

Making Windows audio devices work great with Skype

Please Note!

This document is provided "as-is". Information and views expressed in this document, including URL and other Internet Web site references, may change without notice. You bear the risk of using it.

This document does not provide you with any legal rights to any intellectual property in any Microsoft product. You may copy and use this document for your internal reference purposes.

Microsoft, Lync, and Skype are trademarks of the Microsoft group of companies. All other trademarks are property of their respective owners.

Why invest in making a device work great with Skype?

- Skype fast facts:
 - Skype users made 2 billion minutes of calls in one day
 - Skype continues to be an essential app, ranked in the top 10 most downloaded apps of all time on Windows Phone, iOS and Android At certain points in the day, there are more people using Skype from their phone or tablet than from a PC.
- Also improves non-Skype scenarios
 - Speech recognition
 - Image / video / audio capture
- Making video capture good is often just firmware tuning
- Making audio capture / render good needs minor improvements in design
- Making Skype great is typically < \$2 extra COGS

Overview

Part 1: Audio test setup

- A. Introduction: DUT classification
- B. Environments
- C. DUT test positions

Part 2: Audio specifications

- A. Offloading vs. Non-offloading specification
- B. Test methods

Part 3: Design guidance

- A. Audio capture and renderer
- B. Top failures
- C. Advanced topics

References

Audio terminology

Term	Definition
dB	Decibel: A logarithmic unit that indicates the ratio of a physical quantity (usually power or intensity) relative to a specified or implied reference level (W_0) $L = 10 \log_{10} \frac{W}{W_0}$ • 2X change in power is 3 dB • 4X change in power is 6 dB
dBA	Decibel A-weighted: The A-weighted sound level is the sound pressure level in dB SPL, weighted by use of metering characteristics and A-weighting specified in ANSI S1.4.
dBFS	Decibel full scale: The signal level of a digital signal relative to its overload or maximum level is given
SPL	 Sound pressure level, a measure of loudness Typical speech is 65 dBA SPL @ 0.5m Quiet office is ~35 dBA SPL

Test setup: DUT classification

DUT classification based on acoustic UI

• HEADSET

- Monaural headset
- Binaural headset
- HANDSET

SPEAKERPHONE

- Handheld speakerphone usage distance up to 0.3 m
- Personal speakerphone* usage distance up to 0.70 m
- Group speakerphone usage distance up to 1.5 m
- Long range speakerphone usage distance up to 5.0 m

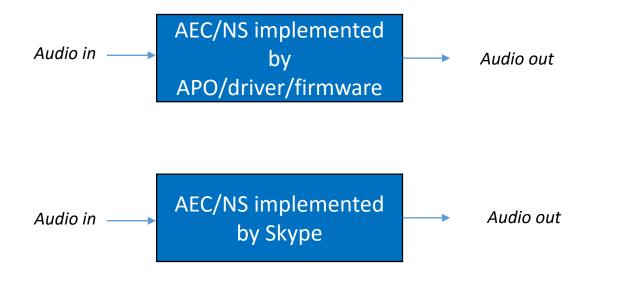
DUT classification based on audio processing

Requirement to be tested against audio offloading specification:

DUT has acoustic echo canceler (AEC) and noise suppression (NS).

Requirement to be tested against nonoffloading specification

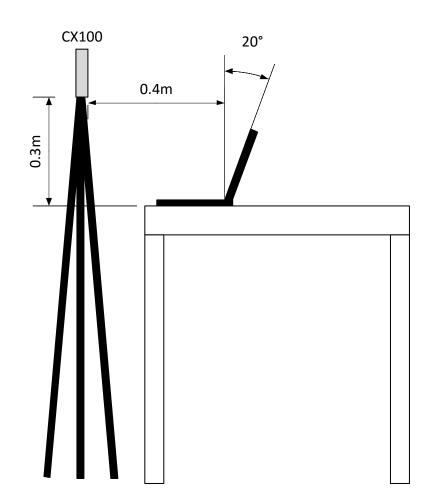
DUT provides raw capture stream that does not include any nonlinear processing.


Device must not have any EFX conflicting with Skype processing.

Some complex solutions enable both modes. In such cases, it is up to vendor chooses which requirements to test against.

However, if neither condition is fulfilled, then the device is not within the logo program scope.

Different processing modes


Current scenario for listed devices on Windows 8.1 Skype, only driver processing. Future classic clients also will exhibit this behavior.

Current scenario for non-listed devices on Windows 8.1 Skype, only Skype processing. This is the default behavior for non-listed devices. Future classic clients will also exhibit this behavior.

Test setup: anechoic and reverberant room

HCK audio capture / render test setup

- Equipment
 - Polycom CX100
 - Tripod
 - Ruler
- Test environment
 - Noise: ≤ 35 dBA SPL

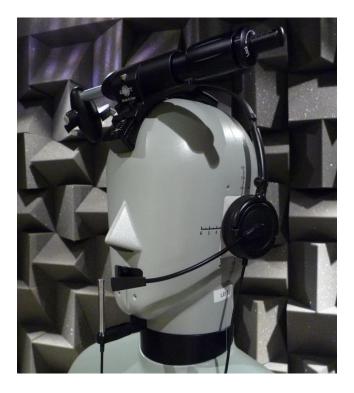
Logo program and HCK audio requirements comparison

Logo test specification	Some coverage in HCK	Logo test specification	Some coverage in HCK
4.1.1 Send - total quality loss	No	4.2.1 Receive - output level	Yes
4.1.2 Send - end to end latency	No	4.2.2 Receive - total quality loss	No
4.1.3 Send - signal level with loud speech	No	4.2.3 Receive - end to end latency	No
4.1.4 Send - signal level with normal speech	Yes	4.2.4 Receive - idle channel noise	No
4.1.5 Send - signal level with quiet speech	No	4.2.5 Receive - single frequency interference	No
4.1.6 Send - idle channel SNR	No	4.2.6 Receive - distortion and noise	No
4.1.7 Send - active channel SNR	Yes	4.2.7 Receive - frequency response	No
4.1.8 Send - single frequency interference	No	4.2.8 Receive - maximum output level	No
4.1.9 Send - distortion and noise	No	4.3. Echo path tests	No
4.1.10 Send - frequency response	No	(4.4 Acoustic echo canceler performance tests)	No
4.1.11 Send - directivity	No	(4.4 3QUEST tests)	No

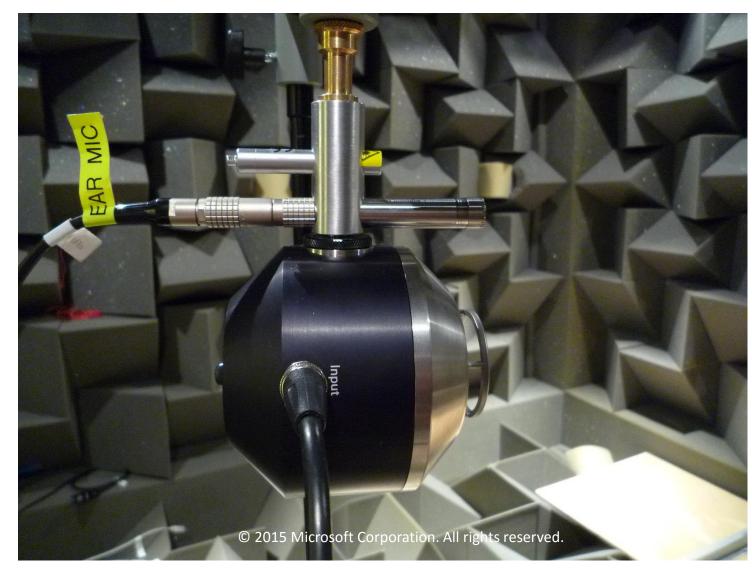
There are very few tests directly mapping between HCK and Logo program. The HCK cover more device level items and it is entry criteria for Logo Program audio tests.

Windows HCK audio capture / render requirements

Test	Criteria	Impact if failure
Speech-to-noise ratio	≥ 30 dB	Speech is less intelligible
Send level with 65 dBA speech source at 0.5m	[-50,-4] dBFS	Near end will be hard to hear
Coupling clipping (10 ms frames)	≤ 2	Can cause echo and distortion
Receive level at 0.5m with -24 dBFS speech	≥ 65 dBA	Far end will be hard to hear
Max echo leak using Windows AEC	≤ 4%	Echo will be very noticeable
Unreported timestamp latency	[0,40] ms	Can cause echo and distortion
Microphone and loopback timestamp error	<0.5 ms	Can cause echo and distortion
Microphone and loopback timestamp glitches	<3 per minute	Can cause echo and distortion
Microphone and loopback timestamp drift	<0.08%	Can cause echo and distortion
Mouth to ear latency	≤ 100 ms	Makes conversations more difficult

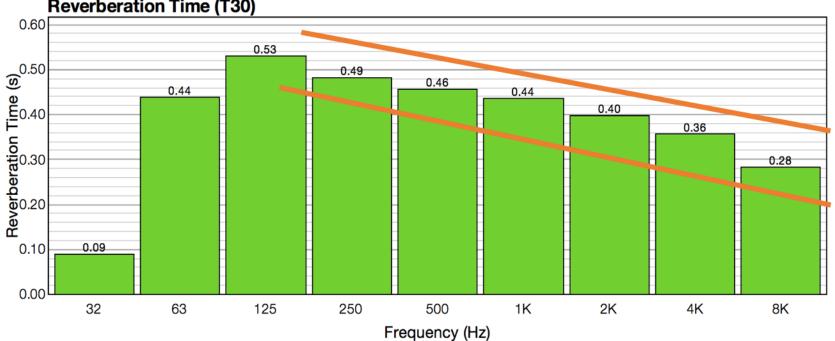

Anechoic room

The anechoic chamber or semi-anechoic chamber used should fulfill the acoustical requirements for high-quality wideband VoIP and telecom product testing. Please refer to ITU-T P.341 for the recommended parameters for the test room.


