
webMethods Adapter for Enterprise JavaBeans
Installation and User’s Guide

Version 6.5 SP3

January 2013

This document applies to webMethods Adapter for Enterprise JavaBeans 6.5 SP3 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2008-2022 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
https://softwareag.com/licenses/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software
AG Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

Document ID: ADAPTER-POJ-IUG-65 SP3-20221202

https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html

Table of Contents

About this Guide..7
Document Conventions...8
Online Information and Support...9
Data Protection...10

1 Overview of webMethods Adapter for Enterprise JavaBeans...11
About the Adapter...12
Architecture and Components...12
Adapter Package Management..16
Adapter Connections...17
Adapter Services...25
Using Version Control Systems to Manage Adapter Elements...42
Optimize Infrastructure Data Collector Support for the Adapter...43
Viewing the Adapter's Update Level..43
Controlling Pagination...43

2 Installing, Upgrading, and Uninstalling..45
Overview...46
Requirements..46
The Integration Server Home Directory..46
Installing Adapter for Enterprise Javabeans 6.5 SP3...46
Configure Integration Server to Work with the Application Server...47
Adapter for Enterprise Javabeans Support for Multiple Application Servers........................55
Upgrading to Adapter for Enterprise Javabeans 6.5 SP3..55
Uninstalling Adapter for Enterprise Javabeans 6.5 SP3..56

3 Adapter Package Management...57
Overview...58
Managing the Adapter Package...58
Controlling Group Access...61
Using Adapter for Enterprise Javabeans in a Clustered Environment.....................................62

4 Adapter Connections..67
Overview...68
Before Configuring or Managing Adapter Connections..68
Configuring Adapter Connections..69
Dynamically Changing a Service's Connection at Runtime...73
Viewing Adapter Connection Parameters from Integration Server Administrator...............73
Viewing Adapter Connection Parameters from Designer..74
Editing Adapter Connections...75
Copying Adapter Connections...75
Deleting Adapter Connections...76
Enabling Adapter Connections..76

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 iii

Disabling Adapter Connections...77

5 Adapter Services..79
Overview...80
Before Configuring or Managing Adapter Services..80
Configuring CreateEJB 2.1 Services...81
Configuring InvokeEJB 2.1 Services..83
Configuring CreateInvokeEJB 2.1 Services...85
Configuring FetchEJB 3.0 Services...88
Configuring InvokeEJB 3.0 Services..89
Configuring FetchInvokeEJB 3.0 Services...91
Removing EJBs..93
Testing Adapter Services...94
Viewing Adapter Services...95
Editing Adapter Services...95
Deleting Adapter Services...96
Validating Adapter Service Values..96
Reloading Adapter Values..97

6 Invoking webMethods Services From an EJB...99
Overview...100
Running the Sample EJB..101
Basic Flow of Events...101

7 Predefined Health Indicator...103
Predefined Health Indicator...104

8 Administrator APIs...105
Administrator APIs..106

9 Configuration Variables Templates for Adapter Assets in Microservices Runtime..............107
Configuration Variables Templates for Adapter Assets in Microservices Runtime.............108

10 Adapter Logging and Exception Handling..109
Overview...110
Adapter Logging Levels..110
Adapter Message Logging..110
Adapter Exception Handling..112
Adapter for Enterprise Javabeans Error Messages..113

A Scenarios..129
Overview...130
Running a Single Method on a Single Bean..130
Running Multiple Independent Methods on a Single Bean...131
Running Multiple Dependent Methods on a Single Bean..132
Running a Single Method on Multiple Beans of the Same Type...133

iv webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

Table of Contents

Running Multiple Methods on Multiple Beans...135
Running a Single Method with Complex Input on a Single Bean...136

B Built-In Transaction Management Services..139
Transaction Management Overview..140
Built-In Transaction Management Services..142
Changing Integration Server's Transaction Timeout Interval..145
Transaction Error Situations...145

C Creating Flows for Adapter for Enterprise Javabeans Services..147
Overview...148
About Flow Services and Adapter for Enterprise Javabeans...148
Obtaining an EJB...148
Working with a Single EJB Object Instance..149
Working with Multiple EJB Object Instances...151
Working with Different Object Types..153

D Application Server Configuration Notes..163
Overview...164
WebLogic Server...164
WebSphere Server...167
JBoss Server...170

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 v

Table of Contents

vi webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

Table of Contents

About this Guide

■ Document Conventions .. 8

■ Online Information and Support ... 9

■ Data Protection ... 10

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 7

This guide describes how to configure and use webMethods Adapter for Enterprise JavaBeans. It
contains information for administrators who configure and manage webMethods Integration
Server, and application developerswhowant to create services that exchange datawith Enterprise
JavaBeans (EJBs).

To use this guide effectively, you should be familiar with:

Creating flow, Java, and/or C/C++ services

The application server with which you will be using Adapter for Enterprise Javabeans

Terminology and basic operations of your operating system

The basic concepts and tasks for working with EJBs

The setup and operation of webMethods Integration Server.

How to perform basic tasks with Software AG Designer.

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service, APIs,
Java classes, methods, properties.

Narrowfont

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the
information inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these
choices. Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square
brackets. Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

8 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://
documentation.softwareag.com.

In addition, you can also access the cloudproduct documentation via https://www.softwareag.cloud.
Navigate to the desired product and then, depending on your solution, go to “Developer Center”,
“User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://
knowledge.softwareag.com.

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://
techcommunity.softwareag.com. From here you can, for example:

Browse through our vast knowledge base.

Ask questions and find answers in our discussion forums.

Get the latest Software AG news and announcements.

Explore our communities.

Go to our public GitHub andDocker repositories at https://github.com/softwareag and https://
hub.docker.com/u/softwareag and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

Download products, updates and fixes.

Search the Knowledge Center for technical information and tips.

Subscribe to early warnings and critical alerts.

Open and update support incidents.

Add product feature requests.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 9

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/
https://knowledge.softwareag.com/
https://knowledge.softwareag.com/
https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://hub.docker.com/u/softwareag/
https://hub.docker.com/u/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

10 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

1 Overview of webMethods Adapter for Enterprise

JavaBeans

■ About the Adapter .. 12

■ Architecture and Components .. 12

■ Adapter Package Management .. 16

■ Adapter Connections .. 17

■ Adapter Services .. 25

■ Using Version Control Systems to Manage Adapter Elements 42

■ Optimize Infrastructure Data Collector Support for the Adapter 43

■ Viewing the Adapter's Update Level ... 43

■ Controlling Pagination .. 43

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 11

About the Adapter

webMethods Adapter for Enterprise JavaBeans (Adapter for Enterprise Javabeans) is an add-on
to the webMethods product suite that enables you to exchange data between webMethods
Integration Server and Enterprise JavaBeans (EJBs) on an application server. The adapter provides
seamless and real-time communication with the application server.

Adapter for Enterprise Javabeans provides support for the EJB 3.0 and the EJB 2.1 standards that
enable the end user to efficiently configure and manage the adapter connections and services.

Adapter for Enterprise Javabeans provides user interfaces that enable you to configure andmanage
adapter connections and adapter services. The adapter services are linked to specific EJBs, and
can be used on their own or included in flows built to implement business processes.

Using functionality provided by the adapter, a client can identify the EJBs deployed on the
application server, create a remote instance of an EJB, and then invoke a selected method on the
remote bean instance. For example, you can useAdapter for Enterprise Javabeans to create services
that Integration Server clients use to create andupdate account information for a database connected
to an application server that provides EJB capabilities.

You can download a sample EJB application that illustrates how you might implement code that
invokes services on Integration Server from the Software AG TECHcommunity website. The
sample code is not part of Adapter for Enterprise Javabeans. For more information, see “Invoking
webMethods Services From an EJB” on page 99.

Architecture and Components

Adapter for Enterprise Javabeans provides a set of user interfaces, built-in services, and templates
that enable you to create integrations with EJBs on an application server. The adapter is provided
as a single package thatmust be installed on Integration Server. For detailed installation instructions
and software requirements, see “Installing, Upgrading, and Uninstalling” on page 45.

Adapter for Enterprise Javabeans exposes Enterprise JavaBeans to Integration Server by providing
adapter connection templates and adapter service templates to obtain a reference to one or more
bean instances, and to invoke a method on each instance (through the remote interface). Each of
the service template classes can only operate against a single EJB.

The following diagram shows at a high level how the adapter components connect to an application
server:

12 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

1 Overview of webMethods Adapter for Enterprise JavaBeans

http://techcommunity.softwareag.com

Integration Server. Adapter for Enterprise Javabeans is installed and runs on Integration
Server.

WmART Package. The WmART package provides a common framework for webMethods 6
and later adapters to use Integration Server's functionality, making Integration Server the
run-time environment for Adapter for Enterprise Javabeans. TheWmARTpackage is installed
with Integration Server and provides logging, transaction management, and error handling
for the adapter and its connections and services.

Adapter for Enterprise Javabeans. Adapter for Enterprise Javabeans is delivered as a single
package called WmEJBAdapter. The adapter provides Integration Server Administrator user
interfaces that enable you to configure and manage adapter connections, and Software AG
Designer user interfaces that enable you to configure and manage adapter services. Adapter
for Enterprise Javabeans installation includes templates fromwhich all Adapter for Enterprise
Javabeans connections and services can be created.

Adapter Connection Templates.An adapter connection enables Integration Server to connect
to application servers at run time. You must configure an adapter connection before you can
create adapter services. Adapter for Enterprise Javabeans provides templates for adapter
connections in Integration Server Administrator. For a detailed description of adapter
connections and usage information, see “Adapter Connections” on page 17.

Adapter Service Templates.An adapter service enables Integration Server to create and invoke
a method on an EJB instance deployed on an application server. For example, an adapter
service could enable Integration Server clients to write salary information to an employee
database connected to an application server. Adapter for Enterprise Javabeans provides adapter
service templates in Designer. For more information about adapter service templates and how
the services interact, see “Adapter Services” on page 25.

Application Server. Adapter for Enterprise Javabeans connections and services interact with
EJBs on an application server. The application server provides support for persistence,
transactions, and remote access, among other things. Within the application server, the EJB
container is the component responsible for managing the EJBs deployed on that system.
Individual beans provide application-specific functionality. Through support of the EJB

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 13

1 Overview of webMethods Adapter for Enterprise JavaBeans

standards, the application server allows external applications to create and remove bean
instances, and invokes methods defined by those beans.

The application server also implements access to deployed beans through the home interface
(only for 2.1 EJBs) and remote bean interfaces, which the bean developer defines. The home
interface for 2.1 EJBs defines methods to gain access to individual instances for an EJB class,
either looking up one ormore instances or creating a new instance. The remote interface defines
methods that may be invoked on one of those instances.

The application server also implements access to deployed beans through the remote interface
for 3.0 EJBswhich the bean developer defines. The remote interface for 3.0 EJBs definesmethods
to gain access to individual instances for an EJB class, either looking up one or more instances
or creating a new instance. The remote interface defines methods that may be invoked on one
of those instances.

JNDI.Adapter for Enterprise Javabeans uses the Java Naming and Directory Interface (JNDI)
to perform lookup operations that identify EJBs whose methods you want to invoke. Lookup
operations get this information from the application server's JNDI implementation. After
identifying the EJBwhose publicmethods youwant to invoke, the adapter gets public interface
details about the EJB. Public interface details include whether the EJB is a session or entity
bean, details about how to create an instance of the EJB, andwhat businessmethods it exposes.
The adapter then enables you to configure service instances that execute the public EJBmethods
on the application server.

Services createdwith Adapter for Enterprise Javabeans are actually remote EJB client applications
that interact with the deployed EJB through stub interfaces. These are lightweight, external, and
distributable representations of the actual EJB. A remote client never interacts directly with the
EJB itself.

The basic data flow for any client-initiated 2.1 EJB interaction is as follows:

ActionStep

The client accesses the JNDI server to look up the EJB home interface of an EJB deployed
on the application server.

1

14 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

1 Overview of webMethods Adapter for Enterprise JavaBeans

ActionStep

The client invokes a "creator/finder" method on the home interface, creating an EJB
instance with which Adapter for Enterprise Javabeans can interact. The home interface
returns a remote EJB interface to the client.

2

The client then invokes the desired public method on the remote EJB.3

The basic data flow for any client-initiated 3.0 EJB interaction is as follows:

ActionStep

The client accesses the JNDI server to look up the EJBObject interface of an EJB deployed
on the application server.

1

The client fetches a remote instance of a 3.0 EJB associated with the given JNDI Name
with which Adapter for Enterprise Javabeans can interact. Adapter for Enterprise
Javabeans returns a remote EJB interface to the client.

2

The client then invokes the desired public method on the remote EJB.3

The following diagram illustrates the use of Adapter for Enterprise Javabeans and Integration
Server in a typical business-process integration.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 15

1 Overview of webMethods Adapter for Enterprise JavaBeans

Adapter Package Management

Adapter for Enterprise Javabeans is provided as a package calledWmEJBAdapter that youmanage
like any package on Integration Server.

There are several considerations regarding how you set up and effectively manage your packages
on Integration Server, such as those described in the following list.

Configure user-defined packages for your adapter connections and adapter services. See
“Managing the Adapter Package” on page 58 for details.

Understand how package dependencies work so you make the best decisions regarding how
youmanage your adapter services. See “PackageDependencyRequirements andGuidelines” on
page 59 for details.

Control which development groups have access to which adapter services. See “Controlling
Group Access” on page 61 for details.

Understand how clustering, an advanced feature of Integration Server, works to effectively
manage your adapter services. See “Using Adapter for Enterprise Javabeans in a Clustered
Environment” on page 62 for details.

16 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

1 Overview of webMethods Adapter for Enterprise JavaBeans

Enable and disable packages. See “Enabling Packages” on page 60 and “Disabling Packages” on
page 59 for details.

Load, reload, and unload packages. See “Loading, Reloading, and Unloading Packages” on
page 60 for details.

Adapter Connections

An adapter connection enables an Adapter for Enterprise Javabeans service to connect to a
supported application server's JNDI service to discover and obtain remote references to EJBs
deployed on that server.

The adapter supports three types of adapter connections: those that support local, single-phase
commit transactions (EJB Local Connection); those that support distributed, two-phase commit
(XA) transactions (EJB XA Connection); and those that are non-transacted (EJB Non-transactional
Connection). Transacted connections are managed by Integration Server's built-in transaction
manager. For more information about the transaction types, see “Transaction Management of
Adapter for Enterprise Javabeans Connections” on page 19.

You configure one or more connections at design time to use in integrations. The number of
connections you configure and the types of those connections depend on the nature of the specific
EJBs you want to interact with and your integration needs. For example:

Suppose you need to create an integration that will invoke a method on an EJB that returns
the total number of hits on a Web site. Because this is essentially a read-only operation, you
should configure a non-transacted connection to usewith this EJBmethod. (It would notmake
sense to incur the additional overhead imposed by using either of the transacted connection
types.)

Or youmay need to interact with an EJB thatmaintains session state information on the server.
A shopping cart is a good example of such an EJB. In this case, you should use one of the
transacted connection types so that if any single method call on the EJB fails, all previous
method callswill be automatically rolled-back. (This example assumes that the EJB is configured
to support client-initiated transactions.)

When you configure an adapter connection, you specify parameters (such as the connection type,
the connection's name and location, the location of the JNDI properties file, and a JNDI username
and password, and a caching level) that Integration Server uses to manage connections to the
application server. You configure connections using Integration Server Administrator. You must
have webMethods administrator privileges to access Adapter for Enterprise Javabeans's
administrative screens.

For instructions for configuring, viewing, editing, enabling, and disabling Adapter for Enterprise
Javabeans connections, see “Adapter Connections” on page 67. For information about setting user
privileges, see the webMethods Integration Server Administrator’s Guide for your release.

For a list of tasks that youmust do before you can create your connections, see “Before Configuring
or Managing Adapter Connections” on page 68.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 17

1 Overview of webMethods Adapter for Enterprise JavaBeans

Adapter Connection Templates
Adapter for Enterprise Javabeans provides the following adapter connection templates:

DescriptionAdapter Connection
Template

Creates connections that will not be transacted.EJB Non-transactional
Connection

Creates connections that can be used in non-distributed, local
transactions.

EJB Local Connection

Creates connections that can be used in distributed, two-phase
commit transactions.

EJB XA Connection

For more information about the connections, see “Transaction Management of Adapter for
Enterprise Javabeans Connections” on page 19. For more information about using the adapter
connection templates, see “Configuring Adapter Connections” on page 69.

Connection Pools
Integration Server includes a connectionmanagement service that dynamicallymanages connections
and connection pools based on configuration settings that you specify for the connection. By
default, connection pooling is enabled for all adapter connections.

A connection pool is a collection of connections with the same set of attributes. Integration Server
maintains connection pools in memory. Connection pools improve performance by enabling
adapter services to reuse open connections instead of opening new connections.

Run-Time Behavior of Connection Pools

When you enable a connection, Integration Server initializes the connection pool, creating the
number of connection instances you specified in the connection's Minimum Pool Size parameter.
Whenever an adapter service needs a connection, Integration Server provides a connection from
the pool. If no connections are available in the pool, and the maximum pool size has not been
reached, the server creates one or more new connections (according to the number specified in
Pool Increment Size) and adds them to the connection pool. If the pool is full (as specified in
Maximum Pool Size), the requesting servicewill wait for Integration Server to obtain a connection,
up to the length of time specified in the Block Timeout parameter, until a connection becomes
available. Periodically, Integration Server inspects the pool and removes inactive connections that
have exceeded the expiration period that you specified in Expire Timeout.

If the connection pool initialization fails because of a network connection failure or some other
type of exception, you can enable the system to retry the initialization any number of times, at
specified intervals.

For information about configuring connections, see “Adapter Connections” on page 67.

18 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

1 Overview of webMethods Adapter for Enterprise JavaBeans

Built-In Services For Connections
Integration Server provides built-in services that enable you to programmatically control
connections. You can use them to enable and disable a connection, and to return usage statistics
and the current state (Enabled or Disabled) and error status for a connection. These services are
located in the WmART package, in the pub.art.connection folder.

The built-in service setAdapterServiceNodeConnection enables you to change the connection associated
with an adapter service. See “Changing the Connection Associated with an Adapter Service at
Design Time” on page 20.

For details about the WmART services, see the webMethods Integration Server Built-In Services
Reference for your release.

Transaction Management of Adapter for Enterprise Javabeans
Connections
Adapter for Enterprise Javabeans connections support the following transaction types:

DescriptionTransaction Type

Used by the EJBNon-transactional Connection connection template.
The connection provides no transaction control over the operations

Non-transactional

being performed.Once completed, an operation cannot be reversed.
That is, the connection automatically commits (Auto Commit) all
operations.

Used by the EJB Local Connection connection template. With this
transaction type, all of the operations on the same connection in one

Local

transaction boundary will be committed or rolled back together. A
transaction boundary means the scope of the transaction, from the
beginning to the end of a transaction. It can be in one adapter service,
one flow service, one Java service, or several steps in a flow service.

For all supported versions of all supported application servers,
Integration Server transaction manager can accommodate any
number of adapter services using local transaction connections in
a single flow.

Usedby theEJBXAConnection connection template.This transaction
type allows the connection to participate in two-phase transactions

XA

executed across multiple distributed resources. In one transaction
boundary, all of the operations on multiple connections will be
committed or rolled back together. A transaction boundary means
the scope of the transaction, from the beginning to the end of a
transaction. It can be in one adapter service, one flow service, one
Java service, or several steps in a flow service.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 19

1 Overview of webMethods Adapter for Enterprise JavaBeans

When you configure a connection, the connection template you choose determines the type of
transaction management that the connection's operations use implicitly. Implicit transactions are
managed by Integration Server's transaction manager. For more information about implicit
transactions, “Implicit and Explicit Transactions” on page 140.

You can also explicitly manage transactions using built-in services. See “Overview” on page 148
for information about explicitly managing transactions.

Changing the Connection Associated with an Adapter Service
at Design Time
Integration Server solves this limitation by providing a built-in service that you can use at design
time to change the connection associated with an adapter service. This built-in service is named
setAdapterServiceNodeConnection and is provided in the WmART package's pub.art.service folder.
Using this function, you can change the specific connection associated with an adapter service at
design time so that you do not need to create and maintain multiple adapter services.

Note:
This built-in service can be run at design time only; do not use it within Integration Server flow
or Java service. You must run this service directly from Designer by selecting the service and
running it.

For details about setAdapterServiceNodeConnection, see thewebMethods Integration Server Built-In Services
Reference for your release.

Other built-in services enable you to control connections; for more information, see “Built-In
Services For Connections” on page 19.

Changing the Connection Associated with an Adapter Service
at Run Time
Integration Server enables you to dynamically select the connection a service uses to interact with
the adapter's resource. This feature enables one service to interact with multiple, similar backend
resources.

For example, you can configure an adapter service to use a default connection that interacts with
your company's production application server. However, at runtime you can override the default
connection and instead use another connection to interact with the company's test application
server.

Formore information about overriding a service's default connection at runtime, see “Dynamically
Changing a Service's Connection at Runtime” on page 73.

EJB Transaction Management
When configuring adapter connections to be used by adapter services, you must also consider
how or whether the EJB uses container demarcation to manage its transactions. With container
demarcation, the EJB client may call an EJB with an external transaction context, or not. The value

20 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

1 Overview of webMethods Adapter for Enterprise JavaBeans

of the <trans-attribute> deployment descriptor determines how transactions are handled. A
transaction attribute can have the following values:

DescriptionTransaction Attribute
Value

Indicates an "unspecified transaction context." The client's transaction
context is suspended until the bean method completes.

NotSupported

The client's transaction context is propagated to the bean. If there is no
client context, the bean method is executed under "unspecified context."

Supports

The client's transaction context is propagated to the bean. If no client
context is specified, the container creates a new context for the transaction.

Required

The client's transaction context (if any) is suspended and a new context
is always created.

RequiresNew

The client's transaction context is propagated to the bean. If no client
context is specified, the container throws aTransactionRequiredException.

Mandatory

The client's transaction context is prohibited. If a client context is passed,
it causes the container to throw a RemoteException. Otherwise, the
container operates the transactionwith "unspecified transaction context."

Never

JNDI Properties File
Adapter for Enterprise Javabeans is essentially an EJB client application, and must first be able to
access JNDI itself before it can gain access to deployed EJBs. This information is provided in a
JNDI properties file. JNDI defines a number of standard Java properties that a client may use for
the purpose of establishing a connection. Before configuring a connection, you (or an administrator)
create a separate .properties file containing the JNDI property definitions.

When configuring a connection, you must provide the full path to the JNDI properties file used
by the application server. This file contains definitions of the JNDI-specific Java properties required
to establish a connection with the application server's JNDI, but can also be used to hold other
Java properties as well. The format of this file follows the conventions for defining Java system
properties as described in the java.utils.Property Javadoc.

Note:
Adapter for Enterprise Javabeans copies all properties defined in a properties file to both the
javax.naming.InitialContext constructor and the systemproperties list. Because these properties
are visible across the JVM and Integration Server, changing one or more of these may impact
other, non-related system components after the connection has been enabled. We recommend
that you limit the properties in this file to the properties that are documented in this guide for
your application server vendor and version. For more information about JNDI properties, see
“Application Server Configuration Notes” on page 163, and see the section for your application
server.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 21

1 Overview of webMethods Adapter for Enterprise JavaBeans

Required Properties and Values

An adapter connection requires that values be set in the JNDI properties file for the following
standard JNDI properties. The values for these properties are specific to each application server:

Application Server and ValueRequired JNDI Property

For WebLogic, specify:java.naming.factory.initial

weblogic.jndi.WLInitialContextFactory

For WebSphere, specify:

com.ibm.websphere.naming.WsnInitialContextFactory

For JBoss, specify:

org.jnp.interfaces.NamingContextFactory

For JBoss only, specify:java.naming.factory.url.pkgs

org.jboss.naming:org.jnp.interfaces

For WebLogic:java.naming.provider.url

If using T3 (non-SSL) protocol, specify:

t3://WebLogic_server:port_number

If using T3S protocol, specify:

t3s://WebLogic_server:port_number

If using HTTP protocol, specify:

http://WebLogic_server:port_number

If using HTTPS protocol, specify:

https://WebLogic_server:port_number

Note:
For additional information about SSL and encryption
with WebLogic, see “Encryption” on page 169.

For WebSphere, specify:

iiop://WebSphere_server:port_number

For JBoss, specify:

jnp://JBoss_server:port_number

Some supported application servers may require that additional properties be defined, or may
allow other properties for optional use. For more information about JNDI properties, see

22 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

1 Overview of webMethods Adapter for Enterprise JavaBeans

“Application Server Configuration Notes” on page 163, and see the section for your application
server.

Specifying JNDI Credentials

If your JNDI server requires authentication, you can use the following properties to set a username
and password for access to the JNDI server:

java.naming.security.principal=username

java.naming.security.credentials=password

You can either include the properties and values in the JNDI properties file or you can specify the
valueswhen you configure an adapter connection. Do not use a combination of these twomethods:
enter both properties in a JNDI properties file or specify them both when configuring an adapter
connection.

To specify the credentials when configuring a connection, use the JNDI Username parameter and
the JNDI Password parameter on the Connection Types screen, as follows:

If you specify a username in the JNDI Username parameter, this value is assigned to the
java.naming.security.principal property. If this property is also included in the JNDI properties
file, the value in the JNDI Username parameter overrides the value in the properties file.

If you specify a password in the JNDI Password parameter, this value is assigned to the
java.naming.security.credentials property. If this property is also included in the JNDI properties
file, the value in the JNDI Password parameter overrides the value in the properties file.

Providing the JNDI password in the JNDI Password parameter is more secure than defining
the password in the JNDI properties file. This is because Integration Server Administrator
automatically encrypts the value in the JNDI Password parameter. The JNDI properties file,
on the other hand, is never encrypted. The password will be in clear text and can be seen by
any user having the appropriate access to that file within the local operating system.

For information about these parameters on the Connection Types screen, see the instructions in
“Configuring Adapter Connections” on page 69. For additional information about JNDI security
credentials, see “Application Server ConfigurationNotes” on page 163, and see the section for your
application server.

Security Considerations
The system administrator should restrict access to the following files and directories:

JNDI Properties Files. All properties defined in the JNDI properties file used to create an
adapter connection will be copied into the JVM's system properties list. This feature provides
the adapter with a certain degree of flexibility in how it may interact with the application
server. It also provides a mechanism through which arbitrary string values can be introduced
into a running JVM.

Due to the nature of this feature, access should be restricted to all JNDI properties files used
with Adapter for Enterprise Javabeans connections. Certain users and processes will need to

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 23

1 Overview of webMethods Adapter for Enterprise JavaBeans

read these files (the Integration Server process, for instance). Other users will need to create
andmodify these files. The system administrator should use the features of the local operating
system to restrict access to these files to only those users.

Classes andSupportedDirectories.The WmEJBAdapter\code\classesdirectory and, in particular,
the WmEJBAdapter\code\classes\com\wm\adapter\wmejb\connection\impl\supported directory
contain façade classes that determine which application server vendors and versions are
supported. Adding or removing class files from the supported directory could have undesired
consequences. The system administrator should use the features of the local operating system
to restrict access to both of these directories.

EJB Information Caching
An adapter connection may be configured to cache information retrieved from the JNDI server.
This information is available to all connection instances created by that adapter connection. It is
retained in memory for a period of time determined by the level of caching selected. Information
in the cache is used during design time when you configure adapter services and assign a
connection. Caching has no impact on adapter services or connections at runtime.

Caching allows the adapter connection tominimize the number of round-trip accesses to the JNDI
server for the purpose of retrieving information about the EJBs bound in that server. Typically,
this information is static: an EJB that was available yesterday is likely still available today. For
large EJB installations, the costs associatedwith retrieving this information repetitively from JNDI
may be prohibitive.

Which caching level works best varies from site to site, and is influenced by a variety of external
factors: for example, network overhead, capacity of the JNDI server, capacity of Integration Server,
and size of the JNDI tree. In general, no caching (None) should be avoided on development systems
and Hard caching should be avoided on production systems.

Adapter for Enterprise Javabeans uses the cache level specified for the connection when you
configure an adapter service using Designer's adapter service editor. Adapter for Enterprise
Javabeans supports the following caching levels:

DescriptionCaching Level

No caching occurs.When configuring the adapter service, the connection
retrieves EJB details directly from the JNDI. This level of caching is

None

suitable when working against a very small set of deployed EJBs with
little network latency between Adapter for Enterprise Javabeans and the
application server.

Based on the Java WeakReference implementation. Information in the
cache is retained as long as there are outstanding weak references to the

Weak

cache. When no such references remain, the JVM reclaims the memory
consumed by the cache.

Based on the Java SoftReference implementation. Information in the
cache is retained until the JVM is forced to throw anOutOfMemoryError

Soft

24 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

1 Overview of webMethods Adapter for Enterprise JavaBeans

DescriptionCaching Level

in response to a memory allocation request. At this point, it frees the
memory in the cache.

Data is retrieved from the JNDI once and cached until no more
connections remain enabled for the connection factory. Subsequent

Hard

requests for EJB detail are retrieved from the cache. This level of caching
results in the fewest round-trip lookups on JNDI at the expense of more
virtual memory being tied up in Integration Server for longer periods of
time.

Adapter Services

Adapter services allow you to connect to the adapter's resource (that is, an application server) and
initiate an operation on the resource from Integration Server.

You call adapter services from a flowor Java service to interact with EJB instances on an application
server. For information about using the services in a flow, see “Creating Flows for Adapter for
Enterprise Javabeans Services” on page 147. To see how to use the services in different operations,
see “Scenarios” on page 129.

At design time, the adapter obtains information about each EJB deployed on the application server.
For each EJB, this information includes its home interface (for 2.1 adapter services only), the home
methods it exposes and their signatures, and its corresponding remote interface methods. The
adapter gets this information directly from JNDI or from the local cache. From this information,
you configure adapter services. Integration Server then uses adapter connections that you defined
earlier to execute the adapter services.

You configure adapter services using the templates providedwithAdapter for Enterprise Javabeans.
Each template represents a specific technique for doing work on a resource, such as creating an
EJB on an application server. An adapter service template contains all the code necessary for
interacting with the resource but without the data specifications. You provide these specifications
when you configure a new adapter service. The adapter provides different versions of templates
for creating adapter services for use with the EJB 3.0 or EJB 2.1 standards.

YouuseDesigner to configure the adapter service. Some familiaritywith usingDesigner is required.
For more information, see the webMethods Service Development Help for your release.

Configuring a new service from an adapter service template is straightforward. Using Designer,
you assign the service an adapter connection. After you select the connection for the adapter
service, you select the adapter service template to use. At this point, depending onwhich template
you have chosen, the adapter automatically populates EJB-specific fields andmenus in the adapter
service editor tabs. You then use the editor to manipulate these fields to configure the adapter
service.

