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We consider proximinality and transitivity of proximinality for subspaces of finite codimen-
sion in generalized direct sums of Banach spaces. We give several examples of Banach spaces
where proximinality is transitive among subspaces of finite codimension.
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1. Introduction. Let X be a Banach space and let Y be a closed subspace of X. We

recall that Y is said to be a proximinal subspace of X if for any x ∈ X there exists a

y ∈ Y such that d(x,Y)= ‖x−y‖.
In the first part of the paper, we study proximinal subspaces of finite codimension

in generalized direct sums of Banach spaces (a concept due to Veselý [9], see below for

the definition). Our motivation comes from some recent work of Indumathi [4] where

she considered these questions for c0-direct sums of a family of Banach spaces and

proved the following.

Theorem 1.1. Let X = (⊕Xλ)c0 where each Xλ is a Banach space for each λ∈Λ. Let

Y be a closed subspace of X of finite codimension n in X. Then Y is proximinal in X if

and only if the following two conditions hold for every basis {fi : 1≤ i≤n} of Y⊥, where

fi = (fi,λ)λ∈Λ for 1≤ i≤n:

(i) for every i, 1≤ i≤n, fi,λ is nonzero only for finite number of indices λ,

(ii) Yλ =∩ni=1 kerfi,λ is proximinal in Xλ for each λ∈Λ.

In the present paper, we prove an analogue of the above result for generalized direct

sums. We next consider transitivity of proximinality among subspaces of finite codi-

mension in c0-direct sums. Here the motivation comes from [6] where transitivity was

established among finite codimensional subspaces of c0. We give several new examples

of spaces where transitivity of proximinality holds among subspaces of finite codimen-

sion answering [3, Question 2] in the affirmative. We give a partial positive answer to

this question in c0-direct sums. For a Banach space X, letNA(X) denote the set of norm

attaining elements of X∗. We recall from [3] that X is said to be an R(1)-space if Y ⊂X
is of finite codimension and Y⊥ ⊂ NA(X) implies Y is proximinal. We show that this

property is preserved by c0-direct sums but not by �1-direct sums. We only consider

these topics for Banach spaces and leave the formulations in the more general setting

of locally convex spaces open. An interested reader can consult the monograph [5] for

a comprehensive treatment of proximinality in locally convex spaces.
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We now define generalized direct sums. Let Λ be a nonempty set. Let {Xλ : λ∈Λ} be

a family of normed linear spaces. By eλ, we denote the characteristic function of the

singleton {λ} ⊂Λ, that is, eλ(λ′)= δλλ′ .
Let Y be a linear space,Λ0 ⊂Λ, y ∈ YΛ. We denote by y|Λ0 , the element of YΛ defined

by

y|Λ0 =


y(λ) λ∈Λ0,

0 otherwise.
(1.1)

Hence y|Λ0 is the canonical projection of y onto the subspace of functions whose

support is contained in Λ0 and YΛ0 = {y ∈ YΛ | supp(y)⊂Λ0}.
By a sequence space on Λ, we mean a normed linear space (V ,γ) such that V is a

linear subspace of RΛ.

Definition 1.2. Let (V ,γ) be a sequence space on Λ such that γ is monotone on

the nonnegative elements on V . Denote by (⊕Xλ)V the linear space

(⊕Xλ
)
V =

{
x ∈ [∪Xλ

]Λ
: x(λ)∈Xλ ∀λ∈Λ,

∥∥x(·)∥∥∈ V
}

(1.2)

equipped with the norm ‖x‖V = γ(‖x(·)‖) where ‖x(·)‖ means the function λ →
‖x(λ)‖Xλ .

Let π : RΛ � [0,+∞] be a norm on RΛ which is finite on the elements with finite

support. By Sπ(Λ), we denote the linear space Sπ(Λ)= {ξ ∈RΛ :π(ξ) <+∞} equipped

with the norm π .

