DIAGONALIZATION OF A SELF-ADJOINT OPERATOR ACTING ON A HILBERT MODULE

PARFENY P. SAWOROTNOW

Department of Mathematics
The Catholic University of America
Washington, D.C. 20064
(Received January 18, 1984)

Abstract

For each bounded self-adjoint operator T on a Hilbert module H over an H^{*}-algebra A there exists a locally compact space $\boldsymbol{m}_{\text {and }}$ a certain $A-v a l u e d$ measure μ such that H is isomorphic to $L^{2}(\mu) \otimes A$ and T corresponds to a multiplication with a continuous function. There is a similar result for a commuting family of normal operators. A consequence for this result is a representation theorem for generalized stationary processes.

KEY WORDS AND PHRASES. H^{*}-algebra, Hilbert module, A-linear operator. 1980 MATHEMATICS SUBJECT CLASSIFICATION CODE. PRIMARY: 46H25. SECONDARY: 46K15, 47BIO, 47A67, 46G10, 60G10.

I. INTRODUCTION.

The diagonalization theorem states that for each bounded self-adjoint linear operator T acting on a Hilbert space H there exists a measure space (S, μ) and a real valued measurable function $h(s)$ such that H is isomorphic to $L^{2}(S, \mu)$ and T corresponds to the multiplication with $h(s)$. Furthermore, the space (S, μ) could be selected in such a way that there is a Hausdorff topology on S with respect to which $h(s)$ is continuous, S is locally compact and which makes μ a regular Borel measure. In this note we shall give a suitable generalization of this fact.

The situation is somewhat more complex in our case. The space $L^{2}(S, \mu)$ needs to be replaced by the tensor product $L^{2}(\mu) \otimes A$, which is less manageable. This space is properly defined below.
2. PRELIMINARIES.

Let A be a proper H^{*}-algebra (Ambrose [1]) and let $r A=\{x y \mid x, y, A\}$ be its trace-class (Saworotnow and Friedell [2]); let X be a locally compact Hausdorff space and let μ be a positive : A-valued Borel measure on X. The last statement means that μ is defined on the class β of all Borel subsets Δ of X having the property that $\Delta \subset Q$ for some compact set Q, and $\boldsymbol{\mu}$ is such that $(\mu(\boldsymbol{\Lambda}) x, x) \geq 0$ for all $\mathcal{B} \cdot \boldsymbol{\beta}$ and each $x \in A$. Members of β will be called bounded Borel sets (a bounded Borel set is a Borel set included in a compact set). Note that the scalar-valued function $m \boldsymbol{A}=\boldsymbol{t} \boldsymbol{\mu} \boldsymbol{\Delta}, \boldsymbol{\Delta} \boldsymbol{\beta} \boldsymbol{\beta}$, is an ordinary Borel measure on X; it coincides with the total variation $\mid \mu /$ (Definition in 111.1.4 of Dunford and Schwartz [3]) of ν.

Let $S(X)$ and $S(X, A)$ be respectively the classes of all complex-valued and A-valued simple functions of X. One can define the integrals for members $\psi(x)=$ $\Sigma_{i} \lambda_{i} \phi_{\Delta i}(x)$ and $\xi(x)=\Sigma_{i} a_{i} \phi_{\Delta i}(x)\left(\Delta_{i} \epsilon \beta, a_{i} \in A\right.$ and λ_{i} 's are complex numbers) of $S(x)$ and $S(X, A)$ in the usual way by setting .

$$
\begin{equation*}
\int \psi \mathrm{d} \mu=\Sigma \lambda_{i} \mu \Delta_{i} \text { and } \int \xi \mathrm{d} \mu=\Sigma \mathrm{a}_{\mathrm{i}} \mu \Delta_{\mathrm{i}} \tag{2.1}
\end{equation*}
$$

and then extending it to larger classes using the norms

$$
\begin{equation*}
||\psi||=\int|\psi| \mathrm{dm}=\Sigma\left|\lambda_{i}\right| \text { in } \Delta_{i} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\xi\|=\Sigma\left\|a_{i}\right\| m \Delta_{i} \tag{2.3}
\end{equation*}
$$

Let $L(X)$ and $B(X, A)$ denote respectively the classes of those functions to which the integrals are extendable in this fashion. (Note that $S(X)$ is dense in $L(X)$ and $S(X, A)$ is dense in $B(X, A)$).

