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Indonesia has the largest medicinal plant species in the world and these plants are used as Jamu medicines. Jamu medicines are
popular traditional medicines from Indonesia and we need to systemize the formulation of Jamu and develop basic scientific
principles of Jamu to meet the requirement of Indonesian Healthcare System. We propose a new approach to predict the relation
between plant and disease using network analysis and supervised clustering. At the preliminary step, we assigned 3138 Jamu
formulas to 116 diseases of International Classification of Diseases (ver. 10) which belong to 18 classes of disease from National
Center for Biotechnology Information. The correlation measures between Jamu pairs were determined based on their ingredient
similarity. Networks are constructed and analyzed by selecting highly correlated Jamu pairs. Clusters were then generated by using
the network clustering algorithm DPClusO. By using matching score of a cluster, the dominant disease and high frequency plant
associated to the cluster are determined. The plant to disease relations predicted by our method were evaluated in the context of
previously published results and were found to produce around 90% successful predictions.

1. Introduction

Big data biology, which is a discipline of data-intensive
science, has emerged because of the rapid increasing of
data in omics fields such as genomics, transcriptomics,
proteomics, and metabolomics as well as in several other
fields such as ethnomedicinal survey. The number of medic-
inal plants is estimated to be 40,000 to 70,000 around the
world [1] and many countries utilize these plants as blended
herbal medicines, for example, China (traditional Chinese
medicine), Japan (Kampo medicine), India (Ayurveda, Sid-
dha, and Unani), and Indonesia (Jamu). Nowadays, the use

of traditional medicines is rapidly increasing [2, 3]. These
medicines consist of ingredients made from plants, animals,
minerals, or combination of them.The traditional medicines
have been used for generations for treatments of diseases
or maintaining health of people and the most popular form
of traditional medicine is herbal medicine. Blended herbal
medicines as well as single herb medicines include a large
number of constituent substances which exert effects on
human physiology through a variety of biological pathways.
The KNApSAcK Family database systems can be used to
comprehensively understand the medicinal usage of plants
based upon traditional and modern knowledge [4, 5]. This
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Table 1: List of diseases using International Classification of Dis-
eases ver. 10 (class of disease IDs correspond to Table 2).

ID Disease Class of
disease

1 Abdominal pain 3
2 Abdominal pain, diarrhea 3
3 Acne 16
4 Acne, skin problems (cosmetics) 16
5 Amenorrhoea, dysmenorrhea 6
6 Amenorrhoea, irregular menstruation 6
7 Anaemia 1
8 Appendicitis, urinary tract infection, tonsillitis 3
9 Arthralgia 11
10 Arthralgia, arthritis 11
11 Asthma 15
12 Benign prostatic hyperplasia (Bph) 10
13 Breast disorder 6
14 Bromhidrosis 16
15 Bronchitis 15
16 Cancer 2
17 Cancer pain 2
18 Cancer, inflammation 2
19 Colic abdomen, bloating (in infant) 3
20 Common cold 15
21 Common cold, dyspepsia, insect bites 15, 3, 16
22 Common cold, influenza 15
23 Cough 15
24 Degenerative disease 14
25 Dermatitis, urticaria, erythema 16
26 Diabetes 14
27 Diabetic gangrene 16
28 Diarrhea 3
29 Diarrhea, abdominal pain 3
30 Diseases of the eye 5
31 Disorders in pregnancy 6
32 Dysmenorrhea 6
33 Dysmenorrhea, irregular menstruation 6
34 Dysmenorrhea, menstrual syndrome 6
35 Dyspepsia 3
36 Dyspnoea 15
37 Dyspnoea, cough, orthopnoea 15
38 Fatigue 11
39 Fatigue, anaemia, loss appetite 1
40 Fatigue, lack of sexual function 6
41 Fatigue, low back pain 11
42 Fatigue, myalgia, arthralgia 11
43 Fatigue, osteoarthritis 11
44 Fertility problem 6, 10
45 Fever 0

Table 1: Continued.

ID Disease Class of
disease

46 Gastritis, gastric ulcer 3
47 Haemorrhoids 1
48 Headache 13
49 Heart diseases 8
50 Heartburn 3, 8
51 Hepatitis, other diseases of liver 3
52 Hypercholesterolaemia 14
53 Hypertension 8
54 Hypertension, diabetes 14
55 Hypertension, hypercholesterolaemia 14
56 Hyperuricemia 1
57 Immunodefficiency 9
58 Indigestion (K.30) 3
59 Indigestion, lose appetite 3
60 Infertility 6, 10

61 Irregular menstruation, menstruation
syndrome 6

62 Kidney diseases 17
63 Lactation problems 6
64 Leukorrhoea (Vaginalis) 6
65 Leukorrhoea (Vaginalis), dysmenorrhoea 6
66 Lose appetite 3
67 Lose appetite, underweight 14
68 Low back pain, myalgia, arthralgia 11
69 Low back pain, myalgia, constipation 11
70 Low back pain, urinary tract infection 17
71 Lung diseases 15
72 Malaise and Fatigue 11
73 Malaise and Fatigue, Constipation 11
74 Malaise and Fatigue, Fertility Problems 10, 11
75 Malaise and Fatigue, Low Back Pain 11
76 Malaise and Fatigue, Sexual Dysfunction 11, 6, 10

77 Malaise and Fatigue, Skin Problems
(Cosmetics) 16

78 Malaria, anaemia 1
79 Meno-metrorrhagia 6
80 Menopausal syndrome 6

81 Menopause/menstrual syndrome, leukorrhoea
(vaginalis) 6

82 Menstrual syndrome 6
83 Menstrual syndrome, fatigue 6
84 Migraine 13
85 Mood disorder 18
86 Myalgia, arthralgia 11
87 Nausea/vomiting of pregnancy 6
88 Osteoarthritis 11
89 Osteoarthritis, fatigue 11
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Table 1: Continued.

