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Chair’s introduction

Hans-Georg Rammensee

Interfakult�res Institut fˇr Zellbiologie, Abteilung Immunologie, Universit�t Tˇbingen,
Auf der Morgenstelle 15, D-72076 Tˇbingen, Germany

This is a timely meeting. Although Vladimir Brusic’s opening paper is titled
‘Immunoinformatics� the new kid in town’, this is actually a ¢eld that has been
around for a while, although under a di¡erent name. At least part of what we know
of as immunoinformatics was previously known as ‘theoretical immunology’.
There was an important meeting on this subject in New Mexico in 1988, which
resulted in a two-volume book (Perelson 1988).
The subject of immunoinformatics aswe see it today can roughly be divided into

three areas: the hard, the soft and the semi-soft. A challenge for this group is to
decide by the end of the meeting whether I am correct with this classi¢cation! Let
me start with a description of hard immunoinformatics. This contains what I will
call ‘hard facts’: DNA, RNA and peptide sequences that we can write down. This
part of immunoinformatics can be used for a growing number of applications that
will have a direct impact on biomedicine. One example is peptides for T cell
recognition, working out which peptides are recognized by the T cell receptor
during an infection. Hard immunoinformatics is one of the newest parts of the
¢eld and is only a few years old. The amount of information in this realm is
growing exponentially. 15 years ago all we had were a few DNA sequences, but
now we have a tremendous amount of data stored in various databases.
Semi-soft immunoinformatics comprises algorithms and parameters which we

use to create the ‘hard’ part. It includes all the prediction algorithmswe use inDNA
or peptide sequences: we say that a particular DNA sequence will interact with
some regulatory protein or this piece of protein sequence will interact with the
MHC. The one hallmark of this semi-soft area is that all the predictions can be
tested accurately. You can predict the peptide sequence to bind to HLA, and
then go on and test whether this is true. Some of the predictions will be correct
and others won’t. At one point, though, we may get to a stage where we can
omit the veri¢cation of the prediction by experiment. I personally think this will
never be the case, andwewill always have to verify our predictions, but othersmay
disagree.
Thenwe come to the soft part of immunoinformatics. This is Iwould to de¢ne as

something that can never be tested with hard facts. This may raise some
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controversy. I would classify this part of immunoinformatics as what has
previously been known as ‘theoretical immunology’. This includes mathematical
descriptions of the behaviour of populations, whether this is at the level of the
individual, or at cellular or antibody levels. It involves interactions between
antibodies, infectious agents and T cells. I would like to propose that these kinds
of models will stay soft because it is not possible to verify the predictions
experimentally. If you predict that you need 30 T cells in a human to start an
e⁄cient immune response against a viral infection using mathematical modelling,
you will never be able to prove this. On the other hand, while these predictions
cannot be tested accurately, they can certainly be of help. For example, if one can
calculate in a mathematical model the percentage of people that need to be
immunized against measles to avoid an epidemic, this will be of great use.
So I propose that it is useful to break down immunoinformatics into these three

categories of hard, semi-soft and soft. At the end of the meeting we can discuss
whether or not my proposal is correct. Two important questions related to this
are whether soft immunoinformatics can ever be tested accurately, and whether
the predictions from semi-soft immunoinformatics can stand alone without
experimental veri¢cation. Let’s now move to the ¢rst presentation.

Reference

Perelson AS (ed) 1988 Theoretical immunology. Proceedings of the Theoretical Immunology
Workshop, June 1987, Santa Fe, NewMexico. Addison-Wesley, Reading, MA
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in town

Vladimir Brusic*{ and Nikolai Petrovsky{{

*Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore 119613, {Centre for
Medical Informatics, Division of Science and Design, University of Canberra, Bruce ACT 2617
and {National Health Sciences Centre, Canberra Clinical School, Woden ACT 2606,
Australia

Abstract. The astounding diversity of immune system components (e.g. immuno-
globulins, lymphocyte receptors, or cytokines) together with the complexity of the
regulatory pathways and network-type interactions makes immunology a combinatorial
science. Currently available data represent only a tiny fraction of possible situations and
data continues to accrue at an exponential rate. Computational analysis has therefore
become an essential element of immunology research with a main role of immuno-
informatics being the management and analysis of immunological data. More advanced
analyses of the immune system using computational models typically involve conversion
of an immunological question to a computational problem, followed by solving of the
computational problem and translation of these results into biologically meaningful
answers. Major immunoinformatics developments include immunological databases,
sequence analysis, structure modelling, mathematical modelling of the immune system,
simulation of laboratory experiments, statistical support for immunological
experimentation and immunogenomics. In this paper we describe the status and
challenges within these sub-¢elds. We foresee the emergence of immunomics not only
as a collective endeavour by researchers to decipher the sequences of T cell receptors,
immunoglobulins, and other immune receptors, but also to functionally annotate the
capacity of the immune system to interactwith thewhole array of self and non-self entities,
including genome-to-genome interactions.