© 2015 Microsoft Corporation. All rights reserved.

Headsets and handsets are tested with HATS in an anechoic room

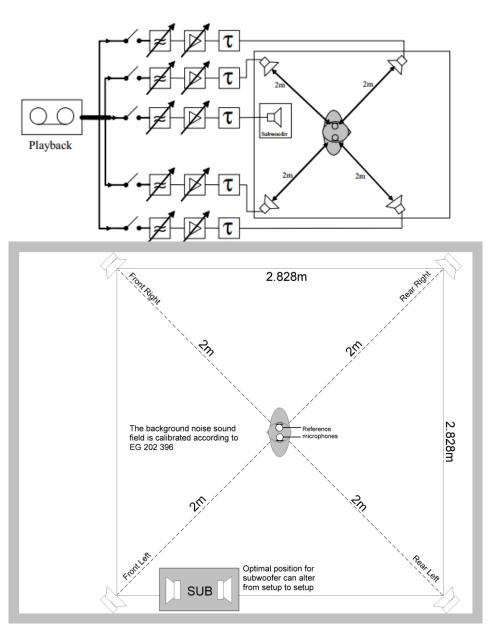
All speakerphones are tested with an artificial mouth and free a field microphone in the anechoic room

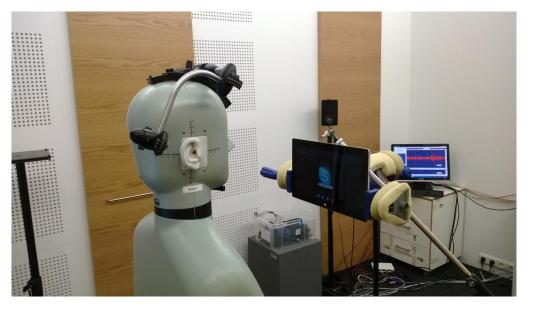


ETSI room

Room size – the room size should be in range between 2.7 m x 3.7 m and 3.5 m x 4.4 m. Room height 2.2 m to 3.25 m.

Treatment of the room – the reverberation time of the room should be less than 0.7 sec, but higher than 0.4 sec in frequency range between 100 Hz and 8 kHz. The reverb time should be declining toward high frequencies, but should not have dips or peaks in some octave bands that deviate more than 0.2 sec compared to the adjacent octave bands on either side. Such a declining trend of reverb time versus frequency represents a common meeting room or living room acoustics.

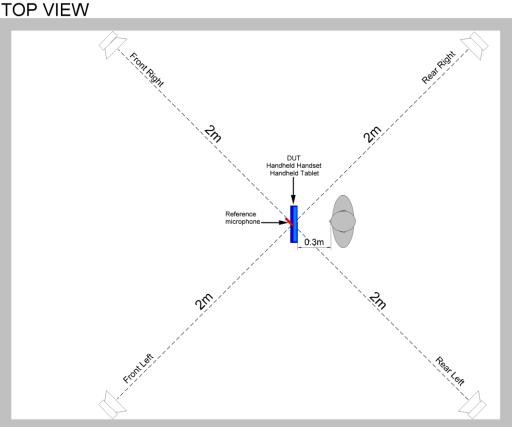

Noise floor – to avoid room noise influencing the test results the average noise floor in room should be 28 dBSPL(A) or below.

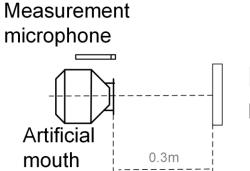


Reverberation Time (T30)

[©] ZUID IVIICIOSUIT CUI PUI ation. All rights reserved.

ETSI background noise test room

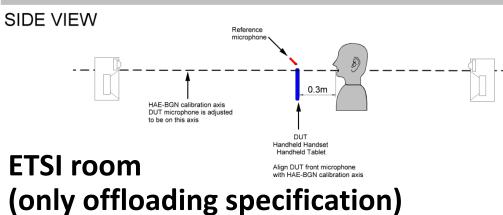

An originally binaural noise recording is played back with four loudspeakers (and possibly a subwoofer). Time delay is added to make the noise sources not phase aligned.

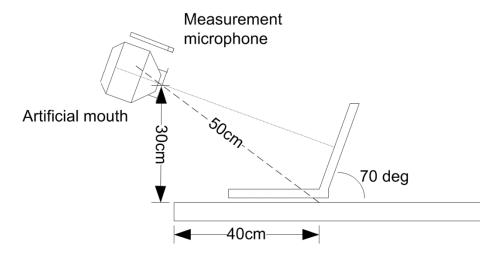

All speakers are equalized at HATS position for headset/handset or at DUT position for speakerphones / tablets / laptops, etc.

ACQUA system can start HAE-BGN background noise playback automatically during a test sequence.

Test setup: positioning speakerphones for testing

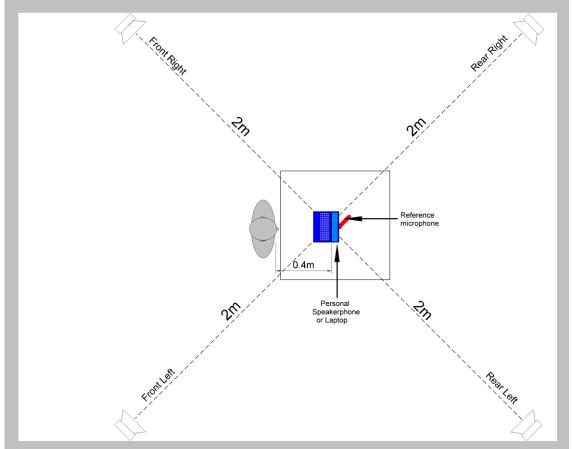
Handheld speakerphone

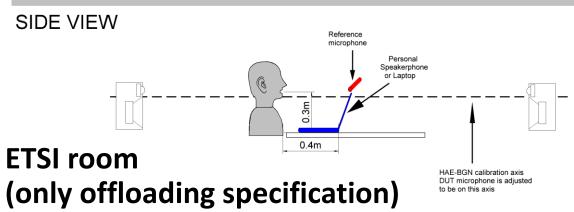



(both specifications)