The input signature for an adapter service template is predefined and depends on the specific
signature(s) of the EJB method(s) selected. You can re-name the method parameters, but you
cannot re-define the types of any method parameters.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 25

1 Overview of webMethods Adapter for Enterprise JavaBeans

The output signature is predefined and is always the same for a given template class. You cannot
change any of the parameter names or re-define the types.

Each adapter service you configure can be used as a standalone, executable entity. However, you
can also incorporate your adapter services in flow services or Java services to implement some
business workflow. Using the Flow Service Editor in Designer, you can create intelligent business
applications wrapped around Adapter for Enterprise Javabeans services. For more information
about creating flowswith adapter services you configure using Adapter for Enterprise Javabeans,
see “Creating Flows for Adapter for Enterprise Javabeans Services” on page 147.

Supported Bean Types
The adapter supports the following types of EJBs:

Entity beans 2.0 and 2.1

Stateless session beans 2.0, 2.1, and 3.0

Stateful session beans 2.0, 2.1, and 3.0

There is no support for message-driven EJBs.

Services and Transaction Management
Adapter for Enterprise Javabeans is designed to interactwith Integration Server's built-in transaction
manager.When designing and implementing transactions, and especially distributed transactions,
you must not only be familiar with the capabilities of the built-in transaction manager, but also
with those of the application server in general, as well as the particular EJBs involved. For example,
configuring an adapter service in the following scenarios will cause the adapter to generate an
error at runtime:

Configuring an adapter service to use an EJB that has the Mandatory transaction attribute
value against a non-transactional connection.

Configuring an adapter service to use an EJB that has the Never transaction attribute value
against a local or XA connection.

Calling the RemoveEJB service against a stateful session EJB deployed on WebSphere or
WebLogic within a transaction. See “Removing EJBs” on page 93 for more information about
the RemoveEJB service.

The EJB standard does not provide a way for a client to determine the transaction attributes of an
EJB, so these situations cannot be detected when configuring an adapter service. For more
information about transactionmanagement, see “TransactionManagement ofAdapter for Enterprise
Javabeans Connections” on page 19. For information about transaction attributes, see “EJB
Transaction Management” on page 20.

26 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

1 Overview of webMethods Adapter for Enterprise JavaBeans

Configuring Adapter for Enterprise Javabeans for Adapter
Services
It is necessary to configureAdapter for Enterprise Javabeans for the adapter services. The file used
for configuring the adapter services, config.xml, is available in the Integration Server_directory \
instances\instance_name\packages\WmEJBAdapter\config folder.

Specifying the config.xml File for Adapter Services

The config.xml file has two sets of elements:

Application level elements comprising ejbConfig, appServer, restrictedJNDINames,
jndiTreeSearchOptions, and jndiContexts.

EJB level elements comprising jndiNames and ejbClientJars.

Important:
For 2.1 adapter services, both the application level and EJB level elements are optional. For
3.0 adapter services, the application level elements are optional, whereas the EJB level
elements aremandatory. Adapter for Enterprise Javabeans cannotworkwith the 3.0 adapter
services if neither of the EJB level elements are specified.

The elements that are available in config.xml are:

DescriptionElement

This element is the root element of the config.xml file and contains only the
application server elements.

ejbConfig

This element is specific to every instance of the application server, and is used
to customize the application server configuration for Adapter for Enterprise

appServer

Javabeans. Specify a value of "*" for providerURL to use the default instance
of the application server.

To list multiple instances of application servers, specify the configuration of
the sub-elements listed below within the <appserver>... </appserver> XML
tag. Specify the JNDI provider URL of the application server as a value for
providerURL for every element of <appServer>.

Contains the list of JNDI names that are to be
avoided when traversing through the JNDI tree.

restrictedJNDINames

Update this list with objects that are not accessible
to the different application servers or different
versions of the same application server.

The structure of this element is:
<restrictedJNDINames>

<jboss>

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 27

1 Overview of webMethods Adapter for Enterprise JavaBeans

DescriptionElement
<jndiName>jndiName</jndiName>
.
.
.

</jboss>
<weblogic>
<jndiName>jndiName</jndiName>
.
.
.

</weblogic>
<websphere>
<jndiName>jndiName</jndiName>
.
.
.

</websphere>
</restrictedJNDINames>

Defines the options for searching the JNDI tree. The
options available are <contextSearch> and
<nameSearch>.

jndiTreeSearchOptions

If the <contextSearch> option is set to true, the
application server searches the JNDI tree based on
the contexts that are specified in the <jndiContexts>
sub-element.

If the <nameSearch> option is set to true, the
application server searches the JNDI tree based on
the jar files names specified in the <ejbClientJars>
sub-element.

Both the options, <contextSearch> and
<nameSearch>, for any instance of the application
server, can be set to true to search on both context
and jar file name. If both the options are set to false,
the application server traverses through the entire
JNDI tree.

In the <jndiTreeSearchOptions>, if the
<contextSearch> option is set to true, specify a list

jndiContexts

of JNDI context elements, based on the contexts to
be searched. Each JNDI context is represented in
the format of the JNDI tree.

Required for 3.0 adapter services. In the
<jndiTreeSearchOptions>, if the <nameSearch>

jndiNames

option is set to true, specify a list of <jndiName>
elements, based on the <jndiNames> to be searched.

28 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

1 Overview of webMethods Adapter for Enterprise JavaBeans

DescriptionElement

The <jndiName> is represented in the format of the
JNDI tree.

Required for 3.0 adapter services. Specify the jar
files to be executed by the adapter services. The

ejbClientJars

value of each <jarFileName> elementmust be either
the absolute path of the jar file or the name of the
jar file, only if the jar file is available at
\\WmEJBAdapter\code\jars.

The following is an example of the format entries in a config.xl file:
<ejbConfig>
<appServer providerURL="*">
<restrictedJNDINames>
<jboss>

<jndiName>jboss.logging.DomainLogHandler</jndiName>
.
.
.

</jboss>
<weblogic>

<jndiName>weblogic.logging.DomainLogHandler</jndiName>
.
.
.

</weblogic>
<websphere>

<jndiName>websphere.logging.DomainLogHandler</jndiName>
.
.
.

</websphere>
</restrictedJNDINames>

<jndiTreeSearchOptions>
<contextSearch>true</contextSearch>
<nameSearch>true</nameSearch>

</jndiTreeSearchOptions>

<jndiContexts>
<jndiContext>thisNode/servers/server1/WSsamples</jndiContext>
<jndiContext>thisNode/servers/server1/WSsamples1</jndiContext>
.
.
.

</jndiContexts>

<jndiNames>
<jndiName>WSsamples/BasicCalculator1</jndiName>
<jndiName>WSsamples/BasicCalculator2</jndiName>
.
.
.

</jndiNames>

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 29

1 Overview of webMethods Adapter for Enterprise JavaBeans

<ejbClientJars>
<jarFileName>BasicCalculatorEJBClient.jar</jarFileName>
.
.
.

</ejbClientJars>
</appServer>
</ejbConfig>

Adapter Service Templates
There are two activities a clientmay perform against an EJB: creating a newEJB instance (or finding
an existing one) and executing the remote methods exposed by that EJB. Accordingly, Adapter
for Enterprise Javabeans provides the following adapter service templates:

DescriptionAdapter Service Template

Creates one or more instances of a single remote 2.1 EJB class and
returns the EJB handles to the caller. See “CreateEJB 2.1 Adapter
Service” on page 30 for more information.

CreateEJB 2.1

Invokes a single method on an existing 2.1 EJB. See “InvokeEJB 2.1
Adapter Service” on page 32 for more information.

InvokeEJB 2.1

Creates one or more instances of a single 2.1 EJB class and invokes a
single method on those instances. See “CreateInvokeEJB 2.1 Adapter
Service” on page 34 for more information.

CreateInvokeEJB 2.1

Creates one or more instances of a single remote 3.0 EJB class and
returns the EJB handles to the caller. See “FetchEJB 3.0 Adapter
Service” on page 36 for more information.

FetchEJB 3.0

Invokes a single method on an existing 3.0 EJB. See “InvokeEJB 3.0
Adapter Service” on page 37 for more information.

InvokeEJB 3.0

Creates one or more instances of a single 3.0 EJB class and invokes a
single method on those instances. See “FetchInvokeEJB 3.0 Adapter
Service” on page 39 for more information.

FetchInvokeEJB 3.0

CreateEJB 2.1 Adapter Service
Services configuredwith the CreateEJB 2.1 template create one ormore instances of a single remote
2.1 EJB class and return the EJB handles to the caller. A CreateEJB 2.1 service does not invoke any
methods on the EJBs it creates. You can create the following types of EJBs: entity beans, stateless
session beans, and stateful session beans.

At design time, you provide the following inputs in the adapter service editor: the JNDI lookup
name of the EJB to create and the identity of the EJBHome creator/finder method to be executed
by the service. If the method has parameters, you can override the default names given to the
parameters in Designer's adapter service editor. See “Configuring CreateEJB 2.1 Services” on
page 81 for more information about the parameters.

30 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

1 Overview of webMethods Adapter for Enterprise JavaBeans

In a CreateEJB 2.1 service's input signature, the document name used to contain EJB method
arguments is pre-configured and localized. The input document name is EJBHome_Args and is
only visible if the home method takes arguments.

The output of a CreateEJB 2.1 adapter service is the remote EJB(s), and typically serves as the input
to an InvokeEJB 2.1 adapter service. Formore information, see “InvokeEJB 2.1 Adapter Service” on
page 32.

Run-Time Processing for a CreateEJB 2.1 Service

At run time, the service's only inputs are the parameter values required by the EJBHome method
(if any).

If the operation is successful, the CreateEJB 2.1 service returns to the caller an array of
javax.ejb.Handle instances that represent the remote EJBs found or created by the EJBHomemethod.
These handles may subsequently be de-serialized by the caller to obtain the underlying EJBs or
may be passed into a suitably configured InvokeEJB 2.1 adapter service.

Note:
In general, session EJBHome methods will always return a single EJBObject, entity EJBHome
methods (for example, finder methods) may return multiple EJBObjects. To accommodate the
possibility of multiple objects being returned, a CreateEJB 2.1 service always wraps the output
of the create/find method in an array.

If the CreateEJB 2.1 service fails, it throws an adapter exception.

DescriptionStep

An Integration Server client runs a flow service or Java service on Integration Server.1

The flow or Java service invokes a CreateEJB 2.1 adapter service on Integration Server.2

You configured the adapter service earlier using Designer.

The CreateEJB 2.1 adapter service gets a connection from the service's connection pool.3

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 31

1 Overview of webMethods Adapter for Enterprise JavaBeans

DescriptionStep

You created and enabled the adapter connection earlier using Integration Server
Administrator.

Through its connection, the CreateEJB 2.1 adapter service accesses the application server's
JNDI to look up the EJBHome interface of the EJB for which the service was configured.
JNDI will return the remote stub representing this EJBHome.

4

The CreateEJB 2.1 adapter service invokes the configured EJBHome method on the
application server. If the method takes any parameters, the values are extracted from
the pipeline and passed to the remote method.

5

If the operation is successful, the adapter service returns an array of javax.ejb.Handle
instances that represent the remote EJBs.

If the operation is unsuccessful, the adapter service throws an AdapterException or
AdapterConnectionException. For more information about how the adapter handles
exceptions, see Adapter Logging and Exception Handling.

The CreateEJB 2.1 adapter service saves the resulting remote EJB handle(s) and status
on pipeline. These handlesmay then be de-serialized by the caller to obtain the underlying
EJBs or simply passed into a suitably configured InvokeEJB 2.1 adapter service.

6

InvokeEJB 2.1 Adapter Service
Services configured with the InvokeEJB 2.1 template invoke a single method on an existing 2.1
EJB.

At design time, an InvokeEJB 2.1 service requires two inputs: the JNDI lookup name of the EJB
and the identity of the bean method it should invoke. If the method has parameters, you can
override the default names given to the parameters in Designer's adapter service editor. For more
information about the parameters, see “Configuring InvokeEJB 2.1 Services” on page 83. In an
InvokeEJB 2.1 service's input signature, the document name used to contain EJBmethod arguments
is pre-configured and localized. The input document name is EJBObject_Args and is only visible
if the bean method takes arguments.

Note that the output of a CreateEJB 2.1 adapter service (the remote EJBs it created) can serve as
the input to an InvokeEJB 2.1 adapter service. Because the output of CreateEJB 2.1 is an array of
one ormoreHandle objects representing EJBs of a specific class, you should configure an InvokeEJB
2.1 adapter service to work with the same EJB class returned by the CreateEJB 2.1 service.

Important:
Be careful when naming instances of these CreateEJB 2.1 and InvokeEJB 2.1 adapter services to
avoid mismatching them. If a pair of CreateEJB 2.1 and InvokeEJB 2.1 services are mismatched
in a flow, this condition will not be detected until that flow is executed.

When adding an InvokeEJB 2.1 adapter service to a flow, note that:

32 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

1 Overview of webMethods Adapter for Enterprise JavaBeans

Any execution of an InvokeEJB 2.1 service must be preceded by an execution of a CreateEJB
2.1 service. Both services must be configured to operate against the same EJB class.

Any execution of an InvokeEJB 2.1 service will always require at least one input: the output
of a prior CreateEJB 2.1 execution. That is, before you can execute an EJB method, you must
first obtain that EJB. For more information, see “Obtaining an EJB” on page 148.

Run-Time Processing for an InvokeEJB 2.1 Service

At run time, an InvokeEJB 2.1 service expects to receive a single instance of javax.ejb.Handle along
with any parameter values needed by the bean method. The Handle object represents the EJB to
invoke the remote method against. Its output depends on the output signature of the method it
invokes. If the service fails, it throws an adapter exception.

DescriptionStep

An Integration Server client runs a flow service or Java service on Integration Server.1

The flow or Java service invokes an InvokeEJB 2.1 adapter service on Integration Server.2

You configured the adapter service earlier using Designer.

The InvokeEJB 2.1 adapter service gets a connection from the service's connection pool.3

You created and enabled the adapter connection earlier using Integration Server
Administrator.

The InvokeEJB 2.1 adapter service gets the EJB object handle from the pipeline.4

Through its connection, the InvokeEJB 2.1 adapter service invokes the configured
EJBObject method on the application server. If the method takes any parameters, the
values are extracted from the pipeline and passed to the remote method.

5

If the operation is successful, the adapter service returns the method's output, if any.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 33

1 Overview of webMethods Adapter for Enterprise JavaBeans

DescriptionStep

If the operation is unsuccessful, the adapter service throws an AdapterException or
AdapterConnectionException. For more information about how the adapter handles
exceptions, see Adapter Logging and Exception Handling.

The InvokeEJB 2.1 adapter service saves the output of themethod and status on pipeline.6

CreateInvokeEJB 2.1 Adapter Service
A CreateInvokeEJB 2.1 service combines the functionality of the CreateEJB 2.1 and InvokeEJB 2.1
adapter services and the RemoveEJB Java service into one service. Services configured with this
template create one ormore instances of a single 2.1 EJB class and invoke a singlemethod on those
instances. Unlike CreateEJB 2.1, the remote EJB instances are not returned to the caller.
CreateInvokeEJB 2.1 automatically calls RemoveEJB for each non-entity EJB instance; however,
RemoveEJB is never called for an entity bean. See “RemovingEJBs” on page 93 formore information
about the RemoveEJB service.

Use the CreateInvokeEJB 2.1 templatewhen youwant to create an adapter service that will retrieve
an EJB, run a method on that bean, then release it. Because it does not return any Handle objects
in its output, the lifecycle of the EJB is entirely containedwithin the bounds of the adapter service:
the EJB is created, a single method is invoked and its output captured, then its remove() method
is called. For this reason, a CreateInvokeEJB 2.1 service is not particularly useful with stateful
session beans.

At design time, a CreateInvokeEJB 2.1 service requires the JNDI lookup name of the EJB to create,
the identity of the createmethod to invoke, and the identity of the beanmethod to invoke. Aswith
the other service templates, youmay override the default names of any parameter used in a home
or remotemethod. See “ConfiguringCreateInvokeEJB 2.1 Services” onpage 85 formore information
about the parameters.

In aCreateInvokeEJB 2.1 service's input signature, the document names used to contain EJBmethod
arguments are pre-configured and localized. The input document name of the home method is
EJBHome_Args and the input document name of the bean method is EJBObject_Args. The
documents appear in the input signature only if the correspondingmethods have any arguments.

Run-Time Processing for a CreateInvokeEJB 2.1 Service

At run time, a CreateInvokeEJB 2.1 service instance requires any parameter values the home and/or
bean methods require for inputs. Its output is the output of the remote bean method itself, if any.
The adapter service wraps the bean's output in an array in case multiple objects are returned.

34 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

1 Overview of webMethods Adapter for Enterprise JavaBeans

DescriptionStep

An Integration Server client runs a flow service or Java service on Integration Server.1

The flow or Java service invokes a CreateInvokeEJB 2.1 adapter service on Integration
Server.

2

You configured the adapter service earlier using Designer.

The CreateInvokeEJB 2.1 adapter service gets a connection from the service's connection
pool.

3

You created and enabled the adapter connection earlier using Integration Server
Administrator.

Through its connection, the CreateInvokeEJB 2.1 adapter service accesses the application
server's JNDI to look up the EJBHome interface of the EJB for which the service was
configured. JNDI will return the remote stub representing this EJBHome.

4

The CreateInvokeEJB 2.1 adapter service invokes the configured EJBHome method on
the application server. If themethod takes any parameters, the values are extracted from
the pipeline and passed to the remote method.

5

If the operation is successful, the adapter service obtains an array of javax.ejb.Handle
instances that represent the remote EJBs.

If the operation is unsuccessful, the adapter service returns an AdapterException or
AdapterConnectionException. For more information about how the adapter handles
exceptions, see Adapter Logging and Exception Handling.

Using the handles obtained in the previous step, the CreateInvokeEJB 2.1 adapter service
invokes the configured EJBObject method on the application server. If the method takes

6

any parameters, the values are extracted from the pipeline and passed to the remote
method.

If the operation is successful, the adapter service returns the method's output, if any.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 35

1 Overview of webMethods Adapter for Enterprise JavaBeans

DescriptionStep

If the operation is unsuccessful, the adapter service returns an AdapterException or
AdapterConnectionException. For more information about how the adapter handles
exceptions, see Adapter Logging and Exception Handling.

TheCreateInvokeEJB 2.1 adapter service puts the output of the remotemethod invocation
and the status on the pipeline.

7

The CreateInvokeEJB 2.1 adapter service has completed its processing for session EJBs,
it calls the EJB-standard remove() method on each EJB object obtained in step 5.

8

FetchEJB 3.0 Adapter Service
The services configured with the FetchEJB 3.0 template find one or more instances of a single
remote 3.0 EJB class and return the EJB handles to the caller. A FetchEJB 3.0 service does not invoke
anymethods on the EJBs it finds. You can create the following types of EJBs: stateless session beans
and stateful session beans.

At design time, you provide the JNDI lookup name of the EJB to fetch. See “Configuring FetchEJB
3.0 Services” on page 88 for more information about the parameters.

The output of a FetchEJB 3.0 adapter service is the remote EJB(s), and typically serves as the input
to an InvokeEJB 3.0 adapter service. Formore information, see “InvokeEJB 3.0 Adapter Service” on
page 37.

Run-Time Processing for a FetchEJB 3.0 Service

At run time, the service's only inputs are the parameter values required by the EJBObject method
(if any).

If the operation is successful, the FetchEJB 3.0 service returns to the caller an array of
javax.ejb.Handle instances that represent the remote EJBs found. These handlesmay subsequently
be de-serialized by the caller to obtain the underlying EJBs or may be passed into a suitably
configured InvokeEJB 3.0 adapter service.

Note:
In general, session EJBObject methods will always return a single EJBObject, entity EJBObject
methods (for example, finder methods) may return multiple EJBObjects. To accommodate the
possibility of multiple objects being returned, a FetchEJB 3.0 service always wraps the output
of the service in an array.

If the FetchEJB 3.0 service fails, it throws an adapter exception.

36 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

1 Overview of webMethods Adapter for Enterprise JavaBeans

DescriptionStep

An Integration Server client runs a flow service or Java service on Integration Server.1

The flow or Java service invokes a FetchEJB 3.0 adapter service on Integration Server.2

You configured the adapter service earlier using Designer.

The FetchEJB 3.0 adapter service gets a connection from the service's connection pool.3

You created and enabled the adapter connection earlier using Integration Server
Administrator.

Through its connection, the FetchEJB 3.0 adapter service accesses the application server's
JNDI to look up the EJBRemote interface of the EJB forwhich the servicewas configured.

4

The FetchEJB 3.0 adapter service fetches the configured EJBObjects associated with the
JNDI Name configured on the application server.

5

If the operation is successful, the adapter service returns an array of javax.ejb.Handle
instances that represent the remote EJBs.

If the operation is unsuccessful, the adapter throws an AdapterException or
AdapterConnectionException. For more information about how the adapter handles
exceptions, see Adapter Logging and Exception Handling.

The FetchEJB 3.0 adapter service saves the resulting remote EJB handles and status on
pipeline. These handles may then be de-serialized by the caller to obtain the underlying
EJBs or simply passed into a suitably configured InvokeEJB 3.0 adapter service.

6

InvokeEJB 3.0 Adapter Service
Services configured with the InvokeEJB 3.0 template invoke a single method on an existing 3.0
EJB.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 37

1 Overview of webMethods Adapter for Enterprise JavaBeans

At design time, an InvokeEJB 3.0 service requires two inputs: the JNDI lookup name of the EJB
and the identity of the bean method it should invoke. If the method has parameters, you can
override the default names given to the parameters in Designer's adapter service editor. For more
information about the parameters, see “Configuring InvokeEJB 3.0 Services” on page 89. In an
InvokeEJB 3.0 service's input signature, the document name used to contain EJBmethod arguments
is pre-configured and localized. The input document name is EJBObject_Args and is only visible
if the bean method takes arguments.

Note that the output of a FetchEJB 3.0 adapter service (the remote EJBs it created) can serve as the
input to an InvokeEJB 3.0 adapter service. Because the output of FetchEJB 3.0 is an array of one
or more Handle objects representing EJBs of a specific class, you should configure an InvokeEJB
3.0 adapter service to work with the same EJB class returned by the FetchEJB 3.0 service.

Important:
Be careful when naming instances of these FetchEJB 3.0 and InvokeEJB 3.0 adapter services to
avoid mismatching them. If a pair of FetchEJB 3.0 and InvokeEJB 3.0 services are mismatched
in a flow, this condition will not be detected until that flow is executed.

When adding an InvokeEJB 3.0 adapter service to a flow, note that:

Any execution of an InvokeEJB 3.0 service must be preceded by an execution of a FetchEJB 3.0
service. Both services must be configured to operate against the same EJB class.

Any execution of an InvokeEJB 3.0 service will always require at least one input: the output
of a prior FetchEJB 3.0 execution. That is, before you can execute an EJB method, you must
first obtain that EJB. For more information, see “Obtaining an EJB” on page 148.

Run-Time Processing for an InvokeEJB 3.0 Service

At run time, an InvokeEJB 3.0 service expects to receive a single instance of javax.ejb.Handle along
with any parameter values needed by the bean method. The Handle object represents the EJB to
invoke the remote method against. Its output depends on the output signature of the method it
invokes. If the service fails, it throws an adapter exception.

38 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

1 Overview of webMethods Adapter for Enterprise JavaBeans

DescriptionStep

An Integration Server client runs a flow service or Java service on Integration Server.1

The flow or Java service invokes an InvokeEJB 3.0 adapter service on Integration Server.2

You configured the adapter service earlier using Designer.

The InvokeEJB 3.0 adapter service gets a connection from the service's connection pool.3

You created and enabled the adapter connection earlier using Integration Server
Administrator.

The InvokeEJB 3.0 adapter service gets the EJB object handle from the pipeline.4

Through its connection, the InvokeEJB 3.0 adapter service invokes the configured
EJBObject method on the application server. If the method takes any parameters, the
values are extracted from the pipeline and passed to the remote method.

5

If the operation is successful, the adapter service returns the method's output, if any.

If the operation is unsuccessful, the adapter service throws an AdapterException or
AdapterConnectionException. For more information about how the adapter handles
exceptions, see Adapter Logging and Exception Handling.

The InvokeEJB 3.0 adapter service saves the output of themethod and status on pipeline.6

FetchInvokeEJB 3.0 Adapter Service
A FetchInvokeEJB 3.0 service combines the functionality of the FetchEJB 3.0 and InvokeEJB 3.0
adapter services into one service. Services configuredwith this template fetch one ormore instances
of a single 3.0 EJB class and invoke a single method on those instances. Unlike FetchEJB 3.0, the
remote EJB instances are not returned to the caller.

Use the FetchInvokeEJB 3.0 template when youwant to create an adapter service that will retrieve
an EJB, run a method on that bean, then release it. Because it does not return any Handle objects
in its output, the lifecycle of the EJB is entirely containedwithin the bounds of the adapter service:
the EJB is created, a single method is invoked and its output is captured. For this reason, a
FetchInvokeEJB 3.0 service is not particularly useful with stateful session beans.

At design time, a FetchInvokeEJB 3.0 service requires the JNDI lookup name of the EJB to fetch
and the identity the beanmethod to invoke. Aswith the other service templates, youmay override
the default names of any parameter used in remotemethod. See “Configuring FetchInvokeEJB 3.0
Services” on page 91 for more information about the parameters.

In a FetchInvokeEJB 3.0 service's input signature, the document names used to contain EJBmethod
arguments are pre-configured and localized. The input document name of the bean method is
EJBObject_Args. The documents appear in the input signature only if the correspondingmethods
have any arguments.

Run-Time Processing for a FetchInvokeEJB 3.0 Service

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 39

1 Overview of webMethods Adapter for Enterprise JavaBeans

At run time, a FetchInvokeEJB 3.0 service instance requires any parameter values the beanmethods
require for inputs. Its output is the output of the remote bean method itself, if any. The adapter
service wraps the bean's output in an array in case multiple objects are returned.

DescriptionStep

An Integration Server client runs a flow service or Java service on Integration Server.1

The flow or Java service invokes a FetchInvokeEJB 3.0 adapter service on Integration
Server.

2

You configured the adapter service earlier using Designer.

The FetchInvokeEJB 3.0 adapter service gets a connection from the service's connection
pool.

3

You created and enabled the adapter connection earlier using Integration Server
Administrator.

Through its connection, the FetchInvokeEJB 3.0 adapter service accesses the application
server's JNDI to look up the EJBRemote interface of the EJB for which the service was
configured.

4

The FetchInvokeEJB 3.0 adapter service fetches the configured EJBObjects associated
with the JNDI Name configure on the application server.

5

If the operation is successful, the adapter service returns an array of javax.ejb.Handle
instances that represent the remote EJBs.

If the operation is unsuccessful, the adapter service returns an AdapterException or
AdapterConnectionException. For more information about how the adapter handles
exceptions, see Adapter Logging and Exception Handling.

Using the handles obtained in the previous step, the FetchInvokeEJB 3.0 adapter service
invokes the configured EJBObject method on the application server. If the method takes

6

40 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

1 Overview of webMethods Adapter for Enterprise JavaBeans

DescriptionStep

any parameters, the values are extracted from the pipeline and passed to the remote
method.

If the operation is successful, the adapter service returns the method's output, if any.

If the operation is unsuccessful, the adapter service returns an AdapterException or
AdapterConnectionException. For more information about how the adapter handles
exceptions, see Adapter Logging and Exception Handling.

The FetchInvokeEJB 3.0 adapter service puts the output of the remotemethod invocation
and the status on the pipeline.

7

The FetchInvokeEJB 3.0 adapter service has completed its processing for session EJBs,
it calls the EJB-standard remove() method on each EJB object obtained in step 5.

8

Using Adapter for Enterprise Javabeans Services in a Flow
After configuring adapter services you can use them as either standalone services or you can
construct flows that are built around these services to implement a business process. You create
and edit flow services using Designer.

For themost part, Designer's Flow Service Editor provides all the tools needed to do this. However,
there may be situations where you must provide additional "translation service objects" in the
flow for EJBs that return or expect non-standard Java objects.

For example, you have an EJB that exposes a remotemethod to create an account, the createAccount
method. This method takes as its input parameter a third-party com.foo.bar.Account object.
Designer will interpret and present the standard classes provided in Java (for example,
java.lang.String, java.lang.Double, long), but it cannot interpret com.foo.bar.Account and, therefore,
cannot present this object as anything other than java.lang.Object.

This is acceptable if you can generate a suitable instance of com.foo.bar.Account by calling some
other service in your flow prior to invoking createAccount on the EJB. However, if no such service
is available, you need to create one. To do so, create a simple standalone translation service that
exposes an input signature containing all parameters needed to create a com.foo.bar.Account
object. At run time, the user enters values for these parameters. The translation servicewould then
use these values to create an instance of com.foo.bar.Account, which it would then place on its
outbound pipeline. In the flow youmap this object to the input of the adapter service that invokes
createAccount.

For more information about creating flow services that use Adapter for Enterprise Javabeans
services, see “Creating Flows for Adapter for Enterprise Javabeans Services” on page 147.

Using Adapter Services

Note:

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 41

1 Overview of webMethods Adapter for Enterprise JavaBeans

For 3.0 adapter services, you need to specify the jar file information or the JNDI name of the 3.0
EJBs in the config.xml file located at Integration Server_directory
\instances\instance_name\packages\WmEJBAdapter\config folder. For more details on
configuring the config.xml file, see “Configuring Adapter for Enterprise Javabeans for Adapter
Services” on page 27.

The following table lists the tasks required to use adapter services:

1. Create and enable an adapter connection using Integration Server Administrator. See “Adapter
Connections” on page 67 for details.

2. Select the appropriate adapter service template and configure the necessary adapter services
using Designer.

Depending on the type of adapter service, you specify the:

Adapter connection

EJB class

EJB create method and/or bean method

Method parameter names, if any (optional)

See “Adapter Services” on page 79 for more information about configuring each of the
adapter services.

3. If you plan to use an Integration Server flow service or Java service to invoke the adapter
service, design the flow service to useAdapter for Enterprise Javabeans services you configure
using Designer. For information about using Designer, see thewebMethods Service Development
Help for your release.

For information about using the adapter services in a flow, see “Creating Flows for Adapter
for Enterprise Javabeans Services” on page 147. To see how to use the services in different
operations, see “Scenarios” on page 129.

4. Manage the adapter services using Designer and Integration Server Administrator. See
“Managing the Adapter Package” on page 58 and Adapter Logging and Exception Handling
for details.

Using Version Control Systems to Manage Adapter Elements

The adapter supports the VersionControl System (VCS) Integration feature provided byDesigner.
When you enable the feature in Integration Server, you can check adapter packages or elements
into and out of your version control system from Designer. For more information about the VCS
Integration feature, see the Configuring the VCS Integration Feature.

Beginning with Integration Server 8.2 SP3, the adapter supports the local service development
feature in Designer. This feature extends the functionality of the VCS Integration feature to check
package elements and their supporting files into and out of a VCS directly from Designer. For

42 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

1 Overview of webMethods Adapter for Enterprise JavaBeans

more information about local service development and how it compares to the VCS Integration
feature, see the webMethods Service Development Help.