2003 Immunoinformatics: bioinformatic strategies for better understanding of immune function.
Wiley, Chichester (Novartis Foundation Symposium 254) p 3^22

Biotechnology has provided methods and instrumentation for analysis and
manipulation of biological systems on a massive scale. Information technology
has provided hardware and software that enable data processing at an
unprecedented speed and e⁄ciency. Bioinformatics, de¢ned as the storage,
manipulation and interpretation of biological data (MacLean & Miles 1999), has
emerged at the interface of life and information sciences. Bioinformatics has
evolved as a crucial methodology in genomics, proteomics, and structural

3
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biology. Immunoinformatics (also known as computational immunology) is a
subset of bioinformatics focusing on the ¢eld of immunology. Immuno-
informatics applications are increasingly becoming important to immunological
research. The major ¢ndings of structural, functional and regulatory aspects of
molecular immunology, coupled with the rapid accumulation of immunological
data have been complemented by the development of more sophisticated
computational solutions for immunology research.
Immunology is essentially a combinatorial science. The diversity in the human

immune system is enormous� the total number of combinatorial arrangements of
immunoglobulins (Ig) in an individual is greater than 109 (Jerne 1993). The T cell
receptor (TCR) diversity in humans has been estimated (Arstila et al 1999) at
between 107 and 1015 di¡erent clonotypes. There are approximately 1012 B cell
clonotypes in an individual human (Jerne 1993). More than 500 allelic variants of
class I human histocompatibility complex (MHC) molecules characterized to date
allow theoretically more than 1013 class I haplotypes. The theoretical number of
linear epitopes composed of nine amino acids, common targets in cellular
immunity, is of the order 1011. The number of conformational epitopes is far
higher. These crude numbers, re£ecting the complexity of the immune system in
a very simplistic manner, indicate its enormous diversity. This diversity underpins
our ability to discriminate between friend (self ) and foe (non-self) and mount
appropriate immune responses. Additional information includes multi-step
processing pathways, network-type interactions, complex signalling and
mechanisms for modulation of immune responses. Currently available data
represent only a tiny fraction of possible situations and the amount of
information will keep growing. With the steadily increasing amount of
immunological information our ability to decipher the speci¢c mechanisms of
immune responses or correct undesirable immune responses is increasingly
dependent on exploiting immunoinformatics strategies.
A major role of immunoinformatics is the management and analysis of

immunological data with the basic infrastructure comprising numerous
immunology database systems (Brusic et al 2000). Immunology databases
provide access to, data extraction from, and analysis of immunological data.
Standard bioinformatics methods, e.g. sequence analysis (Foster & Chanock
2000) and structural methods, e.g. structure modelling (immunoglobulin, Martin
et al 1989;MHC, Schueler-Furman et al 1998, Rognan et al 1999; or TCR,Garcia et
al 1998) are routinely applied to immunology studies. More advanced analyses of
the immune systemusing computationalmodels typically involve conversion of an
immunological problem to a computational one, solving the computational
problem, and translating the results into biologically meaningful interpretations.
Examples include data-driven modelling of peptide binding to MHC molecules
(Brusic et al 2001), theoretical modelling and complex analysis of the immune
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system (Perelson 1989, Kepler & Perelson 1993), and statistical support for
immunological experimentation (Merrill 1998). Virtually every aspect of
immunology research uses some form of immunoinformatics. The appropriate
use of informatics techniques has potential, as supported by examples of practical
applications, to vastly improve the e⁄ciency of immunology research. Complete
genomes ofmore than 900 viruses andmore than 80microbes have been sequenced
to date (Wheeler et al 2002). High-throughput approaches such as microarray
technology (Glynne & Watson 2001), proteomics (Marshall & Williams 2002)
and large-scale T cell epitope screening (Sch˛nbach et al 2002) provide for
genomic-scale screening and study of the immune system, and its role in
bene¢cial and pathological immune responses. Practical immunoinformatics
applications include screening of genomes for vaccine components (De Groot et
al 2002), disease-speci¢c gene expression (Saito 2001), studies of cell di¡erentiation
pathways, tolerance/immunity decision process and B cell transformation (Glynne
& Watson 2001), antibody recognition site identi¢cation (Yoshimori & Del
Carpio 2001), and integration of data into high level models of the immune
system (Yates et al 2001). In the following sections we describe the status and
challenges within the sub¢elds of immunoinformatics and discuss the prospects
for future developments.