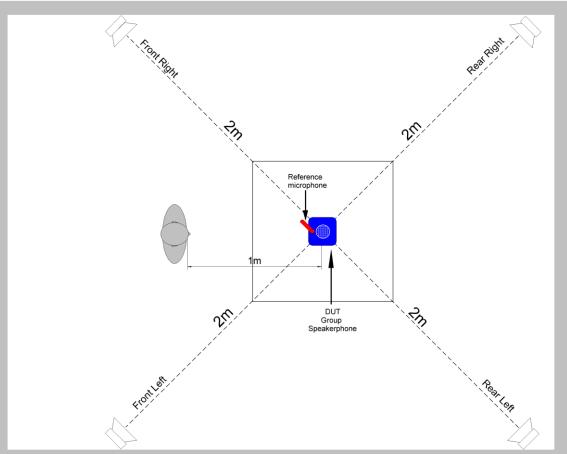
Anechoic room

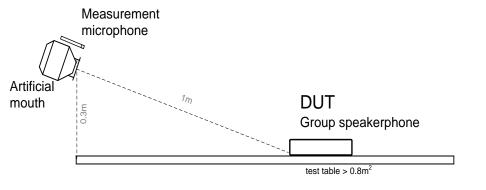
DUT Handheld speakerphone

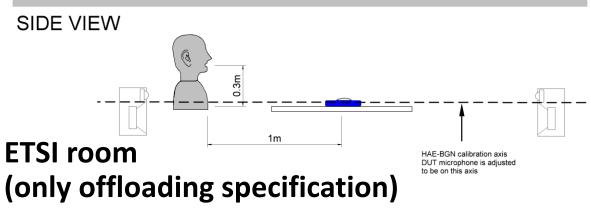


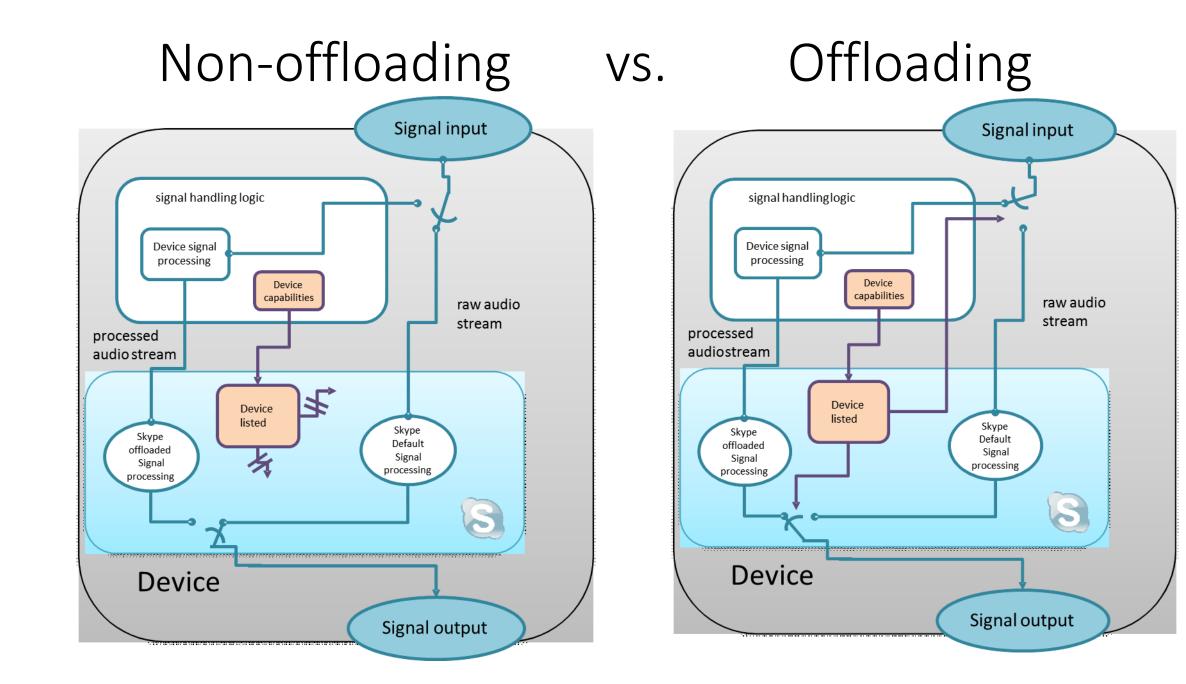

Personal speakerphone

Anechoic room (both specifications)






Group speakerphone



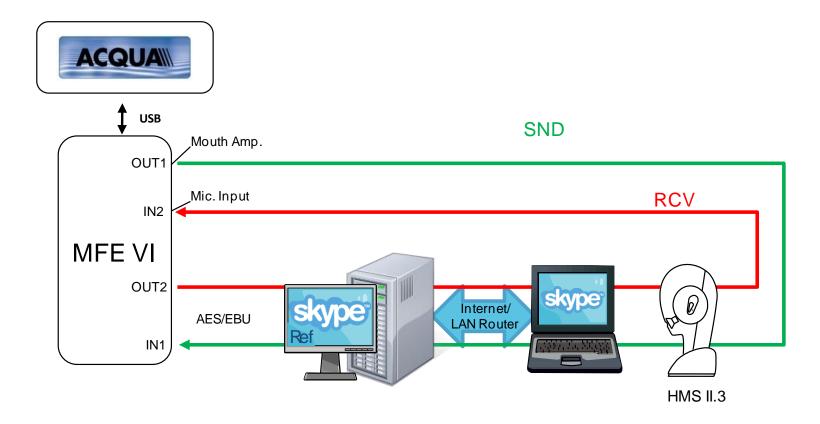
Anechoic room (both specifications)

Test specifications: offloading vs. non-offloading

Purpose: to test hardware performance

Offloading specification

 Skype pre-processors components are not duplicating the custom ones


Non-offloading specification

 Skype pre-processor is controlled to have minimal impact for the measurements

Example: if DUT has only AEC and NS, then Skype takes care of AGC.

Example: AEC is disabled when measuring TCLw, but enabled when measuring EQUEST.

Testing over Skype call

Skype software settings for test

	Enable DUT Client mode	<forcealgorithmcontrolstring></forcealgorithmcontrolstring> <disableabtesting> true</disableabtesting>
V.4		<disablens>true</disablens>
Editor V		<disablecng>true</disablecng>
		<disabledigitalfarendagc>true</disabledigitalfarendagc>
		<disabledigitalnearendagc>true</disabledigitalnearendagc>
n		
DUT	Disable AGC	<disableagc>true</disableagc>
Ō	Disable AEC	<disableaec>true</disableaec>

ditor V.4	Enable Reference Client mode	<forcealgorithmcontrolstring></forcealgorithmcontrolstring>		
		<disablewholevqe>true</disablewholevqe>		
		<disableabtesting> true</disableabtesting>		
	Capture Right Ch. (MFE VI)	<forceinputchannel>1</forceinputchannel>		
ш				
LL.				

E

Offloading spec: Skype NS and AEC are OFF, AGC on/off depends on specific DUT.

Non-offloading spec:

AGC in Skype audio test specification context means the recording device input level slider.

AGC is turned on or turned off based on testcase nature.

Skype AEC is generally disabled throughout testing. The performance with Skype AEC enabled should still be verified unless the device is a full audio offloading device.

Skype DigitalAGC, noise suppression, comfort noise, and playback volume/compressor are always off during the certification testing on the DUT side.

Analog AGC – on/off logic in DEFAULT spec

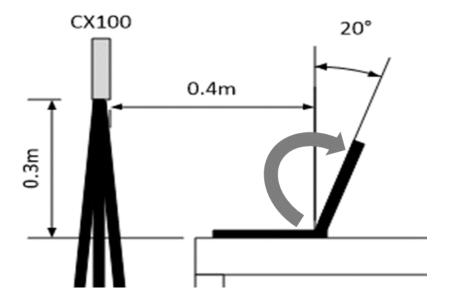
4.1 Send path tests 4.1.1 Send path - total quality loss (Skype end to end test) 4.1.2 Send path - latency 4.1.3 Send path - signal level with loud speech 4.1.4 Send path - signal level with normal speech 4.1.5 Send path - signal level with quiet speech 4.1.6 Send path - idle channel SNR 4.1.7 Send path - active channel SpNR 4.1.8 Send path - single frequency interference 4.1.9 Send path - distortion and noise 4.1.10 Send path - frequency response 4.1.11 Send path - directivity

- 4.2 Receive path
- 4.2.1 Receive path output level
- 4.2.2 Receive path total quality loss (Skype end to end test)
- 4.2.3 Receive path latency
- 4.2.4 Receive path idle channel noise
- 4.2.5 Receive path single frequency interference
- 4.2.6 Receive path distortion and noise
- 4.2.7 Receive path frequency response
- 4.2.8 Receive path maximum output level

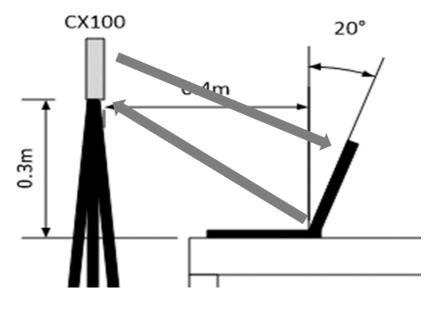
4.3 Echo path

- 4.3.1 Echo path terminal coupling loss weighted (TCLw)
- 4.3.2 Echo path EQUEST MOS at nominal playback volume
- 4.3.3 Echo path echo control characteristics
- 4.3.4 Echo path EQUEST MOS at max playback volume
- 4.3.5 Sidetone Masking Rating
- 4.3.6 Sidetone Latency

Skype adjusting AGC allowed – preceded with preparation testcase Skype adjusting AGC allowed – preceded with preparation testcase This helps to make sure AGC has enough steps to lower the input sensitivity so it would not clip with loud speech or for webcams for expected speaker echo signal


Skype adjusting AGC disabled – same AGC setting used as for normal speech. This helps make sure these results are all in reference to signal levels with normal speech just as all the standards generally have.

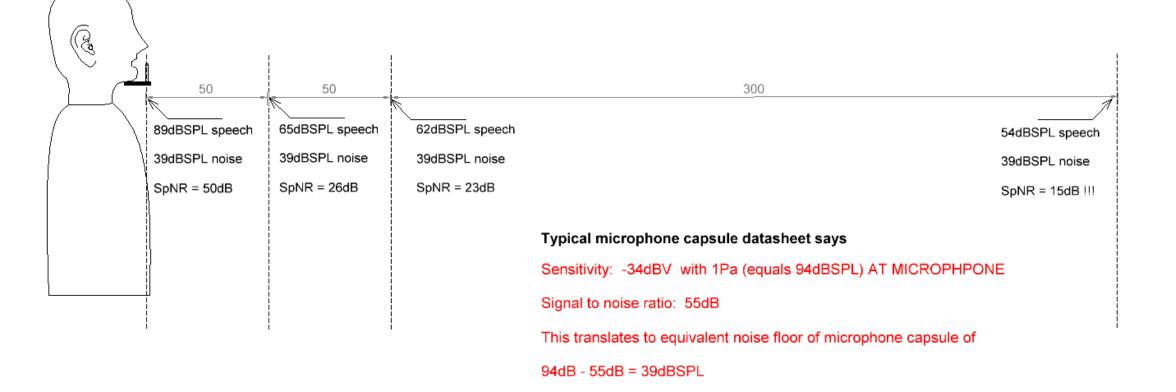
Skype adjusting AGC allowed during preparation test case, this makes sure the AGC setting is set to accommodate the loud acoustic echo signal


For the actual test cases the AGC adjustment is disabled and the fix setting used is determined during the preparation sequence

Test specifications: Test methods

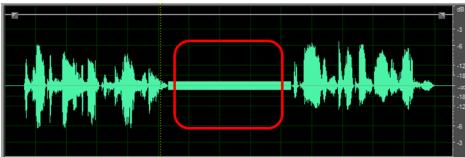
Latency measurement in NON-OFFLOAD vs. OFFLOAD using Windows HCK setup

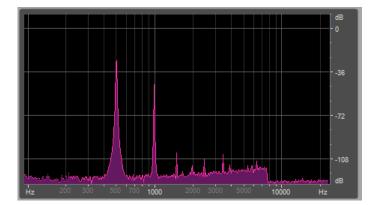
RAW – as there is no AEC, the loopback latency can be measured from DUT speaker back to the microphone