Then it is easy to see that

$$
\begin{equation*}
r\left(\int \psi \mathrm{~d} \mu\right) \leq||\psi|| \text { and } r\left(\int \xi \mathrm{~d} \mu\right) \leq||\xi|| \tag{2.4}
\end{equation*}
$$

hold for all $\psi \in L(X)$ and $\xi \in B(X, A)$. (For a discussion of integrals of this type we refer the reader to Bogdanowicz [4]).

LEMMA 1. If aє A and either $\psi \in L(X)$ or $\psi \in B(X, A)$, then $a \psi \in B(X, A)$ and $\int a \psi_{d} \mu=$ $a \int \psi \mathrm{~d} \mu . \operatorname{If} \psi \epsilon \mathrm{S}(\mathrm{X}, \mathrm{A})$ and $\psi \geq 0$ m-almost everywhere then $\operatorname{tr} \int \psi \mathrm{d} \mu \geq 0$.

PROOF. The first assertion is easy to verify. Let ψ be a simple function such that $" \psi(x) \geq 0^{\prime \prime}$ holds ontside of some set $\Delta \subset \beta$ with $m \Delta=\operatorname{tr} \mu \Delta=0$. Then ψ can be represented in the form $\psi=\sum_{i=1}^{n} a_{i} \phi_{\Delta i}$ with $\Delta_{1}, \Delta_{2}, \ldots, \Delta_{n}$ disjoint ($\Delta_{i} \beta$) and $a_{i} \geq 0$ for each i for which $" m \Delta_{i}=r\left(\mu \Delta_{i}\right)=\operatorname{tr}\left(\mu \Delta_{i}\right)>0$ " holds. Then $\operatorname{tr} \int \psi d \mu=\operatorname{tr} \Sigma_{i} a_{i} \mu \Delta_{i}=\Sigma_{i} \operatorname{tr}\left(a_{i} \mu \Delta_{i}\right)=\Sigma_{i} \operatorname{tr} \sqrt{\mu \Delta_{i}} a_{i} \sqrt{\mu \Delta_{i}} \geq 0$.

Let $L^{2}(\mu)=\left\{f: X \longrightarrow C \mid f\right.$ is m-measurable and $\left.\int|f|^{2} d m<\infty\right\}(m=t r \mu)$ be the set of all square m-measurable complex-valued functions. Then there is a rA-valued inner product

$$
\begin{equation*}
\left[\psi_{1}, \psi_{2}\right]=\int \bar{\psi}_{1} \psi_{2} \mathrm{~d} \mu \tag{2.5}
\end{equation*}
$$

defined on $L^{2}(\mu)$ such that $\left(\psi_{1}, \psi_{2}\right)=\operatorname{tr}\left[\psi_{2}, \psi_{1}\right]=\int \bar{\psi}_{2} \psi_{1} d m$ is an ordinary scalar product on $\mathrm{L}^{2}(\mu)$ making $\mathrm{L}^{2}(\mu)$ a Hilbert space.

LEMMA 2. Let $\psi_{1}, \psi_{2}, \ldots \psi_{n} \in L^{2}(\mu)$ and let $a_{1}, a_{2}, \ldots, a_{n} \in A$. Then

$$
\begin{equation*}
\operatorname{tr} \Sigma_{i, j} a_{i j}^{\star} \int \bar{\psi}_{i} \psi_{j} \mathrm{~d} \mu_{\mathrm{a}} \geq 0 \tag{2.6}
\end{equation*}
$$

