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In this study, we have developed a new platform of polyoxometalate as a biocompatible and electrosensitive polymeric biosensor for
the accurate detection of doxorubicin. For this purpose, we used a green synthesis approach using tartaric acid, glutamic acid, and
kombucha solvent. �anks to its bioinorganic components, the biogenic approach can chemically modify and improve the
performance of the biosensor, which was experimentally con�rmed. Our results showed excellent sensitivity (175.72 μA·
μM−1·cm−2), low detection limit (DL, 8.12 nM), and low quanti�cation limit (QL, 0.056 μM) when the newly developed biosensor
was used. �e results also show that the biosynthesized biosensor has improved performance in detecting DOX in the biological
�uid with an accuracy of more than 99% depending on the components used, which underlines the high e�ciency of the biosensor
produced. Considering the body’s physiological condition, the biosensor fabricated as a biocompatible component can show high
e�ciency. �erefore, its applicability for clinical use still needs to be studied in detail.

1. Introduction

Doxorubicin (DOX) is a chemotherapeutic agent used under
the brand name Adriamycin to treat a variety of cancers in
humans. It is used to treat di�erent types of cancer, such as
lung cancer, sarcoma, Hodgkin’s/non-Hodgkin’s lym-
phoma, breast cancer, and leukemia. DOX helps treat cancer
through several mechanisms. Its main anticancer properties

are the degradation of DNA by inhibiting topoisomerase II
and the production of free radicals [1]. It has been shown
that the use of this drug leads to common side e�ects such as
bone marrow aplasia, alopecia, stomatitis, vomiting, gas-
trointestinal disorders, neurological disorders (hallucina-
tions, dizziness, lightheadedness), and acute nausea due to
toxicity in healthy tissues or resistance of tumor cells. Of all
the side e�ects, cardiotoxicity is the most common
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complication limiting DOX. Controlling DOX concentra-
tions in biological fluids (e.g., blood) during chemotherapy is
critical to minimizing side effects. Identifying DNA damage
and detecting DOX in biological fluids is applied by ana-
lytical methods such as photoelectrochemistry, mass spec-
trometry, capillary zone, capillary liquid chromatography,
electrophoresis, and fluorescence. Although these analytical
methods are accurate, they have disadvantages such as high
cost and long testing times. As reported and confirmed in the
literature, the electrochemical method has a high potential
for DNA damage detection and is an attractive alternative
approach for damage detection that has recently received
more attention compared to other methods [2]. Poly-
oxometallates (POMs) are metal oxide aggregates with a
great diversity in their structure and composition [3]. ,eir
unique inherent properties make them promising candidates
for medicine, magnetism, materials science, optics, bio-
technology, and environmental sensing [4–6]. Many re-
searchers have focused on studying polyoxometalates in
medicinal chemistry [7, 8]. Many POMs, such as organo-
titanium-substituted heteropolytungstate, PM-26, PM-17,
and PM-32, showed antitumor properties against various
cancers in vitro or in vivo [9–11]. ATP generation prevented
the formation of the 6-FMN (Mo7O24) complex in tumor cell
mitochondria, resulting in antitumor activity. Prudent et al.
found that P2Mo18O62 inhibits the protein kinase CK2 [12].
In addition, Müller et al. reported that K6H2 [TiW11CoO40]
could be used as an inhibitor [13], as POMs can interact with
proteins, although their anticancer mechanisms have not
been extensively studied. Bioimprovement of polymeric
structures such as POM can enhance their performance and
biocompatibility.

