
STFATE (SHORT-TERM FATE OF DREDGED MATERIAL DISPOSAL IN OPEN WATER MODELS)

OPEN WATER DISPOSAL MODELS FOR PLUME DISPERSION AND INITIAL DEPOSITION FROM DUMP SCOWS AND HOPPER DREDGES

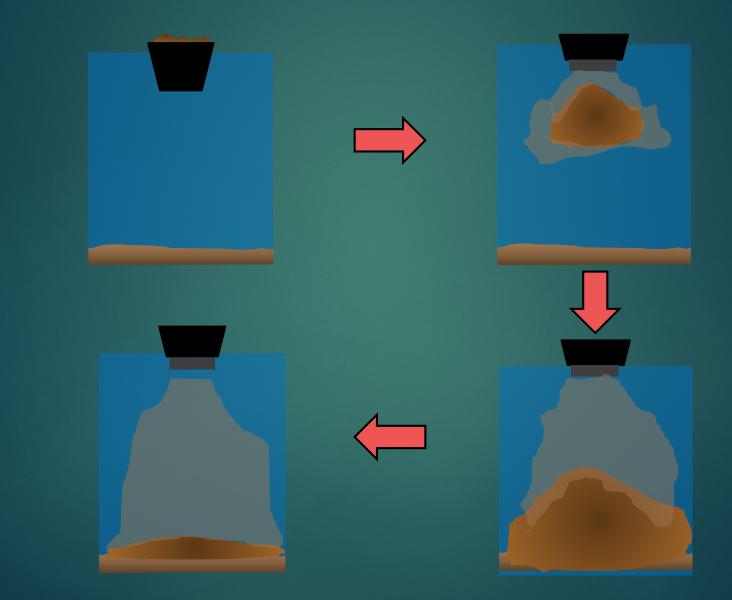
(DISCRETE, NON-CONTINUOUS DISCHARGES)

Dr. Paul R. Schroeder Environmental Laboratory (601) 634-3709

Dr. Donald F. Hayes Environmental Laboratory (601) 634-7269

MODELS FOR DREDGED MATER<mark>IAL</mark> DISPOSAL IN OPEN WATER

STFATE


CDFATE

- DIFID DISPOSAL FROM AN INSTANTANEOUS DISCHARGE
- DIFID DISPOSAL FROM AN INSTANTANEOUS DISCHARGE
- DIFCD DISPOSAL FROM A COUNTINUOUS DISCHARGE
- ORIGINAL MODELS DEVELOPED BY EPA (KOH AND CHANG 1973)
- MODIFIED AND REFINED BY WES (BRANDSMA AND DIVOKY 1976 AND JOHNSON 1990)
- VERIFIED BY DATA AT SEVERAL SITES (BOKUMIEWICZ 1078 AND JOHNSON 1978)

PURPOSE

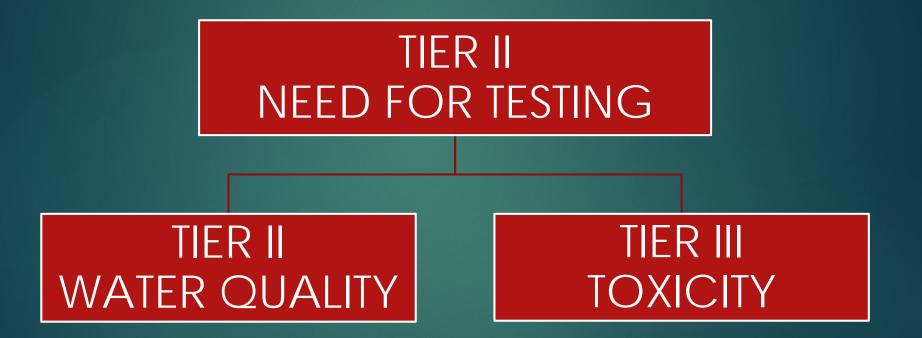
- Simulation of dredged material descent, collapse, and transport by advection and dispersion
- Prediction of water quality in water column considering the effects of initial mixing
- Comparison of contaminant concentration in water column with water quality standard at edge of disposal site
- Prediction of mixing zone required for open water disposal of dredged material
- Prediction of initial deposition of dredged material


DISPOSAL SEQUENCE

PHASES MODELED

- Convective descent controlled by gravity and momentum
- Dynamic collapse bottom encounter, spreading dominates
- Passive transport dispersion currents and turbulence dominate