PROOF. Let $n(\psi)$ denote the norm on $L^{2}(\mu): n(\psi)^{2}=(\psi, \dot{\psi})=\int|\psi|^{2} d m$. Let $\epsilon>0$ be arbitrary; let $\eta_{1}, \eta_{2}, \ldots \eta_{n} \in S(X)$ be such that $n\left(\psi_{i}-\eta_{i}\right)<\epsilon$ for $i=1,2, \ldots n$. Then $\left|\operatorname{tr}^{n} \Sigma a_{i}^{*} \int \bar{\psi}_{i} \psi_{j} d \mu_{a}-\operatorname{tr} \Sigma a_{i}^{*} \int^{\frac{i}{i}} \psi_{i} \psi_{j} d \mu_{a}\right|=$
$\left|\Sigma \operatorname{tr}\left(\mathrm{a}_{\mathrm{j}} \mathrm{a}_{\mathrm{i}}^{*} \int\left(\bar{\psi}_{\mathrm{i}} \psi_{\mathrm{j}}-\bar{\eta}_{\mathrm{i}} \eta_{\mathrm{j}}\right) \mathrm{d} \mu\right)\right| \leq \Sigma r\left(\mathrm{a}_{\mathrm{j}} \mathrm{a}_{\mathrm{i}}^{*}\right) r\left(\int\left(\bar{\psi}_{\mathrm{i}} \psi_{\mathrm{j}}-\bar{\eta}_{\mathrm{i}} \eta_{\mathrm{j}}\right) \mathrm{d} \mu\right) \leq$.
$\Sigma\left|\left|a_{j}\right|\right| \cdot\left|\left|a_{i}^{*}\right|\right| \int\left|\bar{\psi}_{i} \psi_{j}-\bar{\eta}_{i} \eta_{j}\right| d m \leq \Sigma| | a_{j}| | \cdot| | a_{i}^{*}| |\left(j\left|\bar{\psi}_{i}\right|\left|\psi_{i}-\eta_{j}\right| d m+\int\left|\bar{\psi}_{i}-\bar{\eta}_{i}\right|\left|\eta_{j}\right| d m \leq\right.$
$\Sigma\left\|a_{i}\right\| \cdot\left\|a_{j}^{*}\right\|\left(n\left(\psi_{i}\right) \cdot n\left(\psi_{j}-\eta_{j}\right)+n\left(\psi_{i}-\eta_{i}\right) \cdot n\left(\eta_{j}\right)\right) \leq \sum_{i=1} \epsilon\left(2 n\left(\psi_{i}\right)+\epsilon\right)\left\|a_{i}\right\| \cdot\left\|a_{j}^{*}\right\|$ and the last sum can be made arbitrarily small by selecting small enough. On the other hand one can see that

$$
\begin{equation*}
\operatorname{tr}\left(\Sigma_{i, j} a_{i}^{*} \int_{i} \eta_{j} d \mu a_{j}\right)=\operatorname{tr} \int\left(\Sigma_{j} a_{j} \eta_{j}\right)\left(\Sigma_{i} a_{i} \eta_{i}\right) \star d \mu \geq 0 \tag{2.7}
\end{equation*}
$$

COROLLARY. The expression $z=\Sigma_{i, j}\left(a_{i}^{*} \int \bar{\psi}_{i} \psi_{j} d: a_{j}\right)$ is a positive member of ra.
PROOF. Note that the expression $(z a, a)=\operatorname{tr}(a \star z a)$ is of the same form as trz. Hence (za,a) ≥ 0 for each acA.

Now consider the space K of all tensors $f=\sum_{i=1}^{n} \psi_{i} \otimes a_{i}$ with $\psi_{1}, \psi_{2}, \ldots, \psi_{n} \in L^{2}(\mu)$ and $a_{1}, a_{2}, \ldots, a_{n} \in A$. Define the positive form $[f, g]$ on K by setting

$$
\begin{equation*}
[f, g]=\Sigma_{i, j}{ }^{a_{i}^{*}}\left(\int \bar{\psi}_{i} \eta_{j} d \mu\right) b_{j} \tag{2.8}
\end{equation*}
$$

(here $g=\Sigma_{j} \eta_{j} \otimes b_{j}$). Let $\eta=\{f \in K:[f, f]=0\}, K^{\prime}=K \mid \eta$; we define $L^{2}(\mu) \otimes A$ to be the completion of K^{\prime} with respect to the norm $\|f\|=\sqrt{r[f, f]}$ (modulo the set n). It is not difficult to see that $L^{2}(\mu) \otimes A$ is a Hilbert module.

Let h be a bounded continuous real valued function on X. Define the operator T_{h} on $L^{2}(\mu) A$ by setting

$$
\begin{equation*}
T_{h}(f)=T_{h}\left(\Sigma \psi_{i} \otimes a_{i}\right)=\Sigma\left(\psi_{i} h\right) \otimes a_{i} \tag{2.9}
\end{equation*}
$$

Then T_{h} is a bounded self-adjoint (in the sense that $\left[T_{h}(f), g\right]=\left[f, T_{h}(g)\right]$ holds). Also T_{h} is A-linear (additive and A-homogeneous in the sense that $T_{h}(f a)=T_{h}(f) a$ for all $\left.f \in L^{2}(\mu) \otimes A, a \in A\right)$.