Biosensors have attracted considerable attention due to
their potential applications, including clinical diagnostics,
forensic investigations, and environmental monitoring
[14, 15]. Advancements in DNA biosensors can be achieved
by developing surface DNA probe immobilization in con-
junction with hybridization techniques between comple-
mentary DNA sequences [16, 17]. Many studies have been
conducted with extensive reports on the characterization of
DNA probe immobilization [18]. DNA biosensors have a
very high sensitivity to direct detection of DNA structures.
In addition, signal amplification strategies can increase the
sensitivity of electrochemical biosensors [19, 20]. Tomonitor
DOX that has entered clinical blood samples, Chekin et al.
designed and fabricated a sensitive sensor with high effi-
ciency based on nitrogen-doped reduced graphene oxide
and chitosan as a biocompatible natural polymer [21, 22].
,e research conducted by Alarfaj et al. showed that a NiO/
MgO nanocomposite modified with a wire sensor has a high
potential for determining DOX in human plasma, which was
experimentally demonstrated [23]. Gardikis et al. presented
a novel and effective drug carrier formed by using the
bacterium Lactobacillus helveticus as a microbial biosensor
to monitor the encapsulation efficiency of DOX [24]. ,e
probiotic-based approach can perform well clinically as it is
considered a suitable biosensor as it shows good symbiosis
throughout the human body [25]. Behravan et al. used an
electrochemical sensor based on a nanocomposite of

modified glassy carbon electrodes (GCE), gold (Au) nano-
particles, reduced graphene oxide (rGO), and polypyrrole
(PPy) for the determination of DOX. ,eir results showed
that the modified electrodes had a high sensitivity of
185 μA·mM−1 and a low detection limit of 0.02 μM with a
wide linear range of 0.02 μM and −25mM [26]. Yaghoobi
et al. used a hybrid molecular nanostructure of glutamine
and doxorubicin to identify human ovarian cancer cells.,is
system showed high sensitivity in detecting cancer cells [27].
A novel electrochemical platform for quantifying DOX in
cancer cell lysates and plasma samples based on silver
nanoparticles and a chitosan-coated glassy carbon electrode
was proposed by Ehsani et al. ,is probe successfully
monitored DOX concentrations in human biofluids and
B16F10 cell lysates with high sensitivity [28]. Deepa et al.
described an electrochemical method for determining DOX
using cyclic voltammetry (CV) and differential pulse vol-
tammetry (DPV).,e sensor studied successfully monitored
quality control, clinical analysis, and other therapeutic drugs
[29]. Mi et al. reported a new sensor made of ZnS quantum
dots in the shell, Ag nanoparticles (NPs), and CuInSe2 in the
core with satisfactory results for DOX determination
[30, 31]. In this research, we designed and constructed a
novel biosensor with high functionality to detect DOX
concentration in a targeted system. ,e performance of the
biosensor in a biological environment will be investigated in
detail.

2. Materials and Methods

2.1.Materials. In this study, all the requiredmaterials for the
synthesis of advanced photocatalysts, including sodium
oxalate (Na2C2O4), sodium nitrate (NaNO3), tungsten tri-
oxide (WO3), ethanol (C2H5OH), potassium permanganate
(KMnO4), hydrogen peroxide (H2O2), iron (III) chloride
hexahydrate (FeCl3.6H2O), iron (II) sulfate heptahydrate
(FeSO4.7H2O), ammonia (NH3), tartaric acid (C4H6O6), and
glutamic acid (C5H9NO4), were supplied by Merck & Co.

2.2. Synthesis of Sodium Polytungstate. Sodium poly-
tungstate (SPT) was synthesized through a multistage
manufacturing process. In this regard, 0.9896 g sodium
oxalate (Na2C2O4), 0.4954 g sodium nitrate (NaNO3), and
2.96 g tungsten trioxide (WO3) were first added to 150mL of
ethanol and stirred for three hours at 65°C under reflux,
according to the following reaction:

Na2C2O4 +NaNO3 +
3
2
WO3 �

3
2
NaWO4 +2CO2 +

1
2
N2O3

(1)

In the next step, the temperature of the resulting sus-
pension was lowered to below 5°C in an ice bath.,en, 5 g of
KMnO4 was slowly added to the mixture and stirred at room
temperature for 30 minutes (500 rpm).

