
International Journal of Biomedical Imaging

Parallel Computation in
Medical Imaging Applications
Guest Editors: Yasser M. Kadah, Khaled Z. Abd-Elmoniem, and Aly A. Farag

Parallel Computation in Medical Imaging
Applications

International Journal of Biomedical Imaging

Parallel Computation in Medical Imaging
Applications

Guest Editors: Yasser M. Kadah, Khaled Z. Abd-Elmoniem,
and Aly A. Farag

Copyright © 2011 Hindawi Publishing Corporation. All rights reserved.

This is a special issue published in “International Journal of Biomedical Imaging.” All articles are open access articles distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

Editorial Board

Haim Azhari, Israel
K. Ty Bae, USA
Richard H. Bayford, UK
F. J. Beekman, The Netherlands
J. C. Chen, Taiwan
Anne Clough, USA
Carl Crawford, USA
Daniel Day, Australia
Eric Hoffman, USA
Jiang Hsieh, USA
M. Jiang, China
Marc Kachelrieß, Germany

Cornelia Laule, Canada
Seung W. Lee, Republic of Korea
A. K. Louis, Germany
Jayanta Mukherjee, India
Vasilis Ntziachristos, Germany
Scott Pohlman, USA
Erik L. Ritman, USA
Jay Rubinstein, USA
Peter Santago, USA
Lizhi Sun, USA
Kenji Suzuki, USA
Jie Tian, China

Michael W. Vannier, USA
Yue Wang, USA
Ge Wang, USA
Guo Wei Wei, USA
D. L. Wilson, USA
Sun K. Yoo, Republic of Korea
Habib Zaidi, Switzerland
Yantian Zhang, USA
Jun Zhao, China
Yibin Zheng, USA
Tiange Zhuang, China
Yu Zou, USA

Contents

Parallel Computation in Medical Imaging Applications, Yasser M. Kadah, Khaled Z. Abd-Elmoniem,
and Aly A. Farag
Volume 2011, Article ID 840181, 2 pages

Fast Random Permutation Tests Enable Objective Evaluation of Methods for Single-Subject fMRI
Analysis, Anders Eklund, Mats Andersson, and Hans Knutsson
Volume 2011, Article ID 627947, 15 pages

GPU-Accelerated Finite Element Method for Modelling Light Transport in Diffuse Optical Tomography,
Martin Schweiger
Volume 2011, Article ID 403892, 11 pages

Numerical Solution of Diffusion Models in Biomedical Imaging on Multicore Processors, Luisa D’Amore,
Daniela Casaburi, Livia Marcellino, and Almerico Murli
Volume 2011, Article ID 680765, 16 pages

True 4D Image Denoising on the GPU, Anders Eklund, Mats Andersson, and Hans Knutsson
Volume 2011, Article ID 952819, 16 pages

Patient Specific Dosimetry Phantoms Using Multichannel LDDMM of the Whole Body, Daniel J. Tward,
Can Ceritoglu, Anthony Kolasny, Gregory M. Sturgeon, W. Paul Segars, Michael I. Miller,
and J. Tilak Ratnanather
Volume 2011, Article ID 481064, 9 pages

CUDA-Accelerated Geodesic Ray-Tracing for Fiber Tracking, Evert van Aart, Neda Sepasian, Andrei Jalba,
and Anna Vilanova
Volume 2011, Article ID 698908, 12 pages

High-Performance 3D Compressive Sensing MRI Reconstruction Using Many-Core Architectures,
Daehyun Kim, Joshua Trzasko, Mikhail Smelyanskiy, Clifton Haider, Pradeep Dubey,
and Armando Manduca
Volume 2011, Article ID 473128, 11 pages

Mapping Iterative Medical Imaging Algorithm on Cell Accelerator, Meilian Xu and
Parimala Thulasiraman
Volume 2011, Article ID 843924, 11 pages

On the Usage of GPUs for Efficient Motion Estimation in Medical Image Sequences,
Jeyarajan Thiyagalingam, Daniel Goodman, Julia A. Schnabel, Anne Trefethen, and Vicente Grau
Volume 2011, Article ID 137604, 15 pages

Efficient Probabilistic and Geometric Anatomical Mapping Using Particle Mesh Approximation on
GPUs, Linh Ha, Marcel Prastawa, Guido Gerig, John H. Gilmore, Cláudio T. Silva, and Sarang Joshi
Volume 2011, Article ID 572187, 16 pages

Heterogeneous Computing for Vertebra Detection and Segmentation in X-Ray Images, Fabian Lecron,
Sidi Ahmed Mahmoudi, Mohammed Benjelloun, Saı̈d Mahmoudi, and Pierre Manneback
Volume 2011, Article ID 640208, 12 pages

Hindawi Publishing Corporation
International Journal of Biomedical Imaging
Volume 2011, Article ID 840181, 2 pages
doi:10.1155/2011/840181

Editorial

Parallel Computation in Medical Imaging Applications

Yasser M. Kadah,1 Khaled Z. Abd-Elmoniem,2 and Aly A. Farag3

1 Department of Biomedical Engineering, Cairo University, Giza 12613, Egypt
2 Biomedical and Metabolic Imaging Branch, NIDDK, National Institutes of Health, Bethesda,
MD 20892-2560, USA

3 Department of Electrical and Computer Engineering, University of Louisville, Louisville, KY 40292, USA

Correspondence should be addressed to Yasser M. Kadah, ymk@k-space.org

Received 21 November 2011; Accepted 23 November 2011

Copyright © 2011 Yasser M. Kadah et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

There is currently a rapidly growing interest in parallel
computation application in various medical imaging and
image processing fields. This trend is expected to continue
growing as more sophisticated and challenging medical
imaging, image processing, and high-order data visualization
problems are being addressed. The ongoing cost drop in
computational tools and their wide accessibility play a center
role as well. Given its short history, this area is still not a well-
defined scientific discipline. The selected topics and papers
for this special issue shed more light on various aspects of
this expanding field and its potential in accelerating medical
imaging applications.

This special issue contains eleven papers covering various
imaging modalities including MRI, CT, X-ray, US, and opti-
cal tomography. The papers demonstrated the potential of
parallel computation in medical imaging and visualization in
a wide range of applications including image reconstruction,
image denoising, motion estimation, deformable registra-
tion, diffeomorphic mapping, and modeling.

In the paper entitled “CUDA-accelerated geodesic ray-
tracing for fiber tracking,” E. van Aart et al. present an acceler-
ated algorithm for brain fiber tracking. Noninvasive diffusion
weighted imaging followed by reconstructing the brain fiber
structure provides a unique way to inspect the complex
structures inside the brain in a microscopic level. However,
these processes are computationally expensive. The proposed
algorithm utilizes the parallel structure of a graphics process-
ing unit in combination with the CUDA platform to substan-
tially accelerate the execution time of the fiber tracking by
a factor up to 40 times compared to a multithreaded CPU
implementation.

In the paper entitled “Efficient probabilistic and geo-
metric anatomical mapping using particle mesh approxi-
mation on GPUs,” L. Ha et al. developed a new three-
dimensional deformable registration algorithm for mapping
brain datasets. The problem typically involves significant
amount of computation time and thus became infeasible for
practical purposes. The proposed registration method gen-
erates a mapping between anatomies represented as a multi-
compartment model. The implementation of the algorithm
using particle mesh approximation on graphical processing
units (GPUs) achieves the speed up of three orders of magni-
tudes compared to a CPU reference implementation, making
it possible to use the technique in time-critical applications.

In the paper entitled “Heterogeneous computing for
vertebra detection and segmentation in X-ray images,” F.
Lecron et al. address the low computational efficiency of the
conventional active shape model (ACM) algorithm and
exploit the potential acceleration achieved when ACM is
implemented on a parallel computation architecture. The
paper demonstrates a global speedup ranging from 3 to 22,
in comparison with the CPU implementation.

In the paper entitled “Mapping iterative medical imaging
algorithm on cell accelerator,” M. Xu and P. Thulasiraman
investigate the potential of parallel computation in acceler-
ating the image algebraic reconstruction techniques which
in one application may benefit image reconstruction on
CT machines. The authors efficiently map the optimized
algorithm on the cell broadband engine (BE) for improved
performance over CPU version. The implementation on a
cell BE is shown to be five times faster when compared to the
performance on Sun Fire x4600, a shared memory machine.

2 International Journal of Biomedical Imaging

In the paper entitled “GPU-accelerated finite element
method for modelling light transport in diffuse optical tomogra-
phy,” M. Schweiger introduces a GPU-accelerated finite ele-
ment solver for the computation of light transport in scatter-
ing media. Solutions are presented for both time-domain and
frequency-domain problems. A comparison with a CPU-
based implementation shows significant performance gains
of the graphics-accelerated solution, with improvements of
approximately a factor of 10 and 20 for double- and single-
precision computations, respectively.

In the area of MRI reconstruction, the paper entitled
“High-performance 3D compressive sensing MRI reconstruc-
tion using many-core architectures,” by D. Kim et al., inves-
tigates how different throughput-oriented architectures can
benefit compressed sensing (CS) MRI reconstruction algo-
rithm and what levels of acceleration are feasible on different
modern platforms. The authors demonstrate that a CUDA-
based code running on a GPU can reconstruct a 256× 160×
80 volume from an 8-channel acquisition in as fast as 12
seconds, which is a significant improvement over the state of
the art. This achievement may potentially bring CS methods
even closer to clinical viability.

In the paper entitled “True 4D image denoising on the
GPU,” A. Eklund et al. show the implementation of a four-
dimensional denoising algorithm on a GPU. The algorithm
was applied to a 4D CT heart dataset of the resolution 512 ×
512 × 445 × 20. The result is that the GPU can complete
the denoising in as fast as 8 minutes. On the contrary, the
CPU implementation requires about 50 minutes. The short
processing time increases the clinical value of true 4D image
denoising significantly.

In the field of simulation and phantom modeling, the
paper entitled “Patient specific dosimetry phantoms using
multichannel LDDMM of the whole body,” by D. J. Tward
et al., describes an accelerated automated procedure for
creating detailed patient specific pediatric dosimetry phan-
toms from a small set of segmented organs in a child’s
CT scan. The algorithm involves full body mappings from
adult template to pediatric images using multichannel large
deformation diffeomorphic metric mapping with a parallel
implementation. The performance of the algorithm was
validated on a set of 24 male and 18 female pediatric patients.
Running times for the various patients examined ranged
from over 30 hours on a single processor to under 1 hour
on 24 processors in parallel.

In the paper entitled “Numerical solution of diffusion
models in biomedical imaging on multicore processors,” L.
D’Amore et al. address the solution of nonlinear partial
differential equations (PDEs) of diffusion/advection type,
underlying most problems in image analysis. As a case study,
the paper addresses the segmentation of medical structures
and performs a comparative study of numerical algorithms
arising from using the semi-implicit and the fully im-
plicit discretization schemes. Comparison criteria take into
account both the accuracy and the efficiency of the algo-
rithms including convergence, execution time, and parallel
efficiency. This analysis is carried out in a multicore-based
parallel computing environment.

In the paper entitled “On the usage of GPUs for efficient
motion estimation in medical image sequences,” J. Thiya-
galingam et al. investigate the mapping of an enhanced
motion estimation algorithm to novel GPU architectures.
Using a database of three-dimensional ultrasound image
sequences, the authors show that the mapping leads to sub-
stantial performance gains, up to a factor of 60 and can
provide near-real-time performance. The paper also shows
how architectural peculiarities of these devices can be best
exploited in the benefit of algorithms, most specifically for
addressing the challenges related to their access patterns
and different memory configurations. The paper further
evaluates the performance of the algorithm on three different
GPU architectures and performs a comprehensive analysis of
the results.

In the paper entitled “Fast random permutation tests
enable objective evaluation of methods for single subject fMRI
analysis” by A. Eklund et al., it is shown that how the
computational power of cost-efficient GPUs can be used
to speed up random permutation tests. These tests are
commonly involved in fMRI data analysis for identifying
areas in the brain that are active. However, the computational
burden with processing times ranging from hours to days
has made them impractical for routine use in single-subject
fMRI analysis. A test on GPU with 10000 permutations
takes less than a minute, making statistical analysis of
advanced detection methods in fMRI practically feasible. To
exemplify the permutation-based approach, brain activity
maps generated by the general linear model (GLM) and
canonical correlation analysis (CCA) are compared at the
same significance level.

Acknowledgments

We would like to thank the authors for their excellent
contributions to this issue. Many thanks are due to all the
reviewers. Without their constructive comments and timely
responses, this issue could not have come out.

Yasser M. Kadah
Khaled Z. Abd-Elmoniem

Aly A. Farag

Hindawi Publishing Corporation
International Journal of Biomedical Imaging
Volume 2011, Article ID 627947, 15 pages
doi:10.1155/2011/627947

Research Article

Fast Random Permutation Tests Enable Objective Evaluation of
Methods for Single-Subject fMRI Analysis

Anders Eklund,1, 2 Mats Andersson,1, 2 and Hans Knutsson1, 2

1 Division of Medical Informatics, Department of Biomedical Engineering, Linköping University, Linköping, Sweden
2 Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden

Correspondence should be addressed to Anders Eklund, anders.eklund@liu.se

Received 19 April 2011; Accepted 14 July 2011

Academic Editor: Yasser M. Kadah

Copyright © 2011 Anders Eklund et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Parametric statistical methods, such as Z-, t-, and F-values, are traditionally employed in functional magnetic resonance imaging
(fMRI) for identifying areas in the brain that are active with a certain degree of statistical significance. These parametric methods,
however, have two major drawbacks. First, it is assumed that the observed data are Gaussian distributed and independent;
assumptions that generally are not valid for fMRI data. Second, the statistical test distribution can be derived theoretically only
for very simple linear detection statistics. With nonparametric statistical methods, the two limitations described above can be
overcome. The major drawback of non-parametric methods is the computational burden with processing times ranging from
hours to days, which so far have made them impractical for routine use in single-subject fMRI analysis. In this work, it is shown
how the computational power of cost-efficient graphics processing units (GPUs) can be used to speed up random permutation
tests. A test with 10000 permutations takes less than a minute, making statistical analysis of advanced detection methods in fMRI
practically feasible. To exemplify the permutation-based approach, brain activity maps generated by the general linear model
(GLM) and canonical correlation analysis (CCA) are compared at the same significance level.

1. Introduction

Functional magnetic resonance imaging (fMRI) is used
in neuroscience and clinic for investigating brain activity
patterns and for planning brain surgery. Activity is detected
by fitting an activity model to each observed fMRI voxel
time series and then testing whether the null hypothesis
of no activity can be rejected or not based on the model
parameters. Specifically, this test is performed by subjecting
a test statistic calculated from the model parameters to
a threshold. To control the randomness due to noise in
this test procedure, it is desirable to find the statistical
significance associated with the detection threshold, that is,
how likely it is that a voxel is declared active by chance.
When the statistical distribution of the data is known and
when the probability (null)distribution of the test statistic
can be derived, parametric statistics can be used to this
end. This is for example the case for the commonly used
general linear model (GLM), for which the well-known t-
test and F-test can be derived when the input data are

independently Gaussian distributed. However, when the data
distribution is not known or the distribution of the test
statistics cannot be derived, parametric statistical tests can
only yield approximate thresholds or cannot be applied
at all. This is generally the case in fMRI analysis as the
noise in fMRI data is not Gaussian and independent [1–5].
Even though the noise can be made uncorrelated through
a whitening procedure [6, 7], the noise structure must first
be estimated using methods that themselves are susceptible
to random errors. Accurately accounting for this variance in
the test statistic distribution is difficult. Furthermore, more
advanced detection approaches often adaptively utilize the
spatial context of fMRI activation patterns to improve the
detection, or they perform other operations that make the
derivation of the test statistic distribution mathematically
intractable [8–14]. Said otherwise, only for the very simplest
test statistics, such as the GLM, can a parametric test
distribution be derived theoretically. On top of the problems
described above, the multiple testing problem [15] must be
solved because one is generally interested to test whether

2 International Journal of Biomedical Imaging

there is any activity in the entire brain at all and not just
if there is activity in a single voxel. This complicates the
derivation of the test statistic distribution even further. To
conclude, the parametric statistical approach is applicable
only to a very limited set of tests and is subject to many
sources of error.

In contrast to the parametric approach, a nonparametric
approach does not assume the statistical properties of the
input data to be known [16]. Furthermore, there is no need
to derive the theoretical distribution of the test statistic,
and even thresholds corrected for multiple testing are
straightforwardly found. Nonparametric approaches have
been studied extensively in functional neuroimaging [10, 17–
28]. Semiparametric approaches have also been proposed
[29]. In particular, so-called resampling or permutation
methods have been studied, which randomly permute or
reshuffle the original fMRI data to remove any activation
signal but otherwise keep its statistical structure. Thus,
thousands of simulated null data sets without activation
can be generated and analysed to empirically simulate the
null distribution of the test statistic. The major drawback of
nonparametric statistical approaches for single-subject fMRI
analysis is the computational complexity, requiring hours or
days of processing time on regular computer hardware.

Graphics processing units (GPUs) have seen a tremen-
dous development during the last decade and have been
applied to a variety of fields to achieve significant speedups,
compared to optimized CPU implementations. The main
difference between the GPU and the CPU is that the
GPU does all the calculations in parallel, while the CPU
normally does them in serial. In the field of neuroimaging
and neuroscience the use of the GPU is quite new. As
single-subject fMRI analysis normally is done separately
for each time series in the fMRI data, it suits perfectly
for parallel implementations. In our recent work [30] we
therefore describe how to preprocess (i.e., apply slice timing
correction, motion correction, smoothing, and detrending)
and how to statistically analyze the fMRI data on the GPU.
The result is a significantly faster analysis than if the CPU is
used. For a small fMRI dataset (80 volumes of the resolution
64 × 64 × 22 voxels) all the preprocessing is done in
about 0.5 s and the statistical analysis is done under 0.5 ms.
Recently, GPUs have also been used to speed up functional
connectivity analysis of fMRI data [31, 32]. A final example
is the work by Ferreira da Silva [33] that used the GPU to
speed up the simulation of a Bayesian multilevel model for
fMRI analysis.

In this work, it is shown how nonparametric statistics can
be made practical for single-subject fMRI analysis by using
the parallel processing power of the GPU. The idea of using
the GPU for random permutation tests is not new; it has
recently been done in biostatistics [34, 35]. The GPU makes
it possible to estimate the null distribution of a test statistic,
corrected for multiple testing, in the order of minutes. This
has significant implications on the way fMRI analysis can be
carried out as it opens the possibility to routinely apply more
powerful detection methods than the GLM. As an example,
the results of the standard GLM detection is in this work
compared with a restricted canonical correlation analysis

Analyze statistical structure

Synthesize null data set

Analyze data set

Empirical distribution

Calculate nonparametric threshold

Figure 1: Flowchart containing the main building blocks for
nonparametric analysis of single-subject fMRI data.

(CCA) method [9] that adaptively incorporates spatial
context in the detection. The short processing time also
facilitates deeper investigations into the influence of various
noise and detrending models on the statistical significance,
as well as validation of approximate parametric approaches
such as Bonferroni and random field theory (RFT) [36–39].

2. Methods

2.1. Basics of Random Permutation Tests. One subset of
nonparametric tests is permutation tests where the statistical
analysis is done for all the possible permutations of the
data. Complete permutation tests are; however, not feasible
if the number of possible permutations is very large. For a
time series with 80 samples, there exists 7.16 · 10118 possible
permutations. It is therefore common to instead do random
permutation tests [40], also called Monte Carlo permutation
tests, where the statistical analysis is made for a sufficiently
large number of random permutations, for example 10 000,
of the data. The main idea is to estimate the null distribution
of the test statistics, by generating and analysing surrogate
data that is similar to the original data. The surrogate data
is generated by permuting, or reshuffling, the data between
the different groups to be compared. The main idea of the
nonparametric approach is given in Figure 1.

2.2. The Problem of Multiple Testing. By applying a threshold
to the activity map, each voxel can be classified as active
or inactive. The threshold is normally selected as a level
of significance, one may for example want that only voxels
that with at least 95% significance are to be considered
as active. If a statistical test is repeated and a family-wise
error rate α is desired, the error rate for each test must be
smaller than α. This is known as the problem of multiple
testing. If Bonferroni correction is used, the error rate for
each comparison becomes α/Nv, where Nv is the number
of tests (voxels). This is a correct solution if the tests are
independent. In fMRI it is common to perform the statistical
analysis for more than 20 000 brain voxels; if a threshold
of P = 0.05 is used to consider the voxel as active, the P
value becomes 0.05/20000 with Bonferroni correction. The
assumptions that are made about the behaviour of the tail of
the distribution are thereby critical.

International Journal of Biomedical Imaging 3

There are three problems with Bonferroni correction
in fMRI. First, the test statistics is assumed to, under
the null hypothesis, follow a certain distribution, such as
Student’s t-distribution. Second, the smoothness of the data
is not taken into account as the Bonferroni threshold only
considers the number of tests. The smoothing increases
the spatial correlation of the data and thereby reduces
the effective number of independent tests. Third, it is
assumed that all the voxels have the same null distribution.
To avoid Bonferroni correction, another approach based
on Gaussian random field theory [36, 38, 39] has been
developed and is used in the statistical parametric mapping
(SPM) software (http://www.fil.ion.ucl.ac.uk/spm/). While
this approach takes the smoothness of the data into account,
several assumptions are necessary for the theory to be valid
and it is still assumed that all the voxels have the same null
distribution.

The nonparametric approach can be used to solve
the problem of multiple testing as well. This is done by
estimating the null distribution of the maximum test statistic
[19, 21, 24, 39] by only saving the maximum test value from
each permutation, to get a corrected threshold. This means
that about 10 000 permutations have to be used [19, 21],
while as little as 10 permutations can be enough if an
uncorrected threshold is sufficient [18, 20, 22].

2.3. Preprocessing of fMRI Time Series. As fMRI time series
are temporally correlated [6, 36, 41], the time series have
to be preprocessed before they are permuted. Otherwise the
exchangeability criterion is not satisfied and the temporal
structure is destroyed. Most of the temporal correlations
originate from different kinds of trends. In this work these
trends are removed by a cubic detrending, such that the mean
and any polynomial trend up to the third order is removed,
but more advanced detrending is possible [42].

Several approaches have been proposed for the random
resampling, the most common being whitening transforms
[6, 18, 19], wavelet transforms [22, 26], and Fourier
transforms [43]. A comparison of these approaches [27]
indicates that whitening performs best, at least for fMRI data
that is collected during block-based stimuli paradigms. The
whitening transform is done by estimating an autoregressive
(AR) model for each time series. This can, for example, be
done by solving the equation system that is given by the Yule-
Walker equations.

To accurately estimate AR parameters from a small
number of time points (80 in our case) is quite difficult.
To improve the estimates a spatial Gaussian lowpass filter
(8 mm FWHM) is therefore applied to the estimated AR
parameters [7]. In statistics this technique is normally known
as variance pooling. The optimal amount of smoothing was
found by testing the AR estimation procedure on temporally
correlated Gaussian noise where the spatial patterns of the
AR parameters were known. Our amount of smoothing
(8 mm) is less than the first application of smoothing of the
parameters (15 mm) [7] but close to the optimal amount of
smoothing (6.5–7.5 mm) found by further investigation [44].
It has also been reported that the AR estimates are better
without the spatial smoothing [45].

Normalized convolution [46] is used to prevent that the
smoothing includes AR parameters from outside the brain.
With normalized convolution it is possible to use a certainty
value for each sample in the convolution. The certainty
weighted filter response cwr is calculated as

cwr = (c · s)∗ f

c ∗ f
, (1)

where c is the certainty, s is the signal, f is the filter, · denotes
point-wise multiplication, and ∗ denotes convolution. In
our case the certainty is set to 1 for the brain voxels
and 0 otherwise. Without the normalized convolution the
estimated AR parameters at the edge of the brain are too low,
as the AR parameters outside the brain are very close to 0.
To further improve the estimates, the whitening procedure is
iterated 3 times and the AR estimates are accumulated [7, 22]
(a higher number of iterations seem to impair the estimates).

To investigate if the time series really are white noise after
the whitening, several tests can be applied. One example is
the Durbin-Watson test that previously has been used to test
if the residuals from the GLM contain autocorrelation [2].
The problem with this test is, however, that it only tests if
there is an AR(1) correlation or not, it cannot handle higher-
order correlations. A more general test is the Box-Pierce
test that tests if at least one of the autocorrelations up to a
defined time lag h is significantly different from zero. The
Box-Pierce test has also been used for testing whiteness of
fMRI data [22]. The Ljung-Box test [47] has been proven to
be better than the Box-Pierce test for small sample sizes and
is therefore used in our case. The test statistic Q is calculated
as

Q = Nt(Nt + 2)
h∑

k=1

(rY (k))2

Nt − k
, (2)

where Nt is the number of time samples, rY (k) is the sample
autocorrelation at time lag k, and h is the number of time lags
being tested. The test statistic is asymptotically chi-square
distributed with h − p degrees of freedom, where p is the
order of the AR model used for the whitening, when Nt

grows towards infinity. Since our whitening is done with the
smoothed AR parameters, the Ljung-Box test is applied to
smoothed auto correlations.

Since the spatial correlation should be maintained, but
not the temporal, the same permutation is applied to all
the time series [19, 43]. When the time series have been
permuted, an inverse whitening transform is applied by
simulating an AR model, using the permuted whitened time
series as innovations.

2.4. Statistical Analysis, GLM and t-Test. The general linear
model (GLM) is the most used approach for statistical
analysis of fMRI data [37]. For each voxel time series, a linear
model is fitted according to

Y = Xβ + ε, (3)

where Y is the time series, X the regressors, β the parameters
to estimate, and ε the errors. The regressors were created by

4 International Journal of Biomedical Imaging

convolving the stimulus paradigm with the hemodynamic
response function (HRF) (difference of gammas) and its
temporal derivative [6]. The two regressors were mean cor-
rected, Euclidean normalized, and orthogonalized. No other
regressors were used in the design matrix. The regression
weights are estimated with ordinary least squares

β̂ =
(

XTX
)−1

XTY, (4)

and the t-test value is then calculated as

t = cT β̂√
var

(
ε̂
)

cT(XTX)−1c
, (5)

where c is the contrast vector.
Prior to the GLM the time series were whitened by using

the same AR(1) model for all the voxels [6, 18]. No additional
high-pass or low-pass filtering was used. The whitening step
prior to the GLM is not necessary for the permutation-
based analysis. The purpose of the whitening is to make
sure that the errors are temporally uncorrelated, otherwise
the assumptions that are necessary for the GLM to generate
a true t-value are violated. Without the whitening a true
t-value is not obtained, but a pseudo t-value. This is not
a problem for the permutation-based analysis as the null
distribution of the test statistics is estimated. If the thresholds
from random field theory and a random permutation test
are to be compared, the whitening has to be done in each
permutation.

2.5. Statistical Analysis, CCA. One statistical approach for
fMRI analysis that provides more adaptivity to the data is
canonical correlation analysis (CCA) [48]. While the GLM
works with one multidimensional variable (e.g., temporal
basis functions, [37]), CCA works with two multidimen-
sional variables (e.g., temporal and spatial basis functions,
[9]). Ordinary correlation between two one-dimensional
variables x and y with zero mean can be written as

ρ = Corr
(
x, y

) = E
[
xy
]√

E[x2] E
[
y2
] . (6)

This expression can easily be extended to multidimensional
variables. The GLM calculates the correlation between
one multidimensional variable x and one one-dimensional
variable y according to

ρ = Corr
(
βTx, y

)
, (7)

where β is the weight vector that determines the linear
combination of x. Canonical correlation analysis is a further
generalization of the GLM, such that both the variables are
multidimensional. The canonical correlation is defined as

ρ = Corr
(
βTx, γTy

)
= βTCxyγ√

βTCxx β γTCyyγ
, (8)

where Cxy is the covariance matrix between x and y, Cxx is
the covariance matrix for x, and Cyy is the covariance matrix

Figure 2: The four smoothing filters that are used for 2D CCA, one
small isotropic separable filter and three anisotropic nonseparable
filters. For visualization purposes, these filters are interpolated to a
subpixel grid.

Figure 3: Left: A small isotropic lowpass filter can be used by
CCA by setting the weights of all the other filters to zero. Middle:
anisotropic lowpass filters with arbitrary orientation can be created
by CCA by first combining the anisotropic filters and then adding
the small lowpass filter. Right: by using the same weight for all the
filters, a large isotropic lowpass filter can be obtained.

for y. The temporal and spatial weight vectors, β and γ, that
give the highest correlation are calculated as the eigenvectors
of two eigenvalue problems. The canonical correlation is the
square root of the corresponding eigenvalue.

The temporal basis functions for CCA are the same as
for the GLM. The spatial basis functions can, for example, be
neighbouring pixels [8, 10, 49] or a number of anisotropic fil-
ters [9] that linearly can be combined to a lowpass filter with
arbitrary orientation, to prevent unnecessary smoothing. In
contrast to the GLM, an adaptive anisotropic smoothing
is obtained, instead of a fix isotropic smoothing. The four
smoothing filters that are used for our implementation of
2D CCA are given in Figure 2. Three filters that can be
constructed as a linear combination of the four filters are
given in Figure 3.

Compared to other approaches that adaptively include
spatial information [11–14], the advantage with CCA is that
there exists an analytical solution that gives the best weight
vectors, while the other approaches have to search for the best
combination.

One disadvantage with CCA is that it is difficult to
calculate the threshold for a certain significance level, as
the distribution of the canonical correlation coefficients is
rather complicated. If x and y are Gaussian distributed and
independent, the joint probability distribution for all the
sample canonical correlation coefficients is given by [50]

f =
m∏
i=1

⎛⎝(r2
i

)(n−m−1)/2(
1− r2

i

)(N−n−m−1)/2
m∏

j=i+1

(
r2
i − r2

j

)⎞⎠,

(9)

International Journal of Biomedical Imaging 5

where N is the number of (time) samples, n and m are the
dimensions of the multidimensional variables x and y, and ri
are the canonical correlation coefficients.

Another problem is that restricted CCA (RCCA) [51]
normally is used instead of ordinary CCA, in order to
guarantee that the resulting combinations of the temporal
and spatial basis functions are plausible. To our knowledge
there is no theoretical distribution for restricted canonical
correlation coefficients. The only solution to get a signif-
icance threshold for RCCA is thus to use nonparametric
approaches.

As a 2D version of CCA already had been implemented
[30], it was easy to extend the random permutation tests to
include CCA as well. The problem with the original 3D CCA
approach [9] is that it uses a total of seven 3D filters, and
thereby a 7 × 7 matrix must be inverted for each time series.
Our GPU implementation, however, only supports inverting
4 × 4 matrices, and thereby a maximum of 4 filters. Another
approach [52] that uses two 3D filters, one isotropic Gaussian
kernel and its derivative (with respect to the width parameter
sigma), was therefore used. This makes it possible for CCA
to create filters with different sizes, such that the amount of
smoothing varies between the voxels. All the resulting filters
are, however, isotropic, which makes this version of 3D CCA
less adaptive.

2.6. Spatial Smoothing. The smoothing of the fMRI volumes
has to be applied in each permutation. If the data is
smoothed prior to the whitening transform, the estimated
AR parameters will change with the amount of smoothing
applied since the temporal correlations are altered by the
smoothing. For our implementation of 2D CCA, 4 different
smoothing filters are applied. If the smoothing is done prior
to the permutations, 4 time series have to be permuted
for each voxel and these time series will have different
AR parameters. The smoothing will also change the null
distribution of each voxel. This is incorrect as the surrogate
null data that is created always should have the same
properties, regardless of the amount of smoothing that is
used for the analysis. If the data is smoothed after the
whitening transform, but before the permutation and the
inverse whitening transform, the time series that are given by
simulating the AR model are incorrect since the properties of
the noise are altered. The only solution to this is to apply the
smoothing after the permutation and the inverse whitening
transform, that is, in each permutation. This is also more
natural in the sense that the surrogate data first is created
and then analysed.

Similarly, if the activity map is calculated as how
important each voxel is for a classifier [11–14], the classifier
has to be trained in each permutation in order to estimate
the null distribution.

2.7. The Complete Algorithm. The complete algorithm can
be summarized as follows. The reason why the detrending
is done separately, compared to having the detrending basis
functions in the design matrix, is that the detrending has to
be done separately for the CCA approach.

The whitening in each permutation is only performed
to be able to compare the corrected t-thresholds from the
random permutation test to the thresholds from Bonferroni
correction and random field theory.

(1) Preprocess the fMRI data, that is, apply slice timing
correction, motion correction, smoothing, and cubic
detrending. To save time, the statistical analysis
is only performed for the brain voxels. A simple
thresholding technique is used for the segmentation.

(2) Whiten the detrended time series (GLM only).

(3) Apply the statistical analysis to the preprocessed fMRI
data and save the test values. These are the original
test values tvoxel.

(4) Apply cubic detrending to the motion compensated
time series.

(5) Remove the best linear fit between the detrended time
series and the temporal basis functions in the design
matrix, by ordinary least squares, to create residual
data (as the null distribution is to be estimated).
Estimate AR parameters from the residual time series.
Apply a spatial smoothing to improve the estimates
of the AR parameters. Apply whitening with the
smoothed AR parameters. Repeat the whitening
procedure 3 times.

(6) For each permutation,

(i) apply a random permutation to the whitened
time series,

(ii) generate new fMRI time series by an inverse
whitening transform, that is, by simulating an
AR model in each voxel with the permuted
whitened time series as innovations,

(iii) smooth all the volumes that were generated by
the inverse whitening transform,

(iv) apply cubic detrending to the smoothed time
series,

(v) whiten the detrended time series (GLM only),
(vi) apply the statistical analysis,

(vii) find the maximum test value and save it.

(7) Sort the maximum test values.

(8) The threshold for a desired corrected P value is given
by extracting the corresponding test value from the
sorted maximum test values. If 10 000 permutations
are used, the threshold for corrected P = 0.05 is given
by the sorted maximum test value at location 9500.