The fact that T_{h} is bounded (in the sense that " $\left\|T_{h}(f)\right\| \leq M\|f\|$ " holds for some M) can be verified directly, using $\oint 10$ of Naimark [5]. Let $f=\boldsymbol{\Sigma}_{\mathbf{i}} \psi_{i} \otimes_{i}$ be a fixed member of K. Consider the positive linear functional

$$
\begin{equation*}
p(y)=\operatorname{tr}[f, \operatorname{Ty}(f)]=\operatorname{tr} \sum a_{i}^{*} \int \bar{\psi}_{i} y \psi_{j} d \mu a_{j} \tag{2.10}
\end{equation*}
$$

on the space $\mathrm{BC}(\mathrm{X})$ of all bounded continuous (complex) functions on X. It follows from the proposition I in subsection 4 of $\} 10$ in Naimark [5] that $p(h * h) \leq$ $\|h * h\|_{\infty} p(e)=\|h\|_{\infty}^{2} p(e)$. Thus:
$\left\|T_{h}(f)\right\|^{2}=\operatorname{tr}\left[T_{h}(f), T_{h}(f)\right]=\operatorname{tr}\left[f, T_{h \star h}(f)\right]=p(h \star h) \leq \|\left. h\right|_{\infty} ^{2} p(e)=$

$$
\begin{equation*}
||h||_{\infty}^{2} \operatorname{tr}[f, f]=||h||_{\infty}^{2}| | f \|^{2} \tag{2.11}
\end{equation*}
$$

We also see that $\left|\left|T_{h}\right|\right| \leq\|h\|_{\infty}$. It turns out that each bounded self-adjoint A-linear operator is of the form T_{h} described above.

3. MAIN RESULTS.

Definition. An A-linear operator T on a Hilbert module H is said to be cyclic if there exists $f_{o} \in H$ such that the $\operatorname{set}\left\{\Sigma_{k=0}^{n} \lambda_{k} T^{k}\left(f_{o}\right) a_{k}: a_{k} \in A, \lambda_{k}\right.$ complex $\}$ is dense in H (we assume that $T^{\circ}\left(f_{o}\right)=$ If ${ }_{o}=f_{o}$).

THEOREM 1. For each bounded A-linear self-adjoint operator T on a Hilbert module H there exists a locally compact Hausdorff space X, a rA-valued positive regular measure μ defined on the class β of bounded (dominated by compact sets) Borel subsets of X and a bounded continuous real valued function h on X such that H is isometrically isomorphic to $L^{2}(\mu) \otimes A$ and T corresponds to the operator T_{h} (described above) acting on $L^{2}(\mu) \otimes A$. If T is cyclic, then X is homeomorphic to the compact subset of the real line.

PROOF. Let B be the commutative B^{*}-algebra generated by T and the identity operator I (note that each member of B is $A-l i n e a r$). Let m_{b} be the set of maximal ideals of B, let r be the standard Gelfand topology on M and let $S \longrightarrow S(M)$ be the Gelfand map of B into the continuous complex functions on M. Note that \mathbb{T} is homeomorphic to the spectrum of T, which is a compact subset of the real line. We consider 2 cases.

CASE [. First assume that there exists $f_{o} \in H$ such that the set

$$
\begin{equation*}
H^{l}=\left\{\sum_{i=1}^{n} S_{i}\left(f_{o}\right) a_{i}: S_{i} \in B, a_{i} \in A\right\} \tag{3.1}
\end{equation*}
$$

is dense in H (this is equivalent to the statement that T is cyclic).
Let β be the class of all Borel subsets of Π (each $\Delta \mathcal{\beta}$ is bounded since M is compact) and let $\Delta \rightarrow P \Delta$ be a spectral measure on β ($\oint 17$, Proposition Il in subsection 4 of Nainark [5]) such that $S=\int_{m} S(M) d P M_{M}$. Note that each P_{Δ} is A-linear ;ince it commutes with linear maps $f \longrightarrow f a(a \in A)$ (which commute with all SeB). Then map

$$
\begin{equation*}
\Delta \rightarrow \mu_{\Delta}=\left[f_{0}, \mathrm{P}_{\Delta} \mathrm{f}_{0}\right] \tag{3.2}
\end{equation*}
$$

is a rA-valued positive measure on β, and for each $S \in B$ we have

$$
\begin{equation*}
\int_{m} S(M) d \mu(M)=\int S(M) d\left[f_{0}, P_{M} f_{o}\right]=\left[f_{o}, \int S(M) d P_{M}\right]=\left[f_{o}, S f_{o}\right] \tag{3.3}
\end{equation*}
$$