,e temperature of the suspension was then raised to
25°C, and 10mL of H2O2 was added dropwise and very
slowly to the mixture. Stirring was then carried out at
500 rpm for 30 minutes. ,e resulting suspension was then
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placed in a tube furnace and annealed at 450°C for six hours
under the flow of Ar. ,en the resulting powder was ground
and washed with ethanol and again placed in the tube
furnace at 600°C for six hours for further recrystallization,
followed by washing with ethanol after treatment. ,e
resulting powder was then placed in the oven at 650°C for
6 h. Finally, the resulting powder was washed with ethanol,
dried at 100°C for two hours, and ground to obtain a fine
white powder of SPT.

2.3. Modification of Sodium Polytungstate through Green
Protocol. A green protocol modified the purified SPT
powder to improve its photocatalysis activity and organic
components. First, 4.75 g FeCl3.6H2O and 3.89 g FeS-
O4.7H2O were added to a vessel containing deionized water
and kombucha solvent in the ratio of 320mL: 32mL and
stirred (500 rpm) for one hour at 80°C under reflux to obtain
a homogeneous suspension. To prepare the kombucha
solvent, a complete kombucha SCOBY (the mother kom-
bucha SCOBY produces a complete kombucha SCOBY after
22 days) was washed well with DI and placed in a clean vessel
in a dark and humid room. ,en 500ml of DI was added,
and the kombucha SCOBYwas fed with sugar every five days
until the pH of the suspension dropped to about 1.5. ,e
resulting suspension was used as green feed for the modi-
fication of SPT. In the next step, 1 g of well-purified SPT
powder, 1 g of tartaric acid (C4H6O6), and 1 g of glutamic
acid (C5H9NO4) were added to the resulting suspension and
then stirred for 30minutes under the same conditions. ,en
40mL of ammonia (NH3) was added dropwise to the
resulting suspension and stirred for 24 hours at 80°C under
reflux. Finally, the resulting powder was filtered with
0.22 μm filler paper and washed several times with DI until
the treated PST was neutralized with tartaric acid and
glutamic acid (SPT-T-G) at a pH of 7.

2.4. Characterization. All prepared samples were charac-
terized using several instruments, including Fourier trans-
form infrared (FTIR) spectroscopy (Tensor II, Bruker,

Germany) in the frequency range of 4000-400 cm−1, X-ray
diffraction (XRD, Series S Max Finder Mira III, Tescan), and
field-emission scanning electron microscopy (FESEM) with
energy dispersive X-ray (EDX, Mira III, TESCAN).

2.5. Human Blood Sample Preparations. A phosphate buffer
solution (PBS, 0.01M) was obtained by mixing the corre-
sponding K2HPO4 and KH2PO4. Doxorubicin was prepared
in different concentrations. For this purpose, an exact
amount of doxorubicin stock solution (0.2M) was dissolved
in a specific volume of buffer solution (pH� 7.4) and then
stored at 4 °C in a dark place. Real samples of human blood
plasma were provided by the Blood Transfusion Center
(Iran) and frozen at −20°C. ,en, 1mL of H2SO4 (2M) was
added to the 2.0mL of sample and centrifuged at 5000 rpm
for 10 minutes to separate the plasma protein residues.

2.6. Apparatus. ,e electrochemical tests were carried out
with a galvanostat/potentiostat AUTO LAB system (model
PGSTAT302N, Netherlands) at room temperature. It was
equipped with a standard cell and three electrodes, with a
GC electrode (Metrohm) as a working electrode, a platinum
wire (Metrohm) as a counter electrode, and Ag/AgCl (KCl
3M) (Metrohm) as a reference electrode. ,e data analysis
was carried out with Nova 1.9 software.

