocarpus hirsutus	Moraceae	0.0106	0.0040	0.0002	0.0149
54	Mangifera indica	Anacardiaceae	0.0106	0.0040	0.0001	0.0148
55	Strombosia zeylanica	Olacaceae	0.0106	0.0040	0.0001	0.0148
56	Callicarpa tomentosa	Verbenaceae	0.0106	0.0040	0.0001	0.0148
57	Wrightia arborea	Apocynaceae	0.0106	0.0040	0.0001	0.0148

Table: 3 Population Structure of Drypetes malabarica: Malakkapara (List of individuals with G≥30 cm represented)

S1. No.	GBH (cm)	r (cm)	Basal area (cm²)	Basal Cover (m)	Age Phase	First branching seen at (m)	Height of Stand (m)
1	127	20.22	1283.78	2.0	set of past	5.5	18
2	151	24.05	1816.18	4.0	set of past	10.0	30
3	35	5.57	97.42	1.0	set of future	3.0	8
4	67	10.67	357.49	2.0	set of future	5.0	16
5	56	8.92	249.84	1.5	set of future	4.0	12
6	107	17.04	911.74	5.0	set of present	8.0	22
7	143	22.78	1629.44	3.0	set of past	7.5	22
8	82	13.06	535.57	2.5	set of present	6.0	13
9	116	18.47	1071.18	3.0	set of present	7.0	22
10	77	12.26	471.97	2.5	set of future	6.5	20
11	105	16.72	877.81	3.5	set of present	5.0	25

Table: 4Floristic diversity/Importance Value Index ofDrypetes malabarica: Malakkapara

(List of individuals with $G \ge 30$ cm represented)

S1. No	Name of species	Family	rf (%)	rd (%)	rD (%)	IVI
1	Ficus nervosa	Moraceae	0.0073	0.0047	0.2732	0.2853
2	Vateria indica	Dipterocarpaceae	0.0367	0.0787	0.0717	0.1872
3	Cullenia exarillata	Bombacaceae	0.0294	0.0572	0.0772	0.1639
4	Palaquium ellipticum	Sapotaceae	0.0367	0.0405	0.0746	0.1519
5	Mesua ferrea var. ferrea	Clusiaceae	0.0220	0.0143	0.0833	0.1197
6	Dendrocnide sinuata	Urticaceae	0.0220	0.0906	0.0047	0.1175
7	Turpinia malabarica	Staphylaceae	0.0220	0.0501	0.0401	0.1123
8	Oreocnide integrifolia	Urticaceae	0.0220	0.0787	0.0084	0.1092
9	Elaeocarpus tuberculatus	Elaeocarpaceae	0.0147	0.0214	0.0648	0.1010

10	Knema attenuata	Myristicaceae	0.0220	0.0119	0.0437	0.0777
	Drypetes					
11	malabarica	Euphorbiaceae	0.0294	0.0262	0.0214	0.0771
12	Otonephelium stipulaceum	Sapindaceae	0.0367	0.0334	0.0056	0.0758
13	Antidesma montanum	Euphorbiaceae	0.0294	0.0286	0.0149	0.0730
14	Litsea floribunda	Lauraceae	0.0294	0.0286	0.0058	0.0639
15	Agrostistachys borneensis	Euphorbiaceae	0.0220	0.0358	0.0045	0.0624
16	Dimocarpus longan	Sapindaceae	0.0147	0.0286	0.0116	0.0550
17	Aglaia tomentosa	Meliaceae	0.0294	0.0190	0.0035	0.0520
18	Melicope lunu- ankenda	Rutaceae	0.0147	0.0167	0.0195	0.0509
19	Drypetes venusta	Euphorbiaceae	0.0294	0.0167	0.0041	0.0503
20	Myristica beddomei	Myristicaceae	0.0220	0.0143	0.0136	0.0500
21	Glochidion zeylanicum	Euphorbiaceae	0.0220	0.0190	0.0055	0.0466
22	Macaranga indica	Euphorbiaceae	0.0294	0.0119	0.0044	0.0457
23	Holigarna grahamii	Anacardiaceae	0.0147	0.0095	0.0176	0.0419
24	Persea macrantha	Lauraceae	0.0147	0.0047	0.0201	0.0396
25	Semecarpus travancorica	Anacardiaceae	0.0147	0.0047	0.0197	0.0392
26	Aporosa acuminata	Euphorbiaceae	0.0147	0.0214	0.0005	0.0367
27	Epiprinus mallotiformis	Euphorbiaceae	0.0220	0.0119	0.0024	0.0364
28	Artocarpus heterophyllus	Moraceae	0.0073	0.0047	0.0210	0.0331
29	Poeciloneuron indicum	Clusiaceae	0.0073	0.0143	0.0099	0.0316
30	Aglaia perviridis	Meliaceae	0.0147	0.0095	0.0065	0.0308
31	Mesua thwaitesii	Clusiaceae	0.0073	0.0167	0.0014	0.0254
32	Apollonias arnottii	Lauraceae	0.0147	0.0095	0.0006	0.0249
33	Eugenia sp.	Myrtaceae	0.0147	0.0095	0.0005	0.0247
34	Diospyros sp.	Ebenaceae	0.0147	0.0047	0.0045	0.0240
35	Aglaia lawii	Meliaceae	0.0147	0.0071	0.0005	0.0224
36	Meiogyne ramarowii	Annonaceae	0.0147	0.0071	0.0004	0.0222
37	Croton malabaricus	Euphorbiaceae	0.0147	0.0047	0.0021	0.0216
38	Mastixia arborea	Cornaceae	0.0147	0.0047	0.0015	0.0210
39	Canarium strictum	Burseraceae	0.0147	0.0047	0.0001	0.0196
40	Xanthophyllum arnottianum	Polygalaceae	0.0073	0.0095	0.0009	0.0178
41	Phoebe lanceolata	Lauraceae	0.0073	0.0095	0.0006	0.0175
42	Lagerstroemia microcarpa	Lythraceae	0.0073	0.0023	0.0069	0.0166
43	Meliosma simplicifolia	Fabiaceae	0.0073	0.0071	0.0010	0.0155
44	Hopea parvifolia	Dipterocarpaceae	0.0073	0.0023	0.0055	0.0153
45	Baccaurea courtallensis	Euphorbiaceae	0.0073	0.0071	0.0005	0.0150
46	Boehmeria glomerulifera	Urticaceae	0.0073	0.0071	0.0001	0.0146

47	Psychotria anamalayana	Rubiaceae	0.0073	0.0071	0.0001	0.0145
48	Memecylon umbellatum	Melastomataceae	0.0073	0.0047	0.0013	0.0134
49	Vernonia arborea	Asteraceae	0.0073	0.0047	0.0010	0.0132
50	Paracroton pendulus ssp. zeylanicus	Euphorbiaceae	0.0073	0.0047	0.0008	0.0129
51	Holigarna arnottiana	Anacardiaceae	0.0073	0.0047	0.0007	0.0128
52	Gomphandra tetrandra	Icacinaceae	0.0073	0.0047	0.0005	0.0126
53	Anacolosa densiflora	Olacaceae	0.0073	0.0023	0.0027	0.0124
54	Syzygium laetum	Myrtaceae	0.0073	0.0047	0.0002	0.0123
55	Thottea siliquosa	Aristolochiaceae	0.0073	0.0047	0.0001	0.0121
56	Actinodaphne malabarica	Lauraceae	0.0073	0.0023	0.0023	0.0120
57	Bischofia javanica	Euphorbiaceae	0.0073	0.0023	0.0015	0.0113
58	Antiaris toxicaria	Moraceae	0.0073	0.0023	0.0014	0.0112
59	Polyalthia fragrans	Annonaceae	0.0073	0.0023	0.0012	0.0110
60	Garcinia morella	Clusiaceae	0.0073	0.0023	0.0007	0.0104
61	Aphanamixis polystachya	Meliaceae	0.0073	0.0023	0.0005	0.0102
62	Leea indica	Leeaceae	0.0073	0.0023	0.0002	0.0100
63	Actinodaphne tadulingamii	Lauraceae	0.0073	0.0023	0.0002	0.0099
64	Aglaia malabarica	Meliaceae	0.0073	0.0023	0.0001	0.0099
65	Ficus tsjahela	Moraceae	0.0073	0.0023	0.0001	0.0098
66	Actephila excelsa	Euphorbiaceae	0.0073	0.0023	0.0001	0.0098
67	Clausena indica	Rutaceae	0.0073	0.0023	0.0001	0.0097
68	Dipterocarpus indicus	Diptocarpaceae	0.0073	0.0023	0.0001	0.0097
69	Lasianthus acuminatus	Rubiaceae	0.0073	0.0023	0.0001	0.0097

Table: 5 Population Structure of Drypetes malabarica: Shenduruny WLS (List of individuals with G≥30 cm represented)

S1. No.	GBH (cm)	r (cm)	Basal area (cm²)	Basal Cover (m)	Age Phase	First branching seen at (m)	Height of Stand (m)
1	80	12.74	509.65	9.0	set of present	4.0	16
2	78	12.42	484.37	7.5	set of present	7.0	18
3	75	11.94	447.65	8.0	set of future	6.0	18
4	98	15.61	765.13	8.0	set of present	5.0	20

Table: 6 Floristic diversity/Importance Value Index of Drypetes malabarica: Shenduruny WLS (List of individuals with G≥ 30 cm represented)

S1. No	Name of species	Family	rf (%)	rd (%)	rD (%)	IVI
1	Terminalia bellirica	Combretaceae	0.0106	0.0098	0.1752	0.1956
2	Vateria indica	Dipterocarpaceae	0.0425	0.0833	0.0513	0.1771
3	Bischofia javanica	Euphorbiaceae	0.0106	0.0343	0.1279	0.1729
4	Ixora brachiata	Rubiaceae	0.0319	0.0784	0.0162	0.1266
5	Hopea racophloea	Dipterocarpaceae	0.0425	0.0294	0.0491	0.1211
6	Dimocarpus longan	Sapindaceae	0.0319	0.0539	0.0273	0.1131
7	Knema attenuata	Myristicaceae	0.0425	0.0490	0.0176	0.1091
8	Xanthophyllum arnottianum	Polygalaceae	0.0425	0.0392	0.0098	0.0916
9	Dipterocarpus indicus	Dipterocarpaceae	0.0212	0.0098	0.0602	0.0912
10	Syzygium lanceolatum	Myrtaceae	0.0212	0.0441	0.0222	0.0876
11	Anacolosa densiflora	Olacaeae	0.0319	0.0343	0.0191	0.0853
12	Ficus microcarpa	Moraceae	0.0106	0.0147	0.0576	0.0830
13	Kingiodendron pinnatum	Caesalpiniaceae	0.0319	0.0294	0.0146	0.0760
14	Gluta travancorica	Anacardiaceae	0.0106	0.0245	0.0279	0.0630
15	Palaquium ellipticum	Sapotaceae	0.0212	0.0147	0.0266	0.0626
16	Lophopetalum wightianum	Celastraceae	0.0106	0.0147	0.0363	0.0617
17	Calophyllum polyanthum	Clusiaceae	0.0106	0.0049	0.0426	0.0581
18	Cynometra travancorica	Caesalpiniaceae	0.0212	0.0196	0.0163	0.0571
19	Myristica beddomei	Myristicaceae	0.0212	0.0196	0.0162	0.0571
20	Cullenia exarillata	Bombacaceae	0.0106	0.0049	0.0406	0.0561
21	Syzygium laetum	Myrtaceae	0.0212	0.0245	0.0022	0.0479
22	Aglaia periviridis	Meliaceae	0.0212	0.0147	0.0101	0.0461
23	Diospyros candolleana	Ebenaceae	0.0212	0.0147	0.0079	0.0439
24	Baccaurea courtallensis	Euphorbiaceae	0.0212	0.0147	0.0018	0.0378
25	Strombosia ceylanica	Olacaceae	0.0212	0.0147	0.0010	0.0370
26	Drypetes malabarica	Euphorbiaceae	0.0106	0.0196	0.0066	0.0369
27	Inga cynometroides	Mimosaceae	0.0106	0.0245	0.0012	0.0363
28	Hydnocarpus pentandra	Flacourtiaceae	0.0106	0.0098	0.0139	0.0343
29	Harpullia arborea	Sapindaceae	0.0212	0.0098	0.0019	0.0330
30	Grewia tiliifolia	Tiliaceae	0.0106	0.0098	0.0085	0.0290

32 1	Litsea coriacea	Lauraceae				
			0.0106	0.0147	0.0022 0.0013	0.0275
1 22 1	Polyalthia coffeoides	Annonaceae Euphorbiaceae	0.0106	0.0147	0.0013	0.0266
	Macaranga indica	•	0.0106	0.0098		0.0200
	Litsea floribunda Holigarna arnottiana	Lauraceae Anacardiaceae	0.0106	0.0098	0.0050	0.0254
	0					
	Hopea erosa	Dipterocarpaceae	0.0106	0.0098	0.0035	0.0239
	Toona ciliata	Meliaceae	0.0106	0.0049	0.0080	0.0235
	Tetrameles nudiflora	Datiscaceae	0.0106	0.0049	0.0069	0.0225
	Garcinia spicata	Clusiaceae	0.0100	0.0098	0.0019	0.0223
40 1	Actinodaphne malabarica	Lauraceae	0.0106	0.0098	0.0017	0.0221
	Pterospermum diversifolium	Stercuilaceae	0.0106	0.0049	0.0063	0.0218
	Dysoxylum malabaricum	Meliaceae	0.0106	0.0098	0.0012	0.0217
43 2	Turpinia malabarica	Staphyleaceae	0.0106	0.0049	0.0061	0.0217
44 i	Polyalthia fragrans	Annonaceae	0.0106	0.0098	0.0010	0.0214
45	Sageraea thwaitesii	Annonaceae	0.0106	0.0098	0.0009	0.0213
46 g	Dimorphocalyx glabellus var. lawianus	Euphorbiaceae	0.0106	0.0098	0.0008	0.0212
	Pterygota alata	Sterculiaceae	0.0106	0.0049	0.0049	0.0204
	Bombax ceiba	Bombacaceae	0.0106	0.0049	0.0043	0.0198
40	Cinnamomum malabatrum	Lauraceae	0.0106	0.0049	0.0033	0.0189
50 1	Filicium decipiens	Sapindaceae	0.0106	0.0049	0.0031	0.0187
	Aglaia barberi	Meliaceae	0.0106	0.0049	0.0029	0.0184
52	Vitex altissima	Vrbenaceae	0.0106	0.0049	0.0028	0.0184
53 1	Flacourtia Montana	Flacourtiaceae	0.0106	0.0049	0.0024	0.0179
	Meiogyne pannosa	Annonaceae	0.0106	0.0049	0.0017	0.0172
	Drypetes venusta	Euphorbiaceae	0.0106	0.0049	0.0013	0.0168
	Mangifera indica	Anacardiaceae	0.0106	0.0049	0.0011	0.0166
57 (Cryptocarya wightiana	Lauraceae	0.0106	0.0049	0.0007	0.0163
58 (Otonephilium stipulaceum	Sapindaceae	0.0106	0.0049	0.0006	0.0162
59 (orophea erythrocarpa	Annonaceae	0.0106	0.0049	0.0005	0.0160
60	Tabernaemontana alternifolia	Apocynaceae	0.0106	0.0049	0.0005	0.0160
	Aglaia tomentosa	Meliaceae	0.0106	0.0049	0.0004	0.0159
62 (Gomphandra coriacea	Icacinaceae	0.0106	0.0049	0.0002	0.0157
	Leea indica	Leeaceae	0.0106	0.0049	0.0002	0.0157