Definition 1.3. A norm π :RΛ� [0,+∞] will be called

(i) proper if it is finite on the elements with finite support,

(ii) finitely determined if for every ξ ∈RΛ,

π(ξ)= sup
{
π
(
ξ|Λ0

)
:Λ0 is a finite subset of Λ

}
, (1.3)

(iii) monotonic if π(ξ)≤π(η) whenever |ξ| ≤ |η| ξ,η∈RΛ,

(iv) dual norm of a sequence space on Λ if there exists (V ,γ) sequence space on

Λ (as defined above), containing basic vectors eλ as unit vectors and such that

its dual V∗ is isometric with Sπ(Λ) and the isometric correspondence between

v∗ ∈ V∗ and w ∈ Sπ(Λ) is given by

v∗(ξ)=
∑

λ∈Λ
ξ(λ)w(λ) where ξ ∈ V. (1.4)

When V = Sπ(Λ) we will write (⊕Xλ)π instead of (⊕Xλ)V .

Example 1.4. Let 1 ≤ p ≤ +∞. Let π : RΛ � [0,+∞] be the classical �p-norm. Then

π is monotonic, proper, and finitely determined, and we have Sπ(Λ)= �p(Λ), (⊕Xλ)π =
(⊕Xλ)�p .
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Each classical �p-norm is a dual norm of a sequence space on Λ, with the predual V
given by

V =




c0(Λ) if p = 1,

�q(Λ) if 1<p <+∞, 1
p
+ 1
q
= 1,

�1(Λ) if p =+∞.
(1.5)

The following lemma was proved in [9].

Lemma 1.5. Let π :RΛ � [0,+∞] be a norm which is monotonic, proper, and finitely

determined. Let Xλ be a Banach space for every λ∈Λ. Then

(a) (⊕Xλ)π and Sπ(Λ) are Banach spaces,

(b) if π is a dual norm of a sequence space on Λ, then the space (⊕X∗λ )π is isometric

to a dual space.

2. Proximinality in generalized direct sums. We need the following theorems of

Garkavi (see [7, pages 94–95]).

Theorem 2.1. Let Y be a closed subspace of finite codimension in a normed linear

space X. Then Y is proximinal if and only if for each Φ ∈ (Y⊥)∗, there exists x ∈X such

that ‖Φ‖ = ‖x‖ and Φ(f )= f(x) for all f ∈ Y⊥.

The following result is easy to deduce from the above theorem.

Theorem 2.2. Let X be a normed linear space and Y a closed subspace of finite

codimension in X. Then Y is proximinal in X if and only if every closed subspace Z ⊇ Y
of X is proximinal in X.

As an immediate consequence one has that if a finite codimensional subspace Y ⊂X
is proximinal, then Y⊥ ⊂NA(X).

We extend Indumathi’s result on c0-direct sums which is mentioned in the last sec-

tion, to generalized direct sums. We now introduce the notations that we are going to

use in this result.

Let {Xλ : λ∈Λ} be a family of Banach spaces. Let (V ,γ) be a sequence space onΛ and

π a dual norm of a sequence space on Λ such that X∗ = (⊕X∗λ )π where X = (⊕Xλ)V . We

recall from Definition 1.3(iv) that this in particular means that V has the canonical basis

vectors as unit vectors. Let Y ⊂ X be a closed subspace of finite codimension. Let fi =
(fi,λ)λ∈Λ where i= 1, . . . ,n, be in Y⊥ such that Y =∩ni=1 kerfi and let Zλ =∩ni=1 kerfi,λ.
Assume that each Zλ is proximinal in corresponding Xλ. Now we have the following.

Theorem 2.3. Every finite codimensional closed subspace Y of the above form is

proximinal in X for every dual norm π if and only if all but finitely many Xi’s are {0}.
Proof. First suppose that all but finitely many Xλ’s are trivial spaces. Let Y ⊂X be

of finite codimension. By our assumption, Zλ is proximinal in respective Xλ. Since all

but finitely many Xλ’s are trivial, fi’s have only finitely many nonzero terms. Consider

A=∪ni=1{λ∈Λ : fi,λ �= 0}. We have that |A|<∞.
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Let G be a subspace of X such that G = {x|A : x ∈X} and Zλ =∩ni=1 kerfiλ for λ∈A.

