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Introduction

As populations in many developed countries age and the burden of chronic
disease increases, there remains a need to establish effective preventative
measures. Fruit and vegetables are a natural source of vitamins and minerals
which can contribute to good health.

This volume reviews the associated health benefits of key horticultural
crops, including apples, broccoli and cranberries. The book is split into five
parts: Part 1 chapters examine phytochemical compounds in fruits and
vegetables, specifically focusing on polyphenols. Chapters in Part 2 focus on
glucosinolates and organosulfur compounds in fruits and vegetables. Part
3 chapters discuss the role of phytochemicals in preventing diseases such
as cancer and cardiovascular disease. Chapters in Part 4 highlight ways to
analyse and optimise phytochemical compounds in fruits and vegetables.
Part 5 chapters conclude the book by providing three case studies that focus
specifically on improving the nutraceutical properties of cranberries, apples,
broccoli and other brassicas.

Part1 Phytochemical compounds in fruits and
vegetables: polyphenols

The book opens with a chapter that examines the advances in understanding
the nutraceutical properties of antioxidants in fruits and vegetables. Chapter 1
begins by highlighting the most common antioxidants in fruits and vegetables
such as polyphenols, carotenoids, vitamins, selenium and zinc. The chapter then
moves on to review the mechanisms in which these antioxidants function within
the human body. A section on how these antioxidants can play a crucial role in
the prevention of chronic diseases such as cancer and cardiovascular disease
is also included. This is then followed by an analysis of their application as
natural pigments, preservatives, edible films and coatings, natural emulsifiers,
stabilisers and nutraceuticals. The chapter concludes by emphasising how
critical antioxidants in fruits and vegetables are in the human diet.

Chapter 2 focuses on understanding phenolic compounds in fruits
and vegetables. The chapter first examines the characteristics of phenolic
compounds, focusing specifically on the two main subgroups they can be
divided into, flavonoids and non-flavonoids. It then moves on to discuss the
effects of cultivation and post-harvest operations on phenolic compounds,
as well as how the COVID-19 pandemic highlighted the need to include
phytochemicals such as polyphenols in diets to increase general immunity.
The chapter also looks at ways to improve phenolic compounds in fruits and
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vegetables, before concluding with an overview of why it is crucial to develop
our understanding of the importance of phenolic compounds to improve
human health.

The subject of Chapter 3 is understanding the nutraceutical properties
of flavonoids in fruits and vegetables, drawing attention to the chemical
structure and groups flavonoids can be divided into. The chapter first provides
an overview of the flavonoids present in fruits and vegetables, focusing on
flavones, flavonols, flavanones, flavanols, isoflavones, neoflavonoids, flavanols,
anthocyanidins and chalcones. Individual sections and subsections are
provided for each group of flavonoids, focusing on their chemical structure and
their role as nutraceuticals in human health.

Expanding on topics previously discussed in Chapter 3, Chapter 4 expands
on the review of understanding the nutraceutical properties of flavonoids in
fruits and vegetables by addressing the mechanisms of action for flavonoids.
The chapter first looks at the antioxidant properties of flavonoids and their role
in preventing auto-immune diseases. It then looks at the anti-microbial, anti-
fungal and anti-viral activity of flavonoids and their role in treatment of diabetes.
The chapter goes on to discuss the anti-cancer properties of flavonoids and
their anti-neoplastic activity in tumour suppression. It also reviews their role in
preventing cardiovascular disease and anti-thrombogenic activity of flavonoids,
as well as their neuro-protective, anti-ulcerogenic, anti-inflammatory and
hepato-protective activity. Finally, the chapter discusses biotechnological
approaches for enhanced production of nutraceuticals in fruits and vegetables.

Part2 Phytochemicals in fruits and vegetables:
glucosinolates and organosulfur compounds

Part 2 begins with a chapter that focuses on the health promoting effects of
glucosinolates and their breakdown products. Chapter 5 first reviews the
natural sources of glucosinolates, highlighting one of the most common
groups of plants - Brassicales - and how well-known species such as broccoli,
cabbage, kale, cauliflower and turnip are some of the best natural sources of
these phytochemicals. The chapter also examines the various agricultural and
environmental factors that affect the composition and levels of glucosinolates
in vegetables. Sections on the potential health effects and antinutritional
properties of glucosinolates are also provided, which are then followed by a
discussion on dietary intake, absorption and digestion of glucosinolates in the
human diet.

Expanding on topics previously discussed in Chapter 5, Chapter 6 looks at
the nutraceutical potential of glucosinolates. The chapter reviews the different
classes of glucosinolates and their breakdown products, focusing specifically
on aliphatic, indole and aromatic glucosinolates first, then goes on to examine
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isothiocyanates, thiocyanate, nitriles, oxazolidine-2-thione and epithionitriles. A
section on the hydrolysis of glucosinolates and the glucosinolates-myrosinase
system is also provided, which is then followed by a discussion on how
glucosinolates can be analysed, and finally the mechanisms of action and how
glucosinolates can be used as nutraceuticals.

The final chapter of Part 2 focuses on understanding the health benefits
and nutraceutical properties of organosulphur compounds in vegetables.
Chapter 7 first looks at the bioavailability of organosulphur compounds. It
then moves on to discuss the health benefits of these compounds, drawing
attention to anti-inflammatory activity, anticarcinogenic effects, antioxidant
and antimicrobial activity, improving immune function and their use in
neurogenerative disorders. A section on the nutraceutical applications of
organosulphur compounds is also provided.

Part3 Phytochemicals and the prevention of disease

The first chapter of Part 3 examines advances in understanding the role of plant
phytochemicals in preventing cancer. Chapter 8 begins by emphasising the
importance of plant-based foods as sources of cancer-preventative substances
as they contain various types of phytochemicals. The chapter then goes on
to examine the mechanisms of chemoprevention, which is then followed by
an analysis of phytochemicals and their mode of action in the prevention and
treatment of cancer. A section on the cancer-preventive effects of antioxidant
and anti-inflammatory activities is also provided. The chapter moves on
to review the angiogenesis suppression activities of phytochemicals, their
function in cell death pathways and the combined use of phytochemicals with
antineoplastic agents. The importance of delivery systems for phytochemicals
is also discussed. Sections on routes of administration for phytochemicals and
combining phytochemicals with other applications are also provided.

Chapter 9 discusses advances in understanding the role of plant
phytochemicals in preventing cardiovascular disease. The chapter first reviews
the complex nature of cardiovascular disease and its link to diet as well as
the disease’s comorbidities. It then assesses the current state of research
on the protective and therapeutic effects of phytochemicals in relation to
cardiovascular disease. A section on the types of phytochemical compounds
is also provided, focusing specifically on flavonoids, phenols, organosulfur
compounds, alkaloids, lignans, sterols, tannins and soluble fibre. The chapter
moves on to examine how wild crop relatives and herbs and spices can be
considered as sources of phytochemicals, before it addresses the range of
initiatives that are currently in place in order to enhance phytochemicals in the
diet to prevent or treat cardiovascular disease.
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Part4 Analysing and optimising phytochemical
compounds in fruits and vegetables

Part 4 first begins with a chapter that analyses the advances in screening
and analysing phytochemical compounds in fruits and vegetables.
Chapter 10 reviews the various state of the art methods currently available for
extracting phytochemicals before screening and analysis can be performed.
The chapter then moves on to review the methods for phytochemical
analysis, drawing attention to high-performance thin-layer chromatography,
liquid chromatography, gas chromatography, mass spectrometry, infrared
spectroscopy and nuclear magnetic resonance. A case study on using
advanced methods for the analysis of phenolic compounds in apples is also
included.

The next chapter of Part 4 examines the agronomic factors affecting
phytochemical compounds in fruits and vegetables. Chapter 11 first reviews
the various phytochemicals that are available in fruits and vegetables, drawing
attention to those previously discussed in earlier chapters. It then addresses
the environmental factors that affect phytochemicals, focusing specifically on
lighting, temperature and relative humidity. A section on the current agronomic
practices in use to improve the yield and quality of fruits and vegetables is
also included, discussing practices such as variety selection, fertilisation,
phytohormones and phytochemicals induced by abiotic stress. It also includes
a review of the phytochemical changes during harvesting and different stages
of maturation. A case study on the use of organic and inorganic nitrogen to
influence phytochemical levels in lettuce is also provided.

Chapter 12 examines the metabolism of phytochemical compounds
in fruits and vegetables in the gut. It first discusses how phytochemicals can
be classified, indicates their dietary sources and intake and highlights their
health effects. The chapter focuses on categories of phytochemicals previously
highlighted such as phenolics and alkaloids but also draws attention to
terpenoids and sulphur-containing compounds. The chapter then moves on
to discuss the digestion of phytochemical compounds, focusing on oral and
gastric digestion, small intestinal digestion and colonic digestion. A case study
on a dynamic multistage gastrointestinal model for the study of phytochemical
biotransformation by gut microbiota is also included. Factors affecting digestion
such as the food matrix and background diet are also reviewed.

Part5 Case studies

The first case study chapter in Part 5 looks at the advances in understanding and
improving the nutraceutical properties of cranberries. Chapter 13 first reviews
the clinical evidence supporting the health benefits of cranberry consumption
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such as the use of cranberries to protect urinary tract infections as well as their
use to improve dental and gastrointestinal health, cardiometabolic and skin
health, cognition and cancer prevention/treatment. It also discusses future
directions in the elucidation of mechanism of actions for health benefits and
approaches to maximising bioefficacy of cranberry-related food/products.

Chapter 14 discusses advances in understanding and improving the
nutraceutical properties of apples. It begins by examining the health effects
of apple in humans, then moves on to discuss apple processing and pomace
generation. Individual sections on various nutraceutic compounds in apples
are also provided, focusing specifically on phenolic compounds, dietary fibre
and pectin. The chapter then moves on to review improving apple cultivation
through research on food bioactives, before concluding with an overview of
why apple and apple pomace are important sources of phenolic compounds,
dietary fibre and pectin which in turn, have significant health benefits.

The final chapter of the book draws attention to advances in understanding
and improving the nutraceutical properties of broccoli and other brassicas.
Chapter 15 discusses the available evidence demonstrating the benefits of
the Brassica family, particularly broccoli, and offers information to help ensure
that public health messaging reflects current science. It demonstrates that
Brassica vegetables have advantages beyond helping achieve basic nutritional
requirements and could provide specific nutrients towards reducing the risk
of cancer and other diseases. Knowledge of the bioavailability of Brassica
bioactive compounds, particularly of phenolic compounds and glucosinolates,
is critical to understanding such benefits. Finally, it discusses additional support
and strategies to maintain Brassica nutritive value since the content of particular
compounds varies significantly due to the different factors in the food supply
chain.
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vegetables: polyphenols






Chapter 1

Advances in understanding
the nutraceutical properties of
antioxidants in fruits and vegetables

Ugunujhie Agbaje, Mallaidh Hyndman and Soraeya Kharaty, School of Food Science

and Environmental Health, Technological University Dublin - City Campus, Ireland; and
Swarna Jaiswal and Amit K. Jaiswal, School of Food Science and Environmental Health,
Technological University Dublin - City Campus and Environmental Sustainability and Health
Institute, Technological University Dublin - City Campus, Ireland

Introduction

Antioxidants in fruits and vegetables

Mechanism of action of fruit and vegetable antioxidants
Antioxidants in human health and disease

Applications of fruit and vegetable antioxidants
Conclusion

Where to look for further information
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1 Introduction

Antioxidants are natural or synthetic substances that inhibit oxidation, a
chemical reaction within the human body that can produce free radicals and
chain reactions, resulting in cell damage. They play a vital role in growth,
development, detoxification, and effective immune responses. Oxygen
is known as a highly reactive atom which is commonly known to become
part of damaging molecules within the body known as free radicals. These free
radicals form during normal metabolism or through external factors such as
X-rays, ultraviolet radiation, and exposure to pollution. Free radicals such as
superoxide (O,7), hydrogen peroxide (H,O,), or peroxynitrite (OONO") have
the capabilities of attacking cells and other structures like cellular proteins,
lipids, and deoxyribonucleic acid (DNA) (Kazmierczak-Baranska et al., 2020)
within the human body, resulting in a loss of structure and function of those
cells. Free radicals have also been linked to the initiation and progression

http://dx.doi.org/10.19103/AS.2022.0101.03
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of tumour cells, while also enhancing their metastatic potential (Singh et al.,
2019). Oxidative stress is one of the reasons for promoting the ageing of the
body and many diseases, and its mechanism is mostly related to the generation
of reactive oxygen species (ROS).

Dieticians recommend a diet that promotes a high volume of fruits and
vegetables, as these are universally regarded as healthy. They supply a wide
range of vitamins and minerals to the human diet and are prominent sources
of phytochemicals that function as antioxidants. Plants produce antioxidants
as a form of protection. The antioxidants act as a barrier to the damage that
may be caused when reactive species produced during photosynthesis are
exposed to ultraviolet light, resulting in damage to their cellular structure (Laxa
etal., 2019). Moderate consumption of approximately five servings of fruit and
vegetables a day is recommended to adults, as this diet will aid in mitigating the
development of chronic diseases such as cancer, diabetes, and cardiovascular
diseases (CVD), with convincing evidence provided by Boeing et al. (2012) in a
critical review of literature in 2012.

This chapter aims to provide recent advances in the understanding of
various nutraceuticals properties of fruit and vegetables. The chapter also
briefs on common types of antioxidants found in fruits and vegetables. The
mechanisms in which these antioxidants function within the human body
have been illustrated, with emphasis on their role in the prevention of chronic
diseases such as cancer and CVDs. Furthermore, applications of nutraceuticals
properties of fruit and vegetables have been discussed.

2 Antioxidants in fruits and vegetables

The consumption of fruits and vegetables can reduce the risk of oxidative
damage to cells within the human body. They are considered excellent sources
of antioxidants as they contain considerable levels of biologically active
compounds that transmit health benefits that surpass basic nutrition (Oomah
and Mazza, 2000). Common dietary antioxidants which are found in fruits and
vegetables include polyphenols, carotenoids, vitamins such as vitamin A, C,
and E, selenium, and zinc. Each of these offers an array of health benefits when
consumed, with the shared objective of reducing the effect of free radicals on
the body’s immune system, gastrointestinal system, and overall health.

2.1 Polyphenols

Polyphenols are organic compounds commonly synthesized within plant
species. They are mainly present in fruits, vegetables, whole grains, and green
teas. They are a well-known group of phenolic systems and are categorized
by a minimum of two phenyl rings and one or more hydroxyl substituents
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(Singla et al., 2019). The term ‘polyphenol’ is commonly used today in relation
to flavonoids, tannins, and phenolic acid, as well as the numerous chemically
modified or polymerized derivatives. There are more than 8000 types of
polyphenols that have been identified, which are split into four main classes:
phenolic acids, flavonoids, stilbenes, and lignans. Figure 1 below includes the
chemical structures of different classes of polyphenols.

Phenolic acids are a class of polyphenols that exhibit a variety of functions
including plant growth, development, and defence (Kumar and Goel, 2019).
They are a powerful group of compounds that are both water- and lipid-soluble
and exhibit antioxidative activities through various mechanisms which include
removing free radicals, binding metal ions, and inducing the expression of a
range of genes that are responsible for synthesizing enzymes, with the function
of reducing oxidative stress (Kaurinovic and Vastag, 2019). Common sources
of phenolic acids within the human diet are apples, mangos, berries, plums,
cherries, kiwis, citrus fruits, and onions, with a daily intake recommendation of
200 mg/day (Kumar and Goel, 2019; Scalbert and Williamson, 2000).

Flavonoids account for approximately two-thirds of dietary polyphenols
(Koch, 2019). They are defined as a class of polyphenolic secondary metabolites
and are found in the form of aglycones or glycosides in many fruits and
vegetables (Hernandez-Rodriguez et al., 2019). They consist of a basic structure
of two aromatic rings which are bound together by three carbon atoms to form
an oxygenated heterocycle (Pandey and Rizvi, 2009). There are more than
4000 varieties of flavonoids that have been identified. These are split into six

Flavonoid on Stilbene
g ba
Ho O ‘ oM N\ O on
HO
oM O Resveratrol
Apigenin
Phenolic Acid Lignan
HO, HO CH.OH
o
HO CHOH
<o
HO
Gallic Acid Entarodi Io«
nteroaio!

Figure 1 Chemical structures of different dietary polyphenols (Yoon and Baek, 2005).
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sub-categories based upon the variation in the type of heterocycle involved
and their extent of alkylation and/or glycosylation (Spencer et al., 2008). These
sub-categories are flavonols, flavones, flavanones, flavanols, anthocyanins, and
isoflavones. Leafy vegetables, onions, apples, berries, soybeans, and citrus fruits
are classified as important sources of dietary flavonoids (Janabi et al., 2019).

Stilbenes contain two benzene rings joined by a molecule of ethanol or
ethylene (Pandey and Rizvi, 2009). It is mainly derived from the skin of grapes
in the form of the trans isomer of resveratrol. It is mainly extracted during the
production of red wine, where it is found at concentrations of between a few
tenths of a milligram and a few milligrams per litre (Moreno and Peinado, 2012).

Lignans are chemical compounds, which contain a 2,3-dibenzylbutane
structure, formed by the dimerization of two cinnamic acid residues (Pandey
and Rizvi, 2009). They are found in plants and act as dietary antioxidants
within the human body, presenting a range of health benefits. They are known
as phytoestrogens and can bind to oestrogen receptors in the breast tissue
(Wcislo and Szarlej-Wcislo, 2014). Studies have shown that an increase in
the consumption of dietary lignans had exhibited a significant reduction of
approximately 40-53% in mortality and a 33-70% reduction in mortality by
breast cancer (Calado et al., 2018). The richest sources of lignans in the diet are
flaxseeds, where the principal lignan precursor, secoisolariciresinol diglucoside,
is found (Simpson and Amos, 2017). Cruciferous vegetables, such as broccoli
and cabbage, strawberries, and apricots are also considered excellent sources
of these polyphenols.

The health benefits of polyphenols have been studied for decades. They
have been known to prevent blood clots (Behl et al., 2020), reduce blood sugar
levels, and lower the risk of heart disease (Sakaki et al., 2019). They are best
known for their capabilities of reducing inflammation (Cory et al., 2018) which is
why they are commonly prescribed to patients suffering from chronic illnesses,
as they increase the production of anti-inflammatory molecules like IL-10, IL-4,
IL-13, and adiponectin (Lee at al., 2021). In addition to the above, polyphenols
have also been known to inhibit the absorption of already oxidized products,
such as lipid hydroperoxides.

Polyphenols, such as polyphonic acid, are typically absorbed through the
gut barrier (Kawabata et al., 2019). However, larger polyphenols are poorly
absorbed. Once they are absorbed, they are linked to glucuronide, sulphate,
and methyl groups in the gut mucosa and inner tissues.

2.2 Carotenoids

Carotenoids are lipid-soluble pigments which are found in algae, plants, and
photosynthetic bacteria. They are known as very efficient physical scavengers of
ROS. These pigments typically have a 40-carbon chain backbone composed of
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8 isoprene molecules (Fig. 2) (Scott and Stuart, 2020). They are responsible for
producing bright yellow, red, and orange pigmentations in fruits, vegetables,
and otherplants. There have been more than 600 different carotenoidsidentified
and characterized to date (Young and Lowe, 2018). They are commonly split
into two classifications of carotenoids: carotenes and xanthophylls. Carotenes
consist of only hydrogen and carbon atoms, with beta-carotene being the most
common form. Xanthophylls consist of one or more oxygen atoms, with lutein
being the most common form.

Important members of oxygenated carotenoids are lutein, zeaxanthin,
B-cryptoxanthin, capsanthin, astaxanthin, and fucoxanthin (Abdel-Aal et al.,
2013). Astaxanthin is a natural antioxidative pigment, which has been found
to prevent degenerative diseases (Gao et al., 2021) and cancer (McCall et al.,
2018) and stimulate the immune system to detoxify free radicals within the
human body. Carotenoids are usually absorbed intact with approximately 80%
absorbed. However, they have a lower absorption rate compared to other

«-carotene
A Y Vgl T gl N = B-carotene
OH
IS N Y = = B-cryptoxanthin
OH
S g = S lutein
HO
~ AV Ve Ve Ve Y Ry N lycopene
OH
AV N = zeaxanthin
HO

Figure 2 Chemical structure of common dietary carotenoids (Ellison, 2016).
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dietary antioxidants. The intestinal cells convert carotenoids to retinoids (Bohn
etal., 2019). Itis then passed along with fat through the lymphatic system into
the blood stream.

Carotenoids are typically indispensable within mammals, which makes it
essential thatthey mustingestthese molecules within their diet. As they are lipid-
soluble, they are best absorbed through a source of fat. Lutein and zeaxanthin
are relatively polar carotenoid pigments. They are found at high levels in parsley,
spinach, and kale (Abdel-Aal et al., 2013). Other common sources of dietary
carotenoids are found within fruits and vegetables which have bright yellow,
orange, and red pigmentations such as carrots, sweet potatoes, and peppers;
however, they are also prominent within dark leafy greens (Nabi et al., 2020).

2.3 Vitamins

There are three major antioxidant vitamins: vitamin A (beta-carotene), vitamin
C, and vitamin E. Beta-carotene is known as the precursor of vitamin A. It is
produced by the human body to promote normal function of the visual system
(Johra et al., 2020), healthy skin, efficient mucosal membranes (Bohn et al.,
2019), and the maintenance of cell function for growth. Beta-carotene is found
in fruits and vegetables, and it is recommended to individuals ingest at least 5
servings per day, allowing the body to absorb at least 3-6 mg of beta-carotene
daily (Mdller, 1996). A deficiency of vitamin A can lead to a decrease in infection
resistance. It has been discussed that dietary vitamin A is more efficient and
protective than supplementation (Aserese et al., 2020). Vitamin A is rarely ever
absorbed into the bloodstream. Alternatively, it is excreted from the body
within 1-2 days.

Most dietary sources of vitamin A come from green leafy vegetables, such
as kale and spinach, as well as from fruits and vegetables which contain both
red and orange pigments, for example, peppers, carrots, and squash.

Vitamin C is a powerful antioxidant which has the ability to donate
hydrogen atoms and form a relatively stable ascorbyl-free radical. It is a dibasic
acid built with an enediol group on C2 and C3 of a heterocyclic lactone ring
(Pehlivan, 2017). It is water-soluble and needs to be replaced within the body
daily. It is essential for the creation of collagen, protein metabolism, and wound
healing. It also plays a vital role in the absorption of non-heme iron, commonly
found within vegetables. It is overall best known for its antioxidant properties,
with studies finding that it has been responsible for the regeneration of other
antioxidant vitamins such as vitamin E (Pehlivan, 2017). Vitamin C is a water-
soluble substance and is actively absorbed within the small intestine. Reversible
oxidation takes place here, where dehydroascorbic acid is produced (Dewhirst
and Fry, 2018).
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The most common sources of vitamin C within the human diet are citrus
fruits, such as oranges, lemons, and limes, which are naturally very rich in
ascorbate (Food and Nutrition Board, 2000). Other common sources include
tomatoes and tomato juice. Fruits such as strawberries, mangoes, papaya, and
watermelon also have variable amounts of vitamin C. It is recommended to
consume five varied servings of fruits and vegetables a day, which can help to
provide more than 200 mg of vitamin C (Olson and Hodges, 1987).

Vitamin E is a fat-soluble compound that can be stored within the body,
meaning that it does not need to be restored on a daily basis. It is categorized
as a lipophilic, naturally occurring compound whose molecular structure is
comprised of a chromanol ring with a side chain located at the C2 position
and includes four tocopherols and four tocotrienols (Niki and Abe, 2019).
The chromanol ring is responsible for its antioxidative properties. Vitamin E
prevents non-enzymatic oxidations of multiple cell components by molecular
oxygen or free radicals such as hydrogen peroxide. It is essential for membrane
structure and integrity, making it suitably known as a membrane antioxidant
(DiPasquale et al., 2020).

It is typically absorbed with lipids within the upper small intestine, where
it combines with micelles, also known as bile salts, to from mixed micelles.
These are then taken up by mucosal cells, where they are incorporated into
chylomicrons. The vitamin E is transported within the chylomicrons to the
peripheral tissue or liver where it is stored (Pinto et al., 2020).

Common sources of vitamin E within the diet include dark leafy green
vegetables, which contain a significant number of dietary antioxidants. Other
sources include pumpkins, peppers, and vegetable oils. Vegetable oils would
provide the richest source of vitamin E within the diet due to a-Tocopherol
being the major contributor to the total vitamin E activity in some of these oils
(Bramley et al., 2000).

2.4 Selenium

Selenium is an essential trace mineral and antioxidant which is commonly found
in soil. It can form molecules of the ring structure, consisting of eight atoms
and chain molecules that are characterized by a considerable length (Kieliszek
etal., 2019). It is vital for good health and plays an active role in the formation
of selenoproteins. This aids in the production of glutathione peroxidase, which
are molecules that prevent cell damage. Glutathione peroxidase is responsible
for the conversion of cellular toxins into harmless by-products for elimination.
Selenium can be split into two forms: inorganic (selenate and selenite) and
organic (selenomethionine and selenocysteine) (Avery and Hoffmann, 2018),
with both being very good dietary sources. Selenium is mainly absorbed from
the duodenum. It is then transported across the intestinal brush border, in the
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Table 1 Recommended daily intake of antioxidants found in fruits and vegetables

RDA - men RDA - women RDA - children

Antioxidant (ug/day) (ng/day) (ug/day)
Vitamin C - ascorbic acid 90 75 40-65
Vitamin A - beta-carotene 900 700 300-600
Vitamin E 15 15 6-11
Polyphenols 650 650 500
Carotenoids 30-300 30-300 30-150
Selenium 50-60 50-60 20-40
Zinc 11 8 2-5

Sources: Gibson et al. (2016), Grosso et al. (2014), Lykkesfeldt et al. (2014), Risvi et al. (2014), Ross
(2010), Stoffanellar and Morse (2015), Toti et al. (2018).

form of methionine analogue. Following absorption, it is bound to plasma
proteins, for example, BETA-lipoproteins, and transported across the body.

Common dietary sources of selenium include beans and lentils, with lentils
including 6 pg per serving. Another excellent source is dark leafy greens such
as spinach, with up to 11 pg per serving.

2.5 Zinc

Zinc is an essential trace metal which is required for human health. Although it
is a redox-inert metal, it functions as an antioxidant through the catalytic action
of copper/zinc-superoxide dismutase, stabilization of membrane structure,
protection of the protein sulfhydryl groups, and upregulation of the expression
of metallothionein (Lee, 2018). In addition to this, zinc has been discovered
to suppress inflammatory responses within the body, caused by oxidative
stress. As an antioxidant, the consumption of foods containing zinc presents a
number of benefits to human health. For example, itis used to treat and prevent
diarrhoea in infants and children throughout the world (Prasad, 2014) and as an
effective therapeutic agent for the treatment of Wilson’s disease.

Sources of zinc within the human diet are pumpkin seeds, chickpeas, and
peas. However, phytates that are found in legumes have been discovered to
bind zinc and inhibit its absorption. Due to this, animal products are considered
better sources of zinc (Olza et al., 2017) (Table 1).

3 Mechanism of action of fruit and vegetable antioxidants

Natural antioxidants presentin fruitand vegetables possess several mechanisms
in which they inhibit oxidative damage. There are numerous ways of classifying
these antioxidants, with classification typically occurring according to these
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mechanisms of action and their origin. Antioxidants can be classified as either
enzymatic or non-enzymatic and endogenous, originating in the body, or
exogenous, obtained from outside the body typically through diet. However,
antioxidants obtained from fruit and vegetables are non-enzymatic and
exogenous compounds. Antioxidants can then be further classified as primary
and secondary antioxidants based on their principal mechanisms. Primary refer
to chain-breaking antioxidants, and secondary refer to peroxide-scavenging
antioxidants. Secondary antioxidants also encompass chelating agents and
oxygen-scavenging radicals (Aziz et al., 2019).

3.1 Primary antioxidants

The mode of action of primary antioxidants is a chain-breaking mechanism.
Chain reactions in oxidation are divided into the initiation, propagation, and
termination stages with primary antioxidants acting by impeding the initiation
or propagation stages. Primary antioxidants react with peroxyl, alkyl, or hydroxy
radicals and scavenge free radical species resulting in the formation of more
stable radicals or non-radical species such as water and inert alcohols (Pisoschi
et al., 2021). A recent study showed curcumin to have notable chain-breaking
antioxidant activity in several free radical scavenging and reducing assays
(Bisset et al., 2020).

3.2 Secondary antioxidants

Antioxidants derived from fruits and vegetables may exert their activity
through a secondary mechanism. Secondary antioxidants encompass several
mechanisms of action for protecting oxidative damage. One mechanism is
singlet oxygen ('O,) quenching to prevent the degradation of biomolecules
such as DNA and proteins. Dietary antioxidants, such as vitamin E, polyphenols,
and carotenoids, may quench singlet oxygen via chemical or physical means.
However, many antioxidants can quench singlet oxygen via both methods.
Chemical quenching involves the oxidation of the quencher by singlet oxygen.
On the other hand, physical quenching may occur via energy or charge transfer
which deactivates the singlet oxygen (Petrou et al., 2018). Zeaxanthin extracted
from Lycium barbarum was found to be highly effective in quenching 'O, in
lipid membranes, offering high protection against oxidative damage (Aziz
etal., 2019) (Fig. 3).

Lipid peroxidation induced by ROS generation is a form of oxidative
stress that results in the production of undesirable lipid peroxide products
such as malondialdehyde and damage to phospholipid membranes and other
intracellular biomolecules. Lipid peroxidation and its products have several
adverse effects not only in disease pathology but also in food systems (Su et al.,
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Figure 3 Deleterious effects of free radicals and oxidative stress on biomolecules. Source:
Azat Aziz et al. (2019).

2019).The decomposition of lipid peroxides into stable productsis animportant
secondary antioxidant mechanism. Lipid peroxidation products have been
implicated in several diseases, particularly neurodegenerative diseases due to
the high lipid content of the brain. Numerous dietary antioxidants, particularly
carotenoids, have a role in inhibiting lipid peroxidation in disease. Several
systematic reviews detail the benefits of dietary antioxidants against lipid
peroxidation in neurodegenerative diseases (Bhatt and Patel, 2020; Petrovic
et al.,, 2020; Ambrosone et al., 2020a). In food systems, lipid peroxidation
is responsible for the production of a wide array of unwanted oxidation
compounds in addition to accelerating food spoilage and quality deterioration.
To prevent this, fruit and vegetable antioxidants are being incorporated into
functional food products. A recent study reported gallic acid extracted from
guava leaves to not only retard lipid oxidation in fresh pork sausages but also
retain the colour over 14 days (Tran et al., 2020).

As certain metallic ions may have pro-oxidant activity, another mechanism
of action of natural antioxidants is metal chelation. Antioxidants derived
from fruit and vegetables such as flavonoids interact with metal ions to form
complexes. These complexes protect against oxidative damage as they possess
free radical scavenging properties. A study investigating the antioxidant
capacity of bioactive compounds extracted from Tetrapleura tetraptera fruit
observed the extracted phytochemicals, including flavonoids, phenols,
and alkaloids, to possess significant metal chelating capacity compared to
etylemediaminetetraacetic acid (EDTA) (Adusei et al., 2019). A recent study
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demonstrated wild and cultivated extracts of Origanum vulgare L. to exhibit
significant metal scavenging capacity in both methanolic and ethanolic
extracts, ranging from 50.2% to 140.9% in wild extracts while cultivated extracts
possessed activities ranging from 11% to 90%. However, the activity of these
extracts was substantially lower than the EDTA standard which possessed a
metal chelating capacity of 345.5% (Jan et al., 2020).

4 Antioxidants in human health and disease

Oxidative stress is an imbalance between oxidants and the antioxidant defence
system caused by excessive free radical generation and elevated reactive
species, notably ROS. Normal physiological operations and signalling cascades
are modulated by these ROS, reactive lipid species (RLS), and reactive nitrogen
species (RNS) with disturbances to the redox system and subsequent oxidative
stress resulting in oxidative damage to cellular components such as proteins,
lipids, and DNA. Damage to these cellular components impacts critical cellular
functioning and is the underlying pathophysiological cause of numerous
diseases including cancer, inflammatory diseases, and neurodegenerative
diseases. Antioxidants play a vital role in maintaining cellular functioning and
consequently in the prevention and treatment of these diseases through their
action in inhibiting oxidative damage.

In recent years, the antioxidants present in fruits and vegetables have
emerged as major players for preventative strategies or therapeutics of several
diseases. Scientific evidence has revealed these antioxidants to exert anti-
inflammatory and anti-tumour effects, among others. This section will discuss
the role of dietary antioxidants from fruits and vegetables in human diseases
such as cancer, CVD, and obesity (Fig. 4).

4.1 Antioxidants and cancer

Oxidative stress induced by ROS production has been implicated in the
aetiology of cancer, the second leading cause of death globally, primarily by
action of cellular damage and DNA mutations. Research has identified genetic
mutations to play a significant role in cancer pathogenesis, and the genetic
changes induced by oxidative damage stimulate oncogene generation.
Elevated ROS levels and oxidative damage further promotes cancer progression
through their role in several signalling pathways, resulting in uncontrolled cell
proliferation, apoptosis, and expression of pro-oxidant enzymes (Perillo et al.,
2020).

Several sources of ROS and oxidative stress exist within cancer cells, with
mitochondria presenting the most prominent source. Mitochondria generate
ROS, which are critical for cell proliferation and homeostasis, as a result of the
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Figure 4 Impact of redox imbalance on health and disease outcomes. Source: Kumar and
Pandey (2015).

electron transport chain (ETC) through oxidative phosphorylation. Caveolin
1 (cav-1) loss, which influences tumour recurrence, metastasis, and tumour
growth, is regulated by mitochondria-generated ROS. Inactivation of the
mitochondrial antioxidant system results in increased oxidative stress in cancer
cells (Arfin et al., 2021).

Due to the involvement of ROS and oxidative stress in the varying cancer
initiation, promotion, and progression stages, antioxidants have both a
preventative and therapeutic role in cancer. Several classes of antioxidants such
as vitamins, polyphenols, and alkaloids have been applied in clinical settings
as chemopreventative agents. Research has shown various vitamin and non-
vitamin antioxidants to have chemopreventative activity. The green tea catechin
epigallocatechin gallate (EGCG) has several anticancer mechanisms including
inhibition of cell proliferation, carcinogenic activity and tumourigenesis, and
induction of cell apoptosis. A recent study observed a significant inhibition of
cell proliferation, migration, and invasion of human lung cancer cells by nano
emulsified EGCG (Chen et al., 2020).

However, recent studies have reported antioxidant compounds to
contribute to cancer pathogenesis when present in high concentrations or to
not have a chemopreventative effect at all. Although evidence predominantly
indicates vitamin C to be a strong antioxidant compound, a Canadian case-
control study reported no association between vitamin C intake and prostate
cancer incidence or aggressiveness (Parent et al., 2018). Furthermore,
antioxidant compounds interact with certain chemotherapies and reduce
treatment efficacy. An observational study of a clinical trial reported antioxidant
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supplementation, prior to and during chemotherapy, to increase the risk of
breast cancer recurrence by 41% (Ambrosone et al., 2020a,b). Evidence has
demonstrated the relationship between antioxidants and ROS levels in cancer
to be highly complex. Fruit and vegetable antioxidants have a beneficial effect
on cancer but also contribute to the progression of cancer.

4.2 Antioxidants in neurodegenerative diseases

Neurodegenerative diseases, characterized by progressive deterioration
of the central nervous or peripheral nervous systems, encompass several
disorders including Alzheimer’s disease (AD) and Parkinson’s disease (PD).
Heightened ROS production and elevated oxidative stress have been
implicated in the pathogenesis of multiple neurodegenerative diseases, such
as AD, making antioxidants invaluable for the prevention and treatment of
these disorders.

AD has become the most prevalent neurodegenerative disorder, affecting
a large proportion of the global population. This cognitive disease is clinically
identified by memory loss and loss of executive functioning (Butterfield and
Halliwell, 2019) and generally affects the elderly population. AD is a complex
multifactorial disease; however, research has revealed oxidative stress to be
a significant contributor to the pathogenesis of this disease, particularly early
progression. A hallmark of AD is the deposition of amyloid-beta (AB) plaques
in aggregated form in the brain whereas AR plaques are present in the soluble
form in healthy brains. Although mechanisms have yet to be fully elucidated,
elevated ROS levels have been implicated in membrane-associated oxidative
stress resulting in lipid peroxidation and the production of a neurotoxic
compound commonly as known as aldehyde 4-hydroxynonenal (HNE) (Chooi
et al., 2019). This compound and other lipid peroxidation compounds such as
malondialdehyde are detected in the early stages of AD and are connected
to the progression of this disorder. Beyond the excessive generation of
ROS, the endogenous antioxidant defence system is weakened in AD which
contributes to the progression of this disease. Lycopene, a red carotenoid,
is a naturally occurring antioxidant in several fruits and vegetables, such as
tomatoes and watermelons, with potential application in the treatment of AD.
A study conducted on M146L cells found treatment with lycopene to inhibit
AB-induced oxidative stress through activation of the phosphatidyl inositol
3-kinase (PI3K)/protein kinase B (Akt)/nuclear factor erythroid 2-related factor
2 (Nrf2) signalling pathway (Fang et al., 2020) in AD. Ginkgolide and bilobalide
terpenoid lactones extracted from Gingko biloba were shown to inhibit
oxidative stress in cerebral ischaemia reperfusion through modulation of the
Akt/Nrf2 signalling pathway and enhanced expression of antioxidant enzymes
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including superoxide dismutase (SOD) and hemeoxygenase-1 (HO-1) (Liu
etal., 2019).

PD is another common neurodegenerative disease that may benefit
from the neuroprotective effects of dietary antioxidants. This disease is a
progressive neurological disease characterized by progressive degeneration of
dopaminergic (DA) neurons. Impaired motor functions, tremors, bradykinesia,
and rigidity are clinical features of this disorder in addition to conditions such
as depression and anosmia (Duarte-Jurado et al., 2021). Extensive research
has revealed ROS production and oxidative stress to contribute to DA neuron
degradation and the pathogenesis of PD. The production of dopamine’s
metabolites, such as 3,4-dihydroxyphenlacetic acid (DOPAC) by monoamine
oxidase (MAQO), as a result of dopamine oxidation, deteriorates DA neurons.
Neuroinflammation and the activation of microglial cells are a protective
response by the central nervous system (CNS). Microglial cells release pro-
inflammatory cytokines and produce ROS. However, excessive inflammatory
responses have been linked to Parkinson’s Disease (PD) (Kim et al., 2020b).
Vitamin E, encompassing all the tocopherol and tocotrienol compounds
present in fruit and vegetable sources, has been demonstrated to have
antioxidant effects in neurodegenerative diseases (Park and Ellis, 2020). In their
seminal study, Park and co-workers (2019) detailed the prevention of AN-Bcl-xL
formation and subsequent oxidative stress by a-tocotrienol treatment of rat
hippocampal neurons, a novel mechanism in which a-tocotrienol exerts its
neuroprotective action. Vitamin Cis highly recognized for its potent antioxidant
properties. However, clinical studies supporting supplementation of vitamin C
for reducing PD risk are limited.

4.3 Antioxidants and inflammatory diseases

Chronic inflammatory disorders, such as rheumatoid arthritis and inflammatory
bowel disease, affect a significant number of the global population. Chronic
inflammation is a prolonged state of inflammation, largely resulting from
the immune system’s inability to regulate acute inflammation (Mazarakis
et al., 2020). Substantial evidence has revealed excessive ROS generation
and oxidative stress to be critical factors in the pathogenesis and progression
of several chronic inflammatory diseases. The interdependent relationship
between oxidative stress and inflammation appears to be quite complex with
oxidative damage being both a cause and effect of inflammation. Targeting
oxidative stress is a promising method of preventing inflammatory damage.
Rheumatoid arthritis (RA), a complex systemic inflammatory disease,
is characterized by swelling, pain, and tenderness of synovial joints. Studies
have reported higher ROS production, oxidative stress, and lipid peroxidation
in individuals with rheumatoid arthritis. Angiogenesis, a complex mechanism
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involving the development of new blood vessels from pre-existing vessels,
plays a critical role in the pathogenesis of RA and other inflammatory
diseases. In RA, angiogenesis in synovial tissues results in a perpetual state
of inflammation and synovial hyperplasia. Like the relationships seen in other
diseases, ROS production and oxidative stress have an intricate relationship
with angiogenesis and present a double-edged sword. Low concentrations
of ROS stimulate signalling pathways whereas exorbitant ROS levels result
in pathological damage. Balogh and colleagues (2018) revealed oxidative
stress to impact bioenergetic profiles by triggering anaerobic glycolysis from
OXPHOS, thereby promoting angiogenesis and chronic inflammation. ROS
also impacts RA and angiogenesis through signalling pathways including the
vascular endothelial growth factor (VEGF) and MAPK pathways. The JNK and
p38 MAPK pathways are critical for numerous regulatory processes such as cell
development, growth, and cell death. These findings display the importance
of targeting ROS in RA treatment due to their role in activating or deactivating
signalling molecules (Phull et al., 2018).

Mateen and colleagues (2019) reported cinnamaldehyde and eugenol
to display considerable antioxidant activity in peripheral blood mononuclear
cells (PBMCs) obtained from RA patients. The researchers observed
cinnamaldehyde and eugenol to abate ROS formation, lipid peroxidation, and
nitric oxide, glutathione, and pro-inflammatory cytokine levels in the PBMCs.
Additionally, treatment with these dietary antioxidants enhanced the activity
of the antioxidant enzyme SOD, whereas they were ineffective in improving
catalase and GPx activity. Recent research detailed the benefits of the natural
antioxidant resveratrol in alleviating RA severity by downregulating MDA and
SOD levels while also decreasing expression of pro-inflammatory cytokines
such as interleukin-6 (IL-6) and tumour-necrosis factor a (TNF-a) in male rats
with BIIC-induced rheumatoid arthritis (Yang et al., 2018a,b). Furthermore,
these in vitro studies revealed that treatment with resveratrol suppressed
IL-1B induced HIF-1a upregulation and activation of the JNK and p38 MAPK
pathways in RSC-364 cell lines.

Similarly, oxidative stress has been implicated in the pathophysiology of
inflammatory bowel disease (IBD). IBD is a chronic inflammatory disorder of the
gastrointestinal tract and is a complex interplay of the immune system, the gut
microbiome, genetics, and environmental factors. Overproduction of ROS and
subsequent oxidative stress cause extensive damage to the mucosal lining,
diminishing its functioning (Bourgonje et al., 2020). Polyphenols extracted
from Passiflora subpeltata Ortega were shown to have protective effects in
indomethacin-induced ulcerative colitis rats and RAW 264.7 cells. In addition
to suppressing pro-inflammatory nitric oxide and TNF-a mediators, these
extracts stimulated the activity of antioxidant enzymes including catalase and
SOD (Shanmugam et al., 2020). Similarly, the dietary anthocyanin, pelargonidin
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3-glucoside, was reported to increase the mucosal epithelium, villi length,
crypt depth, and goblet cell production in DSS-induced IBD Wistar rats. These
improvements were hypothesized to be a result of inhibition of free radicals
and increased IL-10 concentration (Ghattamaneni et al., 2020). Research
regarding the application of antioxidant compounds as therapeutics in IBD
is required as current studies appear to be largely limited to animal models.
Clinical trials are necessary to determine the efficacy of these compounds in
human patients.

4.4 Antioxidants and cardiovascular diseases

CVDs, a cluster of diseases impacting the heart or blood vessels, are the leading
cause of death worldwide. Elevated ROS and oxidative stress have been
identified as key players in cardiac diseases including atherosclerosis, cardiac
hypertrophy, coronary artery disease, and heart failure, among others. ROS
imbalance and impaired antioxidant capacity result in cardiac dysfunction. In
recentyears, dietary components have emerged as promising interventions and
multiple studies have established the role of fruit and vegetable antioxidants in
reducing CVD risk through various mechanisms.

Similar to neurogenerative diseases, there are several origins of ROS within
the heart which contribute to the progression of CVD. Recent research has
revealed the importance of mitochondria in oxidative stress due to their role
in molecular signalling and cell survival. Mitochondria synthesize ATP through
oxidative phosphorylation and electron transfer in the electron transfer chain
(ETC), which produces intracellular ROS as a by-product. Complexes | and llI
of the ETC are the primary sources of ROS. Additionally, other mitochondrial
proteins such as p66°' have been implicated in ROS formation. This cytosolic
protein has been found to trigger H,O? production by oxidizing cytochrome ¢
(D'Oria et al., 2020). An association between vascular endothelial dysfunction
and several risk factors for CVD, such as hypertension and stroke, has been
identified through research. Increased ROS generation and oxidative stress can
increase CVD risk through inducing endothelial dysfunction. Oxidative stress
results in endothelial nitric oxide synthase (eNOS) uncoupling, a critical hallmark
in the pathogenesis of most CVDs. eNOS is an isoform of nitric oxide synthase,
largely found in coronary arteries, cardiomyocytes, and endothelial cells,
responsible for the release of nitric oxide from the microvascular endothelium.
Uncoupled eNOS alters the nitrosoredox balance and induces oxidative stress
through overproduction of ROS with less NO generation. This negatively
impacts the cardiovascular system which results in cardiac dysfunction and
degradation of the extracellular matrix (D'Oria et al., 2020). This has made
targeting eNOS uncoupling a viable therapeutic target for ameliorating CVD
risk. Lee and colleagues (2020) demonstrated anthocyanin-rich mulberry
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extracts to downregulate oxidative stress in the aortas of Sprague-Dawley rats
and to alleviate endothelial senescence by increasing eNOS phosphorylation.

Other dietary antioxidants in fruits and vegetables, particularly flavonoids,
have been implicated in inhibiting endothelial dysfunction. Quercetin, a dietary
flavonoid presentin fruits and vegetables such as berries and onions, was found
to ameliorate oxidative stress and endothelial cell injury in HUVECs by inducing
HMOX1 and the ERK/Nrf2 signalling pathway (Tian et al., 2019). Similarly, a
study reported the polyphenol EGCG to protect HUVEC cells against H,O,-
induced oxidative damage and apoptosis, making it a promising antioxidant in
the treatment of oxidative stress-induced CVDs (Meng et al., 2020).

Recent research has highlighted the importance of microRNAs (miRNAs)
in maintaining endothelial cell functioning and modulation of CVD risk. Novel
research has demonstrated natural antioxidants in fruit and vegetables to
impact CVD risk through their interaction with cardiovascular-related miRNAs.
Daimiel and colleagues (2020) established an association between polyphenols
and circulating miRNA, particularly miR-17-92, following consumption of
polyphenol-rich extra virgin olive oil.

4.5 Antioxidants in obesity

Obesity, characterized by excessive accumulation of adipose tissue, is a complex
multifactorial disease that has become a major public health issue today. Over
1.9 billion adults are classified as being overweight or obese, with individuals
with a body mass index (BMI) of >25 kg/m? being classed as overweight
whereas those with a BMI >30 kg/m? are considered obese (Chooi et al., 2019).
This condition predisposes individuals to various non-communicable diseases
such as type 2 diabetes, CVDs, and dyslipidaemia making it a major burden
on both the health and economic systems. Research has revealed oxidative
stress to have a significant role in the pathogenesis of obesity, and antioxidant
pathways have become a promising target for tackling obesity prevalence (Kim
et al., 2020a). Mitochondrial dysfunction, caused by oxidative stress, results in
decreased antioxidant capacity and elevated ROS production in white adipose
tissue consequently impacting the functioning of adipose cells. Evidence
suggests that oxidative stress also contributes to obesity development through
its role in the stimulation of adipogenesis including preadipocyte proliferation
and differentiation. In pre-adipocytic adipogenesis, redox imbalance of
glutathione has been shown to stimulate adipogenesis and lipid accumulation
by increasing expression of the CCAAT/enhancer-binding protein-a (C/EBPA)
LAP/LIP and peroxisome proliferator-activated receptor y (PPARy) (Tobore,
2020; Colak and Pap, 2021).

Studies have reported on the relationship between oxidative stress and
inflammation in obesity. Obesity progression is accompanied by both increased
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inflammation and ROS production. Elevated adipose tissue levels stimulate
pro-inflammatory cytokine production such as TNF-a and IL-6. TNF-a increases
lipogenesis, insulin sensitivity, and ROS generation (Masschelin et al., 2019).

Antioxidants derived from fruits and vegetables have gained considerable
attention for their therapeutic applications in preventing obesity and mitigating
associated obesity comorbidities such as type 2 diabetes mellitus (T2DM). A
recent review analysing studies reported the various mechanisms in which
gallic acid exerted its anti-obesity benefits. Although mechanisms are yet to be
fully elucidated, gallic acid has been demonstrated to attenuate insulin-induced
lipogenesis, improve insulin signalling, and mitigate oxidative stress and pro-
inflammatory responses (Dludla et al., 2018). A study reported the anti-obesity
effects of anthocyanin and non-anthocyanin polyphenols, obtained from
lingonberry fruit, to be exerted through the inhibition of pro-oxidant enzymes,
including NOX4 and iNOS, alongside elevated expression of the antioxidant
defence enzyme, SOD2, in 3T3-L1 mouse cells (Kowalska et al., 2021).

The polyphenolic dietary antioxidant, piceatannol, was shown to have
various antiadipogenic effects in human mesenchymal stem cells (hMSC).
This compound effectively inhibited lipid accumulation and impaired glucose
transport and lipogenesis in adipocytes (Carpéné et al., 2018). Curcumin,
naturally present in turmeric roots, has gained considerable attention for its
antioxidant capacity. A randomized placebo-controlled clinical trial established
that curcumin supplementation improved both inflammation and oxidative
stress markers such as malondialdehyde, therefore reducing obesity risk in
postpubescent obese girls (Saraf-Bank et al., 2019). Similarly, the incorporation
of agai pulp, rich in anthocyanins and other polyphenols, to a hypo-energetic
diet significantly reduced 8-isoprostanc lipid peroxidation markers in
overweight adults over 90 days (Aranha et al., 2020).

4.6 Antioxidants and diabetes mellitus

Diabetes mellitus is a chronic metabolic disorder characterized by elevated
blood glucose levels (hyperglycaemia) and disturbances to the metabolism of
macronutrients due to dysregulated insulin action. Pancreatic cells either secrete
insufficient insulin or cells respond inadequately to secreted insulin, resulting
in systemic damage to various organs. Diabetes mellitus is associated with
severe comorbidities such as diabetic nephropathy, neuropathy, retinopathy,
obesity, and CVDs (Tran et al., 2020). Researchers have hypothesized several
mechanisms in which oxidative stress impacts diabetes, most notably through
hyperglycaemic dysfunction and insulin resistance. Hyperglycaemic dysfunction
causes oxidative stress in pancreatic B cells, which possess poor antioxidant
capacity, making them highly sensitive to oxidation. Cellular components such
as lipids, proteins, and nuclei acids become damaged by elevated ROS levels
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resulting in cell deterioration, apoptosis, and necrosis which impair insulin
production and functioning (Sun et al., 2021).

e [ cell functioning has been shown to be highly susceptible to oxidative
stress. Evidence has shown several critical pathways to be altered by
oxidative stress including the AMP-activated protein kinase (AMPK) and
c-Jun N-terminal kinase (JNK) pathways. Overexpression of pAMPK,
stimulated by ROS, has been shown to increase B cell apoptosis, reduce
insulin secretion, and impair B cell proliferation (Eguchi et al., 2021).
Similarly, ROS-induced JNK activation impairs 3 cell functioning through
various mechanisms. JNK activation has been shown to induce B cell
apoptosis in human and animal models with several studies reporting
inactivation of this pathway to increase {3 cell functioning and to inhibit
apoptosis (Liu et al., 2020; Yu et al., 2019). Furthermore, oxidative stress
may affect B cell functioning through its role in reducing the transcriptional
activity of regulatory insulin genes. Recent evidence shows oxidative stress
to enhance nuclear translocation of forkhead box protein O1 (FOXO1)
which competes with transcriptional pancreas duodenal homeobox
factor 1 (PDX-1) for DNA binding. Reduced PDX-1 expression inhibits 8
cell proliferation and growth and impairs insulin secretion (Zhang et al.,
2020a,b).

Excessive free fatty acid (FFA) plasma levels in the blood have emerged
as a cause of insulin resistance in diabetes. This heightened FFA plasma
concentration results in inordinate ROS production, oxidative stress, and
mitochondrial dysfunction (Park and Park, 2021). Excessive ROS production and
FFA plasma levels stimulate pro-inflammatory signalling proteins and hinder
insulin signalling. ROS-mediated activation of the serine-threonine kinase
pathways, p38 MAPK, KNKI AND IKK, results in insulin resistance caused by
suppressed insulin signalling pathways due to degradation of insulin receptor
substrate (IRS) (Zhang et al., 2020a,b).