Table: 7 Population Structure of Drypetes malabarica: Kulamavu MPCA (List of individuals with G≥30 cm represented)

S1. No.	GBH (cm)	r (cm)	Basal area (cm²)	Basal Cover (m)	Age Phase	First branching seen at (m)	Height of Stand (m)
1	147	23.41	1720.81	14	setof present	7.0	25
2	134	21.34	1429.94	12	set of past	7.5	24
3	56	8.92	249.84	3.0	set of future	2.5	7
4	30	4.78	71.74	2.5	set of future	2.0	4
5	100	15.92	795.82	8.0	setof present	4.0	16
6	51	8.12	207.03	4.5	set of present	4.0	10
7	39	6.21	121.09	3.5	set of future	3.0	8

Table: 8Floristic diversity/Importance Value Index ofDrypetes malabarica: Kulamavu MPCA

(List of individuals with $G \ge 30$ cm represented)

S1. No.	Name of species	Family	rf (%)	rd (%)	rD (%)	IVI
1	Calophyllum polyanthum	Clusiaceae	0.04	0.0538	0.2213	0.3151
2	Gordonia obtusa	Theaceae	0.02	0.0762	0.1231	0.2193
3	Knema attenuata	Myristicaceae	0.04	0.0672	0.0772	0.1845
4	Turpinia malabarica	Staphyleaceae	0.05	0.0717	0.0592	0.1809
5	Dimocarpus longan	Sapindaceae	0.04	0.0358	0.0559	0.1317
6	Antidesma montanum	Euphorbiaceae	0.03	0.0807	0.0119	0.1226
7	Myristica beddomei	Myristicaceae	0.04	0.0493	0.0310	0.1204
8	Bischofia javanica	Euphorbiaceae	0.03	0.0224	0.0661	0.1185
9	Aporosa acuminate	Euphorbiaceae	0.04	0.0493	0.0042	0.0935
10	Elaeocarpus tuberculatus	Elaeocarpaceae	0.01	0.0089	0.0657	0.0846
11	Drypetes malabarica	Euphorbiaceae	0.03	0.0313	0.0136	0.0750
12	Erythroxylum lanceolatum	Erythroxylaceae	0.03	0.0313	0.0112	0.0726
13	Diospyros paniculata	Ebenaceae	0.03	0.0224	0.0174	0.0698
14	Cinnamomum macrocarpum	Lauraceae	0.02	0.0224	0.0237	0.0661
15	Mastixia arborea	Cornaceae	0.03	0.0179	0.0072	0.0551
16	Cryptocarya wightiana	Lauraceae	0.02	0.0134	0.0201	0.0536
17	Aglaia lawii	Meliaceae	0.03	0.0179	0.0013	0.0492
18	Antidesma montanum	Euphorbiaceae	0.02	0.0224	0.0038	0.0463

19	Semecarpus travancorica	Anacardiaceae	0.01	0.0089	0.0269	0.0459
20	Dimorphocalyx glabellus var. lawianus	Euphorbiaceae	0.02	0.0179	0.0049	0.0428
21	Actinodaphne sp.	Lauraceae	0.02	0.0179	0.0045	0.0424
22	Mesua thwaitesii	Clusiaceae	0.01	0.0044	0.0272	0.0417
23	Syzygium gardneri	Myrtaceae	0.01	0.0134	0.0162	0.0397
24	Poeciloneuron indicum	Clusiaceae	0.01	0.0089	0.0184	0.0374
25	Aglaia periviridis	Meliaceae	0.01	0.0179	0.0082	0.0361
26	Mesua ferrea	Clusiaceae	0.02	0.0134	0.0017	0.0352
27	Syzygium laetum	Myrtaceae	0.02	0.0134	0.0016	0.0350
28	Xanthophyllum arnottianum	Polygalaceae	0.02	0.0134	0.0014	0.0348
29	Litsea bourdillonii	Lauraceae	0.01	0.0224	0.0016	0.0341
30	Macaranga indica	Euphorbiaceae	0.02	0.0089	0.0050	0.0340
31	Aglaia tomentosa	Meliaceae	0.02	0.0089	0.0034	0.0323
32	Garcinia morella	Clusiaceae	0.02	0.0089	0.0023	0.0313
33	Glochidion ellipticum	Euphorbiaceae	0.02	0.0089	0.0021	0.0311
34	Terminalia travancorensis	Combretaceae	0.01	0.0089	0.0083	0.0272
35	Walsura trifolia	Meliaceae	0.01	0.0044	0.0087	0.0232
36	Croton malabaricus	Euphorbiaceae	0.01	0.0089	0.0038	0.0227
37	Acronychia pedunculata	Rutaceae	0.01	0.0044	0.0077	0.0222
38	syzygium cumini	Myrtaceae	0.01	0.0089	0.0018	0.0207
39	Mangifera indica	Anacardiaceae	0.01	0.0044	0.0055	0.0200
40	Strombosia ceylanica	Olacaceae	0.01	0.0089	0.0009	0.0199
41	Actinodaphne tadulingamii	Lauraceae	0.01	0.0089	0.0006	0.0196
42	Otonephilium stipulaceum	Sapindaceae	0.01	0.0044	0.0041	0.0186
43	Flacourtia Montana	Flacourtiaceae	0.01	0.0044	0.0040	0.0184
44	Mitragyna parvifolia	Rubiaceae	0.01	0.0044	0.0039	0.0184
45	Apollonias arnotii	Lauraceae	0.01	0.0044	0.0022	0.0167
46	Haldina cordifolia	Rubiaceae	0.01	0.0044	0.0021	0.0166
47	Myristica malabarica	Myristicaceae	0.01	0.0044	0.0012	0.0157
48	Vernonia arborea	Asteraceae	0.01	0.0044	0.0012	0.0157
49	Phoebe lanceolata	Lauraceae	0.01	0.0044	0.0006	0.0150
50	Harpullia arborea	Sapindaceae	0.01	0.0044	0.0005	0.0150
51	Baccaurea courtallensis	Euphorbiaceae	0.01	0.0044	0.0005	0.0150
52	Aphanamyxis polystachya	Meliaceae	0.01	0.0044	0.0003	0.014
53	Canarium strictum	Burseraceae	0.01	0.0044	0.0003	0.0147
54	Dysoxylum malabaricum	Meliaceae	0.01	0.0044	0.0002	0.0147

Table: 9Climatological data of Drypetes malabarica: Neriamangalam

Season	Atm. Temperature (ºC)	Night Temperature (ºC)	Atm.Humidity (Day %)	Atm.Humidity (Night-%)	
Summer	31	23	69	73	
Monsoon	26	22	84	92	
Winter	27	20	74	88	

Table: 10Edaphological data of Drypetes malabarica: Neriamangalam

Season	Soil Level	Texture	P ^H	N (Kg/ha)	P (Kg/ha)	K (Kg/ha)	Temp. (°C)	Moisture (%)
Summer	Surface Middle Bottom	Loam Silt clay Silty clay loam	4.6 4.8 4.9	442.2 373.2 313.6	4.8 4.0 3.2	246.4 137.8 64.6	23	16.91
Monsoon	Surface Middle Bottom	Silt clay loam Sandy clay loam Silt loam	4.4 4.7 5.0	458.9 425 227.9	14.74 1.65 5.06	78.1 485.1 141.9	22.5	26.53
Winter	Surface Middle Bottom	Loam Clay loam Silty clay loam	4.9 5.3 4.9	705.6 658.6 420.2	1.5 3.1 5.0	272.2 254.2 118.7	22.7	19.02

Table: 11Climatological data of Drypetes malabarica: Malakkapara

Season	Atm. Temperature (°C)	Temperature (°C)		Atm.Humidity (Night-%)	
Summer	29	23	58	79	
Monsoon	22	19	74	96	
Winter	22	17	69	86	

Season	Soil Level	Texture	Рн	N (Kg/h)	P (Kg/ha)	K (Kg/ha)	Temp. (°C)	Moisture (%)
Summer	Surface Middle Bottom	Silt loam Silty clay loam Loam	4.7 4.7 5.1	508.0 548.8 727.6	5.5 5.4 1.5	247.5 85.1 118.7	23	12.76
Monsoon	Surface Middle Bottom	Silt clay loam Sand clay loam Silt loam	4.7 4.7 4.7	462 412.7 308.0	71.9 10.23 5.94	121 58.3 196.9	21	26.52
Winter	Surface Middle Bottom	Silty clay loam Sandy clay loam Loamy sandy	5.0 4.9 5.0	708.7 492.4 203.8	4.6 3.8 3.5	196 152.3 160.2	18.7	25.43

Table: 12Edaphological data of Drypetes malabarica: Malakkapara

Table: 13Climatological data of Drypetes malabarica: Shenduruny WLS

Season	Atm. Temperature (Day -ºC)	Atm.Temperature (Night-ºC)	Atm.Humidity (day-%)	Atm.Humidity (Night-%)	
Summer	30.2	26.07	58	74	
Monsoon	27.3	23.6	75	93	
Winter	28.3	22.1	68	82	

Table: 14

Edaphological data of *Drypetes malabarica*: Shenduruny WLS

Season	Soil Level	Texture	Рн	N (Kg/ha)	P (Kg/ha)	K (Kg/ha)	Temp. (°C)	Moisture (%)
Summer	Surface Middle Bottom	Silty clay loam Silt clay Sandy clay loam	5.6 5.2 5.2	564.5 592.7 492.4	8.7 9.0 40.3	340.5 170.2 131.0	20	19.5
Monsoon	Surface Middle Bottom	Silt clay loam Sandy clay loam Silt loam	5.3 4.6 4.6	449.7 603.7 323.4	35.3 16.1 5.9	487.3 523.6 293.7	22.5	29.76%

Winter	Surface Middle Bottom	ay loam m clay	5.4 5.3 5.2	940.8 878.1 705.6	13.3 3.6 5.7	131 147.8 299	22.6	25.96%	
--------	-----------------------------	----------------------	-------------------	-------------------------	--------------------	---------------------	------	--------	--

Table: 15

Climatological data of Drypetes malabarica: Kulamavu MPCA

Season	Atm.Temperature (°C)	Night Temperature (°C)	Atm. Humidity (Night-%)
Summer	29.1	24.4	91
Monsoon	27.3	23.2	91
Winter	28.5	22.1	91

Table: 16Edaphological data of Drypetes malabarica: Kulamavu MPCA

Season	Soil Level	Texture	Рн	N (Kg/ha)	P (Kg/ha)	K (Kg/ha)	Temp. (°C)	Moisture (%)
Summer	Surface Middle Bottom	Silty clay loam Silt clay Sandy loam	4.5 4.6 4.5	564.5 504.9 573.9	1.8 5.0 6.8	121 150.1 172.5	23	19.5
Monsoon	Surface Middle Bottom	Silt clay loam Sandy clay loam Silt loam	4.8 5.0 5.0	637.6 557.5 301.8	33.8 4.4 2.0	636.9 550 1903	21.5	27.67
Winter	Surface Middle Bottom	Silty clay loam Silt loam Sandy clay loam	4.9 4.6 4.9	627.2 439 561.3	2.1 3.4 3.1	142.2 181.4 211.7	22.8	24.56

Treatment (ppm)	Rooting (%)	Mean no. of roots (Mean ± SD) (cm)	Mean length of roots (Mean ± SD) (cm)	Survival of ramets (%)
Control	13	1.33 ± 0.966	1.60 ±1.275	100
IAA 1000	13	1.70 ± 1.432	1.20 ± 1.412	100
1AA 2000	13	1.30 ± 0.838	1.00 ± 0.852	100
IAA 3000	75	2.00 ± 1.414	2.10 ± 0.447	100
IAA 4000	75	2.00 ± 0.816	4.56 ± 0.988	100
IAA 5000	75	2.50 ± 1.767	6.50 ± 0.707	100
IBA 1000	30	2.00 ± 1.327	1.60 ±1.275	100
IBA 2000	40	2.00 ± 1.60	1.50 ± 1.563	100
IBA 3000	75	2.50 ± 0.967	4.90 ± 0.413	100
IBA 4000	75	2.75 ± 0.635	5.01 ± 0.363	100
IBA 5000	75	4.00 ± 1.514	6.31 ± 1.503	100
NAA 1000	25	1.70 ± 0.871	2.00 ± 1.395	100
NAA 2000	75	2.00 ± 1.118	2.40 ± 1.851	100
NAA 3000	100	2.25 ± 0.866	3.50 ± 1.312	100
NAA 4000	50	1.33 ± 0.966	2.50 ± 0.868	100
NAA 5000	25	2.66 ± 0.68	3.00 ± 0.533	100

Table: 17Vegetative propagation through stem cuttings in
Drypetes malabarica

Table: 18Vegetative propagation through air layering inDrypetes malabarica

S1. No.	No. of layers done	Treatment/ Control	Percent of rooting	Survival %
1	4	Control	50	100
2	4	IAA 1000	100	100
3	4	IAA 3000	75	100
4	4	IBA 1000	100	100
5	4	IBA 3000	100	100
6	4	NAA 1000	50	100
7	4	NAA 3000	100	100

Seed Type	Condition (Temp./Humidity)	Container	Date of treatment	МС (%)	Germination (%)
	Open desiccation Room temperature 25±2°C	Open tray	19-11-12	46	50
			20-11-12	43.60	50
Fresh			22-11-12	39.05	50
seeds			26-11-12	33.29	25
			30-11-12	31.39	25
			04-12-12	28	20
			06-12-12	25	0

Table: 19Desiccation v/s Moisture content on Drypetes malabarica seeds

Table: 20Effect of pre treatments on the seed germination of
Drypetes malabarica

Pre-treatment given	Date of sowing	МС (%)	Total no. of seeds	No. of seeds germinated	Days taken for germination	Germination (%)	
Water soaking- over night	19-11-12	46	4	1	23	25	
Hot water soaking (80°C for 5 min)	19-11-12	46	4	0	-	0	
Acid scarification					20		
$(H_2SO_4 \text{ for } 5 \text{ min})$	19-11-12	46	4	2	31	50	

Site No.	Status	Planting sites	Geographic coordinates	Altitud e (m asl)
1.	In-situ	Kulamankuzhikudi	Lat: 10º 02' 35.2" N.	512 m
		Neriamangalam Range,	Long: 76° 50' 9.4" E.	
		Idukki Dt.		
2.	In-situ	Kulamavu MPCA	<i>Lat:</i> 09º 48' 57" N.	890m
		Nagarampara range,	Long:76° 53' 38.3" E.	
		Kotayam Division.		
3.	In-situ	Malakkapara	Lat: 10º 17' 20.4" N.	849m
		Sholayar Range,	<i>Long:</i> 76° 48′ 27.9″ E.	
		Vazhachal Division.		
4.	In-situ	Rosemala	Lat: 08º 56' 14.7" N.	524 m
		Aryankavu Range,	Long: 77° 10′ 19.8″ E.	
		Thenmala Division.		
5.	Ex-situ	KFRI-Arboretum,Peechi,	<i>Lat</i> : 10° 31' 47" N.	45 m
		Trichur Dt.	Long: 76° 22' 7.5"	
			Ε.	
6.	Ex-situ	KFRI-Subcenter,	<i>Lat</i> : 11º 17′ 52.9″ N.	39m
		Nilambur,	Long: 76º 14' 56.8E.	
		Malappuram Dt.		
7.	Ex-situ	KFRI-FRC, Velupadam,	<i>Lat</i> : 10º 26' 12.4" N.	106m
		Trichur Dt.	Long: 76º 21' 28.4"	
			E.	