(9) The corrected P value at each voxel is calculated as
the number of maximum test values, tmaxi, that are
greater than or equal to the original test value in the
voxel, tvoxel, divided by the number of permutations
Np

pcvoxel =
∑Np

i=1(tmaxi ≥ tvoxel)
Np

. (10)

A comparison of the flowcharts for a parametric analysis
and a nonparametric analysis is given in Figure 4.

6 International Journal of Biomedical Imaging

Slice timing correction

Motion correction

Detrending

Smoothing

Statistical analysis

Calculate parametric threshold

Whitening transform

(a)

Whitening transform

Whitening transform

Slice timing correction

Motion correction

Detrending

Permutation

Inverse whitening transform

Detrending

Smoothing

Statistical analysis

Calculate nonparametric threshold

BOLD removal

Save maximum test value

(b)

Figure 4: (a) Flowchart for conventional parametric analysis of fMRI data. (b) Flowchart for nonparametric analysis of fMRI data. In each
permutation a new null dataset is generated and analysed.

2.8. The Number of Permutations. The number of permuta-
tions that are required depends on the desired P value and
the accuracy that is required. The standard deviation of the

desired (one sided) P value is approximately
√
p(1− p)/Np,

where Np is the number of permutations [53]. Some
examples of desired P value, number of permutations, and
relative standard deviation are given in Table 1.

3. GPU Implementation

The random permutation test was implemented with the
CUDA (Compute Unified Device Architecture) program-
ming language by Nvidia [54], which is explained by Kirk
and Hwu [55]. In this section we will shortly describe how
to implement the whitening transform and the random
permutation test on the GPU. The interested reader is
referred to our recent work [30] for more details and how
to implement the other processing steps. The main principle
of our GPU implementation is that each GPU thread works
on a separate voxel time series.

Our CUDA implementation was compared with a stan-
dard C implementation and an OpenMP-based implemen-
tation. The Open MP (Open Multi-Processing) library lets

Table 1: Relative standard deviation of the desired P value, as
function of desired P value and number of permutations.

Number of
Permutations/P value

0.1 0.05 0.01

1000 9.48% 13.78% 31.46%

5 000 4.24% 6.16% 14.07%

10 000 3% 4.35% 9.95%

50 000 1.34% 1.94% 4.45%

100 000 0.95% 1.37% 3.14%

the user take advantage of all the CPU cores in an easy
way. All the implementations have been done in Matlab
(Mathworks, Natick, Mass), using the mex interface where
C and CUDA code can be used together with Matlab. For all
implementations, 32 bit floats were used. The used graphics
cards were three Nvidia GTX 480, each equipped with 480
processor cores and 1.5 GB of memory, giving a total of 1440
processor cores that run at 1.4 GHz. The used CPU was an
Intel Xeon 2.4 GHz with 12 MB of L3 cache and 4 processor
cores, and 12 GB of memory was used. The operating system
used was Linux Fedora 12 64-bit. The total price of the

International Journal of Biomedical Imaging 7

computer was about 4000 $, a fraction of the price for a PC
cluster with equivalent computational performance.

3.1. Whitening and the Random Permutations. Before the
data is permuted an AR model is first estimated for each
time series, as previously described. To solve the equation
system that is given by the Yule-Walker equations requires
a matrix inverse of the size p × p where p is the order of
the AR model. To actually do the matrix inverse in each
thread on the GPU is not a problem, even for matrices larger
than 4 × 4, but to do it for a 7 × 7 matrix requires a lot
of float registers and the Nvidia GTX 480 can only use 64
float registers per thread. The CUDA compiler will put the
rest of the float variables, that do not fit into the registers,
in the local memory which is extremely slow. Due to this
it is hard to achieve good performance for matrices that are
larger than 4 × 4. This is also the reason why the original 3D
CCA approach, that uses seven 3D filters, cannot be used.
Other than this the estimation of the AR parameters suits
the GPU well, as the parameters are estimated in exactly the
same way for each voxel time series. When the AR parameters
have been estimated, they are spatially smoothed in order
to improve the estimates. For this purpose a separable 3D
convolver, created for 3D CCA and 3D GLM, is used.

For the estimation of AR parameters, the whitening
transform, and the inverse whitening transform the shared
memory is used to store the p last time points and each GPU
thread loops along the time dimension for one voxel.

The permutation step is done by using randomized
indices. A permutation matrix of size Np × Nt is first
generated in Matlab, by using the function randperm, and
is then copied to the GPU. For each permutation one row of
the permutation matrix is copied to the constant memory
and is used to read the data in the randomized order. It
might seem difficult to achieve coalesced reads when the time
samples are to be read in a randomized order, in our case
this is however not a problem. The fMRI data is stored as (x,
y, z, t) (i.e., x first, then y and so on) and the permutation
is only done along the time dimension, and not along the
spatial dimensions. Due to this fact it is always possible to
read 32 values at the time along x, regardless of the current
time point. The code in Algorithm 1 generates a new time
series for one voxel, by simulating an AR(4) model using the
permuted whitened time series as innovations:

c Permutation Vector

is the index vector that contains the random time indices.
The inverse whitening transform and the permutation step
are thus performed at the same time. The help functions

Get 3D Index, Get 4D Index

calculate the linear index for the 3D and the 4D case.
For this kernel, and for most of the other kernels, each

thread block contains a total of 512 threads (32 along x, 16
along y, and 1 along z) and uses 16 KB of shared memory
(one 16 × 8 × 32 float array) which makes it possible to
run three thread blocks in parallel on each multiprocessor.
This results in 1536 active threads per multiprocessor and

thereby a total of 23 040 active threads on the GPU, which
is the maximum for the Nvidia GTX 480.

To find the maximum test value in each permutation,
one fMRI slice (64 × 64 pixels) is first loaded into shared
memory. The maximum value of this slice is then found by
comparing two values at the time. The number of values
is thus first reduced from 4096 to 2048, then to 1024
and after 12 reductions to the maximum test value. The
maximum values of the 22 slices are then compared. After
each permutation the maximum test value is copied to host
memory.

In order to calculate the P value for each voxel, the
maximum test values are first copied from host memory to
constant memory. Each GPU thread then loops over all the
maximum test values and calculates how many of the test
values are bigger than or equal to the test value for one voxel.

3.2. Multi-GPU. As our computer contains three graphic
cards, a multi-GPU implementation of the analysis was also
made, such that each GPU does one-third of the permuta-
tions. Each GPU first preprocesses the fMRI data, GPU 1
uses the first part of the permutation matrix, GPU 2 uses the
middle part, and GPU 3 uses the last part. The processing
time thus scales linearly with the number of GPUs. A short
demo of the multi-GPU implementation can be found at
http://www.youtube.com/watch?v=wxMqZw0jcOk.

4. Results

In this section we will present the processing times for
the different implementations, compare activity maps from
GLM and CCA at the same significance level, and compare
estimated thresholds from Bonferroni correction, Gaussian
random field theory, and random permutation tests.

4.1. Data. Four single-subject datasets have been used to test
our algorithms; the test subject was a 50-year-old healthy
male. The data was collected with a 1.5 T Philips Achieva MR
scanner. The following settings were used: repetition time 2 s,
echo time 40 ms, flip angle 90 degrees, and isotropic voxel
size 3.75 mm. A field of view of 240 mm thereby resulted
in slices with 64 × 64 pixels, and a total of 22 slices were
collected every other second. The experiments were 160 s
long, resulting in 80 volumes to be processed. The datasets
contain about 20 000 within-brain voxels.

4.1.1. Motor Activity. For the Motor 1 dataset the subject
periodically activated the left hand (20 s activity, 20 s rest),
and for the Motor 2 dataset the subject periodically activated
the right hand.

4.1.2. Language Activity. For the Language dataset the subject
periodically performed a reading task (20 s activity, 20 s rest).
The task was to read sentences and determine if they were
reasonable or not.

4.1.3. Null. For the null dataset the subject simply rested
during the whole experiment.

8 International Journal of Biomedical Imaging

float alpha1 = alphas1[Get 3D Index(x,y,z,DATA W,DATA H)];
float alpha2 = alphas2[Get 3D Index(x,y,z,DATA W,DATA H)];
float alpha3 = alphas3[Get 3D Index(x,y,z,DATA W,DATA H)];
float alpha4 = alphas4[Get 3D Index(x,y,z,DATA W,DATA H)];

s Y[threadIdx.y][0][threadIdx.x] =
whitened volumes[Get 4D Index(x,y,z,c Permutation Vector[0],DATA W,DATA H,DATA D)];
s Y[threadIdx.y][1][threadIdx.x] = alpha1 ∗ s Y[threadIdx.y][0][threadIdx.x]
+ whitened volumes[Get 4D Index(x,y,z,c Permutation Vector[1],DATA W,DATA H,DATA D)];
s Y[threadIdx.y][2][threadIdx.x] = alpha1 ∗ s Y[threadIdx.y][1][threadIdx.x]
+ alpha2 ∗ s Y[threadIdx.y][0][threadIdx.x]
+ whitened volumes[Get 4D Index(x,y,z,c Permutation Vector[2],DATA W,DATA H,DATA D)];
s Y[threadIdx.y][3][threadIdx.x] = alpha1 ∗ s Y[threadIdx.y][2][threadIdx.x]
+ alpha2 ∗ s Y[threadIdx.y][1][threadIdx.x] + alpha3 ∗ s Y[threadIdx.y][0][threadIdx.x]
+ whitened volumes[Get 4D Index(x,y,z,c Permutation Vector[3],DATA W,DATA H,DATA D)];

permuted volumes[Get 4D Index(x,y,z,0,DATA W,DATA H,DATA D)] = s Y[threadIdx.y][0][threadIdx.x];
permuted volumes[Get 4D Index(x,y,z,1,DATA W,DATA H,DATA D)] = s Y[threadIdx.y][1][threadIdx.x];
permuted volumes[Get 4D Index(x,y,z,2,DATA W,DATA H,DATA D)] = s Y[threadIdx.y][2][threadIdx.x];
permuted volumes[Get 4D Index(x,y,z,3,DATA W,DATA H,DATA D)] = s Y[threadIdx.y][3][threadIdx.x];

// Loop over time points
for (t = 4; t < DATA T; t++){

s Y[threadIdx.y][4][threadIdx.x] =
alpha1 ∗ s Y[threadIdx.y][3][threadIdx.x]

+ alpha2 ∗ s Y[threadIdx.y][2][threadIdx.x]
+ alpha3 ∗ s Y[threadIdx.y][1][threadIdx.x]
+ alpha4 ∗ s Y[threadIdx.y][0][threadIdx.x]
+ whitened volumes[Get 4D Index(x,y,z,c Permutation Vector[t],DATA W,DATA H,DATA D)];

permuted volumes[Get 4D Index(x,y,z,t,DATA W,DATA H,DATA D)] = s Y[threadIdx.y][4][threadIdx.x];

// Save old values
s Y[threadIdx.y][0][threadIdx.x] = s Y[threadIdx.y][1][threadIdx.x];
s Y[threadIdx.y][1][threadIdx.x] = s Y[threadIdx.y][2][threadIdx.x];
s Y[threadIdx.y][2][threadIdx.x] = s Y[threadIdx.y][3][threadIdx.x];
s Y[threadIdx.y][3][threadIdx.x] = s Y[threadIdx.y][4][threadIdx.x];

}

Algorithm 1

4.2. Processing Times. The processing times for the random
permutation tests, for the different implementations, are
given in Tables 2 and 3. The reason why the processing time
does not scale linearly with the number of permutations is
that it takes some time to copy the data to and from the
GPU. Before the permutations are started, the fMRI data
is preprocessed on the GPU and this takes about 0.5 s. The
processing times for the different processing steps can be
found in our recent work [30].

The reason why the processing time for CCA is much
longer than for the GLM for the CPU implementations is
that the 2D version of CCA uses one separable filter and
three nonseparable filters for the smoothing while the GLM
uses one separable filter. For the GPU implementation the
2D smoothing can be done extremely fast by using the shared
memory.

4.3. Verifying the Whitening Procedure. To verify that the
whitening procedure prior to the permutations works cor-
rectly, the Ljung-Box test was applied to each residual time
series. The Ljung-Box test was applied to the four datasets
after detrending, BOLD removal, and whitening with AR
models of different order. The test was applied for 1–10 time
lags (i.e., 10 tests), and the mean number of nonwhite voxels
was saved. A voxel-wise threshold of P = 0.05 was used, that
is, χ2

0.95,h−p where h is the number of time lags tested and p

is the order of the AR model used. This means that the test

only can be applied to certain time lags, since the degrees
of freedom otherwise become zero or negative. The results
with spatial smoothing of the auto correlations are given
in Figure 5 and the results without spatial smoothing are
given in Figure 6. The results for Gaussian white noise are
included as reference when no smoothing is applied to the
auto correlations. With the spatial smoothing, the number of
voxels classified as nonwhite for the Gaussian noise is always
zero.

If no smoothing is applied to the estimated auto corre-
lations prior to the Ljung-Box test, the test statistic cannot
be trusted as the standard deviation of the estimated auto
correlations is too high. The reason why the number of
nonwhite voxels increases, when no smoothing is applied to
the auto correlations and when the degree of the AR model
increases, is that the critical threshold of the Ljung-Box test
decreases as the order of the AR model increases.

From the results in Figures 5 and 6 we draw the
conclusion that cubic detrending and an individual AR(4)
whitening is necessary to whiten the Motor 1, Motor 2,
and Language datasets while an individual AR(5) or AR(6)
whitening is necessary for the Null dataset. Long-term
autocorrelations have previously been reported for resting
state fMRI data.

For all the datasets an individual AR(4) whitening
was therefore used prior to the permutations and in each
permutation to generate new null data. For the null dataset
a higher-order AR model is necessary, but to estimate an

International Journal of Biomedical Imaging 9

Table 2: Processing times for random permutation tests with the GLM for the different implementations.

Number of permutations with GLM C OpenMP CUDA, 1 × GTX 480 CUDA, 3 × GTX 480

1000 25 min 3.5 min 25.2 s 8.4 s

5 000 2 h 5 min 17.5 min 1 min 42 s 33.9 s

10 000 4 h 10 min 35 min 3 min 18 s 65.8 s

50 000 20 h 50 min 2 h 55 min 16 min 30 s 5 min 30 s

100 000 1 day 17 h 40 min 5 h 50 min 33 min 11 min

Table 3: Processing times for random permutation tests with 2D CCA for the different implementations.

Number of permutations with 2D CCA C OpenMP CUDA, 1 × GTX 480 CUDA, 3 × GTX 480

1000 1 h 40 min 14 min 50 s 22.2 s 7.4 s

5 000 8 h 20 min 1 h 14 min 1 min 24 s 28 s

10 000 16 h 37 min 2 h 28 min 2 min 42 s 54 s

50 000 3 days 11 h 12 h 22 min 13 min 30 s 4 min 30 s

100 000 6 days 22 h 24 h 43 min 27 min 9 min

1 2 3 4 5 6 7

0

20

40

60

80

100

120

Order of AR model

M
ea

n
n

u
m

be
r

of
n

on
-w

h
it

e
vo

xe
ls

Motor 1
Motor 2

Language
Null

Figure 5: Mean number of voxels classified as nonwhite by the
Ljung-Box test (1–10 time lags were tested and the mean number
of nonwhite voxels for the 10 tests was saved). Prior to the Ljung-
Box test the estimated auto correlations were spatially smoothed.
The number of nonwhite voxels for Gaussian white noise is always
zero.

AR(5) model requires matrix inverses of 5 × 5 matrices for
each voxel time series, which our GPU implementation does
not support. Therefore, the voxels in the null dataset that
were considered as nonwhite after the AR(4) whitening were
instead removed from the random permutation test.

4.4. Verifying the Random Permutation Test. To verify that
our random permutation test works correctly, all the pre-
processing steps were removed and Gaussian white noise was
used as data. The stimulus paradigm convolved with the HRF
and its temporal derivative were used as regressors, and a t-
test value was calculated for each voxel. A spatial mask from
a real fMRI dataset was used to get the same number of brain

1 2 3 4 5 6 7
1500

2000

2500

3000

3500

4000

4500

5000

Order of AR model

M
ea

n
n

u
m

be
r

of
n

on
-w

h
it

e
vo

xe
ls

Motor 1
Motor 2

Language
Null

Gaussian white noise

Figure 6: Mean number of voxels classified as nonwhite by the
Ljung-Box test (1–10 time lags were tested and the mean number
of nonwhite voxels for the 10 tests was saved). No spatial smoothing
was applied to the estimated auto correlations prior to the Ljung-
Box test. The number of nonwhite voxels for Gaussian white noise
is included as reference (no whitening was applied to the noise).

voxels. A threshold for corrected P = 0.05 was calculated, by
using 100 000 permutations, and then 10 000 noise datasets
were generated (for each amount of smoothing), analysed,
and thresholded. If the calculated threshold is correct, 500 of
the noise datasets should contain a test value that is higher
than the threshold. The family-wise error rate (FWE) was
estimated for the thresholds from Bonferroni correction,
Gaussian random field theory, and the random permutation
test and is given in Figure 7.

4.5. GLM versus CCA. With the random permutation test it
is possible to calculate corrected P values for fMRI analysis
by CCA, and thereby activity maps from GLM and CCA

10 International Journal of Biomedical Imaging

0 5 10 15
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Amount of smoothing applied (mm FWHM)

RFT Truth

Fa
m

ily
-w

is
e

er
ro

r
ra

te

Bonferroni Permutation

Figure 7: A comparison of family-wise error rates for Gaussian
white noise for three different approaches to calculate an activity
threshold, corrected for multiple testing.

can finally be compared at the same significance level. The
activity maps are given in Figure 8. For these comparisons,
the Motor 1 dataset was used, 10 000 permutations were used
both for GLM and CCA. The activity maps were thresholded
at the same significance level, corrected P = 0.05. With 8
mm of 2D smoothing, GLM detects 302 significantly active
voxels while CCA detects 344 significantly active voxels. With
8 mm of 3D smoothing, GLM detects 475 significantly active
voxels while CCA detects 684 significantly active voxels. The
aim of this comparison is not to prove that CCA has a
superior detection performance, but to show that objective
evaluation of different methods for single-subject fMRI
analysis becomes practically possible by using fast random
permutation tests.

For RCCA there is no theoretical distribution to calculate
a threshold from, and therefore the corrected thresholds
for the restricted canonical correlation coefficients are also
presented, 10 000 permutations were used to calculate each
threshold. Figure 9 shows the found thresholds for 2D
CCA and 3D CCA for the Motor 1 dataset. Similar results
were obtained for the other datasets. Since fMRI analysis
by CCA results in an adaptive smoothing, compared to a
fix smoothing with the GLM, the amount of smoothing
varies between the voxels. Due to this, the plots show the
corrected thresholds for the different maximum amounts
of smoothing that can be applied by CCA. These plots
would have taken a total of about 14 days to generate
with a standard C implementation, with our multi-GPU
implementation they took about 30 minutes to gener-
ate.

4.6. Comparison of Methods for Calculating Corrected Thresh-
olds. As the null distribution of the maximum t-test statistics
can be estimated, it is possible to compare the thresholds that

2D GLM 2D CCA

3D GLM 3D CCA

1

0.99

0.98

0.97

0.96

0.95

Figure 8: Top: A comparison between corrected P values from
2D GLM (left) and 2D CCA (right), calculated from a random
permutation test with 10 000 permutations. The activity maps are
thresholded at the same significance level (corrected P = 0.05). The
GLM used one isotropic 8 mm FWHM 2D Gaussian smoothing
kernel while CCA used one isotropic 2D Gaussian kernel and 3
anisotropic 2D Gaussian kernels, designed such that the largest
possible filter that CCA can create has an FWHM of 8 mm. The
neurological display convention is used (left is left), 1−p is shown
instead of p. Note that CCA detects active voxels in the left motor
cortex and in the left somatosensory cortex that are not detected
by the GLM. Bottom: A comparison between corrected P values
from 3D GLM (left) and 3D CCA (right), calculated from a random
permutation test with 10 000 permutations. The activity maps are
thresholded at the same significance level (corrected P = 0.05). The
GLM used one isotropic 8 mm FWHM 3D Gaussian smoothing
kernel while CCA used one isotropic 3D Gaussian kernel and its
derivative, designed such that the largest possible filter that CCA can
create has a FWHM of 8 mm. The neurological display convention
is used (left is left), 1−p is shown instead of p. Note that CCA detects
active voxels in the left somatosensory cortex that are not detected
by the GLM.

are given by Bonferroni correction, Gaussian random field
theory, and a random permutation test (which should give
the most correct threshold); 10 000 permutations were used
for the random permutation test.

Figure 10 shows the found thresholds for the Motor 1
dataset, for different amounts of smoothing. Similar results
were obtained for the other datasets. To our knowledge,
a comparison of thresholds from Bonferroni correction,
Gaussian random field theory, and a random permutation
test has previously only been done for multi-subject fMRI
[24]. These plots would have taken a total of about 5.5 days
to generate with a standard C implementation; with our
multi-GPU implementation they took about 38 minutes to
generate.

International Journal of Biomedical Imaging 11

Motor1

1 5 10 15
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

Maximum amount of smoothing applied (mm FWHM)

C
or

re
ct

ed
ca

n
on

ic
al

co
rr

el
at

io
n

th
re

sh
ol

d

Permutation 2D CCA
Permutation 3D CCA

Figure 9: Canonical correlation thresholds, for corrected P = 0.05,
as function of the maximum amount of smoothing that can be
applied by CCA. The Motor 1 dataset was used.

Motor1

0 5 10 15
3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

Amount of smoothing applied (mm FWHM)

RFT

C
or

re
ct

ed
t-

th
re

sh
ol

d

Permutation, mean AR(1) prior GLMBonferroni

Figure 10: A comparison of t-thresholds, for corrected P =
0.05, from three approaches to calculate a corrected threshold, as
function of the amount of smoothing applied. The Motor 1 dataset
was used.

Figure 11 shows the estimated maximum t distribution
for the Motor 1 dataset; 8 mm of smoothing was applied to
the volumes in each permutation.

4.7. Distributions of Corrected t-Thresholds. As a final result,
distributions of the corrected t-thresholds are presented. The
random permutation test for the GLM was repeated 1000
times and the resulting thresholds were saved. The Motor 1
dataset was used with 8 mm of smoothing. The threshold

0

2000

4000

6000

8000

10000

12000

Max t

C
ou

n
t

RPT

RFT
BC

2 3 4 5 6 7 8

Figure 11: The estimated null distribution of the maximum t-
test value from the GLM, when 8 mm smoothing was applied. The
calculated thresholds for corrected P = 0.05 for the three approaches
are marked with BC (Bonferroni correction), RFT (random field
theory), and RPT (random permutation test).

0

50

100

150

200

250

300

C
ou

n
t

Corrected t-threshold

5.8 5.9 6 .6 1

Figure 12: The distribution of the corrected t-threshold when 1000
permutations were used.

distribution for 1000 permutations is given in Figure 12 and
the threshold distribution for 10 000 permutations is given in
Figure 13. The standard deviation of the threshold calculated
with 1000 permutations is 0.0364, and the standard deviation
of the threshold calculated with 10 000 permutations is
0.0114. According to [53] the standard deviation should
decrease with

√
10 if 10 times more permutations are used.

The difference in standard deviation between the threshold
calculated with 1000 and 10 000 permutations is very close
to this approximation.

If 1000 permutations are used (and it is assumed that
the estimated distribution is correct), the estimated P value
varies between 0.044 and 0.059 if the standard deviation of
the corrected threshold is subtracted or added. For 10 000

12 International Journal of Biomedical Imaging

0

50

100

150

200

250

300

C
ou

n
t

Corrected t-threshold

5.8 5.9 6 .6 1

Figure 13: The distribution of the corrected t-threshold when
10 000 permutations were used.

permutations the estimated P value varies between 0.048 and
0.052. This is close to the expected relative standard deviation
given in Table 1. It is very important to know the variance of
the P values as it tells us how reliable the estimates are.

These plots would have taken a total of about 17.4 and
174 days to generate with a standard C implementation. With
the multi-GPU implementation they took about 2.3 and 18
hours to generate.

5. Discussion

With the help of fast random permutation tests it is possible
to objectively evaluate activity maps from any test statistics
easily, by using the same significance level. As an example
of this we compare activity maps from GLM and CCA. It is
also possible to investigate how a change in the preprocessing
(e.g., the amount of smoothing or the whitening applied)
affects the distribution of the maximum test statistics. The
search for the best test statistics, that gives the best separation
between active and inactive voxels, can now be started. To
use simple test statistics and hope that the data is normally
distributed and independent is no longer necessary.

5.1. Processing Times. As can be seen in the tables, a lot of
time is saved by using the GPU. Most of the time is saved in
the smoothing step. The tables clearly show that the GPU, or
an advanced PC cluster, is a must for random permutation
tests that include smoothing. To do 100 000 permutations
with CCA takes about 7 days with the C implementation,
about a day with the OpenMP implementation, and about 9
minutes with the multi-GPU implementation. The speedup
is about 1100 between the C implementation and the multi-
GPU implementation and about 170 between the OpenMP
implementation and the multi-GPU implementation.

It should be noted that these processing times are for 80
volumes and 20 000 brain voxels, but it is not uncommon

that an fMRI dataset contains 150 volumes and 30 000 brain
voxels, which triples the processing times.

The main problem with a long processing time is the
software development. In order to test and verify that a pro-
gram works correctly, the program has to be launched a large
number of times. During the development of the routines
and the writing of the paper we ran the complete analysis,
with 1000–100 000 permutations, at least 3000 times. For
the GLM this means that at least 6000 hours of processing
time were saved, compared to the C implementation. This is
equivalent to 750 working days.

With the power of the GPU it is even possible to look at
the distributions of the corrected thresholds that otherwise
could take as much as 6 months of processing time to
estimate.

The processing time for 10 000 permutations with GLM
and smoothing is about 3.5 minutes with one GPU. This is
perhaps too long for clinical applications, but we believe that
it is fast enough for researchers to use it in their daily work.

5.2. GLM versus CCA. With the help of the GPU it is finally
possible to compare activity maps from GLM and CCA at the
same significance level. Even if CCA has a superior detection
performance compared to the GLM, its use has been limited.
One major reason for this is that it is hard to set a (corrected)
threshold for CCA.

The presented activity maps show that the CCA approach
in general, due to its spatial adaptivity, finds a higher number
of significantly active voxels than the GLM approach. With
2D smoothing CCA finds some significantly active voxels in
the left motor cortex and in the left somatosensory cortex
that are not detected by the GLM. With 3D smoothing
CCA finds some significantly active voxels in the left
somatosensory cortex that are not detected by the GLM. We
have thereby confirmed previous results that fMRI analysis
by CCA can result in a higher number of significantly active
voxels [9, 10, 56].

It might seem strange that the corrected canonical
correlation thresholds do not decrease as rapidly as the
corrected t-thresholds when the maximum amount of
smoothing increases. By using CCA an adaptive smoothing is
obtained, such that the amount of smoothing varies between
the voxels. The CCA approach will choose the amount
(and orientation) of smoothing that results in the highest
canonical correlation, as shown in Figure 3. This is one of the
main advantages with CCA, since it, for example, prevents
that too much smoothing is used in small activity areas. If
the maximum canonical correlation is found by only using
the small lowpass filter, the maximum canonical correlation
might not change significantly when the maximum amount
of smoothing is increased since CCA probably will choose to
only use the small lowpass filter once again. The consequence
is that it is hard to predict how the maximum test value will
change as a function of the maximum amount of smoothing.

The corrected thresholds are lower for 3D CCA than for
2D CCA. This is explained by the fact that the 2D version is
adaptive in both scale and orientation, and it can thereby find
higher correlations than the 3D version that only is adaptive

International Journal of Biomedical Imaging 13

in scale. With more advanced GPUs, the original 3D CCA
approach, with 7 filters, can be used to obtain more spatial
adaptivity in 3D.

5.3. Comparison of Methods for Calculating Corrected Thresh-
olds. The comparison between the thresholds from Bon-
ferroni correction, Gaussian random field theory, and the
random permutation test shows some interesting results.
The thresholds from the random permutation test are the
highest. For the GLM approach to be valid, the data is
assumed to be normally distributed as well as independent.
For the multiple testing problem, the parametric approaches
also assume a common null distribution for each voxel
while the permutation approach does not [24]. There are
thus, at least, three sources of error for the parametric
approaches.

As a t-value is calculated for each time series, the
normality condition should be investigated for each time
series separately [2], for example, by a Kolmogorov-Smirnov
test or a Shapiro-Wilk test. These tests are, however, not
very reliable if there are only 80 time points for each voxel.
The maximum t-distribution is very sensitive to deviations
from normality [57], while the standard t-distribution is
rather robust. If a few voxel time series have a distribution
that deviates from normality, this is sufficient to affect the
maximum t-distribution and thereby the threshold [24].
This will be captured by the random permutation test but
not by the parametric tests.

The distribution of the t-test values from the Null dataset
does not strictly follow a Student’s t-distribution, especially
if 10 mm smoothing is used. The tails are not longer but
slightly thicker than a true t-distribution. When a mean
AR(1) whitening was used for a conventional analysis of the
Null dataset, the t-test value that is bigger than 95% of the test
values is 1.75 when no smoothing is used, 1.66 when 5 mm of
smoothing is used, and 1.59 when 10 mm smoothing is used.
The theoretical threshold for uncorrected P = 0.05, calculated
from the Student’s t-distribution, is 1.66. This explains why
the thresholds from the random permutation test are higher
than the thresholds from Bonferroni correction.

It is commonly assumed that the noise in MRI is
normally distributed, but due to the fact that only the
magnitude of the MRI data is used, the noise is actu-
ally Rician distributed [1]. The original (complex valued)
noise in MRI is normally distributed, but the magnitude
operation after the inverse Fourier transform in the image
reconstruction process is not linear and thereby changes the
distribution of the noise. The distribution of the fMRI noise
is more complicated as there are several sources of artefacts
and the difference between images is used to calculate the
test statistics [2–5]. The consequence for fMRI is that the
residuals from the GLM might not be normally distributed,
even if the model is valid. For the model to be valid,
all possible artefacts that can arise have to be modelled.
This includes motion-related artefacts, breathing artefacts,
pulse artefacts, and MR scanner imperfections. To make a
perfect model for all these artefacts is a big challenge on its
own.

Another problem for the random field theory approach
is that the activity map has to be sufficiently smooth in order
to approximate the behaviour of a continuous random field.
The smoothness also has to be estimated from the data and it
is assumed that it is constant in the brain. These assumptions
and several others [24, 39] have to be met in order for the
random field theory approach to be valid. For the random
permutation test some assumptions also have to be made,
for example that the time series are correctly whitened before
the permutations. The number of necessary assumptions for
the random permutation test is, however, significantly lower
than that for the parametric approaches.

5.4. Future Work. In this paper we have only described what
is known as a single-threshold permutation test, but other
types of permutation tests can be more powerful. Examples
of this are the so-called step-down and step-up permutation
tests. These permutation tests are even more computationally
demanding; it can, for example, be necessary to reestimate
the maximum null distribution for each voxel. It is also
possible to use the mass of a cluster [28, 58] instead of the
voxel intensity, or a combination of the voxel intensity and
the cluster extent [25]. The random permutation tests can
also be used in order to calculate significance thresholds for
functional connectivity analysis [31, 32].

The GPU can of course also be used to speed up permu-
tation tests for multi-subject fMRI and multi-subject PET,
and not only for single-subject fMRI. The only drawback
with the GPU that has been encountered so far is that some
test statistics, like 3D CCA, are harder to implement on the
GPU than on the CPU, due to the current limitations of the
GPU. It must also be possible to calculate the test statistics in
parallel, otherwise the GPU will not provide any speedup.

6. Conclusions

We have presented how to apply random permutation
tests for single-subject analysis of fMRI data by using the
graphics processing unit (GPU). Our work enables objective
evaluation of arbitrary methods for single-subject fMRI
analysis. As a pleasant side effect, the problem of multiple
testing is solved in a way that significantly reduces the
number of necessary assumptions. To our knowledge, our
implementation is the first where the smoothing is done
in each permutation. In previous papers about permutation
tests in fMRI, it is neglected that the smoothing has to be
done in each permutation for the analysis to be correct.

Acknowledgments

This work was supported the Linnaeus center CADICS,
funded by the Swedish research council. The fMRI data
was collected at the Center for Medical Image Science and
Visualization (CMIV). The authors would like to thank the
NovaMedTech project at Linköping University for financial
support of our GPU hardware and Johan Wiklund for
support with the CUDA installations.

14 International Journal of Biomedical Imaging

References

[1] H. Gudbjartsson and S. Patz, “The Rician distribution of noisy
MRI data,” Magnetic Resonance in Medicine, vol. 34, no. 6, pp.
910–914, 1995.

[2] W. L. Luo and T. E. Nichols, “Diagnosis and exploration of
massively univariate neuroimaging models,” NeuroImage, vol.
19, no. 3, pp. 1014–1032, 2003.

[3] O. Friman, I. Morocz, and C.-F. Westin, “Examining the
whiteness of fMRI noise,” in Proceedings of the ISMRM Annual
Meeting, p. 699, 2005.

[4] T. E. Lund, K. H. Madsen, K. Sidaros, W. L. Luo, and T. E.
Nichols, “Non-white noise in fMRI: does modelling have an
impact?” NeuroImage, vol. 29, no. 1, pp. 54–66, 2006.

[5] A. M. Wink and J. B. T. M. Roerdink, “BOLD noise assump-
tions in fMRI,” International Journal of Biomedical Imaging,
vol. 2006, Article ID 12014, 2006.

[6] K. J. Friston, O. Josephs, E. Zarahn, A. P. Holmes, S. Rouquette,
and J. B. Poline, “To smooth or not to smooth? Bias and
efficiency in fMRI time-series analysis,” NeuroImage, vol. 12,
no. 2, pp. 196–208, 2000.