Optimize Infrastructure Data Collector Support for the Adapter

Optimize Infrastructure Data Collector monitors the system and operational data associated with
webMethods runtime components such as Integration Server, Broker Servers, Brokers, and adapters,
and reports the status of these components on Optimize for Infrastructure or other external tools.
When you start monitoring Integration Server, Infrastructure Data Collector automatically starts
monitoring all ART-based adapters that are installed on Integration Server.

For information about monitored key performance indicators (KPIs) collected for the monitored
adapter components, see the Administering webMethods Optimize for your release.

Viewing the Adapter's Update Level

The list of updates that have been applied to Adapter for Enterprise Javabeans can be viewed in
the Updates field on the adapter's About page in Integration Server Administrator.

Controlling Pagination

You can control the number of items that are displayed on the adapter Connections screen. By
default, 10 items are displayed per page. Click Next and Previous to move through the pages, or
click a page number to go directly to a page.

To change the number of items displayed per page, set the watt.art.page.size property and specify
a different number of items.

To set the number of items per page

1. From Integration Server Administrator, click Settings > Extended.

2. Click Edit Extended Settings. In the Extended Settings editor, add or update the
watt.art.page.size property to specify the preferred number of items to display per page. For
example, to display 50 items per page, specify:

watt.art.page.size=50

3. Click Save Changes. The property appears in the Extended Settings list.

Formore information aboutworkingwith extended configuration settings, see thewebMethods
Integration Server Administrator’s Guide for your release.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 43

1 Overview of webMethods Adapter for Enterprise JavaBeans

44 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

1 Overview of webMethods Adapter for Enterprise JavaBeans

2 Installing, Upgrading, and Uninstalling

■ Overview .. 46

■ Requirements ... 46

■ The Integration Server Home Directory .. 46

■ Installing Adapter for Enterprise Javabeans 6.5 SP3 ... 46

■ Configure Integration Server to Work with the Application Server 47

■ Adapter for Enterprise Javabeans Support for Multiple Application Servers 55

■ Upgrading to Adapter for Enterprise Javabeans 6.5 SP3 ... 55

■ Uninstalling Adapter for Enterprise Javabeans 6.5 SP3 ... 56

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 45

Overview

This chapter explains how to install, upgrade, and uninstall webMethods Adapter for Enterprise
JavaBeans 6.5 SP3. The instructions use the SoftwareAG Installer and the SoftwareAGUninstaller
wizards. For complete information about the wizards or other installation methods, or to install
other webMethods products, see the Installing webMethods Products On Premises for your release.

Requirements

For a list of the operating systems, third-party products, andwebMethods products supported by
the adapter, see the webMethods Adapters System Requirements .

Adapter for Enterprise Javabeans 6.5 SP3 has no hardware requirements beyond those of the host
Integration Server.

The Integration Server Home Directory

Beginningwith Integration Server 9.6, you can create and runmultiple Integration Server instances
under a single installation directory. Each Integration Server instance has a home directory under
Integration Server_directory \instances\instance_name that contains the packages, configuration
files, log files, and updates for the instance.

For more information about running multiple Integration Server instances, see the webMethods
Integration Server Administrator’s Guide for your release.

If you are using Integration Server 9.5 and lower, the Integration Server home directory is
Integration Server_directory . For example, on Integration Server 9.5 the adapter package is installed
in the Integration Server_directory \packages directory.

This guide uses the packages_directory as the home directory in Integration Server classpaths.
For Integration Server 9.6 and above, the packages_directory is Integration Server_directory \
instances\instance_name\packages directory. For Integration Server 9.5 and lower, the
packages_directory is Integration Server_directory \packages directory.

Installing Adapter for Enterprise Javabeans 6.5 SP3

If you are installing the adapter in a clustered environment, youmust install it on each Integration
Server in the cluster, and each installation must be identical. For more information about working
with the adapter in a clustered environment, see “Using Adapter for Enterprise Javabeans in a
Clustered Environment” on page 62.

To install Adapter for Enterprise Javabeans 6.5 SP3

1. Download Software AG Installer from the Empower Product Support Web site.

2. If you are installing the adapter on an existing Integration Server, shut down the Integration
Server.

46 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

2 Installing, Upgrading, and Uninstalling

http://empower.softwareag.com

3. Start the Installer wizard.

4. Choose the webMethods release that includes the Integration Server on which to install the
adapter.

5. Specify the installation directory as follows:

If you are installing on an existing Integration Server, specify the webMethods installation
directory that contains the host Integration Server.

If you are installing both the host Integration Server and the adapter, specify the installation
directory to use.

6. In the product selection list, select Adapters > webMethods Adapter for Enterprise
JavaBeans 6.5 SP3.

If you are using Integration Server 9.6 and above, you can choose to install the package in the
default instance. In this case, Software AG Installer installs the adapter in both locations,
Integration Server_directory \packages and the default instance packages directory located in
Integration Server_directory \instances\default\packages.

7. To download the documentation for the adapter, go to Software AG Documentation website.

8. After installation is complete, close the Installer.

9. Go to “Configure Integration Server to Work with the Application Server” on page 47 and
perform those steps.

10. Start Integration Server.

Installing a Sample EJB Application
You can also download sample EJB source code from the Software AG TECHcommunity website.
The code demonstrates the procedure for invoking services running on Integration Server from
within an EJB. For more information about the sample EJB application, see “Sample EJB
Application” on page 100.

Configure Integration Server to Work with the Application
Server

After you finish with Installer, you need to perform several manual steps to set up webMethods
Integration Server to work with your application server. This section describes some instances of
class loading conflicts you should be aware of, and includes the configuration steps necessary for
each application server and Integration Server combination.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 47

2 Installing, Upgrading, and Uninstalling

http://documentation.softwareag.com
http://techcommunity.softwareag.com

Class Loading Conflicts
When possible, Adapter for Enterprise Javabeans takes full advantage of Integration Server's
per-package class loading scheme. This feature enables you to install application server vendor
jar files and deployed EJB jar files under WmEJBAdapter\code\jars. Installing the files to this location
limits the visibility of the classes and resources in those jars to Adapter for Enterprise Javabeans
and its dependents, thus reducing the potential for class loading collisions with other packages
installed on Integration Server.

For some application servers, installing the files under WmEJBAdapter\code\jarsmaynot be possible
due to their own internal class loading requirements. In these cases, the third-party jars files must
be installed on either the system classpath or the server's classpath.

If you put jar files in the lib\system directory on the Integration Server on which Adapter for
Enterprise Javabeans is installed, that Integration Server cannot be managed by Optimize
Infrastructure Data Collector due to class loading conflicts. For more information about
Infrastructure Data Collector support in the adapter, see “Optimize Infrastructure Data Collector
Support for the Adapter” on page 43.

Configuring WebLogic Application Servers
Before configuring the application server, you may want to see “Adapter for Enterprise Javabeans
Support for Multiple Application Servers” on page 55.

Note:
You must copy all the jar files from the application server directory to the Integration Server
directory as mentioned in the configuration steps of each version of the application server. In
the absence of these jar files, the Adapter for Enterprise Javabeans link is not displayed on the
Integration Server Administrator screen. Also, Adapter for Enterprise Javabeans may not start
properly, may throw a class not found error, or may not enable some features without throwing
an explicit error.

Important:
Do not delete the WmEJBConfigUtil.jar from the Integration Server_directory \
instances\instance_name\packages\WmEJBAdapter\code\jars\static directory. If you delete
this jar file, Adapter for Enterprise Javabeans will not start.

WebLogic Server 10.3

To set up Integration Server with WebLogic Server 10.3

1. Copy the following jar files from the WebLogic_directory\modules directory to the
Integration Server_directory \instances\instance_name\packages\WmEJBAdapter\code\jars\static
directory on Integration Server:

com.bea.core.management.core_2.3.0.0.jar

com.bea.core.repackaged.asm_3.0.jar

48 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

2 Installing, Upgrading, and Uninstalling

com.bea.core.store_1.4.0.0.jar

com.bea.core.timers_1.4.0.0.jar

com.bea.core.transaction_2.5.0.0.jar

com.bea.core.utils.classloaders_1.4.0.0.jar

com.bea.core.utils.full_1.4.0.0.jar

com.bea.core.utils.wrapper_1.3.0.0.jar

com.bea.core.weblogic.lifecycle_1.1.0.0.jar

com.bea.core.weblogic.rmi.client_1.4.0.0.jar

com.bea.core.weblogic.security.digest_1.0.0.0.jar

com.bea.core.weblogic.security.identity_1.1.0.0.jar

com.bea.core.weblogic.security.wls_1.0.0.0_5-0-2-0.jar

com.bea.core.weblogic.security_1.0.0.0_5-0-2-0.jar

com.bea.core.weblogic.socket.api_1.0.0.0.jar

com.bea.core.weblogic.workmanager_1.4.0.0.jar

javax.jdo_2.0.1.jar

javax.persistence_1.0.0.0_1-0.jar

org.apache.openjpa_2.2.0.0_1-1-0.jar

com.bea.core.descriptor_1.4.0.0.jar

com.bea.core.kodo_1.0.0.0_4-2-0.jar

com.bea.core.logging_1.4.0.0.jar

2. Copy the following jar files from the WebLogic_directory\server\lib directory to the
Integration Server_directory \instances\instance_name\packages\WmEJBAdapter\code\jars\static
directory on Integration Server:

weblogic.jar

wlclient.jar

wls-api.jar

WebLogic Server 12c

To set up Integration Server with WebLogic Server 12c

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 49

2 Installing, Upgrading, and Uninstalling

1. In a command prompt window, navigate to the directory location,
WebLogic_directory\server\lib.

2. Create a wlfullclient.jar file by typing the command, java -jar wljarbuilder.jar.

3. Copy the wlfullclient.jar file from the WebLogic_directory\server\lib directory to the
Integration Server_directory \instances\instance_name\packages\WmEJBAdapter\code\jars\static
directory on Integration Server.

Configuring WebSphere Application Servers
Use the set of instructions that correspond to the version of Integration Server and WebSphere
Application Server you are using.

Before configuring the application server, you may want to see “Adapter for Enterprise Javabeans
Support for Multiple Application Servers” on page 55.

Note:
You must copy all the jar files from the application server directory to the Integration Server
directory as mentioned in the configuration steps of each version of the application server. In
the absence of these jar files, the Adapter for Enterprise Javabeans link is not displayed on the
IS Administrator screen. Also, Adapter for Enterprise Javabeans may not start properly, may
throw a class not found error, or may not enable some features without throwing an explicit
error.

Important:
Do not delete the WmEJBConfigUtil.jar from the Integration Server_directory \
instances\instance_name\packages\WmEJBAdapter\code\jars\static directory. If you delete
this jar file, Adapter for Enterprise Javabeans will not start.

WebSphere Application Server

The procedure for setting up Integration Server with WebSphere Server is based on the JVM you
are using.

WebSphere Application Server 7.0 with Oracle JVM 1.6

To set up Integration Server with WebSphere Server 7.0 when using Oracle JVM 1.6

1. Copy the orb.properties file from the WebSphere_directory\jre\lib directory into the
Integration Server_directory \jvm\win160\jre\lib directory.

2. Copy the following jar files from the WebSphere_directory\plugins directory into the
Integration Server_directory \instances\instance_name\packages\WmEJBAdapter\code\jars\static
directory:

com.ibm.ws.jdt.core.jar

50 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

2 Installing, Upgrading, and Uninstalling

com.ibm.ws.runtime.jar

org.eclipse.jdt.core.jar

org.eclipse.osgi_.jar

com.ibm.ws.ejbportable.jar

com.ibm.ws.emf.jar

3. Copy the following jar files from the WebSphere_directory\java\jre\lib directory into the
Integration Server_directory \instances\instance_name\packages\WmEJBAdapter\code\jars\static
directory:

ibmcfw.jar

ibmorb.jar

ibmorbapi.jar

iwsorbutil.jar

4. Copy the following jar files from the WebSphere_directory\runtimes directory into the
Integration Server_directory \instances\instance_name\packages\WmEJBAdapter\code\jars\static
directory:

com.ibm.ws.admin.client_7.0.0.jar

com.ibm.ws.ejb.thinclient_7.0.0.jar

WebSphere Application Server 8.5 with Oracle JVM 1.7

To set up Integration Server with WebSphere Server 8.5 when using Oracle JVM 1.7

1. Copy the orb.properties file from the WebSphere_directory\jre\lib directory into the
Integration Server_directory \jvm\win170\jre\lib directory.

2. Copy the following jar files from the WebSphere_directory\plugins directory into the
Integration Server_directory \instances\instance_name\packages\WmEJBAdapter\code\jars\static
directory:

com.ibm.ws.jdt.core.jar

com.ibm.ws.runtime.jar

org.eclipse.jdt.core.jar

org.eclipse.osgi_.jar

com.ibm.ws.emf.jar

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 51

2 Installing, Upgrading, and Uninstalling

3. Copy the following jar files from the WebSphere_directory\java\jre\lib directory into the
Integration Server_directory \instances\instance_name\packages\WmEJBAdapter\code\jars\static
directory:

ibmcfw.jar

ibmorb.jar

ibmorbapi.jar

iwsorbutil.jar

4. Copy the following jar files from the WebSphere_directory\runtimes directory into the
Integration Server_directory \instances\instance_name\packages\WmEJBAdapter\code\jars\static
directory:

com.ibm.ws.admin.client_8.5.0.jar

com.ibm.ws.ejb.thinclient_8.5.0.jar

WebSphere Application Server 7.0 with IBM JVM 1.6

To set up Integration Server with WebSphere Server 7.0 when using IBM JVM 1.6

1. Install IBM JVM 1.6 at \installation_directory\jvm directory.

2. Copy the following jar files from the WebSphere_directory\plugins directory into the
Integration Server_directory \instances\instance_name\packages\WmEJBAdapter\code\jars\static
directory:

com.ibm.ws.jdt.core.jar

com.ibm.ws.runtime.jar

org.eclipse.jdt.core.jar

org.eclipse.osgi_.jar

com.ibm.ws.ejbportable.jar

com.ibm.ws.emf.jar

3. Copy the following jar files from the WebSphere_directory\runtimes directory into the
Integration Server_directory \instances\instance_name\packages\WmEJBAdapter\code\jars\static
directory:

com.ibm.ws.admin.client_7.0.0.jar

com.ibm.ws.ejb.thinclient_7.0.0.jar

52 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

2 Installing, Upgrading, and Uninstalling

4. Copy the EJB deployment jar files for any EJBs that will be used in the adapter to the
Integration Server_directory \instances\instance_name\packages\WmEJBAdapter\code\jars
directory on Integration Server.

5. To set the JAVA_DIR property to the installed JVM 1.6, open the Integration Server_directory
\server.bat file and set the following property to:

SET JAVA_DIR=installation_directory\jvm\IBM JDK 1.6\jre

Configuring JBoss Application Servers

Important:
j2ee.jar must be specified before implfactory.properties in the classpath.

Before configuring the application server, you may want to see “Adapter for Enterprise Javabeans
Support for Multiple Application Servers” on page 55.

Note:
You must copy all the jar files from the application server directory to the Integration Server
directory as mentioned in the configuration steps of each version of the application server. In
the absence of these jar files, the Adapter for Enterprise Javabeans link is not displayed on the
IS Administrator screen. Also, Adapter for Enterprise Javabeans may not start properly, may
throw a class not found error, or may not enable some features without throwing an explicit
error.

Important:
Do not delete the WmEJBConfigUtil.jar from the Integration Server_directory
\instances\instance_name\packages\WmEJBAdapter\code\jars\static directory. If you delete
this jar file, Adapter for Enterprise Javabeans will not start.

JBoss Application Server 5.1.0

To set up Integration Server with JBoss Server 5.1.0

1. Copy the following jar files from the JBoss Server directory (typically JBoss_directory\client)
to the Integration Server_directory
\instances\instance_name\packages\WmEJBAdapter\code\jars\staticdirectory on Integration
Server:

jboss-ejb3-common-client.jar

jboss-ejb3-core-client.jar

jboss-ejb3-ext-api.jar

jboss-ejb3-proxy-clustered-client.jar

jboss-ejb3-proxy-impl-client.jar

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 53

2 Installing, Upgrading, and Uninstalling

jboss-ejb3-proxy-spi-client.jar

jboss-ejb3-security-client.jar

jboss-integration.jar

jboss-javaee.jar

jboss-managed.jar

jboss-mdr.jar

jboss-messaging.jar

jboss-remoting.jar

jboss-remoting-aspects.jar

jboss-security-aspects.jar

jboss-security-spi.jar

jboss-serialization.jar

jbosssx.jar

jboss-system-jmx-client.jar

jmx-adaptor-plugin.jar

jmx-invoker-adaptor-client.jar

jnp-client.jar

trove.jar

applet.jar

concurrent.jar

ejb3-persistence.jar

javassist.jar

jboss-aop.jar

jboss-aspect-jdk50-client.jar

jboss-client.jar

jboss-common-core.jar

2. Copy the EJB deployment jar files for any EJBs that will be used in the adapter to the
Integration Server_directory \instances\instance_name\packages\WmEJBAdapter\code\jars
directory on Integration Server.

54 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

2 Installing, Upgrading, and Uninstalling

Adapter for Enterprise Javabeans Support for Multiple
Application Servers

The details about Adapter for Enterprise Javabeans support for multiple application servers are
as follows:

Adapter for Enterprise Javabeans supports multiple instances of the same version of the
application server.

Note:
For multiple instances of the same version of WebLogic application server, you must use
JAAS authentication. For more information about using JAAS authentication for WebLogic
servers, see “JAAS Authentication” on page 164.

Adapter for Enterprise Javabeans supports two different versions of the same application
server provided the jar files of the latest version are backward compatible and support the
connections of the earlier version, but there can always be a risk of conflict.

Adapter for Enterprise Javabeans does not support two different application servers at a time.
This is because Adapter for Enterprise Javabeans requires you to copy jar files from the
application server directory to the Integration Server directory. If you copy the jar files from
different application servers to the Integration Server directory, there can be a conflict of jar
files of one application server with those of other application servers.

Upgrading to Adapter for Enterprise Javabeans 6.5 SP3

To upgrade to Adapter for Enterprise Javabeans 6.5 SP3

1. Back up the WmEJBAdapter package and any existing custom adapter packages.

2. Uninstall the older version of the adapter. For information about how to uninstall Adapter for
Enterprise Javabeans, see the installation guide for the older adapter version.

3. Delete the WmEJBAdapter package from the Integration Server_directory
\instances\instance_name\packages directory.

You should not delete any other packages, such as packages that contain connections and
services, even when the packages have a dependency on the WmEJBAdapter package.

4. Install Adapter for Enterprise Javabeans as described in “Installing Adapter for Enterprise
Javabeans 6.5 SP3” on page 46.

5. Copy the application server client libraries from the old adapter installation to
Integration Server_directory \instances\instance_name\packages\WmEJBAdapter\code\jars and
Integration Server_directory
\instances\instance_name\packages\WmEJBAdapter\code\jars\static.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 55

2 Installing, Upgrading, and Uninstalling

6. Restart Integration Server.

Uninstalling Adapter for Enterprise Javabeans 6.5 SP3

To uninstall Adapter for Enterprise Javabeans 6.5 SP3

1. Shut down the host Integration Server. You do not need to shut down any other webMethods
products or applications that are running on your machine.

2. If you want to keep the Adapter for Enterprise Javabeans sample files, copy the
Integration Server_directory \packages\WmEJBAdapter\templates directory to another location
on your system.

3. Start Software AG Uninstaller, selecting the webMethods installation directory that contains
the host Integration Server. In the product selection list, select Adapters > webMethods
Adapter for Enterprise JavaBeans 6.5 SP3. You can also choose to uninstall documentation.

4. Restart the host Integration Server.

5. Uninstaller removes all Adapter for Enterprise Javabeans 6.5 SP3-related files thatwere installed.
However, Uninstaller does not delete files created after you installed the adapter (for example,
user-created or configuration files), nor does it delete the adapter directory structure. You can
go to the Integration Server_directory \packages directory and Integration Server_directory
\instances\default\packages directory. Delete the WmEJBAdapter directory.

56 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

2 Installing, Upgrading, and Uninstalling

3 Adapter Package Management

■ Overview .. 58

■ Managing the Adapter Package ... 58

■ Controlling Group Access ... 61

■ Using Adapter for Enterprise Javabeans in a Clustered Environment 62

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 57

Overview

The following sections describe how to set up andmanage your Adapter for Enterprise Javabeans
packages, set up Access Control Lists (ACL), and use the adapter in a clustered environment.

Managing the Adapter Package

Adapter for Enterprise Javabeans is provided as a package called WmEJBAdapter. You manage
the WmEJBAdapter package as you would manage any package on Integration Server.

When you create connections and adapter services, define them in user-defined packages rather
than in theWmEJBAdapter package. Doing so will allow you to manage the package more easily.

As you create user-defined packages in which to store connections and adapter services, use the
package management functionality provided in Designer and set the user-defined packages to
have a dependency on theWmEJBAdapter package. That way, when theWmEJBAdapter package
loads or reloads, the user-defined packages load automatically. See the following diagram:

Package management tasks include:

Setting package dependencies (see “Package Dependency Requirements and Guidelines” on
page 59).

“Enabling Packages” on page 60.

“Disabling Packages” on page 59.

58 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

3 Adapter Package Management

“Controlling Group Access” on page 61.

Package Dependency Requirements and Guidelines
This section contains a list of dependency requirements and guidelines for user-defined packages.
For instructions for setting package dependencies, see the webMethods Service Development Help
for your release.

A user-defined package must have a dependency on its associated adapter package,
WmEJBAdapter. (The WmEJBAdapter package has a dependency on the WmART package.)

Package dependencies ensure that at startup Integration Server automatically loads or reloads
all packages in the proper order: theWmART package first, the adapter package next, and the
user-defined package(s) last. TheWmARTpackage is automatically installedwhen you install
Integration Server. You should not need to manually reload the WmART package.

If the connections and adapter services of an adapter are defined in different packages, then:

A package that contains the connection(s)must have a dependency on the adapter package.

Packages that contain adapter services must have a dependency on their associated
connection package.

Keep connections for different adapters in separate packages so that you do not create
interdependencies between adapters. If a package contains connections for two different
adapters, and you reload one of the adapter packages, the connections for both adapters will
reload automatically.

Integration Server will not allow you to enable a package if it has a dependency on another
package that is disabled. That is, before you can enable your package, you must enable all
packages on which your package depends. For information about enabling packages, see
“Enabling Packages” on page 60.

Integration Server will allow you to disable a package even if another package that is enabled
has a dependency on it. Therefore, youmust manually disable any user-defined packages that
have a dependency on the adapter package before you disable the adapter package. For
information about disabling packages, see “Disabling Packages” on page 59.

You can name connections and adapter services the same name provided that they are in
different folders and packages.

Disabling Packages
All packages are automatically enabled by default. When youwant to temporarily prohibit access
to the elements in a package, disable the package.When you disable a package, the server unloads
all of its elements from memory. Disabling a package prevents Integration Server from loading
that package at startup. A disabled package will remain disabled until you explicitly enable it
using Integration Server Administrator.

To disable a package

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 59

3 Adapter Package Management

1. Open Integration Server Administrator if it is not already open.

2. In the Packages menu of the navigation area, click Management.

3. Click Yes in the Enabled column for the package that you want to disable. The server issues
a prompt to verify that you want to disable the package. Click OK to disable the package.
When the package is disabled, the server displays No in the Enabled column.

A disabled adapter will:

Remain disabled until you explicitly enable it using Integration Server Administrator.

Not be listed in the Software AG Designer Package Navigator view.

Enabling Packages
A disabled package will remain disabled until you explicitly enable it using Integration Server
Administrator.

To enable a package

1. Open Integration Server Administrator if it is not already open.

2. In the Packages menu of the navigation area, click Management.

3. Click No in the Enabled column. The server displays a and Yes in the Enabled column.

Note:
Enabling an adapter package will not cause its associated user-defined package(s) to be
reloaded. For information about reloadingpackages, see “Loading, Reloading, andUnloading
Packages” on page 60.

Important:
Before you manually enable a user-defined package, you must first enable its associated
adapter package (WmEJBAdapter). Similarly, if your adapter has multiple user-defined
packages, and youwant to disable some of them, disable the adapter package first. Otherwise,
errors will be issued when you try to access the remaining enabled user-defined packages.

Loading, Reloading, and Unloading Packages
Recall that if user-defined packages are properly configured with a dependency on the adapter
package (as described in “Package Dependency Requirements and Guidelines” on page 59), at
startup Integration Server automatically loads or reloads all packages in the proper order: the
WmART package first, the adapter package next, and the node package(s) last. You should not
need to manually reload the WmART package.

60 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

3 Adapter Package Management

Reloading Packages Manually

Reloading a user-defined package will not cause its associated adapter package to be reloaded.
You can reload adapter packages and user-defined packages from either Integration Server
Administrator (by clicking the icon on theManagementwindow) or fromSoftwareAGDesigner
(by right-clicking the package and selecting the Reload Package option from the menu).

Unloading Packages

At shutdown, Integration Server unloads packages in the reverse order in which it loaded them:
it unloads the node package(s) first, the adapter package next, and the WmART package last
(assuming the dependencies are correct).

Setting Package Dependencies
You set package dependencies if a given package needs services in another package to load before
it can load. For example, any packages you create for Adapter for Enterprise Javabeans services
should identify the webMethods Adapter for Enterprise JavaBeans package (WmEJBAdapter) as
a package dependency because they require services in the WmEJBAdapter to load first. Use the
following guidelines:

Set package dependencies from the adapter service package to the package containing the
connection if you configure a connection in one package and the adapter services in another
package. That is, the package that contains the connection should load before the adapter
service package.

When you set this package dependency, it ensures that if someone disables the connection
package and then re-enables it, the adapter services will reload correctly.

If both the connection and adapter services are in the same package, set this package to have
a dependency on the WmEJBAdapter package.

In general, packages containing connections should have a dependency set to the adapter
package itself. That is, the adapter service package should depend on the adapter connection
package, which should depend on the adapter package. Similarly, if the adapter services are
in the same package as the connections, the only dependency that you need to set is between
the adapter connection package and the adapter package.

Formore information about setting package dependencies, see thewebMethods ServiceDevelopment
Help for your release.

Controlling Group Access

To control which development group has access to which adapter services, use access control lists
(ACLs). You can use ACLs to prevent one development group from inadvertently updating the
work of another group, or to allow or deny access to services that are restricted to one group but
not to others.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 61

3 Adapter Package Management

For general information about assigning and managing ACLs, see the webMethods Service
Development Help for your release.

Using Adapter for Enterprise Javabeans in a Clustered
Environment

Clustering is an advanced feature of the webMethods product suite that substantially extends the
reliability, availability, and scalability of webMethods Integration Server. Clustering accomplishes
this by providing the infrastructure and tools to deploy multiple Integration Servers as if they
were a single virtual server and to deliver applications that leverage that architecture. Because
this activity is transparent to the client, clustering makes multiple servers look and behave as one.

For details on Integration Server clustering, see the webMethods Integration Server Clustering Guide
for your release.

Integration Server 8.2 SP2 and higher supports the caching and clustering functionality provided
by Terracotta. Caching and clustering are configured at the Integration Server level and Adapter
for Enterprise Javabeans uses the caching mechanism that is enabled on Integration Server.

With clustering, you get the following benefits:

Loadbalancing.This feature, provided automaticallywhen you set up a clustered environment,
allows you to spread the workload over several servers, thus improving performance and
scalability.

Failover support. Clustering enables you to avoid a single point of failure. If a server cannot
handle a request, or becomes unavailable, the request is automatically redirected to another
server in the cluster.

Note:
Integration Server clustering redirectsHTTP andHTTPS requests, but does not redirect FTP
or SMTP requests.

Scalability. You can increase your capacity even further by adding new machines running
Integration Server to the cluster.

Configuring the Adapter in a Clustered Environment
When you configure Adapter for Enterprise Javabeans to create adapter services, you must:

Ensure that each Integration Server in the cluster contains an identical set of packages (see
“Replicating Packages to webMethods Integration Servers” on page 63).

Disable the redirection capability for certain predefined administrative services (see “Disabling
the Redirection of Administrative Services” on page 63).

62 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

3 Adapter Package Management

Replicating Packages to webMethods Integration Servers
Every Integration Server in the cluster should contain an identical set of packages that you define
using Adapter for Enterprise Javabeans; that is, you should replicate Adapter for Enterprise
Javabeans services and the connections they use.

To ensure consistency, we recommend that you create all packages on one server, and replicate
them to the other servers. If you allow different servers to contain different services, you might
not derive the full benefits of clustering. For example, if a client requests a service that resides in
only one server, and that server is unavailable, the request cannot be successfully redirected to
another server.

For information about replicatingpackages, see the chapter onmanagingpackages in thewebMethods
Integration Server Administrator’s Guide for your release.

Disabling the Redirection of Administrative Services
A server that cannot handle a client's service request can automatically redirect the request to
another server in the cluster. However, Adapter for Enterprise Javabeans uses certain predefined
administrative services that you should not allow to be redirected. These services are used internally
when you configure the adapter. If you allow these services to be redirected, your configuration
specifications might be saved on multiple servers, which is an undesirable result. For example, if
you create twoAdapter for Enterprise Javabeans services, onemight be stored on one server, while
the other one might be stored on another server. Remember that all adapter services must reside
on all Integration Servers in the cluster.

To disable the redirection of administrative services

1. Shut down Integration Server Administrator. For more information on how to shut down
Integration Server Administrator, see the webMethods Integration Server Administrator’s Guide
for your release.

2. Edit the following file:

Integration Server_directory \config\redir.cnf

3. Add the following line to the file:

<value name="wm.art">false</value>

4. Save the file and restart Integration Server.

Clustering Considerations and Requirements

Note:

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 63

3 Adapter Package Management

The following sections assume that you have already configured the Integration Server cluster.
For details about webMethods clustering, see thewebMethods Integration Server Clustering Guide
for your release.

The following considerations and requirements apply to Adapter for Enterprise Javabeans in a
clustered environment.

Requirements for Each Integration Server in a Cluster

The following table describes the requirements of each Integration Server in a given cluster:

For Example...All Integration Servers in a given cluster must
have identical...

All Integration Servers in the cluster must be
the same version, with the same service packs
and fixes (updates) applied.

Integration Server versions

All adapter packages on one Integration Server
should be replicated to all other Integration
Servers in the cluster.

Adapter packages

All Adapter for Enterprise Javabeanss must be
the same version, with the same fixes (updates)
applied.

Adapter versions

If you configure a connection to the application
server, this connection must appear on all

Adapter connections

servers in the cluster so that any Integration
Server in the cluster can handle a given request
identically.

If you plan to use connection pools in a
clustered environment, see “Considerations
When Configuring Connections with
Connection Pooling Enabled” on page 65.

