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Wide and active usage of medical ultrasound can date
back to the 1960s, yet it is not low-tech or obsolete. After
decades of cooperative efforts from clinicians, researchers,
and engineers, medical ultrasound is experiencing rapid
developments in fields including optical-acoustic imaging,
ultrasound elastography, advanced materials/technologies
in ultrasonic transducers, ultrasound neuromodulation,
ultrasound-guided interventions, and ultrafast ultrasound
imaging. In this special issue on medical ultrasound, we have
invited 13 papers that address translational and emerging
clinical applications of medical ultrasound.

Specifically speaking, five papers in this special issue are
more of novel engineering techniques in medical ultrasound.
The only transducer paper titled “A High Frequency Geo-
metric Focusing Transducer Based on 1-3 Piezocomposite
for Intravascular Ultrasound Imaging” introduces a high
frequency geometric focusing piezocomposite transducer,
which can output high axial and lateral resolution and
subsequently improve the imaging quality. Then two papers
titled “A Modified 2D Multiresolution Hybrid Algorithm
for Ultrasound Strain Imaging” and “A Normalized Shear
Deformation Indicator for Ultrasound Strain Elastography in
Breast Tissues: An In Vivo Feasibility Study” are both focused
on ultrasound elastography. The first introduced a novel 2D
multiresolution hybrid method for displacement estimation,
to deal with the high compression scenario, while the second
one proposed a normalized shear deformation indicator,
which is proposed to boost breast lesion differentiation
via a subsample speckle tracking algorithm. Another two

papers titled “Machine Learning in Ultrasound Computer-
Aided Diagnostic Systems: A Survey” and “Differentiation
of the Follicular Neoplasm on the Gray-Scale US by Image
Selection Subsampling along with the Marginal Outline
Using Convolutional Neural Network” both apply machine
learning/artificial intelligence in medical ultrasound. The first
one is a review paper while the second is more specifically
dealing with thyroid cancer.

Eight more papers are included in this special issue, cov-
ering various new clinical applications of medical ultrasound.
Yet, four of them are more converged to musculoskeletal
studies, while the others are more diversified for applica-
tions. Specifically speaking, the first paper titled “Correlation
between Pathological Characteristics and Young’s Modulus
Value of Spastic Gastrocnemius in a Spinal Cord Injury
Rat Model” is about the pathological characteristics and
muscle stiffness of in rats with spinal cord injury using shear
wave sonoelastography technology. The second paper titled
“Automatic Myotendinous Junction Tracking in Ultrasound
Images with Phase-Based Segmentation” aims at automatic
localizing and tracking of the myotendinous junction, which
is crucial to quantify the interactive length changes of muscle
and tendon for understanding the mechanics and patho-
logical conditions of the muscle-tendon unit during motion
muscle contraction. The phase congruency was employed
to perceive and enhance ridge-like features in the detection
of tendinous tissues with Radon transform. The third paper
titled “Gear Shifting of Quadriceps during Isometric Knee
Extension Disclosed Using Ultrasonography” is also about
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image processing applications on muscle sonography, where
it is found that quadriceps contract with a gear-shifting
pattern under the protocol of isometric knee extension.
The fourth and the last paper on muscle that is titled
“Musculoskeletal Ultrasonography Assessment of Functional
Magnetic Stimulation on the Effect of Glenohumeral Sub-
luxation in Acute Poststroke Hemiplegic Patients” is more
clinical oriented and presented the application of muscu-
loskeletal ultrasonography on evaluation of the efficacy of
functional magnetic stimulation (FMS) in the treatment
of glenohumeral subluxation (GHS) in acute hemiplegic
patients.

The last four papers are on prenatal diagnostics, cancel-
lous bone, prostate cancer, and needle biopsy, respectively.
The first one titled “Ultrasound in Prenatal Diagnostics and
Its Impact on the Epidemiology of Spina Bifida in a National
Cohort from Denmark with a Comparison to Sweden” is
believed to cover the impact of prenatal ultrasound screening
on the incidence of a major malformation on a national level.
The second paper titled “Variability in Ultrasound Backscat-
ter Induced by Trabecular Microstructure Deterioration in
Cancellous Bone” investigates the relationship between ultra-
sonic backscatter and cancellous bone microstructure dete-
rioration and indicated that the ultrasonic backscatter could
be affected by cancellous bone microstructure deterioration
direction. The third paper titled “The Use of Ultrasound
Imaging in the External Beam Radiotherapy Workflow of
Prostate Cancer Patients” provides an updated review on the
status of prostate cancer ultrasound-guided external beam
radiotherapy treatments. The last paper titled “Contrast-
Enhanced Ultrasound Improves the Pathological Outcomes
of US-Guided Core Needle Biopsy That Targets the Viable
Area of Anterior Mediastinal Masses” presents results on
ultrasound-guided core needle biopsy to harvest sufficient
tissue with more cellularity that could be used for underlying
ancillary molecular studies and improve the pathologic yield.

Yongjin Zhou
Weibao Qiu
Zhihong Huang
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Background. Glenohumeral subluxation (GHS) is common in patients with acute hemiplegia caused by stroke. GHS and upper
limb function are closely related. Objective. Using musculoskeletal ultrasonography (MSUS) to objectively evaluate the efficacy of
functional magnetic stimulation (FMS) in the treatment of GHS in acute hemiplegic patients after stroke. Methods. The study
used prospective case control study. Stroke patients with GHS were recruited and assigned to control group and FMS group.
Control group received electrode stimulation at the supraspinatus and deltoid muscles of the hemiplegic side, while FMS group was
stimulated at the same locations. Before and after treatment, the distances of the acromion-greater tuberosity (AGT), acromion-
lesser tuberosity (ALT), acromiohumeral distance (AHD), supraspinatus thickness (SST), and deltoid muscle thickness (DMT) in
patients’ bilateral shoulder joint were measured by MSUS, respectively. Meanwhile, Fugl-Meyer Assessment (FMA) was used to
evaluate the improvement of upper limb function. Results. 30 patients were recruited. After FMS treatment, there was a significant
decrease in the difference value between ipsilateral side and contralateral side of AGT [t = 8.595, P < 0.01], ALT [t = 11.435,
P < 0.01], AHD [t = 8.375, P < 0.01], SST [t = 15.394, P < 0.01], and DMT [t = 24.935, P < 0.01], and FMA score increased
[t = —13.315, P < 0.01]. Compared with control group, FMS group decreased more significantly in the difference value between
ipsilateral side and contralateral side of AGT [t = 2.161, P < 0.05], ALT [t = 3.332, P < 0.01], AHD [t = 8.768, P < 0.01], SST
[t = 6.244, P < 0.01], and the DMT [t = 3.238, P < 0.01], and FMA score increased more significantly in FMS group [t = 7.194,
P < 0.01]. Conclusion. The study preliminarily shows that the MSUS can objectively and dynamically evaluate the treatment effect
of GHS in hemiplegic patients. Meanwhile, compared with control group, the FMS is more effective and has fewer side effects, and
the long-term effect of FMS is worth further study. This trial is registered with ChiCTR1800015352.

1. Introduction

Glenohumeral subluxation (GHS) is common in patients
with stroke and has an effect on the recovery of upper
limb motor function [1-3]. The incidence of GHS has been
reported from 17% to 84%; such a difference is mainly due
to different measurement methods [4, 5]. Musculoskeletal
ultrasonography (MSUS) plays an important role in the ner-
vous system, orthopedics, and rehabilitation as an imaging

model [5]. Its advantages include high accuracy, low cost,
real-time imaging, contralateral immediate comparison, and
radiation-free [6]. In recent years, it has replaced palpation
and plain radiograph [7] and become the main means to
assess shoulder abnormalities.

GHS can be assessed by measuring the distance between
the acromion and the humerus. Kumar et al. have confirmed
that MSUS measurement of acromion-greater tuberosity
(AGT) distance is reliable and effective in assessing GHS in
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hemiplegic patients [2, 8]. Park et al. found that increased
acromion-lesser tuberosity (ALT) distance was highly corre-
lated with GHS [4]. Previous studies have demonstrated the
validity and reliability of using MSUS to measure acromio-
humeral distance (AHD) for assessing GHS [9-13]. Nozoe
et al. have elucidated that the recovery of limbs function
can be assessed by measuring changes in the thickness of
dominated muscles before and after the treatments [14, 15].
Some researchers have confirmed the validity and accuracy of
using MSUS to measure muscle thickness [16-18]. Therefore,
we measured the change of AGT, ALT, AHD, and the
supraspinatus thickness (SST) and deltoid muscles thickness
(DMT) to evaluate the improvement of GHS and upper limb
function before and after the treatments.

Among reasons for GHS, the denervation of shoulder
muscles caused by brain injury is the main cause and,
under the action of gravity, the humeral head downward
out of the glenoid fossa [19]. Without timely and effective
treatment, GHS will get worse over time and eventually
become irreversible [20]. Thus, the treatment of GHS is
suggested as early and effectively as possible [21]. A number
of methods have been reported for the treatment of GHS,
such as shoulder slings, shoulder strapping, positioning, and
electrical stimulation [7, 22, 23]. Many studies have shown
that functional electrical stimulation (FES) is effective for the
treatment of GHS in acute hemiplegic patients [21, 22, 24, 25].
According to electromyographic studies, the supraspinatus
and deltoid muscles are the two key muscles that maintain
the head of the humerus in the glenoid fossa, so they are
the target spots of the FES treatment [21, 22]. However,
FES has some adverse reactions, for example, inducing pain,
dermatitis, and even skin burns. In addition, the role of FES
is very weak for the deep muscles and nerves, because its
stimulating scope is shallow [26, 27]. And FES is invalid in
chronic hemiplegic patients. Therefore, it is necessary to find
an alternative method.

Functional magnetic stimulation (FMS) has been used
to stimulate the muscles and peripheral nerves to promote
function recovery. A lot of researches have confirmed the
effectiveness of FMS in the aspects of gastric emptying, neu-
rogenic bowel, respiratory muscle conditioning, dysphagia,
urinary incontinence, and so on [28-32]. Okudera et al. have
confirmed that FMS can improve upper limb motor function
in healthy adults [27]. So we hypothesize that FMS may
reduce GHS and promote the recovery of upper limb function
in hemiplegic patients.

The purpose of our study was to, using MSUS, objectively
quantify the effect of FMS treatment on GHS in hemiplegic
patients with acute stroke. Compared with electrical stim-
ulation, maybe FMS can achieve the same or even better
therapeutic effects with lesser side effects.

2. Methods

2.1. Participants. Patients who were inpatient or outpatient
at the Physical Medicine & Rehabilitation Department of
the First Affiliated Hospital of Soochow University were
screened from August 2016 to May 2017. The inclusion criteria
were as follows: (1) stroke onset time of less than one
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month, (2) less than or equal to grade 3 of the upper limb
muscle strength in hemiplegic side, (3) stable vital signs, (4)
without aphasia or cognitive dysfunction, and (5) able to
sit upright independently (or with one person’s assistance).
And exclusion criteria were as follows: (1) history of shoulder
dysfunction, (2) combined with myogenic diseases or the
peripheral nervous system disease, (3) combined with severe
heart, liver, or kidney dysfunction, (4) pacemaker or metal
implantation, and (5) combined with severe coagulation
dysfunction.

The finger breadth palpation methods were used for
GHS diagnosis; that is, AHD is 1/2 fingerbreadth or more.
The degree of GHS is defined as follows: 0 degrees = no
subluxation, 1 degree = 1/2 fingerbreadth gap, 2 degrees =
1 fingerbreadth gap, 3 degrees = 1 1/2 fingerbreadth gap,
4 degrees = 2 fingerbreadth gap, and 5 degree = 2 1/2
fingerbreadth gap [5, 33]. Patients with a dislocation of 2
degree or more were included in the study.

2.2. Study Design. The study is a prospective case control
study. The recruited patients were assigned to control group
and FMS group. Basic information including age, gender,
duration of stroke, affected side, and type of stroke were
collected from patients and their guardians. The informed
consent was signed by patients themselves, and to those who
were unable to sign, their guardians were authorized to sign.
The study was approved by the Ethics Committee of the
First Affiliated Hospital of Soochow University. Screening
of eligible patients and collection of basic information were
done by one person in the research team.

2.3. Treatments. Both groups received conventional rehabil-
itation including active and passive motion, weight bearing
exercise, grasp, hold and release activities, and ADL activities,
45 minutes a day, consecutive 5 days a week, total for 4 weeks.
The conventional rehabilitation of all patients was done by
one therapist.

On the basis of conventional rehabilitation, control
group received stimulation by electrode stimulation device
(BA2008-III, Benao, China). Four electrodes were attached
to the places of the supraspinatus and deltoid muscles of the
hemiplegic side. And pulse of 200 and micro/s, duty cycle of
1:2, wave rise/wave drop of 2, and current of 50 mA were
applied. The FMS group used magnetic stimulator (MagPro
R30, Medtronic A/S, Denmark) connected with a 75 mm
figure-of-eight water-cooled coil (MCF-B65) to stimulate the
supraspinatus and deltoid muscles of the hemiplegic side.
Frequency of 5Hz with the stimulus intensity at 100% of
the resting motion threshold (MT) was applied. Each site of
each patient was stimulated for 20 minutes a day in both
groups. The treatments were consecutively conducted 5 days
a week for a total of 4 weeks. During the treatments, patients
were seated upright independently (or with one person’s
assistance) in a chair with forearms placing on their laps.
Two special therapists were, respectively, trained in one of the
treatments, to complete the patients’ treatment programs. In
FMS group no patient withdrawn during the treatments, but
in control group, there are 4 patients who failed to persist in
electrical stimulation due to pain.
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FIGURE 1: Anatomical structures: AC (acromion); LHTB (long head
tendon of biceps); the position and orientation of transducer; and
the ultrasound image: GT (greater tuberosity) and AGT (acromion-
greater tuberosity).

2.4. Clinical Evaluations. A portable diagnostic ultrasound
system (M-Turbo, ICTx, SonoSite, America) connected with
a 6-13 MHz linear array transducer was used to assess the
changes of GHS, AGT, ALT, AHD, SST, and DMT, respec-
tively, in the hemiplegic side and healthy side of shoulder
before and after the treatments. At the same time, we used
Fugl-Meyer Assessment (FMA) Scale to assess upper limb
function of the hemiplegic side in acute poststroke patients.

In the process of measuring these parameters, each
patient was placed in a standardized position [2]. Patients
were seated upright in a chair with their forearms placed
on their laps and the elbows unsupported. Each parameter
was measured three times and took the average by the same
specially trained sonographer before and after the treatments.
The parameters were measured on the frozen image using the
caliper on the screen. The depth of the ultrasonic transducer
was set at 3.5 cm for each measurement.

AGT. Place transducer on the lateral edge of acromion and
the lateral edge of long head tendon of biceps; scan the
shoulder along longitudinal axis of humerus. When the
lateral edge of acromion and the upper edge of greater
tuberosity simultaneously appear in the screen freeze the
image and measure AGT. We calculated the difference value
of AGT between ipsilateral side and contralateral side and
recorded (Figure 1).

ALT. Place transducer on the lateral edge of acromion and the
medial edge of long head tendon of biceps; scan the shoulder
along longitudinal axis of humerus. When the lateral edge of
acromion and the upper edge of lesser tuberosity simultane-
ously appear in the screen freeze the image and measure ALT.
We calculated the difference value of ALT between ipsilateral
side and contralateral side and recorded (Figure 2).

AHD. Place transducer on the anterior edge of acromion in
the coronal plane. When acromion and humerus head simul-
taneously appear in the screen freeze the image and measure
the shortest distance between acromion and humerus. We
calculated the difference value of AHD between ipsilateral
side and contralateral side and recorded (Figure 3).

FIGURE 2: Anatomical structures; the position and orientation of
transducer; and the ultrasound image: LT (lesser tuberosity) and
ALT (acromion-lesser tuberosity).

FIGURE 3: Anatomical structures; the position and orientation of
transducer; and the ultrasound image: HH (humerus head) and
AHD (acromiohumeral distance).

SST. Place transducer vertically at the midpoint of the
mesoscapula. Move transducer in parallel until identifying
the thickest cross section of supraspinatus, freeze the image,
and measure the distance of the thickest part of supraspina-
tus. We calculated the difference value of SST between
ipsilateral side and contralateral side and recorded (Figure 4).

DMT. We measure the thickness of the middle bundle rep-
resenting DMT in our research. Place transducer vertically
at the midpoint of the connection of acromion lateral edge
and deltoid tuberosity. Move transducer in parallel until
identifying the thickest cross section of deltoid muscle, freeze
the image, and measure the distance of the thickest part of
deltoid muscle. We calculated the difference value of DMT
between ipsilateral side and contralateral side and recorded
(Figure 5).

2.5. Statistical Analysis. Using SPSS19.0 software to do data
statistics and analysis, the data were expressed as mean value
+ standard deviation. T test was used to compare data and
P < 0.05 was statistically significant.
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TaBLE 1: Patients’ demographics.
Type of variable Control group FMS group P value
Age (years) 67.20 +£10.72 63.67 £15.09 0.146
Gender 0.418
Male 11.00 12.00
Female 4.00 3.00
Duration of stroke (days) 15.47 £2.72 13.87 £3.36 0.359
Affected side 0.224
Left 6.00 7.00
Right 9.00 8.00
Type of stroke 1.000
Hemorrhage 5.00 6.00
Ischemia 10.00 9.00
Degree of GHS 0.603
2 degrees 2.00 3.00
3 degrees 11.00 11.00
4 degrees 2.00 1.00

supraspinatus

FIGURE 4: Anatomical structures: mesoscapula; the position and ori-
entation of transducer; and the ultrasound image: SST (supraspina-
tus thickness).

FIGURE 5: Anatomical structures: DT (deltoid tuberosity); the
position and orientation of transducer; and the ultrasound image:
DMT (deltoid muscle thickness).

3. Results

3.1. General Information. A total of 34 patients were eval-
uated and treated, and 4 patients who failed to persist in

electrical stimulation due to pain were excluded. Finally, 30
patients (23 men, 7 women) with a mean age of 65 years
(range from 38 to 84 years) were eligible for the study. The
mean duration after onset was 15 days (range from 7 to 21
days). A summary of the demographic characteristics of the
patients is shown in Table 1. There is no difference between
the two groups with regard to age, gender, duration of stroke,
affected side, type of stroke, and degree of GHS (P > 0.05).

3.2. The Results of MSUS Measurement. Before treatments,
there were no differences statistical significance (P > 0.05) in
the value of AGT, ALT, AHD, SST, and DMT between control
group and FMS group. After treatments, there was a signifi-
cantly decrease in the difference value between ipsilateral side
and contralateral side of AGT, ALT, AHD, SST, and DMT in
both groups (Tables 2 and 3 and Figures 6(a)-6(d)). After 4-
week treatment, compared with control group, FMS group
decreased more significantly in the difference value between
ipsilateral side and contralateral side of AGT, ALT, AHD, SST,
and DMT (Table 4 and Figures 6(a)-6(d)).

3.3. The Results of FMA Assessments. We used the Sim-
plified Fugl-Meyer Motor Function Assessment Scale to
assess the hemiplegic upper limb function before and after
the treatments, respectively. Before treatments, there was
no differences statistical significance (P > 0.05) in FMA
score between control group and FMS group. After the
treatments, FMA score increased in both control group and
FMS group (Tables 2 and 3 and Figure 6(f)). After 4-week
treatment, compared with control group, FMA increased
more significantly in FMS group (Table 4 and Figure 6(f)).

4. Discussion

In our study, the results of MSUS preliminary proved in FMS
group, the gap between the ipsilateral side and contralateral
side of AGT, ALT, and AHD significantly decreased, and
SST and DMT obviously increased. At the same time, FMA
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TaBLE 2: Comparison between posttreatment and pretreatment in control group.

Pretreatment Posttreatment t value P value
Difference value of AGT 15.05 + 2.41 8.70 £1.43 8.766 0.000
Difference value of ALT 12.15 + 2.55 6.22+1.17 8.170 0.000
Difference value of AHD 3.11+0.37 2.20 +£0.15 8.762 0.000
Difference value of SST 6.61 + 0.63 337 +0.64 14.010 0.000
Difference value of DMT 8.76 +0.39 5.00 + 0.58 20.986 0.000
FMA score 20.00 +2.17 25.40 + 2.69 6.045 0.000

TaBLE 3: Comparison between posttreatment and pretreatment in FMS group.

Pretreatment Posttreatment t value P value
Difference value of AGT 13.75 + 3.44 5.70 +1.15 8.595 0.000
Difference value of ALT 12.30 + 2.64 3.93 +1.03 11.435 0.000
Difference value of AHD 2.78 £0.72 0.90 +0.49 8.375 0.000
Difference value of SST 6.54 +0.73 2.44 +0.73 15.394 0.000
Difference value of DMT 8.45 +0.36 413 +0.57 24.935 0.000
FMA score 22.00 + 2.54 33.47 £ 2.17 13.315 0.000

TABLE 4: Comparison between FMS group and control group.

FES FMS t value P value
Difference value of AGT 6.35 + 1.49 8.05 + 2.66 2.161 0.039
Difference value of ALT 593 +2.21 837 +1.78 3.332 0.002
Difference value of AHD 0.91 +0.31 1.88 £ 0.29 8.768 0.000
Difference value of SST 324 +0.44 4.09 +0.29 6.244 0.000
Difference value of DMT 3.76 + 0.60 4.32+0.29 3.238 0.003
FMA score 5.40 +1.80 11.47 £ 2.72 7.194 0.000

substantially improved in the hemiplegic upper limb. These
results show that the short time FMS treatment (4 weeks) can
obviously improve GHS of the hemiplegic patients with acute
stroke and promote the functional recovery of the patients’
paralyzed upper limbs. The changes in several indicators by
MSUS measurement, such as AGT, ALT, and AHD, as well as
SST and DMT, are consistent with the function of paralyzed
upper limb. These coincide with our previous assumptions.

Researches have shown that, in acute poststroke hemi-
plegic patients, paralysis muscles around the shoulder cannot
resist the gravity of upper limb and gradually result in GHS
[20, 23]. Soft tissue around the shoulder such as muscles,
ligaments, and capsule is going to be overstretched, leading
to the dysfunction of upper limb [2]. Therefore, our goal is to
use simple and effective rehabilitation therapies to restore the
activity of the paralyzed muscles, enhance its ability to resist
gravity, reduce GHS, and ultimately achieve the recovery of
upper limb function.

Electrical stimulation and magnetic stimulation tech-
niques have been widely used in the field of rehabilitation.
Our study results are consistent with previous studies that
FES is effective on reducing GHS and promoting the recov-
ery of upper limb function in acute hemiplegic patients
[21, 22, 24, 25]. After electrical stimulation treatment in
control group, the AGT and AHD of hemiplegic side were
remarkably decreased and FMA increased obviously in our
study. However, the mechanism has not yet been fully

understood. Perhaps by the stimulation of the muscle fibers
and peripheral nerves, the muscles contraction increases and
the coordination between agonistic and antagonistic muscles
improve and eventually achieve functional and beneficial
movement [20, 25], although the FES is effective on GHS
in acute (<6 months) hemiplegic patients but is not valid in
chronic (>6 months) ones [26, 34]. Perhaps the soft tissue
around the shoulder overstretched for too long time, and the
muscles atrophy is very serious, so it induced the GHS quite
difficult to recover. Several studies have also found that the
GHS can hardly get further improved after 6 weeks of FES
treatment [22, 35]. And follow-up studies have also shown
that there is no a positive long-term effect after FES [21, 34].
Because of the limitations and complications in the skin and
other aspects, its clinical application is limited.

While repeat transcranial magnetic stimulation (rTMS)
is a kind of brain stimulation techniques which has become
promising for the recovery of limbs function in hemiplegic
patients [36], it stimulates the cerebral cortex to regulate the
excitability of the central nervous system [37, 38]. Sohn et
al. have confirmed that rTMS has a certain effect on the
recovery of upper limb function in hemiplegic patients [36,
37]; however, there have some side effects to be reported, such
as induced epilepsy, tinnitus, and headache [39]. In order to
avoid these complications, more and more researchers have
studied its use in stimulating peripheral nerves and muscles,
and it is called functional magnetic stimulation (FMS).
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The FMS has been applied in some aspects of rehabili-
tation and achieved some curative effects [28-32]. Since the
FMS does not paste on the skin directly, it seldom causes skin
problems. However, the applications of FMS in reducing GHS
and promoting the recovery of upper limb function have not
yet been reported. Inspired by previous researches, our team
speculated that the FMS used in local hemiplegic shoulders

maybe produce the same or even better effect as electrical
stimulation. And this was confirmed in our study. After the
treatments for 4 weeks, compared with control group the
AGT and AHD in the hemiplegic side were significantly
reduced and the FMA scores increased in FMS groups.
These trends are more pronounced and coincide with our
previous assumptions. Since the magnetic field of FMS does
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not attenuate through the skin, it can act on deeper muscles
and peripheral nerves than electrical stimulation [40]. And it
is painless and causes no damage to the skin. In our study, we
found that pain and dermatitis appeared more or less in the
stimulation area of patients in control group, which did not
appear in FMS group.

Our previous studies have shown that MSUS measure-
ment of AGT is reliable and valid in assessing GHS in patients
with hemiplegia, which is in agreement with many other
researchers [41]. A lot of researches are done by Bladel et
al.,, and they found that it was valid and reliable to evaluate
the therapeutic effect of GHS by measuring changes in AHD
[9, 10]. McCreesh et al. have confirmed that MSUS is a
reliable and sensitive tool to identify AHD change [10-13].
From our study it can be found the AGT, ALT, and AHD
consistently reduced after the treatments, especially in FMS
group. The results not only show that FMS is more effective
than electrical stimulation, but also further illustrate the
correlation between ALT and GHS. The greater tuberosity
and the lesser tuberosity are adjacent, and the brachial biceps
long head tendon goes through the gap between them. It
is not difficult to measure ALT with MSUS. So, in addition
to measuring AGT and AHD with MSUS, we also assess
GHS by measuring ALT. It may be used as a supplement or
even become a more sensitive indicator. Although it has been
reported that ALT was highly correlated with GHS [4], its
validity and reliability of assessing GHS by ALT alone need
our further specialized researches to verify.

Muscle thickness affects muscle function and further
affects limb function [15]. CT and MRI have been the stan-
dard methods for accurate measurement of muscle thickness
[6,18]. But it has shortcomings of radio action, cost too much,
inconvenience, and so on. Nozoe et al. have pointed out
that MSUS measurement of muscle thickness is an effective
way to assess the limb function of hemiplegic patients [14].
Therefore, we considered whether it was possible to evaluate
the effect of FMS on the recovery of upper limb function
in GHS patients by measuring the SST and DMT by MSUS.
Dupont et al. have verified that MSUS can be used to measure
SST and DMT [18]. Our study shows that the thickness of the
two muscles significantly increase in both groups, especially
in FMS group. By stimulating the muscles and peripheral
nerves, FMS and FES can, on the one hand, maintain muscles
and peripheral nerves excitability and reduce disuse atrophy
and, on the other hand, feedback regulate and remodel
the corresponding functional areas of the cerebral cortex
to restore muscle contraction. The FMS can act on deeper
muscles and peripheral nerves than electrical stimulation,
making FMS a better treatment.

In addition, previous studies have shown that the change
of muscle thickness could be used as an indicator of muscle
atrophy [18]. However, in this study the change of muscle
thickness around the shoulder in hemiplegic patients is not
only caused by muscle atrophy alone. Because the recruited
patients were all at the early stage of hemiplegia, muscle
atrophy was not obvious in a short time. We have reasons
to believe that the more important reason is the paralyzed
muscles around the shoulder which are elongated due to the
separation of bone structure in GHS, making the muscles

become thinner. Therefore, from this point of view, SST and
DMT can also predict the extent of the GHS. Furth more,
in both control group and FMS group, the FMA scores of
upper limb function in hemiplegic side were significantly
improved after the treatments. Compared with control group,
it improved more significantly in FMS group. This is con-
sistent with the results of MSUS, thus further verifying the
relationship between each indicators of MSUS measurement
and limb function. These indicators may be used as an
objective basis for monitoring the degree of GHS.

Recently, some researchers have studied the synergistic
effects of different therapies on limb function recovery after
stroke and found that they were more pronounced than
single treatment [7, 42]. So the next step, we will study the
synergistic effects of FMS and some other therapies on GHS
and upper limb function in hemiplegic patients.

Of course, our research also has many limitations. First,
the sample size is not large enough. Second, the further
follow-up is needed to assess the long-term effect. Third,
whether FMS is effective in GHS in patients with chronic
hemiplegia is not validated. These questions deserved further
exploration and study.

5. Conclusion

The FMS is effective in the treatment of GHS in patients
with early hemiplegia, and compared with the electrical
stimulation, it is more effective. The mechanism, effectiveness
in chronic hemiplegia, long-term efficacy, and so on of the
new way, FMS, need further exploration. Meanwhile, the
changes in several indicators by MSUS measurement, such as
AGT, ALT, and AHD, as well as SST and DMT, are consistent
with the function of paralyzed upper limb. These indicators
may be used as an objective basis for monitoring the degree
of GHS. Furthermore, the validity and reliability of ALT,
SST, and DMT in assessing GHS and upper limb functional
require further proof.
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Displacement of the myotendinous junction (MTJ]) obtained by ultrasound imaging is crucial to quantify the interactive length
changes of muscles and tendons for understanding the mechanics and pathological conditions of the muscle-tendon unit during
motion. However, the lack of a reliable automatic measurement method restricts its application in human motion analysis. This
paper presents an automated measurement of MT] displacement using prior knowledge on tendinous tissues and MTJ, precluding
the influence of nontendinous components on the estimation of MT]J displacement. It is based on the perception of tendinous
features from musculoskeletal ultrasound images using Radon transform and thresholding methods, with information about the
symmetric measures obtained from phase congruency. The displacement of MTJ is achieved by tracking manually marked points
on tendinous tissues with the Lucas-Kanade optical flow algorithm applied over the segmented MT] region. The performance of
this method was evaluated on ultrasound images of the gastrocnemius obtained from 10 healthy subjects (26.0 + 2.9 years of age).
Waveform similarity between the manual and automatic measurements was assessed by calculating the overall similarity with the
coeflicient of multiple correlation (CMC). In vivo experiments demonstrated that MT] tracking with the proposed method (CMC =
0.97 +0.02) was more consistent with the manual measurements than existing optical flow tracking methods (CMC = 0.79 £ 0.11).
This study demonstrated that the proposed method was robust to the interference of nontendinous components, resulting in a
more reliable measurement of MT] displacement, which may facilitate further research and applications related to the architectural
change of muscles and tendons.

elasticity in mechanical demands during specific movement
tasks [2, 3]. Nevertheless, the MTU length calculated using

The muscle-tendon unit (MTU) that consists of muscles and
tendons plays an important role in force generation and
energetics during human movement [1]. The force generated
by the contractions of muscle fascicles is transmitted to
bones via tendons to control and regulate body motions.
The interaction between muscles and tendons takes place in
response to the effective utilization of the force and tendon

body segment length and joint kinematics is not a good
predictor of the muscle and tendon and their interaction
[4]. Recently, ultrasound imaging has become a prospective
field of research in comprehending the adaptation of mus-
cles and tendons as well as evaluating their function and
pathological status by monitoring the architectural changes
among muscles and tendons. Sonography has been used to
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examine muscle-tendon architectural changes in response to
motion [2, 3,5, 6], contraction [7, 8], aging [9, 10], pathologies
[11], and physical training [12, 13]. Ultrasound imaging
shows great potential in both diagnosis and rehabilitation by
assessing geometrical changes in muscles and tendons in vivo
[14-16].

Changes in tendon length and fascicle length are the
most often used structural parameters in ultrasound images
to quantify the modulation of interaction between muscles
and tendons and estimate the mechanical properties of ten-
dons. Using ultrasound to measure dynamic tendon length
changes, the Achilles tendon has been figured out to recoil
and stretch in the stance period of walking and take up most
of the MTU lengthening [17]. On the other hand, during
early stance of walking, the muscle fascicle operates over
the highest force region of the force-length curve with the
advantage of relatively greater force generation [3, 5]. The
rapid shortening of tendon structures has also been found at
the first stage of plantar flexion in the fast stretch-shortening
cycle exercise, enabling the working muscles to develop more
tension in relation to their force-velocity properties [18].
Previous research has pointed out that the mechanical energy
generated by the muscle was mainly stored in the tendinous
tissue which acts as a spring to store and return elastic
energy during human motion [2, 3, 5]. These morphometric
parameters are therefore of great importance to understand-
ing muscle-tendon architecture as well as its mechanism.
However, the analysis used in most of the previously reported
studies relied on the manual method that is time-consuming
and potentially prone to human error. Although some auto-
matic approaches have been developed to estimate the muscle
fascicle changes [19-29], there is still a lack of methods

for measuring the change of tendinous tissues. Moreover,
the muscular and tendinous structures are often obscured
by speckle noise, making it difficult to measure these
morphometric parameters accurately.

Tendon length changes in vivo are usually estimated
by tracking the displacement of the myotendinous junction
(MTJ) (Figurel), where the muscle is connected to the
tendon, that is, the distal end of the muscle [30]. Motion
between sequential images could be applied to quantify
the MT] displacement with the optical flow technique that
has been widely used in fields of computer vision such
as object segmentation and motion detection [31]. Spatial
cross-correlation has been employed to track the tendinous
displacement [32]. However, the regions of interest used in
the cross-correlation method may undergo irregular changes
in appearance or intensity, causing the failure to track the
displacement continuously. On the other hand, under the
assumption of homogeneous affine transformations in the
region of interest, the global affine transformation parameters
can be obtained to derive the changes of muscular and
tendinous structures using the Lucas-Kanade optical flow
algorithm [31]. The changes in fascicle length have been
identified with the Lucas-Kanade method by regarding the
selected fascicle region as a whole patch [20-22]. Recently, the
Lucas-Kanade method was adopted to track the aponeurosis
of the rectus femoris for estimating the muscle thickness [24].
Nonetheless, as shown in Figure 1, the motion of different
tissues connected in MTJ, including gastrocnemius medi-
alis (GM), gastrocnemius lateralis (GL), soleus (SOL), and
Achilles tendon, might violate the assumption of homoge-
neous affine transformations, resulting in an inaccurate esti-
mation of MTJ displacement when using the Lucas-Kanade
method.
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In this study, a novel automatic method is presented to
estimate the MT] displacement in consecutive ultrasound
images of GM by utilizing prior knowledge on the tendi-
nous tissues and MT]J. Based on the observation that the
tendinous tissues are distributed as continuous hyperechoic
bands in ultrasound images [33], the symmetric features
were first measured with the phase congruency, enabling the
segmentation of the effective MTJ region using the localized
Radon transform (LRT) and thresholding techniques. Under
the assumption of homogeneous affine transformations, the
global affine transform parameters are then calculated over
the effective MT] region, addressing the limitations of cur-
rently available Lucas-Kanade approaches. The displacement
of MTJ was finally estimated by tracking the connection of
muscle to Achilles tendon, that is, the intersection of two
aponeuroses. The automatic method for MTJ displacement
estimation is described in detail in the following section and
was tested with real ultrasound image sequences of the GM
MT] during the passive rotation of the ankle joint.

2. Materials and Methods

The flowchart of our proposed method for measuring MT] is
illustrated in Figure 2. The musculoskeletal ultrasound image
was first preprocessed with the phase congruency [34] to
measure the symmetric features, contributing to the detec-
tion of tendinous tissues. As shown in Figure 1, the MT] was
defined as the intersection of two aponeuroses, that is, near
the distal end of the muscle. The region containing the visible
MT] structure can then be separated from preprocessed data
using the prior anatomical information of MTJ to localize
the Radon transform [25] and Otsu method [35]. Under
the assumptions of homogeneous affine transformations, the
global affine transform parameters were calculated between
successive images from the Lucas-Kanade method [36] over
the segmented region, termed the effective MT] region. After
the displacements of the predefined points on the tendon and
aponeuroses were calculated from the global affine transform
parameters, the MT] was finally determined according to the
intersection of two aponeuroses (Figure 1). In cases where the
MTJ moved out of the view of ROI, the MT] was estimated by
linearly extrapolating both paths of aponeuroses in ROIL.

2.1. Preprocessing with Phase Congruency. In musculoskeletal
ultrasound images, the tendinous tissues, including aponeu-
roses and tendons, depict ridge-like hyperechoic bands [33],
representing an axis of local symmetry (Figure 1). Phase con-
gruency is a well-known illumination and contrast invariant
measure of symmetric features based on the local-energy
model [37]. Under the observation that the Fourier series
at points of symmetry is either at minima or maxima of
their cycle, symmetry in image intensity gives rise to special
patterns using phase congruency [34]. After the publication
of the phase congruency method [34], it has been investigated
extensively to construct descriptors for the ridge-like bone
surface localization [38, 39] and cardiac border enhancement
[40] in ultrasound images. In this work, we proposed to use
the phase congruency as a sensitive feature for the measure of
ridge-like tendinous tissues in ultrasound images.

Input

Apply phase congruency
to generate oriented phase
map image

l

Apply LRT and OTSU to get
effective MT] region Iy;py
for the consecutive images

Define points on the
tendinous tissues

Calculate the spatial and
temporal gradients with the
region Iyyry of two images

Use a least square fit to
estimate affine transform
parameters

|

Calculate the offsets of
tendinous points

l

Estimate the intersection
between tendinous tissues

!

Output

FIGURE 2: Flowchart of the proposed tracking algorithm.

The current state-of-the-art method is to use a quadra-
ture pair of filters to calculate the phase congruency [41-
44]. The log Gabor wavelet is the most common choice
of quadrature filters because it can achieve good feature
localization and noise compensation [41]. By taking the
responses of log Gabor wavelet over multiple scales and ori-
entations, the symmetric phase measure at each point in the
image can be calculated according to the following equation
[41]:

PS(x, )

L S W (@) A (o) e (0| = lons (e ] - T, (D
ZrZsArs(x’y)+8 '

where e, (x, y) is the even symmetric part and o,,(x, y) is the
odd symmetric part of the filter at orientation r and scale s. At
a point of symmetry, the absolute value of e, will approach 1
and the absolute value of o, will be near 0, and vice versa. € is
a small real number to avoid division by zero, T, is the noise
threshold, and |-] denotes the operation |z] = z ifz > 0;
otherwise, |z] = 0. W(x, y) is the weighting factor based on
frequency spread that reduces phase congruency at locations
with a narrow frequency component. A, (x, y) is the ampli-
tude of wavelet response with a given scale and orientation
at point (x, ).
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FIGURE 3: An example showing the oriented phase map: (a) original musculoskeletal ultrasound image contains MT7J; (b) the oriented phase

map of the image.

Moreover, the angular range of tendinous tissues has
been reported to be about —10° to 10° [45]. Phase con-
gruency with specified central orientation, called oriented

TW () A, (6) |

phase congruency, could be used to further measure
ridge-like tendinous tissues, which is calculated as fol-
lows:

g (6 )]~ o (59| - T,

, 2)

PSOrient (x’ y) =

where g, is the specified orientation range covering [-10°,

10°]. The parameters used in computing phase congruency,
such as W(x, y), A, (x,y), and T,, were based on those
presented in [41]. Figures 3(a) and 3(b) show an example of
an original image and its corresponding oriented phase map,
respectively.

2.2. Effective MT] Region Segmentation. Both aponeuroses
and fascicles are distributed as line-like structures in mus-
culoskeletal ultrasound images [19, 20]. The oriented phase
congruency thus enhanced the ridge-like features of not only
tendinous tissue but also part of fascicles in GM and SOL
muscles. Nevertheless, the tendinous tissues are represented
as continuous hyperechoic bands in the ultrasound image
[33], while the fascicles are usually not uniformly distributed
as line-like structures [46], which makes the depiction of
tendinous tissue quite distinct from that of fascicles in the
oriented phase map (Figure 3(b)). Moreover, the MT] is
the site of connection between tendons and muscles. As
illustrated in Figure 1, the MTJ] was observed to be the
intersection of two aponeuroses, being used to localize the
Radon transform over the oriented phase map. Motivated
by the aforementioned observation on tendinous tissues and
MT]J, the LRT was employed to roughly determine the MT]
region from the oriented phase map [25]. The LRT over
Euclidean space is defined as

xmax ymAx
Rioc (9’ P) = J J PSorient (XJ’) 3)
X, Ymin

-8(p—xcosO - ysinf)dxdy,

min

A, (xy)+e

where PSgieni(%, ¥) is the oriented phase map at position
(x, y) and § is the Dirac delta function. p and 0 denote the
distance from the center of the image to the straight line and
the angle between the x-axis and the line perpendicular to
the straight line, respectively. Only the points x;, < x <
Xpax and Yoo <y <y in image space and 0, <
0 < 0. in Radon space are calculated in LRT. The same
revoting strategy [47] was conducted to extract line features
one by one and remove all phase maps close to the detected
lines. According to a previous study [45], the angular range
was set to be —10° < 0 < 10° for performing LRT. In
addition, based on the prior knowledge on MTJ structure
(Figure 1), the position and orientation of the detected lines
were used to determine the proper range of the locations
and the orientation where other aponeuroses and tendons
are supposed to be found. Moreover, the average diameter of
tendinous tissues of GM tendon and aponeuroses has been
reported to be about 2.5 mm [48]. The removing width was
then empirically determined to be 2 mm in this study.

After localization and revoting procedure, lines inter-
secting near MTJ could be identified from the Radon space
obtained from the oriented phase map. Figure 4(a) presents
an example of LRT on the oriented phase map as shown
in Figure 3(b). However, a common limitation of phase-
based techniques is the poor localization on blurred features,
affecting the localization of detected lines and MTJ. As
illustrated in Figure 4(b), the intersection determined by the
lines from the phase map was not well located at the actual
MT]J. Therefore, in this study, instead of directly locating the
MTJ by LRT, the effective region of MT] was segmented
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(c)

(d)

FIGURE 4: An example of effective MT] region segmentation from the image shown in Figure 3: (a) the LRT results on the oriented phase map
shown in Figure 3(b); (b) the intersection of LRT on the image shown in Figure 3(a); (c) the result of the tendinous region; (d) the effective
MT] region segmentation result. Yellow lines are the lines detected by LRT on the oriented phase map. The circles of yellow and red represent
the MTTJ identified by the intersections of LRT and manual measurements, respectively.

from the oriented phase map by combining the LRT and
Otsu method, enabling the reliable tracking of MT] with the
Lucas-Kanade method. Based on previously reported average
diameters of tendinous tissues [48], a distance threshold T,
to the detected lines was firstly set to 2.5mm to exclude the
nontendinous region and determine the tendinous region
[r. The Otsu method was then employed to calculate the
global threshold T, on the oriented phase map over the
tendinous region I'y. The final effective MT] region Typ;(x, y)
was derived as follows:

Dury (x, )’)

1, (x’ )/) € I‘T’ PsOrient (x’ y) < TOtsu (4)

0, otherwise.

Figures 4(c) and 4(d) illustrate the tendinous region I’
and the corresponding effective MT]J region Ty on the
ultrasound image (Figure 3(a)), respectively.

2.3. Automatic MT] Tracking Using Lucas-Kanade Optical
Flow Method. The MT]J could be identified as the intersec-
tion of two aponeuroses near the distal end of the muscle
(Figure 1). The points on the aponeuroses were used to

determine the position of MT]J, which could be manually
defined by identifying the aponeuroses skeleton in the first
frame, and then tracked using the Lucas-Kanade method for
the subsequent images. Let I(x, y) denote the gray-level value
at pixel (x, y); the image constraint equation between time ¢
and t + At is

I(x, y,t) =1(x+Ax,y+ Ay, t+At). (5)

With the assumption of small movement between adjacent
images, the image constraint at I(x, y,t) with Taylor series
can be expressed as

I(x+Ax,y+ Ay, t+At)

(6)
=1(x,y,t)+ %Ax+ ?)—}I/Ay+ %At+£,

where ¢ is the higher-order term. It follows that

oI oI ol

a—xAx+ @Ay+gAt:IxVx+IyVy+ItVt =0, (7)
where V, and V, are the x and y components of the velocity
or optical flow of I(x, y,t) and I, I,,,and I, are the derivatives
of I with respect to x, y, and t. In Lucas-Kanade optical



flow method [21], the image velocity is defined by six affine
transform parameters:

d+sl s2+r
(Vx,Vy):[x y lx|s2-r d-s1|, (8)
vxt vyt

where the affine flow parameters vxt and vyt are the optical
flow at the origin in the x- and y-directions, respectively,
d is the rate of dilation, r is the rate of rotation, sl is the
shear along the main image axis, and s2 is the shear along
the diagonal axis.

Under the assumption of homogeneous affine trans-
formations, the six affine transform parameters could be
determined from a least square fit using the given spatial and
temporal gradients over the whole region between adjacent
images [31]. The x and y grids along with the spatial and
temporal gradients were resampled (every 3 pixels) to reduce
the computation cost in the least square fit [21]. However, the
visible nontendinous components and speckle noise in the
selected region were not taken into account in this resampling
method, which may violate the hypothesis of homogeneous
affine transformations in the whole selected region, resulting
in the inaccurate estimation of the global affine flow parame-
ters. Therefore, we proposed a simple and automatic method
to calculate the affine transform parameters over the effective
MT] region Iy obtained using the prior information of
MT]J, to achieve both reliable calculation and economical
computation cost for the least square fitting process. Only
the spatial and temporal gradients in Tyy; were applied to
calculate the affine transform parameters via a least square
fit, which could reduce the error caused by the nontendinous
components and speckle noises. The predefined points were
then applied to determine the position of aponeuroses by
calculating their displacements from the affine transform
parameters. Finally, according to the definition of MT]
(Figure 1), the intersection of two aponeuroses was calculated
to measure the displacement of MT]J. In cases where the MT]
moved out of the view of ROI, the MTJ was estimated by
linearly extrapolating both paths of aponeuroses in ROI.

2.4. Experiment. Ten healthy adults (age: 26.0 + 2.9 years; 6
males and 4 females; weight: 70.4 + 11.5 kg; body mass index:
22.8 + 2.2kg/m?) with no history of musculoskeletal injury
were recruited in an experimental study to demonstrate the
feasibility of the proposed method. This study was approved
by the Regional Ethics Committee, Stockholm, Sweden. All
subjects signed informed consent before participation in the
study.

The subjects were instructed to lie in a prone position with
their knee flexed at 20° and their foot fixated to a footplate
connected to a dynamometer (Figure 5). Only the right foot
was tested in the convenience of the experimental setup.
Shoulders, hips, legs, and the tested foot were adequately
fixated, while paying special attention to securely strapping
the foot to the footplate. The ankle joint was carefully
aligned with the dynamometer axis of rotation using a laser
device. In the initial position, the footplate was positioned
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FIGURE 5: Illustration of the experimental setup during the passive
rotation test of the ankle joint.

perpendicularly to the tibia of the subject, which was defined
as 0° ankle rotation. In the following, plantar flexion of the
foot will be expressed in negative (—) angles, and dorsiflexion
of the foot will be expressed in positive (+) angles. The ankle
of all participants was passively rotated between —20" and
10° several times to familiarize the movement. For the actual
experiment, the ankle was rotated five consecutive times at a
constant velocity of 5°/s within the range of motion (ROM).
All participants were instructed to stay relaxed during the
passive rotation experiments.

