

# **Precordium** = "Vascular" chest

It is the anterior chest surface overlying the heart and great vessels



# **Before Examination**



hutterstock.com · 6754783

# **Inspection**

### From the foot of the pt:



Pectus excavatum



Chest Deformities

Pectus carinatum



### From the right side:





| Scar | Location           | Procedure                 | Possible surgery        |
|------|--------------------|---------------------------|-------------------------|
| 1    | Midline            | Median stornotomy         | Open-heart surgery/CABG |
| 2    | Submanarary        | Anterolateral thoracotomy | Pericardial surgery     |
| 3    | Left subclavicular |                           | Pacemaker insertion     |
| 4    | Upper/Lower limb   | Vascular conduit          | CABG-                   |
|      |                    |                           |                         |
|      |                    |                           |                         |



Anterolateral thoracotomy Pericarchial surgery



Left subclavicular

Pacemaker insertion



### **Palpation**



- Eye contact
- Ask about tender areas

· Warm your hounds



shutterstock.com - 177695390

### <u>1. Apex beat</u> position and character







Comment:

Gently tapping my fingers.

- General palpation using flat of your right hand over the precordium for general impression, then locate it by your fingers lying parallel to ICS then locate with 2 fingers.
- If not palpable, <u>roll the patient to the left side</u>
- \*\* **Position**: Lt 5<sup>th</sup> ICS, mid-clavicular line
- \*\* Character: gentle tapping



لجنة المساق اعتمدت اخر شي للexamination يكون هيك:

We examine for thrills with the flat of our fingers(vertically) (not the base, neither the tips) on 3 areas (Rt and Lt upper parasternal and apex)

# 2. Heave

- Abnormal palpable impulse that noticeably lifts your hand
- Palpate with the heel of your right hand firmly over 2 areas:
- Lt lower parasternal 1) area (hold breath in
- 2)



#### ASSESS FOR A PARASTERNAL HEAVE RIGHT VENTRICULAR HYPERTROPHY

EKY MEDICS





# The tactile equivalent of a murmur, palpable vibration ( PALPABLE MURMUR)

Palpate with the palmar aspect of fingers (PLACED VERTICALLY) over 3 areas: (Apex Left parasternal area (Middle Right parasternal area (Middle Middle



Palpation Summary 1 pulsation 2 heaves 4 thrille

# **Auscultation**

The Cardiac Cycle





for tricuspid value

# Heart sounds



Systole Diastole s1 s2 s1

First heart sound, S1

2: ISOVOLUMETRIC CONTRACTION

- Closure of mitral and tricuspid valve
- At onset of ventricular • systole
- Heard at the apex •





### Abnormal intensity of S1

Extra: The PR interval represents the time between atrial depolarization and ventricular depolarization.



### Second heart sound, S2



### S2 splitting

- Normally <mark>A2 is louder</mark> than P2.
- Physiological splitting occurs because <u>LV</u> contraction slightly precedes <u>RV</u> contraction.

and precedes

 This splitting physiologically increases at endinspiration (<u>RV VR</u>-related), and disappears on expiration
 Right ventricle Venous return increases with inspiration

MEDZCOOL presents Wickep

### Abnormal intensity and splitting of S2









### <u>Third heart sound, S3</u>

- Low-pitched early diastolic sound.
- Best heard with the bell at the apex.
- Due to rapid ventricular filling immediately after 

   opening the atrioventricular valve









2022 Edition

gallop= S3+ tachycardia In HF, with quiet S1 and S2

### <u>Fourth heart</u> <u>sounds, <mark>S4</mark></u>

- ALWAYS PATHOLOGICAL
- Soft low-pitched sound at late diastole.
- Best heard at the apex with the bell.
- It occurs <mark>before S1</mark>
- Due to forceful atrial contraction against stiff ventricle secondary to LVH.
   Left Ventricular Hypertrophy






Atrial gallop= S4 gallop=
 S4+ tachycardia





### **Added Sounds**





- Sudden opening of stenosed valve in DIASTOLE.
- MS
- High-pitched, medial to apex via the diaphragm.
- Just after S2, in early diastole.

# Ejection click

Aortic Sterosis



- Opening of stenosed valve in SYSTOLE.
- Congenital pulmonary/ aortic stenosis.
- High-pitched, at the Rt and Lt upper sternal borders via diaphragm
- Just after S1, in early systole.
- \*\* if calcific valve (rigid cusps)>> absent sound





- Sudden tensing of prolapsed leaflet during SYSTOLE.
- Mitral valve prolapse.
- High-pitched, at the apex via diaphragm.

Mechanical Heart Sounds

High-pitched metallic and often palpable.





Douglas et al: Macleod's Clinical Examination, 12th Edition. Copyright © 2009 by Churchill Livingstone, an imprint of Elsevier, Ltd. All rights reserved.

## **Pericardial Friction Rub**

- Coarse scratching sound. Pleura friction with pericardium.
- With the diaphragm, hold breath in expiation and lean forward.