If you configure a specific adapter service, this
same adapter servicemust appear on all servers

Adapter services

in the cluster so that any Integration Server in
the cluster can handle the request identically.

If you allow different Integration Servers to
contain different services, youmight not derive
the full benefits of clustering. For example, if a
client requests a service that resides on only one
server, and that server is unavailable, the
request cannot be successfully redirected to
another server.

64 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

3 Adapter Package Management

See “Replicating Packages to webMethods Integration Servers” on page 63 for information about
replicating adapter packages, connections, and adapter services acrossmultiple Integration Servers
in a cluster.

Considerations When Installing Adapter for Enterprise Javabeans Packages

For each Integration Server in the cluster, use the standard Adapter for Enterprise Javabeans
installation procedures for each machine, as described in “Installing, Upgrading, and
Uninstalling” on page 45.

Considerations When Configuring Connections with Connection Pooling Enabled

When you configure an adapter connection that uses connection pools in a clustered environment,
be sure that you do not exceed the total number of connections that can be opened simultaneously
for that application server.

For example, if you have a cluster of two Integration Servers with a connection configured to an
application server that supports a maximum of 100 connections opened simultaneously, the total
number of connections possible at one time must not exceed 100. This means that you cannot
configure a connectionwith an initial pool size of 100 and replicate the connection to both servers,
because there could be possibly a total of 200 connections opened simultaneously to this application
server.

In another example, consider a connection configuredwith an initial pool size of 10 and amaximum
pool size of 100. If you replicate this connection across a cluster with two Integration Servers, it is
possible for the connection pool size on both servers to exceed themaximumnumber of connections
that can be open at one time.

For information about configuring connections for Adapter for Enterprise Javabeans, see
“Configuring Adapter Connections” on page 69.

For more general information about connection pools, see the webMethods Integration Server
Administrator’s Guide for your release.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 65

3 Adapter Package Management

66 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

3 Adapter Package Management

4 Adapter Connections

■ Overview .. 68

■ Before Configuring or Managing Adapter Connections .. 68

■ Configuring Adapter Connections .. 69

■ Dynamically Changing a Service's Connection at Runtime ... 73

■ Viewing Adapter Connection Parameters from Integration Server Administrator 73

■ Viewing Adapter Connection Parameters from Designer ... 74

■ Editing Adapter Connections .. 75

■ Copying Adapter Connections .. 75

■ Deleting Adapter Connections .. 76

■ Enabling Adapter Connections ... 76

■ Disabling Adapter Connections .. 77

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 67

Overview

This chapter describes how to configure andmanageAdapter for Enterprise Javabeans connections.
Formore information about howadapter connectionswork, see “Adapter Connections” on page 17.

Note:
Youmust havewebMethods administrator privileges to accessAdapter for Enterprise Javabeans's
administrative screens. For information about setting user privileges, see the webMethods
Integration Server Administrator’s Guide for your release.

Before Configuring or Managing Adapter Connections

To prepare for creating an Adapter for Enterprise Javabeans connection

1. Ensure your application server is set up to work with Adapter for Enterprise Javabeans. These
tasks are application-server specific and are listed below:

a. Set up the JNDI properties file used by the application server. See “JNDI Properties File” on
page 21 for the specific properties and the required values.

b. Determine the level of security needed to access the JNDI server and how credentials are
provided. See “Specifying JNDICredentials” on page 23 and “Security Considerations” on
page 23 for the required properties and values.

c. Ensure that the JNDI properties files, the classes directory, and the supported connections
directory are properly secured and that only privileged users can access them. See “Security
Considerations” on page 23 for more information.

d. Address any other application server configuration issues. This information is provided
for each supported application server and can be found in “Application ServerConfiguration
Notes” on page 163.

e. Ensure that the necessary jar files have been copied to Integration Server:

Application-server specific jar files

EJB deployment jar files for any EJBs that will be used in the adapter

Typically this step is performed as part of theAdapter for Enterprise Javabeans installation
procedure. For more information about the jar files and configuring the application server
to work with Integration Server, see “Installing, Upgrading, and Uninstalling” on page 45.

f. Determine the number of connections you need to configure, and the types of those
connections. This depends on the nature of the specific EJBs you want to interact with,
your integration needs, and the level of transaction support necessary for the EJBs. Check
that your application server supports the transactions you want to use. This information

68 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

4 Adapter Connections

is provided for each supported application server and can be found in “Application Server
Configuration Notes” on page 163.

2. Install webMethods Integration Server and Adapter for Enterprise Javabeans on the same
machine. See “Installing, Upgrading, and Uninstalling” on page 45 for details.

3. Make sure you have webMethods administrator privileges so that you can access Adapter for
Enterprise Javabeans's administrative screens. For more information about setting user
privileges, see the webMethods Integration Server Administrator’s Guide for your release.

4. Start your Integration Server and Integration Server Administrator, if they are not already
running.

5. Using Integration Server Administrator, make sure the WmEJBAdapter package is enabled.
See “Enabling Adapter Connections” on page 76 for instructions.

6. Using Software AG Designer, create a user-defined package to contain the connection, if you
have not already done so. See “Managing the Adapter Package” on page 58 for details.

7. Create your connections, as described in “Configuring Adapter Connections” on page 69.

Configuring Adapter Connections

When you configure Adapter for Enterprise Javabeans connections, you specify information that
the adapter uses to connect to a supported application server's JNDI server.

You configureAdapter for Enterprise Javabeans connections using Integration ServerAdministrator.

To configure an adapter connection

1. In Integration Server Administrator select Adapters > Adapter for EJB.

2. On the Connections screen, click Configure New Connection.

3. On the Connection Types screen, select one of the following adapter connection types:

DescriptionConnection Type

Creates a connection that will not be transacted.EJB Non-transactional Connection

Creates a connection that will be employed in
non-distributed, local transactions.

EJB Local Connection

Creates a connection that will be employed in
distributed, two-phase commit transactions.

EJB XA Connection

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 69

4 Adapter Connections

4. For more information about the transaction types, see “Transaction Management of Adapter
for Enterprise Javabeans Connections” on page 19.

5. In the Adapter for EJB section, provide values for the following parameters:

Description/ActionParameter

The package in which to create the connection.Package

You must create the package using Designer before you
can specify it using this parameter. For general information
about creating packages, see the webMethods Service
Development Help for your release.

Note:
Create the connection in a user-defined package rather
than in the adapter's package. See “Adapter Package
Management” on page 57 for other important
considerations when creating packages for Adapter for
Enterprise Javabeans.

The folder in which to create the connection.Folder Name

The name you want to give the connection. Connection
names cannot have spaces or use special characters reserved

Connection Name

by Integration Server or Designer. For more information
about the use of special characters in package, folder, and
element names, see thewebMethods Service DevelopmentHelp
for your release.

6. In the Connection Properties section, provide values for the following parameters:

Description/ActionParameter

Select the name of the application server vendor/version
implementation class for the connection.

EJB Server Type

Note:
WebLogic Server 10.3 supports connections for XA transactions.

(Used only with connections for XA transactions.) Typically a
vendor-specific string that specifies the application server instance

XAResource Source

you are running against. This parameter is used by the
implementation class to obtain the XAResource object from the
application server.

Note:

70 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

4 Adapter Connections

Description/ActionParameter

WebLogic 10.3 support XA transactions. The server instance is
one of the names shown under the Servers link on the WebLogic
administration screen.

Enter the full path to a text file on a file system accessible to
Integration Server that contains the JNDI-specific Java properties.

Properties File Name

For information about the properties that need to be specified in
this file, see “JNDI Properties File” on page 21.

Optional. If a username and password is required to access the
server's JNDI, enter the user name.

JNDI Username

Specifying a JNDI username in this parameter overrides the value
specified in the standard java.naming.security.principal property if
this property is also defined in the JNDI properties file. For more
information about security credentials, see “JNDI Properties File” on
page 21.

Optional. If a username and password is required to access the
server's JNDI, enter the password.

JNDI Password

Specifying a JNDI password in this parameter overrides the value
specified in the standard java.naming.security.credentials property
if this property is also defined in the JNDI properties file. For more
information about security credentials, see “JNDI Properties File” on
page 21.

Required if you entered a JNDI password. Verifies the password
entered.

Retype JNDI Password

Defines the level of EJB caching the connection uses when
configuring adapter services. Formore information and EJB caching
levels, see “EJB Information Caching” on page 24.

EJB Caching Level

None.No caching occurs.When configuring the adapter service,
the connection will retrieve EJB details directly from the JNDI.
This is the default.

Weak. Information in the cache is retained as long as there are
outstanding weak references to the cache.

Soft.Information in the cache is retained until the JVM would
be forced to throw an OutOfMemoryError in response to a
memory allocation request. At this point, it frees the memory in
the cache.

Hard. Data is retrieved from the JNDI once and cached until no
more connections remain enabled for the connection factory.
Subsequent requests for EJB detail are retrieved from the cache.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 71

4 Adapter Connections

7. In the Connection Management Properties section, provide values for the following
parameters:

Description/ActionParameter

Enables the adapter to use connection pooling. Default: true.Enable Connection
Pooling

See “Connection Pools” on page 18 for more information about
connection pooling in the adapter.

If you plan to enable connection pooling in a clustered environment,
consider the connection pool size. For details, see “Considerations
When Configuring Connections with Connection Pooling
Enabled” on page 65.

The minimum number of connection objects that remain in the
connection pool at all times. When the adapter creates the pool, it
creates this number of connections. Default: 1.

Minimum Pool Size

The maximum number of connection objects that can exist in the
connectionpool.When the connectionpool has reached itsmaximum

Maximum Pool Size

number of connections, the adapter will reuse any inactive
connections in the pool or, if all connections are active, it will wait
for a connection to become available. Default: 10.

If connection pooling is enabled, this parameter specifies the number
of connections bywhich the pool will be incremented if connections
are needed, up to the maximum pool size. Default: 1.

Pool Increment Size

If connection pooling is enabled, this parameter specifies the number
of milliseconds that Integration Server will wait to obtain a

Block Timeout

connectionwith the database before it times out and returns an error.
Default: 1000.

If connection pooling is enabled, this parameter specifies the number
of milliseconds that an inactive connection can remain in the pool

Expire Timeout

before it is closed and removed from the pool. For example, to specify
10 seconds, specify 10000. Enter 0 to specify no timeout. Default:
1000.

Note:
The adapterwill never violate theMinimum Pool Sizeparameter.
These connections remain in the pool regardless of how long they
are inactive.

If connection pooling is enabled, this parameter specifies the number
of times that the system should attempt to initialize the connection

Startup Retry Count

pool at startup if the initial attempt fails, before issuing an
AdapterConnectionException. Default: 0.

72 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

4 Adapter Connections

Description/ActionParameter

If connection pooling is enabled, this parameter specifies the number
of seconds to wait between each attempt to initialize the connection
pool. Default: 10.

Startup Backoff
Timeout

8. Click Save Connection.

The connection you created appears on the adapter's Connections screen and in Designer's
Package Navigator.

Be sure to enable the connection before you create adapter services that use it. See “Enabling
Adapter Connections” on page 76 for instructions.

Dynamically Changing a Service's Connection at Runtime

You can run an adapter service using a connection other than the default connection that was
associated with the service when the service was created. To override the default, you must code
your flow to pass a value through the pipeline into a service's $connectionName field.

For example, you have a flowwhose primary purpose is to create an entity EJB on the production
application server. However, you want the flow to have the capability to create the entity on the
test server, with the decision of which application server to update to be made programmatically
at runtime. The output signature of the flow's first service contains a field called Target. The flow
could branch based on the value in Target:

If Target contains the value Production, the second service in the flow, a CreateEJB 2.1 adapter
service, would ignore $connectionName - thus using its default connection to create the EJB
on the production server.

However, if Target contains the value Test, the second service in the flow would use the value
in the $connectionName from the pipeline and connect to (and then update) the test server.

Keep in mind these restrictions when using dynamic connections:

The EJB invoked by the CreateEJB 2.1 or FetchEJB 3.0 adapter service must be deployed on
both application servers

The default and override connections must be of the same type: EJB Non-Transactional, EJB
Local, or EJB XA Connection

The $connectionName field is present only in services created with Designer

For more information, see “Changing the Connection Associated with an Adapter Service at Run
Time” on page 20.

Viewing Adapter Connection Parameters from Integration Server
Administrator

You can view a connection's parameters from Integration Server Administrator.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 73

4 Adapter Connections

To view the parameters for an adapter connection from Integration Server Administrator

1. Start Integration Server Administrator if it is not already running.

2. Make sure the connection is enabled. See “Enabling Adapter Connections” on page 76 for
details.

3. In theAdaptersmenu in the navigation area of Integration ServerAdministrator, clickAdapter
for EJB.

You can sort and filter the list of connections that appears on the Connections screen.

To sort information on the Connections screen, click the Up and Down arrows.

To filter the list of connections:

1. On the Connections screen, click Filter Connections.

2. Type the criterion by which you want to filter into the Filter criteria box. Filtering is
based on the node name, not the connection alias. To locate all connections containing
specific alphanumeric characters, use asterisks (*) as wildcards. For example, if you
want to display all connections containing the string "abc", type *abc* in the Filter
criteria box.

3. Click Submit. The Connections screen displays the connections that match the filter
criteria.

4. To re-display all connections, click Show All Connections.

The Connections screen appears, listing all the current connections. You can control the
number of connections that are displayed on this screen. For more information, see
“Controlling Pagination” on page 43.

On the Connections screen, click the icon for the connection you want to see.

The View Connection screen displays the parameters for the connection. For descriptions
of the connection parameters, see the table of parameters in “Configuring Adapter
Connections” on page 69.

4. Click Return to Adapter for EJB Connectionsto return to the Connections screen.

Viewing Adapter Connection Parameters from Designer

You can view a connection's parameters from Designer.

To view the parameters for a connection using Designer

1. Start Designer if it is not already running.

74 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

4 Adapter Connections

2. From the Designer Package Navigator view, open the package and folder in which the
connection is located.

3. Double-click the connection you want to view.

4. The parameters for the connection appear on theConnection Information tab. For descriptions
of the connection parameters, see “Configuring Adapter Connections” on page 69.

Editing Adapter Connections

If you want to redefine parameters that a connection uses when connecting to an application
server, you can update a connection's parameters using Integration Server Administrator.

To edit an adapter connection

1. Start Integration Server Administrator if it is not already running.

2. Make sure the connection is disabled. See “Disabling Adapter Connections” on page 77 for
instructions.

3. In theAdaptersmenu in the navigation area of Integration ServerAdministrator, clickAdapter
for EJB.

4. On the Connections screen, click the icon for the connection you want to edit.

The Edit Connection screen displays the current parameters for the connection. Update the
connection's parameters by typing or selecting the values you want to specify.

For descriptions of the connection parameters, see the table of parameters in “Configuring
Adapter Connections” on page 69.

5. Click Save Changes to save the connection and return to the Connections screen.

6. Enable the connection when you are ready to use it. See “Enabling Adapter Connections” on
page 76 for instructions.

Copying Adapter Connections

You can copy an existing Adapter for Enterprise Javabeans connection to create a new connection
with the same or similar connection properties without retyping all properties for the new
connection.

To copy an adapter connection

1. Start Integration Server Administrator if it is not already running.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 75

4 Adapter Connections

2. Make sure the connection is enabled. See “Enabling Adapter Connections” on page 76 for
details.

3. In theAdaptersmenu in the navigation area of Integration ServerAdministrator, clickAdapter
for EJB.

4. On the Connections screen, click the icon for the connection you want to copy.

The Copy Connection screen displays the current parameters for the connection you want to
copy. Name the new connection and edit any connection parameters as needed by typing or
selecting the values you want to specify.

For descriptions of the connection parameters, see the table of parameters in “Configuring
Adapter Connections” on page 69.

5. Click Save Connection Copy to save the connection and return to the Connections screen.

Deleting Adapter Connections

If you no longer want to use an Adapter for Enterprise Javabeans connection, use the following
instructions to delete the connection.

If you delete anAdapter for Enterprise Javabeans connection, the adapter services that are defined
to use the connection will no longer work. However, because you can change which connection
an adapter service uses, if you delete an Adapter for Enterprise Javabeans connection, you can
assign a different connection to an adapter service and re-use the service. To do this, you use the
built-in Integration Server function setAdapterServiceNodeConnection. For more information, see
“Changing the Connection Associated with an Adapter Service at Design Time” on page 20.

To delete an adapter connection

1. Start Integration Server Administrator if it is not already running.

2. Disable the connection. See “Disabling Adapter Connections” on page 77 for details.

3. In theAdaptersmenu in the navigation area of Integration ServerAdministrator, clickAdapter
for EJB.

4. On the Connections screen, click the icon for the connection you want to delete.

Integration Server deletes the adapter connection.

Enabling Adapter Connections

Adapter connectionsmust be enabled before you can create adapter services for those connections.

Note:

76 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

4 Adapter Connections

Whenyou reload a package that contains enabled connections, the connectionswill automatically
be enabled when the package reloads. If the package contains connections that are disabled,
they will remain disabled when the package reloads.

To enable an adapter connection

1. Start Integration Server Administrator if it is not already running.

2. Make sure the WmEJBAdapter package is enabled. See “Enabling Packages” on page 60 for
details.

3. In theAdaptersmenu in the navigation area of Integration ServerAdministrator, clickAdapter
for EJB.

4. On the Connections screen, click No in the Enabled column for the connection you want to
enable.

Integration Server Administrator enables the adapter connection and displays and Yes in
the Enabled column.

Disabling Adapter Connections

Adapter connections must be disabled before you can edit or delete the connections.

To disable an adapter connection

1. Start Integration Server Administrator if it is not already running.

2. Make sure the WmEJBAdapter package is enabled. See “Enabling Packages” on page 60 for
details.

3. In theAdaptersmenu in the navigation area of Integration ServerAdministrator, clickAdapter
for EJB.

4. On the Connections screen, click Yes in the Enabled column for the connection you want to
disable.

Integration Server Administrator disables the adapter connection and displays No in the
Enabled column.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 77

4 Adapter Connections

78 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

4 Adapter Connections

5 Adapter Services

■ Overview .. 80

■ Before Configuring or Managing Adapter Services .. 80

■ Configuring CreateEJB 2.1 Services .. 81

■ Configuring InvokeEJB 2.1 Services .. 83

■ Configuring CreateInvokeEJB 2.1 Services ... 85

■ Configuring FetchEJB 3.0 Services .. 88

■ Configuring InvokeEJB 3.0 Services .. 89

■ Configuring FetchInvokeEJB 3.0 Services ... 91

■ Removing EJBs .. 93

■ Testing Adapter Services .. 94

■ Viewing Adapter Services .. 95

■ Editing Adapter Services .. 95

■ Deleting Adapter Services .. 96

■ Validating Adapter Service Values .. 96

■ Reloading Adapter Values .. 97

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 79

Overview

The following sections describe how to configure adapter services that you use to access the
business methods exposed on the EJBs.

Note:
You cannot configure Adapter for Enterprise Javabeans services that invoke more than a single
bean method.

You can configure the following types of services for use with Adapter for Enterprise Javabeans:

CreateEJB 2.1. See “Configuring CreateEJB 2.1 Services” on page 81.

InvokeEJB 2.1. See “Configuring InvokeEJB 2.1 Services” on page 83.

CreateInvokeEJB 2.1. See “Configuring CreateInvokeEJB 2.1 Services” on page 85.

FetchEJB 3.0. See “Configuring FetchEJB 3.0 Services” on page 88.

InvokeEJB 3.0. See “Configuring InvokeEJB 3.0 Services” on page 89.

FetchInvokeEJB 3.0. See “Configuring FetchInvokeEJB 3.0 Services” on page 91.

Note:
The 2.1 services, namely, CreateEJB 2.1, InvokeEJB 2.1, and CreateInvokeEJB 2.1 are used
with EJB 2.1 or earlier versions. All the 3.0 services, namely, FetchEJB 3.0, InvokeEJB 3.0,
and FetchInvokeEJB 3.0 are used only with EJB 3.0.

For a description of the adapter services, see “Adapter Services” on page 79. For information
about using adapter services you create in a flow service, see “Creating Flows for Adapter for
Enterprise Javabeans Services” on page 147.

Before Configuring or Managing Adapter Services

To prepare to configure or manage an Adapter for Enterprise Javabeans service

1. Start your Integration Server and Integration Server Administrator, if they are not already
running.

2. If your adapter services work with the EJB 3.0 standard, ensure that you have specified the 3.0
EJBs that will be accessed by your 3.0 adapter services in the config.xml file. For information
about how to specify this information, see “Configuring Adapter for Enterprise Javabeans for
Adapter Services” on page 27.

3. Make sure you have webMethods administrator privileges so that you can access Adapter for
Enterprise Javabeans administrative screens. For information about setting user privileges,
see the webMethods Integration Server Administrator’s Guide for your release.

80 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

5 Adapter Services

4. Using Integration Server Administrator, make sure the WmEJBAdapter package is enabled.
For instructions, see “Enabling Packages” on page 60.

5. Using Integration Server Administrator:

a. Configure the adapter connection you plan to usewith the adapter service. For instructions,
see “Configuring Adapter Connections” on page 69.

b. Make sure the connection you plan to use with the adapter service is enabled. For
instructions, see “Enabling Adapter Connections” on page 76.

6. Using Designer, create a user-defined package to contain the service, if you have not already
done so.When you configure adapter services, you should always define them in user-defined
packages rather than in the WmEJBAdapter package. For more information about managing
packages for the adapter, see “Adapter Package Management” on page 57.

Configuring CreateEJB 2.1 Services

ACreateEJB 2.1 adapter service invokes a specific EJB creator or findermethod on the EJB's remote
home interface. For more information about the template used to create these services, see
“CreateEJB 2.1 Adapter Service” on page 30. For more information about adapter services, see .

To configure a CreateEJB 2.1 adapter service

1. Review the steps in “Before Configuring or Managing Adapter Services” on page 80.

2. Start Designer.

Note:
Make sure the server with which you want to use Designer is running.

3. Right-click the package in which the service should be contained and select New > Adapter
Service.

4. Select the parent namespace and type a name for the adapter service. Click Next.

5. Select Adapter for EJB from the list of available adapter types. Click Next.

6. Select the appropriate Adapter Connection Name and click Next.

7. From the list of available templates, select the CreateEJB 2.1 template and click Finish.

The service is created and its parameters and controls are displayed in the adapter service
editor.

8. In the editor, select the CreateEJB 2.1 tab and specify the following values:

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 81

5 Adapter Services

Description/ActionParameter

Lists the JNDI lookup names of all available EJBs on the application
server. The name you select here determines the values that will

EJB Lookup Name

appear in the EJB Create Method and Return Type parameters.
At runtime, the service uses this name to look up the EJBHome
object. The EJBs are listed alphabetically. By default, the first EJB
in the list is initially selected.

Lists the available creator/finder methods for the selected EJB
lookup name. Themethod selectedwill be executed by the service.

EJB Create Method

The methods exposed by the EJB are listed alphabetically. By
default, the first method in this list is initially selected.

If the method has parameters, they appear in the parameter
list. For each parameter, the default parameter name and the
corresponding Java class type are shown in the first two
columns of the parameter list. Youmay override a parameter's
default name by entering a new name in the Override
Parameter Name column. The value that appears in this
column for a parameter is the value that appears in the
configured method's input signature at runtime.

If the method takes no parameters, the parameter list is empty.

Lists the remote EJBmethod's Java return type for the selected EJB
lookup name. This value is read-only.

Return Type

Note:
The EJB lookup name and EJB create method are displayed by default. If the lookup name
and method have input parameters, the parameters are not displayed in the service's input
signature until you reload the adapter values. Save the adapter service if you want to use
the default values. If you change the lookup name or the create method, the values are
automatically refreshed and the parameters appear in the adapter service editor. For more
information about reloading adapter values, see “Reloading Adapter Values” on page 97.

9. You can select the Adapter Settings tab at any time to confirm adapter properties such as
adapter type, connection name, and service template, as needed.

10. The Input/Output tab lists the input and output parameters, if any, for themethod. If the create
method has parameters, their names and types appear under the EJBHome_Args document.
If this service is later used in a flow, its input and output signatures will be visible in the flow
editor.

For additional information about using the Input/Output tab, see the webMethods Service
Development Help for your release.

11. Select File > Save.

82 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

5 Adapter Services

12. To test the service directly from Designer, see “Testing Adapter Services” on page 94.

Configuring InvokeEJB 2.1 Services

An InvokeEJB 2.1 adapter service invokes one or more methods on a single remote EJB reference.
Formore information about the template used to create these services, see “InvokeEJB 2.1 Adapter
Service” on page 32. For more information about adapter services, see .

To configure an InvokeEJB 2.1 service

1. Review the steps in “Before Configuring or Managing Adapter Services” on page 80.

2. Start Designer.

Note:
Make sure the server with which you want to use Designer is running.

3. Right-click the package in which the service should be contained and select New > Adapter
Service.

4. Select the parent namespace and type a name for the adapter service. Click Next.

5. Select Adapter for EJB from the list of available adapter types. Click Next.

6. Select the appropriate Adapter Connection Name and click Next.

7. From the list of available templates, select the InvokeEJB 2.1 template and click Finish.

The service is created and its parameters and controls are displayed in the adapter service
editor.

8. In the editor, select the InvokeEJB 2.1 tab and specify the following values:

Description/ActionParameter

Lists the JNDI lookup names of all available EJBs on the
application server. The name you select here determines the

EJB Lookup Name

values that will appear in the EJB Remote Method and Return
Typeparameters. At runtime, the service uses this name tomatch
against a given EJB Handle object. The EJBs are listed
alphabetically. By default, the first EJB in the list is initially
selected.

Lists the available remote methods for the selected EJB. The
method selected will be executed by the service. The methods

EJB Remote Method

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 83

5 Adapter Services

Description/ActionParameter

exposed by the EJB are listed alphabetically. By default, the first
method in this list is initially selected.

If the method has parameters, they appear in the parameter
list. For each parameter, the default parameter name and the
corresponding Java class type are shown in the first two
columns of the parameter list. Youmay override a parameter's
default name by entering a new name in the Override
Parameter Name column. The value that appears in this
column for a parameter is the value that appears in the
configured method's input signature at runtime.

If the method takes no parameters, the parameter list is
empty.

Lists the remote EJB method's Java return type for the selected
EJB lookup name. This value is read-only.

Return Type

Allows you to specify the format of the output of the remote
method.

Expand Collections?

When selected, only the elements in the collection are returned
as output.When cleared, the collection itself is returned as output.

By default, this option is selected.

Allows Adapter for Enterprise Javabeans to return a null value
when the EJB method has a non-void return type.

Allow Null Return Value?

When selected,Adapter for Enterprise Javabeans does not throw
any exception if the EJBmethod returns a null value, and returns
an object array with no elements in it. When cleared, Adapter
for Enterprise Javabeans throws an exception if the EJB method
returns a null value.

By default, this option is cleared.

Note:
The EJB lookup name and EJB remote method are displayed by default. If the lookup name
and method have input parameters, the parameters are not displayed in the service's input
signature until you reload the adapter values. Save the adapter service if you want to use
the default values. If you change the lookup name or the remote method, the values are
automatically refreshed and the parameters appear in the adapter service editor. For more
information about reloading adapter values, see “Reloading Adapter Values” on page 97.

9. You can select the Adapter Settings tab at any time to confirm adapter properties such as
adapter type, connection name, and service template, as needed.

84 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

5 Adapter Services

10. The Input/Output tab lists the input and output parameters, if any, for the method. If the
remotemethod has parameters, their names and typeswill appear in the input signature under
the EJBObject_Args document. If the service is subsequently used in a flow, its input and
output signatures will be visible in the flow editor.

For additional information about using the Input/Output tab, see the webMethods Service
Development Help for your release.

11. Select File > Save.

12. To test the service directly from Designer, you must first include the InvokeEJB 2.1 service in
a flow service. In the flow service you must map the output of a CreateEJB 2.1 adapter service
(the remote EJBs it created) to the input of the InvokeEJB 2.1 adapter service. You cannot run
an InvokeEJB 2.1 adapter service as a standalone service. For more information about testing
an adapter service, see “Testing Adapter Services” on page 94.

Configuring CreateInvokeEJB 2.1 Services

A CreateInvokeEJB 2.1 adapter service combines the functionality of a CreateEJB 2.1 service and
an InvokeEJB 2.1 service, enabling you to create one or more instances of a single EJB class and
then invoke a single method on those instances. Additionally, a CreateInvokeEJB 2.1 service
automatically calls the EJB-standard remove() method to release each session EJB instance. For
more information about the template used to create these services, see “CreateInvokeEJB 2.1
Adapter Service” on page 34. For more information about adapter services, see . For more
information about the RemoveEJB service, see “Removing EJBs” on page 93.

To configure a CreateInvokeEJB 2.1 service

1. Review the section “Before Configuring or Managing Adapter Services” on page 80.

2. Start Designer.

Note:
Make sure the server with which you want to use Designer is running.

3. Right-click the package in which the service should be contained and select New > Adapter
Service.

4. Select the parent namespace and type a name for the adapter service. Click Next.

5. Select Adapter for EJB from the list of available adapter types. Click Next.

6. Select the appropriate Adapter Connection Name and click Next.

7. From the list of available templates, select theCreateInvokeEJB 2.1 template and click Finish.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 85

5 Adapter Services

The service is created and its parameters and controls are displayed in the adapter service
editor.

8. In the editor, select the CreateInvokeEJB 2.1 tab and specify the following values:

Description/ActionParameter

Lists the JNDI lookup names of all available EJBs on the application
server. The name you select here determines the values that will

EJB Lookup Name

appear in the EJB Create Method and Return Type parameters,
and also in the EJB Remote Method value on the Method to
Invoke tab. The EJBs are listed alphabetically. By default, the first
EJB in the list is initially selected.

Lists the available creator/finder methods for the selected EJB
lookup name. Themethod selectedwill be executed by the service.

EJB Create Method

The methods exposed by the EJB are listed alphabetically. By
default, the first method in this list is initially selected.

If the method has parameters, they appear in the parameter
list. For each parameter, the default parameter name and the
corresponding Java class type are shown in the first two
columns of the parameter list. You may override a parameter's
default name by entering a new name in the Override
Parameter Name column. The value that appears in this
column for a parameter is the value that appears in the
configured method's input signature at runtime.

If the method takes no parameters, the parameter list is empty.

Lists the remote EJB method's Java return type for the selected EJB
lookup name. This value is read-only.

Return Type

Note:
The EJB lookup name and EJB create method are displayed by default. If the lookup name
and method have input parameters, the parameters are not displayed in the service's input
signature until you reload the adapter values. Save the adapter service if you want to use
the default values. If you change the lookup name or the create method, the values are
automatically refreshed and the parameters appear in the adapter service editor. For more
information about reloading adapter values, see “Reloading Adapter Values” on page 97.

9. Select the Method to Invoke tab and specify the following values:

Description/ActionParameter

Lists the available remote methods for the selected EJB. The
method selected will be executed by the service. The methods

EJB Remote Method

exposed by the EJB are listed alphabetically. By default, the first
method in this list is initially selected.