During the passive ankle rotation, the excursion of the
MTTJ of GM was recorded using an ultrasonography system,
while the corresponding ankle angle was recorded by the
dynamometer at 5kHz. The position of MTJ at 0° ankle
rotation was selected for the initial position to calculate MT]
displacement. The positive (+) displacement expresses that
the MT] moves distally during dorsiflexion and vice versa
(Figure 1). An ultrasound scanner (Vivid Q, GE Healthcare,
Milwaukee, W1, USA) with a linear transducer was utilized
to capture MT] excursion, which was sampled at 40 frames/s
with an image resolution of 0.11 mm/pixel. The ultrasound
transducer probe with a frequency of 3.5-10 MHz and a
field of view of 53 mm was optimally positioned parallel to
the tendon in the sagittal plane, and the ultrasound image
plane was therefore aligned with the longitudinal axis of
the tendon. The MTJ displacement was automatically esti-
mated with our proposed approach developed using Visual
Studio (Microsoft Corporation, Washington, USA) in the
present study. To evaluate the performance of our proposed
method, the traditional Lucas-Kanade method [36] was also
applied to track the MTJ displacement. Moreover, manual
measurements of MTJ displacement were performed three
times in each image by a single expert who was experienced
in ultrasound imaging of muscles and blind to the automatic
measurement results. According to the definition of MT]
displacement, line segments representing tendinous tissues
were manually drawn in each ultrasound image to obtain an
estimate of MTJ and its movement. The mean value of the
manual displacement measurements was used to compare
with the automatic measurements.
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TABLE 1: The CMC values between the manual and automatic
methods for the measurement of MT] displacement.

CMC value between

CMC value between
manual measurement and

manual measurement and

Subject  automatic measurement .
by the Lucas-Kanade 1e)tutomatlc measurement
method y the proposed method
A 0.88 0.97
B 0.91 0.99
C 0.57 0.94
D 0.72 0.96
E 0.73 0.97
F 0.95 0.96
G 0.87 0.97
H 0.79 0.99
I 0.70 0.94
] 0.78 0.97

2.5. Data Analysis. Values were reported as mean (+SD)
for all subjects unless otherwise stated. The manual mea-
surements of MT] displacement were used as a reference
for comparison with the automatic measurements. The intr-
aclass correlation coefficient (ICC) was used to test the
intraobserver repeatability of manual measurement [49]. The
waveform similarity between the manual and automatic mea-
surements was assessed by calculating the overall similarity
with the coefficient of multiple correlations (CMC) [50, 51],
with a range of 0 and 1. More similar waveforms have
higher CMC values, whereas highly dissimilar waveforms
can result in a CMC near 0. Student’s paired t-test was
applied to test the difference between the CMC values of the
proposed method and the Lucas-Kanade method. Moreover,
Bland and Altman’s method of differences [52] was applied
to test the agreement between the manual and automatic
measurements. In addition, polynomial regression analysis
was applied to describe the association between the ankle
angle rotation and MTJ displacement. Pearson’s product-
moment correlation (r) was calculated for the regression
analysis. The level of significance was accepted at p < 0.05.

3. Results

As shown in Table 1, the CMC value (0.79 +0.11) determined
by the Lucas-Kanade method ranged from 0.57 and 0.95,
while the proposed method had a CMC value (0.97 + 0.02)
ranging from 0.94 to 0.99. The difference in the CMC
value between these two approaches was significant (p <
0.05). Figure 6 shows a typical example of MT] displacement
measured with the proposed approach, for which Lucas-
Kanade method failed to track the excursion in MTJ. Since
the tendinous structures in the image were not taken into
account, such errors could not be avoided when the whole
selected region was used to estimate the affine transform
parameters (Figures 7(b) and 7(c)). On the other hand, our
proposed tracking approach only used the effective tendinous
region to calculate the affine transform parameters, thus

=-=--Proposed Method
CMC proposed = 0.99 :

e — Manual Me
CMC cas xanade = 0.79 Manual Method
16 7CMC (g = 0.77 - - Traditional Lucas-Kanade Approach

l LRT With Phase. M}
12

MT]J displacement (mm)

0 5 10 15 20
Time (s)

FIGURe 6: The MTJ displacement obtained with the proposed
method, the traditional Lucas-Kanade approach, the LRT with phase
map, and the manual method during the passive rotation test of the
ankle joint for subject H.

avoiding the influence of nontendinous components and
speckle noise (Figures 8(b) and 8(c)). The CMC values
also suggested that the automatic measurement with the
proposed method was more consistent with the manual
measurement compared with the Lucas-Kanade method.
Figure 6 also illustrated that the poor localization of phase-
based techniques degraded the accuracy of MTJ localization
when directly using LRT to detect the MTJ on the oriented
phase map. As shown in Figure 9, the Bland-Altman plot
between the manual and automatic measurements indicated
a low mean difference (0.2 mm) and the symmetrically dis-
tributed difference around mean difference was within limits
(£1.96 SD = 0.65 mm), suggesting a good agreement between
the measurements obtained by our proposed method and
the manual method. Additionally, the intraobserver tests of
manual MT] measurements showed good repeatability, with
the ICC being 0.91 + 0.03 (p < 0.001). These results support
the conclusion that the proposed approach was reliable for
the estimation of MT] displacement.

The MTJ displacement shifted nonlinearly with the
change of ankle angle during passive ankle rotation. Figure 10
demonstrates the changes MT] with the change in ankle angle
for one typical subject. When the ankle angle was rotated
from —19.26 + 0.06° to 11.64 + 0.05°, the MTJ] measured
with the proposed method was moved from —8.22 +2.03 mm
(proximally) to 3.97 + 1.27 mm (distally) and was correlated
with the ankle joint angle (r = 0.99+0.01, all p < 0.001). Also,
the average computation time for the estimation of fascicle
length with the proposed method in the ~400 x 400 pixel
region was about 2~3 sec for each frame using a computer
with an Intel Core 7 2.60 GHz processor and 4 GB of memory.

4. Discussion

We have developed a novel automatic method to track the
MTTJ displacement in sequential musculoskeletal ultrasound
images. The combination of phase congruency with LRT
made it feasible to segment the effective MT] region from
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MTIJ Displacement: 0.0 mm

——

MTJ Displacement: 0.7 mm

FIGURE 7: The measurement of MT] displacement for subject H using traditional Lucas-Kanade approach: (a) the MTJ in the 1st frame
manually defined with the lines (white line); (b) the measurement of MT] at frame 275; (c) the measurement of MT] at frame 764.

MT]J Displacement: 4.4 mm

MTFBisplacement: 3.9 mm

FIGURE 8: The measurement of MTJ displacement for subject H using the proposed approach: (a) the MTJ in the Ist frame manually defined
with the lines (white line); (b) the measurement of MTJ at frame 275; (c) the measurement of MTT at frame 764.
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FIGURE 9: Bland-Altman plot of the MT] displacement measured
with the proposed method and manual measurements.

ultrasound images using the prior knowledge of MTJ struc-
ture. A more reliable calculation of global affine transform
parameters was then achieved using the Lucas-Kanade opti-
cal flow algorithm over the effective MTJ region since it
precluded the influence of nontendinous components as well
as speckle noise on the motion estimation of points on
the tendinous tissues. The in vivo experiment results show
that MTJ could be reliably tracked in continuous ultrasound
images, which were in good agreement with those obtained
by manual measurement and correlated well with kinematic
data, such as ankle angle.

The key element in the proposed method is to utilize
prior knowledge of MTJ structures in the musculoskeletal
ultrasound images. Tendons are made up of collagen fibers
and flattened wide tendons are known as aponeuroses that
are often found in series with a tendon [33, 53]. Both tendons
and aponeuroses are distributed as continuous hyperechoic
bands with specified orientation in the ultrasound image
[33, 45], representing an axis of local symmetry. As an
illumination and contrast invariant measure of symmetric
structures, phase congruency can be employed to perceive
and enhance ridge-like features [34], which is beneficial for
the detection of tendinous tissues using Radon transform.
Moreover, MT] is the specific site of connection between
tendons and muscles [54], which can be identified as the
intersection of two aponeuroses in ultrasound images [55,
56]. With the consideration of the poor localization of
phase-based techniques, the locations and the orientation
of tendinous tissues and MT] were used to facilitate the
segmentation of MT] obtained with LRT and Otsu methods.
The prior knowledge of MTJ structures, therefore, allows
for easier detection of the effective MT] region from the
musculoskeletal ultrasound images, which can be applied as
a preprocessing step for the tracking of MTJ displacement.

The estimation of affine flow parameters over the effective
MTTJ region could avoid the accumulation of errors caused
by inhomogeneous deformation across the area of interest
between consecutive images. The proposed method segments
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FIGURE 10: The displacement of MT] during the passive rotation test
of the ankle joint for subject A: (a) the change of MTJ and ankle angle
with time; (b) the cross-correlation between MTJ displacement and
ankle angle.

visible MTJ structures from the whole image for the calcu-
lation of global affine transform parameters, thus obviating
the impact the nontendinous components and speckle noise.
On the other hand, the original Lucas-Kanade method with
the whole region, including MT] structure, nontendinous
components, and speckle noise, might cause the inaccu-
rate estimation of affine transform parameters, resulting in
accumulated measurement errors of MT] displacement. The
overall high CMC value (0.97 + 0.02) demonstrated that the
results of the proposed method were more consistent with
the manual than that of the original Lucas-Kanade method
(0.79 £ 0.11). The significantly larger CMC value for the
proposed method (p < 0.05), compared with the Lucas-
Kanade method, also suggested that this approach had a
better performance in tracking MTJ displacement.

In this study, the average excursion of MT] was —8.22 +
2.03 mm with the plantar flexion angle reaching 19.26 +0.06°,
and MT] was moved distally by 3.97 + 1.27 mm for an ankle
angle of 11.64 + 0.05°. These results were in line with those
reported in previous work [56, 57]. The average displacement
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of MTJ was reported to be 14 mm from 20° plantar flexion to
10° dorsiflexion [56]. Additionally, the greater displacement
in the females reported in [57] was also found in our study,
implying lower muscle stiffness in females than in males
[57, 58]. In the previous study of muscles and tendons, the
changes in tendon length can be obtained by subtracting MT]
displacement from MTU length change estimated using ankle
joint angle [59]. Therefore, it is feasible to generalize the use
of MTJ displacement into tendon length change analysis with
the proposed method, which would facilitate an improved
understanding of the structural and bioelectrical properties
of muscles and tendons during motion.

However, the method proposed in this study still had
some limitations. Firstly, errors might be introduced if the
assumption that tendinous tissues being tracked conform to
homogeneous affine transformations does not hold. Given
the promising results, it seems that this assumption holds
true when tracking the planar movement of tendinous tissues
during passive motion. Further studies should be conducted
to take account of both changes in local shape and global
shape, thus improving the tracking accuracy of MTJ. In
addition, manual initialization of points on the tendinous
tissues might also affect the results of MT] estimation.
The automatic initialization should be further investigated
in future studies with better detection of line and corner
features in musculoskeletal ultrasound images. Furthermore,
a two-point representation may not properly account for the
Achilles tendon curvature. The Achilles tendon is almost
straight in the dorsiflexion region; as the ankle joint angle
changes, the Achilles tendon becomes slightly curved, result-
ing in an approximately 3% underestimation of tendon length
with the plantar flexion angle reaching 30” [55]. Thus, this
effect is likely to be a minor factor in measuring MT] and
tendon length in daily human movements. Nevertheless, it
would be ideal if the algorithm was able to track multiple
points along a tendinous tissue for curvature measurement
in the future.

5. Conclusions

We have successfully developed a robust method for auto-
matically tracking MTJ displacement in a series of GM
ultrasound images with the prior knowledge about the distri-
bution and shape of tendinous tissues and MT]. The proposed
method, therefore, precluded the influence of nontendinous
components on the calculation of affine transform parame-
ters over effective MT] region segmented by combining phase
congruency with LRT and thresholding methods, resulting in
a more reliable estimation of MTJ displacement. The results
showed a good agreement between the automatic and manual
measurements. This approach obviated subjective manual
measurements, reducing the variations in measurements. We
expected that the proposed method would provide an effec-
tive way to analyze the functionality of muscle-tendon unit
in human kinetics as well as force generation analysis. Future
studies with a large cohort of subjects, including patients
with musculoskeletal abnormalities, will be conducted to
further illustrate the potential of this new approach for the
full understanding of muscle as well as tendon mechanism.
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The performance of the newly proposed method can also be
further enhanced by taking account of both changes in local
shape and global shape in future studies.
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Ultrasonography has been widely employed to estimate the morphological changes of muscle during contraction. To further
investigate the motion pattern of quadriceps during isometric knee extensions, we studied the relative motion pattern between
femur and quadriceps under ultrasonography. An interesting observation is that although the force of isometric knee extension
can be controlled to change almost linearly, femur in the simultaneously captured ultrasound video sequences has several different
piecewise moving patterns. This phenomenon is like quadriceps having several forward gear ratios like a car starting from rest
towards maximal voluntary contraction (MVC) and then returning to rest. Therefore, to verify this assumption, we captured several
ultrasound video sequences of isometric knee extension and collected the torque/force signal simultaneously. Then we extract the
shapes of femur from these ultrasound video sequences using video processing techniques and study the motion pattern both
qualitatively and quantitatively. The phenomenon can be seen easier via a comparison between the torque signal and relative spatial
distance between femur and quadriceps. Furthermore, we use cluster analysis techniques to study the process and the clustering
results also provided preliminary support to the conclusion that, during both ramp increasing and decreasing phases, quadriceps
contraction may have several forward gear ratios relative to femur.

1. Introduction of thickness [3-6], fascicle length [2, 6-10], pennation angle
[2, 7, 8, 10-12], and cross-sectional area [2, 13, 14]. Dick
and Wakeling recorded medial gastrocnemius tendon length,
fascicle length, pennation angle, and thickness using ultra-
sonography and muscle activation using surface EMG during
cycling [15]. They identified muscle force, and not velocity,
as the mechanistic driving factor to allow muscle gearing
to vary depending on the contractile conditions. All these
works show the potential of using data and quantitative

approaches to help understand the nature and functional

Muscle behavior in vivo is an essential problem to be
resolved. Commonly used techniques for measuring muscle
activities from different aspects include electromyography
(EMQG) [1], dynamometers, and ultrasonography [2]. Surface
EMG is the most widely used tool for indirect assessment
of mechanical activity of muscle, but it fails to disclose
muscle’s morphological changes. Dynamometers are devices
for quantitative measurement of muscle, such as torque

and power, but they cannot provide muscle’s morphological
information yet. Due to the quality of real-time imaging,
widespread availability, and low cost, ultrasonography has
been increasingly employed as a clinical and research tool to
study the in vivo behavior of the quadriceps muscle from the
morphological point of view, such as architectural changes

implications of in vivo dynamic body movement. Quadriceps
is always a focus as it is crucial in walking, running, jumping,
and squatting. Wei et al. reported an image-based method
to find the contour of the center tendon of rectus femoris
quantitatively [16]. However, the knowledge about relative
movement between quadriceps and femur during dynamic
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contraction remains unclear. The aim of this study is to
quantify this movement for further understanding of muscle
contraction mechanism.

As a matter of fact, in the data from a previous study
[16], a phenomenon like shifting gear of a car was observed
visually from time to time. Simply speaking, when the torque
increases linearly, femur is frequently noticed to move around
several relatively fixed positions. To verify this assumption,
we repeated the experiment and recorded both the torque
signal and the movement of femur under ultrasonography.
Then, some established image processing techniques were
used to disclose the gear shifting phenomenon.

2. Materials and Methods

2.1. Subjects and Experiment Protocol. Eight healthy male
subjects (mean + SD, age = 28.5+0.6 years; body weight 67.3+
1.7 kg; height = 171.8 + 0.6 cm) volunteered to participate in
this study. No participants had a history of neuromuscular
disorders, and all were aware of experimental purposes and
procedures. The human subject ethical approval was obtained
from the relevant committee in the authors’ institution, and
informed consent was obtained from subjects prior to the
experiment.

The testing position of the subject was in accordance
with the User’s Guide of a Norm dynamometer (Humac/
Norm Testing and Rehabilitation System, Computer Sports
Medicine, Inc., Massachusetts, USA). Each subject was
required to put forth his maximal effort of isometric plantar
flexion for a period of 3 seconds with verbal encouragement
provided. The maximal voluntary contraction (MVC) was
defined as the highest value of torque recorded during the
entire isometric contraction. The MVC torque was then
calculated by averaging the two recorded highest torque
values from the two tests. The subject was instructed to
generate a torque waveform up to 90% of his MVC, using
ankle plantar flexion movements in prone position. The
torque was measured by the aforementioned dynamometer
and the reason for choosing 90% MVC as the highest value
was to avoid muscle fatigue.

2.2. Data Acquisition and Data Processing. A real-time B-
mode ultrasonic scanner (EUB-8500, Hitachi Medical Cor-
poration, Tokyo, Japan) with a 10 MHz electronic linear
array probe (L53L, Hitachi Medical Corporation, Tokyo,
Japan) was used to obtain ultrasound images of muscles. The
long axis of the ultrasound probe (EUB-8500) was arranged
perpendicularly to the long axis of the thigh on its superior
aspect, 40% distally from the knee. As the position of probe-
quadriceps is fixed, the movement of femur reflects the
contraction of quadriceps. The ultrasound probe was fixed by
a custom-designed foam container with fixing straps, and a
very generous amount of ultrasound gel was applied to secure
acoustic coupling between the probe and skin during muscle
contractions, as shown in Figure 1. The probe was adjusted
to optimize the contrast of muscle fascicles in ultrasound
images. Then the B-mode ultrasound images were digitized
by a video card (NI PCI-1411, National Instruments, Austin,
USA) at a rate of 25 frame/s for later analysis.
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Humac/Norm system Ultrasound probe

FIGURE 1: Experimental setup including the torque and ultrasound
image data collection modules.

Eight sequences of musculoskeletal ultrasound images
were acquired and the number of frames per sequence was
240 images. All images were cropped to remove equipment
tags in the images and keep the image content only using a
home-made software. All data were processed offline using
programs written in Matlab R2010b (Math Works, Natick,
MA, USA) on a Windows-based computer with a P4 (3 GHz)
processor and 2 GB memory.

2.3. Image Filtering and Femur Segmentation. In this study,
the shapes of femur are extracted automatically by two
steps. The ultrasound images are first denoised using guided
filter. Then, the femur in a sequence is segmented by using
an active contour model, named implicit active contours
driven by local binary fitting energy (LBF) [17]. To reduce
the computation time and improve the accuracy of femur
extraction, we located the region of interest (ROI) as a
rectangle which could enclose the femur of the whole image
sequence, and the subsequent operations are applied on this
region rather than the whole image. The rectangle is expected
to be small but able to contain the femur of the sequence.
Ultrasound images are usually affected by speckle noise
[18], and the edges of femur are not clear in most images,
which make it hard for the segmentation algorithm to
recognize the accurate boundaries of femur. To handle
this problem, we use a filtering algorithm, named guided
filtering, for image smoothing and noise reduction before the
segmentation step. This filter has edge-preserving smoothing
property like bilateral filter but does not suffer from the
gradient reversal artifacts. The derivation and details of the
guided filtering algorithm can be found in Appendix A.
Although images are smoothed after guided filtering,
intensity inhomogeneity still exists in ultrasound frames.
Hence, we adopted implicit active contours driven by local
binary fitting energy (LBF), to extract boundaries of femur
from ultrasound images. In this model, a kernel function
is introduced into a data fitting energy, so that intensity
information in local regions is extracted to guide the motion
of the contour, which thereby enables the model to cope with
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intensity inhomogeneity. The details and implementation
of the LBF model are introduced in Appendix A. In this
study, level set of each frame is initialized as two rectangles
enclosing the femur. Then contours of femur will be extracted
by evolving the level set iteratively using LBF model.

2.4. Analysis of Femur Motion. To study the motion of
femur, we use the contours in the previous step to generate
corresponding segmentation images for the femur. Figure 5
is an overlapped plot of segmentation results in a knee
extension process. In this figure, different color represents
the duration time of the femur staying at this location and
one may easily observe that the femur mainly stays at several
positions. Figure 6 is a schematic drawing of a cross-sectional
view of the quadriceps in which A, B, and C are different
stages of femur motion. To see the motion in detail, we
draw the overlapped plot of femur movement in both muscle
contraction and relaxation stages in Figure 8(a) and plot
an example of torque signal and related x y coordinates in
Figures 8(b) and 8(c). In order to further study the process, we
used optimal detection of change-points (ODC) algorithm
[19] to cut the process into different clusters. The reason
of using ODC is that the motion is a temporal continuous
process and ODC algorithm can cover this continuity by
design. The results and discussion of clustering can be found
in the next section.

The flowchart of the proposed strategy mentioned above
is illustrated in Figure 2.

3. Results and Discussion

3.1. Image Filtering and Femur Segmentation. After acqui-
sition of ultrasound frames, images were focused on the
ROL, and then guided filter and LBF model were applied to
smooth the image and extract the femur, respectively. In our
numerical experiments, window radius r and regularization
parameter ¢ for guided filter are selected as 8 and 0.4%,
respectively. And for femur segmentation using LBF model
we empirically adopted parameters as follows: A, = 1,1, = 2,
v = 0.001 x 255 x 225, y = 1, 0 = 10, and time step At = 0.1.
All parameters are empirical values and applied to frames
of all subjects. The explanation and usage for mentioned
parameters can be found in the Appendices.

A representative example of selected RO, filtered image,
and segmented femur are shown in Figure 3. And a repre-
sentative example of femur segmentation process using LBF
evolution model is shown in Figure 4.

3.2. Discussion. After segmentation of femur, an interesting
phenomenon could be found where (shown in Figure 5),
corresponding to one ramp increasing and decreasing of
quadriceps, femur relative to the ultrasound sensor in a
sequence mainly concentrated at several positions which are
shown as *A, B, and *C. To further investigate the detailed
motion and its relationship to torque changing, in Figure 8,
we draw the overlapped plot of femur movement in both
muscle contraction and relaxation stages in (a), plot the
torque signal in (b), and plot the x y coordinates of the femur
centroid movement in (c). Then we use optimal detection of

Frame reading

|

ROI selection

|

Guided filtering

l

Femur segmentation
using LBF model

l

Femur centroid
calculation

Last frame read?

Cluster analysis

End

FIGURE 2: Flowchart of the proposed strategy for processing an
ultrasound image sequence.

Selected ROI Filtered image

Segmented femur

Original image

FIGURE 3: A representative result of ROI selection, guided filtering,
and femur segmentation.

change-points (ODC) method [19] to cut whole process into
different stages using torque signal and x y coordinates. We
can see the motion of femur and the torque changing have
very different behaviors. The torque signal, which is shown in
Figure 8(b), can be mainly divided into three stages which are
corresponding to muscle contraction, relaxation, and resting,
respectively, and, in each stage, the torque changes almost
linearly, while, in Figures 8(c) and 8(d), the plotted x and y
coordinates of femur centroid movement can be viewed as
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(a)

(®)

(©)

FIGURE 4: A representative set of results of LBF model for femur segmentation. (a) Original image with initial contour. (b) Curve evolution

result after 2 iterations. (c) Final contour after evolving stopped.

FIGURE 5: A representative statistical result of femur position in a
sequence, where *A, B, and *C are the positions the femur mainly
stay at.

more stages than torque changing. When the torque signal
changes into another stage, the motion of femur also changes
to another stage which makes sense. Interestingly, we can
observe that when the torque linearly increases or decreases
in a stage, the trend of femur movement is not fixed and can
be further divided into several stages. This stage changing
reminds us of gear shifting in a car where there might also be
a gear shifting of femur in the extension process. Therefore,
to further investigate this phenomenon quantitatively, we
use cluster analysis methods to study the behavior of femur
movement. We first cut the process using torque signal into
three stages, that is, contraction, relaxation, and resting. (The
contraction stage and relaxation stage are separated by peak
torque while the relaxation stage changes to resting stage
when the torque signal reduced to less than 0.05.)

As we are studying the extension process, we only focus
on contraction and relaxation stages. Both contraction and
relaxation stages are clustered into three phases by ODC.
Clustering results are displayed in Figure 7 and the six clusters
are represented by #A, #B, #C, #C', #B', and #A’, in which
#A, #B, and #C correspond to beginning, middle, and ending
of contraction stage and #A’, #B', and #C' correspond to
beginning, middle, and ending of relaxing stage. In Table 1, we

Rectus femoris

Vastus lateralis
Vastus medialis

Vastus intermedius

FIGURE 6: Schematic drawing of a cross-sectional view of the quad-
riceps shows the femur movement during a contraction-relaxation
process of quadriceps, where A, B, and C are the main stages of femur
movement.

first summarized the variances of each cluster in all subjects.
In this table, we also included their rankings. Interestingly, in
the relaxation phase, we find that #B’ has the largest variances
for 7/8 subjects, #C' has the median variances for 6/8 subjects,
and #A’ has the smallest variances for 7/8 subjects. The
variance of a group represents the moving speed of the femur
in this cluster and we may conclude that the moving speed of
femur changes in a fixed pattern in relaxation phase. In the
contraction phase, the property is not very clear, but we can
still notice that the femur generally moves faster in #A than in
#B and #C. At all events, from the clustering results, we can
find that the clusters in the same contraction or relaxation
phase have different properties whereas the torque signal
keeps linear changing. #A and #A', #B and #B’, and #C and
#C' are considered as pairs as they have similar torque signal
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TABLE 1: Variances of clusters.
Subject #A #B #C #C' #B' #A'
1 15.4 Medium 18.7 Large 3.9 Small 86  Medium  24.0 Large 5.5 Small
2 3.9 Small 26.8 Medium 76.5 Large 23 Small 18.8 Large 8.6 Medium
3 19.0 Large 4.3 Small 15.3 Medium 5.8 Small 36.0 Large 10.1 Medium
4 28.1 Medium 6.7 Small 55.6 Large 71 Small 10.3 Medium 11.0 Large
5 270 Large 5.0 Medium 3.1 Small 8.5 Small 19.0 Large 14.2 Medium
6 69.9 Large 14.1 Medium 1.3 Small 34 Small 41.9 Large 10.2 Medium
7 72 Small 17.9 Large 15.7 Medium 4.0 Small 243 Large 9.7 Medium
8 16.2 Large 73 Small 15.1 Medium 4.0  Medium 31.7 Large 4.0 Small
TaBLE 2: Cluster distance between contraction group and relaxation group.
Subject , Euclidean diste,ince (mm) ,
#A-#A #B-#B #C-#C
1 17.3 13.6 3.1
2 14.6 13.5 10.8
3 16.9 2.1 6.6
4 12.6 17.5 8.3
5 26.2 4.7 5.8
6 12.1 2.7 2.3
7 2.9 9.8 6.6
8 52 0.4 6.7
Mean 11.3 5.0 5.7
——
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and, therefore, in Table 2, we also summarized the distances
among them. Another interesting phenomenon can be seen
from Table 2 that distances between clusters #A and #A' are
much larger than distances of other pairs. This can support
the early suggestion that complete relaxation of muscle takes
time. In many cases, muscle morphology has not returned to
the initial condition although torque has done.

To sum up the points which we have just indicated, the
main finding of this study could conclude that quadriceps
movement is nonlinear and the relative position between
the quadriceps and femur is piecewise with the change of

Frame number

—— x coordinate
—— y coordinate

(¢) x y coordinates of femur centroids

FIGURE 8: (a) Overlapped plot of muscle contraction and relaxation
stages, (b) torque signal, and (c) x y coordinates of femur centroids.

torque during one contraction-relaxation. In other words, the
contraction of quadriceps may have gear shifting mechanism
during isometric knee extension.



4. Conclusion

In this paper, we observed a gear shifting pattern of quadri-
ceps. To validate our observation, we proposed a systematic
strategy to analyze the isometric knee extension process
via ultrasonography, video processing, and related signal
processing techniques. Analysis results provide preliminary
support for the phenomenon. To our knowledge, the present
study is the first report to describe the gear shifting motion
pattern during quadriceps contractions in human skeletal
muscles.

However, there are still several limitations of this study.
The number of participants is small. In future work, larger
dataset would allow making further validation.

Appendix
A. Details of Guided Filtering Algorithm

The key assumption of the guided filter is that the filter output
q is a linear transform of the guidance image I in a window
wy, centered at the pixel k:

g =al; +b, Vieaw, (A1)

where (a;,b,) are some linear coeflicients assumed to be
constant in a square window wj, with a radius 7.

To determine the linear coeflicients, the following cost
function is minimized in the window:

E(a.b) = Z ((ain tb-p) + eakz) :

i€wy

(A.2)

Here ¢ is a regularization parameter, I and q are identical and

given as the input ultrasound image. The solution to (A.2) can

be given by linear regression:

(N0l Yiew, Libi — Pr
o7 +e

A
(A.3)

be = Py — bl
Here, gy and o} are the mean and variance of I in wy, |w| is
the number of pixels in w;, and p; = (1/|wl) Y, p; is the
mean of p in wy.

So after computing (ay, by ) for all patches wy, in the image,
we compute the filter output by

1
q; = @l Z (al; + be) -

ki€wy

(A.4)

B. Details of Local Binary Fitting Model

Consider the input image I : O — ?, where Q is the image
domain. Let ¢ be the level set of a Lipschitz function; the
gradient decent flow equation of the LBF energy functional
is defined as

op _
= = 0.(#) (hiey ~ 1,,) +96, (9)

. V¢>) (2_.<V¢>>
div| — divi — | |,
(|v¢| O gl

(B.1)
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where A, A,, v, and y are positive constants, K, is a Gaussian
kernel function with parameter o, 8, is the smooth Dirac
function with parameter ¢ = 1.0, and e; and e, are the
functions as follows:

er()= | Kyl £ O dy
¢ (B2)
e, (x) = L K, (y-x)[1(x) - £, (y)|" dy.

where K, is the Gaussian kernel with standard deviation o,
and f,, f, are given by

K,y (x) * [H, (¢ () I ()]
K, (x) » H, (¢ (x))

K, (x) * [1- H, (¢ (x)) I (x)]
Ka (X) * [1 - He (¢ (x))]

In practice, the Heaviside function H is approximated by a
smooth function H, defined by

fl(x):

(B.3)

frlx) =

1 2
Hs(x):—[1+—arctan(f>]. (B.4)
2 m €
The derivative of H, is the following smooth function:
] 1 &€
0. (x) =H, (x) = et (B.5)
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The ultrasound imaging is one of the most common schemes to detect diseases in the clinical practice. There are many advantages
of ultrasound imaging such as safety, convenience, and low cost. However, reading ultrasound imaging is not easy. To support the
diagnosis of clinicians and reduce the load of doctors, many ultrasound computer-aided diagnosis (CAD) systems are proposed. In
recent years, the success of deep learning in the image classification and segmentation led to more and more scholars realizing
the potential of performance improvement brought by utilizing the deep learning in the ultrasound CAD system. This paper
summarized the research which focuses on the ultrasound CAD system utilizing machine learning technology in recent years. This
study divided the ultrasound CAD system into two categories. One is the traditional ultrasound CAD system which employed the
manmade feature and the other is the deep learning ultrasound CAD system. The major feature and the classifier employed by the
traditional ultrasound CAD system are introduced. As for the deep learning ultrasound CAD, newest applications are summarized.

This paper will be useful for researchers who focus on the ultrasound CAD system.

1. Introduction

For decades, ultrasound image has been extensively applied
in the detection of different diseases because of its high
safety and high efficiency [1-3], such as the breast cancer, the
liver cancer, the gastroenteric disease [4], the cardiovascular
diseases [5], spine curvature [6], and the muscle disease [7, 8].
However, it requires years of experience and training to read
ultrasound image. The amount of training to be an excellent
radiologist is high. In this background, the CAD became a
powerful tool to assist radiologists diagnosing. The original
CAD system was used to diagnose the breast tumor in the
1960s [9]. The CAD system helps the doctors and radiologists
to diagnose from two views. One view is their experience; the
other is the view of the computer. The application of CAD
system improves the accuracy of diagnosis, reduces the time
consumption, and decreases the load of doctors [10].

There are two important aspects of CAD research which
are “Detection” and “Diagnosis,” respectively [11]. “Detec-
tion” is defined as the technology to locate the lesion region
of the image. It aims to reduce the observational burden of
medical staffs. “Diagnosis” means the technology to identify
the potential diseases. It aims to provide additional support
for clinicians. In most of the CAD systems, the “Detection”
and “Diagnosis” are associated. In the “Detection” phase,
the lesion is segmented from the normal tissues, and in
the “Diagnosis” phase, the lesion is evaluated to produce a
diagnosis.

The ultrasound CAD system also consists of “Detection”
and “Diagnosis.” The ultrasound CAD system can be divided
into four phases: image preprocessing, image segmentation,
feature extraction, and lesion classification. Figure 1 shows
the general flowchart of ultrasound CAD system.
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FIGURE 1: The general flowchart of CAD system.

In this article, we present an overview of recent develop-
ments in ultrasound CAD to support future studies. There
have been many studies which summarized the research of
ultrasound CAD [10, 12, 13]. Reference [10] presents a detailed
overview of the breast ultrasound CAD research, and [12]
presents an overview of liver ultrasound CAD researches.
However, both of them ignored many new technologies of
the deep learning which is one of the most revolutionary
technologies in recent years. In this study, we present an
overview of the traditional ultrasound CAD system and
the ultrasound CAD system which applies deep learning
technology. As for the traditional CAD system, this study
focuses on the feature and the classifier. As for the deep
learning ultrasound CAD system, the newest applications
of deep learning technology in ultrasound CAD system are
summarized.

2. Traditional Ultrasound CAD System

2.1. Feature. As for the traditional ultrasound CAD system,
the feature selection and extraction are indispensable steps
[29]. The effective features can improve the accuracy and
decrease the computational complexity of the system. As for
ultrasound CAD system, the collection of data is difficult. If
the dimension of features is high and the size of the dataset
is small, there will be “curse of dimensionality” occurring
[30]. Thus, the selection of features is an important step for
traditional ultrasound CAD system. The feature adopted by
traditional ultrasound CAD can be divided into four cat-
egories: texture, morphologic, model-based, and descriptor
features.

2.1.1. Texture. The texture is one of the most common features
in the ultrasound CAD system. Texture features can reflect
the character of the lesion surface. A few general utilized
features are shown as follows.

Laws Texture Energy (LTE). This feature utilizes the local
masks to detect the texture types [31]. In general, the size of
masks is 5 x 5. The energy of texture is calculated by the local
masks and represented by a vector.

Contrast of Gray Level Values. This feature is a measure of local
variations in the image. It can be defined as

CON=Y (i~ j)’ Py (i), "
L]

where P, (i, j) is the probability of the pixel value (i, j) lying at
distance d in the image.

Gray Level Cooccurrence Matrix (GLCM). GLCM reflects the
distribution of cooccurring pixel grayscale values at a given
offset. GLCM is a common feature in CAD system. The
methods in [32, 33] have utilized GLCM to extract the texture

features for breast tumor classification. The GLCM can be
defined as

ijP; (i, j) —m,m
COR=ZJ d( ]) x y’ (2)

S35
where m,, m,, S2,and Si, are defined as
e = YiY R (i),
P
m, =) jd Pa(ij),
7] 1
Se =20 Palij) -
P

§y = 2D Pa(is j) = .
] 1

3)

Local Binary Pattern (LBP). LBP is proposed by T. Ojala, M.
Pietikdinen, and D. Harwood. It can reflect the local texture of
ultrasound image. The LBP is defined in a 3x3 neighborhood.
The center of the neighborhood is taken as the threshold.
The other 8 gray values are compared to the threshold. If the
value is larger than the threshold, that pixel will be marked
by 1; otherwise, it will be marked by 0. In this approach, every
3 x 3 neighborhood will be transformed into an 8-bit binary
number [34]. LBP possesses the rotation invariance and gray
scale invariance.

Wavelet Features. This feature is derived from the wavelet
transform of the ultrasound image. The wavelet transform
is a generally used method in ultrasound image processing.
The method in [21] utilized the wavelet packet transform to
extract texture feature for the liver disease classification.

2.1.2. Morphology. Compared with the texture feature, the
morphologic feature is more focused on the lesion. We
summarized some common morphologic features as follows.

Spiculation. This feature reflects the smoothness of lesion
margin. Reference [35] proposed a method to measure the
speculation, which defined the spiculation as the ratio of
low-frequency area to high-frequency area. This value is
proportional to the possibility of the tumor being malignant.



BioMed Research International

FIGURE 2: The equivalent ellipse (orange line) of a benign breast
lesion.

Depth-to-Width Ratio. Depth-to-width ratio is an active
feature for the classification of many tumors, which has been
widely employed by many studies [1, 36]. The depth is defined
as the largest difference between the y-axis values of two
points on the margin of the tumor. The width means the
largest difference between the x-axis values of two points on
the margin of the tumor. As for the malignant tumor, the
depth-to-width ratio is usually larger than 1, and the ratio of
benign tumor is usually smaller than 1.

Elliptic-Normalized Circumference (ENC). ENC s the circum-
ference ratio of the equivalent ellipse of the tumor which is
defined as the ratio of the circumference of the ellipse to its
diameter [3]. Figure 2 shows an example of equivalent ellipse
of a benign breast lesion.

Elliptic-Normalized Skeleton (ENS). ENS is the number of
skeleton points which are normalized by the perimeter of
the equivalent ellipse. The larger the ENS is, the higher the
possibility of malignancy is [3].

Long Axis-to-Short Axis Ratio (L : S). This feature is defined as
the ratio of long axis to short axis. The long axis is the major
axis of the equivalent ellipse, and the short axis is the minor
axis of the ellipse [3].

2.1.3. The Feature Based on Statistical Model of the Backscat-
tered Echo. The model-based feature is one of the unique
features of ultrasound images. It reflects the character of the
backscattered echo from tissues. Scholars utilized different
models to simulate the echo of backscatter. The parameters
of these models are employed as tools to classify the tumors.

Nakagami Model-Based Features. Nakagami model is one of
the most common models of backscattered echo, which can
be utilized to simulate different backscattered distributions.
The parameter of Nakagami model is defined by the statis-
tics of the backscattered echoes. The authors in [37] have
attempted to utilize the Nakagami parameter as a feature to
classity the breast lesion.

K-Distribution Model-Based Features. The feature based on
K-distribution model is also widely used in ultrasound
CAD system. Reference [38] utilized the parameter of log-
compressed K distribution to classify the breast tumor. The
experiment in [38] compared the performance of the method

employing K-« feature to the method without K-« feature.
The result shows that the performance of method utilizing
K-« feature is higher than the method without K-« feature.

2.1.4. Descriptor Features. The descriptor feature is usually
summarized from the experience of clinicians. As for dif-
ferent applications, the descriptor feature is different. For
example, as for the breast tumor, most of the descriptor
features come from the breast imaging reporting and data
system (BI-RADS) lexicon. But as for the thyroid nodules,
most of the descriptors are attributes in thyroid imaging
reporting and data system (TI-RADS) lexicon.

Shape (Round, Owval, or Irregular). Shape is a universal
descriptor feature for classification of many tumors [2]. The
regular shape like round and oval usually means that the
tumor is benign. The shape of malignant tumor is always
irregular.

Calcifications (Absent or Present). In general, there are more
calcifications or microcalcifications in malignant tumor than
in benign tumor.

Posterior Shadow or Posterior Echo. The posterior shadow
or posterior echo reflects the characteristic of the posterior
region of the tumor, where gray value is smaller than the
region of the surrounding.

Echo Characteristic. This feature reflects the model of echo
in the ultrasound image including hypoechoic, isoechoic,
hyperechoic, and complex. The echo signal of different tissues
shows different characteristic in the ultrasound image [39].

2.2. Classifiers. Most of ultrasound CAD systems are
designed to classify the lesion such as the breast tumor,
liver fibrosis, and thyroid nodules. The classifier is one of
the most important parts in the lesion classification. After
the selection and extraction of features, many classifiers
are adopted to classify the ultrasound images. This section
introduced the major classifiers employed by the ultrasound
CAD system.

2.2.1. Linear Classifier. Linear discrimination analysis (LDA)
[40] and logistic regression (LOGREG) [41] are two of the
most widely used linear classifiers in the ultrasound CAD
system. LDA is proposed by Fisher and is extensively used in
medical image analysis [32, 42]. It aims to find the best linear
combination of the features to divide the data into several
categories. LOGREG is proposed by David Cox. It is a regres-
sion method which takes the feature as the argument and
takes the category as the dependent variable. Both of the LDA
and LOGREG are widely applied in medical field [43, 44].
However, the performance of the linear classifier is limited by
the distribution of data. If the data is nonlinearly separable,
the performance of linear classifier will be unsatisfactory.

2.2.2. Bayesian Classifier. The Bayesian classifier is one of the
most frequently used methods in the machine learning field.



It can utilize the prior information of data to estimate the
posterior information. The most famous Bayesian classifier
is the Naive Bayesian Classifier (NBC). NBC is based on the
Bayesian theorem. It hypothesizes that the feature of samples
is conditionally independent. There are only a few parameters
of NBC which are required for estimation through the
statistics of samples. Due to the advantage of insensitivity to
data, NBC is widely applied in social information analysis and
medical field. Reference [45] utilized the NBC as a classifier
to distinguish the cardiovascular US images. The accuracy of
the method reached 96.59% [45].

2.2.3. Support Vector Machine. The support vector machine
(SVM) is a method in statistics and computer science to
analyze data and recognize pattern. It is a supervised learning
method which can be applied in both of classification and
regression. The target of SVM is to build a hyperplane to
divide the sample into different categories [46]. It utilized
the kernel functions to map the original data into the higher
dimensional space to find the decision hyperplane. SVM is
widely applied in the analysis of ultrasound images [15, 47-
49]. SVM can perform well in both of small dataset and
large dataset. However, as the size of dataset increases, the
complexity of SVM also grows. Meanwhile, the choice of
kernel function also influences the performance of SVM.

2.2.4. Decision Tree. The decision tree is an effective algo-
rithm for classification of ultrasound images [25, 50]. It can
learn a classification rule from disorder data. Decision trees
algorithm adopts the divide-and-conquer strategy to divide
search space of problem into several subsets. The structure
of decision tree is a flowchart. From top to bottom, every
node calculates the feature value of input sample to decide
which node to go to next. In leaf nodes, the final result of
classification is given [51]. When the size of data is small and
the feature value is not diverse, the construction of decision
tree is simple and fast. However, if the size of data is large and
the feature value is various, the complexity of decision tree
algorithm will be huge.

2.2.5. Artificial Neural Network. Artificial neural network
(ANN) is the machine learning model which is designed
according to the human nervous system. In general, the
architecture of ANN can be divided into three layers: the
input layer, the hidden layer, and the output layer. The layer
consists of the neuron. The number of the hidden layers and
the number of the neurons in each layer are flexible. One
of the most famous ANN is the back-propagation neural
network (BPNN) [52]. BPNN is a feed-forward ANN with
supervised learning process. It is widely used in the medical
image analysis [53-55]. The train of ANN is a self-adaptive
process. If the architecture is complex, it will take plenty of
time to train the network.

2.2.6. AdaBoost. AdaBoost is one of the most popularly
used ensemble methods proposed and has the ability to
improve the classification accuracy by integrating multiple
weak classifiers. AdaBoost method generates a series of weak
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classifiers firstly and builds a powerful classifier through
weighted majority voting of the classes predicted by weak
classifiers. Reference [38] utilized the multiclass AdaBoost to
distinguish carcinomas, fibro adenomas, and cysts.

3. Ultrasound CAD System with Deep
Learning Technology

In 2006, the professor of the University of Toronto, Hinton,
and his student published the paper which utilized the neural
network to reduce the dimensionality of data [56]. This paper
is widely regarded as the beginning of the research in deep
learning. In the following years, deep learning was extensively
applied in many fields, such as image recognition, semantic
analysis, and disease detection. The ultrasound CAD system
is always a highly anticipated field where the deep learning
can be applied. Many scholars have attempted to utilize the
deep learning to assist the clinician.

The largest change from the traditional ultrasound CAD
to deep learning ultrasound CAD is that the feature employed
by deep learning ultrasound CAD system is not artificial.
In the traditional ultrasound CAD system, most of the
features are human-crafted, such as gray features and texture
features. However, with the development of deep learning,
the researchers noted that the feature extracted by the deep
neural network is sometimes more effective than the feature
designed by the human.

In this section, the newest applications of deep learning
on the ultrasound CAD system are introduced. The major
application field includes the breast lesion diagnosis, the
liver lesion diagnosis, the fetal ultrasound standard plane
detection, the thyroid nodule diagnosis, and the carotid
ultrasound image classification.

3.1. The Breast Lesion Diagnosis. The breast tumor is one
of the most common cancers for women. Thousands of
women suffer from breast tumor all over the world. The early
detection can decrease the death rate of the breast cancer sig-
nificantly [57]. The ultrasonography is a safe and convenient
scheme to detect the early breast lesion [58]. To support the
clinician in diagnosis, many scholars attempted to utilize the
deep learning technology to classify the breast lesion. Han
et al. utilized the GoogLeNet to classify the breast image
and the accuracy reached 90% [16]. They employed 4254
benign samples and 3154 malignant samples to train the deep
neural network. The sufficient data support the GoogLeNet to
reach an acceptable performance. However, more researchers
cannot acquire enough data like Han et al. [16]. Most of them
employed other deep learning methods to classify the breast
lesion. Zhang et al. utilized the point-wise gated Boltzmann
machine (PGBM) to extract the feature from shear-wave
elastography (SWE) to classify the breast tumor [17]. The
deep learning feature reached 93.4% accuracy. Cheng et al.
utilized stacked denoising autoencoder (SDAE) technology
to encode the ultrasound image and employed the softmax
layer to classify the breast lesion [18]. Shi et al. employed the
deep polynomial network to extract the textural feature from
the ultrasound image and reach the accuracy of 90.40% [19].
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The deep learning technology is widely applied in the
breast ultrasound image. However, most of the studies are
limited by the number of samples. Methods adopted by these
studies usually utilized the deep learning technology as a tool
to generate the representation of images. Only [16] utilized
the convolutional neural network (CNN) like GoogLeNet to
classify the ultrasound image directly.

3.2. The Liver Lesion Diagnosis. The liver disease has been
a menace to humans for a long time. The incidence and
mortality of the liver disease grow yearly. The ultrasonog-
raphy is one of the most common techniques to detect the
liver disease. Many researchers have attempted to employ
deep learning technology to support the doctor diagnosis
by liver ultrasound image. Reference [22] utilized the sparse
autoencoder to acquire the representation of the liver ultra-
sound image and utilized the softmax layer to distinguish
different focal liver diseases. Compared with support vector
machines method, the method proposed in [22] reaches
higher accuracy.

Liver fibrosis classification is also a high profile field
of research. Meng et al. utilized the VGGNet and fully
connected network (FCN) to differentiate the level of liver
fibrosis [23]. To address the shortage of samples, Meng et
al. employed the transfer learning (TL) technology. Meng et
al. divided the liver fibrosis level into three phases: normal,
early stage fibrosis (S1-S3), and late-stage fibrosis (S4). The
accuracy of their method reached 93.90%. Similarly to Meng
etal, Liu et al. utilized deep learning technology to diagnose
the cirrhosis [24]. In the study of Liu et al., CNN is employed
as a tool to generate features from ultrasound images. Liu
et al. adopted the SVM as the classifier to distinguish the
normal liver and the diseased liver, and the accuracy of the
proposed method reached 96.8% which is much higher than
the accuracy of low-level features.

The deep learning is a powerful tool to detect the liver
diseases from ultrasound liver images. According to the
experiment result of [23, 24], the application of deep learning
technology can significantly improve the accuracy of liver
diseases diagnosis.

3.3. The Fetal Ultrasound Standard Plane Detection. The
ultrasound imaging is one of the most common technologies
in the prenatal examination for being economic and safe.
Standard plane selection is one of the necessary phases in the
ultrasound examination [59, 60]. The clinician can estimate
subsequent biometric information of fetus from the fetal
ultrasound standard plane. Many scholars have attempted to
utilize the machine learning technology to detect the fetal
ultrasound standard plane automatically. With the popularity
of deep learning, the researchers began to utilize the deep
learning to distinguish the fetal ultrasound plane. The fetal
facial standard plane is one type of the fetal ultrasound
standard plane. From the fetal facial standard plane, the
doctor can measure the biparietal diameter of the fetus and
detect the malformation. Yu et al. employed the CNN to
classify the fetal ultrasound plane. Their method reached the
accuracy of 93.03% which is much higher than the accuracy of
the traditional method [61]. However, the time consumption

of training which often takes more than 80 hours for the
method is very expensive.