Immunoinformatics

The immune system is intertwined with all other body systems. Bioinformatics
applications are relatively well developed for some immunological areas, such as
databases (Brusic et al 2000), genomic applications (Glynne&Watson 2001), study
of T cell epitopes (Brusic & Zeleznikow 1999), or modelling immune responses
(Bernaschi & Castiglione 2002). In other ¢elds of immunology bioinformatics
applications are still in their infancy, such as analysis of allergenicity of proteins
(Gendel 2002) or proteomics (Klade 2002). Because of the combinatorial nature
of immunological data, the importance of e⁄cient, accurate and comprehensive
use of immunoinformatic tools will continue to grow in importance for support
of immunology research.

Immunological databases

Both molecular biology and immunology produce large amounts of data that
have to be stored in general-purpose and specialist immunological databases.
General-purpose biological databases contain annotated entries of biological
sequences. These entries typically contain the sequence, a short description, the
source organism, a list of structural or functional features and literature
references. The major public databases include the nucleotide or protein

IMMUNOINFORMATICS 5



sequence databases GenBank/GenPept (www.ncbi.nlm.nih.gov/Genbank/index.html),
EMBL/TrEMBL (www.ebi.ac.uk/embl ), DDBJ/DAD (www.ddbj.nig.ac.jp), PIR
(www-nbrf.georgetown.edu), SWISS-PROT (www.expasy.ch/sprot), PDB (www.rcsb.org/
pdb), PROSITE (www.expasy.ch/prosite) and KEGG (www.genome.ad.jp/kegg/
kegg2.html). The nucleotide databases�Genbank, EMBL and DDBJ�focus on
collecting, annotating, and providing access to the entries of DNA sequences and
the related information.GenPept, TrEMBL andDADare protein databases derived
from the translations of coding sequences of the three main nucleotides databases.
SWISS-PROT and PIR are protein databases that are manually annotated. Their
content is of higher quality than GenPept, TrEMBL and DAD, but they contain
fewer entries. PDB is a database of 3D molecular structures. The PROSITE
database contains biologically signi¢cant patterns and motifs. The KEGG
databases comprise repositories on molecular interaction networks, chemical
compounds and reactions relevant to cellular processes, and genomics data.
General-purpose databases contain large numbers of immunologically relevant

entries and are invaluable resources, therefore, for immunology research. They do
not, however, provide su⁄cient detail on immunological function. Specialist
immunology databases provide more detailed information on immunologically
relevant molecules, systems and processes. They are typically annotated by
experts and contain immunology-speci¢c annotations. Kabat database
(kabatdatabase.com) contains entries of proteins of immunological interest: Ig,
T cell receptors (TCR), major histocompatibility complex (MHC) molecules and
other immunological proteins. The IMGT databases (imgt.cines.fr) contain high-
quality annotations of DNA and protein sequences of Ig, TCR and MHC. They
also contain IMGT-related genomic and structural data. The FIMM database
(sdmc.lit.org.sg/¢mm) focuses on protein antigens, MHC molecules and structures,
MHC-associated peptides and relevant disease associations. The SYFPEITHI
database (syfpeithi.bmi-heidelberg.com) contains entries of MHC ligands and
peptide motifs. The HIV molecular immunology database (hiv-web.lanl.gov/
immunology) is an annotated searchable repository of HIV1 T cell and B cell
epitopes. More detailed reviews of important immunological databases and
related issues can be found in (Brusic et al 2000, Petrovsky & Brusic 2002). The
important database issues relate to data standardisation, data quality, interpretation
of database entries, and the quality of computational tools for data extraction and
analysis (Petrovsky & Brusic 2002), which will be discussed later in this text.

Bioinformatics applications to the study of T cell epitopes

The identi¢cation of T cell epitopes relies heavily on bioinformatics for initial
screening followed by experimental validation. MHC molecules bind short
peptides produced mainly by intracellular (MHC class I) and extracellular (MHC
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class II) degradation of proteins and display them on the cell surface for
recognition by the T cells (using TCRs) of the immune system. Binding of
peptides to the MHC molecule is a prerequisite for immune recognition, but the
number of peptides that can bind to a speci¢c MHC molecule is limited. Peptides
that bind speci¢c MHC molecules are involved in initiation and regulation of
immune responses. Determining peptides that bind speci¢c MHC molecules is
important for understanding immunity and has applications to vaccine
discovery and design of immunotherapies. The combinatorial nature of this
problem makes computational approaches necessary for systematic mapping of
T cell epitopes.
Prediction methods are based on binding motifs (Rammensee et al 1999),