ID Disease Class of
disease

90 Overweight, obesity 14
91 Paralysis 13
92 Post partum syndrome 6
93 Prevent from overweight 14
94 Respiratory infection due to smoking 15
95 Respiratory tract infection 15
96 Rheumatoid arthritis, gout 11
97 Secondary amenorrhea 6
98 Secondary amenorrhea, irregular menstruation 6
99 Sexual dysfunction, fatigue 6, 10
100 Skin diseases 16
101 Skin problems (cosmetics) 16
102 Sleeping and Mood Disorders 18
103 Sleeping disorders 18
104 Stomatitis 3
105 Stomatitis, gingivitis, tonsilitis 3
106 Stone in kidney (N20.0) 17

107 Stone in kidney (N20.0), urinary bladder stone
(N21.0) 17

108 Tonsilitis 4
109 Tonsilofaringitis 4
110 Toothache 13
111 Typhoid, dyspepsia 3
112 Ulcer of anus and rectum 3
113 Underweight, lose appetite 3
114 Urinary tract infection (urethritis) 17
115 Vaginal discharges 6
116 Vaginal diseases 6

database has information about the selected herbal ingre-
dients, that is, the formulas of Kampo and Jamu, omics
information of plants and humans, and physiological activ-
ities in humans. Jamu is generally composed based on the
experience of the users for decades or even hundreds of
years. However, versatile scientific analyses are needed to
support their efficacy and their safety. Attaining this objective
is in accordance with the 2010 policy of the Ministry of
Health of Indonesian Government about scientification of
Jamu. Thus, it is required to systemize the formulations
and develop basic scientific principles of Jamu to meet the
requirement of Indonesian Healthcare System. Afendi et al.
initiated and conducted scientific analysis of Jamu for finding
the correlation between plants, Jamu, and their efficacy using
statistical methods [6–8]. They used Biplot, partial least
squares (PLS), and bootstrapping methods to summarize the
data and also focused on prediction of Jamu formulations.
These methods give a good understanding about relationship
between plants, Jamu, and their efficacy. Among 465 plants
used in 3138 Jamu, 190 plants were shown to be effective
for at least one efficacy and these plants were considered

to be the main ingredients of Jamu. The other 275 plants
are considered to be supporting ingredients in Jamu because
their efficacy has not been established yet.

Network biology can be defined as the study of the
network representations of molecular interactions, both to
analyze such networks and to use them as a tool to make
biological predictions [9]. This study includes modelling,
analysis, and visualizations, which holds important task in
life science today [10]. Network analysis has been increasingly
utilized in interpreting high throughput data on omics infor-
mation, including transcriptional regulatory networks [11],
coexpression networks [12], and protein-protein interactions
[13]. We can easily describe relationship between entities in
the network and also concentrate on part of the network
consisting of important nodes or edges.These advantages can
be adopted for analyzing medicinal usage of plants in Jamu
and diseases. Network analysis provides information about
groups of Jamu that are closely related to each other in terms
of ingredient similarity and thus allows precise investigation
to relate plants to diseases. On the other hand, multivariate
statisticalmethods such as PLS can assign plants to efficacy by
global linear modeling of the Jamu ingredients and efficacy.
However, there is still lack of appropriate network based
methods to learn how and why many plants are grouped in
certain Jamu formula and the combination rule embedding
numerous Jamu formulas.

It is needed to explore the relationship between Indone-
sian herbal plants used in Jamu medicines and the diseases
which are treated using Jamu medicines. When effectiveness
of a plant against a disease is firmly established, then further
analysis about that plant can be proceeded to molecular level
to pinpoint the drug targets. The present study developed
a network based approach for prediction of plant-disease
relations. We utilized the Jamu data from the KNApSAcK
database. A Jamu network was constructed based on the
similarity of their ingredients and then Jamu clusters were
generated using the network clustering algorithm DPClusO
[14, 15]. Plant-disease relations were then predicted by deter-
mining the dominant diseases and plants associated with
selected Jamu clusters.

2. Methods

2.1. Concept of the Methodology. Jamu medicines consist
of combination of medicinal plants and are used to treat
versatile diseases. In this work we exploit the ingredient
similarity between Jamu medicines to predict plant-disease
relations. The concept of the proposed method is depicted
in Figure 1. In step 1 a network is constructed where a node
is a Jamu medicine and an edge represents high ingredient
similarity between the corresponding Jamu pair. In Figure 1,
the nodes of the same color indicate the Jamumedicines used
for the same disease.The similarity is represented by Pearson
correlation coefficient [16, 17]; that is,

corr (𝑋, 𝑌) =
∑
𝑙

𝑖=1
(𝑥𝑖 − 𝑥) (𝑦𝑖 − 𝑦)

√∑
𝑙

𝑖=1
(𝑥𝑖 − 𝑥)

2

∑
𝑙

𝑖=1
(𝑦𝑖 − 𝑦)

2
, (1)
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Table 2: Distribution of Jamu formulas according to 18 classes of disease (classes of diseases are determined by NCBI in ID1 to ID16 and by
the present study in ID17 and ID18 represented by asterisks in Ref. columns).