The study of Yu et al. focuses on one type of the fetal
ultrasound standard plane. Their method cannot distinguish
other types of the fetal ultrasound standard plane. Chen et
al. proposed a deep learning framework which can detect
different types of the fetal ultrasound standard plane [62].
Chen et al. employed the CNN and long short-term memory
(LSTM) model to classify the fetal abdominal standard plane
(FASP), the fetal face axial standard plane (FFASP), and the
fetal four-chamber view standard plane (FFVSP). The CNN is
responsible for extracting features from ROI images, and the
LSTM model is responsible for the classification. Although
the method proposed by Chen et al. [62] can classify different
types of the fetal ultrasound standard, its performance is
slightly lower than the method in [61]. The accuracy of FASP
is 90.80%, the accuracy of FFASP is 86.70%, and the accuracy
of FFVSP is 86.70%.

Besides the fetal ultrasound standard plane, the deep
learning was also applied in the detection of fetal neu-
rosonographic diagnostic plane. The fetal neurosonographic
diagnostic plane can help the clinician to estimate the
growth of fetal head and detect the serious central nervous
system anomalies. Reference [63] proposed a method which
employed CNN to detect the fetal neurosonographic diag-
nostic plane. The experiment result shows that the method
in [63] has a similar accuracy to a specialist’s performance.

The fetal ultrasound standard plane detection is one of the
research fields where the deep learning can be applied. Unlike
the breast lesions diagnosis and liver diseases diagnosis, the
collection of the fetal ultrasound standard plane samples is
more convenient. There are sufficient samples which can be
utilized to train the deep learning network.

3.4. 'The Thyroid Nodule Diagnosis. The thyroid nodule is a
common disease upon a world scale. The ultrasound imaging
is a widely employed scheme to detect the thyroid nodule.
To support the doctor to diagnose the thyroid nodule, many
CAD systems were proposed. With the breakthrough of deep
learning, many scholars focus on the method which employs
the deep learning to classify the thyroid nodule. Chi et al.
employed the GoogLeNet to classify the thyroid nodule [27].
To address the shortage of data, Chi et al. utilized the Deep
Learning Caffe library [64] to fine-tune the GoogLeNet. The
accuracy of their method reached 99.13%. Reference [28]
presented a method which employed cascade CNN to detect
and classify the thyroid nodule. The cascade CNN in [28]
includes two CNNs. The first CNN was responsible for the
segmentation of thyroid nodules, and the second CNN was
utilized to classify the thyroid nodules. The experiment shows
that the cascade CNN method outperforms other traditional
machine learning methods.

The deep learning can improve the performance of
thyroid nodule diagnosis significantly. However, the time
consumption of train the deep learning network is also
enormous. In [28], the training time of cascade CNN which
is accelerated by GPU is more than 106 hours. The more
complex the model is, the larger the cost of training is.



3.5. The Carotid Ultrasound Image Classification. The mortal-
ity of cardiovascular diseases increases yearly. The atheroscle-
rotic plaque is the major reason of cardiovascular diseases. In
the early detection of atherosclerosis, the intima-media thick-
ness (IMT) of the carotid artery is an important indicator.
IMT is the distance between the lumen-intima interface (LII)
and the media-adventitia interface (MAI). The doctor usually
utilized the ultrasound image to measure the IMT. To support
the diagnosis of doctors, the researcher has attempted to
utilize the deep learning to acquire the IMT automatically.
Reference [65] utilized the autoencoder to segment LIT and
MAI The IMT was acquired by calculating the distance
between two levels. The error of the method in [65] is much
smaller than traditional methods.

Besides the calculation of IMT, the deep learning method
also is applied to detect the composition of plaque. Reference
[66] utilized CNN to classify different tissues of plaque
including lipid core, fibrous tissue, and calcified tissue. The
experiment shows that the classification accuracy of CNN is
much better than SVM.

3.6. Other Applications. Besides the application mentioned
above, there are some other applications of deep learning
on the ultrasound CAD system. The study in [67] applied
CNN to classify the type of myositis including inclusion body
myositis (IBM), polymyositis (PM), and dermatomyositis
(DM). Reference [67] compared the performances of CNN
and random forests. The accuracy of CNN for normal versus
affected tissues (DM, PM, and IBM) reached 76.2% which is
3.9% higher than this value of random forests. Hetherington
et al. designed a spine level identification system employing
CNN [68]. The system can accurately detect the vertebral
level so that the anesthesiologist can find the right site
to inject the anaesthetic. Cheng and Malhi utilized CNN
to classify the abdominal ultrasound images [69]. In the
paper, Cheng and Malhi divided the abdominal ultrasound
images into 11 categories including liver left longitudinal,
liver left transverse, liver right longitudinal, liver right trans-
verse, spleen, pancreas, kidney left longitudinal, kidney left
transverse, kidney right longitudinal, kidney right transverse,
and gallbladder. The mean accuracy of classification reached
77.9%.

4. Performance Summary

In this section, we summarized the performance of various
techniques in the different application fields. Table 1 shows
the performance of breast ultrasound CAD system. Table 2
shows the performance of liver ultrasound CAD system.
Table 3 shows the performance of thyroid ultrasound CAD
system.

5. Discussion and Conclusions

In this study, we summarized the literature about the ultra-
sound CAD system. This study divided the ultrasound CAD
system into two categories. One is the traditional ultrasound
CAD system which employs the manmade feature. The
major feature and major classifier adopted by the traditional
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ultrasound CAD system are introduced. Another category is
the deep learning ultrasound CAD system which employs the
deep neural network to extract features and classify them. The
newest applications of deep learning on the ultrasound CAD
system were summarized.

As for the traditional ultrasound CAD system, the selec-
tion of feature impacts the performance of final diagnosis.
The common feature employed by traditional ultrasound
CAD system can be divided into four categories: textural
features, morphologic features, model-based features, and
descriptor features. The textural feature is one of the earliest
adopted features in the ultrasound CAD system. TEM, GLDS,
GLCM, and other textual features are widely applied in
the classification of liver diseases and breast lesions. The
morphologic feature is a powerful feature in the traditional
ultrasound CAD system. It contains the prior knowledge of
clinicians. Morphologic features like spiculation and depth-
to-width ratio are designed according to the experience of
clinicians. These features are extracted from the ultrasound
image automatically and are extensively adopted in the ultra-
sound CAD system. Model-based features are based on the
backscattered echo of ultrasound images. Nakagami model-
based features and K-distribution model-based features are
two common model-based features. The descriptor feature
is usually summarized from clinical experience. As for the
different application, the descriptor feature is different.

The classifiers employed by traditional ultrasound CAD
system are divided into 6 categories: linear classifier, Bayesian
method, SVM, decision tree, ANN, and AdaBoost. Both
of the linear classifier and Bayesian method are common
classifiers in the machine learning field. These two classifiers
are convenient to use. However, the performance of them
is not stable on all of the data. The decision tree is also a
simple algorithm, and the complexity of it is low. The SVM
is a powerful classifier. It can perform well even in the small
dataset. As for ANN, there is no certain rule in the design
of ANN. It is flexible and widely applicable. The AdaBoost
can integrate the output of weak classifiers to get a robust
classification result.

The largest difference between the deep learning ultra-
sound CAD system and traditional ultrasound CAD system
is the approach of extracting features. In the traditional
ultrasound CAD system, the feature is designed by the
human. But in the deep learning ultrasound CAD system, the
feature is extracted by deep learning network automatically.
This paper introduced the newest application of deep learning
on the ultrasound CAD system. The application field includes
the breast lesion diagnosis, the liver lesion diagnosis, the
fetal ultrasound standard plane detection, the thyroid nodule
diagnosis, and the carotid ultrasound image classification.

This study summarized the performance of ultrasound
CAD in three fields including breast tumor classification, liver
diseases, and thyroid nodule diagnosis. It can be seen that
the dataset employed by these studies is different. There are
huge differences in the size and the modality of the dataset
employed by different methods. It is hard to fairly evaluate the
performance of different methods utilizing different datasets.
The construction of standard dataset for different ultrasound
CAD applications is an important task in further studies.
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TABLE 1: The performance summary of breast ultrasound CAD system.

Reference Dataset Features Classifiers Performance
48 benien Texturai—features Accuracy: 95.86%
[14] 90 sl fam Horohologic ANN (BPNN) Sensitivity: 95.14%
& Phoiog Specificity: 96.58%
features
o benien Texturai— features Accuracy: 95.83%
(1] 50 mali Eant morphologic SVM Sensitivity: 96%
& Phoiog Specificity: 95.71%
features
4254 benign Accuracy: 91.23%
[16] 3154 GoogLeNet Sensitivity: 84.29%
malignant Specificity: 96.07%
N 0,
135 benign Boltzmann Acc1.1r.a.cy. 93.4%
[17] 92 malienant machine Sensitivity: 88.6%
& Specificity: 97.1%
275 benign Stacked denoising Accuracy: 82.4%
(18] 245 Autoencoder Sensitivity: 78.7%
malignant (SDAE) Specificity: 85.7%
100 benign Deep Accuracy: 92.40%
[19] 100 polynomial SVM Sensitivity: 92.67%
malignant network Specificity: 91.36%
TABLE 2: The performance summary of liver ultrasound CAD system.
Reference Dataset Features Classifiers Performance
50 normal Accuracy: 98%
[20] 50 fatty liver Textural features ANN Sensitivity: 100%
disease (FLD) Specificity: 96%
15 normal
[21] 16 cirrhotic Textural features SVM Accuracy: 88.8%
25 hepatocellular Y7 0687
carcinoma (HCC)
18 hezlri:f'i[oma Accuracy: 90.50%
[22] J Sparse autoencoder Sensitivity: 91.60%
30 HEC Specificity: 88.50%
16 normal p ¥ 060U
79 normal
89 early-stage Accuracy: 93.90%
[23] fibrosis VGGNet FCN Sensitivity: 88.6%
111 late-stage Specificity: 97.1%
fibrosis
47 cirrhosis o
[24] 44 normal CNN SVM Accuracy: 86.9%
TaBLE 3: The performance summary of thyroid ultrasound CAD system.
Reference Dataset Features Classifiers Performance
48 benign Decision tree: ) N
[25] 223 malignant Textural features Cas Accuracy: 94.3%
10 benien Accuracy: 100%
[26] 10 mali r%ant Textural features AdaBoost Sensitivity: 100%
& Specificity: 100%
71 benien Accuracy: 99.13%
[27] 357 mali gnan ¢ GoogLeNet Sensitivity: 99.70%
& Specificity: 95.80%
465 normal CNN (15 CNN (4
[28] 9957 thyroid convolutional convolutional AUC: 0.986
nodular lesions layers) layers)




On the other hand, the collection of ultrasound data
is also a problem. Deep learning methods require plenty
of samples to train the network. However, the size of the
dataset employed by most of the studies mentioned above is
still small. The shortage of ultrasound samples is one of the
obstacles in the way of applying deep learning.
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The shear deformation under loads contains useful information for distinguishing benign breast lesions from malignant ones. In
this study, we proposed a normalized shear deformation indicator (NSDI) that was derived from the concept of principal strains.
Since the NSDI requires both high-quality axial and lateral (parallel and perpendicular to the beam, resp.) displacement estimates, a
strategy combining high-quality speckle tracking with signal “denoising” was employed. Both techniques were previously published
by our group. Finite element (FE) models were used to identify possible causes for elevated NSDI values in and around breast lesions,
followed by an analysis of ultrasound data acquired from 26 biopsy-confirmed in vivo breast lesions. We found that, theoretically,
the elevated NSDI values could be attributed to two factors: significantly hardened tissue stiffness and increasing heterogeneity.
The analysis of in vivo data showed that the proposed NSDI values were higher (p < 0.05) among malignant cancers as compared
to those measured from benign ones. In conclusion, our preliminary results demonstrated that the calculation of NSDI value is
feasible and NSDI could add value to breast lesion differentiation with current clinical equipment as a postprocessing tool.

1. Introduction

According to the US National Institute of Cancer, an esti-
mated 252,710 new cases of invasive breast cancer are
expected to be diagnosed in 2017. In light of the widespread
use of the ultrasound, American College of Radiology has
developed a BI-RADS lexicon to standardize the charac-
terization of breast lesions under ultrasound [1]. Through
analyzing BIRADS 3-5 lesions, Hille et al. reported that the
sensitivity and specificity were 92% and 85%, respectively [2].
Their result suggested that ultrasound probably should not be
used alone as the first line of imaging.

In the last two decades, a lot of efforts have been devoted
to ultrasound strain elastography (SE) [3]. In Ultrasound SE,
tissue displacements are first tracked by correlating radio
frequency (RF) signals before and after compression. Then,
axial (parallel to the acoustic beam direction) strain defined

by the change in length divided by the length before compres-
sion can be used as a surrogate for relative tissue elasticity.
Ultrasound SE has been successfully applied to noninvasive
differentiation of breast tumors [4-7] with several identified
metrics: area ratio, elasticity score, strain ratio, and length
ratio. The first metric is known as the area ratio which was
defined as the ratio between the tumor area measured from
the axial strain elastogram and the tumor area appearing on
the B-mode image [4, 5, 7]. Typically, a large area ratio (e.g.,
>1.0) is correlated to an increasing possibility of malignancy.
The second metric used a scoring system [6], in which the
overall tumor appearance on the axial strain elastogram was
rated between 1 and 5 based on a set of graphic criteria.
The strain ratio between the tumor and a selected region
containing background tissue was also adopted by numerous
studies [4, 8, 9]. The fourth metric is the length ratio. The
length ratio is defined as the lesion length measured from the
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axial strain elastogram over that which appeared on the B-
mode image. Based on several published meta-analyses [10-
12], the sensitivity of these four metrics often varied from
80% to 98%, while the specificity typically ranged from 85%
to 95%. Considerable inter- and intraobserver variability was
also reported [13].

Continued research efforts have been devoted to improv-
ing the efficacy of ultrasound SE. Excellent work was done by
Dr. Thittai and colleagues [14, 15] to use shear information
(i.e., the shape change) for the breast lesion differentiation.
Recall that previously discussed four metrics were derived
from the axial strains only reflecting the dimensional changes
under the external compression. The shear strain is defined as

follows [16]:
T = 1 (a_u + Q) (1)
¥ 2\ox  oy)’

where u, v, x, and y are the axial and lateral displacements
and lateral and axial spatial coordinates, respectively. In the
literature, studies [9, 15] stipulated that shear strains could
be useful in terms of characterization of the lesion mobility.
Because of the poor quality among lateral displacements
v, only the first component on the right-hand side of (1)
was used. Thittai and colleagues named this technology
axial-shear strain elastography. Although feasibility studies
[9, 15] have demonstrated its usefulness, the axial-shear
strain alone, theoretically, cannot be used as an indicator
of shear deformation because it contains rigid-body rota-
tion.

Normalization of axial-shear strain data has been
attempted by others [17]. However, their approach was an
ad hoc approach and only attempted to scale the axial-shear
strain with the fitted local axial strain. Toward this end, the
primary objective of this study was to develop an alternative
but more rigorous method to assess the shear deformation
based on the continuum mechanics. More specifically, the
proposed normalized shear deformation indicator (NSDI)
leverages the well-established concept of principle strain [16],
requiring all three components of the 2D strain tensor: axial
strain, lateral strain, and (full) shear strain. Consequently,
the proposed NSDI metric requires both high-quality axial
and lateral displacement estimates.

In order to improve lateral displacement quality, a pub-
lished image denoising approach that enforces tissue incom-
pressibility [18] was adopted for our convenience. Our de-
noising approach is conceptually similar to the work of
Lubinski et al. [19] because both methods attempt to enforce
the tissue incompressibility. However, main difference does
exist. In the work of Lubinski et al., a laterally fixed central line
within the tissue being imaged was required and such a
laterally fixed line would be difficult to find from data
acquired from in vivo tissues. In contrast, our denoising
approach has no special requirement other than a two-
dimensional ultrasonically estimated displacement vector
field.

Toward this end, the primary objectives of this study
are to (1) understand factors that influence the calculation
of the NSDI metric through simplified finite element (FE)
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models and (2) demonstrate the feasibility of quantifying
NSDI in vivo. The second objective was evaluated using in
vivo breast ultrasound data acquired from biopsy-confirmed
breast lesions [5].

2. Materials and Methods

2.1. Definition of Normalized Shear Deformation Indicator
(NSDI). Given the lateral strain €,,, axial strain €py> and
shear strain €, 0, below is an angle between the first
principle strain €; and the positive direction of the lateral
direction and can be evaluated as follows [16]:

1 2e,
0, = Eatan(e—y). (2)

x €y

When there is no presence of shear strain (ie., €,, = 0), 6,
is equal to zero. With the increase of the shear strain €,
the absolute value of 8, increases, indicating that the shear
strain €,, plays a more prominent role. Eventually, under
certain conditions (e.g., the pure shear condition e, =€, =
0), HP becomes 71/4. Since the absolute value of 0, ranges
from 0 to 77/4, Gp can be normalized (hereafter referred to as

normalized shear deformation indicator (NSDI)) as follows:

NSDI = @. (3)
/4

Consequently, the NSDI metric represents a relative measure
of the local shear deformation.

2.2. Implementation. There are three major steps in the
proposed NSDI assessment; as stated before, methods from
two of our previous publications [18, 20] were adopted for
our convenience. In the first step, tracking in vivo tissue
deformation was achieved through accumulations of smaller
deformation as a multistep process [20, 21]. More formally,
given a sequence of N ultrasound echo fields under a
monotonic compression, sequential motion tracking was first
performed between two adjacent frames using a published
speckle tracking algorithm [20]. The tracking kernel size
is approximately 1.5mm (lateral; approximately one beam
width) x 1.8 mm (axial; approximately 6 wavelength long
at 75 MHz). Once all (N — 1) frame-to-frame displacement
fields were obtained, all displacements were mapped to the
coordinate system of the first ultrasound echo frame using
B-spline interpolations [20] and then all spatially registered
frame-to-frame displacements were summed to obtain the
accumulated displacement estimates (#,V) from the first
frame to the N'th frame. More details of this speckle tracking
method can be found elsewhere [20]. Leveraging the avail-
ability of graphic processing units (GPUs), this algorithm
has been implemented using a parallel computing platform
CUDA (NVIDIA Inc., CA, USA).

In the second step, given a 2D displacement vector field
(@1, ¥) from a rectilinear domain (), obtaining a “regularized”
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displacement vector field (u,v) on Q is equivalent to mini-
mize the following energy function [18]:

<a_u ov

2
F(u,v):J af@) dQ+/\1L(ﬁ—u)2dQ

Q

(4)
i, L - ) dO,

where A, and A, are two positive parameters and are also
known as the regularization constants. On the right-hand
side of (4), the first item is the calculated incompressibility
from the regularized displacement field (u,v), while the
second and third items are two individual fidelity terms
of the ultrasonically measured axial (&) and lateral (¥)
displacements, respectively. A, and A, control the trade-offs
between the fidelity and the degree of tissue incompressibility.
Details regarding solving (4) by the Euler-Lagrange variation
of F(u, v) can be found in [18].

In the third step, the regularized displacement vector field
(u,v) was used to estimate local strains, that is, €, (lateral
strain), €y (axial strain), and €xy (shear strain). All three local
strains were estimated using a low-pass-filter-based method
[23] and windows used for axial and lateral strain estimation
were both 1.8 mm. Finally, the proposed NSDI values were
calculated and were used to form an image.

2.3. Finite Element Analysis. The 2D finite element analysis
(FEA) was done using a commercial FEA package (ADPL ver-
sion 17.0, ANSYS, Inc., Canonsburg, PA). Five different cases
simulated along with their rationales are described below.

Case 1 (varying deformation level). Typically, the tissue
deformation under the freehand scanning from frame to
frame varies [5]. In this study, varied levels of deformation
occurring in vivo (0.25%-5%) were investigated.

Case 2 (heterogeneity within the inclusion). A recent study
[24] found that mechanical properties in and around breast
cancers are more heterogeneous as compared to benign
ones. This is consistent with cancer biology because cancer’s
microenvironment and the spatial distribution of the desmo-
plastic reaction are usually complex. Hence, the influence of
these heterogeneities was investigated.

Case 3 (varying the modulus ratio between the inclusion and
the background). Itis well known that pathological evolution
of breast lesions influences their mechanical properties [25].
Measurements from 10 in vivo breast lesions indicated that
the (initial) shear modulus ratios between the lesion and
the background approximately varied between 4 and 30
[26]. Thus, the modulus ratio was varied accordingly in a
comparable range to investigate how this modulus ratio may
influence the calculation of NSDI.

Case 4 (varying inclusion size). Based on breast ultrasound,
the size of breast lesions varies [27]. Thus, we decided to vary
the diameter of the inclusion from 4 to 12 mm to understand
how the size of the inclusion would affect the calculation of
NSDI.

Case 5 (varying connectivity between the inclusion and
the background). Typically, clinical studies using axial-shear
strain elastography found that axial-shear patterns among
malignant cancers were different as compared to benign
breast lesions [9, 15]. Prior studies have attributed the
difference to the fact that benign breast tumors are often
more loosely connected to the background and were felt by
physicians as “bouncy.” Similar to the study conducted by
Thitaikumar et al. [14], the friction coefficient was varied to
quantify how the varying connectivity would affect the NSDI.

In Cases 1 and 3-5, we simulated a circular hard inclusion
embedded into a homogeneous background (40mm by
40 mm) and this geometry was similar to the model used in
[14]. In all 5 cases, displacement boundary conditions were
applied. More specifically, all FEA models were compressed
from the top for a fixed percentage and free to move on the
sides (i.e., no lateral confinement). In the bottom boundary,
the geometry was free to move along the lateral direction
as well. Poisson’s ratio value was set to 0.495 for both
the background and inclusion. Contact elements were used
to model the interface between the background and the
inclusion. In the ANSYS software, friction coefficients of
the inclusion and the background interface can be adjusted
so that different degrees of bonding between the inclusion
and the background can be achieved. In this study, friction
coeflicients of 0.1 and 1000 were used to represent a slip-
ping boundary and a tightly connected/bonded condition,
respectively. The friction coeflicient of infinite corresponds to
a fully bonded inclusion. In Case 2, five randomly positioned
secondary inclusions (1.5mm diameter and twice harder
than the large 10 mm inclusion) were included as shown
in Figure 1(a). More detailed descriptions of Cases 1-5 are
summarized in Table 1.

3D FEA analysis was also performed using a complex
numerical breast phantom (i.e., lesion 2 phantom in a pre-
vious publication [22]). Boundary conditions and material
properties of the lesion 2 phantom were identical to those
presented in the previous publication [22]. In order to keep
the current study concise, interested readers are referred to
that prior publication for details. Based on FEA-simulated
displacements, NSDI values were also calculated for an
“image” plane of the lesion 2 phantom (see Figure 1(b)).

2.4. Experimental Design. In vivo data with pathologically
confirmed breast lesions were used to demonstrate the feasi-
bility of utility of the NSDI metric in a clinical workflow. From
an archived database of ultrasound scans of human breast
lesions, 26 RF echo data sets were arbitrarily chosen. Among
them, there were 13 cases of fibroadenoma (FA) and 13 cases
of cancers (9 cases of invasive ductal carcinomas [IDC] and
4 cases of unspecified cancers). Once the motion tracking in
a sequence was done, the accumulative strains approximately
ranged from 0.5% to 15% (mean + one standard deviation;
3.2% + 3.0%) in those 26 cases. The detailed protocol for data
acquisition was previously reported [5].

All data acquisition was approved by appropriate over-
sighting institutional review boards (IRBs) and patient con-
sents were obtained. The IRB at the Michigan Technological
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TABLE 1: Descriptions of 5 simulated cases. The modulus ratio is the shear modulus ratio between the inclusion and background.
r(fSrSrel:ber M;):ttigus Inciiliselon Background-inclusion interface Deformation level Other information
Bonded and slipping o =0 .
1 4 10 mm (friction coefficient = 0.1) 0.25%-5% Plane strain
) 5 10 mm Bonded 1% Smaller targets within
the inclusion
Bonded and slipping N .
3 2-20 10 mm (friction coefficient = 0.1) 1% Plane strain
Bonded and slipping o .
4 4 4-12mm (friction coeflicient = 0.1) 1% Plane strain
5 4 10 mm Varying slipping condition 1% Plane strain

(friction coefficient = [0.11000])

Depth (mm)

()

Reflection coefficient image

2000
1000
0
10 20 30 40
Width (mm)

()

FIGURE 1: [llustrations of two FEA models: (a) a 2D heterogeneous inclusion model and (b) the middle “image” plane of a complex numerical
breast phantom (i.e., lesion 2 phantom in a previous publication [22]). In (a), the arrow points to smaller harder inclusions inside the large
inclusion. In (b), (1)-(5) denote lesion, fibroglandular tissue, Cooper’s ligaments, breast fat, and necrotic zone, respectively.

University approved a secondary analysis of existing data. All
in vivo data analyses including the manual lesion segmenta-
tion were done by a biomedical engineer who has approx-
imately 15-year experience in strain elastography including
algorithm development, data acquisition, and image analy-
sis.

During the manual segmentation of a breast lesion,
the operator first read a sequence of B-mode and strain
images to decide the approximate location and contour of
the breast lesion. The approximate location and contour of
the lesion were used to set expectations of the lesion size
and location. Then, B-mode and (axial and shear) strain
images selected from that breast lesion were displayed side-
by-side in MATLAB (MathWorks, Inc., MA, USA). Using
image contrast provided by B-mode and strain images, the
operator manually delineated the respective contours of the
breast lesion. If there was little or no image contrast around
a part of the lesion boundary, the operator would use a
smooth curve to connect the gap(s) that existed around the
lesion boundary. The final contours made sure that lesion
locations in strain images should have good correspondence
to these in B-mode images. However, achieving similar lesion
morphology between the B-mode and strain images was

attempted by the operator. It is worth noting that improved
delineation of breast masses could be obtained with a board-
certified radiologist.

3. Results

3.1. FEA Results. Figures 2(a) and 2(b) present images of
the NDSI obtained around a fully connected and a loosely
connected (friction coeflicient of 0.1) inclusion. Regardless of
the simulated connectivity, the high concentration of NSDI
was observed around the interface between the inclusion and
the background. Comparing Figure 2(a) with Figure 2(b),
we found that the estimated NSDI was higher around the
interface in the case of the loosely bonded inclusion and the
high NDSI values spread both inward and outward from the
interface. In the case of the fully bonded inclusion, the high
NSDI values only spread outward from the interface. The
overall pattern of the NDSI distribution in Figures 2(a) and
2(b) was symmetric given the circular inclusion. When the
tissue heterogeneity (Figure 2(c)) was included, “packets” of
high NSDI values occurred within the inclusion (Figure 2(a)
versus Figure 2(c)) on the NSDI image, thereby suggesting
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FIGURE 2: Images of calculated NSDI: (a) a 10 mm inclusion bonded to the background (Case 1), (b) a 10 mm inclusion loosely connected to
the background (Case 1), and (c) an 8 mm inclusion bonded to the background (Case 2). Arrows in (b) point to high NSDI values around the
slipping interface between the inclusion and the background, while the arrow in (c) points to the high NSDI values inside the inclusion.

that the NDSI could be a tool for visualization of breast lesion
heterogeneity.

Mean values of the NDSI were calculated within the
shaded region of interest (ROI; see Figure 3(a)) around the
inclusion for 4 cases investigated (Cases 1 and 3-5). Of note,
the shaded ROI had the same size as the size of the inclusion.
Figure 3(b) shows that the mean NSDI values at different
values of applied compression remained stable. However, the
calculated mean NSDI values considerably increased with
the increase of the modulus ratio as shown in Figure 3(c).
This increasing trend was more obvious in the fully bonded
condition. The estimated mean NSDI values were plotted
out when the inclusion size increased from 4 mm to 12 mm
in Figure 3(d). The calculated NSDI only slightly changed
with different levels of compression (3% or less) and with
the increase of inclusion size (approximately 12-15%). Also,
this trend was not dependent on the connectivity between the
inclusion and the background. We also found that the change
of the friction coefficient (as an indicator of the connectivity
between the inclusion and the background) had little (10%
or less) influence over the mean NSDI values (Figure 3(e)).
In Figure 3(e), the small fluctuation that occurred when the
friction coefficient was around 1 was largely due to the fact
that the finite element solution of contact mechanics is a high
nonlinear process [28].

In the 3D complex breast phantom (see Figure 1(b)), the
boundary of the simulated tumor was clearly visible in both
the axial strain image (Figure 4(b)) and the NSDI image
(Figure 4(c)). We also found that areas with high NSDI
values located close to these tissue interfaces (see the tumor-
glandular tissue boundary and the glandular-fat interface in
Figure 1(b)). In Figure 4(c), the simulated ductal structure
was visible in the NSDI images.

3.2. In Vivo Results. NSDI values were calculated within the
corresponding segmented lesions and outside the respective
lesions (i.e., an area outside the lesion whose size was equal
to the corresponding lesion size; see Figure 3(a)). Of note,
the lesion segmentation was conducted on respective axial
strain elastograms. Hereafter, we differentiate NDSI values

calculated from inside and outside the lesion. They are
referred to as the inside NDSI value and outside NDSI
value, respectively. A scatter plot displaying the outside
NSDI against the inside NSDI is shown in Figure 5(a). As
consistent with the scatter plot, based on the Wilcoxon rank-
sum test, both the outside and inside NSDI values were
significantly lower among benign breast tumors as compared
to these among malignant breast cancers (p < 0.001 and p =
0.025, resp.). Furthermore, the other scatter plot showing the
outside NSDI with respect to the size ratio (defined as the
lesion size measured from the axial strain elastogram over the
lesion size obtained from the corresponding B-mode image)
is shown in Figure 5(b). Visually, combining the outside
NSDI and the size ratio [4, 5] can separate breast lesions into
two clusters, showing good promise.

Three representative examples (one fibroadenoma [FA],
one invasive ductal carcinoma [IDC], and one unspecified
cancer) were provided in Figures 6-8, respectively. Notably,
the outside NSDI values around the FA were considerably
lower than these seen around the IDC (Figure 6(b) versus
Figures 7(b) and 8(b)). It is also interesting to note that, in
3 out 9 IDC cases, the duct-like structure was visible in the
NSDI image (see Figure 7(b)). In the IDC case, the lesion
boundary in the shear strain image (Figure 7(c)) was better
visualized, whereas the lesion boundary in the axial strain
elastogram (Figure 7(d)) was barely visible. In the case of
the unspecified breast cancer (i.e., Figure 8), the oscillation
of high and low values of NSDI can be seen in Figure 8(b).
We stipulate that this is likely due to the tissue heterogeneity
as demonstrated by the simplified finite element model (see
Figure 2(c)).

4. Discussions

Typically, host stromal responses to the aggressive invasion
of carcinomas stimulate the pervasive growth of dense
fibrous tissue around the tumor (also known as desmoplastic
reaction [29]), probably causing a spatial distribution of
heterogeneous and significantly hardened stroma. A recent
elastography study conducted by Liu et al. [24] demonstrated
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FIGURE 3: (a) An image illustrating how NSDI was calculated around a 10 mm inclusion (Case 1: modulus ratio of 4, bonded interface, and 1%
deformation). The inclusion was delineated by the manually segmented contour in orange color, while the rectangular shaded region centered
around the inclusion was calculated by a computer program. The rectangular shaded area outside the inclusion had the same area as that of
the inclusion. Four NSDI plots are calculated for (b) Case 1, (c) Case 3, (d) Case 4, and (e) Case 5.

that malignant masses have more heterogeneous distribu-
tions of tissue modulus, as compared to benign ones. Also,
the invasion of cancerous cells tends to follow “specific” low
resistance directions around the cancer-stromal interface,
and this pattern of growth leads to “stellate” appearance [30],
probably causing malignant cancers to firmly connect to their
surrounding tissues [31]. This firm connection could cause
malignant tumors to be less mobile as compared to benign
ones. Consequently, these biological implications could be
used to justify the existence of firm connectivity and stiffness

heterogeneity among malignant breast cancers. As we learned
from the FEA experiment (see the summary in Table 2), these
two factors led to high outside and inside NSDI values.
Many clinical studies in breast SE [6, 7] have been
often performed using axial strain elastogram data. Our
result suggested that additional information such as shear
strain elastogram and the NSDI image may provide useful
information. For instance, both our FEA simulation and in
vivo experiment indicated that the NSDI could depict the
duct-like structure, which could be an indication of IDC.
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FIGURE 6: Resultant images of a fibroadenoma (FA): (a) A B-mode image indicating the lesion (see arrows), (b) an NSDI image, (c) a shear

strain elastogram, and (d) an axial strain elastogram. The contour on (d) is the segmented target boundary and was used for calculations of
NSDI for this case.
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FIGURE 8: Resultant images of a (unspecified) breast cancer: (a) A B-mode image indicating the lesion (see arrows), (b) an NSDI image, (c) a

shear strain elastogram, and (d) an axial strain elastogram. The contour on (d) is the segmented target boundary and was used for calculations
of NSDI for this case. The elliptic contour in (b) depicts complex NSDI patterns likely induced due to the heterogeneity.

Furthermore, the shear strain elastogram (see Figure 7(c)) and this could be attributed to the nonlinear tissue elasticity
may depict the tumor boundary better as compared to the [5, 26], though the exact reason is not known.

axial strain elastogram. The axial strain elastogram showed Several factors could potentially confound local shear
the low contrast between the IDC lesion and its background  deformation. In addition to the nonlinear elasticity [32], the
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TABLE 2: A summary of observations through the FEA study.
Condition Description Observation
] High modulus ratio between the inclusion and the High mean outside NSDI
background
2 Heterogeneity within the inclusion High inside NSDI
Slipping boundary between the inclusion and the ngh NSD.I values around
3 the inclusion-background
background .
interface

slipping boundary in the tumor-background interface could
be another confounding factor because it could cause high
NSDI values around the tumor boundary (see Figure 2(b)).
Tissue-dependent viscosity could also play a role in the
change of strain contrast, thereby affecting the shear defor-
mation. In this preliminary study, our FEA simulations were
mainly limited to linearly elastic materials and we consider
this as a limitation. We noticed that the complex breast
model provided more realistic NSDI images as compared
to those simplistic models (i.e., Cases 1-5). Hence, the
available open-source elastography simulator [22] will be
used to study above-identified confounding factors in future
numerical studies. Advanced imaging simulations are ideally
suited because they are readily available and the cost is
low.

Another limitation is the small number of cases inves-
tigated. Given the fact that only 26 in vivo breast tumors
were studied, more sophisticated statistical analyses were
left for future studies. Outcomes of our future studies could
be further improved because we are planning on using
an optimal frame selection technique [33, 34] to optimize
data selection. It is also worth noting that locations of
all 26 biopsy-confirmed breast lesions were identified by
an experienced biomedical engineer. Although these lesion
boundaries were largely consistent with these delineated by
board-certified radiologists in an early study [7], the exact
tumor boundaries registered with respective pathology were
not available for this study.

As shown in Figure 5(a), we also want to note that both
the inside and outside NSDI values were elevated in the
majority of breast cancers. This observation could be useful
for breast lesion differentiation. However, this study was not
designed to demonstrate the clinical utility of NSDI for two
reasons. First, the quality of lateral displacement estimates
after the denoising was relatively poor as compared to these
axial displacement estimates. Because of that, the estimation
uncertainty of NSDI is still relatively high. In the future,
the utility of novel beamforming-based techniques [35-37]
may significantly improve the quality of lateral displacement
estimation. Thus, we are optimistic that the combination
of our denoising approach with one of these beamforming
methods should significantly improve the estimation of local
shear deformation. Second, in order to accurately estimate
local shear deformation, displacements in all three dimen-
sions are needed. Certainly, the definition of NSDI should
be modified accordingly. With the availability of whole breast
ultrasound scanning systems, obtaining in vivo 3D ultrasoni-
cally measured displacement estimates becomes feasible [38].

Therefore, a large clinical study of the NSDI is still in the
planning stage. Nevertheless, we still feel it appropriate to
make one intriguing, albeit subjective, observation regarding
the feasibility of the proposed NSDI metric.

In this work, we described the options we have chosen
and gave justifications for those choices. While we believe that
they are good choices, combining a high-quality subsample
estimation method with denoising represents, however, only
a feasible path to calculate the proposed NSDI metric. Other
paths are also possible. For instance, the above-mentioned
novel beamforming methods [35-37] alone may be able to
provide high-quality lateral displacement estimates that can
be used to calculate the NSDI metric.

5. Conclusions

The proposed NSDI metric was evaluated using FEA models
and in vivo ultrasound data. This feasibility study showed that
the elevated NSDI values should theoretically be correlated
to two factors accompanying malignant breast cancers: firm
connectivity and stiffness heterogeneity. Initial results also
suggest that statistically significant differences in the inside
and outside NSDI values were found between the benign
and malignant breast tumors. In summary, our preliminary
results demonstrated that this conceptually and computa-
tionally simple method could be used to improve ultrasound
SE with current clinical equipment. Further studies, par-
ticularly in conjunction with the 3D ultrasound data, are
being planned to explore the clinical utility of the proposed
method.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

Acknowledgments

This study is partially funded by the grants from NIH
(R15CA179409 and R01CA100373), the start-up funds from
Michigan Tech University, the Science and Technology Com-
mission of Sichuan Province, China (2016JY0201 under the
Applied Science Research Program), and Nanchong Sci-
ence and Technology Bureau of China (Applied Research
Program under NC175Y402). The authors want to thank
their colleagues at the University of Wisconsin (especially
Professor Timothy Hall of Medical Physics) and acknowledge
the Charing Cross Hospital (London, UK, especially Dr.
Svensson) for providing breast data used in this study.



10

References

(1] N. Abdullah, B. Mesurolle, M. El-Khoury, and E. Kao, “Breast
imaging reporting and data system lexicon for US: Interob-
server agreement for assessment of breast masses,” Radiology,
vol. 252, no. 3, pp. 665-672, 2009.

[2] H. Hille, M. Vetter, and B. J. Hackelber, “The accuracy of BI-
RADS classification of breast ultrasound as a first-line imaging
method,” Ultraschall in der Medizin / European Journal of
Ultrasound (UiM/EJU), vol. 33, no. 2, pp. 160-163, 2012.

[3] J. Ophir, 1. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li,
“Elastography: a quantitative method for imaging the elasticity
of biological tissues,” Ultrasonic Imaging, vol. 13, no. 2, pp. 111-
134, 1991.

[4] B.S.Garra, E.I. Cespedes, J. Ophir et al., “Elastography of breast
lesions: initial clinical results,” Radiology, vol. 202, no. 1, pp. 79—
86,1997

[5] T.J.Hall, Y. Zhu, and C. S. Spalding, “In vivo real-time freehand
palpation imaging,” Ultrasound in Medicine & Biology, vol. 29,
no. 3, pp. 427-435, 2003.

[6] A.Itoh, E. Ueno, E. Tohno et al., “Breast disease: clinical appli-
cation of US elastography for diagnosis,” Radiology, vol. 239, no.
2, pp. 341-350, 2006.

[7] E. S. Burnside, T. J. Hall, A. M. Sommer et al., “Differentiating
benign from malignant solid breast masses with US strain
imaging,” Radiology, vol. 245, no. 2, pp. 401-410, 2007.

[8] A.Thomas, E Degenhardt, A. Farrokh, S. Wojcinski, T. Slowin-
ski, and T. Fischer, “Significant Differentiation of Focal Breast
Lesions. Calculation of Strain Ratio in Breast Sonoelastogra-
phy;,” Academic Radiology, vol. 17, no. 5, pp. 558-563, 2010.

[9] H. Xu, T. Varghese, J. Jiang, and J. A. Zagzebski, “In vivo
classification of breast masses using features derived from axial-
strain and axial-shear images,” Ultrasonic Imaging, vol. 34, no.
4, pp. 222-236, 2012.

[10] X.Gong, Q.Xu, Z.Xu, P. Xiong, W. Yan, and Y. Chen, “Real-time
elastography for the differentiation of benign and malignant
breast lesions: A meta-analysis,” Breast Cancer Research and
Treatment, vol. 130, no. 1, pp. 11-18, 2011.

[11] G. Sadigh, R. C. Carlos, C. H. Neal, and B. A. Dwamena, “Accu-
racy of quantitative ultrasound elastography for differentiation
of malignant and benign breast abnormalities: A meta-analysis,”
Breast Cancer Research and Treatment, vol. 134, no. 3, pp. 923—
931, 2012.

[12] D. Li, L. Guo, H. Xu et al., “Acoustic radiation force impulse
elastography for differentiation of malignant and benign breast
lesions: a meta-analysis,” International Journal of Clinical and
Experimental Medicine, vol. 8, no. 4, pp. 4753-4761, 2015.

[13] J. H. Yoon, M. H. Kim, E.-K. Kim, H. J. Moon, J. Y. Kwak, and
M. J. Kim, “Interobserver variability of ultrasound elastography:
How it affects the diagnosis of breast lesions,” American Journal
of Roentgenology, vol. 196, no. 3, pp. 730-736, 2011.

[14] A.Thitaikumar, T. A. Krouskop, B. S. Garra, and J. Ophir, “Visu-
alization of bonding at an inclusion boundary using axial-shear
strain elastography: A feasibility study,” Physics in Medicine and
Biology, vol. 52, no. 9, article no. 019, pp. 2615-2633, 2007.

[15] A.K. Thittai, J.-M. Yamal, L. M. Mobbs et al., “Axial-Shear Strain
Elastography for Breast Lesion Classification: Further Results
From In Vivo Data,” Ultrasound in Medicine ¢ Biology, vol. 37,
no. 2, pp. 189-197, 2011.

[16] R. G. Budynas, Advanced strength and applied stress analysis,
McGraw-Hill, NY, USA, 1 edition, 1977.

BioMed Research International

[17] L. Chen, R. J. Housden, G. M. Treece, A. H. Gee, and R. W.
Prager, “A normalization method for axial-shear strain elas-
tography,” IEEE Transactions on Ultrasonics, Ferroelectrics and
Frequency Control, vol. 57, no. 12, pp. 2833-2838, 2010.

[18] L. Guo, Y. Xu, Z. Xu, and J. Jiang, “A PDE-based regularization
algorithm toward reducing speckle tracking noise: A feasibility
study for ultrasound breast elastography,” Ultrasonic Imaging,
vol. 37, no. 4, pp. 277-293, 2015.

[19] M. Lubinski, S. Emelianov, K. Raghavan, A. Yagle, A. Skovoro-
da, and M. O’Donnell, “Lateral displacement estimation using
tissue incompressibility,” IEEE Transactions on Ultrasonics,
Ferroelectrics and Frequency Control, vol. 43, no. 2, pp. 247-256,
1996.

[20] J. Jiang and T. J. Hall, “A coupled subsample displacement
estimation method for ultrasound-based strain elastography,’
Physics in Medicine and Biology, vol. 60, no. 21, pp. 8347-8364,
2015.

[21] H. Du, J. Liu, and C. Pellot-Barakat, “Optimizing multicom-
pression approaches to elasticity imaging,” IEEE Transactions on
Ultrasonics, Ferroelectrics and Frequency Control, vol. 53, no. 1,
pp. 90-98, 2006.

[22] Y. Wang, E. Helminen, and J. Jiang, “Building a virtual simu-
lation platform for quasistatic breast ultrasound elastography
using open source software: A preliminary investigation,” Med-
ical Physics, vol. 42, no. 9, pp. 5453-5466, 2015.

[23] J. Luo, K. Ying, and J. Bai, “Savitzky-Golay smoothing and
differentiation filter for even number data,” Signal Processing,
vol. 85, no. 7, pp. 1429-1434, 2005.

[24] T.Liu, O. A. Babaniyi, T. J. Hall, P. E. Barbone, and A. A. Oberai,
“Noninvasive in-vivo quantification of mechanical Heterogene-
ity of invasive breast carcinomas,” PLoS ONE, vol. 10, no. 7,
Article ID 0130258, 2015.

[25] Y. Fung, Biomechanics: mechanical properties of living tissues,
Springer-Verlag, NY, USA, 2 edition, 1993.

[26] S. Goenezen, J.-E Dord, Z. Sink et al., “Linear and nonlinear
elastic modulus imaging: An application to breast cancer
diagnosis,” IEEE Transactions on Medical Imaging, vol. 31, no.
8, pp. 1628-1637, 2012.

[27] M. Golshan, B. B. Fung, E. Wiley, J. Wolfman, A. Rademaker,
and M. Morrow, “Prediction of breast cancer size by ultrasound,
mammography and core biopsy,” The Breast, vol. 13, no. 4, pp.
265-271,2004.

[28] P. Wriggers, Computational contact mechanics, Springer-Verlag,
Heidelberg, Berlin, Germany, 2006.

[29] R. Cotran, V. Kumar, T. Collins, and S. R. Richard, Robbins
pathologic basis of disease, Saunders, Philadelphia, USA, 6
edition, 1993.

[30] S. Schnitt and L. Collins, Biopsy interpretation of the breast,
Wolters Kluwer Health/Lippincott Williams & Wilkins,
Philadelphia, USA, 2nd edition, 2013.

[31] P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J.
G. White, and P. J. Keely, “Collagen reorganization at the tumor-
stromal interface facilitates local invasion,” BMC Medicine, vol.
4, article 38, 2006.

[32] T. Hall, A. Oberait, P. Barbone et al,, “Elastic nonlinearity
imaging,” in Proceedings of the 2009 Annual International
Conference of the IEEE Engineering in Medicine and Biology
Society, pp. 1967-1970, Minneapolis, MN, September 2009.

[33] J. Jiang, T. J. Hall, and A. M. Sommer, “A novel performance
descriptor for ultrasonic strain imaging: A preliminary study;’
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency
Control, vol. 53, no. 6, pp. 1088-1102, 2006.



BioMed Research International

(34]

[36]

(37]

(38]

B.R. Chintada, A. V. Subramani, B. Raghavan, and A. K. Thittai,
“A Novel Elastographic Frame Quality Indicator and its use in
Automatic Representative-Frame Selection from a Cine Loop,”
Ultrasound in Medicine & Biology, vol. 43, no. 1, pp. 258-272,
2017.

M. E. Andcrson, “Multi-dimensional velocity estimation with
ultrasound using spatial quadrature,” IEEE Transactions on
Ultrasonics, Ferroelectrics and Frequency Control, vol. 45, no. 3,
pp- 852-861, 1998.

S.J. Huntzicker and M. M. Doyley, “Can quantitative synthetic
aperture vascular elastography predict the stress distribution
within the fibrous cap non-invasively, The Journal of the
Acoustical Society of America, vol. 135, no. 4, pp. 2372-2372, 2014.
B. Lokesh, B. R. Chintada, and A. K. Thittai, “Rotation Elas-
togram Estimation Using Synthetic Transmit-aperture Tech-
nique: A Feasibility Study,” Ultrasonic Imaging, vol. 39, no. 3, pp.
189-204, 2017.

B. Peng, Y. Wang, T. J. Hall, and J. Jiang, “A GPU-Accelerated
3-D Coupled Subsample Estimation Algorithm for Volumetric
Breast Strain Elastography,” IEEE Transactions on Ultrasonics,
Ferroelectrics and Frequency Control, vol. 64, no. 4, pp. 694-705,
2017.