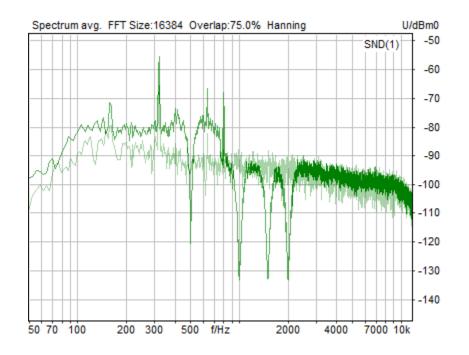


Offload – as there is an AEC, the loopback method would not work, so a path from


- DUT speaker to CX100 microphone is measured
- CX100 speaker to DUT microphone is measured


SNR sample with same mic, but different category


Speech to noise ratio with "common" microphone capsule



SNR and SpNR

Here is a sample where SNR = 46 dB SpNR = 41 dB

From the resultant diagrams, it is evident that the noise between 100 Hz and 800 Hz is suppressed more during silence than it is during active channel

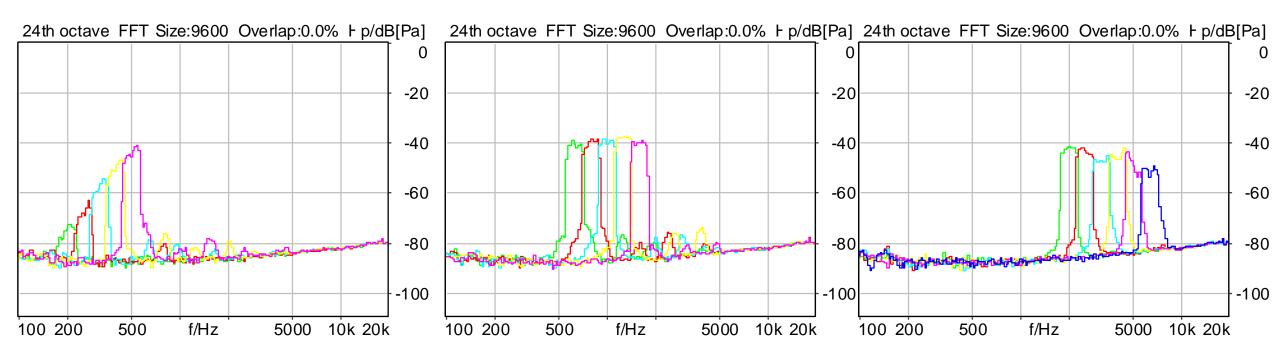
The added sines are short enough so NS won't yet learn it as a noise

Distortion testing (1)

Ideally, we would like to run a sine sweep test and get a plot of not only the frequency response and overall THD, but ability to see individual 2nd, 3rd harmonic and then 6th and higher harmonics.

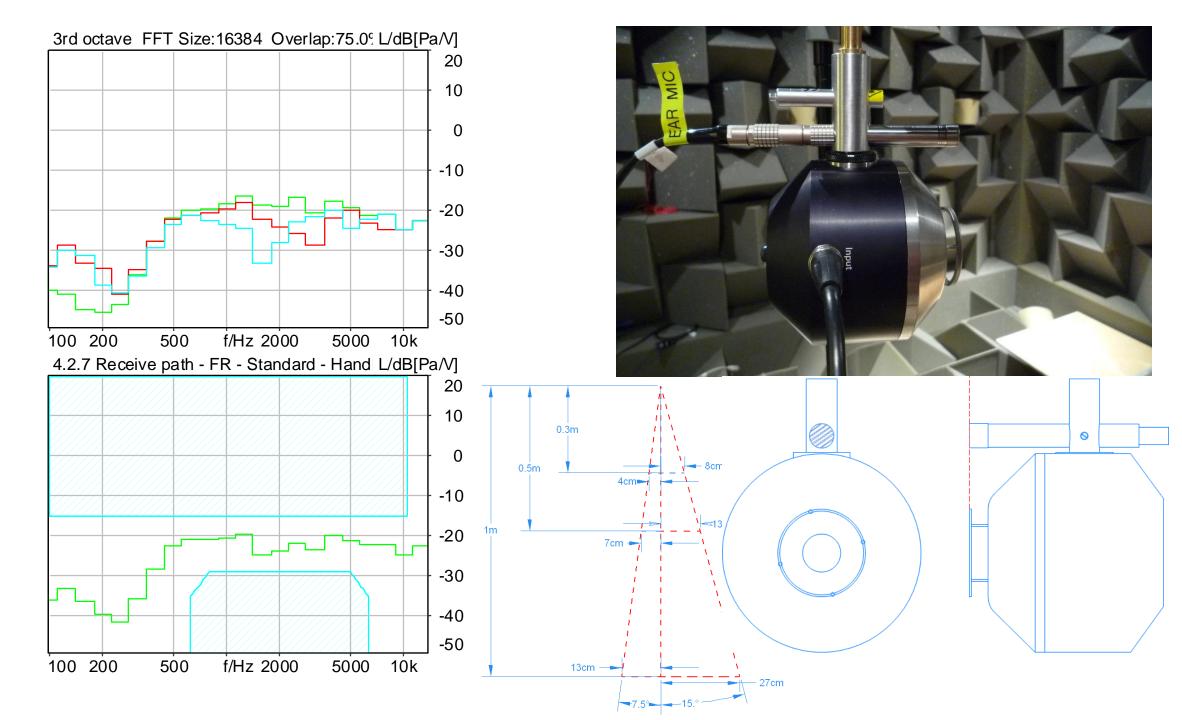
Those 6th and higher only occur due to case resonances, rubb and buzz, and rattle. They never occur in a speaker unit itself unless very severely overdriven.

Unfortunately, today's ACQUA system does not allow this.

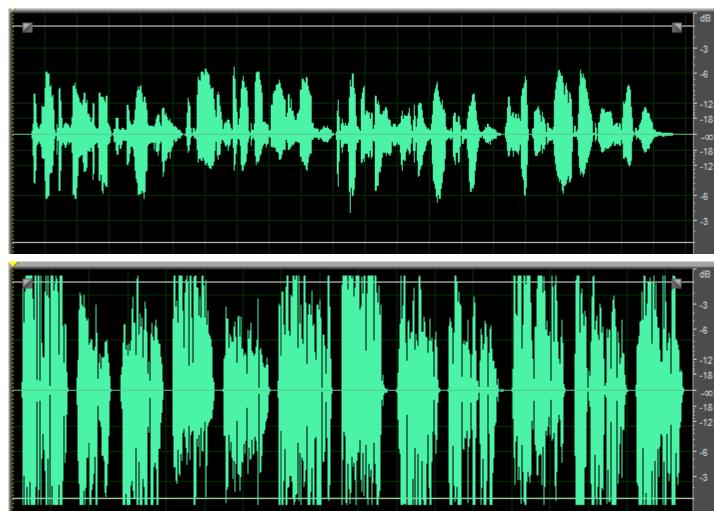

		SDNR (pulsed noise signal-to-distortion-and-noise ratio)			
		Standard (dB)		Premium (dB)	
	Frequency	Level: -	Level: -	Level: -	Level: -
	band	22dBFS	16dBFS	22dBFS	16dBFS
	178-224	NA	NA	NA	NA
	224-282	NA	NA	NA	NA
	282-355	NA	NA	≥24	≥24
	355-447	NA	NA	≥24	≥24
	447-562	NA	NA	≥24	≥24
	562-708	≥20	≥20	≥26	≥26
	708-891	≥22	≥22	≥26	≥26
Laptop	891-1122	≥24	≥24	≥28	≥26
Lap	1122-1413	≥24	≥24	≥28	≥26
	1413-1778	≥26	≥24	≥28	≥26
	1778-2239	≥26	≥24	≥28	≥26
	2239-2818	≥26	≥24	≥28	≥26
	2818-3548	≥26	≥24	≥28	≥26
	3548-4467	≥26	≥24	≥26	≥26
	4467-5623	≥24	≥24	≥26	≥26
	5623-7079	≥24	≥24	≥26	≥26

The second best choice is the SDNR test based on IEEE-269, IEEE-1329. There a 3rd octave wide pulsed noise is used. This way each frequency run covers one octave wide band, and with about 13 runs the spectrum we most care about gets covered. With sine signals getting similar coverage with single tones is just not possible and the reality is that speakers in laptops and tablets often have issues in quite narrow frequency bands due to complex case design, output ports, etc.

These narrow band issues are often the cause of AEC leaks.


Handheld speakerphone

Distortion testing (2)



Example of the reported RCV distortion report.

testing Frequency response

TCLw

The industry standard method is still used, but the test signal has changed from "normal male speech" to a test signal recommended in the latest 3GPP standards and specified in ITU-T P.501, the latest amendment.

This new signal uses extra compression in different frequency bands, thus giving a more uniform spectrum that improves the measurement accuracy, especially in high frequency.

An added benefit is that the signal goes closer to 0 dBFS in playback, which is what the Skype client does in real calls.