3. Results and Discussions

3.1. Characterization

3.1.1. FTIR Analysis. Figure 1(a) shows the FTIR spectrum
of PTS and PTS/T/G as a function of the bonds formed. It
was observed that the peaks in the range of 420 to 910 cm−1

correspond to the vibrations of the tungstate framework.,e
peaks that appeared in the FTIR spectrum of SPT can be
assigned to the vibration of the W-OH group (522.14 cm−1),
the vibration of W-O-W (649.6 cm−1), the vibration of W-O
(886.67 cm−1), the vibration of the H-O-H group
(1687.30 cm−1), and the hydroxyl functional groups (-OH)
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Figure 1: (a) FTIR and (b) XRD results of SPT and SPT-T-G specimens.
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(3338.10 cm−1) [19]. In addition, Figure 1(a) (red color)
shows the FTIR spectrum of the SPT-T-G sample. As can be
seen in the figure, the peaks in the range between 530 and
630 cm−1 are associated with Fe-O vibrational stretching,
confirming the presence of Fe in the structure of the
composition, which covalently interacted with the SPT [32].
A sharp and intense peak appeared at 617.72 cm−1, repre-
senting the formed Fe-O functional groups. Other peaks
appeared at 798.91 and 880.10 cm−1, indicating the W-O-W
andW-O vibrations, respectively [19]. ,ese peaks and their
shifts demonstrate the successful synthesis of the biosensor,
whose interaction and modification proceeded as expected.
According to the FTIR spectrum analysis, other peaks have
appeared, which are related to the sp2 alkene C-H band
(disubstituted E) (928.29 cm−1), the in-plane stretching vi-
bration of C-H (1083.28 cm−1), sp3 C-H bending
(1411.70 cm−1), FeOO- (1599.42 cm−1), and the hydroxyl
functional groups (-OH) (3186.64 cm−1) [21]. A sharp and
broad peak of the functional group -OH represents the
interaction and combination of different types of hydroxyl
functional groups. Surprisingly, the SPT-T-G was not
magnetic, which can be attributed to the role of kombucha
solvent as it could change the nature of the synthesized Fe-
based nanoparticles. To improve the biocompatibility of iron
nanoparticles, the iron nanoparticles (III) should be con-
verted into non-magnetic iron nanoparticles (II). ,e
kombucha solvent can play this role because it contains a
large amount of vitamin C and citric acid (CA) in its solvent.
,e citric CA acts as a capping agent and provides control of
the particle size to be obtained. In situ covering of the surface
of particles with CA reduces magnetic interparticle inter-
actions, favoring their colloidal stability and making them
attractive for biomedical applications. ,e increase in CA
leads to a reduction in particle size and a decrease in in-
terparticle interactions.

3.1.2. XRD Analysis. ,e results of the XRD analysis are
shown in Figure 1(b) and Table 1. SPT was successfully
synthesized with several main chemical compounds, in-
cluding C12O8, W48Na136O328, W8Na8O28, and Na8O4, with
monoclinic cubic, orthorhombic, and cubic crystal struc-
tures, respectively. As shown in Table 1, the SPT POM
consisted mainly of the cubic structure, except C12O8, which
could have been formed by annealing the chemical com-
pounds of the SPT with ethanol as a solvent. Together with
the FTIR results, these data justify the successful synthesis of
SPT POM. Similar to the FTIR analysis, the XRD results of
SPT modified by the green protocol (i.e., SPT-T-G) also
showed the successful interaction of SPTwith the introduced
organic chemical compounds, which may improve the
sensitivity and interaction between the developed biosensor
and the molecules. In this case, SPT-T-G contained various
chemical compounds, including S16C6, W48Na136O328,
W8Na8O28, Fe16, and N1Cl1 with anorthic, cubic, ortho-
rhombic, orthorhombic, and cubic crystal structures, re-
spectively. ,e presence of the leading chemical compounds
of SPT (i.e., W48Na136O328 andW8Na8O28) together with the
introduction of nanoparticles of reduced iron (II) and

materials of organic modifiers (i.e., S16C6 and N1Cl1) in the
structure of the synthesized SPT indicates that the SPT POM
successfully interacted with and enhanced the selected
materials. ,is resulted in a cubic SPT nanostructure with
improved organic components, essential for the efficient
absorption of pollutants from aqueous media. ,e noises
may be referred to the nature of the arrangement of the
layers mean SPT-T-G characterized by several noses by
XRD. ,e noise will be reduced when the number of layers
increases; thus, the noise can be explained. ,e amorphous
has no sharp peaks, but the crystalline has sharp peaks and
may be single or polycrystalline. Amorphous materials
generally contain background noise, whereas crystalline
materials contain peaks.