For λ ∈ A, each Zλ is a proximinal subspace of finite codimension in Xλ. Further if

Z = (⊕Zλ)V , then we show that Z is a proximinal subspace of finite codimension in G.

Let g = (gλ) be in G. For every gλ we have z0
λ in Zλ such that ‖gλ−z0

λ‖ = d(gλ,Zλ).
Let z0 = (z0

λ) ∈ Z . Now ‖g−z0‖V = γ(‖gλ−z0
λ‖) ≤ γ(‖gλ−zλ‖) for z = (zλ) ∈ Z , by

monotonicity of γ. Thus Z is proximinal in G. Set Y0 = ∩ni=1{x|A : x = (xλ) ∈ X and∑
λ∈Afiλ(xλ) = 0}. Then Y0 is a subspace of G, Z ⊂ Y0 ⊂ G. Now by Theorem 2.2, we

conclude that Y0 is proximinal in G. Again using the monotonicity of the norm γ it can

be easily seen that this implies that Y is proximinal in X.

Conversely we assume that every finite codimensional closed subspace Y ⊂X of the

form considered earlier is proximinal in X. Suppose infinitely many Xλ’s are nontrivial.

Then as in [4], we give an example of a subspace Y of X of codimension 2 such that Y
is not proximinal in X.

Construction of the example. Let γ be a norm which is not equal to the c0 norm.

In particular we take γ = �1. Assume without loss of generality that Λ=N and X = �1.

Then X∗ = �∞. Take f1 = (1,0,3/4,4/5, . . . ,n/(n+1), . . .) and f2 = (0,1,3/4,4/5, . . . ,
n/(n+1), . . .) in NA(X)={(αn)∈�∞ : there exists n0∈N such that ‖(αn)‖∞ =|αn0 |}.
Let x=(1,1,0,0, . . .). Then f1(x)= 1 and f2(x)= 1.

Since f1 and f2 are in NA(X), kerf1 and kerf2 are proximinal hyperplanes of X. Let

Y = ∩2
i=1 kerfi so that dim(X/Y) = 2. We show that Y is not proximinal in X. Clearly

d(x,Y)= ‖x|Y⊥‖ ≥ 1.

We now claim that d(x,Y) = 1. Select xn in R such that x1 = 1 = x2 and for n ≥ 3,

put xn =−(n+1)/n. Define yk in X for k≥ 3 by

yk(n)=


xn if n∈ {1,2,k},
0 otherwise.

(2.1)

Then fi(yk)= 0 for i= 1,2 and so yk ∈ Y for all k. Further ‖x−yk‖ = (k+1)/k→ 1

as k→∞. Hence d(x,Y)= 1. Now if there is a y0 ∈ Y such that ‖x−y0‖ = d(x,Y)= 1,

then f1(x−y0) = 1 = ‖x−y0‖ and f2(x−y0) = 1 = ‖x−y0‖. Since the first equal-

ity implies y0 = e1, clearly the second equality cannot hold. Thus Y is not proximinal.

We next show that any proximinal subspace of finite codimension in X = (⊕Xλ)c0 is

also a proximinal subspace of W = (⊕Xλ)�∞ . The proof uses ideas similar to the ones

given above and the well-known facts, X is a proximinal subspace ofW (this can be seen

by verifying the “3-ball property” and concluding proximinality as in [2, Proposition

II.1.1]) and that if Z1 and Z2 are two proximinal subspaces in X1 and X2, then Z1⊕�∞ Z2

is proximinal in X1⊕�∞X2.

Corollary 2.4. Let X = (⊕Xλ)c0 and let W = (⊕Xλ)�∞ . Let Y be a proximinal sub-

space of finite codimension in X. Then Y is proximinal in W .