Table: 21Restoration: Details of planting

Table: 22Restoration: Survival, growth and factors affecting mortality of the seedlings planted of D. malabarica

S1. No:	Place of planting	Date of planting	No. of seedlings planted	Average height during planting (cm)	Average height after 6 months (cm)	Average height after 14-16 months (cm)	Survival after 14-16 months (%)	Remarks/Causal factors	
I.	In-Situ sites								
1	Neriamangalam	29-06-12	100	26	31	33	80	Wilting due to shortage of rain, Wildlife and human interventions	
2	Kulamavu MPCA	30-06-12	100	29	31	33	82		
3	Rosemala	11-07-12	100	22	28	29	74		
4	Malakkapara	20-07-12	100	24	26	28	74		
II.	<i>Ex-Situ</i> sites				(Data Available for 3 months only)				
1	FRC- Velupadam	12-06-13	50	32	35	To be recorded	98		
2	Sub-centre, Nilambur	13-06-13	50	33	37	To be recorded	96	Wildlife/Cattle interventions	
3	Arboretum,KFRI Peechi.	17-06-13	50	27	33	To be recorded	76		

5.2. Hydnocarpus macrocarpa

5.2.1. **Population structure**

The population structure and floristic diversity analysis in the two study areas viz., **Malakkapara** and **Neriamangalam** are detailed below.

i. Malakkapara

The vegetation profile (Vertical) of the population located at Malakkapara showed the occurrence of major tree species such as Elaeocarpus tuberculatus Roxb., Poeciloneuron indicum Bedd., Vateria indica L., Holigarna grahamii (Wight) Kurz, Bischofia javanica Blume and Palaquim ellipticum (Dalz.) Baill. as first layer/storey, reaching a height range of 31-40 m. The second storey between 21-30 m represented by Drypetes malabarica (Bedd.) Airy Shaw, Hydnocarpus macrocarpa (Bedd.) Warb., Knema attenuata (Hook. f. & Thoms.) Warb., Mesua thwaitesii Planch. & Triana, Paracroton pendulus (Hassk.) Mig. ssp. zeylanicus (Thw.) Balakr. & Chakrab., Vateria indica L., Dysoxylum malabaricum Bedd. ex Hiern., Otonephilium stipulaceum (Bedd.) Radlk., Macaranga peltata (Roxb.) Muell.-Arg., Turpinia malabarica Gamble, Mallotus tetracoccus (Roxb.) Kurz, Mastixia arborea (Wight) Bedd., Walsura trifolia (A. Juss.), Hiern, Aqlaia lawii (Wight) Aglaia periviridis Saldanha. Margaritaria indica Wight, Terminalia travancorensis (Gaertn.) Roxb. and Syzygium gardneri Thw. The third storey, which is usually less than 20 m is occupied by the small trees such as Turpinia malabarica Gamble, Aglaia lawii (Wight) Saldanha, Knema attenuata (Hook. f. & Thoms.) Warb., Diospyros paniculata Dalz., Macaranga peltata (Roxb.) Muell.-Arg., Myristica beddomei King, Canarium strictum Roxb., Hydnocarpus

macrocarpa (Bedd.) Warb., Drypetes malabarica (Bedd.) Airy Shaw, Aglaia periviridis Hiern, Paracroton pendulus (Hassk.) Miq. ssp. zeylanicus (Thw.) Balakr. & Chakrab., Otonephilum stipulaceum (Bedd.) Radlk., Vateria indica L., Trewia nudiflora L., Vernonia arborea Buch.-Ham., Dimocarpus longan Lour., Toona ciliata Roem., Dysoxylum malabaricum Bedd. ex Hiern, Cyathocalyx zeylanica Champ. ex Hook. f. & Thoms., Poeciloneuron indicum Bedd., Hydnocapus pentandra (Buch.-Ham.) Oken, Walsura trifolia (A. Juss.) Harms, Polyalthhia fragrans (Dalz.) Bedd., Macaranga indica Wight, Canarium strictum Roxb.. There is also a dense thick of shrubs and climbers including the climbing gymnosperm Gnetum ula and below which seedlings of Arenga wightii Griff., Vernonia arborea Buch.-Ham., Leea indica (Burm. f.) Merr., Antiaris toxicaria Lesch., Artocarpus hirsutus Lam., Xanthophyllum arnottianum Wight, Memecylon umbellatum Burm.f., Caryota urens L., Baccaurea courtallensis (Wight) Muell.-Arg., Strombosia ceylanica Gard., Wrightia arborea (Dennst.) Mabb., Mangifera indica L., Callicarpa tomentosa (L.) L., Syzygium laetum (Buch.-Ham.) Gandhi, Cipadessa baccifera (Roth) Mig., and Mallotus philippensis (Lam.) Muell.-Arg.

The spatial view of the population site exhibited the arrangement of individuals of *Hydnocarpus macrocarpa* (Bedd.) Warb. in a scattered manner along with their associates. The ground is characterized by slopes, rock boulders, fallen woods, stream etc. The age profile have shown 8 individuals of candidate species consisted of three numbers as set of present (Reproductive phase), four numbers of set of future (prereproductive phase) and one number of set of past (post reproductive phase) covering a height range from 10-22 m. The

57

vertical crown projections had shown the placement of individuals such as *Cullenia exarillata* Robyns, *Turpinia malabarica* Gamble, *Hydnocarpus macrocarpa* (Bedd.) Warb and *Vateria indica* L. just below the tallest individual (Canopy) of *Dysoxylum malabaricum* Bedd. ex Hiern. The horizontal crown projections had displayed the overlapping canopy coverage under the canopy of tallest individual, *D.malabaricum*.

The population structure of *Hydnocarpus macrocarpa* was analyzed by recording GBH, basal area, basal cover, age phases, sex ratios and height of the each individual (Table 23). The floristic diversity analysis covered 41 species of GBH \geq 30 cm size of 262 individuals in 5445 sq.m. The aggregated values of relative frequency (rf), relative density (rd) and relative dominance (rD) of each species in the quadrat were worked out and noted that *Cullenia exarillata* had highest index value of 0.458679 and thus became the dominant species. Whereas, *Hydnocarpus macrocarpa* represented 11th position with IVI of 0.095819 (Table 24).

The area of occurrence of the species was found to be approximately 12 km² and the area of occupancy (area sampled plus non-sampled area) was 0.0045 km² and nearly 55 mature trees had seen in the site.

ii. Neriamangalam

The vegetation profile (Vertical) of the population located at Neriamangalam showed the occurrence of major tree species such as *Dipterocarpus indicus* Bedd., *Elaeocarpus tuberculatus* Roxb., *Terminalia bellirica* (Gaertn.) Roxb., *Poeciloneuron indicum* Bedd., *Syzygium gardneri* Thw., *Drypetes malabarica* (Bedd.) Airy Shaw, Dysoxylum malabaricum Bedd. ex Hiern and Mesua thwaitesii Planch. & Triana as first layer/storey, reaching a height range of 31-40 m. The second storey between 21-30 m is represented by Mastixia arborea (Wight) Bedd., Gymnacranthera farguhariana (Hook.f. & Thoms.) Warb., Paracroton pendulus (Hassk.) Mig. ssp. zeylanicus (Thw.) Balakr. & Chakrab., Holigarna arnottiana Hook. f., Macaranga peltata (Roxb.) Muell.-Arg., Holigarna grahamii (Wight) Kurz, Vateria indica L., Cryptocarya wightiana Thw. along with the candidate species Hydnocarpus macrocarpa (Bedd.) Warb. The third storey, which is usually less than 20 m occupied by the small trees, Shrubs and climbers such as *Hydnocarpus pentandra* (Buch.-Ham.) Oken, Glochidion zeylanicum (Gaertn.) A. Juss., Chionanthus mala-elengi (Dennst.) P. S. Green, Croton malabaricus Bedd., Xanthophyllum arnottianum Wight, Arenga wightii Griff., Vernonia arborea Buch.-Ham., Memecylon umbellatum Burm.f., Caryota urens L., Baccaurea courtallensis (Wight) Muell.-Arg, Strombosia ceylanica Gard., Wrightia arborea (Dennst.) Mabb., Mangifera indica L., Callicarpa tomentosa (L.) L., Syzygium laetum (Buch.-Ham.) Gandhi, Mallotus philippensis (Lam.) Muell.-Arg., Leea indica (Burm. f.) Merr., Schumannianthus virgatus (Roxb.) Rolfe, Cipadessa baccifera, Isonandra lanceolata Wight, Thottea siliquosa (Lam.) Ding Hou, Schefflera wallichiana (Wight & Arn.) Harms, Alpinia malaccensis (Burm. f.) Rosc., Psychotria flavida Talbot, Anamirta cocculus (L.) Wight & Arn., Piper barberi Gamble, Coscinium fenestratum (Gaertn.) Colebr., Cayratia pedata (Lam.) A. Juss. ex Gagnep., Momordica sahyadrica Blume. The herbal layer covered by Ophiorrhiza mungos L., Thottea dinghoui Swarup., Smithsonia viridiflora (Dalz.) Saldanha, Gastrochilus acaulis (Lindl.) O. Ktze., Aeginetia

pedunculata Wall., Christisonia calcarata Wight and Argostemma courtallense Arn.

The spatial view of the population site exhibited the arrangement of individuals of Hydnocarpus macrocarpa (Bedd.) Warb. in scattered manner along with their associates. The ground is characterized by slopes, rock bolders, fallen woods, stream etc. The age profile have shown 11 individuals of candidate species consisted of 6 numbers as set of present (Reproductive phase), four numbers of set of future (prereproductive phase) and one number of set of past (post reproductive phase) covering a height range from 1-28 m. The vertical crown projections had shown the placement of individuals such as Drypetes malabarica, Dimocarpus longan, Hydnocarpus macrocarpa (Bedd.) Warb, Vernonia arborea, Holigarna grahamii, Diospyros paniculata, Knema attenuata etc. just below the tallest individual (Canopy) of Mesua thwaitesii Planch. & Triana. The horizontal crown projections had displayed the overlapping canopy coverage under the canopy of tallest individual, M. thwaitesii.

The population structure of *Hydnocarpus macrocarpa* was analyzed by recording GBH, basal area, basal cover, age phases, sex ratios and height of the each individual (Table 25). The floristic diversity analysis covered 81 species of GBH \geq 30 cm size of 268 individuals in 7623sq.m. The aggregated values of relative frequency (rf), relative density (rd) and relative dominance (rD) of each species in the quadrat were worked out and noted that *Poeciloneuron indicum* had highest index value of 0.1675 and thus became the dominant species in the particular quadrat whereas, the *Hydnocarpus macrocarpa* represented 11^{th} position with IVI of 0.082808 (Table 26).

The area of occurrence of the species in this locality was found to be approximately 3 km^2 and the area of occupancy (area sampled plus non-sampled area) 0.012 km^2 and nearly 150 mature trees can be seen in the site.

Plate 1: Hydnocarpus macrocarpa (Bedd.) Warb. - Population Structure

Habitats: Different views from Neriamangalam forest

Habit showing fruits: Views from Neriamangalam

Habitats: Different views from Malakkapara forest

5.2.2. Population Dynamics

5.2.2.1. Vegetative phenology

Flushing along with matured leaves was noted in October and continued up to February. The young foliage is greenish yellow in color, later turns to light green and finally to dark green. Leaves, alternate, glossy on upper surface when young. New flushing were often infested and fed by caterpillars *Cirrochroa thais* Fabricius (The Tamil Yeoman). Bark is brownish black in colour with rough surface. Leaf flushing also observed at the time of flower bud initiation.

5.2.2.2. Reproductive phenology

The tree is polygamous in nature and therefore male and bisexual plants were separately observed for reproductive phenologies.

Male flower bud initiation was observed along with flushing from January onwards and a peak of flowering was noted in the middle of February. Flowering extended up to middle of March and will complete by last week of April. Around 30-40 days were taken for the development of flower bud to bloom. Matured flower buds start blooming from late evening and extended up to early hours of 1-2 am. Male flowers arranged in fascicles on mature branches, arise as cauliflorus. A single fascicle has 11-38 flowers. Flower buds are spherical, green in colour. Stamens numerous, sepals gradually opens along with petals. Sepals orbicular, green and fleshy sepals 3-4. Petals 2-4, hyaline, ciliate and oblong. A male flower contains 101 anthers which are irregularly arranged along the margin of thalamus. During the peak of flowering insects such as *Apis florae* (Small honey bee) are seen throughout. Large honey bees, *Apis indica* are also noticed occassionally. In addition, casual and frequent observations of the butterflies such as common Rose (*Pachaliopta aristlochia*), Common Crow (*Euplea core*), *Cirrochroa thais* and un identified moth, sparrows etc. were found visiting the tree.

Female flower bud initiation was noted from February onwards along with flushing and peak flowering noted in the middle of April. Female flowers are comparatively large and fewer than male flowers. Flowers are arranged in fascicles. Female flowers arising from the axils of leaves and flowering numbers are very less. Flower opening noted during midnight and continue till early morning. Stigma receptivity lasts for 10-12 hours. Single female flower lasts for 16-18 hours and turns into brown color. A single fascicle contains 7-8 flowers. Some flowers in the cyme were found gradual wilting and remaining ones involve in actual pollination process and fruit set. Six stigmatic lobes spreading on a thick style. Stigmatic lobes are green, glossy and sticky in nature.