86 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

5 Adapter Services

Description/ActionParameter

If the method has parameters, they appear in the parameter
list. For each parameter, the default parameter name and the
corresponding Java class type are shown in the first two
columns of the parameter list. Youmay override a parameter's
default name by entering a new name in the Override
Parameter Name column. The value that appears in this
column for a parameter is the value that appears in the
configured method's input signature at runtime.

If the method takes no parameters, the parameter list is
empty.

Lists the remote EJB method's Java return type for the selected
EJB lookup name. This value is read-only.

Return Type

Allows you to specify the format of the output of the remote
method.

Expand Collections?

When selected, only the elements in the collection are returned
as output.When cleared, the collection itself is returned as output.

By default, this option is selected.

Allows Adapter for Enterprise Javabeans to return a null value
when the EJB method has a non-void return type.

Allow Null Return Value?

When selected,Adapter for Enterprise Javabeans does not throw
any exception if the EJBmethod returns a null value, and returns
an object array with no elements in it. When cleared, Adapter
for Enterprise Javabeans throws an exception if the EJB method
returns a null value.

By default, this option is cleared.

Note:
The EJB lookup name and EJB remote method are displayed by default. If the lookup name
and method have input parameters, the parameters are not displayed in the service's input
signature until you reload the adapter values. Save the adapter service if you want to use
the default values. If you change the lookup name or the remote method, the values are
automatically refreshed and the parameters appear in the adapter service editor. For more
information about reloading adapter values, see “Reloading Adapter Values” on page 97.

10. You can select the Adapter Settings tab at any time to confirm adapter properties such as
adapter type, connection name, and service template, as needed.

11. The Input/Output tab lists the input and output parameters for methods. If the create method
has parameters, their names and types appear under the EJBHome_Args document. Similarly,
if the bean method has parameters, their names and types appear under the EJBObject_Args

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 87

5 Adapter Services

document. If the service is subsequently used in a flow, its input and output signature will be
visible in the flow editor.

For additional information about using the Input/Output tab, see the webMethods Service
Development Help for your release.

12. Select File > Save.

13. To test the service directly from Designer, see “Testing Adapter Services” on page 94.

Configuring FetchEJB 3.0 Services

A FetchEJB 3.0 adapter service invokes a specific EJB finder method on the EJB's remote interface.
For more information about the template used to create these services, see “FetchEJB 3.0 Adapter
Service” on page 36. For more information about adapter services, see . For more information
about the RemoveEJB service, see “Removing EJBs” on page 93.

To configure a FetchEJB 3.0 adapter service

1. Review the section “Before Configuring or Managing Adapter Services” on page 80.

2. Start Designer.

Note:
Make sure the server with which you want to use Designer is running.

3. Right-click the package in which the service should be contained and select New > Adapter
Service.

4. Select the parent namespace and type a name for the adapter service. Click Next.

5. Select Adapter for EJB as the adapter type and click Next.

6. Select the appropriate Adapter Connection Name and click Next.

7. From the list of available templates, select the FetchEJB 3.0 template and click Finish.

The service is created and its parameters and controls are displayed in the adapter service
editor.

8. In the editor, select the FetchEJB 3.0 tab and specify the following values:

Description/ActionParameter

Lists the JNDI lookup names of all available 3.0 EJBs on the
application server. The selected JNDI name determines the EJB to

EJB Lookup Name

88 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

5 Adapter Services

Description/ActionParameter

be fetched. At runtime, the service uses this name to look up the
EJBRemote object. The EJBs are listed alphabetically. By default,
the first EJB in the list is initially selected.

9. You can select the Adapter Settings tab at any time to confirm adapter properties such as
adapter type, connection name, and service template, as needed.

10. The Input/Output tab lists the input and output parameters, if any, for themethod. If the create
method has parameters, their names and types appear under the EJBObject_Args document.
If this service is later used in a flow, its input and output signatures will be visible in the flow
editor.

For additional information about using the Input/Output tab, see the webMethods Service
Development Help for your release.

11. Click File > Save.

12. To test the service directly from Designer, see “Testing Adapter Services” on page 94.

Configuring InvokeEJB 3.0 Services

An InvokeEJB 3.0 adapter service invokes one or more methods on a single remote EJB reference.
Formore information about the template used to create these services, see “InvokeEJB 3.0 Adapter
Service” on page 37. For more information about adapter services, see . For more information
about the RemoveEJB service, see “Removing EJBs” on page 93.

To configure an InvokeEJB 3.0 service

1. Review the steps in “Before Configuring or Managing Adapter Services” on page 80.

2. Start Designer.

Note:
Make sure the server with which you want to use Designer is running.

3. Right-click the package in which the service should be contained and select New > Adapter
Service.

4. Select the parent namespace and type a name for the adapter service. Click Next.

5. Select Adapter for EJB as the adapter type and click Next.

6. Select the appropriate Adapter Connection Name and click Next.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 89

5 Adapter Services

7. From the list of available templates, select the InvokeEJB 3.0 template and click Finish.

8. In the adapter service editor, select the InvokeEJB 3.0 tab and specify the following values:

Description/ActionParameter

Lists the JNDI lookup names of all available EJBs on the
application server. The name you select here determines the values

EJB Lookup Name

that will appear in the EJB Remote Method and Return Type
parameters. At runtime, the service uses this name to match
against a given EJB Handle object. The EJBs are listed
alphabetically. By default, the first EJB in the list is initially
selected.

Lists the available remote methods for the selected EJB. The
method selected will be executed by the service. The methods

EJB Remote Method

exposed by the EJB are listed alphabetically. By default, the first
method in this list is initially selected.

If the method has parameters, they appear in the parameter
list. For each parameter, the default parameter name and the
corresponding Java class type are shown in the first two
columns of the parameter list. Youmay override a parameter's
default name by entering a new name in the Override
Parameter Name column. The value that appears in this
column for a parameter is the value that appears in the
configured method's input signature at runtime.

If themethod takes no parameters, the parameter list is empty.

Lists the remote EJB method's Java return type for the selected
EJB lookup name. This value is read-only.

Return Type

Allows you to specify the format of the output of the remote
method.

Expand Collections?

When selected, only the elements in the collection are returned as
output. When cleared, the collection itself is returned as output.

By default, this option is selected.

Allows Adapter for Enterprise Javabeans to return a null value
when the EJB method has a non-void return type.

Allow Null Return Value?

When selected, Adapter for Enterprise Javabeans does not throw
any exception if the EJB method returns a null value, and returns
an object array with no elements in it. When cleared, Adapter for
Enterprise Javabeans throws an exception if the EJB method
returns a null value.

By default, this option is cleared.

90 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

5 Adapter Services

Note:
The EJB lookup name and EJB remote method are displayed by default. If the lookup name
and method have input parameters, the parameters are not displayed in the service's input
signature until you reload the adapter values. Save the adapter service if you want to use
the default values. If you change the lookup name or the remote method, the values are
automatically refreshed and the parameters appear in the adapter service editor. For more
information about reloading adapter values, see “Reloading Adapter Values” on page 97.

9. You can select the Adapter Settings tab at any time to confirm adapter properties such as
adapter type, connection name, and service template, as needed.

10. The Input/Output tab lists the input and output parameters, if any, for the method. If the
remotemethod has parameters, their names and typeswill appear in the input signature under
the EJBObject_Args document. If the service is subsequently used in a flow, its input and
output signatures will be visible in the flow editor.

For additional information about using the Input/Output tab, see the webMethods Service
Development Help for your release.

11. Select File > Save.

12. To test the service directly from Designer, you must first include the InvokeEJB 3.0 service in
a flow service. In the flow service you must map the output of a FetchEJB 3.0 adapter service
(the remote EJBs it created) to the input of the InvokeEJB 3.0 adapter service. You cannot run
an InvokeEJB 3.0 adapter service as a standalone service. For more information about testing
an adapter service, see “Testing Adapter Services” on page 94.

Configuring FetchInvokeEJB 3.0 Services

A FetchInvokeEJB 3.0 adapter service combines the functionality of a FetchEJB 3.0 service and an
InvokeEJB 3.0 service, enabling you to create one or more instances of a single EJB class and then
invoke a single method on those instances. Additionally, a FetchEJB 3.0 service automatically calls
the EJB-standard remove() method to release each session EJB instance. For more information
about the template used to create these services, see “FetchInvokeEJB 3.0 Adapter Service” on
page 39. For more information about adapter services, see . For more information about the
RemoveEJB service, see “Removing EJBs” on page 93.

To configure a FetchInvokeEJB 3.0 service

1. Review the steps in “Before Configuring or Managing Adapter Services” on page 80.

2. Start Designer.

Note:
Make sure the server with which you want to use Designer is running.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 91

5 Adapter Services

3. Right-click the package in which the service should be contained and select New > Adapter
Service.

4. Select the parent namespace and type a name for the adapter service. Click Next.

5. Select Adapter for EJB as the adapter type and click Next.

6. Select the appropriate Adapter Connection Name and click Next.

7. From the list of available templates, select the FetchInvokeEJB 3.0 template and click Finish.

8. In the adapter service editor, select the FetchInvokeEJB 3.0 tab and specify the following
values:

Description/ActionParameter

Lists the JNDI lookup names of all available 3.0 EJBs on the
application server. The selected JNDI name determines the EJB to be

EJB Lookup Name

fetched. At runtime, the service uses this name to look up the
EJBRemote object. The EJBs are listed alphabetically. By default, the
first EJB in the list is initially selected.

Lists the available finder method for the selected EJB lookup name.
The method selected will be executed by the service. The methods

EJB Remote Method

exposed by the EJB are listed alphabetically. By default, the first
method in this list is initially selected.

If the method has parameters, they appear in the parameter list.
For each parameter, the default parameter name and the
corresponding Java class type are shown in the first two columns
of the parameter list. You may override a parameter's default
name by entering a new name in the Override Parameter Name
column. The value that appears in this column for a parameter
is the value that appears in the configured method's input
signature at runtime.

If the method takes no parameters, the parameter list is empty.

Lists the remote EJB method's Java return type for the selected EJB
lookup name. This value is read-only.

Return Type

Allows you to specify the format of the output of the remotemethod.Expand Collections?

When selected, only the elements in the collection are returned as
output. When cleared, the collection itself is returned as output.

By default, this option is selected.

AllowsAdapter for Enterprise Javabeans to return a null valuewhen
the EJB method has a non-void return type.

Allow Null Return
Value?

92 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

5 Adapter Services

Description/ActionParameter

When selected, Adapter for Enterprise Javabeans does not throw any
exception if the EJBmethod returns a null value, and returns an object
array with no elements in it. When cleared, Adapter for Enterprise
Javabeans throws an exception if the EJBmethod returns a null value.

By default, this option is cleared.

9. You can select the Adapter Settings tab at any time to confirm adapter properties such as
adapter type, connection name, and service template, as needed.

10. The Input/Output tab lists the input and output parameters for methods. If the fetch method
has parameters, their names and types appear under the EJBObject_Args document. Similarly,
if the bean method has parameters, their names and types appear under the EJBObject_Args
document. If the service is subsequently used in a flow, its input and output signature will be
visible in the flow editor.

For additional information about using the Input/Output tab, see the webMethods Service
Development Help for your release.

11. Select File > Save.

12. To test the service directly from Designer, see “Testing Adapter Services” on page 94.

Removing EJBs

Adapter for Enterprise Javabeans also provides a non-configurable built-in service, RemoveEJB.
The RemoveEJB service is packaged with Adapter for Enterprise Javabeans and is available in the
adapter's public namespace at pub.ejbadapter.removeEJB.

Note:
The RemoveEJB service is used for EJB 2.1 or earlier services only, that is for CreateEJB 2.1,
InvokeEJB 2.1, and CreateInvokeEJB 2.1. For 3.0 services, as there is no home interface, the bean
is automatically released by the application server.

RemoveEJB is a generic non-configurable service that takes an EJB Handle as its only parameter
and invokes the EJB-standard remove() method on the EJB object represented by that handle. If
successful, RemoveEJB produces no output whatsoever. If it fails, it throws an
AdapterServiceException.

To control the remote EJB's life-cycle, call the RemoveEJB service from a flow service to inform
the application server that a particular EJB is no longer being used by the client. This is most
important when dealing with stateful or entity EJBs.

Calling the RemoveEJB service on an EJB has slightly different consequences depending upon the
type of that EJB:

For stateful session EJBs, its effect is to signal the end of the session to the application server.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 93

5 Adapter Services

For entity EJBs, the RemoveEJB service causes the underlying entity to be removed from the
EJB container. For example, CreateEJB 2.1 is used to create a new entity EJB, which may result
in the application server creating a new row in a table to hold that EJB's state. Subsequently
passing theHandle of that EJB to the RemoveEJB service causes the application server to delete
that row from the table.

For stateless session EJBs, it has no effect in the client. RemoveEJB simply notifies the application
server that it is no longer using the EJB so that the server may, at its discretion, perform any
housekeeping tasks.

The application server determines how and when the tasks above occur. If the client invokes the
RemoveEJB service against an entity EJB, the client should consider that EJB to be deleted even if
the application server does not actually delete the EJB at that point in time.

Testing Adapter Services

You use Designer to test adapter services. For information about testing and debugging services,
see the webMethods Service Development Help for your release.

To test an adapter service

1. Review the steps in “Before Configuring or Managing Adapter Services” on page 80.

2. In Designer, expand the package and folder that contain the service you want to test.

3. Double-click the service you want to test.

Designer displays the configured service in the service template's Adapter Service Editor.

4. Select Run > Run As > Run Service.

5. For every service input field, you will be prompted to enter an input value. Enter a value for
each input field and then click OK.

6. Click the Results tab to view the output from this service.

Note:
Credentials you provide in the username and password fields override any connection.

Note:
Specifying the $connectionName input parameter changes the connection for this execution
of the service. To reconfigure the service to use a different connection, use the
setAdapterServiceNodeConnection, which is located in theWmARTpackage's pub.art.service folder.
Formore information about this service, see thewebMethods Integration Server Built-In Services
Reference for your release.

94 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

5 Adapter Services

Viewing Adapter Services

You use Designer to view adapter services.

To view an adapter service

1. Review the steps in “Before Configuring or Managing Adapter Services” on page 80.

2. In Designer, expand the package and folder that contain the service you want to view.

3. Double click the service you want to view.

Designer displays the configured service in the service template's Adapter Service Editor.

Editing Adapter Services

You use Designer to edit adapter services.

To edit an adapter service

1. In Designer, browse to and open the adapter service that you want to edit.

2. Double-click the service that you want to edit.

Designer displays the adapter service in the service template's Adapter Service Editor.

3. Do one of the following:

If you have the VCS Integration feature enabled, right-click the service and select Check
Out.

If you do not have the VCS Integration feature enabled, right-click the service and select
Lock for Edit.

If you are using the local service development feature, from the Team menu in Designer,
select the appropriate option to check out the service. The options available in the Team
menu depend on the VCS client that you use.

4. Modify the values for the adapter service's parameters as needed. For detailed descriptions of
the service's parameters, see the section on configuring a service for the specific type of service
you want to edit.

5. After you complete your modifications, save the service and do one of the following:

If you have the VCS Integration feature enabled, right-click the service and select Check
In. Enter a check-in comment and click OK.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 95

5 Adapter Services

If you do not have the VCS Integration feature enabled, right-click the service and select
Unlock.

If you are using the local service development feature, from the Team menu in Designer,
select the appropriate option to check in the service. The options available in the Team
menu depend on the VCS client that you use.

6. Save the service.

Deleting Adapter Services

You use Designer to delete adapter services.

To delete an adapter service

1. Review the steps in “Before Configuring or Managing Adapter Services” on page 80.

2. In Designer, expand the package and folder that contain the service you want to delete.

3. Right-click the service and click Delete.

Validating Adapter Service Values

Designer enables Adapter for Enterprise Javabeans to validate user-defined data for adapter
services at design time. You can validate the values for a single adapter service or you can configure
Designer to always validate the values for adapter services. Both options could potentially slow
your design-time operations.

When you enable data validation for a single adapter service, Designer compares the service values
against the resource data that has already been fetched from the selected adapter.

If you select the option to always validate values for adapter services, it will do so for all
webMethods 6.x adapters installed on Integration Server.

For more information about the Adapter Service/Notification Editorand other Designer menu
options and toolbar icons, see the webMethods Service Development Help for your release.

Enabling Automatic Data Validation for a Single Adapter Service

To enable automatic data validation for a single adapter service

1. Review the steps in “Before Configuring or Managing Adapter Services” on page 80.

2. In Designer, expand the package and folder that contain the service for which you want to
enable automatic validation.

96 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

5 Adapter Services

3. Double-click the service for which you want to validate the data.

Designer displays the configured adapter service in the service template's Adapter Service
Editor.

4. Click the icon.

Validating Adapter Service Values for all Adapter Services

To validate adapter service values for all adapter services

1. Review the steps in “Before Configuring or Managing Adapter Services” on page 80.

2. Start Designer.

3. Select the Window > Preferences >Software AG> Service Development > Adapter
Service/Notification Editor item.

4. Enable the Automatic data validation option.

5. Click OK.

Reloading Adapter Values

Designer enables Adapter for Enterprise Javabeans to reload and validate user-defined data for
adapter services at design time. You can reload values for a single adapter service or you can
configure Designer so it automatically reloads the values for adapter services. Both options could
potentially slow your design-time operations.

When you reload adapter values for a single adapter service, Designer compares the service values
against the resource data that has already been fetched from the selected adapter.

If you select the option to always reload values for adapter services, it will do so for all webMethods
6.x adapters installed on Integration Server.

For more information about the Adapter Service/Notification Editor, other menu options, and
toolbar icons, see the webMethods Service Development Help for your release.

Reloading Adapter Values for a Single Adapter Service

To reload the adapter values for a single adapter service

1. Review the steps in “Before Configuring or Managing Adapter Services” on page 80.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 97

5 Adapter Services

2. In Designer, expand the package and folder that contain the service for which you want to
enable automatic validation.

3. Double-click the service for which you want to validate the data.

Designer displays the configured adapter service in the service template's Adapter Service
Editor.

4. Click the icon.

Reloading Adapter Values for all Adapter Services

To reload the adapter values for all adapter services

1. Review the steps in “Before Configuring or Managing Adapter Services” on page 80.

2. Start Designer.

3. Select the Window > Preferences >Software AG> Service Development > Adapter
Service/Notification Editor item.

4. Enable the Automatic polling of adapter metadata option.

5. Click OK.

98 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

5 Adapter Services

6 Invoking webMethods Services From an EJB

■ Overview .. 100

■ Running the Sample EJB ... 101

■ Basic Flow of Events .. 101

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 99

Overview

In addition to creating services with Adapter for Enterprise Javabeans that enable you to invoke
methods on EJBs deployed on an application server, you can also invoke services on webMethods
Integration Server (IS) from an EJB. The IS services invoked can be any service available on
Integration Server. This model does not interact with Adapter for Enterprise Javabeans, although
an EJB developer could use this functionality to invoke an adapter service created by Adapter for
Enterprise Javabeans.

To demonstrate this functionality, you should work with the following components:

Sample EJB application (available for download on the SoftwareAGTECHcommunitywebsite)

Sample webMethods Java service (provided with the adapter)

webMethods APIs (packaged with Integration Server)

Through the APIs, an EJB may establish an HTTP connection to Integration Server and instruct it
to execute a particular service. Upon completion, the service results are returned to the EJB. Upon
receiving the results, you can have the EJB, process this information, to suit its needs. Inputs to
and outputs from the service are passed using webMethods proprietary IData objects. Included
in theAPI used by the EJB are tools for creating andmanipulating IData instances. This interaction
is logically depicted in the following diagram.

The following sections describe each of these components and explain how an EJB developermight
implement code that invokes services on Integration Server.

Sample EJB Application
To use the sample EJB application, download it from the Software AG TECHcommunity website
and extract the downloaded zip file to the Integration Server_directory
\packages\WmEJBAdapter\templates\EJBToWebmSamples directory. The sampleEJB application
contains EJB source code that demonstrates the procedure for invoking services running on
Integration Server from within an EJB. The sample EJB application must be installed on your
application server in order to demonstrate this facility.

The sample EJB application includes the following files:

Source code for a simple stateless session EJB (HelloBean) that talks to a simple stand-alone
Java service that is part of the adapter (see “Sample webMethods Java Service” on page 101).

EJB deployment descriptor files for the HelloBean EJB, one set for each supported application
server.

100 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

6 Invoking webMethods Services From an EJB

http://techcommunity.softwareag.com
http://techcommunity.softwareag.com

Source code for a simple EJB client (HelloEJBClient) designed to run on the application server
and used to invoke HelloBean.

JNDI properties file needed by HelloEJBClient, one for each supported application server.

Ant build scripts used to compile HelloBean and HelloEJBClient, deploy HelloBean, and run
HelloEJBClient. There is one build script for each supported application server.

Readme file describing how to build the sample EJB and the EJB client, deploy the sample EJB,
and run the EJB client. There is one readme file for each supported application server
(ReadMeappserver.txt).

Sample webMethods Java Service

The sample testEJBToWebm service is a standalone Java service and built in to Adapter for Enterprise
Javabeans. The service appears in the IS namespace as pub.ejbadapter.testEJBToWebm.

The HelloBean sample EJB will attempt to invoke testEJBToWebm. The testEJBToWebmservice simply
echoes the string sent by the sample EJB back to the pipeline.

webMethods APIs
The sample EJB uses the webMethods APIs to establish communications with Integration Server
and subsequently interact with the testEJBToWebm Java service. ThewebMethodsAPIs are available
in the packages com.wm.app.b2b.client and com.wm.data, which can be found in the following
file:

Integration Server_directory \lib\client.jar

The com.wm.app.b2b.client package contains classes that you use to build clients for Integration
Server (including clients that use the guaranteed-delivery facility).

The com.wm.data package contains classes that you use create and manipulate IData objects.

Documentation for these classes is available in the online help in the Integration Server_directory
\doc\api\Java directory.

Running the Sample EJB

Use the sample EJB application to see how to implement the logic in your code to invoke IS services
from an EJB.

To run the sample EJB, follow the instructions in the ReadMeappserver.txt file in the
EJBToWebmSamples folder that tells you how to find the client.jar and how to build and deploy
the sample EJB code on your application server.

Basic Flow of Events

Note:

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 101

6 Invoking webMethods Services From an EJB

The EJB must have access to the client jar file containing classes needed to engage in a
request-response dialogue with Integration Server.

At a high level, the steps to invoking an IS service from an EJB are as follows:

1. On the application server, create and deploy an EJB that uses thewebMethodsAPIs in client.jar
for the purpose of executing a service on Integration Server.

2. The EJB creates a context (connection) with Integration Server, providing a URL, user name,
and password.

3. The EJB constructs an IData pipeline, if necessary, inserting appropriate service input values.

4. The EJB posts to Integration Server a request containing a valid service name and the pipeline
constructed in step 3.

5. The EJB receives a response from Integration Server and uses the provided APIs to access and
process the values contained in the returned IData pipeline.

6. The EJB successfully receives and processes the desired results from the service it executed.

102 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

6 Invoking webMethods Services From an EJB

7 Predefined Health Indicator

■ Predefined Health Indicator .. 104

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 103

Predefined Health Indicator

Microservices Runtime includes predefined health indicators for some of its basic components.
The health indicator captures the connection details for all theWmARTbased adapters at runtime.
For more information, see webMethods Adapter Runtime User's Guide.

104 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

7 Predefined Health Indicator

8 Administrator APIs

■ Administrator APIs .. 106

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 105

Administrator APIs

The Administrator APIs are available for Adapter for Enterprise JavaBeans. For more information
about Administrator APIs and samples, see webMethods Adapter Runtime User's Guide.

106 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

8 Administrator APIs

9 Configuration Variables Templates for Adapter

Assets in Microservices Runtime

■ Configuration Variables Templates for Adapter Assets in Microservices Runtime 108

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 107

Configuration Variables Templates for Adapter Assets in
Microservices Runtime

ThewebMethodsAdapter Runtime (ART) asset properties that can be configured from Integration
ServerAdministrator are available in the configuration variables template (application.properties
file) generated by Microservices Runtime. For more information, see webMethods Adapter Runtime
User's Guide and Developing Microservices with webMethods Microservices Runtime.

108 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

9 Configuration Variables Templates for Adapter Assets in Microservices Runtime

10 Adapter Logging and Exception Handling

■ Overview .. 110

■ Adapter Logging Levels .. 110

■ Adapter Message Logging ... 110

■ Adapter Exception Handling ... 112

■ Adapter for Enterprise Javabeans Error Messages .. 113

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 109

Overview

The following sections describe message logging and Adapter for Enterprise Javabeans exception
handling. A list of error codes and supporting information appears at the end of this chapter.

Adapter Logging Levels

Adapter for Enterprise Javabeans uses Integration Server's logging mechanism to log messages.
You can configure and view Integration Server's logs to monitor and troubleshoot Adapter for
Enterprise Javabeans. For detailed information about logging into Integration Server, including
instructions for configuring and viewing the different kinds of logs supported by the server, see
the webMethods Integration Server Administrator’s Guide for your release.

You can configure different logging levels for Adapter for Enterprise Javabeans.

Accessing the Adapter's Logging Information

To access the Adapter's logging information

1. From the Integration Server Administrator screen, select Settings > Logging.

On the Logging Settings screen, the Loggers section has Adapters included in the Facility
section.

2. Expand the Adapters tree to see a list of all installed adapters with their code number and
adapter description, along with the logging level.

Changing Logging Settings

To change the logging settings for Adapter for Enterprise Javabeans

1. Click Edit Logging Settings. Select the required Level of logging for Adapter for Enterprise
Javabeans.

2. After making your changes, click Save Changes.

3. For complete information about specifying the amount and type of information to include in
the log, see the webMethods Audit Logging Guide for your release.

Adapter Message Logging

Integration Server maintains several types of logs; however, Adapter for Enterprise Javabeans
only logs messages to the Audit, Error and Server logs, as described in the table below:

110 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

10 Adapter Logging and Exception Handling

DescriptionLog

You can monitor individual adapter services using the audit log as you
would audit any service in Integration Server. The audit properties for

Audit Log

an adapter service are available in eachAdapter for Enterprise Javabeans
service template on the Audit tab.

Adapter for Enterprise Javabeans automatically posts critical-level and
error-level logmessages to the server's Error log. These logmessageswill
appear as Adapter Runtime messages.

Error Log

Adapter for Enterprise Javabeans posts messages to the Server log,
depending on how the server log is configured. Critical-level through

Server Log

debug-level log messages appear as Adapter Runtime log messages.
V1-Verbose1 or V4-Verbose4 log messages appear as Adapter for
Enterprise Javabeans log messages.

Note that Adapter for Enterprise Javabeans does not log debug messages at the Debug level.
Rather, it logs all of its debug output at the Verbose3 or Verbose4 level. Verbose3 is used for general
debug logging and Verbose4 is used to log problems encountered while traversing entries on the
JNDI server.

Adapter for Enterprise Javabeans log messages appear in the following format: ADA.0640.nnnnc,
where:

ADA is the facility code that indicates the message is from an adapter.

0640 (or 640) is themajor error code for Adapter for Enterprise Javabeans, which indicates that
the message is generated by Adapter for Enterprise Javabeans.

nnnn represents the error'sminor code. For detailed descriptions of theminor codes forAdapter
for Enterprise Javabeans, see “Adapter for Enterprise Javabeans Error Messages” on page 113.

c represents the message's severity level (optional).

Because Adapter for Enterprise Javabeans works in conjunction with the WmART package,
exceptions generatedwithin the adapter frequentlywill appearwithin logmessages for theWmART
package.

To monitor Adapter for Enterprise Javabeans log messages in the Server log, ensure that your
server log's logging settings are configured to monitor the following facilities:

0113 Adapter Runtime (Managed Object)

0114 Adapter Runtime

0117 Adapter Runtime (Adapter Service)

0118 Adapter Runtime (Connection)

0121 Adapter Runtime (SCC Transaction Manager)

0126 Adapter Runtime (SCC Connection Manager)

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 111

10 Adapter Logging and Exception Handling

Adapter Exception Handling

Adapter for Enterprise Javabeans throws three exception classes that you should be aware of as
you build integrations using the adapter: AdapterException, AdapterConnectionException, and
AdapterServiceException. In all cases, the adapter passes the underlying exception on to the
Adapter Runtime, which wraps it in a container exception that it then passes on to Integration
Server. Integration Server then serializes the exception and returns it to the client service. Typically,
that client (for example, a flow or Java service that calls an adapter service) will include logic that
traps these exceptions and branches accordingly. For information about how to trap the exception
in a flow, see the webMethods Service Development Help for your release.

With Adapter for Enterprise Javabeans, errors typically originate from one of two sources: JNDI
or EJB:

JNDI exceptions generally are manifested as instances of javax.naming.NamingException. This is
simply a generalized wrapper for a list of low-level causes; some fatal, some not. Adapter for
Enterprise Javabeans examines theNamingException object to determine the underlying cause,
and then wraps it in either an AdapterException or an AdapterConnectionException. If the
exception occurs during lookup or introspection of a specific EJB, the adapter throws the
wrapped exception to the Adapter Runtime. If the exception occurs while the adapter is while
navigating the JNDI tree, the adapter logs a message in the Server log at level 8 (Verbose4)
and continues.

EJB exceptions are typicallywrapped as java.rmi.RemoteException.AswithNamingExceptions,
Adapter for Enterprise Javabeans examines it for the root cause,wraps it in anAdapterException
or AdapterConnectionException, and throws it to the Adapter Runtime.

AdapterException
Adapter for Enterprise Javabeans throws an AdapterException to report an error related to the
back-end resource (the application server) that does not involve the connection to that resource.
An example of this type of error might be that an EJB lookup failed.

AdapterConnectionException
Adapter for Enterprise Javabeans throws an AdapterConnectionException to report a
non-recoverable error in the connection to the back-end resource (the application server). In this
case,WmARTdrops the connection from the connection pool and tries to create a new connection.

It thenwraps the exception in com.wm.pkg.art.error.DetailedSystemException and throws it to Integration
Server.

AdapterServiceException
Adapter for Enterprise Javabeans throws an AdapterServiceException for any error that occurs:

While starting the adapter

While shutting down the adapter

112 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

10 Adapter Logging and Exception Handling

When invoking the standalone Java service RemoveEJB (pub.ejbadapter.removeEJB)

The first two situations indicate some fundamental problem that prevents the adapter from being
started or terminated. These are administrative errors that do not typically involve client services
using the adapter to access EJBs.

The third situation indicates a runtime error that occurswhen the Java service pub.ejbadapter.removeEJB
attempts to invoke a remote EJB's remove method. In this case, the client service may be involved
and will likely need to trap the error.

Reporting Non-Fatal Connection Errors
To report non-fatal connection errors correctly, you must convert them to fatal.