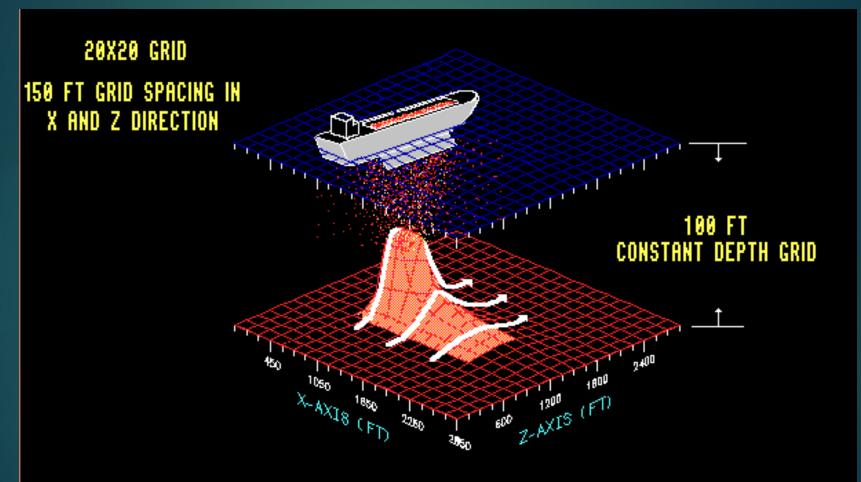
EXAMPLE PLUME GENERATION AND TRANSPORT


APPLICATIONS

Regulatory evaluation under Section 103 of the Marine Protection Research and Sanctuary Act and Section 404(b)(1) of the Clean Water Act

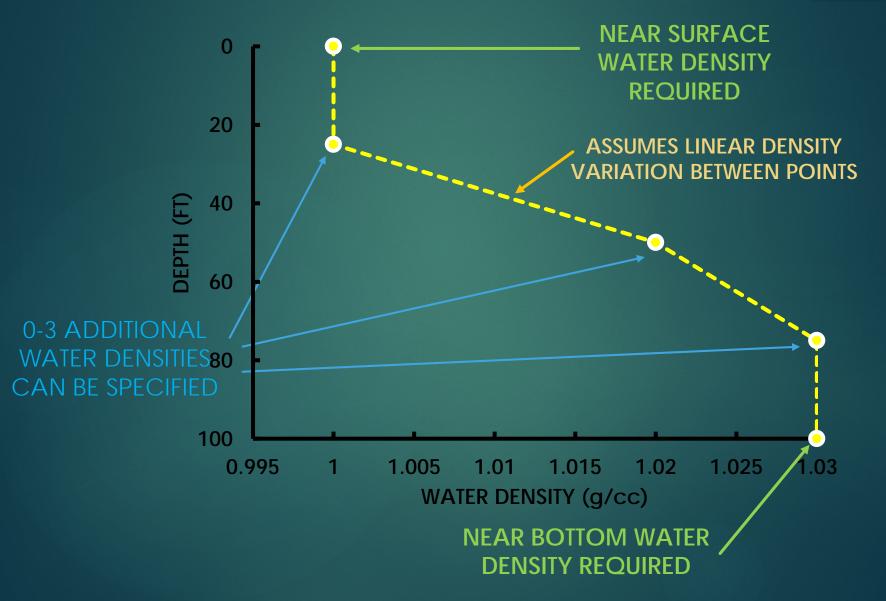
Evaluation of sediment mound development

Plume generation and transport evaluations


REGULATORY EVALUATION USES TIERED APPROACH

INPUT REQUIREMENTS

DISPOSAL SITE DESCRIPTION ► VELOCITIES AT DISPOSAL SITE ► INPUT/OUTPUT/EXECUTION CONTROLS DREDGED MATERIAL DESCRIPTION DISPOSAL OPERATION ► MODEL COEFFICIENTS