1



Hindawi

BioMed Research International

Volume 2018, Article ID 9203985, 8 pages
https://doi.org/10.1155/2018/9203985

Research Article

Ultrasound in Prenatal Diagnostics and Its
Impact on the Epidemiology of Spina Bifida in a National
Cohort from Denmark with a Comparison to Sweden

Charlotte Rosenkrantz Bodin (®,' Mikkel Mylius Rasmussen,” Ann Tabor,’
Lena Westbom,* Eleonor Tiblad,’ Charlotte Kvist Ekelund,’ Camilla Bernt Wulff,’
Ida Vogel,ﬁ’7 and Olav Bjorn Petersen’”’

! Department of Gynecology and Obstetrics, Aarhus University Hospital, Aarhus, Denmark

’Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark

3Center of Fetal Medicine, Department of Obstetrics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark

*Section of Pediatrics, Department of Clinical Sciences Lund, Faculty of Medicine, Skane University Hospital, Lund University,
Lund, Sweden

>Department of Fetal Medicine, Karolinska University Hospital, Stockholm, Sweden

SDepartment of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark

"Center for Prenatal Diagnostics, Aarhus University Hospital, Aarhus, Denmark

Correspondence should be addressed to Charlotte Rosenkrantz Bodin; chbodi@rm.dk
Received 2 October 2017; Revised 16 December 2017; Accepted 8 January 2018; Published 1 February 2018
Academic Editor: Yongjin Zhou

Copyright © 2018 Charlotte Rosenkrantz Bodin et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Objectives. The aim of this study was to assess the incidence, the prenatal detection rate by ultrasound, and the pregnancy outcome
of spina bifida (SB) in Denmark (DK) in 2008-2015 and to compare results to national data from Sweden. Methods. Data were
retrieved from the Danish Fetal Medicine Database, which includes International Classification of Diseases- (ICD-) 10 codes for
pre- or postnatally diagnoses and pregnancy outcome. Missing data were obtained from the National Patient Register. Livebirth data
with myelomeningocele (MMC) in Sweden were obtained from different databases. Results. There were 234 cases with SB in DK in
2008-2015. The incidence of SB was 4.9 :10,000; 89% were detected with ultrasound prior to week 22; 90% of these pregnancies were
terminated (ToP); 91% were isolated malformations of which 11% showed abnormal karyotype. The incidence of newborns with
MMC was 1.3:10,000 in Sweden. Conclusions. Ultrasound screening has a major impact on the epidemiology of SB. The prenatal
detection rate of SB was high, and most SB cases were isolated and had a normal karyotype. Among women with a prenatal fetal
diagnosis of SB, 90% chose to have ToP. The incidence of newborns with SB was higher in Sweden than in DK.

1. Introduction

Since the introduction of new guidelines for prenatal diag-
nostics in 2004, all pregnant women in Denmark have been
offered a prenatal screening program. The program comprises
two ultrasound scans during their pregnancy: one in ges-
tational weeks 11-14 (scanning primarily for chromosomal
abnormalities) and one in gestational weeks 18-21 (scanning
primarily for malformations) as well as midwife consultations
between the scans [1]. These guidelines were issued by the

Danish Health Authority in 2004. They were not designed
to eradicate disease but to support pregnant women’s repro-
ductive autonomy, confirm normality by offering ultrasound
and possibly genetic testing, facilitate planning of optimal
postnatal care, and give women the possibility of applying
for late termination of pregnancy (ToP) in case of severe fetal
disease, like spina bifida (SB), within week 22 + 0. The current
screening uptake is approximately 97%.

SB is a birth defect in the group of neural tube defects
(NTD). It results from failed closure of the neural folds during
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the first month of gestation. SB is associated with severe
morbidity and mortality, depending on the type, size, and
site of the lesion [2, 3]. The incidence of SB differs globally
from 1.7 to 19:10,000 fetuses [4-12]. SB can be detected
in the second trimester using ultrasound which will reveal
specific cranial signs of the cerebellum and the skull [13].
Previous studies have shown that intake of folic acid during
pregnancy may decrease the risk of SB [6, 7]. This has made
some countries use mandatory food fortification to ensure
adequate supply of folic acid to pregnant women [6, 14]. In
Denmark, folic acid is recommended as a food supplement
from the day pregnancy is planned, but it is not added to food
as part of a mandatory scheme. Danish folic acid recom-
mendations have shown no impact on the incidence of SB
fetuses in western parts of the country due to Danish pregnant
women not complying with the guidelines and thus not
getting the recommended amount of folic acid [15-17]. Even
so, one of these studies showed a decrease in the incidence
of infants born with SB after year 2006, that is, at the same
time as the above-mentioned prenatal screening program was
introduced at all obstetric departments in Denmark [16]. This
suggests that the use of ultrasound scans may have an impact
on the epidemiology of SB in Denmark.

Different countries have developed various prenatal ultra-
sound strategies to manage pregnancies complicated by SB.
In Sweden, another Scandinavian country with a population
approximately twice the size of the Danish population and
similar legislation regarding ToP, second-trimester ultra-
sound scan is also offered to all pregnant women. In Sweden,
however, the proportion of women who accept prenatal
ultrasound screening varies more across regions than in
Denmark.

The objectives of this study were to estimate the true
incidence of SB in Denmark, to assess the detection rate
at first-trimester and second-trimester ultrasound screening,
to identify pregnancy outcomes in years 2008-2015, and to
identify similarities as well as differences in incidence of SB
between Denmark and Sweden.

Overlapping and sometimes inconsistent terms are used
for spinal NTDs [18]. In the present study, the term “spina
bifida” includes all open spinal NTDs and meningocele and
lipomatous malformations with neurological deficits of the
skin-covered SB.

2. Method

2.1. The Danish Fetal Medicine Database. Data for this study
were primarily obtained from the Danish Fetal Medicine
Database (DFMD), which is a national database that includes
data from all obstetric departments in Denmark. The DEMD
contains information on all pregnancies in DK with a first-
trimester scan from 1 January 2008. With an uptake of more
than 90%, this corresponds to 50, -60,000 pregnancies per
year. The DFMD receives information regarding maternal
and pregnancy characteristics and International Classifica-
tion of Diseases- (ICD-) 10 codes for any prenatally diagnosed
anomaly automatically from the prenatal software system
(Astraia GMBH, Munich, Germany) used in all obstetric
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2015:
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Danish Fetal Medicine
Database:
n = 443,617 (93.3%)
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ICD-10 code DQO050-
DQO059:
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(i) Duplicates = 6
(ii) No SB history = 108
(iii) Occulta, tethered cord = 23
(iv) Other = 4
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True spina bifida cases:
n =229

FIGURE 1: Flowchart of inclusion from the Danish Fetal Medicine
Database (DFMD).

departments. Data are linked with pre- and postnatal out-
comes from the Danish Cytogenetic Register, the National
Patient Register (NPR), and the National Birth Register. The
DEMD thus makes it possible to analyze >90% of the entire
population of pregnant women with regard to screening
results and outcomes [19].

2.2. Data Collection. Data were collected prospectively and
analyzed retrospectively. Firstly, we collected data from all
pregnancies in Denmark with due date in the period from 1
January 2008 to 31 December 2015 that underwent a second-
trimester ultrasound scan and had a pre- or postnatally
registered International Classification of Disease- (ICD-) 10
code in the range of Q050-Q059. We performed a search of
the Astraia software for cases that had ultrasound indications
of SB but lacked an ICD 10-code in the searched range to
identify cases that had been given an ICD 10-code not
included in our search, for instance, diagnoses in the Q06
group (“other congenital malformations of the spinal cord”).
Figure 1 provides an overview of the inclusion parameters.
We retrieved data regarding due date, prenatally diagnosed
anomaly, anomaly diagnosed at any time postnatally until
data extraction, coexistence of other malformations, kary-
otype, and outcome (live-born, ToP, and adverse pregnancy
outcome). No information on size and site of the lesion was
obtained.

Secondly, we collected all cases born in the study period
with an ICD-10 code for SB from the NPR and included Civil
Registration Numbers (CPR, which all citizens in Denmark
are given at birth or upon immigration) not already known
from the DFMD. In this way, we included SB cases among
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From the NPR: patients born
between 2008-2015 with
QO05-code registered:
n=199

Already known
from DEMD
n=98

New patients
n=101

No relevant hospital
contact
n="77

Seen in either a neurosurgical or a
pediatric surgical department
n=24

Verified spina bifida cases
n=12

Included: Excluded:

Born and operated||Born and operated
in Denmark:
n=>5 n=7

outside Denmark:

FIGURE 2: Flowchart of inclusion from the National Patient Register
(NPR), DFMD: Danish Fetal Medicine Database.

babies to the 7% of mothers who had not been scanned pre-
natally and therefore had not been registered in the DFMD.
We also evaluated patient files for cases with a neurosurgical
or pediatric surgical contact, seen in a hospital within the first
year of life. See the flowchart in Figure 2.

Medical records on all infants and mothers in whom a
ToP was performed (including autopsy results) were evalu-
ated for validation. This made it possible to collect missing
data, and cases were included or excluded according to the
European Surveillance of Congenital Malformation (EURO-
CAT) guidelines [20]. This meant that we excluded all infants
with SB occulta, lipomatous malformations, or tethered cord
without neurological deficits, as well as all suspected but not
confirmed SB cases. Babies born and having had primary
surgery outside of Denmark were excluded from further
statistical analysis (n = 7). Fetal closure of open SB had not
been performed on any of these fetuses.

2.3. Statistical Analysis. Data were stored using RedCap soft-
ware and exported to STATA® 14 for analysis. Student’s t-test
and Wilcoxon-Mann-Whitney test were used for numerical
data, and chi® -test was used for binominal data. Variation
over years was tested by a Poisson regression model, and

ToP rates and detection rates were analyzed using binomial
probability tests.

p < 0.05 was considered statistically significant; 95% con-
fidence intervals are presented after each result in brackets.

2.4. Sweden. Data from Sweden were collected from the
national follow-up program and quality of care registry in
spinal dysraphism and hydrocephalus. The SB part of the
follow-up program, called the MMCUP, includes a lifelong
follow-up of body function/structures, activity, participation,
treatment, and self-reported health-related quality of life for
all children with SB born between 2007 and 2015 in Sweden
[21]. The MMCUP provides information on live born but
not unborn fetuses like the Danish registers. Hence, from
Sweden, fetuses terminated by ToP or still births were not
included. We extracted data from the MMCUP on SB and
the prenatal diagnosis for all infants born in Sweden from 1
January 2008 to 31 December 2015.

Data on the total number of births in Sweden were
obtained from the Swedish population registry, Statistics Swe-
den. We received extracted anonymized statistics on infants
and abortions coded with Q05 from the Swedish National
Board of Health and Welfare and the number of pregnancies
for the years 2008-2014 from the following registers: the Med-
ical Birth Register, the Swedish NPR, and the Surveillance
Register of Birth Defects. Only patients diagnosed prenatally
or within their first year of life were included. Numbers from
2015 were not available at the point of collection. Because of
differences in legislation on patient anonymity between the
two counties’ databases, it was not possible to validate any of
the Swedish cases.

2.5. Permissions. Permission to collect and store data was
obtained from the Danish Data Protection Agency (reference
number: 2012-58-006). Permission to look at the patient files
of the babies of mothers who had not been scanned prenatally
was granted by the Danish Patient Safety Authority (reference
number: 3-3013-1721/1). Ethical approval for the MMCUP
was provided in Lund, Sweden (EPN Lund, 241-2009).

3. Results

3.1 Incidence. There were 475,679 pregnancies in Denmark
from 2008 to 2015. A total of 234 true SB cases were included
in the study population (Figure 1). The incidence of pregnan-
cies complicated by SB was 4.9:10,000 [4.3-5.6:10,000], and
this incidence did not differ over the years 2009-2015 (p =
0.81), except in 2008 when there was a significantly lower
incidence of pregnancies with SB (p = 0.03). The incidence
of live-born SB cases was 0.8 :10.000 [0.6-1.1:10,000] with no
significant difference between the years (p = 0.7).

There were 7 additional cases born and treated outside
Denmark but followed in a Danish hospital after immigra-
tion.

3.2. Prenatal Diagnosis. Of the 234 cases, 223 had an ultra-
sound scan done before 22 weeks, whereas 6 did not attend
screening until later in pregnancy, and no information on
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TaBLE 1: Spina bifida cases and detection divided in years; *Poisson regression.

Year Total SB cases Prenatal diagnosis Prenatal diagnosis < week 22

2008 15 14 (93.3%) 13 (86.7%)

2009 32 29 (90.6%) 27 (84.4%)

2010 38 35 (92.1%) 34 (89.4%)

2011 33 30 (90.9%) 28 (84.8%)

2012 28 27 (96.4%) 26 (92.9%)

2013 24 21 (87.5%) 21 (87.5%)

2014 35 34 (97.1%) 31 (88.6%)

2015 29 29 (100%) 27 (93.1%)

Total 234 219 (93.6%) 207 (88.5%)

p value 0.99" 0.99"

TaBLE 2: Maternal characteristics from the Danish Fetal Medicine Database; * Wilcoxon-Mann-Whitney test, **Student’s ¢-test, *** chi? test;
"Caucasian: European, Middle Eastern, North African, Hispanic; MNon-Caucasian: Afro Caribbean, Asian, Oriental.
Characteristic <week 22 2week 22 p value
N =187 N =16
Maternal age, years [95% CI] 29.7 [29.0; 30.4] 29.8 [27.4; 32.1] 0.88"
BMLI, [95% CI] 25.6 [24.7; 26.5] 28.1[24.9; 31.3] 0.08""
Smokers, % [95% CI] 3.8 [1.5;7.6] 6.2 [0.2; 30.2] 0.62"""
Ethnicity, % [95% CI]
(i) Caucasian” 93.2 [88.6; 96.3] 86.7 [59.5; 98.3] 0.35°**
(ii) Non-Caucasian™ 6.8 [3.7;11.4] 13.3 [1.7; 40.5]
Conception, % [95% CI]
(i) Spontaneous 90.1[84.8; 94.0] 93.8 [69.8; 99.8] 0.63***
(ii) Fertility treatment 9.9 [6.0; 15.2] 6.3 0.2; 30.2]

screening was available in 5 cases. Prenatal detection at any
gestational age was achieved in 93.6% [89.6-96.4%] (219/234)
of cases, and 88.5% [83.7-92.5%] had been detected prior to
week 22 (207/234) (stratified by years in Table 1).

We divided data on maternal characteristics from DFMD
into two subgroups according to gestational age at diagnosis
to rule out baseline characteristics as reason for nondetection
(Table 2). Complete baseline data were available for 187 out of
207 (<week 22) and for 16 out of 22 (>week 22), respectively.
There was no significant difference between the two groups
of mothers regarding age, body mass index (BMI), ethnicity,
smoking status, or mode of conception. No information was
obtained regarding mothers of the 5 babies with SB who had
not been scanned prenatally.

The sensitivity of the Danish screening program was
92.8% [88.6-95.8%], since 207 of the 223 who attended
screening were diagnosed before gestational week 22,
with 15.5% [10.8-21.1%] in the first (32/207) and 84.5%
(78.8-89.2%) in the second trimester (175/207). There was no
statistical variation in the prenatal detection rate during the
study period (p = 0.99).

Information about the type of SB was obtained for 14 of
the 16 cases not identified at screening; in 11 of these cases
(78.6%), the SB was skin-covered, meaning either meningo-
cele or lipomatous malformations, suggesting that close to all
of the opened SB cases were detected.

3.3. Outcome. In cases with a SB diagnosis made by ultra-
sound prior to week 22 of gestation, 90.3% [86.0-94.5%]
(187/207) of the women opted for termination. Of all
234 cases, 190 resulted in ToP, corresponding to 81.6%
[76.1-86.4%] of all SB cases in Denmark. The tendency to opt
for termination did not change significantly within the study
period (p = 0.99).

In the database, ethnicity is coded as “Caucasian” (Euro-
pean, Middle Eastern, North African, and Hispanic), Afro
Caribbean, Asian, and Oriental. However, as there were very
few numbers in the last three groups, we assembled them
together in one group, calling it “Non-Caucasian.” Among
mothers of Non-Caucasian origin, 30.7% chose to continue
their pregnancy when SB was diagnosed before week 22.
This was higher than the 6.3% in the Caucasian group (p =
0.0015). No difference was noted between the two groups
regarding mode of conception (p = 0.13) or maternal age
(p = 0.08).

A total of 20 women chose to continue their pregnancy
with a SB diagnosis by ultrasound before 22 weeks. 16 of
these women had a live-born baby and four miscarried. Of
the 27 cases without a prenatal diagnosis before week 22, 22
had a live-born baby, one miscarried, and four opted for
termination, and since the fetuses were considered not viable
beyond 30 days, ToP was allowed in accordance with Danish
legislation.
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TaBLE 3: Overview of differences between Sweden and Denmark 2008-2015; “2008-2014; **majority in third trimester; p value calculated

by Student’s t-test.

Denmark Sweden p value
Incidence fetuses 4.92:10,000 3.4:10,000" 0.0001
Incidence live births 0.8:10,000 1.3:10,000 0.04
ToP rate 81.2% 63.0%" 0.02
Prenatal detection RATE among live births 42.1% 56.3%"" 0.11

The resulting overall number of live births with SB was
38. Of these, 14 had a skin-covered SB. This is on average 4-5
infants with any kind of SB per year and of these 3 had open
SB per year.

Of the 38 infants, 42.1% [25.7-58.6%] (16/38) had a
prenatal diagnosis < week 22: that is, 57.9% did not know they
were having a baby with SB.

In 91.3% [86.9-94.6%)] of cases, SB was an isolated mal-
formation (hydrocephalus and club feet are considered sec-
ondary to SB and are not counted as other malformations). A
total of 119 (56.9%) of isolated cases had karyotypic or
chromosomal information available, and 10.9% [5.9-18.0%]
(13/119) were abnormal.

3.4. Results from Sweden. All live-born children with SB in
Sweden from 2008 to 2015, in total 121 children, were known.
Of these, 72% had an open and 28% had a skin-covered SB. A
total of 905,060 babies were born in Sweden during the same
period. Hence, the incidence of live-born infants with SB was
1.3:10,000 [1.1-1.6:10,000], which was higher (p = 0.04)
than in Denmark. Information on prenatal diagnosis was
available for 79% of these infants (96/121) and showed that
56.3% [46.1-66.4%] of the 96 infants had a prenatal diagnosis
of SB: that, 43.7% of the mothers had no knowledge that they
were expecting a baby with SB. This rate did not change over
the years (p = 0.88).

In the databases from the National Board of Health and
Welfare, which include data from 2008-2014, there were 308
unverified cases coded with SB (Q05) of whom 165 were
registered as ToP. According to the MMCUP, only 97 infants
born during 2008-2014 fulfilled the criteria for SB, as defined
above, compared with 143 infants with a Q05 diagnosis in the
national healthcare databases. Provided that all 165 ToP
fetuses had SB and that all live-born children with verified SB
were known (n = 97), the incidence of pregnancies with SB
was 3.4:10,000 [3.0-3.8:10,000] during 2008-2014, and the
ToP rate in Sweden based on verified SB was 63% [51.5-76.8]
(165/262).

Table 3 provides an overview of the differences in results
between Sweden and Denmark.

4. Discussion

This study is the first to cover the impact of prenatal
ultrasound screening on the incidence of SB on a national
level. In the Danish cohort, we found an incidence of SB of
4.9:10,000. The prenatal detection rate before 22 weeks was
high and the majority of these women opted for ToP resulting
in very few live births with SB. The rate of live births with

SB was higher in Sweden than in Denmark, probably due to
fewer women choosing prenatal diagnostics and possibly also
a lower prenatal detection rate.

Ultrasound-detectable signs of open SB include “banana
sign” of the cerebellum and “lemon sign” of the frontal skull
[13]. Closed SB does not have the same impact on cranial
structure as open SB and hence lacks the same ultrasound-
detectable features [22]. Previous studies have shown that the
sensitivity and specificity of ultrasound for open SB are close
to 100% [23]. In the Danish study population, we found a
sensitivity of 92.8%, and as our data also include some closed
SB types, the sensitivity is expected to be lower than 100%.

In Denmark, 88.5% of the total population of SB was
diagnosed before gestational week 22 and 93.9% at any ges-
tational age. The EUROCAT society and other studies report
prenatal detection rates in the range 81-90% [4, 8, 9, 24, 25].
Our overall prenatal detection rate was significantly higher
than the percentage (89.3%) reported by the EUROCAT
(p = 0.03), suggesting that the Danish prenatal screening
program outperforms those of other European countries
that pursue different strategies for prenatal screening for
anomalies. The superior performance of the Danish program
may likely be attributed to high coverage and acceptability.
This is corroborated by a recent Dutch study [24] which found
the same proportion of pregnant women accepting a second-
trimester scan, and where 88% of SB cases are diagnosed in
the second trimester.

Among all Danish SB cases, 81.6% resulted in ToP, and of
those diagnosed with ultrasound before gestational week 22,
90.3% opted for termination. The ToP rate following prenatal
diagnosis was in the same range as for Alsace in France
(97%) [4] and the region Emilia-Romagna in Italy (92.4%)
[8] (only open SB), but higher than rates reported by the
EUROCAT (66%) [26], Atlanta in the US (34%) [12], and the
northern parts of the Netherlands (78.6% when diagnosed in
the second trimester) [24].

The Danish Spina Bifida Society (“Rygmarvsbrokforenin-
gen af 1988”) does not have an official statement regarding
ToP, which somehow underlines the liberal attitude towards
ToP in Denmark and even among patients and relatives
affected by SB. The different attitudes towards ToP evident
between different ethnic groups in the present study and geo-
graphically may partly explain the varying global incidence of
live-born SB cases.

Today, the possibility for prenatal genetic counseling is
widely used for known hereditary diseases, and the intro-
duction of prenatal ultrasound has made it possible to
offer genetic counseling to parents expecting a child with a
malformation, like SB, that has no known hereditary path.



A chromosomal abnormality was found in 10.9% of isolated
SB, which is comparable to the rates reported in similar
studies [4, 8, 10]. This suggests that there is a high risk of
chromosomal anomalies in these pregnancies compared with
normal-appearing fetuses [27] and supports the idea that all
women with a pregnancy complicated by SB should be offered
chromosomal analysis and counseling from a multispecialist
team.

It is important to note that previous studies included
only open SB [8, 9, 24] or were inconsistent as to whether
they included both open and closed SB [10-12, 28]. In our
definition of SB, we included open SB and meningocele
and lipomatous NTDs with neurological deficits. We did
not include information on size and site of the lesion. Our
study includes close to 100% of the Danish SB cases which
minimizes selection bias and regional differences. The num-
ber of SB cases was lower in 2008 than in the other years,
possibly due to natural variance over years or missing data in
the establishment period in the beginning of 2008. All cases
included in the study were validated by clinical audit and
patient file review, which eliminates the risk of false-positive
cases. A search of the Astraia software for cases that had
ultrasound indications but lacked an ICD 10-code for SB was
undertaken for the prenatally diagnosed group in an attempt
to diminish the risk of underestimation due to noninclusion
of false-negative cases. SB cases that died in utero earlier than
the second trimester could not be included; thus, this could
possibly lead to a small degree of underestimation. For the
postnatally diagnosed group, there is a small risk that patients
were not given a correct ICD 10-code and hence not reported
to the NPR. However, since all SB patients in Denmark are
referred to a university hospital, the risk of nonreporting is
low. We base this argument on the observation that ICD-
10 codes in Denmark serve multiple purposes, including the
distribution of funding between healthcare institutions.

The Danish incidence of SB is in line with that of other
western developed countries without food fortification [4, 7,
8, 24], whereas studies from other parts of the world where
mandatory fortification of grain products exists show a lower
total incidence of SB (USA, Canada, and Australia) [6, 12].

Validation of cases that are given ICD-codes for SB (Q05)
is absolutely necessary to identify the “true” incidence of
SB, as shown in Figures 1 and 2 for the Danish fetal and
patient registries. As infants and abortions coded with Q05
were anonymized in the Swedish National Board of Health
and Welfare data, validation of these cases could not
be undertaken. However, comparison with MMCUP data
regarding infants born with SB indicated that 32.2% of the
Swedish Q05-coded infants did not have SB, a proportion
that is about the same as that in Denmark according to
the present study. About two-thirds of the infants with SB
had an open, not skin-covered, defect in both countries.
The comparison between Denmark and Sweden under-
lines the difference between using an anonymized and a
nonanonymized database. The data from Sweden originate
from the MMCUP, which was not anonymized and from the
national populations registers, which were anonymized.
Hence, 97/143 cases in the national population registers were
present in the MMCUP, suggesting that 46 (32.2%) were false
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positive in the database. An even higher proportion of false-
positives were found in the Danish Patient Registers after full
validation of the nonanonymized data, with 108/229 (47.2%)
having a wrong diagnosis.

Sweden has the same folic acid recommendations as
Denmark [28], and the lower incidence of pregnancies with
SB in Sweden than in Denmark (3.4 versus 4.9:10,000, p <
0.001, Table 3) must therefore be due to other factors. A
previous Swedish study found a national incidence of SB of
5.44:10,000 during 1999-2002 [28], which is significantly
higher than the estimated incidence based on the present 308
pregnancies with unverified SB. So, poor identification of
registered pregnancies may have contributed to the low
incidence figures for the years 2008-2014 in the present study.
Despite the possibly lower incidence of pregnancies with SB,
the higher incidence of infants born with SB in Sweden
than in Denmark may be explained by a lower percentage of
parents choosing prenatal diagnostics, lower detection by
ultrasound, and possibly different attitudes towards ToP.

To our knowledge, valid national prevalence figures on SB
cases with prenatal ultrasound findings did not exist prior to
this study, either in Denmark or in any other country. The
present study shows that a full national prenatal ultrasound
screening with a high uptake has a major impact on the inci-
dence of SB because of the high detection rate of SB by ultra-
sound and because a large proportion of women opt for ToP.
This study may have implications for the organization of
SB prenatal care, surgery, and treatment. Since the patient
volume is low with an average of only four new patients per
year, patients who need lifelong treatment may be better han-
dled in a few dedicated centers to optimize the expertise of
healthcare professionals and to ensure better quality of life for
patients.

5. Conclusion

This study includes all fetal SB cases in Denmark during the
years 2008-2015. The study shows that, by using ultrasound
screening, almost all cases of a SB can be detected. In a
country like Denmark where ToP is regulated by law, prenatal
ultrasound screening may have an impact on the number of
live births of children with ultrasound-detectable malforma-
tions, and it may inform healthcare professional and parental
decisions with regard to ToP and the planning of postnatal
care for the newborn. The difference between Denmark and
Sweden, where acceptance of prenatal ultrasound screening
is lower, underlines the effect of a nationwide screening
program on the epidemiology of SB.
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NTD: Neural tube defects
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ToP: Termination of pregnancy.

Additional Points

Key Message. In a national cohort from Denmark, >80% of
fetal spina bifida cases were detected by prenatal ultrasound
with 90% of parents choosing termination of pregnancy
in case of open spina bifida, so very few infants with this
malformation were born.
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To determine the relationship between the ultrasonic backscatter parameters and trabecular microstructural variations in
cancellous bone, three erosion procedures were performed to simulate various changes in the cancellous bone microstructure.
The finite difference time domain (FDTD) method was used to simulate the backscatter signal in cancellous bone. Ultrasonic
backscatter properties were derived as functions of the porosity when the ultrasound incident directions were perpendicular and
parallel to the major trabeculae direction (MTD), respectively. The variability in the apparent backscatter coefficient (ABC) and
apparent integrated backscatter (AIB) due to the trabecular microstructure was revealed. Significant negative correlations between
the backscatter parameters (ABC and AIB) and the porosity of the cancellous bone were observed. The simulations showed that
the ABC and AIB were influenced by the direction of the trabecular microstructural variations. The linear regressions between
the ultrasonic backscatter parameters (ABC and AIB) and the porosity showed significantly different slopes for three erosion
procedures when they are ultrasonically perpendicular (for ABC, —1.22 dB, —0.98 dB, and —0.46 dB; for AIB, —0.74 dB, —0.69 dB,
and —0.25 dB) and parallel (for ABC, —1.87 dB, —0.69 dB, and —0.51 dB; for AIB, —0.9 dB, —0.5 dB, and —0.34 dB) to the MTD. This
paper investigated the relationship between ultrasonic backscatter and cancellous bone microstructure deterioration and indicated

that the ultrasonic backscatter could be affected by cancellous bone microstructure deterioration direction.

1. Introduction

Osteoporosis is a multifactorial skeletal disease characterized
by decreased bone mass and deteriorated microarchitecture
that leads to an increased risk of fracture [1]. Early detection
and treatment of osteoporosis are essential for decreasing the
risk of fracture. Lots of situations can lead to osteoporosis,
such as age-related and microgravity-related situations [2-6].
Both aggravating trend of aging population and the aerospace
development indicate the importance of early detection and
treatment of osteoporosis.

Ultrasonic backscatter has shown great advantages and
potential as a noninvasive tool for cancellous bone assessment
[7-15]. Compared with ultrasonic through-transmission

measurement, the backscatter measurement can be per-
formed in pulse-echo mode with a single transducer and
has easier access to skeletal sites such as the hip and
spine. Hosokawa has studied the changes of the ultrasonic
through-transmission signal [16]. In theory, the backscatter
signal could provide more microstructural information; the
backscatter signal is closely related to cancellous bone proper-
ties, including the bone mineral density (BMD), bone volume
fraction (BV/TV), trabecular separation (Tb.Sp), ultimate
strength, and Young’s modulus [7-14, 17-25].

Bone is a tissue undergoing continuous construction
and degradation; the location of cancellous bone in peo-
ple’s body and different bone loss and growth processes
determine the various cancellous bone microstructure. The
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trabecular orientation of bone tissue changes in response
to mechanical stimuli; the process of bone loss destruction
and reconstruction is anisotropic [26, 27]. In age-related
osteoporosis, the trabecular elements perpendicular to the
major trabecular direction (MTD) are more strongly lost
than those parallel to the MTD. Because the weakly oriented
trabecular elements to which large loads are not usually
applied are the first to disappear, and the porosity of the
bone increases (and the state of the osteoporosis progresses)
[28,29]. For spaceflight-induced bone loss, both the weak and
strong oriented trabecular elements to which loads are not
applied disappear rapidly [1, 4, 5, 28].

The ultrasonic backscattering and propagation are sub-
stantially affected by the cancellous bone microstructure [19];
thus the reliability needs to be further improved in ultrasonic
backscatter apparatuses, especially assessment of the bone
mass changes during bone loss and growth, because the
relationship of the ultrasonic backscatter and cancellous bone
microstructure parameters is not yet clearly understood.
However, a detailed investigation on the relationship between
the ultrasonic backscatter and cancellous bone microstruc-
ture is difficult because of the various cancellous bone
microstructure in the bone loss process. Some image erosion
algorithms have been used to simulate the degradation of
cancellous bones [16, 29, 30]. Hosokawa realized various
cancellous bone microstructure using image erosion methods
(16, 29]. Three erosion procedures correspond to age-related,
microgravity-related, and other reasons related to bone loss
[16, 29]. This paper cited their algorithms to simulate the
degradation of cancellous bone in normal bone loss, weight-
lessness, or microgravity environment bone loss. The ultra-
sonic backscatter parameters, such as apparent backscatter
coeflicient (ABC) and apparent integrated backscatter (AIB),
are generally measured from fixed region of interest in the
ultrasonic backscatter signal [21]. A detailed investigation
on the relationship between the ultrasonic backscatter and
cancellous bone microstructure is needed.

The objective of this study is to investigate the variability
in ultrasonic backscatter induced by different deteriorations
of trabecular microstructure. Image erosion methods were
used to simulate the deteriorations of trabecular microstruc-
ture, and three erosion procedures were performed to realize
deteriorations in the cancellous bone microstructure. The
FDTD method was used to simulate the backscatter signal in
cancellous bone. The variability in the ABC and AIB due to
the deteriorations of trabecular microstructure was revealed.

2. Methods

The reconstruction of the 3D microcomputed tomographic
(u-CT) images is useful for the numerical analysis of cancel-
lous bone [32, 33]. The finite difference time domain (FDTD)
method is useful for simulating the ultrasound propagation
in cancellous bone [29, 34]. The cancellous bone model for
the FDTD simulation was realized by the reconstruction of
the 3D microcomputed tomographic (4-CT) images from the
cancellous bone [35].

2.1. Cancellous Bone Erosion or Deteriorations. A cancellous
bone specimen (approximately 20 x 20 x 10 mm) was sawed
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Porosity 81%
-

Porosity 61%

Procedure C

Il Bone marrow
[1 Solid bone

F1GURE 1: Deteriorations in trabecular microstructure simulated by
three erosion procedures.

from a bovine distal tibia, and the trabecular image was
provided by a yu-CT system (skyscanl076, Bruker micro-CT,
Belgium) with a spatial resolution of 36.4 ym.

The binary image was obtained from the gray image by
the automatic threshold function in the MATLAB to clearly
distinguish between the trabeculae and bone marrow. The
trabecular structure is with a MTD in most normal cancellous
bone [36]. The 2D trabecular structures of the cancellous
bone model are defined in x-y plane. As shown in Figure 1, a
MTD along the y-direction can be observed.

An image erosion technique was used to erode the edges
of the trabeculae in the cancellous bone model and from
which to simulate the bone loss process [30, 35]. The erosion
procedure was to transform the solid bone into bone marrow
[16]. The porosity increased by an increment approximately
2% at the same time. The trabeculae was eroded by three
erosion procedures named A, B, and C; each of the erosion
procedures was applied in different direction of the trabecular
edges, from which to realize distinct changing processes of
the trabecular microstructure in different bone loss processes.
In erosion procedure A, the erosion was randomly distributed
in every direction [16]. In the other two procedures B and
C, the erosions were distributed in the y- and x-direction,
respectively. Procedure C realized the age-related bone loss,
procedure B realized the spaceflight-induced bone loss, and
procedure A is for any other reason.

The direction of the erosion distributed was set in the
erosion function. To the three erosion procedures, as an
example, Figure 1 shows the different changes in trabecular
structure induced by them. In Figure 1, the image in the left
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TABLE 1: Physical parameter values of cancellous bone [31].

Trabeculae Bone Marrow
First Lamé coeflicient (GPa) 14.8 2.2
Second Lamé coefficient (GPa) 8.3 0
Density (kg/m?) 1960 1000
Normal resistance coefficient (s*) 8 x 10* 75
Shear resistance coefficient (s™) 8x10° 0
90 - 3.6 mm | 6.0 mm 0.7 mm
[ =
85 + = I
o S
B
80 . ®
g g £
£ 75 4 & : g
£ 8 3 £
g ° i) <
a R =)
70 S f
o 8
65 % ?
® Transducer =
=
o Y \ B
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0 2 4 6 8 10 12 14 16 18 PML Water Bone marrow Trabeculae

Erosion times (times)

%* Procedure A
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FIGURE 2: Porosity of cancellous bone with respect to erosion times.

with a 61% porosity is original image before erosion, and the
porosity is increasing with the erosion of original image. As
an example, when the porosity is 68%, the images of three
procedures are shown in the middle and their porosities are
the same; compared with the original image, in the image
of procedure A (top), the erosion is randomly distributed in
every direction. In the other two procedures B (middle) and
C (below), the erosions were distributed in the y- and x-
direction, respectively. The solid bones (white) decrease in the
corresponding direction. When the porosity is 81% (right),
the difference of three erosion procedures is more obvious. It
appears that the trabeculae changes of the three erosion pro-
cedures are different in directions. Thus, various trabecular
microstructures of different causes could be realized by the
three erosion procedures, and the trabecular orientation (or
the pore orientation) in the y-direction becomes stronger in
the cancellous bone model. The porosities of all the cancellous
bone models eroded in the three procedures are shown in
Figure 2. Each erosion procedure is performed 16 times;
porosity of cancellous bone before erosion is 61%, increased
by an increment approximately 2% at the same time and
increased from 60% to 90% based on the general range.

2.2. Ultrasonic Backscatter Simulations. Figure 3 shows the
FDTD simulation model, with a total region of 10.5x7.4 mm,
for the ultrasonic backscatter measurement, and a cancellous

FIGURE 3: The geometry of the simulation model.

bone model (6.0 x 6.0 mm) was placed in the center [21].
The transmitting surfaces were with a diameter of 3.64 mm.
The physical parameters of the simulation model are listed in
Table 1.

As shown in Figure 3, the ultrasonic propagation was
along the x-direction. With the cancellous bone model
rotated by 90 degrees, the ultrasonic propagation is perpen-
dicular to the MTD of the cancellous bone when the MTD is
in y-direction.

A Gaussian-modulated sinusoidal pulse was used as the
ultrasound pressure source [21]:

pt)=—t-exp (—4ﬁ2t2) sin (27tft), (1)

where f is the bandwidth and f; is central frequency. In
the simulation, the parameters are defined as follows: f =
0.5 MHz; the central frequency f, was set to 1 MHz; the space
step was set to 36.4 ym, corresponding to the voxel size of the
cancellous bone image; and the time step was 5ns [37].

2.3. Backscatter Signal Analysis. Figure 4 shows a typical
simulated backscatter signal at 1 MHz. The backscattered
signal of interest (SOI) was selected by a rectangular window
of T in length of the backscatter signal, where T' = 2 us [20].
ABC and AIB were defined as follows [7, 11, 38, 39]:

Ssol (f))
=8.68In| ———= |,
ABC = 8.68 (Sr(f)
(2)
AB= — me ABC(f)df,
fmax_fmin min ’
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TABLE 2: Linear fitting for the ultrasonic backscatter parameters (ABC and AIB) versus the porosity of the three erosion procedures

perpendicular and parallel to MTD".

Perpendicular to MTD Parallel to MTD
Procedure A Procedure B Procedure C Procedure A Procedure B Procedure C
ABC
Intercept (dB) 51.59 31.16 0.02 96.27 13.10 285
Slope (dB) -1.22 -0.98 -0.46 -1.87 -0.69 —-0.51
AIB
Intercept (dB) 34.23 28.85 0.78 44.82 16.21 5.94
Slope (dB) -0.74 -0.69 -0.25 -0.90 -0.50 -0.34
! All of the p values are below 0.01.
15 T T T T T T -18
Transmitted signal
= 10 - -20 |
E
3
= -22
&
3
3 24t
g 2
26+
z 2
<
-20 1 1 1 1 1 1 -28 -
0 2 4 6 8 10 12
. ~30 }
time (us)
FIGURE 4: Simulated backscatter signals and signal of interest 0 ©
selection. _34 . . . . . . .
60 65 70 75 80 85 90
Porosity (%)

where Sgo;(f) is the amplitude spectrum of the backscatter
SOI, S,(f) is the reference spectrum of the backscatter
signal reflected by a standard steel plate, and f, .. and f.;,
correspond to the —6 dB effective frequency band. The central
frequency is used in the calculation of the ABC.

3. Results

3.1. Backscatter Properties for Ultrasonic Propagation Per-
pendicular to MTD. Figure 5 shows the ABC versus the
porosity induced by three different erosion procedures for
ultrasonic propagation perpendicular to MTD. The ABC
shows significant negative correlations with the porosity of
the cancellous bone in all procedures (procedure A: R =
—0.94; procedure B: R = —0.97; procedure C: R = —0.80). In
the three different erosion procedures, the cancellous bone
microstructure undergoes different changes, and the ultra-
sonic backscatter signals are different. The ABC of procedure
B are the smaller than those of the other two procedures,
and in procedure B the trabecular microstructural variations
are parallel to MTD. The linear fittings for ABC versus the
porosity of the three erosion procedures are listed in Table 2.
Significant differences are observed between the slopes for the
three erosion procedures (procedure A: —1.22 dB; procedure
B: —0.98 dB; procedure C: —0.46 dB). The absolute values of
the slope for procedure C are the smallest.

The AIB is an important parameter of ultrasonic
backscattering. The AIB versus the porosity of the can-
cellous bone induced by the different erosion procedures

* Procedure A R = —0.94
o Procedure BR = -0.97
o Procedure C R = —0.80

FIGURE 5: Relationships between ABC and cancellous bone porosity
induced by different erosions for ultrasonic propagating perpendic-
ular to the MTD.

perpendicular to MTD is shown in Figure 6. Significant
negative correlations with the porosity of the cancellous bone
are observed in all procedures (procedure A: R = —0.96;
procedure B: R = —0.99; procedure C: R = —0.91). The liner
regressions between the AIB and porosity showed significant
differences in the slopes for the three erosion procedures
(procedure A: —0.74 dB; procedure B: —0.69 dB; procedure C:
~0.25dB).

3.2. Backscatter Properties for Ultrasonic Propagation along
MTD. The ABC and AIB results versus the porosity of the
cancellous bone induced by the different erosion procedures
along the MTD are shown in Figures 7 and 8, respectively.
Both the ABC and AIB show significant negative correlations
with the porosity of the cancellous bone in all procedures
(ABC: R = -0.90, —0.84, —0.71; AIB: R = -0.96, —0.90,
—0.92). For the three different erosion procedures, with the
increase in the cancellous bone porosity, the cancellous bone
microstructure undergoes various changes. The changes in
ABC and AIB are different for the same porosity. Based on
the regression results listed in Table 2, the slopes for the three
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FIGURE 6: Relationships between AIB and cancellous bone porosity
induced by different erosions for ultrasonic propagating perpendic-
ular to the MTD.
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FIGURE 7: Relationships between ABC and cancellous bone porosity
induced by different erosions for ultrasonic propagation along the
MTD.

erosion procedures are different. Compared with the results
perpendicular to the MTD, the values of ABC and AIB are
smaller, and the corresponding slopes are different.

4. Discussion

ABC and AIB reflect the frequency-related intensity of the
backscatter signal. The signal strength is mainly affected by
the scattering cross section and attenuation. The reflected
signal energy increases with the scattering cross section.
When the ultrasonic incident direction is along the MTD,

-10

—15 F

-20 }

—25

AIB (dB)

-30 }

-35 kL

—40 \ \ \ . . . .
60 65 70 75 80 85 90

Porosity (%)

* Procedure A R = —0.96
© Procedure B R = -0.90
o Procedure C R = —0.92

FIGURE 8: Relationships between AIB and cancellous bone porosity
induced by different erosions for ultrasonic propagation along the
MTD.

the scattering cross section is smaller than that for ultrasonic
perpendicular to MTD and the values of ABC are smaller.
Besides, the attenuation increases with trabecular bone length
in the transmission direction. Thus, the ABC and AIB not
only are influenced by bone mass or porosity but also will be
influenced by trabecular microstructure of cancellous bone.

The simulations show that ABC and AIB vary differently
for the three procedures with the increasing of porosity. With
the notations ABC,,, AIB,, is used to represent ABC, AIB
under procedure ¢ (¢ = A,B,C), the simulation results
show that when the ultrasonic propagation is perpendicular
to MTD, both ABC and AIB show significant negative
correlations with the porosity of the cancellous bone in all
procedures. The slopes of the liner fitting results for the three
erosion procedures (ABC: —1.22 dB, —0.98 dB, and —0.46 dB;
AIB: —0.74 dB, —0.69 dB, and —0.25 dB) are different. To the
same porosity, the ABCy and AIBy are smaller than those
of the other two procedures. In procedure B, the trabecular
microstructure deterioration along the MTD, the length of
the trabeculae in the propagation direction, is larger than
those of the other procedures, which simulate the spaceflight-
induced bone loss. The results indicate that the ABC and AIB
may be smallest in the case of the trabecular microstructure
deterioration along the MTD when propagation is perpen-
dicular to MTD and with the increasing porosity. The slopes
of procedure C are the smallest, which simulates the age-
related bone loss. Besides, the difference values of the three
procedures also increase for both ABC and AIB.

The ABC, and AIB,, for the three erosion procedures
are also different when the propagation is along MTD, but
compared to the results of propagation perpendicular to
MTD, the values of ABC and AIB are smaller, the correspond-
ing slopes of procedures A, B, and C (perpendicular MTD:
ABC: -1.22dB, —0.98 dB, —0.46 dB; AIB: —0.74 dB, —0.69 dB,
—-0.25dB; along MTD: ABC: -1.87dB, —0.69dB, —0.51dB;
AIB: -0.9dB, —0.5dB, —0.34 dB) are also different, because



there is a major trabecular direction in cancellous bone. The
results along MTD further indicate the variability in ABC and
AIB induced by the trabecular microstructure in cancellous
bone and illustrate that ABC and AIB are sensitive to the
trabecular microstructure.

It is the same as the experimental results in the previous
study [40]; ABC and AIB both had negative correlations
with the porosity. The ABC and AIB are influenced by
the trabecular microstructure deterioration direction; the
slops of linear fitting between them (ABC and AIB) and
porosity indicate that, for the linear evaluation of BV/TV or
porosity using ABC or AIB to the age-related and spaceflight-
induced bone loss, the deterioration direction maybe should
be considered.

In a previous study it was suggested that the ultrasound
backscatter was affected by the anisotropic microstructure
[19]. And to the same reason induced bone loss, to the
trabecular microstructures are various, but the deterioration
direction is the same. In the present study, the effect of
deterioration direction is investigated. And it is significant
that when the deterioration direction is considered, the liner
assessment of BV/TV by the ABC or AIB is more accurate.

This study investigated the relationship between ultra-
sonic backscatter and cancellous bone microstructure dete-
rioration and indicated that the ultrasonic backscatter was
affected by cancellous bone microstructure deterioration
direction, and we just discussed the parameters of ABC and
AIB. Therefore, the study of the trabecular microstructure
effect on the different ultrasonic backscatter parameters
without the porosity should be elaborated upon in the future.

5. Conclusion

The variabilities of ABC and AIB induced by different
direction deteriorations of trabecular microstructure were
investigated. ABC and AIB showed significantly negative
correlations with the porosity of the cancellous bone. ABC
and AIB were sensitive to the trabecular microstructure;
they were confined to erosion procedures from which three
different direction cancellous bone microstructure changes
were revealed. The ABC and AIB are affected by the tra-
becular microstructure deterioration direction. When using
ABC and AIB accurately in the evaluation of cancellous
bone mass on different reason related bone loss, the effect of
the trabecular microstructure deterioration direction maybe
should be considered.
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External beam radiotherapy (EBRT) is one of the curative treatment options for prostate cancer patients. The aim of this treatment
option is to irradiate tumor tissue, while sparing normal tissue as much as possible. Frequent imaging during the course of the
treatment (image guided radiotherapy) allows for determination of the location and shape of the prostate (target) and of the organs
at risk. This information is used to increase accuracy in radiation dose delivery resulting in better tumor control and lower toxicity.
Ultrasound imaging is harmless for the patient, it is cost-effective, and it allows for real-time volumetric organ tracking. For these
reasons, it is an ideal technique for image guidance during EBRT workflows. Review papers have been published in which the use
of ultrasound imaging in EBRT workflows for different cancer sites (prostate, breast, etc.) was extensively covered. This new review
paper aims at providing the readers with an update on the current status for prostate cancer ultrasound guided EBRT treatments.

1. Introduction

Prostate cancer is the most frequently diagnosed cancer in
men worldwide. It accounted for 1.6 million new diagnoses
and 366,000 deaths in 2015 [1]. In the next decades, the
incidence of prostate cancer might increase due to the
possible linkage of this cancer with risk factors associated
with economic development (e.g., excess body weight and
physical inactivity) [2] and the aging population [3].

One of the curative treatment modalities for prostate can-
cer is external beam radiotherapy (EBRT) [3]. The aim of this
modality is to irradiate tumor tissue using ionizing radiation
generated by an X-ray source (e.g., linear accelerator). At the
same time, normal tissue must be spared as much as possible
to avoid excessive toxicity. EBRT is one of the most common
forms of RT treatment and therefore it is often denoted as
just radiotherapy (RT) in literature (as will be done in the
remainder of this paper).