To convert non-fatal connection errors to fatal, you must set the watt.ejbadapter.fatalErrors watt
parameter to list the errors that are to be reported as fatal.

To set the watt.ejbadapter.fatalErrors parameter

1. In Integration Server Administrator, click Settings > Extended > Edit Extended Settings.

2. In the Extended Settings editor, type the following:

watt.ejbadapter.fatalErrors=<error_1,error_2,...
error_n>

For example:
watt.ejbadapter.fatalErrors=
+COMM_FAILURE,NoRouteToHostException,InvocationTargetException
,ConnectException

Note:
The parameter name is case sensitive.

3. Click Save Changes. A key for the new property appears in the Extended Settings list.

4. Click Show and Hide Keys. You will see watt.ejbadapter.fatalErrors listed as a Key and as
visible.

5. Restart Integration Server.

Adapter for Enterprise Javabeans Error Messages

Adapter for Enterprise Javabeans categorizes its minor code numbers as follows:

1000-1999. Adapter-specific errors, warnings, and informational messages

3000-3999. Connection related errors, warnings, and informational messages

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 113

10 Adapter Logging and Exception Handling

5000-5999. Adapter service related errors, warnings, and informational messages

Adapter Error Codes

DescriptionError Code

In service {0}: Pipeline is empty1001

Explanation: The content of the IData pipeline sent to the testEJBToWebm
sample service is null.

Action: Ensure that the client from which you are invoking
testEJBToWebm is sending an IData instance that conforms to this service's
input signature. Specifically, it should contain a single String field named
"inVal".

In service {0}: Failed to cast object in pipeline to expected type1002

Explanation: The value sent to the testEJBToWebm sample service is not
a java.lang.String.

Action: Ensure that the client from which you are invoking
testEJBToWebm is sending an IData instance that conforms to this service's
input signature. Specifically, it should contain a single String field named
"inVal".

Caught exception attempting to create WmManagedConnection for
server type: {0}

3000

Explanation: An unexpected exception occurred attempting to create an
instance of a connection of the indicated type.

Action: Contact Software AG Global Support.

JNDI properties file is null3001

Explanation: User must enter a path to a text file containing the relevant
JNDI properties.

Action: Ensure that the Properties FileNameparameter on theConnection
Types screen contains the path to a valid JNDI properties file.

Failed to locate JNDI properties file: {0}3002

Explanation: While attempting to enable a connection, the adapter could
not read the specified JNDI properties file.

Action: Ensure that the Properties FileNameparameter on theConnection
Types screen contains the path to a valid JNDI properties file. Also ensure
that the file can be read by the adapter at that path.

Failed to load JNDI properties file: {0}3003

114 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

10 Adapter Logging and Exception Handling

DescriptionError Code

Explanation: The contents of the specified JNDI properties file do not
support the java.util.Properties standard.

Action: Ensure that the contents of the specified file support the
java.util.Properties standard.

Failed to instantiate XAResource from {0}3005

Explanation: The adapter failed to obtain an instance of XAResource from
the application server using the specified string.

Action: Ensure that the string in the XAResource Source parameter on
the Connection Types screen conforms to the application server vendor's
requirements for obtaining an XAResource instance.

Failed to get InitialContext3006

Explanation: The adapter failed to create an InitialContext for the
configured application server.

Action: Ensure that the application server and its JNDI implementation
are running and can be reached over the network. Ensure that the necessary
client-side jar files for this back-end are installed under the
WmEJBAdapter/code/jars directory. Also ensure that the contents of the
specified JNDI properties file are correct.

Failed to lookup UserTransaction object: {0}3007

Explanation: The adapter failed to obtain the specified UserTransaction
instance from the back-end.

Action: Ensure that the indicatedUserTransaction lookupname is exposed
in the application server's JNDI implementation and that it is accessible
to the adapter.

Failed to locate any supported connection classes for this factory: {0}3008

Explanation: The indicated connection factory class could not find any
implementor classes for this type of connection.

Action: Contact Software AG Global Support.

Failed to release InitialContext3009

Explanation: An error occurred closing the InitialContext.

Action: Contact Software AG Global Support.

Failed to create EJBDescriptor for: {0} reason: {1}3010

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 115

10 Adapter Logging and Exception Handling

DescriptionError Code

Explanation: Anunexpectedproblemoccurred introspecting an individual
EJB. This error might occur if the EJB does not expose public methods, its
home or remote interface class is null, or it is in some other way corrupt.

Action: Ensure that the specified EJB is configured and deployed correctly
on the application server.

Failed to lookup bean: {0}3011

Explanation: The adapter failed to look up the specified EJB on the
application server.

Action: Ensure that the specified EJB is configured and deployed correctly
on the application server.

Failed to cast {0} to EJBHome3012

Explanation: The adapter could not type cast the specified EJB remote
home to a javax.ejb.EJBHome instance.

Action: Contact Software AG Global Support.

Failed to get NameParser for this context3013

Explanation: The adapter failed to obtain the javax.naming.NameParser
instance from the current InitialContext.

Action: Contact Software AG Global Support.

Failed to parse context name: {0}3014

Explanation: The connection failed to parse the specified root JNDI context.

Action: Ensure that the adapter has access to JNDI and is authorized to
read the specified context.

Failed to list contents of context: {0}3015

Explanation: The connection failed to list the JNDI bindings at the specified
context.

Action: Ensure that the adapter has access to JNDI and is authorized to
read the specified context.

Failed to enumerate item in context: {0}, reason: {1}3016

Explanation: The connection could not isolate a binding in the specified
JNDI context.

Action: Ensure that the adapter has access to JNDI and is authorized to
read the specified context.

116 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

10 Adapter Logging and Exception Handling

DescriptionError Code

Nested exception is {0}- {1}3019

Explanation: An unexpected error has occurred while traversing the
bindings in the application server's JNDI implementation.

Action: Contact Software AG Global Support.

Failed to lookup object bound at {0}: {1}3021

Explanation: The connection was unable to look up the specified object
in the application server's JNDI implementation.

Action: For certain types of objects deployed in some JNDI servers, this
error may not be unexpected and can be safely ignored. If the specified
object is an EJB, ensure that it is configured/deployed properly on the
application server and is accessible to the adapter.

Object bound at {0} is null3022

Explanation: The object bound at the specified location in JNDI is null.

Action: For certain types of objects deployed in some JNDI servers, this
error may not be unexpected and can be safely ignored. If the specified
object is an EJB, ensure that it is configured/deployed properly on the
application server and is accessible to the adapter.

Failed to retrieve metadata for EJB bound at: {0}3024

Explanation: The adapter failed to obtain the EJB metadata for the
specified EJB. This error could occur if the application server implements
EJB 1.0 only. Adapter for EJB is not backwardly compatible with EJB 1.0
beans.

Action: Upgrade to EJB 1.1 or greater.

Call to EJBHome.getEJBMetaData() failed for {0}: {1}3025

Explanation: An exception occurredwhile invoking the indicatedmethod
on the specified EJB.

Action: Ensure that the specified EJB is configured and deployed correctly
on the application server.

Failed to get EJBHome interface class object for {0}: {1}3026

Explanation: An exception occurred while attempting to get the remote
home class object for the specified EJB.

Action: Ensure that the specified EJB is configured and deployed correctly
on the application server.

Failed to get remote interface class object for {0}: {1}3027

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 117

10 Adapter Logging and Exception Handling

DescriptionError Code

Explanation: An exception occurred while attempting to get the remote
bean class object for the specified EJB.

Action: Ensure that the specified EJB is configured and deployed correctly
on the application server.

Failed to determine bean type for {0}: {1}3028

Explanation: An exception occurred while attempting to determine
whether the specified EJB is a session bean or an entity bean.

Action: Ensure that the specified EJB is configured and deployed correctly
on the application server.

Failed to determine session bean type for {0}: {1}3029

Explanation: An exception occurred while attempting to determine
whether the specified session EJB is stateless or stateful. This error could
occur if the application server implements EJB 1.0 only. Adapter for EJB
is not backwardly-compatible with EJB 1.0 beans.

Action: Ensure that the specified EJB is configured and deployed correctly
on the application server. Upgrade to EJB 1.1 or greater.

Failed to downcast EJB {0} of type {1} to javax.ejb.EJBHome, reason: {2}3030

Explanation: An attempt to type cast an EJB from the specified class to
javax.ejb.EJBHome has failed.

Action: Ensure that the specified EJB is configured and deployed correctly
on the application server.

Unexpected exception registering resource domains in: {0}3031

Explanation: An unexpected exception occurred registering resource
domain names for the given connection class.

Action: Contact Software AG Global Support.

Unexpected exception looking-up resource domain: {0}3032

Explanation: An unexpected exception occurred performing a resource
lookup on the specified resource domain.

Action: Contact Software AG Global Support.

Unexpected exception checking values in resource domain: {0}3033

Explanation: An unexpected error occurredwhile validating the value(s)
assigned to the specified resource domain.

Action: Contact Software AG Global Support.

118 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

10 Adapter Logging and Exception Handling

DescriptionError Code

Failed to obtain WmEJBConnectionFactory object from parent3034

Explanation: The WmEJBConnection instance could not determine the
factory object that created it.

Action: Contact Software AG Global Support.

Failed to lookup EJBHome: {0}3035

Explanation: The adapter service failed to look up the remote home object
for the specified EJB.

Action: Ensure that the specified EJB is configured and deployed correctly
on the application server.

Failed to begin local transaction3036

Explanation: An unexpected error occurred while trying to begin a local
transaction. Note that certain EJB configurations (for example, those with
the Never attribute set) cannot participate in a transaction.

Action: Ensure that the specified EJB is configured to run in a transaction.
For more information, see the sections “EJB Transaction Management”
and “Services and Transaction Management” in the Overview chapter of
the Adapter for EJB installation and user's guide.

Failed to commit local transaction3037

Explanation: Anunexpected error occurredwhile trying to commit a local
transaction. Note that certain EJB configurations (for example, those with
the Never attribute set) cannot participate in a transaction.

Action: Ensure that the specified EJB is configured to run in a transaction.
For more information, see the sections “EJB Transaction Management”
and “Services and Transaction Management” in the Overview chapter of
the Adapter for EJB installation and user's guide.

Failed to rollback local transaction3038

Explanation: An unexpected error occurred while trying to roll back a
local transaction. Note: Certain EJB configurations (for example, those
with the Never attribute set) cannot participate in a transaction.

Action: Ensure that the specified EJB is configured to run in a transaction.
For more information, see the sections “EJB Transaction Management”
and “Services and Transaction Management” in the Overview chapter of
the Adapter for EJB installation and user's guide.

Connection factory is {0}, but connection does not implement {1}3039

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 119

10 Adapter Logging and Exception Handling

DescriptionError Code

Explanation: The configured connection factory and connection
implementation classes are not compatible. This situation can only occur
when programmatically creating adapter connections using the WmART
Extended Utilities services.

Action: Contact Software AG Global Support.

javax.naming.NamingException explanation: {0}3998

Explanation: This is a supplementary message that is logged when a
NamingException has occurred. This message logs the output of
NamingException.getExplanation().

Action: This is a generic logmessage thatmay be caused by any of several
JNDI-related events. Ensure that the problem is not due to the application
server JNDI configuration.

javax.naming.NamingException root cause: {0}3999

Explanation: This is a supplementary message that is logged when a
NamingException has occurred. This message logs the output of
NamingException.getRootCause().getMessage().

Action: This is a generic logmessage thatmay be caused by any of several
JNDI-related events. Ensure that the problem is not due to the application
server JNDI configuration.

WmManagedConnection instance does not implement EJBClient5000

Explanation: TheAdapter Runtimehas passed aWmManagedConnection
object to one of the adapter's services that is not a subclass of
com.wm.adapter.wmejb.connection.EJBClient.

Action: Contact Software AG Global Support.

Unexpected exception executing adapter service: {0}5001

Explanation: An exception other than javax.naming.NamingException
or com.wm.adk.error.AdapterException was thrown during execution of
the specified adapter service.

Action: Contact Software AG Global Support.

Invocation of home method {0}.{1} returned null5002

Explanation: The specified remote home method returned a null object
to the invoking adapter service.

Action: Ensure that the target EJB method is implemented, configured,
and deployed properly on the application server.

120 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

10 Adapter Logging and Exception Handling

DescriptionError Code

InvocationTargetException occurred on method: {0} - {1}5003

Explanation: This type of exception can occur when the arguments
provided to the specified remote method cause that method to fail. This
situation typically occurs with entity EJB finder methods when the input
values yield an empty result set in the target bean method.

Action: Ensure that the target EJB method is implemented correctly and
that the input values provided are valid.

Actual input signature does not match configured input signature5004

Explanation: The actual IData input signature provided to the adapter
service is inconsistentwith the configured input signature for that service.

Action: Ensure that the client invoking the configured adapter service
instance passes arguments to that service in compliance with the service's
input signature.

For method: {0} on remote class: {1}, failed to introspect method
parameters

5005

Explanation: The adapter service failed to locate the class file for an object
in the remotemethod's configured parameters list. This error occurswhen
the class file is not visible to the adapter's class loader.

Action: Ensure that the jar file containing the class has been copied into
the packages/WmEJBAdapter/code/jars directory.

Failed to locate method: {0} on remote class: {1}5006

Explanation: The adapter service failed to find the specified method in
the specified EJB class. This error can occur if an InvokeEJB 2.1 service is
passed an EJB handle for a different EJB type than what it was configured
for, or the signature of the EJB class itself has been modified since the
adapter service was configured.

Action: Ensure that the EJB handle you are passing into an InvokeEJB 2.1
service instance matches the EJB class that the service was configured for.
If the EJB has changed, re-configure the service instance.

Failed to invoke remote method: {0}, reason: {1}5007

Explanation: Anunexpected exceptionwas thrownwhile calling a remote
method on an EJB's home or bean interface. This error could be due to a
number of causes, including a defect in the EJB itself.

Action: Ensure that the EJB is implemented, configured, and deployed
properly and that it is accessible to Adapter for EJB.

Empty Collection/Enumeration returned by creator method: {0}5008

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 121

10 Adapter Logging and Exception Handling

DescriptionError Code

Explanation: The specified method on the EJB home interface was
successfully invoked, but returned an empty collection object as its result.
This error is due to an implementation defect in the EJB home method
itself.

Action: Correct the logic problem in the indicatedmethod. Re-deploy the
EJB.

Failed to lookup default EJB in resource domain: {0}5009

Explanation: This error indicates a logic defect in the adapter configuration
code.

Action: Contact Software AG Global Support.

Failed to lookup default method in resource domain: {0}5010

Explanation: While configuring the indicated resource domain, the adapter
failed to detect any public methods in an EJBHome or EJBObject interface
implementation class. This error could indicate that the EJB itself is corrupt
or configured incorrectly. It may also indicate an internal logic defect in
the adapter code.

Action: Ensure that the EJB is implemented, configured, and deployed
properly.

Failed to get EJBObject from Handle5011

Explanation: A call to javax.ejb.Handle.getEJBObject() has failed. The
most likely cause is a configuration problem in Adapter for EJB.

Action: Contact Software AG Global Support.

Remote method {0}.{1} expected return value of type {2}, but received
null

5012

Explanation: The adapter service has successfully invoked the specified
remote method on the EJB. However, the value returned by that method
was null though an object of the indicated type was expected. This error
indicates a logic defect in the EJB method itself.

Action: Correct the defect and re-deploy the EJB.

Input record to InvokeEJB.execute() is empty5013

Explanation: The input record passed into this adapter service instance
at runtime contained no data. This error indicates a defect in the client
code that is calling this service. (InvokeEJB is the name of the underlying
adapter service template class for an InvokeEJB 2.1 service.)

122 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

10 Adapter Logging and Exception Handling

DescriptionError Code

Action: Ensure that the client service code is implemented correctly. At
a minimum, all calls to InvokeEJB.execute must contain an EJB Handle
instance in the input pipeline.

Unexpected exception removing EJB5014

Explanation: The standalone service pub.ejbadapter.removeEJB caught
an unexpected exception when calling the method
java.ejb.EJBObject.remove() on an EJB. The cause is indeterminate.

Action: Contact Software AG Global Support.

java.rmi.RemoteException occurred trying to remove EJB5015

Explanation: The standalone service pub.ejbadapter.removeEJB caught
the indicated exception when calling the method
java.ejb.EJBObject.remove() on an EJB.

Action: Contact Software AG Global Support.

Expected EJB is null or not of type javax.ejb.Handle in removeEJB5016

Explanation: The EJB passed into a call to pub.ejbadapter.removeEJB is
null or not the correct type. This error indicates a defect in the client code
invoking this service.

Action: Correct the client code.

Input WmRecord object is null5017

Explanation: The input record passed to an adapter service instance is
null. This error indicates a defect in the client code invoking this service.

Action: Correct the client code.

EJBDescriptorCache is null or empty5018

Explanation: The adapter failed to locate any EJBs registered in the JNDI
server. This error could be due to a number of causes.

Action: Ensure that EJBs are configured and deployed properly on the
application server and that they are accessible to Adapter for EJB.

EJBClassDescriptor is null5019

Explanation: This error indicates an internal logic defect in the adapter
code.

Action: Contact Software AG Global Support.

EJBMethodDescriptor is null5020

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 123

10 Adapter Logging and Exception Handling

DescriptionError Code

Explanation: This indicates an internal logic defect in the adapter code.

Action: Contact Software AG Global Support.

Unsupported object of type {0} returned by EJB home method5021

Explanation: The adapter successfully invoked a remote home method
on an EJB, but the object returned by that method is of the specified type,
that is not supported. The cause is indeterminate.

Action: Contact Software AG Global Support.

Invalid supported connection class found in impl directory: {0}5022

Explanation: A class file for a class that is not a subclass of
com.wm.adapter.wmejb.connection.WmEJBConnection was found in the
following adapter directory:
WmEJBAdapter/code/classes/com/wm/adapter/wmejb/connection/impl/supported

Action: Move the specified class file into another directory to prevent this
message from displaying.

Cannot execute method {0}; Handle is null5023

Explanation: An instance of InvokeEJB 2.1 or CreateInvokeEJB 2.1 cannot
execute the stated remote bean method because the Handle object it uses
to get the EJBObject instance is null. For an InvokeEJB 2.1 service, the
handle is passed in from the client code. For a CreateInvokeEJB 2.1 service,
the handle instance is generated internally.

Action: If this error occurs when your client code is calling InvokeEJB 2.1,
ensure that you are passing a valid javax.ejb.Handle object to the service.

Remove not allowed on given EJB5024

Explanation: The standalone service pub.ejbadapter.removeEJB caught
a javax.ejb.Remove exception when calling the method
java.ejb.EJBObject.remove() on an EJB. The EJB container has determined
that the EJB cannot be removed at this time, which may or may not be the
expected behavior.

Action: Check with the EJB deployer to ensure that it is configured to
allow removal. In particular, stateful EJBs running within a transaction
may be subject to containerimposed restrictions on their removal.
Alternatively, omit the call to removeEJB in your client or trap the error
and branch accordingly.

FetchEJB has failed to look-up resource domain: {0} with dependency
value: {1}. This can happen if the service is using an EJB that no longer
exists or has been modified.

5025

124 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

10 Adapter Logging and Exception Handling

DescriptionError Code

Explanation: The EJB that the adapter service has been configured to use
does not match the EJB deployed on the server or the EJB is no longer
deployed. This error message may display multiple times. (FetchEJB is
the name of the underlying adapter service template class for a CreateEJB
2.1 service.)

Action: If the EJB no longer exists, delete this adapter service instance. If
the EJB has changed, re-configure this adapter service instance.

InvokeEJB has failed to look-up resource domain: {0} with dependency
value: {1}. This can happen if the service is using an EJB that no longer
exists or has been modified.

5026

Explanation: The EJB that the adapter service has been configured to use
does not match the EJB deployed on the server or the EJB is no longer
deployed. This error message may display multiple times. (InvokeEJB is
the name of the underlying adapter service template class for an InvokeEJB
2.1 service.)

Action: If the EJB no longer exists, delete this adapter service instance. If
the EJB has changed, re-configure this adapter service instance.

FetchAndInvokeEJB has failed to look-up resource domain: {0} with
dependency value: {1}. This can happen if the service is using an EJB
that no longer exists or has been modified.

5027

Explanation: The EJB that the adapter service has been configured to use
does not match the EJB deployed on the server or the EJB is no longer
deployed. This error message may display multiple times.
(FetchandInvokeEJB is the name of the underlying adapter service template
class for a CreateInvokeEJB 2.1 service.)

Action: If the EJB no longer exists, delete this adapter service instance. If
the EJB has changed, re-configure this adapter service instance.

The EJB object passed into InvokeEJB does notmatch the expected type:
{0}

5028

Explanation: The Invoke Adapter for EJB service you are running was
configured for an EJB of the stated class type. However, an EJB of a
different type was passed into the service at run time. (InvokeEJB is the
name of the underlying adapter service template class for an InvokeEJB
2.1 service.)

Action: Edit the flow service tomap the correct EJB type to the 'EJB' input
parameter of the configured Invoke Adapter for EJB service.

The parameter: {0} in the service you are running is a Java primitive
type--it cannot be null.

5029

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 125

10 Adapter Logging and Exception Handling

DescriptionError Code

Explanation: The service you are running attempts to call a remote EJB
method with a primitive argument for which no value was provided.

Action: Edit the service to ensure that all primitive method parameters
have an appropriate value. Consult the EJB you are running against to
determine what values might be appropriate.

Input record to InvokeEJB30.execute() is empty5030

Explanation: The input record passed into this adapter service instance
at runtime contained no data. This error indicates a defect in the client
code that is calling this service. (InvokeEJB30 is the name of the underlying
adapter service template class for an InvokeEJB 3.0 service.)

Action: Ensure that the client service code is implemented correctly. At
a minimum, all calls to InvokeEJB30.execute must contain an EJB Handle
instance in the input pipeline.

InvokeEJB30has failed to look-up resource domain: {0}with dependency
value: {1}. This can happen if the service is using an EJB that no longer
exists or has been modified.

5031

Explanation: The EJB that the adapter service has been configured to use
does not match the EJB deployed on the server or the EJB is no longer
deployed. This error message may display multiple times. (InvokeEJB30
is the name of the underlying adapter service template class for an
InvokeEJB 3.0 service.)

Action: If the EJB no longer exists, delete this adapter service instance. If
the EJB has changed, re-configure this adapter service instance.

FetchAndInvokeEJB30 has failed to look-up resource domain: {0} with
dependency value: {1}. This can happen if the service is using an EJB
that no longer exists or has been modified.

5032

Explanation: The EJB that the adapter service has been configured to use
does not match the EJB deployed on the server or the EJB is no longer
deployed. This error message may display multiple times.
(FetchandInvokeEJB30 is the name of the underlying adapter service
template class for a FetchInvokeEJB 3.0 service.)

Action: If the EJB no longer exists, delete this adapter service instance. If
the EJB has changed, re-configure this adapter service instance.

The EJB object passed into InvokeEJB30 does not match the expected
type: {0}

5033

Explanation: The InvokeEJB30 adapter service you are running was
configured for an EJB of the stated class type. However, an EJB of a
different type was passed into the service at run time. (InvokeEJB30 is the

126 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

10 Adapter Logging and Exception Handling

DescriptionError Code

name of the underlying adapter service template class for an InvokeEJB
3.0 service.)

Action: Edit the flow service tomap the correct EJB type to the 'EJB' input
parameter of the configured InvokeEJB30 adapter service.

FetchEJB30 has failed to look-up resource domain: {0} with dependency
value: {1}. This can happen if the service is using an EJB that no longer
exists or has been modified.

5034

Explanation: The EJB that the adapter service has been configured to use
does not match the EJB deployed on the server or the EJB is no longer
deployed. This error message may display multiple times. (FetchEJB30 is
the name of the underlying adapter service template class for a FetchEJB
3.0 service.)

Action: If the EJB no longer exists, delete this adapter service instance. If
the EJB has changed, re-configure this adapter service instance.

java.rmi.RemoteException explanation: {0}5998

Explanation: This is a supplementary message that is logged when a
RemoteException has occurred. This message logs the output of
RemoteException.getMessage().

Action: This is a generic logmessage thatmay be caused by any of several
RMI-related events. Ensure that the problem is not due to the application
server EJB configuration. Contact Software AG Global Support.

java.rmi.RemoteException root cause: {0}5999

Explanation: This is a supplementary message that is logged when a
RemoteException has occurred. This message logs the output of
RemoteException.detail.toString().

Action: This is a generic logmessage thatmay be caused by any of several
RMI-related events. Ensure that the problem is not due to the application
server EJB configuration.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 127

10 Adapter Logging and Exception Handling

128 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

10 Adapter Logging and Exception Handling

A Scenarios

■ Overview .. 130

■ Running a Single Method on a Single Bean ... 130

■ Running Multiple Independent Methods on a Single Bean .. 131

■ Running Multiple Dependent Methods on a Single Bean ... 132

■ Running a Single Method on Multiple Beans of the Same Type 133

■ Running Multiple Methods on Multiple Beans .. 135

■ Running a Single Method with Complex Input on a Single Bean 136

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 129

Overview

This appendix presents some scenarios for typical applications that use Adapter for Enterprise
Javabeans. Depending on the complexity of your business function, you could implement one
scenario or combine elements of several scenarios to create the necessary functionality.

The scenarios are intended to help you use Adapter for Enterprise Javabeans to create EJB client
services and join them together in logical workflows to implement some desired business function.

While considering the scenarios, keep the following points in mind:

Adapter for Enterprise Javabeans supports session and entity beans only. There are no scenarios
for message-driven EJBs.

Note:
Entity beans are not supported by the EJB 3.0 standard. They are supported only by EJB 2.1
or earlier standards.

The scenarios illustrate basic event flow with successful results only. No error or exception
handling is illustrated.

The scenarios assume that you are an authorized webMethods user and are familiar with
SoftwareAGDesigner and in particular, the FlowService Editor. For information about creating
flow services, see the webMethods Service Development Help for your release.

For additional information to help you create flow services for use with Adapter for Enterprise
Javabeans, see “Creating Flows for Adapter for Enterprise Javabeans Services” on page 147.

Note:
The CreateEJB 2.1, InvokeEJB 2.1, and CreateInvokeEJB 2.1 adapter services are used to access
the 2.1 or earlier versions of EJBs. The FetchEJB 3.0, InvokeEJB 3.0, and FetchInvokeEJB 3.0
adapter services are used to access the 3.0 EJBs. The 2.1 adapter services cannot be used with
the 3.0 adapter services and vice versa.

Running a Single Method on a Single Bean

This scenario illustrates how to invoke a singlemethod on a single remote EJB and view the results.

Assumptions
In the steps below, the following assumptions are made:

An adapter service has been configured from the CreateInvokeEJB 2.1 or the FetchInvokeEJB
3.0 adapter service template for the desired EJB, including the method used for creating the
bean and the bean method to invoke.

The associated adapter connection is enabled.

You provide all method input parameters at runtime.

All method input parameters and return values have types that are recognizable in Designer.

130 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

A Scenarios

Steps

1. Using Designer, create a flow that calls the CreateInvokeEJB 2.1 or the FetchInvokeEJB 3.0
adapter service instance.

2. Execute the flow and enter the appropriate method inputs when prompted.

3. Observe the results in the service's output:

A successful status for the create or fetch service invocation

A successful status for the bean method invocation

The results of the method invocation

4. For information about the CreateInvokeEJB 2.1 adapter service, see “CreateInvokeEJB 2.1
Adapter Service” on page 34. For information about the FetchInvokeEJB 3.0 adapter service,
see “FetchInvokeEJB 3.0 Adapter Service” on page 39.

Running Multiple Independent Methods on a Single Bean

This scenario illustrates how to invoke two or more methods on the same remote EJB and view
the results. The methods have no dependencies on one another.

Assumptions
An adapter service has been configured from the CreateEJB 2.1 or the FetchEJB 3.0 adapter
service template for the desired EJB, including the method to use for creating the bean.

Separate adapter services have been configured from the corresponding InvokeEJB 2.1 or the
InvokeEJB 3.0 adapter service template for the desiredEJB and each of the desired beanmethods.

You will provide all create and bean method input parameters at runtime.

All method input parameters and return values have types that are recognizable in Designer.

Steps

1. Using Designer, create a flow consisting of the following adapter service calls:

a. CreateEJB 2.1 or FetchEJB 3.0

b. Each of the corresponding InvokeEJB 2.1 or InvokeEJB 3.0 services you want to execute
(two or more)

c. RemoveEJB (only for 2.1 services)

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 131

A Scenarios

2. Edit the flow to map the output of CreateEJB 2.1 or FetchEJB 3.0 (which is the bean object) to
the corresponding input bean object in each of the corresponding InvokeEJB 2.1 or InvokeEJB
3.0 calls and the RemoveEJB call.

Note:
RemoveEJB service is used only for 2.1 services.

3. Execute the flow and enter the appropriate method inputs when prompted.

4. Observe the results in the flow's output:

A successful status for the EJB create or fetch service invocation

A successful status for each of the bean method invocations

If successful, RemoveEJB returns nothing

The results of each bean method invocation

5. For information about the CreateEJB 2.1, FetchEJB 3.0, InvokeEJB 2.1, and InvokeEJB 3.0 adapter
services, see “Adapter Services” on page 25. For information about the RemoveEJB service,
see “Removing EJBs” on page 93.

Running Multiple Dependent Methods on a Single Bean

This scenario illustrates how to invoke two or more methods on the same remote EJB and view
the results. Note that in one or more cases, the input parameter(s) passed to a method are the
output return value(s) from one or more methods run previously.

Assumptions
An adapter service has been configured from the CreateEJB 2.1 or FetchEJB 3.0 adapter service
template for the desired EJB, including the method to use for creating the bean.

Separate adapter services have been configured from the corresponding InvokeEJB 2.1 or
InvokeEJB 3.0 adapter service template for the desiredEJB and each of the desired beanmethods.

One ormore of the beanmethodswill get some or all of their input parameters from the output
return value(s) of methods invoked previously in the flow. At runtime, you will be prompted
to supply all other method inputs.

Any input parameters and/or return values that are not to bemapped as described abovemust
have types that are recognizable in Designer.

Steps

1. Using Designer, create a flow consisting of the following adapter service calls:

132 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

A Scenarios

a. CreateEJB 2.1 or FetchEJB 3.0

b. Each of the corresponding InvokeEJB 2.1 or InvokeEJB 3.0 services you want to execute
(two or more)

c. RemoveEJB (only for 2.1 services)

2. Edit the flow to map the output of CreateEJB 2.1 or FetchEJB 3.0 (which is the bean object) to
the corresponding input bean object in each of the corresponding InvokeEJB 2.1 or InvokeEJB
3.0 calls and the RemoveEJB call (only for 2.1 services).

3. Edit the flow to map the output of one or more InvokeEJB 2.1 or InvokeEJB 3.0 calls to the
input(s) of one or more subsequent InvokeEJB 2.1 or InvokeEJB 3.0 calls.