quantitative matrices (Parker et al 1994) or higher complexity prediction models
such as arti¢cial neural networks (ANN) (Brusic et al 2001), hidden Markov
models (HMM) (Brusic et al 2002) or molecular modelling (Schueler-Furman et
al 1998, Rognan et al 1999). The binding motif describes amino acids commonly
occurring at particular positions within peptides that bind to a speci¢c MHC
molecule. Quantitative matrices provide coe⁄cients for each amino acid and each
position within the peptide that can be used with appropriate formulae to calculate
scores that predict peptide binding. The arti¢cial intelligence methods of ANNs
and HMMs are based on higher order models that can capture non-linear
dependencies in the data sets. The data-driven models (binding motifs,
quantitative matrices, ANNs and HMMs) are derived from experimental data
sets and can be used for large-scale screening of potential vaccine components
(Sch˛nbach et al 2002, De Groot et al 2002). The important property of these
models is that each binding motif can be encoded as a quantitative matrix, and
each quantitative matrix can, in turn, be encoded as an ANN or a HMM. The
accuracy of data-driven methods depends on the complexity of the model relative
to the complexity of the peptide^MHC interaction, and on the quantity and
representativeness of the data available for building a particular model.
Molecular modelling methods utilise comparative modelling where known
crystal structures and protein-peptide interactions are used as templates for
building 3D models of molecular structures. If initial structural data are not
available, ab initio modelling based on atomic simulations and residue statistics
can be used. Molecular modelling is useful for detailed analysis of speci¢c 3D
structures and interactions, but being computationally intensive it is less useful
for large-scale screening. Molecular modelling can be used for building complex
data-driven methods, such as those for prediction of promiscuous MHC-binding
peptides (Brusic et al 2002), or quantitative structure^activity relationships
(QSAR) for vaccine discovery (Doytchinova & Flower 2002). The main issues
for prediction of MHC-binding peptides are the quality, quantity, and
representativeness of data available for model development, the complexity of

IMMUNOINFORMATICS 7



the selected predictive model relative to the natural complexity of the peptide^
MHC interaction and the training and testing of the predictive model.

Mathematical modelling of the immune system

Observations of immune responses and cellular interactions at the organism level
produce de¢nite measurements, but are di⁄cult to interpret at the molecular level.
An example is the idiotypic network theory (Jerne 1993) which can be translated
into speculative explanations at the molecular level. Mathematical modelling
implemented as computational programs can easily translate speculative
hypotheses into quantitative descriptions (Perelson 1989). The parameters of the
mathematicalmodels can easily be tuned to represent real behaviour of the immune
system. Thesemodels can then be used for determining the framework for study of
the kinetics of immune responses and practical applications such as prediction of
immune interventions. Mathematical models of the immune system can model
interactions of a large number of elements (106 or higher) thereby approaching
the complexity of the human immune system. Remarkably accurate simulations
using mathematical models have been developed for study of B cell (Kepler &
Perelson 1993) and T cell responses (Coussens & Nobis 2002). More speci¢c
examples (Yates et al 2001) include modelling of tumour necrosis factor
oscillations in allografts, di¡erentiation of T helper cells (Th1/2), modelling T
cell memory and cross-talk between TCRs.
Systemic level mathematical models provide a framework for understanding of

the immune system as whole. We foresee the convergence of mathematical models
at the systemic and molecular level in the future. Huge experimental data sets
produced by genomics, proteomics and molecular biology e¡orts will ultimately
be integrated with mathematical models of the immune system at the organism
level to produce models of whole organism.

Emerging applications of immunoinformatics

Genomics focuses on the study and characterization of the complete set of DNA
sequences (genome) from an organism. Similarly, proteomics focuses on study and
characterization of the full protein complement of the genome. Following
successful integration of bioinformatics in various ¢elds of molecular biology,
notably genomics and proteomics, immunoinformatics is the next frontier,
namely the integration of bioinformatics with immunology. A major function of
the immune system is to help the organismmaintain homeostasis while interacting
with self and foreign entities. Bene¢cial immune responses are targeted towards
maintaining homeostasis, while pathological immune responses result in disease
states, such as allergies or autoimmunity. The emerging ¢eld of immunomics
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encompasses the genomics and proteomics of the immune system (Glynne &
Watson 2001, Marshall & Williams 2002, Saito et al 2001, Coussens & Nobis
2002, Zagursky & Russell 2001). Immunomics focuses not only on deciphering
the sequences of immunoglobulins and various cellular receptors, but is also
instrumental for functional annotation of the immune system interactions with
the whole array of self and foreign entities, including complete genome-to-
genome interactions. Examples of ¢elds that are expected to show rapid growth
are immunoinformatics of disease (allergies, cancer, autoimmunity, infectious
diseases), host^pathogen interactions, animal immunology, improved predic-
tions of organ rejections, cytokine signalling and other regulatory network
analysis, among others. In respect of development of immunoinformatics tools,
we expect to see the integration of immunological databases with generic
interfaces and ultimately the integration of system level mathematical models
with molecular level models leading to applications in the development of novel
therapeutic regimens and disease management.