DISPOSAL SITE DATA

BOTTOM SLOPE = 0

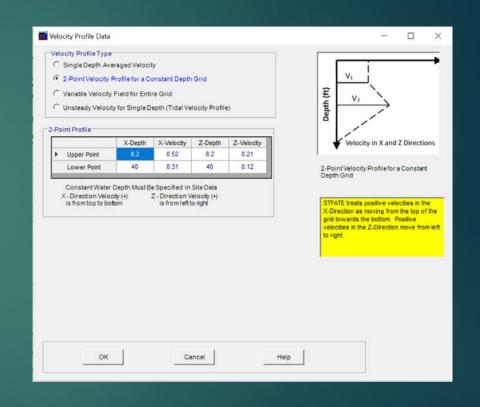
BOTTOM ROUGHNESS .01 FT

WATER DENSITY PROFILE

DISPOSAL SITE WATER VELOCITY OPTIONS

- SINGLE DEPTH-AVERAGED VELOCITY
 - Uniform velocity profile
 - Logarithmic velocity profile
- 2-POINT VELOCITY PROFILE (Constant Depth Grid Only)
- VARIABLE VELOCITY FIELD FOR ENTIRE GRID
- UNSTEADY VELOCITY FOR SINGLE DEPTH (Tidal Velocity Profile)

DEPTH AVERAGED VELOCITIES (SINGLE VALUE)


UNIFORM
 VELOCITY
 PROFILE

LOGARITHMIC
 VELOCITY
 PROFILE

🗾 Velocity Profile Data	- 🗆 X
Velocity Profile Type Single Depth Averaged Velocity C 2-Point Velocity Profile for a Constant Depth Grid Variable Velocity Field for Entire Grid Unsteady Velocity for Single Depth (Tidal Velocity Profile) Single Depth Velocity 0.0 X-Direction Velocity (fps)	(L)
0.0 Z-Direction Velocity (fps) Image: Use a Logarithmic Velocity Profile? 0.0 Depth (ft) of Velocity	Single Point Velocity STFATE treats positive velocities in the X-Direction as moving from the top of the grid towards the bottom. Positive velocities in the Z-Direction move from left to right.
OK Cancel	Help

2-PT VELOCITY PROFILES

- User Enters X and Z Velocities at 2 Depths
- STFATE Extrapolates Velocity with Depth as:
 - Constant velocity between water surface and shallowest depth
 - Linear variation between shallowest and deepest depth
 - Linear variation between deepest depth and velocity = 0 at bottom
- Velocities Assumed Constant Throughout Simulation

VARIABLE VELOCITY PROFILE

- User enters x and z velocity vectors for each cell
- Allows detailed flow field
- Typically derived from hydrodynamic model output
- Velocity assumed constant throughout simulation

UNSTEADY VELOCITY (SINGLE POINT, TIDAL VELOCITY)

- CONSTANT VELOCITY WITH DEPTH
- MAGNITUDE AND DIRECTION CHANGE OVER A FIXED PERIOD
- TIME PERIOD REPEATS DURING SIMULATION
- ► TYPICAL OF TIDAL CYCLES
- COULD BE USED FOR OTHER SIMULATIONS

Velocity Profile Type C Single Depth Averaged V C 2-Point Velocity Profile for C Variable Velocity Field for O Unsteady Velocity for Sin	or a Constant Depth Grid	file)		Time Time
Unsteady Velocity Profile				
0.0		X-Velocity		
Simulation Duration (Hrs)	Point 1 (t=.0 Hrs)	0	0	
0.00	Point 2 (t=.5 Hrs)	0	0	Unsteady Velocity for Single Depth (Tid Velocity Profile)
Depth Where Velocity	Point 3 (t=1.0 Hrs)	0	0	
Profile is Applied (Ft)	Point 4 (t=1.5 Hrs)	0	0	STFATE treats positive velocities in the
	Point 5 (t=2.0 Hrs)	0	0	X-Direction as moving from the top of th
0.00	Point 6 (t=2.5 Hrs)	0	0	grid towards the bottom. Positive velocities in the Z-Direction move from le
Start Time Within Velocity Profile (Hrs)	Point 7 (t=3.0 Hrs)	0	0	to right.
0.0	Point 8 (t=3.5 Hrs)	0	0	
Average X-Velocity	Point 9 (t=4.0 Hrs)	0	0	
(Ft/Sec)	Point 10 (t=4.5 Hrs)	0	0	Unsteady Velocity Information
	Point 11 (t=5.0 Hrs)	0	0	
0.0	Point 12 (t=5.5 Hrs)	0	0	
Average Z-Velocity (Ft/Sec)	Point 13 (t=6.0 Hrs)	0	0 -	
	•			