Proof. We follow the notations used during the proof of the above theorem. Let

X1 = (⊕Xλ,λ∈A)�∞ and let X2 = (⊕Xλ,λ∉A)c0 . Then one can see as in the above proof Y0
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is proximinal in X1. Also as remarked above, X2 is proximinal in (⊕Xλ∉A)�∞ . It is easy

to see that Y = Y0⊕�∞X2. Therefore Y is proximinal in X1⊕�∞ (⊕Xλ∉A)�∞ =W .

Remark 2.5. Let Y be a proximinal subspace of finite codimension in X = (⊕Xλ)c0 .

Let Y1 be the finite codimensional subspace in W = (⊕Xλ)�∞ obtained by intersecting

the kernals of the same functionals that determine Y . Then by Theorem 2.3 we have

that Y1 is a proximinal subspace of W . We also get from the above corollary that Y is

proximinal in Y1.

Our next result substantially improves on the above corollary when the component

spaces are scalars. We retain the notations used above.

Proposition 2.6. Let Y ⊂ �∞(I) be a subspace of finite codimension determined by

finitely supported functionals in �1(I). Then Y is proximinal, under the canonical em-

bedding in �∗∗∞ (I).

Proof. We have that Y is a weak∗-closed subspace and hence proximinal in �∞(I).
Let X1 = (⊕Rλ,λ∈A)�∞ and X2 = (⊕Rλ,λ∉A)�∞ . We have as before Y = Y0 ⊕�∞ X2 and

�∞(I) = X1 ⊕�∞ X2. We next recall the well-known fact that any space of continuous

functions on a compact set is proximinal in its bidual, see [8]. Thus X2 which can be

identified as the space of continuous functions on the Stone-Cech compactification of

the index set, is proximinal in its bidual. AlsoX1 is a finite-dimensional space. Therefore

Y is proximinal in X1⊕�∞X∗∗2 = �∗∗∞ (I).

We now consider transitivity of proximinality among subspaces of finite codimen-

sion. We use the notation Y
p⊂X to indicate that Y is a proximinal subspace of X.

Definition 2.7. A Banach space X is said to be a P -space (Pollul space) if proximi-

nality is transitive for subspaces of finite codimension, that is, Y
p⊂Z p⊂X, and the fact

that both Y and Z are of finite codimension implies Y
p⊂X.

Well-known examples of P -spaces are c0 space, reflexive spaces. Also the space of

compact operators �(�2) on the Hilbert space �2 is a P -space. To see this, we note that

we have from [1, Lemma 4.2] that NA(�(�2)) is a linear space. Also from [1, Theorem

5.3] we know that �(�2) is an R(1)-space. It thus follows from [3, Corollary 5] that

�(�2) is a P -space. This answers [3, Question 2]. See [3] for more general results on

transitivity.

The following lemma gives a way of giving more examples of P -spaces.

Lemma 2.8. Let X be a P -space and let Y ⊂ X be a proximinal subspace of finite

codimension. Then Y is a P -space.

Proof. Let Z1
p⊂ Z2

p⊂ Y p⊂ X, where both Z1 and Z2 are finite codimensional sub-

spaces of Y . Since X is a P -space, Z2 is proximinal in X. Using the same reasoning this

time with Z2 and X, we see that Z1 is proximinal in X and hence in Y . Thus Y is a

P -space.

To motivate the results that we will be proving next we give the details of transitivity

of proximinality for c0. The proof we present here is simpler than the one in [3, 6].
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Lemma 2.9. Let X = c0 = (⊕R)c0 . Let Z
p⊂ Y p⊂X and dim(X/Y)=n<∞, dim(Y/Z)=

m<∞. Then Z
p⊂X.

Proof. We will give the proof when n = 1 and given the nature of proximinal sub-

spaces of finite codimension, the arguments are similar when n> 1. Let f ∈NA(X) be

such that Y = kerf . Clearly f has only finitely many nonzero terms.

