
THE MICROSOFT JOURNAL FOR DEVELOPERS

COLUMNS
EDITOR’S NOTE
U.S. Schools Not Getting It Done
Keith Ward page 4

CUTTING EDGE
Better Web Forms with the
MVP Pattern
Dino Esposito page 6

GOING PLACES
IronRuby on Windows Phone 7
Shay Friedman page 16

TEST RUN
Request-Response Testing
Using IronPython
James McCaffrey page 79

SECURITY BRIEFS
The MSF-Agile+SDL Process
Template for TFS 2010
Bryan Sullivan page 84

UI FRONTIERS
Touch and Response
Charles Petzold page 92

DON’T GET ME STARTED
Weasel Words
David Platt page 96

SEPTEMBER 2010 VOL 25 NO 9

CONCURRENCY
Simplify Asynchronous Programming with Tasks
Igor Ostrovsky . 24

Throttling Concurrency in the CLR 4.0 ThreadPool
Erika Fuentes . 32

Actor-Based Programming with the
Asynchronous Agents Library
Michael Chu and Krishnan Varadarajan . 38

PLUS:

Migrate Your ASP.NET 1.1 Apps
to Visual Studio 2010
Jonathan Waldman . 50

Create a Silverlight 4 Web Part for SharePoint 2010
Paul Stubbs . 64

Making MapPoint 2010 and SQL Server
Spatial Work Together
Eric Frost and Richard Marsden . 70

This month at
msdn.microsoft.com/magazine:
THE WORKING
PROGRAMMER
Multiparadigmatic .NET, Part 1
Ted Neward

http://msdn.microsoft.com/magazine

Untitled-5 2 3/5/10 10:16 AM

www.infragistics.com

Sure, Visual Studio 2010 has a lot of great functionality—
we’re excited that it’s only making our User Interface
components even better! We’re here to help you go

beyond what Visual Studio 2010 gives you so you can create
Killer Apps quickly, easily and without breaking a sweat! Go

to infragistics.com/beyondthebox today to expand your
toolbox with the fastest, best-performing and most powerful

UI controls available. You’ll be surprised
by your own strength!

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055

Infragistics India +91-80-6785-1111
twitter.com/infragistics

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics and the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc.

Untitled-5 3 3/5/10 10:16 AM

www.infragistics.com

magazine

Printed in the USA

LUCINDA ROWLEY Director
DIEGO DAGUM Editorial Director/mmeditor@microsoft.com
KERI GRASSL Site Manager

KEITH WARD Editor in Chief/mmeditor@microsoft.com
TERRENCE DORSEY Technical Editor
DAVID RAMEL Features Editor
WENDY GONCHAR Managing Editor
MARTI LONGWORTH Associate Managing Editor

SCOTT SHULTZ Creative Director
JOSHUA GOULD Art Director
ALAN TAO Senior Graphic Designer

CONTRIBUTING EDITORS K. Scott Allen, Dino Esposito, Julie Lerman, Juval
Lowy, Dr. James McCaffrey, Ted Neward, Charles Petzold, David S. Platt

Henry Allain President, Redmond Media Group
Matt Morollo Vice President, Publishing
Doug Barney Vice President, Editorial Director
Michele Imgrund Director, Marketing
Tracy Cook Online Marketing Director

ADVERTISING SALES: 508-532-1418/mmorollo@1105media.com

Matt Morollo VP, Publishing
Chris Kourtoglou Regional Sales Manager
William Smith National Accounts Director
Danna Vedder Microsoft Account Manager
Jenny Hernandez-Asandas Director Print Production
Serena Barnes Production Coordinator/msdnadproduction@1105media.com

Neal Vitale President & Chief Executive Offi cer
Richard Vitale Senior Vice President & Chief Financial Offi cer
Michael J. Valenti Executive Vice President

Abraham M. Langer Senior Vice President, Audience Development & Digital Media
Christopher M. Coates Vice President, Finance & Administration
Erik A. Lindgren Vice President, Information Technology & Application Development
Carmel McDonagh Vice President, Attendee Marketing
David F. Myers Vice President, Event Operations

Jeffrey S. Klein Chairman of the Board

MSDN Magazine (ISSN 1528-4859) is published monthly by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid at Chatsworth, CA 91311-9998, and at
additional mailing offi ces. Annual subscription rates payable in US funds are: U.S. $35.00, International
$60.00. Annual digital subscription rates payable in U.S. funds are: U.S. $25.00, International $25.00.
Single copies/back issues: U.S. $10, all others $12. Send orders with payment to: MSDN Magazine,
P.O. Box 3167, Carol Stream, IL 60132, email MSDNmag@1105service.com or call (847) 763-9560.
POSTMASTER: Send address changes to MSDN Magazine, P.O. Box 2166, Skokie, IL 60076. Canada
Publications Mail Agreement No: 40612608. Return Undeliverable Canadian Addresses to Circulation
Dept. or IMS/NJ. Attn: Returns, 310 Paterson Plank Road, Carlstadt, NJ 07072.

Printed in the U.S.A. Reproductions in whole or part prohibited except by written permission. Mail requests
to “Permissions Editor,” c/o MSDN Magazine, 16261 Laguna Canyon Road, Ste. 130, Irvine, CA 92618.

Legal Disclaimer: The information in this magazine has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed or implied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While the information has been reviewed for accuracy,
there is no guarantee that the same or similar results may be achieved in all environments. Technical
inaccuracies may result from printing errors and/or new developments in the industry.

Corporate Address: 1105 Media, Inc., 9201 Oakdale Ave., Ste 101, Chatsworth, CA 91311, www.1105media.com

Media Kits: Direct your Media Kit requests to Matt Morollo, VP Publishing, 508-532-1418 (phone),
508-875-6622 (fax), mmorollo@1105media.com

Reprints: For single article reprints (in minimum quantities of 250-500), e-prints, plaques and posters contact:
PARS International, Phone: 212-221-9595, E-mail: 1105reprints@parsintl.com, www.magreprints.com/
QuickQuote.asp

List Rental: This publication’s subscriber list, as well as other lists from 1105 Media, Inc., is available
for rental. For more information, please contact our list manager, Merit Direct. Phone: 914-368-1000;
E-mail: 1105media@meritdirect.com; Web: www.meritdirect.com/1105

All customer service inquiries should be sent to MSDNmag@1105service.com or call 847-763-9560.

SEPTEMBER 2010 VOLUME 25 NUMBER 9

mailto:mmeditor@microsoft.com
mailto:mmeditor@microsoft.com
mailto:508-532-1418/mmorollo@1105media.com
mailto:msdnadproduction@1105media.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:mmorollo@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/
mailto:1105media@meritdirect.com
http://www.meritdirect.com/1105
mailto:MSDNmag@1105service.com
www.dtSearch.com

programmersparadise.com

Your best source for
software development tools!

Prices subject to change. Not responsible for typographical errors.

®

programmers.com/theimagingsource

Download a demo today.

NEW
RELEASE!

Professional Edition
Paradise #

T79 02101A02
$1,220.99

programmers.com/ca

CA ERwin® Data Modeler
r7.3 – Product Plus 1 Year
Enterprise Maintenance
by CA
CA ERwin Data Modeler is a data modeling
solution that enables you to create and
maintain databases, data warehouses and
enterprise data resource models. These models
help you visualize data structures so that you
can effectively organize, manage and moderate
data complexities, database technologies and
the deployment environment.

• .NET WinForms control for VB.NET and C#
• ActiveX for VB6, Delphi, VBScript/HTML, ASP
• File formats DOCX, DOC, RTF, HTML, XML, TXT
• PDF and PDF/A export, PDF text import
• Tables, headers & footers, text frames,

bullets, structured numbered lists, multiple
undo/redo, sections, merge fields, columns

• Ready-to-use toolbars and dialog boxes

TX Text Control 15.1
Word Processing Components
TX Text Control is royalty-free,
robust and powerful word processing
software in reusable component form.

programmers.com/pragma

“Pragma SSH for Windows”
Best SSH/SFTP/SCP Servers
and Clients for Windows
by Pragma Systems
Get all in one easy to use high performance
package. FIPS Certified and Certified for Windows.
• Certified for Windows Server 2008R2
• Compatible with Windows 7
• High-performance servers with

centralized management
• Active Directory & GSSAPI authentication
• Supports over 1000 sessions
• Hyper-V and PowerShell support
• Runs in Windows 2008R2/2008/2003/

7/Vista/XP/2000

Paradise #
P35 04201A01
$550.99

Paradise #
P26 04201E01

$3,931.99

programmers.com/vSphereprogrammers.com/LEAD

LEADTOOLS Recognition SDK
by LEAD Technologies
Develop desktop and server document imaging
and ECM applications that require high-speed
multi-threaded forms recognition and process-
ing, OCR, ICR, OMR, and barcode technology.
• Supports text, OMR, image, and

1D/2D barcode fields
• Recognize machine print and constrained

handwritten text
• Auto-registration and clean-up to

improve recognition results
• Latin character set support is included.

Arabic and Asian support is available
Paradise #
L05 26301A01
$3,214.99

Certified
for Windows
7/2008R2

VMware vSphere
Essentials Kit Bundle
vSphere Essentials provides an all-in-one
solution for small offices to virtualize three
physical servers for consolidating and
managing applications to reduce hardware
and operating costs with a low up-front
investment. vSphere Essentials includes:

• VMware ESXi and VMware ESX
(deployment-time choice)

• VMware vStorage VMFS
• Four-way virtual SMP
• VMware vCenter Server Agent
• VMware vStorage APIs/VCB
• VMware vCenter Update Manager
• VMware vCenter Server for Essentials

for 3 hosts
Paradise #

V55 85101A02

$446.99

programmers.com/multiedit

Multi-EditX

by Multi Edit Software

Multi-EditX is “The Solution”
for your editing needs with
support for over 50 languages.
Edit plain text, ANY Unicode, hex,
XML, HTML, PHP, Java, Javascript,
Perl and more! No more file size
limitations, unlimited line length,
any file, any size Multi-EditX is
“The Solution”!

Pre-Order Your Copy and Save!

1-49 Users
Paradise #

A30Z10101A01
$223.20

ActiveReports 6
by GrapeCity
Integrate Business Intelligence/Reporting/Data
Analysis into your .NET applications using the
NEW ActiveReports 6.

• Fast and Flexible reporting engine

• Data Visualization and Layout Controls such
as Chart, Barcode and Table Cross Section
Controls

• Wide range of Export and Preview formats
including Windows Forms Viewer, Web
Viewer, Adobe Flash and PDF

• Royalty-Free Licensing for Web and
Windows applications

Professional Ed.
Paradise #
D03 04301A01
$1,310.99

NEW
VERSION

6!

BUILD ON
VMWARE ESXi
AND VSPHERE
for Centralized Management,
Continuous Application
Availability, and Maximum
Operational Efficiency in Your
Virtualized Datacenter.
Programmer’s Paradise invites you to take advantage
of this webinar series sponsored by our TechXtend
solutions division.

FREE VIRTUALIZATION WEBINAR SERIES:
REGISTER TODAY! TechXtend.com/Webinars

programmers.com/grapecity

NEW
RELEASE!

programmers.com/flexera

InstallShield Professional
for Windows
by Flexera Software
If your software targets Windows®,
InstallShield® is your solution. It makes it
easy to author high-quality reliable Windows
Installer (MSI) and InstallScript installations
and App-V™ virtual packages for Windows
platforms, including Windows 7. InstallShield,
the industry standard for MSI installations,
also supports the latest Microsoft technologies
including Visual Studio 2010, .NET
Framework 4.0, IIS7.0, SQL Server 2008
SP1, and Windows Server 2008 R2 and
Windows Installer 5, keeping your customers
happy and your support costs down.

Intel® C++ Compiler
Professional Edition
by Intel
Intel® C++ Compiler Professional Edition
offers the best support for creating multi-
threaded applications. Only the Professional
Edition offers the breadth of advanced
optimization, multi-threading, and processor
support that includes automatic processor
dispatch, vectorization, auto-parallelization,
OpenMP*, data prefetching, and loop
unrolling, along with highly optimized
C++ templates for parallelism, math
processing, and multimedia libraries.

Upg from any
Active IS Pro +

IS Pro Silver Mtn
Paradise #

I21 02401B01

$1,399.00

866-719-1528
programmers.com/intel

Single User
for Windows

Paradise #
I23 38101A02

$564.99

programmers.com/avantstar

Quick View Plus 11
View, Copy and Print Virtually Any File
by Avantstar
With support for over 300 different file
formats, Quick View Plus 11 Standard Edition
lets you view nearly all the files and e-mail
attachments you need instantly without
purchasing numerous software programs.
Quick View Plus Standard Edition maintains
the formatting of the files you view. See
and print files as they were originally
created and meant to be seen, complete
with fonts, text formatting and graphics.

Compatible Operating Systems:
Windows 7 (32-bit version), Vista
(32-bit version), XP and 2000

Standard Edition
Qty 51-99 Users

Paradise #
AV5 01351A01

CALL

NEW
RELEASE!

FREE 30-DAY
PROOF OF CONCEPT

Learn more:
programmers.com/eliminate-wasteful-license-spend

STOP OVERBUYING SOFTWARE TODAY!
Eliminate Wasteful Software
License Spend:
• Control your software

licensing costs

• Stop paying for licenses
you’re not using

• Reduce your license spend
by $300+ per desktop user

Untitled-1 1 8/3/10 3:12 PM

www.programmersparadise.com

msdn magazine4

and two fi ve-week courses on .NET. Th is is for an IT degree with an
emphasis on soft ware engineering!

Anonymous by Request: As a professor, I think the quality of
education in the computer science fi eld is not where it needs to be. When
I fi rst started teaching, I taught Intro to CS using C++, [and] on average
about 10 percent to 30 percent of the class would fail; the fi nal project in
the class was comparable to a project I had to complete in my second or
third week of my Intro class when I was an undergrad. Obviously, a high
failure rate doesn’t sit well with the powers that be, so the class was
dumbed down.

As a senior app developer for a supplemental insurance company, my
job duties include interviewing prospective employees and mentoring
junior developers. So far, I have met a few students who seem to know their
stuff , but I’ve also had some frustrating interviews. For example, here’s a
basic question I’d ask: “What can you tell me about a database cursor?”
Response: “Do you mean the little fl ashy thing on the screen?”

David Luxford, Pittsfi eld Township, MI.: Until the last 10
years, most colleges had no idea what they were doing when it came to
educating those bound for a computer job. At my fi rst college, we were
expected to program in C in upper-division courses, but had to teach
ourselves. Th ere were no classes on writing Windows GUIs, the NTFS
fi lesystem, DirectX or driver development. Our local community college
was better, but its program was only two years. Th ere’s a signifi cant dis-
connect between the curriculum of soft ware engineering programs and
the actual skills you use. Using technology even only 2 years old leaves a
graduate up to six years behind when he graduates. Th ere is no education
on QA, confi guration management, virtual machines, installs, patching
or deployment.

Do you want to get in on
the conversation? Write to me
at mmeditor@microsoft .com.

U.S. Schools Not Getting It Done

In a recent column, I asked for your feedback on the issue of whether
U.S. schools are properly preparing students for real-world soft ware
development, and the topic touched a nerve, as you came through in
spades. What follows is a representative sampling of responses. I’ve
withheld information about some writers, at their request.

Brian Fulford, Vice President of Information Technol-
ogy, Database Solutions Inc.: As the exec in charge of IT at a
small soft ware company, I’ve been seeing the same signs of a lack of
readiness as I interview potential candidates. Our shop does a lot of
t-SQL programming, so I administer a practical exam for all applicants
to gauge their competency in t-SQL. Not only do undergraduates not
understand the basics of relational databases, but also many applicants
cannot complete the exam—and I’m talking simple selects with inner
joins. I think there’s too much theory being taught to CS students and
not enough practical application in a variety of programming languages.

Peter Lanoie, Clifton Park, NY: As I encountered people in the
workplace doing the same job as me, I found that some who were edu-
cated in more traditional [computer science] programs really couldn’t pro-
gram. Sure, they understood more of the theory than I did, but we weren’t
building DB engines or operating systems, we were making ASP Web sites
... Practical skills are an important part of a future programmer’s techni-
cal education; core problem-solving skills are as, if not more, important.

Brad B.: I’m starting my fourth year using online classes from the University
of Phoenix. Previous to starting those classes, I achieved an associ-
ate degree many years ago. I had a total of 10 weeks of classes that
covered C programming. Th ose 10 weeks covered nothing more than
basic logic; structs or other useful bits weren’t covered there. With the
almost full year of classes with UoP, I have yet to take another course
that involved writing code. Th e closest that a class has come was one
course that covered pseudocode. Checking my fourth-year classes, I
will have a fi ve-week course on SQL, two fi ve-week courses on Java,

EDITOR’S NOTE KEITH WARD

© 2010 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodifi ed form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affi liated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specifi c environments and confi gurations. These recommendations or guidelines may not apply to dissimilar confi gurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN, and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/magazine

Untitled-1 1 3/10/10 2:49 PM

www.axosoft.com

msdn magazine6

interface (or base class). Th e presenter talks to an abstraction of the
view, which makes the presenter itself a highly reusable and highly
testable class. Th is enables two interesting scenarios.

First, the presentation logic is independent from the UI tech-
nology being used. Subsequently, the same controller could be
reused in Windows and Web presentation layers. In the end, the
presenter is coded against an interface and it can talk to any object
that exposes that interface—whether a Windows Forms object, an
ASP.NET Page object, or a WPF Window object.

Second, the same presenter could work with diff erent views of
the same application. Th is is an important achievement with regard
to Soft ware as a Service (SaaS) scenarios where an application is
hosted on a Web server and off ered as a service to customers, each
requiring its own customized UI.

It goes without saying that both benefits are not necessarily
applicable in all situations. Whether these benefit you mostly
depends on the application and navigation logic you expect to
employ in your Windows and Web front end. However, when the
logic is the same, you can reuse it via the MVP model.

MVP in Action
When implementing the MVP pattern, the fi rst step is defi ning
the abstraction for each required view. Each page in an ASP.NET
application and each form in a Windows (or WPF/Silverlight)
application will have its own interface to talk to the rest of the
presentation layer. Th e interface identifi es the data model that the
view supports. Each logically equivalent view will have the same
interface regardless of the platform.

Th e view abstraction incorporates the model the view recognizes
and works with and can extend it with some ad hoc methods and

 Better Web Forms with the MVP Pattern

Th e advent of the Model-View-Controller (MVC) pattern is an im-
portant milestone in soft ware development. It showed that designing
applications with separation of concerns in mind improved both the
development process and the fi nished application. It also off ered a
reproducible approach for putting that pattern into practice.

MVC is not perfect, though, so several variations of it appeared
over the years.

Because it was devised in the 1980s, one problem that’s surfaced
is that MVC does not directly accommodate development for the
Web. Adapting MVC to the Web took a few more years and led to
the development of more specifi c MVC patterns such as Model2.
(Model2 is the actual fl avor of MVC implemented by Castle Mono-
Rail and ASP.NET MVC.)

In a more general context, the Model-View-Presenter (MVP) pat-
tern is an evolution of MVC that separates view and model neatly by
placing the controller in between as a mediator. Figure 1 illustrates
the behavior of an application designed with the MVP pattern.

In this article, I’ll fi rst present a possible (and relatively standard)
implementation of the MVP pattern for ASP.NET Web Forms and
then discuss the application of the pattern, its benefi ts to the team,
and compare it to ASP.NET MVC and Model-View-ViewModel
(MVVM) as it has been implemented in Windows Presentation
Foundation (WPF) and Silverlight.

MVP at a Glance
MVP is a derivative of the original MVC pattern developed at
Taligent (now part of IBM) in the 1990s. Th e paper available for
download at wildcrest.com/Potel/Portfolio/mvp.pdf off ers a nice introduc-
tion to MVP and the ideas behind it.

Th e creators of MVP neatly separated the model (the data being
worked on in the view) from the view/controller
pair. Th ey also renamed the controller as pre-
senter to reinforce the idea that in the pattern,
the role of the controller is that of a mediator
between the user and the application. The
presenter is the component that “presents” the
UI to the user and accepts commands from
the user. Th e presenter contains most of the
presentation logic and knows how to deal with
the view and the rest of the system, including
back-end services and data layers.

A key innovation in MVP is the fact that
the details of the view are abstracted to an

CUTTING EDGE DINO ESPOSITO

Figure 1 Using the MVP Pattern

Presenter

View

Model

Middle
Tier

Model

View

Presenter
Yes No

New View?

Forward User
Actions

Forward User
Actions

Return ValuesReturn Values

Invoke MethodInvoke MethodRedirect to a
New MVP Triad

Redirect to a
New MVP Triad

http://wildcrest.com/Potel/Portfolio/mvp.pdf

Give your users an effective way to visualize and analyze their data

so they can make more informed decisions and solve business problems.

By subscribing to the Esri® Developer Network (EDNSM), you have access to the complete Esri

geographic information system (GIS) software suite for developing and testing applications on

every platform. Whether you’re a desktop, mobile, server, or Web developer, EDN provides the

tools you need to quickly and cost-effectively integrate mapping and GIS into your applications.

Subscribe to EDN and leverage the power of GIS to get more
from your data. Visit www.esri.com/edn.

Esri
®

 Developer Network
Integrate Mapping and GIS into Your Applications

Copyright © 2010 Esri. All rights reserved. The Esri globe logo, Esri, EDN, and www.esri.com are trademarks, registered trademarks, or service marks of Esri in the United States, the European Community, or
certain other jurisdictions. Other companies and products mentioned herein may be trademarks or registered trademarks of their respective trademark owners.

Untitled-3 1 8/11/10 3:48 PM

http://www.esri.com/edn
http://www.esri.com
http://www.esri.com

msdn magazine8 Cutting Edge

events useful to favor a smooth interaction between the presenter
and the view. Figure 2 shows a possible abstraction for the view ren-
dered in Figure 3 that’s being used by a simple to-do list application.

In Figure 3 you also see how members in the interface match
visual elements in the form.

Th e fundamental point is that any interaction between the pre-
senter and the UI must happen through the contract of the view.
Any button clicking, any selection, any typing must be forwarded
to the presenter and handled there. If the presenter needs to query
for some data in the view, or to pass data down to the view, there
should be a method in the interface to account for that.

Implementing the View Contract
Th e interface that represents the view must be implemented by the
class that represents the view itself. As mentioned, the view class is
the page in ASP.NET, the form in Windows Forms, the Window
in WPF and the user control in Silverlight. Figure 4 shows an
example for Windows Forms.

As you can see, properties are implemented as wrappers for some
properties on visual controls. For example, the Title property is
a wrapper for the Text property of a TextBox control. Similarly,
the DueBy property wraps the Value property of a DatePicker
control. More importantly, the interface shields the presenter

class from the details of the UI for a given platform. The same
presenter class created to interact with the IMemoFormView
interface can deal with any object that implements the interface,
blissfully ignoring the details of the programming interface of
underlying controls.

How would you deal with UI elements that require a collection
of data, such as a drop-down list? Should you use data binding (as
in Figure 4) or should you opt for a simpler approach that keeps
the view passive and devoid of any presentation logic?

Th at’s up to you. In response to these kinds of questions, the
MVP pattern has been split in two separate patterns—Supervising
Controller and Passive View—whose primary diff erence is just the
amount of code in the view. Using data binding for populating the
UI (see Figure 4) adds some presentation logic to the view and
would make it gain the fl avor of a supervising controller.

The more logic you have in the view, the more you should
care about testing. And testing a piece of UI is a task that can’t be
easily automated. Going for a supervising controller or opting for
a thinner and dumber view is merely a judgment call.

The Presenter Class
Th e controls in the view capture any user gesture and trigger an
event to the view, such as a button-click or a selected-index change.
Th e view contains simple event handlers that dispatch the call to
the presenter that’s in charge the view. When the view is loaded for
the fi rst time, it creates an instance of its presenter class and saves

that internally as a private member. Figure 5 shows
the typical constructor of a Windows Form.

The presenter class typically receives a reference
to the view through its constructor. Th e view holds a
reference to the presenter and the presenter holds a
reference to the view. However, the presenter knows
the view only through the contract. Th e presenter
works by segregating any view object it receives to its
contracted view interface. Figure 6 shows the basics
of a presenter class.

The constructor receives and caches the refer-
ence to the view and initializes the view using the
public interface represented by the contract. The
context object you see used in the code of Figure
6 is any input data the presenter needs to receive
from the caller in order to initialize the view. This
information is not necessary in all cases, but it turns
out to be necessary when you use the form to edit
some data or when you have dialog boxes to display
some information.

public interface IMemoFormView {
 String Title { get; set; }
 String Summary { get; set; }
 String Location { get; set; }
 String Tags { get; set; }
 DateTime BeginWithin { get; set; }
 DateTime DueBy { get; set; }
 String Message { get; set; }

 Int32 GetSelectedPriorityValue();
 void FillPriorityList(Int32 selectedIndex);
 Boolean Confirm(String message, String title);
 void SetErrorMessage(String controlName);
}

Figure 2 An Example of a View Abstraction

Figure 3 Binding Members of the Interface to Visual Elements

How would you deal with
UI elements that require a

collection of data?

Free 60 Day Evaluation!
www.leadtools.com/msdn
(800) 637-1840

Silverlight: 100% pure Silverlight 3 and 4 Imaging SDK.
Image Formats & Compression: Supports 150+ image formats and compressions

including TIFF, EXIF, PDF, JPEG2000, JBIG2 and CCITT G3/G4.
Display Controls: ActiveX, COM, Win Forms, Web Forms, WPF and Silverlight.
Image Processing:

supporting region of interest and extended grayscale data.
OCR/ICR/OMR: Full page or zonal recognition for multithreaded 32 and 64 bit

Forms Recognition & Processing: Automatically identify and classify forms and

Barcode:
development.
Document Cleanup/Preprocessing: Auto-

and border removal, inverted text correction and more for optimum results in OCR and
Barcode recognition.
PDF & PDF/A:

annotations.
Annotations: Interactive UI for document mark-up, redaction and image measurement

(including support for DICOM annotations).
Medical Web Viewer Framework:

PACS Workstation Framework: Set of .NET PACS components that can be used to
build a full featured PACS Workstation application.
Medical Image Viewer:

DICOM:

PACS Communications: Full support for DICOM messaging and secure communication

3D:
methods including MIP, MinIP, MRP, VRT and SSD.
Scanning:

speed scanning.
DVD: Play, create, convert and burn DVD images.
MPEG Transport Stream:
Multimedia: Capture, play, stream and convert MPEG, AVI, WMV, MP4, MP3, OGG, ISO,

DVD and more.

Microsoft, HP,
Sony, Canon, Kodak, GE, Siemens, the US Air Force and Veterans Affairs Hospitals.

color, grayscale, document, medical, vector and multimedia imaging development.

Vector

DICOM Medical

Form Recognition
& Processing

Multimedia

Barcode

DocumentSilverlight, .NET, WPF, WCF, WF, C API, C++ Class Lib, COM & more!

Untitled-2 1 8/11/10 11:24 AM

http://www.leadtools.com/msdn

msdn magazine10 Cutting Edge

Initializing the view is as simple as assigning values to the members
of a class, except that now any assignment results in an update to the UI.

The presenter class also contains a number of methods that
execute in response to any requests from the UI. Any clicking or
user action is bound to a method on the presenter class:

private void memoForm_OK_Click(
 object sender, EventArgs e) {
 presenter.Ok();
}

Th e presenter method uses the view reference to access input
values and updates the UI in the same way.

Navigation in MVP
Th e presenter is also responsible for navigation within the appli-
cation. In particular, the presenter is responsible for enabling (or
disabling) sub-views and command navigation to the next view.

A sub-view is essentially a subset of the view. It’s typically a panel
that can be expanded or collapsed according to the context or
perhaps a child window—either modal or modeless. Th e presenter
controls the visibility of sub-views through members (mostly Bool-
ean members) on the view interface.

What about transferring control to another view (and presenter)?
You create a static class that represents the application controller—

that is, the central console that holds all the logic to determine the
next view. Figure 7 shows the diagram of the application controller.

Th e application controller class represents the shell that present-
ers invoke to navigate elsewhere. Th is class will have a NavigateTo
method that implements the workfl ow that determines the next
view or that simply moves to the specifi ed view. Th e workfl ow can
be anything—as complex as a real workfl ow or simply a sequence
of IF statements. Th e logic of the workfl ow can be statically coded
in the application controller or imported from an external and
pluggable component (see Figure 8).

Th e actual navigation logic in the workfl ow component will
use a platform-specifi c solution to switch to a diff erent view. For
Windows Forms it will use methods to open and display forms; in
ASP.NET it will use the Redirect method on the Response object.

public partial class MemoForm : Form, IMemoFormView {
 public string Title {
 get { return memoForm_Text.Text; }
 set { memoForm_Text.Text = value; }
 ...
 }

 public DateTime DueBy {
 get { return memoForm_DueBy.Value; }
 set { memoForm_DueBy.Value = value; }
 }

 public int GetSelectedPriorityValue() {
 var priority =
 memoForm_Priority.SelectedItem as PriorityItem;
 if (priority == null)
 return PriorityItem.Default;
 return priority.Value;
 }

 public void FillPriorityList(int selectedIndex) {
 memoForm_Priority.DataSource =
 PriorityItem.GetStandardList();
 memoForm_Priority.ValueMember = "Value";
 memoForm_Priority.DisplayMember = "Text";
 memoForm_Priority.SelectedIndex = selectedIndex;
 }

 public void SetErrorMessage(string controlName) {
 var control = this.GetControlFromId(controlName);
 if (control == null)
 throw new NullReferenceException(
 "Unexpected null reference for a form control.");

 memoForm_ErrorManager.SetError(control,
 ErrorMessages.RequiredField);
 }

 ...
}

Figure 4 A Possible Implementation of the View Class

public partial class Form1 :
 Form, ICustomerDetailsView {

 private MemoFormPresenter presenter;

 public Form1() {
 // Framework initialization stuff
 InitializeComponent();
 // Instantiate the presenter
 presenter = new MemoFormPresenter(this);
 // Attach event handlers
 ...
 }

 private void Form1_Load(
 object sender, EventArgs e) {

 presenter.Initialize();
 }
 ...
}

Figure 5 Creating an MVP Form

public class MemoFormPresenter {
 private readonly IMemoFormView view;

 public MemoFormPresenter(IMemoFormView theView) {
 view = theView;
 context = AppContext.Navigator.Argument
 as MemoFormContext;
 if (_context == null)
 return;
 }

 public void Initialize() {
 InitializeInternal();
 }

 private void InitializeInternal() {
 int priorityIndex = _context.Memo.Priority;
 if (priorityIndex >= 1 && priorityIndex <= 5)
 priorityIndex--;
 else
 priorityIndex = 2;

 if (_context.Memo.BeginDate.HasValue)
 _view.BeginWithin = _context.Memo.BeginDate.Value;
 if (_context.Memo.EndDate.HasValue)
 _view.DueBy = _context.Memo.EndDate.Value;
 _view.FillPriorityList(priorityIndex);
 _view.Title = _context.Memo.Title;
 _view.Summary = _context.Memo.Summary;
 _view.Tags = _context.Memo.Tags;
 _view.MemoLocation = _context.Memo.Location;
 }
 ...
}

Figure 6 A Sample Presenter Class

The Altova MissionKit includes multiple tools

for software architects:

The Altova MissionKit® is an integrated suite of

UML, XML, and data integration tools for today’s

software architect.

Visualize

software works of

art with the complete

set of tools from Altova®

Download a 30 day free trial!

Try before you buy with a free, fully

functional, trial from www.altova.com

UModel® – UML tool for software modeling

 • Support for all UML diagram types, plus BPMN & SysML

 • Reverse engineering and code generation in Java, C#, VB.NET

XMLSpy® – XML editor & development environment

 • Support for all XML-based technologies

 • Royalty-free Java, C#, C++ code generation

MapForce® – graphical data mapping tool

 • Mapping between XML, databases, EDI, flat files, XBRL,

 Excel 2007+, Web services

 • Royalty-free Java, C#, C++ code generation

 Plus up to five additional tools…

MapFo

• Map

Ex

 • 64-bit version • UML 2.3 support

 • SysML support • C# 4.0 support

 • WSDL 2.0 editing, conversion, mapping

 • Enhanced XBRL support

 • JSON editing & conversion

 • SharePoint® Server support

 •
 Visual Studio® 2010

 integration

ML 2 3

New in

Version 2010:

Untitled-1 1 8/3/10 10:42 AM

http://www.altova.com

msdn magazine12 Cutting Edge

MVP and ASP.NET MVC
ASP.NET MVC is based on a fl avor of the MVC pattern that has
a few things in common with MVP. The controller in MVC is a
mediator between the view and the back end. Th e controller doesn’t
hold a reference to the view, but fi lls up a model object and passes
that to the view using the services of an intermediate component—
the view engine.

In a way, the view is abstracted through the model, whose struc-
ture refl ects the characteristics of the view and its UI. Navigation is
managed by the controller, which selects the next view from the con-
text of each action. It does that using some built-in logic. Should the
logic be particularly complex for a given controller method—frankly,
not something that will happen every day—you can always introduce
a workfl ow component that determines the next view to select.

What about Web Forms? Web Forms lends itself well to host
an MVP implementation. However, it should be clear that all you

get is adding layers in the context of the postback event. Anything
before the postback cannot be incorporated, nor can anything
that happens after the postback event. A full MVP implemen-
tation that expands to cover the full lifecycle is not possible in
Web Forms, but even adding MVP around the postback is a
good thing and will significantly increase the level of testability
of Web Forms pages.

MVP and MVVM
What about, instead, MVP and MVVM in the context of WPF and
Silverlight applications? MVVM is a variation of MVP also known
as Presentation Model. Th e idea is that the view model is incorpo-
rated in the presenter class and the presenter class exposes public
members that the view will read and write. Th is happens through
two-way data binding. At the end of the day, you can call MVVM
as a special fl avor of MVP particularly suited to rich UIs and to
frameworks (like WPF) that promote this ability.

In MVVM, the view is data-bound to properties on the presenter
class (the view model). Anything the user does updates these
properties in the presenter. Any requests from the user (com-
mands in WPF) are handled via a method on the presenter class.
Any results the presenter method calculates are stored in the view
model and made available via data binding to the view. In WPF
and Silverlight, there’s nothing that prevents you from using a
manual implementation of the MVP pattern. However, it turns
out that tools such as Blend will make it simpler yet eff ective to
use MVVM via data binding.

Postback
MVP provides guidance on how to manage heaps of views and,
quite obviously, comes at a cost: the cost of increased complexity in
the application code. As you can imagine, these costs are easier to
absorb in large applications than in simple programs. MVP, there-
fore, is not just for any application. Based on a contract that repre-
sents the view, MVP allows for designers and developers to work in
parallel, which is always a good thing in any development scenario.
MVP keeps the presenter class as a standalone and isolated from
the view. In Web Forms, MVP represents the only reasonable way
to add testability at least to the code that executes the postback.