(here, as above, [] denotes the generalized inner product on H). In this case we can take $X=M$. The correspondence

$$
\begin{equation*}
\mathrm{Sf}_{\mathrm{o}} \longleftrightarrow \mathrm{~S}(\mathrm{M}) \tag{3.4}
\end{equation*}
$$

is a (linear) isomorphism between the linear subspace $K=\left\{S_{\text {fo }} \mid S \in B\right\}$ of H and $C(X)=$ $C(m)$. This correspondence can be extended in the obvious way to the isomorphism between the closure of K and the Hilbert space $L^{2}(\mu)$. The $r A$-valued inner product is also preserved by this correspondence: if $S_{1}, S_{2} \in B$ then

$$
\begin{equation*}
\left[S_{1} f_{o}, S_{2} f_{o}\right]=\left[f_{o}, S_{1}^{*} S_{2} f_{o}\right]=\int \bar{S}_{1}(M) S_{2}(M) d \mu(M) \tag{3.5}
\end{equation*}
$$

We extend this isomorphism to a correspondence between H^{1} and a dense subset of $L^{2}(\mu) \otimes A$ by setting

$$
\begin{equation*}
\Sigma_{k} S_{k}\left(f_{o}\right) a_{k} \longleftrightarrow \Sigma S_{k}(M) \otimes a_{k} \tag{3.6}
\end{equation*}
$$

This correspondence also preserves the (vector) inner product: if $f=\Sigma S_{k}\left(f_{o}\right) a_{k}$ and $\mathrm{g}=\Sigma \mathrm{Q}_{\mathrm{i}}\left(\mathrm{f}_{\mathrm{o}}\right) \mathrm{b}_{\mathrm{i}}$, then

$$
\begin{equation*}
[f, g]=\sum_{k, i} a_{k}^{*}\left[S_{k}\left(f_{o}\right), Q_{i}\left(f_{o}\right)\right] b_{i}=\sum_{k, i} a_{k}^{*} \int \bar{S}_{k}(M) Q_{i}(M) d \mu b_{i} \tag{3.7}
\end{equation*}
$$

We extend it to an isomorphism between H and $L(\mu) \otimes A$. It is easy to check that T correponds to the operator T_{h} of multiplication with function $h(M)=T(M)$:

$$
\begin{equation*}
T\left(\Sigma_{k} S_{k}\left(f_{o}\right) a_{k}=\Sigma_{k} T_{k}\left(f_{o}\right) a_{k} \longleftrightarrow \Sigma_{k} T(M) S_{k}(M) \otimes a_{k}\right. \tag{3.8}
\end{equation*}
$$

The function h is real valued since $T *=T$, and $\left.|h|\right|_{\infty} \leq||T||$.
Note also that in this case \mathbb{M} is homeomorphic to the spectrum of T, which is a compact subset of the real line. This implies the last assertion of the theorem.

CASE II. Now let us consider the general case. For any ff H let $H(f)$ be the c losure of the $\operatorname{set}\left\{\sum_{i=1}^{n} S_{i}(f) a_{i}: S_{i} \in B, a_{i} \in A\right\}$. Then it follows from Lemma 2 in \perp Saworotnow [6] that $f \in H(f)$. Also both $H(f)$ and its orthogonal complement $H(f)$ (which coincides with the set $H(f)^{P}=\{g \in H:[g, h]=0$ for all $h \in H(f)\}$ (Lemma 3 of Saworotnow [6])) are invariant under T.

It follows from this fact and Zorn's Principle that there exists a set $\left\{f y: y^{\in} \Gamma\right\}$ of mutually orthogonal members of H such that $H=\Sigma \boldsymbol{\Sigma}_{\boldsymbol{\gamma}} \otimes H(f y), H\left(f_{y}\right) \perp H(f \beta)$ if $y \neq \beta$, and each $H\left(f_{y}\right)$ is invariant under T.