[7] K. J. Worsley, C. H. Liao, J. Aston et al., “A general statistical
analysis for fMRI data,” NeuroImage, vol. 15, no. 1, pp. 1–15,
2002.

[8] O. Friman, J. Cedefamn, P. Lundberg, M. Borga, and H.
Knutsson, “Detection of neural activity in functional MRI
using canonical correlation analysis,” Magnetic Resonance in
Medicine, vol. 45, no. 2, pp. 323–330, 2001.

[9] O. Friman, M. Borga, P. Lundberg, and H. Knutsson, “Adap-
tive analysis of fMRI data,” NeuroImage, vol. 19, no. 3, pp. 837–
845, 2003.

[10] R. Nandy and D. Cordes, “A novel nonparametric approach to
canonical correlation analysis with applications to low CNR
functional MRI data,” Magnetic Resonance in Medicine, vol. 49,
pp. 1152–1162, 2003.

[11] J. Mourão-Miranda, A. L. W. Bokde, C. Born, H. Hampel,
and M. Stetter, “Classifying brain states and determining the
discriminating activation patterns: support Vector Machine
on functional MRI data,” NeuroImage, vol. 28, no. 4, pp. 980–
995, 2005.

[12] N. Kriegeskorte, R. Goebel, and P. Bandettini, “Information-
based functional brain mapping,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 103,
no. 10, pp. 3863–3868, 2006.

[13] F. D. Martino, G. Valente, N. Staeren, J. Ashburner, R. Goebel,
and E. Formisano, “Combining multivariate voxel selection
and support vector machines for mapping and classification
of fMRI spatial patterns,” NeuroImage, vol. 43, no. 1, pp. 44–
58, 2008.

[14] M. B. Åberg and J. Wessberg, “An evolutionary approach
to the identification of informative voxel clusters for brain
state discrimination,” IEEE Journal on Selected Topics in Signal
Processing, vol. 2, no. 6, pp. 919–928, 2008.

[15] Y. Hochberg and A. C. Tamhane, Multiple Comparison Proce-
dures, John Wiley & Sons, New York, NY, USA, 1987.

[16] S. Siegel, “Nonparametric statistics,” The American Statisti-
cian, vol. 11, pp. 13–19, 1957.

[17] A. P. Holmes, R. C. Blair, J. D. G. Watson, and I. Ford,
“Nonparametric analysis of statistic images from functional
mapping experiments,” Journal of Cerebral Blood Flow &
Metabolism, vol. 16, no. 1, pp. 7–22, 1996.

[18] E. Bullmore, M. Brammer, S. C. R. Williams et al., “Statistical
methods of estimation and inference for functional MR image

analysis,” Magnetic Resonance in Medicine, vol. 35, no. 2, pp.
261–277, 1996.

[19] J. J. Locascio, P. J. Jennings, C. I. Moore, and S. Corkin, “Time
series analysis in the time domain and resampling methods
for studies of functional magnetic resonance brain imaging,”
Human Brain Mapping, vol. 5, no. 3, pp. 168–193, 1997.

[20] M. J. Brammer, E. T. Bullmore, A. Simmons et al., “Generic
brain activation mapping in functional magnetic resonance
imaging: a nonparametric approach,” Magnetic Resonance
Imaging, vol. 15, no. 7, pp. 763–770, 1997.

[21] M. Belmonte and D. Yurgelun-Todd, “Permutation testing
made practical for functional magnetic resonance image
analysis,” IEEE Transactions on Medical Imaging, vol. 20, no.
3, pp. 243–248, 2001.

[22] E. Bullmore, C. Long, J. Suckling et al., “Colored noise
and computational inference in neurophysiological (fMRI)
time series analysis: resampling methods in time and wavelet
domains,” Human Brain Mapping, vol. 12, no. 2, pp. 61–78,
2001.

[23] T. E. Nichols and A. P. Holmes, “Nonparametric permutation
tests for functional neuroimaging: a primer with examples,”
Human Brain Mapping, vol. 15, no. 1, pp. 1–25, 2002.

[24] T. Nichols and S. Hayasaka, “Controlling the familywise
error rate in functional neuroimaging: a comparative review,”
Statistical Methods in Medical Research, vol. 12, no. 5, pp. 419–
446, 2003.

[25] S. Hayasaka and T. E. Nichols, “Combining voxel intensity and
cluster extent with permutation test framework,” NeuroImage,
vol. 23, no. 1, pp. 54–63, 2004.

[26] M. Breakspear, M. J. Brammer, E. T. Bullmore, P. Das,
and L. M. Williams, “Spatiotemporal wavelet resampling for
functional neuroimaging data,” Human Brain Mapping, vol.
23, no. 1, pp. 1–25, 2004.

[27] O. Friman and C. F. Westin, “Resampling fMRI time series,”
NeuroImage, vol. 25, no. 3, pp. 859–867, 2005.

[28] L. Tillikainen, E. Salli, A. Korvenoja, and H. J. Aronen, “A
cluster mass permutation test with contextual enhancement
for fMRI activation detection,” NeuroImage, vol. 32, no. 2, pp.
654–664, 2006.

[29] R. Nandy and D. Cordes, “A semi-parametric approach to
estimate the family-wise error rate in fMRI using resting-state
data,” NeuroImage, vol. 34, no. 4, pp. 1562–1576, 2007.

[30] A. Eklund, M. Andersson, and H. Knutsson, “fMRI analysis on
the GPU-possibilities and challenges,” Computer Methods and
Programs in Biomedicine. In press.

[31] D. Gembris, M. Neeb, M. Gipp, A. Kugel, and R. Männer,
“Correlation analysis on GPU systems using NVIDIA’s
CUDA,” Journal of Real-Time Image Processing, pp. 1–6, 2010.

[32] A. Eklund, O. Friman, M. Andersson, and H. Knutsson, “A
GPU accelerated interactive interface for exploratory func-
tional connectivity analysis of fMRI data,” in Proceedings of the
IEEE International Conference on Image Processing (ICIP), pp.
1621–1624, 2011.

[33] A. R. Ferreira da Silva, “A bayesian multilevel model for
fMRI data analysis,” Computer Methods and Programs in
Biomedicine, vol. 102, pp. 238–252, 2011.

[34] I. Shterev, S.-H. Jung, S. George, and K. Owzar, “permGPU:
using graphics processing units in RNA microarray association
studies,” BMC Bioinformatics, vol. 11, p. 329, 2010.

[35] J. L. V. Hemert and J. A. Dickerson, “Monte Carlo random-
ization tests for large-scale abundance datasets on the GPU,”
Computer Methods and Programs in Biomedicine, vol. 101, no.
1, pp. 80–86, 2011.

International Journal of Biomedical Imaging 15

[36] K. J. Friston, P. Jezzard, and R. Turner, “Analysis of functional
MRI time-series,” Human Brain Mapping, vol. 1, no. 2, pp.
153–171, 1993.

[37] K. J. Friston, A. P. Holmes, K. J. Worsley, J. P. Poline, C. D.
Frith, and R. S. J. Frackowiak, “Statistical parametric maps in
functional imaging: a general linear approach,” Human Brain
Mapping, vol. 2, no. 4, pp. 189–210, 1994.

[38] S. J. Kiebel, J. B. Poline, K. J. Friston, A. P. Holmes, and K.
J. Worsley, “Robust smoothness estimation in statistical para-
metric maps using standardized residuals from the general
linear model,” NeuroImage, vol. 10, no. 6, pp. 756–766, 1999.

[39] R. S. Frackowiak, K. Friston, and C. Frith, Human Brain
Function, Academic Press, New York, NY, USA, 2004.

[40] M. Dwass, “Modified randomization tests for nonparametric
hypotheses,” The Annals of Mathematical Statistics, vol. 28, pp.
181–187, 1957.

[41] A. M. Smith, B. K. Lewis, U. E. Ruttimann et al., “Investigation
of low frequency drift in fMRI signal,” NeuroImage, vol. 9, no.
5, pp. 526–533, 1999.

[42] O. Friman, M. Borga, P. Lundberg, and H. Knutsson, “Detec-
tion and detrending in fMRI data analysis,” NeuroImage, vol.
22, no. 2, pp. 645–655, 2004.

[43] A. R. Laird, B. P. Rogers, and M. E. Meyerand, “Comparison of
Fourier and wavelet resampling methods,” Magnetic Resonance
in Medicine, vol. 51, no. 2, pp. 418–422, 2004.

[44] T. Gautama and M. M. Van Hulle, “Optimal spatial reg-
ularisation of autocorrelation estimates in fMRI analysis,”
NeuroImage, vol. 23, no. 3, pp. 1203–1216, 2004.

[45] B. Lenoski, L. C. Baxter, L. J. Karam, J. Maisog, and J.
Debbins, “On the performance of autocorrelation estimation
algorithms for fMRI analysis,” IEEE Journal on Selected Topics
in Signal Processing, vol. 2, no. 6, pp. 828–838, 2008.

[46] H. Knutsson and C.-F. Westin, “Normalized and differen-
tial convolution: methods for interpolation and filtering of
incomplete and uncertain data,” in Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 515–523, June 1993.

[47] G. M. Ljung and G. E. P. Box, “On a measure of lack of fit in
time series models,” Biometrika, vol. 65, no. 2, pp. 297–303,
1978.

[48] H. Hotelling, “Relation between two sets of variates,” Bio-
metrika, vol. 28, pp. 322–377, 1936.

[49] T. K. Nguyen, A. Eklund, H. Ohlsson et al., “Concurrent
volume visualization of real-time fMRI,” in Proceedings of the
8th IEEE/EG International Symposium on Volume Graphics, pp.
53–60, Norrköping, Sweden, May 2010.

[50] A. Constantine, “Some non-central distribution problems in
multivariate analysis,” Annals of Mathematical Statistics, vol.
34, pp. 1270–1285, 1963.

[51] S. Das and P. K. Sen, “Restricted canonical correlations,”
Linear Algebra and Its Applications, vol. 210, no. C, pp. 29–47,
1994.

[52] O. Friman, “Subspace models for functional MRI data analy-
sis,” in Proceedings of the 2nd IEEE International Symposium on
Biomedical Imaging: From Nano to Macro, pp. 1–4, April 2004.

[53] D. S. Moore, G. P. McCabe, and B. A. Craig, Introduction to the
Practice of Statistics, W. H. Freeman & Company, 2007.

[54] Nvidia, CUDA Programming Guide, Version 4.0, 2010.

[55] D. Kirk and W. Hwu, Programming Massively Parallel Proces-
sors, A Hands on Approach, Morgan Kaufmann, 2010.

[56] M. Ragnehed, M. Engström, H. Knutsson, B. Söderfeldt, and P.
Lundberg, “Restricted canonical correlation analysis in func-
tional MRI-validation and a novel thresholding technique,”
Journal of Magnetic Resonance Imaging, vol. 29, no. 1, pp. 146–
154, 2009.

[57] R. Viviani, P. Beschoner, K. Ehrhard, B. Schmitz, and J. Thöne,
“Non-normality and transformations of random fields, with
an application to voxel-based morphometry,” NeuroImage,
vol. 35, no. 1, pp. 121–130, 2007.

[58] E. T. Bullmore, J. Suckling, S. Overmeyer, S. Rabe-Hesketh, E.
Taylor, and M. J. Brammer, “Global, voxel, and cluster tests, by
theory and permutation, for a difference between two groups
of structural MR images of the brain,” IEEE Transactions on
Medical Imaging, vol. 18, no. 1, pp. 32–42, 1999.

Hindawi Publishing Corporation
International Journal of Biomedical Imaging
Volume 2011, Article ID 403892, 11 pages
doi:10.1155/2011/403892

Research Article

GPU-Accelerated Finite Element Method for Modelling Light
Transport in Diffuse Optical Tomography

Martin Schweiger

Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK

Correspondence should be addressed to Martin Schweiger, m.schweiger@cs.ucl.ac.uk

Received 29 March 2011; Revised 1 August 2011; Accepted 4 August 2011

Academic Editor: Yasser M. Kadah

Copyright © 2011 Martin Schweiger. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We introduce a GPU-accelerated finite element forward solver for the computation of light transport in scattering media. The
forward model is the computationally most expensive component of iterative methods for image reconstruction in diffuse optical
tomography, and performance optimisation of the forward solver is therefore crucial for improving the efficiency of the solution
of the inverse problem. The GPU forward solver uses a CUDA implementation that evaluates on the graphics hardware the sparse
linear system arising in the finite element formulation of the diffusion equation. We present solutions for both time-domain
and frequency-domain problems. A comparison with a CPU-based implementation shows significant performance gains of the
graphics accelerated solution, with improvements of approximately a factor of 10 for double-precision computations, and factors
beyond 20 for single-precision computations. The gains are also shown to be dependent on the mesh complexity, where the largest
gains are achieved for high mesh resolutions.

1. Introduction

Diffuse optical tomography (DOT) is a functional imaging
modality for medical applications that has the potential
to provide three-dimensional images of the scattering and
absorption parameter distributions in vivo, from which
clinically relevant physiological parameters such as tissue and
blood oxygenation states and state changes can be derived.
Applications include brain activation visualisation [1, 2],
brain oxygenation monitoring in infants [3], and breast
tumour detection [4].

Data acquisition systems consist of an infrared light
delivery system that illuminates the tissue surface at different
locations, and detectors that measure the transmitted light at
a set of surface positions. Measurements can be performed in
continuous wave (CW) mode, in time-resolved mode using
ultra-short input pulses and time-resolved detectors, or in
frequency-domain mode, using modulated light sources and
measuring the phase shift and modulation amplitude at the
detector locations.

Due to the high level of scattering in most biological
tissues, image reconstruction in DOT is an ill-posed nonlin-

ear problem whose solution generally requires the formu-
lation of a forward model of light propagation in inhomo-
geneous scattering tissue. Frequently utilised light transport
models include stochastic models such as Monte-Carlo
simulation [5], or deterministic models such as the radiative
transfer equation (RTE) [6] or the diffusion equation (DE)
[7]. Numerical solution approaches include finite differ-
ence, finite element, finite volume, or boundary element
methods. The light transport model considered in this
paper the finite element method (FEM) for the solution
of the diffusion equation. The reconstruction problem can
be stated as a nonlinear optimisation problem, where an
objective function, defined as a norm of the difference
between measurement data and model data for a given set of
optical parameters, is minimised, subject to a regularisation
functional. Reconstruction approaches include methods that
require the availability of the forward model only, such
as Markov-Chain Monte-Carlo methods, its first derivative,
such as nonlinear conjugate gradient methods, and its second
derivative, such as Newton-type methods.

Iterative solvers require multiple evaluations of the for-
ward model for calculating the objective function and its

2 International Journal of Biomedical Imaging

gradient. The forward model itself involves the solution of a
large linear system with multiple right-hand sides. Problems
involving high-dimensional parameter spaces result in time-
consuming evaluations of the forward model, which limits
the applicability of the reconstruction methods in clinical
practice. Significant performance improvements are required
to make DOT a viable tool in medical imaging. Recent de-
velopments in computing hardware have offered the pos-
sibility to make use of parallel computation. Traditionally,
solutions have included central processing unit (CPU) based
moderately parallel systems with shared memory access
(multiprocessor and multicore implementation) and large-
scale distributed parallel systems limited by data trans-
fer between nodes (cluster CPU implementation). More
recently, the parallel architecture of graphics processing units
(GPU) has been utilised for the acceleration of general
purpose computations, including GPU methods for the
solution of dense [8, 9] or sparse [10–14] linear systems.
The latter are encountered in the implementation of the
FEM.

In the context of diffuse optical tomography and related
fields of optical imaging, GPU-accelerated computations
have been successfully employed for implementing Monte-
Carlo light transport models [15–17], which compute
independent photon trajectories and are well-suited for
parallelisation due to the lack of interprocess communi-
cation. Acceleration rates of more than 300 are possible.
Zhang et al. [18] have applied GPU acceleration to finite
element computations in bioluminescence tomography and
compared to single and multithreaded CPU performance.
They reported significant performance advantages of the
GPU version but were limited to low mesh complexity
due to memory limits. In optical projection tomography,
GPU-based reconstruction methods have been employed by
Vinegoni et al. [19]. Watanabe and Itagaki [20] have used a
GPU implementation for real-time visualisation in Fourier-
domain optical coherence tomography.

In this paper, we are investigating the potential of a GPU
implementation for the forward model in DOT. We present
a Compute Unified Device Architecture (CUDA) version
of the finite element forward solver presented previously
[21, 22], using the CUSP library [23] for sparse linear
system computation on the graphics processor. CUDA is the
computing architecture for NVidia graphics processors and
can be addressed via an application-programming interface
(API). Current GPU hardware is performance optimised
for single-precision arithmetic. We investigate the effect of
single-precision computation on the accuracy of the forward
model for different combinations of optical parameters.
We compare the performance of the GPU forward solver
with an equivalent CPU implementation. We show that
significant performance improvements can be achieved. The
evaluation of the forward model is the most time-consuming
element of iterative inverse solvers, and any efficiency gains
in the forward solver therefore directly translate into reduced
overall runtimes for image reconstruction applications and
are an important step towards making DOT a viable imaging
application in clinical practice.

2. Methodology

2.1. Finite Element Solver. We consider the diffusion approx-
imation to the radiative transfer equation [24, 25] in either
steady-state, time, or frequency domain as the forward model
for light transport in tissue. For steady-state problems, the
stationary real-valued photon density inside the medium
arising from a continuous-wave source is computed while
for frequency-domain problems, the source is amplitude
modulated, giving rise to a complex-valued solution of a
photon density wave distribution. In time-domain problems,
the source is considered a delta-pulse in time, and the
measurement consists of the temporal dispersion of the
transmitted signal. Given a compact domain Ω bounded
by ∂Ω, the diffusion equation [26] in time and frequency
domain is given by[

−∇ · κ(r)∇ + μa(r) +
1
c

∂

∂t

]
φ(r, t) = 0[

−∇ · κ(r)∇ + μa(r) +
iω

c

]
φ̂(r,ω) = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭r ∈ Ω, (1)

respectively, where ω is the angular source modulation
frequency, κ(r) and μa(r) are the spatially varying diffusion
and absorption coefficients, respectively, where κ = [3(μa +
μs)]−1 with scattering coefficient μs. c is the speed of light in
the medium, and φ, and φ̂ are the real and complex-valued
photon density fields. For simplicity in the following, we use
φ to denote either the real or complex-valued properties as
appropriate.

A Robin-type boundary condition [27] applies at ∂Ω,

φ(ξ) + 2ζ(n)κ(ξ)
∂φ

∂ν
= q(ξ), ξ ∈ ∂Ω, (2)

where q is a real or complex-valued source distribution as
appropriate, ζ(n) is a boundary reflectance term incorporat-
ing the refractive index n at the tissue-air interface, and ν is
the surface normal at surface point ξ. The boundary operator
defining the exitance Γ through ∂Ω is given by the Dirichlet-
to-Neumann map

Γ(ξ) = −cκ(ξ)
∂φ

∂ν
= c

2ζ
φ(ξ). (3)

The set of measurements yi j from a source distribution qi
is obtained by integrating Γ over the measurement profiles
mj(ξ) on the surface

yi j =
∫
∂Ω

Γi(ξ)mj(ξ)dξ. (4)

For the time-domain problem, yi j are the temporal disper-
sion profiles of the received signal intensities while, for the
frequency-domain problem, yi j are given by the complex
exitance values, usually expressed by logarithmic amplitude
lnA and phase shift ϕ [28],

lnAij = Re
(

ln yi j
)

, ϕij = Im
(

ln yi j
)
. (5)

Given the set of forward data y = {yi j} of all measurements
from all source distributions, (1) to (4) define the forward

International Journal of Biomedical Imaging 3

model f [κ,μa] = y which maps a parameter distribution
κ,μa to measurements for a given domain geometry, mod-
ulation frequency, source distributions, and measurement
profiles.

The forward model is solved numerically by using a fi-
nite element approach. A division of domain Ω into tetra-
hedral elements defined by N vertex nodes provides a pie-
cewise polynomial basis for the parameters κ,μa, and photon
density φ. The approximate field φh(r) at any point r ∈ Ω
is given by interpolation of the nodal coefficients φi using
piecewise polynomial shape functions ui(r)

φh(r) =
N∑
i=1

ui(r)φi. (6)

Piecewise polynomial approximations κh, μha to the con-
tinuous parameters, defined by the nodal coefficients κi,
μa,i are constructed in the same way. Applying a Galerkin
approach transforms the continuous problem of (1) into
an N-dimensional discrete problem of finding the nodal
field values Φ = {φi} at all nodes i, given the set of
nodal parameters x = {κi,μa,i}. For the frequency-domain
problem, the resulting linear system is given by

S(x,ω)Φ(ω) = Q(ω), (7)

where

S(x,ω) = K({κi}) + C
({
μa,i

})
+ γA + iωB, (8)

γ = c/2ζ , K, C, A, B ∈ RN×N are symmetric sparse matrices
given by [7]

Kij =
N∑
k=1

κk

∫
Ω
uk(r)∇ui(r) · ∇uj(r)dr,

Cij =
N∑
k=1

μa,k

∫
Ω
uk(r)ui(r)uj(r)dr,

Aij =
∫
∂Ω

ui(ξ)uj(ξ)dξ,

Bij = 1
c

∫
Ω
ui(r)uj(r)dr.

(9)

And right-hand side Q is given by

Qi =
N∑
k=1

qi

∫
∂Ω

ui(ξ)dξ (10)

with qi the nodal coefficients of the basis expansion of
q(ξ). For the solution of the time-domain problem, the
time derivative in (1) at time t is approximated by a finite
difference

∂φ
(⇀
r , t

)
∂t

≈ 1
Δt

[
φ
(⇀
r , t + Δt

)
− φ

(⇀
r , t

)]
. (11)

The temporal profile of φ is approximated at a set of discrete
steps {tn} and evaluated by a finite difference approach, given
by the iteration[
θS̃ +

1
Δt0

B
]
Φ(t0) = 1

Δt0
Q0,

[
θS̃ +

1
Δtn

B
]
Φ(tn) =−

[
(1− θ)S̃− 1

Δtn
B
]
Φ(tn−1), n ≥ 1,

(12)

where S̃ = K+C+γA, time steps tn = tn−1 +Δtn−1,n ≥ 1, and
0 ≤ θ ≤ 1 is a control parameter that can be used to select
implicit (θ = 1), explicit (θ = 0), or intermediate schemes.
The step lengths Δtn are governed by stability considerations
of the finite difference scheme. For the unconditionally stable
implicit scheme, the step length can be adjusted to the
curvature of the temporal profile, allowing increased step
length at the exponentially decaying tail of φ(t).

The solution of the FEM problem thus consists of
(i) construction of the system matrices (9), (ii) solution
of the complex-valued linear problem (7) or real-valued
sequence of linear problems (12), and (iii) mapping to
measurements (3) and (4). The main computational cost
is the solution of the linear system, in particular in the
time-domain problem, while the cost of matrix assembly
time is typically only 1–10% of the time of a single linear
solution. The linear system can be solved either with a
direct method, such as Cholesky decomposition for the
real-valued time-domain problem or LU decomposition for
the complex-valued frequency domain problem, or with
iterative methods, such as conjugate gradients for the real-
valued problem and biconjugate gradients for the complex-
valued problem. Direct methods become impractical for
large-scale problems, due to memory storage requirements
for the decomposition and increased computation time. For
3-D problems with high node density, iterative solvers are
generally employed.

2.2. GPU Implementation. The bottleneck of the reconstruc-
tion problem is the solution of the linear systems in (7) or
(12). Accelerating the linear solver is therefore an effective
method for improving the inverse solver performance. We
have embedded a graphics processor-accelerated version of
the FEM forward solver into the existing TOAST software
package [29] for light transport and reconstruction pre-
sented previously [7]. The GPU-accelerated code uses the
CUDA programming interface for NVidia graphics processor
hardware. The implementation utilises the CUSP library
which offers a templated framework for sparse linear algebra
and provides conjugate gradient (CG) and biconjugate
gradient-stabilised (BiCGSTAB) iterative solvers for sparse
linear systems. The library supports both single and double
precision computation if supported by hardware.

We use the compressed sparse row (CSR) format for
matrix storage. There are alternative storage formats such as
the coordinate, ELLPACK, or hybrid formats [11] which can
provide better parallel performance depending on the matrix
fill structure, usually at the cost of less compact storage.

4 International Journal of Biomedical Imaging

GPU/device memoryCPU/host memory

Initialise solution vectors Φi = 0

Apply boundary and measurement
operators for yi j

Copy yi j

Assemble system matrix S(μa,μs)

Define preconditioner M = diag (S)

Assemble right-hand sides qi

Copy S, qi

For all i: BiCGSTAB: solve SΦi = qi

Figure 1: Data flow between host and graphics device for solution of linear problem (7).

However, the CSR format constitutes a good compromise
between performance and versatility and is well suited for
the matrix fill distribution arising from unstructured FEM
meshes.

For the solution of the complex-valued linear problem
(7), we expand the complex N × N system into a 2N × 2N
real system of the form⎡⎣Sre −Sim

Sim Sre

⎤⎦⎡⎣Φre

Φim

⎤⎦ =
⎡⎣Qre

Qim

⎤⎦. (13)

The CUSP CG and BiCGSTAB solvers had to be modified
to account for early termination of the iteration loop due
to singularities in the intermediate results. Early termination
conditions occasionally do occur in practice in the problems
considered in this paper, in particular due to single-precision
round-off errors.

The data flow between host and graphics device memory
for a single solver step is shown in Figure 1. The system
matrix S is assembled in host memory for a given set of
parameters, together with the source vectors qi, and copied
to GPU device memory. The GPU solver is then invoked for
all right-hand-sides, after which the projected solutions yi j
are copied back to host memory.

For the finite-difference solution of the time-domain
problem, the entire iteration (12) can be evaluated on
the GPU with minimal communication between host and
graphics system, consisting of initial copying the system
matrices S̃ and B to the GPU, and returning the computed
temporal profiles yi j(t) back to the host. The data flow
diagram for the time-domain problem is shown in Figure 2.

2.3. Single-Precision Arithmetic. GPU hardware is tradition-
ally optimised for single-precision floating point operations.

Although GPU hardware with double-precision capability is
emerging, typically only a fraction of the chip infrastructure
is dedicated to double-precision operations, thus incurring
a significant performance penalty. For optimising, it is
therefore advantageous to use single-precision arithmetic
where adequate. We have implemented the FEM solver in
both single and double precision for GPU as well as CPU
platforms.

When the system matrix is represented in single preci-
sion, care has to be taken during assembly. The system matrix
is assembled from individual element contributions (9). The
global vertex contributions in the system matrix are the sum
of the local element vertex values for all elements adjacent
to the vertex. During the summation, loss of precision can
occur if the magnitude difference between the summands
is large compared to the mantissa precision of the floating
point representation. For single precision arithmetic, this can
be a problem in particular where vertices have a large number
of adjacent elements, notably in 3-D meshes with tetrahedral
elements. Loss of precision during matrix assembly can be
reduced if the contributions are sorted from smallest to
highest magnitude. However, this incurs a book-keeping
overhead that can impact on performance. Instead we have
opted to assemble the system matrix in double precision
and map the values to single precision after assembly. The
assembly step is performed on the host side, with negligible
performance impact because assembly time is generally small
compared to solve time.

To compare the results of matrix assembly in single and
double precision, we have performed an FEM forward solu-
tion from single-precision system matrices that were assem-
bled in both single and double precision. The domain was a
homogeneous cylinder of radius 25 mm and height 50 mm,
with optical parameters μa = 0.01 mm−1 and κ = 0.3 mm.

International Journal of Biomedical Imaging 5

CPU/host memory GPU/device memory

Copy yi j

Apply boundary and measurement

operators for yi j(tn)

For each time step n = 1, . . .,

Assemble system matrix ˜S(μa,μs)

Assemble mass matrix B

Define preconditioner M = diag (D1)

Calculate D0 = −(1− θ)˜S− Δt−1B

and D1 = θ˜S + Δt−1B

Assemble right-hand sides qi

Copy ˜S, B, qi

For each qi:

q(0) = qi

CG: solve D1Φ(0) = q(0)

q(n) = D0Φ(n−1)

CG: solve D1Φ(n) = q(n)

Figure 2: Data flow between host and graphics device for solution of linear problem (12).

A point source modulated at frequency ω = 2π · 100 MHz
was placed on the cylinder mantle. The mesh consisted of
83142 and 444278 tetrahedral elements.

Figure 3 shows the differences between single and double
precision forward solution in log amplitude (Figure 3(a))
and phase (Figure 3(b)) of the complex photon density field
along a line from the source position across the volume of
the cylinder. The solid lines represent the single-precision
error where the system matrix has been assembled in double
precision before being mapped to single precision, while
the dashed line is the error arising from a system matrix
assembled in single precision. It can be seen that system
matrix assembly in double precision can significantly reduce
the solution errors, in particular at large distances from the
source.

The influence of optical parameters on the single-
precision error of the forward data is shown in Figure 4.
The forward solutions were calculated for three different
combinations of absorption and scattering coefficient (i)
μa = 0.01 mm−1, μs = 1 mm−1, (ii) μa = 0.1 mm−1, μs =
1 mm−1, and (iii) μa = 0.1 mm−1, μs = 1.5 mm−1. It can
be seen that the discrepancies become more severe at higher

values of the optical parameters. The results are particularly
sensitive to an increase of the scattering parameter. Due to
attenuation, the photon density fields inside the object decay
rapidly, leading to large dynamic range in the data. Increased
absorption and scattering parameters aggravate this effect,
which impairs the accuracy of the single-precision solution,
in particular in regions far away from the source. It should
be noted, however, that, for moderate optical parameters in
a typical range for optical tomography, the single precision
solution is accurate, with maximum relative errors of 10−6 to
10−4 in log amplitude and phase, respectively.

3. Results

The graphics accelerated forward solver problems were
executed on an NVidia GTX 285 GPU. The technical specifi-
cations of the device are listed in Table 1. The device supports
double as well as single precision arithmetic, so results for
both were collected. For performance comparison, the same
model calculations were also performed with a CPU-based
serial implementation on an Intel Xeon processor clocked

6 International Journal of Biomedical Imaging

0 10 20 30 40 50
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

Distance from source

Lo
g

am
pl

it
u

de
er

ro
r

Single precision error (double assembly)
Single precision error (single assembly)

(a)

0 10 20 30 40 50

Distance from source

Single precision error (double assembly)
Single precision error (single assembly)

−0.005

0

0.005

0.01

0.015

0.02

0.025

P
h

as
e

er
ro

r
(b)

Figure 3: Effect of single-precision arithmetic on forward solutions. Shown are the differences between single and double precision solutions
for logarithmic amplitude (a) and phase (b) of the complex field computed in a cylindrical domain along a line from the source across the
cylinder. The solid line shows the solution error for a system matrix assembled in double precision and solved in single precision while the
dashed line represents the solution for a system matrix assembled and solved in single precision.

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Lo
g

am
pl

it
u

de
er

ro
r

0 10 20 30 40 50

Distance from source

μa = 0.01, μs = 1
μa = 0.1, μs = 1

μa = 0.1, μs = 1.5

(a)

μa = 0.01, μs = 1
μa = 0.1, μs = 1

μa = 0.1, μs = 1.5

0 10 20 30 40 50

Distance from source

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

P
h

as
e

er
ro

r

(b)

Figure 4: Single-precision arithmetic error as a function of optical coefficients. Shown are the differences between single and double
precision results in log amplitude (a) and phase (b) along a line from the source across the cylinder, for three different combinations of
absorption and scattering parameters.

at 2.0 GHz with 4 MB cache and 12 GB main memory. The
FEM model consisted of a homogeneous cylindrical mesh
with radius 25 mm and height 50 mm at various element
resolutions. 80 sources and 80 detectors were arranged on
the surface. One of the meshes, together with the resulting
system matrix sparsity structure, is shown in Figure 5.

3.1. Frequency Domain Solver. For run-time performance
comparison between GPU and CPU implementations under
a variety of conditions, we evaluated the frequency-domain
FEM forward model using different mesh complexities. The
forward solutions were computed for both a complex-valued
problem using a modulation frequency of ω = 2π · 100 MHz

International Journal of Biomedical Imaging 7

Table 1: Computational capabilities of GPU platform.

Platform GeForce GTX 285

Global device memory 1 GB

Processor core clock 1.476 GHz

Memory clock 1.242 GHz

CUDA cores 240

Multiprocessors 30

and a real-valued steady-state problem of ω = 0. For
the complex-valued problem, the BiCGSTAB linear solver
was used to compute the linear system in (7) while, for
the real-valued problem a CG solver was used. We tested
the performance of the GPU solution as a function of the
CG and BiCGSTAB convergence tolerances, either without
preconditioner or with a diagonal preconditioner. The results
are shown in terms of the GPU performance factor, given by
the ratio of the CPU and GPU run times. Figure 6 shows
the performance factors for single precision (Figure 6(a))
and double precision (Figure 6(b)) calculations. It can be
seen that the GPU achieves a performance factor between
8 and 19 for single precision calculations, depending on
the problem type, where the real-valued BiCGSTAB solution
without preconditioner shows the highest improvement
at 14–19, while the complex BiCGSTAB solution without
preconditioner exhibits the smallest improvement at 8–11.5.
Generally, the performance factor drops for lower tolerance
limits. The performance factors for double-precision solu-
tions are significantly lower, in a range between 3.7 and
4.7. This is due to the fact that while GPU performance
drops significantly for double-precision calculations, the
CPU solver performance is generally not affected, and indeed
the CPU performance is slightly higher at double precision
because it avoids casting floating point buffers between single
and double precision. The drop in performance factor for
lower tolerance limits is not present in the double-precision
results.