Although there is no current cure for diabetes mellitus, dietary antioxidants
have emerged as a valuable preventative and therapeutic tool for this disease.
Research has established dietary antioxidants to exert their effect through the
protection of beta cell functioning. Phytochemical extracts of the plant Ocimum
canum exhibited potent antioxidant activity in Wistar rats. The antioxidant-
rich extracts demonstrated considerable antioxidant capacity both in vivo
and in vitro in several assays including the DPPH assay, phosphomolybdate
assay, and superoxide ion assay (Ononamadu et al., 2019). Similarly, EGCG
inhibited cell apoptosis and oxidative stress in aTC1-6 B cells treated with
H,O,. Furthermore, this study showed EGCG prevented [ cell dysfunction by
inactivation of the P38 and JNK MAPK pathways (Cao et al., 2018). A cohort
study of 5796 individuals from the prospective Rotterdam Study reported an
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inverse relationship between dietary antioxidant capacity and diabetes risk, but
not pre-diabetes risk, over 15 years. In both normoglycaemic and pre-diabetic
individuals, those with a high dietary antioxidant capacity were at a lower risk
of developing type 2 diabetes (van der Schaft et al., 2019). A systematic review
of seven randomized controlled trials examining the effect of blueberry and
cranberry consumption demonstrated blueberry supplementation (9.1-9.8 mg
of anthocyanins) for 8-12 weeks and daily cranberry juice intake (240 mL) for
12 weeks to be beneficial for managing glucose parameters in type 2 diabetic
individuals (Rocha et al., 2018) (Table 2).

5 Applications of fruit and vegetable antioxidants

Bioactive compounds from fruits and vegetables modulate physiological and
metabolic processes in the body while exerting health benefits. Recent studies
showed that antioxidants from natural sources such as fruits and vegetables
are safer and more desirable than synthetic antioxidants and have numerous
applications in the food industry as food additives. This section will discuss the
applications of dietary antioxidants from fruits and vegetables as functional
foods and their applications in the industry.

5.1 Application as natural pigments

In the food industry, antioxidants can be added to prevent colour changes
due to oxidation. Carotenoids are pigments that can be extracted from fruit
and vegetables. Carotenoids are added to the foods to enhance the existing
colour, to add colour, to replace colour loss, and to reduce colour variation.
Carotenoids are added to foods such as pasta, margarine, cheese, sausages,
and fruit juice (Mezzomo and Ferreira, 2016). In fresh juice, the addition of
antioxidants can improve the stability of the carotenoid pigments.

Carotenoids are also used to restore or standardize the colour of foods
and indirectly intensify the colour of foods through their application in
animal feed. The addition of beta-carotene in animal feed aids in achieving
the characteristic yellow-orange colour of egg yolks (Moreno et al., 2020)
and chicken skin (Diaz-Gémez et al., 2017). This also intensifies the colour
of fish (Jiang et al., 2019) and milk, with the carotenoid concentration in milk
depending on carotenoid forage intake. The application of carotenoids in
animal feed is a commonly used alternative to colour additives in the food
industry.

Mandarin epicarp is a source of carotenoids that can be used as a natural
colourant in baked products such as cake and bread. The use of natural
colouring additives reduces the use of synthetic dyes while increasing the
carotenoid pigments of the final products (Ordénez-Santos et al., 2021).
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Anthocyanins are polyphenols that can be extracted from fruits and
vegetables. They are a promising alternative to synthetic food dyes due to its
high stability (Giusti and Wrolstad, 2003). Anthocyanin pigments appear red in
acidic conditions and purple in alkaline conditions. This makes anthocyanins
suitable as a food colourant in beverages and as a purple food additive in jam,
confectionaries, and beverages (Khoo et al., 2017). It can be incorporated into
beverages as a natural pigment. Selected potato varieties with high anthocyanin
content are incorporated into soft drinks as natural red and purple colourants.
This acts as a substitute for existing synthetic colouring agents with suitable
sensory profiles and high stability (Sampaio et al., 2021).

The anthocyanin from purple carrots can be used as a red food colourant
in hard candy and jelly. The natural pigment has no significant differences in
colour, taste, and odour when compared to carmine as synthetic red food dye
(Assous et al., 2014). Passion fruit pericarp is a source of anthocyanins which
can be used as a natural colouring agent as it is stable against light, heat, and
storage. The pigment extract can be used as a pink/red colourant in processed
foods such as jelly (Kawasoe et al., 2021). A study carried out by Tereucan et al.
(2021) found that potatoes anthocyanins can be added to dairy products as a
natural pigment (Tereucan et al., 2021). They are a stable natural alternative to
synthetic dyes for use in the food industry. An anthocyanin called betacyanin
also has applications as a natural food pigment. Betacyanins from red pitahaya
are incorporated into mildly acidic foods such as yogurt with a high stability
compared to commercially used food colourants (Gengatharan et al., 2017).
Anthocyanin-rich extracts obtained from red radish are incorporated into
soybean-based yogurt products to produce a pink colour (Dias et al., 2020).

5.2 Application as natural preservatives

Lipid oxidation from oxygen or sunlight exposure causes deterioration and
leads to rancidity in many foods. This leads to changes in food characteristics
such as odour and taste. The addition of antioxidants to foods acts as
preservatives to retard lipid oxidation which can help maintain the quality and
appearance while prolonging the shelf life of foods containing oxidized lipids
such as vegetable oils and processed meats.

Antioxidants can also be used in ready-to-eat food products for the
preservation and quality maintenance. Grapefruit seed extract can be used on
vegetables as a natural preservative. Grapefruit seed extract s rich in flavonoids
which are effective against pathogens and can inhibit the growth of bacteria
such as Salmonella spp. and Listeria monocytogenes. This can extend the shelf
life of ready-to-eat lettuce and cucumber (Xu et al., 2007).

Natural antioxidants from fruit and vegetables can be used in meat and
meat products. This is because meat fat is highly susceptible to oxidation
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leading to rancidity. Myoglobin is responsible for pigmentation. The
addition of antioxidants such as phenols and carotenoids can minimize
metmyoglobin formation and can inhibit oxidation. Myoglobin is responsible
for pigmentation. This prevents undesirable changes in quality and flavour
(Karre et al., 2013).

Pomegranate extract is a natural preservative used in ready-to-eat meats.
This is an alternative approach to control the growth of microorganisms while
working as both an antimicrobial and an antioxidant (Hayrapetyan et al., 2012).
Grape seed extract can be used on ready-to-eat meats such as chicken and beef
as a natural preservative. This acts as a natural antimicrobial by inhibiting the
growth and recontamination of L. monocytogenes activity on turkey frankfurters
(Sivarooban et al., 2007).

Antioxidants can indirectly extend the shelf life of meat products through
their applications in animal feed. The addition of dietary citrus pulp and grape
pomace in animal feed acts as a natural preservative by increasing antioxidant
activity and decreasing lipid oxidation (Tayengwa et al., 2020). The addition of
pomegranate peel powder into the feed for broiler birds led to an increased
antioxidant capacity and improved the quality of the chicken breast (Akuru et al.,
2020). The application of antioxidants in animal feed is a natural alternative to
retard oxidation in the food industry.

Phenolic acid is a polyphenol that can be extracted from fruit and
vegetables. In the food industry, phenolic acid controls rancidity, maintains
nutritional quality, extends the shelf life, and slows the formation of toxic
oxidation. Phenolic acid is used as an antimicrobial agent in food as it provides
a protective effect against deterioration which preserves the food and extends
the shelf life (Martillanes et al., 2017). Phenolic acid acts as a bio-preservative
by inhibiting oxidation and the growth of microorganisms. The phenolic
compounds in grape pomace enabled the inhibition of lipid oxidation in frozen
fish muscle (Pazos et al., 2005).

Flavonoids are a group of phytonutrients in fruit and vegetables which
are useful as a novel ingredient in many foods to fight against food spoilage
and extend the shelf life of perishable foods. Multigrain bread enriched with
onionskin powder has increased total phenols, flavonoids, and antioxidant
activity. The onionskin powder acts as a natural preservative and improves the
shelf life of the baked product by 11 days in ambient conditions and 13 days in
refrigerated conditions (Sagar and Pareek, 2021).

Passion fruit can be used as a preservative in the production of Coalho
cheese. Ground passion fruit inhibits microbial growth and can reduce Listeria
spp, Staphylococcus aureus, and lactic acid bacteria in the cheese. Therefore,
passion fruit is a natural bio-preservative that can be used on dairy products
to extend the shelf life by controlling pathogenic bacteria growth (Costa et al.,
2020).
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5.3 Application as edible films and coatings

Antioxidants can be used as protective active barriers when applied to the
surface to food products as edible coatings. Antioxidants such as phenolic acid
are used in packaging and edible films. This is important to reduce the negative
impact of oxygen on food. They are effective against enzymatic browning and
oxidative rancidity which can prolong the shelf life of food products due to their
antioxidant and antimicrobial potential. The application of bioactive packaging
will prolong the shelf life of food due to its antioxidant and antimicrobial
potential (Arcan and Yemenicioglu, 2011).

Red pitaya peel extract which is rich in betalains has been used to develop
an edible film. The pitaya peel extract was added to a starch/polyvinyl alcohol
matrix. The film enhances the water vapour barrier and UV-visible light barrier
while icing the antimicrobial and antioxidant activity. The film is used to extend
the shelf life of shrimp but can also be used on animal products (Qin et al.,
2020).

Date fruit syrup has been used to develop an edible gelatin film. The
date extract and gelatin film blend are used on oil to extend its shelf life. The
film increases phenolic compounds and antioxidant activity which enhances
its preservation properties (Rangaraj et al., 2021). Corn-starch gelatin film
enriched with mango peel and pulp and pineapple pomace has also been
used to make an edible film. The enrichment of the film improves properties
such as moisture content and thickness. Antioxidants, antimicrobial, and
phenolic content also increased. This biodegradable edible film can be used
on different food products in order to extend the shelf life (Susmitha et al.,
2021).

Fish gelatin films enriched with rowanberry, blue-berried honeysuckle, and
chokeberry pomace have been used to make an edible film. The enrichment
of the gelatin film with all extracts increased antimicrobial activity against
Escherichia coli, Pseudomonas fluorescens, S. aureus, and Listeria innocua
and the enrichment with blue-berried honeysuckle had the highest increase
in antioxidant activity due to its high anthocyanin content. This edible film can
be used on different food products to extend their shelf life (Staroszczyk et al.,
2020). Gelidium corneum gelatin blend films enriched with grapefruit seed
extract or green tea extract can be used as an edible film. This decreases the
population of bacteria on pork and improves the quality during storage (Hong
etal., 2009). Gelatin/polyethylene bilayer films incorporated with fruit peels such
as pomegranate, papaya, and jackfruit peel powders can be used as an edible
film. The enrichment of the film improved properties such as moisture content
and film thickness. Pomegranate peel powder had the highest antioxidant and
antimicrobial activity. This edible film can be used on different food products to
extend the shelf life (Nur Hanani et al., 2018).
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Chitosan coating containing pomegranate peel can be used as an edible
coating. The natural plant extract can be used to maintain the quality of apricot
fruit during refrigerated storage. This reduces fruit decay while increasing
antioxidant and carotenoid activity which extends the shelf life of the product
(Gull et al., 2021). A chitosan-pullulan coating enriched with pomegranate peel
has also been used on green bell pepper. This retained phenolicand antioxidant
properties while maintaining quality for 18 days. The natural edible coating
extended the shelf life and maintained quality (Kumar et al., 2021). A grape
seed extract has been incorporated into chitosan-gelatin coating to extend the
shelf life of pork. The edible coating reduced oxidation and microbial spoilage
during cold storage for 20 days. Antioxidant activity was also enhanced which
further preserves the meat product (Xiong et al., 2020).

5.4 Application as natural emulsifiers and stabilizers

Vitamin C is used in the food industry to inhibit the deterioration of highly
unsaturated fatty acids due to oxidation. Vitamin C is also added to products
to improve flavour, colour, and stability of products. It can also extend the shelf
life of products such as vegetable oils (Xiao and Li, 2020). Natural antioxidants
from fruits and vegetables can be used in edible oils to enhance stability.
This is by improving its hydrolytic stability leading to the inhibition of thermal
deterioration (Mohdaly et al., 2010).

Quince seed gum can be used as a stabilizer in an oil-in-water emulsion.
The stability of the emulsion increases as quince seed gum concentration
increases. This shows that quince seed gum is a promising natural emulsifier
and stabilizer for the food industry (Yao et al., 2021). Quince seed mucilage
powder can also be used as a stabilizer when added to yogurt. The quince seed
mucilage powder improved the quality and consistency of the yogurt product
as well as odour and flavour (Gurbuz et al., 2021).

Apple pomace can be used as a natural stabilizer when added to stirred
yogurt. The apple pomace stabilizes the yogurt while altering the structure.
The apple pomace also increases the yogurt product’s fibre and antioxidant
levels (Wang et al., 2020). Apples rich in polysaccharides can be used as an
emulsifier. The polysaccharides from Jinshihi’ apples compared to ‘Qinyang’
or 'Pinklady’ have the highest emulsifying capacity. This showed that Jinshihi’
polysaccharides have the most potential as a natural emulsifying agent for use
in the food industry (Hou et al., 2019).

Eggplant flesh pulp can be used as a natural emulsifier when added to
meatballs. The eggplant flesh pulp can stabilize oil-in-water emulsions due to
the presence of polysaccharides and the formation of a surface film adhering
to oil droplets. The concentration of the emulsifier is low compared to other
polysaccharide emulsions.Eggplantflesh pulpisanatural plant-based emulsifier
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that can be used in the food industry in emulsion-based foods and beverages
(Zhu et al., 2020). Black tomato pomace rich in polysaccharides can be used as
an emulsifier. The pectin can stabilize emulsions containing a 50% oil phase.
This is due to its ability to lower surface tension and increase viscosity. This
showed that black tomato pomace polysaccharides have the most potential as
a natural emulsifying agent for use in the food industry (Zhang et al., 2020a,b).

Pectin extracted from persimmon peel can be used as an emulsifier.
Persimmon peel pectin had improved emulsifying capacity compared to
commercial citrus pectin. Its increased stability is due to its acetyl group's
hydrophobicinteractions. Its antioxidant activity can also stabilize oil phase lipid
oxidation which can prevent lipid peroxidation. Therefore, persimmon peel
pectin is a natural polysaccharide emulsifier that can be used as an alternative
to commercial emulsifiers in the food industry (Jiang et al., 2020). Pectin
extracted from watermelon rind, citrus, or apples can be used as an emulsifier.
Watermelon rind pectin had improved emulsifying capacity compared to citrus
or apple pectin. Its structure and composition such as its high protein content
led to increased stability of oil droplets (Mendez et al., 2021). Therefore,
watermelon rind pectin is a natural emulsifier with potential applications in the
food industry. Pomegranate peel pectin with a high amount of ester groups
can be used as an emulsifier. The pectin can stabilize emulsions containing a
50% oil phase. This is due to its hydrophobic interactions, viscosity-enhancing
capacity, and the presence of protein fractions. Therefore, pomegranate peel
pectin is a natural emulsifier that can be used in the food industry (Yang et al.,
2018a,b).

5.5 Application as nutraceuticals

Nutraceuticals are substances that provide physiological benefits and are used
to improve health. An imbalance between free radicals and antioxidants in the
body leads to oxidative stress and inflammation. These damaging free radicals
contribute to the development of many chronic diseases such as CVD, cancer,
and inflammatory diseases (Pizzino et al., 2017).

Antioxidants found in many fruits and vegetables include flavonoids,
phenolic acids, and tannins (refer to section 2) which have many biological
effects (refer to section 4). Antioxidants protect against potentially damaging
free radicals by donating hydrogen to the lipid or peroxide free radical. This
inhibits cellular damage through preventing the formation or by its scavenging
activity (Lobo et al., 2010). Antioxidants play an important role in the prevention
of cardiovascular and neurological diseases caused by lipid peroxidation and
free radicals. Antioxidants can also reduce plasma levels of inflammatory
markers such as IL-6 and TNF-a (Kurutas, 2016). This occurs through a
decrease in lipid peroxidation and upregulation of antioxidant enzymes such
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as total antioxidant capacity while also decreasing oxidative stress and serum
malondialdehyde levels.

Flavonoids reduce oxidative stress and low-density lipoprotein oxidation
due to their antioxidant properties. This reduces tissue damage that leads
to diseases such as cancer, CVD, hypertension, and metabolic syndromes.
This includes anthocyanins, genistein, quercetin, and catechins. Similarly,
anthocyanins protect against damaging free radicals by preventing the
formation of prostaglandins linked to inflammation. Prostaglandins act like
messenger molecules in inflammation through the inhibition of the enzyme
cyclooxygenase (Levers et al., 2016). They can also reduce plasma levels of
inflammatory markers which occur through decreasing lipid peroxidation and
upregulating antioxidant enzymes while decreasing oxidative stress (Khoo
et al., 2017). This can help protect against many diseases such as CVD and
diabetes (Rechner and Kroner, 2005). Anthocyanins also have anti-carcinogen
effects as they induce apoptosis and inhibit tumour growth and metastasis
through the disruption of mitochondrial pathways and increased activation of
caspase 3 (Mantena et al., 2006). Their low toxicity makes them attractive for
use as a pharmacotherapeutic.

Phenolic acid has been linked to a reduction in cardiovascular and
neurodegenerative disease. Its phytochemical neuroprotective effects have
been found to prevent the neurotoxicity of cells by protecting neuron cells from
oxidative stress-induced neurotoxicity. This helps reduce neurodegenerative
disorders such as Alzheimer's disease (Kumar et al., 2012).

Carotenoids are powerful antioxidants that have many health benefits
including anticancer, anti-inflammatory, and antibacterial. They are known
for their free radical scavenging activity and for protecting the body from the
action of ROS by inhibiting oxidative stress. This lowers the risk of CVD, cancer,
and diabetes.

Carotenoid's antioxidant effects also lower the risk of osteoporosis. This is
by counteracting oxidative stress which stimulates osteoblastic bone formation
and inhibits osteoclastic bone resorption (Yamaguchi, 2012). Beta-carotene
is a type of carotenoid that protects the body from damaging free radicals
which lead to disease. This is through the inhibition of oxidation. Beta-carotene
aids the immune system and lowers the risk of chronic illnesses such as heart
disease and cancer. Oxidative stress is also linked with cognitive decline. The
antioxidants in beta-carotene can help prevent cognitive deterioration.

Vitamins are organic compounds required by the body for growth,
obtained through the diet. Vitamin C is a powerful antioxidant that protects
tissues, cell membranes, and DNA from oxidative stress. This is through its free
radical scavenging activity. It can reduce UVB-induced oxidative damage and
UVA-induced lipid peroxidation through decreasing oxidative stress and serum
malondialdehyde levels. Therefore, it can be used to treat hypertension and
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diabetes. Similarly, vitamin E is an antioxidant that can reduce the formation of
radical oxygen species, reduce free radicals, and reduce apoptotic cells which
protect the skin from UVB damage.

5.6 Other applications

Highly consumed foods can also be transformed into healthy foods by the
addition of natural antioxidants. This includes foods such as bread, juices,
and dairy products. Antioxidants are added to bakery products to control the
autoxidation of fats present in baked goods to extend the shelf life (Reddy
et al., 2005).

6 Conclusion

Fruits and vegetables are a rich source of numerous bioactive compounds such
as polyphenols, carotenoids, vitamins such as vitamin A, C, and E, selenium, and
zinc. The consumption of fruits and vegetables can reduce the risk of oxidative
damage and contribute towards health promotion. Substantial research
has shown the critical role oxidative stress and redox imbalance play in the
pathogenesis of several non-communicable diseases. Dietary antioxidants from
fruits and vegetables have emerged as promising preventatives and treatments.
Although the evidence regarding the benefits of dietary antioxidants in disease
in animal models and cell lines is convincing, clinical evidence regarding their
nutraceutical properties is lacking. Despite fruit and vegetable antioxidants
being natural products, these compounds are still pharmacological treatments.
The discrepancies seen between studies of the clinical benefits of dietary
antioxidants may be due to the administration, form, and dosage of these
substances. Further research should be conducted to establish an effective dose.

7 Where to look for further information
7.1 Further reading

e Jaiswal, A. K. (Ed.). (2020). Nutritional Composition and Antioxidant
Properties of Fruits and Vegetables. Academic Press.

e Nayik, G.A.and Gull, A. (Eds.). (2020). Antioxidants in Fruits: Properties and
Health Benefits. Springer.

e Nayik, G. A. and Gull, A. (Eds.). (2020). Antioxidants in Vegetables and
Nuts-Properties and Health Benefits. Springer.

e laura, A, Alvarez-Parrilla, E. and Gonzélez-Aguilar, G. A. (Eds.). (2009). Fruit
and Vegetable Phytochemicals: Chemistry, Nutritional Value and Stability.
John Wiley & Sons.
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7.2 Key journals

e Food Chemistry.

® Food Research International.

e Antioxidants.

e Trends in Food Science and Technology.

e Journal of Food Science and Technology.

e Critical Reviews in Food Science and Nutrition.
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1 Introduction

The demand for health-promoting ‘functional’ food compounds has been
increasing both from consumers in search of improved health and from industry
for phytochemicals as food additives and food supplements (Galanakis, 2012).
Many companies now include information on compounds with antioxidant
potential in food labelling as an indicator of the health-promoting properties
of their food products. The addition of bioactive compounds can even make
processed food richer in antioxidants than some fresh, unprocessed foods.
Nutraceuticals are compounds found naturally in foods that demonstrate
preventive and therapeutic effects against chronic diseases in particular (Brito
et al., 2021). In 2021, the nutraceutical market was worth US$382.51 billion
and is expected to reach US$722.49 billion by 2026, with an estimated growth
of 8.3% over the next 5 years (https://www.marketdataforecast.com/market
-reports/global-nutraceuticals-market). A range of nutraceutical supplements is
now available in the form of pills, capsules or liquids, some including phenolic
compounds (Shahidi, 2009). These compounds have been widely used in the
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pharmaceutical and health food industries as well as by the food industry, for
example, as natural food preservatives, dyes and additives (Kumar and Goel,
2019). In addition to their potential nutraceutical benefits, phenolics are used
as functional additives to enhance food quality (Galanakis, 2013), for example,
as microbial growth retardants and to inhibit lipid oxidation so as to extend
the shelf life of some processed foods (Galanakis, 2018). An area of growing
interest is cosmetics. As an example, grapes and their derivatives, including
grape-skin flour (Monteiro et al., 2021), have been identified as a source of
bioactive compounds with photoprotective potential against UV radiation and
potential use as a herbal cosmetic (Hu et al., 2017).

Anumber of studies have focused on obtaining bioactive compounds from
fruit and vegetable by-products (Galanakis, 2012). These include materials that
are usually discarded during domestic or industrial processing, for example,
peel, seeds and stems, as well as products falling below commercial standards,
either because they are of the incorrect size/shape or have cosmetic defects.
These discarded parts/products of plants may be important sources of bioactive
compounds such as biogenic amines (Lima et al., 2008; Monteiro et al., 2021),
carotenoids and phenolic compounds (Monaco et al., 2016). By-products from
processing fruits such as grapes, for example, can be a valuable source of
phytochemicals (Soto et al., 2015). Grape pomace (the pulpy residue left after
the juice has been extracted) can, for example, be turned into flour containing
varying levels of phenolic compounds depending on the genotype used.
Monteiro et al. (2021) found catechin (flavan-3-ol) and cyanidin 3,5-diglucoside
(anthocyanin) as the main compounds in grape pomace flour (Table 1).
However, even though food wastes are a source of valuable components, there
is still a need for technologies that can separate target compounds effectively
and turn them into stable and functional additives (Galanakis, 2012).

2 Characteristics of phenolic compounds: flavonoids and
non-flavonoids

Fruits and vegetables are sources of bioactive compounds such as provitamin
A (carotenoids), bioactive amines (melatonin and serotonin, among others) and
vitamin C. The antioxidant activity of foods depends particularly on the type
and content of phenolic compounds found in plant cells (Demiray et al., 2009;
Anyasi et al., 2018). Regular consumption of phenolic compounds has been
associated with a decrease in cardiovascular diseases, some types of cancer,
metabolic syndromes and diabetes, among other chronic diseases (Yeon et al.,
2015; Canadanovi¢-Brunet et al., 2017; Caleja et al., 2017).

Phenolic compounds show a diversity of structures, from simple molecules
to polyphenols. Phenolic compounds consist of one or more hydroxyl groups
bonded directly to an aromatic hydrocarbon ring (Swallah et al., 2020). Some
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phenolic compounds have simple molecular structures, such as gallic acid, or
they can be complex molecules (polyphenols), such as flavonoids, stilbenes,
anthocyanins or condensed tannins of high molecular weight (Balasundram
etal., 2006).

The antioxidant properties of phenolic compounds are attributed to the
presence of hydroxyl (OH) groups, which have the ability to bind to free radicals
present in the body, preventing damage to, or oxidation of, cellular components.
Free radical scavenging properties are generally influenced by chemical structure,
the position and number of the OH group, glycosylation or other forms of
substitution (Cai et al., 2006). The greater the number of dissociable OH groups in
the structure of the polyphenolic compound, the greater its activity as a H* donor
agent (Riihinen et al., 2008). This mechanism of action reduces lipid oxidation in
tissues, reducing the risk of developing pathologies such as atherosclerosis and
cancer (Ramarathnam et al., 1995). Phenolic compounds protect cells against the
harmful effects of reactive oxygen species (ROS) (Haminiuk et al., 2012) due to
their high redox potential and their ability to chelate metals (Ignat et al., 2011).

Phenolic compounds can be divided into two main subgroups:

1 flavonoids; and
2 non-flavonoids.

These are discussed in more detail below.

2.1 Flavonoids

Flavonoids can be divided into several classes according to the degree of
oxidation of the oxygen heterocycle:

o flavones;

e flavonols;

e jsoflavones;

® anthocyanins;

e proanthocyanidins; and
e flavanones.

As an example, quercetin, the main flavonol in our diet, is present in many fruits
and vegetables and is associated with the induction of apoptosis in cancer cells
(Niedzwiecki et al., 2016). It has also been found to have antioxidant and anti-
inflammatory properties in preventing diabetes and some neurodegenerative
diseases (Zizkova et al., 2017).

A sub-class of flavonoids that has attracted attention as nutraceuticals is
prenylated flavonoids. These molecules contain a flavonoid skeleton with
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a lipophilic prenyl side chain (prenyl, geranyl) (Yang et al., 2015). They have
been found to have antioxidant, antibacterial, estrogenic, anti-inflammatory
and anti-allergic properties (Gomez-Gomez et al., 2018). The largest sources of
prenylated flavonoids are leaves, roots and seeds of species of the Moraceae,
Leguminosae and Asteraceae families (Yang et al., 2015). Among prenylated
flavonoids, 8-prenylnaringenin stands out as a nutraceutical compound found
in hops and beer (Yang et al., 2015).

Some flavonoids, such as flavan-3-ols and their derivatives, have been
found to have neuroprotective properties (Grassi et al., 2015). These flavonoids
include catechin, epicatechin, epigallocatechin and epigallocatechin gallate
(Makkar et al., 2020). Catechin, epicatechin and proanthocyanidins are found in
white and red grapes, mainly in skin and seeds, and in products such as juices
and wines. In grapes (Vitis vinifera) grown in the Tuscan region (ltaly), levels of
catechin in seeds range from 60.3 (ISVRC1)to 205.7 mg/100 g (Montepulciano),
while in skin the content of resveratrol varies between 0.7 (AP SG 1) and
25.5 mg/100 g in the ‘Cabernet Sauvignon’ grape (lacopini et al., 2008).

Resveratrol is a stilbene able to scavenge free radicals (ROS and reactive
nitrogen species). In the Brazilian grape variety Vitis labrusca, levels of trans-
resveratrol were found to vary, depending on altitude as well as on annual
cultivation cycles (Gomes et al., 2021). de Oliveira et al. (2019) detected values
from 4.11 to 8.17 mg/kg in the Syrah grape cultivated in Brazilian tropical
regions (Bahia and Pernambuco). Gomez-Gomez et al. (2018) found levels of
0.5 mg/L of t-resveratrol in juice and wine produced from V. labrusca in Brazil.

2.2 Non-flavonoids

Along with flavonoids, phenolic compounds include simple phenols, phenolic
acids, coumarins, stilbenes, hydrolyzable and condensed tannins, lignans and
lignins. These abundant secondary metabolites are produced mainly from
L-phenylalanine and L-tyrosine via a shikimate pathway (Kumar and Goel, 2019)
(see Fig. 1).

Phenolic acids are divided into two main subgroups:

1 hydroxybenzoic acid; and
2 hydroxycinnamic acid.

These groups are distinguished by distinct carbon structures as well as the
positioning and number of OH groups in the aromatic ring. Hydroxybenzoic
acids are derived from benzoic acid with seven carbon atoms in the C6-C1
structure. Gallic, p-hydroxybenzoic, salicylic, ellagic, gentisic, protocatechuic,
synergic and vanillic acids are the main hydroxybenzoic acids and differ from
each other in the modification of the aromatic ring (Rashmi and Negi, 2020).
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Hydroxycinnamic acids are more abundant than hydroxybenzoic acids
in nature and occur generally in various conjugated forms. Hydroxycinnamic
acids include caffeic, p-coumaric, ferulic and sinapic acids. Vegetables tend to
have lower levels of hydroxycinnamic acids compared to fruits. Hydroxybenzoic
acids may be found in free form or in conjugates. Caffeic acid is commonly
found in fruits and vegetables. Caffeic and quinic acids may combine to form
chlorogenic acid which is present in many fruits and some vegetables (Clifford
etal., 2020).

Ferulic acid is associated with dietary fibre and may be linked by ester
bonds to hemicelluloses. One of the main dietary sources of ferulic acid is
wheat bran (5 mg/g) (Kroon et al., 1997). However, ferulic acid (4-hydroxy-3-
methoxycinnamic acid) can also be found in a variety of fruits and vegetables,
such as in Cantaloupe melon seeds (Vella et al., 2019a) and in Eureka lemon
pulp and peel (Table 1) (Dong et al., 2019). Like other phenolic compounds,
levels of ferulic acid are affected by the degree of ripening in fruit, making the
timing of harvesting a key factor in optimizing content (Table 1) (de Oliveira
et al., 2020; Gomes et al. (2021). Ferulic acid has been described as being
protective against ROS, thereby preventing disorders such as Alzheimer's
disease, diabetes (Chowdhury et al., 2019) and atherosclerosis (Gu et al., 2021),
making this a safe, effective and easily produced nutraceutical compound
(Zhao and Moghadasian, 2008).

Many fruits are rich in gallic acid, for example, Himalayan wild edible fruit
(Bhatt et al., 2017) (Table 1). In the ten fruits they analysed, Bhatt et al. (2017)
found that gallic acid was the main phenolic compound present, with levels
ranging from 5.88 (Ficus palmata) to 281.98 mg/100 g (Terminalia chebula).
In persimmon, for example, Park et al. (2008) found high levels of ferulic acid
and gallic acid which were associated with a lower risk of atherosclerosis
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in animal studies. Persimmon also contains high levels of p-coumaric acid
(Table 1) which is known to reduce the risk of stomach cancer by reducing the
formation of carcinogenic nitrosamines (Bhatt et al., 2017). It is important to
note that, as with other phenolic compounds, both ferulic acid and gallic acid
may induce toxic effects in in vitro cell models at high concentrations (Truzzi
etal., 2020).

Chlorogenic acid is considered a potent antioxidant with high
bioavailability, anti-inflammatory, antidiabetic and antihypertensive properties
as well as assisting in weight loss (Thom, 2007; Ong et al., 2013). A study of 100
species by Meinhart et al. (2017) found that yerba mate had the highest levels
of chlorogenic acid (Table 1), making it a good potential source of phenolic
compounds with antioxidant and nutraceutical potential. Chlorogenic acid
occurs at higher levels in the Solanaceae family of plants such as potatoes,
tomatoes and eggplant. Silarova et al. (2019) demonstrated that the levels of
chlorogenic acid in some eggplant cultivars increased on thermal processing
compared to the raw samples (Table 1). Uthumporn et al. (2015) demonstrated
thatthe use of 10-15% of eggplant flour in the formulation of cookies increased
phenolic content by up to 2.6-fold as well as increasing shelf-life (Table 1).

3 Effects of cultivation and post-harvest operations on
phenolic compounds

The phenolic content of fruits and vegetables depends on factors such as stage
of ripening and on storage conditions. Palafox-Carlos et al. (2012) found that
the contents of phenolic compounds in ‘Ataulfo’ mango pulp vary significantly
during the ripening process, with greater antioxidant activity in the pulp during
the second and third stages of ripening (Table 1). Similar results were found for
'Ub&’ mango pulp, where the accumulation of phenolic compounds was higher
in the third ripening stage (Oliveira et al., 2016). However, some authors have
reported that the content of phenolic compounds may decrease during post-
harvest ripening of mangoes (Table 1). According to Gentile et al. (2019), this
effect may be related to metabolic processes including hydrolysis of tannins
and the increased activity of polyphenol oxidase, typical of ripe fruit. Mango
peel, which is usually discarded, is a natural source of phenolic compounds
(such as flavonol O- and xanthone C-glycosides) which persist during post-
harvest storage (Berardini et al., 2005).

The functionality and stability of phytochemicals in the human body
depend not only on the quantity but also on the binding and/or on the
interaction of these compounds with other molecules, on their location in the
food matrix and on the presence of other bioactive compounds in fruits and
vegetables. Phytochemicals may be bound to cell membranes or be in free
form. Food processing operations such as heating or freezing can disrupt the
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cell membrane leading to the release of these membrane-bound compounds
and increased bioavailability.

The amount of phytochemicals retained in fruits and vegetables after
processing also depends on the stability of these compounds during
post-harvest processing. This is mainly dependent on the sensitivity of the
compounds to oxidation and/or isomerization (Leong and Oey, 2012). While
many fruits are eaten when fresh, most vegetables are usually consumed
after thermal processing to improve palatability, flavour and texture. Thermal
processes include boiling, frying, cooking and baking (using a traditional oven
or microwave) (Palermo et al., 2014). The advantages of cooking are inactivation
of microorganisms, promotion of the bioavailability of some nutrients and
reduction of anti-nutritional factors. However, there may be losses of some
bioactive compounds such as polyphenols depending on the type of cooking
(Mazzeo et al., 2011) in addition to the formation of undesirable compounds
(e.g. acrylamide) (van Boekel et al., 2010).

Recent studies demonstrate that thermal processing using high
temperatures can in some cases increase the nutritional value by releasing
bioactive compounds, resulting in an increase in antioxidant activity (Borges
etal., 2020). High temperatures disrupt cell membranes leading to the release
of phytochemicals and an increase in bioavailability (Lemmens et al., 2009;
Borges et al., 2020). In bananas (plantains and cooking bananas), for example,
boiling increases the content of secondary metabolites (Table 1) (Borges et al.,
2020).

However, changes in polyphenol content after thermal processing are
complex since these compounds have different structures and solubilities
influencing bioavailability. In carrots, for example, boiling results in significant
losses of total phenolic compounds (49%), mainly of phenolic acids, except for
p-coumaric acid (Mazzeo et al., 2011). Decreases in phenolic compounds may
be due to isomerization processes caused by high temperature, as described
in green tea by Wang and Ho (2009). These authors found a decrease in
epicatechin due to isomerization (alteration of carbon 2) and an increase in
catechin after thermal processing.

4 Phenolic compounds and COVID-19

In December 2019, the world became aware of a new coronavirus responsible
for acute respiratory syndrome coronavirus 2 (SARS-CoV-2), leading to a global
pandemic being declared by the World Health Organization, resulting in
over 160 million cases and over 3 million deaths by May 2021 (Cucinotta and
Vanelli, 2020; WHO, 2021). While vaccines are considered the main measure
to combat COVID-19, a potential secondary approach is to promote intake
of phytochemicals such as polyphenols which have been shown to increase
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general immunity to viral infections, particularly as they have fewer side effects
than many synthetic drugs (Fig. 2) (Chojnacka et al., 2020). There is evidence of
the ability of some polyphenols to boostimmune responses due to the antiviral,
antimicrobial, anti-inflammatory and cytotoxic effects of flavonoids (Gonzélez-
Gallego et al., 2010). According to Dhar and Bhattacharjee (2021), curcumin, a
naturally occurring polyphenol in Curcuma longa, may help to prevent COVID-
19 infections by blocking autophagosomes-lysosome fusion by stabilizing
pathogen-containing vacuoles and restricting genome replication.

Resveratrol, a triphenolic stilbene occurring in grapes and their by-products
(Gomez-Gomez et al., 2019), or pterostilbene (resveratrol analogue), can be
used as an adjuvanttherapy when combined with zincin preventing progression
to moderate-severe disease due to COVID-19 (Kelleni, 2021). Other flavonoids
such as quercetin and kaempferol have been tested by research groups around
the world in the treatment of SARS-CoV-2 by inhibiting the activity of the SARS
3-chymotrypsin protease (3CLpro), a vital enzyme related to the replication
of COVID-19 (Yang et al., 2020). Brito et al. (2021) have shown that quercetin
inhibits the entry of SARS-CoV into host cells, while Colunga Biancatelli et al.
(2020) report evidence that co-administration of vitamin C and quercetin exerts
a synergistic antiviral action.

Other polyphenols have been described as possible adjuvants in the
treatment of COVID-19, such as luteolin and catechins [(-)-epigallocatechin-
3-gallate  (EGCG), (-)-epicatechin-3-gallate, (-)-epigallocatechin  and
(-)-epicatechin] (Levy et al., 2020; Yang et al., 2020; Ghosh et al., 2020).
These alternatives may perhaps be safer as adjuvants in the treatment of
COVID-19 compared to some recommended drugs such as chloroquine and
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hydroxychloroquine which have been shown to have significant side effects
(Caponi etal., 2021; Melo et al., 2021).

5 Improving phenolic compounds in fruits and
vegetables

The availability of foods rich in bioactive compounds is essential in developing
countries since many families lack the financial resources to ensure a sufficient
and nutritionally balanced diet. Even in more affluent countries, dietary choices
are often poor, increasing rates of obesity and vulnerability to chronic diseases
such as diabetes, cardiovascular disease and cancer. This makes the supply of
antioxidant-rich foods an important public health issue.

Several studies, including those from our laboratory, have both been
investigating plant genotypes with a high content of bioactive compounds, as
well as the best ways to process these plant-based foods in a way that optimizes
the bioavailability of these compounds. One potential approach is the
controlled application of abiotic stress during post-harvest processing. These
stresses may be caused by various post-harvest processes used to prepare
food such as mechanical processing (e.g. cutting and peeling) or the use of
temperature, modified atmospheres or ultraviolet light for decontamination
and to extend shelf life (Santana-Gélvez et al., 2016; Santana-Galvez et al.,
2019). It has been found, for example, that mechanical processing (e.g. cutting
and shredding) can increase phenolic compounds in carrots by activating
the phenylpropanoid pathway (Jacobo-Veldzquez et al., 2015) The authors
observed that the phenolic content increases with the intensity of mechanical
processing (whole carrots <slices <shreds). This increased bioactivity after
injury has been used to produce a carrot powder rich in nutraceuticals which
can later be incorporated into products such as corn tortillas (Santana-Galvez
et al., 2016) and carrot sausages (Alvarado-Ramirez et al., 2018) increasing the
nutritional and nutraceutical quality of these foods (Santana-Gélvez et al., 2019).
An important factor is which parts of a plant have the greatest concentration of
phenolic compounds. Many fruits and vegetables, for example, contain high
levels of phenolic compounds in the peel. It has been found, for example,
that juices prepared with whole carrots (i.e. with intact skins) had higher levels
of chlorogenic acid (174%), compared to those made with peeled carrots.
Another important finding was that stored and bleached carrot juices showed
662% higher chlorogenic acid content (Table 1) (Santana-Galvez et al., 2019).

Anotherfocus of recentresearch has been bananas and plantains. In a study
of phenolic acids present in 22 genotypes of dessert and cooking bananas and
plantains, Borges et al. (2020) found the main compound to be gallic acid with
catechin being the main flavonoid present (Table 1). Catechin and quercetin
contributed most to the antioxidant activity of Musa spp. germplasm (Ferric
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Reducing Antioxidant Power: r=0.92 and 0.85; 1,1-diphenyl-2-picryl-hydrazil:
r=0.85 and 0.80; 2,2’-azinobis (3-ethylbenzothiazoline 6-sulfonate: r=0.78
and 0.77, P<0.05, respectively). The dessert banana ‘Ney Poovan’ and the
cooking bananas ‘Tiparot’ and 'Pelipita’ were found to have particularly high
concentrations of phenolic compounds (Borges et al., 2020). Musa spp. fruits
with light-coloured pulp were also found to have higher levels of flavonoids in
comparison with other antioxidant compounds: carotenoids and pro-vitamins
(Borges et al., 2019b). In addition, the peel was found to contain several
phenolic antioxidants in higher amounts than those found in the pulp (Table 1)
(Borges et al., 201%a/b, 2020).

These results were maintained even after thermal processing. The highest
concentrations of phenolic compounds were found in ripe fruits (stage 5 -
yellow with green) (Table 1). Differences in fruit firmness in Musa spp., even
within the same species, may also influence the content of phenolic compounds,
particularly after cooking (Borges et al., 2020). For example, cooking the less
firm ‘Pelipita’ (cooking banana) increased the availability of phenolic acids and
flavonoids (epigallocatechin and quercetin) compared to the firmer ‘D'Angola’
(plantain) (Borges et al., 2019b).

Cultivation practices can have a significant effect on phenolic content.
Gomes et al.(2021), for example, found that the use of 1 and 2 mmol L~ salicylic
acid (SA), a low-cost plant growth regulator, in the cultivation of ‘Niagara
Rosada’ table grape promoted an increase in the level of phenolic compounds,
especially chlorogenic and gallic acids, rutin, cyanidin-3,5-diglucoside and
3-O-glycoside delphinidin. The application of exogenous SA during pre-
harvest also promoted an increase in shelf-life, decreasing berry drop and
decay. Simdes et al. (2020) also found, for example, that delaying harvesting of
orange-fleshed sweet potatoes by 30-60 days improves visual quality, phenolic
compound content and antioxidant activity. On the other hand, cream-fleshed
sweet potatoes showed a decrease in total phenolic compounds if harvest was
delayed. Camu-camu fruit [Myrciaria dubia H. B. K. (McVough)] harvested from
88 to -116 days after anthesis (DAA) showed a linear decline in total phenolic
content over a 6-10-day storage period (Neves et al.,, 2017). The authors
recommended harvesting at 88 DAA and refrigeration for up to 5 days to
preserve antioxidant activity.

Post-harvest storage conditions and length also affect levels of antioxidant
compounds in fruits and vegetables. Most of the phenolic compounds in
mango fruit studied by Monribot-Villanueva et al. (2019) showed a reduction
in content during storage, except for gallic acid and (-)epicatechin in ‘Ataulfo’
mango peel (Table 1). A study by Galani et al. (2017) of 19 fruits and vegetables
found decreases in phenolic content during storage, though increases were
observed in the phenolic content of table grapes during storage (Gomes et al.,
2021).
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6 Summary and future trends

Safety regulations governing the use of synthetic antioxidants make natural
antioxidants from food sources such as fruits and vegetables an attractive
alternative. Optimizing their use requires a number of steps. These include
identification of sources of bioactive substances in particular types of fruit and
vegetable as well as identification of genotypes and/or cultivars in germplasm
banks with the highest levels of phenolic compounds for potential use in
genetic improvement programs. It also requires identifying the stages during
growth, cultivation or post-harvest processing at which concentrations may be
at their highest or at which appropriate interventions can enhance phenolic
content. Examples include the use of growth regulators during cultivation or
controlled application of stress during post-harvest processing to optimize
bioactive content and release.

This understanding will make it possible to design horticultural systems
focused on optimizing the nutraceutical properties of selected fruitand vegetable
cultivars and producing standardized raw material from fresh products or their
by-products from which nutraceutical compounds can be extracted for use as
food ingredients or in the development of nutraceutical supplements. In this
view, the full exploitation of the entire production chain during food elaboration,
such as the use of usually discarded by-products (e.g. peels), will involve rural
producers and industries. However, further research is needed in areas such as
the bioavailability of bioactive compounds, and more detailed dose-response
analyses are needed to validate the large-scale use of nutraceuticals. Research
has identified antiviral activity by phenolic compounds which suggests a more
immediate potential role in dealing with the ongoing COVID pandemic as well
as helping to protect the population from future viruses.

7 Where to look for further information

Soto-Hernandez, M., Garcia-Mateos, R. and Palma-Tenango, M. (2019). Plant
Physiological Aspects of Phenolic Compounds. IntechOpen, London, UK,
https://www.intechopen.com/books/7688.

The Food and Agriculture Organization of the United Nations (FAO) and
World Health Organization (WHO) offers several guidelines related to food
nutraceuticals and biofortification.

Biofortification of staple crops. WHO. https://www.who.int/elena/titles/
biofortification/en/.

FAO. https://agris.fao.org/agris-search/search.do?recordID=US20170004
5261.

The HarvestPlus programme (biofortification) https://www.harvestplus.org

https://www.harvestplus.org/biofortification-nutrition-revolution-now.
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1 Introduction

Medicinal plants and herbal medicines have traditionally been used for the
treatment of various diseases and disorders such as neurological ailments and
cancers, including as part of the centuries-old ‘Ayurveda’ system of medicine
in India (Umashanker and Shruti, 2011). Medicinal herbs have also been used
effectively as veterinary drugs for treatment of conditions such as mastitis and
foot and mouth diseases (Rahal et al., 2014). The World Health Organization
(WHO) has recorded 21 000 species of medicinal plants from around the world.
Among these, vegetables and fruits have been used as both a food source
and a natural source of medicinal compounds for thousands of years. Fruits
and vegetables are also a common source of carbohydrates, proteins, fiber,
vitamins, minerals and essential amino acids in providing a healthy diet (Murphy
etal, 2012; Bumgarner et al., 2012).

Recent advances in medical and nutrition sciences have highlighted the role
of phytonutrients from foods such as fruits and vegetables in boosting immune

http://dx.doi.org/10.19103/AS.2022.0101.04
© Burleigh Dodds Science Publishing Limited, 2022. All rights reserved.


http://dx.doi.org/10.19103/AS.2022.0101.04

70 Flavonoids in fruits and vegetables: chemical structure

function and preventing chronic diseases without the side effects associated with
synthetic drugs (Berger and Shenkin, 2006; Bagchi, 2006; Ramaa et al., 2006).
Nutraceuticals, a term first coined by Stephen DeFelice in 1989, are products
derived from food sources with health-promoting properties in addition to
meeting basic nutritional requirements (Chauhan et al., 2013; Ronis et al.,
2018). DeFelice defined a nutraceutical as ‘a food or it can be part of a food that
provides medical or health benefits, as well as the prevention and/or treatment of
a disease’ (Brower, 1998). An analysis by the Business Communication Company
suggests that the global nutraceutical market is expanding at a compound
annual growth rate of 7.5%, and from an estimated value of US$198.7 billion in
2016 could reach a value of US$285.0 billion by the end of 2021 (Golla, 2018).

Fruits and vegetables have been shown to contain varying amounts of
different nutraceutical compounds (Weingartner et al., 2009; Goff and Klee,
2006). Fruits and vegetables are sources of groups of phytochemicals such
as antioxidants, flavonoids and carotenoids (Goff and Klee, 2006). A range
of nutraceuticals have, for example, been found in fruits like berries, bananas
(Musa spp.), grapes (Vitis vinifera), watermelon (Citrullus lanatus), citrus
fruits like orange (Citrus sinensis) and lemon (Citrus limon) and vegetables
like tomato (Solanum lycopersicum), carrot (Daucus carota), bael (Aegle
marmelos), pomegranate (Punica granatum) and ginger (Zingiber officinale)
(Yao et al., 2004; Tikunov et al., 2010). Nutraceutical compounds in vegetable
crops include lycopene in tomatoes, curcumin in turmeric, gingerol in ginger,
organo-sulphur compounds in allium species, and omega-3 fatty acids in
cucurbitaceous vegetables. Harnly et al. (2006) analyzed 20 flavonoids from
more than 60 fruits and vegetable species collected from different regions of
the United States. They found limited seasonal variation in flavonoid content
with some exceptions, such as blueberry. Each fruit or vegetable contains a
unique combination of nutraceuticals and a diversity of fruits and vegetables
should be eaten to ensure the range of nutraceuticals needed to optimize
health benefits (Hayat et al., 2017; Sakthinathan and Nandhini, 2017).

This chapter provides an overview of flavonoids present in fruits and
vegetables. It reviews flavonoid chemical structure and groups. Groups of
flavonoids discussed are:

e flavones;

e flavonols;

e flavanones;

e flavanonols;

e jsoflavones;

® neoflavonoids;

e flavanols;

e anthocyanidins; and
e chalcones.
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The chapter concludes with a summary of the range of flavonoids in fruits and
vegetables and their role as nutraceuticals. An accompanying chapter looks in
more detail at modes of action in delivering health benefits (Box 1).

Box 1: Why we need flavonoids

A diet rich in plant foods benefits the body in many ways.
Phytonutrients like flavonoids have beneficial anti-inflammatory effects
and they protect your cells from oxidative damage that can lead to
disease. These dietary antioxidants can prevent the development of
cardiovascular disease, diabetes, cancer and cognitive diseases like
Alzheimer's and dementia.

2 Flavonoids

Flavonoids constitute one of the most significant groups of plant phenolics,
with about 9000 varieties of flavonoids identified from different plant sources
(Ahmad et al., 2015). Nobel laureate Albert Szent-Gyorgyi, who discovered
vitamin C, isolated flavonoids (proanthocyanidins) in the 1930s, which were
initially recognized as vitamin P. Flavonoids attracted particular attention from
researchers with the discovery of the French Paradox: the lower incidence
of cardio-vascular disease observed in the Mediterranean population
despite higher red wine consumption and a greater amount of saturated
fat in the average diet compared to other countries. This discrepancy was
increasingly linked to a higher consumption of fruits and vegetables containing
phytochemicals such as flavonoids (Tapas et al. 2008).

Flavonoids are a class of low molecular weight phenolic compounds that
are widely distributed in the plant kingdom. Flavonoid compounds are found in
parts of plants such as leaves and fruits and support plant growth (Pedro et al.,
2016; Tsuchiya, 2010; Ahmad et al., 2015; Panche et al., 2016). Many flavonoids
are easily recognized as flower pigments in most angiosperm families. However,
their occurrence is not restricted to flowers and can occur in many other parts
of plants (Dewick, 2009a,b).

Flavonoids have long been known to be synthesized in particular sites in
plants. In their work on pomegranates, for example, Kolar et al. (2021) found
the maximum concentration of flavonoids in the leaves and arils (which cover
seeds) with differing degrees of antioxidant activity associated with different
parts of plants. As well as being responsible for colour and aroma in flowers
and fruits to attract pollinators, flavonoids also play a role in spore germination,
growth and development of seedlings (Jorgensen, 1995; Griesbach, 2005;
Dias et al., 2021). Flavonoids also protect plants from different biotic and
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abiotic stresses, including as antimicrobial defensive compounds, and act as
a unique UV-filter (Takahashi and Ohnishi, 2004). Flavonoids have important
roles in frost hardiness, drought resistance and may play a functional role in
plant heat acclimation and freezing tolerance (Samanta et al., 2011).

Different vegetables, fruits and berries are good sources of anthocyanidins,
while parsley, celery and herbs are excellent sources of flavones (Crozier
et al., 2009). Genistein and daidzein are major isoflavones found in Genista
tinctoria, a Chinese medicinal herb, and other leguminous plants (Veitch,
2013). Flavonols such as quercetin, kaempferol, isorhamnetin and fisetin can be
commonly found throughout the plant kingdom (Babu et al., 2013). Hesperidin
and naringin are examples of flavanones mostly present in citrus fruits. Naringin
gives a bitter taste to grapefruit (Jung et al., 2006). Sources of anthocyanidins
and proanthocyanidins include cabbage, currants, barley, banana, berries
(strawberries, rasberries, cranberries, blueberries, blackberries), chocolate, tea
(black and green), wine, beer, spices, onions, plums, peas, grapes, peaches,
nuts (walnuts, peanuts, cashews, pistachio, almonds), mangoes and lentils
(Kruger et al., 2014).

As noted, given their range of function in plants and potential health-
promoting properties, flavonoids have become a growing subject of study as
shown by reviews by, for example, Dixon and Pasinetti (2010) and Panche et al.
(2016). This includes research on biological and health-promoting properties
(Kaleem and Ahmad, 2018; Dias et al., 2021).

3 Flavonoid chemical structure and groups

Flavonoids are the largest class of polyphenols. Chemically, they may be
defined as a group of polyphenolic compounds consisting of substances that
have two substituted benzene rings connected by a chain of three carbon atoms
and an oxygen bridge, as shown in Fig. 1. Their basic structure is a skeleton of
diphenylpropane, namely two benzene rings A and B (Fig. 1) linked by a three-
carbon chain that forms a closed pyran ring. The B ring is mainly attached to
position 2 of the C ring, but it can also bind in position 3 or 4.