D INO ESPOSITO is the author of “Programming ASP.NET MVC” from
Microsoft Press and the coauthor of “Microsoft .NET: Architecting Applications for the
Enterprise” (Microsoft Press, 2008). Based in Italy, Esposito is a frequent speaker at
industry events worldwide. You can join his blog at weblogs.asp.net/despos.

THANKS to the following technical experts for reviewing this article:
Don Smith and Josh Smith

Figure 7 The Application Controller

Navigation Workflow

Presenter Presenter Presenter

View View View

Application Controller Front End

public static class ApplicationController {
 private static INavigationWorkflow instance;
 private static object navigationArgument;

 public static void Register(
 INavigationWorkflow service) {
 if (service == null)
 throw new ArgumentNullException();
 instance = service;
 }

 public static void NavigateTo(string view) {
 if (instance == null)
 throw new InvalidOperationException();
 instance.NavigateTo(view);
 }

 public static void NavigateTo(
 string view, object argument) {
 if (instance == null)
 throw new InvalidOperationException();
 navigationArgument = argument;
 NavigateTo(view);
 }

 public static object Argument {
 get { return navigationArgument; }
 }
}

Figure 8 Implementation of an Application Controller

The presenter is also
responsible for navigation

within the application.

http://weblogs.asp.net/despos

Why is Amyuni PDF
so interesting?

Develop with the fastest PDF
conversion on the market, designed
to perform in multithreaded and
64-bit Windows environments.

License and distribute products
quickly and easily with a PDF
technology that does not rely on
external open-source libraries.

Produce accurate and stable PDF
documents using reliable tools
built by experts with over ten years
of experience.

Let our experienced consultants
help you turn your software
requirements into customized
PDF solutions.

Integrate PDF conversion, creation
and editing into your .NET and
ActiveX applications with just a few
lines of code.

Choose a PDF technology that is
integrated into thousands of
applications behind millions of
desktops worldwide.

High-Performance

OEM LicensesExpertise

Rapid IntegrationProven

Customization

We understand the challenges that come with PDF integration.
From research and development, through design and
implementation, we work with you every step of the way.

Get 30 days of FREE technical support with your trial download!

USA and Canada
Toll Free: 1 866 926 9864
Support: (514) 868 9227

Info: sales@amyuni.com

Europe
Sales: (+33) 1 30 61 07 97
Support: (+33) 1 30 61 07 98

Customizations: management@amyuni.com

All trademarks are property of their respective owners. © 1999-2009 AMYUNI Technologies. All rights reserved.

www.amyuni.com

Now v4.0!

Project1 12/2/09 12:51 PM Page 1

http://www.amyuni.com
mailto:sales@amyuni.com
mailto:management@amyuni.com

© 1987-2010 ComponentOne LCC. All rights reserved. iPhone and iPod are trademarks of Apple Inc. While supplies last. Void where
prohibited or restricted by law. All other product and brand names are trademarks and/or registered trademarks of their respective holders.

Untitled-4 2 8/4/10 5:17 PM

www.componentone.com/devtopia

Untitled-4 3 8/4/10 5:17 PM

www.componentone.com/devtopia

msdn magazine16

top of the framework. Th e DLR is written on top of the CLR and
makes it much easier to implement dynamic languages on top of
.NET. Th is is one of the main reasons for the rise of .NET Frame-
work dynamic languages we’ve seen lately, including IronRuby,
IronPython, IronJS, Nua, ClojureCLR and others.

Key Features of IronRuby
Ruby is a dynamic language and so is IronRuby. Th is means there’s
no compiler at hand, and most of the operations done during
compilation and build time in static languages are done during run
time. Th is behavior provides a variety of features that are diffi cult
or impossible to achieve in most current static languages.
Interoperability with .NET Framework Objects Th e Ruby
language has various implementations: MRI (which is the original
one), JRuby, Rubinius, MacRub, IronRuby and others. What makes
IronRuby stand out from the crowd is its ability to conveniently
interact with .NET Framework objects. Th at interoperability goes
both ways—.NET Framework objects are available from IronRuby
code and IronRuby objects are available from .NET Framework code.
Dynamic Typing IronRuby variable types are calculated during
run time, so there’s no need to specify the types in your code. How-
ever, that doesn’t mean that IronRuby doesn’t have types. It does,
and every type has its own rules, just like types in static languages.

IronRuby on Windows Phone 7

A few years ago, I was a 100 percent .NET guy. I didn’t have a clue
about the rest of the development world, and I was quite happy in
my own bubble. Th en, kind of by mistake, I learned Ruby, and the
experience was jaw-dropping. Th e way things get done using the
language’s built-in features was striking to me.

Still, you can take the person out of the .NET world, but you
can’t take the .NET world out of the person. So as soon as I heard
Microsoft was developing an implementation of the Ruby language—
called IronRuby—on top of the Microsoft .NET Framework, I got
pretty excited and dove right into it.

With IronRuby, the .NET world and the Ruby world are now
connected. Th is enables endless new possibilities, and the benefi ts
of such a connection are nothing short of phenomenal.

In this article, I’m going to tell you about one of the benefi ts that’s
important to both .NET Framework and Ruby developers—you
can use IronRuby on Windows Phone 7.

What Is IronRuby?
In 2006, Microsoft announced the development of IronRuby. It
took more than three years to develop, and in April the IronRuby
team announced the fi rst stable version of IronRuby: version 1.0.

IronRuby supports the entire feature set of the Ruby language
with a unique addition: integration between Ruby code and .NET
Framework code. Th is integration is fairly seamless and requires
little more than loading a .NET Framework assembly to the
Ruby context. For example, this IronRuby code loads the
System.Windows.Forms assembly and takes advantage of its classes:

require 'System.Windows.Forms'

include System::Windows::Forms

form = Form.new
form.height = 200
form.width = 400
form.text = "IronRuby Window"
form.show_dialog

Th is integration is possible thanks to the Dynamic Language Run-
time (DLR), a layer added to the .NET Framework infrastructure
to provide common services to dynamic languages written on

GOING PLACES SHAY FRIEDMAN

Figure 1 Using the IronRuby Console

With IronRuby, the .NET
world and the Ruby world are

now connected.

This column is based on a prerelease version of Windows Phone 7.
All information is subject to change.

Code download available at code.msdn.microsoft.com/mag201009GoPlaces.

http://code.msdn.microsoft.com/mag201009GoPlaces

The industry leading UI components for Silverlight with
unmatched performance and pioneering support for Silverlight 4.

RadControls for

Silverlight

www.telerik.com/Silverlight
Europe HQ: +359.2.80.99.850 • US Sales: +1.888.365.2779 • Germany Sales: +49.89.8780687.70 e-mail: sales@telerik.com

Visual Studio
2010

FULL

support

Developer Productivity Tools | Automated Testing Tools I Team Productivity Tools | Web CMS

Untitled-1 1 8/3/10 10:46 AM

http://www.telerik.com/Silverlight
mailto:sales@telerik.com

msdn magazine18 Going Places

Th is code sample demonstrates the dynamic typing mechanism
in a few simple steps:

Declaring a numeric variable
a = 1

The variable is of a numeric type
and therefore numeric operations are available
a = a * 2 + 8 / 4

The next line will raise an exception
because it is not possible to add a string to a number
a = a + "hello"

However, the next line is entirely legit and will result
in changing the variable type to String
a = "Hello"

The Interactive Console Similar to the Windows command
prompt, the interactive console is an application that retrieves Iron-
Ruby code and immediately executes it. Th e execution fl ow is also
known as Read-Evaluate-Print-Loop (REPL). You can defi ne variables,
methods and even classes, load IronRuby fi les or .NET Framework
assemblies and use them instantly. For example, Figure 1 shows a
simple console session that creates a class and immediately uses it.
Duck Typing IronRuby is an object-oriented language. It sup-
ports classes, inheritance, encapsulation and access control, like
you’d expect from an object-oriented language. However, it doesn’t
support interfaces or abstract classes, like many static languages do.

Th is isn’t a fl aw in the language design, though. With dynamic
typing, declaring code contracts such as interfaces or abstract classes

becomes redundant. Th e only thing that matters about an object
is whether it defi nes a specifi c method or not, and there’s no need
to mark it when it does. Th is is known as duck typing—if it quacks
like a duck and it swims like a duck, it’s a duck, and there’s no need
to stamp it to consider it as a duck.

For example, the code sample in Figure 2 contains two classes
with a method named say_hi and another general method named
introduce that retrieves an object and executes its say_hi method.
(Notice the absence of interfaces or other marking mechanisms.)
Metaprogramming IronRuby comes with powerful metapro-
gramming capabilities. Metaprogramming is a way to add, change
and even remove methods during run time. For example, it’s possible
to add methods to a class, write methods that defi ne other methods
or remove method definitions from an existing class. Figure 3
adds a method to a class that’s refl ected to all current and future
instances of that class.

Moreover, there are special methods that can be used to catch calls
to undefi ned methods or constants. Using these methods makes it
easy to support dynamic method names such as fi nd_by_[column
name] where [column name] can be replaced with any value such
as fi nd_by_name, fi nd_by_city or fi nd_by_zipcode.
RubyGems Th e Ruby language, as powerful as it is, wouldn’t have
become such a huge success without the external libraries that can
be installed and used with it.

Th e main method of installing Ruby libraries is via the Ruby-
Gems system. It’s a package manager that helps distribute and
install Ruby libraries, which are called gems. Th ere are thousands
of free gems available, covering almost every programming aspect
and task, including testing frameworks, tax calculation libraries,
Web development frameworks and more.

You should be aware that some RubyGems depend on C libraries.
These gems can’t run on the current version of IronRuby unless
the C libraries are ported to plain Ruby or to C#.
The Community One of the best things about IronRuby is that
you get access to the Ruby community. Th is includes valuable content
in dozens of forums, mailing lists, chat rooms and blogs provided by
people who are willing to help with any question. Don’t hesitate to
take advantage of these resources; they’re extremely useful.

IronRuby and Silverlight
Silverlight 2 introduced a new and important feature: support for
DLR languages. As a result, developers can use IronRuby with
Silverlight applications, from incorporating it in the application to
writing entire Silverlight applications with it.

But wait, Silverlight is running on Windows Phone 7, right? Exactly.

Windows Phone 7
Th e next Microsoft mobile platform, Windows Phone 7, is expected
by some to become a game-changer in the smartphone industry. Apart
from the standard multi-touch capabilities and a shiny new UI, the
best news about Windows Phone 7 from a developer’s perspective is
that Silverlight is its development platform.

It’s a smart move by Microsoft to make use of a well-established
technology, thus enabling a large number of developers to create mo-
bile applications with an easy, almost unnoticeable, learning curve.

class Human
 def say_hi
 puts "Hi!"
 end
end
class Duck
 def say_hi
 puts "Quack!"
 end
end

def introduce(obj)
 obj.say_hi
end

human = Human.new
duck = Duck.new

introduce(human) # prints "Hi!"
introduce(duck) # prints "Quack!"

Figure 2 An Example of Duck Typing

Creating a class with no methods
class Demo
end

Creating an instance of class Demo
d = Demo.new

Opening the class and adding a new method - hello_world
class Demo
 def hello_world
 puts "hello world"
 end
end

Using the newly added method on the class instance
d.hello_world # prints "hello world"

Figure 3 Adding a Method to a Class After It Has Been Declared

ENTERPRISE

SNMP

POP

TCP

UDP

2IP

SSL

SFTP

SSH

HTTP

TELNET

EMULATION

FTPSMTP

WEB
UI

Internet Connectivity for the Enterprise

PowerSNMP for ActiveX and .NET
Create custom Manager, Agent and Trap applications with a set
of native ActiveX, .NET and Compact Framework components.
SNMPv1, SNMPv2, SNMPv3 (authentication/encryption) and
ASN.1 standards supported.

Since 1994, Dart has been a leading provider of high quality, high performance Internet connectivity components supporting a wide
range of protocols and platforms. Dart’s three product lines offer a comprehensive set of tools for the professional software developer.

PowerWEB for ASP.NET
AJAX enhanced user interface controls for responsive ASP.NET
applications. Develop unique solutions by including streaming file
upload and interactive image pan/zoom functionality within a page.

Download a fully functional product trial today!
Ask us about Mono Platform support. Contact sales@dart.com.

PowerTCP for ActiveX and .NET
Add high performance Internet connectivity to your ActiveX, .NET
and Compact Framework projects. Reduce integration costs with
detailed documentation, hundreds of samples and an expert
in-house support staff.

SSH
UDP
TCP
SSL

FTP
SFTP
HTTP
POP

SMTP
IMAP
S/MIME
Ping

DNS
Rlogin
Rsh
Rexec

Telnet
VT Emulation
ZIP Compression
more...

Untitled-1 1 1/11/10 11:10 AM

mailto:sales@dart.com
www.dart.com
www.dart.com

msdn magazine20 Going Places

Because DLR languages are capable of running within the
Silverlight environment, you can take advantage of IronRuby and
use it to write Windows Phone 7 applications.

However, there are some limitations you should be aware of.
Windows Phone 7 comes with the .NET Compact Framework,
which is a subset of the .NET Framework. Th e Compact Framework
is designed for mobile and embedded applications and contains
approximately 30 percent of the full .NET Framework. Consequently,
numerous classes are missing, and this aff ects how IronRuby works.

The main missing feature that affects IronRuby is the
Refl ect ion.Emit name space. IronRuby uses this feature to compile
code on the fl y to make applications run faster. However, it’s only
a performance optimization and not a component necessary for
running simple scripts and applications.

Another limitation concerns the way new Windows Phone 7
applications are created. Such applications can be created only from
Visual Studio and only in C#. Th is requirement forces developers
to write code in C# that initiates the IronRuby code.

Th e last important limitation is that RubyGems won’t work on
Windows Phone 7. Hence, to use a gem, you have to include its
code fi les within the application fi les and use them as any other
IronRuby code fi les.

Building a Simple IronRuby Application
on Windows Phone 7
To start an IronRuby-driven Windows Phone 7 application, you
fi rst need to install the Windows Phone 7 Developer Tools, which
can be downloaded from developer.windowsphone.com.

Aft er the tools are installed, open Visual Studio and go to File |
New | Project. In the New Project dialog select the “Silverlight for

Windows Phone” category and then choose the “Windows Phone
Application” project template. Name it and continue.

As soon as the new project opens, you’ll notice that a simple
XAML fi le has been created for you. Note that XAML is required
for Silverlight in general and isn’t language-dependent. Th erefore,
even though the application code will be written in IronRuby, you
must use XAML to create the UI. In this simple application, the
default XAML fi le is enough, so no changes need to be made here.

Th e interesting part of this simple application is the code. Before
we dive into that, however, we need to add references to the Iron-
Ruby and DLR assemblies. Th ese assemblies aren’t the regular ones;
we need the Windows Phone 7-ready assemblies, which you can
retrieve from ironruby.codeplex.com/releases/view/43540#DownloadId=133276.
Yo u’ll fi nd the needed assemblies inside the silverlight/bin folder
in the downloaded package.

Next, we need to write the IronRuby code. Add a new text fi le
to the application and name it MainPage.rb. In addition, to ease
the deployment to the phone, open the properties of this fi le and
change the “Build Action” property to “Embedded Resource.”

Th en paste the code from Figure 4 into the fi le.
Th e IronRuby code in Figure 4 is pretty straightforward; we set the

titles, create a text block with some text and add it to the page. Note
that you can use everything in the Ruby language (not done here), such
as classes, metaprogramming and libraries, with the aforementioned
limitations of running within the Windows Phone environment.

Now all that’s left is to actually execute the IronRuby code. To do
so when the application loads, the code from Figure 5 should be
added to the MainPage class constructor, which is located inside
the MainPage.xaml.cs fi le.

Th e code in Figure 5 is fairly short and gracefully demonstrates
how easy it is to run IronRuby code from C# code.

In addition, make sure to add these using statements to the class:
using System.Reflection;
using System.IO;
using Microsoft.Scripting.Hosting;
using IronRuby;

Th e third line of code in Figure 5 loads the System.Windows.Media
assembly into the IronRuby context, which enables the code to inter-
operate with this assembly’s classes and enums.

Include namespaces for ease of use
include System::Windows::Media
include System::Windows::Controls

Set the titles
Phone.find_name("ApplicationTitle").text = "MSDN Magazine"
Phone.find_name("PageTitle").text = "IronRuby& WP7"

Create a new text block
textBlock = TextBlock.new
textBlock.text = "IronRuby is running on Windows Phone 7!"
textBlock.foreground = SolidColorBrush.new(Colors.Green)
textBlock.font_size = 48
textBlock.text_wrapping = System::Windows::TextWrapping.Wrap

Add the text block to the page
Phone.find_name("ContentGrid").children.add(textBlock)

Figure 4 IronRuby Code File to Run on Windows Phone 7

// Allow both portrait and landscape orientations
SupportedOrientations = SupportedPageOrientation.PortraitOrLandscape;

// Create an IronRuby engine and prevent compilation
ScriptEngine engine = Ruby.CreateEngine();

// Load the System.Windows.Media assembly to the IronRuby context
engine.Runtime.LoadAssembly(typeof(Color).Assembly);

// Add a global constant named Phone, which will allow access to this class
engine.Runtime.Globals.SetVariable("Phone", this);

// Read the IronRuby code
Assembly execAssembly = Assembly.GetExecutingAssembly();
Stream codeFile =
 execAssembly.GetManifestResourceStream("SampleWPApp.MainPage.rb");
string code = new StreamReader(codeFile).ReadToEnd();

// Execute the IronRuby code
engine.Execute(code);

Figure 5 Adding Code to Execute IronRuby Code from the
Class Constructor

The feature that makes IronRuby
stand out from the crowd is the
ability to conveniently interact
with .NET Framework objects.

http://developer.windowsphone.com
http://ironruby.codeplex.com/releases/view/43540#DownloadId=133276

msdnmagazine.com

The next line allows the IronRuby code to access the current
Silverlight page. Th is line exposes the current instance (this) to the
IronRuby code via a constant named Phone.

Th e rest of the code reads the IronRuby code from the embedded
fi le (note that the application namespace should be added to the
fi le name, so MainPage.rb becomes SampleWPApp.MainPage.rb)
and then executes it using the engine instance.

And that’s it. We’ve created an application that, once loaded, runs
IronRuby, which, in turn, changes the titles and adds a text block
to the Silverlight page. All that’s left is to run the application, and
the result is shown in Figure 6.

Getting Better All the Time
Even though the workfl ow isn’t perfect when using IronRuby on
Windows Phone 7, and you need to keep the various limitations in
mind, this is only the beginning. Th e IronRuby and Windows Phone
7 platforms are both new and they’re getting better all the time.

Th is combination opens up many possibilities, to both .NET
Framework developers and Ruby developers. Now, .NET developers
can take advantage of the incredible power of the Ruby language
when writing Windows Phone 7 applications, such as incorporating
an IronRuby console into their apps or providing extensibility
capabilities. And Ruby developers, on the other end, can—for the
fi rst time—write mobile applications using their language.

This is, without a doubt, the dawn of a brave new world with
a lot of opportunities and possibilities. And it’s all in the palm of
your hands.

SHAY FRIEDMAN is a Microsoft Visual C#/IronRuby MVP and the author of
“IronRuby Unleashed” (Sams, 2010). He’s working as a dynamic languages leader
in Sela Group where he consults and conducts courses around the world. Read
his blog at IronShay.com.

THANKS to the following technical expert for reviewing this article:
Tomas Matousek

Figure 6 An IronRuby-Driven Application Running
on Windows Phone 7

The IronRuby and Windows Phone 7
platforms are both new and

they’re getting better all the time.

www.scaleoutsoftware.com
www.msdnmagazine.com
http://IronShay.com

Untitled-4 2 8/4/10 5:20 PM

www.xceed.com

Untitled-4 3 8/4/10 5:19 PM

www.xceed.com

msdn magazine24

A S YN C TASKS

Simplify Asynchronous
Programming with Tasks

Asynchronous programming is a collection of tech-
niques for implementing expensive operations that run concurrently
with the rest of the program. One domain where asynchronous
programming oft en comes up is in the context of programs with
a graphical UI: It’s generally unacceptable to freeze the UI while
an expensive operation completes. Also, asynchronous operations
are important for server applications that need to handle multiple
client requests concurrently.

Representative examples of asynchronous operations that come
up in practice include sending a request to a server and waiting
for a response, reading data from the hard disk and running an
expensive computation such as a spell check.

Consider the example of an application with a UI. Th e app
could be built with Windows Presentation Foundation (WPF)
or Windows Forms. In such an application, most of your code
executes on the UI thread because it executes the event handlers

Igor Ostrovsky

for events that originate from the UI controls. When the user clicks
a button, the UI thread will pick up the message, and execute your
Click event handler.

Now, imagine that in the Click event handler, your application
sends a request to a server and waits for a response:

// !!! Bad code !!!
void Button_Click(object sender, RoutedEventArgs e) {
 WebClient client = new WebClient();
 client.DownloadFile("http://www.microsoft.com", "index.html");
}

Th ere’s a major problem in this code: downloading a Web site can
take several seconds or longer. In turn, the call to Button_Click can take
several seconds to return. Th at means the UI thread will be blocked
for several seconds and the UI will be frozen. A frozen interface makes
for a poor user experience and is almost always unacceptable.

To keep the application UI responsive until the server responds,
it’s important that the download isn’t a synchronous operation
on the UI thread.

Let’s try to fix the problem of the frozen UI. One possible
(but suboptimal) solution is to communicate with the server on
a diff erent thread so the UI thread remains unblocked. Here’s an
example that uses a thread-pool thread to talk to the server:

// Suboptimal code
void Button_Click(object sender, RoutedEventArgs e) {
 ThreadPool.QueueUserWorkItem(_ => {
 WebClient client = new WebClient();
 client.DownloadFile(
 "http://www.microsoft.com", "index.html");
 });
}

This article discusses:
• Problems with threaded operations

• Event pattern

• IAsyncResult pattern

• Task pattern

Technologies discussed:
Microsoft .NET Framework 4

25September 2010msdnmagazine.com

Th is code sample fi xes the problem of the fi rst version: now the
Button_Click event does not block the UI thread, but the thread-
based solution has three signifi cant problems. Let’s take a closer
look at these problems.

Problem 1: Wasted Thread-Pool Threads
Th e fi x I just demonstrated uses a thread from the thread pool to
send a request to the server and waits until the server responds.

Th e thread-pool thread is going to sit around blocked until the
server responds. Th e thread cannot be returned to the pool until the
call to WebClient.DownloadFile completes. Blocking a thread-pool
thread is much better than blocking the UI thread because the UI
will not freeze, but it does waste one thread from the thread pool.

If your application occasionally blocks a thread-pool thread for a
while, the performance penalty may be negligible. But if your appli-
cation does it a lot, its responsiveness can degrade due to pressure on
the thread pool. Th e thread pool will attempt to cope by creating more
threads, but that comes at a noticeable performance cost.

All other patterns of asynchronous programming presented in
this article fi x the problem of wasted thread-pool threads.

Problem 2: Returning the Result
There’s another difficulty with using threads for asynchronous
programming: returning a value from the operation that executed
on the helper thread gets a little messy.

In the initial example, the DownloadFile method writes the down-
loaded Web page into a local fi le, and so it has a void return value.
Consider a diff erent version of the problem—instead of writing the
downloaded Web page into a fi le, you want to assign the received
HTML into the Text property of a TextBox (named HtmlTextBox).

A naïve—and wrong—way to implement this would be as follows:
// !!! Broken code !!!
void Button_Click(object sender, RoutedEventArgs e) {
 ThreadPool.QueueUserWorkItem(_ => {
 WebClient client = new WebClient();
 string html = client.DownloadString(
 "http://www.microsoft.com", "index.html");
 HtmlTextBox.Text = html;
 });
}

The problem is that a UI control—HtmlTextBox—is getting
modifi ed from a thread-pool thread. Th at’s an error because only
the UI thread is allowed to modify the UI. Th is restriction is present
in both WPF and Windows Forms, for very good reasons.

To fi x this issue, you can capture the synchronization context on
the UI thread and then post a message to it on the thread-pool thread:

void Button_Click(object sender, RoutedEventArgs e) {
 SynchronizationContext ctx = SynchronizationContext.Current;
 ThreadPool.QueueUserWorkItem(_ => {
 WebClient client = new WebClient();
 string html = client.DownloadString(
 "http://www.microsoft.com");
 ctx.Post(state => {
 HtmlTextBox.Text = (string)state;
 }, html);
 });
}

It’s important to recognize that the problem of returning a value
from a helper thread is not limited to applications with UIs. In
general, returning a value from one thread to another is a tricky
issue that requires usage of synchronization primitives.

Problem 3: Composing Asynchronous Operations
Explicitly working with threads also makes it diffi cult to compose
asynchronous operations. For example, to download multiple Web
pages in parallel, the synchronization code gets even more diffi cult
to write and more error-prone.

Such an implementation would maintain a counter of asynchro-
nous operations that are still executing. Th e counter would have
to be modifi ed in a thread-safe manner, say by using Interlocked.
Decrement. Once the counter reaches zero, the code that processes
the downloads would execute. All of this results in a non-trivial
amount of code that’s easy to get wrong.

Needless to say, a more complicated composition pattern would
become even more diffi cult to implement correctly using the
thread-based pattern.

Event-Based Pattern
One common pattern for asynchronous programming with the
Microsoft .NET Framework is the event-based model. Th e event
model exposes a method to start the asynchronous operation and
raises an event when the operation completes.

Th e event pattern is a convention for exposing asynchronous op-
erations, but it’s not an explicit contract, such as via an interface. Th e
class implementer can decide how faithfully to follow the pattern.
Figure 1 shows an example of methods exposed by a correct imple-
mentation of the event-based asynchronous programming pattern.

WebClient is one class in the .NET Framework that implements
asynchronous operations via the event-based pattern. To provide
an asynchronous variant of the DownloadString method, WebCli-
ent exposes the DownloadStringAsync and CancelAsync methods,
and the DownloadStringCompleted event. Th is is how our sample
would be implemented in an asynchronous way:

void Button_Click(object sender, RoutedEventArgs e) {
 WebClient client = new WebClient();
 client.DownloadStringCompleted += eventArgs => {
 HtmlTextBox.Text = eventArgs.Result;
 };
 client.DownloadStringAsync("http://www.microsoft.com");
}

Th is implementation resolves Problem 1 of the ineffi cient thread-
based solution: unnecessary blocking of threads. Th e call to Down-

public class AsyncExample {
 // Synchronous methods.
 public int Method1(string param);
 public void Method2(double param);

 // Asynchronous methods.
 public void Method1Async(string param);
 public void Method1Async(string param, object userState);
 public event Method1CompletedEventHandler Method1Completed;

 public void Method2Async(double param);
 public void Method2Async(double param, object userState);
 public event Method2CompletedEventHandler Method2Completed;

 public void CancelAsync(object userState);

 public bool IsBusy { get; }

 // Class implementation not shown.
 ...
}

Figure 1 Methods for an Event-Based Pattern

www.msdnmagazine.com

msdn magazine26 Async Tasks

loadStringAsync returns immediately and does not block either the
UI thread or a thread-pool thread. Th e download executes in the
background and once it’s fi nished, the DownloadStringCompleted
event will be executed on the appropriate thread.

Note that the DownloadStringCompleted event handler executes
on the appropriate thread, without the need for the Synchronization-
Context code I needed in the thread-based solution. Behind the scenes,
WebClient automatically captures the SynchronizationContext and
then posts the callback to the context. Classes that implement the
event-based pattern will generally ensure that the Completed han-
dler executes on the appropriate thread.

Th e event-based asynchronous programming pattern is effi cient
from the perspective of not blocking more threads than is necessary,
and it’s one of the two patterns broadly used across the .NET Frame-
work. However, the event-based pattern has several limitations:

• Th e pattern is informal and by convention only—classes can
deviate from it.

• Multiple asynchronous operations can be quite difficult to
compose, such as handling asynchronous operations launched
in parallel, or handling a sequence of asynchronous operations.

• You cannot poll and check whether the asynchronous
operation is done.

• Great care must be taken when utilizing these types. For ex-
ample, if one instance is used to handle multiple asynchronous
operations, a registered event handler must be coded to handle
only the one asynchronous operation it’s targeting, even if it’s
invoked multiple times.

• Event handlers will always be invoked on the Synchroniza-
tionContext captured when the asynchronous operation was
launched, even if executing on the UI thread is unnecessary,
leading to additional performance costs.

• It can be diffi cult to implement well and requires defi ning mul-
tiple types (for example, event handlers or event arguments).

Figure 2 lists several examples of .NET Framework 4 classes that
implement the event-based asynchronous pattern.

IAsyncResult Pattern
Another convention for implementing asynchronous operations
in .NET is the IAsyncResult pattern. Compared to the event-based
model, IAsyncResult is a more advanced solution to asynchro-
nous programming.

In the IAsyncResult pattern, an asynchronous operation is
exposed using Begin and End methods. You call the Begin method
to initiate the asynchronous operation, and pass in a delegate that
will be called when the operation completes. From the callback, you
call the End method, which returns the result of the asynchronous
operation. Alternatively, instead of providing a callback, you can poll
whether the operation has completed, or synchronously wait on it.

As an example, consider the Dns.GetHostAddresses method
that accepts a hostname and returns an array of IP addresses
that the hostname resolves to. Th e signature of the synchronous
version of the method looks like this:

public static IPAddress[] GetHostAddresses(
 string hostNameOrAddress)
The asynchronous version of the method is exposed as follows:
public static IAsyncResult BeginGetHostAddresses(
 string hostNameOrAddress,
 AsyncCallback requestCallback,
 Object state)

public static IPAddress[] EndGetHostAddresses(
 IAsyncResult asyncResult)

Here’s an example that uses the BeginGetHostAddresses and
EndGetHostAddresses methods to asynchronously query DNS
for the address www.microsoft .com:

static void Main() {
 Dns.BeginGetHostAddresses(
 "www.microsoft.com",
 result => {
 IPAddress[] addresses = Dns.EndGetHostAddresses(result);
 Console.WriteLine(addresses[0]);
 },
 null);
 Console.ReadKey();
}

Figure 3 lists several .NET classes that implement an asyn-
chronous operation using the event-based pattern. By comparing
Figures 2 and 3, you’ll notice that some classes implement the

Class Operation
System.Activities.Workfl owInvoker InvokeAsync
System.ComponentModel.BackgroundWorker RunWorkerAsync
System.Net.Mail.SmtpClient SendAsync
System.Net.NetworkInformation.Ping SendAsync
System.Net.WebClient DownloadStringAsync

Figure 2 Examples of the Event-Based
Asynchronous Pattern in .NET Classes

Class Operation
System.Action BeginInvoke
System.IO.Stream BeginRead
System.Net.Dns BeginGetHostAddresses
System.Net.HttpWebRequest BeginGetResponse
System.Net.Sockets.Socket BeginSend
System.Text.RegularExpressions.MatchEvaluator BeginInvoke
System.Data.SqlClient.SqlCommand BeginExecuteReader
System.Web.DefaultHttpHandler BeginProcessRequest

Figure 3 Examples of IAsyncResult in .NET Classes

static void Main() {
 // Construct a TaskCompletionSource and get its
 // associated Task
 TaskCompletionSource<int> tcs =
 new TaskCompletionSource<int>();
 Task<int> task = tcs.Task;

 // Asynchronously, call SetResult on TaskCompletionSource
 ThreadPool.QueueUserWorkItem(_ => {
 Thread.Sleep(1000); // Do something
 tcs.SetResult(123);
 });

 Console.WriteLine(
 "The operation is executing asynchronously...");
 task.Wait();

 // And get the result that was placed into the task by
 // the TaskCompletionSource
 Console.WriteLine("The task computed: {0}", task.Result);
}

Figure 4 Using TaskCompletionSource

DynamicPDF Viewer
O u r n e w, c u s t o m i z a b l e

DynamicPDF Viewer allows you
to display PDF documents within

any WinForm application. No longer
rely on an external viewer for displaying

your PDF documents. DynamicPDF Viewer
utilizes the proven reliable and efficient

Foxit PDF viewing engine and maximizes
performance and compatibility with our other

DynamicPDF products.

DynamicPDF Converter
Our DynamicPDF Converter library can efficiently

convert over 30 document types (including HTML and
all common Office file formats) to PDF. Events can be

used to manage the action taken on a successful or failed
conversion. It is highly intuitive and flexible and

integrates well with our other DynamicPDF products.

DynamicPDF Rasterizer
Our DynamicPDF Rasterizer library can quickly convert PDF
documents to over 10 common image formats including
multi-page TIFF. Rasterizing form field values as well as
annotations is fully supported. PDFs can also be rasterized
to a System.Drawing.Bitmap class for further manipulation.

To learn more about these or any of our other popular tools:
DynamicPDF Generator, DynamicPDF Merger, DynamicPDF ReportWriter,
DynamicPDF Suite, DynamicPDF WebCache or Firemail, visit us online.

ceTe Software has been delivering quality software applications and components to our customers for over 10 years. Our
DynamicPDF product line has proven our commitment to delivering innovative software components and our ability to
respond to the changing needs of software developers. We back our products with a first class support team trained to
provide timely, accurate and thorough responses to any support needs.

Try our three
new products
FREE today!

Fully functional and never
expiring evaluation

editions available at
www.cete.com/download

Project1 10/30/09 1:28 PM Page 1

http://www.cete.com/download
www.cete.com

msdn magazine28 Async Tasks

event-based pattern, some implement the IAsyncResult pattern,
and some implement both.

From a historic perspective, the IAsyncResult pattern was
introduced in the .NET Framework 1.0 as a high-performance
approach to implementing asynchronous APIs. However, it
requires additional work to interact with the UI thread, it’s diffi cult
to implement correctly and it can be diffi cult to consume. Th e
event-based pattern was introduced in the .NET Framework 2.0
to ease the UI-aspects left unaddressed by IAsyncResult, and is
focused mostly on scenarios where a UI application launches a
single asynchronous application and then works with it.

Task Pattern
A new type, System.Th reading.Tasks.Task, was introduced in the
.NET Framework 4 as a way to represent asynchronous operations. A
Task can represent an ordinary computation that executes on a CPU:

static void Main() {
 Task<double> task = Task.Factory.StartNew(() => {
 double result = 0;
 for (int i = 0; i < 10000000; i++)
 result += Math.Sqrt(i);
 return result;
 });

 Console.WriteLine(“The task is running asynchronously...”);
 task.Wait();
 Console.WriteLine(“The task computed: {0}”, task.Result);
}

Tasks created using the StartNew method correspond to Tasks
that execute code on the thread pool by default. However, Tasks
are more general and can represent arbitrary asynchronous opera-
tions—even those that correspond to, say, communication with a
server or reading data from the disk.