The next test compares the CPU and GPU performance
as a function of the mesh node density and the resulting
size of the linear system. The performance factors for the
forward solvers applied to cylindrical meshes of different
mesh resolutions as a function of node count are shown
in Figure 7. At each mesh resolution, we solved both a
real-valued steady-state problem with the preconditioned
CG solver, and a complex-valued frequency-domain prob-
lem with the preconditioned BiCGSTAB solver, at single-
precision (Figure 7(a)) and double-precision (Figure 7(b))
resolution. All solver results are for calculating the real or
complex photon density fields for 80 sources, for a solver
tolerance fixed at 10−10. It can be seen that in all cases
GPU performance improves with increasing size of the linear
system. For the single-precision solver, the performance
factors range between 1 and 26 for mesh node counts
between 9000 and 3.3 · 105, respectively, for the steady-
state problem, and between 2 and 30 for mesh node counts
between 9000 and 2.5 · 105, respectively, for the frequency
domain problem. Note that for the frequency domain
problem, the performance factors could not be computed for

the two largest meshes due to excessive computation time
of the CPU solution. The absolute linear solver times for
selected cases are shown in Table 2. It can be seen that for the
largest mesh resolutions, forward solver times on the CPU
can take in excess of an hour. This can be prohibitive for
clinical applications in iterative reconstruction, where each
step of the reconstruction may require multiple evaluations
of the forward problem to calculate the objective function
and its gradient at the current estimate or perform a line
search along the current search direction. By comparison,
the GPU times for these problems typically require 2 to 10
minutes, which is feasible for reconstruction problems.

To provide a comparison with a CPU-based parallel
solver, we also show the performance factors of a shared-
memory thread-based version of the FEM forward solver
using up to 8 threads, compared to the single-thread serial
implementation. The thread implementation uses a coarse-
grain parallelisation strategy, dividing the solution of the
linear problems for different right-hand sides over the avail-
able worker threads. This method provided better processor
utilisation and less communication overhead for the problem
considered here than a fine-grain strategy of parallelising
the iterative solver itself. Because the CPU implementation
showed no significant performance difference between the
single and double precision solution, we present here only
the double-precision results. Figure 8 shows the performance
factors for 2, 4, and 8 threads for the real-valued problem
using a CG solver, and for the complex-valued problem using
a BiCGSTAB solver. The CG solver reaches factors between
1.5 (2 threads) and 2.8 (8 threads) while the BiCGSTAB
solver reaches factors between 1.7 (2 threads) and 4 (8
threads). The dependency on mesh complexity is not as
marked as for the GPU solver.

3.2. Time-Domain Solver. We computed the finite difference
implementation of the time-domain problem (12) over
100 time steps of 50 picoseconds for cylinder meshes
of different complexity. For these simulations, a Crank-
Nicholson scheme (θ = 0.5) was used. Signal intensity time
profiles were calculated at 80 detector position for each of
80 source locations. The performance results are shown in
Figure 9. It can be seen that the performance improvements
of the GPU implementation is again strongly dependent
on mesh resolution, ranging from a factor of 3 to 13 for
the double-precision arithmetic calculation, and from 6 to
17 for the single-precision calculation. At the highest mesh
resolution, the total forward solver run time is approximately
8 hours for the CPU implementation for both single and
double precision while the GPU run time is approximately 29
and 36 minutes for the single and double precision solutions,
respectively.

4. Conclusions

We have developed a GPU implementation of a finite element
forward model for diffuse light transport that can be used
as a component in an iterative nonlinear reconstruction
method in diffuse optical tomography. The efficiency of the
forward solver has a significant impact on reconstruction

8 International Journal of Biomedical Imaging

(a) (b)

Figure 5: Cylinder geometry for the forward and inverse solver problems, showing a mesh with 83142 nodes and 444278 tetrahedral elements
(b). The fill structure of the resulting FEM system matrix is shown on the right. The number of nonzeros is 1150264, resulting in a fill fraction
of 1.664 · 10−4.

5 7 9 11 13 15

0

5

10

15

20

Solver tolerance (10−x)

R
u

n
ti

m
e

[C
P

U
]/

ru
n

ti
m

e
[G

P
U

]

CG real (no precon)
CG real (diag precon)
BiCGSTAB real (no precon)

BiCGSTAB real (diag precon)
BiCGSTAB complex (no precon)
BiCGSTAB complex (diag precon)

(a)

5 7 9 11 13 15

Solver tolerance (10−x)

CG real (no precon)
CG real (diag precon)
BiCGSTAB real (no precon)

BiCGSTAB real (diag precon)
BiCGSTAB complex (no precon)
BiCGSTAB complex (diag precon)

2

2.5

3

3.5

4

4.5

5

R
u

n
ti

m
e

[C
P

U
]/

ru
n

ti
m

e
[G

P
U

]

(b)

Figure 6: GPU performance factor as a function of linear solver tolerance for real and complex problems, using CG and BiCGSTAB solvers,
without preconditioner and with diagonal preconditioner. (a): single-precision performance, (b): double-precision performance.

Table 2: GPU run-time comparisons for FEM forward solver computations of 80 source distributions in cylindrical meshes of different
node densities. Real-valued problems were solved with a conjugate gradient solver, complex problems with a biconjugate gradient stabilised
solver. Values in parentheses are CPU solution times.

Node number Runtime [s]

Real single Complex single Real double Complex double

8987 11.07 13.43 11.1 14.4

(8.49) (26.15) (3.74) (10.46)

82517 23.24 60.03 26.85 75.42

(193.94) (678.65) (96.21) (271.9)

245917 82.56 433.89 117.41 523.76

(1789.7) (12996.8) (837.39) (2351.25)

327617 127.19 1060.42 189.06 909.45

(3258.46) (−) (1509.22) (4699.71)

International Journal of Biomedical Imaging 9

0 0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

25

30

35
G

P
U

p
er

fo
rm

an
ce

fa
ct

or

Real CG solver, single
Complex BiCGSTAB solver, single

×105Number. of mesh nodes

(a)

0 0.5 1 1.5 2 2.5 3 3.5

G
P

U
pe

rf
or

m
an

ce
fa

ct
or

Real CG solver, double
Complex BiCGSTAB solver, double

0

2

4

6

8

10

×105Number. of mesh nodes

(b)

Figure 7: GPU performance factor as a function of mesh node count for a real-valued problem solved with preconditioned CG solver,
and a complex-valued problem solved with preconditioned BiCGSTAB solver. (a): single-precision performance, (b): double-precision
performance.

0 0.5 1 1.5 2 2.5 3 3.5
1

1.5

2

2.5

3

T
h

re
ad

p
er

fo
rm

an
ce

fa
ct

or

×105Number. of mesh nodes

2 threads
4 threads

8 threads

(a)

0 0.5 1 1.5 2 2.5 3 3.5

2 threads
4 threads

8 threads

1

1.5

2

2.5

3

3.5

4

4.5

5

T
h

re
ad

p
er

fo
rm

an
ce

fa
ct

or

×105Number. of mesh nodes

(b)

Figure 8: Performance factors for CPU-threaded versus CPU-serial forward solver computations as a function of node densities. (a): CG
solver for real-valued problem, (b): BiCGSTAB solver for complex-valued problem.

performance, and the reduction of reconstruction times is
essential in making optical tomography a viable imaging
modality in clinical diagnosis.

The model presented here supports real and complex-
valued problems and can be applied to steady-state, time,
or frequency-domain imaging systems. The linear system
arising from the FEM discretisation is solved either with a

conjugate gradient or biconjugate gradient stabilised iterative
solver on the GPU device. We have shown that the GPU
solver can achieve significant performance improvements
over a serial CPU implementation in the range of factors
between 5 and 30, depending on mesh complexity, tolerance
limit, and solver type. The GPU-based forward solver pro-
vides higher performance gains than a thread-based parallel

10 International Journal of Biomedical Imaging

2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

R
u

n
ti

m
e

(s
)

CPU, single
GPU, single

CPU, double
GPU, double

×104

×104

Number. of nodes

(a)

2 4 6 8 10 12 14 16
2

4

6

8

10

12

14

16

18

Pe
rf

or
m

an
ce

fa
ct

or

double
single

×104Number. of nodes

(b)

Figure 9: Run-time comparison for CPU and GPU forward solution of time-dependent FEM problem over 100 time steps. (a): Run-times
for single and double precision arithmetic as a function of mesh complexity; (b): performance factors.

CPU implementation that was used for comparison. Future
developments in GPU hardware are expected to increase the
performance gain even further.

We have shown that for the forward problem a single
precision linear solver can be applied for typical ranges of
optical parameters in clinical applications of optical parame-
ters. Single-precision arithmetic yields higher performance
in particular for GPU-computing platforms. However, at
very high absorption and scattering parameter values, the
linear system may become increasingly ill-conditioned and
no longer converge with single-precision arithmetic. In these
cases, double-precision computation is required.

Acknowledgments

This work was supported by EPSRC Grant EP/E034950/1 and
the EC Seventh Framework Programme (FP7/2007–2013)
under Grant agreement no. 201076.

References

[1] D. A. Boas, D. H. Brooks, E. L. Miller et al., “Imaging the
body with diffuse optical tomography,” IEEE Signal Processing
Magazine, vol. 18, no. 6, pp. 57–75, 2001.

[2] B. W. Pogue, K. D. Paulsen, C. Abele, and H. Kaufman,
“Calibration of near-infrared frequency-domain tissue spec-
troscopy for absolute absorption coefficient quantitation in
neonatal head-simulating phantoms,” Journal of Biomedical
Optics, vol. 5, no. 2, pp. 185–193, 2000.

[3] M. Cope and D. T. Delpy, “System for long-term measurement
of cerebral blood and tissue oxygenation on newborn infants
by near infra-red transillumination,” Medical and Biological
Engineering and Computing, vol. 26, no. 3, pp. 289–294, 1988.

[4] D. J. Hawrysz and E. M. Sevick-Muraca, “Developments
toward diagnostic breast cancer imaging using neer-infrared
optical measurements and fluorescent contrast agents,” Neo-
plasia, vol. 2, no. 5, pp. 388–417, 2000.

[5] D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three
dimensional Monte Carlo code for photon migration through
complex heterogeneous media including the adult human
head,” Optics Express, vol. 10, no. 3, pp. 159–170, 2002.

[6] G. S. Abdoulaev and A. H. Hielscher, “Three-dimensional
optical tomography with the equation of radiative transfer,”
Journal of Electronic Imaging, vol. 12, no. 4, pp. 594–601, 2003.

[7] M. Schweiger, S. R. Arridge, and I. Nissilä, “Gauss-Newton
method for image reconstruction in diffuse optical tomogra-
phy,” Physics in Medicine and Biology, vol. 50, no. 10, pp. 2365–
2386, 2005.

[8] A. Moravánsky and N. Ag, “Dense matrix algebra on the
GPU,” in Direct3D ShaderX2, W. F. Engel, Ed., p. 2, Wordware
Publishing, Plano, Tex,USA, 2003.

[9] N. Galoppo, N. K. Govindaraju, M. Henson, and D. Manocha,
“LU-GPU: efficient algorithms for solving dense linear systems
on graphics hardware,” in Proceedings of the ACM/IEEE SC
2005 Conference, p. 3, IEEE Computer Society, Washington,
DC, USA, December 2005.

[10] J. D. Owens, D. Luebke, N. Govindaraju et al., “A survey
of general-purpose computation on graphics hardware,” in
Proceedings of the Computer Graphics Forum, vol. 34, pp. 80–
113, Blackwell Publishing, March 2007.

[11] N. Bell and M. Garland, “Efficient sparse matrix-vector mul-
tiplication on CUDA,” Tech. Rep. NVR-2008-004, NVIDIA
Corporation, 2008.

[12] L. Buatois, G. Caumon, and B. Levy, “Concurrent number
cruncher: an efficient sparse linear solver on the GPU,” in
Proceedings of the 3rd International Conference High Perfor-
mance Computing and Communications, (HPCC’07), vol. 4782

International Journal of Biomedical Imaging 11

of Lecture Notes in Computer Science, pp. 358–371, Springer,
Houston, Tex, USA, September 2007.

[13] J. Kráger and R. Westermann, “Linear algebra operators
for GPU implementation of numerical algorithms,” ACM
Transactions on Graphics, vol. 22, pp. 908–916.

[14] J. Bolz, I. Farmer, E. Grinspun, and P. Schröder, “Sparse matrix
solvers on the GPU: conjugate gradients and multigrid,” ACM
Transactions on Graphics, vol. 22, pp. 917–924.

[15] E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel
computing with graphics processing units for high-speed
Monte Carlo simulation of photon migration,” Journal of
Biomedical Optics, vol. 13, no. 6, Article ID 060504, 2008.

[16] Q. Fang and D. A. Boas, “Monte Carlo simulation of
photon migration in 3D turbid media accelerated by graphics
processing units,” Optics Express, vol. 17, no. 22, pp. 20178–
20190, 2009.

[17] N. Ren, J. Liang, X. Qu, J. Li, B. Lu, and J. Tian, “GPU-based
Monte Carlo simulation for light propagation in complex
heterogeneous tissues,” Optics Express, vol. 18, no. 7, pp. 6811–
6823, 2010.

[18] B. Zhang, X. Yang, F. Yang et al., “The CUBLAS and CULA
based GPU acceleration of adaptive finite element framework
for bioluminescence tomography,” Optics Express, vol. 18, no.
19, pp. 20201–20213, 2010.

[19] C. Vinegoni, L. Fexon, P. F. Feruglio et al., “High throughput
transmission optical projection tomography using low cost
graphics processing unit,” Optics Express, vol. 17, no. 25, pp.
22320–22332, 2009.

[20] Y. Watanabe and T. Itagaki, “Real-time display on Fourier
domain optical coherence tomography system using a graph-
ics processing unit,” Journal of Biomedical Optics, vol. 14, no.
6, Article ID 060506, 2009.

[21] S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy,
“A finite element approach for modeling photon transport in
tissue,” Medical Physics, vol. 20, no. 2, pp. 299–309, 1993.

[22] M. Schweiger and S. R. Arridge, “The finite-element method
for the propagation of light in scattering media: frequency
domain case,” Medical Physics, vol. 24, no. 6, pp. 895–902,
1997.

[23] Cusp library, http://code.google.com/p/cusp-library/.
[24] S. R. Arridge, “Optical tomography in medical imaging,”

Inverse Problems, vol. 15, no. 2, pp. R41–R93, 1999.
[25] M. S. Patterson, B. Chance, and B. C. Wilson, “Time

resolved reflectance and transmittance for the non-invasive
measurement of tissue optical properties,” Applied Optics, vol.
28, no. 12, pp. 2331–2336, 1989.

[26] A. Ishimaru, Wave Propagation and Scattering in Random
Media, vol. 1, Academic Press, New York, NY, USA, 1978.

[27] R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S.
McAdams, and B. J. Tromberg, “Boundary conditions for the
diffusion equation in radiative transfer,” Journal of the Optical
Society of America A, vol. 11, no. 10, pp. 2727–2741, 1994.

[28] I. Nissilä, K. Kotilahti, K. Fallströ, and T. Katila, “Instrumenta-
tion for the accurate measurement of phase and amplitude in
optical tomography,” Review of Scientific Instruments, vol. 73,
no. 9, pp. 3306–3312, 2002.

[29] M. Schweiger and S. R. Arridge, “Toast reconstruction pack-
age,” http://toastplusplus.org.

Hindawi Publishing Corporation
International Journal of Biomedical Imaging
Volume 2011, Article ID 680765, 16 pages
doi:10.1155/2011/680765

Research Article

Numerical Solution of Diffusion Models in
Biomedical Imaging on Multicore Processors

Luisa D’Amore,1 Daniela Casaburi,2 Livia Marcellino,3 and Almerico Murli1, 2

1 University of Naples Federico II, Complesso Universitario M.S. Angelo, Via Cintia, 80126 Naples, Italy
2 SPACI (Southern Partnership of Advanced Computing Infrastructures), c/o Complesso Universitario M.S. Angelo, Via Cintia,
80126 Naples, Italy

3 University of Naples Parthenope, Centro Direzionale, Isola C4, 80143 Naples, Italy

Correspondence should be addressed to Luisa D’Amore, luisa.damore@unina.it

Received 1 April 2011; Revised 16 June 2011; Accepted 24 June 2011

Academic Editor: Khaled Z. Abd-Elmoniem

Copyright © 2011 Luisa D’Amore et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we consider nonlinear partial differential equations (PDEs) of diffusion/advection type underlying most problems
in image analysis. As case study, we address the segmentation of medical structures. We perform a comparative study of numerical
algorithms arising from using the semi-implicit and the fully implicit discretization schemes. Comparison criteria take into account
both the accuracy and the efficiency of the algorithms. As measure of accuracy, we consider the Hausdorff distance and the
residuals of numerical solvers, while as measure of efficiency we consider convergence history, execution time, speedup, and parallel
efficiency. This analysis is carried out in a multicore-based parallel computing environment.

1. Introduction

High-quality images are crucial to accurately diagnose a
patient or determine treatment. In addition to requiring the
best images possible, safety is a crucial consideration. Many
imaging systems use X-rays to provide a view of what is
beneath a patient’s skin. X-ray radiation levels must be kept
at a minimum to protect both patients and staff. As a result,
raw image data can be extremely noisy. In order to provide
clear images, algorithms designed to reduce noise are used
to process the raw data and extract the image data while
eliminating the noise. In video imaging applications, data
often have to be processed at rates of 30 images per second or
more. Filtering noisy input data and delivering clear, high-
resolution images at these rates require tremendous com-
puting power. This gave rise to the need of developing high-
end computing algorithms for image processing and analysis
which are able to exploit the high performance of advanced
computing machines.

In this paper, we focus on the computational kernels
which arise as basic building blocks of the numerical solution
of medical imaging applications described in terms of partial

differential equations (PDEs) of parabolic/hyperbolic type.
Such PDEs arise from the scale-space approach for descrip-
tion of most inverse problems in imaging [1]. One of the
main reasons for using PDEs to describe image processing
applications is that PDE models preserve the intrinsic locality
of many image processing operations. Moreover, we can
rely on standard and up-to-date literature and software
about basic computational issues arising in such case (such
as the construction of suitable discretization schemes, the
availability of a range of algorithmic options, and the reuse of
software libraries that allow the effective exploitation of high-
performance computing resources). Finally, PDEs appear to
be effectively implemented on advanced computing envi-
ronments [2].

We consider two standard discretization schemes of non-
linear time-dependent PDEs: semi-implicit scheme and fully
implicit scheme [3]. The former leads to the solution of
a linear system at each time (scale) step, while the com-
putational kernel of the fully implicit scheme is the solution
of a nonlinear system, to be performed at each time (scale)
step. Taking into account that we aim to solve such problems
on parallel computer in a scalable way, in the first case, we

2 International Journal of Biomedical Imaging

use, as linear solver, Krylov iterative methods (GMRES) with
algebraic multigrid preconditioners (AMG) [4, 5]. Regarding
the fully implicit scheme, we use the Jacobian-Free Newton-
Krylov (JFNK) method as nonlinear solver [6].

In recent years, multicore processors are becoming
dominant systems in high-performance computing [7]. We
provide a multicore implementation of numerical algorithms
arising from using the semi-implicit and the implicit dis-
cretization schemes of nonlinear diffusion models underly-
ing most problems in image analysis. Our implementation
is based on parallel PETSc (Portable Extensible Toolkit for
Scientific Computation) computing environment [8]. Par-
allel software uses a distributed memory model where the
details of intercore communications and data managements
are hidden within the PETSc parallel objects.

The paper is organized as follows. In Section 2, an
overview of the PDE model equation used in describing
some of inverse problems in imaging applications will be
given. Then, the segmentation problem of medical structures
is discussed. Numerical approach will be introduced in
Section 3. Section 4 is devoted to the discussion of numerical
algorithms based on semi-implicit and implicit numerical
schemes. In Section 6, we describe the experiments that we
carried out to show both the accuracy and the performance
of these algorithms, while Section 7 concludes the work.

2. Diffusion Models Arising in Medical Imaging

The task in medical imaging is to provide in a noninvasive
way information about the internal structure of the human
body. The basic principle is that the patient is scanned
by applying some sort of radiation and its interaction
with the body is measured. This result is the data, whose
origin has to be identified. Hence, we face an inverse
problem. Most medical imaging problems lead to ill-posed
(inverse) problems in the sense of Hadamard [9–11]. A
standard approach for dealing with such intrinsic instability
is to use additional information to construct families of
approximate solution. This principle characterizes regular-
ization methods that, starting from the milestone Tikhonov
regularization [12], are now one of the most powerful
tools for solution of inverse ill-posed problems. In 1992,
Rudin et al. introduced the first nonquadratic regularization
functional (i.e., the total variation regularization) [13] to
denoise images. Moreover, the authors derive the Euler-La-
grange equations as a time-dependent PDE. In the same years
Perona and Malik introduced the first nonlinear multiscale
analysis [14].

Scale-space theory has been developed by the computer
vision community to handle the multiscale nature of image
data. A main argument behind its construction is that if no
prior information is available about what are the appropriate
scales for a given data set, then the only reasonable approach
for a vision system is to represent the input data at multiple
scales. This means that the original image u(x), x ∈
R2 should be embedded into a one-parameter family of

derived images, in which fine-scale structures are successively
suppressed:

SSτ : τ ∈ R −→ u(x, τ). (1)

A crucial requirement is that structures at coarse scales in the
multiscale representation should constitute simplifications of
corresponding structures at finer scales—they should not be
accidental phenomena created by the method for suppressing
fine-scale structures. A main result is that if rather general
conditions are imposed on the types of computations that
are to be performed, then convolution by the Gaussian kernel
and its derivatives is singled out as a canonical class of
smoothing transformations [15, 16].

A strong relation between regularization approaches
and the scale-space approach exists via the Euler-Lagrange
equation of regularization functionals: it consists of a PDE
of parabolic/hyperbolic (diffusion/advection) type [17], de-
fined as follows.

Nonlinear Diffusion Models. Let x = (x, y) ∈ R2 and u(x, τ),
defined in [0,T]×Ω, be the scale-space representation of the
brightness function image u(x) defined in Ω ⊂ R2 describ-
ing the real (and unknown) object and u0(x) the observed
image (the input data). Let us consider the following PDE
problem:

∂u(x, τ)
∂τ

= |∇u|∇ ·
(
g(u)

∇u
|∇u|

)
τ ∈ [0,T],

(
x, y

) ∈ Ω

u(0, x) = u0(x) τ = 0,
(
x, y

) ∈ Ω.

(2)

[0,T] is the scale (time) interval; g(v) is a nonincreasing real
valued function (for v > 0) which tends to zero as v → ∞.
Initial and boundary conditions will be provided according
to the problem to be solved (denoising, segmentation,
deblurring, registration, and so on).

Equations in (2) describe the motion of a curve (a mov-
ing front) with a speed depending on a local curvature. Such
equations, known as level set equations, were first introduced
in [18]. The original idea behind the level set method was a
simple one. Given an interface Γ in Rn of codimension one
(i.e., its dimension is n− 1), bounding an (perhaps multiply
connected) open region Ω, we wish to analyze and compute
its subsequent motion under a velocity field �v. This velocity
can depend on position, time, the geometry of the interface
(e.g., its normal or its mean curvature), and the external
physics. The idea, as devised in 1988 by Osher and Sethian,
is merely to define a smooth (at least Lipschitz continuous)
function φ(x, t), that represents the interface Γ as the set
where φ(x, t) = 0. Thus, the interface is to be captured for
all later time, by merely locating the set Γ(t) for which φ
vanishes. The motion is analyzed by convecting the φ values
(levels) with the velocity field v. This elementary equation is

∂φ

∂t
+ v · ∇φ = 0. (3)

International Journal of Biomedical Imaging 3

Actually, only the normal component of v is needed:

vN = v · ∇φ∣∣∇φ∣∣ , (4)

and the motion equation becomes

∂φ

∂t
+ vN ·

∣∣∇φ∣∣ = 0. (5)

Taking into account that the mean curvature of Γ(t) is

cur = −∇ ·
(∇φ∣∣∇φ∣∣

)
, (6)

equation (5) describes the motion of Γ(t) under a speed vN
proportional to its curvature cur (Mean Curvature Motion,
MCM equation) [18–20]. This basic model has received a
lot of attention because of its geometrical interpretation.
Indeed, the level sets of the image solution or level surfaces
in 3D images move in the normal direction with a speed
proportional to their mean curvature. In image processing,
equations like (5) arise in nonlinear filtration, edge detection,
image enhancement, and so forth, when we are dealing
with geometrical features of the image-like silhouette of
object corresponding to level line of image intensity function.
Finally, the level set approach instead of explicitly following
the moving interface itself takes the original interface Γ and
embeds it in higher dimensional scalar function u, defined
over the entire image domain. The interface Γ is now rep-
resented implicitly as the zeroth level set (or contour) of
this function, which varies with space and time (scale) using
the partial differential equation in (2), containing terms that
are either hyperbolic or parabolic. The theoretical study
of the PDE was done by [21] which proved existence and
uniqueness of viscosity solutions.

2.1. A Case Study: Image Segmentation. In this paper, we use
equations (2) for image segmentation. The task of image
segmentation is to find a collection of nonoverlapping sub-
regions of a given image. In medical imaging, for example,
one might want to segment the tumor or the white matter of
a brain from a given MRI image.

The idea behind level set (also known implicit active
contours, or implicit deformable models) for image segmen-
tation is quite simple. The user specifies an initial guess for
the contour, which is then moved by image-driven forces
to the boundaries of the desired objects. More precisely, the
input to the model is a user-defined point-of-view u0, cen-
tered in the object we are interested in segmenting. The
output is the function u(x, τ). Function u(x, τ) in (2) is
the segmentation function, u0 represents the initial contour
(initial state of the segmentation function), and the image
to segment is I0. Moreover, as proposed in [22], instead of
following evolution of a particular level set of u, the PDE
model follows the evolution of the entire surface of u under
speed law dependent on the image gradient, without regard
to any particular level set. Suitably chosen, this flow sharpens

the surface around the edges and connects segmented
boundaries across the missing information. In [22, 23], the
authors formalized such model as the Riemannian mean
curvature flow where the variability in the parameter ε also
improves the segmentation process and provides a sort of
regularization. Thus, (2) becomes

∂u(x, τ)
∂τ

=
√
ε2 + |∇u|2∇ ·

⎛⎝g(∣∣∇I0
∣∣) ∇u√

ε2 + |∇u|2

⎞⎠
τ ∈ [0,T], x = (x, y

) ∈ Ω

u(x, 0) = u0(x) τ = 0, x = (x, y
) ∈ Ω

u(τ, x) = 0 τ ∈ [0,T], x = (x, y
) ∈ ∂Ω

(7)

accompanied with initial condition u0 and zero Dirichlet
boundary conditions. Regarding u0, it is usually defined as
a circle completely enclosed inside the region that one wish
to segment.

The term g(v), called edge detector, is a nonincreasing
real function such that g(v) → 0 while v → ∞, and it is
used for the enhancement of the edges. Indeed, it controls the
speed of the diffusion/regularization: if∇u has a small mean
in a neighborhood of a point x, this point x is considered
the interior point of a smooth region of the image and the
diffusion is therefore strong. If ∇u has a large mean value
on the neighborhood of x, x is considered an edge point
and the diffusion spread is lowered, since g(v) is small for
large v. A popular choice in nonlinear diffusion models is
the Perona and Malik function [14]: g(v) = 1/(1 + v2/β),
β > 0. In many models, the function g(|∇u|) is replaced by
its smoothed version g(|∇Gσ ∗u|), where Gσ is a smoothing
kernel, for example, the Gauss function, which is used in
presmoothing of image gradients by the convolution. For
shortening notations, we will use abbreviation

g = g(|∇Gσ ∗ u|). (8)

In conclusion, we use the Riemannian mean curvature flow,
as model equation of the segmentation of medical structures:
given I0, the initial image and u0 equals to a circle contained
inside an object of the image I0, we are interested in
segmenting, we compute u(x, τ) by solving (7). The level
sets of u(x, τ), at steady state, provide approximations of the
contour to detect.

3. Numerical Schemes

Nonlinear PDE in (7) can be expressed in a compact way as

∂u
(
x, y, τ

)
∂τ

= F
[
u
(
x, y, τ,∇u(x, y, τ

)
, I0
)]

, (9)

where

F =
√
ε2 + |∇u|2∇ ·

⎛⎝g(∣∣∇I0
∣∣) ∇u√

ε2 + |∇u|2

⎞⎠. (10)

4 International Journal of Biomedical Imaging

Scale Discretization. That is discretization with respect to τ.
If [0,T] is the scale interval and nscales is the number of
scale steps, we denote by τi the ith scale-step for all i =
1, . . . ,nscales, so that τi+1 = τi + Δτ, where Δτ = T/nscales is
the step-size.

Using the Euler forward finite difference scheme to
discretize the scale derivative on the left hand side of (9), we
get

u
(
x, y, τi

)− u
(
x, y, τi−1

)
Δτ

= F
[
u
(
x, y, τ

)]
(11)

or, equivalently

u
(
x, y, τi

) = u
(
x, y, τi−1

)
+ Δτ · F[u(x, y, τ

)]
. (12)

Let us denote as ui = u(x, y, τi), i = 1, . . . ,nscales, the
function u evaluated at τi. Equation (12) is rewritten as

ui = ui−1 + Δτ · F(u(x, y, τ
)) ≡ G

[
u
(
x, y, τ

)]
. (13)

Depending on the collocation value, used to evaluate
u(x, y, τ) with respect to the parameter τ, inside the F
function on the right hand side of (12) three iterative
schemes derive:

(i) explicit scheme: ui = G[ui−1], that is, the function F is
evaluated at ui−1 = u(x, y, τi−1);

(ii) semi-implicit scheme: ui = G[ui−1,ui], that is, we use
ui to discretize the numerator |∇u| of the fraction
∇u/√ε2 + |∇u|2. Other quantities are evaluated at
ui−1;

(iii) implicit scheme: ui−G[u(i)] = 0, that is, the function
F is evaluated at ui.

In summary, the difference between the semi-implicit and
the implicit scheme relies on the scale discretization of the
term |∇u| at the numerator of ∇u/√ε2 + |∇u|2 inside the
function F. This term controls the diffusion process, and
it plays the role of edge-enhancement. If we consider the
three-dimensional (3D) domain ΩT = Ω× [0,T], the semi-
implicit scheme employs a sort of 2D + 1 discretization of ΩT

proceeding along nscales two dimensional (2D) slices each
one obtained at τ ≡ τi, while the fully implicit scheme uses
a fully 3D discretization of ΩT . This difference suggests that
the fully implicit scheme may provide a more accurate edge
detection than the semi-implicit scheme. This difference is
highlighted by considering their discretization errors.

Space Discretization. That is discretization with respect to
(x, y). If Ω is the space domain, we introduce a rectangular
uniform grid on Ω consisting of Nx × Ny (for simplicity
we assume that Ω is a rectangular of dimension 1 × 1; this
means that hx = 1/Nx and hy = 1/Ny), nodes (xi, yj) =
(lΔx,mΔy),l = 1, . . . ,Nx, m = 1, . . . ,Ny , and we use finite
volumes to discretize the partial derivatives of u, as in [24,
25].

Scale-Space Discretization. Let

ul,mi = u
(
xl, ym, τi

) ∈ RNx×Ny×nscales (14)

be the vector obtained from the scale-space discretization of
the function u, we have the following iteration formulas.

(i) Explicit scheme:

ul,mi − ul,mi−1

Δτ
=
√
ε2 +

∣∣∣∇ul,mi−1

∣∣∣2∇

·

⎛⎜⎜⎝g(∣∣∇I0
∣∣) ∇ul,mi−1√

ε2 +
∣∣∣∇ul,mi−1

∣∣∣2

⎞⎟⎟⎠⇐⇒
ul,mi =

(
I + Δτ[A]l,mi−1

)
ul,mi−1 ∀i = 1, 2, . . . ,NE,

(15)

where, for each i, the matrix [A]l,mi−1 ∈ RN2
x×N2

y and
I ∈ RN2

x×N2
y is the unit matrix, while NE is the scale

steps number.

(i) Semi-implicit scheme:

ul,mi − ul,mi−1

Δτ
=
√
ε2 +

∣∣∣∇ul,mi−1

∣∣∣2∇

·

⎛⎜⎜⎝g(∣∣∇I0
∣∣) ∇ul,mi√

ε2 +
∣∣∣∇ul,mi−1

∣∣∣2

⎞⎟⎟⎠⇐⇒
ul,mi = ul,mi−1 + Δτ[A]l,mi−1u

l,m
i ⇐⇒(

I + Δτ[A]l,mi−1

)
ul,mi = ul,mi−1 ∀i, i = 1, . . . ,NSI

(16)

where, for each i, the matrix [A]l,mi−1 ∈ RN2
x×N2

y and
I ∈ RN2

x×N2
y is the unit matrix and NSI is the scale

steps number.

(ii) Fully-implicit scheme:

ul,mi − ul,mi−1

Δτ
=
√
ε2 +

∣∣∣∇ul,mi ∣∣∣2∇

·

⎛⎜⎜⎝g(∣∣∇I0
∣∣) ∇ul,mi√

ε2 +
∣∣∣∇ul,mi ∣∣∣2

⎞⎟⎟⎠⇐⇒
ul,mi = ul,mi−1 + Δτ[A]l,mi

(
ul,mi

)
∀i = 1, . . . ,NI ,

(17)

where NI is the scale steps number and [A]l,mi , for
each i, is a nonlinear vector operator on RN2

x×N2
y ,

depending on ul,mi .