5.2.2.3. Pollen-Ovule (P: O) ratio

As per haemocytometer reading, one anther contained 46,666 pollen grains. It was noted that 101 anthers were present per flower. Therefore, a single flower had around 47,13,266 pollen grains. A female flower had 54 ovules and hence the P: O ratio was worked out as 87,282:1 for the species.

5.2.2.4. Pollen fertility

The acetocarmine staining technique proved that pollen fertility is 100%.

5.2.2.5. Fruit development

Fruit initiation was noted during March and extended up to February (11 months). The young fruits are dark brown in colour and on maturity turned to light brown colour. Around 11 months were taken for fruit development and maturity. It was noticed that around 10% of the fruits were abscised prematurely. Mature fruits have 98-121mm length and 93-122mm breadth and weighs 800-1500gm. The fruit is basically a drupe; globose, thick, dark brown and 35-60 seeds observed in a matured fruit. On attaining 60-70% fruit maturity, 10-20% fruits are get hollowed and seeds are eaten mainly by mammals *Petaurista* sp. Seeds are somewhat hard, having weight of 3-9 gms/seed and it was calculated as 160-220 seeds are present in 1kg. On senescence of ripened fruits, seeds are consumed by ground predators like Porcupine (*Hystrix indica*) etc.

5.2.3. Causal factors for Population Reduction

- The low occurrance of the species / preproductive individuals in the respective communities indicated its fewness among associates.
- Flower wilting and false pollination by around 40-50%.
- Abscition of immature fruits by around 10%.
- Seeds are predated by mammals in the tree itself by around 20%.
- Seed consumption by ground level predators by around 10-20%.
- Short seed viability lead to the poor seedling bank in situ.
- Over explitation of matured fruits for seed extraction as NWFP lead poor seed bank *in situ*.

5.2.4. Climatic and Edaphic Factors

Climatological and Edaphological data of the species in respective quadrates in Malakkapara and Neriamangalam were recorded and tabulated. Average value of climatic data such as atmospheric day temperature, canopy temperature, atmospheric humidity, night temperature, night humidity of each season was represented (Table 27 & 29). Similarly, soil samples from three levels (such as surface, 15 cm deep as middle and 30 cm deep as bottom) were collected and data on texture, pH, dissolved minerals, nutrients etc. were also recorded. Soil moisture content and soil temperature of each season were also noted to understand the edaphic environment of species (Table 28 & 30).

Plate 2: Hydnocarpus macrocarpa (Bedd.) Warb. - Population Dynamics

Flushing: Different views

Views of caterpillar infestation

Adult moth: Cirrochroa thais Fabricius

Views of male and bisexual flowers in fascicles

Fruiting primordia

Views of fruit development, senescence and seed predated fruit shell

Soil smple collectionn

5.2.5. Conservation Strategies

5.2.5.1. Vegetative propagation

Propagation through stem cuttings and air layering were tried for multiplication. Stem cuttings along with auxins such as IAA, IBA and NAA of different concentrations were attempted. In all cases, no promising results have been achieved. However, juvenile stem cuttings taken from 2 years old saplings showed 66% success with the aid of IBA 5000ppm within 64-81 days. Whereas, 36% success noted in control (Table 31) after 2-3 months. In air layering, young plants of 2 years old showed 100% success with the aid of NAA 3000ppm within 48-132 days. Whereas, control resulted 25% success after 4-5 months (Table 32). The plant has also exhibited reiterating ability which ensures the growth of the parent plants after the separation of rooted portions from the stock.

5.2.5.2. Seed propagation

The ripened fruits were collected and removed the fleshy fruit rind. The processed seeds were analyzed for initial moisture content. Seeds were subsequently surface dried and kept for storage and germination studies.

The fresh seeds with a moisture content of 45% resulted 85% germination within 8-10 days where river sand is used as sowing medium in the nursery. In normal conditions, seeds lost its viability within one week with critical moisture content 17% along with germination 33% under room conditions. The type of seed germination is epigeal. The seeds had shown desiccation and chilling sensitivity towards storage temperature conditions. Therefore the seeds were categorized in the recalcitrant group. For extending the viability of the seeds, different storage trials were tried using different containers at different storage conditions. The results (Table 33) indicated that the seeds stored in closed polycarbonate bottles at 20±2°C in Seed bank conditions extended the viability upto 64 days with 20% germinability compared to other storage trials. Therefore, the standardized method of storage can be adopted for germplasm preservation of the species.

Plate 3: Hydnocarpus macrocarpa (Bedd.) Warb. - Conservation

Views of rooting success: stem cuttings and layered plants at nursery

Air layering success

Matured fruits

Processed seeds

Seed germination in lab and nursery

Seed germination in mist chamber

Views of planting stock in the nursery

5.2.6. Restoration

Six natural evergreen ecosystems in the Western Ghats of Kerala region were selected for *in situ* recovery planting. In addition, three sites were also selected for *ex situ* planting. (Table 34 and 35).

A total of 1400 seedlings were reintroduced in six *in situ* sites of the species. Fully established 2-yr old polybagged seedlings having an average height of 54-77cm were transported from the nursery to the planting sites. Pits were prepared in tune with canopy gaps in the population areas. Each seedling was tag-marked for monitoring. Planting of the seedlings was done during June –November months. Further, 375 seedlings were also casualty planted *in situ*. The periodic monitoring on the establishment and survival performance of the seedlings was carried out in half yearly basis. Caterpillar feeding of growing stem tip of seedlings was noted in few planted sites.

1. Kulamavu MPCA

Two hundred and fifty seedlings of 1.0 - 1.5 years old were planted in the site. The mean height of seedlings during planting was 58cm and the maximum height recorded was 102cm. The site recorded with low survival rate of 39% as compared with other *in situ* sites. The average height of 66cm and a maximum height of 89cm after 1.5 years of field planting. New shoot growth of the seedlings were arrested due to caterpillar feeding and become reduced the height increment. Shortage of SW monsoon, elephant trampling in the planting area etc. contributed to the mortality of seedlings in the site.

2. Neriamangalam

Two hundred and fifty seedlings of 1.0 - 1.5 years old were planted in the site. The mean height of seedlings during planting was 54cm and the maximum height recorded was 101cm. The seedlings showed 73% survival on evaluation. The average height of 77cm and a maximum height of 130cm reached after 1.5 years of field planting were recorded. It was noted that the seedlings had slow growth in the site. The leaves of some seedlings were wilted due to the lack of rain and also the over growth of *Schumanniathus virgatus*, a weed plant which reduced the growth of seedlings. It was also noted that the terminal growing bud of the seedlings are either cut down or eaten by caterpillars.

3. Rosemala

Two hundred and fifty seedlings of 1.0 - 1.5 years old were planted in the site. The mean height of seedlings during planting was 68cm along with a maximum height recorded was 107cm. The site was recorded a moderate survival rate of 61%. The average height of 71cm and a maximum height of 115 cm after 1.5 years of field planting were recorded. Wild life interventions and reduction in SW monsoon found affected the survival of seedlings in the site.

4. Malakkappara

Two hundred and fifty seedlings of 1.0 - 1.5 years old were planted at Pathadipalam, near Malakkapara. The mean height of seedlings during planting was 69cm and the maximum height recorded was 115cm. The site recorded a maximum survival rate of 71% as compared with other sites. Average height was noted as 82cm and maximum height reached upto 121cm. The reduction in SW monsoon, Wildlife interventions and feeding of leaves by caterpillars has affected the survival of seedlings in the site.

5. Kallar

Two hundred eedlings of 1.0 - 1.5 years old were panted at Kallar forest area, Golden valley near Mottamoodu. The mean height of the seedlings during planting was 63cm along with a maximum height of 125cm. The moderately, low growth rate was noticed due to lack of rain throughout the period and the seedlings offered a low rate of survival, 55%. The average seedling height was 66 cm and the maximum height recorded was 114 cm. New shoot growth of the seedlings were arrested due to caterpillar feeding and height increment become reduced.

6. Periya

Two hundred seedlings of 1.0 - 1.5 years old were planted Wayanad MPCA at Periya Forest Range. The mean height of the seedlings during planting was 75cm and the maximum height 125cm. The seedlings showed 67% survival after 1 year. The mean height of seedlings was 76 cm and the maximum height recorded as 119cm. The new shoot growth of the seedlings was arrested due to caterpillar feeding and therby reduced the height increment. Plate 4: Hydnocarpus macrocarpa (Bedd.) Warb. - Restoration

Views of seedling transportation, planting and metal display board: Kulamavu MPCA

Views at Kallar

Views at Malakkapara

Views at Neriamangalam

A total of 150 seedlings of the species were planted in three *ex situ* viz.,

1. KFRI Arboretum

Fifty seedlings of *H.macrocarpa* were planted at KFRI Arboretum, Peechi. The mean height of the seedlings during planting was 69cm along with a maximum height of 108cm. The seedlings showed a survival rate of 80% after 1.5 year of field planting with mean seedling height of 96 cm and the maximum height 161cm. A few seedlings were terminally damaged by varied physical interventions.

2. FRC Velupadam

Fifty seedlings were planted at FRC Velupadam. The mean height of seedlings during planting was 74cm with a maximum height 120cm. The seedling showed a good survival rate of 88% after 1.5 years of planting with average seedling height of 74cm and maximum height into 112cm. The new shoot growth of the seedlings was arrested due to caterpillar feeding and thereby reduced the height increment. Browsing by spotted deer has affected the survival of seedlings in the site.

3. Sub centre, Nilambur

Fifty seedlings were planted in the site. The mean height of seedlings during planting was 77cm and the maximum height was 105cm. The maximum seedling survival of 92% achieved along with average height of 83cm and maximum height of 121cm. The apical growing buds were found rarely fed by catrepillars.

Plate 5: Hydnocarpus macrocarpa (Bedd.) Warb. - Restoration

Views at Rosemala

Views at Wayanadu MPCA

Different views of *ex situ* seedling planting and evaluation: FRC Velupadam:

Different views of ex situ seedling planting and evaluation: KFRI Arboretum:

Different views of ex suu seeding planting and evaluation. Sub centre Ivnamour

Table: 23 Population Structure of *Hydnocarpus macrocarpa*: Malakkapara (List of individuals with G≥30 cm represented)

S1. No.	GBH (cm)	r (cm)	Basal area (cm²)	Basal Cover (m)	Age Phase	First branching seen at (m)	Height of Stand (m)
1	146	23.25	1697.37	10	Set of Present	5.0	22
2	115	18.31	1052.70	8	Set of Present	4.0	18
3	50	7.96	198.95	7	Set of future	3.0	13
4	85	13.54	575.66	8	Set of future	2.0	13
5	167	26.59	2220.06	9	Set of present	4.0	18
6	98	15.61	765.13	8	Set of future	3.0	16
7	175	27.87	2438.95	11	Set of past	4.5	20
8	42	6.69	140.53	5	Set of future	2.5	10

Table: 24 Floristic diversity/Important Value Index of *Hydnocarpus macrocarpa*: Malakkapara (List of individuals with G≥ 30 cm represented)

Sl. No	Name of species	Family	rf (%)	rd (%)	rD (%)	IVI
1	Cullenia exarillata	Bombacaceae	0.0543	0.0877	0.3165	0.4586
2	Palaquium ellipticum	Sapotaceae	0.0434	0.1374	0.1717	0.3526
3	Aglaia lawii	Meliaceae	0.0434	0.1259	0.0544	0.2238
4	Vateria indica	Dipterocarpaceae	0.0434	0.0496	0.0502	0.1433
5	Turpinia malabarica	Staphyleaceae	0.0326	0.0458	0.0418	0.1202
6	Myristica beddomei	Myristicaceae	0.0543	0.0381	0.0252	0.1177
7	Paracroton pendulus ssp. Zeylanicus	Euphorbiaceae	0.0434	0.0343	0.0255	0.1034
8	Poeciloneuron indicum	Clusiaceae	0.0326	0.0496	0.0169	0.0991
9	Meiogyne pannosa	Annonaceae	0.0326	0.0572	0.0067	0.0966
10	Dysoxylum malabaricum	Meliaceae	0.0326	0.0114	0.0518	0.0959
11	Hydnocarpus macrocarpa	Flacourtiaceae	0.0326	0.0343	0.0288	0.0958
12	Otonephilium stipulaceum	Sapindaceae	0.0434	0.0343	0.0095	0.0873
13	Mesua ferrea	Clusiaceae	0.0326	0.0229	0.0208	0.0763
14	Oreocnide integrifolia	Urticaceae	0.0326	0.0381	0.0032	0.0740

15	Mesua thwaitesii	Clusiaceae	0.0217	0.0076	0.0417	0.0710
16		Anacardiaceae	0.0217	0.0070	0.0417	0.0606
10	Holigarna arnottiana	Allacalulaceae	0.0108	0.0038	0.0400	0.0000
17	Reinwardtiodendron anamalaiense	Meliaceae	0.0326	0.0229	0.0044	0.0599
18	Glochidion ellipticum	Euphorbiaceae	0.0326	0.0152	0.0019	0.0498
19	Antidesma montanum	Euphorbiaceae	0.0326	0.0114	0.0034	0.0475
20	Diospyros paniculata	Ebenaceae	0.0217	0.0190	0.0060	0.0468
21	Drypetes venusta	Euphorbiaceae	0.0217	0.0152	0.0077	0.0447
22	Melicope lunu- ankenda	Rutaceae	0.0217	0.0114	0.0099	0.0431
23	Syzygium gardneri	Myrtaceae	0.0217	0.0152	0.0048	0.0418
24	Calophyllum polyanthum	Clusiaceae	0.0108	0.0076	0.0228	0.0413
25	Elaeocarpus tuberculatus	Elaeocarpaceae	0.0217	0.0076	0.0109	0.0403
26	Syzygium laetum	Myrtaceae	0.0217	0.0076	0.0007	0.0301
27	Knema attenuata	Myristicaceae	0.0217	0.0076	0.0006	0.0299
28	Phoebe lanceolata	Lauraceae	0.0108	0.0114	0.0014	0.0237
29	Toona ciliata	Meliaceae	0.0108	0.0038	0.0053	0.0200
30	Dimorphocalyx glabellus var. lawianus	Euphorbiaceae	0.0108	0.0076	0.0011	0.0196
31	Canarium strictum	Burseraceae	0.0108	0.0076	0.0010	0.0195
32	Aglaia periviridis	Meliaceae	0.0108	0.0076	0.0006	0.0191
33	Actinodaphne malabarica	Lauraceae	0.0108	0.0076	0.0005	0.0190
34	Callicarpa tomentosa	Verbenaceae	0.0108	0.0076	0.0003	0.0188
35	Vernonia arborea	Asteraceae	0.0108	0.0038	0.0025	0.0172
36	Agrostistachys borneensis	Euphorbiaceae	0.0108	0.0038	0.0003	0.0150
37	Aglaia tomentosa	Meliaceae	0.0108	0.0038	0.0002	0.0149
38	Artocarpus heterophyllus	Moraceae	0.0108	0.0038	0.0002	0.0149
39	Glochidion zeylanicum var. zeylanicum	Euphorbiaceae	0.0108	0.0038	0.0002	0.0149
40	Persea macrantha	Lauraceae	0.0108	0.0038	0.0002	0.0149
41	Caryota urens	Arecaceae	0.0108	0.0038	0.0001	0.0148