For each $y \in \Gamma$ and $S \in B$ let S_{y} be the restriction of S to $H\left(f_{y}\right)$, and let $B y=$ $\left\{S_{y}: S \in B\right\}$. It follows from part I (case I) of this proof that for each $\gamma \in T$ there exists a compact Hausdorff space $\left(m_{y},{ }^{r} y\right)$, a rA-valued positive Borel measure $f y$ and
a continuous real valued function $h_{\gamma}()$ on $\prod_{\boldsymbol{\gamma}}$ such that $H\left(f_{\gamma}\right)$ is isomorphic to
 miltiplication with h_{γ} on $L^{2}\left(\mu_{\gamma}\right)$. Note also that $h_{\gamma}(M) \leq\|T\|$ for each Mc M_{γ}.

Let $X=U M_{y}$ and let r be the topology on X defined by the requirement that a set $0 C X$ is open ($0 \boldsymbol{\epsilon} \boldsymbol{F}^{+}$) if and only if $0 \cap m_{\gamma}$ belongs to r_{γ} for each $\boldsymbol{\gamma} \boldsymbol{\epsilon} \Gamma$. Let β be the class of all bounded Borel subsets of x. For each $\Delta \epsilon \beta$ there are indices (we use a ,implified notation here) $1,2, \ldots, n \in \Gamma$ such that $\Delta c_{i=1}^{n} m_{i}$. We set

$$
\begin{equation*}
\mu(\Delta)=\sum_{i=1}^{n} \mu_{i}\left(\Delta n m_{i}\right) \tag{3.9}
\end{equation*}
$$

Then β is a ring and $\boldsymbol{\mu}$ is a positive r-valued measure on β. We define the function h on X by setting $h(M)=h_{\gamma}(M)$ where $\boldsymbol{\gamma} \boldsymbol{C}$ is such that $M \in M_{\gamma}$. Then it is easy to see that h has the required properties.

To complete the proof it is now sufficient to show that $\mathrm{L}^{2}(\mu) \otimes \mathrm{A}=\boldsymbol{\Sigma}_{\boldsymbol{\gamma}}{ }^{2}\left(\mu_{\boldsymbol{\gamma}}\right) \otimes \mathrm{A}$. First note that each $\mathrm{L}^{2}\left(\mu_{\gamma}\right)$ is included in $\mathrm{L}^{2}(\mu)$ and that $\mathrm{L}^{2}(\boldsymbol{\mu})=\boldsymbol{\Sigma}_{\boldsymbol{\gamma}} \mathrm{L}^{2}\left(\mu_{\gamma}\right)$ (easy to verify). Now let $f \in L^{2}(\mu) \otimes A$. For each $\epsilon>0$ one can find $g=\sum_{i=1}^{n} \psi_{i} \otimes a_{i}$ such that $||f-g||<\epsilon$ with $\psi_{i} \epsilon^{2}(\mu)$. But each ψ_{i} can be approximated in $\mathrm{L}^{2}(\boldsymbol{\mu})$ by 'xpressions of the form $\boldsymbol{\Sigma}_{\mathrm{j}=1}^{\mathrm{n}} \phi_{\mathrm{j}}$ with $\phi_{\mathrm{j}} \epsilon^{2}{ }^{2}\left(\mu_{\gamma_{j}}\right)$ for some $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{\mathrm{n}} \epsilon \Gamma$. Thus f can be approximated (as close as we please) by members $\Sigma_{i=1}^{n}\left(\Sigma_{j} \phi_{j}\right) a_{i}$ of $\Sigma_{\gamma} L^{2}\left(\mu_{\gamma}\right) A$, i.e., g is a member of $\boldsymbol{\Sigma}_{\boldsymbol{\gamma}} \mathrm{L}^{2}\left(\mu_{\boldsymbol{\gamma}}\right) \mathrm{A}$.

Conversely, let $f \boldsymbol{\epsilon} \boldsymbol{\Sigma}_{\boldsymbol{y}} \mathrm{L}^{2}\left(\boldsymbol{\mu}_{\boldsymbol{y}}\right) \otimes_{\mathrm{A}}$; then f can be approximated by finite sums of expressions of the type $\sum_{i=1}^{n} \psi_{i} \otimes a_{i}$ with $a_{i} \notin A$ and $\psi_{1}, \psi_{2}, \ldots \psi_{n}$ belonging to some $\mathrm{L}^{2}(\mu \beta)$ with $\beta \epsilon \Gamma$. We may conclude that $\mathrm{f} \in \mathrm{L}^{2}(\mu) \otimes_{\mathrm{A}}$ since $\mathrm{L}^{2}\left(\mu_{\gamma}\right) \subset \mathrm{L}^{2}(\mu)$ for each γ. The reader should be able to give a precise argument here.