4. Execute the flow and enter the appropriate method inputs (if any) when prompted.

5. Observe the results in the flow's output:

A successful status for the EJB create or fetch service invocation

A successful status for each of the bean method invocations

The results of each bean method invocation

6. For information about the CreateEJB 2.1, FetchEJB 3.0, InvokeEJB 2.1, and InvokeEJB 3.0 adapter
services, see “Adapter Services” on page 25. For information about the RemoveEJB service,
see “Removing EJBs” on page 93.

Running a Single Method on Multiple Beans of the Same Type

This scenario illustrates how to retrieve multiple instances of the same EJB class and then invoke
the same bean method on each instance. This scenario presents two ways to accomplish the
operation:

Alternative 1
This scenario uses the CreateEJB 2.1, InvokeEJB 2.1, and RemoveEJB services together in a flow.

Assumptions

An adapter service has been configured from the CreateEJB 2.1 adapter service template for
the desired EJB. The EJB must be an entity bean and its home interface must expose a method
that returnsmultiple instances of the remote EJB. TheCreateEJB 2.1 service has been configured
to call this method.

An adapter service has been configured from the InvokeEJB 2.1 adapter service template for
the desired EJB to call one of its public methods.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 133

A Scenarios

You will provide all create and bean method input parameters at runtime.

The same input parameter value(s) will be passed into each bean invocation method.

All input parameters and/or return values must have types that are recognizable in Designer.

Steps

1. Using Designer, create a flow consisting of the following adapter service calls:

a. CreateEJB 2.1 (to retrieve the EJB instances)

b. InvokeEJB 2.1 (the method to run on each instance)

c. RemoveEJB (to release each of the bean instances)

2. Edit the flow to wrap the InvokeEJB 2.1 and RemoveEJB steps in a loop that will execute once
for each EJB instance returned by the CreateEJB 2.1 step.

3. Edit the flow to map the current EJB instance (a bean object) in the loop to the corresponding
input parameter of the InvokeEJB 2.1 and RemoveEJB steps.

4. Execute the flow and enter the appropriate method inputs (if any) when prompted.

5. Observe the results in the flow's output:

A successful status for the EJB create method invocation

A successful status for each of the bean method invocations

The results of each bean method invocation

6. For information about the CreateEJB 2.1 and InvokeEJB 2.1 adapter services, see “Adapter
Services” on page 25. For information about the RemoveEJB service, see “Removing EJBs” on
page 93.

Alternative 2
This scenario uses the CreateInvokeEJB 2.1 service, which combines all services in a single step.

Assumptions

An adapter service has been configured from the CreateInvokeEJB 2.1 adapter service template
for the desired EJB. The EJBmust be an entity bean and its home interfacemust expose a create
method that returnsmultiple instances of the remote EJB. The CreateInvokeEJB 2.1 service has
been configured to call this method. The service has also been configured to call one of the
remote EJB's methods.

134 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

A Scenarios

You will provide all create and bean method input parameters at runtime.

All input parameters and/or return values must have types that are recognizable in Designer.

The same input parameter values will be passed into each bean invocation method.

Steps

1. Using Designer, execute the CreateInvokeEJB 2.1 adapter service and enter the appropriate
method inputs when prompted.

2. Observe the results in the service's output:

A successful status for the EJB create method invocation

A successful status for each of the bean method invocations

The results of each bean method invocation

3. For information about the CreateInvokeEJB 2.1 service, see “CreateInvokeEJB 2.1 Adapter
Service” on page 34.

Running Multiple Methods on Multiple Beans

This scenario illustrates how to run one or more methods on two or more different EJB objects.
The EJB objects are not instances of the same class.

Assumptions
An adapter service has been configured from the CreateEJB 2.1 or FetchEJB 3.0 adapter service
template for the desired EJBs, including the method to use for creating the bean. At least two
such services, each creating different EJBs, should be configured.

An adapter service has been configured from the corresponding InvokeEJB 2.1 or InvokeEJB
3.0 adapter service template for each of the desired method invocations.

You will provide all create and bean method input parameters at runtime.

All input parameters and/or return values must have types that are recognizable in Designer.

Steps

1. Using Designer, create a flow consisting of the following adapter service calls:

a. CreateEJB 2.1 or FetchEJB 3.0 (one for each of the EJBs to be created or fetched)

b. Corresponding InvokeEJB 2.1 or InvokeEJB 3.0 (one for each of the distinct method calls)

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 135

A Scenarios

c. RemoveEJB (one for each EJB created, only for 2.1 services)

2. Edit the flow to map the output of the CreateEJB 2.1 or FetchEJB 3.0 (the bean objects) calls to
the corresponding input bean object in each of the corresponding InvokeEJB 2.1 or InvokeEJB
3.0 calls and the RemoveEJB calls (only for 2.1 services).

Important:
Be careful when naming instances of these CreateEJB 2.1 or FetchEJB 3.0 and InvokeEJB 2.1
or InvokeEJB 3.0 adapter services to avoid mismatching them. If a pair of CreateEJB
2.1/InvokeEJB 2.1 or FetchEJB 3.0/InvokeEJB 3.0 services are mismatched in a flow, this
condition will not be detected until that flow is executed. For more information, see
“InvokeEJB 2.1 Adapter Service” on page 32 and “InvokeEJB 3.0 Adapter Service” on
page 37.

3. Execute the flow and enter the appropriate method inputs (if any) when prompted.

4. Observe the results in the flow's output:

A successful status for each EJB create or fetch service invocation

A successful status for each of the bean method invocations

The results of each bean method invocation

5. For information about the CreateEJB 2.1, FetchEJB 3.0, InvokeEJB 2.1, and InvokeEJB 3.0 adapter
services, see “Adapter Services” on page 25. For information about the RemoveEJB service,
see “Removing EJBs” on page 93.

Running a Single Method with Complex Input on a Single Bean

This scenario provides two approaches to invoking an EJB method to accommodate complex
inputs. Complex input in this scenario is any non-native Java class. Its contents are arbitrary,
however, the class must implement the java.io.Serializable interface.

Approach 1
This approach illustrates how to invoke an EJBmethod that requires an instance of a user-defined
object as one of its input parameters.

In a flow service you canmap an instance of an arbitrary third-party object to a parameter defined
in the input pipeline of an adapter service. Depending on the EJB being used, this object can be
passed to one of its home methods or one of its bean methods. In this approach, it is the bean
method (that is, the method defined in the Method to Invoke tab) that will receive the custom
object.

Assumptions

136 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

A Scenarios

An EJB exists on the application server that takes a user-defined object as one of its method
parameters.

An adapter service has been configured from the CreateInvokeEJB 2.1 or FetchInvokeEJB 3.0
adapter service template for the desired EJB, including the method used for creating the bean
and the bean method to invoke (that is, the method that requires the non-standard object).

You will provide all method input parameters at runtime.

Except as noted above, all other method input parameters and return values have types that
are recognizable in Designer.

Steps

1. Create a native Java service to create the user-defined object that will be passed to the EJB
method. This Java service should expect on its input pipeline the property values needed to
successfully create and initialize the user-defined object, which it should insert into its outbound
pipeline.

2. Create a flow that includes the following steps:

a. Calls the Java service created in step 1.

b. Calls the configured CreateInvokeEJB 2.1 or FetchInvokeEJB 3.0 adapter service described
in the assumptions above.

3. Edit the flow to map the output of the Java service to the input of the EJB bean method called
in the corresponding CreateInvokeEJB 2.1 or FetchInvokeEJB 3.0 adapter service.

4. Execute the flow and provide the appropriate input values (if any) when prompted for all
other EJB method parameters.

5. Observe the results in the flow's output:

A successful status for the create method invocation

A successful status for the bean method invocation

The results of the method invocation

6. For information about the CreateInvokeEJB 2.1 service, see “CreateInvokeEJB 2.1 Adapter
Service” on page 34. For information about the FetchInvokeEJB 3.0 service, see “FetchInvokeEJB
3.0 Adapter Service” on page 39.

Approach 2
This approach illustrates how to invoke a method on an EJB that requires an instance of another
EJB as one of its input parameters.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 137

A Scenarios

Assumptions

An EJB exists on the application server that takes, as one of its method parameters, an instance
of another EJB.

An adapter service has been configured from the CreateInvokeEJB 2.1 or FetchInvokeEJB 3.0
adapter service template for the desired EJB, including the method used for creating the bean
and the bean method to invoke (that is, the method that requires the other EJB).

An adapter service has been configured from the corresponding CreateEJB 2.1 or FetchEJB 3.0
adapter service template to create the second EJB.

You will provide all method input parameters at runtime.

Except as noted above, all other method input parameters and return values have types that
are recognizable in Designer.

Steps

1. Using Designer, create a flow consisting of the following adapter service calls:

a. CreateEJB 2.1 or FetchEJB 3.0 (to create the EJB to be passed to the other EJB)

b. Corresponding CreateInvokeEJB 2.1 or FetchInvokeEJB 3.0 (to create themain EJB and run
the method that takes the EJB created in the previous step as one of its parameters)

c. RemoveEJB (to release the EJB created by CreateEJB 2.1)

2. Edit the flow to map the output of the corresponding CreateEJB 2.1 or FetchEJB 3.0 service
from step a to the input of the EJB method called in the corresponding CreateInvokeEJB 2.1
or FetchInvokeEJB 3.0 service.

3. Execute the flow and provide the appropriate input values (if any) when prompted for all
other EJB method parameters.

4. Observe the results in the flow's output:

A successful status for the create method invocation of the first EJB

A successful status for the create method invocation of the second EJB

The results of the method invocation

138 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

A Scenarios

B Built-In Transaction Management Services

■ Transaction Management Overview ... 140

■ Built-In Transaction Management Services .. 142

■ Changing Integration Server's Transaction Timeout Interval .. 145

■ Transaction Error Situations ... 145

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 139

Transaction Management Overview

This appendix provides an overview and examples of using transactions. It describes how
Integration Server supports the built-in services used to manage explicit transactions for your
Adapter for Enterprise Javabeans services in theWmART package. For descriptions of each of the
specific built-in transaction management services that can be used with theWmART package, see
“Built-In Transaction Management Services” on page 142.

For information about other built-in services available for usewithAdapter for Enterprise Javabeans,
see the webMethods Integration Server Built-In Services Reference for your release.

Transactions
Integration Server considers a transaction to be one ormore interactionswith one ormore resources
that are treated as a single logical unit of work (LUW). The interactions within a transaction are
either all committed or all rolled back. For example, if a transaction includes one or more calls to
Adapter for Enterprise Javabeans services and one of these services fails, all other services in the
transaction are rolled back.

Transaction Types
Adapter for Enterprise Javabeans supports local transactionswith all supported application servers,
without other resource participants. Adapter for Enterprise Javabeans also supports XA transactions
only onWebLogic Server 10.3. For a description of the transaction types supported by the Adapter
for Enterprise Javabeans, see “Transaction Management of Adapter for Enterprise Javabeans
Connections” on page 19.

In general, the Adapter for Enterprise Javabeans can communicate with multiple application
servers (resources) at a time provided that those application servers are the same vendor and
version. There are limitations when the adapter tries to access multiple resources using locally
transacted connections within a single flow service.

Note:
If a transaction accesses multiple resources, and more than one of the resources only supports
local transactions, the integrity of the transaction cannot be guaranteed. For example, if the first
resource successfully commits, and the second resource fails to commit, the first resource
interaction cannot be rolled back; it has already been committed. To help prevent this problem,
Integration Server detects this case when connecting to more than one resource that does not
support two-phase commits. It throws a run-time exception and the service execution fails.

Also remember that the application server, the EJB container, and the EJB itself may impose their
own set of restrictions on how an EJB may be used in a transaction.

Implicit and Explicit Transactions
Implicit transactions are handled automatically by Integration Server's transaction manager.
Implicit transaction support is enabled when you configure an adapter service to use an EJB Local
Connection or an EJB XA Connection and invoke this adapter service from a flow. When you

140 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

B Built-In Transaction Management Services

define an explicit transaction, you define the start-on-completion boundaries of the transaction.
As such, implicit and explicit transactions need to be created and managed differently.

The following sections describe implicit and explicit transactions and how to manage them.

Implicit Transactions

With implicit transactions, Integration Server automatically manages local transactions without
requiring you to explicitly do anything. That is, Integration Server starts and completes an implicit
transaction with no additional service calls required by the adapter user.

A transaction context, which the transaction manager uses to define a unit of work, starts when a
flow service executes an adapter service. The connection required by the adapter service is registered
with the newly created context and used by the adapter service. If the flow executes another
adapter service, the transaction context is searched to see if the connection is registered already.
If the connection is already registered, the adapter service uses this connection. If the connection
is not registered, Integration Server retrieves a new connection instance and registers it with the
transaction.

Note that if the top level flow invokes another flow, adapter services in the child flowuse the same
transaction context.

When the top level flow completes, the transaction completes and either is committed or rolled
back, depending on the status (success or failure) of the top level flow.

A single transaction context can contain no more than one EJB Local Connection connection. If
your flow contains adapter services that use more than one EJB Local Connection connection, you
must use explicit transactions, which are described in the next section.

For more information about designing and using flows, see the webMethods Service Development
Help for your release.

For more information about transaction types, see “Transaction Management of Adapter for
Enterprise Javabeans Connections” on page 19.

Explicit Transactions

You use explicit transactions when you need to explicitly control the transactional units of work.
To do this, you use additional services, known as built-in services, in your flow.

A transaction context starts when the pub.art.transaction.startTransaction() service executes. The
transaction context completes when either the pub.art.transaction.commitTransaction() or
pub.art.transaction.rollbackTransaction() service executes. Aswith implicit transactions, a single transaction
context can contain no more than one EJB Local Connection connection.

Note:
With explicit transactions, youmust be sure to call either a commitTransaction() or rollbackTransaction()
for each startTransaction() service, or you will have dangling transactions, which will require you
to reboot Integration Server.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 141

B Built-In Transaction Management Services

A new explicit transaction context can be started within an existing transaction context, provided
that you ensure that the transactions are committed in the reverse order they were started-that is,
the last transaction to start should be the first transaction to complete, and so forth.

For example, consider the following is a valid construct:
pub.art.transaction.startTransaction()
pub.art.transaction.startTransaction()
pub.art.transaction.startTransaction()
pub.art.transaction.commitTransaction()
pub.art.transaction.commitTransaction()
pub.art.transaction.commitTransaction()

The following example shows an invalid construct:
pub.art.transaction.startTransaction()
pub.art.transaction.startTransaction()
pub.art.transaction.commitTransaction()
pub.art.transaction.commitTransaction()

For more information about designing and using flows, see the webMethods Service Development
Help for your release.

For more information about transaction types, see “Transaction Management of Adapter for
Enterprise Javabeans Connections” on page 19.

Built-In Transaction Management Services

The following sections describe each of the built-in services you can usewith theWmARTpackage.

pub.art.transaction:commitTransaction
This service commits an explicit transaction. It must be used in conjunction with the
pub.art.transaction:startTransaction service. If it does not have a corresponding
pub.art.transaction:startTransaction service, your flow service will receive a runtime error.

For more information about implicit and explicit transactions, see “Overview” on page 148.

Input Parameters

Document.A document that contains the variable
transactionName, described below.

commitTransactionInput

String.Used to associate a name with an explicit
transaction. The transactionNamemust correspond to

transactionName

the transactionName in any pub.art.transaction:startTransaction
or pub.art.transaction:rollbackTransaction services associated
with the explicit transaction.

142 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

B Built-In Transaction Management Services

This value must be mapped from the most recent
pub.art.transaction:startTransaction that has not previously
been committed or rolled back.

Output Parameters

None.

pub.art.transaction:rollbackTransaction
This service rolls back an explicit transaction. It must be used in conjunction with the
pub.art.transaction:startTransaction service. If it does not have a corresponding
pub.art.transaction:startTransaction service, your flow service will receive a runtime error.

For more information about implicit and explicit transactions, see “Overview” on page 148.

Input Parameters

Document. A document that contains the variable
transactionName, described below.

rollbackTransactionInput

String.Used to associate a namewith an explicit transaction.
The transactionNamemust correspond to the transactionName

transactionName

in any WmART.pub.art.transaction:startTransaction or
WmART.pub.art.transaction:commitTransaction services associated
with the explicit transaction.

This value must be mapped from the most recent
pub.art.transaction:startTransaction that has not previously been
committed or rolled back.

Output Parameters

None.

pub.art.transaction:setTransactionTimeout
This service enables you to manually set a transaction timeout interval for implicit and explicit
transactions. When you use this service, you are temporarily overriding Integration Server's
transaction timeout interval. To change the server's default transaction timeout, see “Changing
Integration Server's Transaction Timeout Interval” on page 145.

You must call this service within a flow before the start of any implicit or explicit transactions.
Implicit transactions start when you call an adapter service in a flow. Explicit transactions start
when you call the pub.art.transaction:startTransaction service.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 143

B Built-In Transaction Management Services

If the execution of a transaction takes longer than the transaction timeout interval, all current
executions associated with the flow are cancelled and rolled back if necessary.

This service overrides only the transaction timeout interval for the flow service in which you call
it.

Input Parameters

Integer. The number of seconds that the implicit or explicit
transaction stays open before the transaction manager aborts it.

timeoutSeconds

Output Parameters

None.

pub.art.transaction.startTransaction
This service starts an explicit transaction. It must be used in conjunction with either a
pub.art.transaction:commitTransaction service or pub.art.transaction:rollbackTransaction service. If it does not
have a corresponding pub.art.transaction:commitTransaction service orpub.art.transaction:rollbackTransaction
service, your flow service will receive a runtime error.

For more information about implicit and explicit transactions, see “Overview” on page 148.

Input Parameters

Document. A document that contains the variable
transactionName, described below.

startTransactionInput

String. Specifies the name of the transaction to be started.
This parameter is optional. If you leave this parameter blank,

transactionName

Integration Server will generate a name for you. In most
implementations, it is not necessary to provide your own
transactionName as input.

Output Parameters

Document. A document that contains the variable
transactionName, described below.

startTransactionOutput

String. The name of the transaction the service just started.transactionName

144 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

B Built-In Transaction Management Services

Changing Integration Server's Transaction Timeout Interval

Integration Server's default transaction timeout is no timeout (NO_TIMEOUT). To change the
server's transaction timeout interval, use a text editor to modify the server.cnf file and add the
parameter below. Note that this parameter does not exist by default in the server.cnf file; youmust
add it to the file as described below.

Be sure to shut down Integration Server before you edit this file. After you make changes, restart
the server.

Add the following parameter to the server.cnf file:

watt.art.tmgr.timeout=TransactionTimeout

where TransactionTimeout is the number of seconds before transaction timeout.

This transaction timeout parameter does not halt the execution of a flow; it is themaximumnumber
of seconds that a transaction can remain open and still be considered valid. For example, if your
current transaction has a timeout value of 60 seconds and your flow takes 120 seconds to complete,
the transaction manager will rollback all registered operations regardless of the execution status.

Formore information about adding parameters to the server.cnf file, see thewebMethods Integration
Server Administrator’s Guide for your release.

Transaction Error Situations

When Integration Server encounters a situation that could compromise transactional integrity, it
throws an error. Such situations include the following:

A transaction includes two or more different resources that only support local transactions.

If a transaction accesses multiple resources, and more than one of the resources supports only
local transactions, the integrity of the transaction cannot be guaranteed. For example, if the
first resource commits successfully, and the second resource fails to commit, the first resource
interaction cannot be rolled back; it has been committed already. To help prevent this problem,
Integration Server detects this case when connecting to more than one resource that does not
support two-phase commits. It throws a run-time exception and the service execution fails.

Note:
Because this situation may be acceptable in some applications, the adapter user can include
an input in the startTransaction service to cause Integration Server to allow this situation.

A resource is used in both a parent transaction and a nested transaction.

This situation is ambiguous, and most likely means that a nested transaction was not closed
properly.

A parent transaction is closed before its nested transaction.

After a service request has invoked all its services, but before returning results to the caller, the
service may commit its work. This commit could fail if the resource is unavailable or rejects the
commit. This will cause the entire server request to fail and to roll back the transaction.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 145

B Built-In Transaction Management Services

146 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

B Built-In Transaction Management Services

C Creating Flows for Adapter for Enterprise

Javabeans Services

■ Overview .. 148

■ About Flow Services and Adapter for Enterprise Javabeans 148

■ Obtaining an EJB ... 148

■ Working with a Single EJB Object Instance ... 149

■ Working with Multiple EJB Object Instances .. 151

■ Working with Different Object Types ... 153

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 147

Overview

This appendix explains how to build flow services in Designer that use adapter services created
with Adapter for Enterprise Javabeans. For more information about working with flow services,
see the webMethods Service Development Help for your release.

Note:
The examples shown assume that the class files for deployed EJBs are located on Designer's
classpath. If they are not, Designer will incorrectly display the value of any object it cannot
de-serialize as “null” in the run-time results. This does not prevent the flow service fromworking
properly. However, it can cause confusion for the user. To avoid this situation, make sure that
the class files for any relevant objects (EJB or otherwise) are available to Designer.

About Flow Services and Adapter for Enterprise Javabeans

Adapter for Enterprise Javabeans enables you to configure adapter services that create or fetch
EJB instances on the application server. You can then create adapter services that execute a public
method exposed by an EJB. This model implies a logical sequence, or flow of events:

Execute the adapter service to create or fetch the EJB.

Then execute the adapter service that, in turn, invokes one of the EJB's business methods.

StandaloneAdapter for Enterprise Javabeans services have little value. Their value is only realized
when the services are combined. There are several ways to do this on webMethods Integration
Server, but the most commonway is to combine the two operations in a single flow service. Using
Designer’s flow service editor you can link or map the inputs and outputs of any individual step
in a flow service to other steps in the same flow service. This function is important for the following
reasons:

Any execution of an InvokeEJB 2.1 or InvokeEJB 3.0 service must be preceded by an execution
of a corresponding CreateEJB 2.1 or FetchEJB 3.0 service.

Any execution of an InvokeEJB 2.1 or InvokeEJB 3.0 service always requires at least one input:
the output of a prior CreateEJB 2.1 or FetchEJB 3.0 execution. That is, before you can execute
an EJB method, you must first obtain that EJB.

Note:
The CreateEJB 2.1, InvokeEJB 2.1, and CreateInvokeEJB 2.1 adapter services are used to
access the 2.1 or earlier versions of EJBs. The FetchEJB 3.0, InvokeEJB 3.0, and FetchInvokeEJB
3.0 adapter services are used to access the 3.0 EJBs. The 2.1 adapter services cannot be used
with the 3.0 adapter services and vice versa. For more information about the adapter’s
services, see “Adapter Services” on page 25.

Obtaining an EJB

To obtain an EJB object, you can use either a CreateEJB 2.1 or FetchEJB 3.0 adapter service or a
CreateInvokeEJB 2.1 or FetchInvokeEJB 3.0 adapter service. The EJB object returned can be a single
EJB object, or multiple EJB objects. Multiple EJB objects are all of the same type.

148 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

C Creating Flows for Adapter for Enterprise Javabeans Services

The following sections explain how to:

Pass a single EJB object generated by calling a configuredCreateEJB 2.1 or FetchEJB 3.0 adapter
service instance to a corresponding configured InvokeEJB 2.1 or InvokeEJB 3.0 adapter service
instance.

Use a loop to pass a single EJB object generatedwhenmultiple EJBs are returned by CreateEJB
2.1 or FetchEJB 3.0.

Use services to pass third-party or user-defined objects.

Working with a Single EJB Object Instance

To obtain an EJB object, use a CreateEJB 2.1 or FetchEJB 3.0 adapter service. Then in a flow service
in Designer you use the pipeline to pass the EJB obtained by a CreateEJB 2.1 or FetchEJB 3.0
execution to a subsequent InvokeEJB 2.1 or InvokeEJB 3.0 instance. By editing the inbound pipeline
of the corresponding InvokeEJB 2.1 or InvokeEJB 3.0 service, you can map the Results array of the
CreateEJB 2.1 or FetchEJB 3.0 instance to the EJB parameter of the corresponding InvokeEJB 2.1
or InvokeEJB 3.0 instance.

For example, a CreateEJB 2.1 or FetchEJB 3.0 adapter service, services.fetch.GetComplexTraderEJB,
creates a single EJB instance and returns it as the first element of the Results array, which Designer
places in the pipeline.

To then pass this value to the corresponding InvokeEJB 2.1 or InvokeEJB 3.0 adapter service,
services.invoke.InvokeComplexBuy, insert a link from theResults array in the pipeline to theEJBparameter
in the corresponding InvokeEJB 2.1's or InvokeEJB 3.0's input signature as shown in the figure
below.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 149

C Creating Flows for Adapter for Enterprise Javabeans Services

To insert the link, click on the input side of the Pipeline view. At run time, the link tells Integration
Server to assign the values in Results to EJB.

However, because the input is an array and the target destination parameter is a scalar, you need
to indicate which array value to assign. To do this, open the Link Indices dialog box by selecting
the link between the variables and clicking on the Pipeline view toolbar.

The Link Indices dialog box appears indicating all the parameters at each end of the selected link.
Use the Results parameter to specify which element of Results to assign. Note that the
services.fetch.GetComplexTraderEJB service will always return exactly one EJB instance, placing the
EJB instance in the very first element of the Results array. Therefore in this example, you would
enter the value of “0” into the Results parameter.

Formore information aboutmapping data in flow services, see thewebMethods ServiceDevelopment
Help for your release.

150 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

C Creating Flows for Adapter for Enterprise Javabeans Services

Working with Multiple EJB Object Instances

To build on the example in “Workingwith a Single EJB Object Instance” on page 149, suppose that
instead of returning a single EJB in the Results array, the CreateEJB 2.1 or FetchEJB 3.0 adapter
service instance returns multiple EJB instances. In this case you use the LOOP step in Designer to
make the flow service iterate over the contents of the array, and invoke one (or more) methods on
each EJB in the array.

Note:
For information about working with loops and the logic involved, see the webMethods Service
Development Help for your release.

Any given instance of a CreateEJB 2.1 adapter service will invoke a single method on the
javax.ejb.EJBHome interface. Thismethod is called to construct an instance of the actual EJB remote
class and return it to the caller. This remote EJB instance is the EJB and is where the business
methods of the EJB are found.

It is possible for a home interface method to returnmultiple remote EJB objects (“finder”methods
on entity beans, for example). The CreateEJB 2.1 adapter service accounts for this with the Results
array.

Similarly, for any given instance of a FetchEJB 3.0 adapter service, the service fetches the EJB based
on the selected JNDI Name and returns the EJB Object to the caller.

The same principle applies to instances of CreateInvokeEJB 2.1 and FetchInvokeEJB 3.0 as well.
However, it is somewhat more restrictive. CreateInvokeEJB 2.1 or FetchInvokeEJB 3.0 will
automatically loop over each EJB returned and call the same business method on each. However,
if you must be able to call more than one business method, you need to configure the necessary
CreateEJB 2.1 or FetchEJB 3.0 and the corresponding InvokeEJB 2.1 or InvokeEJB 3.0 services and
incorporate them into a flow service.

Regardless of how many EJB objects are returned by CreateEJB 2.1 or FetchEJB 3.0, each object is
of the same remote EJB class. That is, they are the same type. Therefore, any invocation of a
CreateEJB 2.1 or FetchEJB 3.0 adapter service will return one or more remote EJB objects of the
same class.

This is important to note when designing flows. Because any given CreateEJB 2.1 or FetchEJB 3.0
instance is configured to work with a single EJB class, you can only expect to call the business
methods exposed by that class. If in your flow you need to access some other EJB type, you will
need to configure a separate CreateEJB 2.1 or FetchEJB 3.0 service for that type. If you attempt to
pass an EJB object of one class into a corresponding InvokeEJB 2.1 or InvokeEJB 3.0 service
configured for an entirely different class, you will see run-time exceptions.

The following example shows how to use the LOOP step inDesigner to implement this processing.
To begin, you configure a CreateEJB 2.1 or FetchEJB 3.0 adapter service instance
(services.fetch.FindLargeAccountEJBs) that may return one or more EJBs in its Results array. You want
to execute the same InvokeEJB 2.1 or InvokeEJB 3.0 adapter service against each EJB returned.
However, you do not know how many EJBs might be returned.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 151

C Creating Flows for Adapter for Enterprise Javabeans Services

For information about configuringCreateEJB 2.1 andFetchEJB 3.0 adapter services, see “Configuring
CreateEJB 2.1 Services” on page 81 and “Configuring FetchEJB 3.0 Services” on page 88
respectively.

You must first define an Object list in the outbound pipeline immediately following
FindLargeAccountEJBs. This list can have any valid name but it cannot be nested inside any
other structure (for example, a Document). Create a link between the Results array and the new
Object list in the outbound pipeline as shown in the figure below.

Now insert a LOOP between the two adapter service instances (services.fetch.FindLargeAccountEJBs
and services.invoke:GetAccountBalance). In this example there is a single child step to be executed
within the body of the LOOP step: this is the InvokeEJB 2.1 or InvokeEJB 3.0 adapter service
instance (services.invoke.GetAccountBalance).

The loop should iterate once for each EJB found in the Beans array (the Object list defined earlier).
To do this, enter the array's name (without the leading forward slash-Designer inserts this) in the
Input array field in the Properties view.

You can see the steps for inserting a LOOP and entering the array’s name in the figure below.

Finally, complete the flow by selecting the services.invoke.GetAccountBalance service and creating a
link between the Beans parameter (Designer automatically generated this parameter for you) and
the input EJB parameter to the service as shown in the figure below.

152 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

C Creating Flows for Adapter for Enterprise Javabeans Services

Working with Different Object Types

EJB home and remote methods can take and return objects of practically any arbitrary type. The
only real restriction is that the objects must implement the java.io.Serializable interface. How you
work with these objects in your integrations depends on what it is that you need to do with the
objects.

For example, if you need to pass an object generated by one adapter service call into a subsequent
service in the same flow, you create the appropriate links in the flow service editor. Designer
supports the java.lang.Object type natively. Any object that appears in the pipeline that is not
recognized is treated as an Object. This is what happens when passing EJB objects themselves.

However, youmay, at some point in your flow, need to interact directlywith these objects. Suppose
you need to assign a value to an object during the flow's execution, but have no service available
for that purpose. Additionally, you want to create a document from such an object. How you
provide this functionality depends on what type of object you are dealing with:

Designer and Integration Server provide some degree of support for the basic Java types:
java.lang.String, java.lang.Float, float, etc. If you only need to do transformations on these
types of objects, the support typically already exists either natively within Designer or is
provided in one of the WmPublic services.

If you need to operate on a third-party, user-defined object type, you can create a utility as a
Java service or a coded service using C/C++. The utility gets or creates the object you need,
manipulates its properties, and then puts it on the pipeline.

Note:
You can create a coded service from within Designer or by using an outside Integrated
Development Environment (IDE). For more information about building coded services, see
the webMethods Service Development Help for your release.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 153

C Creating Flows for Adapter for Enterprise Javabeans Services

Creating Java Services to Use with Objects
This section provides two examples that demonstrate how to write simple Java services to get or
create the necessary objects, manipulate the properties, and then place the objects on the pipeline
within a flow.