ID Class of disease (NCBI) Ref. Number of Jamu Percentage
1 Blood and lymph diseases NCBI 201 6.41
2 Cancers NCBI 32 1.02
3 The digestive system NCBI 457 14.56
4 Ear, nose, and throat NCBI 2 0.06
5 Diseases of the eye NCBI 1 0.03
6 Female-specific diseases NCBI 382 12.17
7 Glands and hormones NCBI 0 —
8 The heart and blood vessels NCBI 57 1.82
9 Diseases of the immune system NCBI 22 0.70
10 Male-specific diseases NCBI 17 0.54
11 Muscle and bone NCBI 649 20.68
12 Neonatal diseases NCBI 0 —
13 The nervous system NCBI 32 1.02
14 Nutritional and metabolic diseases NCBI 576 18.36
15 Respiratory diseases NCBI 313 9.97
16 Skin and connective tissue NCBI 163 5.19
17 The urinary system ∗ 90 2.87
18 Mental and behavioral disorders ∗ 21 0.67

The number of Jamu classified into multiple disease classes 119 3.79
The number of Jamu unclassified 4 0.13
Total Jamu formulas 3138 100.00

where 𝑥𝑖 is the weight of plant-𝑖 in Jamu 𝑋, 𝑦𝑖 is the weight
of plant-𝑖 in Jamu 𝑌, 𝑥 is mean of Jamu 𝑋, and 𝑦 is mean
of Jamu 𝑌. The higher similarity between Jamu pairs the
higher the correlation value. In the present study, 𝑥𝑖 and
𝑦𝑖 are assigned as 1 or 0 in cases the 𝑖th plant is, respec-
tively, included or not included in the formula. Under such
condition, Pearson correlation corresponds to fourfold point
correlation coefficient; that is,

corr (𝑋, 𝑌) = 𝑎𝑑 − 𝑏𝑐

√(𝑎 + 𝑏) (𝑎 + 𝑐) (𝑏 + 𝑑) (𝑐 + 𝑑)
, (2)

where 𝑎, 𝑏, 𝑐, and 𝑑 represent the numbers of plants included
in both 𝑋 and 𝑌, in only 𝑋, in only 𝑌, and in neither 𝑋 nor
𝑌, respectively.

In step 2 the Jamu clusters are generated using net-
work clustering algorithm DPClusO. DPClusO can generate
clusters characterized by high density and identified by
periphery; that is, the Jamu medicines belonging to a cluster
are highly cohesive and separated by a natural boundary. Such
clusters contain potential information about plant-disease
relations.

In step 3 we assess disease-dominant clusters based on
matching score represented by the following equation:

matching score

=
number of Jamu belonging to the same disease

total number of Jamu in the cluster
.

(3)

Matching score of a cluster is the ratio of the highest number
of Jamu associated with a single disease to the total number
of Jamu in the cluster. We assign a disease to a cluster for
which the matching score is greater than a threshold value.
In step 4, we determine the frequency of plants associated
with a cluster if and only if a disease is assigned to it in the
previous step. The highest frequency plant associated to a
cluster is considered to be related to the disease assigned to
that cluster. True positive rates (TPR) or sensitivity was used
to evaluate resulting plants. TPR is the proportion of the true
positive predictions out of all the true predictions, defined by
the following formula [18]:

TPR = TP
TP + FN

, (4)

where true positive (TP) is the number of correctly classified
and false negative (FN) is the number of incorrectly rejected
entities. We refer to the proposed method as supervised
clustering because after generation of the clusters we narrow
down the candidate clusters for further analysis based on
supervised learning and thus improve the accuracy of predic-
tion of the proposed method.

3. Result and Discussion

3.1. Construction and Comparison of Jamu and Random
Networks. We used the same number of Jamu formulas from
previous research [6], 3138 Jamu formulas, and the set union
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A B
C D

DCBA

Step 1

Constructing ingredient correlation network

Step 2

Extracting highly connected Jamu

Step 3

Supervised analysis for voting utilization

Step 4

Listing ingredients

Input: Jamu formulas

Output: plant-disease relations

Figure 1: Concept of the methodology: network construction based on ingredient similarity between individual Jamu medicines, network
clustering, and classification of medicinal plants to dominant disease.
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Figure 2: The network consisting of 0.7% Jamu pairs (correlation value above or equal to 0.596).
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Table 3: Statistics of three datasets.

Parameters 0.7% 0.5% 0.3%

Network
statistics

Total pairs 34,454 24,610 14,766
Minimum correlation 0.596 0.665 0.718
Number of Jamu formulas 2,779 2,496 2,085
Average degree 24.8 19.7 14.2
(Random network: ER) (24.8 ± 0.0) (19.7 ± 0.0) (14.2 ± 0.0)

(Random network: BA) (24.7 ± 0.1) (19.7 ± 0.1) (14.1 ± 0.1)

(Random network: CNN) (24.7 ± 0.4) (19.7 ± 0.4) (14.0 ± 0.4)

Clustering coefficient 0.521 0.520 0.540
(Random network: ER) (0.009 ± 0.000) (0.008 ± 0.000) (0.007 ± 0.000)

(Random network: BA) (0.030 ± 0.001) (0.028 ± 0.001) (0.026 ± 0.001)

(Random network: CNN) (0.246 ± 0.008) (0.239 ± 0.008) (0.233 ± 0.010)

Number of connected components 69 119 254
(Random networks: ER, BA, CNN) (1) (1) (1)
Network diameter 15 17 20
(Random network: ER) (4.0 ± 0.0) (4.0 ± 0.0) (5.0 ± 0.0)

(Random network: BA) (10.8 ± 0.8) (11.2 ± 1.5) (10.8 ± 0.9)

(Random network: CNN) (14.6 ± 1.9) (14.1 ± 1.4) (14.7 ± 1.3)

Network density 0.008 0.008 0.007
(Random network: ER) (0.009 ± 0.000) (0.008 ± 0.000) (0.007 ± 0.000)

(Random network: BA) (0.009 ± 0.000) (0.008 ± 0.000) (0.007 ± 0.000)

(Random network: CNN) (0.009 ± 0.000) (0.008 ± 0.000) (0.007 ± 0.000)