Antioxidant and other properties depend both on structural characteristics
and the pattern of glycosylation (Babu et al., 2013; D'’Amelia et al., 2018; Dias
etal., 2021). The structural features of the B ring and the patterns of glycosylation
and hydroxylation of the three rings make flavonoids one of the larger and more
diversified groups of phytochemicals (Figure 2). The position of the catechol
B-ring on the pyran C-ring, and the number and position of hydroxy groups
on the catechol group of the B-ring, influence flavonoid antioxidant capacity
(D'’Amelia et al., 2018). The functional hydroxy groups in flavonoids can donate
electrons through resonance to stabilize free radicals and mediate antioxidant
protection (Samec et al., 2021).
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Basic skeleton

Figure 1 Basic structure of flavonoids.

Flavonoids are grouped according to the presence of different substituents
on the rings and the degree of ring saturation. They are frequently attached
with a sugar moiety to increase their water solubility (Stump and Conn, 1981).
Flavonoids have several subgroups, which include chalcones, flavones, flavonols
and isoflavones. Flavonoids can be subdivided into different subgroups
depending on the carbon of the C ring on which the B ring is attached, and the
degree of unsaturation and oxidation of the C ring. Flavonoids can be classified
into six major subgroups, based on their molecular structure. Flavonoids in
which the B ring is linked in position 3 of the ring C are called isoflavones and
those in which the B ring is linked in position 4 are called neoflavonoids. The
flavonoids in which the B ring is linked in position 2 can be further subdivided
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Figure 2 Structures of the major classes of flavonoids.
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into several subgroups on the basis of the structural features of the C ring.
These subgroups are:

e flavones;

e flavonols;

e flavanones;

e flavanonols;

e flavanols or catechins; and
e anthocyanins.

Finally, flavonoids with an open C ring are called chalcones (Andersen and
Markham, 2005; Panche et al., 2016; Kaleem and Ahmad, 2018; Samec
et al.,, 2021) (Fig. 2). Flavonoids within these subclasses play a beneficial and
sometimes key role in a number of physiological processes (Box 2).

Box 2

Flavonoids are plant compounds with a variety of health benefits.
There are six primary types of flavonoids, each with health-promoting
effects. These are:

e Flavonols

e Flavones

e Flavan-3-ols

e Flavanones

e Anthocyanidins
e |soflavones

The best way to obtain all six types of flavonoids is to consume a variety
of fruits and vegetables. Many plant-based foods and beverages
like tea and wine contain flavonoids. Numerous studies have shown
the many benefits of these phytonutrients. Researchers have found
that eating a diet rich in flavonoids reduces the risks of diabetes,
cardiovascular disease and some cancers.

4 Flavones and flavonols
4.1 Flavones

Flavones are one of the important subgroups of flavonoids and are widely
present in leaves, flowers and fruits as glucosides. Celery, parsley, red peppers,
chamomile, mint and Ginkgo biloba are among the major sources of flavones.
Luteolin, apigenin and tangeritin belong to this sub-class of flavonoids. The
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Figure 3 Structure and sources of flavones.

peel of citrus fruits is rich in the polymethoxylated flavones tageretin, nobiletin
and sinensetin (Manach et al., 2004).

Flavones have a double bond between positions 2 and 3 and a ketone in
position 4 of the C ring (Fig. 3). Most flavones of vegetables and fruits have a
hydroxyl group in position 5 of the Aring. Hydroxylation in other positions, for the
most part in position 7 of the A ring or 3 and 4 of the B ring, may vary according
to the taxonomic classification of the particular vegetable or fruit. Glycosylation
occurs primarily on positions 5 and 7, while methylation and acylation occur
on the hydroxyl groups of the B ring. Some flavones, such as nobiletin and
tangeretin, are polymethoxylated. Iwashina (2013) has reviewed the flavonoid
properties of five families newly incorporated into the order Caryophyllales.

4.2 Flavonols

Flavonols are flavonoids containing a ketone group. They are building blocks
of proanthocyanins. These compounds occur widely in a variety of fruits and
vegetables. The most studied flavonols are kaempferol, quercitin, myricetin
and fisetin. Onions, kale, lettuce, tomato, apple, grape and berries are good
sources (Fig. 4). Apart from fruits and vegetables, beverages such as tea and red
wine are also important sources of flavonols. Intake of flavonols is found to be
associated with a wide range of health benefits related to antioxidant potential,
including reduced risk of vascular disease. Compared to flavones, they have a
hydroxyl group in position 3 of the C ring, which may also be glycosylated. Like

Figure 4 Structure and sources of flavonols.
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flavones, flavonols are very diverse in methylation and hydroxylation patterns.
Given the different glycosylation patterns, they are perhaps the most common
and largest subgroup of flavonoids in fruits and vegetables. Quercitin, for
example, is present in many plant foods (lwashina, 2013).

5 Flavanones and flavanonols
5.1 Flavanones

Flavanones, also called dihydroflavonols, are another important class of
flavonoids generally present in citrus fruits, such as oranges, lemons and
grapes. Hesperitin, naringenin and eriodictyol are examples of this class of
flavonoids. These compounds are responsible for the bitter taste of the juice
and peel of citrus fruits (Fig. 5). Flavonones are associated with a number of
health benefits because of their free-radical scavenging properties. Citrus
flavonoids have antioxidant, anti-inflammatory, blood lipid- and cholesterol-
lowering properties. Flavanones have the saturated C ring (Fig. 5). Unlike
flavones, the double bond between positions 2 and 3 is saturated, and this is
the only structural difference between the two subgroups of flavonoids.

Flavanones can be multi-hydroxylated, and several hydroxyl groups can
be glycosylated or methylated or both. Some flavanones have unique patterns
of substitution, like furanoflavanones, prenylated flavanones, pyranoflavanones
or benzylated flavanones, giving a great number of substituted derivatives
(lwashina, 2013).

5.2 Flavanonols

Flavanonols, also called dihydroflavonols, are the 3-hydroxy derivatives of
flavanones. They are a highly diversified and multisubstituted subgroup
(Fig. 6). Flavanonols have been reported to be responsible for increasing
Bifidobacterium levels in patients, potentially correcting the dysbiosis
associated with systemic lupus erythematosus (Cuervo et al., 2015).
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Figure 5 Structure and sources of flavanones.
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3

Figure 6 Structure and sources of flavanonols.

6 Isoflavones and neoflavonoids
6.1 Isoflavones

Isoflavones, also known as isoflavonoids, are a large and very distinctive
subgroup of flavonoids. They are a subgroup of flavonoids in which the B
ring is attached to position 3 of the C ring. Isoflavonoids have only a limited
distribution in the plant kingdom and are predominantly found in soya beans
and other leguminous plants as well as non-plant sources (Matthies et al.,
2008) (Fig. 7). They play an important role as precursors for the development
of phytoalexins during plant-microbe interactions (Aoki et al., 2000; Dixon and
Ferreira, 2002).

Isoflavonoids have a chemical structure similar to the plant hormone
oestrogen and are therefore known as phytoestrogens. Isoflavones such as
genistein and daidzein are commonly regarded to be phytoestrogens because
of their oestrogenic activity in certain animal models, which has been shown to
influence various disease pathways (Szkudelska and Nogowski, 2007).

6.2 Neoflavonoids

While flavonoids have the 2-phenylchromen-4-one backbone, neoflavonoids
have the 4-phenylcoumarin backbone (C,;H,,0,) with no hydroxyl group

15" 12
substitution at position 2 (Fig. 8). The first neoflavone isolated from natural

Figure 7 Structure and sources of isoflavones.
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Figure 8 General structure of neoflavonoids.

sources was calophyllolide, isolated in 1951 from Calophyllum inophyllum
seeds (Linuma et al., 1987; Nishimura et al., 2000; Garazd et al., 2003).

There is evidence that neoflavonoids and tetrahydroquinolones exert
therapeutic effects such as the inhibition of activation of nuclear factor kappa-
light-chain-enhancer of activated B cells (NFkB), inhibition of aromatase activity
and inducing of QR1 expression, which are key factors in carcinogenesis
(Lugman et al., 2012). Neoflavonoids have also been reported to have anti-Tat
activity which inhibits HIV replication (Olmedo et al., 2017).

7 Flavanols, anthocyanidins and chalcones
7.1 Flavanols

Flavanols are also known to possess flavan-3-ols as the hydroxyl group is
almost always bound to position 3 of the C ring. They are also called catechins.
Unlike many flavonoids, there is no double bond between positions 2 and 3.
Another distinctive feature of flavonols is the lack of a carbonyl group, which
is a keto group, in position 4 which is present in flavanonols at position 3.
This particular chemical structure allows flavanols to have two chiral centres
in the molecule, on positions 2 and 3, and four possible diastereoisomers.
Epicatechin is the isomer with the cis configuration and catechin is the
isomer with the trans configuration. Each of these configurations has two
stereoisomers:

1 (+)-epicatechin and (—)-epicatechin
2 (+)-catechin and (-)-catechin

(+)-Catechin and (-)-epicatechin are the two isomers most often present in
edible plants.

Another important feature of flavanols, particularly of catechin and
epicatechin, is the ability to form polymers called proanthocyanidins or
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Figure 9 Structure and sources of flavanols.

condensed tannins. The name ‘proanthocyanidins’ is because an acid-catalyzed
cleavage produces anthocyanidins. Proanthocyanidins typically contain 2-60
monomers of flavanols. Monomeric and oligomeric flavanols (containing two
to seven monomers) are strong antioxidants (Fig. 9).

7.2 Anthocyanins

Anthocyanins are pigments responsible for colours in flowers and fruits.
Cyanidin, delphinidin, malvidin, pelargonidin and peonidin are the most
commonly studied anthocyanins. They occur predominantly in the outer cell
layers of various fruits such as cranberry, black currant, red grape, raspberry,
strawberry, blueberry, bilberry and blackberry (Fig. 10).

Anthocyanins are glycosides of anthocyanidins. Sugar units are bound
mostly to position 3 of the C ring and they are often conjugated with phenolic
acids such as ferulic acid (Fig. 10). Chemically, anthocyanidins are flavylium
cations and are generally present as chloride salts. They are the only group
of flavonoids that give plants colour (all other flavonoids are colourless).
Anthocyanidins show coloured pigments in highly oxidized form.

Their stability coupled with health benefits means they are used in the food
industry in a variety of applications (Vaccaro et al., 2017). Anthocyanins display
a wide range of biological activities including antioxidant, anti-inflammatory,
anti-microbial and anti-carcinogenic activities, as well as reducing the risk of
coronary heart disease (Khoo et al.,, 2017; Ciumarnean et al., 2020; Cassidy,
2018; Rolnik et al., 2020).

Anthocyanins include cyanidin, responsible for red to magenta colours;
delphinidin, responsible for purple to blue colours; and pelargonidin,
responsible for orange to pink colours. This colour differentiation is associated
with attracting different insects and other species for pollination. The presence
of a sugar moiety promotes changes in colour brightness. The most common
sugar is glucose with a B-linkage, but galactose, rhamnose and xylose are also
found. These sugar moieties can have acyl substituents, highlighting cinnamic
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Figure 10 Structure and sources of anthocyanins.

acyl derivatives, such as caffeic, ferulic and p-coumaric acids (Dias et al., 2021).
The colour of the anthocyanin depends on the pH and also on methylation or
acylation at the hydroxyl groups on the A and B rings (lwashina, 2013).

7.3 Chalcones

Chalcones are characterized by the absence of ‘ring C' of the basic flavonoid
skeleton structure, as shown in Fig. 11. They are also referred to as open-chain
flavonoids. Major examples of chalcones include phloridzin, arbutin, phloretin
and chalconaringenin. Chalcones occur in significant amounts in tomatoes,
pears, strawberries, bearberries and certain wheat products (Fig. 11). Chalcones
and their derivatives have attracted considerable attention because of their
numerous nutritional and biological benefits.

8 Conclusion

Figure 12 summarizes the main groups of flavonoids and their main fruit and
vegetable sources. Flavonoids found in different vegetables are shown in
Table 1. Flavonoids found in fruits are summarized in Table 2.

Figure 11 Structure and sources of chalcones.
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Flavonoids (Nutraceuticals) and their food resources
(Fruits, Vegetables)

FL.AVANO_LS
FLAVONOLS Enicatechi FLAVONES
ANTHOCYANINS Quercitin FLAVANONES Catechin, ISOFLAVONE Luteolin
Delphinidin ferol Hespereti Epic Genistein Apigenin
Cyanidin Fisetin Tangeretin gallate : Daidzeil i i
Pelargonidin Isorhamnetin Naringenin Ga.llotl:lateci:‘r:l',l. Isosinensetin
Cyanidin Myricetin Naringin Epigallocatechin Nobiletin
Delphinidin Hesperidin Epigallocatechin Tangeretin
Eriodicytol gallate Galangin
Chrysin
Baicalin
FOOD FOOD FOOD FOOD FOOD ROuE
RESOURCES RESOURCES RESOURCES RESOURCES RESOURCES RESOURCES
Cranberries, Cranberry, Orange, Tea, Cocoa, Soybeans Citrus fruits,
Grapes, Apple, Peaches, Mandarin, Raspberry, Lupine, Fava Green tea, Red
Blueberries Grapes, Red Lime, Apple, Red beans, pepper,
Raspberries, pepper, Grapes, grapes, Chickpeas, Lettuce,
Cherries, Plums, Lettuce, Lemon Nectarine, Common Broccoli,
Red Turnip, Broccoli, Kale, Peach Mango, beans, Kudzu Oregano,
Black beans, Endive, Pear, Plum roots, Peanuts Thyme,
Purple corn Potatoes, Rosemary,
Bilberries Onions, Peppermint,
Strawberries Tomatoes, Parsley
Blackberries Nuts, Tea
Red cabbage

Figure 12 Flavonoids and their food sources.

The protective value of antioxidants is expressed in terms of oxygen radical
absorption capacity (ORAC) units. The highest protection is achieved when our
daily diet provides 5000 ORACs. The intensity of colour is generally a good
indicator in determining the ORAC value, because the deeper the colour of a
fruit or vegetable, the higher its ORAC score (Bernaert et al., 2012). Hence, it is
advisable to include a range of highly coloured fruits and vegetables in the diet
to ensure a protective effect.

It is well known that the colour of fruits and vegetables is due to the
presence of the different types of pigments such as chlorophyll, anthocyanin
and carotenoids. In general terms, the darker the colour, the higher the content
of these compounds. A variety of vegetables such as asparagus, broccoli,
Brussels sprouts, Chinese cabbage, cucumber, green beans, green cabbage,
green onion, green peppers, lettuce, okra, peas and spinach can, for example,
be identified as a source of nutraceuticals because of their dark green colour
(Fig. 12).

Yellow and orange vegetables are rich in pigments such as lutein,
zeaxanthin, carotenoids, flavonoids, lycopene, potassium and vitamin C.
Zeaxanthin is one of the most common carotenoids in nature. It is synthesized
in plants and gives the characteristic colour to vegetables and fruits such as
paprika, corn and saffron. A red colour suggests the presence of anthocyanins
and lycopene, including red-coloured vegetables such as watermelon, tomato,
red spinach, red cabbage and carrot.
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White-coloured vegetables contain flavonoids like quercetin and
epicatechin. Examples include cauliflower, garlic, mushrooms, onions, potato,
shallots, turnips and radish. Blue/purple vegetables are rich in lutein, zeaxanthin,
resveratrol, vitamin C, fibre, flavonoids, ellagic acid and quercetin. Examples
include eggplant, purple asparagus, purple cabbage, purple onion, purple
broccoli, purple kohlrabi and purple broad bean. It is important to identify traits
associated with the presence and concentration of nutraceutical compounds
and use these in breeding cultivars with improved nutritional attributes through
conventional and molecular breeding approaches (Boxes 3 and 4) (Rai et al.,
2009).

Box 3: Fruits and vegetables high in flavonoids
nutraceuticals

Berries

All berries contain flavonoids, but certain varieties are more potent
than others. Blackberries are particularly powerful and include all six
types of flavonoids. Blueberries, cherries and raspberries also contain
allflavonoids. Strawberries have moderate amounts of anthocyanidins.

Red cabbage

Another great dietary source of anthocyanidins is red cabbage.
Aiithocyanidins, in particular, have been studied for their protective
effects against cancer, cardiovascular disease, diabetes and age
related cognitive disorders.

Onions

Onions form the basis for a multitude of cuisines, and it's no wonder
why. This humble vegetable is a powerhouse of nutrients and adds
flavor to any dish. Onions are a great source of flavonols, which can
reduce the risk of prostate cancer.

Kale

Another great source of flavonols is kale. Kale leaves make an excellent
base for salads and can be added to soups and stews to boost their
nutritional value. If you don't care for the taste, add kale in smoothies
and protein shakes to hide the taste.

Parsley

Parsley provides more flavonols in the American diet than any other
food. Parsley contains over 130 milligrams of flavonols per gram. Add
it to soups and sauces, or sprinkle over dishes before serving.
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Box 4: Fruits and vegetables high in flavonoids
nutraceuticals

Tea

The easiest way to add flavonoids to your diet is to drink tea. Green,
oolong and black teas all contain high levels of flavanols, which have
been studied for their benefits to cardiovascular and cognitive health.

Red wine

Another great source of flavanols is red wine. Red wine in moderation
has multiple health benefits, especially with lowering risks of
cardiovascular disease.

Dark chocolate

Chocolate and cocoa are both high in flavanols. Cocoa, in particular,
has been studied for its cognitive-boosting properties and its
protective effect on the cardiovascular system.

Citrus fruits

Citrus fruits like oranges, grapefruit, tangerines, lemons and
limes contain flavanones. Juicing these fruits results in even more
concentrated availability of these healthy plant compounds. You can
also squeeze fresh lemon or lime juice into ice water to add nutritional
value.

Soya beans

Soya beans come in a variety of different forms and are the best
source of isoflavones. Eating edamame, tofu, tempeh and soya sauce
are great ways to increase isoflavones in your diet. Isoflavones have
been studied for their protective effects against reproductive cancers
like breast, ovarian, prostate and testicular cancer.

85

Flavonols such as quercetin, kaempferol and myricetin are widely prevalent
in vegetables. Sources with abundant flavonols include onions, hot peppers,
kale, broccoli, rutabagas and spinach. Onions, lettuce, tomatoes, celery, hot
peppers, spring onions and broccoli are also major contributors of flavonol
compounds to the diet. Legumes are the only vegetables that contain flavan-
3-ol compounds, catechins and epicatechin. Many herbs, as well as edible
leaves, also contain high levels of flavonols and flavones. Parsley contains very
high amounts of apigenin, a flavone, while celery hearts and rutabagas are the
other vegetable sources of this type of flavonoid. The major contributors of
apigenintothe dietare parsley, celery and lettuce. Thyme is very high in luteolin,
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which is also present in beets, Brussels sprouts, cabbage and cauliflower. Major
contributors of luteolin to the diet include celery, chilli peppers, sweet pepper,
lettuce and spinach. Red potatoes and red onions are the only vegetables
containing anthocyanidins. Vegetables are not particular sources of flavanones,
except eriodictyol which is found in high amounts in peppermint (Haytowitz
et al., 2002).

Aclose relationship has been established between dietand chronic diseases
such as cardiovascular disease, diabetes, inflammatory and neurodegenerative
diseases as well as various types of cancer (Sandoval et al., 2020). As a result of
this link, compounds such as flavanones are increasingly viewed as nutraceutical
compounds for the prevention and treatment of chronic diseases (Tapas
et al., 2008; Panche et al., 2016; Golla, 2018). As has been noted, due to their
antioxidantand other properties, flavonoids have been linked to a range of health
benefits (Middleton, 1996; Panche et al., 2016). Flavonoids have been reported
to exhibit immuno-modulatory (Catoni et al., 2008), anti-carcinogenic (Knekt
et al., 2002), anti-allergenic (Liang et al., 2017) and anti-viral (Saravanan et al.,
2015) properties, particularly in chronic disease prevention (AlDrak et al., 2018).
Mechanisms of action include the production of lymphocyte, macrophages and
natural killer cells and are also found to increase phagocytosis and interferon
synthesis (Aghsaghali Mirzaei, 2012). These mechanisms of action are discussed
in more depth in an accompanying chapter.
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1 Introduction

Flavonoids constitute one of the most significant groups of plant phenolics, with
about 9000 varieties of flavonoids identified from different plant sources (Ahmad
etal. 2015). Figure 1 summarizes the main groups of flavonoids and common fruit
and vegetable sources. An accompanying chapter reviews the chemical structure
of flavonoids. This chapter focuses on the mechanisms of action of flavonoids in
delivering health benefits in preventing or treating a range of diseases.

The chapter first looks at the antioxidant properties of flavonoids and their
role in preventing auto-immune diseases. It then looks at the antimicrobial,
antifungal, and antiviral activity of flavonoids and their role in the treatment
of diabetes. The chapter goes on to discuss the anticancer properties of
flavonoids and their anti-neoplastic activity in tumour suppression. It also
reviews their role in preventing cardiovascular disease and anti-thrombogenic
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Flavonoids (Nutraceuticals) and their food resources
(Fruits, Vegetables)

FL_AVANO.IS
FLAVONOLS Epicatechin FLAVONES

ANTHOCYANINS Querditin FLAVANONES  Catechin, ISOFLAVONE Luteolin
Delphinidin K ferol pereti Epicatechin Genistein Apigenin
Cyanidin Fisetin Tangeretin gallate Daidzei si i

rgo h i Naringenin Gal 4 Isosinensetin
Cyanidin Myricetin Naringin Epigallocatechin Nobiletin
Delphinidin Hesperidin Epigallocatechin Tangeretin
Peonidin Eriodicytol gallate Galangin
Petunidin Chrysin
Malvidin Baicalin
FOOD FOOD FOOD FOOD FOOD EOOD
RESOURCES RESOURCES RESOURCES ~ RESOURCES RESOURCES RESULRCES
Cranberries, Cranberry, Orange, Tea, Cocoa, Soybeans Citrus fruits,
Grapes, Apple, Peaches, M_andarm, Raspberry, Lupine, Fava Green tea, Red
Blueberries Grapes, Red Lime, Apple, Red beans, pepper,
Raspberries, pepper, Grapes, grapes, Chickpeas, Leftiice,
Cherries, Plums, Lettuce, Lemon Nectarine, Common Broccoli,
Red Turnip, Broccoli, Kale, Peach Mango, beans, Kudzu Oregano,
Black beans, Endive, Pear, Plum roots, Peanuts Thyme,
Purple corn Potatoes, Rosemary,
Bilberries Onions, Eeppenniol
Strawberries Tomatoes, Parsley
Blackberries Nuts, Tea
Red cabbage

Figure 1 Flavonoids and their food sources.

activity of flavonoids, as well as their neuro-protective, anti-ulcerogenic, anti-
inflammatory, and hepato-protective activity. Finally, the chapter discusses
biotechnological approaches for the enhanced production of nutraceuticals in
fruits and vegetables.

2 Antioxidant properties and role in preventing auto-
immune diseases

Plant flavonoids are present in many fruits and vegetables as, for example,
flavones and catechins, which are important sources of antioxidants (Dias et al.
2021). The adverse effects of oxidative processes on organic molecules like
carbohydrates, lipids, DNA, and proteins in biological systems are reduced by
a wide range of nutraceuticals. It is well known that the presence of reactive
oxygen species (ROS) in the body has the capacity to damage DNA molecules
in cells. They are almost always present in the human body since they are
produced by cellular metabolism in response to toxic factors. Superoxide anion
radicals (O,), hydrogen peroxide (H,0,), hydroxyl radicals (OH), and singlet
oxygen (O,) are just some of the chemical products belonging to the ROS
family (Casciaro et al. 2017). Body cells and tissues are continuously threatened
by the damage caused by free radicals and ROS which are produced during
normal oxygen metabolism (De Groot 1994; Grace 1994). Free radicals and
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ROS have been implicated in a large number of human diseases (Wegener and
Fintelmann 1999; Ares and Outt 1998).

Antioxidant activity displays a double action by scavenging ROS and by
inhibiting oxidases (Dias et al. 2021). One important antioxidant is quercetin,
which scavenges highly reactive species such as peroxynitrite and hydroxyl
radicals. Genistein, an isoflavanone, is also reported as an important
antioxidant (Unnikrishnan et al. 2014). Antioxidants scavenge free radicals
by conjugating with glucuronic acid and glutathione with increased uridine
diphosphate glucuronosyl transferase (UDPGT) activity and glutathione
S-transferase activity, respectively (Ajiboye et al. 2011). The iron chelation
activity of quercetin works to reduce oxidative injury induced in the erythrocyte
membranes (Prochéazkova et al. 2011). This injury is induced by a number of
oxidizing agents such as phenyl hydrazine and acrolein. Some nutraceuticals
also demonstrate chelation with metal ions like copper and iron to reduce free
radical development.

Different diseases can also be prevented by the intake of antioxidants
in the form of flavonoids and other nutraceuticals in fruits and vegetables.
Consumption of flavonoids can help in the reduction of the risk of
chronic diseases like cancer, heart disease, liver disorders, diabetes, and
neurodegenerative diseases. (Cassidy 2018; Rodriguez-Garcia et al. 2019;
Ciumarnean et al. 2020). Interaction of biomolecules with antioxidants in
food enhances the activation of certain enzymes as well as inhibition of other
enzymes (Ajiboye et al. 2010). It has been reported that flavones and catechins
are the most powerful nutraceuticals for protecting the body against ROS.

Antioxidants like quercetin, kaempferol, apigenin, morin, myricetin, and
rutin have been shown to demonstrate anti-inflammatory, antiallergic, antiviral
as well as anticancer activities (Shukla et al. 2019; Ginwala et al. 2019; Tavsan
and Kayali 2019; Zakaryan et al. 2017; Lalani and Poh 2020). They have also
been suggested to play a protective role in liver diseases, cataracts, and
cardiovascular diseases. Quercetin and silybin, acting as free radical scavengers,
were shown to exert a protective effect on liver reperfusion ischaemic tissue
damage (Fraga et al. 1987).

In terms of dosage, the toxicity of flavonoids is very low in animals. For
rats, the LD50 is 2-10 g per animal for most nutraceutical compounds. As a
precaution, doses less than 1 mg per adult per day have been recommended
for humans (Stavric 1984). Dunnick and Hailey reported that high doses
of quercetin over several years might result in the formation of tumours
in mice (Dunnick and Hailey 1992). However, in other long-term studies,
no carcinogenicity was found (Plakas et al. 1985). Moreover, as described
elsewhere in this chapter, quercetin has been reported to be anti-mutagenic
in in vivo studies.
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2.1 Antioxidants in preventing auto-immune diseases

Antioxidant properties can play a crucial role in controlling auto-immune-
related abnormalities. The antioxidant mechanisms are linked to enzymes
which play an important role in neutralizing oxidative stress. Most of these
enzymes are common in fruits and vegetables. Oxidative stress is associated
with the pathogenesis of several auto-immune diseases. The precise details
of how the two pathways integrate with each other are not yet completely
understood (Wang et al. 2019; Ruggeri et al. 2016). Antioxidant mechanisms
involve enzymes which counterbalance ROS effects. The most studied of
these enzymes are superoxide dismutase (SOD), catalase (CAT), glutathione
peroxidase (GPx), and myeloperoxidase (MPO). These enzymes are involved in
the transformation of radicals into less harmful molecules.

In addition to enzymes, there are also some non-enzymatic and exogenous
molecules which reduce oxidative stress (Vaccaro et al. 2017; Cannavo et al.
2019). These include vitamins E and C, carotenoids, and flavonoids (Carr and
Maggini 2017). Most of these substances are responsible for the nutraceutical
properties of fruits and vegetables in reducing chronicillnesses and increasing
longevity (Martel et al. 2019). The efficacy of these exogenous antioxidants
has not completely been demonstrated in relation to the immune system.
Mannucci et al. (2021) observed that exogenous dietary supplementation
supports the treatment of diverse auto-immune disorders such as rheumatoid
arthritis, lupus, diabetes, and multiple sclerosis. Increasing consumption of
fruits and vegetables resulted in a significant reduction of oxidative stress
parameters.

3 Antimicrobial, antifungal and antiviral activity

The world is now facing a serious problem of antibiotic resistance which makes
several infections harder to treat. Research suggests that natural plant products
have antifungal, antiviral, and antibacterial properties (Atoui et al. 2005). Plant
extracts have been used to improve the human immune system to combat
disease (Vaquero et al. 2007). Plants from different species rich in nutraceuticals
have been found to exhibit enhanced antibacterial activity (Cushnie and Lamb
2005; Lalani and Poh 2020; Al Aboody and Mickymaray 2020; Redondo-Blanco
et al. 2020).

Numerous nutraceuticals such as apigenin, galangin, glycosides, flavones,
isoflavones, chalcones, flavanones, and flavonol have shown effective
antibacterial activity (Mishra et al. 2009; Xu and Lee 2001). Esters of phenolic
acids have also been found to possess antibacterial, antifungal, and antiviral
activities.
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3.1 Antimicrobial activity

Research has highlighted the antimicrobial properties of different nutraceuticals
such as quercetin, rutin, vanillic acid, gallic acid, and caffeic acid in suppressing
pathogenic micro-organisms (Ma et al. 2011). The antimicrobial activity of
naringin and quercetin has also been reported (El-Moez and Abdelmonem
2013). Quercetin has, for example, been reported to completely inhibit the
growth of the bacterium Staphylococcus aureus. Most flavanones having no
sugar moiety show antimicrobial activities whereas none of the flavonols and
flavonolignans tested have shown inhibitory activity against micro-organisms
(Havsteen 1983). Flavonoids show unique molecular activity in forming non-
specific bonding with proteins using, for example, hydrophobic, hydrogen, and
covalent bonding. There is also evidence that lipophilic flavonoids may also
disrupt microbial membranes (Xu and Lee 2001). Antimicrobial properties may
include minimizing microbial adhesion and intracellular transport proteins.

Nutraceuticals may also be effective against antibiotic-resistant bacteria.
The flavonoid myricetin has been shown to inhibit the growth of the multi-drug
resistant (MDR) bacteria Burkholderia cepacia (Xu and Lee 2001) due to the
inhibition of protein synthesis by B. cepacia (Kaul et al. 1985). Similar results
were observed in studying the effect of flavonoids such as quercetin on the
replication and infectivity of human viruses such as herpes simplex virus type 1
(HSV-1) and respiratory syncytial virus (RSV) (van Dam et al. 2013).

3.2 Antifungal activity

A number of nutraceuticals isolated from the peelings of tangerine orange have
been found to exhibit antifungal activity (Ben-Aziz 1947). The nutraceuticals
nobiletin and langeritin exhibited strong and weak antifungal activities,
respectively, while hesperidin stimulated fungal growth slightly. Chlorflavonin
was the first chlorine-containing flavonoid-type antifungal antibiotic produced
by strains of Aspergillus candidus (Tencate et al. 1973). Antifungal activities
have been reported in flavonoids such as neohesperidin, hesperidin, naringin,
and derivatives isolated from the citrus plants. These have been modified
enzymatically and are being studied on four types of fungal species that usually
contaminate food: Fusarium semitectum, Aspergillus parasiticus, Penicillium
expansum, and Aspergillus flavus. Mycelia growth of Penicillium expansum
is inhibited by the flavonoid hesperetin. Growth of Fusarium semitectum,
Aspergillus parasiticus, and Aspergillus flavus can also be inhibited by another
flavonoid called ‘prunin decanoate’ (Lackeman et al. 1986).

Huesken et al. (1995) reported that the growth of Aspergillusflavus is
affected by flavones extracted from Artemisia giraldii. Similarly, Eysenhardtia
texana has prenylated flavanones that work against Candida albicans (Bast et al.
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2007). Antifungal activity has also been reported in flavonoids extracted from
citrus fruits while bergamot peel is used to inhibit Saccharomyces cerevisiae
(Kontruck et al. 1986). A flavanol commonly present in propolis, a chemical
produced by bees, has the potential for use against moulds (Izzo et al. 1994).

Grapes are a rich source of nutraceuticals and their pomaces are used to
stop the growth of Zygosaccharomyces bailii and Zygosaccharomyces rouxii
(Murakami et al. 1992), Chilean grape pomace extract is reported to have
antifungal activity against Botrytis cinerea (Kim et al. 1993). Candida albicans can
be inhibited by extracts from Brazilian grapes which are widely known for their
flavonoid content (Gill et al. 1994). Flavonoids also enhanced the antifungal
action of fluconazole (an antifungal drug) (Hirano et al. 1994). Modes of action
for antifungal activity include induction of apoptosis, ROS accumulation, DNA
fragmentation, and mitochondrial damage.

3.3 Antiviral activity

Quercetin, morin, rutin, dihydroquercetin (taxifolin), apigenin, catechin, and
hesperidin have been reported to possess antiviral activity against several
types of viruses (Selway 1986; Zakaryan et al. 2017; Lalani and Poh 2020). The
antiviral activity appears to be associated with nonglycosidic compounds, with
hydroxylation at the 3-position apparently a prerequisite for antiviral activity. It
has been found that flavonols are more active than flavones against HSV-1and
the order of importance was galangin>kaempferol > quercetin (Thomas et al.
1988). A plant flavonoid polymer of molecular weight 2100 daltons was found
to have antiviral activity against two strains of type 1 and type 2 herpes simplex
viruses (Loewenstein 1979).

Because of the worldwide spread of HIV since the 1980s, the investigation
of the antiviral activity of flavonoids has mainly focused on HIV (Ng et al. 1997).
Out of twenty-eight flavonoids tested, flavones were found to be generally
more effective than flavanones in selective inhibition of HIV-1, HIV-2 and
similar immunodeficiency virus infections (Lalani and Poh 2020). Flavonoids
can block the binding and penetration of viruses into cells, interfere with
viral replication or translation, and prevent the release of the virus. Apigenin,
for example, was demonstrated to be active against several DNA and RNA
viruses, herpes simplex virus types 1 and 2, hepatitis C and B viruses, and the
African swine fever virus by suppressing viral protein synthesis (Yanez et al.
2013).

Kaempferol can also inhibit HIV replication in target cells (Behbahani et al.
2014) and block herpes simplex virus types 1 and 2 by attaching and entering
the host cell (Zakaryan etal.2017). The antiviral activity of quercetin, kaempferol,
and epigallocatechin gallate against several influenza virus strains was
demonstrated by Wu et al. (2015). It has been reported that nutraceuticals like
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hesperetin and hesperidin from citrus fruits work against Flavivirus proteases.
A number of viruses like dengue virus, yellow fever virus, and West Nile virus
belong to the genus Flavivirus. Eberle et al. (2021) found that hesperetin and
hesperidin were potentially effective in controlling these viruses. Numerous
laboratory studies have shown that certain flavonoids prevent cell replication of
H1N1 flu, HIV, SARS, and RSV viruses. Further research is needed to determine
how flavonoids work in the body against viruses, and whether they could be an
effective preventive measure.

4 Role in treatment of diabetes

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by
defective insulin secretion or function, or both. This disorder is prevalent
worldwide and has been reported in all age groups. It has been estimated that
its prevalence in all age groups may reach upto 4.4% globally by 2030. There
are two types of diabetes:

1 Type 1 diabetes is caused by the degradation of pancreatic - cells,
which results in lack of insulin in the body.

2 Type 2 diabetes occurs when the body becomes resistant to insulin or
the pancreas loses its ability to produce enough insulin.

It has been suggested that this disease can be treated by nutraceuticals found
in plants such as shamimin, daidzein, epicatechin, myricetin, epigallocatechin,
hesperidin, naringenin, hesperidin, chrysin, apigenin, genistein, kaempferol,
luteolin, and quercetin (Kaul and Ramarao 2001). It has been shown that
flavonoids inhibit the activity of the catalyst aldose reductase which converts
sugars to sugar alcohols (Tadera et al. 2006). Another study has also shown
the role of flavonoids in the inhibition of the enzymes a-glucosidase and
a-amylase, which are the key elements in carbohydrate digestion (Kobayashi
et al. 2000). The inhibition leads to suppression of carbohydrate digestion
which consequently affects glucose absorption with hypoglycaemic effects.

Quercetin is reported to have the ability to regenerate pancreaticislets and
also increases insulin release in streptozotocin-induced diabetic rats (Vessal
et al. 2003). It has also been reported that quercetin stimulates insulin release
and also enhances Ca,+ uptake from isolated islets cells (Hii and Howell 1984).
Nutraceuticals are also known to reduce hyperglycaemia by the interruption
of glucose absorption from the intestine. Catechin has been known to inhibit
the sodium-dependent glucose transporter SGLT1 (Cherukupalli et al. 2017).
Nutraceuticals may also retard the development of cataracts in individuals
with inborn errors in sugar metabolism such as diabetes by blocking aldose
reductase (van Dam et al. 2013).

© Burleigh Dodds Science Publishing Limited, 2022. All rights reserved.



100 Flavonoids in fruits and vegetables: mechanisms of action

5 Anticancer properties and anti-neoplastic activity in
tumour suppression

5.1 Anticancer properties

Cancer is a multifactorial heterogeneous chronic disease, which is the main
cause of death in some countries together with cardiovascular diseases and is
expected (according to some estimates) to increase by about 70% in the next
20 years. The disease has been related to dietary factors, including reduced
consumption of vegetables, limited physical activity and consumption of alcohol
and tobacco (Ruiz-Cruz et al. 2017). According to some studies, flavonoids
have pharmacological properties that inhibit cell damage (Benavente-Garcia
and Castillo 2008; Tavsan and Kayali 2019; Rodriguez-Garcia et al. 2019; Peter
et al. 2021). Herrera et al. (2009) has reviewed the potential of antioxidant
supplementation in inhibiting cancer risk in healthy subjects. Other research
suggests that antioxidants may have a role in treating cancer (Hollman and
Katan 1999).

Some animal studies have shown good results in the prevention and
treatment of various types of cancer using nutraceutical compounds, including
in inhibiting initiation, promotion, and progression of the disease. Flavonoids
can inactivate the carcinogen, inhibit cell proliferation, repair DNA processes,
and reduce oxidative stress at the initiation stage of cancer; they may also
exhibit antioxidant activity, induce apoptosis, and develop cytotoxic action
against cancer cells at the progression stage (Kozlowska and Szostal-Wegierek
2014; Sokolov et al. 2013; Dias et al. 2021). As inflammation is closely related to
tumour promotion, bioactive compounds like flavonoids are expected to exert
chemo preventive effects against carcinogenesis, especially in the promotion
and progression stages (Kang et al. 2011; Rodriguez-Garcia et al. 2019).

Consumption of flavonoid-rich foods has been reported to lower the
risk of cancer. Suggested mechanisms of action include cell cycle arrest,
inhibiting proliferation, antioxidation, and induction of apoptosis. Hela cells
treated with flavonoid extracts from Andrographis glandulosa exhibited loss of
mitochondrial membrane potential (MMP) and apoptosis. This cytotoxic activity
of flavonoid extracts makes them promising candidates for the production of
anticancer drugs (Majewska and Czeczot 2012). Flavonoids have the potential
to treat cancer at each stage of the disease (Sengupta et al. 2004).

It is necessary to identify and separate anticancer constituents from
plants for potential treatments (Matthies et al. 2008a,b). Scutellaria baicalensis
infusions have been reported to cause growth inhibition in several cancer
cell lines such as breast cancer, colon cancer, hepatocellular carcinoma, and
squamous cell carcinoma (Syed et al. 2011). Treatment of human melanoma
cells with the flavonol fisetin reduced cell viability by moderating G1 phase
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arrest(Funakoshi-Tago etal.2011). Al-Ishag etal.(2021) reported that flavonoids
from fruits and vegetables undergo enzymatic metabolism with the help of
microbiota available in the gut intestine which inhibits gastrointestinal cancer.
Sindhu et al. (2021) reported that nutraceuticals like flavan-3-Ol, procyanidin,
isoflavone, flavone, flavanol, flavanones, lignans, anthocyanidins, and catechin
all have anticancer properties and can be used in prevention and treatment of
breast cancer. The effect of these nutraceuticals as anticancer drugs differs with
the type of cancer, doses, and the cell lines.

5.2 Anti-neoplastic activity in tumour suppression

A number of flavonoids have exhibited anti-neoplastic activity. A number of
studies have shown that quercetin inhibits cell growth and colony formation
in tumours (Kontruck et al. 1986; lzzo et al. 1994; Murakami et al. 1992)
Flavonoids such as kaempferol, catechin, taxifolin, and fisetin can suppress the
cell growth (Kim et al. 1993; Gill et al. 1994). The screening studies carried out
for the anti-leukaemic efficacy of 28 natural and synthetic flavonoids on human
promyelocytic leukaemic HL-60 cells revealed that the isoflavone genistein
exhibited a particularly strong effect (Hirano et al. 1994; Wei et al. 1990).

6 Role in preventing cardiovascular disease and anti-
thrombogenic activity

Heart disease is a major cause of mortality worldwide and its prevalence has
been linked to patterns of fruit and vegetable consumption (Ruiz-Cruz et al.
2017). Studies have reported that flavonoids help reduce blood cholesterol
and glucose levels in humans. Sufficient intake of flavonoids has been reported
to reduce the effects of coronary heart disease (Bohn et al. 2012). Flavonoids
have been shown to reduce LDL cholesterol and regulate anti-inflammatory and
antioxidant activities (Novotny et al. 2015; Shukla et al. 2019; Dias et al. 2021).
The antioxidant and chelating properties of flavonoids inhibit or inactivate ROS,
which play an important role in the cardiovascular system (Benavente-Garcia
etal. 1997; Sokolov et al. 2013; Ciumarnean et al. 2020). Mechanisms of action
of flavonoids in preventing cardiovascular disease include improving coronary
vasodilatation, decreasing the ability of platelets in the blood to clot, preventing
LDLs from oxidizing, inhibiting inflammation propagation, anti-apoptotic, anti-
necrotic, free radical scavenging abilities, and effects on capillary blood vessel
(Benavente-Garcia etal. 1997; Arct and Pytkowska 2008; Soobrattee et al. 2005).
Flavonoids block the angiotensin-converting enzyme (ACE) that is responsible
for raising blood pressure. Platelet stickiness and aggregation are prevented
by blocking the cyclo-oxygenase enzyme that breaks down prostaglandins (van
Dam et al. 2013).
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Quercetin from cranberries can help lower blood pressure (Nichols and
Morimoto 2000). Flavonoids present in Camellia sinensis (tea plant) are known
to prevent cardiovascular diseases. Tea also contains flavonoids which reduce
levels of cholesterol in the blood, damage caused by oxidative stress, lower
blood pressure, and reduce inflammation. Many studies have suggested that
flavonoids in tea also elevate endothelial function (McCullough et al. 2012).
Specific hydroxyl (-OH) groups in isoflavones have been shown to be critical
in inhibiting phosphodiesterase isoenzymes (Mohan et al. 2014). This may
also explain the therapeutic effects of flavonoids on platelet aggregability and
blood pressure.

A study by Rice-Evans et al. (1996) on the link between intake of flavonoids
and risk of coronary heart disease showed that intake of natural flavonoids
can reduce the risk of cardiovascular diseases by a factor of 2.4. The study
suggested that antioxidant and anti-thrombotic properties contribute to this
improved protection. Ahmed (2021) reported that intake of nutraceuticals
available in fruits, vegetables, tea, coffee, and wine reduces risk factors
associated with heart disorders. Besides cardiovascular health benefits, they
also emphasized other health benefits like vasodilatory effects, prevention
of endothelial dysfunction, inhibition of platelets aggregation, and smooth
muscle cell proliferation along with antioxidant, anti-inflammatory, anti-obesity,
anti-diabetic, and anti-atherosclerotic effects.

6.1 Anti-thrombogenic activity

Plateletaggregation plays a pivotal role inthe physiology of thrombotic diseases.
Activated platelets adhering to vascular endothelium generate lipid peroxides
and oxygen-free radicals which inhibit the endothelial formation of prostacyclin
and nitrous oxide. Flavonoids such as quercetin, kaempferol, and myricetin
have been proved to be effective against platelet aggregation (Osman et al.
1998). Flavonols possess this anti-thrombotic property because they directly
scavenge free radicals and are thus able to maintain a proper concentration of
endothelial prostacyclin and nitric oxide (Gryglewski et al. 1987). Tea pigments,
for example, have been shown to reduce blood coagulability, increase
fibrinolysis, and prevent platelet adhesion and aggregation (Lou et al. 1989).

7 Neuro-protective activity

Flavonoids compounds have a broad range of biological activities including
antidepressant (Paulke et al. 2008), cytotoxic, anti-tumour (Murakami et al.
2004), antioxidant (Ali 2011), and anti-inflammatory (Araujo and Leon 2001;
De Felice 1995; Ginwala et al. 2019; Shukla et al. 2019) activities. The flavonoid
folecitin has been found to have neuro-protective effects (Farooq et al. 2021).
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Camomile (Matricaria recutita) flowers have been used for their relaxing
properties due to the presence of flavone apigenin (Jager and Saaby 2011).
Tanacetum parthenium commonly known as everfew has also been utilized for
the treatment of headaches (Aguirre-Hernandez et al. 2010). Tilia sp. such as
Linden blooms have been employed used as a tranquilizer, involving flavonols
such as kaempferol and quercetin (Saaby et al. 2009). Heather (Calluna vulgaris)
containing quercetin had been utilized as a nerve soothing agent (Fisher et al.
2006).

Cocoa flavonoid nutraceuticals have been identified as having neuro-
protective properties, including increased cerebral blood flow (CBF). Human
trials reported that a 900 mg/day treatment with cocoa for a week increased
CBF in grey matter (Buitrago-Lopez et al. 2011). A meta-analysis of three
individual studies with over 114 000 participants reported a reduction in risk of
stroke by 29% in consumers who consumed higher levels of chocolate (Salas
etal. 2011).

The consumption of flavonoids has been linked to neuro-protective effects
in preventing diseases related to the nervous system such as Alzheimer's
disease, Parkinson'’s disease, and dementia (Grassi et al. 2016). It has been
proposed that the neurobiological actions of flavonoids may occur in two
major ways (Sokolov et al. 2013):

e The first is regulation of neuronal signal cellular cascades, which are
caused by neurotoxic substances and may damage neurogenesis,
neuronal function, and brain connectivity.

¢ Second, flavonoids seem to improve blood flow towards the brain and
exert beneficial effects on the peripheral and central nervous system.

There is evidence that antioxidants from diets rich in flavonoids (at low
concentration) help to maintain human cognitive functions like memory, protect
vulnerable neurons, stimulate neuronal regeneration, and prevent oxidative
neuronal damage (Huntley 2009). Studies carried out in rats, for example,
showed that natural extracts rich in polyphenolic compounds improve cognitive
and other functions (Pandey and Rizvi 2009).

8 Anti-ulcerogenic, anti-inflammatory and hepato-
protective activity

8.1 Anti-ulcerogenic activity

Some studies suggest that flavonoids possess anti-ulcerogenic activity.
Flavonoids of Ocimum basilicum have been shown to decrease ulcer index as
well as inhibit gastric acid and pepsin secretions in rats (Alarcon et al. 1994).
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Quercetin, rutin, and kaempferol are reported to inhibit gastric damage (lzzo
etal. 1994).

8.2 Anti-inflammatory activity

Flavonoids also possess anti-inflammatory properties (Tanaka and Takahashi
2013 Maleki et al. 2019; Shukla et al. 2019). Fisetin, luteolin, and apigenin are
reported to have good anti-inflammatory properties. The anti-inflammatory
properties of fisetin have been shown to the diminish effects of asthma, a
disease caused by airway inflammation (Wang et al. 2011). In China and
Japan, most of the herbs used in medicines and infusions are obtained
from the roots of Scutellaria baicalensis. These roots have several groups of
flavonoids such as wogonin, baicalein, and baicalin. Scutellaria baicalensis
infusions have been used for hyperlipidemia, inflammatory diseases, allergies
and arteriosclerosis (Houghton et al. 2006). Of the 350 different species of
desmodium, 28 are found only in China (Dzoyem et al. 2013). These have
been used to isolate nearly 200 compounds, notably alkaloids and flavonoids
(Manthey 2000). Desmodium extracts with these compounds have been
found to have anti-inflammatory and other protective properties (Ma et al.
2011).

The anti-inflammatory properties of nutraceuticals involve the biosynthesis
of protein cytokines that moderate the attachment of circulating leukocytes
to the location of the injury. Some nutraceuticals are potent inhibitors of
synthesis of dominant pro-inflammatory molecules called ‘prostaglandins’
(Beretz and Cazenave 1988). Several nutraceuticals are involved in platelet
adhesion, aggregation, and secretion (Kumar and Pandey 2013). The effects
of nutraceuticals on platelets have been related to the carbon monoxide
prohibition of arachidonic acid metabolism (Sarris et al. 2013).

Flavone/flavonol glycosides and flavonoid aglycons have been reported
to exert significant anti-inflammatory activity in animal models (Lee et al.
1993; Hang et al. 2002). Hesperidin, a citrus flavonoid, possesses significant
anti-inflammatory and analgesic effects (Shahid et al. 1998). Nutraceuticals
like apigenin, luteolin, and quercetin have been reported to exhibit anti-
inflammatory activity (Farmica and Regelson 1995; Shukla et al. 2019; Ginwala
etal. 2019). A number of reports have been published which demonstrate that
flavonoids can modulate arachidonic acid metabolism via the inhibition of
cyclooxygenase (COX) and lipooxygenase activity (LO). It has been suggested
that the anti-inflammatory and antiallergic properties of flavonoids are the
consequence of their inhibitory actions on arachidonic acid metabolism
(Ferrandiz and Alcaraz 1991). Kaempferol, quercetin, myricetin, and fisetin were
reported to possess LO and COX-inhibitory activities (Kim et al. 1998; Jachak
2001).
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8.3 Hepato-protective activity

The liver is subject to acute and potentially lethal injury by several substances
including phalloidin (the toxic constituent of the mushroom, Amanita
phalloides), CCl,, galactosamine, ethanol, and other compounds. Flavonoids
have also been found to possess hepato-protective activity. In a study carried
out to investigate the flavonoid derivatives silymarin, apigenin, quercetin,
and naringenin, silymarin was found to be most effective against microcrystin
LR-induced hepatotoxicity (Di Carlo et al. 1993). The flavonoids rutin and
venoruton showed regenerative and hepato-protective effects in experimental
cirrhosis (Lorenz et al. 1994).

9 Biotechnological approaches for enhanced production
of nutraceuticals in fruits and vegetables

Various ways are being tried to enhance the production of plant secondary
metabolites such as flavonoids. The use of plant flavonoids is challenging
in part because they are generally found in low and variable concentrations
(Leonard et al. 2007; Chandra 2012).

Biotechnological approaches such as metabolic engineering and plant cell
and tissue culture techniques provide the potential for improved production of
secondary metabolites in plants for drug production (Verpoorte and Memelink
2002). Challenges in the use of biotechnological techniques include screening,
identification, and selection of high-yielding secondary metabolites, plant cell
immobilization, culture media composition, optimizing parameters to ensure
a high yield of secondary metabolites, elicitation techniques, large-scale
cultivation, and production using bioreactor systems (Halder et al. 2019).

Many approaches can be applied such as over-expression of regulatory
genes, reducing competitive pathways, overcoming rate-limiting steps, and so
on. Metabolic engineering is an emerging technique for enhanced production
of a specific secondary metabolite. Several methods are being used for
altering genes, enzymes, and proteins involved in the synthesis of a metabolite.
Competitive pathways can be blocked by anti-sense genes which result in
higher production of desired secondary metabolites (Verpoorte et al. 2000).

Utilizing micro-organisms for over-expression of a plant gene is one
method, involving bioconversion of precursors into desired chemicals (Howat
et al. 2014). Cell and tissue culture is another approach for the extraction of
target chemical compounds for drug production (Amer 2018). However,
there are problems associated with plant cell culture which include genetic
instabilities, slow and variable culture growth as well as increased susceptibility
to stress and aggregation (Lee et al. 2010). The problem has been addressed
by the initiation of culture using undifferentiated cambial meristematic cells

© Burleigh Dodds Science Publishing Limited, 2022. All rights reserved.



106 Flavonoids in fruits and vegetables: mechanisms of action

(CMC), which are multipotent with stem-cell-like properties rather than being
dedifferentiated cells (DDC) (Zhang et al. 2006). The utilization of CMCs can
provide a strong foundation for future metabolic engineering strategies in
flavonoid biosynthesis.

Another novel approach is biochemical synthesis using micro-organisms
(Chandra 2012). Both yeast and bacteria have been used as model organisms
for bioreactor-based flavonoid production (Chemler et al. 2006). The gut
bacteria Escherichia coli and the bread and wine yeast Saccharomyces
cerevisiae (Beekwilder et al. 2006) have been utilized for the biosynthesis of
different flavonoids. This has been made possible through the simultaneous
co-expression of several downstream enzymatic activities in a flavanone
biosynthetic pathway (Sut et al. 2016). Fowler and Koffas (2009) have reported
that flavonoid nutraceuticals can be derived from micro-organisms, with a
focus on heterologous protein expression. Such processes appear as attractive
production alternatives for the commercial synthesis of these high-value
compounds.