3.1.3. FESEM Analysis. Figure 2 shows the field-emission
scanning electron microscopy (FESEM) images of SPT and
SPT-T-G. As can be seen, SPT has a random morphology
with different particle sizes. It can be seen that the modi-
fication of SPT with kombucha solvent, tartaric acid, and
glutamic acid improved the morphology of SPT [33]. ,ey
also improved the structural characteristics of the final
composition. SPT-T-G cubic has been characterized by
FESEM techniques with energy dispersive X-ray (EDX).
According to the FESEM images in Figure 2, the synthesized
SPT-T-G particles have a cubic shape with an average
particle size of about 51 nm, and their size distribution is
wide. ,e observation of XRD and FESEM amorphous
powder patterns may indicate the presence of amorphous,
disordered crystalline material in the sample.

As shown in Figure 3, SPT-T-G had a well-defined cubic
structure and some particles with random morphology
throughout the sample, which was consistent with the data
from XRD analysis. ,ese data suggest that the modification
of SPT by the green protocol significantly improved the
morphology of the developed samples. ,e chemical struc-
ture of tartaric acid, glutamic acid, and the proposed crys-
talline structure corresponding to SPT is shown in Figure 3.
,e XRD analysis agreed well with the experimental data,
and it was also found that the chemical structure of the
compounds derived from SPT is cubic and that they were
chemically improved. Further details can be found in Table 1.

3.1.4. EDAX Analysis. ,e results of the EDAX analysis are
shown in Figure 4 and Table 2. As can be seen in Figure 4 and
Table 2, SPT consisted mainly of C, O, Na, and W, with W
(%)/A (%) of 10.74/24.20, 31.94/54.01, 12.97/15.26, and
44.35/6.35, respectively, with O, Na, and W being the main
constituents of SPT. ,e results of FTIR, XRD, and SEM
analyses confirmed the successful synthesis of SPTwith high
purity. ,e summarised results showed that SPT-T-G
contained more elements chemically compared to SPT due
to the existence of more organic components in SPT formed
during green synthesis and the conversion of iron nano-
particles (III) to iron nanoparticles (II) when kombucha was
used as a solvent. In this case, SPT-T-G consisted of C, N, O,
Na, S, Cl, Ca, Fe, andW, with Cl, S, and Fe having the highest
intensities and weight fractions. ,ese data are in good
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agreement with previously reported analyses (i.e., FTIR,
XRD, and SEM) and confirm the interaction of SPTwith the
added organic modifiers.

3.2. Electrochemical Characterization of the Modified GCE.
Given the CV response of the GCE to the electroactive probe
[Fe(CN)6]3-/4- (5mM), the electrode was significantly
modified (Figure 5(a)). ,e bare GCE exhibited a well-de-
fined reversible electrochemical response, while the elec-
trode modified with POM1 exhibited a high peak separation
(ΔEp) of 310mV at 100mVs−1. In this case, the POM1
materials showed slow electron transfer due to their
structural effects. Furthermore, the oxidation and reduction
potentials of the probe shifted to values that were more
positive and negative, respectively. However, a decrease in
the peak current of the probe was observed when the GCE
surface was coated with POM2. ,ey exhibited much slower
electrode kinetics than POM1, where the electrode surface
was completely blocked with increasing hydroxyl groups,
inhibiting electron transfer between POM2 and Ferro/fer-
ricyanide. ,is phenomenon could be due to the negative
charge of the hydroxyl groups and the repulsion of the
negatively charged [Fe(CN)6]3-/4-ions, which prevent the
electrons from reaching the electrode surface. Considering a
solution containing [Fe(CN)6]3-/4-ions with a frequency
range of 105 to 10-2Hz, a direct potential of 0.22V, and an
amplitude of ten mV at pH 7.4, impedance spectroscopy was