Let Z
p⊂ Y , dim(Y/Z)=m. Let f1,f2, . . . ,fm ∈ Z⊥ ⊂ Y∗ be such that

Z = {y ∈ Y : fi(y)= 0 ∀i, 1≤ i≤m}. (2.2)

Here f1, . . . ,fm ∈ NA(Y). Let f̃1, . . . , f̃m be norm-preserving extensions of f1, . . . ,fm
onto X. Then

Z = {x ∈X : f(x)= 0, f̃i(x)= 0 ∀i, 1≤ i≤m}. (2.3)

As f1, . . . ,fm are norm-attaining functionals on Y , f̃1, . . . , f̃m are also norm attaining on

X, which implies Z
p⊂X.

The following corollary can also be deduced from some of our later results. However

we prefer to present a proof here using above ideas.

Corollary 2.10. Let X = (⊕Xλ)c0 , where each Xλ is a reflexive Banach space. Then

X is a P -space. Any proximinal subspace of finite codimension in X is also a P -space.

Proof. We suppose that Y andZ are closed subspaces ofX such thatZ
p⊂ Y p⊂X with

dim(X/Y) = n <∞ and dim(Y/Z) =m<∞. Then as before we can write Y and Z as

Y =∩ni=1 kerfi and Z =∩n+mi=1 kerfi where f1,f2, . . . ,fn+m ∈X∗. Let Zλ =∩n+mi=1 kerfi,λ ⊂
Yλ = ∩ni=1 kerfi,λ ⊂ Xλ. Then Zλ is proximinal in Yλ as well as in Xλ by reflexivity. So

by Theorem 1.1, Z is proximinal in X which completes the proof. The second assertion

follows from Lemma 2.8.

As seen in the above proof in the general case the main difficulty is to prove the

proximinality of Zλ in Xλ. We now give a positive result for the validity of transitivity

in the case of c0-direct sums. To state the result we need the following notation.

Let X = (⊕Xλ)c0 , where Xλ is a Banach space for each λ ∈ Λ. Let Y and Z be closed

subspaces of X such that Z ⊂ Y ⊂X with finite codimensions, that is, dim(X/Y)=n<
∞ and dim(Y/Z)=m<∞. Then we can write Z as Z =∩n+mi=1 kerfi, where fi = (fi,λ)∈
Z⊥ ⊂X∗ for 1≤ i≤n+m. Let Zλ =∩n+mi=1 kerfi,λ for λ∈Λ. Assume that if z = (zλ)∈ Z ,

then zλ ∈ Zλ for every λ∈Λ. Then we have the following.

Proposition 2.11. Suppose each Xλ in the above direct sum is a P -space. With the

above assumption on Z , if Z
p⊂ Y p⊂X, then Z

p⊂X.

Proof. We suppose that Z
p⊂ Y p⊂ X = (⊕Xλ)c0 . Since Z

p⊂ Y and Y
p⊂ X, there exists

fi ∈ NA(X) for 1 ≤ i ≤ n+m such that Y = ∩ni=1 kerfi and Z = ∩n+mi=1 kerfi in X. Let

Zλ =∩n+mi=1 kerfi,λ ⊂∩ni=1 kerfi,λ ⊂Xλ.
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We claim that Zλ is proximinal in Yλ =∩ni=1 kerfi,λ. Indeed let yλ ∈ Yλ. Now consider

ȳ = (0, . . . ,0,yλ,0, . . .). Then there exists z0 = (z0
λ)λ∈Λ ∈ Z such that d(ȳ,Z)= ‖z0−ȳ‖.

By our assumption z0
λ ∈ Zλ. We next show that z0

λ is a best approximation.

Let zλ ∈ Zλ and consider z = (0, . . . ,0,zλ,0, . . .), z ∈ Z . Now ‖yλ−zλ‖ = ‖ȳ −z‖ ≥
‖ȳ−z0‖ ≥ ‖yλ−z0

λ‖ which implies that z0
λ is a best approximation.

Therefore Zλ is proximinal in Yλ for all λ ∈ Λ. Thus Zλ is proximinal in Xλ by the

transitivity property of Xλ. By Theorem 1.1, Z is proximinal in X.

Conversely we have the following.

Proposition 2.12. LetX = (⊕Xλ)V be a P -space. ThenXλ is a P -space for each λ∈Λ.