Table: 25 Population Structure of Hydnocarpus macrocarpa: Neriamangalam (List of individuals with G≥30 cm represented)

S1. No.	GBH (cm)	r (cm)	Basal area (cm²)	Basal Cover (m)	Age Phase	First branching seen at (m)	Height of Stand (m)
1	100	15.92	795.82	10	Set of Present	6.0	14
2	220	35.03	3972.80	15	Set of past	8.0	28

3	70	11.15	390.37	6	Set of future	3.0	14
4	123	19.59	1205.03	8	8 Set of present		22
5	130	20.70	1345.46	13	13 Set of present		15
6	110	17.52	963.82	10	Set of present	4.0	12
7	102	16.24	828.14	12	12 Set of present		24
8	91	14.49	659.27	7	Set of future	3.0	18
9	68	10.83	368.29	8	Set of future	3.0	10
10	36	5.73	103.10	4	Set of future	3.0	01
11	140	22.29	1560.09	8	Set of present	4.0	23

Table: 26 Floristic diversity/Importance Value Index of Hydnocarpus macrocarpa: Neriamangalam (List of individuals with G≥ 30 cm represented)

S1. No	Name of species	Family	rf (%)	rd (%)	rD (%)	IVI
1	Poeciloneuron indicum	Clusiaceae	0.0205	0.0298	0.1171	0.1675
2	Bombax ceiba	Bombacaceae	0.0068	0.0037	0.1316	0.1422
3	Turpinia malabarica	Staphyleaceae	0.0342	0.0783	0.0289	0.1415
4	Dysoxylum malabaricum	Meliaceae	0.0273	0.0261	0.0493	0.1028
5	Otonephelium stipulaceum	Sapindaceae	0.0342	0.0373	0.0244	0.0960
6	Hopea parviflora	Dipterocarpaceae	0.0068	0.0074	0.0817	0.0960
7	Vernonia arborea	Asteraceae	0.0205	0.0298	0.0437	0.0941
8	Syzygium gardneri	Myrtaceae	0.0205	0.0186	0.0514	0.0906
9	Elaeocarpus tuberculatus	Elaeocarpaceae	0.0273	0.0186	0.0433	0.0894
10	Mesua thwaitesii	Clusiaceae	0.0205	0.0223	0.0402	0.0831
11	Hydnocarpus macrocarpa	Flacourtiaceae	0.0205	0.0410	0.0212	0.0828
12	Hydnocarpus pentandra	Flacourtiaceae	0.0273	0.0298	0.0228	0.0800
13	Reinwardtiodendron anamalaiense	Meliaceae	0.0205	0.0335	0.0117	0.0658
14	Knema attenuata	Myristicaceae	0.0273	0.0223	0.0138	0.0636
15	Aglaia lawii	Meliaceae	0.0136	0.0298	0.0180	0.0615
16	Polyalthia fragrans	Annonaceae	0.0205	0.0149	0.0226	0.0580
17	Diospyros sylvatica	Ebenaceae	0.0205	0.0186	0.0158	0.0550
18	Croton malabaricus	Euphorbiaceae	0.0136	0.0335	0.0050	0.0522
19	Myristica beddomei	Myristicaceae	0.0205	0.0223	0.0093	0.0522
20	Margaritaria indica	Euphorbiaceae	0.0068	0.0261	0.0165	0.0495
21	Drypetes malabarica	Euphorbiaceae	0.0136	0.0223	0.0104	0.0465
22	Pterospermum	Sterculiaceae	0.0068	0.0074	0.0292	0.0435

	reticulatum					
23	Gymnacranthera farquhariana	Myristicaceae	0.0068	0.0149	0.0212	0.0429
24	Macaranga peltata	Euphorbiaceae	0.0205	0.0149	0.0068	0.0423
25	Aglaia periviridis	Meliaceae	0.0205	0.0111	0.0099	0.0416
26	Mitragyna tubulosa	Rubiaceae	0.0136	0.0149	0.0118	0.0404
27	Chionanthus mala- elengi	Oleaceae	0.0136	0.0186	0.0078	0.0402
28	Vateria indica	Dipterocarpaceae	0.0205	0.0111	0.0053	0.0370
29	Antidesma montanum	Euphorbiaceae	0.0136	0.0186	0.0043	0.0366
30	Holigarna grahamii	Anacardiaceae	0.0136	0.0111	0.0102	0.0350
31	Aporosa cardiosperma	Euphorbiaceae	0.0205	0.0111	0.0010	0.0328
32	Glochidion ellipticum	Euphorbiaceae	0.0136	0.0111	0.0070	0.0319
33	Xanthophyllum arnottianum	Polygalaceae	0.0136	0.0149	0.0010	0.0297
34	Paracroton pendulus ssp. zeylanicus	Euphorbiaceae	0.0068	0.0186	0.0041	0.0296
35	Alstonia scholaris	Apocynaceae	0.0136	0.0111	0.0047	0.0296
36	Cryptocarya wightiana	Lauraceae	0.0136	0.0074	0.0069	0.0281
37	Trichilia connaroides	Meliaceae	0.0136	0.0111	0.0030	0.0279
38	Baccaurea courtallensis	Euphorbiaceae	0.0136	0.0111	0.0020	0.0269
39	Clausena indica	Rutaceae	0.0136	0.0111	0.0011	0.0260
40	Spondias indica	Anacardiaceae	0.0136	0.0074	0.0045	0.0257
41	Toona ciliata	Meliaceae	0.0136	0.0074	0.0040	0.0251
42	Diospyros paniculata	Ebenaceae	0.0136	0.0074	0.0030	0.0242
43	Myristica malabarica	Myristicaceae	0.0136	0.0074	0.0019	0.0231
44	Cinnamomum malabatrum	Lauraceae	0.0136	0.0074	0.0013	0.0225
45	Mastixia arborea	Cornaceae	0.0068	0.0074	0.0071	0.0214
46	Glochidion zeylanicum var. zeylanicum	Euphorbiaceae	0.0068	0.0074	0.0069	0.0213
47	Dimorphocalyx glabellus var. lawianus	Euphorbiaceae	0.0068	0.0074	0.0049	0.0192
48	Mallotus philippensis	Euphorbiaceae	0.0068	0.0074	0.0026	0.0169
49	Dipterocarpus indicus	Dipterocarpaceae	0.0068	0.0037	0.0058	0.0164
50	Dalbergia latifolia	Fabaceae	0.0068	0.0074	0.0018	0.0162
51	Polyalthia fragrans	Annonaceae	0.0068	0.0037	0.0050	0.0156
52	Litsea keralana	Lauraceae	0.0068	0.0074	0.0011	0.0154
53	Pterygota alata	Sterculiaceae	0.0068	0.0074	0.0007	0.0150
54	Terminalia paniculata	Combretaceae	0.0068	0.0037	0.0032	0.0138
55	Dimocarpus longan	Sapindaceae	0.0068	0.0037	0.0031	0.0137