DPClusO

Total number of clusters 1,746 1,411 938
Number of clusters with more than 2 Jamu 1,296 873 453
(%) (74.2) (61.9) (48.3)
Number of Jamu formulas in the biggest cluster 118 104 89

of all formulas consists of 465 plants. We assigned 3138 Jamu
formulas to 116 diseases of International Classification of
Diseases (ICD) version 10 from World Health Organization
(WHO, Table 1) [19]. Those 116 diseases are mapped to
18 classes of disease, which contains 16 classes of disease
fromNational Center for Biotechnology Information (NCBI)
[20] and 2 additional classes. Table 2 shows distribution
of 3138 Jamu into 18 classes of disease. According to this
classification, most Jamu formulas are useful for relieving
muscle and bone, nutritional and metabolic diseases, and
the digestive system. Furthermore, there is no Jamu formula
classified into glands and hormones and neonatal disease
classes. We excluded 4 Jamu formulas which are used to treat
fever in the evaluation process because this symptom is very
general and almost appeared in all disease classes. Jamu-
plant-disease relations can be represented using 2 matrices:
first matrix is Jamu-plant relation with dimension 3138 ×
465 and the second matrix is Jamu-disease relation with
dimension 3138 × 18.

After completion of data acquisition process, we calcu-
lated the similarity between Jamu pairs using correlation
measure. The similarity measures between Jamu pairs were
determined based on their ingredients. Corresponding to 𝐾
(3138 in present case) Jamu formulas, there can be maximum
(𝐾 × (𝐾 − 1)/2) = (3138 × (3137/2)) = 4,921,953 Jamu

pairs. We sorted the Jamu pairs based on correlation value
using descending order and selected top-𝑛 (0.7%, 0.5%,
and 0.3%) pairs of Jamu formula to create 3 sets of Jamu
pairs. The number of Jamu pairs for 0.7%, 0.5%, and 0.3%
datasets is 34,454 pairs, 24,610 pairs, and 14,766 pairs and
the corresponding minimum correlation values are 0.596,
0.665, and 0.718, respectively. The three datasets of Jamu
pairs can be regarded as three undirected networks (step 1 in
Figure 1) consisting of 2779, 2496, and 2085 Jamu formulas,
respectively (Table 3). Figure 2 shows visualization of 0.7%
Jamunetworks usingCytoscape Spring Embedded layout.We
verified that the degree distributions of the Jamu networks
are somehow close to those of scale-free networks, that is,
roughly are of power law type. However, in the high-degree
region the power law structure is broken (Figure 3). Nearly
accurate relation of power laws between medicinal herbs
and the number of formulas utilizing them was observed in
Jamu system but not in Kampo (Japanese crude drug system)
[4]. The difference of formulas between Jamu and Kampo
can be explained by herb selection by medicinal researchers
based on the optimization process of selection [4]. Thus,
the broken structure of power law corresponding to Jamu
networks is associated with the fact that selection of Jamu
pairs based on ingredient correlation leads to nonrandom
selection. We also constructed random networks according
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Figure 3: Degree distributions of three Jamu networks roughly follow power law.The 𝑥-axis corresponds to the log of degree of a node in the
Jamu network and the 𝑦-axis corresponds to the log of the number of Jamu.

to Erdős-Rényi (ER) model [21], Barabási-Albert (BA) model
[22], and Vazquez’s Connecting Nearest Neighbor (CNN)
model [23] of the same size corresponding to each of the real
Jamu network. We used Cytoscape Network Analyzer plugin
[24] and R software for analyzing the characteristics of both
the Jamu and the random networks.

We determined five statistical indexes, that is, average
degree, clustering coefficient, number of connected compo-
nent, network diameter, and network density of each Jamu
network and also of each random network. The clustering
coefficient 𝐶𝑛 of a node 𝑛 is defined as 𝐶𝑛 = 2𝑒𝑛/(𝑘𝑛(𝑘𝑛 − 1)),
where 𝑘𝑛 is the number of neighbors of 𝑛 and 𝑒𝑛 is the number
of connected pairs between all neighbors of 𝑛. The network
diameter is the largest distance between any two nodes. If

a network is disconnected, its diameter is themaximum of all
diameters of its connected components. A network’s density
is the ratio of the number of edges in the network over the
total number of possible edges between all pairs of nodes
(which is 𝑛(𝑛 − 1)/2, where 𝑛 is the number of vertices, for
an undirected graph). The average number of neighbors and
the network density are the same for the real and random
networks of the same size as it is shown in Table 3. In case
of 0.7% and 0.5% real networks, the clustering coefficient is
roughly the same and in case of 0.3% the clustering coefficient
is somewhat larger. The number of connected components
and the diameter of the Jamu networks gradually decrease
as the network grows bigger by addition of more nodes and
edges.
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Figure 5: (a) Success rate and (b) number of predicted plants with respect to matching score thresholds.

Very different values corresponding to clustering coef-
ficient, connected component, and network diameter imply
that the Jamu networks are quite different from all 3 types
of random networks.The differences between Jamu networks
and ER random networks are the largest. Random networks
constructed based on other two models are also substantially
different from Jamu networks. Based on the fact that the
random networks constructed based on all three types of
models are different from the Jamu networks, it can be
concluded that structure of Jamu networks is reasonably
biased and thus might contain certain information about

plant-disease relations. Specially, much higher value corre-
sponding to clustering coefficient indicates that there are
clusters in the networks worthy to be investigated. To extract
clusters from the Jamu networks (step 2 in Figure 1) we
applied DPClusO network clustering algorithm [14] to gen-
erate overlapping clusters based on density and periphery
tracking.

3.2. Supervised Clustering Based on DPClusO. DPClusO is a
general-purpose clustering algorithm and useful for finding
overlapping cohesive groups in an undirected simple graph
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Table 4: List of plants assigned to each disease.