THEOREM 2. Let Z be a family of bounded A-linear operators on a Hilbert module H (over an H^{*}-algebra A) such that each member of Z and its adjoint (with respect to the generalized inner product) commute with any other member of 2 . In particular, Z could be a commutative *-algebra of A-linear operators on H. Then there exists a locally compact Hausdorff space X, a r A-valued positive Borel measure μ on X and a map $T \longrightarrow h_{T}$ of Z into complex valued functions on X such that H is isomorphic to $L^{2}(\boldsymbol{\mu}) \otimes A$ and each T corresponds to multiplication with some function h_{T}. Moreoever $\|\left. h_{T}\right|_{\infty} \leq$ for each T€\%.

PROOF. The proof is essentially the same as the proof of Theorem 1 above. We use the *-algebra of operators generated by Z (and the identity operator i) instead of the algebra generated by the operator T (and I).

COROLLARY 1. Each *-representation of a commutative *-algebra by bounded A-linear operators is of the form $x \rightarrow T_{h}$, where T_{h} is an operator of multiplication with a complex valued function $h=h_{x}$ described before Theorem 1 .

This corollary could be considered as a generalization of Theorem 65 in Mackey [7] if we disregard the fact that Mackey considers more general (self-adjoint) algebras and we do not specify the space X on which the functions $h=h_{x}$ act (also our Hilbert module does not have to be separable (as a Hilbert space)).

COROLLARY 2. Let G be a commutative locally compact group with composition + and let $t \longrightarrow U_{t}$ be $a *$-representation of G by A-linear unitary operators acting on a Hilbert module H. Assume that there exists a vector f_{0} © H such that the submodule H_{0}, generated by the vectors of the form $\left.U_{t}(f)_{0}\right)$, is dense in H. Then there exists a compact Hausdorff space \mathbb{M}, a positive $r A$-valued Borel measure μ on \mathbb{M} and a map
$t \rightarrow g_{t}$ of G into the continuous functions on $\mathcal{M}_{\text {onch }}$ shat H is (isometrically) isomorphic to $L^{2}(\mu) A$ and each U_{t} corresponds to multiplication members of $L^{2}(\mu)$ with g_{t}.

The map $t \longrightarrow g_{t}$ has the following properties (for each $t \in G$ and all Mom):

$$
\begin{align*}
& \left.g_{0}(M)=1 \text { (here } 0 \text { is the identify of } G\right) \tag{3.10}\\
& \left|g_{t}(M)\right|=1 \tag{3.11}
\end{align*}
$$

$$
\begin{equation*}
g_{-t}(M)=\bar{g}_{t}(M) \tag{3.12}
\end{equation*}
$$

$$
\begin{equation*}
g_{t+s}(M)=g_{t}(M) g_{s}(M) \tag{3.13}
\end{equation*}
$$

It is appropriate at this point to mention a certain application of the last
corollary. Let G, A and H be as above, and let $\xi: G \longrightarrow H$ be a generalized stationary process (Saworotnow [8]), i.e., $\boldsymbol{\xi}$ is an H-valued function on G such that $(\boldsymbol{\xi}(t+r), \boldsymbol{\xi}(s+r))=(\boldsymbol{\xi}(t), \boldsymbol{\xi}(s))$ for all $t, r, s \in G$. Let $H^{H} \boldsymbol{\xi}$ be the submodule generated by the vectors of the form $\dot{\boldsymbol{\xi}}(t), t \in G\left(H_{\xi}=\right.$ closure of $\left.\left\{\dot{\Sigma}_{k=1}^{\xi_{n}} \xi\left(t_{k}\right) a_{k}: t_{k} \epsilon G\right\}\right)$.