performed and fundamentally evaluated to assess the ability
of the surface to transfer electrons to different modified
electrodes in this solution. ,e Nyquist plots from the EIS
study and the electrical equivalent circuit obtained at the
GCE electrode after each modification are shown in
Figure 5(b). ,e Rct value can be directly determined from
the diameter of the semicircle of the Nyquist plots. It should
be noted that the electron transfer resistance of the GCE,
POM1-GCE, and POM2-GCE modified electrodes are close
to 554.68Ω, 212.65Ω, and 1424.11Ω, respectively. ,e
modified electrodes exhibited a lower charge transfer re-
sistance (Rct) than the bare electrode, according to the
results achieved. ,ese results mean that the electron
transfer rate has increased due to the GCE coating and
POM1 used. With POM2, on the other hand, the electron
transfer capability decreased due to the negative charge of
the hydroxyl groups and the repulsion of the negatively
charged [Fe (CN)6]3-/4-ions.

3.3. Electrocatalytic and Sensing Performance. ,e electro-
catalytic ability of the modified electrode was evaluated
using the square wave voltammetry method with Vin
ranging from −0.9 to −0.3 and 0.05M PBS. As shown in
Figure 6, no significant peak current was observed at the
unmodified GC electrode in the electrolyte containing 0.1M
doxorubicin solution. A current signal appeared at the
electrode modified with POM and POM2 due to the

Table 1: Data obtained from the XRD analysis for SPT and SPT-T-G nanostructures.

Sample 2ϴ (°) d-spacing
(Å)

Chemical
compound

Plane
(HKL)

Crystalline
structure

Crystalline size
(Å)

Micro strain
(%)

Reference
code

SPT

12.8645 6.8834 C12O8 (1 0 0) Monoclinic 76.44221 4.503129 96-590-0040
16.9443 5.28984 W48Na136O328 (1 1 1) Cubic 115.4435 2.273826 96-591-0225
21.0943 4.21383 W8Na8O28 (0 4 1) Orthorhombic 77.27145 2.736177 96-900-7741
25.7856 3.45558 C12O8 (0 1 –2) Monoclinic 117.4237 1.490216 96-590-0040
27.7323 3.22791 W48Na136O328 (0 2 2) Cubic 117.5984 1.382735 96-591-0225
32.8073 2.72904 W48Na136O328 (1 1 3) Cubic 79.17859 1.755239 96-591-0225
38.0566 2.37014 W8Na8O28 (1 9 0) Orthorhombic 120.8277 0.980631 96-900-7741
38.9109 2.33491 C12O8 (0 0 4) Monoclinic 80.56572 1.457097 96-590-0040
41.6281 2.1551 W8Na8O28 (1 1 2) Orthorhombic 81.24937 1.352824 96-900-7741
46.018 1.97334 Na8O4 (0 2 2) Cubic 123.9971 0.784542 96-900-9064
48.6876 1.87111 C12O8 (2 1 2) Monoclinic 83.36645 1.136789 96-590-0040
54.6524 1.68960 Na8O4 (1 1 3) Cubic 85.4954 0.97741 96-900-9064
64.8321 1.44351 W48Na136O328 (0 2 6) Cubic 89.97712 0.78342 96-591-0225
69.3549 1.35652 C12O8 (3 2 3) Monoclinic 138.7834 0.485253 96-590-0040
74.5461 1.27509 W48Na136O328 (1 1 7) Cubic 114.6281 0.55437 96-591-0225

SPT-T-
G

8.019 11.0591 S16C6 (0 0 1) Anorthic 38.12231 14.49596 96-200-1129
16.7378 5.3143 W48Na136O328 (1 1 1) Cubic 76.80672 3.412017 96-591-0225
20.3856 4.34683 W8Na8O28 (0 4 1) Orthorhombic 77.09752 2.791682 96-900-7741
23.0692 3.85634 Fe16 (0 0 4) Orthorhombic 155.6814 1.197826 96-431-3217
29.8097 2.97625 S16C6 (0 3 0) Anorthic 157.7764 0.990606 96-200-1129
32.752 2.79776 N1Cl1 (0 1 1) Cubic 158.8874 0.898731 96-900-7495
38.9324 2.32479 C12O8 (0 0 4) Monoclinic 161.7505 0.785001 96-590-0040
46.9255 1.94074 Fe16 (4 0 0) Orthorhombic 166.6563 0.602292 96-431-3217
58.3434 1.57447 N1Cl1 (1 1 2) Cubic 174.8340 0.492332 96-900-7495
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(a) (b) (c)

(d) (e) (f )

Figure 2: FESEM images of (a–c) SPT and (d–f ) SPT-T-G at diverse scale bars. Red arrows show amorph particles, and blue ones show
well-resolved cubic nanostructures.