Prior research using kV radiography has shown [4, 5]
that frequent imaging of the patients’ anatomical structures
of interest during the course of the prostate RT treatment
(image guided RT, IGRT) can improve radiation targeting and
tumor control. This improved targeting could allow reduction
of safety margins, with consequently decreased toxicity. Next
to kV radiographs also other imaging modalities have been
used for IGRT, such as cone beam CT (CBCT) in combination
with fiducial markers [6], magnetic resonance imaging (MRI)
[7], implantation of electromagnetic transponders [8], and
ultrasound (US) imaging [9].

In this review paper the focus solely lies on the use of
US imaging during the IGRT workflow of prostate cancer
patients. US imaging typically provides good soft-tissue
contrast and therefore it is a modality that allows contouring
of structures such as the prostate [10]. It is also a real-
time image modality, because the images are reconstructed
and visualized directly during the acquisition. Some of the
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F1GURE I: Typical RT workflow for prostate cancer patients. During the simulation stage, fiducial markers are implanted in the prostate, images
of the patient’s anatomy are acquired, and a treatment plan is designed. Subsequently, the dose is delivered to the patient in several treatment
fractions, while ensuring that the patient is set up as accurately as possible.

currently available US systems potentially even allow real-
time volumetric imaging and soft-tissue tracking, using a
matrix probe (e.g., X6-1 xMatrix array probe, center fre-
quency: 3.2 MHz, Philips Healthcare, Bothell, WA, United
States), or a mechanically swept probe (e.g., Clarity Autoscan
probe, m4DC7-3/40, center frequency: 5 MHz, Sonix Series;
Ultrasonix Medical Corporation, Richmond, BC, Canada).

Some of the limitations and challenges associated with
US imaging include the inaccessibility of tissue shielded by
bone or air, the proneness for imaging artifacts, and the
user dependency [17], due to its mostly manual operation.
However, in comparison with other imaging modalities US
is cost-effective and it does not deliver ionizing radiation to
the patient. The combination of these characteristics with
the real-time volumetric tracking ability makes US imaging
a suitable image modality for inter- and intrafraction organ
motion monitoring during the course of a prostate RT
treatment [34]. US imaging could then be used either as
standalone system or possibly in combination with other
imaging modalities.

In 2015 and 2016 two review articles [11, 12] were pub-
lished in which the use of US for IGRT of different cancer sites
(e.g., prostate, breast, and liver) was extensively covered. The
current review article updates this work for prostate cancer.
After an introductory summary on US techniques and US
systems that can potentially be used during the RT prostate
cancer patient workflow, a comprehensive update on the latest
developments in this field is presented.

2. EBRT Workflow and US Imaging

2.1. EBRT Workflow. The typical RT workflow of prostate
cancer patients consists of several steps, belonging to either
the simulation stage (preparatory phase) or the treatment
stage (radiation dose delivery phase) (Figure 1). The first step
involves the invasive implantation of fiducial markers in the
prostate gland. These markers are considered a surrogate
for the target and are currently used to monitor its motion
between different treatment fractions using X-ray imaging.
Subsequently, a computed tomography (CT) scan and
increasingly more often an MRI scan are acquired. The
CT scan provides electron-density information allowing for

treatment plan preparation, based on prescribed radiation
dose and delineations of the anatomical structures of interest
(target and organs at risk [OARs]). In case also an MRI
is acquired, it is registered with the CT scan based on the
fiducial markers [35], which can be visualized with both
imaging modalities. Then, the prostate (target) is delineated
on the MRI instead of on the CT scan. As the volumes are
registered, the delineation can be transferred to the CT scan
and used during the treatment plan preparation. MRI-based
delineation is preferred as MRI usually allows for a more
accurate delineation of the prostate than the CT [36-38].

After finalizing the treatment plan design, the radiation
dose will be delivered to the patient in multiple daily treat-
ment fractions (up to 45) during 1-2 months [3]. The setup
of the patient prior to each of these treatment fractions is an
important step in the RT workflow. This procedure must be
as accurate as possible to reproduce the setup at simulation
stage, on which the treatment plan was designed.

Nowadays, setting up the patient is typically assisted by
the use of skin marks on the patient’s body [39], the previously
mentioned fiducial markers [40], and CBCT [41]. However,
even if the patient seems to be correctly aligned, internal soft-
tissue deformations may still occur. The position and shape
of the prostate can change, due to a different filling of the
bladder and rectum [42]. To account for these deviations
from the simulation CT, a safety margin is usually added to
the treatment target [18]. Unfortunately, this leads to a larger
volume being irradiated, potentially including larger portions
of OARs.

Monitoring the position and shape of the prostate during
the course of the RT treatment could potentially improve
the accuracy of the radiation dose delivery and, in the
end, potentially even allow for a margin reduction. In the
ideal case, this prostate monitoring would not only include
monitoring between different fractions (interfraction), but
also during a treatment fraction (intrafraction) [12]. As noted
before, US imaging could be a suitable imaging modality for
this purpose.

2.2. US Imaging in RT Workflow. US imaging makes use of
a probe equipped with piezoelectric elements to create high-
frequency sound waves and transmit these into the body. On
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FIGURE 2: US probe setup using three US imaging techniques. (a) TRUS, (b) TAUS, and (c) TPUS with the yellow beam indicating a possible

location of a radiation beam during a treatment fraction.

FIGURE 3: Three US techniques suitable for prostate and OARs imaging (a) TRUS, (b) TAUS, and (c) TPUS, with (A) prostate, (B) bladder,

and (C) rectum which can partially be seen.

their way through the body, these waves encounter interfaces
between different tissues and scattering objects. Due to the
difference in acoustic impedance between the tissues at each
side of this interface and between the scattering objects and
the surrounding tissue, a part of the US waves is reflected,
while the remaining waves keep penetrating deeper into
the body. The reflected waves are received by the probe,
processed, and combined to generate an image.

As air reflects US waves very strongly, the presence of air
between the probe and the body of the patient will prevent
sufficient penetration of the waves into the body, which
significantly degrades the image quality. It is therefore crucial
to establish sufficient acoustic coupling between the probe
and the body. For this purpose, a coupling medium, such as
US gel or water, is typically used.

Several US probes with different shapes and characteris-
tics are commercially available for the different procedures
possible with this technology. To image the prostate and
OARs during the RT workflow, three US imaging techniques
are presently used in clinical practice. These techniques and
how they can potentially improve the accuracy of radiation
dose delivery are described in the next sections. We refer to
the literature (e.g., [43, 44]) for more general details on the
physics theory and technology of US imaging.

2.2.1. Transrectal US Imaging. Transrectal US (TRUS) imag-
ing requires positioning of the probe through the anus inside
the rectum (Figure 2(a)) and is therefore a low invasive imag-
ing procedure. As the prostate is located in close proximity
of the rectum, TRUS allows imaging of the prostate with a
good image quality (Figure 3(a)) [45]. Challenges that can
occur while making use of TRUS imaging are rectal filling,
which can be removed using an enema [46], and the potential
presence of air in the rectum, which results in a poor acoustic
coupling between the probe and the body of the patient.

In the EBRT workflow, TRUS imaging is currently used
to the guide fiducial marker placement during the simulation
stage (Figure4) [47]. The invasive character of this US
modality makes it less suitable for frequent imaging during
the course of the treatment. In addition, the presence of the
probe inside the rectum being potentially in the path of the
radiation treatment beam (Figure 2(a)) raises issues as well.
For this reason, no research seems to have been conducted
on the use of TRUS for inter- and intrafraction organ motion
monitoring during prostate EBRT.

2.2.2. Transabdominal US Imaging. Transabdominal US
(TAUS) imaging involves the positioning of the US probe on
the abdomen (Figure 2(b)) and it is therefore a noninvasive
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FIGURE 4: RT workflow of prostate cancer patients with US imaging implemented at several steps. The fiducial marker implantation is currently
performed under TRUS guidance. The acquisition of the reference TAUS or TPUS images at simulation stage and also the acquisition of TAUS
and TPUS prior to dose delivery can provide valuable information for interfraction prostate motion correction. Finally, during dose delivery
TPUS imaging could provide information on intrafraction prostate motion.

imaging modality. It is capable of measuring the same
prostate volumes as TRUS imaging (considered the standard)
[48] and it makes use of the acoustic window of the bladder
for prostate visualization (Figure 3(b)). For this reason, TAUS
requires a reasonably full bladder, which might lead to
discomfort for the patients. However, a filled bladder is often
requested during the RT treatment to prevent the whole
bladder wall from being irradiated and to push the intestines
away from the high dose regions.

During TAUS imaging, the probe is located relatively far
from the prostate, which might influence the quality of the
acquired images. Particularly the acquisition of TAUS images
of obese patients is a challenge [49]. Adipose tissue attenuates
the US waves and increases the possibility for imaging
artifacts, which can significantly degrade the image quality.
Unfortunately, it is a challenge to predict the degree of adipose
attenuation and the associated image quality degradation,
due to the dependence on patient-specific characteristics,
such as fat distribution [50].

The probe setup on the body of the patient during
TAUS imaging makes this imaging modality suitable for
interfraction monitoring. However, it is more challenging to
use TAUS imaging for intrafraction monitoring (Figure 4), as
the probe is potentially located in the path of the radiation
beam, especially for rotational therapy (Figure 2(b)). Ways to
overcome this challenge are currently not available in clinical
practice, although they are being investigated. In Section 6
of this paper, the recent developments in this field will be
discussed.

In the past 20 years, three systems were commercially
available that allowed interfraction monitoring of the prostate
during the RT workflow by means of TAUS imaging:
SonArray system (Varian Medical Systems, Palo Alto, CA,
USA), B-Mode Acquisition and Targeting (BAT) system (Best
Nomos, Pittsburgh, PA, USA), and the Clarity system (Elekta,
Stockholm, Sweden, formerly called Restitu and commer-
cialized by Resonant Medical, Montreal, QC, Canada). To
our knowledge, only the Clarity system is still available on
the market and as there have been papers published on this
system in the last years, it will be covered in this paper.

The BATCAM system was only used in one study [51]
since the publication of the previously mentioned review
papers [11, 12]. In this study a comparison was made between

the Clarity system and the BATCAM system, resulting in a
good agreement between both. As the BATCAM system was
extensively covered in the previous review papers, it will not
be discussed further in this work.

In the RT workflow, a freehand sweep using a 2D TAUS
probe (C5-2/60, center frequency: 3.5 MHz, Sonix Series;
Ultrasonix Medical Corporation, Richmond, BC, Canada)
can be acquired by the Clarity system during the simulation
stage. Due to the use of a probe localization system, it is
possible to reconstruct the sweeps such that a 3D TAUS
volume is created. The same procedure is repeated prior to
each treatment fraction. The requirement for manual sweep
acquisition makes the Clarity system inherently sensitive to
uncertainties associated with operator variability and probe
pressure. These issues will be covered in more detail in
Section 5.

Comparison of the US volumes acquired at treatment
stage and the reference US volume acquired at simulation
stage allows the calculation and correction of interfractional
prostate motion [34]. Besides the fact that the US probe is
potentially located in the path of the radiation beam, the
need of an operator performing the manual sweep for the 3D
TAUS volume reconstruction makes this system not suitable
for intrafraction monitoring.

2.2.3. Transperineal US Imaging. Transperineal US (TPUS)
imaging is a noninvasive imaging modality, as it involves
the positioning of the US probe on the perineum of the
patient (Figure 2(c)). Also this imaging modality is capable
of measuring the same prostate volumes as TRUS imaging
[52]. TPUS imaging does not exploit the acoustic window
of the bladder to obtain images of the prostate (Figure 3(c))
and therefore it requires a less strict bladder filling protocol.
A semifilled bladder is still beneficial since it yields good
imaging contrast distal to the prostate. In addition, as the
distance between the prostate and the perineum is smaller,
a relatively good image quality can potentially be achieved.
However, just like with TAUS imaging, the body composition
of the patient can affect the image quality. Finally, due to the
fact that the probe setup does not interfere with the radiation
beam (Figure 2(c)), TPUS imaging can potentially be used
also for intrafraction monitoring of the prostate (Figure 4).
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FIGURE 5: Clarity Autoscan system setup with (a) probe and (b)
baseplate.

Currently there is only one commercial system available
that enables the inter- and intrafraction prostate motion
monitoring during the RT workflow using TPUS imaging:
Clarity Autoscan (Elekta, Stockholm, Sweden) [34]. This sys-
tem is an extension of the Clarity system as described above.
Like the Clarity system it employs a 2D probe (m4DC7-
3/40, center frequency: 5MHz, Sonix Series; Ultrasonix
Medical Corporation, Richmond, BC, Canada). However,
the Autoscan probe is mounted in a housing which also
comprises a motorized control of the sweeping motion. This
automation of the sweeping motion makes a manual sweep
superfluous.

The Autoscan probe which can be localized in the room
by a probe tracking system is attached to a baseplate on the
CT or on the linear accelerator (LINAC) couch during the
procedure (Figure 5), allowing positioning and locking of the
probe for TPUS imaging. The use of the baseplate and the
automatically performed sweeping motion potentially reduce
the operator dependence. The operator dependence will be
covered in more detail in Section 5.

The Clarity Autoscan system follows the TPUS workflow,
as represented in Figure 4. First, a 3D TPUS volume is
acquired at simulation stage. Then, prior to the dose delivery,
a full sweep is acquired and reconstructed. Comparison of
this full sweep with the image acquired at simulation allows
the calculation of a required couch shift to account for
interfraction prostate motion.

During the radiation dose delivery, continuous volumet-
ric imaging using the US probe is performed. This allows
position monitoring of the prostate in 3D. The therapist can
interrupt the treatment and perform a couch correction, in
case the motion in a certain Cartesian direction is exceeded
for a certain amount of time. These motion direction and
time thresholds can be set by the operator prior to the first
treatment delivery [34].

3. Interfraction Monitoring

3.1. Fiducial Markers. As already introduced in Section 2,
currently 3-4 fiducial markers are implanted prior to the start
of the radiation treatment. The most frequently used markers
are made of gold and provide a surrogate for the prostate
position. The markers are visible using kV imaging modalities
(such as CBCT or 2D X-ray radiographs) but can also cause
metal-induced image artifacts [40].

The implantation procedure is often performed under
TRUS guidance and involves invasively positioning the mark-
ers in the prostate through the perineum or the rectum [53].
The procedure can be considered as well tolerated by the
majority of patients [47, 54], but it is definitely not without
risks. One study [55] even suggests that the risk associated
with the implantation of the markers through the rectum is
still underestimated. An overall rate of symptomatic infection
with the fiducial marker implantation was reported to be 7.7%
with one-third requiring hospital admission.

The use of fiducial markers during the RT workflow is
based on the assumption that the marker position inside
the prostate will not change during the whole course of
the treatment, from the simulation stage until the final
treatment fraction. Changes in anatomy and physiology,
however, can potentially cause or mimic marker migration
[56]. Moreover, studies have shown that the presence of
fiducial markers in the prostate can affect the dose deposition
[57] and that imaging the fiducial markers using CBCT adds
a nonnegligible dose to the patient [58].

Therefore, interfraction motion monitoring should be
ideally performed with a noninvasive image modality that
does not require the presence of these fiducial markers inside
the prostate. In this regard, US imaging is an excellent can-
didate. In the next section studies are discussed which used
TAUS or TPUS imaging for interfraction motion monitoring
of the prostate.

3.2. TAUS and TPUS Imaging. In Tablel the studies are
reported that compared the use of TAUS (Clarity system)
or TPUS (Clarity Autoscan system) with other imaging
modalities for interfraction prostate monitoring. As the work
of Tas et al. [59] only includes data from one prostate
cancer patient, it is excluded from this table. The studies
indicated with an asterisk () were included in the previously
mentioned review papers [11, 12]. However, they have been
added to this work to provide a complete overview.

The older studies primarily focused on TAUS imaging. In
these studies, 2D techniques [13, 15, 17] and volumetric imag-
ing techniques [14, 16, 19, 20] were used for comparison with
the TAUS imaging. One study [21] also compared the results
of a surface imaging system (AlignRT, VisionRT, London,
UK) with TAUS imaging. The four most recent studies [22-
25] examined the use of TPUS imaging in comparison with
volumetric imaging only, such as CBCT and an additionally
acquired planning CT.

All studies (TAUS and TPUS) reported the differences
(using mean + standard deviation (SD) or error notation
including mean and systematic and random error [I8])
between the US imaging technique and another image
modality. The reported mean differences for the anterior-
posterior (AP), left-right (LR), and superior-inferior (SI)
directions were in 9 out of 11 studies in the absolute range
of 0-3mm. Some studies also reported the Bland-Altman
95% limits of agreement (LoA) [60] and/or the ranges of the
measured differences. For the studies that did not report the
LoA, the ranges are detailed in the final column of Table 1.
The largest range difference was reported by Robinson et al.
[16], ranging between 1.3 mm and 61.4 mm.
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The Bland-Altman LoA are detailed in the final column
of Table 1 and were reported by 5 out of 12 studies. The LoA
(bias + 1.96+SD) are a measure for the interchangeability of
two methods or systems. If the limits are smaller than or
equal to an a priori defined tolerance, one method can be
used interchangeably with the other. The TPUS studies (min
LoA: 3.2 mm; max LoA: 9.4 mm) tend to report slightly lower
LoA values than the TAUS studies (min LoA: 5.3 mm; max
LoA: 11.7 mm). Considering that the prostate safety margins
currently used in clinical practice (using fiducial markers)
range from 3 to 10 mm [61], neither TAUS nor TPUS could
be considered interchangeable with the imaging techniques
they have been compared with. However, this does not
automatically imply that the US techniques perform worse
than the comparison technique, simply because there is no
recognized ground truth. Therefore, potential inaccuracies
in the imaging modality that the US is compared with can
influence the results and associated conclusions.

The absence of ground truth is also reflected in con-
flicting conclusions regarding the potential performance of
US imaging in the RT workflow. For example, Li et al.
[19] concluded that it is feasible to use TAUS imaging for
image guidance during the prostate RT workflow and that
this image modality appears comparable to CBCT when
used for the same purpose. On the other hand, Fargier-
Voiron et al. [20] concluded that TAUS imaging cannot
replace CBCT without increasing treatment margins. These
conclusions seem to differ significantly, while the reported
mean differences between the reference imaging modality
and TAUS imaging are comparable.

In general, it seems that the studies investigating the use
of TPUS imaging are more optimistic about the accuracy,
interchangeability, and usability in comparison to the TAUS
imaging studies. For example, Trivedi et al. [24] conclude that
TPUS imaging provides excellent imaging of the prostate and
comparable localization results. Also Li et al. [25] conclude
that TPUS is a feasible image modality for IGRT and has a
good accuracy.

In conclusion, different opinions exist in the literature
regarding the comparability between US (TAUS and TPUS)
and other imaging modalities used for image guidance during
the RT workflow. For this reason, more research is necessary
before final conclusions can be drawn about the usability of
US imaging in the prostate IGRT workflow. Also, it is very
important that US imaging is standardized to reduce the
operator dependency (see Section 5).

4. Intrafraction Monitoring

As discussed in the introduction section, the position and
shape of the prostate can change, due to, for example, different
bladder or rectum fillings. This phenomenon can occur
not only between treatment fractions, but potentially also
during a treatment slot. Intrafractional prostate motion has
been investigated in several studies using, for example, the
Calypso localization system (Calypso Medical Technologies,
Inc., Seattle, WA, USA) (e.g., [8, 62]). This system is based
on the electromagnetic detection of beacon transponders

which need to be implanted in the prostate. Calypso provides
continuous, real-time localization of the prostate surrogates
and it has been shown to have a submillimeter accuracy in a
phantom [63].

These transponders need to be implanted in the prostate
and, in addition, can cause image artifacts on MRI that
could be used for treatment response assessment. In addition,
an antenna which is necessary for the localization of the
beacons is present in the path of the radiation beam. Finally,
assumptions are needed to determine a relation between the
position of the transponders and the shape and location of
the prostate, making the Calypso system not a real volumetric
tracking system.

As the Clarity Autoscan system (TPUS) does not involve
implantation of transponders in the prostate, it allows for
real volumetric tracking of the prostate. In addition, during
the procedure no equipment is present in the beam path,
which potentially makes it a more favorable solution for
intrafraction prostate motion tracking in comparison to
the Calypso system. Abramowitz et al. [64] found a good
agreement between the Clarity Autoscan system and the
Calypso system, while examining the ability of both systems
to track a prostate-like sphere in a phantom.

The accuracy and precision of the Clarity Autoscan
system have been evaluated in a study using a male pelvic
phantom [65]. In this study, a latency of 223 + 45.2 mil-
liseconds was reported between the motion of the phantom
and the US tracking. In addition, a mean position error
of 0.23mm (LR) and 0.45mm (SI) was reported. These
positional and timing accuracies were found to be acceptable
under the simulated treatment conditions examining, among
others, the performance of the system while the radiation
beam was on and while the image quality was degraded by the
introduction of an air gap between the probe and the surface
of the phantom. This was done to assess tracking performance
under worse image quality conditions.

In the literature, three papers [26, 27, 66] and one abstract
[28] are available in which intrafraction prostate monitoring
was clinically investigated using the Clarity Autoscan system.
The authors of these publications reported different met-
rics. For example, Richardson and Jacobs [27] reported the
total frequency of intrafraction prostate displacements per
direction for different thresholds, while Baker and Behrens
[26] reported the percentage of fractions with displacements
larger than 2 mm. These differences make it difficult to
compare the results directly.

Ballhausen et al. [66] investigated data from 6 prostate
cancer patients. This data was used to verify their hypothesis
that the intrafraction motion of the prostate can be modeled
as a time-dependent “random walk” [67]. It was shown
that the prostate tends to move away from the treatment
isocenter during a fraction and that this drift away from
the isocenter increases over time. These findings imply that
a shorter dose delivery time could be favorable. Such a
reduction of the treatment time can be achieved by using,
for example, volumetric modulated arc therapy (VMAT) or
RapidArc® Radiotherapy Technology (see [3] for more details
on radiation techniques).
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TABLE 2: Studies reporting on the use of TPUS imaging with the Clarity Autoscan system for intrafraction prostate motion monitoring. The
first column details the first author and publication year. The second column details the used system, while the third and fourth column
indicate the number of patients and scans examined, respectively. The fifth column contains the examined time intervals in seconds, while

the final column details some results and conclusions.

First author System #pts #USscans  Time [sec] Results and conclusions
(i) Largest displacement (2.8 mm) in posterior direction
Baker (2016) [26] TPUS 10 51 120-150 (ii) Displacement insignificant during treatment time
(iii) Displacement increases over time

(i) Posterior motion seems most common

Richardson (2017) [27] TPUS 20 526 385 (ii) 35% of patients displacement > 10 mm
(iii) Duration of displacement varies considerably between patients

Guillet (2017) [28] TPUS 10 330 140 (+120 setup) (i) Largest movement in AP direction

290 (+120 setup)

(ii) Dosimetric impact increases with treatment time duration

Baker and Behrens [26] investigated the prostate
intrafraction motion during a time interval corresponding
to a beam-on time for RapidArc (120-150 seconds) (see
Table 2). A tolerance of 2 mm was considered, as this value
is perceived to be clinically irrelevant according to the
British Ionization Radiation Medical Exposure Regulations
2000 (IRMER 2000). In the study, maximal intrafractional
displacements of —0.2 + 1.1mm (AP), -0.2 + 0.8 mm (LR),
and +0.2 + 0.9 mm (SI) were found. The largest displacement
of 2.8 mm was measured in the posterior direction. Also,
displacements of larger than 2 mm were measured for 10%
(AP), 2% (LR), and 4% (SI) of the examined fractions. The
authors concluded that the displacement of the prostate is
insignificant during the measured time interval. However, the
conclusion was also drawn that the displacement increases
over time, which is in line with the findings of Ballhausen et
al. [66].

Richardson and Jacobs [27] instead used the Clarity
Autoscan system to assess the intrafraction prostate motion
during intensity-modulated radiotherapy (IMRT) with static
beams from different angles, which consequently has a longer
treatment time (reported mean of 385 seconds). In this case,
the authors considered three different thresholds: 3 mm (fine
tolerance), 7 mm (future planning target volume), and 10 mm
(current planning target volume). In addition to a technical
overview, also the first clinical experiences of the physicians
were captured in a letter [68] and article [69].

Also in this study, the motion of the prostate in the
posterior direction seems to be the most common (Table 2).
All patients experienced at least one displacement larger than
3 mm and 35% of the patients experienced one displacement
larger than 10 mm. These higher rates of motion in compar-
ison with [26] can potentially be explained by the fact that
the evaluated time interval was much longer (385 seconds
versus 120-150 seconds). In the study of Richardson and
Jacobs [27] also the duration of the intrafraction prostate
displacement was calculated as a proportion of the total
treatment time. This duration varied considerably between
patients. For example, for motion larger than 3 mm in the
posterior direction, durations from 2% of the treatment time
up to 92% of the treatment time were observed for individual
patients.

Finally, also one abstract was published by Guillet et
al. [28] in which the dosimetric impact of the intrafraction
motion was investigated and in which also some prostate
movement results were reported. Also in this work, the largest
movements were reported in the AP direction (Table 2), with
18% of the short treatment sessions (140 seconds) and 31%
of the longer treatment sessions (290 seconds) displaying
motions larger than 3 mm. In addition, in this work it was
also shown that the dosimetric impact of the intrafractional
motion increases with the treatment time duration.

5. Operator Dependence

Currently, the operator who acquires the US images in
the clinic (not only in the RT environment) may need to
(manually) place the US probe on the body of the patient,
interpret the live images, and then decide if the correct
anatomical structures are visualized with sufficient image
quality. This makes US imaging operator dependent and this
dependence may cause significant variability in the quality of
the acquired US images and thus influence the ability to locate
and track the prostate and OARs.

Section 5.1 discusses the studies that investigated prostate
displacement induced by probe pressure in both TAUS and
TPUS. Inter- and intraoperator variability is detailed in
Section 5.2.

5.1. Probe Pressure Effects. As introduced previously, the
Clarity system requires the acquisition of a manual sweep
along the abdomen of the patient using the TAUS probe prior
to radiation dose delivery. The acquired image can then be
used for interfraction motion correction. Subsequently, the
probe is removed from the body of the patient and the patient
is irradiated. In case the prostate is displaced due to probe
pressure, it might move to a different position when the probe
is removed from the body. This displacement after the probe
removal is not accounted for in the interfraction motion
correction, which might lead to a suboptimal radiation dose
delivery.

Table 3 details studies that investigated prostate displace-
ment due to probe pressure. Two out of three TAUS studies
used a relative method to assess the prostate displacement.
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TABLE 3: Studies reporting on prostate displacement induced by probe pressure. The first column details the first author and publication year.
A indicates that the specific study was mentioned in the previous review paper [11], but these specific results were not discussed. The second
column details the used system, while the third column provides the imaging modality with which the prostate displacement was assessed.
The fourth and fifth column specify the number of examined patients and the assessed scans, respectively. The prostate displacement in all
directions is listed in column 6 with a indicating results per 1 mm probe shift and in the final column the displacement vector can be found.

Prostate displacement

First author System Assgssed #pts # US scans mean + SD [mm] Displacement vector
with mean + SD [mm)]
AP LR SI
A Relative

Van Der Meer” (2013) [17] TAUS TAUS 13 376 0.7 -0.5 0.0 3.0

. . A Relative
Fargier-Voiron™ (2014) [29] TAUS TAUS 8 24 - - - 25+12
Baker (2015) [30] TAUS  TPUS 9 42 ~0.1+1.0 02+07  -01+08 13407
Li (2017) [31] TPUS R;?S‘S’e 10 16series  0.07+011°  0.04+0.11° 0.42 + 0.09* 2-4

For example, Van Der Meer et al. [17] acquired images at no
pressure (reference situation: probe touching the skin) and
subsequently acquired images at low pressure, intermediate
pressure, and high pressure. To determine the displacement
due to probe pressure the location of the prostate was
compared to the reference situation.

Baker and Behrens [30] assessed the effect of TAUS probe
positioning using TPUS imaging. In this work, a reference
image was acquired using just a TPUS probe without the
TAUS probe actually being in place on the body of the patient.
The average displacement vector of the prostate found by
Baker and Behrens [30] was significantly lower than the
distance found in the other studies (1.3 mm versus 2.5 mm
and 3.0mm). The studies concluded that even though the
prostate displacements are small, a minimal pressure should
be used in order to make the probe setup more reproducible.

The effect of probe pressure during TPUS imaging were
reported in two studies. Mantel et al. [70] investigated the
shift of the penile bulb after positioning the TPUS probe
against the perineum. A superior shift of the penile bulb could
bring it closer to the prostate and therefore closer to the high
dose region. This could lead to an increase of dose delivered
to the penile bulb, which has been correlated earlier (e.g.,
[71]) with the incidence of erectile dysfunction. The authors
studied datasets from 10 patients and reported that the penile
bulb had a significant median shift of 6.2 mm in the superior
direction. In addition, no relevant volume changes of the
prostate and planning target volume due to probe pressure
were observed and just minor motion of these structures was
reported, mainly in the superior direction. No quantitative
results on this prostate and planning target volume motion
were reported in the paper.

In another study [31] the pressure applied by a TPUS
probe was found to have a quantitatively similar impact on
prostate displacement as the TAUS probe (Table 3). As this
conclusion contradicts the conclusion of Mantel et al. [70],
it implies that more research is necessary to understand the
impact of TPUS probe pressure on the displacement of the
prostate and OARs. Li et al. [31] also detected a systematic
intrafraction drift of the prostate. They hypothesized that
this drift was caused by the relaxation of the compressed

tissue of the perineal area present between the prostate and
the probe. As intrafraction motion monitoring is possible
using TPUS imaging, this drift can be monitored and, when
needed, potentially compensated for.

With TPUS imaging the probe does not need to be
removed prior to dose delivery. Therefore, no displacement
of the prostate and organs at risk due to probe removal
is expected. As long as the pressure is not so high that it
produces a shift of the OARs into high dose regions (as
reported e.g., for the penile bulb in the previous paragraph)
and it is reproducible, the consequences of the pressure in
the US guided RT workflow should be minimal. For TAUS
imaging, it was reported that it is difficult to reproduce the
pressure [29]; however, for TPUS imaging results on this issue
are currently not available. If future studies prove that it is
feasible to position the TPUS probe with a reproducible probe
pressure, it would add another advantage to this imaging
modality in comparison to TAUS imaging.

5.2. US Image Interpretation. The variation in US probe
pressure applied by different operators may influence the
displacement of the prostate and thus result in US image
variation. However, also during interpretation of the images
inter- and intraoperator variability can occur. This variability
seems to be more present in operators with limited US
imaging experience. For this reason, the importance of
training has been emphasized by the American Association
of Physicist in Medicine [72].

The inter- and intraoperator variability for different
levels of expertise have been investigated in a few studies
(Table 4). In these studies, the operators were asked to match
a reference contour of the prostate to a newly acquired
US image to determine the required setup shift during
interfraction motion monitoring. Subsequently, differences
in the performed matches were statistically examined.

The results reported by Fiandra et al. [32] show that the
interuser variability decreases with growing TAUS imaging
experience. The same holds for the intrauser variability
during TPUS imaging, as reported by Pang et al. [33]. The
operators that matched the images in the study of Van Der
Meer et al. [17] received thorough training and scanning
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instructions. These operators seem to perform similarly to the
operators with more than one year of experience of Fiandra
et al. [32].

In Table 1, the results reported by Robinson et al. [16]
regarding the differences in prostate localization between
TAUS imaging and CT are listed. These results seem to
confirm as well that more experience (clinical operator versus
manufacturer representative) results in better agreement
between the CT and TAUS based prostate locations.

In addition to providing training to the operators, mak-
ing the system less prone to operator dependence could
potentially reduce both inter- and intraoperator variability.
In comparison with the Clarity system, the Clarity Autoscan
system has already implemented several improvements to
potentially reduce operator dependence. In particular, the
mechanically swept probe could be attractive, since it min-
imizes the disadvantages of a manual sweep acquisition, such
as the variance in probe pressure and sweeping motion. In
addition, the probe is attached to a baseplate avoiding the
need to hold it by hand and the operator is assisted to
reproduce the earlier used probe pressure and setup by means
of visual feedback.

Another approach to reduce operator dependence and
potentially even allow less trained operators to acquire good-
quality images was proposed by Camps et al. [73, 74]. In
this work, the simulation CT scan of prostate cancer patients
(currently almost always available for treatment planning
purposes) was used to optimize the patient-specific US probe
setup that would allow visualization of all the required
anatomical structures with sufficient image quality. This helps
to reduce the need for image interpretation during the
acquisition and the operator variability in probe positioning.

6. Challenges

Some challenges associated with the use of US imaging in
the RT workflow have already been described in the previous
sections, such as the inter- and intraoperator variability and
the displacement of anatomical structures due to probe pres-
sure. In this section, a number of other challenges associated
with the implementation of US imaging in the prostate RT
workflow are discussed.

6.1. Intrafraction US Imaging. The presence of the US probe in
the radiation beam during the treatment can potentially cause
dose delivery errors, which might influence the treatment
outcome for the patient. Three possible solutions have been
proposed in the literature for this problem. One option is to
design the treatment plan in such a way that the US probe
is completely avoided during the treatment [75]. Second, the
radiation can be delivered through the probe, but it requires
that the possible dose deviations are taken into account
during the treatment planning process, as investigated by,
for example, Bazalova-Carter et al. [76]. As a third solution,
Schlosser and Hristov [77] designed a 4D radiolucent US
probe with significantly less metal components close to
the imaging field. This probe should produce a minimal
interference with the radiation beam.

1

Martyn et al. [78] also investigated the effect of an US
probe on the surface dose delivered to a phantom using a
Monte Carlo study. In this study, a phantom was imaged
using an Elekta Autoscan probe parallel to the radiation
beam to mimic TAUS imaging, or perpendicular to the beam,
to mimic TPUS imaging. It was shown that the presence
of the probe in the TPUS configuration produces dose
perturbations near the surface of the phantom, when there is
overlap between the probe and the radiation field. However,
the dose increase was of a similar order of magnitude as the
one resulting from interfraction motion. In case no probe-
field overlap occurred, the measured dosimetric effect was
minimal. In the TAUS probe setup, instead, a dose increase
near the surface of the phantom was measured and reported
to be smaller than 5%.

Several studies (e.g., [75, 79-81]) also looked into the
possibility of replacing a human operator handling the probe
at the bedside with a robot. Schlosser et al. [75], for example,
built a patient-safe robotic manipulator which could be used
to control the pitch and pressure of a TAUS probe. To
safely control the robot remotely from outside the LINAC
room, a haptic device was added to the design. During the
treatment delivery, the beam angles were restricted to prevent
collision with the robotic hardware or the probe. The authors
showed that the robotic system was able to image the prostate
remotely. In addition, both the tracking ability of the US
probe and the robot performance were not degraded during
radiation beam operation. The use of such a robotic system
could not only enable intrafraction TAUS imaging, but also
potentially allow for an easier probe pressure and position
reproduction using both TAUS and TPUS imaging.

6.2. Speed of Sound and Refraction Effects. Most clinical US
systems work in pulse-echo mode, where the time of flight
of the US pulses is used to infer the depth of the structures
in the scanned tissues. This time of flight is calculated with
the speed of sound (SOS) of the tissues traversed by the
pulse. Different tissues have a different SOS. For example,
adipose tissue typically has an SOS around 1450 m/s, while
for connective tissue it is around 1600 m/s [82].

However, the US systems usually assume a fixed average
SOS value of 1540 m/s for all human soft tissues [83]. This
assumption may produce wrong quantitative estimates of
organ boundary positions up to several millimeters. Fonta-
narosa et al. published multiple studies [84-87] in which
CT scans were used to create SOS maps for correcting
these aberrations. These corrections are essential to restore
quantitative comparability with the reference simulation CT
scan.

Not only does the usability of US imaging in the RT
workflow rely on the acquisition and interpretation of the US
images, but also the precision of the calibration procedure of
the localization system and, associated with that, the preci-
sion that can be achieved while localizing the US probe in
absolute coordinates in the simulation or treatment room are
of importance. How well the US probe is localized influences
the coregistration between, for example, the simulation CT
scan and the reference US image, or two US images acquired
at different time points.
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The phantoms used in a calibration procedure are typi-
cally made of homogeneous tissue equivalents to avoid the
SOS effects. In addition, refractions inside the phantom
should not affect the calibration procedure. However, in the
work of Ballhausen et al. [88] it has been shown that the
calibration of a 3D US system can be affected by refraction of
the sound waves at the phantom surface. Particularly when
the probe was tilted during the calibration procedure this
could result in a position difference of more than 0.5 mm.

Van der Meer et al. [89] simulated five different scenarios
mimicking the errors that could occur when using the Clarity
system for TAUS image guidance. These errors could be due
to, for example, the above-mentioned inaccurate calibration,
but also due to laser offsets or patient motion between the
simulation CT and simulation US image acquisition. It has
been shown that it is important to take SOS aberrations into
account and to assess the matching of US and CT images. In
case these images do not match, a manual correction could
be performed, potentially introducing operator variability. In
such a case, the authors recommend rescanning the patient
to avoid problems during the dose delivery procedure.

Summarizing, it is important to take SOS aberrations into
account while registering US images to another image modal-
ity. In addition, caution should be used while performing
calibration and image acquisition, to avoid image matching
issues.

6.3. Hypofractionation and Adaptive Radiotherapy. In current
clinical practice, it is common to deliver the radiation dose
to prostate cancer patients in multiple treatment fractions
(even up to 45). It has been suggested that hypofractionation
could result in the same or better outcomes for the prostate
patients [90]. In a hypofractionation scheme, a higher dose
per fraction is delivered to the patient in less treatment
fractions. The treatment is then delivered over a shorter
amount of time and with a total lower dose.

As the dose delivered per treatment fraction is higher and
there are fewer fractions to potentially perform corrections or
compensate for errors performed in the previous fractions,
it is even more crucial to deliver the radiation correctly.
Ricardi et al. [91] used the Clarity system in the treatment
of intermediate risk prostate cancer patients treated with a
hypofractionated schedule. It was shown that the hypofrac-
tionated schedule under US guidance was a safe and effective
treatment approach with consistent biochemical control and
a mild toxicity profile.

Patient immobilization during the treatment fraction
is also an important aspect of the RT workflow. For this
reason, a wide range of immobilization devices is available
on the market, ranging from a simple leg immobilizer (Civco
Medical Solutions, IA, USA) to vacuum cushions (e.g., Vac-
Lok, Civco Medical Solutions, IA, USA) that can adapt to the
body composition of the patient. Pang et al. [92] investigated
the interfraction setup differences, patient satisfaction, and
radiation therapist satisfaction regarding two immobilization
devices: the traditionally used leg immobilizer and the Clarity
Autoscan immobilization device. The results showed that the
setup errors were smaller with the Clarity device and the
patients were satisfied with the new device. The radiation
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therapist, though, had some issues with the weight and
bulkiness of the new device.

ART aims at reducing or compensating for the effects
of patient-specific treatment variation measured during the
course of a radiotherapy treatment [93, 94] by adaptively
modifying the treatment plan of the patient. This approach
could be used to further improve the accuracy of radiation
dose delivery. However, in current clinical practice, typically
CT scans provide the electron-density information necessary
for treatment planning and dose calculation. So, in case
replanning proves necessary, one or multiple additional CT
scans during the course of the treatment must be acquired.
Not only does this result in extra radiation dose delivery to
the patient, but also high costs are associated with the rather
complex CT acquisition procedure.

Van Der Meer et al. [95] and Camps et al. [96] have
investigated the feasibility of creating pseudo-CT scans of the
pelvic region, based on combinations of rigid and deformable
image registrations of TAUS images. These TAUS images
acquired at simulation stage and during treatment stage
were used to create a deformation field that represented the
changes that occurred in tissue distribution between these
two time points. The subsequent application of this defor-
mation field on the simulation CT resulted in the creation
of a pseudo-CT scan. It was shown that this pseudo-CT scan
represents the anatomy of the patient at treatment stage better
than the simulation CT. These results are promising and may
lead to the ability to replan based on a pseudo-CT scan,
instead of on a regular CT scan.

7. Conclusion

In this work, the recent relevant studies regarding the use of
US imaging for guidance during the prostate EBRT workflow
have been discussed. Several US based guidance systems have
been introduced to the market in the last 15 years with varying
success. TPUS imaging seems to overcome some of the issues
associated with the limitations of TAUS imaging during
intrafraction organ motion monitoring, such as displacement
of the organs due to probe pressure and the interference with
the radiation beam.

The studies that investigated TPUS imaging show promis-
ing results and, for this reason, we recommend the use
of TPUS imaging during the US guided external beam
radiotherapy workflow of prostate cancer patients. However,
there are still several challenges to be addressed, which are
associated with inter- and intraoperator variability during
the acquisition of the images and the interpretation of these
images. In addition, technical aspects of the US image
modality, such as SOS aberrations and refractions should
be investigated further to understand if these cause issues
while using TPUS imaging for both inter- and intrafraction
monitoring.

If a decrease in user variability and an increase of usability
of the US guided EBRT systems can be achieved, this would
potentially make the use of this approach more appealing
to physicians and medical experts, in the end, resulting
in smaller margins with less toxicities for prostate cancer
patients undergoing EBRT.
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Abbreviations

AP:

Anterior-posterior

ART:  Adaptive radiotherapy

BAT:  B-mode acquisition and targeting
CBCT: Cone beam computed tomography
CT: Computed tomography

EBRT: External beam radiotherapy

EPI:  Electronic portal imaging

FM: Fiducial marker

IGRT: Image guided radiotherapy
IMRT: Intensity-modulated radiotherapy
kV: Kilovolt

LINAC: Linear accelerator

LoA:  Limits of agreement

LR: Left-right

MRI:  Magnetic resonance imaging
OAR:  Organ at risk

RT: Radiotherapy

SD: Standard deviation

SI: Superior-inferior

SOS:  Speed of sound

TAUS: Transabdominal ultrasound
TPUS: Transperineal ultrasound

TRUS: Transrectal ultrasound

US: Ultrasound

VMAT: Volumetric modulated arc therapy
2D: Two-dimensional

3D: Three-dimensional.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

(1]

(5]

C. Fitzmaurice, C. Allen, R. M. Barber et al., “Global, regional,
and national cancer incidence, mortality, years of life lost, years
lived with disability, and disability-adjusted life-years for 32
cancer groups, 1990 to 2015: a systematic analysis for the global
burden of disease study,” JAMA Oncology, vol. 3, no. 4, pp. 524
548, 2017.

L. A. Torre, R. L. Siegel, E. M. Ward, and A. Jemal, “Global
cancer incidence and mortality rates and trends—an update,”
Cancer Epidemiology, Biomarkers ¢ Prevention, vol. 25, no. 1,
pp. 16-27, 2016.

B. G. L. Vanneste, E. J. Van Limbergen, E. N. Van Lin, J. G.
H. Van Roermund, and P. Lambin, “Prostate Cancer Radiation
Therapy: What Do Clinicians Have to Know?” BioMed Research
International, vol. 2016, Article ID 6829875, 2016.

M. J. Zelefsky, M. Kollmeier, B. Cox et al., “Improved clinical
outcomes with high-dose image guided radiotherapy compared
with non-IGRT for the treatment of clinically localized prostate
cancer; International Journal of Radiation Oncology « Biology
Physics, vol. 84, no. 1, pp. 125-129, 2012.

J. Sveistrup, P. M. af Rosenschold, J. O. Deasy et al., “Improve-
ment in toxicity in high risk prostate cancer patients treated
with image-guided intensity-modulated radiotherapy com-
pared to 3D conformal radiotherapy without daily image

(10]

(11]

(12]

(13]

(16]

(17]

(18]

(19]

(20]

13

guidance,” Journal of Radiation Oncology, vol. 9, no. 1, article 44,
2014.

U. A. van der Heide, A. N. T. J. Kotte, H. Dehnad, P. Hofman, J.
J. W. Lagenijk, and M. van Vulpen, “Analysis of fiducial marker-
based position verification in the external beam radiotherapy
of patients with prostate cancer;,” Radiotherapy ¢ Oncology, vol.
82, no. 1, pp. 38-45, 2007.

J. J. W. Lagendijk, B. W. Raaymakers, and M. van Vulpen,
“The Magnetic Resonance Imaging-Linac System,” Seminars in
Radiation Oncology, vol. 24, no. 3, pp. 207-209, 2014.

R. D. Foster, T. D. Solberg, H. S. Li et al., “Comparison of
transabdominal ultrasound and electromagnetic transponders
for prostate localization,” Journal of Applied Clinical Medical
Physics, vol. 11, no. 1, pp. 57-67, 2010.

A. Y. C. Fung, K. M. Ayyangar, D. Djajaputra, R. M. Nehru,
and C. A. Enke, “Ultrasound-based guidance of intensity-
modulated radiation therapy,” Medical Dosimetry, vol. 31, no. 1,
pp. 20-29, 2006.

D. Shen, Y. Zhan, and C. Davatzikos, “Segmentation of prostate
boundaries from ultrasound images using statistical shape
model,” IEEE Transactions on Medical Imaging, vol. 22, no. 4,
pp. 539-551, 2003.

D. Fontanarosa, S. Van Der Meer, J. Bamber, E. Harris, T.
O’Shea, and E. Verhaegen, “Review of ultrasound image guid-
ance in external beam radiotherapy: I. Treatment planning and
inter-fraction motion management,” Physics in Medicine and
Biology, vol. 60, no. 3, pp. R77-R114, 2015.

T. O’Shea, J. Bamber, D. Fontanarosa, S. Van Der Meer, E. Ver-
haegen, and E. Harris, “Review of ultrasound image guidance
in external beam radiotherapy part II: Intra-fraction motion
management and novel applications,” Physics in Medicine and
Biology, vol. 61, no. 8, pp. RO0-R137, 2016.

E. Mayyas, L. J. Chetty, M. Chetvertkov et al., “Evaluation of
multiple image-based modalities for image-guided radiation
therapy (IGRT) of prostate carcinoma: A prospective study,”
Medical Physics, vol. 40, no. 4, Article ID 041707, 2013.

E L.B. Cury, G. Shenouda, L. Souhami et al., “Ultrasound-based
image guided radiotherapy for prostate cancer-comparison of
cross-modality and intramodality methods for daily localiza-
tion during external beam radiotherapy;” International Journal
of Radiation Oncology  Biology « Physics, vol. 66, no. 5, pp. 1562
1567, 2006.

H. Johnston, M. Hilts, W. Beckham, and E. Berthelet, “3D
ultrasound for prostate localization in radiation therapy: A
comparison with implanted fiducial markers,” Medical Physics,
vol. 35, no. 6, pp. 2403-2413, 2008.

D. Robinson, D. Liu, S. Steciw et al., “An evaluation of the
clarity 3D ultrasound system for prostate localization,” Journal
of Applied Clinical Medical Physics, vol. 13, no. 4, pp. 100-112,
2012.

S. Van Der Meer, E. Bloemen-Van Gurp, J. Hermans et al.,
“Critical assessment of intramodality 3D ultrasound imaging
for prostate IGRT compared to fiducial markers,” Medical
Physics, vol. 40, no. 7, Article ID 071707, 2013.

M. van Herk, “Errors and margins in radiotherapy,” Seminars in
Radiation Oncology, vol. 14, no. 1, pp. 52-64, 2004.

M. Li, H. Ballhausen, N.-S. Hegemann et al., “A comparative
assessment of prostate positioning guided by three-dimensional
ultrasound and cone beam CT; Journal of Radiation Oncology,
vol. 10, no. 1, article no. 82, 2015.

M. Fargier-Voiron, B. Presles, P. Pommier et al., “Ultrasound
versus Cone-beam CT image-guided radiotherapy for prostate



14

(21]

(22]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

and post-prostatectomy pretreatment localization,” Physica
Medica, vol. 31, no. 8, pp- 997-1004, 2015.