Number Plants name Hit-miss status
A. Disease: blood and lymph diseases

1 Tamarindus indica Hit ∗

2 Allium sativum Hit ∗

3 Tinospora tuberculata Hit ∗

4 Piper retrofractum Hit
5 Syzygium aromaticum Hit ∗

6 Bupleurum falcatum Hit
7 Graptophyllum pictum Hit
8 Plantago major Hit
9 Zingiber officinale Hit ∗

10 Cinnamomum burmannii Hit ∗

11 Soya max Miss ∗
12 Kaempferia galanga Hit
13 Curcuma longa Hit ∗

14 Piper nigrum Hit
15 Zingiber aromaticum Hit ∗

16 Phyllanthus urinaria Hit ∗

17 Oryza sativa Hit
18 Myristica fragrans Hit ∗

19 Alstonia scholaris Hit ∗

20 Syzygium polyanthum Miss
21 Andrographis paniculata Hit ∗

22 Sida rhombifolia Miss
23 Cyperus rotundus Hit
24 Sonchus arvensis Miss
25 Curcuma aeruginosa Hit ∗

26 Curcuma xanthorrhiza Hit
B. Disease: cancers

1 Catharanthus roseus Hit
C. Disease: the digestive system

1 Foeniculum vulgare Hit
2 Glycyrrhiza uralensis Hit ∗

3 Imperata cylindrica Hit
4 Zingiber purpureum Hit ∗

5 Physalis peruviana Hit
6 Punica granatum Hit ∗

7 Echinacea purpurea Hit
8 Zingiber officinale Hit ∗

9 Psidium guajava Hit
10 Baeckea frutescens Hit ∗

11 Amomum compactum Hit
12 Cinnamomum burmannii Hit ∗

13 Melaleuca leucadendra Hit
14 Caesalpinia sappan Hit ∗

15 Parkia roxburghii Hit
16 Rheum tanguticum Hit
17 Kaempferia galanga Hit
18 Coriandrum sativum Hit

Table 4: Continued.

Number Plants name Hit-miss status
19 Curcuma longa Hit
20 Zingiber aromaticum Hit
21 Phyllanthus urinaria Hit
22 Myristica fragrans Hit
23 Hydrocotyle asiatica Hit ∗

24 Carica papaya Hit
25 Mentha arvensis Hit
26 Lepiniopsis ternatensis Hit
27 Helicteres isora Hit
28 Andrographis paniculata Hit
29 Symplocos odoratissima Hit
30 Schisandra chinensis Hit
31 Blumea balsamifera Hit
32 Silybum marianum Hit ∗

33 Cinnamomum sintoc Hit
34 Elephantopus scaber Hit
35 Curcuma aeruginosa Hit
36 Kaempferia pandurata Hit
37 Curcuma xanthorrhiza Hit
38 Curcuma mangga Hit ∗

39 Curcuma zedoaria Hit
40 Daucus carota Hit ∗

41 Matricaria chamomilla Hit ∗

42 Cymbopogon nardus Hit ∗

D. Disease: female-specific diseases
1 Foeniculum vulgare Hit
2 Imperata cylindrica Hit
3 Tamarindus indica Hit
4 Pluchea indica Hit ∗

5 Piper retrofractum Hit
6 Punica granatum Hit
7 Uncaria rhynchophylla Hit
8 Zingiber officinale Hit
9 Guazuma ulmifolia Hit ∗

10 Nigella sativa Hit
11 Terminalia bellirica Hit
12 Baeckea frutescens Hit
13 Phaseolus radiatus Hit
14 Amomum compactum Hit ∗

15 Sauropus androgynus Hit
16 Usnea misaminensis Hit
17 Cinnamomum burmannii Hit
18 Melaleuca leucadendra Hit
19 Parameria laevigata Hit
20 Parkia roxburghii Hit
21 Piper cubeba Hit
22 Kaempferia galanga Hit
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Table 4: Continued.

Number Plants name Hit-miss status
23 Coriandrum sativum Hit
24 Kaempferia angustifolia Hit
25 Curcuma longa Hit
26 Zingiber aromaticum Hit
27 Languas galanga Hit
28 Galla lusitania Hit
29 Quercus lusitanica Hit
30 Hydrocotyle asiatica Hit
31 Areca catechu Hit
32 Lepiniopsis ternatensis Hit
33 Helicteres isora Hit ∗

34 Piper betle Hit
35 Elephantopus scaber Hit ∗

36 Kaempferia pandurata Hit
37 Curcuma xanthorrhiza Hit
38 Sesbania grandiflora Hit

E. Disease: the heart and blood vessels
1 Allium sativum Hit
2 Curcuma longa Hit ∗

3 Morinda citrifolia Hit ∗

4 Homalomena occulta Hit ∗

5 Hydrocotyle asiatica Hit
6 Alstonia scholaris Hit ∗

7 Syzygium polyanthum Miss ∗
8 Andrographis paniculata Hit ∗

9 Apium graveolens Miss
10 Imperata cylindrica Hit

F. Disease: male-specific diseases
1 Cucurbita pepo Miss
2 Serenoa repens Miss
3 Baeckea frutescens Hit
4 Phaseolus radiatus Hit
5 Curcuma longa Hit
6 Elephantopus scaber Hit

G. Disease: muscle and bone
1 Foeniculum vulgare Hit
2 Clausena anisum-olens Hit ∗

3 Zingiber purpureum Hit
4 Allium sativum Hit
5 Strychnos ligustrina Hit
6 Tinospora tuberculata Hit ∗

7 Piper retrofractum Hit
8 Syzygium aromaticum Hit
9 Cola nitida Hit ∗

10 Ginkgo biloba Hit ∗

11 Panax ginseng Hit
12 Equisetum debile Hit ∗

13 Zingiber officinale Hit

Table 4: Continued.