Olaiya et al. (2015) have highlighted the use of plant hormones. They
also reported that manipulation in soilless culture solutions can promote the
antioxidant content of tomatoes, including vitamin C, flavonoids, lycopene,
and B-carotene. In addition, the spraying of nutrients such as potassium in field
conditions has a strong stimulatory effect on the lycopene content of tomatoes.

Transgenic technology offers a rapid way to develop desirable traits. An
important trend is the shift from enhancing single nutritional compounds
towards enhancing multiple nutrients and phytochemicals in order to harness
their synergistic interactions. This could be achieved by the use of strategies
having pleiotropic effects such as bio-regulators and multigene engineering.
However, the full potential of these technologies has yet to be realized.

Biotechnological approaches using hairy root culture have greatly
enhanced the production of flavonoid compounds without the loss of
concentration frequently observed in cell suspension cultures. Because hairy
roots originate from a single plant cell infection by Agrobacterium rhizogenes,
they are usually considered genetically stable. Nanoparticles also offer a new
strategy in enhancing secondary metabolite production. However, further
research is required to elucidate the effects of nanoparticles in the mechanisms
of secondary metabolite synthesis in medicinal plants.

Elicitation is also one of the widely used methods for accelerating the
process of biosynthesis and yield of secondary metabolites (Ramakrishna
and Ravishankar 2011; Wang and Wu 2013). In this method, different types of
elicitors are used. These molecules possess the ability to induce or enhance the
biosynthesis of specific secondary metabolites (Namdeo 2007; Ramakrishna
and Ravishankar 2011; Wang and Wu 2013). The use of precise parameters
impacts the elicitation process and consequently determines the effectiveness

© Burleigh Dodds Science Publishing Limited, 2022. All rights reserved.



Flavonoids in fruits and vegetables: mechanisms of action 107

of the technique (Kaur and Pati 2018; Dhiman et al. 2018; Naik and Al-Khayri
2016). These parameters include elicitor type, concentrations, duration of
exposure, treatment schedule, culture type, cell line, medium composition,
presence or absence of growth regulation, and age or stage of the culture
at the time of elicitor treatment. These elicitors act as signalling molecules.
They initiate the elicitation process through interaction with elicitor-specific
receptors present on the plant cell membrane which ultimately initiate the
signal transduction. This in turn changes the expression levels of the regulatory
transcription factors/genes of the specific secondary metabolic pathway,
resulting in increased synthesis of secondary metabolites (Wang and Wu 2013;
Vasconsuelo and Boland 2007; Mishra et al. 2012; Zhai et al. 2016).

10 Conclusion and future trends in research

As populations become more affluent and live longer, there is a growing
burden of chronic diseases including cancer, cardiovascular disease, diabetes,
hypertension, arthritis, obesity, and allergy. Nutraceutical compounds such
as flavonoids have been found to have bioactive properties such as anti-
inflammatory, anticancer, anti-ageing, cardio-protective, neuro-protective,
immune-modulatory, anti-diabetic, anti-parasitic, and antiviral properties (Saini
et al. 2017; Jucé et al. 2020; Fraga et al. 2019; Shukla et al. 2019; Sandoval
et al. 2020) (Fig. 2) (Box 1). From physiological to psychological health,
nutraceuticals have the potential to not only treat a wide array of illnesses
but also boost energy, relieve anxiety, improve overall health, reduce the
effects of ageing and enhance sleep quality. Nutraceuticals can be used as an
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Figure 2 Flavonoids and their possible therapeutic applications.
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additional treatment alongside more conventional therapies. Consumers are
attracted to the use of flavonoids and other nutraceuticals as an alternative or
complementary treatment to conventional synthetic pharmaceuticals in the
prevention and treatment of these chronic diseases. As a result, an Assocham
report in 2018 predicted the Indian nutraceuticals market alone could grow
from US$4 billion in 2017 to US$18 billion in 2025. The use of nutraceuticals
as a complementary therapy may, for example, be beneficial in the prevention
and management of COVID-19. The main nutraceuticals under evaluation for
their potential preventive and treatment uses are zinc, vitamin C, vitamin D,
selenium, glutathione, curcumin, and omega-3 fatty acid.

Box 1: Other health benefits flavonoids/
nutraceuticals

Cancer prevention

Apublished review of all flavonoid studies over eleven years concluded
that a diet rich in flavonoids leads to a reduced risk of several different
cancers. These studies indicate the antioxidant activity of flavonoids
protect against breast, prostate, and colorectal cancers.

It's important to note that these studies suggest that different
flavonoids have a protective effect against specific cancer types. For
example, anthocyanidins decrease lung cancer risk, while flavonols
reduce the risk of prostate cancer. Therefore, it's best to consume
various plant food sources to obtain different flavonoid subtypes.

Another medical review evaluated the anti-inflammatory and pain-
relieving properties of flavonoids, as demonstrated in several studies.
Studies have shown that flavonoids reduce the cellular response to
pain. Researchers believe flavonoids could be used medicinally to
manage chronic pain and treat inflammatory diseases.

Treatment for viral infections

Flavonoids have proven antibacterial and antiviral effects. Numerous
laboratory studies have shown that certain flavonoids prevent cell
replication of HIM1 flu, HIV, SARS, and RSV viruses. Further research is
needed to determine how flavonoids work in the body against viruses,
and whether they could be an effective preventative measure.

It has been suggested that a diet rich in bright fruits and vegetables like grapes,
carrots, and sweet potatoes could cut the risk of many neurological disorders
including Alzheimer’s disease. A 20-year study tracking 77 000 older people
found that those who ate most yellow and orange fruits and vegetables were
38% less likely to suffer mental decline (Baroni et al. 2021; Krikorian et al.
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2010). Resveratrol in grapes is known to promote anti-ageing effects and
protect against B-amyloid peptide formation in the brain and it can increase
the expression of nuclear factor-related genes which has neuro-protective
effects (Lee et al. 2017; Buendia et al. 2016). Consumption of grapes can also
create positive effects on cognitive health including the modulation of CBF, the
modulation of glucose metabolism, and the inhibition of monoamine oxidase
(MAOQ) activity (Haskell-Ramsay et al. 2017).

Berries contain large amounts of anthocyanins, flavonols (such as
quercetin, myricetin, and kaempferol), proanthocyanidins, ellagitannins,
and phenolic acids (Rajaram et al. 2019). Blackberries are a particularly rich
source of anthocyanins and flavonols. Research has shown that consumption
of blackberries helps in the restoration of memory (Haskell-Ramsay et al.
2017; Bell et al. 2015). Their beneficial effects have been attributed not only
to their antioxidant action but also to a decrease in blood pressure, mitigation
of neuroinflammation, protection against cardiovascular risk, interaction with
gut microbiota, increased neurogenesis, and modulated glucose regulation
(Rajaram et al. 2019; Haskell-Ramsay et al. 2017). High intake of blueberries,
blackberries, and cherries has been associated with a 24% reduced risk of
memory loss while apples or a handful of strawberries cut the risk by 20% (Kent
etal.2017). Consumption of cherry juices has been shown to improve memory,
learning, visual attention, and verbal fluency in older adults (Kent et al. 2017).
Cherries have been shown to scavenge free radicals, to have anti-inflammatory
effects, and to improve antioxidant defences in older adults (Kent et al. 2017).

Pomegranates are rich in anthocyanins and hydrolyzable tannins, especially
glycosides of ellagic acid (Rajaram et al. 2019). Oranges are a rich source of
flavanones (hesperidin) and flavonols (rutin and quercetin). Rutin has been
shown to decrease and reverse amyloid B-protein fragment fibril formation
and in vitro aggregation, prevent mitochondrial damage, reduce OxS marker
generation, and enhance antioxidant enzymes. Orange juice appears to benefit
cognitive functions and psychomotor performance across age groups (Bell
et al. 2015). Apples provide quercetin, glycosides, and epicatechin (Bondonno
et al. 2014). Supplementation with apple juice could help maintain cognitive
performance (Bondonno et al. 2014).

Onion is an excellent source of flavonoids, particularly quercetin. It has
neuro-protective and anti-dysglycemic effects. It has been suggested that the
ingestion of quercetin-rich onions improves cognitive function and reduces
cognitive decline in elderly people (Balakrishnan et al. 2021).

Looking to the future, although some information is available on the number
of flavonoids in different fruits and vegetables, we still need more data on
concentrations in different plants. More clinical trials are necessary to generate
reliable data to validate therapeutic applications of flavonoids. There needs to
be mechanism and physiological functions, side effects and shelf life. Challenges
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include the need to accurately test the efficacy and safety of such chemical
compounds, identify their exact mode of action, evaluate their bioavailability,
and study possible interactions with various body organs and systems.
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1 Introduction

Glucosinolates (GLs) belong to a wide range of secondary metabolites found
in plants that have nutritional and physiologically active properties. They are
mainly found in the Brassicaceae family, more common in edible plants such
as broccoli, cabbage, cauliflower, rapeseed, etc. These sulphur-containing
compounds are responsible for the pungent aromas and tastes of the Brassica
genera and have been found to have anticancer, antimicrobial, anti-viral, anti-
mutagenic, and anti-inflammatory effects along with decreasing the risk of
cardiovascular disease (Putnik et al., 2019). Over 130 GL structures have been
discovered and validated to date, and some common GLs include gluconapin,
epiprogoitrin, and glucobrassicin (Blazevi¢ et al., 2020).

GLs are anions (B-thioglycoside N-hydroxysulphates) with a side chain
(R) of alkyl, aralkyl, or indolyl and a sulphur linked B-d-glucopyranose moiety
(Fig. 1) (Dini, 2018). Side-chain modification of the amino acid precursors prior
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to the GLs formation and a wide range of secondary modifications, including
oxidation, sulfation, hydroxylation, methoxylation, and glucosylation, as well
as substitutions with acyl conjugation on the sugar moieties, are responsible
for the high number of different GLs. GLs can be classified into three groups:
aliphatics, aromatics, and indoles. Classification comes from the R chain of
the compound which is derived from one of eight amino acids of the plant
(aliphatic such as alanine, leucine, isoleucine, methionine, or valine; aromatic
such as phenylalanine or tyrosine; or indole such as tryptophan) (Prieto et al.,
2019).

GLs are hydrolyzed by the enzyme myrosinase (EC 3.2.1.147); when the
plant tissue is injured, a protective response is induced by the plant which
increases GLs content. While in the presence of water, myrosinase cleaves a
glucose group from the GLs to form an isothiocyanate (ITC), a thiocyanate,
or a nitrile (unstable aglucones) (Blazevi¢ et al., 2020). Myrosinases cleave
the thioglucosidic bond as part of a two-step process. In the first step, at the
anomeric carbon, a nucleophilic attack by a glutamic acid (Glu) residue in the
enzyme liberates the aglucone. The glucose group is now covalently bound
to the active site of the Glu residue of the enzyme. In the second step, the free
enzyme is then restored by hydrolysis by the Glu-glucose bond aided by the
activation of a water molecule (Blazevi¢ et al., 2020). These breakdown products
have a protective effect on the plant but are also responsible for, along with
their precursor GLs, the beneficial health effects associated with the Brassica
plants (Lachance et al., 2020).

In this chapter, we have presented brief information on the natural source,
recent advances in potential health effects of GLs, and its breakdown products
together with antinutritional properties of GLs.

Figure 1 Generic structure diagram of a GL (the side group R varies).
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2 Natural sources

GLs are secondary metabolites produced by the selected group of plants mostly
occurring in the order Brassicales. Families of this order include Moringaceae,
Cleomaceae, Limnathaceae, Caricaceae, Capparidaceae, and Brassicaceae
(Blazevi¢ et al., 2015). Of these families, Brassicaceae is the most studied
GL-producing group due to its economic importance. Well-known species of
this family are broccoli, cabbage, kale, cauliflower, and turnip, vegetables that
are grown and consumed across the globe. Outside the Brassica genus, GLs
are produced by some plants of the Putranjivaceae, Violaceae, Euphorbiaceae,
and Rubiaceae families (Blazevi¢ et al., 2015).

GLs are derivatives of cyanogenic glucosides. These glucosides are found
in many plants; however, not all plants possess the biochemical pathway for the
conversion of cyanogenic glucosides into GLs. Along with this, different species
and genera produce different types of GLs depending on the modification
of the side chain due to S-oxygenation, alkenylation, hydroxylation, and acyl
substitution on the sugar moieties (Tacer-Caba, 2019).

The concentrations of the different GLs found in the plants are dependent
on factors such as the variety of plants, genetics, plant nutrition, and the
environment. GL levels within the plants differ between individual parts of the
plant. Seeds, roots, leaves, and stems of a plant all contain different levels of
GLs. The youngest tissues of a plant, especially seeds, have the highest GL
levels (Tacer-Caba, 2019). Liu et al. (2020) found that in Brassica napus plants,
GL levels were highest in the seed than in the leaves of the plant. The class of
GL also varies between plant organs. For example, in both the leaves and seeds
of B. napus, there are mostly aliphatic GLs; however, leaves contain more indole
GLs than seeds (Liu et al., 2020). Nguyen et al. (2020) propose that the profile
of GLs contained in an organ is directly related to the function of that organ.
Abiotic stress causes a change in the GL profile of the plant’s roots as it resists
stressors such as drought and acidity (Nguyen et al., 2020). Roots have been
found to contain a higher amount of GLs than leaves in stressful conditions, and
Martinez-Ballesta et al. (2013) conclude that abiotic and biotic stressors reroute
GLs to allow a plant to cope with stressful conditions.

A study on ten varieties of cabbage found that the plant contains ten
GLs (glucoiberin, glucoiberverin, sinigrin, gluconapin, glucoraphanin,
progoitrin, glucobrassicin, neoglucobrassicin, 4-methoxy glucobrassicin,
and gluconasturtiin). The most abundant GL was glucobrassicin, contributing
22-53% of the total GLs content. Making up 15-20% of the total GLs, sinigrin
and progoitrin were also present in cabbage in high amounts (Choi et al.,
2014). Similarly, arugula, rucola, and roquette, collectively known as rocket,
of Eruca sativa and Diplotaxis tenuifolia, contain high levels of vitamin C, GLs,
flavonals, and phenolics. The three most abundant GLs of the species include
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4-mercaptobutyl GLs (glucosativin), 4-methylthiobutyl GLs (glucoerucin), and
4-methylsulfinylbutyl GLs (glucoraphanin) (Bell and Wagstaff, 2014).

Mustard seed or Brassica juncea is another economically important
Brassicaceae member which is used to produce the condiment mustard paste
and is grown and consumed in most areas of Asia, Europe, America, and Africa.
In the B. juncea plant, the main GL produced is sinigrin (Marquez-Lema et al.,
2009). In a different study, carried out on Sinapis genus, the dominating GL
is sinablin and, according to Serensen et al. (2016), has a structure of interest
and is absorbed and transformed to a sinalbin metabolite in the liver by
glucuronidation by liver phase Il enzymes with subsequent excretion to the
urine.

Tropaeolum majus commonly known as nasturtium contains just one GLs,
benzylglucosinolate or glucotropaeolin. It is used in traditional medicine to
treat urinary tract infections with the basis being that the breakdown product
of the GLs is benzyl ICT, which lends antimicrobial effects as it passes through
the urinary tract following digestion of the plant (Kleinwéchter et al., 2008).
The plant has also been investigated to have a potential role in type two
diabetes. The GL breakdown product, benzyl ICTs, can reduce hepatic glucose
production in patients (Guzman-Pérez et al., 2016).

Brassica Rapa or turnip has been consumed in Europe for approximately
4500 years as fresh vegetables or as fodder. The tuber of the vegetable alone is
commonly eaten in Northern and Eastern Europe and Asia, whereas in Southern
Europe, leaves, shoots, tuber, turnip top, and greens are all consumed. Unlike
other vegetables, total GLs amounts in turnips are not affected by storage
temperature, rather their composition changes. As aliphatic and indolic GLs
respond differently to temperature, higher storage temperatures induced
higher indolic GL levels and lowered aliphatic GL levels. The dominant GLs of B.
Rapa include glucoraphanin, glucobrassicin, and gluconasturtiin (Tacer-Caba,
2019).

Moringa oleifera or moringa is a tree native to tropical and sub-tropical
areas in the world. The plant is used as both human and animal feed and in
traditional medicine. Leaves, roots, fruits, seeds, and bark of the plant are
highly nutritious and have been used to treat inflammation and infectious
diseases along with gastrointestinal, haematological, cardiovascular, and
hepatorenal disorders. Seed extracts of moringa have been used for anti-
bacterial and anticancer activity, fruit and bark extracts as anti-inflammatory
and hepatoprotective agents, and leaf extracts have been shown to regulate
cholesterol levels and stabilize thyroid status in rats. The Moringa genus is
gaining interest due to its unusual sugar-substituted hydroxy-aromatic GLs. M.
oleifera contains many peculiar GLs with uncommon properties as a result of
the presence in their structure of a second saccharide residue in the aglycon
side chain. The dominant GL in M. oleifera is 4-(a-L-rhamnopyranosiloxy)benzyl
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GLs, known as glucomoringin. This particular GL with its atypical structure may
exhibit different biological effects than seen in many other GLs (Maldini et al.,
2014).

Armoracia rusticana belongs to the Brassicaceae family and its leaves and
roots, with their spicy taste, have been consumed as food and as a medicinal
herb.Astudy by Popovi¢etal.(2020) found the most common GL gluconasturtiin
(64.9%) present in the roots of wild horseradish, followed by sinigrin (33.91%)
and glucobrassicin (1.19%). In leaves, sinigrin made up 99.9% of GLs, while three
other GLs namely gluconapin, glucocochlearin, and glucobrassicanapin were
found in trace amounts in all plant parts. The study also found that leaf and root
extracts from A. rusticana had cytotoxic effects on human cancer cells and anti-
bacterial properties inhibit the growth of methicillin-resistant Staphylococcus
aureus, Listeria monocytogenes, clinical Acinetobacter Baumannii, and fungi
(Popovi¢ et al., 2020).

3 Factors affecting the composition and levels of
glucosinolates

The post-harvest processes of the vegetables have considerable effects on the
composition and levels of GLs in the Brassica plants. Storage conditions and
how the plants are eaten can have adverse effects on the GLs concentrations.
The temperature and length of transport of the vegetables are important
factors in the reduction of GLs levels. The loss of GLs can be mitigated by
refrigeration during transport and reducing transport length (Esteve, 2020). A
recent study by Cavaiuolo et al.(2017) found that exposure to cold temperature
upregulated genes involved in the biosynthesis of indole GLs like indol-3-
ylmethyl, while many other genes involved in the biosynthesis of aliphatic GLSs
such as glucoraphanin, glucoiberin, and glucoalyssin were downregulated.
Furthermore, tissue exposure to wounding, cold, and dark stress caused an
upregulation of genes involved in GLs catabolism (Cavaiuolo et al., 2017).

Agricultural and environmental factors also affect the levels of GLs in
Brassica plants. Increased levels of phytochemicals and GLs are observed
in spring-grown plants which grow in times of longer sun hours, high light
intensity, moderate temperatures, and lower rainfall. Autumn and winter crops
have lower GLs and other phytochemical concentrations most likely due to
growth at lower temperatures, low-intensity light, shorter sun hours, and higher
rainfall levels (Biondi et al., 2021).

Attacks from pests such as aphids increase the levels of GLs produced as
the plant mounts its defence system. Abiotic factors can also cause an increase
in the concentration of GLs and other phytochemicals. A slight salinity in
water can cause broccoli to increase the production of GLs by affecting the
myrosinase-GL system, and recent research on the production of low potassium
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Figure 2 Summary of factors affecting levels of GLs.

kale for renal failure patients found that by decreasing potassium levels in the
nutrient solution, there was a concurrent rise in GLs in the plant. The cultivation
system, water, nutrient stress, and increased plant density all result in a general
increase in GLs concentrations (Biondi et al., 2021).

Light-emitting diode technology can affect the levels of phytochemicals
produced in plants. Aliphatic GL levels have been increased in broccoli tissues
after exposure to blue light (Loi et al., 2020).

The method of consuming vegetables can also result in a loss of
phytochemicals. Boiling of the vegetables leads to the significant loss of GLs
due to leaching into the cooking water, followed by stir-frying and microwave
cooking. Tabart et al. (2018) used broccoli and red cabbage to evaluate
the influence of the cooking method on phytochemical content and total
antioxidant capacity (TAC). It was determined that steaming and microwaving
allowed to preserve most antioxidants and GLs. Steaming is determined to be
the best way to cook the brassicas to reduce the loss of GLs before consumption
(Esteve, 2020). Figure 2 presents a summary of factors affecting the levels of
GLs in plants.

4 Potential health effects of glucosinolates

Some of the general health benefits of GLs include antimicrobial,
anticarcinogenic, antidepressant, or anti-inflammatory activity of a compound,
antidiuretic properties, and lower the risk of cardiovascular disease. Health
effects often differ for each bioactive compound since they all have different
mechanisms of action due to a variety of chemical structures.
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4.1 Antimicrobial activity

Volatile compounds present in GLs have functions against fungi, bacteria, and
other microorganisms. Currently, there is an increase in drug and pathogen
resistance, as well as food spoilage around the world, all of which begin to pose
a global issue (Maina et al., 2020). To counteract this, natural compounds like
GLs are of particular interest, as they have natural antimicrobial potential and
could help to counteract mentioned issues.

The antimicrobial activity of GLs is frequently associated with the
Brassicaceae family, and more specifically with Sinapis species (ssp.), including
S.alba and S. nigra. It was found that Sinapis nigra provides better antimicrobial
activity when compared to S. alba, due to better inhibition against S. aureus,
L. monocytogenes, Salmonella typhimurium, and Escherichia coli, with a
minimum inhibitory concentration of 10 mg/mL of the S. nigra seed oil needed
to inhibit the growth of E. coli (Boscaro et al., 2018). Current knowledge could
be implemented in the production of ready-to-eat foods like freshly cut salad,
as Sinapis ssp. seed oil spray could extend product shelf life by reducing the
microbial activity of certain bacterial strains. Following this, hydroalcoholic seed
extract of S. nigra and S. alba showed significant inhibition against S. aureus
and E. coli, followed by lower anti-bacterial activity against Bacillus cereus,
Pseudomonas aeruginosa, Streptococcus pyogenes, and Candida albicans
(Boscaro et al., 2018). This provides promises for GLs incorporation in anti-
bacterial drugs, with lower efficacy, in hopes of obtaining a synergistic effect
between the drug and the bioactive compound and improving their working
principle.

Popovi¢ et al. (2020) assessed volatile degradation products from the
roots and leaves of horseradish (including ITCs, nitriles, and other GLs)
for their antimicrobial and cytotoxic activity. 2-Phenylethyl isothiocyanate
and 3-phenylpropanenitrile were used on a number of bacterial and fungi
strains. Clinical antibiotic-resistant strains of bacteria (Salmonella enterica, E.
coli, Klebsiella pneumoniae, A. baumannii) and strains isolated from food (L.
monocytogenes, S. aureus, Enterococcus faecalis, S. pyogenes, and B. cereus)
were used to assess minimal inhibitory concentration (MIC), which was ranging
from 3.75 to 30 pg/mL depending on species and bioactive compound used.
Meanwhile, for opportunistic pathogenic fungal strains (including C. albicans,
Penicillium citrinum, and Aspergillus niger), MIC, was found to be <0.12 and
0.47 pg/mL.

4.2 Antioxidant activity

Reactive oxygen species (ROS) and free radicals are often consumed through
food and are naturally present in the human body. Presence of current
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compounds often leads to age-related illnesses. Consumed or elsehow
implemented antioxidants in the diet bind and scavenge ROS and free radicals,
remove them from the body, and eliminate damaging effects. The current
strategy is often linked to GLs anticarcinogenic activity.

Vegetables from Brassicaceae family, for example, kale, cabbage, and
broccoli contain a significant amount of GLs, mostly consisting of aromatic GLs
(Chang et al., 2019). Glucoraphasatin is the main GLs responsible for the TAC
of radish sprouts, and glucoerucin is a GL prevalent in the seeds and roots of
rocket salad and contributes to TAC, as well as 4-methoxyglucobrassicin GLs
in Chinese kale, which is also often linked to TAC (Chang et al., 2019). It can
be seen that the prevalence, chemical composition, and activity of GLs differ
between number of plants; however, most vegetables from Brassicaceae family
contain at least one or more bioactive compounds responsible for antioxidant
activity.

4.3 Anti-inflammatory activity

Inflammation occurs as a natural process in the body in order to try and
fight against infection, injury, toxins, or cell damage. In the current scenario,
the immune system gets triggered and releases chemicals to elute response
against the detected damage and attempt to heal the body itself. However,
when inflammation becomes chronic, cell mutation and proliferation can
occur, leading to cancer. Anti-inflammatory substances, including different
GLs, aim to reduce the inflammation and in turn reduce pain; however, their
working principle differs between cells, as they work through different chemical
pathways.

Isatis indigotica from Brassicaceae family was profiled and identified
to exhibit anti-inflammatory activity; however, from 16 isolated GLs, only 3
showed significant in vitro anti-inflammatory effect. It was found that gluconapin
presented IC,; of 1.90 mM, neoglucobrassicin with IC,, of 1.25 mM, (R,S)-
goitrin was determined the most potent with IC, of 7.01 mM, and lastly, total
GLs of Isatidis Radix (dried root part of the /. indigotica) presented overall IC,
of 0.17 mg/mL (Guo et al., 2020). It can be seen that different GLs have different
anti-inflammatory activity. Generally, isolated or pure GLs provide more potent
effect, when compared to combination of total GLs present in the plant.

4.4 Anticarcinogenic activity

Different types of cancer have been linked to reduced intake of cruciferous
vegetablesincluding broccoli, cabbage, or Brussel sprouts due to their powerful
antioxidant and anti-inflammatory activities from the presence of GLs. Colon
cancer, prostate cancer, melanoma, and breast cancer are some examples
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that are linked to reduced or elsehow altered intake of cruciferous vegetables.
GLs also enhance detoxification of the body, which mainly happens through
the liver. This process reduces the presence of toxins and in turn reduces the
probability of developing cancer. Overall process is influenced by phase | and
phase Il enzymes including glutathione-S-transferase and quinone reductase
(NQO1) (Migkus et al., 2020; Maina et al., 2020).

ITCis the main GLs breakdown by-product responsible for anticarcinogenic
activity in the body. It is linked to cell cycle arrest, induced antioxidant
pathways, and cell apoptosis. Furthermore, sulforaphane (SFN) belongs to ITC
by-products and works by inhibiting deacetylase activity and in turn increasing
histone acetylation, which regulates cell response to stress like inflammation or
cancer.

The intake of 4-methylsulphinylbutyl glucosinolate (further converted to
sulforaphane) reduces the expression of genes linked to prostate cancer, which
in turn limits cancer progression through compounds including 2-propenyl ITC
and 3-butenyl ITC which inhibit cytochrome P450 1A enzyme activity and in
turn inhibit DNA replication within cancer cells (Miekus et al., 2020; Maina et al.,
2020).

Almuhayawi et al.(2020) investigated the use of elevated CO, for nutritional
improvement in Brassica oleracea L during sprouting in order to stimulate anti-
inflammatory and anti-cancer activity of GLs. It was found that treatment for
9 days with 620 = 42 pmol CO,/mol air yield higher levels of sulforaphane,
which is linked to anticarcinogenic activity. In turn, detoxification enzymes were
promoted which improved anti-cancer activity.

It was found that people with higher body mass index (BMI)<26 kg/m?
experience higher GLS effects, which were dose-dependent. It was confirmed
by observing a decrease in pro-inflammatory cytokines and an increase in
tumour-suppressor decorin in a dose-dependent fashion. Personal genotype
also has an influence on the overall effect, where people with genotype
GSTT1 were more susceptible to the anticancer treatment using 2-phenethyl
ITC, followed by the downregulation of AMACR and ARLNC1 genes using
broccoli sprout extract, which was linked to the implication of prostate
cancer. Current knowledge could be useful in the development of targeted
therapies by the use of GLs by-products including sulforaphane, 2-phenethyl
ITC, or 4-methylsulphinylbutyl in combination with other treatments. Table 1
summarizes some of the clinical trials, where GLs were used as an active agent
in order to elute an effect and obtain health benefits.

4.5 Cardiovascular protection

Broccoli sprouts are the most common nutritional source cited for the use of
cardiovascular protection, where they work by decreasing oxidative stress
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and protein nitrosation. ITCs improve ventricle function, decrease myocardial
size and cardiomyocyte apoptosis, and prevent chronic inflammation of
cardiovasculartissue (Miekus, etal., 2020). The main GLs metabolite responsible
for the health effect is glutathione followed by enzymes glutathione peroxidase
and glutathione reductase, which enhance endothelial aorta relaxation and
maintain normal blood pressure (Miekus, et al., 2020).

There are a number of promising results obtained through in vitro and in
vivo studies. Ma et al. (2018a,b) investigated if SFN could be used to improve
cardiac function in a rabbit model with chronic heart failure. It was found
that 0.5 mg of SFN per kg body weight (BW) corrected heart weight and left
ventricular to BW ratio, the left ventricular end-diastolic and systolic diameter,
plasma brain natriuretic peptide, atrial natriuretic peptide levels, apoptotic
index, expression levels of collagen |, collagen lll, TNF-a, interleukin-6
and malondialdehyde in the myocardial tissue, and a decrease in cardiac
superoxide dismutase activity, all of which was linked to inhibition of oxidative
stress and inflammation. Mitochondrial dysfunction is often linked to number
of diseases, including heart disease due to insufficient supply of oxygen, which
affect mitochondrial fusion, mitophagy, and ATP generation (Lian et al., 2021).

Rhoden et al. (2021) used three-dimensional engineered heart tissue to
observe if SFN impairs contractility of the heart and mitochondrial function. SFN
pre-treatmentofthe heartincreased lactateformation,enhanced ROS production
by mitochondria, and resulted in decreased mitochondrial membrane potential,
which is a favourable outcome in case of heart, diabetes, neurodegeneration,
or similar health condition. However, cardiac function should be monitored
upon administration of SFN to avoid cardiotoxic side effects, occurring from
excessive ROS which may be harmful to other biomolecules.

[twas found that ~22.5 pmol of SFN can help to reduce systolic and diastolic
blood pressure, while ~21.6 umol of glucoraphanin can decrease low-density
lipoprotein (LDL) cholesterol by 7.1% in people with cardiovascular profile and
by 5.1% in healthy population. However, there are some studies which indicate
opposite effects. It was reported that consumption of one or more portions
of Brussel sprouts per week could increase chances of developing coronary
heart disease (CHD) (Ma et al., 2018a,b) However, last results were taken from
a dietary questionnaire; therefore, they could be influenced by other food
sources, which could have an opposite effect of GLs. As seen in Table 1, a
number of clinical trials have been carried out using broccoli sprouts to confirm
the beneficial effects of SFN and glucoraphanin.

4.6 Benefits for diabetic patients

Diabetes is a metabolic disease that causes high blood sugar. Type 1 diabetes
is characterized by the failure to produce insulin by B-cells of the pancreas
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leading to insulin deficiency in the cells, meanwhile, type 2 diabetes (T2D)
is characterized by insulin resistance, where the body cells fail to respond to
produce insulin, leading to increased blood glucose levels. Due to antioxidative
and anti-inflammatory effects of GLs metabolites like ITC, they were linked to the
possibility to modulate T2D through the activation of nuclear factor E2-related
factor (Nrf2) and is further responsible for phase Il enzyme activation which
plays an important role in reducing insulin resistance.

There are a number of animal studies confirming the beneficial effects of
GLs on diabetic mice; however, there is a lack of evidence from clinical trials.
Sahin et al. (2019) found that 100 mg/kg BW of allyl ITC throughout 12-week
period reduced blood glucose levels, total cholesterol, triglycerides, and
creatine levels in diabetic mice. TAC was also significantly increased (P = 0.001).

Sinigrin is an aliphatic GLs, which gets absorbed in the intestines as allyl
ITC and is then conjugated with glutathione. It was found that 15 pmol sinigrin/
kg BW of mice for 21 days reduced plasma glucose levels and significantly
improved insulin resistance in mice with T2D (Truong and Koyama, 2020).

Currently, there is an ongoing phase 2 clinical trial investigating if broccoli
sprout extract, more particularly sulforaphane, could be used as a dietary
supplement for glucose tolerance and insulin sensitivity. The current study is
a double-blind, parallel assignment, placebo-controlled, randomized trial,
involving 108 patients with T2D aged 35-75 over a 12-week treatment period.
The overall principle of the trial is based on the knowledge that ‘Sulforaphane
suppressed glucose production from hepatic cells by nuclear translocation of
NRF2 and decreased expression of key enzymes in gluconeogenesis’ (Axelsson
et al., 2017). Results for the current clinical trial are still pending; however, it
looks very promising.

4.7 Central nervous system protection

Cruciferous vegetables have been linked to central nervous system (CNS)
protection while following similar pathway as for cardiovascular and
carcinogenic protection through the reduction of inflammation and oxidative
stress. The main CNS health benefit was linked to the activation of transcription
factor Nrf2 and reduced action of ROS. Shiina et al. (2015) reported beneficial
results in schizophrenic patients when consuming SFN for 8 weeks, as seen in
Table 1. There are some ongoing clinical trials investigating the effectiveness
of SFN against Alzheimer’s disease or depression, both of which are CNS
conditions.

Extremely promising results were also observed in the treatment of autism
spectrum disorder (ASD). From 3 ASD clinical trials summarized in Table 1
(Singh, etal., 2014; Bent, et al., 2018; Momtazmanesh, et al., 2020), results seem
to agree and indicate a beneficial effect. It was found that social responsiveness
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and aberrant behaviour were improved. SFN was deemed to work by reversing
ASD abnormalities, including oxidative stress, lower antioxidant capacity,
depressed glutathione synthesis, reduced mitochondrial function and oxidative
phosphorylation, increased lipid peroxidation, and neuroinflammation (Singh,
etal, 2014).

Zhang et al. (2021) investigated if nano-sulforaphane could lower 2-ami
no-1-methyl-6-phenylimidazo[4,5-b]pyrimidine  (PhIP) induced early or
abnormal embryonic neuro-development in chicken embryo model with
abnormal embryonic nervous system defects. Nano-sulforaphane was made by
using biodegradable methoxy polyethylene glycol 5000-b-polyglutamic acid
10 000 (mPEG5K-PGA10K) as the substrate, following which nano-sulforaphane
system proved positive results, where peripheral nervous system defects were
prevented, protection against PhIP-induced CNS and neural tube defects was
observed. Current results provide very positive outlook, as it could increase the
embryo survival rate during human pregnancy; however, further research and
clinical trials are needed.

4.8 Other health benefits

Other health benefits have also been reported, including neuropathy protection
where GLs work by reducing pathological changes in glomerulus. Cruciferous
vegetables have also alleviated symptoms of skin lesions and induced
expressions of keratins 16 and 6, which is helpful for certain skin conditions
(Miekus et al., 2020).

Table 1 includes clinical trials, where additional benefits linked to
osteoarthritis (Davidson et al., 2017) and microbiome (Kaczmarek, et al., 2019)
are summarized. Most of the health benefits are constantly linked to antioxidant
and anti-inflammatory effects of GLs; however, there is a lack of the use of its
antimicrobial activity.

5 Antinutritional properties of glucosinolates

Although GLs have many beneficial health effects as discussed in the previous
section, these sulphur-containing compounds and their by-products may also
have potentially toxic effects on humans. For example, a study by di Gioia et al.
(2019) showed that GL decomposition products such as epithionitriles may
have toxic effects on the kidneys and liver in mammals while at the same time
having potential anticancer and therapeutic properties.

Some breakdown products of GLs include oxazolidine-2-thiones (e.g.
progoitrin and its myrosinase-induced degradation product, goitrin, and
glucomoringin) and thiocyanate ions, all of which interfere with thyroxine
production in the body, reducing iodine supply to the thyroid gland resulting

© Burleigh Dodds Science Publishing Limited, 2022. All rights reserved.



Health-promoting effects of glucosinolates 141

in goitre and other related conditions. Progoitrin, a thiocyanate high in Brassica
plants such as Brussel sprouts, causes hypothyroidism as it is a competitive
inhibitor of the sodium/iodide symporter on the basolateral membrane of the
thyroid follicular cell.

Consuming large amounts of GLs can result in symptoms such as
hyperthyroidism, reduced feed intake and performance in animals, enlarged
thyroid gland, and reduced levels of circulating thyroid hormones (Embaby,
2010).

GLs are antinutritional substances found in abundance in the seed meal
fraction of oilseed Brassica species. They are present in various amounts in
different genotypes. Those genotypes with less than 30 mol/g GL content are
called low/zero GL types and are recommended for edible applications due to
their low pungency (Mawlong et al., 2017).

Some examples of sources where antinutrient properties are found mostly
include garlic mustard plants where a large amount of alliarinoside is found, and
gamma-hydroxynitrile glucoside structurally related to cyanogenic glycosides
which are a potential source of highly toxic hydrogen cyanide (di Gioia et al.,
2019). In another study by Embaby et al. (2010) on canola meals and their anti-
nutritive effects, the researchers found that the level of anti-nutritive effects
could be largely linked to the levels of aliphatic GLs rather than indole GLs.

Rapeseed meal is another example known for its high protein level and has
the potential to be used in human nutrition, but its high levels of GLs render
it unsuitable for consumption due to the anti-nutritive effects mentioned
above. When ingested in large numbers, these antinutrients tend to alter the
bioavailability and metabolism of different important nutrient components, and
some antinutrient substances may be harmful to health (Chongtham etal., 2021)
.Therefore, the existence of antinutritional GLs lowers their food and feed value
significantly, which makes their market value decrease as well (Sawicka, 2020).

6 Dietary intake, absorption and digestion of
glucosinolates

In plant cells, GLs are relatively stable. When GL-containing plant tissue is
damaged, as in food preparation (cutting, chopping, mixing) or chewing,
a thioglucosidase called myrosinase is released. Depending on the plant
species, the enzyme is normally stored separately from GLs in different cells
or intracellular compartments (Halkier and Gershenzon, 2006). Myrosinase
hydrolyzes GLs to produce a molecule of b-glucose and an unstable aglycone,
thiohydroximate-O-sulfonate. The impulsive reorganization of this intermediate
(chemical Lossen rearrangement) results in the release of sulphate ions and the
creation of metabolites, the structures of which are determined by the nature
of the GLs side chain (R) and the physicochemical conditions of the medium.
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6.1 Dietary intake: the bioavailability of glucosinolates in the
human diet

The amount of GLs consumed is affected by variety, agronomic factors, and
the storage and processing of vegetables prior to consumption (Mithen
et al., 2000). Even though mechanical damage causes rapid hydrolysis and
degradation of GLs, cutting and pre-harvest stress have been shown to increase
the concentrations of indole GLs in cabbage under certain conditions (Verkerk
etal., 2009). The history of plant tissue throughout the food chain, from grower
to consumer, has a significant impact on its ultimate biological role in human
nutrition. Regardless of the final level of GLs in the prepared vegetable, the
absorption, metabolism, and delivery of GL breakdown products to target
tissues are heavily reliant on the residual level of myrosinase activity (Dekker
et al., 2000). When vegetables such as broccoli or cauliflower are eaten raw,
entire GLs and active myrosinase are consumed at the same time, allowing the
GLs to be broken down within the digestive tract. For example, when rats were
fed benzyl GLs in the presence of active myrosinase obtained from Brussels
sprouts, a significant portion of the administered dose was excreted in the urine
as ITC excretion products (Rouzard et al., 2000). Many countries currently lack
dietary GLs intake estimation due to a lack of adequate dietary GL composition
data (Wu etal., 2017).In one study, GLs consumption in the German population
was estimated to be 14.2 = 1.1 mg/day for men and 14.8 = 1.3 mg/day for
women (Steinbrecher and Linseisen, 2009). In another study, GLs intake in a
Spanish adult population was estimated to be 6.5 mg/day, with indole GLs
accounting for 35% of that (Agudo et al., 2008). In the United Kingdom, the
national mean daily intake was calculated to be 46.1 mg in fresh material and
29.4 mg in cooked material (Sones et al., 1984). These rough estimates of
dietary intake, however, were based on very limited data on dietary exposure
to Brassica vegetables. Moreover, the data were simply calculated using mean
values that did not account for variation. Overall, the dietary intake of GLs
does not account for the wide range of GLs concentrations caused by genetic
background, cultivation, and cooking or processing (Wu et al., 2021).

6.2 Digestion: bioavailability of glucosinolates and their
breakdown product

Human digestion is a multilevel, complex process. It entails the mechanical and
chemical breakdown of foods, allowing embedded nutrients to be released
and absorbed into the body via intestinal mucosal cells (Mennah-Govela and
Bornhorst, 2017). The mouth and stomach reduce the size of food, whereas
the small intestines are the primary site of nutrient absorption. Gastric acids,
bile salts, and digestive enzymes are present in the stomach and operate to
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homogenize and transform food (Kong and Singh, 2008). The gastric digest
is further dissolved in the intestine, and nutrients are absorbed through the
intestinal walls.

Bioaccessibility is the amount of a food product that is released into the
digestive tract and becomes available for absorption (Heaney, 2001). This
definition also includes the digestive transformations of the food material
until assimilation, as well as its enterocytic metabolism. Bioavailability, on the
other hand, is a subcategory of absorption that refers to the proportion of
administered molecules that are absorbed and reach the circulation system
(Wood, 2005). It has been demonstrated that the indole-3-carbinol molecule
condenses in acid medium, such as the gastric content, to form polycyclic
aromatics. In general, each GLs can provide multiple aglycone structures at
the same time (Holst and Williamson, 2004). However, depending on the
structure of the GLs side chain and the environmental conditions, one of them
is formed more frequently. The aroma of cruciferous vegetables is caused by
the breakdown products of GLs.

Cookingthe plant material causesthe myrosinase to denature. Denaturation
intensity is especially important when the applied temperature is high and the
cooking time is long, whether baking with water, steam, or microwave. Because
of their hydrophilic nature (thioglucose and sulphate group), GLs transit to the
colon and are metabolized by the intestinal microbiota when myrosinase is
inactivated. In the stomach, intact GLs may be partially absorbed; the remaining
GLs will transit through the gastrointestinal tract to the small intestine, where
they may be hydrolyzed by plant myrosinase and the breakdown products
absorbed. The outstanding non-hydrolyzed GLs will then transport to the
colon, where they will be hydrolyzed by bacterial myrosinase and the resulting
breakdown molecules will be absorbed or excreted. It has been demonstrated
that incubating human faeces with pure GLs or cruciferous vegetable juices
whereby myrosinase has been inactivated by heating results in the formation
of ITCs (Krul et al., 2002). Other breakdown products of GLs by intestinal
microbiota are very likely but are still poorly documented. After incubating
human faeces with GLs, the creation of amines from the secondary degradation
of ITCs was demonstrated (Combourieu et al., 2001). Bifidobacterium strains
from the human intestinal microbiota can metabolize GLs to nitriles in vitro,
and traces of nitriles have been found in the urine of rats fed a pure GL. Many
microorganisms are also known to be capable of converting nitriles into
ammonia and organic acids (Cheng et al., 2004) (Fig. 3).

6.3 Absorption and post-absorptive metabolism

It has been suggested by various studies that when a food product contains
active myrosinase, GLs are rapidly hydrolyzed in the proximal gut (small
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Figure 3 Summary of the role of GLs and their breakdown products in the human gut
(adapted from Barba et al., 2016).

intestine). When myrosinase is inactivated (e.g. by cooking), intact GLs can
reach the distal gut (colon) and can be metabolized by bacterial enzymes.
Additionally, to myrosinase hydrolysis, some studies have shown that a small
fraction of myrosinase can be absorbed in its native state by the small intestine
lining (Bheemreddy and Jeffery, 2007). In vivo, this absorption results in the
presence of native GLs in urine up to 5% of the ingested dose. Ex vivo studies
using isolated rodent intestinal loops suggest a passive or facilitated transport,
independent of the glucose uptake mechanism (Michaelsen et al. (1994).

The rapid absorption of ITCs from the upper gastrointestinal tract has
been confirmed in pharmacokinetic studies using orally administered ITCs.
After dosing rats with ['*C] phenethyl isothiocyanate or ['“C] allyl isothiocyanate
(25-250 pmol kg™), the rate of appearance of "C in the blood is rapid, with
a peak concentration of 10-100 nmol mL~" occurring at ~3 h (Bollard et al.,
1997). After absorption, the main route of ITC metabolism in humans is through
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the conversion of ITC to N-acetylcysteine derivatives (mercapturic acids or
N-acetyl-S-(N-alkylthiocarbamoyl)-1-cysteine). This is accomplished through
initial glutathione conjugation, which is aided by glutathione-S-transferases,
followed by hydrolysis of the resulting conjugates to cysteine derivatives and
final N-acetylation. Other than ITC, the post-absorptive fate of GLs derivatives
has received relatively little attention. Glutathione-S-transferases can convert
thiocyanates to cyanide and thiol derivatives, and epithionitriles can be
excreted as mercapturic acids (Conaway et al., 1999).

7 Conclusion and future trends

Over 130 identified GLs structures were found in cruciferous plants, mainly
from the Brassicaceae family which are hydrolyzed in the small intestine by
myrosinase enzymes resulting in a majority of GLs by-products including
aliphatic and indole GLs like indole-3-carbinol. Myrosinase get denatured by
high temperatures during cooking or processing, when Bifidobacterium strains
from the human intestinal microbiota takeover the GLs breakdown process. It
is not yet known what are the best cruciferous vegetable growth conditions to
increase the production of more nutritional compounds, i.e. ITC, and reduce the
production of antinutritional compounds, i.e. oxazolidine-2-thiones, moreover,
there is a number of known factors that can influence these changes, including
the season, temperatures, water stress, and even the consumption method, i.e.
boiling or steaming.

GLsand, in particular, SFN mechanism of action is linked to the upregulation
of Nrf2 protein which has beneficial effects in the brain, pancreatin, and
skin cancer, management of cardiovascular disease and diabetes, and
neuroprotective effects in CNS. There is number of in vitro studies investigating
the anticarcinogenic properties of GLs, which should induce further focus
on GSL pharmacological pathways as there are no known short- and long-
term human intervention studies. Known adverse effects of GLs are rare but
can include mutagenicity, goitrogenicity, hepatotoxicity, and nephrotoxicity,
and high levels of oxazolidine-2-thiones and thiocyanate ions were linked to
reduced iodine supply to the thyroid gland resulting in goitre.

In the future, the phenomena of GLs metabolism should be further
investigated to determine what percentage of bioactive compounds reach
the active site and elute beneficial effect, followed by the consequences
of denatured myrosinase and if it would be possible to create a nutritional
supplements of GLs with myrosinase for better activity and more potent health
benefit. Following this, studies using larger population sample size should be
carried out to determine current intake, adverse effects from low intake, and
amount of GLs needed for beneficial effect.
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8 Where to look for further information

8.1 Further reading

Galanakis, C. M. (Ed.). (2019). Glucosinolates: Properties, recovery, and
applications. Academic Press.

Bischoff, K. L. (2021). Glucosinolates. In Nutraceuticals (pp. 903-909).
Academic Press.

Wu, X., Huang, H., Childs, H., Wu, Y., Yu, L. and Pehrsson, P. R. (2021).
Glucosinolates in Brassica vegetables: Characterization and factors that
influence distribution, content, and intake. Annual Review of Food Science
and Technology, 12, 485-511.

Akram, M., Jabeen, F, Riaz, M., Khan, F. S., Okushanova, E., Imran, M.,
Shariati, M. A., Egbuna, C. and Ezeofor, N. J. (2021). Health benefits of
glucosinolateisolated from cruciferous and othervegetables.In Preparation
of Phytopharmaceuticals for the Management of Disorders (pp. 361-371).
Academic Press.

Miekus, N., Marszatek, K., Podlacha, M., Igbal, A., Puchalski, C. and
Swiergiel, A. H.(2020). Health benefits of plant-derived sulfur compounds,
glucosinolates, and organosulfur compounds. Molecules, 25(17), 3804.
Barba, F. J., Nikmaram, N., Roohinejad, S., Khelfa, A., Zhu, Z. and Koubaa,
M. (2016). Bioavailability of glucosinolates and their breakdown products:
Impact of processing. Frontiers in nutrition, 3, 24.

8.2 Key conferences

International Conference on Glucosinolates and Glucosinolates In Brassica
Crops, 20-21 September 2022 in Lisbon, Portugal.

Australian Brassica Conference ‘Growing the Future'. 7-8 September 2021.
Hybrid.

Brassica 2021 Conference, International crucifer genetics conference,
Saskatoon, Canada.

International Rapeseed Congress.

Annual Brassica Workshops at Plant Animal Genome.
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1 Introduction

Glucosinolates  (S-glucopyranosyl thiohydroximates; GLs) are secondary
metabolites of plants, largely synthesized in the Brassica genus of the Brassicaceae
family such as broccoli, cabbage, cauliflower, Brussel sprouts, and kale. GLs are
anions (B-thioglycoside N-hydroxysulfates) with a side chain (R) of alkyl, aralkyl, or
indolyl and a sulphur-linked B-b-glucopyranose moiety, and so far, over 130 GLs
have been identified. Side chain modification of the amino acid precursors prior to
the GLsformation and awide range of secondary modifications, including oxidation,
sulfation, hydroxylation, methoxylation, glucosylation, as well as substitutions with
acyl conjugation on the sugar moieties, are responsible for the high number of
different GLs. It can be classified into three groups, aliphatics, aromatics, or indoles,
where classification comes from the R chain of the compound which is derived
from one of eight amino acids of the plant. These compounds are typically stable
within a plant cell, but upon damage to the cell, GLs are hydrolyzed by myrosinase
resulting in its more bioactive products such as isothiocyanates (ITC).

http://dx.doi.org/10.19103/AS.2022.0101.20
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GLs are hydrolyzed by the enzyme myrosinase when the plant tissue is
injured, a protective response induced by the plant. In the presence of water,
myrosinase cleaves a glucose group from the GLs to form an ITC, a thiocyanate,
or a nitrile (Lachance et al, 2020) (unstable aglucones) (Blazevi¢ et al, 2020).
ITCs are a chemical group of organosulfur compounds, -N=C=S, characterized
by the presence of sulphur in place of oxygen in an ITC molecule. These
compounds are typically formed by the enzymatic conversion of indole GLs
and are abundant in cruciferous vegetables. Sulforaphane (SFN) is the most
widely studied ITC with several studies reporting the nutraceutical benefits
of this compound. SFN is synthesized from GL glucoraphanin and has been
demonstrated to have potent bioactive properties. These breakdown products
not only have a protective effect on the plant but also are responsible for,
along with their precursor GLs, the beneficial health effects associated with the
Brassica plants (Lachance et al, 2020).

In Chapter 5, we have provided a comprehensive account of the health
benefits of GLs and their breakdown products. This chapteris focused on classes
of GLs, current research on mechanisms of action, and finally nutraceutical
applications of the GLs and their breakdown products.

2 Classes of glucosinolates and their breakdown
products

The health benefits of GLs (please refer to Chapter 5 for a detailed account of
the health benefits of GLs) are attributed to their enzymatic hydrolysis products
instead of the GLs themselves. Numerous studies confirmed the relationship
between myrosinase and specifier proteins, relative protein abundance of
epithiospecifier protein (ESP), and thus the formation of different GL products
such as ITCs, nitriles, and epithionitriles (EPTs) that affect the plant defence
system (Hanschen et al., 2018).

The three main chemical classes of GLs are aliphatic GLs (derived from
methionine, isoleucine, leucine, orvaline),indole GLs (derived from tryptophan),
and aromatic GLs (benzenics, derived from phenylalanine or tyrosine) (Fuentas
et al., 2015). While other GLs from three different classes have been identified
in the edible parts of Brassica types, methionine-derived GLs have been
reported as the most significant class of GLs in Brassica vegetables (Cartea and
Velasco, 2008). Both pathways result in the formation of GLs of different classes,
although they share enzymes and mutually inhibit each other (Esfandiari et al.,
2017). When plants are challenged by biotic and abiotic stimuli, the enzyme
myrosinase hydrolyzes these chemicals, resulting in a variety of breakdown
products. GLs and their hydrolysis products are essential components of
plant defence responses to various stressors (Sanchez-Pujante et al., 2017).
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The biosynthesis of aliphatic and indole GLs is well understood, while the
biosynthesis of aromatic GLs is mostly unknown.