Glutamic acid

C4H9NO4

Tartaric acid

C4H6O6

Sodium polytungstate

Figure 3: Chemical structure of glutamic acid, tartaric acid, and synthesized sodium polytungstate.
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doxorubicin solution. �ese results indicate that the POM2
deposited on the GC electrode made the electrode elec-
troactive to detect doxorubicin. Upon further analysis, it was
found that many peaks appeared on the modi�ed electrode
in the electrolyte without doxorubicin, indicating that the
functional groups formed on the POM2-based sensor may
enhance the electrocatalytic properties of the unmodi�ed
GC electrode. �e kinetics of the electrochemical pathways
can be assessed by cycling through di�erent sampling rates
of the voltammograms, as shown in Figure 7. Figure 7(a)
shows a regular increase in peak currents with increasing
scan rate increases, suggesting that the process is controlled
by di�usion [34].

3.4. Calibration Curve. Optimal conditions were selected to
detect di�erent concentrations of doxorubicin. �e current
signal increased as the doxorubicin concentrations were
gradually increased, as shown in Figure 8(a). In this context,

a standard calibration curve was constructed by plotting the
amount of doxorubicin against the magnitude of the signal
current d (Figure 8(b)). �e inset plot shows a linear cali-
bration curve (I (μA)� 87.862C (μM)−0.2865) between 0.04
and 0.55 μM. As shown in Figure 8, the POM2-based sensor
showed high sensitivity (evaluated by calculating the slope of
the standard curve/area of GC [35] of 175.72 μA·μM−1). �e
limit of detection and limit of quanti�cation were deter-
mined using the standard curve over 3 S/m and 10 S/m,
respectively [36], and were 8.12 nM and 0.056 μM, respec-
tively. �e accuracy of the approach used was evaluated and
analyzed concerning doxorubicin adsorption on the POM2-
modi�ed electrode. Five measurements at three concen-
tration levels (0.1 μM, 0.3 μM, and 0.5 μM) were considered
in this case. �e relative standard deviation was in the range
of 3.15%–5.12%, con�rming the high repeatability of the
sensor response for doxorubicin determination. Another GC
electrode with the same surface area was used to test the
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Figure 4: EDAX analysis of (a) SPT and (b) SPT-T-G.

Table 2: Quantitative EDAX analysis of SPT and SPT-T-G.

Sample Element Intensity W% A%

SPT

C 38.6 11.04 24.50
O 314.6 32.04 53.90
Na 593.1 13.10 15.56
W 234.0 44.95 6.73

SPT-T-G

C 145.6 29.09 39.05
N 38.5 14.98 17.29
O 305.9 32.09 34.11
Na 33.4 0.54 0.41
S 368.1 2.58 1.37
Cl 1175.1 9.03 4.19
Ca 17.21 0.16 0.06
Fe 332.6 5.93 1.78
W 43.1 5.46 0.50
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robustness of the proposed approach. �e relative standard
deviation was 4.12% for the determination of 0.30 μM
doxorubicin, demonstrating the robustness of the POM2/
GCE response.