Unifying concepts

The main issues that need to be resolved are those of common data standards, data
quality and the accuracy of computational methods. These issues are critical for
establishing a common immunoinformatics platform and enabling e⁄cient and
adequate use of immunoinformatics resources.

Standardization

Biochemical and molecular biology terms have been standardized by
nomenclature committees, such as IUPAC/IUBMB (www.chem.qmw.ac.uk/iubmb/
nomenclature). The gene ontology consortium (www.geneontology.org) has produced
a dynamic controlled vocabulary of genes and proteins that can be applied to all
organisms in rapidly changing environments. The immunogenetics ontologies
and nomenclature for immunoglobulins have been de¢ned recently (Ruiz &
Lefranc 2002) and are accessible at the IMGT database. The HLA nomenclature
system has been well-de¢ned and accepted (www.anthonynolan.org.uk/HIG/nomen/
nomen___index.html ). Although the MHC nomenclature for other organisms has
been under development (e.g. swine and bovine leukocyte antigens) a unifying
system for the MHC nomenclature is lacking. Cytokine and cytokine related gene
nomenclature is also not well de¢ned�a comprehensive list of cytokine names
can be found at the COPE web site (www.copewithcytokines.de).
In addition, each immunological database has its own unique structure, data

models, and interfaces. Common interfaces, such as SRS (srs6.ebi.ac.uk) can
integrate multiple databases and search tools, but are general tools. A common
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interface formultiple immunological tools and databaseswould provide long-term
bene¢ts for immunology research. This common interfacewould provide seamless
access to data and easy integration of both general and specialist bioinformatics
tools.

Data issues

The interpretation of data extracted from the databases is highly dependent on the
skills and knowledge of the user. In many cases the complicating factors are lack of
standards, ad hoc nomenclature, variable quality annotations of database entries,
incomplete data and biases embedded in the data. The optimal database searching
tools for addressing a particular problem may require careful selection as well as
setting of search parameters. Although the situation is slowly improving, the lack
of bioinformatics education represents a serious obstacle to extracting the best
value from data and unfortunately this problem often goes unnoticed by users.
Data residing in databases are not of uniform quality, and even well-curated
databases contain numerous errors (for a case study of errors in databases, see
Srinivasan et al 2002).

Accuracy of computational methods

Hundreds of bioinformatics tools are available for analysing biological data. Many
of these, such as sequence comparison and sequence alignment tools (such as
standard bioinformatics tools BLAST or FASTA) calculate the distance between
the query sequence and the database entries. This distance is based on user-selected
parameters of the search and statistical assessment of the data and method.
Therefore, search results may di¡er and assessing the accuracy of these tools is
not informative. On the other hand, assessment of accuracy of predictive
methods (such as prediction of peptide binding to MHC molecules) is of critical
importance. In the past, most of the predictive models were generated and
provided to the research community without careful assessment of their
predictive performance. This resulted in some predictions of poor accuracy and a
low level of acceptance of predictive bioinformatics models by the majority of
researchers. More recently, assessment of predictive performance has become
standard and vastly improved and re¢ned predictive methods are appearing. A
comparative study of the predictive performance of various methods has
been recently published (Yu et al 2002). In addition, it was shown that predictive
methods, when combined with experimental research in a cyclical fashion (Fig. 1.)
can signi¢cantly improve the e⁄ciency of research (Brusic et al 2001).