57 Terminalia bellerica Combretaceae 0.0068 0.0037 0.0021 0.011 58 Cassia fistula Caesalpiniaceae 0.0068 0.0037 0.0020 0.011 59 Flacourtia montana Flacourtiaceae 0.0068 0.0037 0.0019 0.011 60 Memecylon sp. Melastomataceae 0.0068 0.0037 0.0018 0.011 61 Hopea racophloea Dipterocarpaceae 0.0068 0.0037 0.0014 0.013 62 Polyathia fragrans Annaonaceae 0.0068 0.0037 0.0012 0.01 63 Litsea keralana Lauraceae 0.0068 0.0037 0.0012 0.01 64 amottiana Anacardiaceae 0.0068 0.0037 0.0011 0.01 65 Artocarpus hirsutus Moraceae 0.0068 0.0037 0.0011 0.01 66 Grewia tiliifolia Tiliaceae 0.0068 0.0037 0.0010 0.01 67 Xanthophyllum amotianum <th></th> <th>1</th> <th></th> <th>1</th> <th>r</th> <th></th> <th></th>		1		1	r		
58 Cassia fistula Caesalpiniaceae 0.0068 0.0037 0.0020 0.011 59 Flacourtia montana Flacourtiaceae 0.0068 0.0037 0.0019 0.011 60 Memecylon sp. Melastomataceae 0.0068 0.0037 0.0018 0.011 61 Hopea racophloea Dipterocarpaceae 0.0068 0.0037 0.0014 0.013 62 Polyathia fragrans Annaonaceae 0.0068 0.0037 0.0014 0.013 63 Litsea keralana Lauraceae 0.0068 0.0037 0.0012 0.01 64 Anottiana Anacardiaceae 0.0068 0.0037 0.0012 0.01 65 Artocarpus hirsutus Moraceae 0.0068 0.0037 0.0011 0.01 66 Grewia tiliifolia Tiliaceae 0.0068 0.0037 0.0010 0.01 67 Arthophyllum Polygalaceae 0.0068 0.0037 0.0007 0.01 68 Ficus sp. Moraceae			=				0.0132
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Terminalia bellerica	Combretaceae	0.0068	0.0037	0.0021	0.0126
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Cassia fistula	Caesalpiniaceae	0.0068	0.0037	0.0020	0.0126
61 Hopea racophloea Dipterocarpaceae 0.0068 0.0037 0.0015 0.013 0.011 0.013 0.011 <th< td=""><td>59</td><td>Flacourtia montana</td><td>Flacourtiaceae</td><td>0.0068</td><td>0.0037</td><td>0.0019</td><td>0.0125</td></th<>	59	Flacourtia montana	Flacourtiaceae	0.0068	0.0037	0.0019	0.0125
62 Polyathia fragrans Annaonaceae 0.0068 0.0037 0.0014 0.017 63 Litsea keralana Lauraceae 0.0068 0.0037 0.0013 0.01 64 Holigarna arnottiana Anacardiaceae 0.0068 0.0037 0.0012 0.01 65 Artocarpus hirsutus Moraceae 0.0068 0.0037 0.0011 0.01 66 Grewia tiliifolia Tiliaceae 0.0068 0.0037 0.0011 0.01 67 Xanthophyllum arnotianum Polygalaceae 0.0068 0.0037 0.0010 0.01 68 Ficus sp. Moraceae 0.0068 0.0037 0.0009 0.01 69 Vitex altissima Verbenaceae 0.0068 0.0037 0.0007 0.01 70 Terminalia bellirica Combretaceae 0.0068 0.0037 0.0004 0.01 72 Litsea coriacea Lauraceae 0.0068 0.0037 0.0002 0.01 <td>60</td> <td>Memecylon sp.</td> <td>Melastomataceae</td> <td>0.0068</td> <td>0.0037</td> <td>0.0018</td> <td>0.0123</td>	60	Memecylon sp.	Melastomataceae	0.0068	0.0037	0.0018	0.0123
63 Litsea keralana Lauraceae 0.0068 0.0037 0.0013 0.01 64 Holigarna arnottiana Anacardiaceae 0.0068 0.0037 0.0012 0.01 65 Artocarpus hirsutus Moraceae 0.0068 0.0037 0.0011 0.01 66 Grewia tiliifolia Tiliaceae 0.0068 0.0037 0.0011 0.01 67 Xanthophyllum arnotianum Polygalaceae 0.0068 0.0037 0.0010 0.01 68 Ficus sp. Moraceae 0.0068 0.0037 0.0009 0.01 69 Vitex altissima Verbenaceae 0.0068 0.0037 0.0007 0.01 70 Terminalia bellirica Combretaceae 0.0068 0.0037 0.0004 0.01 71 polyalthia coffeoides Annonaceae 0.0068 0.0037 0.0002 0.01 73 Caryota urens Arecaceae 0.0068 0.0037 0.0002 0.01 74 Persea macrantha Laur	61	Hopea racophloea	Dipterocarpaceae	0.0068	0.0037	0.0015	0.0121
	62	Polyathia fragrans	Annaonaceae	0.0068	0.0037		0.0120
64arnottianaAnacardiaceae 0.0068 0.0037 0.0012 0.0112 65 Artocarpus hirsutusMoraceae 0.0068 0.0037 0.0011 0.011 66 Grewia tiliifoliaTiliaceae 0.0068 0.0037 0.0011 0.011 67 Xanthophyllum arnotianumPolygalaceae 0.0068 0.0037 0.0010 0.01 68 Ficus sp.Moraceae 0.0068 0.0037 0.0009 0.01 69 Vitex altissimaVerbenaceae 0.0068 0.0037 0.0007 0.01 70 Terminalia belliricaCombretaceae 0.0068 0.0037 0.0006 0.01 71 polyalthia coffeoidesAnnonaceae 0.0068 0.0037 0.0003 0.016 72 Litsea coriaceaLauraceae 0.0068 0.0037 0.0003 0.016 73 Caryota urensArecaceae 0.0068 0.0037 0.0002 0.016 74 Persea macranthaLauraceae 0.0068 0.0037 0.0002 0.016 75 Holoptelea integrifoliaUlmaceae 0.0068 0.0037 0.0002 0.016 76 Glyptopetalum zeylanicumCelastraceae 0.0068 0.0037 0.0002 0.016 77 Semecarpus travancoricaAnacardiaceae 0.0068 0.0037 0.0002 0.016 78 Xanthophyllum arnottianumPolygalaceae 0.0068 0.0037 0.0002 $0.$	63	Litsea keralana	Lauraceae	0.0068	0.0037	0.0013	0.0118
66 Grewia tiliifolia Tiliaceae 0.0068 0.0037 0.0011 0.01 67 Xanthophyllum arnotianum Polygalaceae 0.0068 0.0037 0.0010 0.01 68 Ficus sp. Moraceae 0.0068 0.0037 0.0009 0.01 69 Vitex altissima Verbenaceae 0.0068 0.0037 0.0007 0.01 70 Terminalia bellirica Combretaceae 0.0068 0.0037 0.0006 0.01 71 polyalthia coffeoides Annonaceae 0.0068 0.0037 0.0004 0.01 72 Litsea coriacea Lauraceae 0.0068 0.0037 0.0003 0.01 73 Caryota urens Arecaceae 0.0068 0.0037 0.0002 0.01 74 Persea macrantha Lauraceae 0.0068 0.0037 0.0002 0.01 75 Holoptelea integrifolia Ulmaceae 0.0068 0.0037 0.0002 0.01 76 Glyptopetalum zeylanicum C	64		Anacardiaceae	0.0068	0.0037	0.0012	0.0117
67 Xanthophyllum arnotianum Polygalaceae 0.0068 0.0037 0.0010 0.01 68 Ficus sp. Moraceae 0.0068 0.0037 0.0009 0.01 69 Vitex altissima Verbenaceae 0.0068 0.0037 0.0007 0.01 70 Terminalia bellirica Combretaceae 0.0068 0.0037 0.0006 0.01 71 polyalthia coffeoides Annonaceae 0.0068 0.0037 0.0004 0.01 72 Litsea coriacea Lauraceae 0.0068 0.0037 0.0003 0.01 73 Caryota urens Arecaceae 0.0068 0.0037 0.0002 0.01 74 Persea macrantha Lauraceae 0.0068 0.0037 0.0002 0.01 75 Holoptelea integrifolia Ulmaceae 0.0068 0.0037 0.0002 0.01 76 Glyptopetalum zeylanicum Celastraceae 0.0068 0.0037 0.0002 0.01 77 Semecarpus travancorica	65	Artocarpus hirsutus	Moraceae	0.0068	0.0037	0.0011	0.0117
67arnotianumPolygalaceae 0.0068 0.0037 0.0010 0.011 68 Ficus sp.Moraceae 0.0068 0.0037 0.0009 0.011 69 Vitex altissimaVerbenaceae 0.0068 0.0037 0.0007 0.011 70 Terminalia belliricaCombretaceae 0.0068 0.0037 0.0007 0.011 70 Terminalia belliricaCombretaceae 0.0068 0.0037 0.0006 0.011 71 polyalthia coffeoidesAnnonaceae 0.0068 0.0037 0.0004 0.011 72 Litsea coriaceaLauraceae 0.0068 0.0037 0.0003 0.011 73 Caryota urensArecaceae 0.0068 0.0037 0.0003 0.011 74 Persea macranthaLauraceae 0.0068 0.0037 0.0002 0.011 75 Holoptelea integrifoliaUlmaceae 0.0068 0.0037 0.0002 0.011 76 Glyptopetalum zeylanicumCelastraceae 0.0068 0.0037 0.0002 0.011 77 Semecarpus travancoricaAnacardiaceae 0.0068 0.0037 0.0002 0.011 78 Xanthophyllum arnottianumPolygalaceae 0.0068 0.0037 0.0002 0.011	66	Grewia tiliifolia	Tiliaceae	0.0068	0.0037	0.0011	0.0117
69 Vitex altissima Verbenaceae 0.0068 0.0037 0.0007 0.01 70 Terminalia bellirica Combretaceae 0.0068 0.0037 0.0006 0.01 71 polyalthia coffeoides Annonaceae 0.0068 0.0037 0.0004 0.016 72 Litsea coriacea Lauraceae 0.0068 0.0037 0.0004 0.016 73 Caryota urens Arecaceae 0.0068 0.0037 0.0003 0.016 73 Caryota urens Arecaceae 0.0068 0.0037 0.0003 0.016 74 Persea macrantha Lauraceae 0.0068 0.0037 0.0002 0.016 75 Holoptelea integrifolia Ulmaceae 0.0068 0.0037 0.0002 0.016 76 Glyptopetalum zeylanicum Celastraceae 0.0068 0.0037 0.0002 0.016 77 Semecarpus travancorica Anacardiaceae 0.0068 0.0037 0.0002 $0.$	67		Polygalaceae	0.0068	0.0037	0.0010	0.0115
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	68	Ficus sp.	Moraceae	0.0068	0.0037	0.0009	0.0115
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	69	Vitex altissima	Verbenaceae	0.0068	0.0037	0.0007	0.0113
72 Litsea coriacea Lauraceae 0.0068 0.0037 0.0003 0.016 73 Caryota urens Arecaceae 0.0068 0.0037 0.0003 0.016 74 Persea macrantha Lauraceae 0.0068 0.0037 0.0002 0.016 74 Persea macrantha Lauraceae 0.0068 0.0037 0.0002 0.016 75 Holoptelea integrifolia Ulmaceae 0.0068 0.0037 0.0002 0.016 76 Glyptopetalum zeylanicum Celastraceae 0.0068 0.0037 0.0002 0.016 77 Semecarpus travancorica Anacardiaceae 0.0068 0.0037 0.0002 0.016 78 Xanthophyllum arnottianum Polygalaceae 0.0068 0.0037 0.0002 0.016	70	Terminalia bellirica	Combretaceae	0.0068	0.0037	0.0006	0.0112
73 Caryota urens Arecaceae 0.0068 0.0037 0.0003 0.016 74 Persea macrantha Lauraceae 0.0068 0.0037 0.0002 0.016 75 Holoptelea integrifolia Ulmaceae 0.0068 0.0037 0.0002 0.016 76 Glyptopetalum zeylanicum Celastraceae 0.0068 0.0037 0.0002 0.016 77 Semecarpus travancorica Anacardiaceae 0.0068 0.0037 0.0002 0.016 78 Xanthophyllum arnottianum Polygalaceae 0.0068 0.0037 0.0002 0.016	71	polyalthia coffeoides	Annonaceae	0.0068	0.0037	0.0004	0.0109
74 Persea macrantha Lauraceae 0.0068 0.0037 0.0002 0.016 75 Holoptelea integrifolia Ulmaceae 0.0068 0.0037 0.0002 0.016 76 Glyptopetalum zeylanicum Celastraceae 0.0068 0.0037 0.0002 0.016 77 Semecarpus travancorica Anacardiaceae 0.0068 0.0037 0.0002 0.016 78 Xanthophyllum arnottianum Polygalaceae 0.0068 0.0037 0.0002 0.016	72	Litsea coriacea	Lauraceae	0.0068	0.0037	0.0003	0.0109
75Holoptelea integrifoliaUlmaceae 0.0068 0.0037 0.0002 0.016 76 Glyptopetalum zeylanicumCelastraceae 0.0068 0.0037 0.0002 0.016 77 Semecarpus travancoricaAnacardiaceae 0.0068 0.0037 0.0002 0.016 78 Xanthophyllum arnottianumPolygalaceae 0.0068 0.0037 0.0002 0.016	73	Caryota urens	Arecaceae	0.0068	0.0037	0.0003	0.0109
75integrifoliaOlmaceae 0.0068 0.0037 0.0002 0.010 76Glyptopetalum zeylanicumCelastraceae 0.0068 0.0037 0.0002 0.010 77Semecarpus travancoricaAnacardiaceae 0.0068 0.0037 0.0002 0.010 78Xanthophyllum arnottianumPolygalaceae 0.0068 0.0037 0.0002 0.010	74	Persea macrantha	Lauraceae	0.0068	0.0037	0.0002	0.0108
76zeylanicumCelastraceae 0.0068 0.0037 0.0002 0.016 77Semecarpus travancoricaAnacardiaceae 0.0068 0.0037 0.0002 0.016 78Xanthophyllum arnottianumPolygalaceae 0.0068 0.0037 0.0002 0.016	75	integrifolia	Ulmaceae	0.0068	0.0037	0.0002	0.0108
77travancoricaAnacardiaceae0.00680.00370.00020.01078Xanthophyllum arnottianumPolygalaceae0.00680.00370.00020.010MemeculonMemeculonImage: Comparison of the second s	76		Celastraceae	0.0068	0.0037	0.0002	0.0108
78 arnottianum Polygalaceae 0.0068 0.0037 0.0002 0.011 Memeculon Memec	77	-	Anacardiaceae	0.0068	0.0037	0.0002	0.0108
Memecylon	78		Polygalaceae	0.0068	0.0037	0.0002	0.0107
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	79	Memecylon umbellatum	Melastomataceae	0.0068	0.0037	0.0001	0.0107
80 Coffea arabica Rubiaceae 0.0068 0.0037 0.0001 0.010	80	Coffea arabica	Rubiaceae	0.0068	0.0037	0.0001	0.0107
81 Leea indica Leeaceae 0.0068 0.0037 0.0001 0.010	81	Leea indica	Leeaceae	0.0068	0.0037	0.0001	0.0107

Table: 27

Climatological data of Hydnocarpus macrocarpa: Malakkapara

Season	Atm. Temperature (ºC)	Night Temperature (°C)	Atm. Humidity (Day-%)	Atm. Humidity (Night-%)
Summer	29	23	58	79
Monsoon	22	19	74	96
Winter	22	17	69	86

Table: 28

Edaphological data of Hydnocarpus macrocarpa: Malakka	ıpara
---	-------

Season	Soil Level	Texture	PH	N (Kg/ha)	P (Kg/ha)	K (Kg/ha)	Temp. (ºC)	Moisture (%)
Summer	Surface Middle Bottom	Silt loam Sandy loam Loam	5.3 4.5 5.3	508 492.4 639.7	1.3 4.3 2.1	174.7 43 38.1	22	42.39
Monsoon	Surface Middle Bottom	Silty clay loam Silt clay Silt clay loam	4.7 4.9 5.1	779.24 511.28 520.52	68.86 25.08 11.22	122.10 366.30 542.30	20	30.35
Winter	Surface Middle Bottom	Silt clay Loam Silt loam	5.2 5.2 5.0	448.4 435.9 323	34.2 33.5 26.3	207.2 67.2 60.5	18.7	35.26

Table: 29

Climatological data of *Hydnocarpus macrocarpa*: Neriamangalam

Season	Atm.Temperature (°C)	Night Temperature (ºC)	Atm. Humidity (Day-%)	Atm. Humidity (Night-%)
Summer	31	23	69	73
Monsoon	26	22	84	92
Winter	27	20	74	88

Table: 30

Edaphological data of *Hydnocarpus macrocarpa*: Neriamangalam

Season	Soil Level	Texture	P ^H	N (Kg/ha)	P (Kg/ha)	K (Kg/ha)	Temp. (°C)	Moisture (%)
Summer	Surface Middle Bottom	Silt loam Silt loam Silty Clay loam	4.6 4.8 5.1	366.52 360.36 354.20	52.25 23.43 9.24	1203.40 216.70 114.40	23	15.52
Monsoon	Surface Middle Bottom	Silt clay loam Sandy clay loam Silt loam	5.4 5.1 5.4	545.16 609.84 505.12	44.22 32.67 4.62	301.40 121.00 1566.40	22.5	26.53

Winter	Surface Middle Bottom	Silt clay Silty clay loam Clay loam	5.1 4.7 5.1	508 539.4 407.7	3.9 3.4 5.8	141.1 146.7 65.3	22.2	21.63
--------	-----------------------------	--	-------------------	-----------------------	-------------------	------------------------	------	-------

Table: 31Vegetative propagation through stem cuttings in
Hydnocarpus macrocarpa

Treatment (ppm)	Rooting (%)	Mean No of Roots (Mean ± SD) (cm)	Mean Length of Roots (Mean ± SD) (cm)	Survival of Ramets (%)
Control	36	1.25 ± 0.5	7.20 ± 2.28	50
IAA3000	16	1.00 ± 0	1.50 ± 0	0
IAA4000	16	1.00 ± 0	1.50 ± 0	100
IAA5000	32	1.00 ± 0	2.25 ± 0.354	100
IAA 6000	Nil	Nil	Nil	0
IAA 8000	16	4.00 ± 0	4.875 ± 1.89	50
IBA3000	16	1.00 ± 0	1.50 ± 0	66
IBA4000	16	1.00 ± 0	1.30 ± 0	50
IBA5000	66	3.50 ± 2.516	7.53 ± 3.23	100
IBA 6000	60	1.67 ± 0.58	6.70 ± 4.49	100
IBA 8000	50	2.67 ± 1.53	1.34 ± 0.4	50
NAA3000	50	1.66 ± 0.577	4.40 ± 0.742	66
NAA4000	50	2.50 ± 2.121	7.10 ± 1.851	0
NAA5000	16	3.00 ± 0	7.67 ± 0.76	100
NAA 6000	60	1.67 ± 0.58	10.1 ± 5.95	100
NAA 8000	Nil	Nil	Nil	Nil

Table: 32 Vegetative propagation through air layering in *Hydnocarpus macrocarpa*

S1. No.	No. of layers done	Treatment/ Control	Percent of rooting	Survival %		
1	4	Control	Control 25			
2	4	IAA 1000	25	100		
3	4	IAA 3000	AA 3000 50			
4	4	IAA 5000	50	50		
5	4	IBA 1000	50	50		
6	4	IBA 3000	25	100		
7	4	IBA 5000	50	50		
8	4	NAA 1000	50	100		
9	4	NAA 3000	100	75		
10	4	NAA 5000	50	50		

Sl.	Seed	Container	Condition	Moisture(M)				_		re con		-								
No	type		Temp./Humidity	Germinatio n (G) %	09-04-13	10-04-13	11-04-13	12-04-13	13-04-13	14-04-13	15-04-13	16-04-13	17-04-13	09-05-13	10-05-13	13-05-13	14-05-13	06-06-13	11-06-13	02-07-13
1	Fresh	Open Plastic	Ambient	М	45	43	39	37	30	24	20	17	15							
-	110011	Tray	(25°C, RH 50-60%)	G	85	80	75	66	50	36	34	33	0							
2	"	Closed Bottle	Ambient	М	45									43				39		
4			(25°C, RH 50-60%)	G	80									70				65		
3	"	Closed	Ambient	М	45									41				40		
		Poly.bag	(25°C, RH 50-60%)	G	75									60				50		
	"	Closed	Ambient	М	45									34				32		
4	"	Poly.bag in sawdust	(25°C, RH 50-60%)	G	75									50				30		
5	"	Open Plastic	16°C	М			55					17				14			09	08
5		Tray	RH:- 45%	G			0					0				0			0	0
6	"	Closed Bottle	16°C	М			55							51				54		
0		Closed Dottle	RH:- 45%	G			30							17				17		
7	"	Closed	16°C	М			55							54				53		
'		Poly.bag	RH:- 45%	G			40							0				0		
		Closed	16°C	М			55							51				48		
8	"	Poly.bag in sawdust	RH:- 45%	G			33							0				0		
9	"	Open Plastic	20°C	М	45	28						25							18	17
		Tray	RH:-70%	G	0	0						17							0	0
10	"	Closed Bottle	20°C	М	45									43					39	
		Closed Bottle	RH:-70%	G	70									50					20	
11	"	Closed	20°C	М	45							45							46	
		Poly.bag	RH:-70%	G	20							17							0	
12		Closed	20°C	М	45							39							28	
	"	Poly.bag in sawdust	RH:-70%	G	0							0							0	