TaskCompletionSource is the general mechanism for creating
Tasks that represent asynchronous operations. TaskCompletion-
Source is associated with exactly one task. Once the SetResult
method is called on the TaskCompletionSource, the associated
Task completes, returning the result value of the Task (see Figure 4).

Here I use a thread-pool thread to call SetResult on the Task-
CompletionSource. However, an important point to notice is that
the SetResult method could be called by any code that has access to
the TaskCompletionSource—an event handler for a Button.Click
event, a Task that completed some computation, an event raised
because a server responded to a request, and so forth.

So, the TaskCompletionSource is a very general mechanism for
implementing asynchronous operations.

Converting an IAsyncResult Pattern
To use Tasks for asynchronous programming, it’s important to be
able to interoperate with asynchronous operations exposed using
the older models. While TaskCompletionSource can wrap any
asynchronous operation and expose it as a Task, the Task API
provides a convenient mechanism to convert an IAsyncResult
pattern to a Task: the FromAsync method.

Th is example uses the FromAsync method to convert the IAsync-
Result-based asynchronous operation Dns.BeginGetHost-
Addresses into a Task:

static void Main() {
 Task<IPAddress[]> task =
 Task<IPAddress[]>.Factory.FromAsync(
 Dns.BeginGetHostAddresses,
 Dns.EndGetHostAddresses,
 "http://www.microsoft.com", null);
 ...
}

FromAsync makes it easy to convert IAsyncResult asynchronous
operations to tasks. Under the covers, FromAsync is implemented
in a manner similar to the example for TaskCompletionSource
utilizing the Th readPool. Here’s a simple approximation of how
it’s implemented, in this case targeting GetHostAddresses directly:

static Task<IPAddress[]> GetHostAddressesAsTask(
 string hostNameOrAddress) {

 var tcs = new TaskCompletionSource<IPAddress[]>();
 Dns.BeginGetHostAddresses(hostNameOrAddress, iar => {
 try {
 tcs.SetResult(Dns.EndGetHostAddresses(iar)); }
 catch(Exception exc) { tcs.SetException(exc); }
 }, null);
 return tcs.Task;
}

Converting an Event-Based Pattern
Event-based asynchronous operations can also be converted to
Tasks using the TaskCompletionSource class. Th e Task class does
not provide a built-in mechanism for this conversion—a general

static void Main() {
 string[] urls = new[] { "www.microsoft.com", "www.msdn.com" };
 Task<IPAddress[]>[] tasks = new Task<IPAddress[]>[urls.Length];

 for(int i=0; i<urls.Length; i++) {
 tasks[i] = Task<IPAddress[]>.Factory.FromAsync(
 Dns.BeginGetHostAddresses,
 Dns.EndGetHostAddresses,
 urls[i], null);
 }

 Task.WaitAll(tasks);

 Console.WriteLine(
 "microsoft.com resolves to {0} IP addresses. msdn.com resolves to
{1}",
 tasks[0].Result.Length,
 tasks[1].Result.Length);
}

Figure 5 Running Operations in Parallel

static void Main() {
 Task<string> page1Task = DownloadStringAsTask(
 new Uri("http://www.microsoft.com"));
 Task<string> page2Task = DownloadStringAsTask(
 new Uri("http://www.msdn.com"));

 Task<int> count1Task =
 page1Task.ContinueWith(t => CountParagraphs(t.Result));
 Task<int> count2Task =
 page2Task.ContinueWith(t => CountParagraphs(t.Result));

 Task.Factory.ContinueWhenAll(
 new[] { count1Task, count2Task },
 tasks => {
 Console.WriteLine(
 "<P> tags on microsoft.com: {0}",
 count1Task.Result);
 Console.WriteLine(
 "<P> tags on msdn.com: {0}",
 count2Task.Result);
 });

 Console.ReadKey();
}

Figure 6 Downloading Strings Asynchronously

Project3 12/16/09 11:55 AM Page 1

www.nsoftware.com

msdn magazine30 Async Tasks

mechanism is impractical because the event-based asynchronous
pattern is a convention only.

Here’s how to convert an event-based asynchronous operation
into a task. The code sample shows a method that takes a Uri
and returns a Task that represents the asynchronous operation
WebClient.DownloadStringAsync:

static Task<string> DownloadStringAsTask(Uri address) {
 TaskCompletionSource<string> tcs =
 new TaskCompletionSource<string>();
 WebClient client = new WebClient();
 client.DownloadStringCompleted += (sender, args) => {
 if (args.Error != null) tcs.SetException(args.Error);
 else if (args.Cancelled) tcs.SetCanceled();
 else tcs.SetResult(args.Result);
 };
 client.DownloadStringAsync(address);
 return tcs.Task;
}

Using this pattern and the pattern in the previous section, you
can convert any existing asynchronous pattern—event-based or
IAsyncResult-based—into a Task.

Manipulating and Composing Tasks
So, why would you use Tasks to represent asynchronous operations?
Th e main reason is that Tasks expose methods to conveniently
manipulate and compose asynchronous operations. Unlike both the
IAsyncResult and event-based approaches, a Task provides a single
object that maintains all relevant information about the asynchro-
nous operation, how to join with it, how to retrieve its result and so on.

One useful thing you can do with a Task is to wait until it
completes. You can wait on one Task, wait until all Tasks in a set
complete, or wait until any Task in a set completes.

static void Main() {
 Task<int> task1 = new Task<int>(() => ComputeSomething(0));
 Task<int> task2 = new Task<int>(() => ComputeSomething(1));
 Task<int> task3 = new Task<int>(() => ComputeSomething(2));

 task1.Wait();
 Console.WriteLine("Task 1 is definitely done.");

 Task.WaitAny(task2, task3);
 Console.WriteLine("Task 2 or task 3 is also done.");

 Task.WaitAll(task1, task2, task3);
 Console.WriteLine("All tasks are done.");
}

Another useful capability of Tasks is the ability to schedule con-
tinuations: Tasks that execute as soon as another Task completes.
Similar to waiting, you can schedule continuations that run when
a particular Task completes, when all Tasks in a set complete or
when any Task in a set completes.

Th is example creates a task that will query DNS for the address
www.microsoft .com. Once that task completes, the continuation
task is kicked-off and will print the result to the console:

static void Main() {
 Task<IPAddress[]> task =
 Task<IPAddress[]>.Factory.FromAsync(
 Dns.BeginGetHostAddresses,
 Dns.EndGetHostAddresses,
 "www.microsoft.com", null);

 task.ContinueWith(t => Console.WriteLine(t.Result));
 Console.ReadKey();
}

Let’s take a look at more interesting examples that show off the
power of the task as a representation of an asynchronous opera-
tion. Figure 5 shows an example that runs two DNS lookups in

parallel. When the asynchronous operations are represented as
tasks, it’s easy to wait until multiple operations have completed.

Let’s take a look at another example of composing tasks that takes
the following three steps:
1. Asynchronously download multiple HTML pages in parallel
2. Process the HTML pages
3. Aggregate the information from the HTML pages

Figure 6 shows how such computation would be implemented,
by taking advantage of the DownloadStringAsTask method shown
earlier in this article. One notable benefi t of this implementation is
that the two diff erent CountParagraphs methods execute on diff er-
ent threads. Given the prevalence of multi-core machines today, a
program that spreads its computationally expensive work across
multiple threads will get a performance benefi t.

Running Tasks in a Synchronization Context
Sometimes it’s useful to be able to schedule a continuation that
will run in a particular synchronization context. For example, in
applications with a UI, it’s oft en useful to be able to schedule a
continuation that will execute on the UI thread.

Th e easiest way to have a Task interact with a synchronization
context is to create a TaskScheduler that captures the context of the
current thread. To get a TaskScheduler for the UI thread, invoke
the FromCurrentSynchronizationContext static method on the
TaskScheduler type while running on the UI thread.

Th is example asynchronously downloads the www.microsoft .
com Web page and then assigns the downloaded HTML into the
Text property of a WPF text box:

void Button_Click(object sender, RoutedEventArgs e) {
 TaskScheduler uiTaskScheduler =
 TaskScheduler.FromCurrentSynchronizationContext()

 DownloadStringAsTask(new Uri("http://www.microsoft.com"))
 .ContinueWith(
 t => { textBox1.Text = t.Result; },
 uiTaskScheduler);
}

Th e body of the Button_Click method will set up the asynchro-
nous computation that eventually updates the UI, but Button_Click
does not wait until the computation completes. Th at way, the UI
thread will not be blocked, and can continue updating the user
interface and responding to user actions.

As I mentioned previously, prior to the .NET Framework 4,
asynchronous operations were typically exposed using either the
IAsyncResult pattern or the event-based pattern. With the .NET
Framework 4, you can now employ the Task class as another use-
ful representation of asynchronous operations. When represented
as tasks, asynchronous operations are oft en easier to manipulate
and compose. More examples on using tasks for asynchronous
programming are included in the ParallelExtensionsExtras samples,
available for download at code.msdn.microsoft.com/ParExtSamples.

IGOR OSTROVSKY is a soft ware development engineer on the Parallel Computing
Platform team at Microsoft . Ostrovsky documents his adventures in program-
ming at igoro.com and contributes to the Parallel Programming with .NET blog at
blogs.msdn.com/pfxteam.

THANKS to the following technical experts for reviewing this article:
Concurrency Runtime team

http://code.msdn.microsoft.com/ParExtSamples
http://blogs.msdn.com/pfxteam

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics and the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc.

At Infragistics, we make sure our NetAdvantage for
.NET controls make every part of your User Interface
the very best it can be. That’s why we’ve tested and
re-tested to make sure our Data Grids are the very
fastest grids on the market and our Data Charts
outperform any you’ve ever experienced. Use our
controls and not only will you get the fastest load
times, but your apps will always look good too. Fast
and good-looking…that’s a killer app. Try them for
yourself at infragistics.com/wow.

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055
Infragistics India +91-80-6785-1111
twitter.com/infragistics

Fast Data Chart

WPF Grid

Silverlight Grid

ASP.NET Grid

Untitled-12 1 4/9/10 2:27 PM

www.infragistics.com/wow

msdn magazine32

CON CUR R ENC Y

Throttling Concurrency
in the CLR 4.0 ThreadPool

The CLR ThreadPool in the latest release (CLR 4.0) has seen
several major changes since CLR 2.0. Th e recent shift in technol-
ogy trends, such as the widespread use of manycore architectures
and the resulting desire to parallelize existing applications or write
new parallel code, has been one of the biggest motivating factors
in the improvement of the CLR Th readPool.

In the December 2008 MSDN Magazine CLR Inside Out column,
“Thread Management in the CLR” (msdn.microsoft.com/magazine/
dd252943), I discussed some of the motivations and associated
issues such as concurrency control and noise. Now I’ll describe how
we’ve addressed these in the CLR 4.0 Th readPool, the associated
implementation choices and how these can impact its behavior. Also,
I’ll focus on the approach taken toward automating concurrency
control in the current CLR 4.0 Th readPool (hereaft er referred to only
as Th readPool for convenience). I will also give a brief outline of the
Th readPool architecture. Th is article covers implementation details
subject to change in future versions. However, those readers design-
ing and writing new concurrent applications who are interested in
improving old applications by taking advantage of concurrency, or
making use of ASP.NET or Parallel Extension technologies (all in the
context of CLR 4.0), may fi nd this material useful to understand and
take advantage of current Th readPool behavior.

Overview of the ThreadPool
A thread pool is meant to provide key services such as thread
management, abstractions for diff erent types of concurrency and

Erika Fuentes

throttling of concurrent operations. By providing these services, a
thread pool takes away some burden from the user to do it manually.
For the inexperienced user, it’s convenient not having to learn and
deal with the details of a multi-threaded environment. For the more
experienced user, having a reliable threading system means that
she can focus on improving diff erent aspects of the application.
Th e Th readPool provides these services for managed applications
and support for portability across platforms, running certain
Microsoft .NET Framework applications on the Mac OS, for example.

Th ere are diff erent types of concurrency that can be related to various
parts of the system. Th e most relevant are: CPU parallelism, I/O paral-
lelism; timers and synchronization; and load balancing and resource
utilization. We can briefl y outline the architecture of the Th readPool
in terms of the diff erent aspects of concurrency (for more details on
the Th readPool architecture and related APIs usage, see “Th e CLR’s
Th read Pool” (msdn.microsoft.com/magazine/cc164139). Specifi cally, it’s worth
mentioning that there are two independent implementations of the
Th readPool: one deals with CPU parallelism and is referred to as the
worker Th readPool; the other deals with I/O Parallelism and can be
dubbed I/O Th readPool. Th e next section will focus on CPU parallel-
ism and the associated implementation work in the Th readPool—in
particular, on strategies for throttling concurrency.
The Worker ThreadPool Designed to provide services at the
level of CPU parallelism, the worker Th readPool takes advantage
of multi-core architectures. Th ere are two main considerations for
CPU parallelism: dispatching work quickly and optimally; and
throttling the degree of parallelism. For the former, the Th readPool
implementation makes use of strategies such as lock-free queues to
avoid contention and work-stealing for load balancing, areas that
are out of the scope of this discussion (see msdn.microsoft.com/ magazine/
cc163340 for more insight on these topics). Th e latter—throttling
the degree of parallelism—entails concurrency control to prevent
resource contention from slowing down overall throughput.

CPU parallelism can be particularly challenging because it
involves many parameters, such as determining how many work
items can be run simultaneously at any given time. Another

This article discusses:
• The CLR 4.0 ThreadPool

• Concurrency in the ThreadPool

• Methodologies for throttling concurrency

• Signal processing to reduce noise

Technologies discussed:
 CLR 4.0

http://msdn.microsoft.com/magazine/dd252943
http://msdn.microsoft.com/magazine/dd252943
http://msdn.microsoft.com/magazine/cc164139
http://msdn.microsoft.com/magazine/cc163340
http://msdn.microsoft.com/magazine/cc163340

(888) 850-9911
Sales Hotline - US & Canada:

/update/2010/09

US Headquarters
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2010 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters
ComponentSource
30 Greyfriars Road
Reading
Berkshire
RG1 1PE
United Kingdom

Asia / Pacific Headquarters
ComponentSource
3F Kojimachi Square Bldg
3-3 Kojimachi Chiyoda-ku
Tokyo
Japan
102-0083 www.componentsource.com

www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

ContourCube from $900.00
OLAP component for interactive reporting and data analysis.

BEST SELLER

BEST SELLER TX Text Control .NET and .NET Server from $499.59
Word processing components for Visual Studio .NET.

BEST SELLER

FusionCharts from $195.02
Interactive and animated charts for ASP and ASP.NET apps.

BEST SELLER

BEST SELLER LEADTOOLS Recognition SDK from $3,595.50
Add robust 32/64 bit document imaging & recognition functionality into your applications.

BEST SELLER

Untitled-1 1 8/3/10 10:44 AM

http://www.componentsource.com

msdn magazine34 Concurrency

problem is the number of cores and how to tune for diff erent types
of workloads. For example, having one thread per CPU is optimal
(in theory), but if the workload is constantly blocking, then CPU
time is wasted because more threads could be used to execute more
work. Th e size and type of workload is actually another parameter.
For example, in the case of blocking workloads, it’s extremely
diffi cult to determine the number of threads that optimizes overall
throughput because it’s hard to determine when a request will be
completed (or perhaps even how oft en it will arrive—this is closely
related to I/O blocking). Th e API associated to this Th readPool
is QueueUserWorkItem, which queues a method (the work item)
for execution (see msdn.microsoft.com/library/system.threading.threadpool.
queueuserworkitem). It’s recommended for applications that have work
that could potentially be run in parallel (with other things). Th e
work is handed to the Th readPool, which automatically “fi gures
out” when to run it. Th is facility takes away from the programmer
the need to worry about how and when to create threads; however,
it isn’t the most effi cient solution for all scenarios.
The I/O ThreadPool Th is part of the Th readPool implemen-
tation, related to I/O parallelism, handles blocking workloads
(that is, I/O requests that take a relatively long time to service) or
asynchronous I/O. In asynchronous calls, threads aren’t blocked and
can continue to do other work while the request is serviced. Th is
Th readPool takes care of the coordination between the requests and
the threads. Th e I/O Th readPool—like the worker Th readPool—has
an algorithm for throttling concurrency; it manages the number of
threads based on the completion rate of asynchronous operations.
But this algorithm is quite diff erent from the one in the worker
Th readPool and it’s out of the scope of this document.

Concurrency in the ThreadPool
Dealing with concurrency is a difficult but necessary task that
directly impacts the overall performance of a system. How the system
throttles concurrency directly impacts other tasks such as synchro-
nization, resource utilization and load balancing (and vice versa).

Th e concept of “concurrency control,” or more appropriately,
“throttling concurrency,” refers to the number of threads that are
allowed to do work at a particular time in the Th readPool; it’s a
policy to decide how many threads can be run simultaneously
without hurting performance. Concurrency control in our discussion
is only in regard to the worker Th readPool. As opposed to what may
be intuitive, concurrency control is about throttling and reducing the
number of work items that can be run in parallel in order to improve
the worker Th readPool throughput (that is, controlling the degree of
concurrency is preventing work from running).

Th e concurrency control algorithm in the Th readPool automati-
cally chooses the level of concurrency; it decides for the user how

many threads are necessary to keep the performance generally
optimal. Th e implementation of this algorithm is one of the most
complex and interesting parts of the Th readPool. Th ere are various
approaches to optimize the performance of the Th readPool in the
context of concurrency level (in other words, determine the “right”
number of threads running at the same time). In the next section,
I will discuss some of those approaches that have been considered
or used in the CLR.

The Evolution of Concurrency Control
in the ThreadPool
One of the first approaches taken was to optimize based on
the observed CPU utilization, and adding threads to maxi-
mize it—running as much work as possible to keep the CPU
busy. Using CPU utilization as a metric is useful when dealing
with long or variable workloads. However, this approach wasn’t
appropriate because the criteria to evaluate the metric can be
misleading. Consider, for example, an application where lots
of memory paging is happening. The observed CPU utiliza-
tion would be low, and adding more threads in such a situation
would result in more memory being used, which consequently
results in even lower CPU utilization. Another problem with
this approach is that in scenarios where there’s a lot of conten-
tion, the CPU time is really being spent doing synchronization,
not doing actual work, so adding more threads would just make
the situation worse.

Another idea was to just let the OS take care of the concurrency
level. In fact, this is what the I/O Th readPool does, but the worker
Th readPool has required a higher level of abstraction to provide
more portability and more effi cient resource management. Th is
approach may work for some scenarios, but the programmer still
needs to know how to do throttling to avoid over saturation of
resources (for example, if thousands of threads are created,
resource contention can become a problem and adding threads
will actually make things worse). Furthermore, this implies that
the programmer still has to worry about concurrency, which
defeats the purpose of having a thread pool.

Figure 1 ThreadPool Feedback Loop

ThreadPool

Sensor

Number
of Threads

Throughput
Control

Figure 2 Throughput Modeled as a Function of Concurrency Level

http://msdn.microsoft.com/library/system.threading.threadpool.queueuserworkitem
http://msdn.microsoft.com/library/system.threading.threadpool.queueuserworkitem

A more recent approach was to include the concept of through-
put, measured as completion of work items per unit of time, as
a metric used to tune performance. In this case, when the CPU
utilization is low, threads are added to see if this improves the
throughput. If it does, more threads are added; if it didn’t help,
threads are removed. This approach is more sensible than previ-
ous ones because it takes into account how much work is being
completed, rather than just how the resources are being used.
Unfortunately, throughput is affected by many factors other than
just the number of active threads (for example, work item size),
which makes it challenging to tune.

Control Theory for Throttling Concurrency
To overcome some of the limitations of previous implementations,
new ideas were introduced with CLR 4.0. Th e fi rst methodology
considered, from the control theory area, was the Hill Climbing
(HC) algorithm. Th is technique is an auto-tuning approach based
on an input-output feedback loop. Th e system output is monitored
and measured at small time intervals to see what eff ects the controlled
input had, and that information is fed back into the algorithm to
further tune the input. Looking at the input and output as variables,
the system is modeled as a function in terms of these variables. Th e
goal is then to optimize the measured output.

In the context of the worker Th readPool system, the input is the
number of threads that are executing work concurrently (or con-
currency level), and the output is the throughput (see Figure 1).

We observe and measure over time the changes in throughput
as a result of adding or removing threads, then decide whether to
add or remove more threads based on the observed throughput
degradation or improvement. Figure 2 illustrates the idea.

Having throughput as a (polynomial) function of the concurrency
level, the algorithm adds threads until the maximum of the func-
tion is reached (about 20 in this example). At that point, a decrease in
throughput will be seen and the algorithm will remove threads. Over
each time interval ti a sample of through put measurements is taken
and “averaged.” Th is is then used to make a decision for the next time
interval ti+1. It’s understandable that if the measurements are noisy, sta-
tistical information isn’t representative of the actual situation, unless
perhaps it’s taken over a large interval of time. It’s hard to tell whether
an improvement was a result of the change in concurrency level or
due to another factor such as workload fl uctuations.

Adaptive approaches in real-life systems are complicated; in our
case its use was particularly problematic because of the diffi culty in
detecting small variations or extracting changes from a very noisy
environment over a short time. Th e fi rst problem observed with
this approach is that the modeled function (see the black trend in
Figure 2) isn’t a static target in real-world situations (see blue dots
also in the graph), so measuring small changes is hard. Th e next
issue, perhaps more concerning, is that noise (variations in mea-
surements caused by the system environment, such as certain OS
activity, garbage collection and more) makes it diffi cult to tell if there’s
a relationship between the input and the output, that is, to tell if the

www.corensic.com

msdn magazine36 Concurrency

throughput isn’t just a function of the number of threads. In fact,
in the Th readPool, the throughput constitutes only a small part of
what the real observed output is—most of it is noise. For example,
take an application whose workload uses many threads. Adding
just a few more won’t make a diff erence in the output; an improve-
ment observed in a time interval may not even be related to the
change in concurrency level (Figure 3 helps to illustrate this issue).

In Figure 3, on the x-axis is time; on the y-axis, throughput
and concurrency level measurements are over-imposed. Th e top
graph illustrates that in some workloads, even if the number of
threads (red) is kept constant, there may be observed changes in
the throughput (blue). In this example, the fl uctuations are noise.
Th e bottom graph is another example where the general increase in
the throughput is observed over time even in the presence of noise.
However, the number of threads was kept constant so the improve-
ment in throughput is due to a diff erent parameter in the system.

In the next section, I’ll discuss an approach to dealing with the noise.

Bringing in Signal Processing
Signal processing is used in ma ny areas of engineering to reduce
noise in signals; the idea is to fi nd the input signal’s pattern in the
output signal. Th is theory can be applied in the context of the
Th readPool if we treat the input (concurrency level) and output
(throughput) of the concurrency control algorithm as signals. If
we input a purposely modifi ed concurrency level as a “wave” with
known period and amplitude, and look for that original wave
pattern in the output, we can discern what is noise from the actual
eff ect of input on the throughput. Figure 4 illustrates this idea.

Consider, for a moment, the system as a black box that generates
output given an input. Figure 4 shows a simplifi ed example of the HC
input and output (green); below that is an example of how the input
and output would look as waves using a fi ltering technique (black).

Instead of feeding a fl at, constant input, we introduce a signal and
then try to fi nd it in the noisy output. Th is eff ect can be achieved
by using techniques such as the band pass fi lter or match fi lter,
generally used for extracting waves from other waves or fi nding
very specifi c signals in the output. Th is also means that by intro-
ducing changes to the input, the algorithm is making decisions at
every point based on the last small piece of input data.

Th e particular algorithm used in the Th readPool uses a discrete
Fourier transform, a methodology that gives information such as
the magnitude and phase of a wave. Th is information can then be
used to see if and how the input aff ected the output. Th e graph in
Figure 5 shows an example of the Th readPool behavior using this
methodology on a workload running more than 600 seconds.

In the Figure 5 example, the known pattern of the input wave
(phase, frequency and amplitude) can be traced in the output. Th e
chart illustrates the behavior of the concurrency algorithm using
fi ltering on a sample workload. Th e red trend corresponds to the
input and the blue corresponds to the output. We vary the thread
count up and down over time, but this doesn’t mean we’re creating
or destroying threads; we keep them around.

Although the scale of the number of threads is diff erent from
that of the throughput, we can see how it’s possible to map how
the input aff ects the output. Th e number of threads is constantly
changed by at least one in a time slice, but this doesn’t mean that
a thread is being created or destroyed. Instead, threads are kept
“alive” in the pool, but they aren’t actively doing work.

As opposed to the initial approach using HC, where the goal was
to model the throughput curve and base the decision on that calcu-
lation, the improved methodology just determines whether or not a
change in the input helped to improve the output. Intuitively, there
is increased confi dence that the changes that we artifi cially intro-
duce are having the eff ect observed on the output (the maximum
number of threads observed so far to be introduced in the signal
is 20, which is quite reasonable—especially for scenarios that have
many threads). One of the drawbacks of the approach that uses signal
processing is that due to the artifi cial wave pattern introduced, the
optimal concurrency level will always be off by at least one thread.
Also, adjustments to the concurrency level happen relatively slowly
(faster algorithms are based on CPU utilization metrics) because
it’s necessary to gather enough data to make the model stable. And
the speed will depend on the length of work items.

This approach isn’t perfect and works better for some work-
loads than for others; however, it’s considerably better than previous

Figure 4 Determining Factors in ThreadPool Output

Number
of Threads

Throughput
BOX

Number
of Threads

Throughput
BOX

Figure 3 Example of Noise in the ThreadPool

methodologies. Th e types of workloads for which our algorithm works
the best are those with relatively short individual work items, because
the shorter the work item, the faster the algorithm is allowed to adapt.
For example, it works pretty well with work item durations less than
250ms, but it’s better when the durations are less than 10ms.

Concurrency Management—We’ll Do It for You
Wrapping up, the Th readPool provides services that help the pro-
grammer focus on things other than concurrency management. In

order to deliver such functionality, the Th readPool implementation
has incorporated high-end engineering algorithms that can auto-
mate many decisions for the user. One example is the concurrency
control algorithm, which has evolved based on the technology
and the needs expressed from diff erent scenarios, such as a need to
measure useful progress of work execution.

Th e purpose of the concurrency control algorithm in CLR 4.0 is
to automatically decide how many work items can be run concur-
rently in an effi cient manner, hence optimizing the throughput of
the Th readPool. Th is algorithm is diffi cult to tune because of noise
and parameters such as the type of workload; it also depends on the
assumption that every work item is a useful piece of work. Th e cur-
rent design and behavior has been heavily infl uenced by ASP.NET
and Parallel Framework scenarios, for which it has good performance.
In general, the Th readPool can do a good job executing the work
effi ciently. However, the user should be aware that there may be
unexpected behavior for some workloads, or if, for example, there
are multiple Th readPools running at the same time.

ERIKA FUENTES, PH.D., is a soft ware development engineer in Test on the CLR
team, where she works in the Performance Team with particular focus on the
Core Operating System area in Threading. She has written several academic
publications about scientifi c computing, adaptive systems and statistics.

THANKS to the following technical experts for reviewing this article:
Eric Eilebrecht and Mohamed Abd El Aziz

Figure 5 Measuring How Input Affects Output

www.enterpriseenabler.com

msdn magazine38

A S YN C AGENT S

Actor-Based
Programming with
the Asynchronous
Agents Library

With multi-core processors now commonplace in the
market, from servers to desktops to laptops, the parallelization of
code has never been more important. To address this vital area,
Visual Studio 2010 introduces several new ways to help C++ devel-
opers take advantage of these capabilities with a new parallel
runtime and new parallel programming models. However, one
main hurdle left for developers is deciding which programming
model is correct for their applications. Th e correct model may
signifi cantly exploit underlying parallelism, but may also require
a rethink of how your program is structured and actually executes.

Th e most common parallel programming models today involve
general-purpose, concurrency-aware containers, and algorithms such
as parallelizing loop iterations. While these traditional techniques can
be a powerful method for scaling applications to take advantage of a

Michael Chu and Krishnan Varadarajan

multi-core machine, they don’t address one of the other major factors
aff ecting parallel performance: the growing impact of latency. As
parallelization techniques speed up computations and spread them
out across multiple cores, Amdahl’s law (wikipedia.org/wiki/Amdahl's_law)
shows us that the performance improvement is limited by the slowest
portion of the execution. In many cases, there’s an increasing percent-
age of time spent waiting on data from I/O such as disks or networks.

Actor-based programming models deal quite well with problems
such as latency and were first introduced in the early 1970s to
exploit the resources of highly parallel computers with hundreds
or thousands of independent processors. Th e fundamental concept
behind an actor model is to treat the components of an application
as individual actors that can interact with the world by sending,
receiving and processing messages.

More recently, with the abundance of multi-core processors, the
actor model has resurfaced as an eff ective method to hide latencies
for effi cient parallel execution. Visual Studio 2010 introduces the
Asynchronous Agents Library (AAL), an exciting new actor-based
model with message-passing interfaces where the agents are the
actors. AAL enables developers to design their applications in a
more datafl ow-centric manner. Such a design typically makes for
productive use of latency while waiting for data.

In this article, we’ll provide an overview of the AAL and demon-
strate how you can take advantage of it in your applications.

This article discusses:
• The Concurrency Runtime

• Message passing

• Message blocks

• Asynchronous agents

Technologies discussed:
Visual Studio 2010, Asynchronous Agents Library

http://wikipedia.org/wiki/Amdahl's_law

39September 2010msdnmagazine.com

The Concurrency Runtime
The foundation for concurrency support
in Visual Studio 2010 and AAL is the new
Concurrency Runtime, which is shipped as part
of the C Runtime (CRT) in Visual Studio 2010.
Th e Concurrency Runtime off ers a cooperative
task scheduler and a resource manager that
has a deep understanding of the underlying
resources of the machine. This allows the
runtime to execute tasks in a load-balanced
fashion across a multi-core machine.

Figure 1 shows an outline of the support
in Visual Studio 2010 for concurrency in
native code. Th e Scheduler is the main com-
ponent that determines when and where tasks
execute. It leverages information gathered
by the Resource Manager to best utilize the
execution resources. Applications and libraries
themselves mainly interact with the Concur-
rency Runtime through the two programming
models that sit on top of the scheduler, the AAL
and the Parallel Patterns Library (PPL), although they can also
directly interact with the runtime itself.

Th e PPL off ers the more traditional parallelization techniques,
such as parallel_for and parallel_for_each constructs, runtime-
aware locks, and concurrent data structures such as queues and
vectors. While not the focus of this article, the PPL is a powerful
tool for developers that can be used in conjunction with all the
new methods introduced in the AAL. For more information on
the PPL, see the February 2009 installment of the Windows With
C++ column (msdn.microsoft.com/magazine/dd434652).

In contrast, the AAL provides the ability to parallelize applications
at a higher level and from a diff erent perspective than traditional
techniques. Developers need to think about applications from the
perspective of the data to be processed, and consider how the
processing of the data can be separated into components or stages
that can execute in parallel.

Th e AAL provides two main components: a message-passing
framework and asynchronous agents.

Th e message-passing framework includes a set of message blocks,
which can receive, process and propagate messages. By chaining
together message blocks, pipelines of work can be created that can
execute simultaneously.

Asynchronous agents are the actors that interact with the world by
receiving messages, performing local work on their own maintained
state, and sending messages.

Together, these two components allow developers to exploit
parallelism in terms of the flow of data rather than the flow of
control, and to better tolerate latencies by utilizing parallel
resources more efficiently.

Message-Passing Framework
Th e fi rst important component of the AAL is the message-passing
framework, a set of constructs to help develop datafl ow networks
to pipeline work. Pipelining work is a fundamental piece of the

datafl ow model, as it allows streaming data to
be processed in parallel whenever the data is
ready by breaking up the work into multiple
independent stages. When the processing of
data in one stage fi nishes, that stage can pass
the data off to the next stage while the fi rst looks
for new data on which to work.

As an example, consider an e-mail application
that formats outgoing messages and censors
them for inappropriate content. Th e code for
this type of operation is shown here:
 std::foreach(reader.begin(); reader.end();
 [](const string& word) {
 auto w1 = censor(word);
 auto w2 = format(w1);
 writer.write_word(w2);
 });

For each word in the e-mail, the application
needs to check if it exists in a dictionary of cen-
sored words, replacing it if it does. Th e code then
formats each word according to a set of guidelines.

There’s a significant amount of inherent
parallelism within such a scenario. However,

traditional techniques for parallelism fall short. For example, a
simple approach would be to use a parallel_for_each algorithm
across the strings in the text to censor, then format them.

Th e fi rst main deterrent to such a solution is that it must read
the entire fi le so that an iterator can properly divide up the work.
Forcing the entire fi le to be read makes the process I/O-bound
and can diminish parallelization gains. Of course, you could use a
smart iterator to overlap processing of words with reading the input.

Th e second major issue with a traditional parallelization approach
is ordering. Obviously, in the case of an e-mail message, parallel
processing of the text must maintain the order of the text or the
meaning of the message is totally lost. To maintain the ordering
of the text, a parallel_for_each technique would incur signifi cant
overhead in terms of synchronization and buffering, which is
automatically handled by the AAL.

By processing the message in a pipeline, you can avoid these
two issues while still taking advantage of parallelization. Consider

 Figure 1 The Concurrency Runtime

Concurrency
Runtime

AAL PPL

Applications & Libraries

Scheduler

Resource Manager

Operating System

Figure 2 E-mail Processing Pipeline

Censor Text

Input
E-mail

Input String

Output
E-mail

Output StringFormat Text

Actor-based programming
models deal quite well with
problems such as latency.

www.msdnmagazine.com
http://msdn.microsoft.com/magazine/dd434652

msdn magazine40 Async Agents

Figure 2, where a simple pipeline was created. In this example,
the main tasks of the application—censoring and formatting—
are separated into two stages. Th e fi rst stage takes a string and
looks it up in a dictionary of censored words. If a match is found,
the censor block substitutes the string with a diff erent word from
the dictionary. Otherwise, it outputs the same message that was
inputted. Similarly, in the second stage, the format block takes in
each word and properly formats it for a certain style.

Th is example can benefi t from the datafl ow approach in several
ways. First, because it removes the requirement to read the entire
message before processing, the strings in the message can immedi-
ately start streaming through the censoring and formatting stages.
Second, the pipeline processing allows one string to be processed
by the format block while the next string is being processed by the
censor block. Finally, because strings are processed in the order
they appear in the original text, no additional synchronization
needs to be done.

Message Blocks
Th e messages blocks receive, process, store and propagate messages.
Message blocks come in one of three forms: sources, targets, and
propagators. Sources only have the ability to propagate messages,
while targets can receive, store and process them. Th e majority of
blocks are propagators, which are both sources and targets. In other
words, they have the ability to receive, store and process messages,
as well as to turn around and send these messages out.

Th e AAL contains a set of message block primitives that cover the
majority of use cases for developers. Figure 3 shows a brief overview
of all message blocks included in the AAL. However, the model
remains open, so if your application requires a message block with
a specifi c behavior, you can write a custom block yourself that can
interact with all the predefi ned blocks. Each block has its own unique
characteristics for processing, storing and propagating messages.