M. Krengli, G. Loi, C. Pisani et al., “Three-dimensional surface
and ultrasound imaging for daily IGRT of prostate cancer;
Journal of Radiation Oncology, vol. 11, no. 1, article no. 159, 2016.

A. Richter, B. Polat, I. Lawrenz et al., “Initial results for patient
setup verification using transperineal ultrasound and cone
beam CT in external beam radiation therapy of prostate cancer,”
Journal of Radiation Oncology, vol. 11, no. 1, article no. 147, 2016.

M. Fargier-Voiron, B. Presles, P. Pommier et al., “Evaluation of
a new transperineal ultrasound probe for inter-fraction image-
guidance for definitive and post-operative prostate cancer
radiotherapy;” Physica Medica, vol. 32, no. 3, pp. 499-505, 2016.

A. Trivedi, T. Ashikaga, D. Hard et al., “Development of 3-
dimensional transperineal ultrasound for image guided radia-
tion therapy of the prostate: Early evaluations of feasibility and
use for inter- and intrafractional prostate localization,” Practical
Radiation Oncology, vol. 7, no. 1, pp. e27-e33, 2017.

M. Li, H. Ballhausen, N.-S. Hegemann et al., “Comparison of
prostate positioning guided by three-dimensional transperineal
ultrasound and cone beam CT;” Strahlentherapie und Onkologie,
vol. 193, no. 3, pp. 221-228, 2017.

M. Baker and C. E Behrens, “Determining intrafractional
prostate motion using four dimensional ultrasound system,”
BMC Cancer, vol. 16, no. 1, article no. 484, 2016.

A. K. Richardson and P. Jacobs, “Intrafraction monitoring
of prostate motion during radiotherapy using the Clarity®
Autoscan Transperineal Ultrasound (TPUS) system,” Radiogra-
phy, vol. 23, no. 4, pp. 310-313, 2017.

L. Guillet, M. Fargier-Voiron, D. Sarrut, and M.-C. Biston,
“Evaluation of intrafraction motions with a transperineal ultra-
sound imaging system: dosimetric impact for prostate cancer;’
Physica Medica: European Journal of Medical Physics, vol. 31, pp.
e25-e26, 2015.

M. Fargier-Voiron, B. Presles, P. Pommier et al, “Impact
of probe pressure variability on prostate localization for
ultrasound-based image-guided radiotherapy,” Radiotherapy ¢
Oncology, vol. 111, no. 1, pp. 132-137, 2014.

M. Baker and C. E Behrens, “Prostate displacement dur-
ing transabdominal ultrasound image-guided radiotherapy
assessed by real-time four-dimensional transperineal monitor-
ing,” Acta Oncologica, vol. 54, no. 9, pp. 1508-1514, 2015.

M. Li, N.-S. Hegemann, E Manapov et al., “Prefraction dis-
placement and intrafraction drift of the prostate due to perineal
ultrasound probe pressure;,” Strahlentherapie und Onkologie,
vol. 193, no. 6, pp. 459-465, 2017.

C. Fiandra, A. Guarneri, £ Muifioz et al, “Impact of the
observers’ experience on daily prostate localization accuracy in
ultrasound-based IGRT with the Clarity platform,” Journal of
Applied Clinical Medical Physics, vol. 15, no. 4, pp. 168-173, 2014.

E. P. P. Pang, K. Knight, M. Baird, and J. K. L. Tuan, “Inter-and
intra-observer variation of patient setup shifts derived using the
4D TPUS Clarity system for prostate radiotherapy,” Biomedical
Physics & Engineering Express, vol. 3, no. 2, p. 25014, 2017.

M. Lachaine and T. Falco, “Intrafractional prostate motion
management with the Clarity Autoscan system,” Medical Physics
International, vol. 1, 2013.

C. C. Parker, A. Damyanovich, T. Haycocks, M. Haider, A.
Bayley, and C. N. Catton, “Magnetic resonance imaging in the
radiation treatment planning of localized prostate cancer using

(36]

(38]

(41]

(42]

(43]

(44

(45]

(46

(47

(48]

BioMed Research International

intra-prostatic fiducial markers for computed tomography co-
registration,” Radiotherapy & Oncology, vol. 66, no. 2, pp. 217-
224,2003.

M. Milosevic, S. Voruganti, R. Blend et al., “Magnetic resonance
imaging (MRI) for localization of the prostatic apex: com-
parison to computed tomography (CT) and urethrography,”
Radiotherapy & Oncology, vol. 47, no. 3, pp. 277-284, 1998.

C. Rasch, I. Barillot, P. Remeijer, A. Touw, M. van Herk, and J. V.
Lebesque, “Definition of the prostate in CT and MRI: a multi-
observer study,” International Journal of Radiation Oncology
Biology e Physics, vol. 43, no. 1, pp. 57-66, 1999.

P. J. Horsley, N. J. Aherne, G. V. Edwards et al., “Planning
magnetic resonance imaging for prostate cancer intensity-
modulated radiation therapy: impact on target volumes, radio-
therapy dose and androgen deprivation administration,” Asia-
Pacific Journal of Clinical Oncology, vol. 11, no. 1, pp. 15-21, 2015.
G. Bentel, Patient Positioning and Immobilization in Radiation
Oncology, McGraw-Hill, New York, NY, USA, 1999.

A. G. M. Oneill, S. Jain, A. R. Hounsell, and J. M. O’sullivan,
“Fiducial marker guided prostate radiotherapy: A review;,
British Journal of Radiology, vol. 89, no. 1068, article no. 0296,
2016.

M. Oldham, D. Létourneau, L. Watt et al., “Cone-beam-CT
guided radiation therapy: a model for on-line application,”
Radiotherapy & Oncology, vol. 75, no. 3, pp. 271.e1-271.e8, 2005.
K. M. Langen and D. T. L. Jones, “Organ motion and its
management,” International Journal of Radiation Oncology e
Biology e Physics, vol. 50, no. 1, pp. 265-278, 2001.

C. R Hill, J. C. Bamber, and G. R. ter Haar, “Preface,” Physical
Principles of Medical Ultrasonics, pp. xiii-xv, 2005.

J. T. Bushberg, The Essential Physics of Medical Imaging, Lippin-
cott Williams & Wilkins, 2002.

R. G. Aarnink, H. P. Beerlage, J. J. M. C. H. De La Rosette, E
M. J. Debruyne, and H. Wijkstra, “Transrectal ultrasound of
the prostate: Innovations and future applications,” The Journal
of Urology, vol. 159, no. 5, pp. 1568-1579, 1998.

S. Gill, J. Li, J. Thomas et al., “Patient-reported complications
from fiducial marker implantation for prostate image-guided
radiotherapy;” British Journal of Radiology, vol. 85, no. 1015, pp.
1011-1017, 2012.

J. E Langenhuijsen, E. N. J. T. van Lin, L. A. Kiemeney et al.,
“Ultrasound-guided transrectal implantation of gold markers
for prostate localization during external beam radiotherapy:
complication rate and risk factors,” International Journal of
Radiation Oncology « Biology ¢ Physics, vol. 69, no. 3, pp. 671-
676, 2007.

J. W. N. C. Huang Foen Chung, S. H. De Vries, R. Raaijmakers,
R. Postma, J. L. H. R. Bosch, and R. Van Mastrigt, “Prostate
volume ultrasonography: The influence of transabdominal ver-
sus transrectal approach, device type and operator,” European
Urology, vol. 46, no. 3, pp. 352-356, 2004.

R.N. Uppot, D. V. Sahani, P. E. Hahn, M. K. Kalra, S. S. Saini, and
P. R. Mueller, “Effect of obesity on image quality: Fifteen-year
longitudinal study for evaluation of dictated radiology reports,”
Radiology, vol. 240, no. 2, pp. 435-439, 2006.

R. N. Uppot, “Impact of Obesity on Radiology,” Radiologic
Clinics of North America, vol. 45, no. 2, pp. 231-246, 2007.

B. J. Salter, M. Szegedi, C. Boehm et al, “Comparison of
2 transabdominal ultrasound image guidance techniques for
prostate and prostatic fossa radiation therapy;” Practical Radi-
ation Oncology, vol. 7, no. 2, pp. €99-¢107, 2017.



BioMed Research International

(52]

[53

(54]

(56]

(57]

(58]

[59]

(60

(61]

K. A. Griffiths, L. P. Ly, B. Jin, L. Chan, and D. J. Handelsman,
“Transperineal Ultrasound for Measurement of Prostate Vol-
ume: Validation Against Transrectal Ultrasound,” The Journal
of Urology, vol. 178, no. 4, pp. 1375-1380, 2007.

K. Shinohara and M. Roach III, “Technique for Implantation
of Fiducial Markers in the Prostate,” Urology, vol. 71, no. 2, pp.
196-200, 2008.

S. Igdem, H. Akpinar, G. Algo, F. Agagayak, S. Turkan, and S.
Okkan, “Implantation of fiducial markers for image guidance in
prostate radiotherapy: Patient-reported toxicity,” British Journal
of Radiology, vol. 82, no. 983, pp. 941-945, 2009.

J. Loh, K. Baker, S. Sridharan et al., “Infections after fiducial
marker implantation for prostate radiotherapy: Are we under-
estimating the risks?” Journal of Radiation Oncology, vol. 10, no.
1, article no. 38, 2015.

P. A. Kupelian, T. R. Willoughby, S. L. Meeks et al., “Intrapro-
static fiducials for localization of the prostate gland: Monitoring
intermarker distances during radiation therapy to test for
marker stability;” International Journal of Radiation Oncology
Biology e Physics, vol. 62, no. 5, pp. 1291-1296, 2005.

J. C. L. Chow and G. N. Grigorov, “Dose measurements near a
non-radioactive gold seed using radiographic film,” Physics in
Medicine and Biology, vol. 50, no. 18, pp. N227-N234, 2005.

J. R. Perks, J. Lehmann, A. M. Chen, C. C. Yang, R. L. Stern,
and J. A. Purdy, “Comparison of peripheral dose from image-
guided radiation therapy (IGRT) using kV cone beam CT to
intensity-modulated radiation therapy (IMRT),” Radiotherapy
& Oncology, vol. 89, no. 3, pp. 304-310, 2008.

B. Tas, I. E Durmus, and S. T. Ozturk, “Image guided radiother-
apy (igrt) comparison between cone beam ct and ultrasound
system for prostate cancer,” Universal Journal of Physics and
Application, vol. 10, no. 4, pp. 110-114, 2016.

J. Martin Bland and D. Altman, “Statistical methods for assess-
ing agreement between two methods of clinical measurement;’
The Lancet, vol. 327, no. 8476, pp. 307-310, 1986.

G. J. Meijjer, J. de Klerk, K. Bzdusek et al.,, “What CTV-to-
PTV Margins Should Be Applied for Prostate Irradiation? Four-
Dimensional Quantitative Assessment Using Model-Based
Deformable Image Registration Techniques,” International Jour-
nal of Radiation Oncology « Biology « Physics, vol. 72, no. 5, pp.
1416-1425, 2008.

P. Kupelian, T. Willoughby, A. Mahadevan et al., “Multi-
institutional clinical experience with the Calypso System
in localization and continuous, real-time monitoring of the
prostate gland during external radiotherapy,” International Jour-
nal of Radiation Oncology « Biology » Physics, vol. 67, no. 4, pp.
1088-1098, 2007.

J. M. Balter, J. N. Wright, L. J. Newell et al., “Accuracy of
a wireless localization system for radiotherapy,” International
Journal of Radiation Oncology « Biology  Physics, vol. 61, no. 3,
pp. 933-937, 2005.

M. C. Abramowitz, E. Bossart, R. Flook et al., “Noninvasive
real-time prostate tracking using a transperineal ultrasound
approach,” International Journal of Radiation Oncology, Biology,
Physics, vol. 84, no. 3, p. S133, 2012.

A. S. Yu, M. Najafi, D. H. Hristov, and T. Phillips, “Intrafrac-
tional tracking accuracy of a transperineal ultrasound image
guidance system for prostate radiotherapy;” Technology in Can-
cer Research & Treatment, Article ID 1533034617728643, 2017.
H. Ballhausen, M. Li, N.-S. Hegemann, U. Ganswindt, and C.
Belka, “Intra-fraction motion of the prostate is a random walk,’
Physics in Medicine and Biology, vol. 60, no. 2, pp. 549-563, 2015.

(67]

(68]

(69]

(70]

(72]

(73]

(74]

(81]

15

H. Ballhausen, M. Reiner, S. Kantz, C. Belka, and M. Séhn,
“The random walk model of intrafraction movement,” Physics
in Medicine and Biology, vol. 58, no. 7, pp. 2413-2427, 2013.
S.Hilman, R. Smith, S. Masson et al., “Implementation of a daily
transperineal ultrasound system as image-guided radiotherapy
for prostate cancer;” Clinical Oncology, vol. 29, no. 1, p. €49, 2017.
S. Hilman and P. Jacobs, “Image-guided radiotherapy for
prostate cancer using transperineal ultrasound,” RAD Maga-
zine, pp. 29-30, 2017.

E Mantel, A. Richter, C. Groh et al., “Changes in penile bulb
dose when using the Clarity transperineal ultrasound probe: A
planning study;” Practical Radiation Oncology, vol. 6, no. 6, pp.
€337-e344, 2016.

S. A. Mangar, M. R. Sydes, H. L. Tucker et al., “Evaluating
the relationship between erectile dysfunction and dose received
by the penile bulb: Using data from a randomised controlled
trial of conformal radiotherapy in prostate cancer (MRC RT01,
ISRCTN47772397),” Radiotherapy ¢ Oncology, vol. 80, no. 3, pp.
355-362, 2006.

J. A. Molloy, G. Chan, A. Markovic et al., “Quality assurance
of U.S.-guided external beam radiotherapy for prostate cancer:
Report of AAPM Task Group 154,” Medical Physics, vol. 38, no.
2, pp. 857-871, 2011.

S. M. Camps, E. Verhaegen, G. Paiva Fonseca, P. H. N. De With,
and D. Fontanarosa, “Automatic transperineal ultrasound probe
positioning based on CT scan for image guided radiotherapy,”
in Proceedings of the Medical Imaging 2017: Image-Guided
Procedures, Robotic Interventions, and Modeling, USA, February
2017.

S. Camps, E Verhaegen, P. H. N. de With, and D. Fontanarosa,
“CT Scan Based Prostate Cancer Patient-Specific Transperineal
Ultrasound Probe Setups for Image Guided Radiotherapy;” in
Proceedings of the IEEE International Ultrasonics Symposium,
IEEE, Washington, DC, USA, 2017.

J. Schlosser, K. Salisbury, and D. Hristov, “Telerobotic system
concept for real-time soft-tissue imaging during radiotherapy
beam delivery;” Medical Physics, vol. 37, no. 12, pp. 6357-6367,
2010.

M. Bazalova-Carter, J. Schlosser, J. Chen, and D. Hristov,
“Monte Carlo modeling of ultrasound probes for image guided
radiotherapy;,” Medical Physics, vol. 42, no. 10, pp. 5745-5756,
2015.

J. Schlosser and D. Hristov, “Radiolucent 4D Ultrasound Imag-
ing: System Design and Application to Radiotherapy Guidance,
IEEE Transactions on Medical Imaging, vol. 35, no. 10, pp. 2292—
2300, 2016.

M. Martyn, T. P. O’Shea, E. Harris, J. Bamber, S. Gilroy,
and M. J. Foley, “A Monte Carlo study of the effect of an
ultrasound transducer on surface dose during intrafraction
motion imaging for external beam radiation therapy,” Medical
Physics, vol. 44, no. 10, pp. 5020-5033, 2017.

M. A. L. Bell, H. T. Sen, L. Iordachita, P. Kazanzides, and J.
Wong, “In vivo reproducibility of robotic probe placement for
a novel ultrasound-guided radiation therapy system,” Journal of
Medical Imaging, vol. 1, no. 2, p. 25001, 2014.

H. T. Sen, M. A. L. Bell, Y. Zhang et al., “System integration
and preliminary in-vivo experiments of a robot for ultrasound
guidance and monitoring during radiotherapy;,” in Proceedings
of the 17th International Conference on Advanced Robotics, ICAR
2015, pp. 53-59, Turkey, July 2015.

S. Gerlach, 1. Kuhlemann, P. Jauer et al., “Robotic ultrasound-
guided SBRT of the prostate: feasibility with respect to plan



16

(85]

(86]

(87]

(90]

[96]

quality,” International Journal for Computer Assisted Radiology
and Surgery, vol. 12, no. 1, pp. 149-159, 2017.

T. D. Mast, “Empirical relationships between acoustic parame-
ters in human soft tissues,” Acoustic Research Letters Online, vol.
1, pp. 37-42, 2000.

P. N. T. Wells, Biomedical ultrasonics, Academic Pr, 1977.

D. Fontanarosa, S. Van Der Meer, E. Harris, and E Verhaegen, “A
CT based correction method for speed of sound aberration for
ultrasound based image guided radiotherapy,” Medical Physics,
vol. 38, no. 5, pp. 2665-2673, 2011.

D. Fontanarosa, S. Van Der Meer, E. Bloemen-Van Gurp, G.
Stroian, and E. Verhaegen, “Magnitude of speed of sound aber-
ration corrections for ultrasound image guided radiotherapy for
prostate and other anatomical sites,” Medical Physics, vol. 39, no.
8, pp. 5286-5292, 2012.

D. Fontanarosa, S. Van Der Meer, and F Verhaegen, “On the
significance of density-induced speed of sound variations on
US-guided radiotherapy,” Medical Physics, vol. 39, no. 10, pp.
6316-6323, 2012.

D. Fontanarosa, S. Pesente, F. Pascoli, D. Ermacora, I. A.
Rumeileh, and E Verhaegen, “A speed of sound aberration
correction algorithm for curvilinear ultrasound transducers
in ultrasound-based image-guided radiotherapy.,” Physics in
Medicine and Biology, vol. 58, no. 5, pp. 1341-1360, 2013.

H. Ballhausen, B. D. Ballhausen, M. Lachaine et al., “Sur-
face refraction of sound waves affects calibration of three-
dimensional ultrasound,” Journal of Radiation Oncology, vol. 10,
no. 1, article no. 119, 2015.

S. van der Meer, E. Seravalli, D. Fontanarosa, E. ]. Bloemen-
van Gurp, and E Verhaegen, “Consequences of Intermodality
Registration Errors for Intramodality 3D Ultrasound IGRT,
Technology in Cancer Research & Treatment, vol. 15, no. 4, pp.
632-638, 2016.

D. Dearnaley, I. Syndikus, H. Mossop et al., “Conventional
versus hypofractionated high-dose intensity-modulated radio-
therapy for prostate cancer: 5-year outcomes of the randomised,
non-inferiority, phase 3 CHHIP trial,” The Lancet Oncology, vol.
17, no. 8, pp. 1047-1060, 2016.

U. Ricardi, P. Franco, F. Munoz et al., “Three-dimensional
ultrasound-based image-guided hypofractionated radiotherapy
for intermediate-risk prostate cancer: Results of a consecutive
case series,” Cancer Investigation, vol. 33, no. 2, pp. 23-28, 2015.
E. P. P. Pang, K. Knight, M. Baird, J. M. Q. Loh, A. H. S.
Boo, and J. K. L. Tuan, “A comparison of interfraction setup
error, patient comfort, and therapist acceptance for 2 different
prostate radiation therapy immobilization devices,” Advances in
Radiation Oncology, vol. 2, no. 2, pp. 125-131, 2017.

D. Yan, F. Vicini, ]. Wong, and A. Martinez, “Adaptive radiation
therapy;,” Physics in Medicine and Biology, vol. 42, no. 1, pp. 123—
132, 1997.

M. Ghilezan, D. Yan, and A. Martinez, “Adaptive Radiation
Therapy for Prostate Cancer,” Seminars in Radiation Oncology,
vol. 20, no. 2, pp- 130-137, 2010.

S. Van Der Meer, S. M. Camps, W. J. C. Van Elmpt et al.,
“Simulation of pseudo-CT images based on deformable image
registration of ultrasound images: A proof of concept for
transabdominal ultrasound imaging of the prostate during
radiotherapy;” Medical Physics, vol. 43, no. 4, pp. 1913-1920, 2016.
S. Camps, S. van der, E. Meer, and D. Fontanarosa, “Various
approaches for pseudo-CT scan creation based on ultrasound
to ultrasound deformable image registration between differ-
ent treatment time points for radiotherapy treatment plan

BioMed Research International

adaptation in prostate cancer patients,” Biomedical Physics &
Engineering Express, vol. 2, no. 3, p. 35018, 2016.



Hindawi

BioMed Research International

Volume 2018, Article ID 9825709, 9 pages
https://doi.org/10.1155/2018/9825709

Research Article

Contrast-Enhanced Ultrasound Improves the Pathological
Outcomes of US-Guided Core Needle Biopsy That Targets the
Viable Area of Anterior Mediastinal Masses

Jian-hua Zhou,' Hong-bo Shan,> Wei Ou,”* Yun-xian Mo,’ Jin Xiang,’

Yu Wang,’ Jian Li®," and Si-yu Wang™*

! Department of Diagnostic & Interventional Ultrasound, Sun Yat-Sen University Cancer Center,
State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China

’Department of Endoscopy, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China,
Collaborative Innovation Center for Cancer Medicine, Guangzhou, China

’Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China,
Collaborative Innovation Center for Cancer Medicine, Guangzhou, China

*Guangdong Association Study of Thoracic Oncology, Guangzhou, China

’Department of Radiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China,
Collaborative Innovation Center for Cancer Medicine, Guangzhou, China

SDepartment of Pathology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China,
Collaborative Innovation Center for Cancer Medicine, Guangzhou, China

"Department of Internal Medicine, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China,
Collaborative Innovation Center for Cancer Medicine, Guangzhou, China

Correspondence should be addressed to Jian Li; lijian@sysucc.org.cn

Received 7 November 2017; Accepted 18 December 2017; Published 18 January 2018

Academic Editor: Yongjin Zhou

Copyright © 2018 Jian-hua Zhou et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Based on the option that ultrasound-guided core needle biopsy (US-CNB) of the enhanced portion of anterior mediastinal masses
(AMMs) identified by contrast-enhanced ultrasound (CEUS) would harvest viable tissue and benefit the histological diagnoses, a
retrospective study was performed to elucidate the correlation between the prebiopsy CEUS and diagnostic yield of AMMs and
found that CEUS potentially improved the diagnostic yield of AMMs compared with conventional US with a significant increase
in the cellularity of samples. Furthermore, the marginal blood flow signals and absence of necrosis can predict the diagnostic yield
of AMM. It was concluded that US-CNB of the viable part of AMMs, as verified by CEUS, was able to harvest sufficient tissue
with more cellularity that could be used for ancillary studies and improve the diagnostic yield. And CEUS was recommended
to those patients with AMMs undergoing repeated US-CNB, with the absence of marginal blood signals or presence of

necrosis.

1. Introduction

Anterior mediastinal masses (AMMSs) may appear in a wide
variety of diseases from benign lesions to extremely malig-
nant diseases. Masses in this area are more likely to be malig-
nant than those in other compartments of the mediastinum.
Lymphomas and thymic epithelial tumors are the two most
common etiologies of AMMs [1]. Treatment strategies for
AMMs are diverse and are based on a conclusive histological

diagnosis with subclassification (such as medical treatment
for lymphoma and neoadjuvant radiochemotherapy with
surgery for advanced thymic epithelial tumors). Since it is the
era of personalized medicine, strategies may also be based on
genetic information (such as targeted therapy for non-small
cell lung cancer based on testing for epidermal growth factor
mutations and anaplastic lymphoma kinase rearrangement)

2.


http://orcid.org/0000-0002-2350-3968
https://doi.org/10.1155/2018/9825709

Available approaches for the histological diagnosis of
AMMs include the following: image-guided fine needle
aspiration or core needle biopsy, endobronchial ultrasound-
guided transbronchial or endoscopic ultrasound-guided
transesophageal needle aspiration biopsy, and surgical proce-
dures such as parasternal anterior mediastinotomy, cervical
mediastinoscopy, video-assisted thoracoscopic surgery, and
thoracotomy. In general, AMMs that are suspected to be
malignant without upfront surgical resection are recom-
mended for imaging-guided core needle biopsy [3, 4]. Related
studies have demonstrated that satisfactory specimens can
be obtained by core needle for a more accurate histological
diagnosis with subclassification and genetic information for
personalized therapy and prognosis [5-8].

The image guidance of computer tomography (CT)
involves the use of radiation, is expensive, and lacks real-time
monitoring, which means that it is an alternative approach for
AMMs that cannot be adequately imaged by ultrasound (US)
[9]. Evidence of the AMM by B-mode US is the first step for
ultrasound-guided core needle biopsy (US-CNB). Vascular
information can be obtained by color Doppler ultrasound,
which helps to extend the diagnostic potential and safety
of this minimally invasive procedure. The advantages of
US guidance include real-time needle movement control,
real-time blood flow imaging, minimal invasiveness, cost-
effectiveness, and the ability to perform the biopsy procedure
at the bedside when critically ill patients are in a semiupright
position. Considering these advantages, US-CNB is the most
efficient first-line approach for the biopsy of AMMs if the
target is adequately imaged [10]. According to previous
studies, the diagnostic yield of US-guided biopsy of AMM:s
varies from 70 to 90% [11-13]. The occasional failure of the
diagnosis is primarily due to necrosis or fibrosis of the lesion,
low cellularity, or sampling error [14]. Since it is difficult
to identify these situations by conventional US, multiple
punctures or repeated biopsies are performed to avoid a
false-negative diagnosis and to increase the diagnostic yield,
which increase the cost and delay therapy [15]. Fortunately,
with the use of contrast agents, contrast-enhanced ultrasound
(CEUS) offers an effective way to image tumor vascularity
in both animal and clinical studies [16, 17]. CEUS patterns
and features in the differentiation of malignant and benign
diseases of the chest are controversial [18-21]. CEUS is not
routinely performed for AMMs but is used on demand to
address specific questions raised in an individual patient.
In CEUS, the depiction of nonperfused areas (potentially
necrotic, liquid, or fibrotic areas) might be relevant informa-
tion prior to any US-guided biopsy [22]. This study is based
on the hypothesis that the prebiopsy CEUS of AMMs will
improve the delineation of viable from nonviable tissue and
hence allow the targeting of the viable area of AMMs and the
harvest of biopsy samples with more cellularity. This would
ultimately lead to a conclusive histological diagnosis, which
will benefit therapeutic decision-making.

This retrospective study aimed to compare the usefulness
between conventional US and CEUS in their ability to
identify the target area of AMMs and to plan the core
needle biopsy route. Another study aim was to assess possible
prebiopsy ultrasonic characteristics that may predict the
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patients with the highest probability of achieving conclusive
histological diagnoses.

2. Patients and Methods

2.1. Study Population. The present study was approved by the
Research and Ethics committee of Sun Yat-Sen University
Cancer Center (SYSUCC), and written informed consent was
obtained from each patient before CEUS and US-CNB were
performed.

Masses located in the precardiac vascular region of the
mediastinum were diagnosed as AMMs by the radiologist
[23]. A total of 92 patients with AMMs suspected to be
malignant that were detected by chest CT from July 2006
to June 2016 at our institution underwent initial US-CNB.
The inclusion criteria for referral for US-CNB were based
on the CT findings of a suspected AMM located adjacent to
the chest wall and confirmed by conventional US evaluation.
Since it is considered the shortest distance from the cutting
system, solid content in the AMM should be at least 15 mm
thick. Patients were able to control their breathing during
the procedure. The International Normalized Ratio was not
greater than 1.6 and the platelet count was greater than 10°/L.

The patients’ demographic data, ultrasonic characteris-
tics, diagnostic procedures, cost and duration between the
initial US-CNB and treatment, hospitalization, pathological
results, and clinical treatment records were reviewed using
the Panoramic Patients Information System from the Depart-
ment of Information.

2.2. Prebiopsy US and CEUS Evaluation. The conventional
US evaluation of the AMM:s included the B-mode of grey
scale US and the C-mode of color Doppler blood flow. Grey
scale US was used in the initial evaluation of the AMMSs
of patients who were recommended to undergo US-CNB.
Location, size, ultrasonic pattern, and presence of necrosis
were recorded. The color Doppler window was focused on
the AMM to detect blood flow signals. The blood flow signals
within the tumor were then categorized as “marked flow
signals” or “not marked” including no, minimal, or moderate
blood flow signals, or no-due to interference by the heart-
beat, with reference to Adler’s method [24]. The Doppler
filter was adjusted on an individual basis to eliminate the
influence from the heart-beat. Necrosis was determined if B-
mode showed an echoic area with a clear boundary within the
AMMs where the CDFI detected the absence of blood flow
signals.

CEUS was performed with an Acuson Sequoia 512
(Siemens Medical Solutions, Mountain View, CA, USA)
coupled to a 4Cl convex array probe using a low mechan-
ical index (0.18) to avoid disruption of microbubbles. A
2.4ml bolus of a US blood pool contrast agent (SonoVue,
Bracco, Milan, Italy) was injected into the antecubital vein,
followed by a 5-ml saline flush. Next, the AMM was scanned
continuously for up to 4 minutes. The dynamic image was
recorded on the hard-drive of the ultrasound system. Necro-
sis was determined if CEUS showed the complete absence of
enhancement during all phases.
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At the end of conventional US evaluation, or after sup-
plement with CEUS, an appropriate approach to achieve a
suitable acoustic window for the biopsy path and target was
determined. The operator of the US-CNB should be involved
in the evaluation of the CEUS procedure.

2.3. US-CNB. An ultrasonography system (Avius, Hitachi,
Tokyo, Japan) with a 2.0-5.0 MHz ultrasound interventional
probe (EUP-B512, Hitachi, Tokyo, Japan) was used for the
biopsy, and color Doppler imaging was routinely used to
delineate large vessels, such as the internal thoracic artery,
that were in close proximity to the AMMs to avoid puncturing
them during the biopsy. The information obtained from the
diagnostic chest CT and prebiopsy US or CEUS was used
to optimize and plan the biopsy route and target. An 18-
gauge core biopsy needle (Magnum; Bard, Covington, GA,
USA) was used for the transthoracic CNB. Children under 16
years of age were recommended to undergo this procedure in
the operation theater with nonintubation general anesthesia;
adults underwent this procedure after routine sterilization
and local anesthesia (3-5ml 1% lidocaine). A free hand
approach was used for the CNB procedure. The probe was
fixed and the core needle was inserted into the chest wall in
the intercostal muscles. The core needle was fired until the
tip of the needle reached the margin of the AMM. The whole
procedure was monitored by real-time US. The number of
puncture attempts was decided by the volume and quality
of the specimen obtained. The specimens were fixed in 10%
formalin and were sent to the pathology department for
evaluation by 2 experienced pathologists. In some cases, half
the specimen that was harvested was promptly collected in
a sterile tube for molecular studies. The patients stayed in
the recovery room for at least 30 minutes so that possible
morbidities such as active bleeding or other complications
could be observed.

2.4. Pathological Evaluation and Cellularity. Core needle
biopsy specimens were stained with routine hematoxylin and
eosin (H&E). All results that described staining patterns or
morphologic features of the specimens were evaluated under
the guidance of 2 experienced pathologists who specialized
in cancer pathology. The ancillary study, which included
immunohistochemistry (IHC), in situ hybridization (ISH),
and fluorescence in situ hybridization (FISH) was performed
for the requirements of the pathologist. Lung tissue found in
the sample was noted. Diagnoses of lymphoma, thymoma,
and carcinoma without accurate subclassification or origin
were regarded as nonconclusive histological diagnoses. A
histological diagnosis of normal, hyperplasia with fibrosis,
necrotic tissue, low cellularity, or insufficient tissue was
defined as a failed diagnosis. Failure and nonconclusive
diagnoses were both regarded as nonconclusive histological
diagnoses. A conclusive histological diagnosis was achieved
by a pathologist with H&E staining and the required ancillary
studies based on the CNB samples that were used in treatment
decisions. The final diagnoses based on the definitive histo-
logical diagnoses obtained by the biopsy were confirmed by
surgical pathology or response to medical treatment.

The cancer pathologist also selected the photomicro-
graphs (magnification 40x) for the computer-assisted image
analysis of cellularity (Axio Imager, Zeiss Imaging System,
Germany). The percentage of tumor cells was evaluated in
each biopsy sample. The primary endpoint was the maximum
percentage of tumor cells across the different samples.

2.5. Statistics. SPSS software version 23.0 (IBM, Armonk, NY,
USA) was used for all statistical analyses. The Mann-Whitney
U test was used for numerical data, while the Pearson Chi-
square test was used for categorical data. Binary logistic
regression analysis was used to determine possible factors
that could predict a conclusive histological diagnosis by US-
CNB. Statistical significance was set at p < 0.05.

3. Results

3.1. General. Out of all patients, 64 were men and 28 were
women, who had a mean age of 34.5 years (range: 5.0-68.0
years). All patients underwent evaluation by US (n = 75)
or CEUS (n = 17) before the initial US-CNB. Eighteen
of those 20 patients who were undiagnosed as a result of
the initial US-CNB with prebiopsy US underwent US (n =
11) or CEUS (n = 7) evaluation before the repeated US-
CNB. Two undiagnosed patients who underwent repeated
US-CNB with prebiopsy US underwent multiple US-CNB
procedures. In all, 308 punctures were performed (range:
2-5, mean: 2.8 punctures per patient). Seven patients who
had undergone US-CNB and failed to receive a conclusive
histological diagnosis were referred to other alternative
procedures such as CT-guided biopsy, EBUS-TBNA, or a
surgical procedure such as parasternal mini-mediastinotomy,
cervical mediastinoscopy, VATS, or thoracotomy, as shown
in Figure 1. The diagnostic yields of US-CNB according
to the final diagnosis were as follows: 96.0% (24/25) for
thymic epithelial tumors; 90.0% (9/10) for thymomas; 100.0%
(15/15) for thymic carcinomas; 92.9% (39/42) for lymphomas;
60.0% (3/5) for Hodgkin’s lymphomas; 97.3% (36/37) for non-
Hodgkin’s lymphomas that originated form T cells (n = 18)
and B cells (n = 19); 90.0% (9/10) for germ cell tumors;
100% (2/2) for teratomas; 100.0% (1/1) for seminomas; 85.7%
(6/7) for nonseminomatous or mixed germ cell tumors; 83.3%
(10/12) for other malignancies; 66.7% (2/3) for metastases;
100% (3/3) for sarcomas; 75.0% (3/4) for lung cancers;
100.0% (2/2) for neuroendocrine tumors; and 100% (1/1) for
tuberculosis.

3.2. Initial US-CNB for Histological Diagnoses of AMMs. No
significant differences were observed in the demographic
or ultrasonic characteristics including age, gender, cancer
history, location, size, and CDFI category of AMMs between
the US and CEUS groups. Prebiopsy CEUS detected more
marginal blood flow signals and necrosis than conventional
US (p < 0.05). Although no significant difference was
observed in the number of punctures of the core needle
between these two groups, the initial US-CNB with prebiopsy
CEUS potentially improved the yield of conclusive histo-
logical diagnoses with increasing cellularity of the samples
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TABLE 1: Baseline characteristics, prebiopsy ultrasonographic features, and outcomes of 92 patients with AMMs who underwent initial US-

CNB with prebiopsy conventional US or CEUS evaluation.

US (n=75) CEUS (n=17) p value
Age (years), mean + SD 34.0 £15.6 364+17.1 0.763
Gender, male/female 50/25 14/3 0.207
Cancer history yes/no 3/75 217 0.205
Location of AMMs (both/left/right) 8/40/27 0/10/7 0.408
Size of AMMSs (mm), mean + SD 66.0 +29.3 70.1 +33.9 0.721
CDFI category (marked/not marked) 29/46 3/14 0.074
Marginal blood flow signals (presence/absence) 47/28 15/2 0.043
Necrosis (presence/absence) 8/67 5/12 0.046
Punctures of core needle (mean + SD) 2.5+0.8 29+0.9 0.333
Repeated US-guided CNB (no/yes) 17/58 0/17 0.031
Conclusive histological diagnoses (no/yes) 20/55 1/16 0.067
Cellularity (mean + SD) 0.64 +0.25 0.83+0.18 0.001
Lung tissue in the sample (presence/absence) 6/69 0/17 0.144
Duration between initial CNB and treatment decision (days mean + SD) 8.5+4.2 59+3.6 <0.001

US, ultrasound; US-CNB, ultrasound-guided core needle biopsy; AMM, anterior mediastinal mass; CEUS, contrast-enhanced ultrasound; SD, standard

deviation.

TABLE 2: Results of the univariate analysis to establish confounding factors related to the ability to obtain a conclusive histological diagnosis

of anterior mediastinal masses by US-CNB.

Conclusive diagnoses (n = 83) Nonconclusive diagnoses (1 = 9) p value
Age (years), mean + SD 34.29 +16.36 36.00 £ 9.80 0.051
Gender, male/female 60/23 4/5 0.085
Cancer history (yes/no) 5/78 1/8 0.557
Location (both/left/right) 8/46/29 0/4/5 0.371
Size (mm), mean + SD 81.6 +35.9 90.11 +29.78 0.819
CDFI category (marked/not marked) 58/25 2/7 0.004
Marginal blood flow signals (presence/absence) 60/23 2/7 0.002
Necrosis (presence/absence) 9/24 4/5 0.021
Punctures of core needle (mean + SD) 33+25 4.1+2.0 <0.001
Repeated US-CNB (with/without) 12/71 5/4 0.003
Cellularity mean + SD 0.7+0.2 04+0.3 0.009

US-CNB: ultrasound-guided core needle biopsy; CDFI: color Doppler flow imaging; SD: standard deviation.

(p = 0.001); this helped to avoid repeated US-CNB compared
with conventional US (p = 0.031), as shown in Table 1. The
diagnostic yield of the initial US-CNB of AMMs was 77.2%
(71/92).

3.3. Repeated US-CNB for the Histological Diagnoses of
AMMs. Prebiopsy CEUS potentially improved the yield of
conclusive histological diagnoses (5/6, 83.3%) compared with
US (7/11, 63.6%) in individuals who underwent repeated
US-CNB of AMMs (p = 0.395), as increased cellularity
was observed in the samples (p = 0.001), as shown in
Figure 2. Repeated US-CNB resulted in a diagnostic yield of
70.6% (12/17) and contributed to significant improvements
in the diagnostic yield of those patients who underwent
initial US-CNB with prebiopsy US from 73.3% (55/75) to
873% (67/75) (p < 0.001). Overall, the diagnostic yield
of US-CNB increased from 77.2% (71/92) to 90.2% (83/92)

with supplementation of repeated US-CNB in this study
population (p < 0.001).

3.4. CEUS Improved the Diagnostic Yield of US-CNB. Taken
together, prebiopsy CEUS improved the diagnostic yield
(21/23, 91.3%) of US-CNB compared with prebiopsy US
(62/86, 72.1%) (p = 0.043, odds ratio: 4.065, and 95%
confidence interval: lower 0.885, upper 18.677) and decreased
the need for repeated US-CNB in cases with a failed diagnosis
(CEUS 0.0%, 0/2 versus US 75.0%, 18/24) and potentially
avoided multiple US-CNB procedures (CEUS 0.0%, 0/1 ver-
sus US 40% 2/5).

3.5. Prebiopsy Ultrasonic Characteristics and Their Correlation
with Histological Yield. A univariate analysis revealed that
prebiopsy ultrasonic characteristics including marked blood
flow signals (p = 0.004), the presence of marginal blood
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FIGURE 1: The flow chart of the 92 patients with anterior mediastinal masses who underwent initial ultrasound-guided core needle biopsy with
prebiopsy ultrasound or contrast-enhanced ultrasound evaluation. CEUS: contrast-enhanced ultrasound; US: ultrasound; AMMs: anterior

mediastinal masses; US-CNB: ultrasound-guided core needle biopsy.

flow signals in close proximity to the probe (p = 0.002),
and the absence of necrosis (p = 0.021) in the AMMs
led to a higher conclusive histological diagnostic yield of
US-CNB. Although more punctures (p < 0.001) and
repeated procedures (p = 0.003) were performed, samples
obtained from the patients with nonconclusive histological
diagnoses were of low cellularity (p = 0.009), as shown in
Table 2.

Logistic regression using the Enter method showed that
prebiopsy ultrasonic characteristics including the presence of
marginal blood flow signals (Exp(B) 0.116, 95.0% CI lower
0.021, upper 0.634) and the absence of necrosis (Exp(B) 5.986,
95.0% CI lower 1.185, upper 30.246) in AMM:s can precisely
predict the diagnostic yield (negative predictive value, 44.4%;
positive predictive value, 97.6%; and overall predicative value,
92.4%).

3.6. Complications. Three patients complained of minor pain
after completion of the procedure. No morbidities such as
hemorrhage and pneumothorax were observed during or
after the US-guided CNB procedure.

3.7 Treatment Based on the Conclusive Histological Diagnoses.
The duration between the initial US-CNB and the treatment
decision was shortened to a greater extent in those patients
who underwent initial US-CNB with prebiopsy CEUS com-
pared with those who underwent US (p < 0.001) because
more repeated biopsies were needed in the conventional US
group, which delayed the start of therapy. Of those 71 patients
(71/92, 77.2%) who received conclusive histological diagnoses
from the initial US-CNB, the results contributed to the best
and prompt management decisions including those related to
palliative care (n = 9), surgery-centered treatment (n = 6),
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FIGURE 2: Twenty-nine-year-old man with thymoma. (a) Plain computed tomography revealed an irregular mass in the right anterior
mediastinum. Contrast-enhanced computed tomography revealed that the mass was compressing the superior vena cava and aorta. (b)
B-mode ultrasound showed an inhomogeneous mass visible in the right anterior mediastinum. Color Doppler ultrasound showed dot-like
flow signals in the center of mass. (c) US-CNB of the mass with prebiopsy conventional US evaluation. White triangles indicate the needle.
(d) H&E staining (magnification 100x) of the core needle biopsy sample showed major necrosis and a small number of enlarged nuclear cells
with a nest-like arrangement, suspected tumor, and an insufficiency for immunohistochemistry staining. (e) Contrast-enhanced ultrasound
revealed intensive inhomogeneous enhancement of the left anterior part of the AMM (22 seconds after the injection of 2.4 ml SonoVue);
the left posterior part of the AMM was not enhanced throughout. The white flower-shaped dot indicates the necrosis with great confidence.
(f) US-CNB of the mass with prebiopsy contrast-enhanced ultrasound targeted the left anterior enhanced portion of the AMM, which was
confirmed by CEUS. (g) H&E staining (magnification 100x) of the core needle biopsy sample revealed karyomegaly within lymphocytes
and a diagnosis of thymoma Bl with immunohistochemical staining, which was confirmed by surgical pathology. The approach of all
ultrasonography procedures involved a right parasternal scan of the 3rd intercostal space.

chemotherapy-centered treatment (n = 55), and targeted
therapy (n = 1) with crizotinib due to positive ALK gene
translocation of lung cancer.

showed high diagnostic yields and low morbidity in the group
that underwent US-CNB for AMMs [14, 15, 19, 26, 27]. All of
these studies approved US as a standard guidance for biopsy
procedures if AMMs can be imaged well by US. We found that
the therapeutic strategies based on the conclusive histological
diagnoses after the initial US-CNB of AMMs were selected
more promptly than in failed cases. Although repeated US-

4. Discussion

AMMs were more likely to be malignant compared with

masses in other parts of the mediastinum [1]. Successful
biopsy of AMMs and the achievement of a conclusive his-
tological diagnosis with subclassification or genetic informa-
tion are crucial for prompt treatment decisions in the era of
personalized therapy [25]. The present and previous studies

CNB increased the diagnostic yield, this procedure should be
avoided due to high cost and time consumption, risk of com-
plications, delayed therapy, and deterioration of the patients’
faith in medicine and because repeated procedure is associ-
ated with increased anxiety and depression in patients [10].
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FIGURE 3: Suggested proposal for the integration of contrast-enhanced ultrasound into ultrasound management of suspicious malignant
anterior mediastinal masses detected on chest computerized tomography. CEUS: contrast-enhanced ultrasound; US: ultrasound; AMMs:
anterior mediastinal masses; US-CNB: ultrasound-guided core needle biopsy.

Several studies have shown that CEUS can differenti-
ate necrosis or nonviable tissue from viable tumor tissue
with great confidence and that prebiopsy CEUS definitely
improves the diagnostic yield of US-CNB of mediastinal
masses. A prospective study with a small number of patients
(15 patients) showed that B-mode US associated with CEUS
and US-guided biopsy reached an elevated accuracy (91.66%,
11/12) for the diagnosis of mediastinal masses [19]. Most
recently, several high-volume studies have demonstrated that,
compared with conventional US, CEUS can improve the
diagnostic accuracy of AMMs [26, 27]. The present study
found that prebiopsy CEUS improved the diagnostic yield
as a result of the pronounced ability of CEUS to distinguish
viable tissue from necrotic or nonviable tissue. This was
confirmed by the higher detection rate of nonenhancement
area and higher cellularity in the CNB samples of those
patients who underwent prebiopsy CEUS compared with
those who underwent conventional US.

CEUS does not discriminate between benign and malig-
nant tissue in pleural-based lesions or lung disease [18,
28]; the present study showed that CEUS contributes to
the management of AMMs by US. CEUS plays a role in
the exclusion of fully cystic lesions and in the selection
of target areas in patients who are suitable for US-guided
CNB. More patients (75.0%, 16/24) with failed diagnoses

after US-CNB with prebiopsy conventional US underwent
repeated US-guided CNB compared with those (0.0%, 0/2)
with prebiopsy CEUS. Other biopsy alternatives but not
repeated US-CNB should be recommended for those cases
that failed to reach a conclusive diagnosis by US-CNB with
prebiopsy CEUS, which means that CEUS even plays a role
in the prevention of repeated US-CNB. No lung tissues were
found in the CNB samples with prebiopsy CEUS without
statistical significance; this may imply that prebiopsy CEUS
could distinguish AMMs from surrounding atelectasis and
avoid transpleural puncture, which is recommended for the
diagnosis of thymic epithelial tumors according to the NCCN
or ESMO guidelines [4, 29].

In the present study, the final diagnoses confirmed that
the most common malignancies were lymphoma and thymic
epithelial tumors. The diagnostic yield of US-CNB was higher
in thymic epithelial tumors, but the diagnostic yield for
Hodgkin’s disease (60%, 3/5) was lower than that for non-
Hodgkin's lymphoma (97.3%, 36/37). The present study also
confirmed that an 18-gauge core needle biopsy for AMM:s
achieved a satisfactory yield for NHL (36/37, 97.3%) but
not for HL (3/5, 60%). For the diagnosis of lymphoma, the
recommendation is excisional biopsy, but core needle biopsy
may be adequate if it is diagnostic [30, 31]. The diagnosis
of Hodgkin’s lymphoma depends on the presence of typical



R-S cells and histological structure, which are always deficient
in CNB samples. If Hodgkin’s lymphoma is suspected, exci-
sional biopsy is recommended [31]. Considering that non-
Hodgkin’s lymphoma is the main etiology of AMMs, core
needle biopsy of the viable part of AMMs would contribute
to the satisfactory pathological outcome and flow cytometry
for the therapeutic strategy.

Conventional US evaluation and guided CNB can achieve
a diagnostic yield as high as 70-90% [14, 26, 32]. Prebiopsy
CEUS should not be routinely recommended for all patients
with AMMs according to the cost-effectiveness principle. The
present study found that prebiopsy ultrasonic characteristics
of AMMs including the presence of marginal blood flow
signals and the absence of necrosis can precisely predict
the diagnostic yield. In addition, these 2 parameters could
be used to triage the patients who underwent prebiopsy
conventional US who may require further CEUS. Prebiopsy
CEUS should be used selectively for AMMs with an absence
of marginal blood flow signals or AMMs with necrosis
or in those patients who undergo repeated CNB, just as
the suggested proposal for integration of CEUS into the
management of AMM:s by US, as shown in Figure 3.