Number Plants name Hit-miss status
14 Ganoderma lucidum Hit
15 Nigella sativa Hit
16 Terminalia bellirica Hit ∗

17 Baeckea frutescens Hit ∗

18 Amomum compactum Hit
19 Cinnamomum burmannii Hit
20 Melaleuca leucadendra Hit
21 Parameria laevigata Hit ∗

22 Psophocarpus tetragonolobus Hit ∗

23 Parkia roxburghii Hit
24 Piper cubeba Hit ∗

25 Kaempferia galanga Hit
26 Coriandrum sativum Hit
27 Cola acuminata Hit
28 Coffea arabica Hit
29 Orthosiphon stamineus Hit
30 Curcuma longa Hit
31 Piper nigrum Hit
32 Alpinia galanga Hit
33 Vitex trifolia Hit
34 Zingiber amaricans Hit ∗

35 Zingiber zerumbet Hit
36 Zingiber aromaticum Hit
37 Languas galanga Hit
38 Massoia aromatica Hit
39 Morinda citrifolia Hit
40 Carum copticum Hit ∗

41 Panax pseudoginseng Hit ∗

42 Oryza sativa Hit
43 Myristica fragrans Hit
44 Pandanus amaryllifolius Hit
45 Eurycoma longifolia Hit
46 Hydrocotyle asiatica Hit
47 Areca catechu Hit ∗

48 Mentha arvensis Hit ∗

49 Lepiniopsis ternatensis Hit
50 Pimpinella pruatjan Hit
51 Andrographis paniculata Hit
52 Blumea balsamifera Hit
53 Cymbopogon nardus Hit
54 Sida rhombifolia Hit
55 Cinnamomum sintoc Hit
56 Piper betle Hit ∗

57 Talinum paniculatum Hit
58 Elephantopus scaber Hit
59 Cyperus rotundus Hit
60 Curcuma aeruginosa Hit
61 Kaempferia pandurata Hit ∗
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Table 4: Continued.

Number Plants name Hit-miss status
62 Curcuma xanthorrhiza Hit
63 Tribulus terrestris Hit
64 Corydalis yanhusuo Hit
65 Pausinystalia yohimbe Hit
H. Disease: nutritional andmetabolic diseases
1 Foeniculum vulgare Hit
2 Glycyrrhiza uralensis Hit
3 Zingiber purpureum Hit
4 Allium sativum Hit
5 Tinospora tuberculata Hit
6 Pandanus conoideus Hit
7 Syzygium aromaticum Hit
8 Punica granatum Hit
9 Zingiber officinale Hit
10 Guazuma ulmifolia Hit
11 Nigella sativa Hit
12 Amomum compactum Hit ∗
13 Cinnamomum burmannii Hit
14 Parameria laevigata Hit
15 Caesalpinia sappan Hit
16 Soya max Hit ∗
17 Cocos nucifera Hit
18 Rheum tanguticum Hit
19 Piper cubeba Hit ∗
20 Murraya paniculata Hit
21 Kaempferia galanga Hit ∗
22 Coffea arabica Hit ∗
23 Orthosiphon stamineus Hit
24 Curcuma longa Hit
25 Piper nigrum Hit ∗
26 Zingiber aromaticum Hit
27 Aloe vera Hit
28 Phaleria papuana Hit
29 Galla lusitania Hit
30 Quercus lusitanica Hit
31 Morinda citrifolia Hit
32 Myristica fragrans Hit ∗
33 Momordica charantia Hit
34 Areca catechu Hit
35 Lepiniopsis ternatensis Hit
36 Alstonia scholaris Hit
37 Hibiscus sabdariffa Hit
38 Laminaria japonica Hit
39 Syzygium polyanthum Hit
40 Andrographis paniculata Hit
41 Sindora sumatrana Hit ∗
42 Cassia angustifolia Hit
43 Woodfordia floribunda Hit

Table 4: Continued.

Number Plants name Hit-miss status
44 Piper betle Hit
45 Spirulina Hit
46 Stevia rebaudiana Hit
47 Theae sinensis Hit
48 Sonchus arvensis Hit
49 Curcuma heyneana Hit
50 Curcuma aeruginosa Hit
51 Kaempferia pandurata Hit ∗

52 Curcuma xanthorrhiza Hit
53 Curcuma zedoaria Hit ∗

54 Olea europaea Hit
I. Disease respiratory diseases

1 Foeniculum vulgare Hit
2 Clausena anisum-olens Hit
3 Glycyrrhiza uralensis Hit
4 Zingiber purpureum Hit
5 Piper retrofractum Hit ∗

6 Syzygium aromaticum Hit
7 Gaultheria punctata Hit
8 Panax ginseng Hit
9 Equisetum debile Hit ∗

10 Zingiber officinale Hit
11 Citrus aurantium Hit ∗

12 Nigella sativa Hit ∗

13 Amomum compactum Hit
14 Cinnamomum burmannii Hit
15 Melaleuca leucadendra Hit
16 Parkia roxburghii Hit
17 Cocos nucifera Hit
18 Piper cubeba Hit
19 Kaempferia galanga Hit
20 Coriandrum sativum Hit
21 Curcuma longa Hit
22 Piper nigrum Hit
23 Zingiber aromaticum Hit
24 Languas galanga Hit
25 Mentha piperita Hit
26 Oryza sativa Hit ∗

27 Myristica fragrans Hit
28 Pandanus amaryllifolius Hit ∗

29 Hydrocotyle asiatica Hit ∗

30 Mentha arvensis Hit
31 Lepiniopsis ternatensis Hit
32 Helicteres isora Hit
33 Blumea balsamifera Hit
34 Cymbopogon nardus Hit
35 Piper betle Hit
36 Curcuma xanthorrhiza Hit
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Table 4: Continued.