One of the main benefi ts of the message block primitives supplied
by the AAL is that they’re composable. Th erefore, you can combine
them, based on the desired behavior. For example, you can easily
create a block that adds together multiple inputs by attaching a
transformer block to the end of a join block. When the join block
succeeds in retrieving messages from each of its sources, it can
pass them to the transformer, which sums the message payloads.

You could also connect a repeating timer block as a source of a
join block. Th is would result in a block that throttles messages, only
letting them through whenever the timer block fi res its message.
Th ese two composable blocks are illustrated in Figure 4.

Message Block Purpose
unbounded_buffer<Type> Stores an unbounded number of messages and propagates them to its targets.
overwrite_buffer<Type> Stores a single message, which will be overwritten each time a new message is propagated to it, and broadcasts it to its targets.
single_assignment<Type> Stores a single message, which is write-once, and broadcasts it to its targets.
transformer<Input,Output> Takes a message of type Input and runs a user-provided function to transform it to a message of type Output. This

transformed message is propagated to its targets.
call<Type> Takes a message and runs a user-provided function with that message’s payload as an argument. This is purely a message target.
timer<Type> Propagates a message to its target after a user-defi ned amount of time. This can be repeating or non-repeating. This block

is purely a message source.
choice<Type1,Type2,...> Takes messages from multiple sources of multiple types and will only accept the message from the fi rst block that

propagated to the choice.
join<Type> Takes messages from multiple sources and combines them together to output a single message. Asynchronously waits for

messages to be ready from each source input.
multitype_join<Type1,Type2,...> Takes messages from multiple sources of multiple types and combines them together. Asynchronously waits for messages

to be ready from each source input.

Figure 3 AAL Message Blocks

Figure 4 Composing Adder and Message Throttling Blocks from Primitives

Adder Block

int x [x,y] x+y

int y

transform<vector<int>, int>

join<int>

Message Throttling Block

int x [x,z] every n milliseconds

zTimer<int>

repeat n

join<int>

The fi rst important
component of the AAL is the
message-passing framework.

Learn more:

Imagine...
...an intranet employees want to use

Copyright © 2010 Ektron, Inc. All rights reserved. | http://www.ektron.com | 1-877-4-WEB-CMS

http://www.ektron.com/intranet

Why is user adoption
such a large hurdle for intranets?
eIntranet overcomes this hurdle by transforming the user
experience. Employees connect with the right people
and content instantly. Information fi nds them, no matter
where they go.

 Collaboration – Complete projects faster in collaborative
groupspaces with powerful communication and sharing tools

 Timeline and Social Navigation – Find content and collateral
based on when it was created and who is using it

 Easy to deploy, customize and extend – Integrate with business
infrastructures and extend the functionality to meet unique needs

 Mobile engagement – Engage employees on the go, delivering
updates via SMS alerts, e-mail or the eIntranet Mobile App

Untitled-1 1 6/11/10 11:48 AM

http://www.ektron.com
http://www.ektron.com/intranet

msdn magazine42 Async Agents

Creating a Message-Passing Pipeline
Now let’s take a look at the code to create the message-block pipe-
line shown earlier. We can replace the pipeline with two transformer
message blocks, as shown in Figure 5. Th e purpose of a transformer
block is to take a message of a certain type and execute a user- defi ned
function on that message, which can modify the message’s payload
or even completely change the type of the message. For example,
the censor block takes as input a message containing a string and
needs to process it.

Th e code for creating and connecting the message blocks is
shown in Figure 6. Th is code begins with the instantiation of the
two transformer message blocks. Th e C++0x lambda parameter on
the censor block constructor defi nes the transformation function,
which looks up the message’s stored input string in a dictionary to
see if it should be changed to a diff erent string. Th e resulting string
is returned, and within the censor block it’s then wrapped in a
message and propagated out of the block. A similar path is taken
for the format transformer block, except its output is a string that
has been changed by a format function.

Following the instantiation of the two blocks, the next line links
the two blocks together by calling the link_target method on the
censor block. Every source and propagator block has a link_target
method that’s used to determine to which message blocks the source
should propagate its messages.

Aft er the censor and format blocks have been linked together,
any message propagated into the censor block will go through its
transform function and the resulting message will implicitly be
passed on to the format block for processing. If a message block is
a source or propagator yet has no connected targets, the message
block can store the message in a block-specifi c manner until either
a target is linked, or the message is retrieved.

Th e last three lines of the example code show the process of
initiating messages into a block and retrieving a message out of
a block. Th ere are two message initiation APIs in the AAL: send
and asend. Th ese input a message into a block synchronously and
asynchronously, respectively.

Th e main diff erence is that when
a send call returns, it’s guaranteed
to have already pushed its mes-
sage into and through the block
to which the message is being
sent. The asend call can return
immediately and will allow the
Concurrency Runtime to schedule

its propagation. Similarly, there are two message retrieval APIs in the
AAL: receive and try_receive. Th e receive method will block until
a message arrives, whereas the try_receive will return immediately
if it’s unable to retrieve a message.

In Figure 6, the string “foo” is sent in asynchronously to the cen-
sor block. Th e censor block will take the message, check if its string
is in the dictionary of censored words, and then propagate the result-
ing string in a message. Th is will then be passed to the format block,
which will take the string, capitalize each letter, and because it has no
targets, hold on to the message. When receive is called, it will grab
the message from the format block. Th us, assuming “foo” was not in
the dictionary, the output of this example would be “FOO.” While
this example only pushes a single string through the network, you
can see how a stream of input strings forms a pipeline of execution.

Looking at this messaging example, notice the distinct lack of
references to messages themselves. A message is simply an enve-
lope that wraps the data you want to pass around your datafl ow
network. Th e message passing itself is handled through a pro-
cess of off ering and accepting. When a message block receives a
message, it has the ability to store that message in any way it wants.
If it later wishes to send a message out, it off ers the message to
each of its connected targets. To actually take the message away,
the receiver must accept the offered message to complete the

Figure 5 A Message Block Pipeline

transformer<string, string>
censor

transformer<string, string>
format

Input
E-mail

ascend(censor, str)

Output
E-mail

receive(format)

dictionary dict;

transformer<string, string>
 censor([&dict](const string& s) -> string {

 string result = s;
 auto iter = dict.find(s);

 if (iter != dict.end()) {
 result = iter->second;
 }

 return result;
});

transformer<string, string>
 format([](const string& s) -> string {

 string result = s;
 for (string::size_type i = 0; i < s.size(); i++) {
 result[i] = (char)Format(s[i]);
 }

 return result;
});

censor.link_target(&format);

asend(&censor, "foo");
string newStr = receive(format);
printf("%s\n", newStr);

Figure 6 Simple Message Pipeline

A message is simply an
envelope that wraps the data
that you want to pass around

your datafl ow network.

Untitled-5 1 6/7/10 12:05 PM

www.codefluententities.com/msdn

msdn magazine44 Async Agents

transaction. Th is entire process of message passing between blocks
is scheduled and handled by tasks that are scheduled and executed
by the Concurrency Runtime.

Message-Block Propagation
Now that you’ve seen how message blocks are created and tied
together, and how messages can be initiated and retrieved from
each of them, let’s take a brief look at how messages are passed
between blocks and how the Concurrency Runtime fi ts at the
heart of the AAL.

Th is information is not necessary for using message blocks or
the AAL, but can help give a deeper understanding of how the
message-passing protocols work and how you can take advantage
of them. For the rest of this section, I’ll discuss propagator blocks,
because they’re both sources and targets. Obviously, a pure source
or pure target block would simply be a subset of the propagator
block implementation.

Internally, each propagator block has an input queue for messages
and another block-specifi c storage container for messages. Other
blocks that are linked to this propagator block send messages that
are stored into the input queue.

For example, in Figure 7, the censor transformer block has an
input queue that’s currently storing a message with a string str6 in
it. Th e actual transformer itself contains two messages: str4 and str5.
Because this is a transformer, its block-specifi c storage is another
queue. Diff erent block types can have diff erent storage containers.
For example, the overwrite_buffer block only stores a single
message that would always get overwritten.

When a message is presented to a block from one of its linked
sources (or the send/asend APIs), the block fi rst checks a fi lter
function to determine whether or not to accept the message. If
it decides to accept the message, the message is placed into the
input queue. A fi lter is an optional function that can be passed into

the constructor of each target or propagator block that returns a
Boolean that determines whether a message off ered from a source
should be accepted. If the message is declined, the source will
continue to its next target to off er the message.

Once a message is placed in the input queue, the source block it
came from no longer holds on to the message. However, the accept-
ing block does not yet have the message ready for propagation. Th us,
messages can buff er up in the input queue while they await processing.

When a message arrives in an input queue on a message block, a
lightweight task (LWT) is scheduled within the Concurrency Runtime
scheduler. Th e purpose of this LWT is twofold. First, it must move mes-
sages from the input queue to the internal storage of the block (which
we refer to as message processing). Second, it must also try to propagate
messages to any targets (which we refer to as message propagation).

For example, in Figure 7, there were messages in the input queue
that prompted the LWT to be scheduled. Th e LWT then processed the
message by fi rst executing the transformer’s user-provided function

Fig ure 9 An Agent Capturing the Output of the Format Block

Output
E-mail

Writer Agent

receive()

transformer<string, string>
format

input strings

eof str1 str2

Figure 7 Message-Passing Protocol

ConcRT Scheduler

ascend(censor, str);

1) Schedule LWT 2) Transfer
into buffer

3) Propagate
buffered msgs

str7 str1

input queue formatted strings

transformer<string, string> format

Rest of the
Network

transformer<string, string> censor

input queue censored strings

str5 str4

LWT LWT

str6 str3 str2

str4 str1

Figure 8 The Asynchronous Agent Lifecycle

.start()

.cancel() .cancel()

.done()

agent(...)
created runnable

started done

canceled

Messages can buffer up in the
input queue while they await

processing.

Untitled-1 1 8/3/10 3:25 PM

www.techexcel.com/downloads
www.techexcel.com

msdn magazine46 Async Agents

on the message, checking it in the censored string dictionary, then
moving the message to the storage buff er for the block.

Aft er transferring it into a storage buff er, the LWT begins the
propagation step where messages are sent to the target format
block. In this case, because message str4 was at the head of the
transformer, it’s propagated to the format block fi rst, and then the
next message, str5, is propagated. Th e same entire process occurs
on the format block.

Message processing can diff er, depending on the type of message
block. For example, an unbounded_buff er had a simple processing
step of moving a message to its storage buff er. Th e transformer
processes messages by calling its user-defi ned function on the
message before moving it to a storage buff er. Other blocks can
become even more complex, such as the join, which must com-
bine multiple messages from diff erent sources and store them to a
buff er in preparation for propagation.

For performance effi ciency, the AAL is intelligent in its creation
of LWTs so that only one is scheduled at a time for each message
block. If further messages arrive in an input queue while the pro-
cessing LWT is active, it will continue to pick up and process those
messages. Th us, in Figure 7, if the transformer’s LWT is still pro-
cessing when message str7 enters the input queue, it will pick up
and process this message rather than starting a new processing
and propagation task.

Th e fact that each message block
has its own LWT that handles pro-
cessing and propagation is central
to the design, which allows the
message-passing framework to
pipeline work in a datafl ow man-
ner. Because each message block
does its processing and propaga-
tion of its messages in its own LWT,

the AAL is able to decouple the blocks from one another and allow
parallel work to be executed across multiple blocks. Each LWT must
simply propagate its messages into its target blocks’ input queues,
and each target will simply schedule an LWT to handle its own
inputs. Using a single LWT to process and propagate ensures that
message ordering is maintained for the message blocks.

Asynchronous Agents
Th e second main component of the AAL is the asynchronous agent.
Asynchronous agents are coarse-grained application components
that are meant to asynchronously deal with larger computing tasks
and I/O. Agents are expected to communicate with other agents
and initiate lower-level parallelism. Th ey’re isolated because their
view of the world is entirely contained within their class, and they
can communicate with other application components by using
message passing. Agents themselves are scheduled as tasks within
the Concurrency Runtime. Th is allows them to block and yield
cooperatively with other work executing at the same time.

An asynchronous agent has a set lifecycle, as shown in
Figure 8. The lifecycle can be monitored and waited on. States
in green signify running states, while states in red are the ter-
minal states. Developers can create their own agents by deriv-
ing from the base agent class.

Th ree base class functions—start, cancel and done—transition
the agent between its diff erent states. Once constructed, agents are
in the created state. Starting an agent is similar to starting a thread.
Th ey will not execute anything until the start method is called on
them. At that time, the agent is scheduled to execute and the agent
moves into the runnable state.

When the Concurrency Runtime picks up the agent, it moves
into the started state and continues to run until the user calls the
done method, indicating its work has completed. Any time after the
agent has been scheduled but not yet started, a call to cancel will
transition the agent to a canceled state and it will never execute.

Let’s look back at the e-mail fi ltering example, where the pipelined
message blocks introduced datafl ow into the application and improved

class WriterAgent : public agent {
public:
 WriterAgent(ISource<string> * src) : m_source(src) {
 }

 ~WriterAgent() {
 agent::wait(this);
 }

 virtual void run() {
 FILE *stream;
 fopen_s(&stream, ...);

 string s;
 string eof("EOF");

 while (!feof(stream) && ((s=receive(m_source)) != eof)) {
 write_string(stream, s);
 }

 fclose(stream);
 done();
 }

private:

 ISource<string> * m_source;
};

Figure 10 WriterAgent

Figure 11 Agents Used to Process E-mail Messages

transformer<string, string> censor

transformer<string, string> format

Writer Agent

strings

Output
E-mail

Reader Agent

strings

Input
E-mail

Agents are expected
to communicate with other

agents and initiate
lower-level parallelism.

Untitled-1 1 6/9/10 11:03 AM

www.nevron.com

msdn magazine48 Async Agents

its ability to parallel process words. However, the example did not show
how to handle the I/O of dealing with the e-mails themselves and break-
ing them into streams of strings for the pipeline to process. Also, once
the strings have been passed through the pipeline, the strings must be
gathered so that the text can be rewritten in its newly censored and
formatted state. Th is is where agents can come into play in order to
help tolerate the diff erences in latencies with I/O.

For example, consider the end of our e-mail pipeline. At this point,
strings are being outputted by the format and need to be written to
fi les in a mailbox. Figure 9 shows how an output agent can capture
strings and create output e-mail messages. Th e run function of the
WriterAgent receives messages from the format block in a loop.

While the majority of the processing done in this application is
using datafl ow, the WriterAgent shows how some control-fl ow can
be introduced into the program. For example, when an end-of-fi le
message arrives, the WriterAgent must have diff erent behavior
depending on the input string being received; it must know to
cease operation. Th e code for the WriterAgent is in Figure 10.

Th ere are a few interesting portions of this code to note. First,
within the destructor, a call is made to a static function agent::wait.
Th is function can be called with a pointer to any agent and will block
until the agent enters one of the terminal states: done or canceled.
While calling wait in the destructor is not necessary for all agents,
in most cases it should be done, as it ensures the agent is no longer
executing any code when destructing.

Second, an interesting aspect of this code is the run method
itself. Th is method defi nes the main execution of the agent. In this
code, the agent is dealing with writing out the strings it reads from
its source (in our example, the format block).

Finally, note the last line of the run method, which is a call to the
agent function done. Th e call to the done method moves the agent
from the running state to the done state. In most cases, this will
need to be called at the end of the run method. However, in some
circumstances, applications may want to use agents to set up state,

such as in a datafl ow network, which should remain alive past the
lifetime of the run method.

Tying Everything Together
Now that we’ve created a messaging pipeline to fi lter and format
strings, and an output agent to process them, we can add an input
agent that has very similar behavior to the output agent. Figure 11
shows an example of how this application fi ts together.

One of the benefi ts of agent processing is the ability to use
asynchronous actors in the application. Th us, when data arrives
for processing, the input agent will asynchronously start sending
the strings through the pipeline and the output agent can likewise
read and output fi les. Th ese actors can start and stop processing
entirely independently and totally driven by data. Such behavior
works beautifully in many scenarios, especially latency-driven and
asynchronous I/O, like the e-mail processing example.

In this example, I added a second agent, a ReaderAgent, which
acts similarly to the WriterAgent, except it handles the I/O to deal
with reading the e-mails and sending strings to the network. Th e
code for the ReaderAgent is in Figure 12.

Now that we have both a ReaderAgent and a WriterAgent to asyn-
chronously handle the I/O for the program, we simply need to link
them up to the transformer blocks in the network to begin processing.
Th is can be done easily aft er linking the two blocks together:

censor.link_target(&format);

ReaderAgent r(&censor);
r.start();

WriterAgent w(&format);
w.start();

Th e ReaderAgent is created with a reference to the censor so it
can properly send messages to it, while the WriterAgent is created
with a reference to the format so it can retrieve messages. Each
agent is started with its start API, which schedules the agents for
execution within the Concurrency Runtime. Because each agent
calls the agent::wait(this) in its own destructor, the execution will
wait until both agents have reached their done state.

Syncing Up
Th is article was written to give you a glimpse into some of the new
possibilities for actor-based programming and datafl ow pipelining
built into Visual Studio 2010. We encourage you to try it out.

If you want to dig deeper, there are plenty of other features we weren’t
able to cover in this article: custom message block creation, fi ltering
messages, and much more. The Parallel Computing developer
center on MSDN (msdn.microsoft.com/concurrency) contains more details
and walkthroughs of how this exciting new programming model
can help you parallelize your program in entirely new ways.

MICHAEL CHU is a soft ware development engineer in the Parallel Computing
Platform group at Microsoft . He works on the Concurrency Runtime team.

KRISHNAN VARADARAJAN is a software development engineer in the Parallel
Computing Platform group at Microsoft . He works on the Concurrency Runtime team.

THANKS to the following technical experts for reviewing this article:
Concurrency Runtime team

class ReaderAgent : public agent {
public:
 ReaderAgent(ITarget<string> * target) : m_target(target) {
 }

 ~ReaderAgent() {
 agent::wait(this);
 }

 virtual void run() {
 FILE *stream;
 fopen_s(&stream, ...);

 while (!feof(stream)) {
 asend(m_target, read_word(stream));
 }

 fclose(stream);

 asend(m_target, string("eof"));
 done();
 }

private:

 ITarget<string> * m_target;
};

Figure 12 ReaderAgent

Untitled-1 1 1/11/10 10:55 AM

www.alexcorp.com

msdn magazine50

A PP MIGR AT ION

Migrate Your
ASP.NET 1.1 Apps
to Visual Studio 2010

If you’ve been working with ASP.NET for more than a few
years, chances are you’ve written solutions using Visual Studio 2003
for the Microsoft .NET Framework 1.1. In more recent years, newer,
feature-rich .NET Framework 2.0, 3.0 and 3.5 versions have debuted—
and you may have wondered whether it would be worthwhile or
feasible to upgrade your trusty 1.1-Framework apps to one of them.

Today, as the new .NET Framework 4 is being embraced by
developers around the globe, you might feel more compelled than
ever to seriously consider a migration eff ort. If you decide to do so,
rest assured that Microsoft has provided useful tools to facilitate
such an undertaking, resulting in modernized ASP.NET apps that
can take advantage of the latest .NET Framework innovations.
Specifi cally, I’ll show you how to reinvigorate ASP.NET 1.1 solutions
by migrating them to Visual Studio 2010 (Professional, Premium
or Ultimate)—enabling them to target the .NET Framework 2.0,
3.0, 3.5 or 4 versions.

Jonathan Waldman

Why Migrate?
Even if your goal is to simply maintain your existing ASP.NET 1.1
sites, your support and extensibility options are dwindling. As a 1.1
developer, you should be concerned that Microsoft retired Main-
stream Support for Visual Studio 2003 on Oct. 14, 2008—and has
stated that it will issue no further service packs for Visual Studio
2003 or for the .NET Framework 1.1. (Microsoft will, however,
off er Extended Support for Visual Studio 2003 until Oct. 8, 2013.)

You should be downright alarmed, however, that a growing
number of third-party vendors have ceased off ering or supporting
components that can run against the .NET Framework 1.1 or that
extend the Visual Studio 2003 IDE. Indeed, your .NET Framework
1.1 Web apps and the Visual Studio 2003 IDE are being alienated
and are being eased into oblivion.

 Yet other reasons abound. Th ere have been so many enhance-
ments to the .NET Framework, the C# and Visual Basic .NET pro-
gramming languages, and to the Visual Studio IDE that migrating
your .NET 1.1 sites to .NET 2.0 or beyond (hereafter referred
to as 2.0+) would fi nally enable you to enhance them using the
latest tools and technologies, as well as all the modern language
and framework features (such as master pages, AJAX, Windows
Communication Foundation [WCF], Silverlight, LINQ, partial
classes, generics, lambda expressions and anonymous methods)
already embraced by leading .NET developers. In general, the
higher the framework version you choose your ASP.NET app
to target, the greater potential and power you will have at your

This article discusses:
• Why you should migrate

• Issues with ASP.NET project types

• Main steps in a migration

• Post-migration considerations

Technologies discussed:
ASP.NET, .NET Framework, Visual Studio 2010, XHTML

51September 2010msdnmagazine.com

fi ngertips. You would also fi nd solid support not only
from Microsoft itself (as of this writing, Microsoft
offers Mainstream Support for all 2.0+ framework
versions), but also within active developer forums
and by third-party tool vendors. Th ere are also widely
available books covering all aspects of the latest tech-
nologies—and many sites off ering video-based courses,
blogs, white papers and other training options.

 Th e latest, state-of-the-art Visual Studio 2010 IDE
is almost itself a justifi cation for migration. It’s genera-
tions ahead of the Visual Studio 2003 IDE, supports
new features such as IntelliTrace and can be extended
using a variety of powerful third-party plug-ins that
virtually guarantee new levels of programming pro-
ductivity. While some rare users will need to continue
using older versions of Visual Studio for various rea-
sons, Visual Studio 2010 makes running side-by-side
installations of Visual Studio 2005 and Visual Studio
2008 virtually unnecessary because Visual Studio 2010
can target the 2.0+ frameworks. Yet, like Visual Studio
2005 and Visual Studio 2008, Visual Studio 2010
can’t target the 1.1 framework. This means you
either have to continue to run Visual Studio 2003 or you have
to migrate your ASP.NET 1.1 project to a newer framework.

Finally, developers with 1.1-framework-only experience simply
aren’t as marketable as those with 2.0+ framework experience.
Competition for developer positions is high, so you want to give
yourself every possible edge; leveraging newer framework features
in your code will enhance your candidacy and credibility as a
professional soft ware developer.

Migration Issues
So why hasn’t everyone already migrated up from ASP.NET 1.1
during any one of the major Visual Studio and .NET Framework
releases since Visual Studio 2003? One reason is that developers
would need to implement the ASP.NET 1.1-to-ASP.NET 2.0
migration option Visual Studio 2005 off ered. Th at doesn’t sound so
bad, but realize that when Visual Studio 2005 was fi rst rolled out, it
required that an ASP.NET 1.1 project be converted to a newfangled
Web-project type. Th is meant that the very architecture on which
an ASP.NET 1.1 site was built had to be painstakingly reworked
and rigorously regression-tested. Many developers considered this
process tantamount to rewriting the site from scratch, presenting a
cost and technical challenge deemed insurmountable. As a result,
decision makers oft en left ASP.NET 1.1 sites as they were.

To better appreciate this ASP.NET 1.1-to-ASP.NET 2.0 migra-
tion challenge, it’s important to understand that all ASP.NET 1.1
Web projects are organized using a fi le-folder confi guration that
is project-driven. Th is project type was originally dubbed the “2003
Web project model” and is now known as a Web Application
Project (WAP). When Visual Studio 2005 was released, Microsoft
introduced a new folder-driven project type that was designed for
the .NET Framework 2.0. Th is project type was originally dubbed
the “2005 Web project model” and is now known as a Web Site
Project (WSP). (Confused? Use the simple trick of remembering

the acronyms in their alphabetical order: WAP comes before WSP
just as Visual Studio 2003 comes before Visual Studio 2005.)

While an in-depth discussion of WAPs and WSPs is out of scope
here, suffi ce it to say that Microsoft originally intended all migrated
1.1 Web applications to become WSPs via its included Conversion
Wizard. Concerned developers immediately protested because the
original WAP project type off ered specifi c technical and performance
advantages absent in the newer WSP project type. An ASP.NET
development community furor quickly ensued as developers, man-
agers and stakeholders learned that Microsoft had provided only an
ASP.NET 1.1 WAP-to-ASP.NET 2.0 WSP migration option—and that
this proved to be time-consuming and costly, especially for sites of
any complexity. Detailing the technical issues that arise during such a
migration would constitute a separate multi-part article; you can learn
more by reading the MSDN library article, “Common Web Project
Conversion Issues and Solutions” (msdn.microsoft.com/library/aa479312).

Fortunately, Microsoft responded quickly and soon off ered a
revised Conversion Wizard in Visual Studio 2005 SP1. Th is time,
the Conversion Wizard would convert an ASP.NET 1.1 WAP to an
ASP.NET 2.0 WAP. Yet many developers missed learning about
this migration option and thus never explored it. In Visual Studio
2010, the Conversion Wizard converts an ASP.NET 1.1 WAP to an
ASP.NET 2.0+ WAP (2.0+ refers to the fact that, once converted,
you can target 2.0, 3.0, 3.5 or 4), still providing an opportunity to
migrate older Web apps. (You can’t convert an ASP.NET 1.1 app
to a WSP app—nor would you likely want to—using the Visual
Studio 2010 Conversion Wizard; you would need to have access
to the Conversion Wizard provided in the original Visual Studio
2005 that was released before SP1.)

It might interest you to know that whenever you start a new
project in Visual Studio 2010, you can choose whether you want to
create a WAP or a WSP. Microsoft has promised to off er WAP and
WSP support in current and all future .NET Framework releases.

Figure 1 Ensure the Visual Web Developer Component Is Installed Before
Launching the Conversion Wizard

www.msdnmagazine.com
http://msdn.microsoft.com/library/aa479312

msdn magazine52 App Migration

The Process
Migrating your ASP.NET 1.1 apps using Visual Studio 2010 consists
of the following broad steps (I’ll discuss each in detail):

• Run the Conversion Wizard.
• Set the target framework and startup page.
• Compile and fi x.
• Convert pages and user controls to partial classes.
• Compile and fi x.

Run the Conversion Wizard To use the Conversion Wizard
for a 1.1 WAP-to-2.0+ WAP conversion (our goal), you must install
the Visual Web Developer option during the Visual Studio 2010
setup. If you didn’t, you need to add it by re-running Visual Studio
2010 Setup and using its Change or Remove Microsoft Visual Studio
2010 option; then choose Add or Remove Features; then ensure
that the Visual Web Developer feature is checked (see Figure 1).

If Visual Web Developer isn’t installed, the Conversion Wizard still
launches and runs. It will be able to convert all projects in your solu-
tion except for your Web project. It will advise you that you need to
install Visual Web Developer in order to convert your Web project.

Before you undertake a conversion eff ort, it just makes good sense
to ensure that your application not only builds and runs, but also
that it’s as clean and organized as possible. Th erefore:
1. Clean your application by removing any unused or unneeded fi les,

thereby reducing your Web application to its essential components.
2. Ensure every project in your solution compiles with no

compile-time errors.
3. While I recommend adding your solution to source control if

it isn’t already so confi gured, do verify that no fi les are checked
out exclusively from the repository. Having your solution
under source control will let you examine specific changes
made by the wizard aft er the conversion process has completed.

4. Ensure that no fi les or folders outside of source control are
marked as read-only. Th is lets the wizard update those fi les/
folders as needed.

5. Create a backup. If you run your solution in a vir-
tual machine, it’s best to simply back up the entire
virtual machine (or create a snapshot of it). Other-
wise, back up your entire application—including all
dependencies. If you’re not sure about the depen-
dencies, a good place to look is in your application’s
solution (.sln) fi le as well as in the individual project
(.proj) fi les (these are text fi les that can be visually
inspected). Many ASP.NET solutions contain projects
that point to network locations or to folders outside
the Web root or application folders. Not backing
up these dependencies can cause you tremendous
grief should you wish to restore your application
from the backup fi les. Keep in mind that the full
migration process makes changes to every project
in your application, so it’s advantageous to under-
stand your application’s dependencies before getting
started. In addition, if you’re using projects that are
shared among several ASP.NET 1.1 applications,
realize that once these solutions have been migrat-
ed, they can no longer be opened in Visual Studio

2003. If you work in a team environment, making changes to
shared projects will also aff ect team members’ solutions, which
could end up referencing converted projects. Th us, whether
shared across projects or teams, you should decouple shared
projects by making copies of them and ensuring that a local
copy exists on your development workstation. Your solution
fi le will change if you move a project (in order to decouple it,
for example), so you might want to think about backing up
the solution fi le before making changes to any of the projects
it references—and then back up again aft er the project depen-

dencies have been properly decoupled but before running the
Conversion Wizard. Finally, you may discover errors in your
original solution fi les aft er the conversion process completes;
having a handy backup of your pre-converted solution will
make it easy for you to go back and fi x those errors before
re-running the Conversion Wizard.

6. Consider setting up a parallel environment: Visual Studio 2003
and Visual Studio 2010 can run side-by-side on the same machine,
so you can run your ASP.NET 1.1 site alongside your ASP.NET 2.0+
site. Th is will facilitate your QA-testing eff orts post-migration.

Figure 2 The Visual Studio Conversion Wizard Introductory Dialog

Before you undertake a
conversion effort, it just makes
good sense to ensure that your
application not only builds and
runs, but also that it’s as clean
and organized as possible.

You’ve got the data, but time, budget and staff
constraints can make it hard to present that valuable
information in a way that will impress. With Infragistics’
NetAdvantage for Silverlight Data Visualization and
NetAdvantage for WPF Data Visualization, you can
create Web-based data visualizations and dashboard-
driven applications on Microsoft Silverlight and WPF
that will not only impress decision makers, it actually
empowers them. Go to infragistics.com/sldv today and
get inspired to create killer apps.

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055
Infragistics India +91-80-6785-1111
twitter.com/infragistics

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics and the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc.

GeospatialMaps

Silverlight
Pivot
Grids

Fast
DataCharts

Untitled-1 1 8/3/10 10:45 AM

www.infragistics.com/sldv

msdn magazine54 App Migration

To launch the wizard, open your Visual Studio 2003
solution fi le using the File, Open, Project/Solution menu
option in Visual Studio 2010. You will soon see the
Visual Studio Conversion Wizard introductory dialog
(see Figure 2). Click Next.

Th e Conversion Wizard may identify issues while it
processes and you may fi nd yourself wanting to restore
your solution from a backup, make a few changes and
start the process again from scratch. Th is step makes it
a snap to create a backup (see Figure 3) even though
it places all of your solution’s dependencies within the
backup folder you specify, which means that to restore
properly, you have to be absolutely certain you know
the original arrangement of those backed-up folders.

Given that, to back up your solution at this step,
simply supply a folder path and the wizard will create
a child folder called Backup into which it will place
the solution’s fi les. Every project in the solution will
be backed up to a corresponding subfolder under
the Backup folder—even if it originates outside the
original solution’s root—so for the backup to be
successful, it’s important to ensure that project names
are unique across your solution. Click Next.

You will now see a final dialog box containing an advisory
regarding source control and read/write permissions (see Figure 4).

If you chose to do a backup, you will see the type of backup you
requested and to what location the backup fi les will be written. You
will see a summary of the solution name being converted along
with all of its projects. If everything looks accurate and acceptable,
click Finish.

Now you may be prompted for logon credentials for your source
control repository (such as Visual SourceSafe) so that your project
can be checked out.

You will now see a progress bar as each of your solution’s projects
is converted. Th e process may take several minutes as
the wizard iterates across the projects in your solution.

Th e Conversion Wizard displays a message explain-
ing that you’ve completed the fi rst step and that your Web
application now needs to be converted (see Figure 5).

It then alerts you that it has completed its initial
process (see Figure 6).

You can then review the conversion log using the
Conversion Report template. Th is fi le, called Upgrade-
Log.XML, is placed in the same folder as your solu-
tion’s .sln fi le. Th e upgrade log shows which project
fi les were converted and displays any relevant errors
and warning messages. It also provides useful com-
ments as well as comments regarding the framework
version that each project targets. I have included an
excerpt from this report in Figure 7.

All warnings and errors should be reviewed. Warn-
ings (such as a change to the relative path of a backup
path) generally concern minor technical concerns
that don’t typically require further action in order for
you to be able to successfully compile your converted

solution. However, error messages (such as a missing fi le reference)
need to be carefully reviewed and acted upon because they gener-
ally involve issues that will prevent you from being able to success-
fully compile your converted solution. If you have many errors, the
Conversion Log does a good job articulating the kind of action you
need to take, and you can usually fi nd plenty of additional help using
the Visual Studio 2010 help fi les or at various technical Web sites. In
some cases, you may fi nd it best to take note of the Conversion Log
errors and address them in your original Visual Studio 2003 project
fi les rather than in the converted solution (this is where the backup
you made comes in handy). You can always re-run the Conversion
Wizard against your modifi ed Visual Studio 2003 solution.

Figure 3 The Conversion Wizard Gives You an Opportunity to Create a
Backup Before Proceeding

Figure 4 The Conversion Wizard Advises You Before Letting You Continue

WORD PROCESSING
COMPONENTS
WINDOWS FORMS / WPF / ASP.NET / ACTIVEX

MILES BEYOND RICH TEXT

TRUE WYSIWYG

POWERFUL MAIL MERGE

MS OFFICE NOT REQUIRED

PDF, DOCX, DOC, RTF & HTML

Word Processing Components
for Windows Forms & ASP.NET

TX Text Control Sales:
US +1 877 - 462 - 4772 (toll-free)
EU +49 421 - 4270671 - 0WWW.TEXTCONTROL.COM

Untitled-2 1 8/11/10 11:26 AM

www.textcontrol.com

msdn magazine56 App Migration

Once you’ve reviewed all warnings and have resolved all errors,
you can dismiss the Conversion Wizard’s fi nal screens. Th e Conver-
sion Wizard has now completed its tasks. Your solution (.sln) fi le
and its project (.proj) fi les are now in the Visual Studio 2010 format.
However, you still have some work ahead to complete the migration.
Set the Target Framework and Startup Page When the
Conversion Wizard fi nishes, it will have confi gured your Visual
Studio 2003 Web project to run against the .NET Framework 4
while setting your solution’s other projects to run against the .NET
Framework 2.0. While it’s acceptable to mix-and-match framework
versions, I recommend using a single framework target across all
of your solution’s projects unless you have restrictions imposed
on by your Web-hosting company or organization infrastructure.
(Visual Studio 2010 modifi es its IDE feature set depending on the
target framework in eff ect for the active project. If your projects
target diff erent framework versions, you may fi nd the IDE’s be-
havior puzzling as you switch among projects. Having all projects
at the same framework version lets the IDE present a consistent
interface across all of your projects and also lets you program
against a consistent framework.)