2.1 Aliphatic glucosinolates

Aliphatic GLs are formed from methionine, isoleucine, leucine, or valine (Tacer-
Caba,2019).Itisalsopossibletoclassifythemasmethylthioalkyl, methylsulfinylalkyl,
alkenyl, and hydroxyalkenyl based on their changing side chain length with
changing number of carbon atoms (3, 4, or 5C) or based on the changing side
chain structure of methylthioalkyl, methylsulfinylalkyl, alkenyl, and hydroxyalkenyl
(Li and Quiros, 2003). A lengthy series of enzymatic conversions are required for
the biosynthesis of GLs (Halkier and Gershenzon, 2006). The pathway to aliphatic
GLs is divided into three stages, beginning with methionine deamination,
followed by side chain elongation via sequential condensation reactions with
acetyl-CoA, isomerization and decarboxylation, and finally synthesis of the core
structure (Beewilder et al., 2008). Side chains may then undergo secondary
transformations, such as sulfinyl groups. Methylthioalkylmalate synthases, an
aconitase, and an isopropylmalate dehydrogenase catalyze elongation reactions
(Textor et al., 2007). At least five cytosolic enzymatic steps are required to
produce the GLs core structure, beginning with the oxidation of chain elongated
amino acids to aldoximes by the cytochrome P450 encoding genes CYP79F and
ending with the addition of sulfate to the penultimate intermediate, the desulfo-
GLs, resulting in the production of the parent methylthioalkyl GLs (also known as
thio-GLs in the following sections) (Piotrowski et al., 2004).

The final stage of GLs biosynthesis involves a variety of secondary
modifications to the thio-GLs side chain (Nour-Eldin and Halkier, 2008). The
methylthio sulfur moiety is oxidized to a methylsulfinyl moiety by a flavin
monooxygenase, such asthe flavin-monooxygenase glucosinolate S-oxygenase
1, to form the methylsulfinyl GLs (also known as sulfinyl GLs in the following
sections) (Tacer-Caba, 2019). The S-oxygenated GLs can be converted directly
to the corresponding hydroxyalkyl GLs or converted to alkenyl GLs by the
2-oxoglutarate-dependent dioxygenase (AOP2), which can then be converted
to hydroxyalkenyl GLs (Kliebenstein et al., 2001). Finally, the benzothiazole
(BZO) genes can conjugate hydroxylated GLs to benzoic acid to produce
benzoyloxy GLs (Kliebenstein et al., 2007).

2.2 Indole glucosinolates

Tryptophan is the primary source of indole GLs (indolics). One of the most
important indole GLs is indole-3-carbinol, which is the breakdown product of the
indole GL glucobrassicin. Indolic GLs are thought to be one of the most important
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factors of pest and disease resistance in plants (Tacer-Caba, 2019). In addition to
their direct antibacterial action, indole GLs have a role in eliciting highly conserved
immunological responses in the plant world (Kim and Jander, 2007).

In Arabidopsis, indole GLs breakdown is required for bacteria-induced
callose deposition and can also control pathogen-induced hypersensitive
programmed cell death. Indole-3-carbinol, a byproduct of indole GLs
breakdown, can function as an auxin antagonist, influencing the synthesis and
location of auxin transporters. Furthermore, when challenged by a bacterial
pathogen, indolic GLs were observed to be induced systemically at uninfected
tissue, contributing to systemic acquired resistance (Zhou et al., 2019).

The biosynthesis of indole GLs begins with the conversion of tryptophan
to indole-3-acetaldoxime by CYP79B2 and CYP79B3. The aldoxime is then
catalyzed by CYP83B1 to produce an unidentified intermediate, which
undergoes sulfur incorporation and thiohydroximate formation via the activities
of GSTF9, GSTF10, GGP1, and SURT (Chhajed etal., 2020). UGT74B1 is required
for thiohydroximate glucosylation, and SOT16 is responsible for the sulfation
step to produce intact indole GLs, similarly to aliphatic GLs biosynthesis.
CYP81Fs catalyze the hydroxylation of indole GLs, for example, CYP81F2 is
responsible for the production of 4-hydroxyindole GLs (Senderby et al., 2010).
Furthermore, CYP86A7 and CYP71B26 may be involved in the hydroxylation of
indole GLs, particularly at the 1-position.

Through indole GLs methyltransferases 1 and 2, hydroxyindole GLs can
be further metabolized to methoxyindole derivatives (IGMT1 and IGMT2) (Pfalz
etal., 2011). Furthermore, cytoplasmic protein phosphatase 2A regulatory subunit
B’ (PP2A-B’) controls methylation of 4-hydroxyindol-3-ylmethyl GLs (4MI3G),
which physically interacts with IGMTs and regulates IGMT activities in catalyzing
O-methylation atthe 4-position (Rahikainen etal., 2017). Recently, itwas discovered
that 1-hydroxyindol-3ylmethylglucosinolate can be methylated via indole GL
O-methyl transferase 5 (IGMT5) (Pfaaz et al., 2016). Moreover, the PP2A-B’ may
influence indole GLs catabolism via direct regulation of the phosphorylation of
myrosinase TGG1, which is involved in GLs hydrolysis (Durian et al., 2016).

2.3 Aromatic glucosinolates

Aromatic GLs (benzenics) are mostly produced from two amino acids,
phenylalanine and tyrosine (Tacer-Caba, 2019). The breakdown product of
one of the aromatic GLs is benzyl isothiocyanate (BITC); glucotropaeolin and
phenethyl isothiocyanates are the degradation products of another aromatic GL,
gluconasturtiin. These two degradation products are important because they
have the potential to act as cancer chemo-protectors (Cartea and Velasco, 2008).

Because of their potential biological activity and therapeutic characteristics,
aromatic GLs are significant members of the GL family of chemicals. Aromatic
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GLs like natural products (aralkyl-glucose, glucosinalbin) or some non-natural
products have shown that they have numerous biological properties and
prospective uses in biochemistry, genetics, and pharmaceutics (Vo et al., 2013).
Compared with aliphatic and indole GLs, the aromatic GLs are quite unknown.
A number of aromatic GLs have an extra sugar moiety, rhamnose or arabinose,
attached with the aromatic ring by a glycosidic bond; nonetheless, this is not
well understood (Liu et al., 2016).

Furthermore, studies show that 3-butenyl, 4-pentenyl, 2-phenylethyl, and
BITCs have substantial inhibitory action against a variety of gram-positive and
gram-negative bacterial pathogens. In comparison to aliphatic GLs of 3-butenyl
and 4-pentenyl ITCs, aromatic GL-derived compounds of 2-phenylethyl and BITCs
have greater bactericidal action (Jang et al., 2010). The mechanism involves the
activation of oxidative stress responses and changes in cellular redox homeostasis.
Interactions between ITC groups, thiol or amine groups of microbial proteins, and
aromatic GL-derived ITCs had higher reactivity due to their ability to act as electron
donors from the benzene ring (Sdnchez-Pujante et al., 2017). Because branched-
chain, aromatic, and indole GLs have a similar range of structural diversity to
aliphatic GLs, they are likely to undergo similar hydroxylations, desaturations, and
oxidations. The exception is that at least ten of the aromatic and indole GLs are
methoxylated singly or multiple times. It has been proposed that benzoyloxyalkyl
GLs form when a hydroxylalkyl GL is conjugated with benzoic acid (Mithen et al.,
2000). Figure 1 shows the structure of possible GLs degradation products after
enzymatic hydrolysis and their breakdown products. GLs structures are shown in
green, and rearrangement upon hydrolysis is shown in pink. Some examples of
fairly well-characterized GLs are listed in the later section.

2.4 Isothiocyanates

ITCs are made by hydrolyzing GLs, which are sulfur-containing compounds
found in cruciferous vegetables. When GLs are hydrolyzed, they each produce
a different ITC. Broccoli, for example, is high in glucoraphanin, a GL precursor
of SFN, and sinigrin, a GL precursor of allyl ITC (Higdon, 2005). ITCs are
rapidly conjugated to glutathione in the liver before being metabolized in the
mercapturic acid pathway and excreted in the urine (Hanigan and Cooper,
2018). SFN, one of the most extensively studied ITC, was isolated from broccoli
extracts as a potent inducer of mammalian cytoprotective enzymes (Zhang
et al,, 1992). The GL precursor of SFN, glucoraphanin, is most abundant in
seeds, and 3-day-old broccoli sprouts have 20- to 50-fold higher - and much
more uniform - levels than mature broccoli, typically 6 umol/g fresh weight. In
terms of bioactivity, ITCs are the most researched GL-derived bioactive dietary
components. As a result, broccoli sprouts and extracts have been used in human
intervention studies to deliver glucoraphanin or SFN (after complete enzymatic
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Figure 1 Structure of possible GLs degradation products after enzymatic hydrolysis and
their breakdown products. GLs structures are shown in green, and rearrangement upon
hydrolysis is shown in pink (Redovnikovi¢ et al., 2008).

hydrolysis) (Dinkova-Kostova and Kostov, 2012). The chemo-preventive effects
of ITCs on breast, lung, colorectal, and prostate cancer, the four most prevalent
malignancies globally, have been highlighted in a number of studies (Novio
et al, 2019). Various in vitro investigations have demonstrated that BITC
promotes apoptosis of human breast, prostate, and pulmonary cancer cells and
inhibits colon cancer cell migration and invasion (Lee et al., 2018a,b).

2.5 Thiocyanate

One of the breakdown products of GLs is thiocyanate. Thiocyanate production
occurs relatively infrequently in plant tissues. Furthermore, only a few GLs may
serve as precursors for the creation of suitable thiohydroximes because their
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chemical structures allow for the development of a stable carbocation form,
which is required for thiocyanate reactions. Thiocyanate has also been used to
treat hypertension in the past (Agrawal et al., 2018). Additionally, thiocyanate
substances block the thyroid's iodine-concentrating process, and their
goitrogenic action can be countered with iodine (Chandra, 2010). Thiocyanate
inhibits the sodium iodide symporter competitively, resulting in decreased
iodide uptake. Thiocyanate also appears to increase iodide efflux while
inhibiting thyroid peroxidase-mediated organification (Willemin and Lumen,
2017). The role of thiocyanate in goitrogenesis is supported by both animal
and human data. Goitre can develop in animals fed high glycosinolate diets
in a dose-dependent manner (Marwaha et al., 2003; Eisenbrand and Gelbke,
2016). Cassava is one of the most well-known dietary sources of thiocyanate
and other antioxidants. Cassava consumption has been shown to reduce iodine
uptake in endemic goitre regions (Delange and Ermans, 1971).

2.6 Nitriles

Nitriles are formed from GLs in the absence of any terminal double bonds. They
are also formed at a more acidic pH (pH < 4) or at an increased level of ferrous
ions (Hanschen et al., 2018). Previous research on salad crops has found that
they create a lot of simple nitriles at the expense of ITCs. In garden cress, nitrile
production is controlled by a specifier protein, but in watercress, it is controlled
by an unidentified, non-enzymatic route (Williams et al., 2009).

Several studies have demonstrated that simple nitriles are inefficient
as inducers of these detoxifying enzymes and as anti-proliferative agents, in
contrast to ITC (Williams et al., 2009). The mechanism of the nitrile specifier
protein can change the outcome of GLs hydrolysis and create a shift from a
direct to an indirect defence strategy, which is characterized as having a
versatile and dynamic nature (Burow and Halkier, 2017).

2.7 Oxazolidine-2-thione

Oxazolidine-2-thione derivatives are GL-related dietary components that give
some cruciferous vegetables (thyreo) toxic characteristics. They play a significant
role in contemporary antibiotics, with linezolid being the first to target bacterial
protein synthesis (Agerbirk et al., 2018). A single oxygen that is either absent or
present in two stereochemical positions has drastic biochemical consequences
(Agerbirk and Olsen, 2015).

2.8 Epithionitriles

In Brassica crops, EPTs are crucial but underappreciated GL hydrolysis products
that are produced instead of cancer-fighting ITC (Hanschen et al., 2017). On
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enzymatic hydrolysis, Brassica plants frequently produce EPTs and nitriles
instead of ITCs. The presence of ESPs is responsible for this. When plant cells
are disturbed, the plant endogenous enzyme myrosinase produces the labile
thiohydroximate-O-sulfate GL aglucon (Hanschen et al., 2017).

3 Hydrolysis of glucosinolates and the glucosinolate-
myrosinase system

In the cell, myrosinase (EC 3.2.1.147 also known as thioglucoside
glucohydrolase, sinigrinase, sinigrase, MYR) hydrolyzes glucosinolates
(Malka and Cheng, 2017). The GLs-myrosinase system is a ‘two-component’
defence system, also known as the 'mustard oil bomb’ (Ratzka et al., 2002).
Myrosinase is found in ‘myrosin cells/idioblasts, which are distinct from the
GLs and are stored in S-cells (Hunziker et al., 2019). At high turgor pressure,
GLs and myrosinase are found in cells outside the vasculature, in the phloem
cap region, and along the leaf margin (Burow and Halkier, 2017). When plant
tissue is damaged by insects, herbivores, or cutting, myrosinase comes into
contact with the GLs substrate and catalyzes the hydrolysis of the thioglucoside
bond-forming glucose, hydrogen ion, and an unstable aglucone (Sturm and
Wagner, 2017). This unstable intermediate then degrades instinctively to
one of several products, depending on factors such as pH and the presence
of various cofactors. In the case of sinigrin, for example, low pH favours the
production of allyl cyanide, whereas, at neutral and alkaline pH, allyl ITC is the
dominant breakdown product (Uda et al., 1986). Epithionitriles, ITCs, nitriles,
and thiocyanates are the hydrolysis products of GLs (Roman et al., 2018). The
diversity of the product that develops itself is ultimately determined by the
parent GlLs and the instability of a thiohydroxamate-O-sulfonate aglycone,
whichis also affected by the pH of the environment, the presence of ferrousions,
the ESP, nitrile specific protein, or thiocyanate forming protein (Glindermann
etal., 2019).

4 Analysis of glucosinolates

The biological effects of GLs and their metabolites have heightened the interest
in developing precise methods for extracting, isolating, and characterizing
these materials. The quantification of GLs can be divided into three categories:
(1) total GLs, (2) individual GLs, and (3) breakdown products including
metabolites (Verkerk and Dekker, 2008). The presence (intact) or absence
(desulfo) of the sulphate group in the structure is commonly used to determine
GLs, but rarely both. Although many studies have converted intact GLs into
desulfo-GLs to facilitate a determination by liquid chromatography (LC), a
large body of research has examined intact GLs using the same collection of
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detection methods but with modified sample preparation techniques (Maldini
etal., 2014).

Multiple analytical methods, including high-performance liquid
chromatography (HPLC), gas chromatography, and capillary electrophoresis,
have been used to determine the identity and levels of GLs in Brassica
vegetables (Smiechowska et al., 2010). The most commonly used technique
has been HPLC with ultraviolet or diode-array detection, which requires a
desulfation step to reduce the polarity of GLs, making them more amenable
to separation by reversed-phase chromatography (Rochfort and Jones, 2011).
One of the most valuable techniques for GLs analysis is mass spectrometry
(MS). MS is a highly selective and sensitive technique for profiling plant extracts
and identifying unknown compounds. The combination of a separation system
(for example, liquid chromatography) and MS (LC-MS) has been developed
as a fast, simple, precise, and sensitive technique for improving the chemical
analysis of complex biological samples containing many compounds.
However, in the case of two compounds with identical molecular weights (or,
more precisely, mass to charge ratio m/z), it is extremely difficult to distinguish
them using only LC-MS because the precursor ion is detected and analyzed.
This disadvantage can be overcome by using tandem MS (LC-MS/MS), which
allows differentiation by fragmentation pattern of both the original molecular
ion and its fragments, increasing structural assignment accuracy and sensitivity
(Almushayti et al., 2021).

5 Mechanisms of action of glucosinolates

Mechanism of action refers to a pharmacological process, where a molecule,
drug, or a bioactive compound like GLs binds to an active site or another
molecule in order to elute an effect. In this section, the mechanism of action
summarizes the process, by which a specific compound leads to biological
benefits like cell growth or suppression, as well as interactions and modulations
of biological targets like proteins or nucleic acid.

5.1 Detoxification

Detoxification, often known as ‘detox’, is a biological process involving the
removal of a toxic substance from a living organism. Naturally, detoxification is
mainly carried out through the liver but also through the kidneys, lungs, gut, or
skin all of which allow the body to process toxins in order to make space for the
new ones and repeat the process. Detoxification is important when managing
symptoms of alcohol or drug withdrawal.

From in vitro and in vivo studies, it is known that GLs work by modulating
phase | and phase Il enzymes, including cytochrome P450 enzyme category,
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through detoxification pathway. Detoxification process happens in two
stages. Initially, fat-soluble toxins enter the liver, where stage | cytochrome
P450 enzymes begin the detoxification process through oxidation, reduction,
hydrolysis, hydration, and dehalogenation reactions. Following this, the toxic
compound moves to stage Il conjugation pathway, where the process of
sulfation, glucuronidation, glutathione conjugation, acetylation, amino acid
conjugation, and methylation is carried out (Esteve, 2020). Once both stages
of detoxification are completed, waste products are eliminated through urine,
bile, or stools, while useful products move back to the bloodstream for further
distribution to their active site. Between stage | and stage Il, reactive oxygen
species (ROS) get eliminated, which can cause tissue damage. For the current
reason, consumption of GLs is of vital importance, as they cleave excessive ROS
from the body and lead to detoxification process.

5.2 Brain cancer

A brain tumour is a mass of cells presenting abnormal growth in the brain. GLs,
and in particular SFN, are commonly linked to anticarcinogenic activity (Fig. 2).
In the brain, SFN induces the nuclear factor-erythroid 2-related factor-2 (Nrf2)
protein which is linked to anti-inflammation, antioxidant, and mitochondrial
role in the brain. Upregulation of Nrf2 leads to activation of genes like heme
oxygenase-1 (HO-1), glutathione S-transferase (GST), superoxide dismutase,
catalase, NAD(P)H dehydrogenase (quinone) 1, and others, which are linked to
improved resistance to oxidative insult. Nrf2 directly regulates the expression
of inflammatory mediators like interleukin-17D, CD36, macrophage receptors
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* Block the upstream transcription factor 1 (USF1) of
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Figure 2 Processes of sulforaphane in the prevention of cancer (Soundararajan and Kim,
2018).
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with collagenous structure, and G protein-coupled receptor kinase, and it
has also been linked to reduced expression of pro-inflammatory cytokines
such as tumour necrosis factor (TNF)-a, IL-6, IL-8, and IL-1f in microglia,
macrophages, monocytes, and astrocytes (Brandes and Gray, 2020). Lastly,
Nrf2 induces free-radical scavenging enzymes, which protect mitochondria
from oxidative stress. It diminishes the overproduction of intracellular ROS and
regulates mitochondrial biogenesis through enzymes including malic enzyme
1, isocitrate dehydrogenase 1, glucose-6-phosphate dehydrogenase, and
6-phosphogluconate dehydrogenase (Brandes and Gray, 2020). However, anti-
inflammatory, antioxidant, and mitochondrial roles are interlinked and work
together for anticarcinogenic activity in the brain.

SFN activates extracellular signal-regulated kinases (ERK)1/2, which is
generally responsible for long-term memory; however, it also has numerous
functions in tumour suppression. Most commonly, ERK is linked to RAS/
RAF/MEK pathway which leads to proliferation and stimulation of mitogens
like epidermal growth factor. LLRC4 anchors ERK in cytoplasm, which
competitively inhibits MEK binding to ERK, leading to ERK phosphorylation,
which then inhibits cell proliferation. ERK can also modulate MMP genes like
MMP-9, leading to reduced invasive potential of glioblastoma cells (Hannen
et al., 2017). There are more positive modulatory functions linked to ERK1/2
activation.

Lastly, SFN downregulates CD44vé, which is found during cell growth,
survival, differentiation, motility, tumour growth, proliferation, and metastasis.
Downregulation of CD44 blocks glioblastoma and other cancer growth and
sensitizes the cells to cytotoxic drugs (Wu et al., 2020).

5.3 Breast cancer

Breast cancer occurs when the cells in a breast begin to grow in an abnormal
way, eventually forming a tumour. In breast cancer, SFN blocks the upstream
transcription factor 1 (USF1) of a protein-coding gene Histone Deacetylase 5,
which regulates the expression of angiogenesis-related genes in endothelial
cells, basal type of breast cancer cells proliferation, and therapeutic resistance
(Xue et al., 2019). Therefore, blocking USF1 leads to higher breast cancer
susceptibility to therapeutic drugs and lower cancer cell proliferation.

Following this, SFN downregulates B-cell lymphoma 2 (BCL-2), which
naturally has a negative effect on breast cancer since it inhibits the programmed
cell death. Meanwhile, SFN upregulates BCL-2-associated X protein (BAX)
expression, which is often linked to apoptotic mechanisms through p53
proteins and caspase-3 in breast cancer cells with BAX protein.

Lastly, SFN induces expression of mitogen-activated protein kinase
signalling cascade, which further induces cyclin D1 and p21“"! gene, causing
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cell cycle arrest at G1 phase (the first phase of cell growth) (Soundararajan and
Kim, 2018).

5.4 Colorectal cancer

Colorectal cancer, also referred to as bowel cancer, is the growth of abnormal
cells in multiple places of the bowel. Colon cancer is characterized by the initial
cancerous growth in the large bowel which may lead to a bowel blockage.
Similar treatment methods as for breast cancer are often applied. In colon
cancer, SFN downregulates miR21 gene, histone deacetylase inhibitors, and
human telomerase reverse transcriptase (hTERT) cells. Naturally, miR21 gene
promotes the proliferation of cancer cells (You et al, 2018), while hTERT
cells participate in the cancer formation by inducing changes like gene
amplifications, structural variants, promoter germline and somatic mutations,
epigenetic changes, and alternative lengthening of telomere (Dratwa et al.,
2020). Therefore, downregulation of miR21, histone deacetylase inhibitors, and
hTERT leads to reduced proliferation and formation of cancer cells.

Following this, SFN increases amounts of C-terminal binding protein,
C-terminal interacting protein, which in turn alters the enzymatic histone
acetylation (HAT)/histone deacetylation (HDAC) activity. HAT/HDAC activity is
of importance in colon and other types of cancer since it defines the status of
loci, transcription factors, and DNA binding proteins (Zhan et al., 2020).

SFN also reduces the expression of genes: HDAC3, p300/CBP-associated
protein (PCAF), and lysine acetyltransferase 2A (KAT2A). HDAC3 leads to
decreased levels of histone acetylation followed by upregulation of cancer
stem cell-related genes (Zhan et al., 2020); PCAF and KAT2A downregulation
results in weaker repair of the colon cancer cells (Soundararajan and Kim,
2018).

5.5 Pancreatic cancer

Pancreatic cancer, which forms from abnormal cell proliferation leading to
tumour in the pancreas, is often asymptomatic at the beginning. In pancreatic
cancer, SFN works by producing higher phosphorylation of ERK1/2 and
downregulation of a-tubulin. ERK1/2 is often linked to number of cancers
including pancreatic and previously discussed brain and breast cancer. Each
mechanism of action slightly differs, but overall upregulation of ERK1/2 often
proves beneficial for the management of cancer cells. In pancreatic cancer,
a-tubulin regulates mitosis and intracellular transport, where downregulation
leads to poor cancer cell migration, invasion, and cancer metastasis, due to
prevented focal adhesion for lamellipodial extension during cell migration, all
of which are generally caused by acetylation reactions (Lee et al., 2018a,b). In
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pancreatic cancer, downregulation of a-tubulin is beneficial, as it reduces the
likelihood of cancer spreading to other organs or around the body.

Following this, SFN prevents inhibitors of apoptosis protein family of
proteins and stabilizes Nrf2 by demethylating promoter region, which enhances
the expression of Nrf2 leading to beneficial effect in the management of
pancreatic cancer (Soundararajan and Kim, 2018).

5.6 Skin cancer

Non-melanoma skin cancer is characterized by abnormal squamous and basal
cell growth in the skin. It is often treated with surgery by removing the area
of abnormal skin, following which skin cancer rarely spreads to other parts
of the body. In skin cancer, SFN downregulates the yes-associated protein 1
(YAP1) and ANpé3a. YAP coactivates TAZ and often works in combination to
control the maintenance, activation, and coordination of epidermal and dermal
cells during development, homeostasis, wound healing, and cancer. However,
increased YAP/TAZ signalling could lead to aberrant extracellular deposition
or remodelling, cancer cell proliferation, and suppression of apoptotic genes
(Rognoni and Walko, 2019). ANpé3a is a p63 protein isoform, which plays a role
in the development of stratified epithelia; however, overexpression was linked
to enhanced mutant Ras-driven tumourigenesis of undifferentiated cutaneous
squamous cell cancer (Smirnov et al., 2019).

Following this, SFN activates Nrf2 which works through similar pathways
as discussed for pancreatic and brain cancer, leading to easier management
of the cancer cells. And lastly, SFN suppresses cyclooxygenase 2 (COX-
2) protein/matrix metalloproteinase 2 (MMP2), Zinc Finger E-Box Binding
Homeobox 1 (ZEB1) gene, and Zinc finger protein SNAIT (SNAI1). COX-2 has
been linked to stimulation of angiogenesis, apoptosis inhibition, increase in
cell proliferation, immunosuppression, production of mutagens, and cell
invasion. Simultaneously, COX-2 induces MMP2 which results in degradation
of the extracellular matrix, tumour invasion, and vascular mimicry in melanoma
(Valentina Tudor et al., 2020). Therefore, suppression of COX-2/MMP2 leads to
reduced tumour invasion, production of mutagens, and immunosuppression,
followed by improved apoptosis. ZEB1 drives the epithelial-mesenchymal
transition which activates epigenetic reprogramming and immune invasion
(Zhang et al., 2019). SNAI1T expression has been linked to tumour-infiltrating
immune cells, which leads to reduced chances of survival in people with skin
cancer (Fang and Ding, 2020).

The aforementioned are some of the pathways linked to anticarcinogenic
activity of SFN, which are summarized in Fig. 2. However, there are a number of
other pathways within cancer types discussed, as well as other types. Currently
discussed SFN is the most commonly considered ITC for the treatment of
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cancer and other conditions; however, other GLs (including BITC or phenethyl
ITC) are also beneficial in the management or treatment of cancer through a
variety of mechanisms of action.

5.7 Cardiovascular disease and diabetes

The summarized pathway to cardiovascular complications, seen in Fig. 3,
showcases where visceral white adipose tissue (WAT) experiences an increase
in size leading to release of adipocytokine hormones, which are then linked to
inflammation. Simultaneously, lipid deposit in the liver is also observed, which
results in release of cytokines and other compounds leading to inflammation.
This results in atherosclerosis and further cardiovascular complications like
heart attack or stroke (Esteve, 2020). Alternatively, inflammation can cause
other metabolic syndromes like insulin resistance. When ITC and indoles are
consumed, they lead to an increase in Nrf2, peroxisome proliferator-activated
receptor alpha (PPARa), lipid oxidation, glucose oxidation, WAT browning,
and leptin signalling, while a decrease in nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-kB), sterol regulatory element-binding
protein 1 (SREBP1c), and peroxisome proliferator-activated receptor gamma
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Figure 3 Mechanism of action of isothiocyanate and indole linked to cardiovascular
problems (Esteve, 2020).
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Figure 4 Summary of the mechanism of action for the neuroprotective effect of
isothiocyanates (Jaafaru et al. 2018).

(PPARY). Current changes inhibit the visceral WAT increase in size and lipid
deposition in the liver, which leads to reduced inflammation and reduced risk
of cardiovascular disease or diabetes (Esteve, 2020).

5.8 Central nervous system

It was found that increase in antioxidant enzymes like quinone reductase
(NQO1), HO-1, both of which were discussed in anticarcinogenic pathway,
and glutamate-cysteine ligase catalytic subunit results in the activation of
Nrf2/antioxidant responsive element (ARE) pathway. Overall, neuroprotective
effect of ITCs, and in particular SFN, is linked to the ability to activate Nrf2/ARE
pathway in the central nervous system, resulting in the expression of phase Il
enzymes, eventually leading to inhibition of ROS (Jaafaru et al., 2018). Fig. 4
summarizes the pathways of neuroprotection by ITCs.

Following this, SFN inhibits translocation of Nrf2, allowing it to react with
the active site of nucleus, where it can interact with ARE. This in turn results in the
decline in production of pro-inflammatory mediators, cytokines, and oxidative
markers leading to neural apoptotic pathway in the brain (Jaafaru et al., 2018).
Overall, neuroprotective benefits of GLs are often linked to their antioxidant
and anti-inflammatory functions.

6 Glucosinolates as nutraceuticals

Food contains a wide range of pharmacologically active chemicals that people
consume. Obtaining enhanced nutritional and medicinal qualities in vegetables
and fruits will become a much larger component of private and public
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breeding programs (Raskin and Ripoll, 2004). Technological advancements in
manipulating plant metabolism and metabolites, combined with the explosive
growth of the ‘functional food’ industry, have resulted in numerous efforts to
increase the concentration of these health-promoting compounds in specific
plant-based foods (Finley, 2005)

A 'nutraceutical’ is a substance that is either a food or a component of a
food that provides medical or health benefits, including disease prevention
and treatment. Nutraceuticals include products ranging from isolated
nutrients, dietary supplements, and diets to genetically engineered ‘designer’
foods, herbal products, and processed foods (cereals, soups, and beverages)
(Dudeja and Gupta, 2017). Nutraceuticals are compounds found naturally in
fruits and vegetables that can also be obtained in high concentrations through
dietary supplements (Cencic and Chinwaru, 2010). GLs are one of the most
notable nutraceutical compounds found in cruciferous vegetables. Because
of their high potential for preventing chronic diseases, particularly cancer,
they have been the subject of extensive research (Garcia and Velazquez,
2016).

GLs are plant secondary metabolites found in varying concentrations in
plant organs and throughout the plant’'s developmental stages. Furthermore, it
is believed that GLs, along with myrosinase, are part of a defence mechanism
used by plants to protectthemselves from biotic and abiotic stress (Bohinc et al.,
2012). Since it was discovered that SFN (4-methylsulfinylbutyl isothiocyanate),
a prominent ITC in broccoli and broccoli sprouts, potently induces mammalian
cytoprotective proteins/enzymes, GLs and ITC have been studied for more
than a half-century (Dinkova-Kostova and Kostov, 2012). Ever since scientific
research has increased its efforts to discover new pathways and/or mechanisms
to improve human health and combat disease using GLs and ITC. It is widely
accepted that one's diet and the occurrence of cancer are inextricably linked
(Dinkova-Kostova and Kostov, 2012). Several epidemiological studies have
suggested that individuals who consume fewer cruciferous vegetables have a
higher risk of developing cancers such as colorectal, pancreatic, lung, breast,
gastrointestinal, and ovarian cancer than those who consume more of these
vegetables (Olsen et al., 2011). ITC has demonstrated a remarkable ability
to act on all three stages of carcinogenesis, tumour initiation, promotion,
and progression, as well as by suppressing the final stages of carcinogenesis
(angiogenesis and metastasis) (Traka and Mithenm, 2008). Furthermore,
GLs and their breakdown products, specifically the sulfur-containing
compounds, are known for their fungicidal, bactericidal, nematocidal, and
allelopathic properties, as well as their use as cancer chemo-preventive and
chemotherapeutic agents (Ishida et al., 2014). GLs and ITC have also been
shown in studies to reduce the risk of developing not only carcinogenesis but
also cardiovascular, articular, inflammatory, and neurological (central nervous
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system) diseases, as well as asthma, diabetes, and cholesterol (Jaafaru et al.,
2018).

6.1 Glucosinolate dietary supplements

GLs can be found in dietary supplements in a variety of forms, including
broccoli and other cruciferous vegetable extracts and broccoli sprouts high in
glucoraphanin (Higdon et al., 2007). Broccoli extracts, on the other hand, may
be less effective because GLs must be hydrolyzed in order to be completely
absorbed in the gastrointestinal tract, even though some of them can be
hydrolyzed by gut microflora (Johnson, 2002). Nonetheless, products such as
Endura Cell have preserved myrosinase activity in order to effectively produce
ITCs.

In terms of biotechnological production, the most common method is to
use plants of the Brassica genus to produce GLs dietary supplements. Black
kale has been identified as a high source of GLs (De Nicola et al., 2014), despite
this, broccoli is frequently used to produce extracts for the dietary supplement
industry. However, it is important to note that GLs can differ depending on
the plant’s organ. It has been reported, for example, that aliphatic GLs may be
found in higher concentrations in florets and leaves, whereas indolyl GLs are
more likely to be found in roots (Ormirou et al., 2016). Furthermore, total GLs
content has been found to vary depending on the developmental stage of the
plant; for example, it has been reported that the concentration of GLs is higher
in broccoli sprouts than in seeds (Bhandari et al., 2015). Additionally, the GLs
content of different cultivars can vary greatly (Brown et al., 2002).

6.2 Production of dietary supplements

The procedure begins with the defatting of the plant material (i.e. broccoli
florets, sprouts, or seeds), which should be pulverized to achieve a higher yield
in the extraction process. Defatting can be accomplished by adding hexane and
agitating the mixture for 3 h. C1-C4 alcohols (e.g. ethanol) or C3-C4 ketones
(e.g. acetone) or mixtures of both can be used for extraction in an aqueous
medium (Villareal-Garcia, 2020). Broccoli that is unfit for human consumption
due to poor postharvest practices may be a good source of GLs. The majority of
the GLs in these lost crops are well preserved due to cell compartmentalization,
which keeps myrosinase separate from their substrate; however, cell rupture
is likely to occur during the extraction process; thus, it is critical to inactivate
the enzyme in order to preserve GLs content throughout the entire process,
which can be accomplished by extracting at temperatures around 70°C. The
mixture must be centrifuged to obtain an alcoholic/ketonic extract, which can
then be filtered to remove insoluble matter and evaporated to remove volatiles
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(Villareal-Garcia and Jacobo-Veldzquez, 2016). If it is evaporated, it must be
redissolved in water, alcohols, ketones, or a combination of these. The extract
can be purified further by passing it through a cation-exchange column in its
acidic form, which meets regulatory requirements for food processing. The
extract will now be adsorbed onto a basic resin that is regulatory-compliant.
The GLs can be eluted from the column using a base such as sodium hydroxide,
ammonia dissolved in water, alcohol, or a mixture (Doheny-Adams et al., 2017).
The eluate can then be evaporated, freeze dried, or spray dried to produce a
solid extract high in GLs. Microencapsulation can be applied to the obtained
solid powder.

Other methods that have been reported include the use of more complex
extraction solvent systems. For example, Fahey et al. (2003) proposed semi-
preparative scale separation and purification of GLs from a variety of plant
sources using high-speed countercurrent chromatography with a highly polar
mixture of 1-propanol-acetonitrile-ammonium sulphate-water (1:0.5:1.2:1)
before transferring to preparative scale. The authors claim that GLs extracted
from broccoli seed extract are more than 95% pure (Fahey et al., 2003).

6.3 Biological activity

GLs are a group of phytochemicals that are extremely diverse and variable.
According to research, they increase the activity of biotransformation enzymes
in a variety of tissues (Kos et al., 2011). Glutathione peroxidases (GSH-Px),
glutathione reductase (GR), GST, and superoxide dismutase (SOD) are
antioxidant enzymes that play an important role in cellular oxidative stress. It
was discovered that |-3-C does not induce oxidative enzymes at normal dietary
levels.

In mice fed semi-purified diets containing I-3-C, however, there is a
significant increase in both hepatic and intestinal GST. In rat liver, I-3-C was
found to reduce GSSGR while increasing GSH-Px and SOD. Glucoraphanin also
increased the activity of hepatic quinone reductase and GST in mice (Guerrera,
2005).

GLs have also shown biological activities that are linked to cancer
prevention, among other things. These include (1) anti-inflammatory properties
mediated by NF-kB regulation and downstream signalling, as well as inhibition
of TNF-a and lipopolysaccharide-stimulated inflammatory responses (Folkard
et al., 2014); (2) androgen receptor signalling downregulated in prostate
cancer prevention by suppressing AR transcription and protein levels (Gibba
etal., 2009); (3) epigenetic modification (Chen et al., 2016); and (4) antibacterial
properties against Helicobacter pylori, a well-known cause of gastritis and
peptic ulcers, but also linked to an increased risk of gastric cancer (Moon et al.,
2010) (Fig. 5).
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Figure 5 Overview of the nutraceutical properties of GLs.

7 Summary and future trends

GLs are a distinct class of secondary bioactives that play an important role in
both plant defence and human health. The research on GLs is very dynamic
and multifaceted, and there are numerous comprehensive studies and reviews
on those compounds that take different approaches. Numerous studies have
confirmed the correlation between myrosinase and specifier proteins, as well
as the relative protein abundance of ESP, and thus the creation of various
GL products such as ITCs, nitriles, and epithionitriles, which affect the plant
defence system. Knowledge of the biochemical basis of GLs biosynthesis
explains the diversity and relationships of various GSLs found in Brassicaceae
species. This chapter highlights that GLs are classified into three groups based
on their amino acid precursors: methionine, phenylalanine, and tryptophan.
GLs biosynthesis consists of three independent stages: (1) some amino acids
are elongated by one or more methylene groups, (2) the precursor amino
acids are converted into parent GLs, and (3) the parent GLs are subjected to
secondary modifications (oxygenations, hydroxylations, alkenylations, and
methoxylations). Despite the fact that these molecules share a basic chemical
structure, the range of compounds and the resulting hydrolysis products varies
greatly. This complexity stems from a series of reactions that evolved from
primary metabolism and necessitated subtle changes to allow for the use of
new substrates.

The phenomena of GLs metabolism should be further investigated, as to
determine what percentage of bioactive compounds reach their active site and
elute beneficial effect, the consequences of denatured myrosinase, and the
possibility of creating nutritional supplements containing GLs together with
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myrosinase for better activity and more potent health benefits. Currently, there
are no dietary guidelines for the consumption of GLs or cruciferous vegetables,
due to lack of dietary GLs intake around the world. Studies using larger sample
size should be carried out in order to determine current intake, adverse effects
from low intake, amount needed for beneficial effect, and the ability to make
educated intake suggestions for general population.

There are numerous in vitro studies investigating anticarcinogenic properties
of GLs; however, in vivo mechanisms of action for cancer protection through
short- and long-term human intervention studies are yet unknown. Therefore,
pharmacological pathways of GLs should be further investigated. While there is
evidence that SFN reduces cancer development, more research onthe underlying
molecular mechanisms is needed to better understand sulforaphane’s role in
cancer metabolic rewiring. Remarkably, recent research has found that using
SFEN in conjunction with anti-cancer treatments like chemotherapy increases
cancer cell sensitivity (Jabbarzadeh Kaboli et al., 2020), reduces toxic side effects
(Calcabrini et al., 2020), and inhibits key survival pathways in cancer progression
(Mokhtarietal.,2021). This suggests that SFN could be used not only as a potential
drug candidate but also in conjunction with existing anti-cancer treatments.

8 Where to look for further information

e Galanakis, C. M. (Ed.). (2019). Glucosinolates: Properties, recovery, and
applications. Academic Press.

e Traka,M.H.(2016). Health benefits of glucosinolates. Advances in botanical
research, 80, 247-279.

e Traka, M. and Mithen, R. (2008). Glucosinolates, isothiocyanates and
human health. Phytochemistry reviews, 8(1), 269-282.

¢ |und.(2003). Non-nutritive bioactive constituents of plants: dietary sources
and health benefits of glucosinolates. International journal for vitamin and
nutrition research, 73(2), 135-143.

e Maina, S., Misinzo, G., Bakari, G. and Kim, H. Y. (2020). Human, animal
and plant health benefits of glucosinolates and strategies for enhanced
bioactivity: A systematic review. Molecules, 25(16), 3682.

e Andersen, K. E.,, Frandsen, H. B., Jensen, S. K., Bellostas, N. M., Sgrensen,
A. D., Serensen, J. C. and Sgrensen, H. (2010). Glucosinolates in Brassica-
health risks, but also benefits. The Norwegian Academy of Science and
Letters, 2010a, 104-124.
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1 Introduction

Organosulphur compounds (OSCs) refer to a subclass of sulphur-containing
(-SH) organic molecules (Fig. 1) naturally abundant both in nature and in the
body, which include isothiocyanates, indoles, sulphoraphane (SFN) and allylic
sulphur compounds (Ruhee et al., 2020). These compounds are typically
identified by their unpleasant odours with certain products, such as saccharin,
being the exception. Sulphur, calcium and phosphorus are some of the most
abundant minerals in the human body, yet sulphur is found and exclusively
derived from proteins where only 2 of the 20 essential amino acids (methionine
and cystine) contain sulphur as part of their molecular composition (Nimni
et al.,, 2007). Sulphur, an essential element, is of great importance in human
health and disease due to its presence in vital biological molecules including
proteins, peptides, enzymes, vitamins and hormones; however, there is no
current recommended daily allowance (RDA), as it is considered prevalent in
food sources, unless in cases of extreme protein deprivation where deficiency
has been implicated in several diseases.
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Figure 1 Generic structure of some organosulphur compounds (Ruhee et al., 2020).

OSCs have gained considerable attention recently for their role in the
prevention and treatment of several non-communicable diseases such as
diabetes, cancer, inflammatory and cardiovascular diseases. This is mainly
linked to S-alk(en)yl-L-cysteine sulphoxides and S-methylcysteine-L-sulphoxid
forms, which also help the breakdown of oestrogen toxic metabolites in the liver
(Majumder and Annegowda, 2021) making them invaluable in the human diet
and disease management. OSCs are naturally found in a variety of vegetables,
namely the Allium genus, which has more than 900 known members, and
cruciferous vegetables of the Brassica genus. Allium spp., encompassing
Allium sativum L. (garlic), Allium cepa L. (onion), Allium schoenoprasum L.
(chives) and Allium ampeloprasum L. (leek), primarily contain S-alk(en)yl-L-
cysteine sulphoxides, whereas Brassicaceae spp. including Brassica oleracea
var. capitata (cabbage), Brassica oleracea var. botrytis (cauliflower), Brassica
oleracea var. gemmitfera (Brussel sprouts) and Brassica oleracea var. sabellica
(kale) are abundant in S-methyl cysteine-L-sulphoxides (Goncharov et al.,
2021). To date, most clinical studies and research have focused on garlic due
to its known medical potential; however, leeks, onions and chives have shown
protective activity against cancer (Putnik et al., 2019a,b).

OSCs comprise awide variety of sulphur-containing organicmolecules such
as, amongst others, sulphides, disulphides, sulphoxides and glucosinolates. The
classification of OSCs is primarily according to the functional group attached
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to sulphur and can be further categorised according to their physicochemical
properties in lipid-soluble compounds such as diallyl sulphides (DASs), which
have a more potent smell, followed by water-soluble compounds like S-allyl
cysteine (SAC) and S-allyl mercapto cysteine (SAMC) which have a less potent
odour (Ruhee et al., 2020). OSCs are able to neutralise reactive oxygen species
(ROS) and play a role in redox reactions and the formation of vitally important
disulphide bridges, which are made by thiol-disulphide exchange facilitated
by thioredoxin protein and are important in the post-translational modification
of proteins to maintain their tertiary structure and produce the desired activity
(Goncharov et al., 2021).

The aim of this chapter is to introduce OSC breakdown products, their
functions, bioavailability and health benefits as well as nutraceutical applications
in food, pharmaceutical and food supplement industries.

2 Bioavailability of organosulphur compounds

Bioavailability is a critical criterion for determining the relationship between
food and its health benefits (Dima et al. 2020). Nutraceutical bioavailability in
food is defined as the proportion of an ingested biocomponent that reaches
systemic circulation (blood flow) to be dispersed to organs and tissues and
manifests its bioactivity (Jafari and McClements, 2017). During cyclic or non-
cyclic formation, OSCs are distinguished by a sulphur atom bonded to a
cyanate group (Barba and Orlien, 2017). Allium OSCs have anticarcinogenic
properties due to allyl derivatives, which inhibit carcinogenesis in the stomach,
oesophagus, colon, mammary glands and lungs (Ramirez et al., 2017). The
synthesis of allicin in garlic cloves is activated by damage to the cellular
membrane and is unavailable in intact cells as it is toxic to plants and may harm
garlic tissue. The enzyme alliinase is activated via tissue degradation, which
rapidly metabolises alliin to allicin using pyridoxal 5-phosphate. Alliinase is
inactivated by 40% in the human stomach due to chloric acid and digestive
fluids, whereas allicin is degraded by intestinal cells (Phadatare et al. 2014).

Even though the bioavailability of OSC in the human body is limited, it has
been reported that normal garlic consumption provides sufficient dosage for
biological activity (e.g. anticancer effects). The majority of OSC in garlic extract
is in the allyl and methyl forms (Chope et al., 2011). Early animal studies using
canine and murine models exposed to aqueous garlic extracts (both mice and
rats) revealed relatively high SAC bioavailability in the liver, blood plasma and
kidneys (98%, 103% and 87% for rats, mice and dogs, respectively). A gram of
garlic contains 2.5 mg of allicin, 60 g of SAC, 1000 100 g of diallyl trisulphide
(DATS) and 570 40 g of diallyl disulphide (DADS) (Gao et al. 2013).

Allicin is synthesised and transformed in the human body during chewing,
and its metabolites are transported to target tissues (organs) via the stomach,
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intestine and blood, while losses are channelled through breath, urine and
stool (Lawson and Hughes, 1992). Research by Rahman (2007) found that pure
allicin was not found in the bloodstream, urine or stool after consumption,
which may be due to the bioavailability of allicin being hampered by binding
to proteins and fatty acids in the plasma membrane. Aside from the high
reactivity and rapid conversion to allyl mercaptan (AM), other reasons include
allicin’s oxidative binding to red blood cells (RBCs) and the inability to bypass
the digestive tract due to binding with the luminal membrane (Marchese et al.,
2016).

Garlic consumption can promote iron absorption from carbonyl iron via
bioavailable compounds such as DAS, DADS, diallyl trisulphide, ajoene, SAC
and by modifying DMT1 mRNA expression (Nahdi et al., 2010). It has been
proposed that leeks and shallots can increase the bioavailability of iron from
cereals and legumes (Luo et al. 2013).

3 Health benefits of organosulphur compounds

Discoveries in the field of natural food components with immunomodulatory
properties led to the identification of novel natural compounds that could
maintain homeostasis of the human immune system. Natural therapies include
plant-derived food compounds that have been shown to be more beneficial
than synthetic or uncontrolled (such as neutralised pathogens) compounds
(Hadden, 1993). Natural immune boosters are a very promising approach to
immunomodulation and may be preferable to synthetic drugs due to their
lower cost, reduced (or even eliminated) toxicity and few side effects (Miekus
et al., 2020). Sulphur-containing plant-based secondary metabolites have
long been known to have therapeutic value. As shown in Table 1, OSCs are
an integral part of the human diet and have been linked to improved health
and well-being. The beneficial properties and therapeutic applications of OSCs
have been reported in folk and traditional systems of medicine and practices
for thousands of years (Walag et al., 2020). Sulphur accounts for about 1%
of the dry weight of garlic, and the sulphur-rich compounds found in garlic
correspond to its health benefits, particularly in cancer prevention and therapy
(Nicastro et al., 2015).

3.1 Anti-inflammatory activity

Inflammation is a physiological state that occurs when our bodies are exposed
to potentially harmful endogenous or exogenous substances, as well as
injury or trauma (Kumar et al. 2014). Inflammation is the tissue's reaction to
infection, irritation or a foreign substance, and it consists of removing the
injurious stimuli in order to start the healing process. Following inflammation,
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the human body develops a series of defence mechanisms, including the
release of histamine, bradykinin and prostaglandins (PGs) (Pan et al. 2015). Pro-
inflammatory cytokines (e.g. TNF-q, IL-6 and IL-1b) are produced during the
inflammation process by phagocytic cells, which stimulate cellular responses
by increasing PGs, ROS and reactive nitrogen species. These reactive species
have the potential to cause the onset of cardiovascular and neurodegenerative
disorders such as Alzheimer’s disease, atherosclerosis, cataracts, inflammation
and cancer (Liao et al., 2012).

Anti-inflammatory properties are associated with OSCs; for example,
in a study of inflammatory bowel disease, allicin was found to inhibit the
production of cytokine messengers known to be pro-inflammatory (Lang
et al., 2004), which is primarily a protective response required for survival. The
normal inflammatory response entails the accumulation of white blood cells,
particularly neutrophils, macrophages and plasma proteins, in areas of injury
or foreign particle location, in order to selectively eliminate cells and restore
homeostasis. As a result, secondary responses such as redness, pain, fever and
swelling are frequently visible. Such an inflammatory response is referred to as
acute inflammation, but if it lasts for an extended period of time, it is referred
to as chronic or homeostatic, inflammation (Kumar et al. 2014). In addition,
activating the innate immune system can cause a more chronic inflammatory
response (Patel and Patel, 2015). As a result, regulating both metabolic and
immune responses is critical for maintaining central homeostasis because a
deviation in normal immune responses may occur if metabolic homeostasis is
disrupted chronically by endogenous or exogenous inducers (Chaplin, 2010).

Allium sativum L. inhibits NF-B activity by modulating cytokine expression
in lipopolysaccharide-activated human blood, making it a useful tool in anti-
inflammatory processes (Keiss et al., 2003a,b). The anti-inflammatory potential
of Allium flavum L. subsp. flavum, Alliaceae, was also demonstrated by
inhibiting cyclooxygenase-1 (COX-1) and 12-lipoxygenase (12-LOX) activity
(Simin et al., 2013). Some Allium species’ targeted OSCs, such as allicin, have
been implicated in the prevention of inflammatory processes. According to
this line of research, the anti-inflammatory activity of garlic is associated with
allicin inhibiting the TNF-initiated secretion of pro-inflammatory cytokines from
epithelial digestive cells. Garlic oil (via DADS) can modulate the production of
Th-cytokines in rat lymph and stimulate the immune response ex vivo (Zhang
et al., 2015). By reducing the formation of inflammatory lipopolysaccharides,
DADS, DATS and SAC repressed NF-kB and mitogen-activated protein kinase
(MAPK) signalling pathways (Zhang et al., 2015). According to the same
study, allyl methyl disulphide is one of the main bioactives found in garlic that
successfully suppressed IL-8/IP-10 formation by TNF-a in intestinal cells. Allyl
methyl disulphide has also beenimplicated as anIL-8 mMRNA suppressorin HT-29
cells, which is responsible for IkB degradation and NF-kB p65 translocation.
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This information is useful in the treatment of ulcerative colitis, Crohn’s disease
and other inflammatory bowel diseases (Zhang et al., 2015).

3.2 Anticarcinogenic effects

Several individual compounds isolated from garlic have been identified to have
two major groups of compounds with active anticancer effects. One group
consists of lipid-soluble allyl sulphur compounds such as DADS and DATS,
while the other consists of water-soluble compounds such as SAC and SAMC
(Thomson and Ali, 2003). The protective action of any chemopreventive agent
cannot be attributed to a single mechanism, and the chemoprevention activity
of OSCs can be explained using a variety of mechanisms (Moriarty et al. 2007).
Several procedures have been proposed to explain the cancer-preventive
effects of Allium vegetables and related OSCs, including mutagenesis
inhibition, enzyme activation modulation, DNA adduct formation inhibition,
free-radical scavenging, and effects on cell proliferation and tumour growth.

3.2.1 Inhibition of mutagenesis/carcinogen formation

Some OSCs may act as antimutagens or anticarcinogens by inhibiting
the formation of genotoxic compounds (Dion et al. 1997). In Salmonella
typhimurium, the mutagenic activity of aqueous and methanolic garlic extracts
inhibited aflatoxin B1 (Soni et al., 1997). Dion et al. (1997) discovered that a
water extract of garlic, deodorised garlic or onion and SAC were effective in
reducing the in vitro formation of NMOR, whereas DADS, DPDS and DAS were
ineffective NMOR inhibitors. OSCs can reduce the formation of mutagenic
heterocyclic amines during the cooking of meat. The mutagenicity of boiled
pork juice was found to be inhibited by DADS, DPDS, DAS, AM and AMS, with
DADS and DPDS exhibiting a significant inhibitory effect (Tsai et al. 1996). It has
been proposed that these compounds may inhibit the formation of mutagens
by reducing the formation of Maillard reaction products; however, the nature of
the Maillard reaction inhibition by OSCs remains unknown.

3.2.2 Effects on carcinogen-metabolising enzymes

Several OSCs inhibit the development of cancer, primarily when administered
prior to, or concurrently with, the carcinogen. DAS and DADS, as well as other
OSCs, have been shown to be effective cytochrome P450 2E1 inhibitors,
preventing the activation of nitrosamine and other compounds activated by
this cytochrome (Kwak et al., 1994). DAS and DADS have also been shown to
induce other cytochrome P450s in rats, including cytochrome P450 2B and
cytochrome P450 1A (Siess et al., 1997). These inhibitory or inducing effects
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were observed in the liver and other tissues such as gastrointestinal tract (Haber
et al.,, 1995). The effects of OSCs on the mutagenicity of several genotoxic
compounds are mediated by the modification (enhancement or inhibition) of
specific P450 cytochromes involved in their activation (Guyonnet et al., 2000).