Table: 33 Effect of storage conditions on the moisture content and germination of Hydnocarpus macrocarpa seeds

Site	Status	Planting sites	Geographic	Altitude
<u>No.</u> 1.	In-situ	Kulamankuzhikudi	<u>coordinates</u> Lat: 10º 02' 35.2'' N	<u>(m asl)</u> 512 m
1.	m Suu			012 III
		Neriamangalam Range,	Long: 76 [°] 50′ 9.4″ E	
0	. .	Idukki Dt.		
2.	In-situ	Kulamavu MPCA	Lat: 09º 48' 57", N.	890m
		Nagarampara range,	Long: 76° 53' 38.3"	
		Kotayam Division.	E.	
3.	In-situ	Malakkapara	Lat: 10º 17' 20.4"N.	849m
		Sholayar Range,	Long: 76° 48' 27.9"	
		Vazhachal Division.	Е.	
4.	In-situ	Rosemala	Lat: 08º 56′ 14.7″N.	524 m
		Aryankavu Range,	Long: 770 10' 19.8"	
		Thenmala Division.	Е.	
5.	In-situ	Wayanadu MPCA,	Lat: 11º 51' 3.19", N.	800 m
		Chandanathode,	Long: 75° 48′ 5.94″	
		Periya Range,	Е.	
		N.Wayanad Forest		
		Division.		
6.	In-situ	Kallar,Mottamoodu,	Lat: 08º 43' 23.75"N.	400 m
		Palode Range	Long: 77° 07'	
		Thiruvanathapuram	33.38″E.	
		Division		
7.	Ex-situ	KFRI-	Lat: 10° 31′ 47″ N.	45 m
		Arboretum,Peechi,	Long: 76° 22' 7.5" E.	
		Trichur Dt.	0	
8.	Ex-situ	KFRI-Subcenter,	Lat: 11º 17' 52.9"N.	39m
0.		Nilambur,	Long: 76º 14' 56.8E.	0,7111
		Malappuram Dt.	20115. 10 11 00.012.	
9.	Ex-situ	KFRI-FRC, Velupadam,	Lat: 10º 26' 12.4"N.	106m
э.	<u>1</u> л-5ии	_		100111
		Trichur Dt.	Long: 76º 21' 28.4E.	

Table 34Restoration: Details of planting

Table: 35

Restoration of *Hydnocarpus macrocarpa*: Establishment, growth and factors affecting seedling survival

Place of planting	Date of planting	No. of seedlings planted	Average height during planting(cm)	Average height after 6 months (cm)	Average height after 12-16 months(cm)	Survival after 12-16 months (%)	Rema f
In-Situ sites							
Kulamavu MPCA	29-06-12	250	58	65	66	39	Wilting
Variamangalam	28-06-12	050	E4	65	77	72	shortag
Neriamangalam	29-06-12	250	54	00	11	73	human
Rosemala	11-07-12	250	68	69	71	61	interver
Malakkapara	20-07-12	250	69	74	82	71	caterpil
Kallar	20-10-12	200	63	65	66	52	infestat
Periya	08-11-12	200	75	76	79	67	-
Ex-Situ sites	<u> </u>	<u> </u>	<u> </u> ,		<u> </u>	1	1
KFRI Arboretum	03-08-12	50	69	78	96	80	
FRC Velupadam	08-08-12	50	73	75	77	94	Wildlife
Sub centre, Vilambur	13-08-12	50	77	81	83	92	interver wilting

6. Discussion and Conclusion

The population structural studies conducted in Drypetes malabarica in the four forest areas viz., Neriamangalam, Malakkapara, Shendurny and Kulamavu MPCA has revealed much similarities and resemblances in the distribution pattern, habitat preferences, associate species in different sites. Generally, the species is distributed in the evergreen forests at an altitude above 500m asl. The associated species such as, Elaeocarpus tuberculatus, Vateria indica, Poeciloneuron indicum, Holigarna grahamii, (Neriamangalam); Palaquium ellipticum, Cullenia exarillata, Myristica beddomei, Mesua ferrea var. ferrea, Semecarpus travancoricum (Malakkapara); Lophopetalum wightianum., Hopea racophloea, Gluta travancorica (Shenduruny); Calophyllum polyanthum, Elaeocarpus tuberculatus, Dimocarpus longan etc. (Kulamavu MPCA) found as top layer/canopy species at 31-40m. Whereas, Drypetes malabarica noted as a subcanopy, second – third layer species at 07-30 m height range along with its associated species such as Hydnocarpus macrocarpa., Knema attenuata, small trees of Mesua thwaitesii (Neriamangalam), Myristica beddomei, Aglaia periviridis, small trees of Cullenia exarillata, (Malakkapara), Pterospermum diversifolium, Flacourtia montana, Hydnocarpus pentandra, Myristica beddomei (Shenduruny), Diospyros paniculata, Gordonia obtusa, Mastixia arborea, Turpinia malabarica etc. at Kulamavu MPCA.

The spatial occurrence of *Drypetes malabarica* has been displayed scattered distribution pattern in adjacent to water course indicating the habitat specificity of the species. The age wise distribution of the populations in the enumerated quadrats at four sites showed below average (40%) number of pre-reproductive

individuals pointing towards the moderately low percent of regeneration potential of the species. The age profile of the populations was revealed that the individuals of *D. malabarica* start flowers when the gbh attained around 50-70 cm along with 10-12 m height range. The species diversity analysis of *D. malabarica* in each site (five quadrats of each sized 33x33m² covering a total enumerated area of 5445m² per site) exhibited comparatively lower dominant nature of the D.malabarica among the associates. In Neriamangalam, out of 57 species enumerated in five quadrats, D.malabarica attained with 13th relative position. Further, the area of occurrence of the species calculated into 3km² and area of occupancy into 0.0036 km² along with 50 mature individuals in the particular forest segment. Similarly at Malakkapara, out of 69 species enumerated in five quadrats, D.malabarica attained with 11th relative position. The area of occurrence of the species calculated into 30km² and area of occupancy into 0.011 km² along with 150 mature individuals in the particular forest segment. Whereas, at Shenduruny, among 63 associated species identified, *D.malabarica* attained at 26th relative position. The area of occurrence calculated into 75km² and area of occupancy into 0.0047 km² along with 65 mature individuals in the particular forest segment. At Kulamavu MPCA, among 54 associated species, D.malabarica attained with 11th relative position. Further, the area of occurrence of the species calculated into 1.7 km² and area of occupancy into 0.015 km² with 200 mature individuals in the particular forest segment. The aggregation in area of occurrence and area occupancy of the species in four study sites thus showed an extent of species in 110km² with 465 mature individuals under area of occupancy within 0.0343km². These values are found falling under 'Endangered' (EN) threat category of IUCN wherein the extent of species had given @ 5000km² with less than 2500 mature individuals under an area of occupancy of 500km².

The population structural studies of *Hydnocarpus macrocarpa* in the two study areas viz., Malakkapara and Neriamangalam projected much resemblances and similarities in distribution pattern and habitat requirements. The species distribution noted in the evergreen/ semi evergreen forests at an altitude above 500 asl. The associated species such as Elaeocarpus tuberculatus, Poeciloneuron indicum, Vateria indica, Holigarna grahamii etc. (Malakkapara) and Dipterocarpus indicus, Elaeocarpus tuberculatus, Poeciloneuron indicum etc. (Neriamangalam) found as top layer/ canopy species at 31-40 m height range at two study sites. At the same time, Hydnocarpus macrocarpa noted as sub canopy, second-third layer species at 10-28 m height range along with associated species such as small trees of Dysoxylum malabaricum, Knema attenuata, Mesua thwaitesii. Otonephelium stipulaceum (Malakkapara); Mastixia arborea, *Gymnacranthera farquariana*, Holigarna arnottiana, Paracroton pendulus, small trees of Vateria indica etc. at Neriamangalm.

The spatial distribution of *H. macrocarpa* displayed the scattered arrangement of individuals in adjacent to watercourse indicating the habitat specificity of the species. The age wise distribution in the enumerated quadrats at two sites showed below average (40%) number of pre reproductive individuals pointing towards the moderately low percent in natural regeneration ability of the species. The age profile of the populations showed that the *H. macrocarpa* individuals initiate flowering when the gbh attained around 100-110 cm along with 14-15m height range. The species diversity analysis of *H. macrocarpa* at Malakkapara (5 quadrats, each sized of 33mx33m covering, a total enumerated area of 5445m²) and 7 quadrats at Neriamangalam covering an enumerated area of 7623m² showed moderately lower dominant nature among the associates. At, Malakkapara, out of 41 species enumerated in five quadrats, H. *macrocarpa* attained with 11th position. Further, the area of occurrence of the species calculated into 12 km² with an area of occupancy, 0.0045km² covering mature individuals of 55 numbers. Similarly, at Neriamangalam, out of 81 species enumerated in 7 quadrats, H. macrocarpa attained with 11th position among the associates. The area of occurrence calculated into 3 km² with an area of occupancy of 0.012 km² with 150 mature individuals in the particular forest. The aggregation in area of occurrence and area of occupancy of the species in two study sites thus revealed an extent of species in 15 km² with 205 mature individuals under area of occupancy of 0.0165km². These values are falling under Critically Endangered (CR) category of IUCN wherein the extent of species is less than 100km² and with less than 250 mature individuals under an area of occupancy of below 10km².

The height wise arrangement of the species individuals (vertical profile) indicated that both stand height and girth influences the reproductive phases in each populations (Kershaw, 1973; Pascal, 1988). The dominance indicated the extreme biological competitive behavior of the species within the poor diversity of the particular quadrat, which was found favourable for species growth and reproduction. The moderately lower dominance of *D. malabarica and H. macrocarpa*, suggesting the minimum competitive behaviour due to increase in diversity and overriding importance of physical difficulties existing in respective habitats of the species.

Flushing of leaves in both the species observed along with mature leaves during February- April. In majority of forest tree

species, peak flushing noted during January –April when temperature and sunshine are maximum. Moreover, these environmental characters are regarded as suitable for maximizing photosynthesis and vegetative growth (Salisbury and Ross, 1974). The flushing along with old leaves is a characteristic of evergreen species, especially trees in order to retain leaves throughout the year for their biological functions. The extended or irregular flushing in *D. malabarica* in turn supported extended flowering and fruiting, to compensate the fruit loss as reported in *Gluta travancorica* (Jose,2001), *Mangifera indica*, *Hevea brasiliensis* (Richards,1952; Bawa and Ng,1990).

As per the various ecological studies conducted in the Western Ghats region, 26% of the tropical plants had shown the behaviour of simultaneous flushing and flowering. (Murali and Sukumar, 1994; Elourd et al, 1997). In D. malabarica and H. macrocarpa, flowering noted along with flushing. The Pollen-Ovule ratio (P:O) is the conservative indicator of breeding systems in flowering plants (Cruden, 1977). The flowers of D. malabarica produced 6,096 pollen per ovule suggesting facultative xenogamous breeding behaviour of the species as reported in Ochreinauclea missionis, a vulnerable tree of Western Ghats (Jose, 2001). But in the case of H. macrocarpa it is, 87,282 pollen per ovule and suggesting facultative nature of breeding behaviour of the species. The wilting of flowers during pollination period, undeveloped seeds in the ovary etc. in D. malabarica in turn reflected the pre and post fertilization anomalies taking place in the species (Bawa, 1990). The fruit infestations in forest trees are well known (Hocker, 1979). The fruit damage in *D. malabarica* is very high and this has affected the soil seed bank and seedling regeneration, which ultimately led to the rarity of the species in natural habitats. A large proportion of tropical forest trees attract vertebrate fruit

dispersers such as birds, bats etc. by producing a large number of nutritious fruits with seeds (Howe, 1984: Thornton *et al.*, 1996). In *D. malabarica*, the ripened fruits are fleshy and having pleasant odour and therefore attracted by different birds and mammals. The ripened and fallen fruits of *D. malabarica* and *H. macrocarpa* are also consumed by ground predators as the seeds contained thick endosperm.

In an ecological study, both climate and soil factors play a key role in the establishment, growth and reproduction of species (Primack, 1994). Microsite conditions such as sunlight, temperature, humidity, rainfall etc. can often control the germination and subsequent establishment of plant species. The variations in these conditions triggered the initiation and development of leafing, flowering, fruit development, dispersal, regeneration etc.

The edaphic factors such as soil moisture and temperature are important parameters in determining the survival of seedling bank. In plants, the nutrient elements are essential for various processes such as chlorophyll, protein synthesis nitrogen metabolism, lignifications etc.

The investigations on the climatic and edaphic factors of *D. malabarica* and *H. macrocarpa* in natural habitats are therefore of immense significance in understanding the niche specialities and *in situ* requirements of the species in general.

The climatic data recorded such as atmospheric temperature (day and night), atmospheric humidity (day and night) was almost identical in all the four study sites of *D. malabarica*. The soil P^{H} was

acidic in all the sites as reported generally for the forest soils. The soil texture varied from silt clay loam to silt sandy loam and silt loam in summer, monsoon and winter months respectively for the species. Soil temperature ranged from 20-23°C and soil moisture content recorded from 12-29% in different seasons and sites of the species. In the case of *H. macrocarpa*, the climatic data recorded such as atmospheric temperature (day and night), atmospheric humidity (day and night) was identical in the two study sites. The soil P^H was acidic in all the sites as reported generally for the forest soils. The soil texture varied from silt clay loam to silt clay and sandy clay loam in summer, monsoon and winter months respectively for the species. Soil temperature ranged from 19 -23°C and soil moisture content recorded from 15-42% in different seasons and sites of the species.

The different methods of vegetative propagation, such as rooting of stem cuttings, air layering etc. have shown difficulties in rooting success with aged plants of both D. malabarica and H. macrocarpa. However, juvenile plants of these species exhibited promising results in rooting. The juvenile stem cuttings are rooted with comparative success rate with different auxins in D. malabarica. A significant observation is that a moderate level of auxin concentration of NAA 3000 ppm found best rooting performance (100%), compared to lower and higher concentrations (1000 and 5000ppm). Whereas, control set resulted only with 10-15% success only. It is laso noted that the auxin was influenced the formation of more number and length of roots compared to the control set. In air layering, the auxins generally showed positive effect in rooting. A moderate level of auxin concentration such as IAA and IBA at 1000ppm and NAA at 3000ppm has resulted maximum rooting success (100%), but on increasing or decreasing the auxin concentration, the rooting ability has found

decreased. In *H. macrocarpa*, a moderately higher concentration of auxin (IBA 5000ppm) has resulted better stem rooting (66%) compared to control (30-35%). The auxin was also affected increase in number of roots compared to the control set. During air layering, moderate auxin concentration (NAA 3000ppm) has resulted maximum success (100%). By increasing or decreasing auxin level the rooting has minimized. The application of auxin may stimulate the cambial activity in juvenile cuttings at a higher rate than in adult cuttings as reported in *Terminalia chebula* by Jose and Jacob Thomas, 1998. Further, Thimann (1956) suggested that different organs respond to differently to types and range of auxin concentration, each having a promotory and inhibitory range as illustrated in *Gluta travancorica* (Jose *et al.*, 2011).