If you wish to change the target framework for any of your
converted projects, simply right-click the project root in Solution
Explorer and select Properties. In the configuration page that
appears (see Figure 8), select the Application tab and change the
Target Framework to any of the 2.0+ framework values.

Finally, set the start page for your Web project. To do this, fi nd
the page in Solution Explorer, right-click it, and choose the Set as
Start Page option.

Compile and Fix Now that the solution and project fi les have
been upgraded to the Visual Studio 2010 format, your ASP.NET 2.0+
WAP is ready to be compiled. In order to force-build all projects in
your solution, I recommend compiling within Visual Studio 2010
using the Build, Rebuild Solution menu option. Aft er rebuilding,
you can view any build issues by displaying the Error List window
(you can display this by selecting the View menu and the Error
List option). Th e Error List window displays errors, warnings and
messages (you can specify which of these you see in the window
by toggling the corresponding Errors, Warnings and Messages but-
tons). Visual Studio 2010 usually provides clear guidance on how
to resolve the items in the Error List window. If you don’t under-
stand the error/warning/message text, simply select the Error List
window line containing the advisory and hit <F1>. A help window
will appear containing more detailed information about the is-
sue (if you didn’t install local help, you can connect to the Internet
to view it). Yet most of the errors you see will concern changes to
the framework that cause naming confl icts with your own code.
You can usually resolve those by fully qualifying your references
with a namespace. And most of the warnings you see will concern
obsolete members. While you can still use obsolete members, you
should know that they likely won’t be supported in the next-higher
version of the .NET Framework. If you see obsolete members and
you’re targeting the 2.0 framework, you will likely not be able to use
that member when you decide to target a 3.x or the 4 framework.

Be prepared to spend some time resolving these Error List
window issues. You should be able to resolve all errors and most, if
not all, warnings before moving on to the next steps.

Convert Pages and User Controls to Partial
Classes Th e next step involves running a Convert
to Web Application (hereafter, CWA) command.
Although you can run this command against an
individual page or user control to get a feel for the
kind of changes it makes, it’s quicker to run it against
the entire solution. To do this, right-click the Solu-
tion node in Solution Explorer and choose Convert
to Web Application. Th is process does the following:
1. Implements partial classes by adding a new
“designer” document for pages and user control.
2. Sets AutoEventWireup for pages and user control.
3. Adds declarative event handlers for each control
on pages and user controls.

ASP.NET 1.1 applications have code-behind modules
(aspx.cs and ascx.cs for C# and aspx.vb and ascx.vb for
Visual Basic .NET) containing both developer-authored
and Web-form designer-generated code. When you
create pages or user controls in Visual Studio 2003 and
add controls to them using the Web form designer, the
IDE adds protected instance fi elds to your code-behind Figure 6 The Conversion Wizard Alerts You When the Conversion Is Complete

Figure 5 The Conversion Wizard Lets You Know that You Will Need to Convert Your Web Project in Order to Complete the Migration

Untitled-1 1 7/14/10 10:08 AM

www.aspose.com

msdn magazine58 App Migration

modules so you can refer to those added controls. Aft er running
the CWA command, a designer document appears for each page
and user control (the Solution Explorer shows this fi le only when
its Show All Files option has been enabled). You will observe that
designer fi le names are the same as the page or user control along
with a designer.cs (C#) or designer.vb (Visual Basic .NET) extension.
For example, if you have a page called MyPage.aspx in C#, there
will be a new document called MyPage.aspx.designer.cs. This
designer document contains protected instance fi elds that used to
be in your code-behind module. Th ose fi elds have shift ed to the
designer module and thus are no longer mixed in with your own
code. Th is is possible because designer modules are partial classes,
which means that the CWA command also turns the code-behind
code for the corresponding page or user control into a partial class.

For example, instance fields in C# and Visual Basic .NET
appear as follows in the code-behind documents of Visual Studio
2003 projects:

[VB]
Protected WithEvents MyButton As System.Web.UI.WebControls.Button

[C#]
protected System.Web.UI.WebControls.Button MyButton;

Th e CWA command moves each to a corresponding designer fi le:
[VB]
Protected WithEvents MyButton As Global.System.Web.UI.WebControls.Button

[C#]
protected global::System.Web.UI.WebControls.Button MyButton;

(global:: indicates that the namespace search for System should
begin at the global namespace level and thus assures that the
framework System namespace won’t be hidden by your own
System namespace.)

Th e creation of the designer fi le is dynamic and can be regen-
erated at any time. Th us, you can safely delete your designer.cs or
designer.vb document and regenerate it (or restore it if it’s missing)
simply by right-clicking the page or user-control node in Solution
Explorer and re-running the CWA command against it. Th e CWA

command scans for server controls in the HTML markup for a
page or user control and generates the necessary instance variables
in the designer partial-class file. It then removes any instance
variables that still appear in your own code-behind fi le (aspx.cs,
ascx.cs, aspx.vb or ascx.vb).

Partial classes allow the source code for a single class, struct or
interface to be written across two or more physical fi les within a
namespace. Th e compiler later unites these partial defi nitions to
form a single declaration for each type. While partial classes remain
the de facto mechanism used by Visual Studio to cleanly separate
developer-authored code from IDE-generated code, developers
also leverage them in code-behind modules—especially when
working in a team environment.

Because partial classes are the norm for ASP.NET 2.0+ applica-
tions, you should break up your ASP.NET 1.1 classes into partial
classes. If you skip this step, your pages and user controls will
continue to function but you will need to manually update
control field declarations in the code-behind files when you
modify the controls on a page (.aspx) or user control (.ascx).

The CWA command also changes the value of AutoEvent-
Wireup as well as the way events are declared and wired up, and I
think the impact of this is important enough to discuss in detail.
AutoEventWireup is a Boolean attribute that specifi es whether
Page-object event handlers are wired up implicitly (when True)

Figure 7 The Conversion Log Shows Details About the Converted Web Application

Most of the errors you see
will concern changes to the

framework that cause naming
confl icts with your own code.

You have the vision, but time, budget and staff
constraints prevent you from seeing it through.
With rich user interface controls like Gantt Charts
that Infragistics NetAdvantage® for .NET adds to
your Visual Studio 2010 toolbox, you can go to market
faster with extreme functionality, complete usability
and the “Wow-factor!” Go to infragistics.com/spark
now to get innovative controls for creating Killer Apps.

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055
Infragistics India +91-80-6785-1111
twitter.com/infragistics

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics, the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc. All other trademarks or registered trademarks are the property of their respective owner(s).

Gantt Chart

Untitled-12 1 4/9/10 2:29 PM

www.infragistics.com/spark

msdn magazine60 App Migration

or explicitly (when False). For pages, AutoEventWireup is set in
the @Page tag; for user controls, AutoEventWireup is set in the
@Control tag. Th e CWA command sets AutoEventWireup to True
for C# pages and user controls, and sets it to False for Visual Basic
.NET pages and user controls.

Developers have diff erent preferences, and it’s quite possible
that some pages or user controls in your ASP.NET 1.1 application
set AutoEventWireup to True or False—or don’t specify it at all, in
which case its default comes from web.confi g or, if not specifi ed
there, from machine.confi g. It’s important to know that the value
of AutoEventWireup can change aft er running the CWA com-
mand. Th is change can cause unanticipated behavior—such as page
events fi ring twice. Th is most oft en occurs when you created your
own naming convention for Page-object events in your ASP.NET
1.1 application. For example, consider this C# code in which a
Page_Load2 handler is wired up to the Page.Load event delegate:

this.Load += new System.EventHandler(this.Page_Load2);

When AutoEventWireup is False, the event will fi re once, as ex-
pected—even if there is a code-behind function called Page_Load.
However, when AutoEventWireup is True, both events fi re—once
for the explicit wire-up code shown here, and once for the implicit
wire-up code that subscribes the Page_Load event handler to the
Page.Load event. Consider the code in Figure 9.

Th e code in Figure 9 generates this output:
In Page_Load().
In Page_Load2().
Top of Form 1
Bottom of Form 1

The same thing happens in Visual Basic .NET when Auto-
EventWireup is set to True. Consider the following code:

Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)

 Response.Write("In Page_Load.
")

End Sub

Private Sub Page_Load2(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Response.Write("In Page_Load2.
")

End Sub

When AutoEventWireup is True, both event han-
dlers fi re, causing the page to display:
 In Page_Load2.
 In Page_Load.

You can see that not only do two event handlers
execute, but also the order in which they execute—as
with all multicast delegates—might not be what you
expect. Finally, realize that when AutoEventWireup
is True, page event handlers with the proper function
name, such as Page_Load, will fire whether they’re
defi ned with or without arguments. For example:
 protected void Page_Load()
 {
 Response.Write("In Page_Load().
");
 }

is the same as:
 protected void Page_Load(object sender, EventArgs e)
 {
 Response.Write("In Page_Load().
");
 }

If both are present, only the one with arguments fi res—another
issue to consider when troubleshooting. Th us, in general, be careful
testing pages and user controls, especially when the AutoEvent-
Wireup setting was changed by the CWA command.

Finally, the CWA command removes explicit C# and Visual
Basic .NET code that wires up control events and instead uses
declarative event attributes in the page’s or user control’s mark-
up. For example, in ASP.NET 1.1, a click event on a button would
typically have an event handler in code-behind, such as:

this.MyButton.Click += new System.EventHandler(this.MyButton_Click);

Th e CWA command removes this and instead adds an OnClick
attribute to the server-control declaration as follows:

<asp:Button ID="MyButton" runat="server" Text="MyButton" onclick="MyButton" />

In Visual Basic .NET, declarative events aren’t added. Instead, the
Handles keyword is added to the code-behind. Th us, the markup
for a Button control will appear as:

<asp:Button ID="MyButton" runat="server" Text="Button" />

while the code-behind wires up the control to the handler:
Protected Sub MyButton_Click(
 ByVal sender As Object, ByVal e As EventArgs) _
Handles MyButton.Click

End Sub

Event delegates for these declarative event-handler constructs
are created at compile time.
Compile and Fix Th e migration is now complete. I recommend
that you rebuild your solution and go through the exercise of

Figure 8 Change the Target Framework for Any Project to 2.0, 3.0, 3.5 or 4

It’s important to regression test
and QA test your migrated

code, and be especially careful
to ensure that events fi re

as expected.

Go Beyond RIA Services
with DevForce Silverlight 2010

And celebrate your
giant leap forward
in productivity
and functionality!

Learn more at IdeaBlade.com/GoBeyond
Contact sales at 510-596-5100 • e-mail: sales@ideablade.com

TM

Untitled-1 1 8/16/10 10:39 AM

mailto:sales@ideablade.com
www.ideablade.com/gobeyond
www.ideablade.com/gobeyond

msdn magazine62 App Migration

addressing any remaining compiler errors or warnings you may
receive. Note that you need to resolve compilation errors before
you can successfully build your Web project and before you can
view your migrated Web site in a browser. You should also address
compilation warnings, but they aren’t considered critical and won’t
prevent you from using your Web application. Fi nally, take note of
all compiler messages because they generally provide helpful recom-
mendations for improvements you should consider implementing
when time allows. Beyond errors and warnings, it’s important to
regression test and QA test your migrated code, and be especially
careful to ensure that events fi re as expected.

Post-Migration Considerations
Because your ASP.NET project now targets a newer framework and
is running under a more modern version of the IDE, you should
be aware of a few additional issues.

If you migrated your ASP.NET 1.1 solution from a 32-bit OS to
a 64-bit OS, you should realize that IIS 6.0 and later support both
32-bit and 64-bit operating modes. Because ASP.NET 1.1 runs only
in 32-bit mode, you may fi nd that your converted ASP.NET app still
has 32-bit dependencies (such as COM or P/Invoke
calls) which may not continue to function properly
post-migration. To fi x this, access the Advanced Set-
tings of your application’s Application Pool and set the
Enable 32-bit Applications value to True.

Visual Studio 2010 expects Web pages to be
XHTML-compliant. Your pages from ASP.NET 1.1
likely are not. Most pages will therefore show XHTML
validation warnings (to see these, view your page in
Source or Design mode, then access the View menu
and select Error List). While these warnings won’t pre-
vent a page from running, they indicate that the pages
may not render properly in modern browsers. As time
permits, you should update your pages and user con-
trols so they’re XHTML-compliant, which will ensure
that they render properly in modern browsers. If your
Web app specifi cally targets an older browser—or you

don’t want to be bothered with markup validation errors at this time—
you can change how markup is validated by going to the Tools menu,
choosing Options and going to the Text Editor node, then changing
Target to Internet Explorer 6 (see Figure 10). Th is approach is suitable
only for developers who are required to target Internet Explorer 6, as
might be the case if your app is a corporate intranet app, for example.
Th is eff ectively sets rendering validation to a level similar to the
one you likely used in Visual Studio 2003.

For those apps that will need to display properly in browsers other
than Internet Explorer or in versions of Internet Explorer beyond
version 6, you should continue to show XHTML markup errors in the
HTML editor and you should make use of the new .NET Framework
4 controlRenderingCompatibilityVersion confi guration setting, avail-
able as a property in the Web.confi g system.web section:

<system.web>
 <pages controlRenderingCompatibilityVersion="4.0"/>
</system.web>

If controlRenderingCompatibilityVersion isn’t set in Web.confi g,
it defaults to the running version of ASP.NET. When you specify
the controlRenderingCompatibilityVersion value, however, you can
set it to either “3.5” or “4.0” (the conversion wizard sets it to “3.5,”
which renders pages the same way as in ASP.NET 3.5). Th is setting
determines how markup specifi ed in your .aspx fi les is ultimately
rendered to the browser. To cite an example from the Visual
Studio 2010 online help, when controlRenderingCompatibility-
Version is set to “3.5,” a server-side ASP.NET Label control with its
IsEnabled property set to false will render an HTML span element
with its “disabled” attribute set to “disabled”; when controlRender-
ingCompatibilityVersion is set to “4.0,” the resulting span element
will instead include a “class” attribute with a reference to a CSS class.

You should be aware that using the “4.0” setting generates mod-
ern XHTML markup—and this can break client script or CSS rules
that worked properly in the ASP.NET 1.1 version of the page, thereby
aff ecting the behavior and/or aesthetics of the rendered content.
Th us, until you are fully committed to generating valid XHTML,
I suggest that you set controlRenderingCompatibilityVersion to
“3.5.” And if you use this “3.5” setting, you need to know about
xhtmlConformance (which applies only if controlRenderingCom-
patibilityVersion is set to “3.5”), which can be set to “Legacy,” “Strict”

public partial class _Default : System.Web.UI.Page
{
 override protected void OnInit(EventArgs e)
 {
 InitializeComponent();
 base.OnInit(e);
 }

 private void InitializeComponent()
 {
 this.Load += new System.EventHandler(this.Page_Load2);
 }

 protected void Page_Load()
 {
 Response.Write("In Page_Load().
");
 }

 protected void Page_Load2(object sender, EventArgs e)
 {
 Response.Write("In Page_Load2().
");
 }
}

Figure 9 Testing AutoEventWireup Behavior

Figure 10 You Can Suppress XHTML Validation Errors by Changing the
HTML Validation Target to Internet Explorer 6

63September 2010msdnmagazine.com

or “Transitional” (the default value). “Strict” renders XHTML 1.0
Strict markup; “Transitional” renders XHTML 1.0 Transitional
markup; “Legacy” renders HTML similar (but not necessarily
exactly) to the way it was rendered in ASP.NET 1.1:

<system.web>
 <pages controlRenderingCompatibilityVersion="4.0"/>
 <xhtmlConformance mode="Transitional"/>
</system.web>

In my experience, you should avoid “Legacy” mode, as it can
interfere with the proper functioning of the ASP.NET AJAX
UpdatePanel. Also, note that the controlRenderingCompatibility-
Version value doesn’t change the DOCTYPE of your Web page—
it simply changes the way ASP.NET controls render themselves.
Th us, getting your pages to render properly is largely due to the
combination of controlRenderingCompatibilityVersion, xhtml-
Conformance and DOCTYPE values as well as the target browser
type and version used.

Another thing to consider: You may want to change the virtual
directory under which your newly migrated site runs—especially if
you plan to run it in parallel with the ASP.NET 1.1 version. To do this,
right-click the Web project in Solution Explorer, choose Properties
and then access the Web tab. Under Servers, you’ll see an option for
Use Local IIS Web Server. Be sure that option is selected, specify a
Project URL (such as http://localhost/mysitemigrated), and click the
Create Virtual Directory button if the virtual directory doesn’t exist.

ASP.NET 1.1 applications use the Windows ASPNET user
to assign privileges on files and folders under the virtual root.
ASP.NET 2.0+ uses the NETWORK SERVICE user. If your
application requires that ASP.NET have write access to certain
files or folders, for example, it’s important to grant those rights
to the NETWORK SERVICE user. If you’re ever unsure which
user needs this access, you can view that user name by examining
the value of the Envionment.UserName property while running
an ASP.NET application.

If you use any third-party add-ons or dependencies (whether as
binary or source), you will want to check with the vendor to ensure
that you have the latest version. For example, the popular logging
program, NLog, off ers 1.1 and 2.0 library builds. Grab the 2.0 build
and spare yourself the eff ort of migrating the 1.1 code yourself. Also,
vendors will be providing updates to productivity add-ons designed
for the Visual Studio IDE. Be sure to upgrade to obtain the most cur-
rent versions of those products for your new Visual Studio 2010 IDE.

Aft er migrating your ASP.NET 1.1 Web apps, you’ll realize two
immediate benefi ts. First, you’ll no longer require Front Page Server
Extensions (FPSE) to power your site (unless you optionally wish to
continue using it). Second, you’ll no longer need to have IIS installed
on your development machine because Visual Studio 2010 off ers its
own built-in ASP.NET Development Server. And while you can con-
tinue to run Visual Studio 2003 ASP.NET applications side-by-side
with Visual Studio 2010 ASP.NET applications (for QA/debugging
purposes, for example), your converted Visual Studio 2010 ASP.NET
application will no longer require Visual Studio 2003 or access to the
.NET Framework 1.1.

 If you’re a C# developer, you may notice that page and user-
control events no longer appear in the Properties window as a
yellow thunderbolt icon when viewing them in design mode. To

view/create these events as in Visual Studio 2003, you will need to
right-click the page (.aspx) or user control (.ascx) in the Solution
Explorer and choose View Component Designer. At that point,
you’ll see a Properties window that contains the familiar list of
events. You can double-click any of the events in the list to create
your event procedure and delegate wire-up code (this gets added
to the InitializeComponent function).

When it’s time to host your site, you need to know which CLR is
required. When you use the 3.0 and 3.5 .NET Frameworks, you’re
running against the CLR 2.0; when you use the .NET Framework
4, you’re running against the CLR 4.0. Your hosting company must
support the CLR 4.0 in order to host your ASP.NET 4.0 solution.

I hope I’ve helped you transition your Visual Studio 2003
ASP.NET apps to Visual Studio 2010. Once you do so, you’ll have
a whole new world of programming technologies at your disposal.
I believe it’s a relatively painless technology decision you’ll never
regret making.

JONATHAN WALDMAN has written for PC Magazine and is a senior Microsoft
Certifi ed Professional who leverages .NET Framework technologies to passion-
ately create customized soft ware solutions for the desktop and the Web. He may
be reached at jonathan.waldman@live.com.

THANKS to the following technical expert for reviewing this article:
Scott Hanselman

mailto:jonathan.waldman@live.com
www.steema.com
www.msdnmagazine.com

msdn magazine64

DATA -B OUND DES IGN

Create a Silverlight 4 Web
Part for SharePoint 2010

Microsoft SharePoint 2010 provides a business collab-
oration platform that’s easy to customize into tools that organizations
can depend on and grow with. And when building custom SharePoint
solutions, it’s best to take advantage of Silverlight on the front end.

Web Parts are a central part of most SharePoint solutions. When
most developers think about using Silverlight in their SharePoint
app, using it in Web Parts seems like the obvious direction, and Web
Parts are the most common way to create Silverlight applications
in SharePoint. But Web Parts aren’t your only option.

You can also use Silverlight in menus, navigation, dialogs, page
layouts, master pages—anywhere you can put an object tag. Th is
gives designers a lot of fl exibility to create great experiences that feel
integrated into SharePoint. With this approach, Silverlight should
feel like a natural extension to SharePoint.

Paul Stubbs

Th e sheer breadth and depth of both the SharePoint platform and
Silverlight can be daunting for developers. In fact, it’s common for
developers to focus entirely on SharePoint, and for designers to be
more familiar with Silverlight. To build a useful SharePoint appli-
cation, you’ll need to understand both technologies. In this article,
I’ll give you an overview of Silverlight integration with SharePoint
2010 and walk you through the basics of using Silverlight in the
front end of a SharePoint solution.

Silverlight and SharePoint Workfl ow
The fi rst step in working with Silverlight and SharePoint together
is using the right tools. Visual Studio and Expression Blend are
designed to work together, and by using them a Silverlight
developer can create a great application using sample data from
SharePoint without ever seeing or installing SharePoint.
Likewise, a SharePoint developer can integrate the Silverlight
application into SharePoint without having to understand or
delve into the XAML code.

In this article, I’ll show you how to create a simple Silverlight Web
Part that will use the SharePoint client object model for Silverlight
to surface a SharePoint list. Th e application will also be a SharePoint
sandboxed application that will enable Site Collection administrators
to install and manage the application. Th e application will also work
on SharePoint Online standard accounts.

Figure 1 shows what the fi nal application will look like when it’s
running on SharePoint.

This article discusses:
• Creating sample data

• From Silverlight to Web Part

• Deploying the Web Part

• Using the client object model

Technologies discussed:
Silverlight 4, SharePoint 2010, Visual Studio 2010, Expression Blend

Code download available at:
code.msdn.microsoft.com/mag201009Silverlight

http://code.msdn.microsoft.com/mag201009Silverlight

0810msdn_GrapeCity_Insert.indd 1 7/14/10 12:30 PM

www.gcpowertools.com/actnow

0810msdn_GrapeCity_Insert.indd 2 7/14/10 12:31 PM

www.gcpowertools.com/actnow

65September 2010msdnmagazine.com

SharePoint Sample Data
In order for Silverlight and SharePoint developers to work inde-
pendently, the Silverlight developer will need sample data based
on SharePoint data. Th is will enable the Silverlight developer to
be completely free to create an application that will work correctly
when plugged into SharePoint.

Expression Blend has a number of features for supporting design
time data and sample data. In this example, I will use the XML-
formatted sample data. Th is means the SharePoint developer must
create an XML file that represents the SharePoint List that the
application will use. You can make this sample data fi le in any shape
you want, but everything becomes much easier if you make it the
same shape as what will be returned from SharePoint. For example,
the shapes returned using the WCF Data Services entities and the
RESTful ListData services of SharePoint are diff erent from the
shape of the data returned using the Silverlight client object model.

In this application, I use some of the new data-binding features of
Silverlight 4 and the SharePoint client object model for Silverlight.
Th ere’s no built-in way to generate this sample data, so you’ll need
to create a simple console application to generate the SharePoint
sample data. In this case, I created a Visual Basic console application
that uses the Microsoft .NET Framework client object model to gen-
erate an XML document from the top fi ve list items (see Figure 2).

Once you have the SharePointSampleData.xml fi le, you’ll be
able to use this in Expression Blend as the design time data source.

Designing with Sample Data
With the sample data XML fi le in hand, you can open Expression
Blend and create a new Silverlight 4 application.

On the Data panel, click the Create Sample Data icon in the
top-right corner and choose Import Sample Data from XML,

then browse to the SharePoint-
SampleData.xml fi le. You can also
leave the block checked to see the
sample data while the application
is running. Otherwise, you’ll only
see the sample data in Blend or in
the Visual Studio designer.

Figure 3 shows the Contacts
List. Th e client object model actu-
ally returns a dictionary of 45 fi elds,
so you won’t be able to see them
all in the fi gure without scrolling.

Th e next step is to create a data-
bound list box. In the Data panel,
make sure that the List Mode icon
is set. You’ll fi nd this in the top-left
of the Data panel. Now select the
fi elds you want to appear in the list
box. In this case I selected Title,
which actually is the fi rst name,
and I selected LastName. Drag the
fi elds from the list and drop them
onto the design surface. Expression
Blend creates a list box and data

template data-bound to the fi elds. Arrange the list box to the left
side of the design surface to make space for the details.

Creating the data-bound details is just as easy. Select Details
Mode from the icon on the top left of the Data panel window.
Select the fi elds you want to appear as the detail fi elds. Drag the fi elds
onto the design surface. Expression Blend will create each fi eld bound
to the selected item in the list box. If you press F5 and run the
application, you’ll see the list box populated with the sample data.
As you change the selected item in the list box, you’ll see the details
change on the right (see Figure 4).

You now have a fully functional application data-bound to the
SharePoint sample data. As a Silverlight designer, you can continue
to test and refi ne your application without ever knowing anything
about SharePoint. In this example, I have done a little more design
work and arranged all of the fi elds and added the Sketch theme
from the Silverlight Toolkit.

The Silverlight Web Part
At this point, the Silverlight developer can hand the project
fi le over to the SharePoint developer. Th is is possible because
Expression Blend and Visual Studio share the same project fi les. Th e
SharePoint developer opens the project in Visual Studio 2010 and
can see all of the parts of the application so he can work on the
application in the Visual Studio designer (see Figure 5).

Figure 1 The Completed Silverlight/SharePoint Application

Web Parts are a central part of
most SharePoint solutions.

www.msdnmagazine.com

msdn magazine66 Data-Bound Design

Th e fi rst thing the SharePoint developer will need to do is add
an empty SharePoint project to the existing solution that contains
the Silverlight project. He’ll use this SharePoint project to deploy
the Silverlight application fi le (.xap) and to create a Silverlight Web
Part to host the Silverlight application.

Visual Studio 2010 makes doing both of these tasks easy
compared to building SharePoint solutions in the past. Right-click
on the solution and choose Add New Project. Browse to the SharePoint
2010 templates and select Empty SharePoint Project. In the New
Project wizard, be sure to keep the default selection for creating
the project as a sandboxed solution. This is a best practice and
gives you the most fl exible and secure deployment options.
Silverlight also works well with sandboxed solutions because
Silverlight runs on the client and isn’t limited to many of the
restrictions as server-side code running in the sandbox.

Although the order really doesn’t matter, it’s better to create the
Web Part fi rst. Th is will enable you to nest the module that will
deploy the Silverlight .xap fi le under the Web Part. Th is just keeps
the project structure well organized and easier to follow as your
solutions get larger.

Add the Web Part to your SharePoint
project by right-clicking on the project and
choosing Add New Item. Select Web Part from the
SharePoint 2010 template folder. Th is will create
a new empty Web Part in your project.

A Web Part consists of just three items. Th e
fi rst is the Elements.xml fi le. Th is is a SharePoint
solution fi le that describes the items in a feature.

Th e second is the Web Part defi nition fi le,
which has a .webpart extension. This file is
deployed to the SharePoint Web Parts gallery
and defi nes the code for the Web Part and all
of the properties of the Web Part.

The third file is the code file. All three of
these files are placed under a folder in the
project structure.

So this is where it gets interesting. All of the
fi les that are added to the project when you
create a new Web Part are needed if you’re
creating a Web Part from scratch. In this

case, you don’t need to use all of the auto-generated fi les because
SharePoint already ships with a Silverlight Web Part. What you want
to do is to build on this existing Web Part. To do that you simply
need to make the .webpart fi le point to the code for the Silverlight
Web Part and include all of the properties.

Create a copy of the built-in Silverlight Web Part .webpart fi le.
Th ere’s actually an automatic way to do this. In SharePoint add a
Silverlight Web Part to any page. While in design mode, click on
the drop-down menu of the Web Part and choose Export. Th is
lets you make a copy of the .webpart fi le that you can add to your

project. Now just change a few properties such
as the path to the Silverlight application, title,
description, and so on. Also, because you’re
now using the code for the Web Part from
the built-in Microsoft .SharePoint.dll, you no
longer need the .cs fi le for the Web Part. You
can simply delete this fi le. Figure 6 shows an
example of what your .webpart fi le will look like
once you add it to your project.

Deploying Silverlight to SharePoint
At this point, you have a fully functional
Silverlight application and a Web Part to host
the Silverlight application. Now you need
to create a SharePoint module to deploy the
actual Silverlight .xap fi le to SharePoint.

Visual Studio 2010 has built-in functionality
to do this, so hooking everything up is straight-
forward. Right-click on your Web Part folder and
choose Add New Item. Select Module template
from the SharePoint 2010 templates. Figure 3 The Sample Contacts List

Expression Blend creates a
list box and data template
data-bound to the fi elds.

Imports Microsoft.SharePoint.Client
Imports System.Text

Module Module1
 Sub Main()
 Dim context As New _
 ClientContext("http://intranet.contoso.com")
 Dim sampleListItems As ListItemCollection
 Dim sampleList As List = _
 context.Web.Lists.GetByTitle("Contacts")

 Dim qry As New Microsoft.SharePoint.Client.CamlQuery
 qry.ViewXml = "<View><RowLimit>5</RowLimit></View>"
 sampleListItems = sampleList.GetItems(qry)

 context.Load(sampleListItems)

 context.ExecuteQuery()

 'Build the Sample XML Data
 Dim SampleData = _
 <SharePointListItems></SharePointListItems>
 'Iterate through each row using Linq
 'and XML Literals
 For Each item In sampleListItems
 Dim sampleItem = <ListItem>
 <%= From fieldValue In item.FieldValues _
 Select <<%= fieldValue.Key %>>
 <%= fieldValue.Value %></> %>
 </ListItem>
 SampleData.Add(sampleItem)
 Next
 'Write the file to disk
 System.IO.File.AppendAllText(_
 "C:\SharePointSampleData.xml", _
 SampleData.ToString())
 End Sub
End Module

Figure 2 Console App to Return Data XML

67September 2010msdnmagazine.com

A new module, by default, contains an elements.xml fi le, just
like the one you added to the Web Part feature. It also contains a
sample.txt fi le. Delete the sample.txt fi le, as you will not need it.

Th ere’s a special way to add a reference to the Silverlight application
in your project. Select the Module folder in the Solution Explorer
and view the properties. Click on the Project Output References
property to open the Project Output References dialog. In the
dialog, click the Add button to add a new reference. In the Project
Name drop-down menu, choose
the Silverlight application project.
Set the Deployment Type to
Ele ment File and close the dialog.

You’ve now added a reference to
the Silverlight app. Th is works much
like standard project references
where the Silverlight project will
build before the SharePoint project
and the output of the Silverlight
project (the .xap fi le) will be copied
to the SharePoint project and built
into the SharePoint solution fi le (the
.wsp fi le).

Th e last step is to set the deploy-
ment path of the Silverlight appli-
cation. Th is is the location to which
the .xap fi le will be copied and the
location from which the Web Part
will load the application.

Open the elements.xml fi le under
the Module folder. Set the URL prop-
erty of the fi le element to be the same
as the URL property in the .webpart

fi le. In this case you will deploy to the
master page gallery so set the value to:
 ~site/_catalogs/masterpage/
 SilverlightApplication1.xap

Note the tilde at the beginning of
the path is a special SharePoint wild-
card to indicate the root of the site.

Now deploy the solution to
SharePoint to verify that every-
thing is set up correctly. Set the
SharePoint project as the default
startup project and press F5. Visual
Studio will build and package the
solution. Although Visual Studio
will open the SharePoint site and
attach the debugger, you still need
to add the Web Part to the page. I
fi nd the easiest way to do this while
developing my solutions is to add
the Web Part to a new Site Page.

Client Object Model
With everything in place, you’re
ready to wire up the Silverlight

application to actual SharePoint data. SharePoint 2010 includes
client-side object models for the CLR, Silverlight and ECMAScript.
Th ese enable easy access using a familiar object model to SharePoint
data, such as Lists and Libraries.

In this particular case you’re building a Silverlight app,
so you need to add a reference to the Silverlight client
object model. The Silverlight client object model is made up
of two files, Microsoft.Share Point.Client.Silverlight.dll and

Figure 4 Working on the App in Expression Blend

Figure 5 Working on the App in Visual Studio

www.msdnmagazine.com

msdn magazine68 Data-Bound Design

Microsoft.SharePoint.Client.Silverlight.Runtime.dll. These files
are located in C:\Program Files\Common Files\Microsoft Shared\
Web Server Extensions\14\TEMPLATE\LAYOUTS\ClientBin\.

Once you have the references added, you can write the code
to retrieve the contacts from the Contacts list. Start by adding a
using statement for Microsoft .SharePoint.Client to the top of the
MainPage.xaml.cs. Th en you’ll need to defi ne a couple of class-
level fi elds to hold the returned results. You also need to handle the
page-loaded event, which is used to load the List data:

public partial class MainPage : UserControl {
 ClientContext ctx;
 ListItemCollection contactsListItems;

 public MainPage() {
 InitializeComponent();
 this.Loaded += MainPage_Loaded;
 }

 void MainPage_Loaded(
 object sender, RoutedEventArgs e) {
 LoadList();
 }
}

Next, implement the LoadList method to retrieve the data from
SharePoint. First, get a reference to the current client context. Th e static
method ClientContext.Current returns a context to the site in which
the Web Part is loaded. You then call GetByTitle to get a reference to
the Contacts list. Th e Load method will add the request to the query.
Th en call ExecuteQueryAnsc to make the call to the SharePoint Server:

void LoadList(){
 ctx = ClientContext.Current;

 if (ctx != null) { //null if not in SharePoint
 List contactsList =
 ctx.Web.Lists.GetByTitle("Contacts");
 contactsListItems =
 contactsList.GetItems(
 CamlQuery.CreateAllItemsQuery());

 ctx.Load(contactsListItems);
 ctx.ExecuteQueryAsync(
 ContactsLoaded, ContactsLoadedFail);
 }
}

Calls to the server in Silverlight are asynchronous. Th e Exe cute -
QueryAsync method takes two callback delegates, one for succeeded

and one for failed results. In the ContactsLoaded callback method,
you data bind the results to the XAML that the Silverlight designer
created in the beginning of the article. In the succeeded callback,
all you need to do is set the ItemsSource property of the list box
to the contacts collection returned by the client object model. Th e
callback also occurs on a background thread, so you’ll need to up-
date the property inside of the Dispatcher’s BeginInvoke method:

// ContactsLoaded
void ContactsLoaded(object sender,
 ClientRequestSucceededEventArgs args) {
 //call back on the UI thread
 this.Dispatcher.BeginInvoke(() => {
 ContactsListBox.ItemsSource = contactsListItems;
 });
}

I left the failed callback for you to implement.