3.2.3 Effects on cell proliferation, apoptosis and cell
differentiation

The anticarcinogenic properties of OSCs appear to be linked to changes in
cell proliferation and apoptosis rates. The direct effect of OSCs on tumour cell
growth is well documented, and research has shown that OSCs inhibit tumour
growth in animals (Le Bon and Seiss, 2000). Direct inhibition of cancer cell
growth in culture has been demonstrated in various tumoural cells, with human
tumour cell lines from the colon, lung and skin shown to be inhibited by DADS
(Sundaram and Milner, 1996). The ability to decrease the proportion of cells in
the G1 phase and increase the proportion of cells in the G2/M phase was linked
to the antiproliferative effect in human colon tumour cells (Knowles and Milner,
1998). As evidenced by morphological changes and DNA fragmentation, DADS
and DATS are also capable of inducing apoptosis in the same cells. DADS also
inhibited the growth and differentiation of mouse erythroleukaemia cells (Lea
and Ayyala, 1997); this differentiation could be mediated by the induction of
acetylation.

3.2.4 Enhancement of the immune system

Garlic extracts and OSCs have been shown to modulate both specific and
non-specific antitumour immunity. It has been reported that the pretreatment
of Ehrlich ascites cells with garlic extract inhibits the development of
malignant ascites, with mice appearing to develop antitumour immunity
(Fujiwara and Natata, 1967). DAS protected Balb/c mice from NDMA-induced
immunosuppression of humoral and cellular responses (Jeong and Lee, 1998).
An aged garlic extract (AGE) was found to stimulate immunity, including
macrophage activity, natural killer and killer cells, and LAK cells, as well as
increasing cytokine production (Lamm and Riggs, 2000), suggesting one
mechanism for the role of garlic in cancer prevention could be immune system
stimulation.

3.3 Antioxidant activity

Excessive ROS production and a decrease in antioxidant content leads to the
development of oxidative stress, which causes oxidative damage to molecular
cellular structures (e.g. carbohydrates, nucleic acids, lipids and proteins) and
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changes their functions, ultimately leading to cell death (Munné-Bosch and
Pinté-Marijuan, 2017). Many diseases, including cancer, neurodegenerative
disorders, liver damage, ageing, atherosclerosis, hypertension, ischaemia/
perfusion, diabetes, chronic obstructive pulmonary disease and asthma, are
thought to be linked to oxidative stress (Osipova et al., 2021). Antioxidants of
synthetic and natural origin are widely used to prevent the effects of oxidative
stress. Low concentrations of antioxidants can neutralise ROS via a variety of
pathways (Green and Shuaib, 2006; Ziakas et al., 2006). As biologically active
components of natural plant products can alleviate and prevent a variety of
pathological conditions, they are constantly tested in experimental and clinical
trials (Stefanucci et al., 2020).

3.4 Antimicrobial activity

Allium vegetables have antibacterial, antifungal, antiviral and antiprotozoal
properties, due to thiosulphinates and other sulphur-containing compounds
found in these vegetables. The main antimicrobial agents are allicin breakdown
products such as DADS, DATS, DAS and ajoene, the antimicrobial strength of
which is greater than that of allicin (Corzo-Martinez et al., 2007). Thiosulphinates
are generated after the activation of this enzyme following vegetable tissue
injury, hence the enzyme alliinase plays an important role in antimicrobial
action. Alliinase inactivation caused by prolonged heating results in the loss
of antimicrobial activity (Lawson, 1996). Generally, when compared with crude
extracts of Allium spp., every other sulphur compound has weaker antimicrobial
activity (Lawson, 1998).

Allicin's antibacterial activity is bacteriostatic rather than bactericidal. It
has been proposed that allicin’s antibacterial action results in the rapid and
complete inhibition of RNA biosynthesis, as well as a partial inhibition of DNA
and protein synthesis. Other thiosulphinates, in addition to allicin, have been
found to exhibit antibacterial activity. Allium species have been shown to inhibit
both Gram-positive and Gram-negative bacteria, as well as toxin production.
The most researched vegetable, i.e. garlic, has been shown to be effective
against Pseudomonas, Proteus, Escherichia coli (E. coli), Staphylococcus aureus
(S. aureus), Klebsiella, Salmonella, Micrococcus, Bacillus subtilis (B. subtilis),
Mycobacterium and Clostridium difficile (C. difficile) strains. It may also inhibit
beneficial intestinal microflora, but potentially harmful Enterobacteriaceae
species are more sensitive to garlic compounds, particularly allicin (Corzo-
Martinez et al., 2007). Garlic and onion have been the focus of most research
into the antibacterial activity of thiosulphinates, with garlic exhibiting more
effective bacterial inhibition than onion as its sulphur compound content is four
times that of onion (Salem et al., 2010).
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Many researchers have also reported that Allium extracts have antifungal
properties. Yin and Tsao (1999) discovered that garlic bulb extract had the
greatest inhibitory effect on Aspergillus niger (A. niger), Aspergillus flavus (A.
flavus) and Aspergillus fumigatus (A. fumigatus), with MIC values of 35, 75 and
104 mg/mL.

Freshly crushed garlic haslong been known to have antiparasitic properties,
with the Chinese traditionally using an alcoholic extract of garlic cloves to treat
intestinal diseases. There are only a few reports on the antiparasitic activity of
Allium vegetables or their sulphur compounds. Allicin (30 mg/mL) was found
to effectively inhibit the growth of some bacteria, including Giardia lamblia,
Leishmania major, Leptomonas colosoma and Crithidia fasciculate (Ankri and
Mirelman, 1999).

In pre-clinical and clinical studies, garlic and its active OSCs have been
shown to alleviate a variety of viral infections. Pre-clinical data from a study
carried out by Rouf et al. colleagues (2020) show that garlic and its OSCs
have activity against various human, animal and plant pathogenic viruses by
preventing viral entry into host cells, inhibition of viral RNA polymerase, reverse
transcriptase, DNA synthesis and transcription of the immediate-early gene 1
(IEG1), as well as by downregulating the extracellular-signal-regulated kinase
(ERK)/MAPK signalling pathway. The immunomodulatory effects of garlic and
its OSCs have also been linked to the alleviation of viral infection. In addition,
clinical studies have shown that garlic has a prophylactic effect in the prevention
of common viral infections in humans by enhancing the immune response
(Rouf et al., 2020).

3.5 Improving immune function

Garlic, or its constituents, exert an immunomodulatory effect via modulating
cytokine production, which is a mediator of inflammation. Nuclear factor-KB
(NF-KB) is a transcription factor that plays an important role in the expression
of genes that regulate the immune response. NF-KB plays a crucial role in the
activation and regulation of key molecules linked to inflammatory diseases
and cancer (Li and Verma, 2002) and increases the expression of some
cytokine genes. The inhibition of NF-KB by garlic products was controlled
indirectly by the modulation of pro- and anti-inflammatory cytokines (Keiss
et al., 2003a,b). Allicin exhibits anti-inflammatory properties and plays a
key role in intestinal inflammation. Allicin has been shown to inhibit the
secretion of pro-inflammatory cytokines and chemokines from intestinal
epithelial cells both spontaneously and in response to TNF (Lang et al., 2004).
Josling (2001) discovered that an allicin-containing supplement can protect
against the common cold virus. Over a 12-week period, 146 volunteers were
randomly assigned to receive either a placebo or an allicin-containing garlic

© Burleigh Dodds Science Publishing Limited, 2022. All rights reserved.



192 Health benefits and nutraceutical properties of organosulphur compounds in vegetables

supplement, one capsule daily. Colds were significantly lower in the active
treatment group compared with the placebo group. Furthermore, the placebo
group had significantly more days challenged virally and symptoms that lasted
significantly longer.

3.6 Neurogenerative disorders

The roles of long-term and short-term responses of phytochemical OSCs in
neurodegenerative disease have been extensively researched. Garlic powders
are generally thought to be beneficial to human health and may also have
neuroprotective properties. Recent research has shown that given their
antioxidative and neuroprotective properties, OSCs can help with neurological
disorders (Dwivedi et al., 2020). S-allyl cysteine, the active ingredient, was
tested in models of neurodegenerative diseases such as stroke, ischaemia
and Alzheimer's and Parkinson'’s disease. As a result, OSCs can be successfully
used to manage inflammation-related neurodegenerative diseases such as
Alzheimer's disease, stroke, and Parkinson'’s disease (Abdulzahra and Hussein,
2014). Recent research indicates that a garlic OSC has a short-term effect on the
proliferation of neural progenitor cells (NPCs) and hippocampal neurogenesis.
The herbal OSC, extracted DADS, significantly reduced NPC proliferation,
while other OSC-extracted components had no effect on neurodegenerative
disorders. In adults, hippocampal neurogenesis can be influenced by a variety
of signals that modulate the effects of neurotransmitters, growth factors and
neurotrophic factors, as well as environmental cues (Yun et al., 2014). Herbal
supplements such as OSCs have been shown to both positively and negatively
modulate hippocampal neurogenesis in adults (Jiang, 2005). Several studies
on the neuroprotective effects of garlic or AGE in Alzheimer's disease, cerebral
ischaemia and apoptotic cell death have been published (Chauhan, 2006).
The long-term goals of OSCs in neurodegenerative disorders need to be
addressed against a longitudinal cohort, as preliminary studies show that OSCs
have a positive effect in several neurodegenerative disorders and play a role in
neuroprotection (Patil et al., 2016).

4 Nutraceutical applications

Nutraceutical refers to a natural compound, part or derivative of a food, such
as omega-3 oil, or nutrient-rich whole food like spirulina or cumin, used in the
food or pharmaceutical sector to obtain a beneficial function or health benefit.
Nutraceutical applications of OSCs involve the use of natural sulphur-containing
compounds, e.g. allicin present in garlic, to obtain a health benefit or beneficial
function in the food, supplement and pharmaceutical sectors through the use
of antioxidant, antibacterial and other pharmacological properties.
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4.1 Organosulphur compounds’ uses in the food industry

OSCsarecommonly utilisedinthefoodindustry asfood dyes, food preservatives,
sweeteners or for use in water softening. However, as food additives, sulphites
must always be noted on the ingredient list as they are considered to be one
of 14 allergens.

Natural and synthetic food dyes are assigned an E number between
E100-E200 depending on their chemical structure and colour appearance.
Aromatic sulphonic acid derivatives of benzene, naphthalene, anthracene
and anthraquinone, such as p-cresidine sulphonic acid, are used to produce
synthetic water-soluble food dyes some of which include Tartrazine, Sunset
Yellow FCF, Azorubine, Amaranth, Ponceau 4R, Allura Red AC, Patent Blue V,
Indigo Carmine, Brilliant Blue FCF, Green S, Brilliant Black BN, Brown HT and
Litholrubine BK, all represented in Fig. 2 corresponding to their colour and
chemical structure.

Sulphur dioxide and synthetic or natural sulphites are approved by the
European Food Safety Authority (EFSA) and are commonly used preservatives
in the food industry with assigned E numbers E220-E228, including sulphur
dioxide (E220), sodium sulphite (E221), sodium hydrogen sulphite (E222),
sodium metabisulphite (E223), potassium metabisulphite (E224), calcium
sulphite (E226), calcium hydrogen sulphite (E227) and potassium hydrogen
sulphite (E228). There are legal limits for their use in food products, including
dried fruits, breakfast sausages and burger meat where they maintain an
appealing colour via the inhibition of enzymatic activity of polyphenol oxidase
and other enzymes, and extended shelf life through reduced growth of fungi
and bacteria. All added sulphites, with E numbers are considered allergens and
must be indicated on the food label in bold script. Sulphur dioxide and many
of the sulphites are naturally occurring, however, in the food industry, they are
often artificially synthesised to obtain a higher yield and stronger antibacterial
or alternative properties.

Natural sources of ‘sulphur dioxide’ include fires, volcanos and burning
of fossil fuels such as coal, oil or petroleum. In the food industry, it is used
in its gaseous, liquid or dry form as sulphite, bisulphite and metabisulphite
salts. Sulphur dioxide is obtained by burning sulphur from its natural sources,
following which the gas can be used for the disinfection of fruits. While the
sulphur dioxide source is burning, fruits like grapes get exposed to the fumes
prior to dehydration and transport. Liquid sulphur dioxide is also known for its
use in wineries; however, it is often more expensive due to the requirement
for a special steel container during the wine ageing stage (Prabhakar and
Mallika, 2014). ‘Calcium sulphite’ is another naturally occurring sulphite used
in food preservation. Its main source is naturally occurring gypsum, appearing
as a colourless powder often extracted by deep mining, which is the only
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Figure 2 Approved food dyes produced using p-cresidine sulphonic acid.
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acceptable way of producing calcium sulphite for use in the food industry.
Synthetically manufactured calcium sulphite is strictly prohibited. Approved
natural calcium sulphite is used in flour, bread, cereals, canned vegetables,
juices, jellies and other food products as it serves as an anticaking agent, pH
regulator and thickener.

Natural and synthetic sweeteners in the food industry are used to impact
the sweet taste of food and have an assigned E number between E700-E999,
where some of the sweeteners are produced using OSCs. Most artificial
sweeteners have zero or relatively no glycaemic index, making them a safe
alternative for people with diabetes or obesity. E954 is assigned to the artificial
sweetener 'saccharin’ appearing as a white crystalline solid. ltadds no nutritional
value to the food and is 400 times sweeter than sucrose, however, when used
in large amounts it can impart a bitter or metallic aftertaste. It is derived from a
sulphonamide derivative of toluene and is often used in food products such as
fizzy drinks, sweets, jams or biscuits (Mahmood and Al-Juboori, 2020).

‘Acesulfame potassium’ (Ace K), E900, is another artificial sweetener closely
relatedtosaccharinand, asitis calorie-free sugar, itdoes notadd nutritional value
to the food. It appears as a white crystalline powder similar to regular sugar and
is around 200 times sweeter than sucrose. Similar to saccharin, it also exhibits a
slightly bitter aftertaste especially when used in higher quantities. Ace K is heat
stable and is commonly used in combination with other sweeteners such as
sucralose or aspartame in soft drinks, frozen desserts, sweets and even tabletop
sweeteners to give them a more sucrose-like taste. Ace K is produced using
a potassium salt and a sulphonate compound, e.g. sulphur trioxide, to make
N-sulphoacetoacetamide. This is later neutralised with potassium hydroxide,
making the final product approved for use in food production by the Food and
Drug Authority (FDA) in America and EFSA in Europe, within an acceptable
daily intake of 15 mg/kg of body weight (Zeece, 2020). Generally, Ace K is safe
within recommended limits as further health data is still limited. Some studies
suggest that the consumption of Ace K has an effect on neurocognitive function
by decreasing intracellular ATP production in neuronal cells (Yalamanchi et al.,
2016); however, in vitro and in vivo studies are often carried out using higher
amounts than those used in the human diet, therefore, further investigation is
required in human trials within recommended concentrations.

4.2 Uses in the pharmaceutical industry

Sulphadrugis asynthetic antibiotic produced from the sulphonamide functional
group of the molecule. In 2018, the sulpha drug market value was US$20.5
billion with a gross domestic product (GDP) of 5.27% (Menafn, 2019), signifying
increasing popularity and need in the pharmaceutical market. Sulpha drugs are
mainly used for the treatment of skin infections, followed by gastrointestinal
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tract (GIT) infections, urinary tract infections (UTls) and respiratory tract
infections (RTls) (Mordorintelligence, 2021), with the main companies in the
market including, amongst others, F. Hoffmann-La Roche AG, Pfizer Inc., Teva
Pharmaceutical Industries Ltd., AA Pharma Inc., Lexine Technochem Pvt. Ltd.,
Abbott Laboratories and Mylan Pharmaceuticals. Currently, the sulphonamide
market does not have a dominant player and is therefore a competitive and
fragmented market.

In 1928, bacteriologist Alexander Fleming discovered penicillin by noticing
an area with no bacterial growth on an agar plate, which was linked to the
presence of mould from the Penicillium genus (Gaynes, 2017). The chemical
structure of penicillin is shown in Fig. 3, where the presence of sulphur makes it
the first discovered and most well-known sulpha drug in history. The active part
of penicillin was notisolated until 1939, when Howard Florey assembled a team
of scientists who managed to purify an active strain of penicillin, which proved
successful in animal trials for the treatment of microbial infection in mice. The
production and purification process took scientists 11 years, following which
in 1941, the first dose of purified penicillin was administered to humans for
the treatment of serious infection, which sparked the beginning of its use and
discovery of other sulpha drugs.

However, the isolation and purification of penicillin would not have
happened, without the discovery of prontosil in 1932, when German
pathologist and bacteriologist Gerhard Domagk proved its antimicrobial
activity and won a Nobel Prize in 1939. It was discovered that prontosil is
metabolised into sulphanilamide and shows obvious health benefits, and this
link resumed interest in the isolation of penicillin and further investigation of
other sulphanilamide drugs (Gaynes, 2017).

Currently, there are numerous sulphonamides and sulphaguanidine drugs
on the market. 'Pediazole’ is a combination of the antibiotic erythromycin and an
antibacterial sulpha drug sulphisoxazole used for the treatment of ear infection
in children. Other sulpha drugs are summarised in Table 2, depending on their
function including antimicrobial, antidiabetic or antidiuretic activity.

‘Sulphacetamide’ is a short-acting antibacterial drug mainly used to
treat skin infections such as acne rosacea, seborrheic dermatitis or dandruff.
A combination of 10% sodium sulphacetamide and 5% sulphur is the most
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Figure 3 Chemical composition of penicillin.
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Table 2 Examples of sulpha drugs corresponding to their function

Antimicrobial

Short acting Intermediate acting Long acting
Sulphacetamide Sulphadoxine Sulphadimethoxine
Sulphadiazine Sulphamethoxazole Sulphamethoxypyridazine
Sulphadimidine Sulphamoxole Sulphametoxydiazine

Sulphafurazole

Antidiabetic Diuretics
First Generation Second Generation
Acetohexamide Glibornuride Acetazolamide
Carbutamide Glyclopyramide Bumetanide
Chlorpropamide Gliquidone Chlorthalidone
Tolbutamide Glibenclamide Clopamide
Tolazamide Glipizide

common formulation used in lotion, cream, cleansers or foam wash (Grobel and
Murphy, 2018). ‘Sulphadiazine’ is another short-acting sulpha antibiotic often
prescribed for treatment of UTls, in particular Toxoplasma gondii. Medication
is administered orally or intravenously, following which adequate hydration
is needed to prevent the possibility of developing sulphadiazine crystalluria
and obstructive uropathy, as well as other kidney-related issues (Miller et al.,
2012). 'Sulphadimidine’ is mostly employed in veterinary medicine, as a short-
acting antibacterial agent with low potency and a half-life of 1.5-5 h. It has
proven activity against Streptococcus pyogenes, Streptococcus pneumoniae,
Haemophilus influenzae, Escherichia coli, Neisseria meningitidis and other
bacterial strains (Greenwood, 2010). Lastly, ‘'sulphafurazole’ is effective against
a wide range of Gram-positive and Gram-negative microorganisms in a short-
acting fashion, where effects can be observed after 2-3 h following an oral dose
of 2 g (Greenwood, 2010). It is often employed in the treatment of UTI, but also
for chlamydia and nocardia infections.

Sulphadoxine is a well-known intermediate-acting  antimicrobial
sulphonamide drug with a plasma half-life of 6 days and maximum activity
observedafter3-4h,followingoralconsumption. ltismainly usedincombinationwith
pyrimethamine to treat malaria caused by Plasmodium falciparum or Plasmodium
vivax (Aderibigbe and Mukaya, 2016). ‘Sulphamethoxazole’ has a plasma half-
life of about 10 h and is used on its own or in combination with trimethoprim
to treat UTls, RTls and GIT infections caused by Mycobacterium fortuitum or
Mycobacterium marinum (Wallace et al. 2015). However, sulphamethoxazole has
a low solubility in water and is rapidly eliminated from blood, followed by some
possible side effects including skin rashes, fever, hepatotoxicity, haematological
disorder and lymphadenopathy (Singh et al., 2017).
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‘Sulphadimethoxine’ is a long-acting antimicrobial sulpha drug used
in veterinary medicine to treat UTls, RTls, enteric and soft tissue infections.
‘Sulphamethoxypyridazine’ is another long-acting sulphonamide drug
with a half-life of 38 h, previously prescribed for vaginal irritation and the
treatment of dermatitis herpetiformis. However, sulphamethoxypyridazine,
sulphametoxydiazine and other long-acting antimicrobial sulpha drugs are
currently not allowed for single daily dose therapy in the USA, due to a variety
of side effects and hypersensitivity reactions (Zinner and Mayer, 2015).

Early sulphonylureas known as first-generation ‘antidiabetic’ sulpha
drugs include tolbutamide, carbutamide, acetohexamide, tolazamide and
chlorpropamide, followed by more potent second-generation sulphonylureas
including gliclazide, glimepiride and others which are summarised in Table 2.
First- and second-generation antidiabetic sulpha drugs work through a similar
mechanism of action, by acting directly on the beta cells in the pancreas. They
bind to the cytosolic surface of the sulphonylurea receptor and close ATP-
sensitive potassium channels, followed by opening calcium channels and
depolarising the plasma membrane, all of which results in induced insulin
secretion (Reusch, 2015). Current drugs are employed in the treatment of type
2 diabetes, as the stimulation of insulin production is needed to efficiently
metabolise carbohydrates.

Diuretic medication increases the production of urine in order to remove
water and salts from the body. They are commonly employed to manage health
conditions such as high blood pressure, liver disease, heart disease or some
kidney disease. ‘Acetazolamide’, also called diamox, is used to treat health
conditions such as glaucoma and altitude sickness. Acetazolamide creates mild
metabolicacidosis by losingNa*and K* into tubularfluid, which resultsin alkaline
urine; meanwhile, H* remains in the plasma, resulting in mild acidosis. Overall,
this reaction results in stimulation of carbonic anhydrase activity, leading to the
diuretic action of acetazolamide (Waller and Sampson, 2018). ‘Bumetanide’,
traded as bumex, is used to treat high blood pressure and swelling from heart,
liver or kidney problems. Bumetanide is often compared with furosemide,
however, bumex is 40 times more potent. Bumetanide passively diffuses to its
site of action, which results in rapid diuresis and relief of pulmonary oedema
(Kandasamy and Carlo, 2017). ‘Chlorthalidone’ is a preferred initial treatment
for high blood pressure and chronic kidney disease, but it also treats swelling
induced by heart failure, liver failure, nephrotic syndrome, diabetes insipidus
and renal tubular acidosis (Peixoto and Bakris, 2015).

There are numerous effective sulpha drugs with different mechanisms of
action as well as effects. The market is constantly growing and it is often the
case that the combination of products could have a synergistic health benefit.

In the general population, around 3-8% of patients report an allergic
reaction to sulphonamide drugs, with the most common symptom being
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rash, but some cases have reported more serious reactions such as Stevens-
Johnson Syndrome. All sulphonamides contain an NH,-SO, moiety, but only
sulphonamide antimicrobials contain arylamine at the N, position and a
nitrogen-containing ring at the N, position (Giles et al., 2019). Substitutions at
N, and N, positions are linked to the allergic reactions to sulphonamide drugs,
meaning that most nonantimicrobial sulpha drugs do not cause those adverse
reactions.

4.3 Uses in nutritional supplements

Glucosamine sulphate (GS) is a natural compound found in the fluid and
tissue around human joints, known as cartilage, where it cushions the joints.
For various supplement brands, GS is advertised as a natural nutritional
supplement, closely mirroring the body’s natural glucosamine to improve
joint mobility and health. The consumption of GS stimulates the production
of glycosaminoglycans and incorporation of sulphur into cartilage. At times,
people lose the ability to manufacture glucosamine, which results in cartilage
loss, leading to osteoarthritis. Through clinical trials, it was found that GS could
be used as an option to help people suffering from osteoarthritis (Murray,
2020a,b).

Forusein supplements, GS is extracted from the shells of prawns, crabs and
other shellfish, making it unsuitable for people on specific diets, i.e. vegetarian
or vegan, as well as people allergic to shellfish. However, some alternative
replacement options are available, where GS is extracted from vegetable
sources such as fermented corn, as in the production of Glucosamine Sulphate
2KCl supplements by Healthspan.

Lastly, GS is often well tolerated with very few side effects. Unlike in the
food industry with the use of food additives, or in the sulpha drug industry, no
allergic reactions have been linked to the sulphur present as part of the GS
supplement, as sulphur is an essential mineral within the human body. Only
minor side effects have been noted from the consumption of GS, and those
include stomach upset, heartburn, diarrhoea, nausea and indigestion (Murray,
2020a,b). Studies have shown that the consumption of GS supplements is safe
for the overall population, and would be recommended for people suffering
from osteoarthritis.

5 Conclusion and future trends

OSCs are linked to anti-inflammatory, anticarcinogenic, antioxidant and
antimicrobial activity, as well as improvements in immune function and
neurodegenerative disease. In the food industry, OSCs are used as food dyes,
preservatives and sweeteners, however, they must be indicated as additives,
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due to potential allergic reactions. In the pharmaceutical sector, sulphonamide
drugs are mainly used for treating skin infections, gastrointestinal infections,
UTls and RTIs, however, they must be prescribed with caution, as 3-8% of
patients report allergic reactions to sulphonamide drugs, linked to the subunits
at N, and N, positions. In nutritional supplements, OSC GS is advertised as
improving joint mobility and health and was not linked to any allergic reactions,
as sulphur is an essential mineral in the body, following which, the supplement
was recommended for people suffering from osteoarthritis.

Future OSC research should focus on the mechanisms and underpinnings
of structure-activity relationships, as well as the toxicological effects of
isolated bioactive compounds from edible Allium species. In the nutraceutical
industry, the development of sustainable and safe OSC production should
be researched, as well as applications in other diseases. However, sulphur
is difficult to work with and introduce into molecules with high precision
preventing scientists from developing OSCs with structural geometry, thus
improved development methods and precision would allow research into
new medication to protect against diseases such as cancer, heart disease,
diabetes or neurodegenerative disorders, all of which could be improved
by consuming naturally occurring OSCs in vegetables such as garlic, onions,
chives and leeks.

6 Where to look for further information

e Walag, A. M. P, Ahmed, O., Jeevanandam, J., Akram, M., Ephraim-
Emmanuel, B. C., Egbuna, C., Semwal, P, Igbal, M., Hassan, S. and Uba, J. O.
(2020). Health Benefits of Organosulfur Compounds. In Functional Foods
and Nutraceuticals (pp. 445-472). Springer, Cham.Key journals/conferences

e Guillamén, E., Andreo-Martinez, P.,, Mut-Salud, N., Fonollg, J. and Bafos, A.
(2021). Beneficial Effects of Organosulfur Compounds from Allium cepa
on Gut Health: A Systematic Review. Foods, 10(8), 1680.
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1 Introduction

The global incidence of cancer has increased dramatically as a result of
demographic factors, increased urbanization, and changes in diet and lifestyles
(Surh, 2003). It is estimated that 19.3 million new cases of cancer (covering
36 different types of cancer, including nonmelanoma-type skin cancer) and
approximately 10 million deaths occurred in 2020. Among the different types
of cancers, female breast cancer is the most common, followed by lung,
colorectal, prostate, and stomach. Lung cancer has the highest mortality rate,
followed by colorectal, liver, stomach, and female breast cancer (Sung et al.,
2021). Although various cancer prevention strategies are in place, there is no
complete and effective strategy to overcome all types of cancers. Identification
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of carcinogens, reduced exposure to these triggers, minimization of exposure
to risk factors, and changes in lifestyle are some of the suggested ways to
reduce cancer rates (Surh, 2003).

Recent attention has been focused on the relationship between incidences
of cancer and a healthy diet after it was reported that lifestyle modification can
play an important role in preventing more than two-thirds of human cancers
(Surh, 2003). According to statistical and epidemiological data, approximately
10-70% of mortality caused by cancer can be related to diet and nutritional
factors (Doll and Peto, 1981). Various substances and constituents found in
food can trigger tumor development, growth and spread, and play a role in
converting normal cells to malignant cells, while others can reduce the risk
of cancer. Health-promoting activities of foods are mostly related to regular
consumption of fruits and vegetables due to their bioactive compounds such
as phytochemicals. Phytochemicals present in a plant-based diet possessing
antimutagenic and anticarcinogenic properties are defined as non-nutritive
components.

The phytochemicals produced through primary or secondary metabolism
by different parts of plants have an essential function in plant defense
mechanisms against microorganisms, insects, animals, and abiotic stress and
are classified as constitutive metabolites (Molyneux et al., 2007; Santhi and
Sengottuvel, 2016). Phytochemicals possess great variability in their chemical
structure, thus it is more appropriate to determine their anticarcinogenic
activity based on their mechanism rather than their structural properties. More
importantly, signal-transduction pathways are a better way to determine their
anticarcinogenic properties (Sung et al., 2021; Surh, 2003).

2 Importance of plant-based foods

Cancer is defined as the abnormal growth of cells with the potential to invade
and metastasize to other parts of the body. Several factors are involved in the
initiation of cancer but changes in genes regulating normal body functions
are vital. Radiotherapy and chemotherapy are the most common and widely
used treatments, but it is essential to stop cancer in its initiation stage (Golemis
et al., 2018; Sung et al., 2021). Reversing the initial phase of carcinogenesis
or preventing the potential for premalignant cells by using synthetic, natural,
or biological agents known as chemoprevention (Ball et al., 2019; Chapa and
Mejia-Teniente, 2016) is becoming more popular with increased knowledge
of cancer biology, determination, and characterization of molecular targets,
helping prevent various cancers such as colon, prostate, and breast (Golemis
et al., 2018; Ranjan et al., 2019; Sung et al., 2012; Vogel et al., 2010). The
effects of chemoprevention are defined as primary, secondary, and tertiary.
The general population and those at high risk of cancer are subjected to

© Burleigh Dodds Science Publishing Limited, 2022. All rights reserved.



Phytochemicals in preventing cancer 213

primary chemoprevention, while patients diagnosed with premalignant lesions
indicating invasive cancer are subjected to secondary chemoprevention, and
patients that need to prevent the recurrence of cancer are included in tertiary
chemoprevention (Ball etal., 2019; De Flora and Ferguson, 2005). While dietary
phytochemical and non-steroidal anti-inflammatory drugs (NSAID) are classified
as primary chemopreventive agents, prevention of recurrence of cancer with
tamoxifen is practiced as tertiary chemoprevention, especially in breast cancer
(Ball et al., 2019; Bishayee and Sethi, 2016; De Flora and Ferguson, 2005; Sung
etal, 2021; Wong et al., 2016).

Both vegetables and fruit are important sources of cancer-preventive
substances, containing various types of phytochemicals. Among them, ginger,
tomatoes, garlic, onion, soybeans, turmeric, and cruciferous vegetables such
as cabbage, Brussels sprouts, broccoli, and cauliflower are important sources
of phytochemicals. Different substances are classified as phytochemicals,
including micronutrients (secondary metabolites) such as trace minerals,
antioxidant vitamins and their precursors, and macronutrients (primary
metabolites) such as proteins, carbohydrates, fiber, and fat. Primary metabolites
are essential for plants as they have a direct relationship with plant growth
and metabolism, whereas secondary metabolites biosynthetically originated
from the primary metabolites do not have a vital function for survival, but are
important for some functions such as competition, protection, and interaction
of species (Errayes et al., 2020; Ko and Moon, 2015; Pichersky and Gang, 2000).
Based on their chemical structures and biosynthetic origins, these chemicals
can be classified into three major groups - phenolic compounds, terpenoids,
and nitrogen-/sulfur-containing compounds (Irchhaiya et al., 2015). Phenolic
substances classified as secondary metabolites are present in a wide variety
of foods such as fruits, cereals, vegetables, legumes, horticultural crops, and
chocolate and in beverages such as coffee and tea (Shahidi and Ambigaipalan,
2015). Polyphenols are classified as flavonoids and non-flavonoids based on
having at least one aromatic ring and one or more hydroxyl group(s) (Fig. 1).
Flavonoids, as the most widespread and diverse group of polyphenols, are
further subdivided into flavonols (quercetin, myricetin, kaempferol, rutin, etc.),
flavanones (hesperidin, hesperetin, naringenin, etc.), isoflavones (daidzein,
genistein, etc.), anthocyanins (delphinidin, cyanidin, pelargonidin, malvidin,
etc.), and flavones (apigenin, luteolin, tangeretin, etc.) (Gonzales et al., 2014),
depending on the degree of methoxylation, hydroxylation, glycosylation,
and prenylation. Non-flavonoids, on the other hand, contain a wide range
of polyphenols such as lignans, stilbenes (resveratrol), and phenolic acids
(hydroxybenzoic acids and hydroxycinnamic acids, and hydrolyzable tannins)
(Faridi Esfanjani et al., 2018).

Recent studies have focused on the effect of phytochemicals as their
anticarcinogenic effects have been proven with clinical studies since they are
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Figure 1 Chemical structure of (a) common flavonoids and (b) non-flavonoid-type
phenolic compounds.

used in the treatment of carcinomatous-related diseases and have revealed
various anti-cancer properties, including apoptotic cell death activity and anti-
proliferation (Errayes etal., 2020). Approximately 1000 different phytochemicals
presentin plant-based foods are reported to have cancer-preventive properties
(Surh, 2003).

3 Mechanisms of chemoprevention

Tumor formation and development is a multistage and complex process that
includes tumor initiation, promotion, and progression. Initiation is described as
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arapid and irreversible process with extracellular and intracellular chain events,
including exposure or uptake of a carcinogenic agent as well as its transport to
organs and tissues, where activation and detoxification in addition to covalent
interaction of reactive species with target-cell DNA causing genotoxic damage
may occur (Surh, 2003). Tumor development, a reversible process, takes a
longer time and causes accumulation of proliferating preneoplastic. In contrast
to initiation, tumor promotion is a relatively lengthy and reversible process in
which cell accumulation takes place. Invasive tumor growth and development
of metastatic potential occur in the last stage, called ‘progression’, also defined
as the final stage of neoplastic transformation (Ranjan et al., 2019; Surh, 2003).

Based on their function, chemopreventive agents are categorized as
suppressing and blocking agents (Fig. 2). Suppressing agents act as an
inhibitor to stop transformation of the initiated malignant cells at the promotion
or progression stage while blocking agents prevent carcinogens from reaching
the target sites by either undergoing metabolic activation or interaction with
critical macromolecules of RNA, DNA, and proteins (Gescher et al.,, 1998;
Manson et al., 2000). Blocking or reversing initiation and promotion at the
premalignant stage as well as retarding or halting the development and
progression of precancerous cells into malignant cells can be prevented by
chemopreventive phytochemicals (Manson et al., 2000). This preventive
function of chemoprotective compounds involves various cellular molecules

Pro-carcinogen Secretion

Cancer-blocking Metabolic aclivatiy
agents A
Ellagic acid v etoxification

Ultimate carcinogen

Indole-3-carbinol
Sulphoraphane
Flavonoids

4
¥ Normal cell

Y

Initiation (1-2 days) 4#’ Preneolastic «————» Neoplastic
romotion cells Progression cells

Initiated cell (>10 years) (>1 years)

Cancer-suppression agents
Beta-carotene

Curcumin

EGCG

Genistein

Resveratrol

[6]-Gingerol

Cepsaicin

Figure 2 Blocking or suppressing of multistage carcinogenesis by dietary phytochemicals.
Source: Surh (2003).

© Burleigh Dodds Science Publishing Limited, 2022. All rights reserved.



216 Phytochemicals in preventing cancer
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Figure 3 Classification of chemoprotective agents based on their protective effects.
Source: Surh (1999).

(Milner et al., 2001; Wattenberg, 1985). Therefore, prevention of tumor
development by chemopreventives involves a combination of various distinct
sets of intercellular effects (Surh, 1999) (Fig. 3).

Chemopreventive phytochemicals have several functions forthe prevention
of cancer development, including repairing DNA damage, activation/
detoxification by xenobiotic, metabolizing enzymes, cell proliferation, cell-
cycle progression, apoptosis and differentiation, metastasis and angiogenesis,
hormonal and growth-factor activity, and functional activation and expression
of oncogenes or tumor-suppressor genes (Surh, 2003).

4 Phytochemicals and their mode of action

Both in vivo and in vitro studies show that plant-originated bioactive compounds
have a significant effect on the treatment and prevention of cancer (Bishayee
and Sethi, 2016; Gullett et al., 2010; Wong et al., 2016). Terpenoids, alkaloids,
and organosulfur compounds are the most effective and encouraging groups
of phytochemicals in cancer therapy and prevention (Kaur et al., 2018; Krajka-
Kuzniak etal., 2015; Thoppil and Bishayee, 2011) with some compounds having
a specific effect on cancer prevention or tumor development. Camptothecin,
a naturally occurring quinoline alkaloid extracted from Camptotheca
acuminate, is effective in inhibiting DNA topoisomerase |. Inhibition of DNA
topoisomerase | is also performed by topotecan and irinotecan drugs and
semisynthetic derivatives. The antitumor properties of celastrol, a terpenoid,
are reported as including the regulation of various transcription factors,
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angiogenesis, proteases, apoptotic processes, and cell cycle (Kashyap
et al., 2018; Shanmugam et al., 2016; Zhang et al., 2019). Studies of one of
the most reviewed soy phytoestrogens, genistein, have been performed with
this isoflavone alone and in combination with chemotherapy for lung and
prostate cancer therapies. Having a role in redox homeostasis, it is effective in
the inhibition of hormone-dependent cancers and has an important function
in altering the expression of various estrogen receptors, transcription factors,
and tumor suppressors in cancerous cells (Pool et al., 2018; Shanmugam et al.,
2016). Clinical studies report that the cancer-preventive therapeutic effects
of antioxidant phytochemicals and polyphenols are not definite and mostly
exhibit multifunctional activities (Lagoa et al., 2020).

5 Cancer-preventive effects of antioxidant and anti-
inflammatory activities

Polyphenols such as resveratrol, epigallocatechin-3-gallate (EGCG), and
curcumin have important roles in different stages of metastasis and
carcinogenesis by possessing both anti-inflammatory and antioxidant activities
(Gullettetal., 2010; Kasi etal.,2016; Sinha etal., 2017), presenting inflammatory
signaling and oxidative stress modulation in healthy cells by decreasing ROS
production, reducing damage in DNA and other cellular components, inhibiting
nuclear factor-kB (NF-kB) pathways, and activating nuclear factor erythroid 2-
related factor 2 (Nrf2)-mediated antioxidant response (Krajka-Kuzniak et al.,
2015; Samadi et al., 2015; Suphim et al., 2010).

Resveratrol, EGCG, curcumin, lycopene, and genistein act as NF-«xB
suppressor phytochemicalsin cancer prevention and therapy by having a critical
role in the cancer initiation stage where activation of NF-«B in a tumor-growing
environment induces activation and transcription of several anti-apoptotic and
pro-proliferative genes activated by inflammation (Gullett et al., 2010; Taniguchi
and Karin, 2018). Phase | xenobiotic metabolizing enzymes such as cytochrome
P450 inhibition and activation of phase Il detoxifying and antioxidant enzymes
by various phytochemicals and mechanisms providing minimization of
carcinogen active sites are important chemopreventive activities (Kaur et al.,
2018; Lagoa et al., 2020). Some compounds such as indoles, isothiocyanates,
and polyphenols, such as EGCG, tannic, and protocatechuic acids, accelerate
the expression of phase Il and antioxidant genes via the Nrf2 pathway (Krajka-
Kuzniak etal., 2015; Lambert and Elias, 2010; Shanmugam et al., 2016). Reactive
oxygen species (ROS) at moderate levels trigger proliferation and migration
causing metastasis and tumor development in malignant cells (Sznarkowska
et al., 2016). Inhibition of ROS sources by phytochemicals, especially in
mitochondria, provides preventive effects and therapeutic strategies for cancer
treatment (Lagoa et al., 2011; Sznarkowska et al., 2016). Moreover, genistein in
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free form, as well as loaded into NPs, decreases hydrogen peroxide production
in human colon cancer cells, demonstrating its antiproliferative activity (Pool
etal., 2018).

6 Angiogenesis suppression activities of phytochemicals

Angiogenesisisdefined asinvasion, tumor progression, and metastasis. Vascular
endothelial growth factor (VEGF) is the most important pro-angiogenic factor
due to its ability to produce other factors capable of stimulating the proliferation
of endothelial cells and blood vessel formation. Moreover, hypoxia-inducible
factor-1 (HIF-1), having a vital role in the process of angiogenesis, coordinates
the expression of VEGF as it is involved in redox and metabolic remodeling
cancer cells studies (Kaur etal., 2018). It has been proven that EGCG, resveratrol,
and curcumin are able to inhibit angiogenesis, HIF-1a expression, and VEGF
in different cancer models (Bishayee and Darvesh, 2012). As has been shown
by some in vivo studies, phytochemicals, in addition to angiogenesis, work as
VEGF signal inhibitor mechanisms (Lagoa et al., 2020).

7 Functions of phytochemicals in cell death pathway
regulation

Various phytochemicals, including their derivatives, can exert their prooxidant
properties similar to the effect of polyphenols, camptothecins, and etoposide,
which are able to increase the concentration of ROS, leading to cell death
(Kaur et al., 2018; Suphim et al., 2010). Different factors such as pH, oxygen
concentration, and transition metal level, as well as concentration of
polyphenols, have a significant effect on prooxidant behavior as only high
micromolar concentration provides cancer cell necrosis (Kaur et al., 2018;
Rengasamy et al., 2019).

The ratio between Bax and Bcl-2 proteins increased in several cancer
models in apoptosis triggered by EGCG (Khan et al., 2014; Lagoa et al., 2020).
Both Bcl-2 and Bcl-xL are the antiapoptotic proteins that are overexpressed in
several malignanciesthatinhibitthe mitochondrial release of cytochrome C(Maji
etal., 2018). Apoptosis by intrinsic and extrinsic pathways assisted by increased
concentration of caspase-8 and caspase-9 in cancer cells can be induced by
gallic acid (Kaur et al., 2018). Celastrol is another phytochemical compound
presenting in vivo and in vitro apoptosis-inducing capacity regulated by several
different pathways such as Bcl-2 and NF-«kB signal mechanism inhibition and
p53 and Bax (Aqgil et al., 2016; Zhang et al., 2019). Due to its ability to promote
cell proliferation and inhibition of apoptosis by regulating various gene
expressions, such as Bcl-2 and Bcl-xL, and antagonizing p53 and NF-«kB, the
regulatory network is a popular antitumor agent (Taniguchi and Karin, 2018).
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Thus, nanoformulations of quercetin and EGCG are reported to be effective
in preventing NF-k[3 activation and inducing apoptosis in cancer models and
inflammation (Chakraborty et al., 2012; Siddiqui et al., 2014). Besides p53
pathway, alteration of genes included in apoptosis, androgen pathway, and
cell-cycle control mechanisms have been observed in studies with resveratrol.
However, its effects on microRNA profiling and epigenetic remodeling are yet
to be studied (Huminiecki and Horbarnczuk, 2018; Xie et al., 2016).

Curcumin at low concentrations exhibiting apoptosis-inducing or
antiproliferative properties has the ability to inhibit NF-kB signal mechanism,
cause partial mitochondrial depolarization, and decrease Bcl-xL levels with
no detectable oxidative stress in cholangiocarcinoma (Suphim et al., 2010).
Curcumin atthe same concentration also causes anincrease in Bax(proapoptotic
proteins) and p53 (related to cell death) whereas at higher concentrations, it is
unable to alter these proteins. However, promoted ROS generation results in
a collapse in mitochondria and cell death. Although catechin-type flavonoid
of EGCG activity against melanoma cells is stronger than that of the curcumin,
it (proportionally at high and prooxidant concentration) exhibits cytotoxicity
(Branco etal., 2015). Polyphenols, having cytotoxicity or antiproliferative effects,
have the ability to modulate cell signaling pathways related to the promotion
andinitiation of carcinogenesisin addition to invasive and migration phenotypes
at low concentrations, but higher concentrations are required for efficient
antitumor activity (Kaur et al., 2018; Rengasamy et al., 2019). However, higher
concentrations of these compounds similar to hepatotoxicity of catechins may
raise safety concerns. Although its role in cellular transformation and cancer
progression is still being debated, autophagy is a complicated process with
an important role in the degradation of damaged organelles and proteins in
eukaryotic cells (Sznarkowska et al., 2016). Different phytochemicals such as
curcumin, thymoquinone, celastrol, resveratrol, ursolic acid, and y-tocotrienol
have been implicated in the induction of autophagy in various cancer models
(Deng et al., 2019). In addition to autophagy, different cell death mechanisms
such as non-canonical programmed cell death mechanisms may become an
effective therapeutic approach (Diederich and Cerella, 2016).

8 Combined use of phytochemicals with antineoplastic
agents

Due to toxicity concerns and the desire to reduce the therapeutic dose,
combinations of standard chemotherapeutics with anticancer phytochemicals
are gaining popularity. Application of low-dose doxorubicin or etoposide
combined with quercetin or apigenin polyphenols in lymphoid and myeloid
leukemia cells has reduced ATP levels, lowered the induction of apoptosis,
especially caspase-3, -8, and -9 activation, and increased S and/or G2/M phase
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cell cycle in malignant cell lines (Mahbub et al., 2015). It has been proven
that the combination of the two treatments provides a synergistic decrease in
glutathione levels and anincrease in DNA damage, whereas a single application
only affected these parameters on a moderate level. A combination of emodin,
rhein, and cis-stilbene polyphenols with chemotherapeutic drugs, on the other
hand, exhibited a lower anticancer effect. Itis estimated that the synergistic effect
is related to intrinsic apoptosis and, particularly with the activation of caspase-9,
isbecause p53 celllines are found to be null, indicating that applied polyphenols
might affect the mitochondrial target in cancer cells as also observed upon
inactivation of Jurkat cells by application of quercetin followed by menadione
(Baran et al., 2014). Applications of polyphenols alone or in combination with
etoposide or doxorubicin presented no toxic effect on non-cancerous cells,
and more importantly, these combined applications have a protective effect on
these cells from the adverse side effects of chemotherapeutic agents (Mahbub
etal., 2015). Protecting non-cancerous cells from the adverse effects of chemo-
and radiotherapies, in addition to inhibiting multidrug resistance proteins,
breast cancer resistance protein, and P-glycoprotein, is another advantage
of antioxidants and natural phytochemicals (Asensi et al., 2011; El-Ashmawy
etal.,, 2017; Li et al., 2017; Mercader and Pomilio, 2012). There is a correlation
between the therapeutic and chemopreventive capacity of phytochemicals
with tumor suppressor genes and oncogenes (Muddineti et al., 2017).

9 Importance of delivery systems for phytochemicals

Although the anticancer activities of phytochemicals are highly promising,
there are several concerns regarding the translation of beneficial effects. The
poor solubility of polyphenols in the aqueous phase prevents them from being
retained in circulation. Due to their low absorption in the gastrointestinal
system, high metabolism, rapid clearance, and chemical degradation, they may
not reach blood or tumor tissues. Although they have considerable antitumor
activity, the level of micromolar concentration of EGCG and quercetin in blood
and the very short half-time (several minutes) of resveratrol is insufficient to
provide a cytoprotective effect (Jung et al., 2015; Lagoa et al., 2017). Efforts
are therefore being made to develop delivery systems to increase the solubility
and stability of bioactive phytochemicals, improve oral bioavailability, and
increase their target specificity to tumor cells. Due to their increased solubility
and easier intestinal uptake, lipid-based systems have been found to be
successful. Applications of chylomicrons, supported by berberine, increase the
drug absorption rate in plasma. Different delivery systems for resveratrol are
also found to be superior (Elsheikh et al., 2018; Peng et al., 2018). Proliposomes
formulated for gingerol are more effective than that of both the free phenolic
compound to inhibit HepG2 cancer cells (Wang et al., 2018) and celastrol, a
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lipid-based carrier, tested in rabbits (Freag et al., 2018). Encapsulation of
curcumin with NPs protein exhibits an adverse effect on the viability of MCF-7
cells with increased bioavailability in rat cells (Liu et al., 2017).

Nanoformuled form of curcumin, registered as Lipocurc® (liposomal, 1V),
has increased bioavailability and provides better treatment in cancer patients.
However, its faster systematic elimination causes problems in treatment (Greil
et al., 2018). Another formulation, Meriva®, a phytosomal complex of natural
curcuminoids with lecithin, exhibits higher oral absorption and is reported
to be effective for the metabolization of demethoxycurcumin (Cuomo
et al., 2011) with diminishing oxidative stress and systemic inflammation in
patients receiving chemotherapy (Panahi et al., 2014). Some adverse effects
of radio- and chemotherapy have been reported (Belcaro et al., 2014), and
a gemcitabine response increase in pancreatic cancer patients (Pastorelli
et al., 2018). Quercetin nanoemulsion, supported by low doses of flavonoid
and pemetrexed, presents an increase in membrane permeability and oral
bioavailability antifolate against A549 tumors in mice (Pangeni et al., 2018).
Inhibition of colon cancer cells in vivo is possible with the introduction of
quercetin polymeric micelle orally and by injection (Chang et al., 2018). Studies
of nanoparticles of phytochemicals are found to be more effective than that of
their free form, depending on the type of cancer. Formation of nanoparticles
with encapsulated EGCG in polylactic acid-polyethylene glycol (PLA-PEG)
enhanced its antiangiogenic and chemopreventive proapoptotic potential
(Siddiqui et al., 2009).

Nanoparticles formed by iron oxide core material and chitosan are able
to release phytic acid slowly following a pseudo-second-order model kinetics,
effective in impairing HT-29 colon cancer cells’ viability (Barahuie et al., 2017;
Soares et al., 2016). Compared to its free form, cyclodextrin-added carbon
nanotubes also present cytotoxicity to MCF-7 cells and Hela cells in vitro (Liu
et al.,, 2018). At concentrations above 10 uM, EGCG shows a growth inhibitory
effect for melanoma cells, but its cytotoxic effect becomes clear after it is
encapsulated as nanoparticles (Siddiqui et al., 2014).

Resveratrol-containing PLA-PEG nanoparticles are effective in reducing
tumor growth, colony-forming capacity, and the number of cells in addition
to the production of ROS and uptake of fluorodeoxyglucose, resulting in cell
apoptosis in in vitro studies (Jung et al., 2015). Hyaluronic acid decorated PCL
nanoparticles containing naringenin causes overexpressing in tumor cells
(Parashar et al., 2018). Zein involved nanoparticles with oil-based fraction in the
core of the particle, having exemestane and resveratrol, present high efficacy
against breast cancer in mouse models and at cellular level (Elzoghby et al.,
2017). A combination of resveratrol with other antioxidants gives encouraging
resultsininvivo studies againstbreast cancer promoted by 7,12-dimethylbenz[a]
anthracene (Jain et al., 2017; Rehman et al., 2017). An increase in cytotoxicity
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with slow release is observed by the encapsulation of lycobetaine as liposomes
and nanoemulsions (Chen et al., 2018). Encapsulated curcumin also shows
in vitro cytotoxic action against A549 lung cancer cells (lbrahim et al., 2018).
Application of phosphatidylcholine liposomes on silica-coated iron oxide
nanoparticles accompanied by doxorubicin show cytotoxicity against MCF-7
human breast adenocarcinoma and U87 glioblastoma cells under magnetic
field application (Sharifabad et al., 2016).

10 Routes of administration for phytochemicals

Brain-targeted treatments have seen some encouraging results against cancer
cells (Da Fonseca et al., 2013). Nasal introduction of kaempferol to rat brain
as a mucoadhesive nanoemulsion is reported to be compatible with mucosa
(Colombo et al.,, 2018). While low-dose free resveratrol is not detected in
cerebrospinal fluid after 3 h, its equivalent encapsulated dose administrated
by nasal introduction measured in micro gram per milliliter concentrations in
less than 1 h, indicating that the microparticle carrier system uses a nose-CNS
system, not a blood-brain barrier (Trotta et al., 2018). Aglycone flavonoids, due
to their lipophilicity, can pass the blood-brain barrier (Youdim et al., 2003) by
passive transcellular diffusion and downregulation or inhibition of breast cancer
resistance protein (Kaur and Badhan, 2017). It is desirable to treat brain cancer
by facilitating barrier penetration (Kaur and Badhan, 2017) and nanoparticles
are effective in extending the retention times of phytochemicals in different
regions of the brain (Tsai et al., 2011).

In addition to the brain, colon-targeted delivery systems have been
found to be effective for resveratrol interventions. Encapsulated Ca-pectinate
beads provide increased resveratrol capacity to prevent inflammation in
ulcerative colitis model in rats and inhibit sphingosine kinase 1 in colon cancer
implications (Abdin, 2013). Similarly, the protective action of alginate-chitosan
microspheres carrying icariin (prenylated kaempferol) is presented by the
accumulation of the vehicle in mouse colon (Wang et al., 2016). Alginate - as
anionic polysaccharides - and pectin are commonly used oral vehicles to target
the colon due to their bioadhesive properties and safety. Quercetin magnetic
nanoparticles coated with PLGA have been shown to be effective against lung
cancer in mice (Verma et al., 2013), while a combination of low-dose etopside
and berberine with albumin-supported nanoparticles is suggested for deep
lung deposition for two drugs having different release trends (Elgohary et al.,
2018). Camptothecin-loaded PLGA nanoparticles are also found to be effective
in preventing the development of adenovirus-induced vaginal cancer in mice
(das Neves et al., 2015).