EQUEST- echo performance -> MOS score

E cho Loss: 27,10 dB

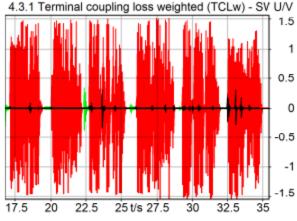
test analyzes:

Fail

٠

٠

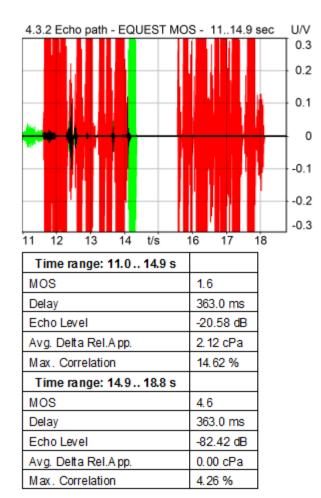
Corrected Echo Loss: 39.73 dB


The conventional TCLw

Level of echo residuals

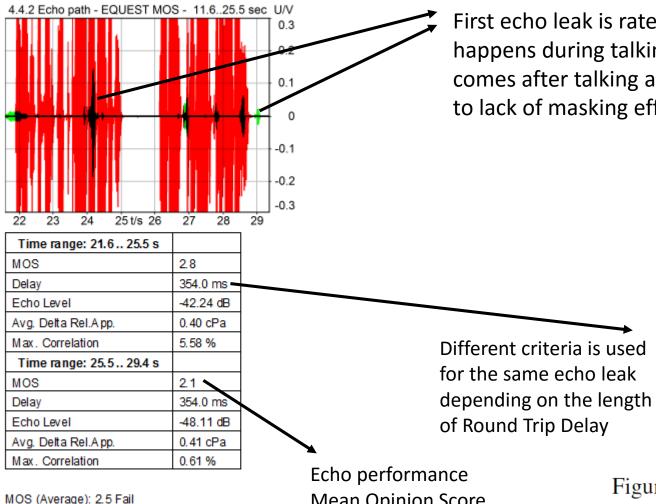
weighting (per G.122)

Applies frequency

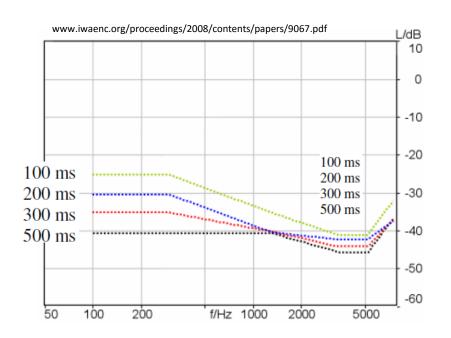

4.3.1 Terminal coupling loss weighted (TCLw) - SWB

Correction

4.3.2 Echo path - EQUEST MOS - 11..14.9 sec

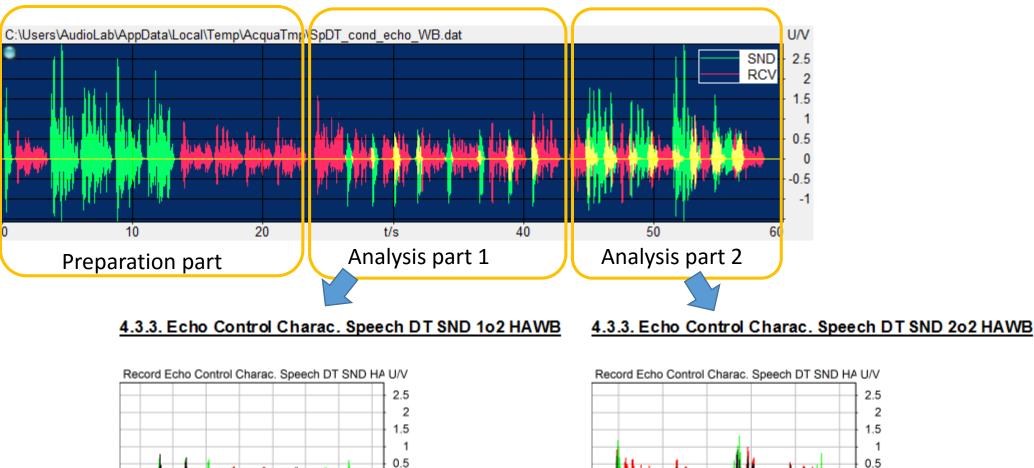

MOS (Average): 3.1 Fail

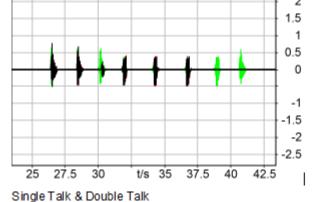
The new EQUEST test analyzes:


- Level of echo residuals
- Applies frequency weighting (dependent of Round Trip Delay)
- Considers Round Trip Delay (higher delay -> more disturbing echo)
- Considers time when echo leaks happen
- Calculates MOS score

EQUEST- measured sample

4.4.2 Echo path - EQUEST MOS - 11.6..25.5 sec - 2


First echo leak is rated less objectionable as it happens during talking while the second echo comes after talking and, thus, is very audible due to lack of masking effect



Mean Opinion Score (MOS) is calculated

Figure 4.1: Suggestion for spectral tolerance schemes for different round trip delays

Echo Control Characteristics – ECC

45

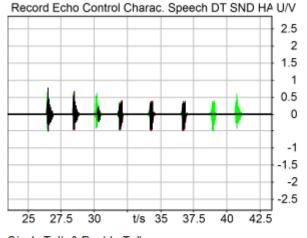
50 t/s 52.5

55

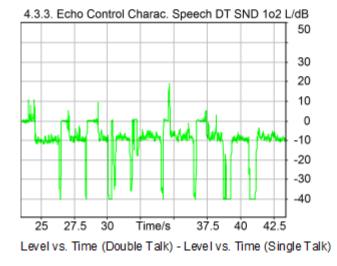
0

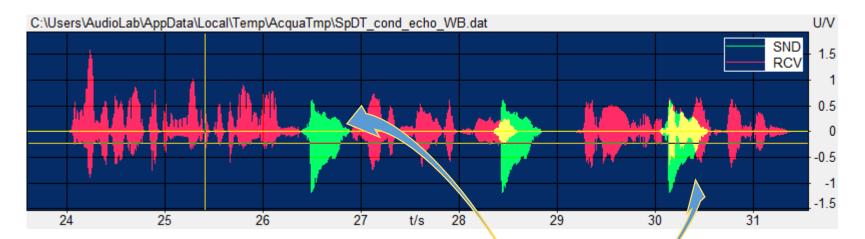
-1

-2


-1.5

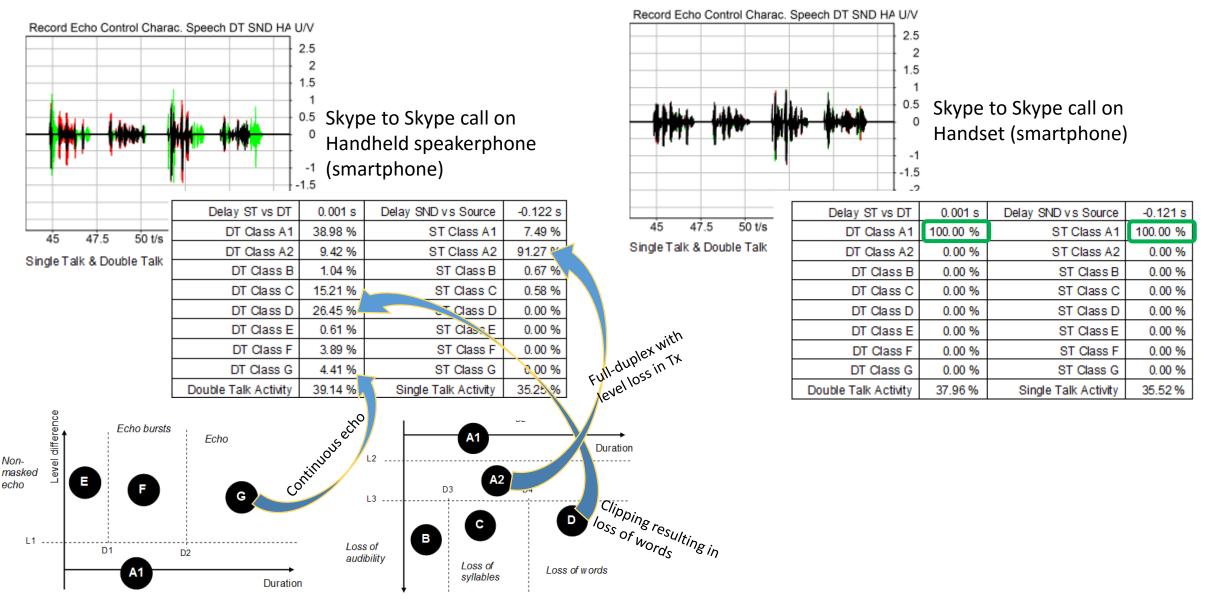
-2.5


57.5


ECC – Single Talk / Double Talk / Echo

4.3.3. Echo Control Charac. Speech DT SND 1o2 HAWB

Single Talk & Double Talk



Delay ST vs DT	0.001 s	Delay SND vs Source	-0.122 s
DT Class A1	38.98 %	ST Class A1	7.49%
DT Class A2	9.42 %	ST Class A2	91.27 9
DT Class B	1.04 %	ST Class B	0.67 %
DT Class C	15.21 %	ST Class C	0.58 %
DT Class D	26.45 %	ST Class D	0.00 %
DT Class E	0.61 %	ST Class E	0.00 %
DT Class F	3.89 %	ST class F	0.00 %
DT Class G	4.41 %	ST Class G	0.00 %
Double Talk Activity	39.14 % <	Single Talk Activity	35.25 %

Note: The ratio of Single Talk and Double Talk is different for part 1 and part 2

Echo Contol Characteristics – result samples

Methods in unified specification version 2

For specification version 2, there are no plans to start using additional methods and the currently described remains valid.