There’s one more thing you need to do before running the
application: you need to change the way Silverlight binds to the
data source. Remember, in the beginning of the article, I created an
XML fi le that represented the data from SharePoint, but this isn’t
exactly the same data because the SharePoint client object model
actually returns a collection of dictionary fi eld values.

One of the new features of Silverlight 4 is the ability to bind to
indexers. Th is means you can data bind to the dictionary values
returned by the client object model using the name of the key value
as a string to the binding command. Unfortunately, there isn’t a good
way to deal with this complex dictionary-based sample data, but it’s
easy enough to change the bindings back and forth using the Visual
Studio fi nd and replace tools. For example, you need to change the
Text="{Binding Title}" to Text="{Binding Path=FieldValues[Title]}".

<webParts>
 <webPart xmlns="http://schemas.microsoft.com/WebPart/v3">
 <metaData>
 <type name="Microsoft.SharePoint.WebPartPages.SilverlightWebPart,
Microsoft.SharePoint, Version=14.0.0.0, Culture=neutral, PublicKeyToken=7
1e9bce111e9429c" />
 <importErrorMessage>$Resources:core,ImportErrorMessage;
 </importErrorMessage>
 </metaData>
 <data>
 <properties>
 <property name="HelpUrl"
 type="string" />
 <property name="AllowClose"
 type="bool">True</property>
 <property name="ExportMode"
 type="exportmode">All</property>
 <property name="Hidden"
 type="bool">False</property>
 <property name="AllowEdit"
 type="bool">True</property>
 <property name="Description"
 type="string">Contacts Web Part</property>

 ...
 <property name="Height"
 type="unit">480px</property>
 <property name="ChromeType"
 type="chrometype">None</property>
 <property name="Width"
 type="unit">640px</property>
 <property name="Title"
 type="string">Contacts Demo</property>
 <property name="ChromeState"
 type="chromestate">Normal</property>
 <property name="TitleUrl"
 type="string" />
 <property name="Url"
 type="string">
 ~site/_catalogs/masterpage/SilverlightApplication1.xap
 </property>
 <property name="WindowlessMode"
 type="bool">True</property>
 </properties>
 </data>
 </webPart>
</webParts>

Figure 6 Excerpt from the Default .webpart File

SharePoint 2010 includes client-
side object models for the CLR,

Silverlight and ECMAScript.

69September 2010msdnmagazine.com

Do this for all of the fi elds. I’ve included the regular expression
code to switch back and forth in the sample code for this article.

Once you’ve changed all of the bindings to use the Silverlight 4
indexer binding, you’re ready to run the application. Browse to the
site page you created to host the Silverlight application. It should
look like Figure 1 that you saw in the beginning of the article.

Dynamically Loaded Client Object Model
At this point your application is complete, but there’s one more thing I
want to show you. Th is is a change to SharePoint since the beta version.
When I created a reference to the Silverlight client object model by
browsing to the fi les using the Visual Studio Add References dialog, by
default, Visual Studio includes these two fi les in the .xap package that
it builds. Th is adds an additional 407KB to your Silverlight package.

A better option is to dynamically load these assemblies at run
time. Th is enables the browser to cache these common fi les, reduc-
ing your application size and the load times while increasing the
performance of your applications.

Since the SharePoint beta release, SharePoint packaged the two
client object model fi les into a single .xap fi le called Microsoft .
SharePoint.Client.xap. Th is fi le is in the same location as the other
client object model files, C:\Program Files\Common Files\
Microsoft Shared\Web Server Extensions\14\TEMPLATE\
LAYOUTS\ClientBin. You still need to add a reference to the client
object model fi les because this will give you the IntelliSense and

compile support you need. But you’ll need to select each fi le in the
references folder of your Silverlight application and set the Copy
Local property to false. Setting this to false will prevent Visual
Studio from adding these fi les to your .xap package.

Next, you need to add code to dynamically load the client object
model assemblies. Th is is very generic code and can be used in any
Silverlight application on any .xap package with little modifi cation.
Start by changing the page-loaded event to call the code to download
and load the assemblies. In this example, you pass a callback delegate
to the LoadList method. Th is way, when the assemblies are loaded
and ready to use, you’ll then load the list data from SharePoint, like so:

void MainPage_Loaded(
 object sender, RoutedEventArgs e) {
 LoadClientOM loadClientOM =
 new LoadClientOM(delegate() { LoadList(); });
 loadClientOM.Run();
}

Add a new class file to your project called LoadClientOM.cs
and add the code shown in Figure 7. This code uses the Web-
Client to download the .xap package from /_layouts/clientbin/
Micro soft .SharePoint.Client.xap. Once the package is downloaded,
you load each assembly from the package.

You can now run the application again. You’ll see that the
application looks exactly the same, but now you’re loading the
Silverlight client object model dynamically at run time from the
server. It may be diffi cult to detect in this simple application, but you
should also see better performance loading them dynamically.

PAUL STUBBS is a Microsoft technical evangelist who focuses on the information
worker development community for SharePoint and Offi ce, Silverlight and Web
2.0 social networking. He’s authored three books about solution development with
Offi ce, SharePoint and Silverlight. Read his blog at blogs.msdn.com/b/pstubbs.

THANKS to the following technical experts for reviewing this article:
Mike Morton, John Papa and Unni Ravindranathan

using System;
using System.Net;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Ink;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;
using System.Windows.Shapes;
using System.IO;
using System.Windows.Resources;
using System.Reflection;

namespace SilverlightApplication1 {
 public class LoadClientOM {
 private bool isDownloaded = false;
 private Action action;

 public LoadClientOM(Action action) {
 this.action = action;
 }

 public void Run() {
 WebClient client = new WebClient();
 client.OpenReadCompleted +=
 new OpenReadCompletedEventHandler(
 client_OpenReadCompleted);
 client.OpenReadAsync(new Uri(
 "/_layouts/clientbin/Microsoft.SharePoint.Client.xap",

 UriKind.Relative));
 }

 void client_OpenReadCompleted(object sender,
 OpenReadCompletedEventArgs e) {
 Stream assemblyStream;
 AssemblyPart assemblyPart;

 assemblyStream = Application.GetResourceStream(
 new StreamResourceInfo(e.Result, "application/binary"),
 new Uri("Microsoft.SharePoint.Client.Silverlight.Runtime.dll",
 UriKind.Relative)).Stream;
 assemblyPart = new AssemblyPart();
 Assembly b = assemblyPart.Load(assemblyStream);

 assemblyStream = Application.GetResourceStream(
 new StreamResourceInfo(e.Result, " application/binary"),
 new Uri("Microsoft.SharePoint.Client.Silverlight.dll",
 UriKind.Relative)).Stream;
 assemblyPart = new AssemblyPart();
 Assembly a = assemblyPart.Load(assemblyStream);

 this.isDownloaded = true;

 if (action != null) {
 action();
 }
 }
 }
}

Figure 7 Loading Microsoft.SharePoint.Client.xap

One of the new features of
Silverlight 4 is the ability to

bind to indexers.

www.msdnmagazine.com
http://blogs.msdn.com/b/pstubbs

msdn magazine70

S QL S E RVER AND MAPPOINT

Making MapPoint 2010
and SQL Server Spatial
Work Together

After Bing Maps, two of the most visible geospatial
technologies from Microsoft are Microsoft MapPoint 2010 and
the spatial functionality in SQL Server 2008 R2. However, even
though SQL Server is an ideal store for geospatial data, and
MapPoint makes a good geospatial viewer, communicating between
the two is not nearly as straightforward as it could be.

Th is article will demonstrate how to read point and polygon
objects from SQL Server and render them in MapPoint. We’ll also

Eric Frost and Richard Marsden

demonstrate how to write points and polygons back to SQL Server
using the Entity Framework 4.0 included with Visual Studio 2010.

For purposes of illustration, we’ll be using the “Al’s Beef ” Chicago-
based company’s restaurant locations and hypothetical trade areas. In
retail analysis and modeling, trade areas can be defi ned using various
parameters and can be used for diff erent aims. Typically, they’re
defi ned as the smallest region around a store that contains areas that
meet a specifi c threshold—for example, where 50 percent or 75 percent
of customers live or work. All of the trade areas used in this article
were generated using the MapPoint Create Drivetime Zone feature,
so they represent a hypothetical trade area based on driving times.

As a chain with fewer than a couple dozen locations, Al’s Beef is
a relatively small business, but the same concepts and techniques
can be applied to large retailers with thousands of locations and
in other industries and applications.

Both the sample code and the “Al’s Beef ” dataset (as a SQL script)
are available for download at code.msdn.microsoft.com/mag201009Spatial.

While this isn’t an overly technical article covering arcane aspects
of the latest language or technology, it serves as a practical how-to
for a useful marriage of common Microsoft technologies. A couple
of hurdles include the inability of the Entity Framework to directly
understand geography objects, and the SQL Server Spatial require-
ment for polygons to be counterclockwise, which isn’t required by
MapPoint. Hopefully, this article will help even seasoned developers
who may be reluctant to jump into the geospatial arena for lack of
prior experience, and at the same time show MapPoint developers
how to successfully leverage SQL Server 2008 R2.

This article discusses:
• Setting up a geospatial database

• Using the MapPoint control in a C# Windows Form app

• Using Entity Data Objects

• Adding a MapPoint COM control to the Visual Studio toolbox

• Initializing a map form

• Adding pushpins to a map

• Adding polygons to a map

• Handling MapPoint events

• Expanding the app

Technologies discussed:
SQL Server 2008 R2, Microsoft MapPoint 2010, COM, Entity
Framework 4.0, Visual Studio 2010

Code download available at:
code.msdn.microsoft.com/mag201009Spatial

http://code.msdn.microsoft.com/mag201009Spatial
http://code.msdn.microsoft.com/mag201009Spatial

71September 2010msdnmagazine.com

Setting up the Database
In order to follow along with the code samples included here, down-
load the SQL script and run it against SQL Server to set up the database
and objects. Th e data is stored in a SQL Server database called “Corpo-
rate” and includes one table, one view and one stored procedure. Al’s
Beef locations are stored in a table called “Locations” (see Figure 1).

Th is includes the stores’ addresses, attributes (for example, is it a
drive-in?) and a location point geography datatype. Th e hypothetical
trade area polygons are also stored in the “Locations” table, in a
fi eld called TradeArea using the geography datatype.

Th e vLocations view exposes the point and polygon geography
fields into datatypes that can be understood and read into the
Entity Framework.

Th e point geography fi eld is decomposed into latitude and longi-
tude fi elds and passed back to the client as a varbinary fi eld. Th is is
because the Entity Framework can’t deal with geography datatypes
directly, but it can handle varbinary fi elds. Th e application can later
convert these back into geography objects.

Here’s the stored procedure uspAddLocation, which, as the
name suggests, is used to insert new locations from MapPoint back
into SQL Server:

CREATE VIEW [dbo].[vLocations]
AS
SELECT LocID,Location.Long As Longitude,
 Location.Lat As Latitude,
 CAST(Location AS VARBINARY(MAX)) AS Location,
 Locations.TradeArea.STAsText() As TradeAreaWKT,
 CAST(TradeArea AS VARBINARY(MAX)) AS TradeArea
FROM Locations

We’ll come back to this later.

Setting up the Application
Our project is a C# Windows Form application that incorporates the
MapPoint Control. Th e control is included with MapPoint 2010, and
the full version of MapPoint 2010 must be installed for it to be available.
Records can be navigated using buttons to walk through the records
and to display the store and its trade area. Stores can also be selected
by clicking on the store’s pushpin icon. Th e form also has a checkbox
to display the trade area as a convex hull and a button to add new
locations. By default, the application shows the polygon as it is stored
in the database (see Figure 2).

If the View Trade Area As Convex Hull checkbox is set, a line (the
convex hull) is wrapped around the trade area similar to wrapping
a rubber band around the polygon (see Figure 3).

Before we can implement the map display, we need to add Entity
Data Objects that point to the database table and view. To establish the
Entity Data Objects, right-click on the application in Visual Studio Solu-
tion Explorer and go to Add | New Item | Visual C# Items | ADO.NET
Entity Data Model. Click Add and choose Generate from Database. In
the Choose Your Database Objects dialog, select the table Locations
and the view vLocations. Aft er you click Finish, the wizard will create
the objects and generate the code necessary to connect to the database.

To add the MapPoint 2010 Control to the Windows Form, it’s
necessary to first add the MapPoint COM control component
to the Visual Studio toolbox. COM isn’t the most fashionable
technology, but it continues to be an important part of the Windows
ecosystem. Many applications, including MapPoint, only imple-

ment an API through a COM interface, and COM support from
within Visual Studio isn’t going away anytime soon.

Open the Visual Studio toolbox and in the general section, right-
click and select Choose Items. Go to the COM Components tab and
select Microsoft MapPoint Control 17.0. Th e MapPoint Control 17.0
refers to MapPoint 2010 (North America or Europe). Older versions of
MapPoint (2002 onward) can also be used, but minor name changes
(for example, the toolbar name and symbol identifi er) will be required.

On both AxInterop.MapPoint and Interop.MapPoint assemblies,
set the Embed Interop Type property to False and the Copy Local
to True.Th e MapPoint Control can now be dragged onto the form
and used within the application.

Initializing the Map Form: Loading MapPoint
Th e Map form declares several member variables, including the
database connection to the Entity Framework, a list of the store
information and a parallel list of the stores’ geographical information
that will be read from the view. Th e variable curLoc keeps track
of the current store ID within the application, and objMap is used
to reference the MapPoint control’s map object, as shown here:

namespace AlsBeef
{
 public partial class Map : Form
 {
 CorporateEntities db;
 List<Location> locationList;
 List<vLocation> vlocationList;
 int curLoc = -1; // <0 indicates 'not set'
 MapPoint.Map objMap;
 MapPoint.Symbol objSymb;
 ...

Figure 1 TheTable and View Included in the Sample Database

COM isn’t the most fashionable
technology, but it continues

to be an important part of the
Windows ecosystem.

www.msdnmagazine.com

msdn magazine72 SQL Server and MapPoint

When the form is created, the method CreateNewMapObject is
called to initialize the map control and open a new map using the
default North America map template. Th e toolbars are set, objMap is
defi ned and Point of Interest is turned off so as not to clutter the map
(see Figure 4). “Points of Interest” are MapPoint predefi ned places,
restaurants and theaters,for example.

Th e form’s Load method populates
both lists of store information. Th e
locationList contains all the regular
non-geographic information, and vloc-
ationList reads the geographic fi elds
as transformed by the database view:

private void Map_Load(object sender, EventArgs e)
{
 db = new CorporateEntities();
 locationList = new List<Location>();
 vlocationList = new List<vLocation>();

 ObjectQuery<Location> locationQuery =
 db.Locations;
 ObjectQuery<vLocation> vlocationQuery =
 db.vLocations;

 locationList = locationQuery.ToList();
 vlocationList = vlocationQuery.ToList();

 InitMapSymb();
 InitMapPins();
 SetLocation(0);
}

Th e last two lines eff ectively start the
application by initializing the map. Th ey
add a pushpin for each store location
(InitMapPins), and position the map
and form controls to point to the data
for the fi rst store location (SetLocation).

Adding Pushpins to the Map
Th ings become more interesting in the
InitMapPins method:
private void InitMapPins()
 {
 MapPoint.Pushpin objPin = null;
 for (int i = 0; i < locationList.Count;
 i++)
 {
 MapPoint.Location objLoc =
 objMap.GetLocation(vlocationList[i].
 Latitude.Value,
 vlocationList[i].Longitude.Value);
 objPin = objMap.AddPushpin(objLoc,
 locationList[i].Name);
 objPin.Symbol = 145; // Red fork and
knife
 // (food, restaurant)
 }
 }

Looping over the locationList, we
retrieve the latitude and longitude
values that were calculated and ex-
posed by the view. Th ese are used to
create MapPoint Location objects,
which are then used to create map
pushpins (MapPoint Pushpin objects).
Th e store name is used for the Push-
pinName property, which will be
later used to search and position the

map. Th e pushpins are depicted with the MapPoint built-in red
restaurant pushpin symbol (symbol #145). A complete list of
MapPoint 2010 built-in symbols can be found at mapping-tools.com/
info/pushpins/ pushpins_2010.shtml. Th is page also has links to pushpin
listings for earlier versions of MapPoint.

Figure 2 The Al’s Beef App, Showing the Chicago Heights Store and Territory as Defi ned
in the Database

Figure 3 The Chicago Heights Store, with a Convex Hull Wrapped Around the Territory
Shown in Figure 2

http://mapping-tools.com/info/pushpins/pushpins_2010.shtml
http://mapping-tools.com/info/pushpins/pushpins_2010.shtml

73September 2010msdnmagazine.com

Positioning to Current Record
and Adding Polygons to the Map
New records are selected and displayed using the IncDecLocation
and SetLocation methods. IncDecLocation simply applies an
increment (cnt) to the current position (curLoc) and passes this
new record position to SetLocation:

private void IncDecLocation(int cnt = 0)
{
 // Apply the increment/decrement, wrapping around if necessary
 int newLoc = (curLoc + cnt + locationList.Count) % locationList.Count;

 SetLocation(newLoc);
}

Th e SetLocation routine is the workhorse of the application.
SetLocation selects a new record position and displays it on the
map. SetLocation also removes the highlight from the previous
pushpin (if any) and clears all previous trade area polygons from
the map (see Figure 5).

Th e next section becomes a little tricky. First, the application
checks the status of the View Trade Area As Convex Hull checkbox.
If it hasn’t been set, it takes the Well-Known Text (WKT) string that
defi nes the polygon and passes it to the custom RenderPolygon
method to be parsed and rendered as a polygon on the map.

If the checkbox has been set, it pulls the territory polygon’s
varbinary object and converts it to a geography object using the
System.IO.MemoryStream class and BinaryReader method.
STConvexHull is one of the methods included with SQL Server
2008; it allows you to modify instances of geography or geometry
data. STConvexHull, in particular, only works with geometry
datatypes. The differences between SQL Server’s geometry and
geography datatypes is covered extensively elsewhere, but for now
consider that geometry data is defi ned in a fl at (2D Euclidean)
Cartesian plane, whereas geography data is projected onto the
spheroidal Earth surface using a spherical coordinate system
(datum, projection, prime meridian and unit of measurement).

Th e trade area is stored in the database with a geography fi eld
type and is then cast into a varbinary by the view. Th is needs to be
read into a geography object, which can then be converted into a
geometry object in order to run the STConvexHull method.

Because of the small areas being covered, calculations performed
by STConvexHull on the (planar) geometry object are practically
the same as would have resulted had the convex hull been calcu-
lated for the actual spheroidal geography object.

private void SetLocation(int newLoc)
{
 MapPoint.Pushpin objPin = null;

 // Unhighlight previous pushpin
 If (curLoc>= 0)
 {
 objPin = (MapPoint.Pushpin)
 objMap.FindPushpin(locationList[curLoc].Name);
 objPin.Highlight = false;
 }

 // Clear all previous shapes
 while(objMap.Shapes.Count> 0)
 {
 objMap.Shapes[1].Delete();
 }

 // Set the new location
 curLoc = Math.Min(Math.Max(newLoc,0), locationList.Count-1);

 objPin = (MapPoint.Pushpin)
 objMap.FindPushpin(locationList[curLoc].Name);
 objMap.Location = objPin.Location;

...

Figure 5 TheSetLocation Routine Is the App Workhorse

public Map()
{
 InitializeComponent();
 CreateNewMapObject();
}

private void CreateNewMapObject()
{
 MPctrl.NewMap(GeoMapRegion.geoMapNorthAmerica);
 object barObj = "advanced";
 MPctrl.Toolbars.get_Item(refbarObj).Visible = true;
 MPctrl.Toolbars.LargeToolbarButtons = false;
 objMap = MPctrl.ActiveMap;
 // Make sure all points of interest are turned off
 objMap.PlaceCategories.Visible = MapPoint.GeoTriState.geoFalse;
}

Figure 4 Creating a Form

Geometry data is defi ned in a
fl at (2D Euclidean) Cartesian

plane, whereas geography data
is projected onto the spheroidal
Earth surface using a spherical

coordinate system.

...
 // Draw trade area
if (checkBox1.Checked == false)
{
 RenderPolygon(vlocationList[curLoc].TradeAreaWKT);
}
else
{
 // Need to add C:\Program Files\Microsoft SQL
 // Server\100\SDK\Assemblies\Microsoft.SqlServer.Types.dl
 // to references
 SqlGeographyTradeAreaGeog = new SqlGeography();
 using (var stream = new
 System.IO.MemoryStream(vlocationList[curLoc].TradeArea))
 {
 using (var rdr = new System.IO.BinaryReader(stream))
 {
 TradeAreaGeog.Read(rdr);
 }
 }
 SqlGeometry TAConvexHullGeom = new SqlGeometry();
 TAConvexHullGeom =
 SqlGeometry.STPolyFromText(TradeAreaGeog.STAsText(), 4326);
 TAConvexHullGeom = TAConvexHullGeom.STConvexHull();
 RenderPolygon(TradeAreaGeom.ToString(), 3355443, 0); // Gray80
 RenderPolygon(TAConvexHullGeog.ToString());
}
...

Figure 6 Drawing the Original Trade Area and the Convex Hull

www.msdnmagazine.com

msdn magazine74 SQL Server and MapPoint

In the next part of SetLocation, the original trade area is drawn
as a thin black line and the convex hull is rendered as a thicker red
line. Th e code is shown in Figure 6.

So what does this WKT string look like and what does Render-
Polygon do with it? You’ve already seen the results (in Figures 2
and 3). Let’s dive into the internals.

WKT is an Open Geospatial Consortium (OGC) standard format
for formatting geospatial vector data in the form of text. A WKT
polygon string looks like this (much abbreviated):

POLYGON ((-111.918823979795 33.6180476378649, -111.91810682416
33.6096635553986, -111.911686453968 33.6078672297299, -111.907403888181
33.599476357922, -111.907403888181 33.6060674674809, -111.903121406212
33.6060674674809))

Th e word “POLYGON” precedes a list of coordinates that are
surrounded by two sets of parentheses. Individual coordinate
pairs are separated by commas. We use the MapPoint AddPoly-
Line method to draw the polygon on the map and to add it to
the MapPoint Shapes collection. Th is takes an array of MapPoint
Location objects as a parameter. Converting the WKT string to
an array of Location objects requires half a dozen lines of code.
RenderPolygon performs this by stripping the “POLYGON” prefi x
and parentheses before splitting the string into coordinates using

the comma separator. Individual coordinates are then parsed
into pairs of doubles (longitude, latitude) that are used to create
MapPoint Location objects. Th e resulting array of Location objects
is then passed to AddPolyline to create the new polygon.

RenderPolygon takes additional parameters for the color and
line thickness (see Figure 7).

A more complete RenderPolygon could take additional parameters
for whether or not the shape is fi lled in, the fi ll color, a shape name
(an internal string that can be assigned to shapes) and the zOrder
(to position the shape in front of or behind roads and other shapes).

Drawing and annotation can be placed on a MapPoint map
by both the user and a program. MapPoint supports a total of 40
diff erent colors for this annotation. Although the programming
interface appears to support the standard 3-byte RGB (16,777,216
diff erent) colors, in reality these numbers merely provide a useful
way to specify the color to use. Th e 40 colors supported by Map-
Point can be seen at mapping-tools.com/info/pushpins/colors.shtml.

Historically, this limitation helped with image update effi ciency,
but today it primarily aids map clarity by helping to ensure colors
are diff erent.

We now come to the fi nal part of SetLocation (see Figure 8).

This highlights the new pushpin, sets the zoom level (using
the Map object Altitude property), reports the store informa-
tion (from the locationList array) and finds the distance to the
nearest store location.

Th is distance is calculated by NearestLocation. Th is loops through
the locations and uses the SQL Server Spatial STUnion method to

private void RenderPolygon(string polystring,
 int forecolor = 128, int weight = 3)
{
 polystring = polystring.Replace("POLYGON ((", "");
 polystring = polystring.Replace("))", "");
 string[] stringList = polystring.Split(',');
 MapPoint.Location[] objLoc =
 new MapPoint.Location[stringList.Count()];
 for (int i = 0; i <stringList.Count(); i++)
 {
 string[] coords = stringList[i].Trim().Split(' ');
 objLoc[i] = objMap.GetLocation(Convert.ToDouble(coords[1]),
 Convert.ToDouble(coords[0]), 0);
 }
 MapPoint.Shape objShape;
 objShape = objMap.Shapes.AddPolyline(objLoc);
 objShape.Line.ForeColor = forecolor;
 objShape.Line.Weight = weight;
}

Figure 7 TheRenderPolygon Method

WKT is an Open Geospatial
Consortium standard format

for formatting geospatial vector
data in the form of text.

 ...
 // Reset zoom level
 objMap.Altitude = 30;
 objPin.Highlight = true;

 Double distance;
 distance =
 NearestLocation(curLoc) * 0.000621371192; //convert to miles

 label1.Text = "ID: " + locationList[curLoc].LocID.ToString();
 label2.Text = locationList[curLoc].Name + " - " +
 locationList[curLoc].Format;
 label3.Text = locationList[curLoc].Address + ", " +
 locationList[curLoc].City + ", " + locationList[curLoc].State;
 label4.Text = "Distance to next closest store: " +
 String.Format("{0:#,0.0}", distance) + " miles";

 }

private double NearestLocation(int curLoc)
{

 SqlGeography AllLocations = new SqlGeography();

 SqlGeography CurLocation = new SqlGeography();
 for (int i = 0; i <locationList.Count; i++)
 {
 SqlGeography TempLocation = new SqlGeography();
 using (var stream = new
 System.IO.MemoryStream(vlocationList[i].Location))
 {
 using (var rdr = new System.IO.BinaryReader(stream))
 {
 TempLocation.Read(rdr);
 }
 }
 if (i == curLoc)
 {
 CurLocation = TempLocation;
 }
 else
 {
 AllLocations = AllLocations.STUnion(TempLocation);
 }
 }
 return (Double)AllLocations.STDistance(CurLocation); //meters
}

Figure 8The Final Part of SetLocation

http://mapping-tools.com/info/pushpins/colors.shtml

75September 2010msdnmagazine.com

combine the Location geography points into a MultiPoint geog-
raphy instance. Th e exception is the current store location, which
is skipped—otherwise the distance would always be zero miles!
Th e application then uses the STDistance method to calculate
the distance in meters between the current store location and the
MultiPoint geography instance. STDistance reports the distance
to a MultiPoint as the shortest distance to any component point
within the MultiPoint.

Th e button to add a new site location removes any trade-area
polygons from the map and then simply changes the mouse
pointer to a crosshair:

private void button1_Click(object sender, EventArgs e)
{
 // Clear all previous shapes
 while(objMap.Shapes.Count > 0)
 {
 objMap.Shapes[1].Delete();
 }
 MPctrl.MousePointer = MapPoint.GeoPointer.geoPointerCrosshair;
}

In order to deal with MapPoint events, the form requires an event
handler defi ned in the form designer. Th e events can be added
using the form designer or added manually to Map.Designer.cs.
Handlers are added to two of the MapPoint events: SelectionChange
and BeforeClick, as shown in Figure 9.

Th e SelectionChange event is used to detect if the user has selected
a pushpin. Th is is then used to move the current record to this push-
pin’s record. Figure 10 shows the event handler’s implementation.

Th is checks that the newly selected object is, indeed, a pushpin.
Th en we perform a simple search through the local locationList for
a matching record. MapPoint pushpins can have duplicate names,
so this code assumes that all location records (and hence pushpins)
have unique names. You should also compare geographic coordi-
nates for situations where this can’t be relied upon.

Th e map’s BeforeClick event handler is used in the “add new
store location” functionality. Th e handler checks to see if the mouse
pointer is a crosshair—that is, the user is trying to insert a new site
location. It lets MapPoint handle the click event if the pointer isn’t a
crosshair. If the mouse pointer is a crosshair, the program traps the
click action and adds a new pushpin at the mouse pointer location
using the red restaurant symbol. At this point, to simplify things,
rather than have the user draw the trade area, the program uses the
MapPoint AddDrivetimeZone method to generate a hypothetical
(travel-time-based) trade area around the new site.

In the interest of getting this shape into SQL Server, the shape is
fi rst decomposed into vertices, which are then converted into a poly-
gon WKT (text) defi nition. Th is will then be written to SQL Server.

To pass the point and polygon back into SQL Server and update
the geography columns, we can’t use the normal Entity Framework-
supported stored procedures, because the geography datatype isn’t
supported. However, because execution of arbitrary stored procedures
is now supported by Entity Framework 4.0, we are able to import
the stored procedure and execute it like a normal function.

Th is code sets up the parameters and then executes the usp-
AddLocation stored procedure:

 object[] parameters =
{
 new SqlParameter("Latitude",objLoc.Latitude),
 new SqlParameter("Longitude",objLoc.Longitude),
 new SqlParameter("PolyWKT",PolyWKT)
};

var retValue = db.uspAddLocation(objLoc.Longitude,
 objLoc.Latitude, PolyWKT);

Last, this routine resets the map (CreateNewMapObject),
requeries the list of locations from the database (InitMapPins)
and selects the new store as the current record (SetLocation):

 // Re-query and re-initialize map
 ObjectQuery<Location> locationQuery = db.Locations;
 ObjectQuery<vLocation> vlocationQuery = db.vLocations;
 locationList = locationQuery.ToList();
 vlocationList = vlocationQuery.ToList();
 objMap.Saved = true;
 CreateNewMapObject();
 InitMapSymb();
 InitMapPins();
 SetLocation(locationList.Count – 1);
 e.cancel = true;
}

The line e.cancel=true; prevents MapPoint from further pro-
cessing the click event. The stored procedure uspAddLocation
follows (see Figure 11).

private void MPctrl_SelectionChange(object sender,
 AxMapPoint._IMappointCtrlEvents_SelectionChangeEvent e)

{
 // Has the user just selected a pushpin?
 if (e.pNewSelection is MapPoint.Pushpin)
 {
 MapPoint.Pushpin ppin = e.pNewSelection as MapPoint.Pushpin;

 // Find the corresponding location object, and select it
 for (int iloc = 0; iloc < locationList.Count; iloc++)
 {
 if (locationList[iloc].Name == ppin.Name)
 { // Found it: select, and move to it
 SetLocation(iloc);
 break;
 }
 }
 }
}

Figure 10 Implementing a SelectionChange Event Handler

//
// MPctrl
//
this.MPctrl.Enabled = true;
this.MPctrl.Location = new System.Drawing.Point(13, 13);
this.MPctrl.Name = "MPctrl";
this.MPctrl.OcxState =
 ((System.Windows.Forms.AxHost.State)
 (resources.GetObject("MPctrl.OcxState")));
this.MPctrl.Size = new System.Drawing.Size(674, 389);
this.MPctrl.TabIndex = 0;
this.MPctrl.SelectionChange +=
 new AxMapPoint._IMappointCtrlEvents_SelectionChangeEventHandler
 (this.MPctrl_SelectionChange);
this.MPctrl.BeforeClick +=
 new AxMapPoint._IMappointCtrlEvents_BeforeClickEventHandler
 (this.MPctrl_BeforeClick);

Figure 9 Adding Handlers to MapPoint Events

Drawing and annotation can be
placed on a MapPoint map by
both the user and a program.

www.msdnmagazine.com

msdn magazine76 SQL Server and MapPoint

You can see a new geography instance and variable being cre-
ated for the polygon before the INSERT statement, whereas the
Point location is created via the Point method inside the INSERT
method. Either approach is valid.

Th e event-handling code in Figure 12 handles the “previous”
and “next” buttons, the convex hull checkbox and form closing—
this completes the application.

Viewing and Visually Editing
SQL Server Geospatial Data
Th is article covered a lot of ground, but it demonstrates a complete
end-to-end application with SQL Server, showing how to pass data
in and out using both SQL Server Spatial and MapPoint methods
to display and edit real-world information.

Th e principles shown here can be taken further. Keeping a local
copy of the data ensures fast map updates but wouldn’t be practical
for huge datasets. For these situations, the data should be fetched
on a record-by-record basis, ideally with a caching mechanism.

MapPoint is capable of some useful geospatial operations (for
example, the drive-time zone calculation), but it lacks many of the

geospatial operations expected of a full GIS. Here we leverage two
such operations, STConvexHull and STDistance, from the SQL
Server Spatial extensions. Other advanced functions available in
the spatial extensions include the ability to measure the length
and extent of geographic features, as well as fi nding unions and
intersections of polygons. Th ese functions could be used to create
a sophisticated territory-management application. Th is could com-
bine territories or fi nd overlaps where one store is cannibalizing
the business of another.

Similarly, MapPoint’s strengths could be leveraged. MapPoint
is capable of offl ine geocoding. Our example uses existing coor-
dinates, but the MapPoint geocoder could be used to locate
street addresses instead. MapPoint also ships with a number of
demographic databases at the county, ZIP code and census tract
levels. Th is data could be plotted on a store map, allowing easy
comparisons to be made—for example, how store sales compare
to local populations and income levels.

Looking ahead, SQL Server Spatial is likely to have a generational
leap forward with the next version of SQL Server, and the MapPoint
product has been enjoying a renaissance of new development
and features with the last two versions, and this is set to continue.
Furthermore, the Entity Framework is likely to continue to add
support for new field types, including spatial datatypes, which
should improve communication between SQL Server and MapPoint.
Taken together, these technologies form a robust and powerful
evolving platform for mapping application development.

ERIC FROST is a Microsoft MVP and business application developer specializing
in GIS/mapping applications. He manages the active Microsoft mapping tech-
nology forum mapforums.com and can be reached at eric.frost@mp2kmag.com.

RICHARD MARSDEN is a Microsoft MVP and freelance soft ware developer. He
sells a number of MapPoint extensions at mapping-tools.com and operates the
GeoWeb Guru Web site at geowebguru.com.

THANKS to the following technical experts for reviewing this article:
Bob Beauchemin, Ed Katibah and Amar Nityananda

private void prev_Click(object sender, EventArgs e)
{
 IncDecLocation(-1);
}

private void next_Click(object sender, EventArgs e)
{
 IncDecLocation(1);
}

private void checkBox1_CheckedChanged(object sender, EventArgs e)
{
 IncDecLocation();
}

private void Map_FormClosing(object sender, FormClosingEventArgs e)
{
 db.Dispose();
 MPctrl.ActiveMap.Saved = true;
}

Figure 12 Completing the App

CREATE PROCEDURE [dbo].[uspAddLocation]
@Longitude FLOAT,
@Latitude FLOAT,
@PolyWKT NVARCHAR(MAX)
AS
BEGIN
 -- SET NOCOUNT ON added to prevent extra result sets from
 -- interfering with SELECT statements.
 SET NOCOUNT ON;

DECLARE @NewLocID int = 0
SELECT @NewLocID = MAX(LocID)+1 FROM Locations

DECLARE @NewPoly geography
SET @NewPoly = geography::STPolyFromText(@PolyWKT,4326)

INSERT INTO Locations(LocID,Name,Address,City,State,Format,Location,TradeArea)
VALUES(@NewLocID, 'New Location ' + CAST(@NewLocID As varchar(3)), '123 Main',
 'Anywhere', 'ST', 'Food', geography::Point(@Latitude,@Longitude,4326),
 @NewPoly)

SELECT @NewLocID AS NewLocID

END

Figure 11 The uspAddLocation Stored Procedure

To pass the point and polygon
back into SQL Server and update

the geography columns, we
can’t use the normal Entity

Framework-supported stored
procedures, because the

geography datatype
isn’t supported.

mailto:eric.frost@mp2kmag.com
http://geowebguru.com

It’s so powerful it makes the Kraken look like a gimp sea monkey.