10 BRUSIC & PETROVSKY



Conclusion

Immunoinformatics is an enabling technology that will increasingly dominate
immunology research, following the pattern set by genomics and proteomics.
The scope of immunoinformatics is huge� it comprises databases, molecular-
level and organism-level models, genomics and proteomics of the immune
system, as well as genome-to-genome studies. Immunomics is thus the natural
extension of genomics and proteomics and includes the study of organism-to-self
and organism-to-organism interactions.
The e⁄cient development and use of immunoinformatics will require the

coordinated e¡orts of immunologists and bioinformaticians to establish common
standards and protocols as well as standardized tools and interfaces. While
coordinating e¡orts may be a challenge in this fast developing ¢eld, it is essential
if we are to make sense out of the mountains of immunological data that will be
produced in coming decades.
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DISCUSSION

Petrovsky: I would like to start in a slightly argumentative mode, by questioning
the idea that Hans Georg Rammensee brought up in this introduction that peptide
binding data constitute hard evidence and immunoinformatic predictions
constitute semi-soft or soft evidence. I would argue that the quality of data is
dependent on the level of its validation rather than whether it is derived from
laboratory studies or computer models. Hence, couldn’t well validated computer
algorithms be considered hard and poorly validated experimental assays be soft?
Rammensee: It is a matter of quality control.
Petrovsky: Exactly. The quality of the data is a re£ection of their statistical

validation rather than their source. As an example, consider how MHC
restriction was originally described: when did this evidence go from being soft to
being hard? We initially started with Zinkernagel and Doherty’s original
description of MHC restriction of viruses, but the nature of the molecules
involved and the manner in which they interacted was pure conjecture. Over
time experimental details led to the proposal that a complex of MHC, antigen
and a TCR underpinned this phenomenon. At that stage, however, given that
no-one had actually seen an MHC molecule or a TCR, was this hard or soft
evidence of the existence of these molecules. Later there was argument about
how MHC was binding antigens with some people believing the peptide was
bound in the cleft whereas others thought it was bound outside the cleft. More
recently crystal structures have begun to appear and for the ¢rst time we can
actually visualize what, up to that point, people had been hypothesizing about.
Hence substance is a question of validation. Sometimes we fool ourselves into
thinking that because something was measured in a lab it must be hard, whereas
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if it is derived from a computer model it must be soft. I do not think this reasoning
is correct.
Gulukota: I would add that when you have an interface between computational

biology and bench biology, often the computational side believes that 10
computations are not as good as a single experiment, but this could just be
because they don’t know that much about experiments. On the other side,
however many experiments the experimentalists do, they don’t quite believe it
until a computer prediction says something similar. There needs to be a cultural
shift. Hard and soft is very much in the eye of the beholder. When we talk about
biology, it is pretty much all soft!
Rammensee: I was restricting the use of ‘hard’ to just DNA, RNA and peptides

sequences. The hard facts aboutMHC restriction are the sequence of theMHC, the
sequence of the peptide and the sequence of the TCR.
DeLisi: In e¡ect, you are distinguishing data from concepts.
Gulukota:Even in data there are gradations of softness. If you consider data such

as MHC peptide binding, there are three or four di¡erent ways of measuring this.
I’m surewe all have our personal preferences aboutwhether IC50 is better than half-
life, for example. Until we have a consensus, we can’t even call experimental data
hard.
Brusic: I have experience with assessing which method is best for measuring

peptide binding. I started from the computational end and interviewed people
who measure peptide binding and asked them which method they considered the
best. I got a uni¢ed answer, ‘mine’! Then I took a fuzzy approach to interpreting
measurement data by converting all the values to approximate measures of values.
Rammensee: I don’t think the peptide binding is the most important component

of the quality of a certain peptide. The most important part is whether this peptide
is recognized under physiological conditions. If you have a virus-infected cell and a
T cell, does the T cell that is speci¢c for a particular peptide recognize the virus-
infected cell? This is the acid test. We again come to the point about what the right
test is and what the best criteria are for calling something solid or soft.
Stevanovic¤ : It is still di⁄cult to judge the properties of peptides. You say that

sequences are hard data, and I agree with this. But the properties of peptides in
terms of binding to MHC molecules or recognition by TCRs vary with the
experimental setting. In particular, in cancer immunology, we know very well
that there are so-called T cell epitopes that do not function in many labs. Even T
cell recognition can’t be called ‘hard’ data.
Rammensee: We are talking about immunoinformatics, but sequences in

databases are hard data.
Littlejohn: I think your concept of hard data is a useful one. Hard data should be

seen as discrete information, observations that can be digitized, and that are
qualitative and not continuously variable. ‘Hard data’ are the foundation stones
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in molecular observations. Then, on top of hard data, we can superimpose ‘noise’
and biological variation, and the contextually dependent observations thatwe have
discussed here. If this is what you mean by ‘hard immunoinformatics data’ then I
think this is an extremely useful concept that constitutes a good reference point
against which we can compute (i.e. carry out rigorous immunoinformatics).
DeLisi: Of course, there is noise in the hard data also. Sequencing has an error

rate of about one base in a thousand.
Rammensee: This brings us back to the issue of quality control.
Marsh: I like this idea of hard data. The HLA database that we run is a ‘hard

database’: it is a database of sequences. The di⁄culty we have is knowing how to
link our hard database to other databases. For example, there are many databases
doing peptide prediction forMHCbinding peptides.Which one shouldwe link up
with?We don’t want to link our hard database with a semi-soft database that gives
poor predictions.
DeLisi:There needs to be more benchmarking.We have done this with peptide