#### **Causes:**

- 1) Acute pericarditis Pleuritic, postural chest pain (increases when lying flat)
- 2) Few days post-extensive myocardial infarction
- **\*\*** Pleuropericardial rub
- \*\* Pneumopericardium





# <u>Murmurs</u>

- Heart murmurs produced by:

   Turbulent flow across an abnormal valve, septal defect or outflow obstruction
  - Increased volume or velocity
    of flow through a normal valve
    (innocent murmur)

If outside the heart - Bruit



#### **Murmurs**

- Examination includes:
  - Timing and duration
  - Character/pitch and intensity
  - Location and radiation





<u>Murmurs/Location,</u> <u>Radiation</u>





## Murmurs Character and Pitch

- Harsh: AS
- Blowing: MR
- Musical: AS in children (still's murmur)
- Rumbling: MS
- High-pitched: high pressure gradient
- Low-pitched: low pressure gradient



#### **Murmurs/Duration**

## <u>Murmurs/Intensity</u>

- The intensity of the murmur does not correlate with the severity of the valve dysfunction
- Change in intensity with time is important , as they can denote progression of a valve lesion
- Rapidly changing murmur can occur with infective endocarditis

#### Grades of intensity of murmur

| Grade 1              | Heard by an expert in optimum conditions  |
|----------------------|-------------------------------------------|
| Grade 2              | Heard by non-expert in optimum conditions |
| Grade 3              | Easily heard, no thrill                   |
| <mark>Grade 4</mark> | A loud murmur, with a thrill              |
| Grade 5              | Very loud, over large area, with thrill   |
| Grade 6              | Extremely loud, heard without stethoscope |

## Systolic Murmurs



#### Systolic Murmurs



# **Ejection systolic murmurs**

- Increased flow through a normal valve Innocent murmur Sever anemia/ fever/ athletes/ pregnancy ASD (pulmonary flow murmur) Increased stroke volume (aortic regurgitation)
- Normal or reduced flow through a stenotic valve Systelic ejection murmur
  Aortic stenosis
  Pulmonary stenosis
- <u>Subvalvular obstruction</u> HOCM



- Diastolic mur mur

### Aortic stenosis Murmur



Douglas et al: Macleod's Clinical Examination, 12th Edition. Copyright © 2009 by Churchill Livingstone, an imprint of Elsevier, Ltd. All rights reserved.

- Timing: systolic
- Duration: after S1, peaks mid systolic, decrease before S2 (Crescendo-decrescendo murmur)
- Caracter: Harsh, Musical in children
- Pitch: high (Audible all over the precordium)
- Intensity: May be associated with thrill Location: Right 2<sup>nd</sup> ICS
- Radiation: carotids, suprasternal notch

✤May follow ejection click

# Video "PULSES PARVUS ET TARDUS" PERIPHERAL PULSES AREOFTEN WEAK AND DELAYED

#### Mitral Regurgitation murmur



Douglas et al: Macleod's Clinical Examination, 12th Edition. Copyright © 2009 by Churchill Livingstone, an imprint of Elsevier, Ltd. All rights reserved.

- Timing: systolic
- Duration: pansystolic
- Character: blowing
- Pitch: high

Intensity: <mark>may feel a thrill</mark> Location: <mark>apex</mark> Radiation: <mark>Left axilla</mark>

In mitral valve prolapse, regurgitation begins in mid-systole producing a late murmur



#### Tricuspid regurgitation

- · Systolie (Pansystolic)
- Heard at the lower left sternal edge
- **Prominent V wave** in the JVP
- Pulsatile liver



## **Diastolic Murmurs**

- <u>Early diastolic murmurs</u>
  Usually lasts throughout the diastole but are
  loudest in early diastole
  Aortic and pulmonary regurgitation
- <u>Mid-diastolic</u> <u>murmurs</u>
  Mitral stenosis and Austin flint murmur

#### **Diastolic Murmurs**





<u>Austin Flint</u> <u>Murmur</u>

- Mid-diastolic murmur that accompanies aortic regurgitation
- Caused by regurgitant jet striking the anterior leaflet of the mitral valve, restricting the inflow to the left ventricle



# Pulmonary Regurgitation

 Pulmonary regurgitation caused by pulmonary dilatation in pulmonary hypertension

<u>Graham Steel murmur</u>

Congenital defect of the pulmonary valve



# <u>Mitral Stenosis</u>



Copyright © 2009 by Churchill Livingstone, an imprint of Elsevier, Ltd. All rights reserved.

Special Manouver.

- Timing: late diastolic
- Character: blowing Rum bling\_
- Pitch: low (ask the pt to turn to the left)
- Location: apex

May follow opening snap
 The murmur is accentuated by exercise





- Rare in adults
- Patent ductus arteriosus is the most common cause
- Timing: systolic and diastolic
- Duration: continuous

#### Patent Ductus Arteriosus



- Character: machinery-like
- Pitch: high pitch, louder in systolic
- Location: left infraclavicular
- Radiation: left scapula

Artic pressure always exceeds pulmonary pressure , there is continuous ductal flow with the greatest pressure difference in systole resulting in a louder systolic component

#### PATENT DUCTUS ARTERIOSUS









## Complete your examination

- Auscultate the lung for crackles and pleural effusion
- Examine the abdomen for ascites
- Auscultate for Bruit
- Examine lower limb/sacrum for edema

Lecture ended here


## **Aortic Stenosis**

- Slow rising pulse
- Displaced apex beat, S4
- Apical heave
- Thrill over the apex and right upper sternal boarder
- Ejection systolic murmur right upper sternal boarder radiating to the carotids
- Ejection click
- Reversed splitting S2

## Mitral stenosis

- Tapping apex beat
- Opening snap
- Mid-diastolic murmur at the apex
- Loud S1



- Bisferiens pulse
- Double apical impulse
- Ejection systolic murmur
- Reversed splitting S2



- Right and left sternal border thrill
- Pansystolic murmur left sternal border
- Wide splitting S2

## Tricuspid Regurgitation 2<sup>nd</sup> to pulmonary HTN

- Giant V wave in JVP
- Left parasternal heave
- Wide splitting/ loud S2
- Graham steel murmur (if pulmonary artery dilates)