The present study is a retrospective review, and the low
volume of prebiopsy CEUS procedures was not performed
randomly, but on demand by the specialist. The study pop-
ulation included patients with AMMs that were suspected
to be malignancies detected on chest CT; therefore, few
patients with benign diseases were included. The dominant
deficiency of the technique used in this study is that CEUS
was not used directly for imaging guidance. It was used as
part of a prebiopsy evaluation and supplied the operator
with effective information to distinguish AMMs from the
surrounding anatomical structures and to target the punc-
ture area. Although the operators of US-guided CNB were
involved in the CEUS evaluation, no precise spatial correla-
tion was maintained between CEUS and CNB. The supposed
proposal for integration of CEUS into the management of
AMMs by US based on this study should be confirmed by
random controlled trials that require multicenter cooperation
for these scarce diseases of the anterior mediastinum.

5. Conclusion

US-CNB of the viable part of anterior mediastinal masses
verified by prebiopsy CEUS supplies sufficient tissue with
increased cellularity for underlying ancillary studies and
increases pathologic yield. Further CEUS should be recom-
mended for those AMMSs with an absence of marginal blood
flow signals close to the probe, those that are mostly necrotic,
and patients who undergo repeated US-CNB.
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The goal of the present study were (1) to investigate the pathological characteristics of gastrocnemius muscle (GM) and quantitatively
assess GM tissue stiffness in rat models with spinal cord injury (SCI) and (2) to explore the correlation between pathological
characteristics changes and Young’s modulus value of GM. 24 Sprague Dawley male rats were allocated into normal control groups
and SCI model subgroups, respectively. GM stiffness was assessed with shear wave sonoelastography technology. All GMs were
further analyzed by pathological examinations. GM weights were decreased, the ratio of type I fibers was decreased, and the ratio
of type II fibers was increased in the GM in the model group. MyHC-I was decreased, while MyHC-II was increased according to
the electrophoretic analysis in model subgroups. The elastic modulus value of GM was increased in the model group. A significant
negative correlation was found between Young’s modulus value of GM and the ratio of type I fibers of GM in model subgroup. Our
studies showed that the stiffness of GM is correlated with pathological characteristics during the initial stages of SCI in rats. We

also identified shear wave sonoelastography technology as a useful tool to assess GM stiffness in SCI rat models.

1. Introduction

Spasticity is a common disorder in patients with injury of the
brain and spinal cord. Severe spasticity impacts patient limb
function and subsequently their daily life. Previous studies
have shown that spastic skeletal muscle secondary structures
changes (such as shortening of muscle fibers, increased
connective tissue, and adipose tissue) can modify certain
biomechanical properties, such as increased stiffness levels
(1, 2]. Understanding the pathophysiology of spasticity may
provide important clues to its treatment. According to studies
on the pathophysiology of spasticity, exaggerated reflexes and
secondary changes in mechanical muscle fibers properties
have a major role in spastic movement disorder [3]. Clinically,
spasticity is associated with increased muscle tone, stiftness,

and eventual joint contractures [4]. Spastic muscle stiffness
can reflect the level of spasticity. The assessment of spastic
muscle stiffness is conductive to the development of person-
alized spasticity treatment strategy but also helpful to study
the effectiveness of the therapeutic intervention.

Clinicians often judge the changes in muscle hard-
ness by passively pulling the spastic limbs and touching
the spastic muscle, and the assessment results are greatly
influenced by the subjective factors from the examiner. It
is essential to have an objective, quantifiable method of
measuring spasticity muscle stiffness. Sonoelastography can
directly detect Young’s modulus value of biological tissue
to determine its elasticity. On sonoelastographic images, a
relaxed muscle structure will appear mostly soft (green blue),
while contracted or degenerated muscle fiber will appear
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hard (red) [5]. This imaging method further promotes the
comparison of elastic properties under various physiological
conditions [6]. Despite its known advantages, this technique
hasbeen applied for the evaluation of spastic muscles stiffness
following UMN injury [5, 7].

Muscle biopsy is the most prevalent type of analysis of
spastic muscle tissue. Sectioned muscles from patients with
spasticity show abnormalities such as increased variability
in fiber size. Variability in fiber size (i.e., large and small
fibers within the same muscle) is characteristic of numerous
neuromuscular disorders and not specific to spasticity [2].
Some biopsy studies report an increased percentage of type
I fiber in muscle from patients with spasticity and fewer
report an increased percentage of Type II fiber. There is no
general agreement on muscles issue which must be due, in
part, to the sampling problems. Animal models of spasticity
have allowed for the elucidation of possible mechanisms and
the evaluation of potential therapeutic interventions for these
serious clinical problems. Only complete spinal transection
at the thoracic level in animal models would duplicate
completely and permanently what is seen in humans after
SCI. The rat models with SCI have been used as experimental
subjects for spasticity muscles in most laboratories [8, 9].

In a previous study [10], we reported changes in the
pathological characteristics and Young’s modulus values of
GM in rats with completed spinal cord injury (SCI). This
brought up the question of whether there is a correlation
between these pathological GM characteristics and Young’s
modulus value in SCI model rats. Therefore, in this study,
we used SCI rat models to explore the pathological changes
and Young’s modulus values of GM in rats with SCI at
different time points, and the correlation analysis was used
to determine whether the pathological characteristics were
correlated with Young’s modulus value. The results of the
study will reveal the relevant factors of spastic muscles
and help to find the treatment strategies to reduce muscle
stiffness.

2. Materials and Methods

2.1. Materials. Forty-two Sprague Dawley male rats (260-
280 g) were divided into the control group (6 rats) and the
SCI model group (36 rats). The rats in the SCI model group
were randomly divided into the 2w, 4 w, and 12 w subgroups
(12 rats per group). This study was approved by the Sun Yat-
sen University Center for Ethical Review (approval number:
TACUC-20140201).

2.2. Methods

2.2.1. Model Preparation. The rats were anesthetized by the
abdominal injection of 10% chloral hydrate solution at a dose
0f0.35 ml/100 g body weight [8, 9]. Following anesthetization,
the rats were fastened to a sterile operating table and the
spinal cord was completely severed at the T10 level before a
gelatin sponge was placed in severed space (3 X 2 x 2mm).
We then sutured the muscle, fascia, and skin of the rats.
Following principles from a previous study, we took measures
to prevent postoperative infection and used an artificial
extruding bladder to assist with micturition [8].
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2.2.2. Muscle Tone and Mobility Behavioral Assessment. Plan-
tar flexor muscle tone was assessed using the Modified
Ashworth Scale (MAS). Mobility behavior was assessed using
the Basso, Beattie, and Bresnahan Locomotor Rating Scale
(BBB Scale) [11]. The assessors were double-blinded to the
groups.

2.2.3. Supersonic Sonoelastography. An AixPlorer ultrasonic
scanner (Supersonic Imagine, Aix en Provence, France), cou-
pled with a linear transducer array (4-15 MHz, SuperLinear
15-4, Vermon, Tours, France), was used in the present study.
The scanner was set at the supersonic shear imaging (SSI)
mode (musculoskeletal preset). SSI operates on a transient
elastography principle. It produces elastography images based
on the combination of a radiation force and an ultrafast
ultrasound acquisition imaging system capable of capturing
in real time the propagation of the resulting shear waves.
The elastic modulus can be calculated from the velocity
of the propagating wave when a faster velocity indicates a
greater elastic modulus. Therefore, the elastic modulus can
be calculated by measuring the propagation of shear waves. A
light touch on the skin with the ultrasound probe is suggested
by the manufacturer and a quantitative elasticity map can be
computed from the system within a few milliseconds [12].

Measurement positions included ankle flexion (0°) and
extension (—90°). Rat calf skin hair was removed, and each
rat was laid on its left side with the right lower limb placed
on a platform (hip and knee 90° flexion). Next, the probe was
lightly placed on the skin above the GM, ensuring that the
long axis of the probe was perpendicular to the tibia. The ROI
was set to 10 x 10 mm, and the depth was set to approximately
0.5-1.0cm. The probe was then rotated 90° to make the
long axis parallel to the tibia. The two-dimensional gray-
scale and elastic images were simultaneously observed with
double real-time imaging. The elasticity imaging mode was
then employed, followed by the application of the acoustic
radiation pulse and detection of shear wave after the muscle
elasticity image was stable. The image was then captured
when the Q-BOX function measuring Young’s modulus value
(kPa) was initiated (Figure 1). Each image was captured five
times for each plane measurement and all plane measure-
ments were averaged.

2.2.4. Type of Muscle Fiber and Myosin Heavy Chain Isoform
Quantification. In order to obtain the GM subsistence values,
Type L, Type Ila, and Type IIb muscle fibers were counted in
ATPase stain by Image J. Next, the GM Type I, Ila, IIb, and
IIx myosin heavy chain (MyHC) data was analyzed with elec-
trophoresis. The percentage proportions of MHC isoforms
in the analyzed muscles were estimated by comparing the
degree of staining intensity with Coomassie brilliant blue [13].
Quantity one software was applied for data analysis.

2.2.5. Statistical Analysis by SPSS 19.0 Software. Measurement
data were described as the difference in means. One-way
analysis of variance (ANOVA) was used to analyze differences
among groups. The least significant difference t-test was used
to analyze data with constant variances. Dunnett’s T'3 test was
used to analyze data without constant variances. Pearson’s
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FIGURE 1: Image of sonoelastography ((a) ankle flexion; (b) ankle extension).

TABLE 1: Results of the general assessment in different groups. TABLE 2: Results of Young’s modulus value in different groups.

Group Body weight GM weight BBB (score) MAS Group  Ankle flexion  Ankle extension t P
(g) @) (score) SCI

SCI 2w 8.27 +1.03 25.08 + 2.40 -14.69  <0.01
2w 27533 +£6.42 0.93+0.18 317+£098 1.50+0.48 4w 8.94 + 0.62 3113 £3.71 -13.71 <0.01
4w 28733 £10.65 0.98+0.45 4.83+097 133+1.03 12w 8.33 £2.54 3738 £ 5.54 -13.29 <0.01
12w 29033 +£16.21 1.24+0.11 717 +1.33  0.83 + 0.41 Control 11.17 £ 0.71 18.14 £ 2.10 -7.93 <0.01
Control 285.50 + 742  1.62+0.07 21.00 0 F 529 29.78 - -
F 2.11 9.70 429.72 4.67 P 0.01 <0.01 - —
P 0.13 <0.01 <0.01 0.01

correlation analysis was applied to the correlation between
Young’s modulus value and the type ration. P < 0.05 was
considered to indicate a statistically significant difference.

3. Results

After removing the overweight and underweight rats, six rats
were included in each subgroup.

3.1. General Assessment. The overall weight of the SCI rats
in the 2 w subgroup was lower than those of the control and
12 w subgroups (P < 0.05). However, the difference between
the weight of the SCI rats in the 2w and 4 w subgroups was
not significant. The weights of the SCI rats in the 4w and
12 w subgroups were higher than those of the control group,
but the difference was not statistically significant. The GM
weight of the rats in the 2w subgroup was the lightest. The
weights of the GMs were higher in the 4 w and 12 w subgroups
compared to the control group (P < 0.05). The BBB scores
of the rats in the 2 w subgroup were the lowest. Interestingly,
the BBB scores of the rats in the 2 w and 4 w subgroups were
significantly lower than in the 12 w subgroup (P < 0.05). The
MAS scores of the three subgroups were higher than that of
the control group (P < 0.05) (Table 1).

3.2. Young’s Modulus Value. All of the sonoelastography
images were acquired from the right GM of rats. Measure-
ment positions included ankle flexion (0°) and extension

(=90°). In the control group, Youngs modulus value of the
ankle flexion was higher than the ankle extension (¢ = 1.93,
P = 0.00). In each SCI subgroup, Young’s modulus value of
the ankle flexion was higher than the ankle extension (P <
0.05).

Compared with the control group, Young’s modulus value
gradually increased with time in the area under the ankle
flexion position (F = 29.78, P < 0.01) in the subgroups.
Young’s modulus value for the 2 w subgroup was significantly
lower than that for the 4w and 12w subgroups, and the
4w subgroup value was significantly lower than the 12w
subgroup. In the ankle extension position, Young’s modulus
value of three SCI subgroups was significantly lower than
that of the control group (P < 0.05). However, the results of
the three SCI subgroups reached statistical significance when
compared with each other (Table 2).

3.3. ATPase Stain. The proportion of Type I fiber in the three
SCI subgroups was significantly lower than in the control
group (F = 9.99, P < 0.01). The proportion of Type Ila
muscle fiber in the three SCI subgroups was significantly
higher than that of the control group (F = 5.96, P < 0.01).
However, the results of Type I and Type Ila fiber in the three
SCI subgroups were not statistically different when compared
to each other. The difference in the proportion of the Type
IIb fiber from the three SCI subgroups was not statistically
significant when compared to the control group (F = 2.63,
P =0.08) (Table 3).



TABLE 3: The proportion of each type of muscle fiber in different
groups.

Group Type I Type Ila Type IIb
SCI

2w 0.25+0.12 0.42 +0.24 0.34 £0.12
4w 0.19 £ 0.12 0.49 £ 0.19 0.33 £ 0.07
12w 0.18 £ 0.10 0.61+0.20 0.21+0.13
Control 0.46 £ 0.10 0.15 + 0.12 0.38 £0.09
F 9.99 5.96 2.63

P <0.01 <0.01 0.08

TaBLE 4: The proportion of MyHC electrophoresis results in SCI
rats.

Group MyHC-I MyHC-IIla ~ MyHC-IIx MyHC-IIb
SCI

2w 8.80+145 3.68+1.61 43.50+3.46 44.01+518
4w 458+226 338+0.93 4422+345 4781+333
2w 0.44+0.25 4.25+150 45.60+291 49.71+3.66
Control 991+126 555+018 3920+147 4534+195
F 50.49 3.85 5.31 2.81

P <0.01 0.03 0.01 0.07

The rat GMs included four types of MyHC, namely,
MyHC-I, MyHC-1Ia, MyHC-IIb, and MyHC-IIx, according
to the electrophoretic analysis (Figure 2). In the control
group, the proportions of MyHC-I, MyHC-IIa, MyHC-IIb,
and MyHC-IIx were 9.91 + 1.26%, 5.55 + 0.18%, 45.34 £ 1.95%,
and 39.20 + 1.47%, respectively. In the SCI group, the propor-
tion of MyHC-I decreased significantly compared with the
control group (F = 50.49, P < 0.01) and, in the 4w and
12 w subgroups, was significantly lower than that observed in
the 2w subgroup (P < 0.05). Furthermore, the proportion
of MyHC-I in the 12 w subgroup was significantly lower than
that in the 4w subgroup (P < 0.05). The proportions of
MyHC-IIa in all three SCI subgroups were higher than the
control group. However, the three SCI subgroups were statis-
tically significantly different in the proportion of MyHC-IIa
when compared to each other (P < 0.05). The proportions
of MyHC-IIx in all of the SCI subgroups were higher than
that observed in the control group; however, there was no
statistically significant difference when compared with each
other (P > 0.05). Nevertheless, the proportion of MyHC-
IIb in the three SCI subgroups was not significantly different
when compared with the control group (P > 0.05) (Table 4).

3.4. Correlation Analysis. In the control group, when the rats
were in the ankle flexion state, Young’s modulus value was
positively correlated with body weight (r = 0.89, P = 0.02;
Figure 2(a)) and negatively correlated with the proportion
of MyHC-I (r = —0.83, P = 0.04; Figure 2(b)). In the 2w
subgroup, Young’s modulus value was negatively correlated
with the proportion of MyHC-I (r = -0.85, P = 0.03;
Figure 3(a)). In the control group, when the rats were in the
ankle extension state, Young’s modulus value was negatively
correlated with the proportion of Type I fiber (r = -0.91,
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P = 0.01; Figure 2(c)). In the 4 w subgroup, Young’s modulus
value was found to be negatively correlated with body weight
(r =-0.92, P = 0.01, Figure 3(b)).

4. Discussion

The results of the comparative analysis in this study showed
that each subgroup displayed a significant decrease in body
weight and GM weight, which was similar to the results
from previous investigations [14, 15]. The main reason for
this could be a combination of the denervation, atrophy, and
paralysis of the muscle below the injury site. Furthermore,
reports show that a decline in muscle mass following injury
was associated with poor appetite during the acute stage, after
surgery [14]. As time progressed in the present study, the
general condition of the muscle in the SCI group became
more stable, the SCI was gradually restored to normal
conditions, and animal weight increased. In addition, the
function of the lower limb movement gradually recovered
with time. The peak MAS appeared in the 2w subgroup
rats. A decrease in MAS, however, was apparent in the 4w
subgroup. In the 12w subgroup, the MAS value was lower
than was observed in the 2w and 4 w subgroups but higher
when compared to the control group. The BBB score was
lowest in the 2 w subgroup. This group exhibited incomplete
combined movement in the hip and knee joint. Incomplete
flexion and extension movement of the ankle joint appeared
in rats of the 4-w subgroup. At 12 weeks after injury, the BBB
score increased to approximately 7-8 scores [15]. The recovery
of rats in each subgroup displayed individual differences, with
the 2w subgroup being the worst and the 12w subgroup
being the best of the SCI rats. In this respect, the results are
similar to previous studies. In this study, the SCI completely
debilitated the rats, which were never able to fully recover to
normal conditions.

The GM of rats includes four types of muscle fibers:
Type I, Type Ila, Type IIb, and Type IIx. Muscle fiber Type
I, Type Ila, and Type IIb can be distinguished by ATPase
staining [15]. The proportion of Type I muscle fiber signifi-
cantly decreased following injury. In contrast, the proportion
of Type II muscle fiber significantly increased following
injury. The observed trend of change is similar to those
reported in previous studies [16]. Electrophoresis showed
that the proportion of MyHC-I, MyHC-IIa, and MyHC-IIx
were significantly modified, similar to previous studies [17].
Among these changes, the increased Type Ila muscle fiber
was the most obvious change. At 12 weeks, we observed a
60% Type Ila increase, which was significantly higher than
the proportion of Type I muscle fibers (20%). The proportion
of Type IIb muscle fiber showed a decreasing trend but did
not reach statistical significance when compared with the
control group. These changes appear to be strongly related
to SCI and reduced movement. Moreover, the transition to a
different type of muscle fiber has been shown to be caused
by the ability of mutual transformation between different
types of skeletal muscle fiber, namely, plasticity. Studies have
confirmed that electrical stimulation and weightlessness can
induce the transformation and its plasticity is related to
the state of the muscle fibers [18]. Previous studies on SCI
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rats found that Type I GM muscle fibers can transform
into Type II muscle fibers [10, 19]. Nevertheless, the shift
between muscle fiber types can be reversed through the
correct amount of electrical stimulation. It is widely known
that the physiological function of each muscle fiber is differ-
ent. Type I muscle fibers produce small, extended tension.
However, Type II muscle fibers produce long fibers with a
short tension time. Skeletal muscle constitutes different fibers
and produces different types of tension [18]. Modifications
to muscle fiber types influence the physiological function
and biomechanical characteristics of skeletal muscle, such as
shortened relaxation time and fatigue, also influencing the
normal muscle contraction function.

Clinical studies have confirmed that the elastic modulus
value is greater when muscles are in contraction compared to
their state in relaxation. Thus, the elastic modulus value can
tell the state of the muscle [6]. At different ankle positions, the
contractive condition of GM was found to also be different.
For the more comprehensive evaluation of the hardness
characteristics of GM spasm in SCI rats, this study included
two measuring positions: ankle extension (—90") and flexion
(0°). In the ankle extension position, Young’s modulus value
for the GM in each subgroup of SCI rats was less than that
in the control group. The minimum value appeared at the
2nd week and was improved at the 12th week. A reason for
this result may be that the muscle had undergone paralysis.
At the 2nd week, the muscle paralysis was at its most severe.
Paralysis recovers over time; therefore, by the 12th week, GM
had regained the initiative movement. In the ankle flexion
position, Young’s modulus value of SCI rats in each subgroup
was significantly higher than that of the control rats. Previous
studies showed that the hardness of spasmodic muscle is
significantly higher than normal controls [6, 7]. In addition,
we found that Young’s modulus value in the state of ankle
flexion was significantly higher than the value in the state of
ankle extension for each SCI subgroup. We believed that the
difference observed between the two conditions was caused
by the abnormal state of joints after SCI. After lower limb
paralysis, the ankle state changes from extension to flexion,
and this change remains until normal movement is restored.
Moreover, the GM stays in a tension-free condition when the
ankle is in the extension state. In turn, the GM becomes tense
when the ankle flexes. Therefore, the elastic modulus value
increases, causing Young’s modulus value to also increase.
Additional causes of the degree of GM spasm include weight,
fiber classification, and muscle structure change. Another
factor to consider is the assessment of the hardness of the
ankle flexion as a suitable position to measure the hardness
of GM spasms, as found in the present study.

Based on the above results, we know that the pathological
characteristics and elastic modulus dynamically change after
SCI. Therefore, we posed the question of whether GM
hardness is correlated with pathological change. The results of
our correlative analysis showed that, for normal rats, Young’s
modulus value was positively correlated with the body weight
observed in the control group and was negatively correlated
with the proportion of MyHC-I in the ankle flexion state.
Young’s modulus value was negatively correlated with the
proportion of Type I muscle fibers when the ankle was in
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the extension state. In this study, the normal rats with higher
level weight own bigger mass GM than rats with lower weight
and bigger mass GM appeared to be stiffer than smaller
mass GM. As we know, Type I muscle fiber produces small,
sustained tension, and Type II muscle fiber produces large,
short-term tension. The different muscle fibers constituents
result in different tension levels [18]. In addition, GM with
higher proportion of MyHC-I showed lower tension and
stiffness in either flexion or extension state. Furthermore, for
the SCI rats, Young’s modulus value was negatively correlated
with the proportion of MyHC-I in the 2 w subgroup and was
negatively correlated with body weight in the 4 w subgroup.
We considered the change of the pathological features of GM
in rats with SCI was complicated. Body weight, ration of
muscle fibers, and proportion of MyHC all varied following
the injury course. However, for the different time point
subgroup, the influence of SCI was different. Young’s modulus
value is lowest in 2w subgroups. Like 2w rats model, we
thought the increased proportion of MyHC-I is one of the
causes that resulted in decreased Youngs modulus value
during ankle flexion in the study. For 4 w rats model, weight
mass increased following rats condition improvement. GM
showed more tension at flexion state in rats with lower weight,
resulting in a higher Young’s modulus value. During recovery;,
for 12 w subgroup, rats model got better and better condition,
and proportion of MyHC and ratio of muscle fibers got
normal; however, GM stiffness did not show any decrease. We
will make more efforts to make the issue clear in the future.

Also, skeletal muscle includes an inner and outer mem-
brane and perimysium. These compositions are the founda-
tion of muscle elasticity. Previous studies found that rats with
SCI have extracellular connective tissue modifications during
recovery [2, 17]. Due to limited experimental methods,
this study did not include quantitative measurements for
changes in muscle composition. Future experiments will
determine whether Young’s modulus value is related to these
pathological changes.

5. Conclusions

The present study used sonoelastography to evaluate GM in
rats after SCI. From these studies, we found that this imaging
technique can be used in the evaluation of modifications to
GM hardness in rats following SCI. We observed a series of
GM dynamic changes in rats at 2, 4, and 12 weeks following
complete SCI. Such a decrease in muscle weight and the
change of muscle fiber composition led to the conclusion that
the effects of SCI are not limited to pathological changes, but
also to changes in the hardness of the GM (Young’s modulus
value) area affected by SCI. Modifications to the hardness
of the GM in SCI rats were related to pathological changes
(weight, the type of MyHC, and muscle fiber type of GM) that
took place during the earlier phase following SCI. Moreover,
Young’s modulus value observed at the later times may be
related to modifications in the extracellular connective tissue.
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Ultrasound elastography is an imaging modality to evaluate elastic properties of soft tissue. Recently, 1D quasi-static elastography
method has been commercialized by some companies. However, its performance is still limited on high strain level. In order to
improve the precision of estimation during high compression, some algorithms have been proposed to expand the 1D window
to a 2D window for avoiding the side-slipping. But they are usually more computationally expensive. In this paper, we proposed a
modified 2D multiresolution hybrid method for displacement estimation, which can offer an efficient strain imaging with stable and
accurate results. A FEM phantom with a stiffer circular inclusion is simulated for testing the algorithm. The elastographic contrast-
to-noise rate (CNRe) is calculated for quantitatively comparing the performance of the proposed algorithm with conventional 1D
elastography using phase zero estimation and the 1D elastography using downsampled (d-s) baseband signals. Results show that
the proposed method is robust and performs similarly as other algorithms in low strain but is superior when high level strain is
applied. Particularly, the CNRe of our algorithm is 15 times higher than original method under 4% strain level. Furthermore, the

execution time of our algorithm is five times faster than other algorithms.

1. Introduction

Mechanical properties of soft tissue have been used as an
important indicator of several diseases, such as breast [1, 2],
liver, and prostate cancer [3, 4]. Generally, the carcinoma tis-
sue is stiffer than the surrounding normal tissues. Palpation,
as the standard procedure during physical examination, is
used to touch and feel tissue below the surface of the body,
while its accuracy is limited by the depth of measurement [5].
Ultrasound elastography is a relative new imaging modality
for the clinical evaluation of elastic properties of soft tissue
using ultrasound. It was first referred to as elastography by
Ophir et al. in 1991 [6]. It became a very hot research focus of
medical ultrasound in the last two decades [7, 8]. Major medi-
cal imaging device companies have launched their ultrasound
products with elastography or shear wave imaging modali-
ties [7-10]. Clinical trials have been conducted for various
clinical applications with promising results.

Ultrasound elastography has been developing into an
effective method in cancer diagnosis due to its capability and

simple implementation [11]. The basic steps of the technique
are as follows: (1) the biological tissue is compressed by
contact or noncontact way; (2) backscattered radio frequency
(RF) signals before and after tissue compression are col-
lected, respectively, by ultrasonic transducer; (3) the tissue
displacement estimation algorithm is applied to estimate the
displacement field from the RF signals; and (4) the strain
field is reconstructed from the displacement field by strain
estimation algorithm.

Accurate estimation of tissue displacement is a very
important step in ultrasound elastography. Different methods
were proposed in the last two decades. Majority of these
methods use correlation technique in time domain or the
phase domain for displacement estimation [6, 12-14]. In time
domain, several matching operators like correlation coeffi-
cients, the sum of squared differences (SSD), and the sum of
absolute differences (SAD) are employed to finding the opti-
mal matching in the pre- and postcompression RF signals [15,
16]. Since the computational cost of the matching operators
in time domain is large, phase-based methods like phase zero
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estimation, which have higher computational efficiency than
time-domain methods, have been implemented in clinical
ultrasound system for real-time strain imaging [13, 17]. Both
1D and 2D elastography methods can obtain displacements
field, but the 1D estimation algorithms only consider axial
displacements in tissue. They have difficulty in obtaining
precise results in complex tissue environment, especially
under high compression conditions. In general, the RF data
sequence will be shifted laterally because of the lateral dis-
placement in tissue. In order to reduce the errors due to lateral
motion in 1D elastography, 2D elastography algorithms like
hybrid displacement estimation method and a modified block
matching method have been proposed [18, 19]. These meth-
ods consider both axial and lateral displacement; they expand
the 1D window to a 2D window to avoid the side-slipping
of the 1D window, which can greatly improve the precision
of estimation result in high compression situation, but 2D
elastography is usually more computational expensive than
1D elastography.

In this paper, we proposed a modified 2D multiresolution
hybrid method for displacement estimation, which can offer
an efficient strain imaging with stable and accurate results. To
test the algorithm, a heterogeneous computational phantom
is simulated using finite element model (FEM), with a
rectangle background containing a stiffer circular inclusion.
The synthetic RF data are generated from Filed II software
[20]. We compare the result with three different algorithms
and show a great improvement of our method in ultrasound
elastography.

2. Methods

In order to make a tradeoff between speed and accuracy,
we proposed a method using modified 2D multiresolution
hybrid elastography. Preprocessing procedure is first applied
to the raw RF data to obtain envelopes and baseline signals at
different resolutions. Chen et al. proposed a hybrid displace-
ment estimation method, which applied 3-level estimation
based on cross-correlation and weighted phase separation
(WPS) [18]. We suggest processing coarse estimation also
on 3-level cross-correlation on sampled RF data by different
sampling rate. And then a fine estimation is carried out on
the whole frame RF date by phase zero-crossing method [15],
which uses the results of the coarse estimation as the input to
improve the resolution and accuracy.

2.1. Preprocessing. 'The analytic signals of predeformation and
postdeformation radio frequency (RF) signals are obtained by
applying Hilbert transformation to the raw RF data. The base-
band signals can be calculated by demodulating the analytic
signals with a carrier wave exp(jw,t), where w, denotes the
modulation frequency. The modulation frequency w, should
be chosen close to the transducer’s center frequency.

The baseband signals are downsampled at different
downsample rates. The downsample rates should satisfy the
Nyquist sampling condition. The downsampled baseband
signals are then converted into amplitude and phase data
using FFT. The amplitude data at different scales are used in
corresponding coarse to fine estimation, but the phase data
are only used for fine estimation.
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The whole frame
B Calculate windows

Search windows

F1GURE 1: Over of the level 1 search, the calculate windows and search
windows are equally distributed.

2.2. Coarse Estimation

2.2.1. Level I Search. Nine evenly distributed windows have
been selected in the coarsest scale of the predeformation
frame (see Figure 1). Displacements are calculated in these
9 windows by finding the highest correlation coeflicient
between predeformation and postdeformation frames in a
search window [19, 21]. The correlation coefficient can be
expressed as

R(d,.d,)

Zper [A(oy) - A [B(x+dy +d,) - B] M

>

\/Z(x,y)eT [A(xy) - Z]z Yoper [B(x +dpy+d,) - E]z

where d, is the lateral displacement, d, is the axial displace-
ment, A and B denote the envelope data from predeformation
and postdeformation frame, A and B are the averages of A and
B, and T is the window size. Since computational cost at this
level is relatively cheap, the size of search windows can be set
large enough, and in order to reduce the errors in this level,
we do not use multiresolution search method mentioned by
Chen in this level. In addition, the size of the search windows
in the lower rows is selected bigger than in the upper row
since displacement will be accumulated with respect to depth.
The output of level 1 search is nine axial-lateral displacement
estimations within the nine search windows.

2.2.2. Level 2 Search. Level 2 search is performed at a finer
scale than level 1 search. Seven by 11 evenly distributed
calculate windows are selected on the predeformation frame.
The size of the calculate windows is 1/3 of the size at level 1
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FIGURE 2: Level 2 search strategy. (a) Set the initial center point of search window to be a reference point and then find the max in its
neighbours according to the correlation coefficient. (b) Propagate the reference and its neighbours and then continue to calculate the

correlation coeflicient.

and the size of the search windows is bigger than that at level
1, which is selected according to the deformation degree. The
initial axial and lateral displacement estimates of level 2 are
inherited from the output of level 1 and bilinear interpolated
to the finer scale. The search windows located at the point
according to the output and the center of calculate windows.
The so-called “following tracking” strategy (see Figure 2)
is used to decide the search direction at each window [22].
First, set the initial center point of search window to be a
reference point, and then set the reference point’s immediate
neighbours to be the search points; after that we need to
calculate the correlation coefficient of calculate windows and
search windows at each search point. The point which has the
highest correlation coefficient will be the next reference point;
the search points then propagate to the current reference
point’s neighbours, and so on. When the reference point
occurs at a fixed position or out the range of search window,
the calculation in this window is completed, and the axial and
lateral displacement estimation is according to the position of
the final reference point. Chen et al. used a multiresolution
search method in this level; we removed it and increased
the numbers of the reference point’s neighbours to obtain
a more accurate result. We suggested that the increment of
computational complexity in this level is meaningful.
However, this time the searches are not independent;
there is another delivering strategy that is used to deliver
displacement estimations from one window to the next
window which on the same column. The next window’s
initial reference point is no longer the center point of search

window, but the position according to the output of the
current window.

The advantage of the searching strategy above is that we
can find the point which matches the highest correlation
coeflicient quickly with lower computational complexity.
Moreover, the strategy has a good error-correction mech-
anism to ensure displacement continuity in both axial and
lateral direction.

2.2.3. Level 3 Search. The calculate windows and search
windows are the smallest in coarse search and this process
should finish the whole frame search. The size of calculate
windows should be 1/2 of the size at level 2, and level 3
search stops when the calculate windows cover the whole
frame. Similar as in level 2, we also need to interpolate the
displacement results in level 2 to level 3 with finer scale.
And we use the same search strategy to obtain the axial and
lateral displacement in level 3 [22]. Since we do not need
further refinement of the lateral displacement, and in order
to avoid shifting the signals laterally too much, we extract
the significant part of the lateral displacement and only shift
the RF signal within that region. The lateral displacement
should be smoothed and be considered as the final lateral
displacement. There are many kinds of the smooth method;
we suggest using the Savitzky-Golay filtering method.

2.3. Fine Estimation

2.3.1. Displacement Estimation. The initial axial and lateral
displacement estimation over the whole RF data can be



bilinear interpolated from the coarse estimation from level 3
search. A modified phase zero algorithm is proposed for the
fine displacement estimation [13].

Let us denote x; and x, to be the 1D windowed RF signals
before and after compression of the tissue. In elastography, the
postdeformation RF data is considered to be a compressed
and time-shifted vision of the predeformation signals, and
the signal compression can be neglected. Thus, x, can be
expressed as

X, (t)=x,(t+71). (2)

In general, the correlation between two signals can be
calculated from the cross-correlation function as follows:

(a,b) (t) = J, a* ()b (¢ +t)dt'. (3)
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Consequently, the signal’s autocorrelation function can be a
time-shifted modification of the cross-correlation function

(x),%,) (t) = fo x, " () x, (F +1t)dt’
= ro x, () x, (F+t+7)dt,

—00

[ () (¢ e o) W

—00

@) (¢ e ar
= (x,x){t+1),

(x1, %) (t) = {x,x7) (£ + 7).

Since the maximum of the autocorrelation equals the
maximum of the cross-correlation, the conventional cross-
correlation determines this maximum to estimate the time
shift. When we return the baseband signals to analytic signals,
the phase ¢(t) of the correlation function of the analytic
signals x,, () and x,, (t) has an identical root

¢(-1)=0,

¢ (1) = arg ((x1, %,4) (1)),
xp4 (1) = exp (j@t) x; (1),
Xy, (1) = exp (j@ot) x, (£) .

Using the Newton iteration, we can figure out the root of ¢(t)
to find the time shift estimation
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Then replace it by a sum of oversampled signals

1 .
Tl = Tel-1 — ~ T8 <exp (j@oTrs-1)
o

Tpy-1+T/2
: Z " (t) %, (t — Tk,ll)))

T~ 112

where 7, ; denotes the displacement estimation in the kth
window after iterating for / times and T denotes the calcu-
lation window size.

In original phase zero-crossing estimation, the displace-
ment estimation of the previous window will be used as
the initial value for the next window [13]. The error of one
window will propagate to the remaining windows along the
RF line. This can cause large accumulated errors in the
whole frame. On the other hand, this algorithm is based on
the assumption that the lateral displacement in the tissue
is negligible. However, tissue will be deformed in both the
axial and the lateral directions when freehand compression is
applied [21]. Lateral displacement should be considered when
estimating the whole displacement field.

We propose a modified algorithm to solve the problems
described above. We get the coarse estimation including axial
and lateral displacement in the previous coarse calculation,
so the iteration between the neighbouring windows can be
simplified comparing with 1D elastography method. And the
lateral deviation will be applied to the computational process.
The calculation is independent of each window, so it makes
it easier to take this algorithm to be executed based upon
CUDA (Compute Unified Device Architecture)

Too = 0,

!
Tk,O - Tk,coarse >
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0
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The initial value of each window is replaced by the coarse axial
displacement T,i’ coarse 01 current window. And take the lateral
shift on x, () to be x, g, (t).

2.3.2. Strain Estimation. Strain is defined as the gradient of
the displacement. Here we only calculate the axial strain and
the least-squares strain estimator (LSQSE) is used, which
employs a piecewise linear curve fitting [23]. After the
axial displacement field is obtained, the strain map may be
modeled as

u (i) = az (i) + b, 9)

where u denotes the axial displacement and z is the tissue
depth. The constants a and b are the coefficients to be
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FIGURE 3: Heterogeneous finite element model simulates the stiffer
circular inclusion.

estimated, and a represents the local strain. Transform the z
to matrix form

[ z(1) 1

z(2) 1
_A[“] _ i H (10)

“ e b’
1
[z(N) 1]
The least square solution is given by

a -

|-t ay

where @ and b denote the estimation of a and b, respectively.

2.4. Simulation. A FEM (finite element model) phantom
is simulated using Commercial FEM software COMSOL
Multiphysics 5.0 (COMSOL USA). FIELD II software is used
for ultrasound simulations. The size of rectangle background
of the 2D model is 20 mm x 20 mm, with a stiffer circular
inclusion in the center. The radius of the inclusion is 3 mm.
Triangular mesh was generated and refined automatically by
COMSOL (see Figure 3). Smooth displacement and strain
field can be obtained for further RF signal simulation.
The inclusion and its background have same density of
1000 kg/m3 and Poisson’s ratio of 0.495. Young’s modulus of
the inclusion is 100 kPa, which is multiple times stiffer than
the background. In this study, we set strain contrast between
lesion and background to be 5, so that there will be a clear
boundary and CNRe can be easily used for performance com-
parison. The phantom is compressed by uniaxial compression
with axial displacement set to 0.3 mm-0.8 mm (i.e., the axial
strain is 1.5%-4.0%). The bottom of the phantom is fixed.

A 192-element linear array transducer (64 active ele-
ments) with a center frequency of 75 Mhz is simulated. The
transducer has a pitch of 0.255 mm and an element height
of 5mm. The element width is equal to the wavelength. The
number of scan-lines is 128 and the distance between adjacent
lines is equal to the pitch. The transmitting focus is at 30 mm

4 0.02
Strain simulation x1072
20 2.2
2
16 1.8
1.6
12
14
8 1.2
1
4 0.8
0 0.6

-4 0 4 8 12 16 20 24

FIGURE 4: Strain map simulated by COMSOL as the ground truth.

and dynamic focusing with focal zones step by 1 mm is used
for receiving focus. The image zone has a width of 20 mm
and a depth of 20 mm. The speed of sound is assumed to
be 1540 m/s and the sampling frequency of the RF signals
is 120 Mhz. The original scatters are randomly distributed
in the image zone with random scattering amplitude. The
predeformation RF signals are simulated with FIELD II
using the parameters described above [20, 24]. The new
scatters positions after compression are calculated according
to COMSOL simulation. The postdeformation RF signals
are then simulated with FIELD II using the new scatterer
distribution.

3. Results and Discussion

Ultrasound RF data was generated using computer simu-
lation. With the synthetic RF data, the displacement and
strain distribution were calculated using the modified 2D
multiresolution hybrid elastography. Comparison was made
between the proposed method, the original 1D elastography
and the 1D elastography using downsampled (d-s) baseband
signals. Since the modified method has a downsampled
step, we make a downsampled version of 1D elastography
to compare with the proposed method. To achieve that, we
use the same processes as the 1D elastography method to
get envelop signals, and the envelop signals will be then
downsampled and further 1D elastography calculations will
be performed on the downsampled envelop signals.

Figure 4 shows the theoretical strain maps using finite
element analysis in COMSOL as the ground truth. Figure 5
presents the estimated strains obtained by three algorithms
for the computational phantom under different applied
strain. The direct viewing of the result shows that 1D elas-
tography is slightly better under low strain level; the reason
is that the 1D method build on the whole RF data and the
iterative calculation is more complete and precise under low
strain level. The performance of the algorithm we proposed
is similar to 1D algorithm when low strain is applied but
much better under higher strain level. As we can see in the
first two columns, some error appeared in the center of the
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FIGURE 5: Strain maps of three different algorithms. Different strain levels as 1.5%, 2.0%, 3.0%, 3.5%, and 4.0% are applied at each row. The
first column ((a)-(e)), the second column ((f)-(j)), and the third column ((k)-(0)) show, respectively, the strain map obtained by original 1D
elastography and original 1D elastography with downsampled and modified 2D multiresolution hybrid elastography.
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FIGURE 6: The extra area of inclusion and background for the
calculation of CNRe and the average estimated strain rate.

result when strain level increased, and there are two error
lines in 1D elastography (Figure 5(e)) because of the lacking
consideration of lateral displacement and iterative calculation
between two windows.

To quantify the performance of different algorithms,
CNRe is calculated at each strain level and we use the binary
strain image to measure the accuracy of each algorithm [25].
The definition of the CNRe is provided in the following:

2
2(51 52)

CNR, = ———~, (12)
S1 $2

where s; and 0521 denote the mean and the variance of strain

estimation in the inclusion and s, and 0822 are the mean
and the variance of strain estimation in the background (see
Figure 6). The larger the CNRe value, the better the clarity of
the results.

We have made a record of the average estimated strain rate
for both inclusion and background for comparison purpose.
The ratio of s, and s, previously mentioned is shown directly
in Figure 7. We can see that the three different algorithms
have shown similar average strain ratio between lesion and
background in different strain level.

We make a complete test with three algorithms under
different strain level range 0.2% to 4%. Same as 1D algorithms,
the CNRe of our algorithms is too low to distinguish between
the lesion and background when strain level is lower than
0.8%, which means the noise on strain estimation will blur
the boundary between lesion and background. And the CNRe
of the modified 2D multiresolution hybrid elastography
algorithm is much higher than the other two algorithms at
high strain level (see Figure 8). We can see that the original
1D elastography has a slight better result in low strain level;
the reason is that the 1D method build on the whole RF data
and the iterative calculation is more complete and precise
under low strain level. The performance of the algorithm we
proposed is similar to 1D algorithm when low strain is applied
but better under higher strain level.
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FIGURE 7: The ratio of average estimated strain rates of the inclusion
and the background.
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FIGURE 8: The CNRe results of three different algorithms.

The strain binary images (see Figure 9) are obtained by
thresholding the strain map. We set the threshold at the
same level and plot the binary images, respectively. It is an
immediate way to see the accuracy of each strain image. We
set the average estimated strain rate for whole phantom as the
threshold of the binary images. Additionally, the inclusion
area ratios are calculated and compared with the ground
truth of FEA result. Then we calculate the inclusion area ratio
as the numbers of black pixels and all pixels in the image.
The standard denotes the inclusion area ratio in FEA model
and results of calculated strain ratio from three methods
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FIGURE 9: Strain binary images of three different algorithms. Different strain levels as 1.5%, 2.0%, 3.0%, 3.5%, and 4.0% are applied at each
column. The first column ((a)-(e)), the second column ((f)-(j)), and the third column ((k)-(0)) show, respectively, the strain binary map
obtained by the corresponding strain map using 1D elastography, downsampled 1D elastography, and the proposed 2D elastography method.
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FIGURE 10: The inclusion area ratios results of three different
algorithms, where the standard denotes the inclusion area ratio in
FEA model.

TaBLE 1: Execution times of three different algorithms.

Method 1D 1D with downsampled Modified 2D
Times (s) 10.2 2.3 1.8

are shown in Figure 10. The inclusion area ratio of the new
method is closer to the standard than other methods.

In the algorithm we proposed, the lateral resolution
depends on the amount of the windows in level 3 search. The
lateral resolution increased with the increasing of the amount
until the resolution is equal to the sampling frequency of the
RF data. The axial resolution is determined by the physical
size of transducer such as the kerf of the array element.
The purpose of the consideration of lateral displacement in
our algorithm is not to improve the later resolution but to
compensate for the interference of lateral offset and get higher
accuracy in axial strain image.

All the algorithms were executed with an Intel(R)
Core(TM) i7-4790K CPU @2.40 GHz 8.00 GB RAM, and
MATLAB 2014b was used for implementing and testing them
on Windows operation system. The execution times of the
different methods are shown in Table 1. The modified 2D
multiresolution hybrid elastography algorithm has a shorter
time than the other algorithms.

4. Conclusion

A modified 2D multiresolution hybrid method has been
proposed in this paper. Using finite element model phantom
under different strain levels, we have shown that the new
algorithm can achieve better CNRe comparing with different
methods including original 1D elastography method and
original 1D elastography method with downsampled (d-s).
These results demonstrate that the method we suggested is

robust and accurate when high level strain is applied. The
result of execution time has shown that the new framework
has a higher efficiency that it may well be more suitable for
real-time application in clinical practice. The limitation of
our algorithm is that, to a great extent, the accuracy of the
final result is determined by the output of coarse estimation.
The strain image calculated by our algorithm is slightly worse
than original 1D elastography under low strain level. In this
study, we use simulated data to compare the performance of
the proposed method with other methods in different strain
level, since ground truth of strain map can be easily obtained.
In our next study, we will test our method using phantom and
in vivo data.
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We conducted differentiations between thyroid follicular adenoma and carcinoma for 8-bit bitmap ultrasonography (US) images
utilizing a deep-learning approach. For the data sets, we gathered small-boxed selected images adjacent to the marginal outline
of nodules and applied a convolutional neural network (CNN) to have differentiation, based on a statistical aggregation, that is, a
decision by majority. From the implementation of the method, introducing a newly devised, scalable, parameterized normalization
treatment, we observed meaningful aspects in various experiments, collecting evidence regarding the existence of features retained
on the margin of thyroid nodules, such as 89.51% of the overall differentiation accuracy for the test data, with 93.19% of accuracy
for benign adenoma and 71.05% for carcinoma, from 230 benign adenoma and 77 carcinoma US images, where we used only 39
benign adenomas and 39 carcinomas to train the CNN model, and, with these extremely small training data sets and their model, we
tested 191 benign adenomas and 38 carcinomas. We present numerical results including area under receiver operating characteristic

(AUROCQ).

1. Introduction

Thyroid cancer has been one of the most diagnosed forms of
cancers worldwide over the past few decades [1]. Follicular
thyroid cancer is the second most common thyroid cancer
after papillary thyroid cancer, comprising 10-20% of thyroid
cancer. It is noted that follicular thyroid cancer has a higher
incidence of distant metastasis and thus has prognosis worse
than the more common papillary thyroid carcinoma [2-4].
Therefore, it is important to preoperatively notice this entity
for prompt management.

Follicular neoplasm of the thyroid gland comprises follic-
ular adenoma and carcinoma. It is challenging to preopera-
tively differentiate these two entities, and much clinical effort
has been made up to this point. Overlapping clinical pre-
sentations, ultrasound (US) features, and molecular biology

resulted in a limited value of diagnostic power through pre-
operative evaluation with US, fine-needle aspiration cytology,
and immunohistochemistry [5-8]. Therefore, a differential
diagnosis of these two entities is currently obtained by iden-
tifying capsular or vascular invasion at the periphery of the
lesion among pathologic examination following diagnostic
thyroidectomy [9].

In CAD (computer-aided diagnosis), many scientists
and researchers have developed methods to detect thyroid
nodules or automated diagnosis assistance systems, mainly to
differentiate between benignancy and malignancy of thyroid
nodules and break through those difficulties in definitive
diagnoses of nodule lesions and assist radiologists with
developing a plan of action [10-12].

Recently, the rapidly progressing industries in artificial
intelligence technologies reached numerous markets and
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countries in various fields of our life, even in the area of
medical sciences [13-16]. In this article, we develop and
demonstrate newly conducted techniques and observe some
meaningful aspects seen in various experiments, such as
scaling a parameterized normalization to draw reasonable
evidence of the existence of features retained on the margin
of thyroid follicular neoplasms, which could be helpful in
identifying capsular or vascular invasion occurring at the
margin of the lesion, or inspirational to the invention of an
efficient numerical method to differentiate malignant from
benign follicular neoplasms on US images, in view of a CNN
(convolutional neural network) [17].