The first example illustrates how to write a service that creates an instance of a user-defined
class and then inserts it into the pipeline where it can be passed to an adapter service instance
in a flow.

The second example shows how to extract a user-defined object from the pipeline and transform
it into a document.

The EJB and associated classes used in these examples are as follows:

The target bean is a stateless session EJB-ComplexTrader. Its home interface exposes a create
method that takes no arguments and returns an instance of a Trader.

The Trader object itself exposes two public methods: buy and sell. Each of these has the same
signature:
public TradeResult buy (StockOrder order) throws RemoteException;
public TradeResult sell (StockOrder order) throws RemoteException;

Example 1

The goal of this example is towrite a flow that executes the buymethod. Note that the buy signature
contains two user-defined classes: TradeResult and StockOrder. The first example focuses primarily
on StockOrder. In the flow, you need to create an instance of StockOrderwith the appropriate attributes
and then pass it to an InvokeEJB 2.1 or InvokeEJB 3.0 adapter service instance configured to execute
the buy method. The easiest way to do this is to create a Java coded service that is specifically
designed to accept input from the user at run time, create a StockOrderwith those inputs, and then
insert the StockOrder into the pipeline.

When creating the Java service, Designer automatically generated the public signature of the Java
service, and its lone input argument is an instance of com.wm.data.IData.This is the pipeline
referred to earlier.

Now look at the public interface of the StockOrder class:
package examples.ejb20.testbeans.stateless.ComplexTrader;
import java.io.Serializable;

/**
* This class represents a buy/sell order for a single security.
*/

public final class StockOrder implements Serializable
{
// Order duration constants...
public static final int DAY = 0; // Good for the Day
public static final int GTC = 1; // Good 'Til Cancelled

154 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

C Creating Flows for Adapter for Enterprise Javabeans Services

// Order type constants (only long positions allowed)...
public static final int MARKET = 0; // Execute at current market price
public static final int LIMIT = 1; // For buys; execute at limit price or

lower
public static final int STOP = 2; // For sells; execute at stop price or

higher
public static final int STOPLIMIT = 3; // For sells; execute at no less that

stop, no more than limit
public static final int ALLORNONE = 4; // Execute entire order at market or

none of it
public static final int FILLORKILL = 5; // Execute entire order immediately at

market or none of it

// Constructors
/**
* This constructor used for STOPLIMIT order types.
*/

public StockOrder(String symbol, int quantity, int duration, int type, double
stop, double limit);

/**
* This constructor used for LIMIT, STOP order types.
*/

public StockOrder(String symbol, int quantity, int duration, int type, double
price);

/**
* This constructor used for MARKET, ALLORNONE, FILLORKILL orders.
*/

public StockOrder(String symbol, int quantity, int duration, int type);

// "Getters"…
public String getSecurity();
public int getNumberUnits();
public int getOrderDuration();
public int getOrderType();
public double getPrice();
public double getStopPrice();
public double getLimitPrice();

}

This class is used for both “buy” and “sell” orders. Essentially, you create and initialize a StockOrder
object by calling one of its three constructors. The constructor used determines if the order is a
market order, a stop order, a limit order, or a stop-limit order (see the embedded comments for
descriptions of these terms in the public interface above).

For this example, assume that you want to execute a “buy” order, but do not want to pay more
than a certain amount per share. In this case youwould need to create the StockOrder object using
the second constructor:
public StockOrder(String symbol, int quantity, int duration, int type, double
price);

You can see how to construct the StockOrder, but where do the actual values come from? You could
simply generate them within the BuildLimitOrder service itself, but this is not very flexible. A better
approach is to define an input signature for the service that allows the caller to provide the values
that will be passed to the StockOrder constructor.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 155

C Creating Flows for Adapter for Enterprise Javabeans Services

In addition to the InVals structured document declared as the input signature of BuildLimitOrder, a
single Object definition, order, is declared in the output signature. The content of InVals consists
of four String types: symbol, quality, duration, and price. These types correspond to four of the five
arguments required by the StockOrder constructor. (The missing constructor argument, type, will
be provided within the implementation of BuildLimitOrder itself.) Note, however, that the respective
types of these parameters do not correspond in all cases (for example, the ‘price' constructor type
is a primitive double). The easiest approach is to treat all the inputs as strings and simply perform
the necessary type transformations within the service's implementation.

The following code is a complete implementation of the BuildLimitOrder service:
public static final void BuildLimitOrder (IData pipeline) throws
ServiceException {

String _symbol = null;
int _quantity = 0;
int _duration = 99;
double _price = -99.99D;

// Get access to nested 'InVals' pipeline...
IDataCursor idc0 = pipeline.getCursor();
idc0.first();
IData inVals = (IData)idc0.getValue();

// Enumerate the contents of 'InVals'...
IDataCursor idc1 = inVals.getCursor();
while (idc1.next())
{

// Process the 'symbol' input value...
String key = idc1.getKey();
if (key.equals("symbol"))

_symbol = (String)idc1.getValue();

// Process the 'quantity' input value...
else if (key.equals("quantity"))
{

String tmp = (String)idc1.getValue();
try
{

// Need to convert to int
_quantity = Integer.parseInt(tmp);

}
catch (NumberFormatException e) {}

}

// Process the 'duration' input value...
else if (key.equals("duration"))
{

// Convert string value to its enumerated counterpart
String tmp = (String)idc1.getValue();
if (tmp.equalsIgnoreCase("DAY"))

_duration = StockOrder.DAY;
else if (tmp.equalsIgnoreCase("GTC"))

_duration = StockOrder.GTC;
else

_duration = 999;
}

// Process the 'price' input value...

156 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

C Creating Flows for Adapter for Enterprise Javabeans Services

else if (key.equals("price"))
{

String tmp = (String)idc1.getValue();
try
{

// Need to convert to double
_price = Double.parseDouble(tmp);

}
catch (NumberFormatException e){}

}
}
idc1.destroy();

// Create a new LIMIT StockOrder...
StockOrder so = new StockOrder(_symbol, _quantity, _duration,

StockOrder.LIMIT, _price);

// Insert it in the outbound pipeline...
idc0.insertAfter("order", so);
idc0.destroy();

}

In the code that deals with the pipeline, note howwhen accessing elements in the input or output
signature, it refers explicitly to the configured names of these elements (for example, “quantity”,
“price”, “order”). This is one approach that can be taken. It is also possible to access items in the
pipeline without referring to them by name. For a complete explanation of how to use the
com.wm.data.IData and com.wm.data.IDataCursor classes, see the Javadocs provided in Designer and the
webMethods Service Development Help for your release.

You can see the final, completed BuildLimitOrder service in the figures below.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 157

C Creating Flows for Adapter for Enterprise Javabeans Services

When you save the BuildLimitOrder service, Designer will compile it and report any errors it finds.
When you have addressed all errors you can run the service standalone and debug it in Designer.
After the BuildLimitOrder service is in place and tested you can add it to a flow service.

The next figures showa simple flow service named LimitedBuy that combines the new coded service,
BuildLimitOrder, with the previously configuredCreateEJB 2.1 or FetchEJB 3.0 adapter service (Trader)
and a corresponding InvokeEJB 2.1 or InvokeEJB 3.0 adapter service (BuyComplexStock) instances.

158 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

C Creating Flows for Adapter for Enterprise Javabeans Services

Note that the input signature for the LimitedBuy flowmimics that of the BuildLimitOrder coded service.
This allows you to map the values provided to the flow service at run time to the input signature
of BuildLimitOrder.

Because theGetComplexTrader adapter service has no input signature, its inbound pipeline is simple.
The signature of the BuyComplexStock adapter service is more complex. To fulfill its input signature,
the output of BuildLimitOrder (the orderObject) ismapped to theOrderDetail inputObject. Themapping
of the first element of Results to EJB passes the actual EJB into the BuyComplexStock adapter service
as discussed earlier. These mappings are shown in the figure below.

Example 2

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 159

C Creating Flows for Adapter for Enterprise Javabeans Services

This example builds on “Example 1” on page 154 and shows how to convert the output of the
BuyComplexStock adapter service into a simple document. The signature of the remote EJB method
that is executed by BuyComplexStock looks like this:
public TradeResult buy (StockOrder order) throws RemoteException;

Note that this method returns an object of type TradeResult. Examine the public interface of this
class:
public final class TradeResult implements Serializable
{

public TradeResult(String symbol, int quantity, double price);

public String getStockSymbol();
public int getSharesTraded();
public double getExecutePrice();

}

Notice that the output signature of the BuyComplexStock adapter service does not mention any
TradeResult objects. Rather, it contains a document that in turn contains a String status field and
another instance of an Object list named Results. This is not the same Results Object list as was
returned by the GetComplexTrader adapter service. It just has the same name.

In this example, youwill take the contents ofResults (which is a list of opaque Objects to Designer)
and turn it into a document that contains the actual values in the underlying TradeResult object.
As with all CreateEJB 2.1 or FetchEJB 3.0 adapter services, all corresponding InvokeEJB 2.1 or
InvokeEJB 3.0 adapter services will fill their outbound Results array starting at the first element
(that is, the “zero-th” element). For this example, assume that the BuyComplexStock adapter service
always returns a single TradeResult object in its Results array.

To accomplish this task, you need to write another coded Java service. Its implementation could
be something like the following:
public static final void ResultsToDoc (IData pipeline) throws ServiceException {
// Get the expected TradeResult object from the inbound pipeline...
IDataCursor idc0 = pipeline.getCursor();
if (idc0.next("ExecutionDetail"))
{
Object obj = idc0.getValue();
try
{

// Cast it to an actual TradeResult object...
TradeResult tr = (TradeResult)obj;

// Extract the attributes of the TradeResult...
String symbol = tr.getStockSymbol();
String quantity = String.valueOf(tr.getSharesTraded());
String price = String.valueOf(tr.getExecutePrice());

// Create the outbound document object...
IData out = IDataFactory.create();
IDataCursor idc1 = out.getCursor();
idc1.first();

// Insert the extracted values into the out doc
idc1.insertAfter("StockSymbol", symbol);
idc1.insertAfter("QuantityTraded", quantity);

160 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

C Creating Flows for Adapter for Enterprise Javabeans Services

idc1.insertAfter("ExecutePrice", price);

// Relinquish the out doc cursor...
idc1.destroy();

// Insert the out doc into the pipeline...
idc0.insertAfter("TradeResultDoc", out);

}
catch (ClassCastException e) {}

}

// Relinquish the pipeline cursor...
idc0.destroy();
}

This coded service, ResultsToDoc, manipulates the content of the pipeline, performing the following
tasks:

Retrieves an object labeled ExecutionDetail from the pipeline

Casts the ExecutionDetail object to the user-defined TradeResult type

Extracts the values of the TradeResult object into three Strings: StockSymbol,QuantityTraded, and
ExecutePrice

Creates a new IData document called TradeResultDoc

Inserts the three String values (StockSymbol, QuantityTraded, and ExecutePrice) into the
TradeResultDoc document

Adds the TradeResultDoc to the pipeline

In order for this service to work properly, you must declare its input (ExecutionDetail) and output
(TradeResultDoc) signatures as shown below.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 161

C Creating Flows for Adapter for Enterprise Javabeans Services

With the ResultsToDoc coded service complete, you can now add it to the LimitedBuy flow service, as
shown in the figure below:

The LimitedBuy flow service is now complete. When you execute it with valid input values, you
should see those values echoed in the TradeResultDoc document created by the final flow step.

162 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

C Creating Flows for Adapter for Enterprise Javabeans Services

D Application Server Configuration Notes

■ Overview .. 164

■ WebLogic Server .. 164

■ WebSphere Server ... 167

■ JBoss Server .. 170

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 163

Overview

This appendix describes specific settings for required properties, and other information for the
supported application servers that can be usedwith webMethods Adapter for EJB. For a complete
list of supported application servers and versions, see “Installing, Upgrading, andUninstalling” on
page 45.

The information in this appendix supplements the information in “Adapter Connections” on
page 17 and “Adapter Services” on page 25.

WebLogic Server

This section describes additional deployment and configuration information of BEA's WebLogic
J2EE application serverwhen usedwithAdapter for Enterprise Javabeans. Specifically, transaction
support, security, and encryption are discussed. For information about the supported WebLogic
Server versions, Java Runtime, and required class files, see “Installing, Upgrading, and
Uninstalling” on page 45.

JAAS Authentication
When using multiple instances of WebLogic application server, JAAS Authentication should be
used.

To configure JAAS Authentication

1. Open the is_jaas.cnf file located in Integration Server_directory\instances\instance_name\config
directory and add the following content:

WmEJBAdapter
{
weblogic.security.auth.login.UsernamePasswordLoginModule required debug=false;
};

2. Set the watt.ejbadapter.weblogic property to true.

Connection Properties
The content of the Java properties file required to create adapter connections is similar for all
supportedWebLogic versions. At a minimum, Adapter for Enterprise Javabeans requires that the
standard java.naming.factory.initial and java.naming.provider.url properties be set as specified
in “Required Properties and Values” on page 22.

Transaction Support
Adapter for Enterprise Javabeans is designed to interactwith Integration Server's built-in transaction
manager. For more information about connections and the associated transaction types, see
“Adapter Connections” on page 17.

164 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

D Application Server Configuration Notes

No Transactions

For all supported versions of WebLogic, full support is provided for connections that will not be
transacted.

Local Transactions

For all supported versions of WebLogic, full support is provided for local transactions.

XA Transactions

XA support for WebLogic 10.3 is subject to the limitations of BEA's XAResource implementation
as given below.

The XAResource that the adapter obtains fromWebLogic and passes on to the built-in transaction
manager represents an interface to the WebLogic server's transaction manager. In a distributed
context, the WebLogic transaction manager would be responsible for coordinating all resources
local to that server, yet still subordinate to Integration Server transaction manager. Integration
Server transaction manager in effect, is the master transaction manager.

WebLogic's XAResource is designed to work in this environment provided that it is the only
WebLogic XAResource involved in the entire distributed transaction. For example, you can use
two or more XA-connected adapter services in a distributed transaction as long as those services
are connected to the same WebLogic server. For this same distributed transaction, other,
non-WebLogic resources may be included.

However, you cannot include an XAResource from two or more different WebLogic servers. For
instance, two XA-connected adapter services that are connected to different WebLogic servers
cannot be involved in the same distributed transaction.

For more information on WebLogic Server 10.3, see the Oracle web site.

Note:
Due to conflicts between the required jar files for Adapter for Enterprise Javabeans and the
WmTomcat libraries, theWmTomcat packagemay notwork as intended.Disable theWmTomcat
package when you are using Adapter for Enterprise Javabeans with any of the supported
application servers.

Security
This section provides a general description of those features of Adapter for Enterprise Javabeans
that may impact security, in addition to some common security issues that may arise when
integrating with WebLogic. This information should not be considered comprehensive.

JNDI Authentication

JNDI provides the following security-related properties that, if provided by the client, are passed
into the WebLogic naming service implementation:

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 165

D Application Server Configuration Notes

java.naming.security.protocol

java.naming.security.authentication

java.naming.security.principal

java.naming.security.credentials

For all supported versions of WebLogic:

java.naming.security.protocol and java.naming.security.authentication are not used and may
be ignored.

java.naming.security.principal and java.naming.security.credentialsmay be used if a username
and password are required to access the JNDI server. If they are not provided by the client,
WebLogic uses a default principal value (“guest”) and a default credentials value (“guest”).

If the default values are sufficient to gain access to the deployed EJBs, you do not need to specify
the principal and credentials properties. However, if the WebLogic administrator has defined a
security policy that requires a specific username and password for accessing the server's EJBs, you
must supply those values to Adapter for Enterprise Javabeans when configuring connections
against that server. For information about how to specify the properties, see “Specifying JNDI
Credentials” on page 23.

EJB Access

The EJB standard accommodates the definition of security roles in the EJB container that may be
implemented by the application server. These roles,which are determined by the security credentials
(if any) given to JNDI during construction of the initial context, can be used to determine which
EJBs a client (that is, Adapter for Enterprise Javabeans) can access andwhichmethods on a specific
EJB a client can invoke. Any unauthorized attempts to access a restricted EJBwill result in runtime
exceptions being reported back to the adapter and the adapter runtime. All supported WebLogic
versions can be configured to utilize these security features.

Encryption
Integration Server has built-in support for validating server certificates generated by the most
widely-used certificate authorities. Adapter for Enterprise Javabeans can take full advantage of
this capability for the purpose of establishing SSL connections to those WebLogic application
installations that require it.

All supported versions of WebLogic can be configured to use SSL between the server and an EJB
client. Additionally, SSL ports can be configured for either the HTTPS or T3S protocols. An EJB
client may choose which of these protocols to connect with. This choice is explicitly set in the
mandatory java.naming.provider.url property which must be present in the JNDI property file.

If using HTTPS, the value of this property has the form:

java.naming.provider.url = https://WebLogic_server:port_number

whereWebLogic_server and port_number are site-defined values.

166 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

D Application Server Configuration Notes

If using T3S, the value of this property has the form:

java.naming.provider.url = t3s://WebLogic_server:port_number

Though the adapter supports the use of either protocol, we recommend using the proprietary
T3/T3S for performance reasons. T3 is highly optimized and multiplexes all of a client's network
traffic with WebLogic over a single socket connection. This is important when using SSL because
it guarantees that both JNDI and RMI packets will be encrypted.

Configuring the WebLogic server for SSL is fairly straightforward on all supported versions,
though there are some minor variations in the steps taken. For configuration information, see the
Oracle web site.

Note:
All versions of WebLogic support services of EJB 2.1 and earlier standards. Services of the EJB
3.0 and 3.1 standards are supported only by WebLogic 10.3 and 12c.

WebSphere Server

This section describes additional deployment and configuration information of IBM'sWebSphere
J2EE application server when used with Adapter for Enterprise Javabeans. For information about
the supported WebSphere Server versions, Java Runtime, and required class files, see “Installing,
Upgrading, and Uninstalling” on page 45.

Connection Properties
The content of the Java properties file required to create adapter connections is similar for all
supported WebSphere versions. At a minimum, Adapter for Enterprise Javabeans requires that
the standard java.naming.factory.initial and java.naming.provider.url properties be set as specified
in “Required Properties and Values” on page 22.

Depending upon the security configuration of the JNDI server, additional properties (for example,
java.naming.security.authentication) may also be defined in this file. In addition to these standard
JNDI property definitions, WebSphere itself recognizes the following properties that are relevant
to client applications:

com.ibm.CORBA.ConfigURL = file:path-to-sas.client.props

See “JNDI Authentication” on page 168 for a discussion of how this property affects JNDI
authentication.

com.ibm.websphere.naming.jndicache.cacheobject = none

By default, WebSphere caches connections to the JNDI server. However, the application server
will attempt to re-use these connections even after connectivity between the client and
WebSphere has been disrupted. In this case, youmust restart the client JVM (that is, Integration
Server). To ensure that WebSphere does not attempt to re-use potentially stale connections
when interacting with JNDI, we recommend that you specify the cacheobject property in the
JNDI properties file that is used by your adapter connections.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 167

D Application Server Configuration Notes

java.util.logging.manager = com.ibm.ws.bootstrap.WsLogManager and
java.util.logging.configureByServer = true

For WebSphere Application Server (WAS) 6.0 clients, these two properties can be specified in
the JNDI properties file that is used by your adapter connections. When specified, these
properties eliminate logging of various javaAccessorNotSet and jndiGetObjInstNoop exceptions
to the Integration Server console.

Transaction Support
Adapter for Enterprise Javabeans is designed to interactwith Integration Server's built-in transaction
manager. For more information about connections and the associated transaction types, see
“Adapter Connections” on page 17.

For all supported versions of WebSphere, full support is provided for connections that will not
be transacted.

For all supported versions of WebSphere, full support is provided for local transactions.

WebSphere does not expose its javax.transaction.xa.XAResource implementation to client
applications. Therefore, XA transactions are not supported for WebSphere.

Note:
Due to conflicts between the required jar files for Adapter for Enterprise Javabeans and the
WmTomcat libraries, theWmTomcat packagemay notwork as intended.Disable theWmTomcat
package when you are using Adapter for Enterprise Javabeans with any of the supported
application servers.

Security
The following notes are a general description of those features ofAdapter for Enterprise Javabeans
that may impact security in addition to some common security issues that may arise when
integrating with WebSphere. They should not in any way be considered comprehensive. For
additional information, see the IBM documentation.

JNDI Authentication

JNDI provides the following security-related properties that, if provided by the client, are passed
into the WebSphere naming service implementation:

java.naming.security.protocol

java.naming.security.authentication

java.naming.security.principal

java.naming.security.credentials

Though we have performed no testing in this area, it appears that WebSphere does not recognize
these four properties. Instead, it uses the property settings in its sas.client.props file. This file

168 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

D Application Server Configuration Notes

defines IBM-specific properties that appear tomirror the functionality of the java.naming.security.*
properties. The file contains embedded comments for each property.

To ensure Adapter for Enterprise Javabeans uses the sas.client.props file for JNDI-specific
credentials

1. Copy the sas.client.props to the Integration Server disk. Ensure that the target location is
available to Integration Server's JVM.

This file is located on the WebSphere installation disk in theWAS-Install-Root-Dir\properties
directory.

2. An Adapter for Enterprise Javabeans connection is then configured to use this file by setting
the following property in the connection properties file:

com.ibm.CORBA.ConfigURL = file:path-to-sas.client.props

where path-to-sas.client.props is the full path to the sas.client.props file on the Integration Server
disk.

EJB Access

The EJB standard accommodates the definition of security roles in the EJB container that may be
implemented by the application server. These roles,which are determined by the security credentials
(if any) specified in the sas.client.props file, ultimately can be used to determine which EJBs a
client (that is, Adapter for Enterprise Javabeans) can access and even which methods on a specific
EJB a client can invoke. Any unauthorized attempts to access a restricted EJBwill result in runtime
exceptions being reported back to the adapter and the adapter runtime. All supportedWebSphere
versions can be configured to utilize these security features.

Encryption
Integration Server has built-in support for validating server certificates generated by the most
widely-used certificate authorities. Adapter for Enterprise Javabeans can take full advantage of
this capability for the purpose of establishing SSL connections to all supported WebSphere
application installations that require it.

The following notesmay be helpful for enabling SSL toworkwith a thin EJB client. The information
pertains to WAS 6.0, though the issues and setup should be similar for WAS 5.x.

Server Setup

WAS uses two protocols for client-server communication: CSIv2 and SAS:

CSI is used for v5.0 and higher, and provides support for SSL.

SAS is generally used for v4.0 and earlier, and does not support SSL.

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 169

D Application Server Configuration Notes

There are five port numbers related to these two protocols; however, this does not matter to
the client. You use the same URL (and the same port number) regardless of whether SSL is
involved.

The one port that matters is called "CSI inbound transport" on the server. Set this port to "SSL
supported" or "SSL required".

WebSphere installs with a default SSL “repertoire” already set up. The repertoire basically
contains the details about the SSL configuration: where the keystore files are located, cipher
suites in effect, keystore password. InWebSphere's administrative console you need to associate
the CSIv2 protocol with this repertoire.

To use SSL, you must enable "global security" in WebSphere's administrative console. (In our
testing we found that it was necessary to enable this feature.) The implication of this is that
you have to now assign login credentials to access the server from anywhere, including its
administrative console.

You can configureWAS to defer to an external authenticationmechanism such as that imposed
by the local operating system. Depending on your operating system, you may need to assign
specific privileges to the process in which WebSphere runs in order to do this:

For Unix, WebSphere needs to run with root access.

ForWindows, the user account fromwhichWebSphere startsmust be in theAdministrators
group and must have the "Act as part of the operating system" privilege enabled.

Client Setup

WebSphere's default SSL repertoire uses a self-signed certificate, so you need to copy the
DummyServer*.jks files to the client's filesystem.

Copy theWAS-Install-Root-Dir\properties\sas.client.props file and edit it according to the
embedded comments (this includes pointing to the two .jks files)

Add the com.ibm.CORBA.ConfigURL property to your WebSphere JNDI properties file. Set
its value to file:path-to-sas.client.props

After setting up the server and the client you will be using SSL for all RMI traffic between client
and server. It is not clear from IBM's documentation whether JNDI traffic is likewise encrypted.

Note:
All versions of WebSphere support services of EJB 2.1 and earlier standards. Services of the EJB
3.0 and 3.1 standards are supported only by WebSphere 8.5.

JBoss Server

This section describes the deployment and configuration of webMethods Adapter for Enterprise
JavaBeans for use with JBoss J2EE application server. For information about the supported JBoss
Server versions, Java Runtime, and required class files, see “Installing, Upgrading, and
Uninstalling” on page 45.

170 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

D Application Server Configuration Notes

Connection Properties
The content of the Java properties file required to create adapter connections is consistent for all
supported JBoss versions. At a minimum, Adapter for Enterprise Javabeans requires that the
standard java.naming.factory.initial and java.naming.provider.url properties be set, as well as the
java.naming.factory.url.pkgs. Values for these properties are as specified in “Required Properties
and Values” on page 22.

Transaction Support
Adapter for Enterprise Javabeans is designed to interactwith Integration Server's built-in transaction
manager. For more information about connections and the associated transaction types, see
“Adapter Connections” on page 17.

For all supported versions of JBoss, full support is provided for connections that will not be
transacted.

For all supported versions of JBoss, full support is provided for local transactions.

JBoss does not expose any XA data source to clients. Therefore, XA transactions are not supported
for JBoss.

Note:
Due to conflicts between the required jar files for Adapter for Enterprise Javabeans and the
WmTomcat libraries, theWmTomcat packagemay notwork as intended.Disable theWmTomcat
package when you are using Adapter for Enterprise Javabeans with any of the supported
application servers.

Security
The following notes are a general description of those features ofAdapter for Enterprise Javabeans
that may impact security in addition to some common security issues that may arise when
integrating with JBoss. They should not in any way be considered comprehensive.

JNDI Authentication

JNDI provides the following security-related properties that, if provided by the client, are passed
into the JBoss naming service implementation:

java.naming.security.protocol

java.naming.security.authentication

java.naming.security.principal

java.naming.security.credentials

webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3 171

D Application Server Configuration Notes

JBoss will recognize all of the above except java.naming.security.authentication, if provided. The
default JBoss installation requires none of the properties. Theywould only be needed if your JBoss
administrator has configured the server to expect them.

If security credentials are required, these valuesmay be specified as discussed in “Specifying JNDI
Credentials” on page 23.

EJB Access

The EJB standard accommodates the definition of security roles in the EJB container that may be
implemented by the application server. These roles,which are determined by the security credentials
(if any) given to JNDI during construction of the initial context, can be used to determine which
EJBs a client (that is, Adapter for Enterprise Javabeans) can access andwhichmethods on a specific
EJB a client can invoke. Any unauthorized attempts to access a restricted EJBwill result in runtime
exceptions being reported back to the adapter and the adapter runtime. All supported JBoss
versions can be configured to utilize these security features.

Encryption
Integration Server has built-in support for validating server certificates generated by the most
widely-used certificate authorities. Adapter for Enterprise Javabeans can take full advantage of
this capability for the purpose of establishing SSL connections to those JBoss application servers
that support it.

JBoss supports JNDI over SSL. For more information on JBoss support for JNDI over SSL, see the
JBoss documentation.

172 webMethods Adapter for Enterprise JavaBeans Installation and User’s Guide 6.5 SP3

D Application Server Configuration Notes

	Table of Contents
	About this Guide
	Document Conventions
	Online Information and Support
	Data Protection

	1 Overview of webMethods Adapter for Enterprise JavaBeans
	About the Adapter
	Architecture and Components
	Adapter Package Management
	Adapter Connections
	Adapter Services
	Using Version Control Systems to Manage Adapter Elements
	Optimize Infrastructure Data Collector Support for the Adapter
	Viewing the Adapter's Update Level
	Controlling Pagination

	2 Installing, Upgrading, and Uninstalling
	Overview
	Requirements
	The Integration Server Home Directory
	Installing Adapter for Enterprise Javabeans 6.5 SP3
	Configure Integration Server to Work with the Application Server
	Adapter for Enterprise Javabeans Support for Multiple Application Servers
	Upgrading to Adapter for Enterprise Javabeans 6.5 SP3
	Uninstalling Adapter for Enterprise Javabeans 6.5 SP3

	3 Adapter Package Management
	Overview
	Managing the Adapter Package
	Controlling Group Access
	Using Adapter for Enterprise Javabeans in a Clustered Environment

	4 Adapter Connections
	Overview
	Before Configuring or Managing Adapter Connections
	Configuring Adapter Connections
	Dynamically Changing a Service's Connection at Runtime
	Viewing Adapter Connection Parameters from Integration Server Administrator
	Viewing Adapter Connection Parameters from Designer
	Editing Adapter Connections
	Copying Adapter Connections
	Deleting Adapter Connections
	Enabling Adapter Connections
	Disabling Adapter Connections

	5 Adapter Services
	Overview
	Before Configuring or Managing Adapter Services
	Configuring CreateEJB 2.1 Services
	Configuring InvokeEJB 2.1 Services
	Configuring CreateInvokeEJB 2.1 Services
	Configuring FetchEJB 3.0 Services
	Configuring InvokeEJB 3.0 Services
	Configuring FetchInvokeEJB 3.0 Services
	Removing EJBs
	Testing Adapter Services
	Viewing Adapter Services
	Editing Adapter Services
	Deleting Adapter Services
	Validating Adapter Service Values
	Reloading Adapter Values

	6 Invoking webMethods Services From an EJB
	Overview
	Running the Sample EJB
	Basic Flow of Events

	7 Predefined Health Indicator
	Predefined Health Indicator

	8 Administrator APIs
	Administrator APIs

	9 Configuration Variables Templates for Adapter Assets in Microservices Runtime
	Configuration Variables Templates for Adapter Assets in Microservices Runtime

	10 Adapter Logging and Exception Handling
	Overview
	Adapter Logging Levels
	Adapter Message Logging
	Adapter Exception Handling
	Adapter for Enterprise Javabeans Error Messages

	A Scenarios
	Overview
	Running a Single Method on a Single Bean
	Running Multiple Independent Methods on a Single Bean
	Running Multiple Dependent Methods on a Single Bean
	Running a Single Method on Multiple Beans of the Same Type
	Running Multiple Methods on Multiple Beans
	Running a Single Method with Complex Input on a Single Bean

	B Built-In Transaction Management Services
	Transaction Management Overview
	Built-In Transaction Management Services
	Changing Integration Server's Transaction Timeout Interval
	Transaction Error Situations

	C Creating Flows for Adapter for Enterprise Javabeans Services
	Overview
	About Flow Services and Adapter for Enterprise Javabeans
	Obtaining an EJB
	Working with a Single EJB Object Instance
	Working with Multiple EJB Object Instances
	Working with Different Object Types

	D Application Server Configuration Notes
	Overview
	WebLogic Server
	WebSphere Server
	JBoss Server