A comparison of the results of the proposed method
with other methods for quantifying DOX is shown in
Table 3. Hashemi et al. recently developed a poly-
rhodanine biosensor functionalized with graphene oxide
and iron oxide nanoparticles [37]. �ey integrated the
kombucha solvent supernatant into the system to enhance
biocompatibility and sensitivity. �eir nanobiosensor

revealed superior sensitivity and accuracy, where the
sensitivity, lower limit of detection, and lower limit of
quanti�cation were measured to be 167.62 μA·μM−1·cm−2,
0.008 μM and 0.056 μM, respectively. �is system detected
DOX in the human blood plasma with high accuracy
(>99%). As can be seen, the present work demonstrates a
reasonable detection limit, and compared to some of the
publications [38, 39], it shows a lower detection limit
(8.12 nM) and quanti�cation limit (56 nM). �is fact
validates the suitability of our sensor to detect DOX with
high sensitivity.

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2

I (
µA

)

E (v)

GCE

GCE-STP

GCE-STP-T-P

Figure 6: Electrochemical performance of bare and modi�ed GCE with STP and STP-T-P via SWV technique.
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Figure 5: (a) CV curves and (b) Nyquist plots of bare GCE and modi�ed GCE with STP and STP-T-P.
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3.5. Analytical Application. �e applicability of the fab-
ricated electrochemical sensor was evaluated in real
spiked human plasma samples. Known DOX concen-
trations were added to the samples, and DPV

measurements were performed using POM2/GCE. �e
results are presented in Table 4. �e recovery values
con�rm the high accuracy of the DOX determination and
the absence of matrix e�ects.
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Figure 7: (a) Evaluation of the electrokinetic behavior of the developed sensor via CV method under variable scan rates for anodic and
cathodic peak currents; (b) calibration curve of anodic and cathodic peak currents at diverse scan rates.
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process.

Table 3: Comparison of di�erent methods for determination of DOX.

Method Limit of detection Lower limit of quantitation R2 Ref.
DPVa 0.016 μM 0.018 μM 0.9971 [39]
DPVa 0.016 μM 0.050 μM 0.9971 [38]
EISB 0.09 pg·mL−1 — 0.99 [40]
DPV 0.1 nM — 0.9981 [41]
SWV 1.0 nM — 0.9954 [42]
DPAdSV 2.8 nM — 0.99 [43]
SWV 0.008 μM 0.056 μM 0.99 [37]
SWV 8.12 nM 56 nM 0.9911 �is work
aDi�erential pulse voltammetry.bElectrochemical impedance spectroscopy.CAdsorptive stripping di�erential pulse voltammetry.
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4. Conclusion

,is study presented a novel biosensor with excellent
functionality for detecting doxorubicin for targeted treat-
ment. Using a green synthesis approach, we prepared a
biosensor based on sodium polytangstate/polyoxometalate.
,e newly developed biosensor showed excellent physico-
chemical properties due to the unique and extraordinary
components used in the biosensor structure. Our results
indicate that the fabricated biosensor has a high potential for
detecting DOX in the biological fluid. According to the
results, the developed biosensor will be very useful in
detecting DOX and can contribute to targeted treatment in a
biological environment.
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[4] X. López, J. J. Carbo, C. Bo, and J. M. Poblet, “Structure,
properties and reactivity of polyoxometalates: a theoretical
perspective,” Chemical Society Reviews, vol. 41, no. 22,
pp. 7537–7571, 2012.

[5] S. M. Mousavi, S. A. Hashemi, A. M. Amani, H. Saed,
S. Jahandideh, and F. Mojoudi, “Polyethylene terephthalate/
acryl butadiene styrene copolymer incorporated with oak
shell, potassium sorbate and egg shell nanoparticles for food
packaging applications: control of bacteria growth, physical
and mechanical properties,” Polymers from Renewable Re-
sources, vol. 8, no. 4, pp. 177–196, 2017.

[6] S. M. Mousavi, S. A. Hashemi, N. Parvin et al., “Recent
biotechnological approaches for treatment of novel COVID-
19: from bench to clinical trial,” Drug Metabolism Reviews,
vol. 53, no. 1, pp. 141–170, 2021.

[7] S. M. Mousavi, S. A. Hashemi, M. Y. Kalashgrani et al.,
“Bioactive graphene quantum dots based polymer composite
for biomedical applications,” Polymers, vol. 14, no. 3, 2022.
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