International Journal of Biomedical Imaging 5

In particular, we apply the Crank-Nicholson scheme [3]
which uses the average of the forward Euler method at step
i− 1 and the backward Euler method at step i:

ul,mi − ul,mi−1

Δτ
= 1

2

⎡⎢⎢⎣
√
ε2 +

∣∣∣∇ul,mi ∣∣∣2∇

·

⎛⎜⎜⎝g(∣∣∇I0
∣∣) ∇ul,mi√

ε2 +
∣∣∣∇ul,mi ∣∣∣2

⎞⎟⎟⎠
⎤⎥⎥⎦ +

1
2
· · ·

· · · ·

⎡⎢⎢⎣
√
ε2 +

∣∣∣∇ul,mi−1

∣∣∣2∇

·

⎛⎜⎜⎝g(∣∣∇I0
∣∣) ∇ul,mi−1√

ε2 +
∣∣∣∇ul,mi−1

∣∣∣2

⎞⎟⎟⎠
⎤⎥⎥⎦,

∀i = 1, . . . ,NI

⇐⇒ ul,mi = ul,mi−1 + Δτ
[
Bl,m
i−1u

l,m
i−1 + [A]l,mi

(
ul,mi

)]
,

∀i = 1, . . . , NI ,
(18)

where Bl,m
i−1 is a matrix on RN2

x×N2
y , depending on ul,mi−1, and

[A]l,mi is a nonlinear vector operator on RN2
x×N2

y , depending
on ul,mi .

4. Algorithms and Their
Computational Complexity

The effectiveness of these schemes depends on a suitable
balance between accuracy (scale-space discretization error),
number of flop/s per iteration (algorithm complexity), and
the total execution time needed to reach a prescribed ac-
curacy (software performance).

Let us denote the discretization error Ed. It is

Ed = O
(
h
p
x

)
+ O

(
h
p
y

)
+ O(Δτq). (19)

Explicit scheme is accurate at the first order both with
respect to scale and space, that is, p = q = 1; anyway, it
is the one straightforwardly computable. The computational
kernel is a matrix-vector product, at every scale step. This
scheme requires very small time steps in order to be stable
(CFL (Courant-Friedrich-Levy) condition that guarantees
the stability of the evolution), and its use is limited rather
by its stability than accuracy. This constraint is practically
very restrictive, since it typically leads to the need for a
huge amount of iterations [3]. Semi-implicit scheme is
absolutely stable for all scale steps. The accuracy, in terms
of discretization error with respect to both scale and space,
is of the first order, because p = 1, q = 2 [24, 25]. Crank-
Nicholson provides a discretization error of second order,

that is, p = q = 2, but it requires extra computations, leading
to a nonlinear system of equations, at every time step, while
stability is ensured for all scale steps [3]. In the following, we
collect these results:

explicit scheme: p = q = 1,

semi-implicit scheme: p = 1, q = 2,

implicit scheme: p = q = 2.

(20)

Then, the fully implicit scheme provides an order of accuracy
greater than that provided by the others. This difference may
be important in those applications of image analysis where
the edges are fundamental to recognize some pathologies.

Algorithm complexity of these schemes depends on the
choice of the numerical solver. Concerning the semi-implicit
scheme, we employ Krylov subspace methods, which are the
most effective approaches for solving large linear systems [5].
In particular, we use Generalized Minimal RESidual method
(GMRES) equipped with Algebraic multigrid (AMG) pre-
conditioner. Such techniques are convenient because they
require as input only the system matrix corresponding to
the finest grid. In addition, they are suitable to implement
in a parallel computing environment. For the fully implicit
scheme we use the Jacobian Free Newton Krylov Method
(JFNK) [6]. JFNK methods are synergistic combinations of
Newton-type methods for superlinearly convergent solution
of nonlinear equations and Krylov subspace methods for
solving the Newton correction equations. The link between
the two methods is the Jacobian-vector product, which may
be probed approximately without forming and storing the
elements of the true Jacobian.

Let us briefly describe the numerical algorithms that we
are going to implement, which are based on the semi-implicit
and the implicit discretization schemes, together with their
complexity.

Algorithm SI (Semi-Implicit Scheme). For all i = 1, . . . ,NSI

solution of(
I + Δτ[A]l,mi−1

)
ul,mi = ul,mi−1 ⇐⇒ HSl,mi−1u

l,m
i = ul,mi−1, (21)

with respect to ul,mi . HSl,mi−1, for each i, is a matrix ∈ RN2
x×N2

y .
As space derivative we use the 2nd order finite covolume
discretization scheme (see [24, 25] for convergence, consis-
tence and stability). By this way, matrix [A]l,mi−1 is a block
pentadiagonal matrix with tridiagonal blocks along the main
diagonal and diagonal blocks along the upper and lower
diagonals.

Algorithm I (Implicit Scheme). For all i = 1, . . . ,NI solution
of

ul,mi = ul,mi−1 + Δτ
[
Bl,m
i−1u

l,m
i−1 + [A]l,mi

(
ul,mi

)]
⇐⇒ HIl,mi

(
ul,mi ,ul,mi−1

)
= 0,

(22)

with respect to ul,mi . HIl,mi , for each i, is a nonlinear vector
operator on RN2

x×N2
y .

6 International Journal of Biomedical Imaging

Compute r0 = P(b− Ax0), β := ‖r0‖2 and v1 := r0/β
Define the (m + 1)×mHk = {hi j}1≤i≤m+1,1≤ j≤m. Set Hm = 0.
for k = 1 to m do

Compute wj := PAvj
For i = 1 to k do:
hi j := (wj , vi)
wj := wj − hi jvi

end for
hj+1, j = ‖wj‖2. If hj+1, j = 0 set m := j and go to 12
vj+1 = wj/hj+1, j

end for
Compute ym the minimiser of ‖βe1 −Hmy‖2

Set xm := x0 + Vmym.

Algorithm 1: Preconditioned GMRES for solving a linear system Ax = b. Input: A (matrix coefficient), b (right hand side), P
(preconditioner). Output: xm, approximate solution at the mth step. For all iteration, a matrix-vector product is required.

Algorithm SI. For each scale step, to solve the linear system
(21), we employ GMRES iterative method (see Algorithm 1).
Computational kernel of GMRES is a matrix-vector product.
Taking into account the structure of the coefficient matrix
(we assume that Nx = Ny = N , then h = 1/N = hx = hy),
the computational cost of GMRES is

TGMRES
(
N2) = O

(
kSI

GMRES · 5N2
)

, (23)

where kSI
GMRES is the maximum iterations of GMRES (over the

scale steps). Computational complexity of Algorithm SI is

TSI-GMRES
(
N2) = O

(
NSI · kSI

GMRES · 5N2
)
. (24)

Algebraic multigrid (AMG) method follows the main idea
of (geometric) multigrid (MG), where a sequence of grids
is constructed from the underlying geometry with corre-
sponding transfer operators between the grids [26]. The
main idea of MG is to remove the smooth error, that cannot
be eliminated by relaxation on the fine grid, by coarse-grid
correction. The solution process then as usual consists of
presmoothing, transfer of residuals from fine to coarse grids,
interpolation of corrections from coarse to fine levels, and
optional postsmoothing. In contrast to geometric multigrid,
the idea of AMG is to define an artificial sequence of systems
of equations decreasing in size. We call these equations
coarse-grid equations. The interpolation operator Pl,m

lv and

the restriction operator Rl,m
lv define the transfer from finer

to coarser grids and vice versa. Finally, the operator on the
coarser grid at level lv + 1 is defined by

Al,m
lv+1 = Rl,m

lv Al,m
lv Pl,m

lv . (25)

The AMG method consists of two main parts, the setup
phase and the solution phase. During the setup phase, the
coarse-grids and the corresponding operators are defined.
The solution phase consists of a multilevel iteration. The
number of recursive calls, which is the number of levels lv,
depends on the size and structure of the matrix. For our case,
we use the V-cycle pattern with the FALGOUT-CLJP coarse

Table 1: Comparisons between two algorithms: Ed = O(10−1).

Algorithm Δτ
Number of
scale steps

dH
Execution
time (secs)

SI 0.16 3 0.9492 9.262

I 0.4 1 0.9498 7.675

grid selection [27]. Looking at the Algorithm SI in Table 1,
the preconditioner P is just Alv+1.

Computational cost of each iteration of GMRES is that of
the AMG preconditioner plus the matrix-vector products:

TAMG+GMRES
(
N2) = O

⎛⎜⎝kSI
GMRES

⎛⎜⎝TAMG(lv)︸ ︷︷ ︸
lv·N2

+ 5N2

⎞⎟⎠
⎞⎟⎠, (26)

then, we get:

TSI+AMG+GMRES
(
N2) = O

(
NSIk

SI
GMRESlvN

2
)
. (27)

Following picture shows a schematic description of Algo-
rithm SI that emphasizes its main steps and the most time
consuming operation, that is, the matrix vector products
needed at each step of GMRES.

Algorithm I. For each scale step, to solve the nonlinear
equations (22), we employ the Jacobian-Free Newton-
Krylov (JFNK) method. JFNK is a nested iteration method
consisting of at least two and usually four levels. The primary
levels, which give the method its name, are the loop over the
Newton method:

HIl,mi

(
ul,mn+1

)
=0⇐⇒ HIl,mi

(
ul,mn

)
+Ji
(
ul,mn

)(
ul,mn+1−ul,mn

)
= 0,

(28)

and the loop building up the Krylov subspace out of which
each Newton step is drawn:

Ji
(
ul,mn

)
δul,mn = −HIl,mi

(
ul,mn

)
, ul,mn+1 = ul,mn + δul,mn ,

(29)

International Journal of Biomedical Imaging 7

for i = 1 to NSI do
for k = 1 to kGMRES do

for lv = 1 to levelsAMG do
matrix-vector products involving HSl,mi , Al,m

lv+1 and ul,mi (k, lv)
end for

Algorithm 2: Sketch of Algorithm SI.

for i = 1 to NI do
for n = 1 to NNew do

for k = 1 to kGMRES do
evaluate HIl,mi , ul,mi (n, k)

end for

Algorithm 3: Sketch of Algorithm I.

Outside of the Newton loop, a globalization method is often
required. We use line search.

Forming each element of J which is a matrix of dimen-
sion N2 × N2 requires taking derivatives of the system of
equations with respect to u. This can be time consuming.
Using the first order Taylor series expansion of HIl,mi (ul,mn +
ρv), it follows that

Ji
(
ul,mn

)
δul,mn =

[
HIl,mi

(
ul,mn + ρδul,mn

)
−HIl,mi

(
ul,mn

)]
ρ

+ O
(
ρ2),

(30)

where ρ is a perturbation. JFNK does not require the
formation of the Jacobian matrix; it instead forms a result
vector that approximates this matrix multiplied by a vector.
This Jacobian-free approach has the advantage to provide
the quadratic convergence of Newton method without the
costs of computing and storing the Jacobian. Conditions are
provided on the size of ρ that guarantee local convergence.

Algorithm 3 shows a schematic description of Algoritm I
that emphasizes its main steps and the most time consuming
operation, that is, evaluations of the nonlinear operator
HIl,mi at each innermost step.

Algorithm complexity of JFNK is

TJFNK
(
N2) = O

(
NNewk

I
GMRES

[
f + O

(
N2)]), (31)

where NNew is the maximum number of Newton’s steps, over
the scale steps, kIGMRES is the maximum number of GMRES
iterations (computed over Newton’s steps and scale steps)),
f is the number of evaluations of HIl,mi . Finally, we get

TI+JFNK
(
N2) = O

(
NINNewk

I
GMRES

[
f + O

(
N2)]). (32)

A straightforward comparison between the algorithm com-
plexity of these algorithms shows that Algorithm SI asymp-
totically seems to be comparable with respect to Algorithm

SI. Of course, the performance analysis must also take into
account the efficiency of these two schemes in a given
computing environment. Next section describes the PETSc-
based implementation of these algorithms that we have
developed in a multicore computing environment.

5. The Multicore-Based Implementation

The software has been developed using the high-level soft-
ware library PETSc (Portable Extensible Toolkit for Scien-
tific Computations) (release 3.1, March 2010) [8]. PETSc
provides a suite of data structures and routines as building
blocks for the implementation of large-scale codes to be
used in scientific applications modeled by partial differential
equation. PETSc is flexible: its modules, that can be used
in application codes written in Fortran, C, and C++,
are developed by means of object-oriented programming
techniques.

The library has a hierarchical structure: it relies on stan-
dard basic computational (BLAS, LAPACK) and communi-
cation (MPI) kernels and provides mechanism needed to
write parallel application codes. PETSc transparently handles
the moving of data between processes without requiring the
user to call any data transfer function. This includes handling
parallel data layouts, communicating ghost points, gather,
scatter and broadcast operations. Such operations are opti-
mized to minimize synchronization overheads.

Our parallelization strategy is based on domain decom-
position: in particular, we adopt the row-block data distribu-
tion, which is the standard PETSc data distribution. Row-
block data distribution means that blocks of dimensions
N2/p × N of contiguous rows of matrices of dimension
N2 × N2 are distributed among contiguous processes. By
the same way, vectors of size N are distributed among p
processors as blocks of size N/P. Such partitioning has been
chosen because overheads, due to redistribution before the
solution of the linear systems, are avoided. Further, row-
block data distribution introduces a coarse grain parallelism
which is best oriented to exploit concurrency of multicore
multiprocessors because it does not require a strong cooper-
ation among computing elements: each computing element
has to locally manage the blocks that are assigned to it.

The computing platform that we consider is made of
16 blades (1 blade consisting of 2 quad core Intel Xeon
E5410@2.33 GHz) Dell PowerEdge M600, equipped with
IEEE double precision arithmetic. Because high performance
technologies can be employed in medical applications only
to the extent that the overall cost of the infrastructure is

8 International Journal of Biomedical Imaging

Figure 1: Test 1. Image size: 840 × 840, simulated image and its
contour to compute.

affordable, and because we consider single images of medium
size, we show results obtained by using 1 blade, that is, we run
the parallel algorithms on up to p = 8 cores of a single blade.
Of course, in case of multiple images or sequences of images,
the use of a greater number of cores may be interesting.

6. Experiments

In this section we present and discuss computational results
obtained by implementing Algorithm I and Algorithm SI in
a multicore parallel computing machine. Before illustrating
experimental results, let us briefly describe the choice of

(1) test images,

(2) comparison criteria,

(3) parameters selection.

(1) Test Images. we have carried out many experiments
in order to analyze the performance of these algorithms.
Here we show results concerning the segmentation of a
(malignant) melanoma (see Figure 7) [28]. Epiluminescence
microscopy (ELM) has proven to be an important tool
in the early recognition of malignant melanoma [29, 30].
In ELM, halogen light is projected onto the object, thus
rendering the surface translucent and making subsurface
structures visible. As an initial step, the mask of the skin
lesion is determined by a segmentation algorithm. Then, a
set of features containing shape and radiometric features as
well as local and global parameters is calculated to describe
the malignancy of the lesion. In order to better validate
computed results and to analyze the software performance,
we first consider a synthetic test image simulating the object
we are interested in segmenting (see Figure 1).

(2) Comparison Criteria. We compare the algorithms using
the following criteria:

(a) distance from original solution. As measure of the
difference between two curves, we use the Hausdorff
distance measured between the computed curve and
the original one. It is well known that the Hausdorff
distance is a metric over the set of all closed bounded

0.48

0.32

0.16

0
400

200

0 0
100

200
300

400

0.4

0.3

0.2

0.1

0

Figure 2: Test 1: The 3D visualization of the segmentation function
u(τ, x) at steady state T = 0.4.

sets (see [31]), here we restrict ourselves to finite
point sets because that is all that is necessary for
segmentation algorithms [32]. Given two finite point
sets C1 and C2, the Hausdorff distance dH between
the sets C1 and C2 is defined as follows:

dH(C1,C2) = max{h(C1,C2),h(C2,C1)},
h(C1,C2) = max

a∈C1

min
b∈C2

‖a− b‖,
(33)

where ‖ · ‖ is the euclidean norm. It identifies the
point a ∈ C1 that is fastest from any point of C2 and
vice versa, then it keeps the maximum,

(b) efficiency: execution time of (serial) algorithms,

(c) convergence history: behavior of residuals and itera-
tion numbers of inner solvers,

(d) Parallel performance: execution time, speedup, and
efficiency versus cores number.

(3) Parameters Selection. We set K = 1.0 and ε = 1.0. Let
us explain how we select the values of the scale step size and
the number of scale steps. Regarding Δτ, its value is chosen
according to that required to Ed. Taking into account that, in
Algorithm SI, Ed is accurate at the first order with respect to
ΔτSI, while it is accurate at the second order with respect to
ΔτI , in Algorithm I, by requiring that the discretization error
is about the same, we get

Ed = O(ΔτSI) = O
(
Δτ2

I

) =⇒ ΔτSI =
√
ΔτI . (34)

Finally, in Algorithm SI, the stopping criterion of the linear
solver (GMRES) uses the tolerance

TOL = 10−10, (35)

while the preconditioner AMG uses the tolerance TOL =
10−7 and 25 as maximum number of AMG-levels. In the
Algorithm 2, the stopping criterion of the nonlinear solver
uses the tolerance

TOL = 10−10. (36)

International Journal of Biomedical Imaging 9

Figure 3: Test 1: Comparisons between segmentation results. On
the left Algorithm I. On the right Algorithm SI. First row: ΔτI =
0.4, ΔτSI = 0.16. Second row: ΔτI = 0.04, ΔτSI = 0.16. Third row:
ΔτI = 0.004, ΔτI = 0.0016.

Regarding the number of scale steps (NSI and NI), taking into
account that

NSI,I = T

ΔτSI,I
, (37)

its choice depends on ΔτSI,I and on the value of τ ≡ T , that
is, the value of the scale parameter corresponding to steady
state of the segmentation function u(x, τ), solution of the
PDE model. To check the steady state, we require that the
residuals, corresponding to different scale steps, reach the
tolerance

TOL = 10−9. (38)

We found that this corresponds to T = 0.4 (see Figure 2) for
Test 1 and to T = 2 for Test 2.

Test 1: Synthetic Image. In Tables 1, 2, and 3, we show the
Hausdorff distance and execution time by requiring that
discretization error is of the first, second, and third order,
that is, Ed = O(10−1), Ed = O(10−2), and Ed = O(10−3),

Table 2: Comparisons between two algorithms: Ed = O(10−2).

Algorithm Δτ
Number of
scale steps

dH
Execution
time (secs)

SI 0.016 25 0.6412 61.487

I 0.04 10 0.9498 71.67

Table 3: Comparisons between two algorithms: Ed = O(10−3).

Algorithm Δτ
Number of
scale steps

dH
Execution
time (secs)

SI 0.0016 250 0.5993 356.926

I 0.004 100 0.9492 356.335

respectively. Hence, we get the following values of the scale
step size:

ΔτI = 0.4 =⇒ ΔτSI = 0.16,

ΔτI = 0.04 =⇒ ΔτSI = 0.016,

ΔτI = 0.004 =⇒ ΔτSI = 0.0016.

(39)

Moreover, concerning the number of scale steps, it follows
that

Ed = O
(
10−1) =⇒ NI = 0.4

0.4
= 1, NSI = int

[
0.4

0.16

]
= 3,

Ed = O
(
10−2) =⇒ NSI = 0.4

0.04
= 10, NSI = 0.4

0.016
= 25,

Ed = O
(
10−3) =⇒ NSI = 0.4

0.04
= 100, NSI = 0.4

0.016
= 250.

(40)

Note that while in the first case, that is, if we require
Ed = O(10−1), these two algorithms are quite numerically
equivalent, both in terms of execution time and of the
computed result; as discretization error decreases, Algorithm
I appears to be more robust than Algorithm SI, in the sense
that Algorithm I reaches the steady state with high accuracy
(the Hausdorff distance is of 95%), while the computed
results of Algorithm SI are less accurate, even though the
execution time of Algorithm I sometimes slightly increases.
These results suggest that if it needs to get an accurate and
reliable result, Algorithm I should be preferable. Figure 3
show segmentation results. Finally, note that the execution
time of these two algorithms asymptotically is the same, as
stated by the analysis of computational cost carried on in
Section 4.

Convergence History. Convergence history is illustrated by
showing the behavior of relative residuals versus the scale
steps (see Figures 4, 5, and 6), and by reporting iteration
number of the GMRES and of Newton’s method, respec-
tively, (see Tables 4, 5, 6, and 7). We consider ΔτSI = 0.16,
0.016, and ΔτI = 0.04.

In the following, we show results corresponding to the
segmentation of a melanoma (see Figure 7). As expected,
because this is a real image, the steady state is reached at a

10 International Journal of Biomedical Imaging

Table 4: Convergence history of Algorithm SI. ΔτSI = 0.16. First
column reports the scale step number, second column reports the
number of GMRES iterations at each scale step, and last column
reports the maximum number of AMG levels at each GMRES
iteration.

i kigmres lvi

1 8 6

2 6 5

3 5 3

Table 5: Convergence history of Algorithm SI. ΔτSI = 0.016. On
the first column, we denote the scale step number, and the symbol
p − q is used to denote the steps ranging from the p-th until to
the q-th. Second column reports the number of GMRES iterations
at each scale step, third column reports the maximum number of
AMG levels at each GMRES iteration.

i kigmres lvi

1 5 6

2-3 5 5

4 5 4

5–7 4 4

8-8 4 3

10–13 3 3

14–20 3 2

21-22 3 1

23–25 2 1

Table 6: Convergence history of Algorithm SI. ΔτI = 0.4. First
column reports the scale step number, second column reports the
number of Newton’s steps at each scale step, and last column reports
the number of GMRES iterations at each Newton’s step.

i Ni
New kiGMRES

1 10 9, 9, 8, 8, 8, 7, 7, 7, 6, 6

Table 7: Convergence history of Algorithm SI. ΔτI = 0.04. First
column reports the scale step number, second column reports the
number of Newton’s steps at each scale step, and last column reports
the number of GMRES iterations at each Newton’s step.

i Ni
New kiGMRES

1 10 9, 9, 8, 8, 7, 7, 7, 7, 6, 6

2 10 9, 8, 8, 8, 7, 7, 7, 6, 6, 6

3 9 9, 8, 8, 7, 7, 6, 6, 6, 6

4 9 8, 8, 8, 7, 7, 6, 6, 6, 5

5 9 8, 8, 7, 7, 7, 6, 6, 5, 5

6 7 8, 7, 7, 7, 6, 5, 5

7 7 7, 7, 7, 7, 6, 5, 5

8 6 7, 7, 6, 6, 6, 5

9 6 7, 7, 6, 6, 5, 5

10 5 7, 6, 6, 5, 4

scale greater than that of the synthetic test image, that is,
T = 2, thus both algorithms require a greater number of
scale steps to the reach the steady state. Tables 8, 9, and 10,

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

10−9

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

R
es

id
u

al
n

or
m

(l
og

sc
al

e)

Scale step

Figure 4: Algorithm SI. Behavior of the relative residual ‖ri‖2/‖r0‖2

versus 3 scale steps. ΔτSI = 0.16.

1 3 5 7 9 11 13 15 17 19 21 23 25

10−5

10−10

100

R
es

id
u

al
n

or
m

(l
og

sc
al

e)

Scale step

Figure 5: Algorithm SI. Behavior of the relative residual ‖ri‖2/‖r0‖2

versus 25 scale steps. ΔτSI = 0.016.

Table 8: Test 2: Comparisons between two algorithms: Ed =
O(10−1).

Algorithm Δτ Number of scale steps Execution time (secs)

SI 0.16 13 41.125

I 0.4 5 47.893

Table 9: Test 2: Comparisons between two algorithms: Ed =
O(10−2).

Algorithm Δτ Number of scale steps Execution time (secs)

SI 0.016 125 417.56

I 0.04 50 455.33

Table 10: Test 2: Comparisons between two algorithms: Ed =
O(10−3).

Algorithm Δτ Number of scale steps Execution time (secs)

SI 0.0016 1250 4828.5

I 0.004 500 4663.7

and Figure 8, compare results of Algorithm SI and Algorithm
I.

International Journal of Biomedical Imaging 11

1 2 3 4 5 6 7 8 9 10

10−6

10−7

10−8

10−9

10−10

R
es

id
u

al
n

or
m

(l
og

sc
al

e)

Scale step

Figure 6: Algorithm I. Behavior of the relative residual ‖ri‖2/‖r0‖2

versus 10 scale steps. ΔτI = 0.04.

Figure 7: Test 2: ELM of a melanoma. Image size is 840× 840.

Parallel Performance. We show the performance of the mul-
ticore-based parallel algorithms and their scalability as the
number of cores increases. We run the parallel algorithms
using up to p = 8 cores of the parallel machine.

Following Figures report execution time, speedup, and
efficiency of Algorithm SI, at scale step size Δτ = 0.16 (i.e.,
Ed = (10−1) (i.e., Figures 9, 10, and 11), then same results
are shown at scale step size Δτ = 0.016, corresponding to
Ed = O(10−2) (i.e., Figures 12, 13, and 14).

Finally, we report execution time, speedup, and efficiency
of Algorithm I, at scale step Δτ = 0.4 (i.e., Figures 15,
16, and 17) and Δτ = 0.04 (i.e., Figures 18, 19, and 20),
respectively. Note that parallel efficiency of both algorithms
always is, at least, of 60% and, on average, of about 80%.
In particular, parallel efficiency of Algorithm I is about
90%. Execution time of both algorithms reduces to about 2
seconds on eight cores in the first case (i.e., Ed = (10−1), and
to about 10 seconds in the second case (Ed = O(10−2)). This
means that, in a multicore computing environment, both
algorithms provide the requested solution within a response
time that can be considered quite acceptable in medical im-
aging applications and, in particular, that Algorithm I is
competitive with Algorithm SI.

Figure 8: Test 2: Comparisons between segmentation results. On
the left Algorithm I. On the right Algorithm SI. First row:, ΔτI =
0.4, ΔτSI = 0.16. Second row: ΔτI = 0.04, ΔτSI = 0.16. Third row:
ΔτI = 0.004, ΔτI = 0.0016.

1 2 3 4 5 6 7 8
2

3

4

5

6

7

8

9

10

Cores

T
im

e
(s

ec
s)

Figure 9: Test 1: Algorithm SI: Total execution time versus the
number of cores. Δτ = 0.16. 3 scale steps.

12 International Journal of Biomedical Imaging

1

1 2 3 4 5 6 7 8
Cores

2

3

4

5

6

7

8

Sp
ee

du
p

Figure 10: Test 1: Algorithm SI: Speedup versus the number of
cores. Δτ = 0.16. 3 scale steps.

1 2 3 4 5 6 7 8
Cores

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

E
ci

en
cy

Figure 11: Test 1: Algorithm SI: Parallel efficiency versus the
number of cores. Δτ = 0.16. 3 scale steps.

1 2 3 4 5 6 7 8
Cores

0

70

60

50

40

30

20

10

10

T
im

e
(s

ec
s)

Figure 12: Test 1: Algorithm SI: Total execution time versus the
number of cores. Δτ = 0.016.

1
1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

Cores

Sp
ee

du
p

Figure 13: Test 1: Algorithm SI: Speedup versus the number of
cores. Δτ = 0.016.

1 2 3 4 5 6 7 8
Cores

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

E
ci

en
cy

Figure 14: Test 1: Algorithm SI: Parallel efficiency versus the
number of cores. Δτ = 0.016.

1 2 3 4 5 6 7 8
Cores

1

2

3

4

5

6

7

8

0

T
im

e
(s

ec
s)

Figure 15: Test 1: Algorithm I: Total execution time versus the
number of cores. ΔτI = 0.4.

International Journal of Biomedical Imaging 13

1
1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

Cores

Sp
ee

du
p

Figure 16: Test 1: Algorithm I: Speedup. ΔτI = 0.4.

1 2 3 4 5 6 7 8
Cores

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

E
ci

en
cy

Figure 17: Test 1: Algorithm I: Efficiency. ΔτI = 0.4.

1 2 3 4 5 6 7 8
Cores

80

70

60

50

40

30

20

10

T
im

e
(s

ec
s)

Figure 18: Test 1: Algorithm I: Total execution time versus the
number of cores. ΔτI = 0.04.

1 2 3 4 5 6 7 8
Cores

1

2

3

4

5

6

7

8

Sp
ee

du
p

Figure 19: Test 1: Algorithm I: Speedup. ΔτI = 0.04.

1 2 3 4 5 6 7 8
Cores

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

E
ci

en
cy

Figure 20: Test 1: Algorithm I: Efficiency. ΔτI = 0.04.

1 2 3 4 5 6 7 8
Cores

45

40

35

30

25

20

15

10

5

T
im

e
(s

ec
s)

Figure 21: Test 2: Algorithm SI: Total execution time versus the
number of cores. ΔτI = 0.16.

14 International Journal of Biomedical Imaging

1 2 3 4 5 6 7 8
Cores

1

2

3

4

5

6

7

8

Sp
ee

du
p

Figure 22: Test 2: Algorithm SI: Speedup. ΔτI = 0.16.

1 2 3 4 5 6 7 8
Cores

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

E
ci

en
cy

Figure 23: Test 2: Algorithm SI: Efficiency. ΔτI = 0.16.

Figures 21, 22, 23, 24, 25, and 26 show time, speedup, and
parallel efficiency of two algorithms in case of Test 2. We only
consider the case of ΔτSI = 0.16 and ΔτI = 0.4.

Finally, we show results on scalability of parallel algo-
rithms. Let Tp(N) be the execution time of the parallel
algorithm running on p cores for segmenting an image of
size N2 ×N2. We measure the scalability of these algorithms
by measuring Tp(N) as N varies, once p is fixed, and by
measuring Tp(N) as N and p grow. We note that, in case of
Algorithm SI, the scaling factor is

Tp(2N)

Tp(N)
� 4.2, (41)

while, for Algorithm I, we get as scaling factor

Tp(2N)

Tp(N)
� 2.3. (42)

1 2 3 4 5 6 7 8
Cores

50

45

40

35

30

25

20

15

10

5

T
im

e
(s

ec
s)

Figure 24: Test 2: Algorithm I: Total execution time versus the
number of cores. ΔτI = 0.4.

1 2 3 4 5 6 7 8
Cores

1

2

3

4

5

6

7

8
Sp

ee
du

p

Figure 25: Test 2: Algorithm I. Speed up. ΔτI = 0.4.

1 2 3 4 5 6 7 8
Cores

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

E
ci

en
cy

Figure 26: Test 2: Algorithm I. Efficiency. ΔτI = 0.4.

International Journal of Biomedical Imaging 15

n = 1680

n = 840

n = 420

n = 210

4.5

3.5

4.5

1 2 3 4 5 6 7 8
10−1

100

102

103

101

Figure 27: Scalability of parallel Algorithm SI, as N is fixed and p
varies, and N = 210, 420, 840, 1680. Each line refers to the execution
time of the algorithm at a fixed value of N .

200 400 600 800 1000 1200 1400 1600 1800

60

50

40

30

20

10

0

E
xe

cu
ti

on
ti

m
e

(s
ec

)

N

Figure 28: Scalability of parallel Algorithm SI, as N and p vary.
Each point of the graph refers to the execution time of the parallel
semi-implicit algorithm at (p = k · p1, N = k · N1), where p1 = 1,
N1 = 210, and k = 1, 2, 3, 4.

This means that Algorithm I scales better than Algorithm SI.
In Figures 27 and 28 (for Algorithm SI) and Figure 29 and
30 (for Algorithm SI), we report Tp(N) as N and p varies.
In particular, each point of the graph refers to the execution
time of the parallel algorithm at (p = k · p1, N = k · N1),
where p1 = 1, N1 = 210, and k = 1, 2, 3, 4.

7. Conclusions

A straightforward comparison between the semi-implicit
and the fully implicit discretization schemes of nonlinear
PDE of parabolic/hyperbolic type states that fully implicit
discretization usually leads to too expensive algorithms.
In this paper, we provide a multicore implementation of
two numerical algorithms arising from using these two
discretization schemes: semi-implicit (Algorithm SI) and

n = 1680

n = 840

n = 420

n = 210

1 2 3 4 5 6 7 8
10−1

100

102

101

Number of core

E
xe

cu
ti

on
ti

m
e

(s
ec

)

2.6

2.4

2.1

Figure 29: Scalability of parallel Algorithm I, as N is fixed and p
varies, and N = 210, 420, 840, 1680. Each line refers to the execution
time of the algorithm at a fixed value of N . ΔτI = 0.4.

200 400 600 800 1000 1200 1400 1600 1800

E
xe

cu
ti

on
ti

m
e

(s
ec

)

1

2

3

4

5

6

7

8

N

Figure 30: Scalability of parallel Algorithm I, as N and p vary.
Each point of the graph refers to the execution time of the parallel
implicit algorithm at (p = k · p1, N = k · N1), where p1 = 1,
N1 = 210 and k = 1, 2, 3, 4. ΔτI = 0.4.

fully implicit (Algorithm I). Taking into account that we aim
to solve such problems on parallel computer in a scalable
way, in the first case, we use, as linear solver, Krylov iterative
methods (GMRES) with algebraic multigrid preconditioners
(AMG). Regarding the fully implicit scheme, we use the
Jacobian-Free-Newton Krylov (JFNK) method as nonlinear
solver.

We compare these two algorithms using different metrics
measuring both the accuracy and the efficiency. We note that
if we require that the discretization error Ed is Ed = O(10−1),
these two algorithms are quite numerically equivalent, both
in terms of execution time and of the computed result;
while, as discretization error decreases, Algorithm I appears
to be more robust than Algorithm SI, in the sense that

16 International Journal of Biomedical Imaging

Algorithm I reaches the steady state with high accuracy (the
Hausdorff distance is of 95%), while the computed results
of Algorithm SI are less accurate, even though the execution
time of Algorithm I sometimes slightly increases. These
results suggest that if it needs to get accurate and reliable
results, Algorithm I should be preferable.

The parallel efficiency of both algorithms always is, at
least, of 60% and, on average, of about 80%. In particular,
parallel efficiency of Algorithm I is of about 90%. Execution
time of both algorithms reduces to about 2 seconds on eight
cores if Ed = (10−1) and to about 10 seconds if Ed = O(10−2).
This means that, in a multicore computing environment,
Algorithm I is competitive with Algorithm SI.