MHC. Zhiping Weng and her colleagues have an algorithm that is about 90%
reliable in terms of both speci¢city and sensitivity. This has been benchmarked in
terms of all the standard algorithms on the web. Parker comes close to that. If we
have more benchmarking like this, then this will go some way to alleviating this
problem.
Littlejohn: I think the problem is elsewhere: it lies with evidence. Many of the

databases do not ascribe evidence as to how the information was derived. Was it
experimental? What experiment? Was it computational? What method was used?
Who did it, when, and in what context? This is the big problem. The Gene
Ontology consortium is battling with this issue of ‘evidence’, and this
consortium has only just begun to think about how to ascribe evidence codes to
the methods used to assign function to genes. I’d argue that this is one of the great
problems in bioinformatics in general, and it needs to be tracked in the database as
well as the derived information.
Wingender: That was exactly the point I was going to make. When we

start di¡erentiating between hard, soft and semi-soft data, we have to assign
where the ‘facts’ come from. What is the source of the experimental or
computational evidence? Whenever we model these data and provide them
through a database, we simply have to provide the evidence, along with these
data and facts. We then need to try to make a quality assignment to the data on
the basis of this information. I would like to add a caution here against databases
that have been made using data collected in an automated manner. There are some
terrible mistakes in these. The data must be extracted manually from the literature,
but this is also an error-prone process. The original data in the paper can even
contain errors. At some point we have to rely on the quality control step of peer-
review, though.
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Rammensee: With regard to the problem of interconnectivity of databases, I
would say that if I had a database which is quality controlled and contains good
data, I don’t want to have it connected with a bad database� for instance, one
made automatically without adequate curation. I would like to protect my
database from being corrupted by poor data. Thus we need to discuss the two
important issues of interconnectivity and quality control together.
Margalit:We all agree about the need for quality control and good documenta-

tion.Who can do this?Most of the databases are assembled by research groups and
are not commercial. I know from other ¢elds that I am involved in, such as
transcription factor binding and protein^protein interactions, that these
databases may start in the academy, but at some point they decide they can’t
handle the scale of the database and they make a consortium or go commercial.
Perhaps this meeting represents an opportunity to think how we can best
develop a single, quality controlled immunoinformatic database that isn’t spoiled
by bad data.
Borras-Cuesta: I have a point about the quality control of databases. One issue is

whether a peptide binds or does not bind to MHC: one should control this. The
other thing, related to the predictive algorithms, is how these peptideswere de¢ned
and collected. You could have a database that tells you the truth with respect to
binding, butwhich is skewedwith respect to predicting the set of potential binders.
This is very important. People who like us work in the induction of immune
responses, and have to try to characterize a peptide to induce a response, go
through all the steps predicting this with one algorithm and then another. By the
end we do not trust any in particular. We use several algorithms, and select the
peptides predicted with higher scores from all algorithms. These peptides are
synthesized and tested in binding assays, if these are available, or used in
immunization experiments. But if algorithms are going to be described which are
potent, one should discuss how to build a good database. That is, a database which
has no bias for a particular set of peptides because it has been built up using, ideally,
several methods (i.e. peptides eluted from MHC molecules, identi¢ed with phage
display libraries, using peptide libraries, etc.). Peptides from this database could
then be used to develop an algorithm for the prediction of binding to MHC
molecules.
Rammensee: You raise the important point that predictions can be tested.
Borras-Cuesta: Yes, we predict and then we test in a binding assay. This is not

enough, of course, because they could be cryptic peptides. But if we predict and
then it binds, then we use it.
DeLisi: The assay has to be quality controlled also. For instance, take the assay

used by Parker. He validates it, but when you look at it you ¢nd this validity holds
only under a certain range of conditions on the rate constants. Somethingmay look
valid, you do an analysis of it, and you ¢nd there is only some domain of validity.
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The ¢rst thing that needs to be done, therefore, is to benchmark the assays. Then
you benchmark the algorithms on benchmarked assays.
DeGroot: I would like to second the idea of having a collective database. I would