Number Plants name Hit-miss status
37 Salix alba Hit ∗

38 Matricaria chamomilla Miss ∗
J. Disease: skin and connective tissue

1 Strychnos ligustrina Hit
2 Merremia mammosa Hit ∗

3 Piper retrofractum Hit ∗

4 Santalum album Hit
5 Zingiber officinale Hit ∗

6 Citrus aurantium Hit
7 Citrus hystrix Hit
8 Cassia siamea Hit
9 Cocos nucifera Hit
10 Trigonella foenum-graecum Hit
11 Orthosiphon stamineus Hit
12 Curcuma longa Hit
13 Vetiveria zizanioides Hit
14 Aloe vera Hit
15 Rosa chinensis Hit
16 Jasminum sambac Hit
17 Phyllanthus urinaria Hit
18 Mentha piperita Hit
19 Oryza sativa Hit
20 Myristica fragrans Hit ∗

21 Hydrocotyle asiatica Hit
22 Lepiniopsis ternatensis Hit
23 Alstonia scholaris Hit
24 Andrographis paniculata Hit
25 Cymbopogon nardus Hit
26 Piper betle Hit
27 Theae sinensis Hit
28 Curcuma heyneana Hit
29 Kaempferia pandurata Hit ∗

30 Curcuma xanthorrhiza Hit
31 Melaleuca leucadendra Hit
32 Matricaria chamomilla Miss ∗

K. Disease: the urinary system
1 Foeniculum vulgare Hit ∗

2 Imperata cylindrica Hit ∗

3 Strychnos ligustrina Hit ∗

4 Plantago major Hit
5 Zingiber officinale Hit ∗

6 Cinnamomum burmannii Hit ∗

7 Strobilanthes crispus Hit
8 Kaempferia galanga Hit ∗

9 Orthosiphon stamineus Hit
10 Phyllanthus urinaria Hit
11 Blumea balsamifera Hit ∗

12 Sonchus arvensis Hit
13 Curcuma xanthorrhiza Hit
∗indicates that plant will not assigned if we use matching score >0.7.
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Figure 6: Distribution of 135 plants assigned based on 0.7% dataset
with respect to the number of diseases they are assigned to.

for any type of application. It ensures coverage and performs
robustly in case of random addition, removal, and rearrange-
ment of edges in protein-protein interaction (PPI) networks
[14]. While applying DPClusO, the parameter values of
density and cluster property that we used in this experiment
are 0.9 and 0.5, respectively [15]. Table 3 shows the summary
of clustering result by DPClusO. Because clusters consisting
of two Jamu formulas are trivial clusters, for the next steps
we only use clusters each of which consists of 3 or more
Jamu formulas. The number of total clusters increases along
with the larger dataset, although the threshold correlation
between Jamu pairs decreases. We evaluated the clustering
result using matching score to determine dominant disease
for every cluster (step 3 in Figure 1). Matching score of a
cluster is the ratio of the highest number of Jamu associated
with the same disease to the total number of Jamu in the
cluster. Thus matching score is a measure to indicate how
strongly a disease is associated to a cluster. Figure 4 shows
the distribution of the clusters with respect to matching score
from three datasets. All datasets have the highest frequency
of clusters at matching score >0.9 and overall most of the
clusters have higher matching score, which means most of
the DPClusO generated clusters can be confidently related
to a dominant disease. Furthermore the number of clusters
with matching score >0.9 is remarkably larger compared to
the same in other ranges ofmatching score in case of the 0.3%
dataset (Figure 4(c)). If we compare the ratio of frequency of
clusters at matching score >0.9 for every dataset, the 0.3%
dataset has the highest ratio with 40.84% (of 453), compared
to 29.67% (of 873) and 21.91% (of 1296), in case of 0.5% and
0.7% datasets, respectively. Thus, the most reliable species
to disease relations can be predicted at matching score >0.9
corresponding to the clusters generated from 0.3% dataset.

Figure 5(a) shows the success rate for all 3 datasets with
respect to threshold matching scores. Success rate is defined
as the ratio of the number of clusters with matching score
larger than the threshold to the total number of clusters.
As expected it tends to produce lower success rate if we
decrease correlation value to create the datasets. However
more clusters are generated and more information can be
extracted when we lower the threshold correlation value.The
success rate increases rapidly as the matching score decreases
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Table 5: Relation between disease classes in NCBI and efficacy classes reported by Afendi et al. [6].

Class of disease Ref. Efficacy class
D1 Blood and lymph diseases NCBI E7 Pain/inflammation (PIN)
D2 Cancers NCBI E7 Pain/inflammation (PIN)

D3The digestive system NCBI E4 Gastrointestinal disorders (GST)
E7 Pain/inflammation (PIN)

D4 Ear, nose, and throat NCBI E7 Pain/inflammation (PIN)
D5 Diseases of the eye NCBI E7 Pain/inflammation (PIN)
D6 Female-specific diseases NCBI E5 Female reproductive organ problems (FML)
D7 Glands and hormones NCBI E7 Pain/inflammation (PIN)
D8The heart and blood vessels NCBI E7 Pain/inflammation (PIN)
D9 Diseases of the immune system NCBI E7 Pain/inflammation (PIN)
D10Male-specific diseases NCBI E6Musculoskeletal and connective tissue disorders (MSC)
D11Muscle and bone NCBI E6Musculoskeletal and connective tissue disorders (MSC)
D12 Neonatal diseases NCBI E7 Pain/inflammation (PIN)
D13The nervous system NCBI E7 Pain/inflammation (PIN)

D14 Nutritional and metabolic diseases NCBI E2 Disorders of appetite (DOA)
E4 Gastrointestinal disorders (GST)

D15 Respiratory diseases NCBI E8 Respiratory disease (RSP)
E7 Pain/inflammation (PIN)

D16 Skin and connective tissue NCBI E9Wounds and skin infections (WND)
D17The urinary system ∗ E1 Urinary related problems (URI)
D18Mental and behavioural disorders ∗ E3 Disorders of mood and behavior (DMB)

from 0.9 to 0.6 and after that the slope of increase of success
rate decreases. Therefore in this study we empirically decide
0.6 as the threshold matching score to predict plant-disease
relations.