The updates in the next version are mainly focusing on finetuning the required values for different use cases.

3QUEST – speech signal and noise suppression quality

Noises used (same as 3GPP / HDVoice)

1) Pub Noise

2) Outside Traffic Road

3) Outside Traffic Crossroads 4) Train Station

5) Fullsize Car1 130 kmh

6) Cafeteria Noise

7) Mensa

8) Work Noise Office Callcenter

4.4.4.2 Requirement

	3Quest result	ts (MOS LQOW)
	Standard	Premium
S-MOS (average score of tested noise cases)	≥ 3.3	> 3.5
N-MOS (average score of tested noise cases)	≥ 2.3	≥ 3.0
G-MOS (average score of tested noise cases)	-	-
S-MOS min (lowest score of tested noise cases)	≥ 3.0	≥ 3.3
N-MOS min (lowest score of tested noise cases)	≥ 2.0	≥ 2.3
G-MOS min (lowest score of tested noise cases)	-	-

Table 38: Speech quality requirements in presence of background noise requirements for Handset / Headset

Application Note 3QUEST

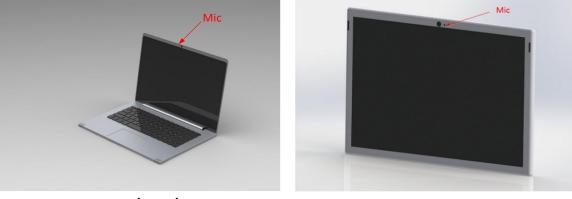
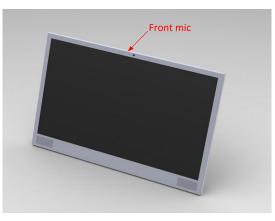

Determination of subjective speech MOS (S-MOS)	Determination of subjective noise MOS (N-NOS)	Determination of subjective global MOS (G-MOS)
5 – NOT DISTORTED	5 – NOT NOTICEABLE	5 – EXCELLENT
4 – SLIGHTLY DISTORTED	4 – SLIGHTLY NOTICEABLE	4 – GOOD
3 – SOMEWHAT DISTORTED	3 – NOTICEABLE BUT NOT	3 – FAIR
2 – FAIRLY DISTORTED	INTRUSIVE	2 – POOR
1 – VERY DISTORTED	2 – SOMEWHAT INTRUSIVE	1 – BAD
	1 – VERY INTRUSIVE	
Table 1: Instructions and apples applet to ITULT D 925		

Table 1: Instructions and scales acc. to ITU-T P.835

Design guidance: audio capture and render

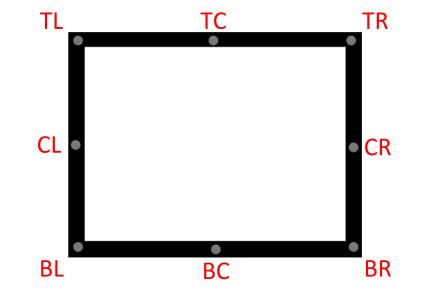

Audio capture guidelines

- Use microphone locations shown here
- 2-element omni left/right mic array will give 1-2 dB SNR improvement over single mic if done right; most mic arrays are worse than a good single mic!
 - Windows mic array spec requires cardioid microphones
 - It is better / cheaper to use a single 61 dB SNR mic than two 56 dB mics
- Cardioid mic will give ~4.5 dB better SNR than omnidirection mic; cardioid needs back-port
- 2-element omni front/back mic array can give 10-30 dB SNR improvement over single mic
- Microphone needs to be well sealed and have sufficient open grill area
 - Well sealed: maintains 1 PSI (~7000 Pascals) for 1 minute
- Mount microphone(s) in isolated rubber boot to minimize mechanical coupling
 - Don't mount the microphone on the PCB
- The microphone locations must be discoverable by DEVPKEY_Device_PhysicalDeviceLocation (same data as ACPI_PLD)
- Don't include a mic boost for all microphone types
- Don't include any gain for MEMS microphones in audio driver; OS will provide digital gain

Notebook

Tablet

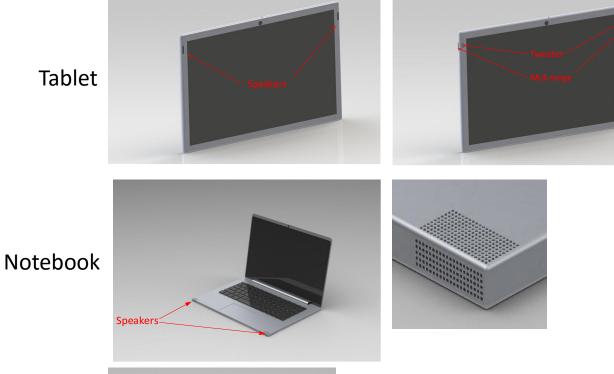
All-in-one


Microphone position analysis: Notebooks

Microphone	Comment	
location		
RL, RR	Picks up keyboard, fan noise	
	High, asymmetric coupling with speaker SL/SR	
RC	Picks up keyboard, fan	
SL, SR	Picks up keyboard, fan noise	
	High, asymmetric coupling with speaker FL/RL,	
	FR/RR	
TL, TR	Moderate, asymmetric coupling with speaker RL/RR	
FC	High coupling with speaker FL, FR	
FL, FR	High, asymmetric coupling with speaker FL, FR	
ТС	Lowest symmetric coupling, lowest keyboard, fan	
	noise	

Microphone position analysis: Tablets

Microphone location	Comment	
CL, CR	Can get occluded by hands in typical	
	location (see Figure 2)	
BL, BC, BR	Will get occluded by hands, lap, bed	
	covers	
TL, TR	Close to loudspeaker at TL, TR	
ТС	Good	

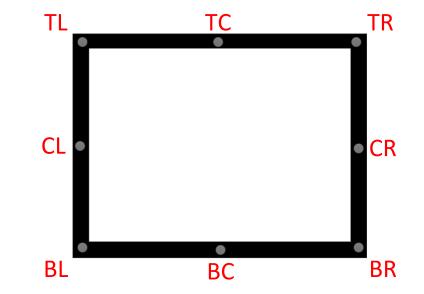


Audio capture component guidelines

Area	Guideline	
Microphone type	Standard: Omnidirectional microphone	
	Premium:	
	Cardioid microphone	
	Front/Back omni mic	
Microphone SNR	Standard: > 60 dBA @ 94 dBA SPL @ 0.5m 100-7000 Hz	
	Premium: > 64 dBA @ 94 dBA SPL @ 0.5m 100-12000 Hz	
Microphone sensitivity	Digital microphone: -26 +/- 2 dBFS (94 dB SPL @ 1kHz)	
Microphone frequency response	Standard: [100,7000] Hz +/- 4 dB	
	Premium: [100,12000] Hz +/- 4 dB	
Microphone high-pass filter cut-off	100Hz at -3 dB for analog microphone	
	60Hz at -3 dB for digital microphone	
Microphone high-pass filter slope	Better than 18 dB/oct	
ADC/DAC resolution	≥16bits	
Clipping	No mic clipping when speaker at max volume with full	
	scale sine wave at all frequencies	

Audio render guidelines

- Use locations recommended here
- Speakers should point toward user
 - Pointing to sides or back attenuates amplitude
 - To minimize front speaker area on tablets tweeters can be used with side mid-range
 - High frequencies are most directional
 - Worst speaker location: facing back
 - Attenuates high frequencies > 14 dB making speech narrowband
- Isolate speakers and microphone(s) to minimize coupling
- Remove loose parts in case to reduce rattles
 - Keyboard, cables, etc.
- Seal speakers to grill: maintain 2 psi (~14000 Pascals) for 1 min
- All-in-one


Speakers position: Notebooks

Speaker	Comment	
location		
BL, BR	Can get occluded lap, covers	
	Poor high frequency response	
SL, SR	Lower loudness, poor high frequency response	
RL, RR	High coupling with mic at RC/TL/TC/TR	
	Lower loudness	
FL, FR	Highest loudness, best frequency response	

Speakers position: Tablets

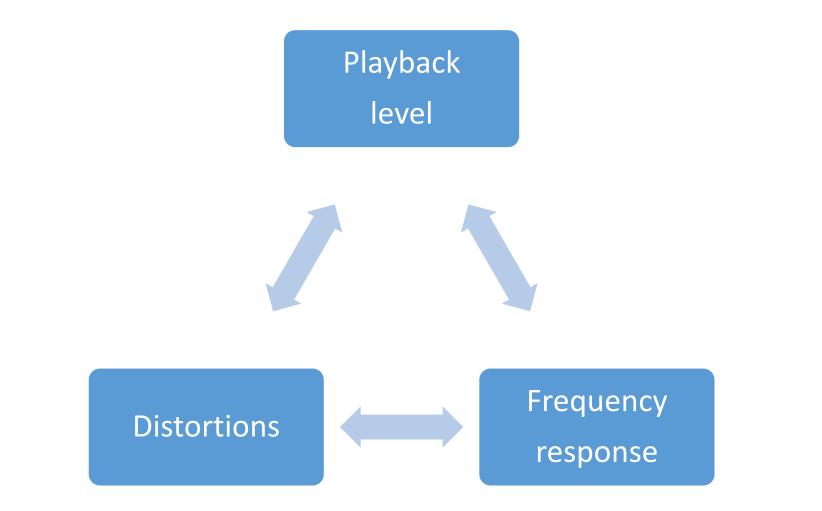
Speaker location	Comment
TL, TR	Good
CL, CR	Will get occluded by hands
BL, BR	Will get occluded by hands, lap,
	bed covers