INPUT, EXECUTION, AND OUTPUT CONTROLS

- Phases To Be Modeled
- Level of Evaluation (Tier)
- Disposal Site/Mixing Zone Location
- Contaminant Description, Concentrations, and Criteria
- Depths Where Output Desired
- Duration of Simulation
- Size of Long-Term Time Step for Diffusion
- Selection of Output Types

DREDGED MATERIAL DESCRIPTION

- ► NUMBER OF LAYERS (MAX 6) AND VOLUMES
- ► X & Z VELOCITY VECTORS OF BARGE/HOPPER
- NUMBER OF SOLID FRACTIONS (Max 4)
 - e.g. Clumps, Sand, Silt, Clay
- PROPERTIES OF SOLID FRACTIONS
 - Specific Gravity
 - Volumetric Concentration
 - Fall Velocity

- Void Ratio
- Critical Shear Stress
- Cohesiveness
- DREDGING SITE WATER DENSITY

DREDGED MATERIAL DESCRIPTION

Fraction Number	Description	Entire Load	Layer Fractions Total	Bottom Layer	Layer 2	Layer 3	Layer 4	Layer 5	Top Layer	Specific Gravity	Fall Velocity (ft/sec)	Deposition Void Ratio	Critical Shear Stress (lb/ft^2)	Cohesive?	Stripped During Descent	
1	Silt	0.010								2.65	0.01	4.5	0.0085	Г		
2	Clay	0.031								2.65	0.002	7.5	0.0038		2	
3	SAND	0.002								2.7	0.1	0.6	0.025	Г	•	
4	SAND	0.001								2.7	0.1	0.6	0.025		2	
	Water	0.956														
	Total	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000							
	Sediment Volume (cy)	13500														
	Moisture Content, %	0.0														
	X Barge Velocity (fps)	0.00														
	Z Barge Velocity (fps)	0.00														
	 Sediment Laye 	rs (Barge 1	-6; Hopper- (only 1 layer	allowed)					Example S	ettling Prop	perties				

BARGE PARAMETERS AND DISPOSAL OPERATIONS DATA

BARGE PARAMETERS:

DEPRESSION LENGTH

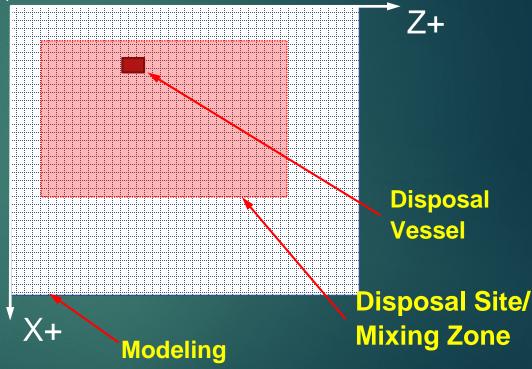
- LENGTH
- WIDTH
- PREDISPOSAL (LOADED) DRAFT
- POST-DISPOSAL (UNLOADED) DRAFT

epression

DISPOSAL OPERATIONS:

- DREDGED MATERIAL VOLUME
- TIME TO EMPTY
- DISCHARGE CONDITIONS
 - X-VELOCITY VECTOR
 - Z-VELOCITY VECTOR

SITE PARAMETERS:


- SIZE OF ANY DEPRESSIONS
 - LENGTH
 - WIDTH
 - DEPTH

GRID SCHEMATIC

REQUIRED:

- DISPOSAL SITE/MIXING
 ZONE LOCATION
 - X,Z OF UPPER LEFT CORNER
 - X,Z OF LOWER RIGHT CORNER
- DISPOSAL LOCATION
 - X,Z OF VESSEL CENTER