In conclusion, our results suggest that if it is required
high accuracy of the computed solution in a suitable turn-
around time, using a multicore computing environment fully
implicit scheme provides an accurate and reliable solution
within a response time of few seconds, quite acceptable in
medical imaging applications, such as computer-aided-di-
agnosis.

References

[1] G. Aubert and P. Kornprobst, Mathematical Problems in Image
Processing: Partial Differential Equations and the Calculus of
Variations, vol. 147 of Applied Mathematical Sciences, Springer,
2nd edition, 2006.

[2] http://www.cs.purdue.edu/research/cse/pses.
[3] J. W. Thomas, Numerical Partial Differential Equations, vol. 22

of Text in Applied Mathematics, Springer, 1995.
[4] Y. Saad and M. Schultz, “GMRES: a generelized minimal

residual algorithm for solving nonsymmetric linear systems,”
SIAM Journal on Scientific Computing, vol. 7, pp. 856–869,
1986.

[5] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, 2nd
edition, 1993.

[6] D. A. Knoll and D. E. Keyes, “Jacobian-free Newton-Krylov
methods: a survey of approaches and applications,” Journal of
Computational Physics, vol. 193, no. 2, pp. 357–397, 2004.

[7] J. Dongarra, D. Gannon, G. Fox, and K. Kennedy, “The impact
of multicore on computational science software,” CTWatch
Quarterly, vol. 3, no. 1, 2007.

[8] http://www.mcs.anl.gov/petsc/petsc-as/index.html.
[9] M. Bertero and P. Boccacci, Introduction to Inverse Problems in

Imaging, IOP Publishers, Bristol, UK, 1998.
[10] A. K. Louis, “Medical imaging: state of the art and future de-

velopment,” Inverse Problems, vol. 8, no. 5, pp. 709–738, 1992.
[11] W. Rundell and H. Eng, Inverse Problems in Medical Imaging &

Nondesctructive Testing, Springer, 1997.
[12] A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed

Problems, John Wiley & Sons, New York, NY, USA, 1977.
[13] L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation

based noise removal algorithms,” Physica D, vol. 60, no. 1–4,
pp. 259–268, 1992.

[14] P. Perona and J. Malik, “Scale-space and edge detection using
anisotropic diffusion,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 12, no. 7, pp. 629–639, 1990.

[15] J. J. Koenderink, “The structure of images,” Biological Cyber-
netics, vol. 50, no. 5, pp. 363–370, 1984.

[16] T. Lindeberg, Scale-Space Theory in Computer Vision, Springer,
1994.

[17] O. Scherzer and J. Weickert, “Relations between regularization
and diffusion filtering,” Journal of Mathematical Imaging and
Vision, vol. 12, no. 1, pp. 43–63, 2000.

[18] S. Osher and J. A. Sethian, “Fronts propagating with cur-
vature-dependent speed: algorithms based on hamilton-jacobi
formulations,” Journal of Computational Physics, vol. 79, no. 1,
pp. 12–49, 1988.

[19] J. A. Sethian, Level Set Methods and Fast Marching Meth-
ods: Evolving Interfaces in Computational Geometry, Fluid
Mechanics, Computer Vision and Materials Science, Cambridge
University Press, Cambridge, UK, 1999.

[20] S. Osher and R. Fedkiw, Level Set Methods and Dynamic
Implicit Surfaces, Springer, 2003.

[21] L. C. Evans and J. Spruck, “Motion of level sets by mean
curvature I,” Transaction of the American Mathematical Society,
vol. 330, no. 1, 1992.

[22] A. Sarti and G. Citti, “Subjective surface and Riemannian
mean curvature flow graphs,” Acta Mathematica Universitatis
Comenianae, vol. 70, no. 1, pp. 85–104, 2001.

[23] R. Malladi and J. A. Sethian, “Level set methods for curvature
flow, image enchancement, and shape recovery in medical
images,” in Visualization and Mathematics, H. C. Hege and
K. Polthier, Eds., pp. 329–345, Springer, Heidelberg, Germany,
1997.

[24] N. J. Walkington, “Algorithms for computing motion by mean
curvature,” SIAM Journal on Numerical Analysis, vol. 33, no. 6,
pp. 2215–2238, 1996.

[25] A. Handlovivcov, K. Mikula, and F. Sgallari, “Semi-implicit
complementary volume scheme for solving level set like equa-
tions in image processing and curve evolution,” Numerishe
Mathematik, vol. 93, no. 4, pp. 675–695, 2003.

[26] J. W. Ruge and K. Stüuben, “Algebraic multigrid methods
(AMG) applied to fluid flow problems,” Frontiers in Applied
Mathematics, 1986.

[27] V. E. Henson and U. M. Yang, “BoomerAMG: a parallel alge-
braic multigrid solver and preconditioner,” Applied Numerical
Mathematics, vol. 41, no. 1, pp. 155–177, 2002.

[28] H. Ganster, A. Pinz, R. Röhrer, E. Wildling, M. Binder, and
H. Kittler, “Automated melanoma recognition,” IEEE Trans-
actions on Medical Imaging, vol. 20, no. 3, pp. 233–239, 2001.

[29] H. Pehamberger, A. Steiner, and K. Wolff, “In vivo epilumines-
cence microscopy of pigmented skin lesions. I. Pattern analysis
of pigmented skin lesions,” Journal of the American Academy of
Dermatology, vol. 17, no. 4, pp. 571–583, 1987.

[30] F. Nachbar, W. Stolz, T. Merkle et al., “The ABCD rule of
dermatoscopy: high prospective value in the diagnosis of
doubtful melanocytic skin lesions,” Journal of the American
Academy of Dermatology, vol. 30, no. 4, pp. 551–559, 1994.

[31] A. Csazar, General Topology, Adam HIlger, Bristol, UK, 1978.
[32] D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge,

“Comparing images using the hausdorff distance,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.
15, no. 9, pp. 850–863, 1993.

Hindawi Publishing Corporation
International Journal of Biomedical Imaging
Volume 2011, Article ID 952819, 16 pages
doi:10.1155/2011/952819

Research Article

True 4D Image Denoising on the GPU

Anders Eklund,1, 2 Mats Andersson,1, 2 and Hans Knutsson1, 2

1 Division of Medical Informatics, Department of Biomedical Engineering, Linköping University, Linköping, Sweden
2 Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden

Correspondence should be addressed to Anders Eklund, anders.eklund@liu.se

Received 31 March 2011; Revised 23 June 2011; Accepted 24 June 2011

Academic Editor: Khaled Z. Abd-Elmoniem

Copyright © 2011 Anders Eklund et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The use of image denoising techniques is an important part of many medical imaging applications. One common application is to
improve the image quality of low-dose (noisy) computed tomography (CT) data. While 3D image denoising previously has been
applied to several volumes independently, there has not been much work done on true 4D image denoising, where the algorithm
considers several volumes at the same time. The problem with 4D image denoising, compared to 2D and 3D denoising, is that the
computational complexity increases exponentially. In this paper we describe a novel algorithm for true 4D image denoising, based
on local adaptive filtering, and how to implement it on the graphics processing unit (GPU). The algorithm was applied to a 4D CT
heart dataset of the resolution 512 × 512 × 445 × 20. The result is that the GPU can complete the denoising in about 25 minutes
if spatial filtering is used and in about 8 minutes if FFT-based filtering is used. The CPU implementation requires several days of
processing time for spatial filtering and about 50 minutes for FFT-based filtering. The short processing time increases the clinical
value of true 4D image denoising significantly.

1. Introduction

Image denoising is commonly used in medical imaging in
order to help medical doctors to see abnormalities in the
images. Image denoising was first applied to 2D images
[1–3] and then extended to 3D data [4–6], 3D data can
either be collected as several 2D images over time or as one
3D volume. A number of medical imaging modalities (e.g.,
computed tomography (CT), ultrasound (US) and magnetic
resonance imaging (MRI)) now provide the possibility to
collect 4D data, that is, time-resolved volume data. This
makes it possible to, for example, examine what parts of
the brain that are active during a certain task (functional
magnetic resonance imaging (fMRI)). While 4D CT data
makes it possible to see the heart beat in 3D, the drawback
is that a lower amount of X-ray exposure has to be used for
4D CT data collection, compared to 3D CT data collection, in
order to not harm the patient. When the amount of exposure
is decreased, the amount of noise in the data increases
significantly.

Three-dimensional image denoising has previously been
applied to several time points independently, but there has
not been much work done on true 4D image denoising
where the algorithm considers several volumes at the same

time (and not a single volume at a time). Montagnat et al.
[7] applied 4D anisotropic diffusion filtering to ultrasound
volumes and Jahanian et al. [8] applied 4D wavelet denoising
to diffusion tensor MRI data. For CT data, it can be extra
beneficial to use the time dimension in the denoising, as
some of the reconstruction artefacts vary with time. It is
thereby possible to remove these artefacts by taking full
advantage of the 4D data. While true 4D image denoising
is very powerful, the drawback is that the processing time
increases exponentially with respect to dimensionality.

The rapid development of graphics processing units
(GPUs) has resulted in that many algorithms in the medical
imaging domain have been implemented on the GPU, in
order to save time and to be able to apply more advanced
analysis. To give an example of the rapid GPU development,
a comparison of three consumer graphic cards from Nvidia
is given in Table 1. The time frame between each GPU
generation is 2-3 years. Some examples of fields in medical
imaging that have taken advantage of the computational
power of the GPU are image registration [9–13], image
segmentation [14–16] and fMRI analysis [17–20].

In the area of image denoising, some algorithms have also
been implemented on the GPU. Already in 2001 Rumpf and

2 International Journal of Biomedical Imaging

Table 1: Comparison between three Nvidia GPUs, from three different generations, in terms of processor cores, memory bandwidth, size
of shared memory, cache memory, and number of registers; MP stands for multiprocessor and GB/s stands for gigabytes per second. For the
GTX 580, the user can for each kernel choose to use 48 KB of shared memory and 16 KB of L1 cache or vice versa.

Property/GPU 9800 GT GTX 285 GTX 580

Number of processor cores 112 240 512

Normal size of global memory 512 MB 1024 MB 1536 MB

Global memory bandwidth 57.6 GB/s 159.0 GB/s 192.4 GB/s

Constant memory 64 KB 64 KB 64 KB

Shared memory per MP 16 KB 16 KB 48/16 KB

Float registers per MP 8192 16384 32768

L1 cache per MP None None 16/48 KB

L2 cache None None 768 KB

Strzodka [21] described how to apply anisotropic diffusion
[3] on the GPU. Howison [22] made a comparison between
different GPU implementations of anisotropic diffusion and
bilateral filtering for 3D data. Su and Xu [23] in 2010 pro-
posed how to accelerate wavelet-based image denoising by
using the GPU. Zhang et al. [24] describe GPU-based image
manipulation and enhancement techniques for dynamic
volumetric medical image visualization, but enhancement in
this case refers to enhancement of the visualization, and not
of the 4D data. Recently, the GPU has been used for real-
time image denoising. In 2007, Chen et al. [25] used bilateral
filtering [26] on the GPU for real-time edge-aware image
processing. Fontes et al. [27] in 2011 used the GPU for real-
time denoising of ultrasound data and Goossens et al. [28]
in 2010 managed to run the commonly used nonlocal means
algorithm [29] in real time.

To our knowledge, there has not been any work done
about true 4D image denoising on the GPU. In this work we
therefore present a novel algorithm, based on local adaptive
filtering, for 4D denoising and describe how to implement
it on the GPU, in order to decrease the processing time and
thereby significantly increase the clinical value.

2. Methods

In this section, the algorithm that is used for true 4D image
denoising will be described.

2.1. The Power of Dimensionality. To show how a higher
number of dimensions, the power of dimensionality, can
improve the denoising result, a small test is first conducted
on synthetic data. The size of the 4D data is 127×127×9×9,
but there is no signal variation in the last two dimensions.
The data contains a large step, a thin line, and a shading from
the top left corner to the bottom right corner. A large amount
of 4D additive noise was finally added to the data. Image
denoising of different dimensionality was then applied. For
the 2D case, the denoising was done on one 127×127 image,
for the 3D case, the denoising was done on one 127×127×9
volume and for the 4D case all the data was used. A single
anisotropic lowpass filter was used for the denoising, and
the filter had the same dimensionality as the data and was
oriented along the structures. The original test data, the

test data with noise and the denoising results are given in
Figure 1. It is clear that the denoising result is improved
significantly for each new dimension.

2.2. Adaptive Filtering in 4D. The denoising approach that
our work is based on is adaptive filtering. It was introduced
for 2D by Knutsson et al. in 1983 [2] and then extended to
3D in 1992 [4]. In this work, the same basic principles are
used for adaptive filtering in 4D. The main idea is to first
estimate the local structure tensor [30] (by using a first set
of filters) in each neighbourhood of the data and then let
the tensor control the reconstruction filters (a second set of
filters). The term reconstruction should in this paper not be
confused with the reconstruction of the CT data. The local
structure tensor T is in 4D a 4× 4 symmetric matrix in each
time voxel,

T =

⎛⎜⎜⎜⎜⎜⎜⎝
t1 t2 t3 t4

t2 t5 t6 t7

t3 t6 t8 t9

t4 t7 t9 t10

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝
xx xy xz xt

xy yy yz yt

xz yz zz zt

xt yt zt tt

⎞⎟⎟⎟⎟⎟⎟⎠, (1)

and contains information about the local structure in the
data, that can be used to control the weights of the
reconstruction filters. The result of the adaptive filtering is
that smoothing is done along structures (such as lines and
edges in 2D), but not perpendicular to them.

2.3. Adaptive Filtering Compared to Other Methods for Image
Denoising. Compared to more recently developed methods
for image denoising (e.g., nonlocal means [29], anisotropic
diffusion [3] and bilateral filtering [26]), adaptive filtering is
in our case used for 4D image denoising for three reasons.
First, adaptive filtering is computationally more efficient
than the other methods. Nonlocal means can give very good
results, but the algorithm can be extremely time consuming
(even if GPUs are used). Anisotropic diffusion is an iterative
algorithm and can therefore be rather slow. Adaptive filtering
is a direct method that does not need to be iterated. Bilateral
filtering does not only require a multiplication for each filter
coefficient and each data value, but also an evaluation of
the intensity range function (e.g., an exponential) which
is much more expensive to perform than a multiplication.

International Journal of Biomedical Imaging 3

Original Degraded 2D Denoising 3D Denoising 4D Denoising

(1) (2) (3) (4) (5)

Figure 1: (1) Original test image without noise. There is a large step in the middle, a bright thin line and a shading from the top left corner
to the bottom right corner. (2) Original test image with a lot of noise. The step is barely visible, while it is impossible to see the line or the
shading. (3) Resulting image after 2D denoising. The step is almost visible and it is possible to see that the top left corner is brighter than the
bottom right corner. (4) Resulting image after 3D denoising. Now the step and the shading are clearly visible, but not the line. (5) Resulting
image after 4D denoising. Now all parts of the image are clearly visible.

Second, the tuning of the parameters is for our denoising
algorithm rather easy to understand and to explore. When
a first denoising result has been obtained, it is often obvious
how to change the parameters to improve the result. This is
not always the case for other methods. Third, the adaptive
filtering approach has been proven to be very robust (it is
extremely seldom that a strange result is obtained). Adaptive
filtering has been used for 2D image denoising in commercial
clinical software for over 20 years and a recent 3D study [31]
proves its potential, robustness, and clinical acceptance. The
nonlocal means algorithm only works if the data contains
several neighbourhoods with similar properties.

2.4. Estimating the Local Structure Tensor Using Quadrature
Filters. The local structure tensor can, for example, be
estimated by using quadrature filters [5, 30]. Quadrature
filtersQ are zero in one half of the frequency domain (defined
by the direction of the filter) and can be expressed as two
polar separable functions, one radial function R and one
directional function D,

Q(u) = R(‖u‖)D(u), (2)

where u is the frequency variable. The radial function is a
lognormal function

R(‖u‖) = exp
(
C ln2

(‖u‖
u0

))
, C = −4

B2 ln(2)
, (3)

where u0 is the centre frequency of the filter and B is the
bandwidth (in octaves). The directional function depends
on the angle θ between the filter direction vector n̂ and the
normalized frequency coordinate vector u as cos(θ)2,

D(u) =
⎧⎪⎨⎪⎩
(

uT n̂
)2

, uT n̂ > 0,

0, otherwise.
(4)

Quadrature filters are Cartesian nonseparable and complex
valued in the spatial domain, the real part is even and in 2D
acts as a line detector, while the imaginary part is odd and
in 2D acts as an edge detector. In 3D, the even and odd filters
correspond to a plane detector and a 3D edge detector. In 4D,

the plane and 3D edge may in addition be time varying. The
complex-valued filter response q is an estimate of a bandpass
filtered version of the analytical signal with magnitude A and
phase φ,

q = A
(
cos

(
φ
)

+ i · sin
(
φ
)) = Aeiφ. (5)

The tensor is calculated by multiplying the magnitude of the
quadrature filter response qk with the outer product of the
filter direction vector n̂k and then summing the result over
all filters k,

T =
Nf∑
k=1

∣∣qk∣∣(c1n̂kn̂T
k − c2I

)
, (6)

where c1 and c2 are scalar constants that depend on the
dimensionality of the data [5, 30], Nf is the number of
quadrature filters and I is the identity matrix. The resulting
tensor is phase invariant, as the magnitude of the quadrature
filter response is invariant to the type of local neighbourhood
(e.g., in 2D bright lines, dark lines, dark to bright edges,
etc.). This is in contrast to when the local structure tensor
is estimated by using gradient operators, such as Sobel filters.

The number of filters that are required to estimate the
tensor depends on the dimensionality of the data and is
given by the number of independent components of the
symmetric local structure tensor. The required number of
filters is thus 3 for 2D, 6 for 3D and 10 for 4D. The given
tensor formula, however, assumes that the filters are evenly
spread. It is possible to spread 6 filters evenly in 3D, but it is
not possible to spread 10 filters evenly in 4D. For this reason,
12 quadrature filters have to be used in 4D (i.e., a total of 24
filters in the spatial domain, 12 real valued and 12 complex
valued). To apply 24 nonseparable filters to a 4D dataset
requires a huge number of multiplications. In this paper a
new type of filters, monomial filters [32], are therefore used
instead.

2.5. Estimating the Local Structure Tensor Using Monomial
Filters. Monomial filters also have one radial function R
and one directional function D. The directional part of the
monomial filters are products of positive integer powers of

4 International Journal of Biomedical Imaging

the components of the frequency variable u. The monomial
filter matrices of order one, F1, and two, F2, are in the
frequency domain defined as

F1,n = R(‖u‖)ûn, F2,mn = R(‖u‖)ûmûn. (7)

The monomial filters are first described for 2D and then
generalized to 4D.

2.5.1. Monomial Filters in 2D. In 2D, the frequency variable
is in this work defined as u = [u v]T . The directional part of
first-order monomial filters are x, y in the spatial domain and
u, v in the frequency domain. Two-dimensional monomial
filters of the first-order are given in Figure 2. The directional
part of second-order monomial filters are xx, xy, yy in the
spatial domain and uu,uv, vv in the frequency domain. Two
dimensional monomial filters of the second order are given
in Figure 3.

The monomial filter response matrices Q are either
calculated by convolution in the spatial domain or by
multiplication in the frequency domain. For a simple signal
with phase θ (e.g., s(x) = A cos(uTx + θ)); the monomial
filter response matrices of order one and two can be written
as

Q1 = −iA sin(θ)[uv]T ,

Q2 = A cos(θ)

⎛⎝uu uv

uv vv

⎞⎠. (8)

The first-order products are odd functions and are thereby
related to the odd sine function, the second order products
are even functions and are thereby related to the even cosine
function (note the resemblance with quadrature filters that
have one even real part and one odd imaginary part). By
using the fact that u2 + v2 = 1, the outer products of the
filter response matrices give

Q1Q1
T = sin2(θ)|A|2

⎛⎝uu uv

uv vv

⎞⎠,

Q2Q2
T = cos2(θ)|A|2

⎛⎝uu uv

uv vv

⎞⎠.
(9)

The local structure tensor T is then calculated as

T = Q1Q1
T + Q2Q2

T = |A|2
⎛⎝uu uv

uv vv

⎞⎠. (10)

From this expression, it is clear that the estimated tensor,
as previously, is phase invariant as the square of one odd
part and the square of one even part are combined. For
information about how to calculate the tensor for higher-
order monomials, see our recent work [32].

2.5.2. Monomial Filters in 4D. A total of 14 nonseparable 4D
monomial filters (4 odd of the first-order (x, y, z, t) and 10
even of the second-order (xx, xy, xz, xt, yy, yz, yt, zz, zt, tt))

Frequency domain
u v

(a)

Spatial domain
x y

(b)

Figure 2: (a) Two-dimensional monomial filters (u, v), of the first
order, in the frequency domain. Green indicates positive real values
and red indicates negative real values. The black lines are isocurves.
(b) Two-dimensional monomial filters (x, y), of the first order, in
the spatial domain. Yellow indicates positive imaginary values, and
blue indicates negative imaginary values. Note that these filters are
odd and imaginary.

with a spatial support of 7 × 7 × 7 × 7 time voxels are
applied to the CT volumes. The filters have a lognormal
radial function with centre frequency 3π/5 and a bandwidth
of 2.5 octaves. The filter kernels were optimized with respect
to ideal frequency response, spatial locality, and expected
signal-to-noise ratio [5, 33].

By using equation (10) for the 4D case, and replacing
the frequency variables with the monomial filter responses,
the 10 components of the structure tensor are calculated
according to

t1 = f r1 · f r1 + f r5 · f r5 + f r6 · f r6 + f r7 · f r7

+ f r8 · f r8,

t2 = f r1 · f r2 + f r5 · f r6 + f r6 · f r9 + f r7 · f r10

+ f r8 · f r11,

t3 = f r1 · f r3 + f r5 · f r7 + f r6 · f r10 + f r7 · f r12

+ f r8 · f r13,

t4 = f r1 · f r4 + f r5 · f r8 + f r6 · f r11 + f r7 · f r13

+ f r8 · f r14,

t5 = f r2 · f r2 + f r6 · f r6 + f r9 · f r9 + f r10 · f r10

+ f r11 · f r11,

International Journal of Biomedical Imaging 5

Frequency domain
uu uv vv

(a)

Spatial domain
xx xy yy

(b)

Figure 3: (a) Two-dimensional monomial filters (uu,uv, v), of the second order, in the frequency domain. Green indicates positive real
values, and red indicates negative real values. The black lines are isocurves. (b) Two-dimensional monomial filters (xx, xy, yy), of the second
order, in the spatial domain. Green indicates positive real values, and red indicates negative real values. Note that these filters are even and
real.

t6 = f r2 · f r3 + f r6 · f r7 + f r9 · f r10 + f r10 · f r12

+ f r11 · f r13,

t7 = f r2 · f r4 + f r6 · f r8 + f r9 · f r11 + f r10 · f r13

+ f r11 · f r14,

t8 = f r3 · f r3 + f r7 · f r7 + f r10 · f r10 + f r12 · f r12

+ f r13 · f r13,

t9 = f r3 · f r4 + f r7 · f r8 + f r10 · f r11 + f r12 · f r13

+ f r13 · f r14,

t10 = f r4 · f r4 + f r8 · f r8 + f r11 · f r11 + f r13 · f r13

+ f r14 · f r14,

(11)

where f rk denotes the filter response for monomial filter k.
The first term relates to Q1Q1

T , and the rest of the terms
relate to Q2Q2

T , in total Q1Q1
T + Q2Q2

T .
If monomial filters are used instead of quadrature filters,

the required number of 4D filters is thus decreased from 24 to
14. Another advantage is that the monomial filters require a
smaller spatial support, which makes it easier to preserve de-
tails and contrast in the processing. A smaller spatial support

also results in a lower number of filter coefficients, which
decreases the processing time.

2.6. The Control Tensor. When the local structure tensor T
has been estimated, it is then mapped to a control tensor C,
by mapping the magnitude (energy) and the isotropy of the
tensor. The purpose of this mapping is to further improve the
denoising. For 2D and 3D image denoising, this mapping can
be done by first calculating the eigenvalues and eigenvectors
of the structure tensor in each element of the data. The
mapping is first described for 2D and then for 4D.

2.6.1. Mapping the Magnitude of the Tensor in 2D. In the 2D
case, the magnitude γ0 of the tensor is calculated as

γ0 =
√
λ2

1 + λ2
2, (12)

where λ1 and λ2 are the two eigenvalues. The magnitude γ0 is
normalized to vary between 0 and 1 and is then mapped to γ
with a so-called M-function according to

γ =
⎛⎝ γ

β
0

γ
α + β

0 + σ β

⎞⎠, (13)

where α, β, and σ are parameters that are used to control
the mapping. The σ variable is directly proportional to the
signal-to-noise (SNR) ratio of the data and acts as a soft

6 International Journal of Biomedical Imaging

noise threshold, α mainly controls the overshoot (that can
be used for dynamic range compression or to amplify areas
that have a magnitude slightly above the noise threshold),
and β mainly controls the slope/softness of the curve. The
purpose of this mapping is to control the general usage of
highpass information. The highpass information should only
be used where there is a well-defined structure in the data. If
the magnitude of the structure tensor is low, one can assume
that the neighbourhood only contains noise. Some examples
of the M-function are given in Figure 4.

2.6.2. Mapping the Isotropy of the Tensor in 2D. The isotropy
φ0 is in 2D calculated as

φ0 = λ2

λ1
(14)

and is mapped to φ with a so called mu-function according
to

φ =
(
φ0(1− α)

)β(
φ0(1− α)

)β +
(
α
(
1− φ0

))β , (15)

where α and β are parameters that are used to control the
mapping, α mainly controls the transition of the curve and
β mainly controls the slope/softness. The purpose of this
mapping is to control the usage of highpass information in
the nondominant direction, that is, the direction that is given
by the eigenvector corresponding to the smallest eigenvalue.
This is done by making the tensor more isotropic if it is
slightly isotropic, or making it even more anisotropic if it is
anisotropic. Some examples of the mu-function are given in
Figure 5. Some examples of isotropy mappings are given in
Figure 6. The M-function and the mu-function are further
explained in [5].

2.6.3. The Tensor Mapping in 2D. The control tensor C is
finally calculated as

C = γe1e1
T + γφe2e2

T , (16)

where e1 is the eigenvector corresponding to the largest
eigenvalue λ1 and e2 is the eigenvector corresponding to
the smallest eigenvalue λ2. The mapping thus preserves the
eigensystem, but changes the eigenvalues and thereby the
shape of the tensor.

2.6.4. The Complete Tensor Mapping in 4D. For matrices of
size 2 × 2 and 3 × 3, there are direct formulas for how
to calculate the eigenvalues and eigenvectors, but for 4 × 4
matrices, there are no such formulas and this complicates
the mapping. It would of course be possible to calculate the
eigenvalues and eigenvectors by other approaches, such as
the power iteration algorithm, but this would be extremely
time consuming as the mapping to the control tensor
has to be done in each time voxel. The mapping of the
local structure tensor to the control tensor is in this work
therefore performed in a way that does not explicitly need

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
M-function

Original magnitude

M
ap

pe
d

m
ag

n
it

u
de

Figure 4: Examples of the M-function that maps the magnitude
of the structure tensor. If the magnitude of the structure tensor is
too low, the magnitude is set to zero for the control tensor, such
that no highpass information is used in this part of the data. The
overshoot is intended to amplify structures that have a magnitude
that is slightly above the noise threshold.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
mu-function

Original isotropy

M
ap

pe
d

is
ot

ro
py

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5: Examples of the mu-function that maps the isotropy of
the structure tensor. If the structure tensor is almost isotropic (a
high value on the x-axis) the control tensor becomes more isotropic.
If the structure tensor is anisotropic (a low value on the x-axis) the
control tensor becomes even more anisotropic.

the calculation of eigenvalues and eigenvectors. The tensor
magnitude is first calculated as

Tmag =
∥∥T8

∥∥1/8
, (17)

where ‖ · ‖ denotes the Frobenius norm. The exponent will
determine how close to λ1 the estimated tensor magnitude
will be; a higher exponent will give better precision, but an

International Journal of Biomedical Imaging 7

(a)

1 2 3

(b)

Figure 6: Three examples of isotropy mappings. (a) Original
structure tensors. (b) Mapped control tensors. If the structure
tensor is anisotropic, the control tensor becomes even more
anisotropic (examples 1 and 2). If the structure tensor is almost
isotropic, it becomes more isotropic (example 3).

exponent of 8 has proven to be sufficient in practice. To
reduce the computational load, T8 is calculated as

T2 = T∗ T,

T4 = T2 ∗ T2,

T8 = T4 ∗ T4,

(18)

where ∗ denotes matrix multiplication. γ0 is then calculated
as

γ0 =
√√√√ Tmag

max
(

Tmag

) , (19)

where the max operator is for the entire data set, such that
the maximum value of γ0 will be 1, γ0 is then mapped to γ by
using the M-function.

To map the isotropy, the structure tensor is first normal-
ized as

T̂ = T
Tmag

, (20)

such that the tensor only carries information about the
anisotropy (shape). The fact that T̂ and I − T̂ have the same
eigensystem is used, such that the control tensor can be
calculated as

C = γ
(
φI +

(
1− φ

) · T̂
)

, (21)

where I is the identity matrix. The following formulas are an
ad hoc modification of this basic idea, that do not explicitly
need the calculation of the isotropy φ and that give good
results for our CT data. The basic idea is that the ratio
of the eigenvalues of the tensor change when the tensor is
multiplied with itself a number of times, and thereby the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Transfer function for mapping of eigenvalues of the structure tensor

Original eigenvalue

M
ap

p
ed

ei
ge

nv
al

u
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 7: The transfer function that maps the eigenvalues of the
structure tensor.

shape of the tensor also changes. This approach does not
give exactly the same results as the original isotropy mapping,
but it circumvents the explicit calculation of eigenvalues and
eigenvectors. A help variable T̂ f is first calculated as

T̂ f = T̂2 ∗
(

I + 2 ·
(

I− T̂
))

, (22)

and then the control tensor C is calculated as

C = γ

(
I−

(
I− T̂ f

)8 ∗
(

I + 8 · T̂ f

))
. (23)

The resulting transfer function that maps each eigenvalue
is given in Figure 7. Eigenvalues that are small become even
smaller, and eigenvalues that are large become even larger.
The result of this eigenvalue mapping is similar to the
isotropy mapping examples given in Figure 6.

2.7. Calculating the Denoised Data. Eleven nonseparable
reconstruction filters, one lowpass filter H0 of the zeroth
order and 10 highpass filters H2,mn of the second order, with
a spatial support of 11× 11× 11× 11 time voxels are applied
to the CT volumes. The denoised 4D data id is calculated as
the sum of the lowpass-filtered data, ilp, and the highpass
filtered data for each highpass-filter k, ihp(k), weighted with
the components Ck of the control tensor C,

id = ilp +
10∑
k=1

Ck · ihp(k). (24)

The result is that the 4D data is lowpass filtered in all
directions and then highpass information is put back where
there is a well-defined structure. Highpass information is put
back in the dominant direction of the local neighbourhood
(given by the eigenvector related to the largest eigenvalue)
if the tensor magnitude is high. Highpass information is
put back in the nondominant directions (given by the
eigenvectors related to the smaller eigenvalues) if the tensor
magnitude is high and the anisotropy is low.

8 International Journal of Biomedical Imaging

Table 2: The table shows the in and out data resolution, the used equations and the memory consumption for all the processing steps for
spatial filtering (SF) and FFT-based filtering (FFTBF). Note that the driver for the GPU is stored in the global memory, and it normally
requires 100–200 MB.

Processing step Resolution, SF Memory consumption, SF Resolution, FFTBF
Memory
consumption, FFTBF

Lowpass filtering and
downsampling of CT volumes

in 512× 512× 51× 20
406 MB

in 512× 512× 31× 20
294 MB

out 256× 256× 26× 20 out 256× 256× 16× 20
Filtering with 14 monomial filters
and calculating the local structure
tensor ((10), (11))

in 256× 256× 26× 20
1376 MB

in 256× 256× 16× 20
1791 MB

out 256× 256× 20× 20 out 256× 256× 10× 20

Lowpass filtering of the local
structure tensor components
(normalized convolution, (25))

in 256× 256× 20× 20
1276 MB

in 256× 256× 10× 20
720 MB

out 256× 256× 20× 20 out 256× 256× 10× 20

Calculating the tensor magnitude
and mapping it with the
M-function ((17), (18), (19), (13))

in 256× 256× 20× 20
1376 MB

in 256× 256× 10× 20
770 MB

out 256× 256× 20× 20 out 256× 256× 10× 20

Mapping the local structure tensor
to the control tensor ((20), (22),
(23))

in 256× 256× 20× 20
1376 MB

in 256× 256× 10× 20
770 MB

out 256× 256× 20× 20 out 256× 256× 10× 20

Lowpass filtering of the control
tensor components (normalized
convolution, (25))

in 256× 256× 20× 20
1476 MB

in 256× 256× 10× 20
820 MB

out 256× 256× 20× 20 out 256× 256× 10× 20

Filtering with 11 reconstruction
filters, interpolating the control
tensor on the fly, and calculating
the denoised data (24)

in 512× 512× 51× 20
2771 MB

in 512× 512× 16× 20
2110 MB

out 512× 512× 39× 20
out 512× 512× 6× 20

(three rounds×6 slices =
18 denoised slices in total)

2.8. The Complete Algorithm. All the processing steps of
the denoising algorithm are given in Table 2. In our case
the CT data does not contain any significant structural
information in the frequencies over π/2 in the spatial
dimensions, the volumes are therefore lowpass filtered and
then downsampled a factor 2 in x, y, z. When the local
structure tensor has been estimated, it is lowpass filtered,
with a separable lowpass filter of size 5 × 5 × 5 × 3, to
improve the estimate in each time voxel and to make sure
that the resulting reconstruction filter varies smoothly. Note
that this smoothing does not decrease the resolution of the
image data, but only the resolution of the tensor field. After
the tensor mapping, the control tensor is interpolated to the
original resolution of the CT data.