suggest that we categorize the peptides in the database by peptides that bindMHC
and by peptides that are recognized by T cells. I agree that the type of assay is very
important in this respect. We all train or benchmark our algorithms on di¡erent
sets of peptides.We are now¢nding that the set of epitopes versus the set of binders
might be slightly di¡erent subsets of HLA binding peptides. I have a second
comment: I also wanted to mention that on Vladimir Brusic’s time-line, the date
that the structure of HLA was published by Don Wiley should be highlighted.
When I ¢rst met Hannah Margalit and Charles DeLisi in Jay Berzovsky’s
laboratory, we were talking about how the peptide bound to the groove, and we
were discussing about the peptide not being aligned with the sides of the groove.
Once the crystal structure was published, this showed everyone the fact that the
peptide was aligned parallel to the side of the HLA, and was also tightly
constrained within the groove. This was a turning point for the ¢eld.
DeLisi:There was no doubt that the peptide was linear; the question was how it

was oriented.
Rammensee: In the 1987 crystal structure (Bjorkman et al 1987), it was not clear

how the peptide was organized.
Borras-Cuesta:This raises the point of how the peptide is read by theMHC II. In

principle, it is possible that the peptide could be read from C-terminus to N-
terminus in some circumstances. This is relevant to predictions. Someone should
do the following experiment. Synthesize for instance 20 peptides known to be
recognised by a given MHC II molecule. These peptides should also be
synthesized in the C-terminal to N-terminal sense (that is, with the same amino
acid sequence, but read from the C-terminus to the N-terminus, and not in the
conventional way N-terminus to C-terminus). If some peptides from this new set
were immunogenic in the context of the same MHC II molecule, then predictions
should also take into account peptide sequences read from C-terminus to N-
terminus.
DeGroot: One thing we should add to the databases is information about non-

binding peptides. We are all constrained by ¢nances and we don’t make the
peptides that we predict wouldn’t bind, because it is expensive to make them.
However, many of us have done assays and found that some of the peptides that
we have predicted don’t bind. Someof us alsomake ‘negative control’ peptides and
test these. It will be important to include the negative sets in the databases in order
to improve the accuracy of our epitope prediction tools.
Rammensee: The quality of data will be worse if you include non-binding

peptides, because the peptide-binding assay might miss some non-binders. What
we call ‘non-binding’ peptides might bind if the assay conditions are altered.
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Kellam:What we have been discussing are quality issues. Anyone who has been
following themicroarray ¢eld for the last few years will have seen how people have
gone to extreme in describing how to ‘quality control’ experiments, to the point
where you try to document absolutely everything. There is a huge community
e¡ort to describe standards and common protocols. In the end, if people start
documenting what they are doing experimentally you have a chance of getting
to the context of the data in the databases. For example, how many people even
know the sex of the cell lines that they are working with? This can become
important.
Littlejohn: I would like to comment on that from a standards and sociology

point of view. The micoarray MIAME standard is supposed to be a minimum
standard, yet it is often referred to by the user-community as a ‘maximum
irritation’ standard, as it requires the biologists to capture more information than
they ordinarily might. With regard to the database integration issue, eight years
ago I attended the ‘Meeting for the Interconnection of Molecular Biology
Databases’ (see http://megasun.bch.umontreal.ca/ogmp/abstracts/mimdb.html on the
‘Organelle Genome Megasequencing Program’) where many of these issues were
discussed. There are a couple of developments in molecular biology databases that
would be useful for us to consider by the immunoinformatics community. First,
back then Peter Karp proposed that bioinformatics research would bene¢t from
having a uni¢ed system of data interchange standards. However, as this idea was
discussed, it became clear that each database curator has their own set of objectives,
and so was unlikely to redesign their systems to ¢t a broad-community-developed
standard that did not meet their narrower goals. The concept of bioinformatics
databank warehouses has been around for a long time and has not made much
headway into the community, primarily due to the fact that most databanks have
evolved in isolation and have their own schema and speci¢c target audiences,
making their absorption in to a warehouse problematic. In spite of this, there
has been a vast amount of e¡ort put into systems that allow databank
interconnectivity, such as the SRS system (Etzold et al 1996). Databank
integration does not come at a quality cost. For example, SWISS-PROT, EMBL
and GenBank all have databank cross references and these simply allow cross-
databank navigation. Databank integration and ‘ontological normalization’
(deriving a common set of key-terms for accessing information across databanks)
is a vigorous area of research, with many technologies variously called ‘wrappers’
or ‘agents’ serving as ‘middleware’ (software that joins other pieces of software or
data) in this area. Interconnectivity is a critical issue, and it isn’t in and of itself a
problem. The ¢nal comment I have is that the debate should continue to focus on
biology and not technology, although as Vladimir Brusic points out, at the end of
the day this is a technology, a means to an end. Immunoinformatics is all about
technologies that underpin the study of immunology, immunology is the
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