Compared to other delivery systems, transdermal delivery, due to having
some advantages such as more efficient drug penetration, is particularly
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preferred for incidences of skin cancer (Liu et al., 2018). Sesamol-releasing
gelatin-oleic acid nanoparticles applied through mice skin in vitro are effective
against MCF-7 breast cancer (El Masry et al., 2018). Liposome-loaded curcumin,
in combination with iontophoresis applied to porcine skin, is effective against
human epidermoid cancer cells (Jose et al., 2017). EGCG results in a reduction
in proliferation and invasion/migration potential for melanoma, as well as
metastasis to distant tissues (Silva et al., 2017).

11 Combining phytochemicals with other applications

A combination of different applications for cancer treatment is more
advantageous to gain the benefit of cumulative effects as having a different
mode of action with reduced side effects is currently in demand. The
chemosensitization effect of nanoparticles prepared by encapsulation of EGCG
and theaflavin in PLGA is reported to be higher than that of the free compounds
against Hela cervical carcinoma, A549 lung carcinoma, THP-1 leukemia cells,
and mice bearing Ehrlich ascites carcinoma cells by increasing the anticancer
activity of cisplatin (Singh et al., 2015). Nanoparticles designed for simultaneous
delivery of cisplatin and wortmannin have shown a superior therapeutic effect
against platinum-sensitive and platinum-resistant ovarian cancer than the use
of these compounds separately (Karve et al., 2012). Tailored nanoparticles with
a combination of cisplatin and wortmannin are reported to be superior to that
of free drug and single-drug-loaded nanoparticles against platinum-resistant
and platinum-sensitive ovarian cancer cells (Zhang et al., 2018). Moreover, the
superior effects of B-elemene plus celastrol (Zhang etal., 2019) and pemetrexed
plus resveratrol (Abdelaziz et al., 2019), 10-hydroxycamptothecin in gold-zein
nanoparticle complex (Mashhadi Malekzadeh et al., 2017), and gallic acid
(Usman et al., 2018), in addition to nanoparticles/gadolinium contrast agents
(Wang et al., 2018), use of apoferritin as curcumin carrier (Conti et al., 2016)
against various forms of cancer cells are also reported.

12 Conclusion

Understanding cancer mechanisms is the key to inhibiting cancer growth
and metastasis. Effects of dietary polyphenols as new chemopreventive and
chemotherapeutic agents, either alone or in combination with medicine,
epigenetic inhibitors, and/or other polyphenols might be a stronger and more
effective anticancer approach. Phytochemicals, mostly depending on the
applied dose, may themselves have an adverse effect, thus minimization of
side effects should also be taken into consideration. Besides general targeting,
strategies for specific delivery mechanisms, efficient and responsive carriers,
and specially designed target molecules may provide better opportunities
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for specific treatments. Phytochemicals have huge potential for cancer
treatment, but further studies will provide a better understanding as to whether
phytochemicals will take the place of traditional cancer treatments with reduced
side effects.

13 Where to look for further information

13.1 The following articles provide a good overview of the
subject

e Kim,Y.S., Young, M.R., Bobe, G., Colburn, N. H., Milner, J. A. 2009. Bioactive
food components, inflammatory targets, and cancer prevention. Cancer
Prevention Res. 2(3), 200-208.

e Siddiqui, I. A, Adhami, V. M., Ahmad, N., Mukhtar, H. 2010.
Nanochemoprevention: sustained release of bioactive food components
for cancer prevention. Nutr. Cancer 62(7), 883-890.

e Ferguson, L. R., Philpott, M. 2007. Cancer prevention by dietary bioactive
components that target the immune response. Curr. Cancer Drug Targets
7(5), 459-464.

e Kris-Etherton, P. M., Hecker, K. D., Bonanome, A., Coval, S. M., Binkoski, A.
E., Hilpert, K. F.,, Griel, A. E. and Etherton, T. D. 2002. Bioactive compounds
in foods: their role in the prevention of cardiovascular disease and cancer.
Am. J. Med. 113(9), 71-88.

e Watson, R. R., Preedy, V. R. (Eds.). (2010). Bioactive Foods and Extracts:
Cancer Treatment and Prevention. CRC Press.

e Patil, B. S., Jayaprakasha, G. K., Chidambara Murthy, K. N., Vikram, A.
2009. Bioactive compounds: historical perspectives, opportunities, and
challenges. J. Agric. Food Chem. 57(18), 8142-8160.

13.2 Key research in this area can be found at the following
organizations

e American Institute for Cancer Research.
® American Cancer Society.

14 References

Abdelaziz, H. M., Elzoghby, A. O., Helmy, M. W., Samaha, M. W., Fang, J. Y. and Freag, M.
S.2019. Liquid crystalline assembly for potential combinatorial chemo-herbal drug
delivery to lung cancer cells. Int. J. Nanomedicine 14, 499-517. https://doi.org/10
.2147/1JN.S188335.

Abdin, A. A. 2013. Targeting sphingosine kinase 1 (SphK1) and apoptosis by colon-
specific delivery formula of resveratrol in treatment of experimental ulcerative colitis

© Burleigh Dodds Science Publishing Limited, 2022. All rights reserved.


http://dx.doi.org/https://doi.org/10.2147/IJN.S188335
http://dx.doi.org/https://doi.org/10.2147/IJN.S188335

Phytochemicals in preventing cancer 225

in rats. Eur. J. Pharmacol. 718(1-3), 145-153. https://doi.org/10.1016/j.ejphar.2013
.08.040.

Aqil, F., Kausar, H., Agrawal, A. K., Jeyabalan, J., Kyakulaga, A. H., Munagala, R. and Gupta,
R. 2016. Exosomal formulation enhances therapeutic response of celastrol against
lung cancer. Exp. Mol. Pathol. 101(1), 12-21. https://doi.org/10.1016/j.yexmp.2016
.05.013.

Asensi, M., Ortega, A., Mena, S., Feddi, F. and Estrela, J. M. 2011. Natural polyphenols in
cancer therapy. Crit. Rev. Clin. Lab. Sci. 48(5-6), 197-216. https://doi.org/10.3109
/10408363.2011.631268.

Ball, S., Arevalo, M., Juarez, E., Payne, J. D. and Jones, C. 2019. Breast cancer
chemoprevention: An update on current practice and opportunities for primary
care physicians. Prev. Med. 129, 105834. https://doi.org/10.1016/j.ypmed.2019
.105834.

Barahuie, F., Dorniani, D., Saifullah, B., Gothai, S., Hussein, M. Z., Pandurangan, A. K.,
Arulselvan, P.and Norhaizan, M. E. 2017. Sustained release of anticancer agent phytic
acid from its chitosan-coated magnetic nanoparticles for drug-delivery system. Int. J.
Nanomed. 12, 2361-2372. https://doi.org/10.2147/1JN.S126245.

Baran, ., lonescu, D., Filippi, A., Mocanu, M. M., Iftime, A., Babes, R., Tofolean, I. T., Irimia,
R., Goicea, A., Popescu, V., Dimancea, A., Neagu, A. and Ganea, C. 2014. Novel
insights into the antiproliferative effects and synergism of quercetin and menadione
in human leukemia Jurkat T cells. Leuk. Res. 38(7), 836-849. https://doi.org/10.1016
/j.leukres.2014.04.010.

Belcaro, G., Hosoi, M., Pellegrini, L., Appendino, G., Ippolito, E., Ricci, A., Ledda, A., Dugall,
M., Cesarone, M. R., Maione, C., Ciammaichella, G., Genovesi, D. and Togni, S. 2014.
A controlled study of a lecithinized delivery system of curcumin (Meriva®) to alleviate
the adverse effects of cancer treatment. Phytother. Res. 28(3), 444-450. https://doi
.org/10.1002/ptr.5014.

Bishayee, A. and Darvesh, A. S. 2012. Angiogenesis in hepatocellular carcinoma: A
potential target for chemoprevention and therapy. Curr. Cancer Drug Targets 12(9),
1095-1118. https://doi.org/10.2174/15680096112091095.

Bishayee, A. and Sethi, G. 2016. Bioactive natural products in cancer prevention and
therapy: Progress and promise. Semin. Cancer Biol. 40-41, 1-3. https://doi.org/10
.1016/j.semcancer.2016.08.006.

Branco, Cdos S., de Lima, E. D., Rodrigues, T. S., Scheffel, T. B., Scola, G., Laurino, C. C.
F. C., Moura, S. and Salvador, M. 2015. Mitochondria and redox homoeostasis as
chemotherapeutic targets of Araucaria angustifolia (Bert.) O. Kuntze in human larynx
HEp-2 cancer cells. Chem. Biol. Interact. 231, 108-118. https://doi.org/10.1016/j.cbi
.2015.03.005.

Chakraborty, S., Stalin, S., Das, N., Choudhury, S. T., Ghosh, S. and Swarnakar, S. 2012.
The use of nano-quercetin to arrest mitochondrial damage and MMP-9 upregulation
during prevention of gastric inflammation induced by ethanol in rat. Biomaterials
33(10), 2991-3001. https://doi.org/10.1016/j.biomaterials.2011.12.037.

Chang, C. E., Hsieh, C. M., Huang, S. C., Su, C.Y., Sheu, M. T. and Ho, H. O. 2018. Lecithin-
stabilized polymeric micelles (LSBPMS) for delivering quercetin: Pharmacokinetic
studies and therapeutic effects of quercetin alone and in combination with
doxorubicin. Sci. Rep. 8(1), 17640. https://doi.org/10.1038/s41598-018-36162-0.

Chapa, A. M. and Mejia-Teniente, L. 2016. Capsaicin: From plants to a cancer-suppressing
agent. Molecules 21(8), 931. https://doi.org/10.3390/molecules21080931.

© Burleigh Dodds Science Publishing Limited, 2022. All rights reserved.


http://dx.doi.org/https://doi.org/10.1016/j.ejphar.2013.08.040
http://dx.doi.org/https://doi.org/10.1016/j.ejphar.2013.08.040
http://dx.doi.org/https://doi.org/10.1016/j.yexmp.2016.05.013
http://dx.doi.org/https://doi.org/10.1016/j.yexmp.2016.05.013
http://dx.doi.org/https://doi.org/10.3109/10408363.2011.631268
http://dx.doi.org/https://doi.org/10.3109/10408363.2011.631268
http://dx.doi.org/https://doi.org/10.1016/j.ypmed.2019.105834
http://dx.doi.org/https://doi.org/10.1016/j.ypmed.2019.105834
http://dx.doi.org/https://doi.org/10.2147/IJN.S126245
http://dx.doi.org/https://doi.org/10.1016/j.leukres.2014.04.010
http://dx.doi.org/https://doi.org/10.1016/j.leukres.2014.04.010
http://dx.doi.org/https://doi.org/10.1002/ptr.5014
http://dx.doi.org/https://doi.org/10.1002/ptr.5014
http://dx.doi.org/https://doi.org/10.2174/15680096112091095
http://dx.doi.org/https://doi.org/10.1016/j.semcancer.2016.08.006
http://dx.doi.org/https://doi.org/10.1016/j.semcancer.2016.08.006
http://dx.doi.org/https://doi.org/10.1016/j.cbi.2015.03.005
http://dx.doi.org/https://doi.org/10.1016/j.cbi.2015.03.005
http://dx.doi.org/https://doi.org/10.1016/j.biomaterials.2011.12.037
http://dx.doi.org/https://doi.org/10.1038/s41598-018-36162-0
http://dx.doi.org/https://doi.org/10.3390/molecules21080931

226 Phytochemicals in preventing cancer

Chen, T., Gong, T., Zhao, T, Fu, Y., Zhang, Z. and Gong, T. 2018. A comparison study
between lycobetaine-loaded nanoemulsion and liposome using nRGD as
therapeutic adjuvant for lung cancer therapy. Eur. J. Pharm. Sci. 111, 293-302.
https://doi.org/10.1016/j.ejps.2017.09.041.

Colombo, M., Figueird, F., de Fraga Dias, A., Teixeira, H. F.,, Battastini, A. M. O. and
Koester, L. S. 2018. Kaempferol-loaded mucoadhesive nanoemulsion for intranasal
administration reduces glioma growth in vitro. Int. J. Pharm. 543(1-2), 214-223.
https://doi.org/10.1016/}.ijpharm.2018.03.055.

Conti, L., Lanzardo, S., Ruiu, R., Cadenazzi, M., Cavallo, F., Aime, S. and Crich, S. G. 2016.
L-ferritin targets breast cancer stem cells and delivers therapeutic and imaging
agents. Oncotarget 7(41), 66713-66727. https://doi.org/10.18632/oncotarget
.10920.

Cuomo, J., Appendino, G., Dern, A. S., Schneider, E., McKinnon, T. P, Brown, M. J., Togni,
S. and Dixon, B. M. 2011. Comparative absorption of a standardized curcuminoid
mixture and its lecithin formulation. J. Nat. Prod. 74(4), 664-669. https://doi.org/10
.1021/np1007262.

Da Fonseca, C. O., Teixeira, R. M., Silva, J. C., De Saldanha, D. A., Gama Fischer, J.,
Meirelles, O. C., Landeiro, J. A. and Quirico-Santos, T. 2013. Long-term outcome
in patients with recurrent malignant glioma treated with perillyl alcohol inhalation.
Anticancer Res. 33(12), 5625-5631.

das Neves, J., Nunes, R., Machado, A. and Sarmento, B. 2015. Polymer-based nanocarriers
for vaginal drug delivery. Adv. Drug Deliv. Rev. 92, 53-70. https://doi.org/10.1016/]
.addr.2014.12.004.

DeFlora,S.and Ferguson, L.R.2005. Overview of mechanisms of cancer chemopreventive
agents. Mutat. Res. 591(1-2), 8-15. https://doi.org/10.1016/j.mrfmmm.2005.02
.029.

Deng, S., Shanmugam, M. K., Kumar, A. P, Yap, C. T,, Sethi, G. and Bishayee, A. 2019.
Targeting autophagy using natural compounds for cancer prevention and therapy.
Cancer 125(8), 1228-1246. https://doi.org/10.1002/cncr.31978.

Diederich, M. and Cerella, C. 2016. Non-canonical programmed cell death mechanisms
triggered by natural compounds. Semin. Cancer Biol. 40-41, 4-34. https://doi.org
/10.1016/j.semcancer.2016.06.001.

Doll, R. and Peto, R. 1981. The causes of cancer: Quantitative estimates of avoidable risks
of cancer in the United States today. J. Natl. Cancer Inst. 66(6), 1191-1308. https://
doi.org/10.1093/jnci/66.6.1192.

El-Ashmawy, N. E., Khedr, E. G., Ebeid, E. M., Salem, M. L., Zidan, A. A. and Mosalam, E. M.
2017.Enhanced anticancer effect and reduced toxicity of doxorubicin in combination
with thymoquinone released from poly-N-acetyl glucosamine nanomatrix in mice
bearing solid Ehrlish carcinoma. Eur. J. Pharm. Sci. 109, 525-532.

Elgohary, M. M., Helmy, M. W., Abdelfattah, E.-Z. A., Ragab, D. M., Mortada, S. M., Fang,
J.Y. and Elzoghby, A. O. 2018. Targeting sialic acid residues on lung cancer cells by
inhalable boronic acid-decorated albumin nanocomposites for combined chemo/
herbal therapy. J. Control. Release 285, 230-243. https://doi.org/10.1016/].jconrel
.2018.07.014.

El Masry, S. R., Hathout, R. M., Abdel-Halim, M. and Mansour, S. 2018. In vitro transdermal
delivery of sesamol using oleic acid chemically-modified gelatin nanoparticles as a
potential breast cancer medication. J. Drug Deliv. Sci. Technol. 48, 30-39. https://doi
.org/10.1016/.jddst.2018.08.017.

© Burleigh Dodds Science Publishing Limited, 2022. All rights reserved.


http://dx.doi.org/https://doi.org/10.1016/j.ejps.2017.09.041
http://dx.doi.org/https://doi.org/10.1016/j.ijpharm.2018.03.055
http://dx.doi.org/https://doi.org/10.18632/oncotarget.10920
http://dx.doi.org/https://doi.org/10.18632/oncotarget.10920
http://dx.doi.org/https://doi.org/10.1021/np1007262
http://dx.doi.org/https://doi.org/10.1021/np1007262
http://dx.doi.org/https://doi.org/10.1016/j.addr.2014.12.004
http://dx.doi.org/https://doi.org/10.1016/j.addr.2014.12.004
http://dx.doi.org/https://doi.org/10.1016/j.mrfmmm.2005.02.029
http://dx.doi.org/https://doi.org/10.1016/j.mrfmmm.2005.02.029
http://dx.doi.org/https://doi.org/10.1002/cncr.31978
http://dx.doi.org/https://doi.org/10.1016/j.semcancer.2016.06.001
http://dx.doi.org/https://doi.org/10.1016/j.semcancer.2016.06.001
http://dx.doi.org/https://doi.org/10.1093/jnci/66.6.1192
http://dx.doi.org/https://doi.org/10.1093/jnci/66.6.1192
http://dx.doi.org/https://doi.org/10.1016/j.jconrel.2018.07.014
http://dx.doi.org/https://doi.org/10.1016/j.jconrel.2018.07.014
http://dx.doi.org/https://doi.org/10.1016/j.jddst.2018.08.017
http://dx.doi.org/https://doi.org/10.1016/j.jddst.2018.08.017

Phytochemicals in preventing cancer 227

Elsheikh, M. A., Elnaggar, Y. S. R, Hamdy, D. A. and Abdallah, O. Y. 2018. Novel
cremochylomicrons for improved oral bioavailability of the antineoplastic
phytomedicine berberine chloride: Optimization and pharmacokinetics. Int. J.
Pharm. 535(1-2), 316-324. https://doi.org/10.1016/j.ijpharm.2017.11.023.

Elzoghby, A. O., El-Lakany, S. A., Helmy, M. W., Abu-Serie, M. M. and Elgindy, N. A.
2017. Shell-crosslinked zein nanocapsules for oral codelivery of exemestane and
resveratrol in breast cancer therapy. Nanomedicine (Lond) 12(24), 2785-2805.
https://doi.org/10.2217/nnm-2017-0247.

Errayes, A. O., Abdussalam-Mohammed, W. and Darwish, M. O. 2020. Review of
phytochemical and medical applications of Annona muricata fruits. J. Chem. Rev.
2(1), 70-79. https://doi.org/10.33945/SAMI/JCR.2020.1.5.

Faridi Esfanjani, A., Assadpour, E. and Jafari, S. M. 2018. Improving the bioavailability of
phenolic compounds by loading them within lipid-based nanocarriers. Trends Food
Sci. Technol. 76, 56-66.

Freag, M. S., Saleh, W. M. and Abdallah, O.Y. 2018. Self-assembled phospholipid-based
phytosomal nanocarriers as promising platforms for improving oral bioavailability
of the anticancer celastrol. Int. J. Pharm. 535(1-2), 18-26. https://doi.org/10.1016/j
.ijpharm.2017.10.053.

Gescher, A., Pastorino, U., Plummer, S. M. and Manson, M. M. 1998. Suppression of
tumour development by substances derived from the diet-Mechanisms and clinical
implications. Br. J. Clin. Pharmacol. 45(1), 1-12. https://doi.org/10.1046/j.1365-2125
.1998.00640.x.

Golemis, E. A., Scheet, P, Beck, T. N., Scolnick, E. M., Hunter, D. J., Hawk, E. and Hopkins,
N. 2018. Molecular mechanisms of the preventable causes of cancer in the United
States. Genes Dev. 32(13-14), 868-902. https://doi.org/10.1101/gad.314849.118.

Gonzales, G. B., Raes, K., Coelus, S., Struijs, K., Smagghe, G. and Van Camp, J. 2014.
Ultra(high)-pressure  liquid ~ chromatography-electrospray  ionization-time-of-
flight-ion mobility-high definition mass spectrometry for the rapid identification
and structural characterization of flavonoid glycosides from cauliflower waste. J.
Chromatogr. A 1323, 39-48. https://doi.org/10.1016/j.chroma.2013.10.077.

Greil, R., Greil-Ressler, S., Weiss, L., Schonlieb, C., Magnes, T., Radl, B., Bolger, G. T., Vcelar,
B. and Sordillo, P. P. 2018. A phase 1 dose-escalation study on the safety, tolerability
and activity of liposomal curcumin (Lipocurc™) in patients with locally advanced or
metastatic cancer. Cancer Chemother. Pharmacol. 82(4), 695-706. https://doi.org
/10.1007/s00280-018-3654-0.

Gullett, N. P, Ruhul Amin, A. R. M., Bayraktar, S., Pezzuto, J. M., Shin, D. M., Khuri, F. R.,
Aggarwal, B. B., Surh, Y. J. and Kucuk, O. 2010. Cancer prevention with natural
compounds. Semin. Oncol. 37(3), 258-281. https://doi.org/10.1053/j.seminoncol
.2010.06.014.

Huminiecki, L. and Horbanczuk, J. 2018. The functional genomic studies of resveratrol in
respect to its anti-cancer effects. Biotechnol. Adv. 36(6), 1699-1708. https://doi.org
/10.1016/j.biotechadv.2018.02.011.

Ibrahim, S., Tagami, T., Kishi, T. and Ozeki, T. 2018. Curcumin marinosomes as promising
nano-drug delivery system for lung cancer. Int. J. Pharm. 540(1-2), 40-49. https://doi
.org/10.1016/j.ijpharm.2018.01.051.

Irchhaiya, R., Kumar, A., Yadav, A., Gupta, N., Kumar, S., Gupta, N., Kumar, S., Yadav, V.,
Prakash, A. and Gurjar, H. 2015. Metabolites in plants and its classification. World J
Pharm. Pharm. Sci WJPPS 4, 287-305.

© Burleigh Dodds Science Publishing Limited, 2022. All rights reserved.


http://dx.doi.org/https://doi.org/10.1016/j.ijpharm.2017.11.023
http://dx.doi.org/https://doi.org/10.2217/nnm-2017-0247
http://dx.doi.org/https://doi.org/10.33945/SAMI/JCR.2020.1.5
http://dx.doi.org/https://doi.org/10.1016/j.ijpharm.2017.10.053
http://dx.doi.org/https://doi.org/10.1016/j.ijpharm.2017.10.053
http://dx.doi.org/https://doi.org/10.1046/j.1365-2125.1998.00640.x
http://dx.doi.org/https://doi.org/10.1046/j.1365-2125.1998.00640.x
http://dx.doi.org/https://doi.org/10.1101/gad.314849.118
http://dx.doi.org/https://doi.org/10.1016/j.chroma.2013.10.077
http://dx.doi.org/https://doi.org/10.1007/s00280-018-3654-0
http://dx.doi.org/https://doi.org/10.1007/s00280-018-3654-0
http://dx.doi.org/https://doi.org/10.1053/j.seminoncol.2010.06.014
http://dx.doi.org/https://doi.org/10.1053/j.seminoncol.2010.06.014
http://dx.doi.org/https://doi.org/10.1016/j.biotechadv.2018.02.011
http://dx.doi.org/https://doi.org/10.1016/j.biotechadv.2018.02.011
http://dx.doi.org/https://doi.org/10.1016/j.ijpharm.2018.01.051
http://dx.doi.org/https://doi.org/10.1016/j.ijpharm.2018.01.051

228 Phytochemicals in preventing cancer

Jain, S., Garg, T., Kushwah, V., Thanki, K., Agrawal, A. K. and Dora, C. P.2017. a-Tocopherol
as functional excipient for resveratrol and coenzyme Q10-loaded SNEDDS for
improved bioavailability and prophylaxis of breast cancer. J. Drug Target. 25(6),
554-565. https://doi.org/10.1080/1061186X.2017.1298603.

Jose, A., Labala, S. and Venuganti, V. V. K. 2017. Co-delivery of curcumin and STAT3 siRNA
using deformable cationic liposomes to treat skin cancer. J. Drug Target. 25(4), 330-
341. https://doi.org/10.1080/1061186X.2016.1258567.

Jung, K. H., Lee, J. H., Park, J. W., Quach, C. H. T., Moon, S. H., Cho, Y. S. and Lee, K. H.
2015. Resveratrol-loaded polymeric nanoparticles suppress glucose metabolism
and tumor growth in vitro and in vivo. Int. J. Pharm. 478(1), 251-257. https://doi.org
/10.1016/j.ijpharm.2014.11.049.

Karve, S., Werner, M. E., Sukumar, R., Cummings, N. D., Copp, J. A., Wang, E. C,, Li, C,,
Sethi, M., Chen, R. C., Pacold, M. E. and Wang, A. Z. 2012. Revival of the abandoned
therapeutic wortmannin by nanoparticle drug delivery. Proc. Natl. Acad. Sci. U. S. A.
109(21), 8230-8235. https://doi.org/10.1073/pnas.1120508109.

Kashyap, D., Sharma, A., Tuli, H. S., Sak, K., Mukherjee, T. and Bishayee, A. 2018. Molecular
targets of celastrol in cancer: Recent trends and advancements. Crit. Rev. Oncol.
Hematol. 128, 70-81. https://doi.org/10.1016/j.critrevonc.2018.05.019.

Kasi, P. D., Tamilselvam, R., Skalicka-Wozniak, K., Nabavi, S. F., Daglia, M., Bishayee, A.,
Pazoki-Toroudi, H. and Nabavi, S. M. 2016. Molecular targets of curcumin for cancer
therapy: An updated review. Tumour Biol. 37(10), 13017-13028. https://doi.org/10
.1007/s13277-016-5183-y.

Kaur, M. and Badhan, R. K. S. 2017. Phytochemical mediated-modulation of the
expression and transporter function of breast cancer resistance protein at the blood-
brain barrier: An in-vitro study. Brain Res. 1654(A), 9-23. https://doi.org/10.1016/j
.brainres.2016.10.020.

Kaur, V., Kumar, M., Kumar, A., Kaur, K., Dhillon, V.S.and Kaur, S.2018. Pharmacotherapeutic
potential of phytochemicals: Implications in cancer chemoprevention and future
perspectives. Biomed. Pharmacother. 97,564-586. https://doi.org/10.1016/j.biopha
.2017.10.124.

Khan, N., Bharali, D. J., Adhami, V. M., Siddiqui, I. A., Cui, H., Shabana, S. M., Mousa, S.
A. and Mukhtar, H. 2014. Oral administration of naturally occurring chitosan-based
nanoformulated green tea polyphenol EGCG effectively inhibits prostate cancer
cell growth in a xenograft model. Carcinogenesis 35(2), 415-423. https://doi.org/10
.1093/carcin/bgt321.

Ko, E. Y. and Moon, A. 2015. Natural products for chemoprevention of breast cancer. J.
Cancer Prev. 20(4), 223-231. https://doi.org/10.15430/JCP.2015.20.4.223.

Krajka-Kuzniak, V., Paluszczak, J., Szaefer, H. and Baer-Dubowska, W. 2015. The activation
of the Nrf2/ARE pathway in HepG2 hepatoma cells by phytochemicals and
subsequent modulation of phase Il and antioxidant enzyme expression. J. Physiol.
Biochem. 71(2), 227-238. https://doi.org/10.1007/s13105-015-0401-4.

Lagoa, R., Graziani, |., Lopez-Sanchez, C., Garcia-Martinez, V. and Gutierrez-Merino, C.
2011. Complex | and cytochrome C are molecular targets of flavonoids that inhibit
hydrogen peroxide production by mitochondria. Acta BBA: Bioenerg. 1807(12),
1562-1572. https://doi.org/10.1016/j.bbabio.2011.09.022.

Lagoa, R., Samhan-Arias, A. K. and Gutierrez-Merino, C. 2017. Correlation between
the potency of flavonoids for cytochrome C reduction and inhibition of

© Burleigh Dodds Science Publishing Limited, 2022. All rights reserved.


http://dx.doi.org/https://doi.org/10.1080/1061186X.2017.1298603
http://dx.doi.org/https://doi.org/10.1080/1061186X.2016.1258567
http://dx.doi.org/https://doi.org/10.1016/j.ijpharm.2014.11.049
http://dx.doi.org/https://doi.org/10.1016/j.ijpharm.2014.11.049
http://dx.doi.org/https://doi.org/10.1073/pnas.1120508109
http://dx.doi.org/https://doi.org/10.1016/j.critrevonc.2018.05.019
http://dx.doi.org/https://doi.org/10.1007/s13277-016-5183-y
http://dx.doi.org/https://doi.org/10.1007/s13277-016-5183-y
http://dx.doi.org/https://doi.org/10.1016/j.brainres.2016.10.020
http://dx.doi.org/https://doi.org/10.1016/j.brainres.2016.10.020
http://dx.doi.org/https://doi.org/10.1016/j.biopha.2017.10.124
http://dx.doi.org/https://doi.org/10.1016/j.biopha.2017.10.124
http://dx.doi.org/https://doi.org/10.1093/carcin/bgt321
http://dx.doi.org/https://doi.org/10.1093/carcin/bgt321
http://dx.doi.org/https://doi.org/10.15430/JCP.2015.20.4.223
http://dx.doi.org/https://doi.org/10.1007/s13105-015-0401-4
http://dx.doi.org/https://doi.org/10.1016/j.bbabio.2011.09.022

Phytochemicals in preventing cancer 229

cardiolipin-induced peroxidase activity. Biofactors (Oxf. Engl.) 43(3), 451-468.
https://doi.org/10.1002/biof.1357.

Lagoa, R, Silva, J., Rodrigues, J. R. and Bishayee, A. 2020. Advances in phytochemical
delivery systems for improved anticancer activity. Biotechnol. Adv. 38, 107382.
https://doi.org/10.1016/j.biotechadv.2019.04.004.

Lambert, J. D. and Elias, R. J. 2010. The antioxidant and pro-oxidant activities of green tea
polyphenols: A role in cancer prevention. Arch. Biochem. Biophys. 501(1), 65-72.
https://doi.org/10.1016/j.abb.2010.06.013.

Li, L., Ni, J., Li, M., Chen, J., Han, L., Zhu, Y., Kong, D., Mao, J., Wang, Y., Zhang, B., Zhu, M.,
Gao, X. and Fan, G. 2017. Ginsenoside Rg3 micelles mitigate doxorubicin-induced
cardiotoxicity and enhance its anticancer efficacy. Drug Deliv. 24(1), 1617-1630.
https://doi.org/10.1080/10717544.2017.1391893.

Liu, C., Yang, X., Wu, W., Long, Z., Xiao, H., Luo, F.,, Shen, Y. and Lin, Q. 2017. Elaboration
of curcumin-loaded rice bran albumin nanoparticles formulation with increased in
vitro bioactivity and in vivo bioavailability. Food Hydrocoll. 77, 834-842. https://doi
.org/10.1016/j.foodhyd.2017.11.027.

Liu, X., Xu, D., Liao, C., Fang, Y. and Guo, B. 2018. Development of a promising drug
delivery for formononetin: Cyclodextrin-modified single-walled carbon nanotubes.
J. Drug Deliv. Sci. Technol. 43, 461-468. https://doi.org/10.1016/j.jddst.2017.11.018.

Mahbub, A. A., Le Maitre, C. L., Haywood-Small, S. L., Cross, N. A. and Jordan-Mahy, N.
2015. Polyphenols act synergistically with doxorubicin and etoposide in leukaemia
cell lines. Cell Death Discov. 1, 15043. https://doi.org/10.1038/cddiscovery.2015
A43.

Maji, S., Panda, S., Samal, S. K., Shriwas, O., Rath, R., Pellecchia, M., Emdad, L., Das,
S. K., Fisher, P. B. and Dash, R. 2018. Bcl-2 antiapoptotic family proteins and
chemoresistance in cancer. Adv. Cancer Res. 137, 37-75. https://doi.org/10.1016/
bs.acr.2017.11.001.

Manson, M. M., Gescher, A., Hudson, E. A., Plummer, S. M., Squires, M. S. and Prigent,
S. A. 2000. Blocking and suppressing mechanisms of chemoprevention by dietary
constituents. Toxicol. Lett. 112-113, 499-505. https://doi.org/10.1016/s0378
-4274(99)00211-8.

Mashhadi Malekzadeh, A., Ramazani, A., Tabatabaei Rezaei, S. J. and Niknejad, H. 2017.
Design and construction of multifunctional hyperbranched polymers coated
magnetite nanoparticles for both targeting magnetic resonance imaging and
cancer therapy. J. Colloid Interface Sci. 490, 64-73. https://doi.org/10.1016/j.jcis
.2016.11.014.

Mercader, A. G. and Pomilio, A. B. 2012. (Iso)flav(an)ones, chalcones, catechins, and
theaflavins as anticarcinogens: Mechanisms, anti-multidrug resistance and
QSAR studies. Curr. Med. Chem. 19(25), 4324-4347. https://doi.org/10.2174
/092986712802884277.

Milner, J. A., McDonald, S. S., Anderson, D. E. and Greenwald, P. 2001. Molecular targets
for nutrients involved with cancer prevention. Nutr. Cancer 41(1-2), 1-16. https://doi
.org/10.1080/01635581.2001.9680606.

Molyneux,R.J., Lee, S.T., Gardner, D.R., Panter, K.E.and James, L. F. 2007. Phytochemicals:
The good, the bad and the ugly? Phytochemistry 68(22-24), 2973-2985. https://doi
.org/10.1016/j.phytochem.2007.09.004.

Muddineti, O. S., Kumari, P., Ghosh, B., Torchilin, V. P. and Biswas, S. 2017. D-a-tocopheryl
succinate/phosphatidyl ethanolamine conjugated amphiphilic polymer-based

© Burleigh Dodds Science Publishing Limited, 2022. All rights reserved.


http://dx.doi.org/https://doi.org/10.1002/biof.1357
http://dx.doi.org/https://doi.org/10.1016/j.biotechadv.2019.04.004
http://dx.doi.org/https://doi.org/10.1016/j.abb.2010.06.013
http://dx.doi.org/https://doi.org/10.1080/10717544.2017.1391893
http://dx.doi.org/https://doi.org/10.1016/j.foodhyd.2017.11.027
http://dx.doi.org/https://doi.org/10.1016/j.foodhyd.2017.11.027
http://dx.doi.org/https://doi.org/10.1016/j.jddst.2017.11.018
http://dx.doi.org/https://doi.org/10.1038/cddiscovery.2015.43
http://dx.doi.org/https://doi.org/10.1038/cddiscovery.2015.43
http://dx.doi.org/https://doi.org/10.1016/bs.acr.2017.11.001
http://dx.doi.org/https://doi.org/10.1016/bs.acr.2017.11.001
http://dx.doi.org/https://doi.org/10.1016/s0378-42749900211-8
http://dx.doi.org/https://doi.org/10.1016/s0378-42749900211-8
http://dx.doi.org/https://doi.org/10.1016/j.jcis.2016.11.014
http://dx.doi.org/https://doi.org/10.1016/j.jcis.2016.11.014
http://dx.doi.org/https://doi.org/10.2174/092986712802884277
http://dx.doi.org/https://doi.org/10.2174/092986712802884277
http://dx.doi.org/https://doi.org/10.1080/01635581.2001.9680606
http://dx.doi.org/https://doi.org/10.1080/01635581.2001.9680606
http://dx.doi.org/https://doi.org/10.1016/j.phytochem.2007.09.004
http://dx.doi.org/https://doi.org/10.1016/j.phytochem.2007.09.004

230 Phytochemicals in preventing cancer

nanomicellar system for the efficient delivery of curcumin and to overcome multiple
drug resistance in cancer. ACS Appl. Mater. Interfaces 9(20), 16778-16792. https://
doi.org/10.1021/acsami.7b01087.

Panahi, Y., Saadat, A., Beiraghdar, F. and Sahebkar, A. 2014. Adjuvant therapy with
bioavailability-boosted curcuminoids suppresses systemic inflammation and
improves quality of life in patients with solid tumors: A randomized double-blind
placebo-controlled trial. Phytother. Res. 28(10), 1461-1467. https://doi.org/10.1002
/ptr.5149.

Pangeni, R., Panthi, V. K., Yoon, I. S. and Park, J. W. 2018. Preparation, characterization,
and in vivo evaluation of an oral multiple nanoemulsive system for co-delivery of
pemetrexed and quercetin. Pharmaceutics 10(3), 158. https://doi.org/10.3390/pha
rmaceutics10030158.

Parashar, P, Rathor, M., Dwivedi, M. and Saraf, S. A. 2018. Hyaluronic acid decorated
naringenin nanoparticles: Appraisal of chemopreventive and curative potential for
lung cancer. Pharmaceutics 10(1), 33. https://doi.org/10.3390/pharmaceutics10
010033.

Pastorelli, D., Fabricio, A. S. C., Giovanis, P, D'lppolito, S., Fiduccia, P, Solda, C., Buda, A,
Sperti, C., Bardini, R., Da Dalt, G., Rainato, G., Gion, M. and Ursini, F. 2018. Phytosome
complex of curcumin as complementary therapy of advanced pancreatic cancer
improves safety and efficacy of gemcitabine: Results of a prospective phase Il trial.
Pharmacol. Res. 132, 72-79. https://doi.org/10.1016/j.phrs.2018.03.013.

Peng, R. M., Lin, G. R,, Ting, Y. and Hu, J. Y. 2018. Oral delivery system enhanced the
bioavailability of stilbenes: Resveratrol and pterostilbene. Biofactors (Oxf. Engl.)
44(1), 5-15. https://doi.org/10.1002/biof.1405.

Pichersky, E. and Gang, D. R. 2000. Genetics and biochemistry of secondary metabolites
in plants: An evolutionary perspective. Trends Plant Sci. 5(10), 439-445. https://doi
.org/10.1016/S1360-1385(00)01741-6.

Pool, H., Campos-Vega, R., Herrera-Herndndez, M. G., Garcia-Solis, P, Garcia-Gasca, T.,
Sénchez, I. C., Luna-Bércenas, G. and Vergara-Castafieda, H. 2018. Development
of genistein-pegylated silica hybrid nanomaterials with enhanced antioxidant and
antiproliferative properties on HT29 human colon cancer cells. Am. J. Transl. Res.
10(8), 2306-2323.

Ranjan, A., Ramachandran, S., Gupta, N., Kaushik, I., Wright, S., Srivastava, S., Das, H.,
Srivastava, S., Prasad, S. and Srivastava, S. K. 2019. Role of phytochemicals in cancer
prevention. Int. J. Mol. Sci. 20(20), 4981. https://doi.org/10.3390/ijms20204981.

Rehman, F. U., Shah, K. U., Shah, S. U., Khan, I. U., Khan, G. M. and Khan, A. 2017. From
nanoemulsions to self-nanoemulsions, with recent advances in self-nanoemulsifying
drug delivery systems (SNEDDS). Expert Opin. Drug Deliv. 14(11), 1325-1340.
https://doi.org/10.1080/17425247.2016.1218462.

Rengasamy, K. R.R., Khan, H., Gowrishankar, S., Lagoa, R. J. L., Mahomoodally, F. M., Khan,
Z., Suroowan, S., Tewari, D., Zengin, G., Hassan, S. T. S. and Pandian, S. K. 2019. The
role of flavonoids in autoimmune diseases: Therapeutic updates. Pharmacol. Ther.
194,107-131. https://doi.org/10.1016/j.pharmthera.2018.09.009.

Samadi, A. K., Bilsland, A., Georgakilas, A. G., Amedei, A., Amin, A., Bishayee, A., Azmi,
A. S., Lokeshwar, B. L., Grue, B., Panis, C., Boosani, C. S., Poudyal, D., Stafforini, D.
M., Bhakta, D., Niccolai, E., Guha, G., Vasantha Rupasinghe, H. P., Fujii, H., Honoki,
K., Mehta, K., Aquilano, K., Lowe, L., Hofseth, L. J., Ricciardiello, L., Ciriolo, M. R.,
Singh, N., Whelan, R. L., Chaturvedi, R., Ashraf, S. S., Shantha Kumara, H. M. C,,

© Burleigh Dodds Science Publishing Limited, 2022. All rights reserved.


http://dx.doi.org/https://doi.org/10.1021/acsami.7b01087
http://dx.doi.org/https://doi.org/10.1021/acsami.7b01087
http://dx.doi.org/https://doi.org/10.1002/ptr.5149
http://dx.doi.org/https://doi.org/10.1002/ptr.5149
http://dx.doi.org/https://doi.org/10.3390/pharmaceutics10030158
http://dx.doi.org/https://doi.org/10.3390/pharmaceutics10030158
http://dx.doi.org/https://doi.org/10.3390/pharmaceutics10010033
http://dx.doi.org/https://doi.org/10.3390/pharmaceutics10010033
http://dx.doi.org/https://doi.org/10.1016/j.phrs.2018.03.013
http://dx.doi.org/https://doi.org/10.1002/biof.1405
http://dx.doi.org/https://doi.org/10.1016/S1360-13850001741-6
http://dx.doi.org/https://doi.org/10.1016/S1360-13850001741-6
http://dx.doi.org/https://doi.org/10.3390/ijms20204981
http://dx.doi.org/https://doi.org/10.1080/17425247.2016.1218462
http://dx.doi.org/https://doi.org/10.1016/j.pharmthera.2018.09.009

Phytochemicals in preventing cancer 231

Nowsheen, S., Mohammed, S. I., Keith, W. N., Helferich, W. G. and Yang, X. 2015.
A multi-targeted approach to suppress tumor-promoting inflammation. Semin.
Cancer Biol. 35 (Suppl.), S151-S184. https://doi.org/10.1016/j.semcancer.2015.03
.006.

Santhi, K. and Sengottuvel, R. 2016. Qualitative and quantitative phytochemical analysis
of Moringa concanensis Nimmo. Int. J. Curr. Microbiol. Appl. Sci. 5(1), 633-640.
https://doi.org/10.20546/ijcmas.2016.501.064.

Shahidi, F. and Ambigaipalan, P. 2015. Phenolics and polyphenolics in foods, beverages
and spices: Antioxidant activity and health effects - A review. J. Funct. Foods Nat.
Antioxid. 18,820-897. https://doi.org/10.1016/].jff.2015.06.018.

Shanmugam, M. K., Lee, J. H., Chai, E. Z. P,, Kanchi, M. M., Kar, S., Arfuso, F., Dharmarajan,
A., Kumar, A. P, Ramar, P. S., Looi, C. Y., Mustafa, M. R., Tergaonkar, V., Bishayee, A.,
Ahn, K.S.and Sethi, G.2016. Cancer prevention and therapy through the modulation
of transcription factors by bioactive natural compounds. Semin. Cancer Biol. 40-41,
35-47. https://doi.org/10.1016/j.semcancer.2016.03.005.

Sharifabad, M. E., Mercer, T.and Sen, T.2016. Drug-loaded liposome-capped mesoporous
core-shell magnetic nanoparticles for cellular toxicity study. Nanomedicine (Lond)
11(21), 2757-2767. https://doi.org/10.2217/nnm-2016-0248.

Siddiqui, I. A., Adhami, V. M., Bharali, D. J., Hafeez, B. B., Asim, M., Khwaja, S. I., Ahmad,
N., Cui, H., Mousa, S. A. and Mukhtar, H. 2009. Introducing nanochemoprevention
as a novel approach for cancer control: Proof of principle with green tea polyphenol
epigallocatechin-3-gallate. Cancer Res. 69(5), 1712-1716. https://doi.org/10.1158
/0008-5472.CAN-08-3978.

Siddiqui, I. A., Bharali, D. J., Nihal, M., Adhami, V. M., Khan, N., Chamcheu, J. C., Khan,
M. I, Shabana, S., Mousa, S. A. and Mukhtar, H. 2014. Excellent anti-proliferative
and pro-apoptotic effects of (-)-epigallocatechin-3-gallate encapsulated in
chitosan nanoparticles on human melanoma cell growth both in vitro and in vivo.
Nanomedicine 10(8), 1619-1626. https://doi.org/10.1016/j.nan0.2014.05.007.

Silva, J., Videira, P. and Lagoa, R. 2017. Bioactivity gradients of cytoprotective and
anticancer catechins in skin: Simulation studies for the design of controlled release
systems. In: Presented at the 2017 IEEE 5th Port. Meeting on Bioengineering
(ENBENG), vol. 2017, pp. 1-4. https://doi.org/10.1109/ENBENG.2017.7889467.

Singh, M., Bhatnagar, P., Mishra, S., Kumar, P, Shukla, Y. and Gupta, K. C. 2015. PLGA-
encapsulated tea polyphenols enhance the chemotherapeutic efficacy of cisplatin
against human cancer cells and mice bearing Ehrlich ascites carcinoma. Int. J.
Nanomedicine 10, 6789-6809. https://doi.org/10.2147/IJN.S79489.

Sinha, D., Biswas, J., Nabavi, S. M. and Bishayee, A. 2017. Tea phytochemicals for breast
cancer prevention and intervention: From bench to bedside and beyond. Semin.
Cancer Biol. 46, 33-54. https://doi.org/10.1016/j.semcancer.2017.04.001.

Soares, P. 1. P, Sousa, A. |, Ferreira, |. M. M., Novo, C. M. M. and Borges, J. P. 2016. Towards
the development of multifunctional chitosan-based iron oxide nanoparticles:
Optimization and modelling of doxorubicin release. Carbohydr. Polym. 153, 212-
221. https://doi.org/10.1016/j.carbpol.2016.07.109.

Sung, B., Prasad, S., Yadav, V. R. and Aggarwal, B. B. 2012. Cancer cell signaling pathways
targeted by spice-derived nutraceuticals. Nutr. Cancer 64(2), 173-197. https://doi
.org/10.1080/01635581.2012.630551.

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray,
F. 2021. Global cancer statistics 2020: GLOBOCAN estimates of incidence and

© Burleigh Dodds Science Publishing Limited, 2022. All rights reserved.


http://dx.doi.org/https://doi.org/10.1016/j.semcancer.2015.03.006
http://dx.doi.org/https://doi.org/10.1016/j.semcancer.2015.03.006
http://dx.doi.org/https://doi.org/10.20546/ijcmas.2016.501.064
http://dx.doi.org/https://doi.org/10.1016/j.jff.2015.06.018
http://dx.doi.org/https://doi.org/10.1016/j.semcancer.2016.03.005
http://dx.doi.org/https://doi.org/10.2217/nnm-2016-0248
http://dx.doi.org/https://doi.org/10.1158/0008-5472.CAN-08-3978
http://dx.doi.org/https://doi.org/10.1158/0008-5472.CAN-08-3978
http://dx.doi.org/https://doi.org/10.1016/j.nano.2014.05.007
http://dx.doi.org/https://doi.org/10.1109/ENBENG.2017.7889467
http://dx.doi.org/https://doi.org/10.2147/IJN.S79489
http://dx.doi.org/https://doi.org/10.1016/j.semcancer.2017.04.001
http://dx.doi.org/https://doi.org/10.1016/j.carbpol.2016.07.109
http://dx.doi.org/https://doi.org/10.1080/01635581.2012.630551
http://dx.doi.org/https://doi.org/10.1080/01635581.2012.630551

232 Phytochemicals in preventing cancer

mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209-
249. https://doi.org/10.3322/caac.21660.

Suphim, B., Prawan, A., Kukongviriyapan, U., Kongpetch, S., Buranrat, B. and
Kukongviriyapan, V. 2010. Redox modulation and human bile duct cancer inhibition
by curcumin. Food Chem. Toxicol. 48(8-9), 2265-2272. https://doi.org/10.1016/j.fct
.2010.05.059.

Surh, Y. J. 1999. Molecular mechanisms of chemopreventive effects of selected dietary
and medicinal phenolic substances. Mutat. Res. 428(1-2), 305-327. https://doi.org
/10.1016/s1383-5742(99)00057-5.

Surh, Y. J. 2003. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer
3(10), 768-780. https://doi.org/10.1038/nrc1189.

Sznarkowska, A., Kostecka, A., Meller, K. and Bielawski, K. P. 2016. Inhibition of cancer
antioxidant defense by natural compounds. Oncotarget 8(9), 15996-16016. https://
doi.org/10.18632/oncotarget.13723.

Taniguchi, K. and Karin, M. 2018. NF-kB, inflammation, immunity and cancer: Coming of
age. Nat. Rev. Immunol. 18(5), 309-324. https://doi.org/10.1038/nri.2017.142.
Thoppil, R. J. and Bishayee, A. 2011. Terpenoids as potential chemopreventive and
therapeutic agents in liver cancer. World J. Hepatol. 3(9), 228-249. https://doi.org

/10.4254/wjh.v3.i9.228.

Trotta, V., Pavan, B., Ferraro, L., Beggiato, S., Traini, D., Des Reis, L. G., Scalia, S. and Dalpiaz,
A. 2018. Brain targeting of resveratrol by nasal administration of chitosan-coated
lipid microparticles. Eur. J. Pharm. Biopharm. 127, 250-259. https://doi.org/10.1016
/j.ejpb.2018.02.010.

Tsai, Y. M., Chien, C. F, Lin, L. C. and Tsai, T. H. 2011. Curcumin and its nano-formulation:
The kinetics of tissue distribution and blood-brain barrier penetration. Int. J. Pharm.
416(1), 331-338. https://doi.org/10.1016/j.ijpharm.2011.06.030.

Usman, M. S., Hussein, M. Z., Kura, A. U., Fakurazi, S., Masarudin, M. J. and Saad, F. F.
A. 2018. Synthesis and characterization of protocatechuic acid-loaded gadolinium-
layered double hydroxide and gold nanocomposite for theranostic application.
Appl. Nanosci. 8(5), 973-986. https://doi.org/10.1007/s13204-018-0752-6.

Verma, N. K., Crosbie-Staunton, K., Satti, A., Gallagher, S., Ryan, K. B., Doody, T,
McAtamney, C., MacLoughlin, R., Galvin, P, Burke, C. S., Volkov, Y. and Gun'ko, Y.
K. 2013. Magnetic core-shell nanoparticles for drug delivery by nebulization. J.
Nanobiotechnology 11, 1. https://doi.org/10.1186/1477-3155-11-1.

Vogel, V. G., Costantino, J. P, Wickerham, D. L., Cronin, W. M., Cecchini, R. S., Atkins, J.
N., Bevers, T. B., Fehrenbacher, L., Pajon, E. R., Wade, J. L., Robidoux, A., Margolese,
R. G., James, J., Runowicz, C. D., Ganz, P. A, Reis, S. E., McCaskill-Stevens, W., Ford,
L. G., Jordan, V. C., Wolmark, N. and National Surgical Adjuvant Breast and Bowel
Project 2010. Update of the national surgical adjuvant breast and bowel project
study of tamoxifen and raloxifene (STAR) P-2 Trial: Preventing breast cancer. Cancer
Prev. Res. PA 3(6), 696-706. https://doi.org/10.1158/1940-6207.CAPR-10-0076.

Wang, Q., Wei, Q., Yang, Q., Cao, X., Li, Q., Shi, F,, Tong, S. S., Feng, C., Yu, Q., Yu, J. and
Xu, X. 2018. A novel formulation of [é]-gingerol: Proliposomes with enhanced oral
bioavailability and antitumor effect. Int. J. Pharm. 535(1-2), 308-315. https://doi.org
/10.1016/j.ijpharm.2017.11.006.

Wang, Q. S., Wang, G. F,, Zhou, J., Gao, L. N. and Cui, Y. L. 2016. Colon targeted oral drug
delivery system based on alginate-chitosan microspheres loaded with icariin in the

© Burleigh Dodds Science Publishing Limited, 2022. All rights reserved.


http://dx.doi.org/https://doi.org/10.3322/caac.21660
http://dx.doi.org/https://doi.org/10.1016/j.fct.2010.05.059
http://dx.doi.org/https://doi.org/10.1016/j.fct.2010.05.059
http://dx.doi.org/https://doi.org/10.1016/s1383-57429900057-5
http://dx.doi.org/https://doi.org/10.1016/s1383-57429900057-5
http://dx.doi.org/https://doi.org/10.1038/nrc1189
http://dx.doi.org/https://doi.org/10.18632/oncotarget.13723
http://dx.doi.org/https://doi.org/10.18632/oncotarget.13723
http://dx.doi.org/https://doi.org/10.1038/nri.2017.142
http://dx.doi.org/https://doi.org/10.4254/wjh.v3.i9.228
http://dx.doi.org/https://doi.org/10.4254/wjh.v3.i9.228
http://dx.doi.org/https://doi.org/10.1016/j.ejpb.2018.02.010
http://dx.doi.org/https://doi.org/10.1016/j.ejpb.2018.02.010
http://dx.doi.org/https://doi.org/10.1016/j.ijpharm.2011.06.030
http://dx.doi.org/https://doi.org/10.1007/s13204-018-0752-6
http://dx.doi.org/https://doi.org/10.1186/1477-3155-11-1
http://dx.doi.org/https://doi.org/10.1158/1940-6207.CAPR-10-0076
http://dx.doi.org/https://doi.org/10.1016/j.ijpharm.2017.11.006
http://dx.doi.org/https://doi.org/10.1016/j.ijpharm.2017.11.006

Phytochemicals in preventing cancer 233

treatment of ulcerative colitis. Int. J. Pharm. 515(1-2), 176-185. https://doi.org/10
.1016/j.ijpharm.2016.10.002.