While the presented algorithm is straightforward to
implement, spatial filtering with 11 reconstruction filters of
size 11 × 11 × 11 × 11 (14 641 filter coefficients) applied to
a dataset of the resolution 512 × 512 × 445 × 20 requires
about 375 000 billion multiplications. This is the reason why
the GPU is needed in order to do the 4D denoising in a
reasonable amount of time.

2.9. Normalized Convolution. One of the main drawbacks of
the presented algorithm is that, using standard convolution,
the number of valid elements in the z-direction (i.e., slices)
decreases rapidly. If the algorithm is applied to a dataset of
the resolution 512×512×34×20, two slices are first lost due
to the convolution with the lowpass filter of size 3 × 3 × 3.
After the downsampling, there are 16 slices in the data. The
monomial filters are of size 7×7×7×7, thereby only 10 of the
filter response slices are valid. During the lowpass filtering of

each structure tensor component, another four slices are lost
and then another four are lost during lowpass filtering of the
control tensor. The result is thus that only 2 valid slices are
left after all the convolutions. The same problem could exist
in the time dimension, but since the heart cycle is periodic
it is natural to use circular convolution in the time direction,
and thereby all the time points are valid.

The loss of valid slices can be avoided by using normal-
ized convolution [34], both for the lowpass filtering of the
data before downsampling and the lowpass filtering of the
tensor components. In normalized convolution, a certainty
is attached to each signal value. A certainty-weighted filter
response cwr is calculated as

cwr = (c · s)∗ f

c ∗ f
, (25)

where c is the certainty, s is the signal, f is the filter, · denotes
pointwise multiplication, and ∗ denotes convolution. The
certainty is set to 1 inside the data and 0 outside the data.
Note that this simple version of normalized convolution
(normalized averaging) can not be applied for the monomial
filters and for the reconstruction filters, as these filters have
both negative and positive coefficients. It is possible to apply
the full normalized convolution approach for these filters,
but it will significantly increase the computational load.

3. GPU Implementation

In this section, the GPU implementation of the denoising
algorithm will be described. The CUDA (compute unified
device architecture) programming language by Nvidia [35],

International Journal of Biomedical Imaging 9

explained by Kirk and Hwu [36], has been used for the
implementation. The Open Computing Language (OpenCL)
[37] could be a better choice, as it makes it possible to run the
same code on any hardware.

3.1. Creating 4D Indices. The CUDA programming language
can easily generate 2D indices for each thread, for example,
by using Algorithm 1. To generate 3D indices is harder, as
each thread block can be three dimensional but the grid
can only be two dimensional. One approach to generate 3D
indices is given in Algorithm 2. To generate 4D indices is even
more difficult. To navigate in the 4D data, the 3D indexing
approach described above is used, and the kernel is then
called once for each time point.

3.2. Spatial versus FFT Based Filtering. Fast-Fourier-trans-
form (FFT-) based filtering can be very efficient when large
nonseparable filters of high dimension are to be applied to
big datasets, but spatial filtering is generally faster if the
filters are small or Cartesian separable. The main advantage
with FFT-based filtering is that the processing time is the
same regardless of the spatial size of the filter. A small
bonus is that circular filtering is achieved for free. The main
disadvantage with FFT-based filtering is however the mem-
ory requirements, as the filters need to be stored in the same
resolution as the data, and also as a complex-valued number
for each element.

To see which kind of filtering that fits the GPU best, both
spatial and FFT-based filtering was therefore implemented.
For filtering with the small separable lowpass filters (which
are applied before the data is downsampled and to smooth
the tensor components), only separable spatial filtering is
implemented.

3.3. Spatial Filtering. Spatial filtering can be implemented
in rather many ways, especially in four dimensions. One
easy way to implement 2D and 3D filtering on the GPU
is to take advantage of the cache of the texture memory
and put the filter kernel in constant memory. The drawback
with this approach is however that the implementation will
be very limited by the memory bandwidth, and not by the
computational performance. Another problem is that it is
not possible to use 4D textures in the CUDA programming
language. One would have to store the 4D data as one big 1D
texture or as several 2D or 3D textures. A better approach is
to take advantage of the shared memory, which increased a
factor 3 in size between the Nvidia GTX 285 and the Nvidia
GTX 580. The data is first read into the shared memory and
then the filter responses are calculated in parallel. By using
the shared memory, the threads can share the data in a very
efficient way, which is beneficial as the filtering results for
two neighbouring elements are calculated by mainly using
the same data.

As multidimensional filters can be separable or non-
separable (the monomial filters and the reconstruction
filters are nonseparable, while the different lowpass filters
are separable) two different spatial filtering functions were
implemented.

3.3.1. Separable Filtering. Our separable 4D convolver is
implemented by first doing the filtering for all the rows, then
for all the columns, then for all the rods and finally for all the
time points. The data is first loaded into the shared memory
and then the valid filter responses are calculated in parallel.
The filter kernels are stored in constant memory. For the
four kernels, 16 KB of shared memory is used such that 3
thread blocks can run in parallel on each multiprocessor on
the Nvidia GTX 580.

3.3.2. Nonseparable Filtering. The shared memory approach
works rather well for nonseparable 2D filtering but not
as well for nonseparable 3D and 4D filtering. The size of
the shared memory on the Nvidia GTX 580 is 48 KB for
each multiprocessor, and it is thereby only possible to, for
example, fit 11 × 11 × 11 × 9 float values into it. If the 4D
filter is of size 9×9×9×9, only 3×3×3×1 = 27 valid filter
responses can be generated for each multiprocessor. A better
approach for nonseparable filtering in 4D is to instead use an
optimized 2D filtering kernel, and then accumulate the filter
responses by summing over the other dimensions by calling
the 2D filtering function for each slice and each time point
of the filter. The approach is described with the pseudocode
given in Algorithm 3.

Our nonseparable 2D convolver first reads 64 × 64
pixels into the shared memory, then calculates the valid
filter responses for all the 14 monomial filters or all the 11
reconstruction filters at the same time, and finally writes
the results to global memory. Two versions of the convolver
were implemented, one that maximally supports 7× 7 filters
and one that maximally supports 11 × 11 filters. The first
calculates 58 × 58 valid filter responses, and the second
calculates 54 × 54 valid filter responses. As 64 × 64 float
values only require 16 KB of memory, three thread blocks can
run at the same time on each multiprocessor. This results in
58 × 58 × 3 = 10092 and 54 × 54 × 3 = 8748 valid filter
responses per multiprocessor. For optimal performance, the
2D filtering loop was completely unrolled by generating the
code with a Matlab script.

The 14 monomial filters are of size 7 × 7 × 7 × 7, this
would require 135 KB of memory to be stored as floats, but
the constant memory is only 64 KB. For this reason, 7×7 filter
coefficients are stored at a time and are then updated for each
time point and for each slice. It would be possible to store
7× 7× 7 filter coefficients at a time, but by only storing 7× 7
coefficients, the size of the filters (2.75 KB) is small enough to
always be in the cache of the constant memory (8 KB). The
same approach is used for the 11 reconstruction filters of size
11× 11× 11× 11.

3.4. FFT-Based Filtering. While the CUFFT library by Nvidia
supports 1D, 2D, and 3D FFTs, there is no direct support
for 4D FFTs. As the FFT is cartesian separable, it is however
possible to do a 4D FFT by applying four consecutive 1D
FFTs. The CUFFT library supports launching a batch of 1D
FFTs, such that many 1D FFT’s can run in parallel. The
batch of 1D FFTs are applied along the first dimension in
which the data is stored (e.g., along x if the data is stored

10 International Journal of Biomedical Imaging

// Code that is executed before the kernel is launched

int threadsInX = 32;

int threadsInY = 16;

int blocksInX = DATA W/threadsInX;

int blocksInX = DATA H/threadsInY;

dimGrid = dim3(blocksInX, blocksInY);

dimBlock = dim3(threadsInX, threadsInY, 1);

// Code that is executed inside the kernel

int x = blockIdx.x ∗ blockDim.x + threadIdx.x;

int y = blockIdx.y ∗ blockDim.y + threadIx.yd;

Algorithm 1

// Code that is executed before the kernel is launched

int threadsInX = 32;

int threadsInY = 16;

int threadsInZ = 1;

int blocksInX = (DATA W+threadsInX-1)/threadsInX;

int blocksInY = (DATA H+threadsInY-1)/threadsInY;

int blocksInZ = (DATA D+threadsInZ-1)/threadsInZ;

dim3 dimGrid = dim3(blocksInX, blocksInY∗blocksInZ);
dim3 dimBlock = dim3(threadsInX, threadsInY, threadsInZ);

// Code that is executed inside the kernel

int blockIdxz = float2uint rd(blockIdx.y ∗ invBlocksInY);

int blockIdxy = blockIdx.y − blockIdxz ∗ blocksInY;

int x = blockIdx.x ∗ blockDim.x + threadIdx.x;

int y = blockIdxy ∗ blockDim.y + threadIdx.y;

int z = blockIdxz ∗ blockDim.z + threadIdx.z;

Algorithm 2

as (x, y, z, t)). Between each 1D FFT, it is thereby necessary
to change the order of the data (e.g., from (x, y, z, t) to
(y, z, t, x)). The drawback with this approach is that the time
it takes to change order of the data can be longer than to
actually perform the 1D FFT. The most recent version of the
CUFFT library supports launching a batch of 2D FFT’s. By
applying two consecutive 2D FFT’s, it is sufficient to change
the order of the data once, instead of three times.

A forward 4D FFT is first applied to the volumes. A
filter is padded with zeros to the same resolution as the data
and is then transformed to the frequency domain. To do
the filtering, a complex-valued multiplication between the
data and the filter is applied and then an inverse 4D FFT is
applied to the filter response. After the inverse transform, a
FFT shift is necessary; there is however no such functionality
in the CUFFT library. When the tensor components and the
denoised data are calculated, each of the four coordinates is
shifted by using a help function, see Algorithm 4.

As the monomial filters only have a real part or an
imaginary part in the spatial domain, some additional time
is saved by putting one monomial filter in the real part and
another monomial filter in the imaginary part before the 4D
FFT is applied to the zero-padded filter. When the complex
multiplication is performed in the frequency domain, two

filters are thus applied at the same time. After the inverse 4D
FFT, the first filter response is extracted as the real part and
second filter response is extracted as the imaginary part. The
same trick is used for the 10 highpass reconstruction filters.

3.5. Memory Considerations. The main problem of imple-
menting the 4D denoising algorithm on the GPU is the
limited size of the global memory (3 GB in our case). This is
made even more difficult by the fact that the GPU driver can
use as much as 100–200 MB of the global memory. Storing
all the CT data on the GPU at the same time is not possible, a
single CT volume of the resolution 512× 512× 445 requires
about 467 MB of memory if 32 bit floats are used. Storing the
filter responses is even more problematic. To give an example,
to store all the 11 reconstruction filter responses as floats for
a dataset of the size 512 × 512 × 445 × 20 would require
about 103 GB of memory. The denoising is therefore done
for a number of slices (e.g., 16 or 32) at a time.

For the spatial filtering, the algorithm is started with data
of the resolution 512 × 512 × 51 × 20 and is downsampled
to 256 × 256 × 26 × 20. The control tensor is calculated for
256 × 256 × 20 × 20 time voxels, and the denoised data is
calculated for 512× 512× 39× 20 time voxels. To process all
the 445 slices requires 12 runs.

International Journal of Biomedical Imaging 11

// Do the filtering for all the time points in the data

for (int t=0; t<DATA T; t++)

{
// Do the filtering for all the slices in the data

for (int z=0; z<DATA D;z++)

{
// Set the filter responses on the GPU to 0

Reset<<<dimGrid, dimBlock>>>(d Filter Responses);

// Do the filtering for all the time points in the filter

for (int tt=0; tt<FILTER T; tt++)

{
// Do the filtering for all the slices in the filter

for (int zz=0; zz<FILTER D; zz++)

{
// Copy the current filter coefficients

// to constant memory on the GPU

CopyFilterCoefficients(zz,tt);

// Do the 2D filtering on the GPU

// and increment the filter responses

// inside the filtering function

Conv2D<<<dimGrid, dimBlock>>>(d Filter Responses);

}
}

}
}

Algorithm 3

device int Shift FFT Coordinate(int coordinate, int DATA SIZE)

{
if (coordinate > (ceilf(DATA SIZE/2) − 1))

{
return coordinate − ceilf(DATA SIZE/2);

}
else

{
return coordinate + floorf(DATA SIZE/2);

}
}

Algorithm 4

For the FFT-based filtering, the algorithm is started with
data of the resolution 512×512×31×20 and is downsampled
to 256× 256× 16× 20. The control tensor is then calculated
for 256× 256× 10× 20 time voxels, and the denoised data is
calculated for 512× 512× 18× 20 time voxels. To process all
the 445 slices requires 26 runs.

To store the 10 components of the control tensor in
the same resolution as the original CT data for one run
with spatial filtering (512 × 512 × 39 × 20) would require
about 12.2 GB of memory. As the control tensor needs to be
interpolated a factor 2 in each spatial dimension, since it is
estimated on downsampled data, another approach is used.
Interpolating the tensor is a perfect task for the GPU, due to

the hardware support for linear interpolation. The 10 tensor
components, for one timepoint, are therefore stored in 10
textures and then the interpolation is done on the fly when
the denoised data is calculated. By using this approach, only
another 10 variables of the resolution 256× 256× 20 need to
be stored at the same time.

Table 2 states the in and out resolution of the data, the
used equations, and the memory consumption at each step of
the denoising algorithm, for spatial filtering and FFT-based
filtering. The out resolution refers to the resolution of the
data that is valid after each processing step, as some data is
regarded as non-valid after filtering operations. The reason
why the memory consumption is larger for the FFT-based

12 International Journal of Biomedical Imaging

Table 3: Processing times for filtering with the 14 monomial filters of size 7 × 7 × 7 × 7 and calculating the 4D tensor for the different
implementations. The processing times for the GPU do not include the time it takes to transfer the data to and from the GPU.

Data size Spatial filtering CPU Spatial filtering GPU GPU speedup FFT filtering CPU FFT filtering GPU GPU speedup

128× 128× 111× 20 17.3 min 5.7 s 182 25 s 1.8 s 13.9

256× 256× 223× 20 2.3 h 36.0 s 230 3.3 min 14.3 s 13.9

Table 4: Processing times for lowpass filtering the 10 tensor
components, calculating γ and mapping the structure tensor to the
control tensor for the different implementations. The processing
times for the GPU do not include the time it takes to transfer the
data to and from the GPU.

Data size CPU GPU GPU speedup

256× 256× 223× 20 42 s 1.0 s 42

512× 512× 445× 20 292 s 7.3 s 40

filtering is that the spatial filtering can be done for one slice
or one volume at a time, while the FFT-based filtering has
to be applied to a sufficiently large number of slices and
time points at the same time. We were not able to use more
than about 2 GB of memory for the FFT-based filtering; one
reason for this might be that the CUFFT functions internally
use temporary variables that use some of the memory. Since
the source code for the CUFFT library is unavailable, it is
hard to further investigate this hypothesis.

4. Data

The 4D CT dataset that was used for testing our GPU
implementation was collected with a Siemens SOMATOM
Definition Flash dual-energy CT scanner at the Center
for medical Image Science and Visualization (CMIV). The
dataset contains almost 9000 DICOM files and the resolution
of the data is 512 × 512 × 445 × 20 time voxels. The spatial
size of each voxel is 0.75× 0.75× 0.75 mm. During the image
acquisition the tube current is modulated over the cardiac
cycle with reduced radiation exposure during the systolic
heart phase. Due to this, the amount of noise varies with
time.

5. Results

5.1. Processing Times. A comparison between the processing
times for our GPU implementation and for a CPU imple-
mentation was made. The used GPU was a Nvidia GTX 580,
equipped with 512 processor cores and 3 GB of memory
(the Nvidia GTX 580 is normally equipped with 1.5 GB of
memory). The used CPU was an Intel Xeon 2.4 GHz with 4
processor cores and 12 MB of L3 cache, 12 GB of memory
was used. All the implementations used 32 bit floats. The
operating system used was Linux Fedora 14 64-bit.

For the CPU implementation, the OpenMP (open
multiprocessing) library [38, 39] was used, such that all
the 4 processor cores work in parallel. No other types of
optimization for the CPU, such as SSE2, were used. We are
fully aware of the fact that it is possible to make a much
better CPU implementation. The purpose of this comparison

is rather to give an indication of the performance of the CPU
and the GPU. If the CPU code would be vectorized, the CPU
processing times can be divided by a factor 3 or 4 (except for
the FFT which already is very optimized).

The processing times are given in Tables 3, 4, 5, and
6. The CPU processing times for the spatial filtering are
estimates, since it takes several days to run the algorithm on
the whole dataset. The processing times for a multi-GPU
implementation would scale rather linearly with the number
of GPUs, since each GPU can work on different subsets of
slices in parallel. As our computer contains three GPUs, all
the processing times for the GPU can thereby be divided by a
factor 3.

5.2. Denoising Results. To show the results of the 4D
denoising, the original CT data was compared with
the denoised data by applying volume rendering. The
freely available MeVisLab software development program
(http://www.mevislab.de/) was used. Two volume renderers,
one for the original data and one for the denoised data, run
at the same time and were synced in terms of view angle
and transfer function. Figure 8 shows volume renderings of
the original and the denoised data for different time points
and view angels. It is clear that a lot of noise is removed
by the denoising, but since the denoising algorithm alters
the histogram of the data, it is hard to make an objective
comparison even if the same transfer function is applied.

A movie where the original and the denoised data is
explored with the two volume renderers was also made.
For this video, the data was downsampled a factor 2 in the
spatial dimensions, in order to decrease the memory usage.
The volume renderers automatically loop over all the time-
points. The video can be found at http://www.youtube.com/
watch?v=wflbt2sV34M.

By looking at the video, it is easy to see that the amount
of noise in the original data varies with time.

6. Discussion

We have presented how to implement true 4D image
denoising on the GPU. The result is that 4D image denoising
becomes practically possible if the GPU is used and thereby
the clinical value increases significantly.

6.1. Processing Times. To make a completely fair comparison
between the CPU and the GPU is rather difficult. It has
been debated [40] if the GPU speedups that have been
reported in the literature are plausible or if they are the result
of comparisons with unoptimized CPU implementations.
In our opinion, the theoretical and practical processing
performance that can be achieved for different hardware is

International Journal of Biomedical Imaging 13

Table 5: Processing times for filtering with the 11 reconstruction filters of size 11×11×11×11 and calculating the denoised data for the
different implementations. The processing times for the GPU do NOT include the time it takes to transfer the data to and from the GPU.

Data size Spatial filtering CPU Spatial filtering GPU GPU speedup FFT filtering CPU FFT filtering GPU GPU speedup

256× 256× 223× 20 7.5 h 3.3 m 136 5.6 min 1.1 min 5.1

512 × 512× 445× 20 2.5 days 23.9 m 150 45 min 8.6 min 5.2

Table 6: Total processing times for the complete 4D image denoising algorithm for the different implementations. The processing times for
the GPU DO include the time it takes to transfer the data to and from the GPU.

Data size Spatial filtering CPU Spatial filtering GPU GPU speedup FFT filtering CPU FFT filtering GPU GPU speedup

256× 256× 223× 20 7.8 h 3.5 m 133 6.7 m 1.2 m 5.6

512 × 512 × 445 × 20 2.6 days 26.3 m 144 52.8 m 8.9 m 5.9

not the only interesting topic. In a research environment,
the ratio between the achievable processing performance
and the time it takes to do the implementation is also
important. From this perspective, we think that our CPU-
GPU comparison is rather fair, since about the same time was
spent on doing the CPU and the GPU implementation. The
CUDA programming language was designed and developed
for parallel calculations from the beginning, while different
addons have been added to the C programming language
to be able to do parallel calculations. While it is rather
easy to make the CPU implementation multithreaded, for
example, by using the OpenMP library, more advanced CPU
optimization is often more difficult to include and often
requires assembler programming.

While spatial filtering can be significantly slower than
FFT-based filtering for nonseparable filters, there are some
advantages (except for the lower memory usage). One is
that a region of interest (ROI) can be selected for the
denoising, compared to doing the denoising on the whole
dataset. Another advantage is that filter networks [41, 42]
can be applied, such that the filter responses from many
small filters are combined to the same filter response as from
one large filter. Filter networks can reduce the number of
multiplications as much as a factor 5 in 2D, 25 in 3D and 300
in 4D [43]. To design and optimize a filter network however
requires much more work than to optimize a single filter
[33]. Another problem is that the memory usage increases
significantly when filter networks are used, since many filter
responses need to be stored in memory. Filter networks on
the GPU is a promising area for future research.

From our results, it is clear that FFT-based filtering is
faster than spatial filtering for large nonseparable filters. For
data sizes that are not a power of two in each dimension,
the FFT based approach might however not be as efficient.
Since medical doctors normally do not look at 3D or 4D
data as volume renderings, but rather as 2D slices, the
spatial filtering approach however has the advantage that the
denoising can be done for a region of interest (e.g., a specific
slice or volume). It is a waste of time to enhance the parts
of the data that are not used by the medical doctor. The
spatial filtering approach can also handle larger datasets than
the FFT-based approach, as it is sufficient to store the filter
responses for one slice or one volume at a time. Recently, we
acquired a CT data set with 100 time points, compared to 20

time points. It is not possible to use the FFT-based approach
for this data set.

There are several reasons why the GPU speedup for the
FFT-based filtering is much smaller than the GPU speedup
for the spatial filtering. First, the CUFFT library does not
include any direct support for 4D FFT’s, and we had to
implement our own 4D FFT as two 2D FFT’s that are applied
after each other. Between the 2D FFT’s the storage order
of the data is changed. It can take a longer time to change
the order of the data than to actually perform the FFT. If
Nvidia includes direct support for 4D FFT’s in the CUFFT
library, we are sure that their implementation would be much
more efficient than ours. Second, the FFT for the CPU is
extremely optimized, as it is used in a lot of applications,
and our convolver for the CPU is not fully optimized. The
CUDA programming language is only a few years old, and
the GPU standard libraries are not as optimized as the CPU
standard libraries. The hardware design of the GPUs also
changes rapidly. Some work has been done in order to further
optimize the CUFFT library. Nukada et al. [44, 45] have
created their own GPU FFT library which has been proven
to give better performance than the CUFFT library. They
circumvent the problem of changing the order of the data
and thereby achieve an implementation that is much more
efficient. In 2008, their 3D FFT was 5-6 times faster than
the 3D FFT in the CUFFT library. Third, due to the larger
memory requirements of FFT-based filtering it is not possible
to achieve an as big speedup for the GPU implementation
as for the CPU implementation. If a GPU with a higher
amount of global memory would have been used, the FFT-
based implementation would have been more efficient.

6.2. 4D Image Processing with CUDA. As previously dis-
cussed in the paper, 4D image processing in CUDA is harder
to implement than 2D and 3D image processing. There are,
for example, no 4D textures, no 4D FFTs, and there is no
direct support for 4D (or 3D) indices. However, since fMRI
data also is 4D, we have previously gained some experience
on how to do 4D image processing with CUDA [18–20].
The conclusions that we draw after implementing the 4D
image denoising algorithm with the CUDA programming
language is thus that CUDA is not perfectly suited for 4D
image processing, but due to its flexibility, it was still possible
to implement the algorithm rather easily.

14 International Journal of Biomedical Imaging

(a) (b)

Figure 8: Three comparisons between original CT data (a) and denoised CT data (b). The parameters used for this denoising where α =
0.55, β = 1.5, and σ = 0.1 for the M-function.

International Journal of Biomedical Imaging 15

6.3. True 5D Image Denoising. It might seem impossible to
have medical image data with more than 4 dimensions, but
some work has been done on how to collect 5D data [46].
The five dimensions are the three spatial dimensions and two
time dimensions, one for the breathing rhythm and one for
the heart rhythm. One major advantage with 5D data is that
the patient can breathe normally during the data acquisition,
while the patient has to hold its breath during collection of
4D data. With 5D data, it is possible to, for example, fixate
the heart and only see the lungs moving, or fixate the lungs
to only see the heart beating. If the presented algorithm
would be extended to 5D, it would be necessary to use a
total of 20 monomial filters and 16 reconstruction filters.
For a 5D dataset of the size 512 × 512 × 445 × 20 × 20,
the required number of multiplications for spatial filtering
with the reconstruction filters would increase from 375 000
billion for 4D to about 119 million billion (1.19 · 1017) for
5D. The size of the reconstruction filter responses would
increase from 103 GB for 4D to 2986 GB for 5D. This is still
only one dataset for one patient, and we expect that both the
spatial and the temporal resolution of all medical imaging
modalities will increase even further in the future. Except for
the 5 outer dimensions, it is also possible to collect data with
more than one inner dimension. This is, for example, the case
if the blood flow of the heart is to be studied. For flow data,
a three-dimensional vector needs to be stored in each time
voxel, instead of a single intensity value.

7. Conclusions

To conclude, by using the GPU, true 4D image denoising
becomes practically feasible. Our implementation can of
course be applied to other modalities as well, such as ultra-
sound and MRI, and not only to CT data. The short process-
ing time also makes it practically possible to further improve
the denoising algorithm and to tune the parameters that are
used.

The elapsed time between the development of practically
feasible 2D [2] and 3D [4] image denoising techniques was
about 10 years, from 3D to 4D the elapsed time was about 20
years. Due to the rapid development of GPUs, it is hopefully
not necessary to wait another 10–20 years for 5D image
denoising.

Acknowledgments

This work was supported by the Linnaeus Center CADICS
and research Grant no. 2008-3813, funded by the Swedish
research council. The CT data was collected at the Center
for Medical Image Science and Visualization (CMIV). The
authors would like to thank the NovaMedTech project at
Linköping University for financial support of the GPU
hardware, Johan Wiklund for support with the CUDA
installations, and Chunliang Wang for setting the transfer
functions for the volume rendering.

References

[1] J.-S. Lee, “Digital image enhancement and noise filtering by
use of local statistics,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 2, no. 2, pp. 165–168, 1980.

[2] H. E. Knutsson, R. Wilson, and G. H. Granlund, “Anisotropic
non-stationary image estimation and its applications—part I:
restoration of noisy images,” IEEE Transactions on Communi-
cations, vol. 31, no. 3, pp. 388–397, 1983.

[3] P. Perona and J. Malik, “Scale-space and edge detection using
anisotropic diffusion,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 12, no. 7, pp. 629–639, 1990.

[4] H. Knutsson, L. Haglund, H. Bårman, and G. Granlund,
“A framework for anisotropic adaptive filtering and analysis
of image sequences and volumes,” in Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal
Processing, (ICASSP), pp. 469–472, 1992.

[5] G. Granlund and H. Knutsson, Signal Processing for Computer
Vision, Kluwer Academic, Boston, Mass, USA, 1995.

[6] C.-F. Westin, L. Wigström, T. Loock, L. Sjöqvist, R. Kikinis,
and H. Knutsson, “Three-dimensional adaptive filtering in
magnetic resonance angiography,” Journal of Magnetic Reso-
nance Imaging, vol. 14, pp. 63–71, 2001.

[7] J. Montagnat, M. Sermesant, H. Delingette, G. Malandain, and
N. Ayache, “Anisotropic filtering for model-based segmen-
tation of 4D cylindrical echocardiographic images,” Pattern
Recognition Letters, vol. 24, no. 4-5, pp. 815–825, 2003.

[8] H. Jahanian, A. Yazdan-Shahmorad, and H. Soltanian-Zadeh,
“4D wavelet noise suppression of MR diffusion tensor data,” in
Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing, (ICASSP), pp. 509–512, April
2008.

[9] K. Pauwels and M. M. Van Hulle, “Realtime phase-based
optical flow on the GPU,” in Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition
Workshops, (CVPR), pp. 1–8, June 2008.

[10] P. Muyan-Özcelik, J. D. Owens, J. Xia, and S. S. Samant, “Fast
deformable registration on the GPU: a CUDA implementation
of demons,” in Proceedings of the International Conference on
Computational Sciences and its Applications, (ICCSA), pp. 223–
233, July 2008.

[11] P. Bui and J. Brockman, “Performance analysis of accelerated
image registration using GPGPU,” in Proceedings of the 2nd
Workshop on General Purpose Processing on Graphics Processing
Units, (GPGPU-2), pp. 38–45, March 2009.

[12] A. Eklund, M. Andersson, and H. Knutsson, “Phase based
volume registration using CUDA,” in Proceedings of the
IEEE International Conference on Acoustics, Speech, and Signal
Processing, (ICASSP), pp. 658–661, March 2010.

[13] R. Shams, P. Sadeghi, R. Kennedy, and R. Hartley, “A survey of
medical image registration on multicore and the GPU,” IEEE
Signal Processing Magazine, vol. 27, no. 2, Article ID 5438962,
pp. 50–60, 2010.

[14] A. E. Lefohn, J. E. Cates, and R. T. Whitaker, “Interactive,
GPU-based level sets for 3D segmentation,” Lecture Notes in
Computer Science, vol. 2878, pp. 564–572, 2003.

[15] V. Vineet and P. J. Narayanan, “CUDA cuts: fast graph
cuts on the GPU,” in Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition
Workshops, (CVPR), pp. 1–8, June 2008.

[16] A. Abramov, T. Kulvicius, F. Wörgötter, and B. Dellen, “Real-
time image segmentation on a GPU,” in Proceedings of Facing
the Multicore-Challenge, vol. 6310 of Lecture Notes in Computer
Science, pp. 131–142, Springer, 2011.

16 International Journal of Biomedical Imaging

[17] D. Gembris, M. Neeb, M. Gipp, A. Kugel, and R. Männer,
“Correlation analysis on GPU systems using NVIDIA’s
CUDA,” Journal of Real-Time Image Processing, pp. 1–6, 2010.

[18] A. Eklund, O. Friman, M. Andersson, and H. Knutsson, “A
GPU accelerated interactive interface for exploratory func-
tional connectivity analysis of fMRI data,” in Proceedings of the
IEEE International Conference on Image Processing, (ICIP), pp.
1621–1624, 2011.

[19] A. Eklund, M. Andersson, and H. Knutsson, “fMRI analysis
on the GPU—possibilities and challenges,” Computer Methods
and Programs in Biomedicine. In press.

[20] A. Eklund, M. Andersson, and H. Knutsson, “Fast random
permutation tests enable objective evaluation of methods
for single subject fMRI analysis,” International Journal of
Biomedical Imaging, vol. 2011, Article ID 627947, 2011.

[21] M. Rumpf and R. Strzodka, “Nonlinear diffusion in graphics
hardware,” in Proceedings of the EG/IEEE TCVG Symposium on
Visualization, pp. 75–84, 2001.

[22] M. Howison, “Comparing GPU implementations of bilateral
and anisotropic diffusion filters for 3D biomedical datasets,”
Tech. Rep. LBNL-3425E, Lawrence Berkeley National Labora-
tory, Berkeley, Calif, USA.

[23] Y. Su and Z. Xu, “Parallel implementation of wavelet-
based image denoising on programmable PC-grade graphics
hardware,” Signal Processing, vol. 90, no. 8, pp. 2396–2411,
2010.

[24] Q. Zhang, R. Eagleson, and T. M. Peters, “GPU-based image
manipulation and enhancement techniques for dynamic vol-
umetric medical image visualization,” in Proceedings of the 4th
IEEE International Symposium on Biomedical Imaging: From
Nano to Macro, (ISBI), pp. 1168–1171, April 2007.

[25] J. Chen, S. Paris, and F. Durand, “Real-time edge-aware
image processing with the bilateral grid, ACM transactions
on graphics,” in Proceedings of the Special Interest Group on
Computer Graphics and Interactive Techniques Conference, no.
103, p. 9, 2007.

[26] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and
color images,” in Proceedings of the IEEE 6th International
Conference on Computer Vision, pp. 839–846, January 1998.

[27] F. Fontes, G. Barroso, P. Coupe, and P. Hellier, “Real time
ultrasound image denoising,” Journal of Real-Time Image
Processing, vol. 6, pp. 15–22, 2010.

[28] B. Goossens, H. Luong, J. Aelterman, A. Pizurica, and W.
Philips, “A GPU-accelerated real-time NLMeans algorithm for
denoising color video sequences,” in Proceedings of the 12th
International Conference on Advanced Concepts for Intelligent
Vision Systems, (ACIVS), vol. 6475 of Lecture Notes in Com-
puter Science, pp. 46–57, Springer, 2010.

[29] A. Buades, B. Coll, and J. M. Morel, “A non-local algorithm for
image denoising,” in Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition,
(CVPR), pp. 60–65, June 2005.

[30] H. Knutsson, “Representing local structure using tensors,” in
Proceedings of the Scandinavian Conference on Image Analysis,
(SCIA), pp. 244–251, 1989.

[31] F. Forsberg, V. Berghella, D. A. Merton, K. Rychlak, J. Meiers,
and B. B. Goldberg, “Comparing image processing techniques
for improved 3-dimensional ultrasound imaging,” Journal of
Ultrasound in Medicine, vol. 29, no. 4, pp. 615–619, 2010.

[32] H. Knutsson, C.-F. Westin, and M. Andersson, “Representing
local structure using tensors II,” in Proceedings of the Scandina-
vian Conference on Image Analysis, (SCIA), vol. 6688 of Lecture
Notes in Computer Science, pp. 545–556, Springer, 2011.

[33] H. Knutsson, M. Andersson, and J. Wiklund, “Advanced filter
design,” in Proceedings of the Scandinavian Conference on
Image Analysis, (SCIA), pp. 185–193, 1999.

[34] H. Knutsson and C. F. Westin, “Normalized and differen-
tial convolution: methods for interpolation and filtering of
incomplete and uncertain data,” in Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition, (CVPR), pp. 515–523, June 1993.