3.3. Assignment of Plants to Disease. By using DPClusO re-
sulting clusters, we assigned plants to classes of disease. Based
on a threshold matching score we assigned dominant disease
to a cluster. Then we assign a plant to a cluster by way of
analyzing the ingredients of the Jamu formulas belonging
to that cluster and determining the highest frequency plant,
that is, the plant that is used for maximum number Jamu
belonging to that cluster (step 4 in Figure 1). Thus we assign
a disease and a plant to each cluster having matching score
greater than a threshold. Our hypothesis is that the disease
and the plant assigned to the same cluster are related.

The total number of assigned plants depends onmatching
score value. Figure 5(b) shows the number of predicted plants
that can be assigned to diseases in the context of matching
score. With higher matching score value, the number of
predicted plants assigned to classes of disease is supposed to
remain similar or decrease but the reliability of prediction
increases. In Figure 5(b) a sudden change in the number
of predicted plants is seen at matching score 0.6 which we
consider as empirical threshold in this work. Based on the
0.7%dataset, the largest number of plants (135 plants, Table 4)
was assigned to diseases. There are 63 plants assigned to only
one class of disease, whereas the other 72 plants are assigned
to at least two or more classes of disease (Figure 6).

3.4. Evaluation of the Supervised Clustering Based on DPClu-
sO. Weused previously published results [6] as gold standard
to evaluate our results. The previous study assigned plants
to 9 kinds of efficacy whereas we assigned the plants to 18
disease classes (16 from NCBI and 2 additional classes). For
the sake of evaluation we got done amapping of the 18 disease
classes to 9 efficacy classes by a professional doctor, which
is shown in Table 5. Table 6 shows the prediction result of
plant-disease relations for all 3 datasets, corresponding to
clusters with matching score greater than 0.6. Table 6 also
shows corresponding efficacy, the number of assigned plants,
number of correctly predicted plants, and true positive rates
(TPR), respectively.

We determined TPR corresponding to a disease/efficacy
class by calculating the ratio of the number of correct
prediction to the number of all predictions. When a disease
corresponds to more than one kind of efficacy, the highest
TPR can be considered the TPR for the corresponding
disease. For all 3 datasets the TPR corresponding to each
disease is roughly 90% or more. The 0.3% dataset consists of
Jamu pairs with higher correlation values and based on this
dataset 117 plants are assigned to 14 disease classes. The 0.7%
dataset contains more Jamu pairs and assigned plants to
11 disease classes, one less disease class compared to 0.5%
dataset. The two disease classes covered by 0.3% dataset
but not covered by 0.5% and 0.7% datasets are the nervous
system (D13) and disease of the immune system (D9). The
only disease class covered by 0.3% and 0.5% datasets but
not covered by 0.7% dataset is mental and behavioural
disorders (D18). The larger dataset network tends to have
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Table 6: The prediction result of plant-disease relations using matching score >0.6.

Class of
disease

Corresponding
efficacy

0.7% dataset 0.5% dataset 0.3% dataset
Number of
assigned
plants

Correct
prediction

True
positive
rate

Number of
assigned
plants

Correct
prediction

True
positive
rate

Number of
assigned
plants

Correct
prediction

True
positive
rate

D1 E7 26 22 0.85 24 20 0.83 24 20 0.83
D2 E7 1 1 1.00 5 5 1.00 1 1 1.00

D3 E4 42 42 1.00 33 33 1.00 28 28 1.00
E7 38 0.90 30 0.91 25 0.89

D4 E7 0 0 — 0 0 — 0 0 —
D5 E7 0 0 — 0 0 — 0 0 —
D6 E5 38 38 1.00 37 37 1.00 32 32 1.00
D7 E7 0 0 — 0 0 — 0 0 —
D8 E7 10 8 0.80 8 7 0.88 6 5 0.83
D9 E7 0 0 — 0 0 — 1 1 1.00
D10 E6 6 4 0.67 2 0 — 3 1 0.33
D11 E6 65 65 1.00 71 71 1.00 60 60 1.00
D12 E7 0 0 — 0 0 — 0 0 —
D13 E7 0 0 — 0 0 — 5 5 1.00

D14 E2 54 44 0.81 45 36 0.80 35 26 0.74
E4 54 1.00 45 1.00 35 1.00

D15 E7 38 37 0.97 34 34 1.00 33 33 1.00
E8 31 0.82 30 0.88 29 0.88

D16 E9 32 31 0.97 32 32 1.00 27 27 1.00
D17 E1 13 13 1.00 9 9 1.00 8 8 1.00
D18 E3 0 0 — 5 5 1.00 4 4 1.00

Total assigned plants 135 129 117

lower coverage of disease classes. The number of Jamu pairs,
that is, the number of edges in the network, affect the number
of DPClusO resulting clusters and number of Jamu formulas
per cluster. As a consequence, for the larger dataset networks,
the success rate becomes lower and the coverage of disease
classes is lower but prediction of more plant-disease relations
can be achieved.

4. Conclusions

This paper introduces a novel method called supervised
clustering for analyzing big biological data by integrat-
ing network clustering and selection of clusters based on
supervised learning. In the present work we applied the
method for data mining of Jamu formulas accumulated
in KNApSAcK database. Jamu networks were constructed
based on correlation similarities between Jamu formulas and
then network clustering algorithm DPClusO was applied to
generate high density Jamu modules. For the analysis of
the next steps potential clusters were selected by supervised
learning. The successful clusters containing several Jamu
related to the same disease might be useful for finding main
ingredient plant for that disease and the lower matching
score value clusters will be associated with varying plants

which might be supporting ingredients. By applying the
proposed method important plants from Jamu formulas for
every classes of disease were determined.The plant to disease
relations predicted by proposed network based method were
evaluated in the context of previously published results and
were found to produce a TPR of 90%. For the larger dataset
networks, success rate and the coverage of disease classes
become lower but prediction of more plant-disease relations
can be achieved.
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