Audio render component guidelines

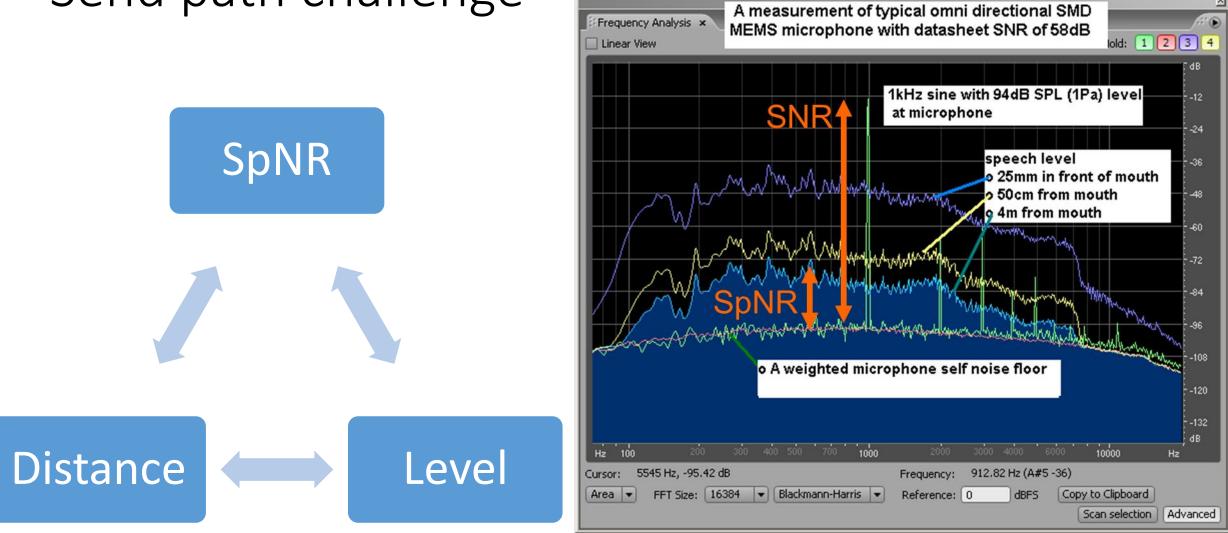
Area	Guideline	
Frequency	Standard: [300,7000] Hz +/- 5 dB	
response	Premium: [150,12000] Hz +/- 5 dB	
Total harmonic	Standard: <3% for [300,7000] Hz measured	
distortion (THD)	with volume set at 80 dB SPL at 0.5m at 1kHz	
	Premium: <3% for [150,12000] Hz measured	
	with volume set at 86 dB SPL at 0.5m at 1kHz	
Grill	Open area > 50% speaker cone area	
Driver type	Standard: Single driver (2X for stereo)	
	Premium: Tweeter+woofer (2X for stereo)	

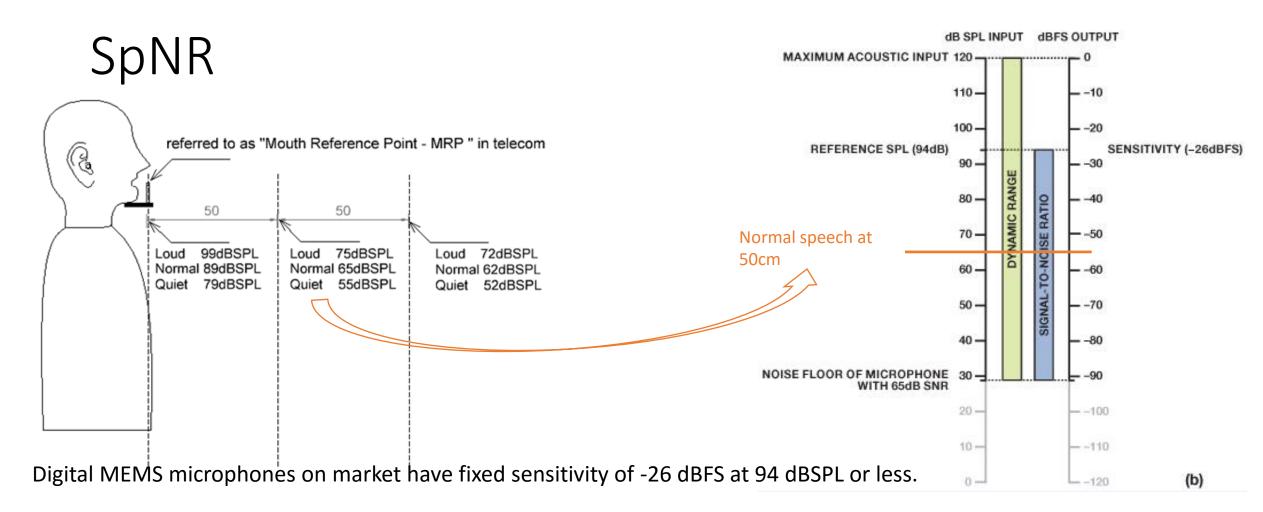
Considering use cases for speech pick-up in case of audio offloading

Scenarios for DUT with camera(s)	Desired behavior
Front-facing camera in use,	Front +/- 45°,
Handheld speakerphone audio UI	suppresses sounds from rear
Rear-facing camera video call, Handheld speakerphone audio UI	Omni-directional
Personal speakerphone audio UI	Omnidirectional or Front +/- 90°
Group speakerphone audio UI	Omnidirectional or Front +/- 90°
Headset audio UI	Switches to headset processing.
Handheld speakerphone audio UI (audio playback through headphones)	Switches to appropriate speakerphone audio UI mode.
Handset audio UI	Switches to handset processing


Design guidance: Top failures

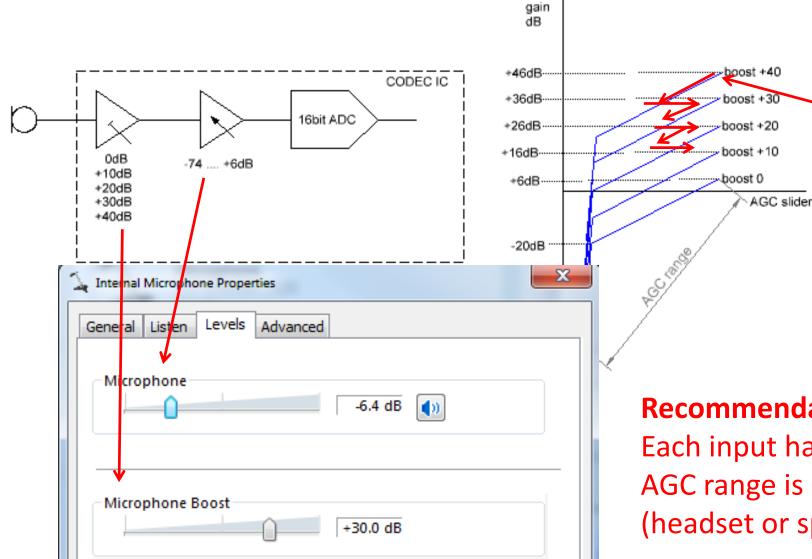
Top audio capture / render issues in Windows 8 devices


Issue	How common	Solutions
Echo leaks and distorted double-talk	30% Windows 8 devices	Reduce nonlinear coupling (rattles, etc.) Disable onboard nonlinear processing Fix microphone clipping Reduce coupling (TCLw)
High send noise	11% Windows 8 devices	Use mic with Signal-to-Noise Ratio > 60 dB Position mic away from fan
Low receive volume	80% tablets	Orient speakers toward user Increase speaker size/power


- **43% Windows 8 devices failed audio subjective tests** (MOS < 3 in 1 to 5 scale)
- N=71 Windows 8 devices tested (notebooks, tablets, all-in-ones)

Receive path challenge

Send path challenge



If mic sensitivity is -26 dBFS, then acoustic speech pickup level when user mouth is at 50cm is -55 dBFS rms. This is lower than the Skype requirement of -32 dBFS minimum – so it needs digital gain to meet the criteria. The signal on any other voice recording app also would be too quite without extra digital gain.

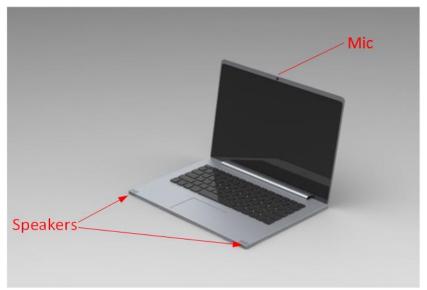
Best SNR of these microphones is approximately 62 dB -> making the equivalent self noise floor 94-62=32dBSPL -> thus Speech to Noise ratio will be 55 – 32 = 23 dB without noise suppression algorithms (Skype minimum requirement is 25 dB).