For each tec consider the operator U_{t} on H_{ξ} defined by

$$
\begin{equation*}
u_{t}\left(\sum_{k=1}^{n} \xi\left(t_{k}\right) a_{k}\right)=\sum_{k=1}^{n} \check{\lessgtr}\left(t_{k}+t\right) a_{k} \text { and let } f_{0}=\boldsymbol{\xi}(0) \tag{3.14}
\end{equation*}
$$

Then the map $t \rightarrow U_{t}$ is a representation of (; by A-linear unitary operators and it is easy to see that the assumptions of Corollary 2 are fulfilled. Let $\pi N, \mu$ and y_{t} he as in Corollary 2 and let $\mathrm{f}(\mathrm{M})$ be the member of $\mathrm{C}(\boldsymbol{m})$ corresponding to $\mathrm{f}_{0}=\boldsymbol{\xi}$ (1)). Then the space ${ }_{2} \xi^{\text {is }}$ is isomorphic to $L^{2}(\mu) \otimes A$ and each U_{t} corresponds to multiplication of members of $L^{2}(\boldsymbol{\mu})$ with g_{t}. For each teG let $h_{t}(M)=g_{t}(M) f(M)$. In this fashion we arrived at a concrete representation of the abstract stationary process $\boldsymbol{\xi}$ by the complex valued continuous function h_{t} defined on $\# \mathbb{N}$. Note that the scalar product $(\xi(t), \xi(s))$ corresponds to the expression

$$
\begin{align*}
& \int h_{t}(M) \overline{h_{s}(M)} d \mu(M)=\int g_{t}(M) \overline{g_{s}(M)} f(M) \overline{f(M)} d \mu(M)= \\
& \int g_{t}(M) g_{-s}(M)|f(M)|^{2} d \mu(M)=\int g_{t-s}(M)|f(M)|^{2} d \mu(M) \tag{3.15}
\end{align*}
$$

and this expression depends on $t-s$ only and is independent of a particular choice of t and s.
4. CONCLUDING REMARK.

To conclude the paper we make the following remark about the operator T_{h} discussed above. It is easy to see that we do not need at all to assume existence of a (locally compact) topology on the space X (discussed at the beginning of this paper). Let μ be a positive r A-valued measure defined on some σ-ring of subsets of X. If h is any $\operatorname{tr} \mu$-measurable essentially bounded real valued function on X then the corresponding operator T_{h} on $L^{2}(\mu) \otimes A$,

$$
\begin{equation*}
T_{h}\left(\Sigma_{i} \psi_{i} \otimes a_{i}\right)=\Sigma_{i}\left(\psi_{i} h\right) \otimes a_{i} \tag{3.16}
\end{equation*}
$$

is also self-adjoint, A-linear and bounded. The fact that T_{h} is bounded can be verified in the same way as above using the algebra B of all essentially bounded tr μ-measurable complex-valued functions on X.

REFERENCES

1. AMBROSE, W. Structure Theorem for a Special Class of Banach Algebras, Trans. Amer. Math. Soc. 57 (1945), 364-386.
2. SAWOROTNOW, P.P. and FRIEDELL, J.C. Trace-class for an Arbitrary H*-algebra, Proc. Amer. Math. Soc. 26 (1970), 95-100.
3. DUNFORI), N. and SCHWARTZ, J. Linear Operators, Part 1 , Interscience, New York, 1958.
4. BOGDANOWICZ, W.M. A Generalization of the Lebesgue-Bochner-Stieltjes Integral and the New Approach to the Theory of Intergration, Proc. of the National Academy of Sciences 53 (1965), 492-498.
5. NAIMARK, M.A. Normed Rings, Moscow, 1968.
6. SAWOROTNOW, P.P. A Generalized Hilbert Space, Duke Math. Journal 35 (1968), 191-197.
7. MACKEY, G.W. Commutative Banach Algebras, Lecture Notes - 1952, Harvard University, Livraria Castelo, Rio de Janiero, 1959.
8. SAWOROTNOW, P.P. Abstract Stationary Processes, Proc. Amer. Math. Soc. 40 (1973), 585-589.
9. HALMOS, P.R. Measure Theory, Van Nostrand, New York, 1950.
l). ROBERTSON, A.P. and ROBERTSON, W.J. Topological Vector Spaces, Cambridge University Press, 1966.
10. SAWOROTNOW, P.P. On a Realization of a Complemented Algebra, Proc. Amer. Math. Soc. 15 (1964), 964-966.
11. SAWOROTNOW, P.P. Linear Spaces with an H^{*}-algebra Valued Inner Product, Trans. Amer. Math. Soc. 262 (1980), 543-549.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