Proof. Fix λ0 ∈ Λ and let Zλ0 and Yλ0 be closed subspaces of Xλ0 such that Zλ0

p⊂
Yλ0

p⊂ Xλ0 with dim(Xλ0/Yλ0) = n < +∞ and dim(Yλ0/Zλ0) =m < +∞. Now consider

Y = (⊕Yλ)V and Z = (⊕Zλ)V where

Yλ =


Xλ if λ≠ λ0,

Yλ0 if λ= λ0,
Zλ =



Xλ if λ≠ λ0,

Zλ0 if λ= λ0.
(2.4)

Clearly Z and Y are subspaces of finite codimension in X. It is easy to see that Z
p⊂

Y
p⊂X. Therefore Z

p⊂X since X is a P -space.

Now we claim that Zλ0

p⊂Xλ0 . Let xλ0 ∈Xλ0 . Consider x0 = (0, . . . ,xλ0 ,0, . . .)∈X. Then

there exists Z0 = (z0
λ) ∈ Z such that ‖x0−z0‖ = d(x0,Z). Now we show that z0

λ0
is a

best approximation of x0
λ0

from Zλ0 . Consider z = (0, . . . ,0,zλ0 ,0, . . .) where zλ0 ∈ Zλ0 .

Clearly z ∈ Z . Now ‖xλ0−zλ0‖ = ‖x0−z‖ ≥ ‖xλ0−z0
λ0
‖ which implies that z0

λ0
is a best

approximation of xλ0 from Zλ0 . Thus Zλ0

p⊂ Xλ0 . Hence Xλ0 is a P -space. Since λ0 is

arbitrary, the conclusion follows.

Remark 2.13. Identifying �(c0) as (⊕�1)c0 we see that as �1 is not a P -space (see

[3, page 137]), �(c0) is not a P -space.

We now prove that being R(1) is invariant under c0-direct sums. Using the same

arguments presented in the converse part of the following proposition, one can show

that this part holds for generalized direct sums also.

Proposition 2.14. Let X = (⊕λXλ)c0 . Then X is an R(1)-space if and only if each Xλ
is an R(1)-space.

Proof. Let Y ⊂X be a closed subspace of finite codimension and Y⊥ ⊂NA(X). Then

there exists f1, . . . ,fn ∈X∗ such that Y =∩ni=1 kerfi.
As fi ∈ NA(X), only finitely many coordinates of fi’s are nonzero for each i. Thus

fi = (fi,λ)λ∈Λ, fi,λ �= 0 for finitely many λ∈Λ.

It is easy to see that if a functional in X∗ with only finitely many nonzero coordinates

attains its norm, then each nonzero component functional attains its norm. Thus since

Y⊥ ⊂NA(X), following the notation of Theorem 1.1 we see that for any λ, Y⊥λ ⊂NA(Xλ).
We thus have Yλ is proximinal inXλ since eachXλ is anR(1)-space. Now by Theorem 1.1,

Y is proximinal which implies that X is an R(1)-space.
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To see the converse it is enough to consider the case X = X1⊕∞X2 where X is an

R(1)-space. Now let Y ⊂ X1 be such that Y⊥ ⊂ NA(X1) and Y⊥ = span{f1, . . . ,fk}. It is

easy to see that Y ′ = span{(f1,0), . . . ,(fk,0)} ⊂NA(X). Thus the preannihilator of Y ′ is

a proximinal subspace of X. Hence Y is proximinal in X1. Therefore X1 is an R(1)-space.

The following corollary allows us to give more examples of P -spaces. In particular it

shows that (⊕�(�2))c0 is a P -space. As mentioned before it also gives another proof of

Corollary 2.10. We omit its easy proof.

Corollary 2.15. Let X = (⊕Xλ)c0 , where each Xλ is an R(1)-space and NA(Xλ) is a

linear space. Then X has the same properties. In particular X is a P -space.

Remark 2.16. Proposition 2.14 does not hold for generalized direct sums. It is not

true even for �1-direct sums over infinite index. The same example presented in the

proof of Theorem 2.3 works in this case also.
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