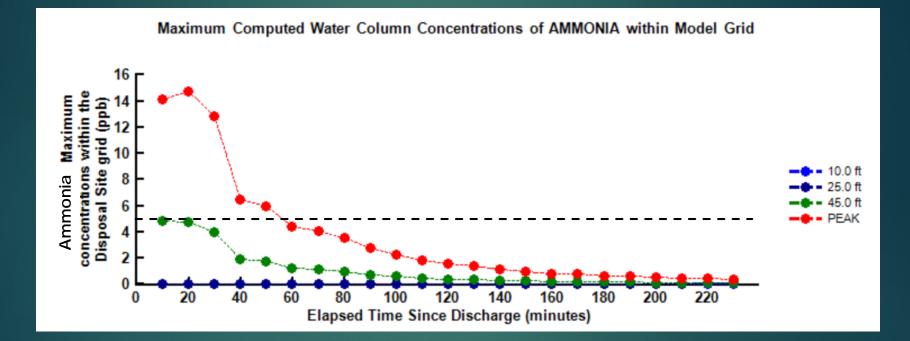
0, 0

Domain Grid

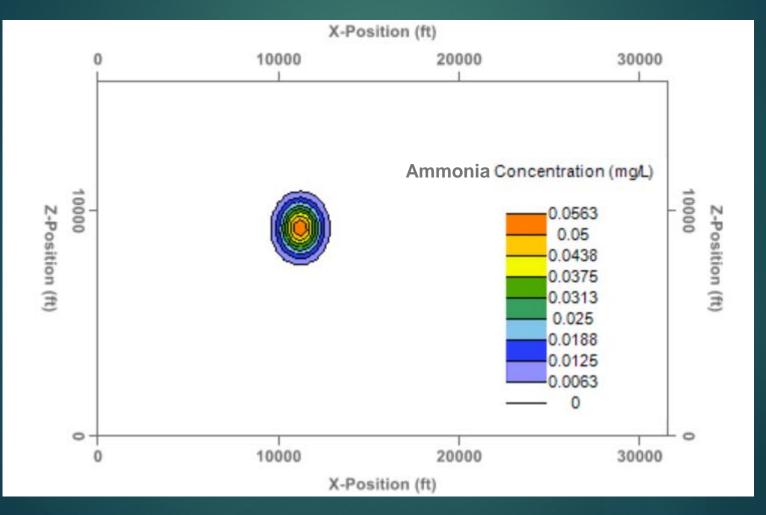
MODEL COEFFICIENTS WITH DEFAULTS

 DESCRIPTION	KEYWORD	DEFAULT VALUE	CURRENT VALUE	•	
Settling Coefficient	BETA	0.0000	0.0000		
Apparent Mass Coefficient	СМ	1.0000	1.0000		
Drag Coefficient For a Sphere	CD	0.5000	0.5000		
Form Drag For Collapsing Cloud	CDRAG	1.0000	1.0000		
Skin Friction For Collapsing Cloud	CFRIC	0.0100	0.0100		
Drag For an Ellipsoidal Wedge	CD3	0.1000	0.1000		
Drag For a Plate	CD4	1.0000	1.0000		
Friction Between Cloud and Bottom	FRICTN	0.0100	0.0100		
4/3 Law Horiz. Diff. Dissipation Factor	ALAMDA	0.0010	0.0010		
Unstratified Water Vert. Diff. Coefficient	AKY0	0.0250	0.0250		
Ratio-Cloud/Ambient Density Gradients	GAMA	0.2500	0.2500	-	

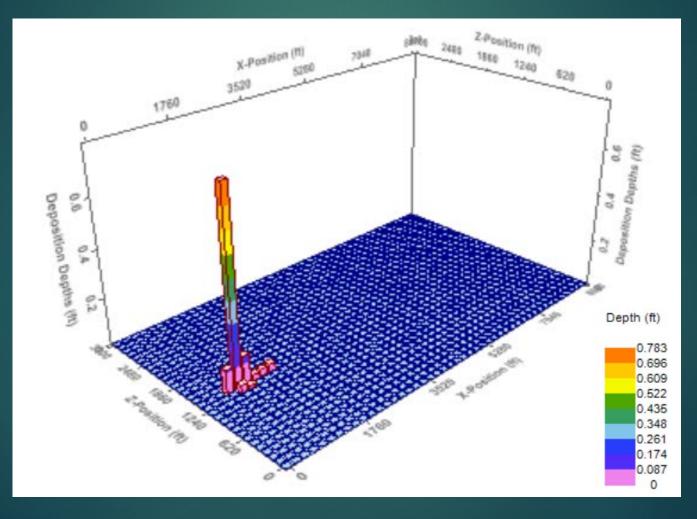
OUTPUT DATA


Time History of Descent and Collapse Phase

Plume Concentrations by Time/Depth


Accumulation of Material on Bottom

Maximum Concentrations


MAXIMUM WATER COLUMN CONCENTRATIONS

WATER COLUMN CONCENTRATIONS

DEPOSITION DEPTH WITHIN MODEL GRID