In this paper, after reviewing other machine-learning type
methodologies in Section 2, we introduce our model training
schemes, presented in Section 3, focused on a technique that
disregards features of intro area of thyroid nodule images;
that is, we concentrate our image recognition model on
capturing the features characterized in the boundary region
of thyroid follicular neoplasms, in virtue of the fact that
the previously mentioned differential diagnosis based on the
pathologic examination taken after diagnostic thyroidectomy
depended considerably on the properties of the boundary
region of the nodules. In Section 4, we present numerical
results, developing a newly devised parameterized normal-
ization treatment, including AUROC (area under receiver
operating characteristic) and those curves, as well as overall
differentiation accuracy, and so on. In Section 5, finally, we
discuss the existence of features on the boundary of US
thyroid follicular neoplasms that could possibly be trained by
our proposed CNN based inference model and its efficiency,
including our future works.

2. Technical Issues in US
Classification Experiments Using
Artificial Neural Network

In view of machine learning or artificial intelligent techniques
for differentiation of malignant from benign thyroid nodules,
there are lots of methods or treatments with sample data sets
to extract efficient features for application in a training model
of a given machine learning or ANN training tools [10, 11,
18-20]. For support vector machine (SVM), some remark-
able ways of feature extracting techniques and imagery
subsampling treatments are conducted to efficiently train
classification models such as those found in [10, 20-23], and,
for ANN type of methods, the methodologies found in [10, 19,
24-27] mostly use some ways of preprocessed training with
feature extraction techniques including pathological reports
or information on patients such as age, sex, health condition,
and the results of various medical tests or cytological data. In
other words, most of ANN methods found in there actually
demonstrate training with nondirect US images but with
some kinds of nonimagery input data sets extracted from
original US image information.

In our implementation of CNN model training for differ-
entiating between thyroid follicular adenoma and carcinoma
for US thyroid images, we engage US images in a fixed size of
pixels in resolution on input nodes directly without extracting
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TaBLE 1: Configuration of the list of the numbers of our sample
collection of ultrasonography thyroid nodule images without sex
identification.

Hospital A Hospital B Total
Follicular adenoma 190 60 250
Follicular carcinoma 40 43 83

any preprocessed statistical features. For a training object of
a CNN model, from the reported diagnostic US determining
features in the differentiation of thyroid follicular adenoma
and carcinoma, we focus on a way of training which magnifies
training efficiency of imagery and morphologic features of
US found in the adjacent region of the boundary of lesion.
For a method of SVM applied in [21] to differentiate risky
hypoechoic thyroid nodules, although they try to take the
features found in boundary region of thyroid nodules by set-
ting up the data set comprising 131 medium-risk hypoechoic
nodules characterized by regular boundaries and 42 high-risk
hypoechoic nodules characterized by irregular boundaries,
since the morphological shapes of boundary regions are so
distinctive that even human eyes may easily recognize the
risky nodules, one may not be sure that its model would
be a good fit to work for any ambiguously shaped general
cases of thyroid follicular adenoma and carcinoma (refer to
Figure 1).

Exhibited here are renderings of our own sample gather-
ings of thyroid nodule images to deal with our classification
models of convolutional neural network, and, afterward, we
introduce and define the type of training methodology in
Section 2.

For our own collection of sample thyroid images, we
have 250 cases of follicular adenoma, as well as 83 cases of
follicular carcinoma, visualized in gray-scale 8-bit bitmap US
thyroid nodule images, and the data sets were obtained from
2 different US clinics which identified as Hospital A (= H,)
and Hospital B (= Hy) (refer to Table 1). For the data denoted
by clinic HA, in total, 230 patients with 230 thyroid nodules
were included in this study. Of the 230 patients, 51 (22.174%)
were men, and 179 (77.826%) were women. Mean age of the
230 patients included was 48.72 years. Mean size of the 230
thyroid nodules was 29.84 mm, and the mean of the pixel
intensity of the grey-scale 8-bit bitmap US images is 63.819,
where the mean value of the max intensity is 176.1475, and the
mean of the minimum intensity is 71230. For the data of HB,
totally, 103 patients with 103 thyroid nodules were included in
this study, where 22 (21.359%) were men, 71 (68.933%) were
women, and 10(9.708%) were the missed sex identification,
and the mean age was 43.90 years. Mean size of the 103
thyroid nodules was 32.81 mm, and the mean of the pixel
intensity of the grey-scale 8-bit bitmap US images is 82.07
where the mean value of the max intensity is 192.1154, and the
mean of the minimum intensity is 6.6827. These data sets are
given from both institutional databases which was reviewed
after from January 2003, for patients diagnosed with follicular
adenoma and follicular carcinoma after surgical excision. In
Table 1, we present the list of the numbers of our sample cases
of US thyroid images.
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FIGURE 1: Thyroid US images with delineated nodules: (a—c) nodules of regular boundaries; (d-f) nodules of irregular boundaries, belonging

to the data set in [21].

3. US Differentiation Applying CNN

We make use of CNN to differentiate US images of follicular
neoplasms between the adenoma and the carcinoma. We
demonstrate experiments with the data set given in Table 1
to train a CNN model to infer the differentiation.

3.1. Data Setup

3.1.1. Making Subsets. Here, aiming to derive a data invariant
numerical result related to the characteristics of the fine
imagery features captured by our CNN model retained on the
margin of thyroid follicular neoplasms, delivered from vari-
ous examinations as far as possible, we organize 6 kinds of
disjoint subsets from the data set given in Table 1, into Set_a,
Set_b, Set_c, Set_d, Set_e, and Set_f (see Table 2).

After removing some US contaminated images tainted at
some marginal area with an extraneous substance, such as
diagnostic marking signs of the radiologist, we reduced the
data sets shown in Table 2 into those refined sets listed in
Table 3, in which Set_a™ corresponds to Set_a, and Set_b to
Set_b*, and so on.

3.1.2. Training Data and Test Data. To implement the training
of our model, we use Set_a” as training data and the other
subsets for each as test data, based on the data sets given in
Table 3; that is, this organization of training and test data
is set to be an extremely small training set for small test
set architecture to demonstrate various examinations and to
deduce the existence of data invariant characteristics of fine
common features captured by our nodule’s boundary based
CNN modeling. To set up the practical training and test data
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FIGURE 2: Selection of images (here we set 50 x 50 pixels in size) aligned on the contour of each thyroid follicular neoplasm’s margin.

TaBLE 2: Configuration of the list of the numbers of our sample
collection of US thyroid nodule images in 6 disjoint subsets.

Set_a Set.b Setc Set.d Sete Set_f Total
Hy Hy

30 60 60 30 30
Hy Hy

0 0 0 13 30

Follicular adenoma 250

Follicular carcinoma 83

TABLE 3: Refined configuration of the list of the numbers of our
sample collection of US thyroid nodule images in 6 disjoint subsets.

Set_a” Set_b™ Set.c” Set.d” Set_e”

Follicular H, Hg

Set_f* Total

230
adenoma 39 30 5 5 20 23
Follicular H, Hg 77
carcinoma 39 0 0 0 12 26

sets based on each boundary of nodule, we select small 2D
box images (here we set 50 x 50 pixels in size) aligned on
the contour of each thyroid follicular neoplasms’ margin (see
Figure 2).

To have this selection of marginal box images for the
training data, following the contour of the nodule’s margin,
we chose somewhat distinctive images judged manually,
while for test data we select box images centered at every
point of pixels on the manually drawn, closed virtual contour
margin line of the thyroid nodule, and afterward we have the
training and test data sets given in Table 4, in which Set_a’
corresponds to Set_a®, and Set_b’ to Set_b*, and so on.

3.2. Differentiation via the Rule of Decision by Majority. From
the nodule information given in Table 3 and the training
and test data organization given in Table 4, we examine the

TABLE 4: The number of selected partial box images along with the
contour of margins of thyroid follicular neoplasms used to organize
training and test data sets.

Follicular  Follicular
adenoma  carcinoma Total
Training_data Set_a’ 625 859 1484
Set_b’ 18170 0 18170
Set_c’ 43669 0 43669
Test data Set_d’ 50061 0 50061
Set_e’ 12537 8939 21476
Set_f" 18740 16648 35388

differentiation, applying a decision by majority to judge the
differentiation for each follicular neoplasm by those subsam-
pled data sets taken from each own boundary region. For
asimple representation of our CNN based statistical inference
applying the decision by majority, let us assume that there
exist 500 selected subsampled images given from the bound-
ary of a nodule so that our trained CNN model determines
each selected subsampled image to be carcinoma in 255
counts and adenoma in 245 counts, and then we determine
that the nodule is carcinoma, owing to the fact that the counts
to be carcinoma exceed those for adenoma (see Figure 3).

3.2.1. The Structure of Convolutional Neural Network as a CNN
Model. We apply an AlexNet type of CNN structure [28] to
train data sets, which comprises 5 convolutional layers and
2 pooling layers, the details of which are described in Table 5
and Figure 4. (In Table 5, characters m and n represent the size
of the convolution kernel for each input channel and the
number of total kernels applied to each layer, resp.)

3.3. Overview. In view of the setup, the data set is organized
from an assumption that every margin of thyroid follicular
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TABLE 5: Training structure of the convolutional neural net (5-conv,
2-pool, 2-fully-conn structure).

Layer (mxm)xn Activation

Conv. (3x3)x16 ReLu

Conv. (3 x3) x256 ReLu

Max-Pooling kernel size: (2 x 2) Strides: 2
Conv. (3 x3)x512 ReLu

Conv. (3 x3) %2048 ReLu

Conv. (3 x3) x 4096 ReLu

Max-Pooling  kernel size: (2 x 2) Strides: 2
Fully-Conn. 512 ReLu

Fully-Conn. 256 ReLu  (Dropout rate: 50%)
Fully-Conn. Softmax  Output units: 2

Counting boundary sectioned
images to be carcinoma or
adenoma for each nodule

350 -
300 A
250 A
200 A
150 -
100 -
50 A
0

Determining each nodule
to be carcinoma or adenoma

HB: #1
HB: #2
HB: #3
HB: #4
HB: #5
HB: #6
HB: #7
HB: #8
HB: #9

= Adenoma
Carcinoma

FIGURE 3: An illustration to determine differentiation of nodules
by counting CNN model based semijudged selection images taken
from boundary regions for each nodule.

neoplasms may contain certain obvious features that help
differentiate between adenoma and carcinoma and that those
features would well be detected and trained, even with the
small number of images of thyroid nodules [9]. Our standard
of outlining of the contour of each thyroid follicular is drawn
from the official medical specialist from both clinic, Samsung
Medical Centre, and Yonsei University Medical Centre in
Seoul, South Korea, the coauthors of this article.

4. Numerical Results

In this section, we present numerical results related to differ-
entiating thyroid follicular neoplasms between adenoma and
carcinoma and some observable aspects in the feature recog-
nition of CNN in view of a newly developed data normaliza-
tion method by devising a parameterized scaling treatment.
For the numerical results in this section, we train the CNN
model described in Table 5 and Figure 4, with 380 of epochs
of training, 400 of batch size, 0.0001 for learning rate, and 0.5
for dropout rate, with a standard backpropagation algorithm
(17, 28, 29]. We customized the popular TensorFlow (version

1.0.0) library in Python3.x for our main programs of the
experiments. It took several minutes to train each experimen-
tal model where it took a few seconds to infer the results for
test data sets, on two Ndvia Pacal TitanX 12 GB GPUs.

4.1. Training Aspects of the Parameterized Scaling Treatment
in Data Normalization. Here, we give training results of
CNN with regard to the data normalization, applying a
parameterized scaling treatment. For the normalization of
training data in our experiments, we apply a mean-zero
based min-max normalization of training input data, which
transforms all the scores of input data into a common range
[0, 1] and then minus the mean of the input data set. We let
a pair of indices (i, j) represent the pixel point located in
the ith position in the x-axis and the j-th position in the
y-axis in each input image and the corresponding pixel
value is denoted by u;;; then the mean-zero based min-max
normalization v;; for training data is given as

_ uj; = E [uij] - min(i,]-)uij W

maX(i’j) uij - mln(i’j)uij

ij

where E[u;;] denotes the mean value of u;; in the position (7,
.

While the test data is normalized applying a scaling
parameter , it is performed as

_pjta-E [py] - ming  py @)
i max; j p;; — ming; ;) pi;
where E[p;;] denotes the mean value of p;;, the pixel value of
test data is at position (i, j), and g;; denotes the parameterized
normalization of Pij- Here, note that if « = 0 in (2), it is the
min-max normalization [30].

Here we are examining the CNN model for the test data.
We have the parameter « in (2) range [-15, 1.5] for every
0.3 increase. For the results obtained by test data from
Set_b” to Set_f" listed in Table 4, we present the accuracy
of differentiation in percentage (%), and for each test set we
draw the plots given from Figures 5(a)-5(g), where we draw
plots of true benignancy of adenoma for Set_b°, Set_c’, Set_d",
Set_e’, and Set_f" and the false benignancy of carcinoma for
Set_e”, and Set_f°, respectively. In Figure 5, each curve
represents the tendency of differentiation for a corresponding
single follicular nodule; for example, for Set_b°, there are 30
kinds of nodules (refer to Table 3), and then there are 30 lines
of curve in Figure 5(a), and for a given « each plot lying in
the vertical line indicates the percentage (%) to be classified
as benign, one for each nodule, respectively.

Now, summarizing the plots given in Figure 5, we draw
the plots in mean cumulative percentage (%) versus « for true
benignancy of adenoma test data and for false benignancy of
carcinoma data, observing the slopes of plots in the mean
cumulative percentage (%) proportional to «, which repre-
sents the tendency of differentiation to be classified as benign
adenoma. We provide the plots to compare those slopes in
Figure 6.

Seeing the plots in Figure 6, the slopes of mean cumula-
tive percentage (%) versus «, where o > —0.5, have a positive
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TABLE 6: Result of the CNN inference conducted on test data Set_f”, applying « = 0.15.
Predicted_Adenoma Predicted_Carcinoma
True_Adenoma False_Carcinoma Accuracy (True negative rate)
17 6 73.91%
False_Adenoma True_Carcinoma Accuracy (True positive rate)
7 19 73.07%
Set_f*

False omission rate

F, 5-score: 0.7540

Positive predictive value F,-score: 0.7451

0.29 0.76 F,-score: 0.7364
G-mean: 0.7452
16 256 512 2048
3 3 3 4096
Vi i IR0y 3
Kernel i
!"\‘.m--i S\ 3
Q‘!ﬁ’ 25 "
Zaomali! ) m— —— —}-o
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Dropout

512

FIGURE 4: CNN training architecture with 5-conv, 2-pool, and 2-fully-conn. network corresponding to the structure in Table 5.

sign for all the plots, and these behaviors of slopes could
promote the increase of differentiation accuracy in total for
true benign data, but the behavior could also cause a decrease
for carcinoma data, which gives us a sense of fine-tuning
through the control of a.

4.2. Fine-Tuning Effect of the Parameterized Data Normaliza-
tion. Along with the fact that the control of a could give
an increase in total differentiation accuracy, the result of a
demonstration of differentiation for a set of test data reveals
the possibility that a nice choice of a gives us a highly
recommendable CNN differentiation model as a model of
fine-tuning. Here, a result of the demonstration conducted
on test data Set_f" is given in Table 6, for which we choose
« =0.15.

In Figure 7, we give the plots of differentiation in percent-
age (%) versus « for false benignancy and true benignancy for
test data Set_f". Seeing Figure 7(a), we know that around
a = 0.15 the plots lying in vertical line with values less than
50% counts about 19, and, seeing Figure 7(b), we know that
around & = 0.15 the plots lying in vertical line with values
greater than 50% count 17 approximately.

Furthermore, to represent the efficiency of our training
model and the comparison result given from different values
of «, in Figure 8, we give the receiver operating characteristic
(ROC) [31] curve drawn by the differentiation result from the
test on the test data set Set_f" by scaling « in the interval

of [-0.6, 0.6], where the corresponding area under the curve
(AUC) is 0.8088.

On the other hand, seeing that test data sets Set_b°, Set_c’,
and Set_d’ are derived from the data set H, and Set_e” and
Set_f* from Hy, respectively, we apply a different normalizing
parameter « in (2) for the sets from H, and for those from
HB such that « = 1.5 for Hy and « = 0.15 for Hy. The
differentiation results for both H, and Hy, are given in Table 7.

5. Discussion

In our experiments of CNN inference modeling to differenti-
ate thyroid follicular neoplasms between follicular adenoma
and carcinoma of gray-scale 8-bit bitmap US thyroid images,
we implemented the mean-zero based min-max normaliza-
tion method defined in (1) for input data to be trained by
CNN architecture and rescaled it with a parameter denoted as
« in (2) for test data. In our numerical simulation of training
of model, referring to Table 3, the readers may see that our
acquisition of the training data and test data sets is taken from
two different clinic centres, the total amounts of samples for
the use of training data set are very limited, the whole samples
of follicular carcinoma images from clinic H, are used to
be training data, and the sample images from Hy are used
to be test data set, so that we naturally determined the fixed
partitioning scheme. As a result of the experiments of scaling
the normalization parameter o chosen in a real number
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FIGURE 5: Plots of differentiation in percentage (%) versus « for false benignancy of carcinoma and true benignancy of adenoma for each of
the test data sets.
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FIGURE 6: Plots of true benignancy of adenoma for Set_b°, Set_c,
Set_d’, Set_e’, and Set_f" and false benignancy of carcinoma for
Set_e” and Set_f", in cumulative percentage (%) for & ranging [-1.5,
1.5] defined in (2).

interval [-1.5, 1.5], we found out that the slopes of mean
cumulative percentage (%) versus «, where « > —0.5, have a
positive sign for all the plots, and these behaviors of slopes
increased the differentiation accuracy in total for true ade-
noma data but promoted a decrease for carcinoma data,
providing a sense of fine-tuning through the control of «.
Although the training data is chosen among the subsets of H ,
by adjusting the normalizing parameter « chosen differently
from each other between the two hospital data sets, H,
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TABLE 7: Result of the CNN inference conducted on the test data groups, both H, and H,.
Predicted_Adenoma Predicted_Carcinoma Overall accuracy
True_Adenoma False_Carcinoma True negative rate
100% 0.00% 1.0
False_Adenoma True_Carcinoma True positive rate
Ha F, 5-score: - 100%
False omission rate Positive predictive value F,-score: -
- - F,-score: -
G-mean: -
True_Adenoma False_Carcinoma True negative rate
69.76% 30.24% 0.6976
False_Adenoma True_Carcinoma True positive rate
H 28.95% 71.05% 0.7105
B F, -score: 0.6818 70.37%
False omission rate Positive predictive value F,-score: 0.6923
0.2683 0.6749 F,-score: 0.7031
G-mean: 0.6925
True_Adenoma False_Carcinoma True negative rate
93.19% 6.81% 0.9319
False_Adenoma True_Carcinoma True positive rate
Total 28.95% 71.05% 0.7105 89.520%
F, s-score: 0.6818 <70
False omission rate Positive predictive value F,-score: 0.6923
0.0582 0.6750 F,-score: 0.7031
G-mean: 0.6925
100  True and false benignancy in cumulative percentage (%) and Hy, respectively, we could differentiate the images in
Hjp, of which the test result of differentiation over 89% in
3 overall accuracy supports the availability of our inference
= g model. Furthermore, from the test results shown in Figure 6,
g g we see that there is no pairing of data sets, of which plots
52 have to cross over themselves where o > 0, of which the
S8 original hospital databases are different from each other, and
0 . . . . . these plot behaviors in the results might somewhat weakly
-15 -1 -0.5 0 0.5 1 1.5 suggest that the two different hospital databases have their

own distinctive imagery characteristics for each of them so
that it makes sense to apply a different normalizing parameter
« for each hospital data set, respectively. For this, one may
suggest that the configuration of the pixel intensities which
differs along both data sets, HA and HB, affects that. (Refer
to the fact that, for HA, the mean of the pixel intensity of
the grey-scale 8-bit bitmap US images is 63.819, the mean
value of the max intensity is 176.1475, and the mean of the
minimum intensity is 71230, whereas, for HB, the mean of the
pixel intensity is 82.07, the mean value of the max intensity is
192.1154, and the mean of the minimum intensity is 6.6827, as
denoted before.)

On the other hand, with regard to the data set, our
shortage of data sets seldom makes someone imagine a
good performance to infer disease diagnostic determination,
comparing to that of such a relatively plentiful of data sets of
MNIST and ILSVRC [32]. Hence, to tackle our small data set
problem, we mainly seek to develop inference methodologies
and overcome the extremely harsh task of our inference
model with small data set via seeking a kind of ensemble-like
neural-network method. Moreover, for the performance of
our proposed model, basically like other machine learning
based technology, we may not be sure about the robust
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FIGURE 7: Plots of differentiation in percentage (%) versus o for false benignancy of carcinoma and true benignancy of adenoma for test data
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FIGURE 8: ROC curves given by differentiation test on Set_f", for «
ranging [—0.6, 0.6] defined in (2).

functioning of our methodology yet, since like most of other
vision based deep-learning architectures severely it suffers
from the types of organizations or the amount of sample
data sets to be applied to do specific inference, so that the
proposed methodology may or may not suffer from those
kinds of problems. In our research article, we have not
suggested any mathematical proof of theoretical issues related
to our presented numerical results rather than given experi-
mental conviction for the possibility of the utility. From the
experiments in [5], also we see that although the amounts of
samples are so rare, they conclude some reasonable research-
ing insights into the diagnostic differentiation for follicular
neoplasm lesion of thyroid. Now we hope that we open the
chances of the successful application similar to our proposed
method to the readers with much plentiful sets of sample data.

For the sample data acquisition, both health centres, here
Hospital A (= H,) and Hospital B (= Hy), referring to Table 1,
have different protocol for the acquisition of the ultrasound
images, based on the apparatus to take the ultrasound image
pictures; that is, the machines to take the ultrasound images
and the related mechanical conditions are different. In this
case, we have the difficulty to adjust the data sets to have the
same depth of intensity of ultrasound wave and resolutions
for both clinics’ data sets, and we thought that the differences
in those parameters influence the inference model results,
and it is expressed in the classification results where the classi-
fication results for data sets included either side of clinic have
the similar up-and-down slopes of differentiation, that is,
for data from same clinic have the tendency of near distance
of plots themselves relatively compared to the other clinic’s
data sets, referring to Figure 6.

For the sample data organization, referring to both clinics’
data sets, the critical point to determine how many data sets to
be set as training data and test data is largely dependent on the
number of follicular carcinoma images, since, to balance the
number of sample data for training the model, we set prior
data from either clinic (here H,, referring to Table 3) having
much ample number of samples compared to the other clinic
(here Hy, referring to Table 3) to be used as training data,
without loss of generality. And the total amount of follicular
carcinoma sample images are be used in developing our
inference model inferior to that of follicular adenoma images
so that we determine having training data set from the sample
images of H, which owns further sample data compared to
Hg, especially for follicular carcinoma images. Actually,
considering the data confusion in training the inference
model occurred from the mixed data given from different
environment of protocol in data acquisition from the two
different clinic centres and, to avoid that ill-conditioned data
organization and the following training results, we mainly
separated the training data set given from either clinic and the
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test data set from the other clinic. And lastly, we determined
organizing the training data and the test data as given in
Table 3.

Now, here we give an overall answer to handle our
choice of hyperparameters for our proposed neural network.
Referring to Figures 5 and 6, we found out that the tendency
of the slopes in those plots in Figures 5 and 6 gives us
that as the proposed normalization parameter &« moves the
differentiation results change, and those kinds of differentia-
tion trends are revealed to be coherent to each model with
some variances of the neural network’s parameters such as
batch size and learning rate. Consequently, our proposed
values of the neural network’s parameters are one of the
good choices which enabled us to get the numerical results
which are persuasive to readers to convince them of the
effectiveness of our proposed methodology to infer the
differentiation depending on our organization of data sets. In
our experiments, we experienced some overfittings or under-
fittings for the validation sets for training epochs over just
several hundreds of epochs, and the similar phenomenon
often happened for some variances of learning rates, and
so on. For dropout rate, (the recently introduced technique,
called “dropout” [29], consists of setting to zero the output of
each hidden neuron with probability 0.5. The neurons which
are “dropped out” in this way do not contribute to the forward
pass and do not participate in backpropagation), we refer to
the dropout rate given in [32] which deals with the AlexNet.
For the structure of CNN, in our experiments, there is no
prominent dominance for many heavy layers of CNN rather
than popular AlexNet type of CNN architecture. For the 2D
box image of size 50 x50 pixels, as we see the illustration given
in Figure 9, the raw contour ROI of US images taken from
both clinic centres has the resolution size about 200~600 + &
pixels, and we thought that the resampling 2D box image,
which is represented as the red square in Figure 9, (to be
inferred for the full US image’s differentiation based on our
ensemble-like voting system of CNN) should be not too small
or too large to have the inference model not to lose the critical
morphological vision based features which may reside in the
region of boundary of thyroid lesion. And of course, even our
choice of the 2D-boxing size is not absolutely given someone
to ensure it is the best choice, since the size may be the one
of good choice to infer the model. Unfortunately, like most
of other deep-learning models, especially for vision based
models like CNN, there are still behaviors of each models
distinctive inference performances, and someone may say it
is just black-box to analyze it in the sense of mathematical
inspirations.

On the other hand, out of loss of generality, the choice
of our neural network’s parameters does not guarantee the
absolute superiority for our applied AlexNet types of neural
network; it is only dependent on one’s own data sets and
the experimental experiences and, here in our proposed
method and the corresponding numerical results, only made
to give the readers sorts of insight about the possibility or the
effectiveness of our proposed inference model.

For the experimental experiences, we have ever applied
various kinds of examinations with SVM, K-NN, simple
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FIGURE 9: An example of a raw contour ROI of US thyroid image
with resolution size ranging 200~600 + & pixels. The red square
represents an example of 2D box image we have selected to set up
the data sets for the use in developing our deep-learning inference
model, which is described in Section 3.1.

ANN, and so on. Unfortunately, with these activities of exper-
iments, we did not find any acknowledgeable results of infer-
ence models, yet. Finally, as we apply our proposed method-
ology, we observed breakthrough results, although still one
may be doubtful of the real big data based performance of it.
These results of our proposed method to infer the diagnoses
to determine the alternative choice of classification problem,
showing a possible superior task ability of ensemble-like
methods to normal classical inference methodologies gener-
ally known.

5.1. Comparison with the Benchmark Thyroid
Follicular Neoplasm US Images

5.11 Preliminary Experiments by SVM, KNN, ANN, and
CNN. As mentioned above, we have applied various kinds of
basic examinations with SVM, KNN, Normal Bayes Classi-
fier, and Feed-Forward-Perceptron network (ANN) to have
similar types of differentiation of thyroid follicular neoplasm
US images, based on the sense of full size image and not
resampling from the contour region of nodules. The prelimi-
nary results of SVM, KNN, Normal Bayes Classifier, and
ANN which applies with some well-known feature selection such
as Mean, Skewness, Energy, Entropy, Compactness, Solid-
ity, GLCM_contrast, GLCM_homogeneity, GLCM _energy,
GLCM _entrophy, and Gabor_O2S1 are given in Table 8 [33,
34]. The readers may well compare the results to those in
Table 7.

And even from the preliminary experiments taken with
the full US image based (not resampled along contour) CNN
inference, we have found the total accuracy ~75%, but there
are still many follicular carcinoma images that failed to be
differentiated.

5.1.2. Comparison with USFNA Based Differentiation for a
Follicular Thyroid Neoplasm US Images. For the comparison
performance of our differentiation method for US images
follicular thyroid neoplasm, we have found the USFNA
(ultrasound-guided fine-needle aspiration) and the experi-
mental results in [5] where the FNA performance ranges 51~
67% in accuracy, which gives inferior results compared to our
proposed methodology, as given in Table 9.
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TABLE 8: Result of various typical inference model.

1

Predicted_Adenoma Predicted_Carcinoma Overall Accuracy
True_Adenoma False_Carcinoma True negative rate
18.30% 81.70% 0.183
False_Adenoma True_Carcinoma True positive rate
22.92% 77.08% 0.7708
SVM F, 5-score: 0.4148 40.96%
False omission rate Positive predictive value F,-score: 0.5017
0.4400 0.3718 F,-score: 0.6346
G-mean: 0.5354
True_Adenoma False_Carcinoma True negative rate
91.50% 8.50% 0.9150
False_Adenoma True_Carcinoma True positive rate
KNN 81.25% 18.75% 0.1875
F, 5-score: 0.4091 63.45%
False omission rate Positive predictive value F,-score: 0.2835
0.3578 0.5806 F,-score: 0.2169
G-mean: 0.3299
True_Adenoma False_Carcinoma True negative rate
79.08% 20.92% 0.7908
False_Adenoma True_Carcinoma True positive rate
ANN 43.75% 56.25% 0.5625
F, s-score: 0.6136 70.28%
False omission rate Positive predictive value F,-score: 0.5934
0.2577 0.6279 F,-score: 0.5745
G-mean: 0.5943
True_Adenoma False_Carcinoma True negative rate
38.56% 61.44% 0.3856
False_Adenoma True_Carcinoma True positive rate
Normal Bayes 13.54% 86.46% 0.8646
57.03%

Classifier

False omission rate
0.1805

Positive predictive value
0.4689

F, 5-score: 0.5162
F,-score: 0.6081
F,-score: 0.7398
G-mean: 0.6367

TaBLE 9: Comparison result of diagnostic performance with other
USFNA method [5] for follicular thyroid neoplasm.

(%) FS (Frozen Section) USFNA Our proposed
Sensitivity 80.0 (24/30) 84.2 (48/57) 71.05 (27/38)
Specificity 963 (77/80) 522 (36/69)  93.19 (178/191)
PPV 88.9 (24/27) 59.3 (48/81)  67.49 (27/40)
NPV 92.8 (77/83) 80.0 (36/45)  89.89 (178/189)
Accuracy 91.8 (101/110) 66.7 (84/126)  89.52 (205/229)

On the other hand, we found our general types of
benchmark computer-aided systems listed in [35] where the
author collected sample images from the open database
proposed by Pedraza et. al. [36]. They applied a pretrained
model transferring model which is initialized from the pre-
trained GoogLeNet network achieving excellent classification
performance attaining 98.29% classification accuracy, 99.10%
sensitivity, and 93.90% specificity. Although the types of

US thyroid images of various computer-aided differentiation
systems found in [21-23, 35] present excellent performances,
their models are mostly treated with papillary thyroid carci-
noma. And there are lots of reports that even USFNA is widely
used in discriminating between benign and malignancy in
various lesions of the thyroid showing excellent performances
(sensitivity 65%-98% and specificity 72%-100%) for papillary
thyroid carcinoma [5].

6. Conclusion

Although the amount of data sets relatively is not so plentiful
compared to some well-known big data based machine-
learning models, by the concurrent research works in the
reference’s authors where the follicular thyroid neoplasm US
images are still not well studied for deep-learning based infer-
ence technology, we conclude that our proposed methods of
CNN with data sets given by image selection subsampling
along with the boundary of thyroid follicular neoplasms may



12

detect some morphological features reflected in the region of
boundary of nodules, which make sense to be supported by
the background knowledge related to the known US image
features indicating the criteria for diagnosing the carcinoma
of thyroid follicular neoplasms in the general sense of
clinical reports, especially concerning the characteristics of
the marginal contour region of thyroid follicular neoplasms.

7. Future Works

Meanwhile, these results also reveal a suggestion that some
imagery features, which could be recognized as scaling «,
exist on the boundary of nodules so that a CNN inference
model recognizes them and learns. These conjectures of the
existence of learnable imagery features adjacent of the bound-
ary of nodules for our CNN model need to be proven by
avariety of fine-tuning techniques, including Standardization
(Z-score normalization), tanh-Estimators, and other data
normalizing techniques [37], as well as adjusting batch train-
ing modes, learning rate, convolution layers, and so on. More-
over, although we fixed the pixel resolution in this article to 50
x 50 for the subsampling image selection near the boundary
of nodules, one may have other flexible choices of subsam-
pling image size to train CNN and compare the efficiencies.
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Due to the small aperture of blood vessel, a considerable disadvantage to current intravascular ultrasound (IVUS) imaging
transducers is that their lateral imaging resolution is much lower than their axial resolution. To solve this problem, a single-element,
50 MHz, 0.6 mm diameter IVUS transducer with a geometric focus at 3 mm was proposed in this paper. The focusing transducer was
based on a geometric-shaped 1-3 piezocomposite. The impedance/phase, pulse echo, acoustic intensity field, and imaging resolution
of the focusing transducer were tested. For comparison, a flat IVUS transducer with the same diameter and 1-3 piezocomposite was
made and tested too. Compared with their results, the fabricated focusing transducer exhibits broad bandwidth (107.21%), high
sensitivity (404 mV), high axial imaging resolution (80 ym), and lateral imaging resolution (100 ym). The experimental results
demonstrated that the high frequency geometric focusing piezocomposite transducer is capable of visualizing high axial and lateral

resolution structure and improving the imaging quality of related interventional ultrasound imaging.

1. Introduction

Intravascular ultrasound (IVUS) allows us to see a coronary
artery from the inside-out, which has evolved to an important
research tool of modern invasive cardiology [1]. In order to
get high resolution image, an IVUS transducer usually has a
high center frequency (20~60 MHz) [2], like 20 MHz IVUS
(Eagle Eye, Volcano Corporation), 40 MHzIVUS (OptiCross,
Boston Scientific), and 60 MHz IVUS (Kodama, ACIST
Medical Systems). A limitation to current IVUS transducer
is that their lateral imaging resolution (200~300 ym) is much
lower than their axial resolution (40~100 um) [3, 4]. This
is mainly caused by its small dimension [5, 6], which is
extremely limited by the blood vessel.

Usually higher frequency transducer can provide higher
lateral resolution, but it will cause a higher attenuation and
decrease penetration capability. For example, to get 100 ym
lateral resolution at 3 mm, the central frequency of a 0.6 mm
diameter IVUS transducer needs to be more than 100 MHz,
so it is not a very efficient method. Another possible method
to a single-element IVUS transducer is synthetic aperture
focusing, which has been shown to be able to improve the

imaging resolution and SNR outside focus area by focus-
ing the received signal from several emissions for rotating
movements [7]. But it requires large sum data processing and
decreases the imaging frame rate. Therefore, it is beneficial to
try focusing transducer to get high lateral resolution IVUS
image. The traditional method is to use acoustic lens, but
fabricating a suitable acoustic lens to focus the ultrasound
on IVUS is particularly challenging, since the IVUS catheter
outer diameter is limited in the range of 3F~9F (1mm~
3mm), and the focusing length should be smaller than the
coronary artery diameter (3~5 mm).

Therefore, self-focusing transducer will be a good choice.
Fresnel Half-Wave-Band sources method was widely used
for self-focusing, but its radius will be larger than 3 mm for
getting better performance with enough loops at 20~60 MHz
[8]. One possible method is to fabricate high frequency
PMN-PT single crystal focusing transducer by a mechanical
dimpling technique. The reported dimpled 30 MHz single
crystal focusing transducer with a diameter of 1.6 mm can
prove 139 ym lateral resolution [9]. Similarly, oblong-shaped
focused IVUS transducers using PZT were also able to
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TABLE 1: The design parameters of 1-3 piezocomposite.
Kerf Pillar Composite Volume
Frequenc
q Y width width thickness fraction
50 MHz 12 ym 18 ym 33 um 36%

improve the lateral resolution [10]. Angled-focused single-
element transducer was another choice to improve IVUS
lateral imaging resolution. As reported, the lateral resolution
was improved from 270 ym to 120 ym with the angled-
focused 45 MHz PMN-PT single-element transducer [11]. But
the single crystal or PZT are fragile and easy to crack in
the process, which would affect the transducer performance
and yield, while 1-3 piezocomposite will be an alternative
choice for the active material, which can have high fre-
quency, low acoustic impedance, and wide bandwidth [12,
13]. It has been reported for IVUS imaging and other high
frequency endoscopic ultrasound imaging research [14-16].
There are many advantages to use a 1-3 piezocomposite as
the IVUS transducer active substrate. First of all, the acoustic
impedance of a 1-3 piezocomposite is significantly lower than
common pure bulk ceramic, which can effectively decrease
the acoustic mismatch between transducer and tissue and
avoid the need for more matching layers [17, 18]. Secondly,
the electromechanical coupling coeflicient of 1-3 composite
is much higher than common piezoelectric ceramic, which
is helpful to improve the imaging sensitivity. Furthermore,
1-3 piezocomposite consists of a large percentage epoxy,
which made it easy to be geometrically shaped. Therefore, 1-3
piezocomposite was suitable for making geometric focusing
IVUS transducer. Even in an early patent, the related proposal
has been described [14]. Therefore, in this paper we proposed
a geometric focusing 50 MHz piezocomposite transducer
for intravascular ultrasound imaging. For comparing, a flat
IVUS transducer with the same 1-3 piezocomposite was also
fabricated and tested following the same experiments; the
results are described below in more detail.

2. Design and Fabrication

The focal length of the transducer was designed to 3 mm,
which is close to the natural focus F corresponding to the near
field range of flat IVUS transducer [5]:

D?

F= @
where the diameter D of the transducer is 0.6 mm, the
wavelength A is about 30 ym in our situation, and then the
natural focal length of flat IVUS transducer is about 3 mm.

The first step in the fabrication procedure was to make a
high frequency 1-3 piezocomposite. Considering our labora-
tory experimental facilities, the design parameters of the 1-3
composite were listed in Table 1.

A two-dice and filling process was applied to fabricate
this 1-3 composite. Firstly, a grid pattern was diced into a
ceramic PZT-5H with 500 ym thickness using a 12 ym dicing
saw. The depth of cuts is about 120 ym, and the pitch is 60 ym.
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FIGURE 1: The measured impedance/phase of fabricated 1-3 piezo-
composite.

The cuts were then filled with epoxy (Epo-Tek 301-2, Epoxy
Technologies, Billerica, MA). After curing, the second set of
cuts was made through the center of the PZT-5H pillars to
create a composite pattern with 18 ym pillars and 12 ym kerfs
as designed. The composite was filled and cured with Epo-
Tek 301-2 again and then lapped to 33 ym thick. After that, a
200 A chrome/gold layer as the electrode was sputtered.

The electrical impedance of fabricated 1-3 piezocomposite
was measured with an impedance analyzer E4991A (1MHz~
3 GHz, Agilent Technologies, USA), just as Figure 1 shows.
The measured center frequency is 52.76 MHz.

Its electromechanical coupling coefficient K, can be
calculated as [15]

K, =

xéx an(E fp_fs) 2
fpt 5 % 5o ) ()

N

where f, is the parallel resonant frequency at which the
resistance reaches the maximum and f; is the resonant
frequency at which the conductance reaches the minimum.
For our sample, f; is 44.05MHz and f, is 60.36 MHz, so
according to (2), K, is about 0.70, which was higher than pure
bulk ceramic (~0.5).

In the shaping process, the composite was firstly heated
at 60°C for 1 hour to make it more flexible and then quickly
mounted on a 3 mm radius PTFE ball with wax. The PTFE
ball was used as the curving jig, which decides the focal
length of the transducer. Conductive silver epoxy E-Solder
3022 was applied to the composite as the backing material in
a PDMS (polydimethylsiloxane) mold. After curing at room
temperature, the sample was heated to remove the PTFE ball.
Then the sample was diced into the size of 0.6 mm X 0.6 mm.
The individual piece was placed in a 1.2 mm diameter needle
housing; the center core and mesh wire of a coaxial wire
were connected to the piezocomposite surface and backing
layer, respectively, with silver conductive. The gap between
the transducer and the stainless steel needle was filled in by an
insulating epoxy. At last, a 9 ym Parylene C layer was coated
as its matching layer. The final fabricated focusing transducer
was shown in Figure 2.
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FIGURE 2: The fabricated focusing IVUS transducer.
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FIGURE 3: Pulse echo response and spectrum of (a) fabricated focusing IVUS transducer and (b) fabricated flat IVUS transducer.

3. Results and Discussion

A DPR500 (pulse amplitude: 90V, gain: 0dB, filter: 5~
300 MHz, RPF: 200 Hz, JSR Ultrasonics, USA) was used as
the pulser-receiver to measure the center frequency, —6 dB
bandwidth, and pulse echo amplitude of the fabricated
focusing transducer and flat transducer. The pulse echo
response was measured by recording the reflection from a
quart polyethylene plastics flat placed at 3mm in front of
the transducer. The measured center frequency is 51.78 MHz,
the —6 dB bandwidth is 107.21%, and the pulse half width
is 1737 ns just as Figure 3(a) shows. And the transducer
pulse echo amplitude was measured as 404 mV with 50 Q
coupling impedance setting. For comparison, a flat IVUS
transducer (unfocused) with the same diameter 0.6 mm was
fabricated. This flat transducer was composed of the same
1-3 piezocomposite material, a Parylene C matching layer,
and E-Solder 3022 backing layer. According to its pulse
echo waveform and corresponding frequency spectrum as
shown in Figure 3(b), its measured center frequency, -6 dB
bandwidth, pulse half width, and amplitude were 53.77 MHz,
64.77%, 29.86 ns, and 156 mV, respectively.

The acoustic distribution was measured by a 3D scanning
system UMS III (scan step resolution 0.001 mm, Precision
Acoustics Ltd., Dorchester, UK) with a specially calibrated
HGL-0085 hydrophone (20~60 MHz), as shown in Figure 4.

The hydrophone measurement step size was 30 ym. The
acoustic intensity distribution of this fabricated transducer
along z-axis was measured as shown in Figure 5. For avoiding
the collision between the tested hydrophone and transducer,

the recorded data was beginning at 0.5mm away from
the transducer. The measured focal length along the axial
direction is 2.98 mm, which is very close to the designed focal
length 3 mm. While the intensity of a flat IVUS transducer
oscillates sharply in the near field range, then because of the
attenuation, it will decrease linearly with the distance.

Because the lateral resolution is determined by the beam
width perpendicular to the direction of wave propagation in
an imaging plane, the transducer’s acoustic intensity distribu-
tions in the focal plane (X-Y plane) were scanned with UMS
III. According to the focal plane result in Figure 6(a), the
diameter of the focal point of the fabricated focusing IVUS
transducer (at —6 dB) is about 100 ym, which is one-third of
the flat IVUS transducer’s 300 ym, just as Figure 6(b) shows.
These results indicate that the focusing IVUS transducer can
achieve a higher lateral imaging resolution than usual flat
ones.

The imaging resolution was tested by our IVUS system
[16]. The transducer was fixed on the top of a catheter, and
the catheter is driven by a motor, which is in the IVUS
catheter interface module (CIM), to do a rotary scan. The
block diagram of CIM is shown in Figure 7(b). A single-
element rotary scanning catheter is utilized to fix and rotate
the transducer, which can spin at a speed of 1800 RPM. In
the CIM, a contactless coupler with a flatten transfer curve
from 10 to 110 MHz with an attenuation better than —1dB
is designed and manufactured to transfer high frequency
signals between rotary and stationary side. For each cycle
the catheter have turned, a frame composed of 512 scan lines
would be captured. 12 bits analog to digital converter rate with
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natural focus plane (X-Y plane).

a sampling rate of 220 MSPS ensure the echo information
in enough frequency range could be recorded and provide a
25 fps imaging speed. More details of our IVUS system can
be found in our published [16].

The imaging targets were some resolution test jigs
with fixed interval tungsten wires, including 50 ym, 60 ym,
70 pm, 80 ym, 90 ym, 100 ym, 200 ym, 300 ym, and 400 ym,
just as Figure 8 shows. The diameter of tungsten wires is
10 ym. When testing the axial resolution, the transducer was
adjusted to be perpendicular to the wire phantom, while

for lateral resolution testing it will be parallel to the wire
phantom, just as Figure 7(a) shows. For getting the best
lateral resolution, the distance between the phantom wires
and transducer was set to be 3 mm just as the focal length.
Figure 9 showed the lateral resolution testing results of
the fabricated focusing and flat IVUS transducer, respectively.
The bright arcs in the images represent the tungsten wires,
while the center black hole and rings are caused by the
transducer rotating. When using the 100 ym interval tungsten
wire phantom, the image of three tungsten wires is only a
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blurred curve in Figure 9(b) detected by the flat transducer.
It is impossible to distinguish each line in this image. Until
the 300 ym interval tungsten wire phantom was used, the
lines can be clearly separated in detected image in Figure 9(c).
Therefore, the lateral resolution of flat IVUS transducer is
tested as 300 ym.

In the same way, the lateral resolution of fabricated focus-
ing IVUS transducer is tested as 100 um, just as Figure 9(a)

showed, which is three times of the flat IVUS transducer.
That is because the lateral beam width is greatly reduced by
adjusting the focal performance of focused transducer [19].
Therefore, it is beneficial to try focused transducer to get high
lateral resolution IVUS image.

Similarly, Figures 10(a) and 10(b) showed the axial resolu-
tion testing images of the focusing and flat IVUS transducer,
respectively. According to the results, the axial resolution of
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focusing IVUS transducer is 80 ym, and the flat IVUS trans-
ducer is 80 ym too. That is because the axial imaging resolu-
tion is mainly decided by center frequency of the transducer.

Furthermore, a hexagon hole phantom with 3 mm side
length was used to test the imaging performance. The phan-
tom was made by mixing 9 um silicon carbide (2% by weight)
and 3 ym aluminum oxide (2% by weight) with PDMS. When
testing, the hexagon hole was filled with degas water, and
the catheter distal with transducer was immersed into the

hole. Figure 11 shows the phantom images detected by the
fabricated focusing and flat IVUS transducer, respectively.
Two images were both displayed in 12dB dynamic range.
Because of the high resolution and sensitivity, it is obvious
that the image obtained by the focusing IVUS transducer was
more clear and in a better shape. Particularly, the average
contrast with respect to the locations of boundary and
background in the images obtained by focusing and flat IVUS
transducer were —13.1dB and —16.2 dB, respectively.



BioMed Research International

0 2.0

Y (mm)

8.0 10.0

10.0 10.0

8.0

8.0

6.0

6.0

4.0

4.0

2.0 2.0

X (mm)
(a)

Y (mm)

0
10.0

8.0

6.0

4.0

2.0

X (mm)
(b)

FIGURE 10: The axial resolution test images of 80 ym interval tungsten wire phantoms with (a) focusing IVUS transducer and (b) flat IVUS

transducer.
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At last, the main testing results were summarized in
Table 2.
4. Conclusion
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FIGURE 11: The image of hexagon phantom detected by (a) focusing IVUS transducer and (b) flat IVUS transducer.

In this study, a micro high frequency IVUS transducer
with spherical focusing was successfully produced using

PZT/epoxy 1-3 composite. The prototyped focusing IVUS
transducer has a small size (0.6 x 0.6 mm), short focal length
(3mm), and high lateral imaging resolution (100 ym). The
image obtained by our homemade IVUS system with the
fabricated focusing transducer had a high signal to noise
ratio and image quality. Based on these results, this micro
high frequency focusing transducer has the potential for



TABLE 2: The comparison of measured focusing and flat IVUS
transducer performance.

Properties Flat IVUS Focusing IVUS
transducer transducer
Center frequency 53.77 MHz 51.78 MHz
Aperture 0.6 mm 0.6 mm
Bandwidth 64.77% 107.21%
Echo peak 156 mV 404 mV
Axial resolution 80 ym 80 ym
Lateral resolution 300 ym 100 ym

intravascular ultrasound imaging and various high frequency
endoscopic ultrasound imaging.
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