It’s so fast it makes warp drive look like a hobbit running backwards.

IT’S SO EASY IT MIGHT AS WELL BE “GOD MODE”
It makes other reporting solutions seem like

you’re trying to crack RIJNDAEL ENCRYPTION,

or like driving the “ROAD OF DEATH” in the

Bolivian Andes, backwards, while blindfolded.

No other solution can match Windward’s array of features,
STREAMLINED IMPLEMENTATION, and already familiar
interface. You create custom report templates with Word,
Excel, or PowerPoint. Even your co-workers who need IT
to turn on their computers can use Microsoft Office to
format reports.

I F YOU F IND A L L OF T H IS HA RD T O S WALLOW,

D O W N L O A D T H E F R E E T R I A L A T

Design Reports in Microsoft Word, Excel, and PowerPoint.

Drag N’Drop data into report templates no coding required!

Solutions for .Net, Java and SharePoint platforms

Integrates easily into any software application

Unless of course you enjoy designing

report templates with endless code,

apologies for keeping you from your
current mind-numbingly dull solution.

the ONLY EPIC REPORT ING & DOCUMENT GENERAT ING SOLUT ION

A N D S E E F O R Y O U R S E L F .

(303) 499-2544

www.WindwardReports.com/msdn.aspx

Untitled-1 1 7/19/10 11:53 AM

http://www.WindwardReports.com/msdn.aspx

ADVERTISEMENT

VISUAL STUDIO PARTNER PROFILE

For more information please visit:
www.windwardreports.com

A Visual Studio 2010
Q&A with David Thielen
of Windward Reports

W indward Reports makes enterprise report-
ing software that empowers companies to
deliver better reports, faster. Using MS
Word, Excel or PowerPoint as its design

tool, Windward enables the user to create custom
reports exactly as they envisioned. Windward delivers
powerful reporting for Corporate or OEM Use.

Q What do most developers want in a great
reporting program?
A It needs to be simple, so that you don’t have to do a lot of
work to integrate it into a solution. It needs to be fl exible
and powerful enough so that you can rely on it for any
project and any kind of report. Windward has a very simple
API and a small but expressive set of tags. Designing in
Offi ce reduces complexity in sophisticated layouts.

Q Why did you create Windward Reports?
A At an earlier job, I was given a set of sample reports by
a Program Manager. Looking at the sample output in
Word and Excel, I thought, ” why can’t I just push a

button and have it convert that sample output into a
report template?” It wasn’t a “here’s a product idea”
moment, it was a just annoyance that the functionality
didn’t exist. Over time I kept returning to that question,
and it eventually became a product idea.

Q What sets Windward apart from other
reporting solutions?
A We use Offi ce (Word, Excel, PowerPoint) as the design
tool. The layout, formatting, design—that’s all done in
Offi ce. Windward benefi ts because we don’t have to create
a report designer, users benefi t because they have the
most powerful and easy to use document designer on the
planet—that they already know how to use. We also have
an Offi ce Add-In called AutoTag. It provides a straight-
forward way to select data and place it in the template.
Because the tags, including the selects, are placed right in
the template, there is no programming involved.

Q Are there any limits to this approach over the
standard report designer IDE approach?

A Actually, we have fewer limits than other reporting
systems. A template is a free-form document where
tags can be inserted anywhere to work in any
manner. So N rows of data are not limited to a table,
they can actually be a combination of text, charts,
imported sub-reports, and/or tables, repeating once
for each row of data.

Q Starcraft or Age of Kings?
A Age of Kings. Speed with the mouse is everything
in Starcraft and so I’ll never beat our interns at it. Age
of Kings has a signifi cant strategic component and I
love the look on the face of some of the younger
employees here when they realize someone my age
just creamed them.

VSP2

David Thielen
CTO and Founder

Windward Reports

Untitled-1 1 8/16/10 10:40 AM

http://www.windwardreports.com

79September 2010

selecting RadioButton1 (to indicate an addition operation), selecting
4 from the DropDownList1 control and clicking on Button1 (to cal-
culate). Behind the scenes, the harness captures the HTTP response
from the Web server and then searches the response for an indication
that 5.7900 (the correct sum of 1.23 and 4.56 to 4 decimals) is in the
TextBox3 result control. Th e harness tracks the number of test cases
that pass and the number that fail and displays those results aft er all
test cases have been processed.

In the sections that follow, I briefl y describe the Web application
under test so you’ll know exactly what’s being tested. Next, I walk you
through the details of creating lightweight HTTP request-response
automation using IronPython. I wrap up by presenting a few opin-
ions about when the use of IronPython is suitable and when other
techniques are more appropriate. I think you’ll fi nd the information
interesting, and a useful addition to your testing toolset.

The Application Under Test
Let’s take a look at the code for the MiniCalc ASP.NET Web
application, which is the target of my test automation. I created the
app using Visual Studio 2008. Aft er launching Visual Studio with
administrator privileges, I clicked on File | New | Web Site. In order

Request-Response Testing Using IronPython

I’m a big fan of using the Python programming language for several
types of lightweight test automation tasks. In this month’s column, I
show you how to use IronPython—a Microsoft .NET Framework-
compliant implementation of Python—to perform HTTP request-
response testing for ASP.NET Web applications.

Specifi cally, I create a short test harness script that simulates a
user exercising an ASP.NET application. Th e IronPython harness
programmatically posts HTTP request information to the appli-
cation on a Web server. It then fetches the HTTP response stream
and examines the HTML text for an expected value of some
sort to determine a pass/fail result. In addition to being a useful
testing technique in its own right, learning how to perform HTTP
request-response testing with IronPython is an excellent way to
learn about the IronPython language.

Th is column assumes you have basic familiarity with ASP.NET
technology and intermediate scripting skills with a language such as
JavaScript, Windows PowerShell, VBScript, Perl, PHP or Ruby, but I
don’t assume you have any experience with Python. However, even
if you’re new to ASP.NET and scripting, you should still be able to
follow the column without too much diffi culty. Th e best way to see
where I’m headed is to examine the screenshots in Figures 1 and 2.

Figure 1 illustrates the example ASP.NET Web application under
test. The system under test is a simple but representative Web
application named MiniCalc. I deliberately kept my ASP.NET Web
application under test as simple as possible so that I don’t obscure the
key points in the IronPython test automation. Realistic Web appli-
cations are signifi cantly more complex than the dummy MiniCalc
application shown in Figure 1, but the IronPython testing technique
I describe here easily generalizes to complex applications. Th e Mini-
Calc Web application accepts two numeric values, an indication to
add or multiply the values, and the number of decimals to display
the answer to. Th e app then sends the values to a Web server, where
the result is computed. Th e server creates the HTML response and
sends it back to the client browser, where the result is displayed to
the number of decimal places specifi ed by the user.

Figure 2 shows an IronPython test harness in action. My script
is named harness.py and doesn’t accept any command-line ar-
guments. For simplicity, I have hard-coded information, includ-
ing the URL of the Web application and the name of the test
case input fi le. My harness begins by echoing the target URL of
http://localhost/MiniCalc/Default.aspx. In test case 001, my har-
ness programmatically posts information that corresponds to a
user typing 1.23 into control TextBox1, typing 4.56 into TextBox2,

TEST RUN JAMES MCCAFFREY

Code download available at code.msdn.microsoft.com/mag201009TestRun.

Figure 1 MiniCalc Web App Under Test

http://code.msdn.microsoft.com/mag201009TestRun

msdn magazine80 Test Run

to avoid the ASP.NET code-behind mechanism and keep all the
code for my Web application in a single fi le, I selected the Empty
Web Site option. I specifi ed http://localhost/MiniCalc in the lo-
cation fi eld. I decided to use C# for the MiniCalc application, but
the test harness I’m presenting in this column works with ASP.NET
applications written in VB.NET, and with slight modifi cations the
harness can target Web applications written using technologies such
as classic ASP, CGI, PHP, JSP and Ruby. I clicked OK on the New
Web Site dialog to generate the structure of my Web application.
Next, I went to the Solution Explorer window, right-clicked on
the MiniCalc project name and selected Add New Item from the
context menu. I then selected Web Form from the list of installed
templates and accepted the Default.aspx fi le name. I cleared the
“Place code in separate file” option and then clicked the Add
button. Next, I double-clicked on the Default.aspx fi le name in
Solution Explorer to edit the template-generated code. I deleted all
the template code and replaced it with the code shown in Figure 3.

To keep my source code small in size and easy to understand,
I’m taking shortcuts such as not performing error-checking and
combining server-side controls (such as <asp:TextBox>) with
plain HTML (such as <fi eldset>). Th e most important parts of the
code in Figure 3 are the IDs of the ASP.NET server-side controls.
I use default IDs Label1 (user prompt), TextBox1 and TextBox2
(input for two numbers), RadioButton1 and RadioButton2 (choice
of addition or multiplication), DropDownList1 (number of deci-
mals for the result), Button1 (calculate) and TextBox3 (result).
To perform automated HTTP request-response testing for an
ASP.NET application using the technique I present here, you must
know the IDs of the application’s controls. In this situation, I have
the source code available because I’m creating the application
myself; but even if you’re testing a Web application you didn’t write,
you can always examine the application by using a Web browser’s
View Source functionality.

To verify that my Web application under test was built correctly,
I hit the <F5> key. I clicked OK on the resulting Debugging Not

Enabled dialog to instruct Visual
Studio to modify the Web applica-
tion’s Web.confi g fi le. Visual Studio
then launched Internet Explorer
and loaded MiniCalc. Notice that
the action attribute of my <form>
element is set to Default.aspx. In
other words, every time a user sub-
mits a request, the same Default.aspx
page code is executed. Th is gives
my MiniCalc Web application the
feel of a single application rather
than a sequence of diff erent Web
pages. Because HTTP is a stateless
protocol, ASP.NET accomplishes
the application eff ect by maintain-
ing the Web application’s state in a
special hidden value type, called
the ViewState. As you’ll see shortly,
dealing with an ASP.NET appli-

cation’s ViewState is one of the keys to programmatically posting
data to the application.

ASP.NET Request-Response Testing
with IronPython
Let’s go over the IronPython test harness program that produced
the screenshot in Figure 2. IronPython is a free download avail-
able from CodePlex, the Microsoft -sponsored open source project,
at ironpython.codeplex.com. I’m using version 2.6.1, which runs on
version 2.0 of the .NET Framework and runs on any machine that
supports that version of the Framework. Th e overall structure of
my test harness script is presented in Figure 4.

As you can see, my harness script is simple and is driven by
an external test case data file. That test case data file is named
testCases.txt and consists of:

001|1.23|4.56|RadioButton1|4|clicked|5.7900
002|1.23|4.56|RadioButton2|4|clicked|5.7900
003|2.00|3.00|RadioButton1|4|clicked|5.0000

Each line represents one test case and has seven fi elds delimited
by a “|” character. Th e fi rst fi eld is a test case ID. Th e second and
third fi elds are inputs to TextBox1 and TextBox2. Th e fourth fi eld
encodes whether to request Addition or Multiplication. Th e fi ft h
fi eld is the value for the Decimals DropDownList control. Th e sixth
fi eld (“clicked”) is the Button1 event. Th e seventh fi eld is the expected
result, which should appear in TextBox3. Th e second test case is
deliberately incorrect just to demonstrate a test case failure. For
the lightweight testing approach I’m describing here, a simple text
fi le to hold test case data is oft en a good choice. If I had wanted to
embed my test case data directly in the harness script, I could have
done so using an array of strings like:

testCases = ['001|1.23|4.56|RadioButton1|4|clicked|5.7900',
 '002|1.23|4.56|RadioButton2|4|clicked|5.7900',
 '003|2.00|3.00|RadioButton1|4|clicked|5.0000']

and then iterated through each test case like:
for line in testCases:
 ...

Python also has a list type that can be used to store test case data.

Figure 2 Testing the App Using IronPython

81September 2010msdnmagazine.com

Th e fi rst three lines of my IronPython test harness are:
harness.py
import sys
import clr

Comments in Python begin with the “#” character and extend
to end of line. The “import sys” statement allows my script to
access resources in the special IronPython sys module.

The locations of these resources can be listed by issuing a
sys.path command from the IronPython interactive console. Th e
“import clr” statement allows my script to access and use core
.NET CLR functionality.

My next six statements explicitly enable the .NET functionality
my harness uses:

from System import *
from System.IO import *
from System.Text import *
from System.Net import *
clr.AddReference('System.Web')
from System.Web import *

Th e fi rst line here imports System and is similar to the “using
System” statement in a C# program. Th e “import clr” statement
includes the System namespace, so I could omit the “from System
import *” statement but I prefer to leave it in as a form of documentation.
Th e next three statements bring the System.IO (for fi le operations),
System.Text (for byte conversion) and System.Net (for request- response
functionality) namespaces into scope. Th e “clr.AddReference(‘Sys-
tem.Web’)” statement brings the System.Web namespace into scope.
Th is namespace isn’t directly accessible by default, so I must use
the AddReference method before I issue the “from System.Web
import *” statement so I can access URL-encoding methods.

Next, I defi ne a helper method to fetch the ViewState informa-
tion for the Web application under test:

def getVS(url):
 wc = WebClient()
 bytes = wc.DownloadData(url)
 html = Encoding.ASCII.GetString(bytes)
 start = html.IndexOf('id="__VIEWSTATE"', 0) + 24
 end = html.IndexOf('"', start)
 vs = html.Substring(start, end-start)
 return vs

Remember that because HTTP is a stateless protocol, ASP.NET
gives the eff ect of being a stateful application by maintaining the
application’s state in a hidden value called ViewState. A ViewState
value is a Base64-encoded string that maintains the state of an
ASP.NET page through multiple request/response roundtrips.
Similarly, an EventValidation value was added in ASP.NET 2.0
and is used for security purposes to help prevent script-insertion
attacks. These two mechanisms are key to programmatically
posting data to an ASP.NET Web application.

In Python, you must defi ne functions before you call them in
a script. Functions are defi ned using the def keyword. Th e helper
function fi rst instantiates a WebClient object. Next the Download-
Data method sends an HTTP request to the Web application
given by parameter url, and fetches the HTTP response as an
array of byte values. I use the GetString method to convert bytes to
a string named html. A ViewState element looks like this:

<input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"
 value="/wEPDwULLTEwNjU=" />

So, to extract the value, I fi rst determine the location of the sub-
string id="__VIEWSTATE "and then add 24 characters. Th is approach
is brittle in the sense that the technique will break if ASP.NET changes
the format of the ViewState string, but because this is lightweight
automation, simplicity trumps robustness. I determine where the ter-
minating double-quote character is and then I can use the Substring
method to extract the ViewState value. Unlike most languages, which
use tokens such as begin...end or {...} to delimit code blocks, Python
uses indentation. If you are new to Python programming, this may
seem odd at fi rst, but most engineers I’ve talked to say they quickly
become used to the syntax. Python is supported by a collection of
modules, so an alternative to using .NET methods to retrieve the
ViewState value is to use functions in the native Python urllib module.

<%@ Page Language="C#" %>
<script runat="server">
 private void Button1_Click(object sender, System.EventArgs e)
 {
 double alpha = double.Parse(TextBox1.Text.Trim());
 double beta = double.Parse(TextBox2.Text.Trim());

 string formatting = "F" + DropDownList1.SelectedValue;

 if (RadioButton1.Checked)
 TextBox3.Text = Sum(alpha, beta).ToString(formatting);
 else if (RadioButton2.Checked)
 TextBox3.Text = Product(alpha, beta).ToString(formatting);
 else
 TextBox3.Text = "Select method";
 }
 private static double Sum(double a, double b)
 {
 return a + b;
 }
 private static double Product(double a, double b)
 {
 return a * b;
 }
</script>

<html>
 <head>
 <style type="text/css">
 fieldset { width: 16em }
 body { font-size: 10pt; font-family: Arial }
 </style>
 <title>Default.aspx</title>
 </head>
 <body bgColor="#ccffff">
 <h3>MiniCalc by ASP.NET</h3>
 <form method="post" name="theForm" id="theForm" runat="server"
 action="Default.aspx">
 <p><asp:Label id="Label1" runat="server">Enter number: </asp:Label>
 <asp:TextBox id="TextBox1" width="100" runat="server" /></p>
 <p><asp:Label id="Label2" runat="server">Enter another: </asp:Label>
 <asp:TextBox id="TextBox2" width="100" runat="server" /></p>
 <p></p>
 <fieldset>
 <legend>Arithmentic Operation</legend>
 <p><asp:RadioButton id="RadioButton1" GroupName="Operation"
 runat="server"/>Addition</p>
 <p><asp:RadioButton id="RadioButton2" GroupName="Operation"
 runat="server"/>Multiplication</p>
 <p></p>
 </fieldset>
 <p>Decimals:
 <asp:DropDownList ID="DropDownList1" runat="server">
 <asp:ListItem>3</asp:ListItem>
 <asp:ListItem>4</asp:ListItem>
 </asp:DropDownList>
 </p>
 <p><asp:Button id="Button1" runat="server" text=" Calculate "
 onclick="Button1_Click" /></p>
 <p><asp:TextBox id="TextBox3" width="120" runat="server" />
 </form>
 </body>
</html>

Figure 3 MiniCalc Code

www.msdnmagazine.com

msdn magazine82 Test Run

Aft er defi ning the getVS helper function, I defi ne a helper func-
tion to get the EventValidation value:

def getEV(url):
 wc = WebClient()
 bytes = wc.DownloadData(url)
 html = Encoding.ASCII.GetString(bytes)
 start = html.IndexOf('id="__EVENTVALIDATION"', 0) + 30
 end = html.IndexOf('"', start)
 ev = html.Substring(start, end-start)
 return ev

I use the same technique to extract EventValidation as I do to ex-
tract ViewState. Notice that Python is a dynamically typed language,
so I don’t specify the data types of my parameters, variables and
objects. For example, DownloadData returns a byte array and
IndexOf returns an int, and the IronPython interpreter will fi gure
these types out for me. Defi ning two functions, getVS and getEV,
requires two roundtrip calls to the Web application under test, so
you may want to combine the two helper functions into a single
function and name the helper something like getVSandEV(url).

Aft er defi ning my helper functions, my actual automation begins:
try:
 print '\nBegin IronPython Request-Response testing'
 url = 'http://localhost/MiniCalc/Default.aspx'
 print '\nURL under test = ' + url + '\n'
 testCases = 'testCases.txt'
 ...

Unlike some languages that require an entry point, such as a
Main method, Python script execution simply begins with the
first executable statement. I use the try keyword to catch any
exceptions, then I print a startup message. Python allows the use
of either single quotes or double quotes to define string literals,
and escape sequences such as \n can be embedded with either
delimiter. To disable escape sequence evaluation, you can pre-
pend string literals with lowercase r (“raw”), for example: file =
r'\newFile.txt'. I hard-code the URL of the application under test
and display that value to the shell. If I wanted to read the URL
from the command line, I could have used the built-in sys.argv
array, for example: url = sys.argv[1]. Python uses the “+” charac-
ter for string concatenation. I also hard-code the name of my test
case data file, and because I don’t include file path information,
I make the assumption that the file is in the same directory as
the IronPython script.

Next, I set up counters, open my test case data file and start
iterating through the file:

...
numPass = numFail = 0
fin = open(testCases, 'r')
for line in fin:
 print '==='
 (caseid,value1,value2,operation,decimals,action,expected) =
 line.split('|')
 ...

Python has several idioms I really like, including multiple variable
assignment and concise fi le operations syntax. Th e “r” argument in
the call to the open function means to open the fi le for reading. Th e
“for line in fi n” statement enumerates through the fi le one line at a
time, assigning the current line of input to variable “line.” Another
neat Python construct is the tuple idiom. Tuples are denoted using
left and right parentheses and the tuple values are delimited by “,”
characters. Here, I call the split method and assign each resulting
token to variables caseid, value1, value2, operation, decimals, action
and expected, all in a single statement. Very pretty.

Next, I begin to build up the data to post to the Web application
under test:

...
expected = 'value="' + expected.Trim() + '" id="TextBox3"'
data = 'TextBox1=' + value1 + '&TextBox2=' + value2 + '&Operation=' +
 operation + '&DropDownList1=' + decimals + '&Button1=' + action

print 'Test case: ' + caseid
print 'Input : ' + data
print 'Expected : ' + expected
...

I slightly modify the expected variable to resemble something like:
value="5.7900" id="TextBox3"

So when I search the HTTP response, I’ll be more specifi c than
simply searching for “5.7900.” I associate my test case input values to
their respective controls as name-value pairs connected by the “&”
character. Th e fi rst two name-value pairs of the post string simply set
TextBox1 and TextBox2 to value1 and value2 from the test case data.
Th e third name-value pair (for example, Operation=RadioButton1)
is how I simulate a user selecting a RadioButton control, in this
case, the control that corresponds to addition. You might have
guessed incorrectly (as I originally did) that the way to set the radio
button would be to use a syntax like RadioButton1=checked. But
RadioButton1 is a value of the Operation control, not a control
itself. Th e fi ft h name-value pair, Button1=clicked, is somewhat
misleading. I need to supply a value for Button1 to indicate that
the control has been clicked, but any value will work, so I could’ve
used Button1=foo (or even just Button1=) but Button1=clicked is
more descriptive, in my opinion. I echo the values I’ve parsed from
the test case data to the command shell, making use of the “+”
string concatenation operator.

Next, I deal with the ViewState and EventValidation values:
...
vs = getVS(url)
ev = getEV(url)
vs = HttpUtility.UrlEncode(vs)
ev = HttpUtility.UrlEncode(ev)
data = data + "&__VIEWSTATE=" + vs + "&__EVENTVALIDATION=" + ev
...

I call the getVS and getEV helper functions defi ned earlier. Th e
ViewState and EventValidation values are Base64-encoded strings.
Base64 encoding uses 64 characters: uppercase A-Z, lowercase a-z,

set up imports
define helper functions

try:
 initialize variables
 open test case data file
 loop
 read a test case from file
 parse test case data
 determine ViewState
 determine EventValidation
 construct request string
 send request string to app
 fetch response from app
 determine if response has expected result
 print pass or fail
 end loop
 close test case data file
 print summary results
except:
 handle exceptions

Figure 4 Test Harness Structure

83September 2010msdnmagazine.com

digits 0-9, the “+” character and the “/” character. Th e “=” character
is used in Base64 for padding. Because some of the characters used
in Base64 aren’t permitted in an HTTP request stream, I use the
HttpUtility.UrlEncode method from the System.Web namespace
to convert troublesome characters into a three-character sequence
beginning with the “%” character.

For example, a raw “>” character is encoded as %3D and a blank
space is encoded as %20. When a Web server receives an HTTP re-
quest containing any of these special three-character sequences, the
server decodes the sequences back to raw input. Aft er encoding, I
append the ViewState and EventValidation values onto the Post data.

Next, I process the Post data to prepare it for an HTTP request:
...
buffer = Encoding.ASCII.GetBytes(data)
req = HttpWebRequest.Create(url)
req.Method = 'POST'
req.ContentType = 'application/x-www-form-urlencoded'
req.ContentLength = buffer.Length
...

I use the GetBytes method of the System.Text namespace to
convert my Post data into a byte array named buff er. Th en I create
a new HttpWebRequest object using an explicit Create method. I
supply values to the Method, ContentType and ContentLength
properties of the HttpWebRequest object. You can think of the
value of the ContentType as a magic string that’s necessary to Post
an HTTP Web request.

Next, I send the HTTP request:
...
reqst = req.GetRequestStream()
reqst.Write(buffer, 0, buffer.Length)
reqst.Flush()
reqst.Close()
...

Th e programming pattern for sending a request may seem a
bit odd if you’re new to the technique. Rather than use an explicit
Send method of some sort, you create a Stream object and then
use a Write method.

Th e Write method requires a byte array, the index in the ar-
ray to begin writing and the number of bytes to write. By us-
ing 0 and buff er.Length, I write all bytes in the buff er. Th e Write
method doesn’t actually send the Post to the Web server; you
must force a send by calling the Flush method. Th e Close method
actually calls the Flush method, so my call to Flush isn’t required
in this situation, but I include the call for clarity.

Aft er sending the HTTP request, I fetch the associated response:
...
res = req.GetResponse()
resst = res.GetResponseStream()
sr = StreamReader(resst)
html = sr.ReadToEnd()
sr.Close()
resst.Close()
...

The GetResponse method returns the HttpWebResponse
object associated with an HttpWebRequest object. Th e response
object can be used to create a Stream, and then I associate the
Stream to a StreamReader object and use the ReadToEnd method
to fetch the entire response stream as a single string. Although
the underlying .NET Framework cleanup mechanisms would
eventually close the StreamReader and Stream objects for you, I
prefer to explicitly close them.

Next, I examine the HTTP response for the test case expected value:
...
if html.IndexOf(expected) >= 0:
 print 'Pass'
 numPass = numPass + 1
else:
 print '**FAIL**'
 numFail = numFail + 1
...

I use the IndexOf method to search the HTTP response. Because
IndexOf returns the location of the beginning of the search string
within the reference string, a return value >= 0 means the search string
is in the reference string. Note that unlike many languages, Python
doesn’t have increment or decrement operators such as ++numPass.

Next, I fi nish my script:
 ...
 print '===============================\n'
 # end main processing loop
 fin.close()
 print '\nNumber pass = ' + str(numPass)
 print 'Number fail = ' + str(numFail)
 print '\nEnd test run\n'
except:
 print 'Fatal: ', sys.exc_info()[0]
end script

I place a comment at the end of the “for” loop that iterates through
each line of the test case data fi le as an aid to making sure my indentation
is correct. Once outside the loop, I can close the test case data fi le and
print the pass and fail counters. Notice that because numPass and num-
Fail were inferred to be type int, I must cast them to type “string” using
the Python str function so I can concatenate them. My harness fi nishes
by handling any exceptions thrown in the try block simply by printing
the generic exception message stored in the built-in sys.exec_info array.

Quick Automation with a Short Lifetime
Th e example I presented here should give you enough information
to write IronPython test automation for your own Web applications.
Th ere are several alternatives to using IronPython. In my opinion,
IronPython is best suited for lightweight test automation where you
want to create the automation quickly, and the automation has a short
(a few days or weeks) intended lifetime. My technique does have some
limitations—in particular it can’t easily deal with Web applications
that generate popup dialog boxes.

Compared to other scripting languages, one of the advantages of using
IronPython for lightweight test automation is that you can use the inter-
active console to issue commands to help write your script. Additionally,
there are several nice editors available, and you can even fi nd IronPython
SDKs that let you integrate Iron Python into Visual Studio. Personally, when
I’m going to write Web application test automation, if I want to develop a
relatively short harness, I consider using IronPython and Notepad. If I’m
going to write a harness that has more than three pages of code, however,
I generally use C# and Visual Studio.

DR. JAMES MCCAFFREY works for Volt Information Sciences Inc. where he man-
ages technical training for soft ware engineers working at the Microsoft Redmond,
Wash., campus. He has worked on several Microsoft products, including Inter-
net Explorer and MSN Search. McCaff rey is the author of “.NET Test Automa-
tion Recipes: A Problem-Solution Approach” (Apress, 2006). He can be reached
at jammc@microsoft .com.

THANKS to the following technical experts for reviewing this article:
Dave Fugate and Paul Newson

www.msdnmagazine.com
mailto:jammc@microsoft.com

msdn magazine84

The MSF-Agile+SDL Process Template
for TFS 2010

the changes it makes over the course of the iteration to identify
potential new threats and mitigations.

Finally, whenever a user checks a new Visual Studio project or Web
site into the Team Source Control repository, the template adds SDL
tasks to refl ect the security work that must be done specifi cally for
that project. For example, whenever a new C or C++ project is add-
ed, SDL tasks are created to ensure the use of buff er overfl ow defense
compiler and linker settings, such as the /dynamic base fl ag for address
space layout randomization and the /gs fl ag for buff er security check.

Th e template is sophisticated enough to recognize the diff erence
between native C/C++ projects and Microsoft .NET Framework proj-
ects, and it won’t add invalid requirements. Th e /dynamicbase and /gs
fl ags are meaningless to C# code and those SDL tasks won’t be created
for C# projects. Instead, C# projects get .NET-specifi c security tasks
such as reviewing any use of AllowPartiallyTrustedCallersAttribute.
Likewise, the template can also distinguish client/server and stand-
alone desktop applications from Web sites and Web services, and
will add only the appropriate set of SDL tasks accordingly.

SDL Task Workfl ow and Exceptions
Th e state and reason workfl ow transitions for SDL tasks are also
diff erent from those of functional tasks. A task can be marked as
closed for several diff erent reasons: completed, cut from the project,
deferred to a later iteration, or even obsolete and no longer rele-
vant to the project. Of these reasons, only completed is applicable
to SDL tasks.

Teams that follow the SDL can’t simply cut security and privacy
requirements from their projects. Functional requirements can be
horse-traded in and out of projects for technical or business rea-
sons, but security requirements must be held to a higher standard.
It’s not impossible to ever skip an SDL task, but a higher level of
process must be followed in order to make this happen.

If, for whatever reason, a team can’t complete a required SDL
task, it must petition its security advisor for an exception to the
task. Th e team or its management chooses the team’s security
advisor at the project’s start. Th is individual should have experi-
ence in application security and privacy, and ideally should not
be working directly on the project—he should not be one of the
project’s developers, program managers or testers.

At Microsoft , there’s a centralized group of security advisors who
work in the Trustworthy Computing Security division. Th ese secu-
rity advisors then work with the individual product teams directly.
If your organization has the resources to create a dedicated pool of

Anyone who is a regular reader of this magazine will be familiar
with Microsoft Team Foundation Server (TFS) and the productivity
benefi ts development teams can get from using it. (If you’re not
familiar with TFS, check out the article by Chris Menegay from our
Visual Studio 2005 Guided Tour at msdn.microsoft.com/magazine/cc163686.
While it covers an older version, it does give a useful overview of the
kinds of features you can leverage in TFS.)

If you use TFS yourself, you’re probably also familiar with the
Microsoft Solutions Framework (MSF) for Agile Soft ware Devel-
opment process template—better known as MSF-Agile—that ships
with TFS. Th e topic of this month’s column is the new MSF-Agile
plus Security Development Lifecycle (SDL) process template. MSF-
Agile+SDL builds on the MSF-Agile template and adds SDL secu-
rity and privacy features to the development process.

You can download the MSF-Agile+SDL template for Visual Studio
Team System 2008 or 2010 from microsoft.com/sdl. Before you down-
load it, however, you’ll probably want to know what’s been built
into it. So let’s get started.

SDL Tasks
Th e core of the SDL is its security requirements and recommen-
dations—activities that dev teams must perform throughout
the development lifecycle in order to ensure better security and
privacy in the fi nal product. Th ese requirements include policy
activities such as creating a security incident response plan, as well
as technical activities such as threat modeling and performing static
vulnerability analysis. All of these activities are represented in the
MSF-Agile+SDL template as SDL task work items.

Probably the biggest diff erence between SDL tasks and the stan-
dard work items that represent functional tasks is that project team
members are not meant to directly create SDL tasks themselves.
Some SDL tasks are automatically created when the Team Proj-
ect is fi rst created. Th ese are relatively straightforward, one-time-
only security tasks, such as identifying the member of your team
who will serve as the primary security contact. Other SDL tasks
are automatically created by the process template in response to
user actions. (More specifi cally, they’re automatically created by
the SDL-Agile controller Web service that gets deployed to the
TFS application tier.)

Whenever a user adds a new iteration to the project, the tem-
plate adds new SDL tasks to the project that represent the security
tasks to be performed during that iteration. A good example of a
per-iteration SDL task is threat modeling: Th e team must assess

SECURITY BRIEFS BRYAN SULLIVAN

http://msdn.microsoft.com/magazine/cc163686
http://microsoft.com/sdl

Untitled-1 1 8/16/10 10:38 AM

www.artinsoft.com/msdn

msdn magazine86 Security Briefs

security advisors, great. If not, it’s best to select the individual with
the strongest background in security.

It’s up to the team’s security advisor to approve or reject any excep-
tion request for an SDL task. Th e team creates an exception request
by setting the SDL task state to Exception Requested and fi lling out
the Justifi cation, Resolution Plan, and Resolution Timeframe fi elds.
Each SDL task also has a read-only Exception Rating fi eld that
represents the inherent subjective security risk of not completing
the requirement, which ranges from 4 (least risk) to 1 (critical; most
risk). Th e security advisor weighs the team’s rationale against the
exception rating and either closes the SDL task with a Reason of
Approved, or reactivates the SDL task with a Reason of Denied.

However, even if the request is approved, most exceptions don’t last
forever. Th is is where the Resolution Timeframe fi eld comes into play.
Teams generally request exceptions for a set number of iterations—
usually just one iteration, but sometimes as many as three. Once the
specifi ed number of iterations has elapsed, the process template will
expire the exception and reactivate the SDL task.

Security Bugs
Aft er ensuring that security and privacy requirements are met, the
next most important function of the SDL is to ensure that products
don’t ship with known security bugs. Tracking security bugs sepa-
rately from functional bugs is critical to ensuring the security health
of your product.

Unlike with SDL tasks, the MSF-Agile+SDL template doesn’t
add a second SDL Bug work item type to distinguish security bugs
from functional bugs. Instead, it adds the fi elds Security Cause
and Security Eff ect to the existing Bug work item type. Whenever
a team member fi les a new bug, if the bug is a strict functional bug
with no security implications, the fi nder simply leaves these fi elds
at their default values of Not a Security Bug. However, if the bug
does represent a potential security vulnerability, the fi nder sets the
Security Cause to one of the following values:

• Arithmetic error
• Buff er overfl ow/underfl ow
• Cross-Site Scripting
• Cryptographic weakness
• Directory traversal
• Incorrect/no error messages
• Incorrect/no pathname canonicalization
• Ineff ective secret hiding
• Race condition
• SQL/script injection
• Unlimited resource consumption (denial of service)
• Weak authentication
• Weak authorization/inappropriate permission or ACL
• Other

Th e fi nder also sets the Security Eff ect to one of the STRIDE values:
• Spoofi ng
• Tampering
• Repudiation
• Information Disclosure
• Denial of Service
• Elevation of Privilege

Finally, the fi nder can also choose to set the Scope value for the
bug. In a nutshell, Scope defi nes some additional subjective infor-
mation about the bug that is then used to determine severity. Th e
allowed values for Scope vary based on the selected Security Eff ect.
For example, if you choose Elevation of Privilege for the Security
Eff ect, the possible choices for Scope include:

• (Client) Remote user has the ability to execute arbitrary code
or obtain more privilege than intended.