Wattenberg, L. W. 1985. Chemoprevention of cancer. Cancer Res. 45(1), 1-8.

Wong, V. K.-W., Law, B. Y.-K,, Yao, X. J., Chen, X., Xu, S. W., Liu, L. and Leung, E. L.-H. 2016.
Advanced research technology for discovery of new effective compounds from
Chinese herbal medicine and their molecular targets. Pharmacol. Res. 111, 546-555.
https://doi.org/10.1016/j.phrs.2016.07.022.

Xie, J., Yang, Z., Zhou, C., Zhu, J., Lee, R. J. and Teng, L. 2016. Nanotechnology for the
delivery of phytochemicals in cancer therapy. Biotechnol. Adv. 34(4), 343-353.
https://doi.org/10.1016/j.biotechadv.2016.04.002.

Youdim, K. A., Dobbie, M. S., Kuhnle, G., Proteggente, A. R., Abbott, N. J. and Rice-Evans,
C.2003. Interaction between flavonoids and the blood-brain barrier: In vitro studies.
J. Neurochem. 85(1), 180-192. https://doi.org/10.1046/j.1471-4159.2003.01652.x.

Zhang, M., Hagan, C. T., Min, Y., Foley, H., Tian, X., Yang, F., Mi, Y., Au, K. M., Medik, Y.,
Roche, K., Wagner, K., Rodgers, Z. and Wang, A. Z. 2018. Nanoparticle co-delivery of
wortmannin and cisplatin synergistically enhances chemoradiotherapy and reverses
platinum resistance in ovarian cancer models. Biomaterials 169, 1-10. https://doi
.org/10.1016/j.biomaterials.2018.03.055.

Zhang, Q., Tian, X. and Cao, X. 2019. Transferrin-functionalised microemulsion co-delivery
of B-elemene and celastrol for enhanced anti-lung cancer treatment and reduced
systemic toxicity. Drug Deliv. Transl. Res. 9(3), 667-678. https://doi.org/10.1007/
$13346-019-00623-4.

© Burleigh Dodds Science Publishing Limited, 2022. All rights reserved.


http://dx.doi.org/https://doi.org/10.1016/j.ijpharm.2016.10.002
http://dx.doi.org/https://doi.org/10.1016/j.ijpharm.2016.10.002
http://dx.doi.org/https://doi.org/10.1016/j.phrs.2016.07.022
http://dx.doi.org/https://doi.org/10.1016/j.biotechadv.2016.04.002
http://dx.doi.org/https://doi.org/10.1046/j.1471-4159.2003.01652.x
http://dx.doi.org/https://doi.org/10.1016/j.biomaterials.2018.03.055
http://dx.doi.org/https://doi.org/10.1016/j.biomaterials.2018.03.055
http://dx.doi.org/https://doi.org/10.1007/s13346-019-00623-4
http://dx.doi.org/https://doi.org/10.1007/s13346-019-00623-4




Chapter 9

Advances in understanding the

role of plant phytochemicals in
preventing cardiovascular disease
Nicholas J. Sadgrove and Monique S. J. Simmonds, Royal Botanic Gardens - Kew, UK

Introduction
Cardiovascular disease and diet
Cardiovascular disease and its comorbidities

Assessing protective and therapeutic effects of phytochemicals

a b W N -

Types of phytochemical compounds: flavonoids phenols, organosulphur
compounds, alkaloids, lignans, sterols, tannins and soluble fibres

Wild crop relatives as sources of phytochemicals
Herbs and spices as sources of phytochemicals
Future trends in research

Where to look for further information

Conclusion

- O 0V 00 N O

References

1 Introduction

Cardiovascular disease (CVD) is the biggest challenge to human health in
the modern era (Flora and Nayak, 2019) and has become steadily more
prevalent during the twentieth century. Today it is understood that CVD has its
origins partly in high-protein atherogenic diets. These diets create epigenetic
modifications that are passed down and accumulated in successive generations
(Komal et al., 2021), increasing genetic susceptibility to CVD in family lineages
over time (Zhang et al., 2018).

The epidemiology of CVD is described in terms of diagnosis and mortality
rates. The average global rate of diagnosis is still rising. In developed nations,
where the highest percentage of citizens with CVD occurs, it has plateaued.
In contrast, in developing nations, whilst the average percentage of citizens
with CVD is lower, the number of new cases is rising rapidly. In terms of
mortality, those living with CVD in developed nations are living longer. In the
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UK and USA, mortality from CVD peaked in the 1960s then started to decline,
continuing to the present day (Jones and Greene, 2013). This improvement
in survival is due to the availability of effective treatments (Bhatnagar et al.,
2016).

The availability of modern pharmaceuticals is an important contributor
to patient survival. However, with improved health education, people are also
learning to make better dietary choices to prevent rather than live with the
disease. The dietary choices of younger generations in developed countries,
in particular, are changing and are projected to reduce rates of CVD diagnosis
further as these groups age. Now is as good a time as ever to reintroduce
healthier plant-based foods or nutraceuticals into the marketplace, given that
a new health paradigm (focused more on prevention through diet and other
lifestyle changes) is taking shape amongst consumers.

A recent systematic review concluded that the three plant foods with the
strongest evidence base in CVD prevention (prophylaxis) and treatment are
tomato, cranberry, and pomegranate (Rouhi-Boroujeni et al., 2017). These
species are rich in phytochemicals that are protective against CVD, such as
lycopene in tomato (Thies et al., 2016), anthocyanins in cranberry (Cassidy
etal., 2016) and phloroglucinol in pomegranate (Chang et al., 2012). However,
there are substantially more plant-food candidates with a strong theoretical
case for protection against CVD that still require a stronger epidemiological
evidence base to establish a clear benefit. With a greater focus on prevention
through diet, the modern health paradigm regards fruits and vegetables as
important in CVD prophylaxis (Liu et al., 2020) although, for now, nuts continue
to be at the wrong end of the food pyramid of healthy foods, mainly because
of their fat content.

2 Cardiovascular disease and diet

CVDis one of the many lifestyle diseases afflicting people in both the developed
and the developing world. While its prevalence was initially considered a
disease of the 'western world’, a recent rise in incidence in other countries,
such as China (Cheng, 2012), Iran (Mirmirani et al., 2017), and sub-Saharan
Africa (Bigna and Noubiap, 2019), has occurred, lagging behind the trend in
the western world. One of several theories to explain the increase of CVD in
countries is the adoption of a ‘western diet’ and lifestyle by those societies as
they become wealthier and more urbanised (Casas et al., 2018).

The western diet is characterised by highly satiating foods due to their
high fat, sugar, or carbohydrate content. Foods are often processed to remove
components with less sensory appeal and refined for maximum satiety,
characterised by feeling full at a faster rate. Consequently, western diets can be
low in minerals, vitamins, fibres, and plant phytochemicals that normally help
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our bodies to cope with the sugar/starch and fat load (Carrera-Bastos et al.,
2011).

Lifestyles for many western consumers involve regular eating and less
regular exercise as well as other factors such as stress which then contribute
to CVD risk. Regular caloric loading eliminates periods of detoxification
between meals (intermittent fasting), which promotes accumulation of
highly reactive by-products of sugar metabolism (starches become sugars
in digestion) (Johnson et al., 2017). These toxic by-products are known as
reactive oxygen species (ROS) (Panth et al., 2016) and advanced glycation
end products (AGEs) (Hegab et al., 2012). They promote fatty liver and
inflammatory effects in tissues, which creates insulin resistance, from which
further problems such as CVD develop (Hegab et al., 2012; Panth et al., 2016).

When it was realized that plant phytochemicals could protect against
many of the negative effects of western diets and lifestyles, researchers
started seeking ways to put these phytochemicals back into the diet, as a
nutraceutical additive, as a food supplement, or as a ‘superfood’ like kale.
Dietary interventions against CVD such as these target high blood pressure,
high cholesterol (hyperlipidaemia), uraemia, diabetes, and obesity.

An example of a modern dietary intervention is to fortify common foods
with plant phytochemicals for their prophylactic effects in preventing CVD.
There are e.g. many kinds of butter or spreads available in the market that
advertise a high sterol content, a plant phytochemical class that has been
proven to lower cholesterol. However, fortification may be insufficient on its
own, considering that consumers who use prophylactic supplements may also
continue to indulge in unhealthy items under the false assumption they are
protected by a ‘phytochemical safety net".

The industry does not always invest wholly in the fortification strategy
either. Often the phytochemical content of a fortified food item is less than
needed to be of true benefit (Sadgrove, 2021; Sadgrove and Jones, 2019).
For this and many other reasons, researchers are increasingly arguing that
fortification and supplementation are less effective than altering the diet to
consume more of the actual foods that contain these phytochemicals (Chen
et al., 2019). Isolated phytochemicals sold as nutraceuticals are often not as
effective as the whole plant (Koss-Mikolajczyk et al., 2019; Yuan et al., 2017).
In contrast, to supplement use or fortification, where people may continue
to make bad dietary choices, adding healthier foods to the diet involves
substitution of good for bad food choices. There are also many examples
where plant phytochemicals are not as available in a food supplement when
compared to the original food source (Sadgrove and Jones, 2019; Sadgrove,
2021). Whilst there is still a place for supplementation and fortification, by far
the best choice is to modify one's diet to include plant-based ingredients that
have protective effects against CVD.
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3 Cardiovascular disease and its comorbidities
3.1 Characteristics of cardiovascular diseases

Cardiovascular degeneration has three major characteristics that form the basis
of several diseases. They include either:

¢ hardening of arteries;
e contrasting softening of artery walls; and
¢ blood clotting.

Hardening of the arteries is known broadly as atherosclerotic cardiovascular
disease, which involves a plaque build up inside arteries. The plaque is built
from fat, cholesterol, and calcium, creating a hard insoluble layer that is
permanent unless surgically rectified. Over time the plaque layers make the
arteries narrower and limit circulation of oxygen-rich blood to organs, creating
heart problems or numbness in the extremities. The diseases that are associated
with atherosclerosis include coronary heart disease (e.g. angina, heart attacks,
and heart failure; i.e. myocardial infarction) and peripheral arterial disease (e.g.
numbness, ulcers, and cramping) (Golledge and Norman, 2010).

The second major characteristic of CVD, softening or weakening of the
arteries, generally leads to the formation of aneurysms. An aneurysm is a bulge
in the artery wall that can burst and cause potentially fatal internal bleeding. The
diseases caused by aneurysm include strokes in general, transient ischaemic
attack (mini stroke), and aortic disease (aortic aneurysm). While the character
of an aneurysm is opposite to the hardening of arteries of atherosclerosis,
the two are not mutually exclusive. Atherosclerotic cardiovascular disease
and aneurysm commonly occur together and theories centre on whether one
causes the other if they are the same disease or whether they are caused by the
same lifestyle factors (Golledge and Norman, 2010).

The third cause, blood clotting or ‘thrombosis’ (Jackson, 2011), frequently
occurs with both atherosclerotic disease and aneurysm. Thrombosis can
create a disease that is seemingly like the effects of a ruptured aneurysm or
atherosclerotic condition, creating symptomatic overlap between the first two
causes of CVD. Hence, actual thrombotic diseases include heart attack, strokes
in general, transient ischaemic attack (mini stroke), and peripheral arterial
disease (e.g. painful, discoloured, and cold limbs).

Although the three major causes of CVD can create similar disease
symptoms, they require dramatically different treatment measures. This has
significant implications for the effectiveness of therapies between ethnic
groups because the causes of CVD differ between different races and ethnic
groups (Agyemang et al., 2009). Racial disparities in CVD pathogenesis may
be partly related to differing phases of globalization across countries that have
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altered diets and lifestyles at different points in time for each race or ethnic
group. This is an important consideration because it takes time to create
disease in populations, in fact several generations. The chances of developing
CVD increase in family lineages that pass on and accumulate epigenetic
modifications caused by obesogenic diets (Komal et al., 2021).

3.2 Comorbidities

There are several diseases that are either associated or directly linked to the
pathogenesis of CVD. These diseases are termed comorbidities and include
insulin resistance, metabolic syndrome (Lind et al., 2021), diabetes (Einarson
et al., 2018), osteoporosis or loss of bone mineral density (Wen et al., 2018),
subclinical magnesium deficiency (Di Nicolantonio et al., 2018), kidney disease
or uraemia (Fujii et al., 2016), hypertension and dyslipidaemia (Petrie et al.,
2018), inflammatory bowel disease (Bigeh et al., 2020), and chronic obstructive
pulmonary disease (Rabe et al., 2018). One group of authors argues that all
comorbidities generate systemic inflammation and propose that all types of
inflammation can lead to heart disease (Bigeh et al., 2020).

There is also a strong link between gastrointestinal bacterial dysbiosis and
CVD (Jin et al., 2018). Dysbiosis may be defined as a condition involving an
imbalance of gut bacteria, triggering a wide range of digestive disturbance
symptoms. These include milder complaints, such as bloating, constipation,
cramping, diarrhoea, and indigestion, and more severe conditions, such as
‘small intestinal bacterial overgrowth’, inflammatory bowel disease, chronic
inflammation, and progression into cancers.

A healthy cardiovascular and renal system has increasingly been seen
as dependent upon the crosstalk in the gut-kidney-heart ‘triangle’, and it is
becoming evident that gut microbiota is a strong participant in this crosstalk.
Hence, disruption to the harmony of the gut negatively affects the renal or
cardiovascular system, and conversely, disruption to the renal or cardiovascular
system negatively affects the gut, creating a feedback loop that has come to be
known as the 'vicious cycle’ (Onal et al., 2019).

The gut microbiome in CVD is also related to the modulation of local and
systemic inflammation profiles. Inflammation can be caused by leakage of
bacterial lipopolysaccharides into and across the intestinal mucosal or epithelial
barrier (Onal et al., 2019). In cases of more severe disturbance to the intestinal
epithelial barrier function, live bacteria escape the gut lumen and translocate
into the systemic circulation, contributing to atherosclerotic symptoms and
myocardial infarction (Zhou et al., 2018). As a result, one of the key aspects of
pre- or probiotic use in prophylaxis or treatment of CVD is the strengthening
of the intestinal epithelial barrier via the nurturing of commensal gut bacteria
(Ohland and Macnoughton, 2010).
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Whilst many diseases are confirmed comorbidities of CVD, the connection
between disease states is complex. Whilst there can be a causal link between
disease states, they might be merely coincident, or they may share a common
pathogenesis pathway. As a result, comorbidities that are demonstrated to
be interdependent triggers of each other (A leads to B, and B leads to A)
are sometimes referred to as being on an ‘axis’. Research suggests there is a
gut-brain axis (Mukhtar et al., 2019), a gut-renal axis (Yang et al., 2017), and
a neuro-immune axis (Bonaz et al., 2017). The gut-renal axis is one of the
more significant interactions in the context of CVD because it has the power
to control hypertension (Yang et al., 2017). There is mounting evidence that
these three axes are all significant in the development of CVD (Onal et al.,
2019).

3.3 Plants as prebiotics

Although both pre- and probiotics have been considered as promising
prophylactic or therapeutic measures to combat CVD, the use of plant-based
phytochemicals is limited to prebiotic effects. Probiotics are usually made by
growing ‘good’ bacteria in controlled conditions, whereas prebiotics are plant
sources that are considered to stimulate the growth and activity of ‘good’
bacteria in the gut, boosting their population density relative to other bacteria
(La Fata et al., 2017).

Plant prebiotics can include vitamins, specialised metabolites, and
polymers. Plant-based polymers are currently the main focus of current prebiotic
research, occurring either as non-digestible yet water-soluble carbohydrates
or polyphenol polymers (Lamuel-Raventos and Onge, 2017). Plant foods that
are rich in polyphenol polymers, such as ellagitannins and procyanidins, are
considered good prebiotics. Such foods include nuts, particularly almonds (Liu
etal., 2014), as well as berries and grapes.

Water-soluble carbohydrate polymers are commonly referred to as ‘dietary
fibre’and have many chemical versions, such as fructooligosacharide from yacon
(Padilla-Gonzélez et al., 2020b), galactomannan from fenugreek (Hamden et al.,
2010), glucomannan from konjac (Al-Chazzewi and Tester, 2010), acemannan
from Aloe vera (Quezada et al., 2017), or B-glucan recovered from wheat germ
(Aktas et al., 2015).

Beneficial effects from prebiotics are not limited to maintaining a healthy
gut microbial community. Derivatives produced during microbial digestion of
prebiotics are also linked to non-digestive health benefits in the context of CVD.
The main products of prebiotic digestion include phenyl-y-valerolactones from
procyanidins (Angelino et al., 2020), urolithins from ellagitannins (Piwowarski
et al., 2014), and short-chain fatty acids (propionic and butyric acids) from
carbohydrate polymers (Liu et al., 2014).
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Phenyl-y-valerolactones are associated with improved metabolic health
and cognitive function, reversal or prevention of inflammation (Angelino
et al., 2020), and platelet modulation (Montagnana et al., 2018), which may
reduce thrombotic events in CVD. Urolithins are associated with systemic anti-
inflammatory effects (Piwowarski et al., 2014) and improved lipid metabolism
(Kang et al., 2016). Short-chain fatty acids have numerous effects, such as
appetite suppression, attenuation of insulin resistance, improved colonic health
and gut barrier function, and attenuated weight gain (Chambers et al., 2018).

4 Assessing protective and therapeutic effects of
phytochemicals

Targeting the risk factors for CVD or its comorbidities is not only preventative
(prophylactic) but can be used in treatment. Common pharmaceutical
strategies to treat or prevent CVD include the use of lipid-lowering drugs,
antihypertensives, antiplatelet, and anticoagulation therapies (Flora and
Nayak, 2019). The effectiveness of these pharmaceuticals can be measured by
monitoring blood or urine biomarkers. When researchers assess the viability of
a plant-based dietary component in attenuating risk factors for CVD, they will
often use the same biomarkers.

The most common effects described for plants that are protective
against CVD include basic antioxidant effects. However, they are now seen
to include antiplatelet (Khan et al., 2018), anti-hyperlipidaemic, vasorelaxant,
antithrombotic, anti-uraemic, and diuretic effects (Michel et al., 2020). More
recently identified positive effects include angiotensin-converting enzyme
(ACE) inhibition (Nileeka Balasuriya and Vasantha Rupasinghe, 2011; Kim
et al., 2019), ferroptosis inhibition (Xie et al., 2016), inhibition of ‘A Disintegrin
and Metalloproteinases’ (ADAM) (Malemud, 2019), such as ADAM17 (Kawai
et al., 2021), and matrix metalloproteinase (MMP) inhibition such as MMP-9
(Chaturvedi and Kaczmarek, 2014; Ende and Gebhardt, 2004). The range of
protective mechanisms against CVD is summarised in Table 1.

The health-promoting properties of different foods are mechanistically
diverse and sometimes poorly explained or understood in the scientific
community. As an example, studies of phytochemical content of a particular
food often fail to account for the fact that health conferring properties are
restricted to organs that may be removed during processing or lost during food
preparation. As an example, vegetables that are cooked by boiling will lose most
of the water-soluble antioxidants and retain more of the lipophilic ones. Grains
that have high antioxidant capacity e.g. lose their potency when they are refined
and the germ is removed, turning them from wholemeal to white, leaving only
depleted starch. Phytochemical studies of foods must be interpreted in the
context of food processing methods, whether at home or in the factory.
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Another factor to consider is bioavailability: the proportion of a chemical
that finally enters circulation and is able to have an active effect. The
bioavailability of phytochemicals can vary widely, depending on factors such
as chemical structure and form of dietary intake (Selby-Pham et al., 2017).
However, it is important to note that even phytochemicals that have poor or
zero bioavailability can still make foods healthier. For example, starches that
are digested quickly can cause unhealthy spikes in blood glucose content,
which triggers comorbidities of CVD such as diabetes. Phytochemicals that
are eaten together with these starches can slow the release of sugar from
starches, even if the phytochemicals themselves do not get absorbed into
the body. These phytochemicals, therefore, reduce the glycaemic index of
foods. They are either digested by gut microbes or excreted, but generally
do not enter portal circulation unless they are transformed into another
molecule.

Whilst plant-based vitamins, minerals, and metal chelates are considered
an important aspect of CVD prevention and treatment, establishing a clear
beneficial effect in preventing or alleviating conditions such as CVD can be
extraordinarily difficult (Jenkins et al., 2021). However, 'no evidence of efficacy’
is not the same as ‘evidence of no efficacy’. CVD occurs over the long term, so
it is hard to measure the net effects of prophylactic initiatives.

As an example, whilst beneficial effects from vitamin and mineral
supplementation in the context of CVD have a strong theoretical basis,
definitive in vivo evidence of their effects is still lacking, and there is a
consensus that individuals who already have a balanced diet may have nothing
to gain. However, it is evident that vitamins and minerals are beneficial to those
individuals who experience a deficiency (Ingles et al., 2020), whether clinical
or sub-clinical (Di Nicolantonio et al., 2018). Research has not fully explored
the synergistic or antagonistic interactions of vitamins and minerals with the
biological effects of plant phytochemicals (Koss-Mikolajczyk et al., 2019).

Another complication is that the phytochemical composition of foods
often changes according to factors such as geography (Padilla-Gonzélez
et al., 2020a), weather, light availability or frequency (Bian et al., 2015), and
cultivar or chemotype (Sadgrove et al., 2014, 2020; Sadgrove and Jones,
2014). This is of particular concern because, in the face of climate change, the
current understanding of the phytochemistry of plants may become outdated,
particularly if the chemical composition of species is affected by changing
weather patterns (Ahmed and Stepp, 2016). The effects of abiotic stress on food
phytochemicals vary according to species. It is important to note variations in
phytochemical content caused by climate change, which may be positive as well
as negative e.g. some species will produce more phytochemical compounds
under abiotic stress (Sadgrove, 2020), even when the crop yields are negatively
affected (Raza et al., 2019).
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5 Types of phytochemical compounds: flavonoids,
phenols, organosulphur compounds, alkaloids,
lignans, sterols, tannins and soluble fibres

Plant phytochemicals that are becoming significant in the context of preventing
or alleviating CVD include flavonoids, phenols, organosulphur compounds,
lignans, sterols, phloroglucinols, and soluble fibres.

5.1 Flavonoids

The flavonoids class is most frequently cited in the context of positive health
outcomes in relation to conditions such as CVD (Micek et al., 2021). There
are many different types of flavonoids, some bonded to sugars (glycosides)
and the others in their free form as ‘aglycones’. The sugar-bound flavonoids,
the glycosides, have a different pharmacokinetic profile compared to the
aglycones. The disaccharides (two sugars) as well as tri-, tetra-, and other
types of saccharides are generally not absorbed until they are deglycosylated
in digestion (sugars removed). This makes it possible for the aglycone to be
absorbed into portal circulation (the circulation of nutrient-rich blood between
the gut and the liver). The monosaccharides (one sugar) are partly absorbed
in the small intestine via the hexose transporter pathway that is designed to
process free sugar. The remaining monosaccharide is then cleaved in digestion
and absorbed as an aglycone (Sadgrove and Jones, 2019).

Flavonoid aglycones are represented by a diversity of types, but the most
common forms are flavones, flavanones, flavonols, isoflavones, isoflavanones,
flavanols (catechins), chalcones, anthocyanins, and procyanidins (Palma-
Tenango et al., 2017). Flavonoids are well known for their anti-inflammatory
(Ginwala et al., 2019), antioxidant (Pietta, 2000), and antithrombotic effects
(Boji¢ et al., 2019). As with all nutraceuticals, the beneficial effects of flavonoid
supplementation are difficult to prove definitively. However, one meta-analysis
was able to demonstrate a 14% reduction rate of stroke in men associated with
supplementation of 20 mg of a flavonol per day (Wang et al., 2014).

Many flavonoids are already available in the market as nutraceuticals. An
example is biochanin A (Yu et al., 2019) which is present in high concentration
in red clover (Trifolium pratense) and is also found in vegetables from the
Brassica and legume family. Most of the positive health effects ascribed to
biochanin A use are against the comorbidities of CVD. In the gut, biochanin A
is metabolically converted by microbes into genistein and daidzein. Daidzein is
converted to equol, a flavanol with particular protective effects in the context of
CVD (Mayo et al., 2019). Biochanin A is also a selective agonist of the oestrogen
receptor (Yu et al., 2019), which may have positive implications for age-related
cardiovascular disorders. Other prominent flavonoids include the isoflavones
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genistein and daidzein from soy, celery, and other legumes; quercetin from
onion, citrus fruits, broccoli, red grapes, apples, and cherries; and kaempferol
from broccoli and radishes (Yu et al., 2019).

One of the more impressive innovations in health has been the
reintroduction of anthocyanin-rich foods to the modern diet. Anthocyanins,
either as aglycones or glycosides, are the colour compounds in e.g. flower
petals, in fruits such as blueberries, and in autumn leaves. They are e.g.
associated with the colour of purple potatoes (Montilla et al., 2011) and
purple cauliflower (Yan et al., 2019) or with the black colour of black beans
(Takeoka etal., 1997) as well as black carrot (Akhtar et al., 2017). Anthocyanins
are relatively unstable, although some types are more stable than others. It
has therefore been challenging to make oral anthocyanins supplements with
the exception of freeze-dried fruits which are able to retain the compound.
Efforts have been directed instead into enriching anthocyanin in common
foods.

One example is the appearance of purple cauliflowers on supermarket
shelves in recent years. The colour derives from an anthocyanin that is
encoded by activation of the gene BoMYB2 (Yan et al., 2019). The common
white head cauliflower, known as curd, was created by selective breeding.
It is thought to have originated in southern ltaly during the Middle Ages
by cross-breeding the Sicilian purple variety with a cabbage, producing
a larger white head, making it popular in cultivation as a food crop (Smith
and King, 2000). The return of the purple anthocyanin to the curd phenotype
represents an important success in the use of genetics to guide breeding
without having to resort to genetic modification (Chiu and Li, 2012). Genetics
merely guided selective breeding of silent genes to optimise the expression
of the anthocyanin pigment, making the modern cauliflower healthier and
more resilient.

5.2 Phenols

One of the best-known phenols in the context of metabolic health is the
stilbene resveratrol, a phytoalexin in grapes produced in response to the
threat of disease (Jeandet et al., 1995), and the main point of interest in the
‘French Paradox’ (Catalgol et al., 2012). The French Paradox was defined in
1992 as the unexpected cardiovascular resilience in the French population,
despite a high-fat diet, with red wine drinking put forward as a potential
explanation (Renaud and De Lorgeril, 1992). Because resveratrol is one of the
main phenols in red wine, subsequent research has focused on this stilbene
and demonstrated a plethora of effects that strongly suggest prophylaxis of
CVD (Wang et al., 2012) with clinical evidence supporting this (Zordoky et al.,
2015).
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Other significant phenols include chlorogenic acid from coffee,
epigallocatechin gallate from green tea, curcumin from turmeric, caffeic acid
from propolis or olives, rosmarinic acid from rosemary, and gallic acid from
gallnuts. The main mechanism of these phenols, including resveratrol, is the
attenuation of systemic inflammation, platelet aggregation, oxidation, and
glycation (Ali et al., 2020).

5.3 Organosulphur compounds

The organosulphur compounds that have come to be recognised as beneficial in
health are generally very small molecules that include at least one sulphur atom.
They are expressed in onions, garlic, and cruciferous vegetables and are regarded
as prophylactic for CVD (Vazquez-Prieto and Miatello, 2010). The two best-known
organosulphur classes are the isothiocyanates and the sulfoxide derivatives of
the amino acid cysteine: alliin and its derivative allicin. Alliin and allicin have been
implicated in the amelioration of cardiovascular disorders and may attenuate gut
dysbiosis as well as having efficacy against chronic kidney disease (Ribeiro et al.,
2021), thus supporting this part of the gut-kidney-heart triangle.

The isothiocyanates are derived from glucosinolate compounds by
enzymatic hydrolysis of the thioglucoside bond by myrosinase (Vanduchova
et al., 2019). This generally occurs when the tissue of cruciferous vegetables is
damaged, perhaps via the chewing motion of a grazing herbivore, removing
the physical barrier between precursor and enzyme and creating a sudden
burst of flavour in the process. The most studied isothiocyanates in terms of
CVD are sulforaphane, allyl isothiocyanate, benzyl isothiocyanate, phenethyl
isothiocyanate, and goitrin (Yeger and Mokhtari, 2020).

5.4 Alkaloids

While some alkaloids have been implicated in adverse cardiovascular and
cerebrovascular effects, such as the performance-enhancement alkaloids
known as ‘ephedra’ (Andrews et al., 2005), several alkaloids have also been
recognised as beneficial against risk factors for CVD. Berberine alkaloids e.g. are
associated with improved serum lipid and glucose profiles (Liu et al., 2008). The
alkaloid colchicine, long known to be effective against gout and osteoarticular
pain (familial Mediterranean fever), is also being recognised as effective against
CVD (Andreis et al., 2021). Colchicine was originally isolated from the bulb-like
corm of Colchicum autumnale and has been used for millennia in medicine,
with records from the ancient Egyptian Ebers Papyrus (1500 BCE) (Dasgeb
et al., 2018). Alkaloids from the husk fibre of coconut (Cocus nucifera), used in
traditional Nigerian medicine, have e.g. been found to lower HDL cholesterol
in mice (Joshua and Muyiwa, 2019).
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5.5 Lignans

Lignans are the result of a dimerization of two phenol derivatives of cinnamic
acid. They are widely distributed in the plant kingdom in seeds, grains, legumes,
fruits, and vegetables. The most-researched lignans are secoisolariciresinol,
matairesinol, pinoresinol, and lariciresinol. These sometimes occur naturally
in glucoside forms such as secoisolariciresinol diglucoside from flax seed
(Peterson et al., 2010). Dietary lignans are metabolised by the gut microbiota
into ‘enterolignans’, which are suggested to be therapeuticagainst hypertension
and hypercholesterolemia (Witkowska et al., 2018).

5.6 Sterols

The three sterols that are most frequently examined in the context of cholesterol
studies are sitosterol, stigmasterol, and campesterol. It is well known that
consumption of these sterols lowers the blood serum concentration of low-
density lipoprotein cholesterol (LDL-C, also known as non-HDL-C), which is
implicated in cardiovascular disease. High-density lipoprotein is called ‘good
cholesterol’ because it is the lipoprotein that circulates cholesterol back to the
liver for excretion, whereas LDL-C is the class of lipoprotein that transports
cholesterol to the tissues, making it ‘bad cholesterol".

The suggested mechanism by which phytosterols lower the LDL-C serum
level is by reducing the amount of cholesterol absorbed from the intestines
(Cabral and Klein, 2017). However, there is controversy over the possible
cancelling out of the LDL-C lowering benefit conferred by phytosterols, by
promoting CVD via other mechanisms (unrelated to LDL-C levels). One group of
authors argues that 38% of coronary artery disease cases are not explained by
LDL-C and that phytosterols have a net beneficial effect (Helgadottir etal., 2021).
However, another group of authors argues that the link between phytosterols
and non-cholesterol-affiliated CVD is speculative and not supported by the data
(Plat et al., 2021). To further confound this, a meta-analysis of phytosterols in
CVD prevention was unable to demonstrate a strong preventative relationship
(Genser etal.,, 2012).

The hypothesis that phytosterols can increase the risk of CVD originates
from the observation of people living with sitosterolemia (also known
as phytosterolemia), which is a rare autosomal recessive disease that is
characterised by a 50-fold increase in phytosterol absorption (Kaur and Myrie,
2020).Individuals affected by this condition demonstrate anincreased incidence
of CVD. While this condition is rare, many researchers have extrapolated this
effect to the general population. Nevertheless, examination of intermediate
markers of cardiovascular disease has demonstrated both positive and neutral
(no) effects, but reports of negative effects are rare and restricted to candidates
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living with sitosterolemia (Cabral and Klein, 2017). In 2013, the European
Atherosclerosis Society published a recommendation that phytosterols are
suitable for lowering LDL-C and, because of the absence of adverse signs, the
consumption of phytosterol-fortified foods can be recommended (https://www
.eas-society.org/page/phytosterol_comment).

5.7 Tannins

Tannins are polymerised phenols that frequently (but not always) have a sugar
molecule as a nucleus. Tannins are widely distributed in the plant kingdom, e.g.
concentrated in tree bark and some fruits such as grapes and pomegranate.
Common hydrolysable tannins include ellagitannins, constructed of ellagic
acid and sometimes gallic acid; gallotannins, constructed of gallic acid; and
phlorotannins, constructed of phloroglucinols.

In digestion, the tannins are reduced to simpler phenols, such as ellagic
acid, gallic acid, or phloroglucinol. Some of these phenols are absorbed
and the remainder catabolised by gut microbes into smaller forms. For
example, ellagic acid is reduced to urolithin and gallic acid to pyrogallol
(Septembre-Malaterre et al., 2017). Phloroglucinol enters portal circulation
efficiently, meaning catabolism is less common. Aside from digestion
of phlorotannins, phloroglucinol is also produced from catabolism of
quercetin (Kawabata et al., 2019). In portal circulation, phloroglucinol is
quickly metabolised in phase two liver processes, giving it a short half-life
(Dollo et al., 1999).

The beneficial effects of phenols have been described earlier. The anti-
platelet activity of phloroglucinol is related to the inhibition of thromboxane
A, production, among other effects (Chang et al., 2012). Tannins and phenols
from pomegranate have demonstrated platelet aggregation inhibition at
physiologically relevant concentrations (Mattiello et al., 2009).

5.8 Soluble fibres

As mentioned earlier, soluble fibres work as prebiotics. However, they are also
modulators of the glycaemic index of foods, stabilising blood sugar levels
(Scazzina et al., 2013). They do this by delaying gastric emptying, inhibiting
the action of digestive enzymes, and slowing the rate of digestion of starch
(Hamden et al., 2010; Jayachandran et al., 2018). As previously mentioned,
the most common soluble fibres include fructooligosaccharide (Padilla-
Gonzélez et al., 2020b), galactomannan (Hamden et al., 2010), glucomannan
(Al-Chazzewi and Tester, 2010), acemannan (Quezada et al., 2017), or B-glucan
(Aktas et al., 2015).
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6 Wild crop relatives as sources of phytochemicals

Modern domestic crops are the result of thousands of years of selective
breeding in human agricultural systems. Generally, selection has been in
favour of bigger yields and sweeter-tasting vegetables and fruits. Over time
this increasing sweetness has been achieved by the disappearance of ‘bitters’,
the phytochemicals that are now seen to have a role in preventing or treating
CVD. Phytochemicals generally do not add flavour and may even reduce the
sweetness of vegetables and even make them slightly bitter. This has favoured
selecting cultivars with reduced phytochemical content (Gasparini et al., 2020).
This trend is now reversing with a greater interest in wild crop relatives. This is
not just because of their higher phytochemical content but because of their
wider resilience to biotic and abiotic stresses compared to modern high-
yielding varieties, particularly in the face of climate change and the need to
reduce reliance on fertilizers, herbicides, and insecticides (Dempewolf et al.,
2014; Ahmed and Stepp, 2016; Gasparini et al., 2020). This section looks at a
number of examples of modern versus wild relatives of common crops.

6.1 Carrot

Differences between the wild carrot, Daucus carota L. subsp. carota (Fig. 1a),
and the domestic carrot, Daucus carota L. subsp. sativa (Fig. 1b), were evident
during the sixth-century AD when images were added to the pharmacopoeia
De Materia Medica originally created by Pedanius Dioscorides in AD 65 (Janick,
2014). It was in the second-century AD when the domestic carrot was recognised
as a more palatable food source than the wild version (Akhtar et al., 2017).
Genetic studies suggest the origin of the domestic carrot might be in central
Asia (Que et al., 2019).

Although the modern carrot is regarded as a healthy food source (Just
et al., 2009), alongside other modern vegetables, olive oil, and nuts (Estruch
et al., 2018), the amount of some specific classes of phytochemical has
generally declined. The modern carrot is a rich source of carotenoids, which
are precursors to Vitamin A (Just et al., 2009), often referred to as ‘provitamin
A’ In contrast, a wild carrot from Scotland was demonstrated to be rich in
antioxidant glycosides of the flavonoid luteolin (Kumarasamy et al., 2005). This
has raised the possibility of carrot hybridisation to retain carotenoid content
but enrich overall phytochemical content (Just et al., 2009; Que et al., 2019).
However, hybridisation has proved difficult, due to sterility of some hybrids and
the predominance of the metabolic profile of wild carrots in successful hybrids
(Que etal., 2019).

The species D. carota includes over six subspecies. The domestic carrot
(subsp. sativa) contains a diverse concentration range of the bioactive
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polyacetylenes falcarinol (82-518 pg.g™' dry weight, DW) and falcarindiol (236-
1553 pg.g' DW) (Roman et al., 2011). These polyacetylenes are associated with
health benefits which include anti-inflammatory and anti-platelet-aggregatory
effects that are beneficial in the context of CVD. Furthermore, falcarinol is a
potentanti-inflammatory compound thatis beneficial in cases of gastrointestinal
inflammation and has positive implications for CVD (Stefanson and Bakovic,
2018).

The closest relative of the domestic carrot, D. carota subsp. carota,
contains similar quantities of polyacetylenes, but generally the concentration
of falcarindiol is higher (583 pg.g' DW), which is the metabolite responsible
for imparting bitterness (Roman et al., 2011). This metabolite also promotes
cholesterol efflux from macrophages (Wang et al., 2017), which is the first step
in reverse cholesterol transport, limiting its circulation to peripheral tissues and
attenuating atherosclerotic plaque accumulation.

The polyacetylenes in carrots are not evenly distributed throughout organs
or spatially in the root. Their expression is activated by insect attack and possibly
by sunlight exposure. They are therefore more concentrated in the skin, in the
basal (upper) part of the root in phloem tissue, and in blemishes such as black
spots (Roman et al., 2011). However, itis common for blemishes in the skin and
the basal part to be removed in food preparation, in part for cosmetic reasons,
reducing their availability and potential benefits.

Wild carrot subspecies are generally more bitter than domestic carrot
and this may be attributed to the higher concentration of falcarindiol. Two of
the subspecies that produce similar size carrots to the domestic carrot are D.
carota subsp. maximus Desf. (syn. D. maximus) and D. carota subsp. gummifer
(Syme) Hook.f. These have polyacetylene concentrations up to 2000 pg.g™” at
fresh weight, many times higher than domestic carrots. The bitterness of these
large wild carrots has prevented their domestication. Furthermore, D. maximus
requires harvesting while the roots are immature because, as it matures, it
becomes woody and tough, and thus unpalatable. This poses challenges to
introducing them into diets.

6.2 Potato

The current domestic potato Solanum tuberosum came from South America
and was introduced into Europe by the Spanish in the sixteenth century
(Bradshaw and Ramsay, 2009). It was previously believed that S. tuberosum was
produced from selective breeding and domestication over various locations in
South America, but a genetic study of wild crop relatives produced evidence in
favour of a single location in Northern Peru (Spooner et al., 2005).

Potatoes belong to the genus Solanaceae, which is known colloquially as
the nightshade or potato family. Although the taxonomy of wild potatoes is
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(b) - Daucus carota L. subsp. sativa

Figure 1 Differences between (a) wild carrot (Daucus carota subsp. carota) and (b)
domestic carrot (Daucus carota subsp. sativa). Source: Images taken from an online
database https://tulip.hort.purdue.edu/herbalimages/search.html.

constantly under revision, there are at least 219 recognised species of Solanum
in South America and southern North America (Bradshaw and Ramsay, 2009).
When the potato is eaten on its own, either cooked in water or oil, the starches
are rapidly digested, and the blood sugar level quickly rises. For this reason, it
is regarded as a high glycaemic index food (Henry et al., 2005). As previously
mentioned, diabetes or insulin resistance are risk factors for CVD.

Various studies have demonstrated that the purple or red-fleshed wild
relatives of S. tuberosum have high antioxidant content (Campos et al., 2006).
These species and subspecies are rich in anthocyanins which are inversely
associated with CVD (Cassidy et al., 2016). It has been suggested that domestic
potato could be improved by cross breeding with native Andean Solanum to
improve its phytochemical content (Andre” et al., 2009).

The antioxidant content is even higher in tuber species that belong to
other genera (Campos et al., 2006). One promising South American species
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is Smallanthus sonchifolius, which produces a tuber that is rich in chlorogenic
acid esters and fructooligosaccharides (Padilla-Gonzélez et al., 2020b). Both
are known for their role in controlling blood glucose spikes, but they follow
different mechanisms. The fructooligosaccharides are soluble dietary fibres
that act as prebiotics and slow the rate of sugar release from starches in
digestion, by slowing the activity of digestive enzymes and also by slowing
gastric emptying (Chen et al., 2016). Chlorogenic acids lower the risk of CVD
by anti-diabetic and anti-lipidemic effects achieved via the activation of AMPK
(5’adenosine monophosphate-activated protein kinase) (Ong et al., 2013),
which is an enzyme that plays a role in cellular energy homeostasis, mostly by
activation of glucose and fatty acid uptake followed by oxidation. Many wild
crop relatives of domestic potato and other tubers may be a healthier choice
in the context of CVD.

6.3 Wheat

Arguably the most famous of all crops is the ‘golden grain’ common wheat
(Triticum aestivum) (Hazard et al., 2020). It is currently believed that the
ancestral route of modern T. aestivum started with the wild crop relative
Triticum urartu, a diploid that crossed with another diploid goat grass species
Aegilops speltoides. The cross created Triticum dicoccoides (wild emmer), a
tetraploid wild crop relative that is widespread in modern Israel (Copper, 2015).
This tetraploid crossed with another diploid species Aegilops tauschii (goat
grass) on two occasions and produced two modern commercial crops, Triticum
dicoccum, a tetraploid, and Triticum spelta, a hexaploid. Over the course of
crop selective breeding, the modern wheat hexaploid T. aestivum and modern
wheat tetraploid Triticum durum were developed (Peng et al., 2011).

Approximately 95% of wheat production worldwide is from T. aestivum.
Most studies highlight wheat as a beneficial dietary component (Shewry and
Hey, 2015; Wieser et al., 2020). However, despite its role as a staple food crop,
there is an ongoing debate about how far it may promote or negatively impact
human health (Di Nicolantonio et al., 2018). However, it is becoming evident
that it is not wheat that is the problem but the refining of white wheat flour
and removal of fibre, which then make cereal products a potential risk factor
for dyslipidaemia and metabolic syndrome (Amin and Gilani, 2013). The fibre
content is lowered when the grain is processed to remove the germ (outer skin
of the grain), which makes the meal whiter, producing white flour and white
bread instead of the brown wholemeal versions that are also available.

Some phytochemical parameters in wheat can be measured to predict
its long-term effect on health. For example, the amylose to amylopectin ratio
is important in determining starch digestibility and thus the glycaemic index
(Singh et al., 2010). Amylose is slower to digest, due to limited branching links
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on the carbohydrate chain. Hence, a higher amylose content equates to a lower
glycaemic index meal (Van Amelsvoort and Westrate, 1992), even after the
grain is processed to remove the germ.

For nearly 20 years, a distinction has been made between the relative
health benefits of refined compared to whole grain diets with the latter seen
as more beneficial (Liu, 2002). Dietary guidelines in Europe, America, Australia,
and elsewhere have subsequently recommended that wholegrain foods be
substituted in place of refined grain foods, making up one-half or two-thirds
of grain-food intake (Williams, 2012). An alternative approach has been to
genetically modify wheat so that the white starch is also rich in soluble fibre,
though this approach is limited by continuing consumer and regulatory caution
over the use of genetic modification (Hazard et al., 2020).

A well-known wheat alternative is spelt (Triticum spelta), which is regarded
as a ‘natural’ alternative to modern wheat. The content of soluble fibre is higher
in wholegrain spelt compared to wheat but, after refinement and whitening, the
two flours can be almost identical in fibre content, neutralising the advantage
(Escarnot et al., 2012). A similar conundrum is faced with other domestic forms
of wheat that have high polyphenol content compared to T. aestivum because
the phenols are restricted to the wheat germ and are rare in the endosperm
used to make flour (Brandolini et al., 2013). This has led to alternative solutions
such as the use of hulled wheats (Beta, 2021).

Today's wheats are recognised as either tetraploid (e.g. T. dicoccum,
T. dicoccoides, and T. durum) or hexaploid (e.g. T. aestivum and T. spelta). In
this regard, wild crop relatives of wheat, or less used crops, such as durum or
einkorn wheat, are generally tetraploids. Significantly, the tetraploid species
have been shown to have higher amylose content than their hexaploid
counterparts, particularly durum and Polish wheats (e.g. T. durum and T.
polonicum) (Rodriguez-Quijano et al., 2003). Hexaploids tend to yield amylose
content within the range of 18-35% (Labuschagne et al., 2007), whereas
tetraploids often produce values above 40% (Rodriguez-Quijano et al., 2003).
Unfortunately, a key issue in adoption of these healthier grains is that high
amylose flours are less easy to use in bread making, potentially reducing their
availability and appeal (Lee et al., 2001).

6.4 Brassicas: broccoli, cabbage, kale, cauliflower, mustard
and Brussel sprouts

Cruciferous vegetables are a very promising prophylactic food source in the
context of CVD. Those varieties and species that belong to the genus Brassica
are regarded as important in the Mediterranean diet and are also inversely
correlated to subclinical atherosclerosis in older women (Blekkenhorst et al.,
2018). However, the relatively short history of many cultivars and hybrids that
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are considered as F1 hybrids means they have not faced natural selective
pressures, making them potentially vulnerable to climate change. Genotype-
guided selective breeding approaches have been recommended to recover
resilience genes from wild species of Brassica (Lv et al., 2020).

The wild cabbage (Brassica oleracea L. subsp. oleracea) is found on the
sea cliffs of western and southern Europe. It is from this leafy biennial, or a
common ancestor, that the modern cabbage (B. oleracea subsp. capita L.),
kale and collard (B. oleracea subsp. acephala DC.), cauliflower and broccoli
(B. oleracea subsp. botrytis L.), brussels sprouts (B. oleracea subsp. gemmifera
DC.), and kohl-rabi (B. oleracea subsp. caulo-rapa DC.) originate. From as early
as the 1920s it was noticed that wild cabbage was heterozygous for resistance
(Walker, 1928), meaning resistance varied from specimen to specimen but that
it could be more easily selected in breeding. This has provided the basis for
improving resistance in modern varieties of e.g. cauliflower (Singh et al., 2018).

Pathogen resistance is often associated with plant phytochemicals, or
phytoalexins, that are also of value in human nutrition and CVD prophylaxis.
The phytoalexin resveratrol has already been mentioned (Jeandet et al.,
1995). Brassica species also express isothiocyanates such as sulforaphane.
Sulforaphane is an effective natural activator of the Nrf2 pathway, which
cascades into the expression of antioxidant proteins (Kubo et al., 2017).
This pathway is ubiquitously expressed in mammalian tissue, suggesting
sulforaphane has the potential to reverse inflammation at the whole-body level.
Research has demonstrated enhancementto gut barrier efficiency (Canxia etal.,
2018). Theoretically, gut barrier function is improved via a two-fold mechanism
involving attenuated dysbiosis and activation of the Nrf2 pathway.

Brassica is also a viable source of vitamin K1, a methyl naphthaquinone
compound that was discovered in the 1930s by a Danish chemist who named
it ‘'Koagulations-Vitamin’. As the Danish name suggests, vitamin K is an ‘anti-
haemorraghic factor’ (Lippi and Franchini, 2011). Another version of the vitamin,
denoted K2, is produced by gut bacterial fermentation and is accumulated
in the liver which gives it a prebiotic function in preventing heart disease
(Haugsgjerd et al., 2020). There is also a strong theoretical rationale for an
inverse correlation between vitamin K1 intake and prevention of atherosclerotic
disease because it increases the activity of matrix-Gla protein, a potent inhibitor
of vascular calcification. While the link has been conclusively demonstrated
in animal studies, it has not yet been proven in humans (Villines et al., 2005;
Haugsgjerd et al., 2020; Palmer et al., 2020).

7 Herbs and spices as sources of phytochemicals

Herbs, spices, and their blends (known in Indian cuisine as masalas) are much
more than simply flavourings and colourants. These colourful and flavour-dense
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plants get their properties from a high phytochemical content while their
textures often come from fibres with prebiotic effects. For example, fenugreek
is a rich source of galactomannan, a soluble fibre with prebiotic effects (Mathern
et al., 2009). Fenugreek is also rich in a water-soluble antidiabetic compound,
4-hydroxy isoleucine (Jetté et al., 2009), and various flavonoids (Shang et al.,
1998). For this reason, fenugreek seed powder has long been added to hot
water, allowed to cool, and drunk as a remedy in middle eastern or north
African cultures for respiratory complaints or for ‘strength’ (Khalki et al., 2012).
Turmeric e.g. contains the polyphenol curcumin which is associated with CVD
prophylaxis, including when combined with black pepper which improves
curcumin bioavailability (Shamsi et al., 2017; Dastani et al., 2019). Quinones
in black cumin are considered effective for numerous ailments, including
pathologies that are considered risk factors for CVD (Amin and Hosseinzadeh,
2016). Seeds contain saponins, flavonoids, alkaloids as well as essential oils,
fixed terpenes, free fatty acids, and high mineral content (Mukhtar et al., 2021).

There are several traditional foods or medicinal plant species that have
been found to have therapeutic properties for CVD in vitro but are not feasible
in vivo because blood serum concentrations cannot possibly be matched. These
include medicinal plants that inhibit ACE from countries such as Australia and
Iran (Deo et al., 2016; Sharifi et al., 2013; Rad et al., 2019). When searching in
the literature for plants demonstrated in vitro as potentially useful against CVD,
the dose requirement must be taken into consideration. Alternatively, it may be
necessary to focus on studies that present in vivo results in animal models, such
as those summarised by Michel et al (2020).

8 Future trends in research

Furthering our understanding of the range of phytocompounds in plants as well
as the levels of intake required to have benefits is clearly a top priority that will
involve breeders and academics working closely together. Another important
factoris associated with keeping the diversity of plants available for future study,
especially as seeds from many wild heritage varieties as well as underutilised
food plants are not always available for study. Advances in genomics provides
us with a better understanding of the genes and biosynthetic processes that
can assist select and breed for varieties with higher levels of CVD beneficial
compounds. Such research should not only assists conserve plant genetic
resource, but also supports the health and nutrition of wealthy societies as
well as poorer communities that are often the custodians of wild relatives of
crop plants. There is considerable evidence that supports the notion that plant-
based diets have cardiovascular benefits. Future research should also focus
on how this knowledge feeds into policy strategies that can impact different
populations.
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9 Where to look for further information

There is no one database that brings together all the data about the levels of
specific CVD compounds in crop plants, the availability of cultivars or of which
are the key species to study. There are different organisations that can provide
information about heritage varieties and these will vary among countries. For
example, the Consultative Group on International Agricultural Research (CGIAR)
is a global partnership that unites organizations engaged in research for a food
secure future and provides details about sourcing different cultivars (https://www.
cgiar.org/). In the UK information about heritage grains can be found on https://
www.heritagegraintrust.org. The organisation Bioversity also provides information
about different cultivars, heritage varieties and wild relatives of crop plants (http://
www.cropwildrelatives.org/). Another very good source of information including
trade data is the Food and Agriculture Food Organisation of the United Nations.
(https://www.fao.org/home/en). Search engines such as Pub Med are good
for searching for papers that cover the most recent findings on plant-derived
compounds on different aspects of CVD (https://pubmed.ncbi.nim.nih.gov/).
Other information that is more specific to CVD and plant-based diets can be found
on health websites, such as the British Heart Foundation (https://www.bhf.org.uk).

10 Conclusion

Cardiovascular disease and its comorbidities are a leading cause of illness and
death worldwide. Research is highlighting the complex causes involved such as
the role of gastrointestinal bacterial dysbiosis as a factor in CVD as well as the
key role of diet both in causing and also in preventing or treating illness. This
research has helped to highlight the important prophylactic and therapeutic
role of plant phytochemicals in relation to CVD. Dietary flavonoids e.g. have
been found to have diverse effects such as buffering against inflammation,
oxidation, dysbiosis, diabetes, and hyperlipidaemia. Plant foods may also have
prebiotic effects or attenuate comorbidities and risk factors for CVD.

The theoretical basis for the beneficial effects of plant phytochemicals
(based on identifying potential mechanisms of action in the body) is now well
supported by in vitro and animal studies, although in vivo and epidemiological
results remain mixed and require further research to establish a strong evidence
base. This is perhaps unsurprising given the multiple potential factors involved
in any observed effect (particularly over a long period in the case of a chronic
disease such as CVD) as well as the complex route phytochemicals must travel
from plant to consumption to any effect in the body. Results are confounded
by factors such as wide variations in phytochemical content in particular foods
(determined by factorssuch as cultivar, environmental conditions, and cultivation
practices), the effects of preparation and processing, and bioavailability.
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The weight of evidence in favour of the beneficial effects of plant
phytochemicals is leading to a range of initiatives to promote their role in
diets. These range from supplementation to altering diets in favour of both
familiar and more exotic foods with high phytochemical content. There are also
moves to enhance and restore phytochemical content in modern cultivars by
exploiting wild crop varieties.
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