As seed propagation is the major mode of reproduction in forest trees the method, thus adopted for the large scale multiplication and conservation of both the species (Hong and Ellis, 1996: Jose and Pandurangan, 2013). In *D. malabarica*, seeds with initial moisture content of 46% lose its viability within two weeks at a critical moisture content level of 28-30%. The seeds are found sensitive and shed viability during storage in lower temperature due to the intermediate seed type behaviour. Therefore, seeds are recommended for storage in closed polybags/poly carbonate bottles in room conditions for moderate period in extending viability as reported in *Swietenia mahagoni* and *Xanthoxylum rhetsa* (Kindt *et al.*, 1997, CABI, 1998).

The *H. macrocarpa* seeds are recalcitrant and therefore found sensitive towards desiccation and chilling storage conditions. Seeds with initial moisture content of 45% lose its viability within one week at a critical moisture content level of 16-17%. However, seeds enabled

for storage more than two months in the closed poly carbonate bottles, kept at seed bank conditions maintained at 20°C and 40% RH as reported in different forest tree species (Anilkumar *et al.*, 1996; 2002).

In D. malabarica, out of four in situ areas where seedling planting done, 75-80% seedling survival along with 4-7 cm height increment has been recorded within 1.5 years of planting. The success rate thus indicating the ability and growing preference of seedlings to naturalize in its original habitats. Similarly out of 6 in situ areas where seedling planting done for H. macrocarpa, 40-70% seedling survival along with 3-23 cm height increment has noticed within 1.5 years of seedling planting. The seedlings planted in situ have often experienced with climatic variations mainly of poor rain fall, wildlife interventions, insect-pest incidences etc. which has been adversely affected the seedling survival and their growth (Jose et al., 2001; 2011; Pandurangan, 2003; Swarupanandan et al, 2013). But the seedling survival in *ex situ* conditions are fairly better for both the species and noted @ 70-98% along with 3-6 cm height increment for D. malabarica and 80-94% along with 4-30 cm height increment within 1.5 years of seedling planting.

Thus the present study is concluded that after exploring the species distribution/ population status, ecosystem features including climatic and edaphic factors, life history traits, development of vegetative and seed propagation/multiplication strategies, seed storage practices followed by restoration are invariably amenable for the rescue and recovery of these endangered species and ensured the conservation and management of existing populations subsequent resource based sustainable utilization in the long run.

7. References

- Ahmedullah, M. and Nayar, M.P. 1987. Endemic Plants of the Indian Region. *Botanical Survey of India*, Calcutta.
- Anilkumar, C., Babu, K.P. and Krishnan, P.N. 2002. Seed storage and viability of *Myristica malabarica* Lam. An endemic species of Southern Western Ghats (India). *Seed, Sci. & Technol.*, 30: 651-657.
- Anilkumar, C., Thomas, J. & Pushpangadan, P. 1996. Storage and germination of seeds of *Aporusa lindleyana* (Wight) Baillon, an economically important plant of Western Ghats (India). *Seed Sci. & Technol.* 25: 1-6.
- Bawa, K.S. 1983. Patterns of flowering in tropical plants. In: C.E. Jones and R.J. Little (eds.), Handbook of Experimental Pollination Biology. Van Nostrand Reinhold, New York. pp. 394-410.
- Bawa, K.S. 1990. Plant-Pollinator interactions, sexual systems and pollen flow-Commentary. In: K.S. Bawa and M. Hadley (eds.), *Reproductive Ecology of Tropical Forest Plants*. Man and Biosphere Series, UNESCO & Parthenon Publishing Group, UK. pp. 65- 68.
- Bawa, K.S. and Ng, F.S.P. 1990. Phenology-Commentary. In: K.S.
 Bawa and M. Hadley (eds.), *Reproductive Ecology of Tropical Forest Plants*. Man and Biosphere Series, UNESCO & Parthenon Publishing Group, UK. pp. 17-20.
- CABI, 1998. Forestry Compendium. A Silvicultural Reference. Module 1. CABI Pub. CAB International, UK.
- Champion, H.G. and Seth, S.K. 1968. A Revised Survey of the Forest Types of India, Delhi.
- Cruden, R.W. 1977. Pollen-ovule ratios. A conservative indicator of breeding systems in flowering plants. *Evolution*, 31: 32-46.

- Daniel, R.J. and Jayanthi, M. 1996. Biology and Conservation of endangered plants. The need to study breeding systems. *Trop. Ecol.* 37(1): 39-42.
- Davy, A.J. and Jefferies, R.L. 1981. Approaches to the Monitoring of Rare Plant Populations. In: H. Synge (eds.), *The Biological* Aspects of Rare Plant Conservation. John Wiley & Sons Ltd., New York. pp. 219-232.
- Elouard, C., Pascal, J.P., Pelissier, R., Ramesh, B.R., Houllier, F., Durand, M., Aravaji, S., Moravie, M.A. and Gimaret Carpentier, C. 1997. Monitoring the structure and dynamics of a dense moist evergreen forest in the Western Ghats (Kodagu dt., Karnataka, India). *Trop. Ecol.* 38(2): 193-214.
- Fischer, M. and Matthies, D. 1998. Effects of population size on performance in the rare paints *Gentianella Germania*. Journal of Ecology, 86:195-204.
- Gadgil, M. 1984. An Approach to Ecodevelopment of Western Ghats. The Administrator, 29: 339-379.
- Groombridge, B. 1992. Global Diversity: Status of the Earth's Living Resources. Chapman & Hall, London.
- Gupta, S.R. and Malik, V. 1996. Soil ecology and sustainability. *Trop. Ecol.* 37(1): 43-55.
- Hocker, H.W. Jr. 1979. Introduction to Forest Biology. Wiley, New York.
- Hong, T.D. and Ellis, R.H. 1996. *Ex-situ* biodiversity conservation by seed storage behavior. *Seed Sci. and Technol.*, 25: 157-161.
- Hong, T.D. and Ellis, R.H. 1998. Contrasting seed storage behavior among different species of Meliaceae. Seed Sci. and Technol., 26: 77-95.
- Howe, H.F. 1984. Implications of seed dispersal by animals for tropical reserve management. *Biol. Cons.* 30: 261-281.

- IUCN, 2000. The 2000 IUCN Red list of Threatened species, IUCN, Gland.
- Jose, P.A. 2001. A Study on the Population structure, Dynamics and Conservation of Two Rare and Endemic Trees of Western Ghats of Kerala. Ph.D. Thesis, Kerala University, Thiruvananthapuram. pp. 184.
- Jose, P.A. and Pandurangan, A.G. 2011. Occurance of albino seedlings and its genetic significance in *Gluta travancorica* Bedd. *Ind. J. of For.* 34(3): 377-378.
- Jose, P.A. and Pandurangan, A.G. 2013. Seed storage studies on *Gluta travancorica* Bedd. – An endemic and threatened tree of Southern Western Ghats. *Ind. J. of For.* 36(3): 349-352.
- Jose, P.A. and Pandurangan, A.G. and Thomas, J. 2000. Ecology and Conservation of Ochreinauclea missionis: A Case Study for the Rare and Endemic Trees of Western Ghats. In: M.R. Das (ed.), Proceedings of the Twelfth Kerala Science Congress. State Committee on Science, Technology and Environment. Thiruvananthapuram, Kerala. pp. 576-580.
- Jose, P.A., Swaruapandan, K. and Pandalai, R.C. 2011. Restoration of Dipterocarpus bourdillonii and Humboldtia bourdllonii, two critically Endangered Trees of Western Ghats. Evergreen, Half-yearly Newsletter of Kerala Forest Research Institute, Peechi.
- Jose, P.A. and Jacob Thomas. 1998. An account of the vegetative propagation in *Terminalia chebula* Retz. *Ind. For.*, 124(5): 357-359.
- Jose, P.A., and Pandurangan, A.G. 2002. Conservation biology of Gluta travancorica: A system approach for management and utilization of rare and endemic trees of Western Ghats. In: M.K. Janarthanan and D. Narasimhan (eds.), Plant

Taxonomy, Human Welfare and Conservation, Goa University. pp. 321-328.

- Jose, P.A., Jacob Thomas and Krishnan, P.N. 1995. Vegetative propagation of Ochreinauclea missionis (Wall. ex G.Don) Ridsd.: A rare and threatened tree species of Western Ghats. Ind. For., 121(12): 1159-1164.
- Jose,P.A., Pandurangan, A.G. and George Mathew. 2004. Insects associated with population dynamics of Ochreinauclea missionis (Wall. ex G.Don) Ridsd.- A rare and endemic tree species of the Western Ghats,India- Journal of Non-Timb. For. Prod. 11(3) : 166-169
- Jose, P.A., Pandurangan, A.G., Jacob Thomas & P. Pushpangadan. 2002. Seed storage studies on Ochreinauclea missionis (Wall. ex. G. Don). Ridsd.-An Endemic Tree of Western Ghats. Seed Research, 30(2): 275-292.
- Jose,P.A., Pandurangan,A.G. and George Mathew. 2004. Impact of insect-pest incidence on natural populations of *Gluta travancoric* Bedd.-A rare and endemic tree species of the Southern Western Ghats,India- Journal of Non-Timb. For. Prod., 11(2): 99-102.
- Kamarudeenkunju, M. 2003. Physiological and Biochemical studies on seeds of Hopea parvifolia Bedd. and Vateria indica Linn.: two economically important endemic trees of Western Ghats. Ph.D. Thesis submitted to the University of Kerala.
- Keller, L. and Waller, D.M. 2002. Inbreeding effects in wild populations. *Trends in Ecology and Evolution*, 17: 230-241.
- Kershaw, A.K. 1973. Quantitative and Dynamic Plant Ecology. William Clowes & Sons Ltd., London.

- Kindt, R., Musaya, S. Kimotho and Waruhiu, 1997. Tree seed supplier directory, source of seed and microsymbionts. Int. Centre for Res. In Agroforestry, ICRAF, Nairobi Kew garden.
- Knees S. 1990. Harold Koopowitz and Hilary Kaye (ed.), In : *Plant Extinction- A Global Crisis.* pp. 208.
- Misra, R. 1968. *Ecological Work Book.* Oxford and IBH Publishing Co., Calcutta.
- Muller- Dombois D. and Ellenberg H. 1974. Aims and Methods of Vegetation Ecology. John Wiley & Sons, New York.
- Murali, K.S. and Sukumar, R. 1994. Reproductive phenology of a tropical forest in Mudumalai, Southern *Ind. J. Ecol.* 82: 759-767.
- Nayar, M.P. 1996. Hot Spots of Endemic Plants of India, Nepal and Bhutan. Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram.
- Pandurangan, A.G. 2003. Rescue and Restoration of endemic and RET medicinal plants of Agasthyamalai, Kulamavu and Wayanad MPCAs, Kerala, India. Final Project Report, Tropical Botanic Garden and Research Institute, Thiruvananthapuram.
- Parthasarathy, N. and Sethi, P. 1997. Trees and liana species diversity and population structure in a tropical dry evergreen forest in South India. *Trop. Ecol.* 38(1): 19-30.
- Pascal, J.P. 1988. Wet Evergreen Forests of India. Institute of Francaise de Pondicherry.
- Primack, R.B. 1994. Essentials of Conservation Biology. Sinauer Associates, Sunderland, Massachusetts.
- Pushpangathan, P. 1992. On Conservation Biology, Domestication and Commercial Cultivation of Wild Medicinal and Aromatic Plants. In: S.P. Raychoudari (ed.), *Recent Advanced in*

Medicinal, Aromatic and Spice Crops. Today and Tomorrow's Printers & Publishers, New Delhi. pp. 431-436.

- Reveal, J.L. 1981. The concept of rarity and population threats in plants communities. In: E.Larry Morse and Mary Sue Henifin (eds.), *Rare Plant Conservation: Geographical Data Organization*. New York. pp. 41-47.
- Richards, P.W. 1952. The Tropical Rain Forest- An Ecological Study. Cambridge University Press, Cambridge.
- Salisbury, F.B. and Ross, C. 1974. Plant Physiology. Practice Hall of India Pvt. Ltd., New Delhi.
- Sasidharan, N.2003. Red listed threatened tree species in Kerala: A Review. In Jose, K., Swarupanandan, K. and Sharma, J.K (ed.), Proceedings of the Workshop on Conservation and Research needs of the Rare, Endangered and threatened (RET) tree species in Kerala part of the Western Ghats. Kerala Forest Research Institute, Peechi. pp1-9.
- Sasidharan, N. 2004. *Biodiversity documentation for Kerala. Part 6: Flowering plants.* Kerala Forest Research Institute, Peechi.
- Sasidharan, N. 2011. Flowering Plants of Kerala Digital Version 2.0. Kerala Forest Research Institute, Peechi.
- Sharma, Kamal, Sanjeev Thakur, Badiyala, S.D. and Sharma, N.K. 1995. First report on the propagation of Terminalia chebula Retz. Through patch budding. *Ind. For.*, 121(8): 760-761.
- Sivaram, M., Sasidharan, N., Shine, S., Sreedevi E.P., and Soumya Ravi. 2006. Invent NTFP Ver 1.0. Computer aided inventory analysis for sustainable management of Non-timber forest product resources. Kerala Forest Research Institute, Peechi.
- Swarupanandan, K., Indira, E.P., Muralidharan, E.M., Pandalai, R.C., Jose, P.A. and Sanjappa, M. 2013. Species recovery of Dipterocarpus bourdillonii and Humboldtia bourdillonii, two

critically endangered endemic trees of Western Ghats. Final Project Report No. 463. Kerala Forest Research Institute, Peechi.

- Thimann, K.V. 1956. Promotion and inhibition-Twin Theme of Physiology. Amer. Nat., 90: 145-162.
- Thornton lan, W.B., Stephen G. Compton and Craig N. Wilson. 1996. The role of animals in the colonization of the Krakatau islands by fig trees (*Ficus* species). *J. Biogeography.* 23: 577-592.
- Truman, P.Y. 2000. Restoration Ecology and Conservation Biology. Biol. Cons., 92(1): 73-83.
- Vivek Menon. 2003. A Field Guide to Indian Mammals. Dorling Kindersley (India) Pvt. Ltd. pp. 201.