• (Client) Remote user has the ability to execute arbitrary code
with extensive user action.

• (Client) Local low-privilege user can elevate himself to another
user, administrator or local system.

• (Server) Remote anonymous user has the ability to execute
arbitrary code or obtain more privilege than intended.

• (Server) Remote authenticated user has the ability to execute
arbitrary code or obtain more privilege than intended.

• (Server) Local authenticated user has the ability to execute
arbitrary code or obtain more privilege than intended.

You can see that the axes of severity for Elevation of Privilege
vulnerabilities—that is, what characteristics make one Elevation of
Privilege worse than another—deal with conditions such as the site
of the attack (the client or the server) and the authentication level of
the attacker (anonymous or authenticated). However, if you choose a
diff erent Security Eff ect, such as Denial of Service, the Scope choices
change to refl ect the axes of severity for that particular eff ect:

• (Client) Denial of service that requires reinstallation of system
and/or components

• (Client) Denial of service that requires reboot or causes blue
screen/bug check

• (Client) Denial of service that requires restart of application
• (Server) Denial of service by anonymous user with small

amount of data
• (Server) Denial of service by anonymous user without

amplifi cation in default/common install
• (Server) Denial of service by authenticated user that

requires system reboot or reinstallation
• (Server) Denial of service by authenticated user in default/

common install
Once the values for Security Cause, Security Eff ect, and Scope

have all been entered, the template uses this data to calculate a
minimum severity for the bug. Th e user can choose to set the ac-
tual bug severity higher than the minimum bar—for example, to
set the bug as a “1–Critical” rather than a “2–High”—but never the
other way around. Th is may seem overly strict, but it avoids the
temptation to downgrade bug severity in order to meet ship dates
or sprint deadlines.

If you’d like to learn more about the rationale for setting up a more
objective bug bar methodology for triaging bugs, read the March
2010 Security Briefs column, “Add a Security Bug Bar to Microsoft

Tracking security bugs separately
from functional bugs is critical.

SAVE $200 WHEN YOU REGISTER BY SEPTEMBER 15!LAS VEGAS • OCTOBER 18 - 20, 2010

Register By September 15th to SAVE $200!

Use Priority Code NQW7

WebDesignWorld.com

We get it—web design is your world. That’s why Web Design World is bringing you the top minds in

web design this October. Oh, and did we mention it’s in Vegas?

NEW: Exclusive 1-on-1 Consulting Time!
We’ve negotiated 20 minutes of individual face time with an expert who will review your website,

answer questions and offer helpful tips. all you have to do is check the box when you register, and pick

the area you’d like to focus on:

 • Mobility • Design • eCommerce
 • Development • Usability • Accessibility

The best part? We’re not charging you one extra dime! It’s all part of your registration. There is

one tiny catch: seating is limited, so it’s fi rst come, fi rst served! Don’t miss out on your chance

for individual, one-on-one expert consulting - register early to save your spot!

Untitled-1 1 8/13/10 11:49 AM

www.webdesignworld.com

NOVEMBER 14–17, 2010
ORLANDO, FL | HILTON WALT DISNEY WORLD RESORT

VSLIVE.COM/ORLANDO
DETAILS AND REGISTRATION AT

USE PRIORITY CODE NQZF9

Supported by:

FOUR DAYS THAT WILL
ROCK YOUR CODE.
Are you ready to take your code to the next level? Expand your skillset and maximize
the development capabilities of Visual Studio during the four action-packed days of
Visual Studio Live! Orlando! With pre-conference workshops, 60+ sessions by expert
instructors, and keynotes by industry heavyweights, you’ll walk away with knowledge
and skills you can put to use today.

 HARD-HITTING, REAL-WORLD TRAINING ON:

 PROGRAMING WITH WCF

 ARCHITECTING FOR AZURE

 WPF & SILVERLIGHT

 ASP.NET 4

 jQUERY FOR ASP.NET

 WHAT’S NEW IN VISUAL STUDIO 2010

 SHAREPOINT 2010 FOR ASP.NET
DEVELOPERS

Untitled-1 1 8/13/10 12:09 PM

www.vslive.com/orlando

89September 2010msdnmagazine.com

Team Foundation Server 2010” (msdn.microsoft.com/magazine/ee336031).
Th e process for adding a bug bar to TFS that I detailed in that article
has already been built into the MSF-Agile+SDL template.

Finally, there’s one more optional fi eld in the bug work item. You
can use the Origin fi eld to specify the name of the automated security
tool that originally found the bug (if any) or you can leave the fi eld
at its default value of “User” if a user found the bug through manual
code review or testing.

Over time, you’ll collect enough data to determine which of your
testing tools are providing the biggest bang for the buck. To make
this determination easier, the MSF-Agile+SDL template includes an
Excel report called Bugs by Origin that displays a bar chart of vul-
nerabilities broken out by the Origin fi eld.

You can customize this report to fi lter the data based on Severity,
Security Cause or Security Eff ect. If you wanted to see which tools
work best at fi nding cross-site scripting vulnerabilities or which tools
have found the most critical severity Elevation of Privilege bugs, it’s
easy to do so.

Bug Workfl ow
Just as you can’t defer SDL tasks, you can’t defer any bug with security
implications (that is, any bug with its Security Eff ect set to a value other
than Not a Security Bug). Th e team must request an exception in order
to delay fi xing any security bug with Severity of “3 – Moderate” or higher.

Th e process for this is identical to the exception request pro-
cess for SDL Tasks: a team member sets the status to Exception
Requested and enters details for the Justification, Exception
Resolution and Exception Timeframe fi elds. Th e team’s security
advisor then reviews the exception request and either approves it
(setting the State to Closed with a Reason of Approved) or denies
it (setting the State to Active with a Reason of Denied).

Security Queries and the Security Dashboard
In addition, the MSF-Agile+SDL template also includes several
new team queries in order to simplify following the process. Th ese
new queries appear under the Security Queries folder in Team
Explorer and include:

SDL Check-in Policy Description
SDL Banned APIs Ensures that the compiler option to treat warning C4996 (use of a deprecated function) is treated as an error. Because most

of the runtime library functions that can potentially lead to buffer overruns (for example, strcpy, strncpy and gets) have been
deprecated in favor of more secure alternatives (strcpy_s, strncpy_s and gets_s, respectively), use of this check-in policy can
signifi cantly improve the application’s resistance to buffer overrun attacks.

SDL Buffer Security Check Ensures that the compiler option Enable Buffer Security Check (/GS) is enabled. This option reorganizes the stack of the
compiled program to include a security cookie or canary value that greatly increases the diffi culty for an attacker to write a
reliable exploit for any stack overfl ow vulnerability.

SDL DEP and ASLR Ensures that the linker options Data Execution Prevention (/NXCOMPAT) and Randomized Base Address (/DYNAMICBASE)
are enabled. These options randomize the address at which the application is loaded into memory and help to prevent code
from executing in memory intended to be allocated as data. Especially when used in combination, these two options are
strong defense-in-depth measures against buffer overrun attacks.

SDL Safe Exception Handlers Ensures that the linker option /SAFESEH is enabled. This option helps prevent attackers from defi ning malicious exception
handlers, which could lead to a compromise of the system. /SAFESEH creates a table of legitimate exception handlers at link
time, and will not allow other exception handlers to run.

SDL Uninitialized Variables Ensures that the compiler warning level is set at level 4 (/W4), the strictest level. Use of this option will fl ag code where
variables may have been used without being initialized, which can lead to potential exploits.

Figure 2 MSF-Agile+SDL Check-in Policies

Figure 1 MSF-Agile+SDL Security Dashboard

www.msdnmagazine.com
http://msdn.microsoft.com/magazine/ee336031

msdn magazine90 Security Briefs

• Active Security Bugs
• My Security Bugs
• Resolved Security Bugs
• Open SDL Tasks
• My SDL Tasks
• Open Exceptions (includes both tasks and bugs, and is

especially useful for security advisors)
• Approved Exceptions
• Security Exit Criteria

Most of these queries are self-explanatory, but the Security Exit
Criteria query needs a little more explaining. In order to meet
their SDL commitment for a given iteration, the team must have
completed all of the following activities:

• All every-sprint, recurring SDL task requirements for that
iteration must be complete or have had an exception approved
by the team’s security advisor

• Th ere must be no expired one-time or bucket SDL
task requirements

• All bugs with security implications with Severity of
“3 – Moderate” or higher must be closed or have had an
exception approved by the team’s security advisor
Th e terms every-sprint, one-time and bucket in this context

refer to the SDL-Agile concept of organizing requirements based on
the frequency with which they must be completed. Every-sprint re-
quirements are recurring requirements and must be completed in every
iteration. One-time requirements are non-recurring and only need to
be completed once. Bucket requirements are recurring requirements,
but only need to be completed once every six months.

A detailed discussion of this classifi cation system is beyond the
scope of this article; but if you’d like to understand more about this
system, please read the MSDN Magazine article “Agile SDL: Stream-
line Security Practices for Agile Development” from the November
2008 issue (msdn.microsoft.com/magazine/dd153756).

Th e intent of the Security Exit Crite-
ria query is to provide team members
with an easy way to check how much
more work they have left in order to
complete their SDL commitment. If
you confi gure a SharePoint site for your
MSF-Agile+SDL team project when
you create it (normally this is done for
you automatically), you’ll also see the
Security Exit Criteria query results on
the team project’s Security Dashboard.

Th e new Security Dashboard is avail-
able only for MSF-Agile+SDL projects
(see Figure 1). By default, it includes
the Security Exit Criteria, Open SDL
Tasks, Open Exceptions, and Security
Bugs queries, but these can be custom-
ized if you like. Th e Security Dashboard
is also set as the default project portal
page for all MSF-Agile+SDL projects,
but if you’d like to change to a diff er-
ent default dashboard, simply open

the Dashboards document library, select the dashboard you want
to use, and choose the “Set as Default Page” option.

Check-in Policies
Th e fi nal feature of the MSF-Agile+SDL process template is the set
of SDL check-in policies. Th ese policies help prevent developers
from checking in code that violates certain SDL requirements and
could therefore lead to security vulnerabilities. Th e SDL check-in
policies available are shown in Figure 2.

It’s simple to enable any or all of the SDL check-in policies. From
Team Explorer, right-click a Team Project and select the Source
Control option from the context menu. Choose the Check-in Policy
tab and add the SDL policies you want to enforce (see Figure 3). It’s
important to note that check-in policy enforcement is performed
on the client machine, not on the TFS server, so you’ll need to
install the SDL check-in policies on each developer’s machine.

Wrapping Up
For any secure development methodology to be eff ective, it has
to be easy to automate and easy to manage. Th e MSF-Agile+SDL
process template helps signifi cantly with both of these require-
ments. If you’re already using the MSF-Agile process template that
ships with TFS, you already know how to use the MSF-Agile+SDL
template—it’s a strict superset of the MSF-Agile template you’re
already familiar with. Download it from microsoft.com/sdl and start
creating more secure and more privacy-aware products today.

BRYAN SULLIVAN is a security program manager for the Microsoft Security Devel-
opment Lifecycle team, where he specializes in Web application and .NET security
issues. He’s the author of “Ajax Security” (Addison-Wesley, 2007).

THANKS to the following technical expert for reviewing this article:
Michael Howard

Figure 3 Adding Check-in Policies

http://msdn.microsoft.com/magazine/dd153756
http://microsoft.com/sdl

Untitled-1 1 8/13/10 2:35 PM

www.codeproject.com

msdn magazine92

from the stylus interface, and you’ll want to change it by setting the
following attached property on the manipulated element:

Stylus.IsPressAndHoldEnabled="False"

Now, the ManipulationStarting and ManipulationStarted events
are fi red when an element is fi rst touched. You’ll want to turn off
the visual feedback with either the ManipulationInertiaStarting or
Manipulation Completed event, depending on whether you want the
feedback to end when the user’s fi nger lift s from the screen or aft er the
element has stopped moving due to inertia. If you’re not using inertia
(as I won’t be in this article), it doesn’t matter which event you use.

Th e downloadable code for this article is in a single Visual Studio
solution named TouchAndResponseDemos with two projects. Th e
fi rst project is named FeedbackAndSmoothZ, which includes a
custom UserControl derivative named ManipulablePictureFrame
that implements the manipulation logic.

ManipulablePictureFrame defi nes a single property of type
Child and uses its static constructor to redefi ne defaults for three
properties: HorizontalAlignment, VerticalAlignment and the
all-important IsManipulationEnabled. Th e instance constructor
calls InitializeComponent (as usual), but then sets the control’s
RenderTransform to a MatrixTransform if that’s not the case.

During the OnManipulationStarting event, the Manipulable-
PictureFrame class calls:

VisualStateManager.GoToElementState(this, "Touched", false);

and during the OnManipulationCompleted event, it calls:
VisualStateManager.GoToElementState(this, "Untouched", false);

Touch and Response

Programming is an engineering discipline rather than a science or
a branch of mathematics, so rarely does there exist a single correct
solution to a problem. Varieties and variations are the norm, and
often it’s illuminating to explore these alternatives rather than
focus on one particular approach.

In my article “Multi-Touch Manipulation Events in WPF” in
the August issue of MSDN Magazine (msdn.microsoft.com/magazine/
ff898416), I began exploring the exciting multi-touch support in-
troduced into version 4 of the Windows Presentation Foundation
(WPF). Th e Manipulation events serve primarily to consolidate
multi-touch input into useful geometric transforms, and to assist
in implementing inertia.

In that article, I showed two related approaches to handling
Manipulation events on a collection of Image elements. In both
cases, the actual events were processed by the Window class. One
program defi ned handlers for the Manipulation events of the
manipulated elements. Th e other approach showed how to over-
ride the OnManipulation methods to get the same events routed
through the visual tree.

The Custom Class Approach
A third approach also makes sense: A custom class can be defi ned
for the manipulated elements that overrides its own OnManipula-
tion methods rather than leaving this job to a container element.
Th e advantage of this approach is that you can make the custom
class a little more attractive by decorating it with a Border or other
element; these decorations can also be used to provide visual feed-
back when the user touches a manipulable element.

When veteran WPF programmers determine they need to make
visual changes to a control based on events, they probably think of
EventTrigger, but WPF programmers need to start transitioning to
the Visual State Manager. Even when deriving from UserControl
(the strategy I’ll be using), it’s fairly easy to implement.

An application using the Manipulation events should probably
base visual feedback on those same events rather than the low-level
TouchDown and TouchUp events. When using the Manipulation
events, you’ll want to begin the visual feedback with either the
ManipulationStarting or ManipulationStarted event. (It really doesn’t
make a diff erence which you choose for this job.)

However, when experimenting with this feedback, one of the
fi rst things you’ll discover is that the ManipulationStarting and
ManipulationStarted events are not fi red when an element is fi rst
touched, but only when it starts moving. Th is behavior is a holdover

UI FRONTIERS CHARLES PETZOLD

Code download available at code.msdn.microsoft.com/mag201009UIFrontiers.

A custom class can be
defi ned for the manipulated

elements that overrides its own
OnManipulation methods

rather than leaving this job to a
container element.

http://msdn.microsoft.com/magazine/ff898416
http://msdn.microsoft.com/magazine/ff898416
http://code.msdn.microsoft.com/mag201009UIFrontiers

93September 2010msdnmagazine.com

Th is is my code fi le’s sole contribution to implementing visual
states. Th e code performing the actual manipulations will be familiar
from the code in last month’s column—with two signifi cant changes:

• In the OnManipulationStarting method, the Manipulation-
Container is set to the element’s parent.

• The OnManipulationDelta method is just a little simpler
because the element being manipulated is the Manipulable-
PictureFrame object itself.
Figure 1 shows the complete ManipulablePictureFrame.xaml fi le.

The Border named “border” is used to host the child of the
ManipulablePictureFrame class. This will probably be an Image
element, but it doesn’t have to be. Th e two Rectangle elements draw
a type of “scalloped” frame around the Border, and the second
Border is used for visual feedback.

While an element is being moved, the animations in Manipu-
lablePictureFrame.xaml “lighten” the picture a bit—actually, it’s
more of a “washing out” eff ect—and increase the drop shadow, as
shown in Figure 2.

Pretty much any kind of simple highlighting can provide visual
feedback during touch events. However, if you’re working with
small elements that can be touched and manipulated, you’ll want
to make the elements larger when they’re touched so they won’t be

entirely hidden by the user’s fi nger. (On the other hand, you don’t
want to make an element larger for visual feedback if you’re also
allowing the user to resize the element. It’s very disconcerting to
manipulate an element into a desired size and then have it shrink
a little when you lift your fi ngers from the screen!)

You’ll notice that as you make the images smaller and larger, the
frame shrinks or expands accordingly. Is this correct behavior?
Perhaps. Perhaps not. I’ll show an alternative to this behavior
toward the end of this article.

<UserControl x:Class="FeedbackAndSmoothZ.ManipulablePictureFrame"
 xmlns=
 "http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Stylus.IsPressAndHoldEnabled="False"
 Name="this">

 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="TouchStates">
 <VisualState x:Name="Touched">
 <Storyboard>
 <DoubleAnimation Storyboard.TargetName="maskBorder"
 Storyboard.TargetProperty="Opacity"
 To="0.33" Duration="0:0:0.25" />

 <DoubleAnimation Storyboard.TargetName="dropShadow"
 Storyboard.TargetProperty=
 "ShadowDepth"
 To="20" Duration="0:0:0.25" />
 </Storyboard>
 </VisualState>
 <VisualState x:Name="Untouched">
 <Storyboard>
 <DoubleAnimation Storyboard.TargetName="maskBorder"
 Storyboard.TargetProperty="Opacity"
 To="0" Duration="0:0:0.1" />

 <DoubleAnimation Storyboard.TargetName="dropShadow"
 Storyboard.TargetProperty=
 "ShadowDepth"
 To="5" Duration="0:0:0.1" />
 </Storyboard>
 </VisualState>

 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>

 <Grid>
 <Grid.Effect>
 <DropShadowEffect x:Name="dropShadow" />
 </Grid.Effect>

 <!-- Holds the photo (or other element) -->
 <Border x:Name="border"
 Margin="24" />

 <!-- Provides visual feedback -->
 <Border x:Name="maskBorder"
 Margin="24"
 Background="White"
 Opacity="0" />

 <!-- Draws the frame -->
 <Rectangle Stroke="{Binding ElementName=this, Path=Foreground}"
 StrokeThickness="24"
 StrokeDashArray="0 0.9"
 StrokeDashCap="Round"
 RadiusX="24"
 RadiusY="24" />

 <Rectangle Stroke="{Binding ElementName=this, Path=Foreground}"
 StrokeThickness="8"
 Margin="16"
 RadiusX="24"
 RadiusY="24" />
 </Grid>
</UserControl>

Figure 1 The ManipulablePictureFrame.xaml File

Pretty much any kind of simple
highlighting can provide visual
feedback during touch events.

Figure 2 A Highlighted Element in the
FeedbackAndSmoothZ Program

www.msdnmagazine.com

msdn magazine94 UI Frontiers

Smooth Z Transitions
In the programs I showed last month, touching a photo would
cause it to jump to the foreground. Th is was just about the simplest
approach I could think of and required setting new Panel.ZIndex
attached properties for all the Image elements.

A brief refresher: Normally when children of a Panel overlap,
they are arranged from background to foreground based on their
position in the Children collection of the Panel. However, the Panel
class defi nes an attached property named ZIndex that eff ectively
supersedes the child index. (Th e name alludes to the Z-axis ortho-
gonal to the conventional XY plane of the screen, which conceptu-
ally comes out of the screen.) Elements with a lower ZIndex value
are in the background; higher ZIndex values put an element in the
foreground. If two or more overlapping elements have the same
ZIndex setting (which is the case by default), their child indices
in the Children collection are used instead to determine which is
on top of the other.

In the earlier programs, I used the following code to set new
Panel.ZIndex values, where the variable element is the element
being touched and pnl (of type Panel) is the parent of that element
and its siblings:

for (int i = 0; i < pnl.Children.Count; i++)
 Panel.SetZIndex(pnl.Children[i],
 pnl.Children[i] == element ? pnl.Children.Count : i);

Th is code ensures that the touched element gets the highest ZIndex
and appears in the foreground.

Unfortunately, the touched element jumps to the foreground in
a sudden, rather unnatural, movement. Sometimes other elements
switch places at the same time. (If you have four overlapping elements
and touch the fi rst, it gets a ZIndex of 4 and the others have ZIndex

values of 1, 2 and 3. Now if you touch the fourth, the fi rst goes back
to a ZIndex of 0 and will suddenly go behind all the others.)

My goal was to avoid the sudden snapping of elements to the
foreground and background. I wanted a smoother eff ect that mim-
icked the process of slipping a photo from underneath a pile and
then slipping it back on top. In my mind, I started thinking of these
transitions as “smooth Z.” Nothing would jump to the foreground
or background, but as you moved an element around, eventually it
would fi nd itself on top of all the others. (An alternative approach
is implemented in the ScatterView control available for download
from CodePlex at scatterview.codeplex.com/releases/view/24159. ScatterView
is certainly preferable when dealing with large numbers of items.)

In implementing this algorithm, I set a few criteria for
myself. First, I didn’t want to maintain state information from
one move event to the next. In other words, I didn’t want to ana-
lyze whether the manipulated element was intersecting another
element previously but was no longer. Second, I didn’t want to
perform memory allocations during the ManipulationDelta events
because there might be many of them. Th ird, to avoid too much
complexity, I wanted to restrict changes of the relative ZIndex to
only the manipulated element.

// BumpUpZIndex with reusable SortedDictionary object
SortedDictionary<int, UIElement> childrenByZIndex = new
SortedDictionary<int, UIElement>();

void BumpUpZIndex(FrameworkElement touchedElement, UIElementCollection siblings)
{
 // Make sure everybody has a unique even ZIndex
 for (int childIndex = 0; childIndex < siblings. Count; childIndex++)
 {
 UIElement child = siblings[childIndex];
 int zIndex = Panel.GetZIndex(child);
 Panel.SetZIndex(child, 2 * (zIndex * siblings.Count + childIndex));
 }

 int zIndexNew = Panel.GetZIndex(touchedElement);
 int zIndexCantGoBeyond = Int32.MaxValue;

 // Don't want to jump ahead of any intersecting elements that are on top
 foreach (UIElement child in siblings)
 if (child != touchedElement &&
 AreElementsIntersecting(touchedElement, (FrameworkElement)child))
 {
 int zIndexChild = Panel.GetZIndex(child);

 if (zIndexChild > Panel.GetZIndex(touchedElement))
 zIndexCantGoBeyond = Math.Min(zIndexCantGoBeyond, zIndexChild);
 }

 // But want to be in front of non-intersecting elements
 foreach (UIElement child in siblings)
 if (child != touchedElement &&
 !AreElementsIntersecting(touchedElement, (FrameworkElement)child))
 {
 // This ZIndex is odd, hence unique
 int zIndexNextHigher = 1 + Panel.GetZIndex(child);

 if (zIndexNextHigher < zIndexCantGoBeyond)
 zIndexNew = Math.Max(zIndexNew, zIndexNextHigher);
 }

 // Now give all elements indices from 0 to (siblings.Count - 1)
 Panel.SetZIndex(touchedElement, zIndexNew);
 childrenByZIndex.Clear();
 int index = 0;

 foreach (UIElement child in siblings)
 childrenByZIndex.Add(Panel.GetZIndex(child), child);

 foreach (UIElement child in childrenByZIndex.Values)
 Panel.SetZIndex(child, index++);
 }

// Test if elements are intersecting with reusable //
RectangleGeometry objects
RectangleGeometry rectGeo1 = new RectangleGeometry();
RectangleGeometry rectGeo2 = new RectangleGeometry();

bool AreElementsIntersecting(FrameworkElement element1, FrameworkElement
 element2)
{
 rectGeo1.Rect = new
 Rect(new Size(element1.ActualWidth, element1.ActualHeight));
 rectGeo1.Transform = element1.RenderTransform;

 rectGeo2.Rect = new
 Rect(new Size(element2.ActualWidth, element2.ActualHeight));
 rectGeo2.Transform = element2.RenderTransform;

 return rectGeo1.FillContainsWithDetail(rectGeo2) != IntersectionDetail.
Empty;
}

Figure 3 The Smooth Z Algorithm

My goal was to avoid the sudden
snapping of elements to the

foreground and background.

http://scatterview.codeplex.com/releases/view/24159

95September 2010msdnmagazine.com

The complete algorithm is shown in Figure 3. Crucial to the
approach is determining whether two sibling elements visually
intersect. Th ere are several ways to go about this, but the code I used
(in the AreElementsIntersecting method) seemed the simplest. It
reuses two RectangleGeometry objects stored as fi elds.

Th e BumpUpZIndex method performs the bulk of the work. It begins
by making sure all the siblings have unique ZIndex values, and that all
these values are even numbers. Th e new ZIndex for the manipulated
element can’t be higher than any ZIndex value of any element that’s
intersecting and currently on top of the manipulated element. Taking
this limit into account, the code attempts to assign a new ZIndex
that’s higher than the ZIndex values of all non-intersecting elements.

Th e code I’ve discussed so far will normally have the eff ect of
progressively increasing ZIndex values without limit, eventually
exceeding the maximum positive integer value and becoming
negative. Th is situation is avoided using a SortedDictionary. All
the siblings are put into the dictionary with their ZIndex values as
keys. Th en the elements can be given new ZIndex values based on
their indices in the dictionary.

Th e Smooth Z algorithm has a quirk or two. If the manipulated
element is intersecting element A but not element B, then it can’t
be slipped on top of B if B has a higher ZIndex than A. Also, there’s
been no special accommodation for manipulating two or more
elements at the same time.

Manipulation Without Transforms
In all the examples I’ve shown so far, I’ve used information delivered
with the ManipulationDelta event to alter the RenderTransform of
the manipulated element. Th at’s not the only option. In fact, if you
don’t need rotation, you can implement multi-touch manipulation
without any transforms at all.

This “no transform” approach involves using a Canvas as a
container for the manipulated elements. You can then move the

elements on the Canvas by setting the Canvas.Left and Canvas.Top
attached properties. Changing the size of the elements requires
manipulating the Height and Width properties, either with
the same percentage Scale values used previously or with the
absolute Expansion values.

One distinct advantage of this approach is that you can decorate
the manipulated elements with a border that won’t itself become
larger and smaller as you change the size of the element.

Th is technique is demonstrated in the NoTransformManipulation
project, which includes a UserControl derivative named NoTrans-
formPictureFrame that implements the manipulation logic.

Th e picture frame in this new class isn’t nearly as fancy as the
one in ManipulablePictureFrame. Th e earlier picture frame used
a dotted line for a scalloped eff ect. If you make such a frame larger
to accommodate a larger child but without applying a transform,
the line thickness will remain the same and the number of dots
in the dotted line will increase! Th is looks very peculiar and is
probably too distracting for a real-life program. Th e picture frame
in the new fi le is just a simple Border with rounded corners.

In the MainPage.xaml fi le in the NoTransformManipulation
project, fi ve NoTransformPictureFrame objects are assembled
on a Canvas, all containing Image elements and all with unique
Canvas.Left and Canvas.Top attached properties. Also, I’ve given
each NoTransformPictureFrame a Width of 200 but no Height.
When resizing Image elements, it’s usually best to specify just
one dimension and let the element choose its other dimension to
maintain the proper aspect ratio.

Th e NoTransformPictureFrame.xaml.cs fi le is similar in structure
to the ManipulablePictureFrame code except that no transform
code is required. Th e OnManipulationDelta override adjusts the
Canvas.Left and Canvas.Top attached properties and uses the
Expansion values to increase the Width property of the element.
Just a little bit of trickiness is required when scaling is in eff ect,
because the translation factors need to be adjusted to accommo-
date the center of scaling.

A change was also required in the AreElementsIntersecting
method that plays a crucial role in the smooth Z transitions. Th e
earlier method constructed two RectangleGeometry objects
refl ecting the untransformed dimensions of the two elements and
then applied the two RenderTransform settings. Th e replacement
method is shown in Figure 4. Th ese RectangleGeometry objects
are based solely on the actual size of the element off set by the
Canvas.Left and Canvas.Top attached properties.

Remaining Issues
As I’ve been discussing the Manipulation events, I’ve been ignoring
an important feature, and the elephant in the room has become larger
and larger. Th at feature is inertia, which I’ll tackle in the next issue.

CHARLES PETZOLD is a longtime contributing editor to MSDN Magazine. He’s
currently writing “Programming Windows Phone 7,” which will be published as
a free downloadable e-book in the fall of 2010. A preview edition is currently
avail able through his Web site, charlespetzold.com.

THANKS to the following technical experts for reviewing this column:
Doug Kramer and Robert Levy

bool AreElementsIntersecting(FrameworkElement element1, FrameworkElement element2)
{
 rectGeo1.Rect = new Rect(Canvas.GetLeft(element1), Canvas.GetTop(element1),
 element1.ActualWidth, element1.ActualHeight);

 rectGeo2.Rect = new Rect(Canvas.GetLeft(element2), Canvas.GetTop(element2),
 element2.ActualWidth, element2.ActualHeight);

 return rectGeo1.FillContainsWithDetail(rectGeo2) != IntersectionDetail.Empty;
}

Figure 4 Alternative Smooth Z Logic
for Manipulation Without Transforms

When resizing Image elements,
it’s usually best to specify just one
dimension and let the element
choose its other dimension to

maintain the proper aspect ratio.

www.msdnmagazine.com
http://charlespetzold.com

96 msdn magazine

Developers don’t talk in weasel words, and we don’t like hearing
them. We’re engineers; solving problems is what we do. Before we
can solve a problem, we need to recognize its existence and call it
by its correct name. You can always tell a developer who’s starting
to drink the manager’s Kool-Aid, bucking for a raise. He goes
away on a training program retreat, comes back with a tie and a
lobotomy scar, and starts referring to bugs as issues. And then, like
any zombie, he tries to eat your brain so you’ll be a zombie too:
“Bob, can I have your list of issues by Friday?”

At Tech•Ed some years ago, I exhorted my listeners: “It’s not an
issue, it’s a bug. Say the word. Say it loudly: Bug. B as in Bad. U as
in Ugly. G as in Gol-dangit, I’ve got a bug.” I got a standing ovation.

If you want to issue supplies, read a magazine issue, or even
take issue with my writing here, fi ne. But don’t use the “I” word to
mean “soft ware malfunction.” Th at tells your users that you don’t
share their concerns, that you don’t really give a darn about them,
that you think they’re stupid enough to believe your twaddle. It’s a
blatant form of disrespect toward the people who pay your salary,
who put bread into your children’s mouths and a roof over their
heads. And I have a serious problem—not an issue—with that.

Request to readers: Do you have any favorite examples of
weasel words? Send them to me via rollthunder.com, and I’ll use the
best of them in a future column.

DAVID S. PLATT teaches Programming .NET at Harvard University Extension
School and at companies all over the world. He is the author of 11 programming
books, including “Why Soft ware Sucks” (Addison-Wesley Professional, 2006)
and “Introducing Microsoft .NET” (Microsoft Press, 2002). Microsoft named
him a Soft ware Legend in 2002. He wonders whether he should tape down two
of his daughter’s fi ngers so she learns how to count in octal. You can contact him
at rollthunder.com.

Weasel Words

My e-mail service went down last month for a full day. When it
fi nally came back up, I received an apology from its administrator,
saying: “users experienced e-mail connectivity issues.” Bullhockey,
Mr. Administrator. I did not experience “an issue.” I experienced
the lack of e-mail because your servers were down. I experienced
the waste of my time, the delay of my projects and the loss of my
income. I experienced anger at your enterprise, which promised
reliability but didn’t deliver. And I experienced even greater anger
at your attempt to downplay your malpractice by using that worst
of all weasel words: “issue.”

Don’t get me started on the “I” word. I have no problem with its
meaning of distribution, as in “the issue of food and blankets to
fl ood victims.” Nor do I mind its meaning of off spring, as in “my
issue is two daughters, on whom the sun rises and sets,” nor for
designating a specifi c month’s magazine, as in “the September issue
of MSDN Magazine,” which you are now reading. But I hereby fl ing
scorn and disdain at weasels who use this term to mean “soft ware
malfunction,” hoping that the users whom that malfunction harms
will somehow be less angry at them than if they had said, “Gosh,
we know you had no e-mail because we screwed up, and we know
how we hate it when that happens to us, so we’re really, really sorry
and we’ll give you a free month of service for your trouble—maybe
two months if you squawk really loudly.”

Th e apology’s author uses the “I” word fi ve
times in four paragraphs, including the

memorable phrase, “Once the confi gu-
ration issues were resolved and all the

servers were online, we discovered
that some users were still experi-
encing issues …” Please, somebody,
put this guy out of his misery.

Weasel words aren’t harmless. Th ey try to hide
a problem that needs to be solved—Johnny has “a
drinking issue.” No he doesn’t. Johnny’s a drunk.

As any recovering alcoholic will tell you, the very
fi rst word of the very fi rst step to recovery is
“Admit.” Johnny won’t get better until he stops

hiding behind weasel words, until he can stand
up in public and say: “My name is Johnny, and

I am an alcoholic, but I don’t want to be a drunk
anymore.” His loved ones hope he does that before
he kills himself or someone else. Using the “I” word
only postpones that day of realization.

DON’T GET ME STARTED DAVID PLATT

Weasel words aren’t harmless.
They try to hide a problem that

needs to be solved—Johnny has
“a drinking issue.” No he doesn’t.

Johnny’s a drunk.

http://rollthunder.com
http://rollthunder.com

Untitled-2 1 7/14/10 11:22 AM

www.gcpowertools.com/actnow

Untitled-1 1 4/12/10 2:38 PM

www.dundas.com/dashboard

	Back
	Print
	MSDN Magazine, September 2010
	Contents
	EDITOR’S NOTE: U.S. Schools Not Getting It Done
	CUTTING EDGE: Better Web Forms with the MVP Pattern
	GOING PLACES: IronRuby on Windows Phone 7
	CONCURRENCY:
	Simplify Asynchronous Programming with Tasks
	Throttling Concurrency in the CLR 4.0 ThreadPool
	Actor-Based Programming with the Asynchronous Agents Library

	Migrate Your ASP.NET 1.1 Apps to Visual Studio 2010
	Create a Silverlight 4 Web Part for SharePoint 2010
	Making MapPoint 2010 and SQL Server Spatial Work Together
	TEST RUN: Request-Response Testing Using IronPython
	SECURITY BRIEFS: The MSF-Agile+SDL ProcessTemplate for TFS 2010
	UI FRONTIERS: Touch and Response
	DON’T GET ME STARTED: Weasel Words

	GrapeCity Insert