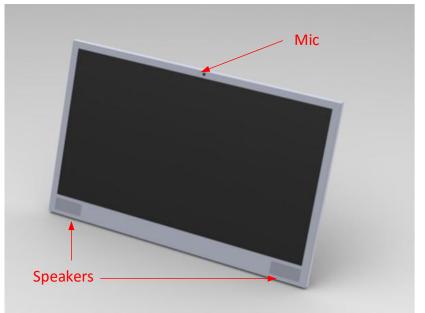
AGC problem based on Lenovo T510 / T420S

With the sample Lenovo T420S case - if a call starts at "boost=+40" setting and AGC slider is at 50% and input is overloading, Skype would need to go through many boost settings and AGC settings to reach the condition of no overload. As each API call takes time, this might end up with a long condition of poor call quality and leaking AEC.

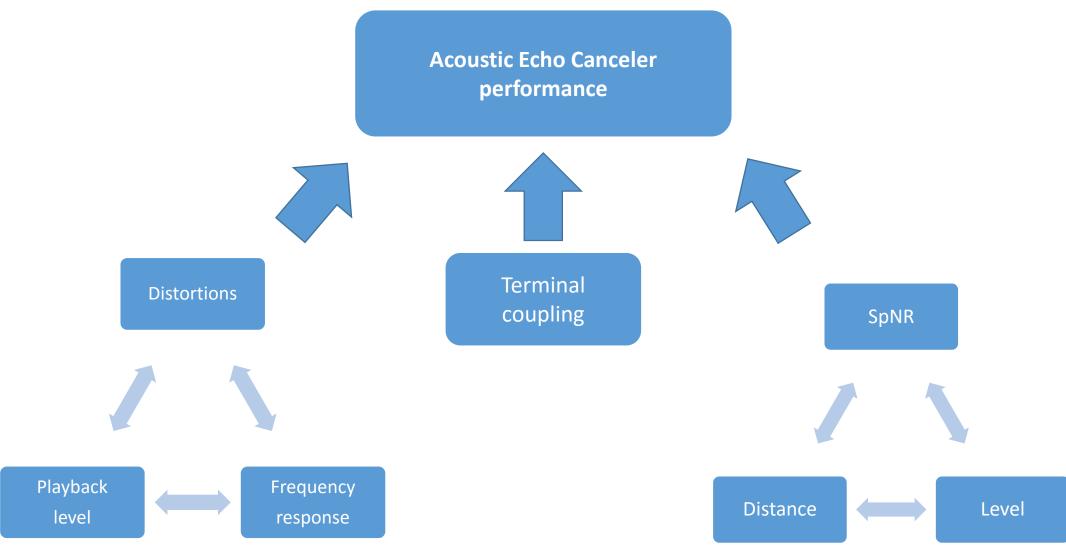
Recommendation:

Each input has only AGC gain slider (no boost!) AGC range is optimized for each input (headset or speakerphone mode, etc.)

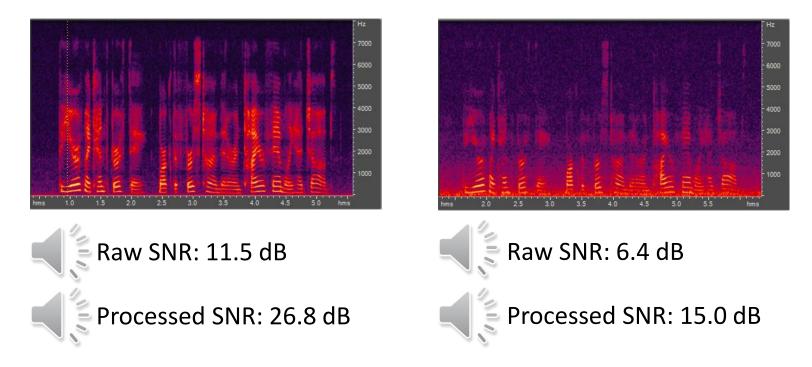

Coupling between microphone and loudspeakers


Distance

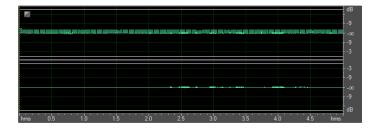
- Maximize the distance
- Do not forget usage scenarios

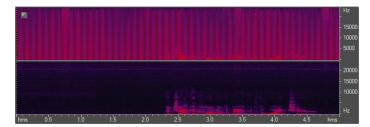

Acoustic sealing

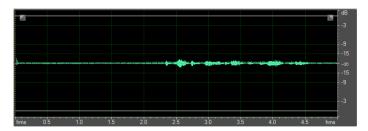
• Foam boot between the microphone and port hole


Echo canceler constraints

Design guidance: Examples of failures

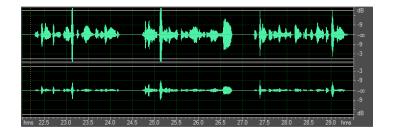

Audio capture comparison: more details


- Two high-end notebooks
 - Captured in an anechoic chamber, background noise of 25 dBA SPL
 - Speech 70 dBA SPL @ 0.5 m, 0% CPU usage
 - Best case scenario
 - Two very different capture qualities (SNR, send noise, MOS)

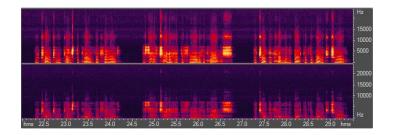


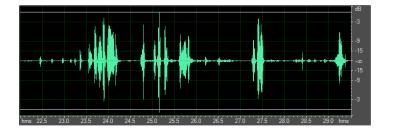
Audio example from Windows 8 tests

0.00

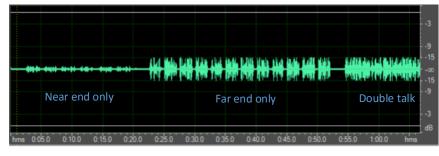


Output is unusable – PC doesn't work with Skype!


Left channel contaminated by noise


Audio example from Windows 8 tests (2)

Left channel speaker/mic coupling much higher

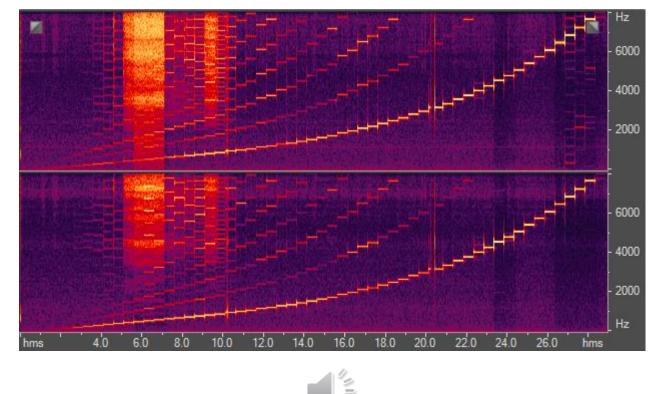

Asymmetric clipping and THDN

Unusable full echo for Skype

Design guidance: Advanced topics

Diagnosing audio issues using HCK test signal

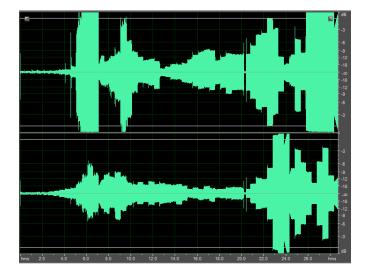
- HCK results are super useful always run HCK and make modifications to pass before submitting to Logo program
- Listen to the Mic and MicOut wav files to better understand issues (subjective quality)
 - Far end MicOut should be silent
 - Double talk should be undistorted speech


AECTest_DUTMic.wav (no AEC and NS)

AECTest_MicOut.wav (AEC and NS)

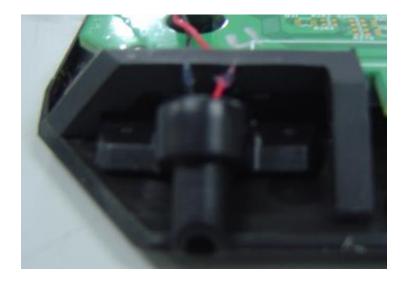
Diagnosing audio issues using sweep signals

- Stepped sweep signal very useful to detecting clipping at specific frequencies
- Also used to compute THDN and listen for distortion
- Good for glitches, too


Sealing microphone and speakers

- Sealing microphones and speakers to front grill is the easiest, least expensive improvement
- Nearly all Windows 8 devices tested did not do this!
- Seal should hold 1-2 psi for 1 minute to be safe
- Use pressure-sensitive paper to help detect leaks

Windows 8 tablet case study


- Microphones and speakers unsealed
- Asymmetric coupling
- Unit reworked to seal microphones and speakers

Microphone boot design

- Don't mount microphone to PCB as it increases speaker coupling
- Mount microphone in supple rubber boot that is mechanically isolated from system
- Include an "sound barrier" that further seals the microphone from the internal sounds (reduces coupling)
- Seal the microphone boot to the microphone port hole (e.g., press fit)

References to materials used

- Skype test specifications for USB peripherals, PCs, and room systems <u>http://technet.microsoft.com/en-us/lync/gg278181.aspx</u>
- Windows HCK Communications Audio Fidelity Test <u>http://msdn.microsoft.com/en-</u> <u>us/library/windows/hardware/dn390880.aspx</u>
- ODM Academy 400: Making Windows devices work great with Skype and Lync – <u>ODM Academy 400 part 2</u>
- Analog Devices: Understanding Microphone Sensitivity: <u>http://www.analog.com/library/analogDialogue/archives/46-</u> <u>05/understanding_microphone_sensitivity.html</u>

References to materials used (2)

- HEAD acoustics support: Application Notes <u>http://www.head-acoustics.de/eng/telecom_application_notes.htm</u>
- ETSI EG 202 396
- Windows Engineering Guidance