[35] Nvidia, CUDA Programming Guide, Version 4.0., 2011.
[36] D. Kirk and W. Hwu, Programming Massively Parallel Pro-

cessors, A Handson Approach, Morgan Kaufmann, Waltham,
Mass, USA, 2010.

[37] The Khronos Group & OpenCL, 2010, http://www.khronos
.org/opencl/.

[38] The OpenMP API specification for parallel programming,
2011, http://www.openmp.org/.

[39] B. Chapman, G. Jost, and R. van der Pas, Using OpenMP,
Portable Shared Memory Parallel Programming, MIT Press,
Cambridge, Mass, USA, 2007.

[40] V. W. Lee, C. Kim, J. Chhugani et al., “Debunking the 100X
GPU vs. CPU Myth: an evaluation of throughput computing
on CPU and GPU,” in Proceedings of the 37th International
Symposium on Computer Architecture, (ISCA), pp. 451–460,
June 2010.

[41] M. Andersson, J. Wiklund, and H. Knutsson, “Filter net-
works,” in Proceedings of the Signal and Image Processing, (SIP),
pp. 213–217, 1999.

[42] B. Svensson, M. Andersson, and H. Knutsson, “Filter networks
for efficient estimation of local 3-D structure,” in Proceedings
of the IEEE International Conference on Image Processing,
(ICIP), pp. 573–576, September 2005.

[43] M. Andersson, J. Wiklund, and H. Knutsson, “Sequential filter
trees for efficient 2D, 3D and 4D orientation estimation,” Tech.
Rep. LiTH-ISY-R-2070, Department of Electrical Engineering,
Linköping University, Linköping, Sweden, 1998.

[44] A. Nukada, Y. Ogata, T. Endo, and S. Matsuoka, “Bandwidth
intensive 3-D FFT kernel for GPUs using CUDA,” in Pro-
ceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, (SC), pp. 1–11,
November 2008.

[45] A. Nukada and S. Matsuoka, “Auto-tuning 3-D FFT library for
CUDA GPUs,” in Proceedings of the International Conference
on High Performance Computing Networking, Storage and
Analysis, (SC), pp. 1–10, November 2009.

[46] A. Sigfridsson, J. P. E. Kvitting, H. Knutsson, and L. Wigström,
“Five-dimensional MRI incorporating simultaneous resolu-
tion of cardiac and respiratory phases for volumetric imaging,”
Journal of Magnetic Resonance Imaging, vol. 25, no. 1, pp. 113–
121, 2007.

Hindawi Publishing Corporation
International Journal of Biomedical Imaging
Volume 2011, Article ID 481064, 9 pages
doi:10.1155/2011/481064

Research Article

Patient Specific Dosimetry Phantoms Using Multichannel
LDDMM of the Whole Body

Daniel J. Tward,1 Can Ceritoglu,1 Anthony Kolasny,1 Gregory M. Sturgeon,2, 3

W. Paul Segars,2, 4 Michael I. Miller,1, 5 and J. Tilak Ratnanather1, 5

1 The Center for Imaging Science, The Johns Hopkins University, Baltimore, MD 21218-2686, USA
2 Carl E. Ravin Advanced Imaging Laboratories, Duke University, Durham, NC 27705, USA
3 Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599-7575, USA
4 Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
5 Institute for Computational Medicine, The Johns Hopkins University, Baltimore, MD 21218-2686, USA

Correspondence should be addressed to Daniel J. Tward, dtward@cis.jhu.edu

Received 1 April 2011; Accepted 3 June 2011

Academic Editor: Yasser M. Kadah

Copyright © 2011 Daniel J. Tward et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper describes an automated procedure for creating detailed patient-specific pediatric dosimetry phantoms from a small set
of segmented organs in a child’s CT scan. The algorithm involves full body mappings from adult template to pediatric images using
multichannel large deformation diffeomorphic metric mapping (MC-LDDMM). The parallel implementation and performance
of MC-LDDMM for this application is studied here for a sample of 4 pediatric patients, and from 1 to 24 processors. 93.84% of
computation time is parallelized, and the efficiency of parallelization remains high until more than 8 processors are used. The
performance of the algorithm was validated on a set of 24 male and 18 female pediatric patients. It was found to be accurate
typically to within 1-2 voxels (2–4 mm) and robust across this large and variable data set.

1. Introduction

Measuring the radiation dose a patient accumulates through
life is an important matter that has been receiving much
attention recently, in particular for growing children (e.g., in
the New England Journal of Medicine’s recent critique of CT
use [1], and the adoption of the Image Gently program [2]
by the Society of Pediatric Radiology, the American Society
of Radiologic Technologists, the American College of Radiol-
ogy, the American Association of Physicists in Medicine, and
others). While directly measuring dose to individual organs
is impractical, the development of computational phantoms
containing dosimetric information (e.g., [3]), such as the
extended cardiac-torso (XCAT) phantom used in this study
[4] have begun to be a reliable substitute. A key shortcoming
of this strategy is that standard phantoms cannot adequately
reflect variability between patients, especially for children
of different sizes and ages, and defining new phantoms for
each patient manually would be unfeasible. The strategy used

here consists of manually segmenting a small subset of organs
from pediatric CT data and calculating a full body mapping
to a similarly segmented adult XCAT phantom [5]. The
resulting transformation is used to map rich anatomical and
dosimetric information to the child’s body.

To map dense image data as well as point-based manifold
data between adult and child, this application requires a
smooth invertible transformation (a diffeomorphism) to be
defined everywhere on the background space of the CT scan.
Such transformations are an important focus of computa-
tional anatomy [6], where anatomical variability is under-
stood by studying diffeomorphisms mapping anatomical
manifolds to one another. Formally, anatomy is modelled as
the quadruple (Ω, G, I, P), where Ω is the background space
(i.e., subsets of R3), G is a group of diffeomorphisms on Ω,
I is the orbit of a template I0 under G, and P is a family
of probability measures on G. Geodesic paths, φt ∈ G for
t ∈ [0, 1], are used to evolve a template according to I0 ◦φ−1

t ,
and a mapping to a target I1 is defined when I1 = I0 ◦ φ−1

1 .

2 International Journal of Biomedical Imaging

Large deformation diffeomorphic metric mapping
(LDDMM) [7] generates such mappings (φ1(x)) by inte-
grating a smooth time dependent velocity field vt(x) [8],

φt(x) =
∫ t

0
vt′
(
φt′(x)

)
dt′, (1)

with the initial condition being identity, φ0(x) = x.
A functional of the velocity field, which enforces image
matching as well as smoothness and ensures the path is a
geodesic, is minimized as discussed below.

2. The Multichannel LDDMM Algorithm

There are existing algorithms for full body image registra-
tion, which are used (e.g.) in registering PET to CT data
[9–11] and compensating for deformations such as breath
holds. However, these tend to use elastic models, which are
suitable for describing the small deformations that register
two images of the same patient but are unable to accurately
describe the widely varying deformations between adults and
children of various ages. In addition to the constraints on
smoothness and invertibility, transformations generated by
LDDMM are well suited to this application, because its fluid
model (rather than elastic) allows for large deformations to
be generated [12] and because the submanifold preserving
property of diffeomorphisms [13] allows a transformation
calculated from a handful of segmented structures to be
accurately applied to the thousands of anatomical structures
defined in the XCAT phantom. Moreover, additional prop-
erties are well suited to future exploration. For example,
LDDMM allows metric distances to be defined between
template and target anatomies [8, 14] and allows statistical
codification of anatomy [15, 16].

In this work, we use multichannel LDDMM (MC-
LDDMM), an algorithm which treats each segmented organ
as a separate image linked by a common background space
[17] to calculate diffeomorphisms. This is accomplished by
calculating the velocity field minimizing the energy func-
tional

E =
∫
dt‖Lvt‖2

2 +
M∑
i=1

1
σ2
i

∥∥∥Ii0 ◦ φ−1
t=1 − Ii1

∥∥∥2

2
, (2)

where Ii1 and Ii0 are the ith (out of M) channels (organs)
of the target and template images, φt=1 is a diffeomorphism
generated by integrating the velocity field vt from t = 0 to
1, and σ2

i describes the contribution of the ith channel to
the overall energy. The operator L = −γId + α∇2, where
γ = −1 is fixed and α is varied, Id is identity, and ∇2 is
the Laplacian operator, ensures smoothness of the velocity
field and resulting deformations, with larger α corresponding
to smoother deformations, and smaller α corresponding to
more accurate transformations.

The energy gradient can be computed as [17]

∇vEt = 2vt − K

⎡⎣ M∑
i=1

2
σ2
i

∣∣Dφt,1∣∣∇J0i
t

(
J0i
t − J1i

t

)⎤⎦, (3)

where K is the operator inverse of L†L, | · | denotes deter-
minant and D denotes the Jacobian. The transformation
generated by integrating (1) from time t′ = s to time t′ = t
is denoted φs,t (i.e., φs,t = φt ◦ φ−1

s = φ−1
t,s). The quantity J0i

t is
the ith template channel transformed up to time t (i.e., J0i

t =
Ii0 ◦ φ−1

t = Ii0 ◦ φt,0), J1i
t is the ith target channel transformed

backwards from time 1 to time t (i.e., J1i
t = Ii1 ◦ φt,1), and ∇

is simply the spatial gradient.

It can be seen that the transformation and its inverse
must be defined at all times, which was discretized here into
11 equally spaced time points from t = 0 to t = 1. Calcu-
lating this transformation from the velocity field is a large
part of the computational load. Integration in time is per-
formed using semi-Lagrangian advection, a technique used
in numerical weather prediction [18]. We use an implicit
method for numerical integration, with 3 iterations per voxel
at each timestep.

Moreover, a deformed target and template image must
be calculated at each timestep. We use trilinear interpolation,
which corresponds to another large computational load.
To optimize calculations, the images for each channel were
computed in the same loop (loop fusion).

Finally, application of the operator K is implemented by
multiplication in the Fourier domain. The FFT calculations
were performed and parallelized using Intel Math Kernel
Library’s (MKL) FFT routines.

Since many steps of this algorithm involve independent
calculations on a regular 3D voxel grid, it is well suited to
parallelization. In our C++ implementation of the LDDMM
algorithm, OpenMP (open multiprocessing) library routines
were used. As stated in [19], “the OpenMP Application
Program Interface (API) supports multi-platform shared-
memory parallel programming in C/C++ and Fortran on all
architectures. . . .OpenMP is a portable, scalable model that
gives shared-memory parallel programmers a simple and
flexible interface for developing parallel applications for plat-
forms ranging from the desktop to the supercomputer.” In
our algorithm, at each iteration of gradient descent, different
operations defined on data over the voxel grid were paral-
lelized using work-sharing constructs, and loop iterations
were split among the threads. The program was compiled
using Intel C++ compiler version 12.0, with automatic
compiler optimizations. It was run on a Dell R900, a 4 socket
node with 6 cores per socket, with an Intel Xeon CPU E7450
at 2.40 GHz.

3. Methods

3.1. Calculation of Full Body Maps. In previous work [5],
the feasibility of using multi-MC-LDDMM for this purpose
was explored. A mapping to a single pediatric patient was
calculated, and a reasonable subset of segmented organs
was determined. However, generalizing this algorithm to a
population of patients proved difficult. For example, where
initial overlap of organs or bony details between template and
target was poor, the diffeomorphism tended to shrink organs
close to a point. Such distortions would also negatively affect
the registration of nearby structures. Furthermore, when

International Journal of Biomedical Imaging 3

(a)a (b) (c)

Figure 1: An example of how the standard MC-LDDMM algorithm
fails for full body mapping. (a) axial, (b) coronal, and (c) sagittal
images of a deformed adult template. Notice that the abdominal
organs have been catastrophically shrunk causing distortions in
nearby neck and thoracic structures and that details in the face and
skull have been lost.

structures were shrunk by the diffeomorphism details were
lost, and when structures were expanded, their initial
voxelized character was spuriously reproduced at the larger
scale. These difficulties are illustrated by showing a deformed
adult template in Figure 1, where abdominal organs are seen
contracting to a very small size, nearby structures in the neck
and thorax are distorted, and features in the face and skull
are lost. Further investigation resulted in the algorithm being
made more robust [20] but at the expense of increased
computation time.

In the modified MC-LDDMM algorithm, (2) is min-
imized by initializing the velocity field to 0 and using a
gradient descent routine with a large value of α. At conver-
gence, the value of α is decreased, and minimization resumes,
starting with the previously calculated velocity field. This
procedure is iterated a total of four times. This sequential
reduction of the parameter α (denoted “cascading α”) allows
for a coarse to fine registration and is responsible for the
increased robustness as well as increased computation time
of the modified algorithm. Beginning with a large value of
α is analogous to Tikhonov regularization, encouraging a
desirable solution to an ill posed problem. The final small
value for α is chosen to give the desired level of accuracy
in our mapping. Decreasing the value for α abruptly often
results in nondiffeomorphic transformations due to numer-
ical instability. So, we include 2 intermediate values to
mitigate this effect and unfortunately must bear the price of
considerably increasing computation time.

The MC-LDDMM algorithm with cascading α was used
to generate mappings between one of two adult templates
(one male and one female), and pediatric patients (24 male
and 18 female). Each was defined on an 256×256×520 2mm3

voxel grid. The patients varied in size between 0.072 and
0.472 times the volume of the adult, with an average of 0.233
times. Males ranged from 0.072 to 0.472 times the adult vol-
ume with a mean of 0.246, while females ranged from 0.076
to 0.372 times the adult volume with a mean of 0.215. The
images were segmented into 8 channels with corresponding

Table 1: Segmented organs used for full body maps.

Organ Weighting

Body σ1 = 1

Bones σ2 = 1

Kidneys σ3 = 0.5

Lungs σ4 = 1

Liver σ5 = 1

Spleen σ6 = 0.5

Stomach σ7 = 0.5

Brain σ8 = 1

organs and weightings defined in Table 1, and 87 landmarks
were placed automatically [4] mainly on easily reproducible
bony structures. Images were initially aligned with an affine
transformation minimizing distances between correspond-
ing landmarks, followed by nonlinear landmark LDDMM
[21]. Following this, cascading α MC-LDDMM was used
with the four values α = 0.05, 0.025, 0.01, 0.005. In previous
work, we found this particular sequence to give qualitatively
good results in 2D simulations and 3D full body data [20].

The sequence of transformations used to generate the
final mapping is illustrated in Figure 2. Each transforma-
tions for each pediatric patient were combined to yield a
double precision displacement vector at each voxel of the
adult template images. This transformation was trilinearly
interpolated to map NURBS (nonuniform rational B-spline)
surfaces defined in the XCAT phantoms to the coordinate
system of the child.

3.2. Analysis of Computation. The bulk of the computational
work was performed during cascading α MC-LDDMM, and
as such, its performance was investigated more thoroughly.
Four patients were selected, 2 males and 2 females, cor-
responding to the largest, smallest, and 1/3 interquartile
sizes, denoted “small”, “med-small”, “med-large”, and “large”.
Mappings were calculated on these patients using each of
1, 2, 4, 8, 16, and 24 (the maximum readily available)
processors. The total computation time excluding input-
output (IO) operations was analyzed for each case as well
as the time spent in specific functions. This allowed us an
understanding of how computation time scales with the
number of processors used, and in particular identify at
what point computation time begins to increase beyond what
would be expected.

To be more thorough, the portions of the program that
were affected by parallelization, including IO operations,
were analyzed. Speedup, cn, due to parallelization on n
processors was calculated (using “Amdahl’s Law” [22] as in
[23]) to be

cn = T(1)
T(n)

= A + B

A + B/n
, (4)

where T(n) is the total computation time for n processors,
and for a single processor, A is the time spent that cannot be

4 International Journal of Biomedical Imaging

(a) (b) (c) (d) (e) (f) (g)

Figure 2: The robust sequence of transformations leading to the final mapping. Top row: sagittal slice, middle row: coronal slice, bottom row:
axial slice. (a) Initial placement, (b) after affine registration, (c) after LDDMM landmark, and (d)–(g) after 1–4 iterations of MC-LDDMM.

Table 2: Summary of 4 subjects used to analyze computational
performance.

Subject Voxels Iterations ∼No. of calculations

Small 2459200 439 1.08e + 09

Med-Small 6182224 942 5.82e + 09

Med-Large 9358976 640 5.99e + 09

Large 16082000 544 8.75e + 09

parallelized, and B is the time spent that can be parallelized.
These two quantities are easily estimated from a two param-
eter fit to the above equation, which allows determination
of the fraction of the total computational time that can be
parallelized. Furthermore, the efficiency of parallelization
was calculated according to

en = cn
n
. (5)

3.3. Accuracy of Mappings. Finally, the quality of the map-
pings produced was validated. For each segmented organ, a
triangulated surface was produced using isosurface genera-
tion via marching tetrahedra [24]. For each template (target)
vertex, the minimum distance to a vertex on the target
(template) surface was measured. Distances for template and
target vertices were combined, and their distributions were
analyzed. Breaking down this analysis into categories allows
an understanding of the robustness of the algorithm. As such,

distributions were analyzed separately for males, females, as
well as for each segmented organ.

4. Results

4.1. Computational Performance. A summary of the 4 sub-
jects used to analyze computation performance is included
in Table 2. The number of voxels in each image is shown
in the second column, giving more precise meaning to the
labels “small”, “med-small”, “med-large”, and “large”. The
total number of iterations of gradient descent across the 4
applications of MC-LDDMM is shown in the third column.
Due in part to adaptive stepsize selection in gradient descent,
the number of iterations until convergence cannot be known
before hand. In the fourth column, the product between
number of voxels and number of iterations is shown as a
rough approximation of the number of calculations used.
This value can be used to better understand the timing results
that follow. In particular the “med-small” case required the
most iterations to converge, and the approximate number
of calculations was much less for the “small” patient than
for the other three. We stress that these four patients were
chosen with interquartile spacing of their total number of
voxels, as opposed to uniform spacing across number of
voxels, or uniform spacing across number of calculations.
Such a choice is reflective of the pediatric population to be
examined, rather than properties of the algorithm itself.

The total computational time in hours, excluding IO
operations, is shown in Table 3. The two largest components
of calculations are also shown. Numerically integrating the

International Journal of Biomedical Imaging 5

Table 3: Total timing (in hours) excluding IO operations.

Processors Small Med-small Med-large Large

1 8.94 33.5 31.3 28

2 4.9 18.2 17.3 15.2

4 2.62 9.68 9.05 7.92

8 1.49 5.41 5.07 4.47

16 1.06 3.64 3.5 3.1

24 0.935 3.25 3.17 2.8

Table 4: Semi-Lagrangian timing (in hours).

Processors Small Med-small Med-large Large

1 2.72 8.87 9.16 8.34

2 1.37 4.52 4.73 4.26

4 0.691 2.28 2.39 2.14

8 0.347 1.15 1.19 1.07

16 0.186 0.625 0.647 0.582

24 0.14 0.473 0.494 0.441

Table 5: Image interpolation timing (in hours).

Processors Small Med-small Med-large Large

1 2.28 8.27 9.24 7.91

2 1.25 4.59 5.07 4.3

4 0.653 2.45 2.63 2.21

8 0.352 1.29 1.38 1.16

16 0.251 0.869 0.88 0.771

24 0.219 0.776 0.767 0.685

velocity field using semi-Lagrangian interpolation is shown
in Table 4, and trilinearly interpolating the images is shown
in Table 5. Surprisingly, the longest amount of time was spent
on the “med-small case”. While this is partially explained by
the large number of iterations for this case shown in Table 2,
other factors such as the specific implementation of the fast
Fourier transform on a grid of this size, contribute as well.

To better understand this behavior, the same data is
shown graphically, on a log-log axes in Figure 3. Figure 3(a)
shows the total time, Figure 3(b) shows the time spent calcu-
lating semi-Lagrangian advection, and Figure 3(c) shows the
time spent interpolating images. It appears that computation
time scales with number of processors up until around 8,
when efficiency starts to break down.

Again, this data must be interpreted with caution, be-
cause the images used are different sizes and a different num-
ber of iterations of gradient descent is required to converge
in each case, as shown in Table 2. Therefore, the timing data
was also plotted after being normalized by total number of
voxels times total number of iterations in Figure 4. It should
be noted that the smallest image actually takes the most time
per voxel per iteration, while the largest image takes the least.

The speedup factor and efficiency were calculated accord-
ing to (4) and (5) and are plotted in Figure 5. This analysis

confirms and quantifies the sharp drop in efficiency beyond 8
processors. From a 2 parameter fit to the data in Figure 5(a),
it was determined that 93.84% of the computation time is
parallelized, demonstrating the effectiveness of our imple-
mentation.

4.2. Accuracy of Transformations. To give a qualitative under-
standing of the mappings produced, an example of triangu-
lated surfaces, for target and mapped template, are shown
in Figure 6 with the body in Figure 6(a), the bones in
Figure 6(b), and the other organs in Figure 6(c). One can
see the quality of the mappings is good in most areas,
the exceptions being the inferior-most regions, where the
extent of template and target images vary, the scapula, where
sliding motions between the nearby ribs and body surface
are difficult to generate given the diffeomorphism constraint,
and the sharp borders of some abdominal organs, whose
curvature varies markedly from that of the template.

The mappings produced were used to generate cus-
tomized dosimetry phantoms based on the adult XCATs. The
adult male XCAT is shown in Figure 6(d) and an example
pediatric dosimetry phantom is shown in Figure 6(e). Pre-
vious work has shown dosimetry measurements generated
with these phantoms to agree within 10% percent of ground
truth [5].

Cumulative distribution functions for final surface to
surface distances are shown in Figure 7. They are shown
for all patients pooled together as well as for males and
females separately in Figure 7(a). The differences in accuracy,
on average, between male and female patients is negligible.
Additionally, distribution functions are shown for each organ
in Figure 7(b). And they are shown for each of the 42 patients
in Figure 7(c).

The results show that the majority of surfaces (a fraction
of 1/e ∼ 1 standard deviation of the vertices) agree within
2–4 mm or 1-2 voxels. Moreover, accuracy for females tends
to be more variable than that for males, likely due to
larger differences in body proportions between child and
adult. Surprisingly, the least accurate case, apparent in
Figure 7(c), is an average seeming patient of intermediate size
between the med-small and med-large test cases. Further-
more, differences in accuracy for each organ are observed,
where the brain is matched with the most fidelity and the
stomach followed by lungs with the least fidelity. While these
differences are small when compared to the voxel size, it is
worth noting that the relatively poor performance for the
stomach was likely due to its internal location and close
proximity with many other abdominal structures, and the
relatively poor performance of the lungs was likely due to
large differences in curvature between the adult and child at
the apexes and inferior borders.

5. Conclusions

This work presented an interesting application of diffeomor-
phic image registration, generating pediatric patient specific
detailed dosimetry phantoms, made feasible on large scale
due to parallel computing. The need for parallelization

6 International Journal of Biomedical Imaging

103

104

105

Number of processors

Total

1 2 4 8 16 24

T
im

e
(s

ec
on

ds
)

Small
Med-small
Med-large
Large

(a)

103

104

105

Number of processors

1 2 4 8 16 24

Semi-Lagrangian

Small
Med-small
Med-large
Large

T
im

e
(s

ec
on

ds
)

(b)

103

104

105

Number of processors

1 2 4 8 16 24

Interpolation

Small
Med-small
Med-large
Large

T
im

e
(s

ec
on

ds
)

(c)

Figure 3: Time spent on computations for the four patients examined, plotted on a log-log axis. (a) Total time, (b) time in semi-Lagrangian
advection, (c) time in image interpolation. Note that in (a) med-small takes the longest, followed by med-large, large, and small. In (b) and
(c), the order of the first two is reversed.

Total per voxel per iteration

T
im

e
p

er
vo

xe
lp

er
it

er
at

io
n

(s
ec

on
ds

)

10−6

10−5

Number of processors

1 2 4 8 16 24

Small
Med-small
Med-large
Large

(a)

10−6

10−5

Number of processors

1 2 4 8 16 24

Small
Med-small
Med-large
Large

T
im

e
p

er
vo

xe
lp

er
it

er
at

io
n

(s
ec

on
ds

) Semi- per voxel per niteratioLagrangian

(b)

In nterpolation per voxel per iteratio

10−6

10−5

Number of processors

1 2 4 8 16 24

Small
Med-small
Med-large
Large

T
im

e
p

er
vo

xe
lp

er
it

er
at

io
n

(s
ec

on
ds

)

(c)

Figure 4: Time spent on computations, per image voxel per gradient descent iteration, for the four patients examined, plotted on a log-log
axis. (a) Total time, (b) time in semi-Lagrangian advection, and (c) time in image interpolation. Note that in (a) small takes the longest,
followed by med-small, med-large, and large. In (b) (for all processors) and (c) (from 1 to 8 processors), the order of the middle two is
reversed.

in deformable image registration is well recognized [23,
25, 26], and other authors have investigated parallelization
of diffeomorphic registration from MASPAR [27] to GPU
implementations [28].

The algorithm used here for generating full body maps
involves a sequence of increasingly detailed transformations
between adult templates and child images. This procedure
ensures robustness to automate calculations across a wide
range of pediatric patients but comes at the price high
computational cost.

To overcome this cost, 93.84% of the algorithm compu-
tation time was parallelized. Running times for the various
patients examined ranged from over 30 hours on a single
processor to under 1 hour on 24 processors in parallel. An
analysis of speedup and parallelization efficiency shows that
performance begins to rapidly decline when implemented on
more than 8 processors. As applications for LDDMM
become more numerous and larger scale, an investigation
of this issue will be necessary. It is likely that the effects of
memory to cpu communication bandwidth, load balancing

International Journal of Biomedical Imaging 7

100

101

Number of processors

1 2 4 8 16 24

Sp
ee

du
p,

C
n

Small
Med-small
Med-large

Large
Identity

(a)

0

0.2

0.4

0.6

0.8

1

Number of processors

1 2 4 8 16 24

Pa
ra

lle
liz

at
io

n
e

ci
en

cy
,e

n

Small
Med-small
Med-large

Large
Identity

(b)

Figure 5: (a) Speedup due to parallelization (log scale) and (b) efficiency of parallelization (semilog scale), for the four patients examined.
With the exception of “small” being uniformly the lowest, the order of the other varies as number of processors increases, and differences
between each curve are quite small.

(a) (b) (c) (d) (e)

Figure 6: Triangulated surfaces from an example deformed adult template (white) and target child (black) are of (a) body, (b) bones, and
(c) other organs. Adult male XCAT phantom is shown in (d), and an example custom dosimetry phantom is shown in (e).

overhead (due to workload not evenly distributed across the
available processors) play a major role.

The full body mapping algorithm is quite accurate for all
the patients examined, with the majority of vertices defined
on organ surfaces agreeing between template and target to
within 2 voxels. Overcoming a main drawback of the dif-
feomorphism constraint, namely, forbidding sliding motions
in the deformation, is the subject of ongoing research. One
strategy we are currently investigating involves relabelling a
strip of the segmented image, between two structures where
sliding would be expected, as “background”. The XCAT
phantoms generated are being further investigated for their
accuracy and clinical utility.

While generating mappings using a sequence of transfor-
mations results in a robust algorithm for this application, it
detracts from some of the theoretical appeal of LDDMM.
Describing transformations by a single time-dependent
vector field allows a rigorous study of anatomical variability.
Future work will involve combining these transformations,
for example, as described in [29], and beginning to engage in
shape analysis of full bodies.

Acknowledgments

The authors would like to extend thanks to Joseph Hennessey
for the development of a parallel visualization application

8 International Journal of Biomedical Imaging

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Distance (mm)

Fr
ac

ti
on

le
ss

th
an

di
st

an
ce

All patients
Males
Females

All distance data

(a)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Distance (mm)

All patients combined

Fr
ac

ti
on

le
ss

th
an

di
st

an
ce

Body
Bones
Kidneys
Lungs

Liver
Spleen
Stomach
Brain

(b)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Distance (mm)

Fr
ac

ti
on

le
ss

th
an

di
st

an
ce

Males
Females

All organs combined

(c)

Figure 7: Cumulative distribution functions of final surface to surface distances are shown for all data and for all males and all females in
(a), for individual organs with all patients combined in (b), and for individual patients with all organs combined in (c).

essential for this study, to Mike Bowers for developing
and customizing an efficient parallelized implementation
of landmark based LDDMM, and to Timothy Brown for
assistance with computational infrastructure. D. J. Tward was
supported by the the Julie-Payette NSERC Research Scholar-
ship (Canada). The authors gratefully acknowledge the sup-
port of NIH Grants nos. 1S10RR025053-01, R01-EB001838,
and P41-RR015241.

References

[1] D. J. Brenner and E. J. Hall, “Computed tomography—an
increasing source of radiation exposure,” The New England
Journal of Medicine, vol. 357, no. 22, pp. 2277–2284, 2007.

[2] The Alliance for Radiation Safety in Pediatric Imaging, “Image
gently.”, 2009, http://www.pedrad.org/associations/5364/ig.

[3] C. Lee, D. Lodwick, J. L. Williams, and W. E. Bolch, “Hybrid
computational phantoms of the 15-year male and female
adolescent: applications to CT organ dosimetry for patients of
variable morphometry,” Medical Physics, vol. 35, no. 6, pp.
2366–2382, 2008.

[4] W. P. Segars, M. Mahesh, T. J. Beck, E. C. Frey, and B. M. W.
Tsui, “Realistic CT simulation using the 4D XCAT phantom,”
Medical Physics, vol. 35, no. 8, pp. 3800–3808, 2008.

[5] W. P. Segars et al., “Patient specific computerized phantoms
to estimate dose in pediatric CT,” in Proceedings of the Medical
Imaging: Physics of Medical Imaging, vol. 7258 of Proceedings of
SPIE, p. 72580H, Lake Buena Vista, Fla, USA, February 2009.

[6] U. Grenander and M. I. Miller, “Computational anatomy: an
emerging discipline,” Quarterly of Applied Mathematics, vol.
56, no. 4, pp. 617–694, 1998.

[7] M. F. Beg, M. I. Miller, A. Trouvé, and L. Younes, “Computing
large deformation metric mappings via geodesic flows of
diffeomorphisms,” International Journal of Computer Vision,
vol. 61, no. 2, pp. 139–157, 2005.

[8] M. I. Miller, A. Trouvé, and L. Younes, “On the metrics and
Euler-Lagrange equations of computational anatomy,” Annual
Review of Biomedical Engineering, vol. 4, pp. 375–405, 1998.

[9] R. Shekhar, V. Walimbe, S. Raja et al., “Automated 3-
dimensional elastic registration of whole-body PET and CT
from separate or combined scanners,” Journal of Nuclear
Medicine, vol. 46, no. 9, pp. 1488–1496, 2005.

[10] C. Cohade, M. Osman, L. T. Marshall, and R. L. Wahl, “PET-
CT: accuracy of PET and CT spatial registration of lung
lesions,” European Journal of Nuclear Medicine and Molecular
Imaging, vol. 30, no. 5, pp. 721–726, 2003.

[11] P. J. Slomka, D. Dey, C. Przetak, U. E. Aladl, and R. P. Baum,
“Automated 3-Dimensional registration of stand-alone 18F-
FDG whole-body PET with CT,” Journal of Nuclear Medicine,
vol. 44, no. 7, pp. 1156–1167, 2003.

[12] G. E. Christensen, R. D. Rabbitt, and M. I. Miller, “Deformable
templates using large deformation kinematics,” IEEE Transac-
tions on Image Processing, vol. 5, no. 10, pp. 1435–1447, 1996.

[13] W. Boothby, An introduction to Differentiable Manifolds and
Riemannian Geometry, Acedemic Press, 1986.

[14] M. I. Miller, A. Trouvé, and L. Younes, “Geodesic shooting for
computational anatomy,” Journal of Mathematical Imaging and
Vision, vol. 24, no. 2, pp. 209–228, 2006.

[15] M. Vaillant, M. I. Miller, L. Younes, and A. Trouvé, “Statistics
on diffeomorphisms via tangent space representations,” Neu-
roImage, vol. 23, no. 1, pp. S161–S169, 2004.

[16] J. Ma, M. I. Miller, A. Trouvé, and L. Younes, “Bayesian
template estimation in computational anatomy,” NeuroImage,
vol. 42, no. 1, pp. 252–261, 2008.

[17] C. Ceritoglu, K. Oishi, X. Li et al., “Multi-contrast large
deformation diffeomorphic metric mapping for diffusion
tensor imaging,” NeuroImage, vol. 47, no. 2, pp. 618–627, 2009.

[18] A. Staniforth and J. Cote, “Semi-Lagrangian integration
schemes for atmospheric models - a review,” Monthly Weather
Review, vol. 119, no. 9, pp. 2206–2223, 1991.

[19] OpenMP, “The OpenMP API specification for parallel pro-
gramming,” 2011, http://openmp.org/wp/.

International Journal of Biomedical Imaging 9

[20] D. J. Tward, C. Ceritoglu, G. Sturgeon, W. P. Segars, M.
I. Miller, and J. T. Ratnanather, “Generating patient-specific
dosimetry phantoms with whole-body diffeomorphic image
registration,” in Proceedings of the IEEE 37th Annual Northeast
Bioengineering Conference, Troy, NY, USA, April 2011.

[21] S. C. Joshi and M. I. Miller, “Landmark matching via large
deformation diffeomorphisms,” IEEE Transactions on Image
Processing, vol. 9, no. 8, pp. 1357–1370, 2000.

[22] G. M. Amdahl, “Validity of the single-processor approach to
achieving large scale computing capabilities,” Proceedings in
AFIPS Converence, vol. 7, pp. 483–485, 1967.

[23] T. Rohlfing and C. R. Maurer, “Nonrigid image registration
in shared-memory multiprocessor environments with appli-
cation to brains, breasts, and bees,” IEEE Transactions on
Information Technology in Biomedicine, vol. 7, no. 1, pp. 16–
25, 2003.

[24] M. Joshi, J. Cui, K. Doolittle et al., “Brain segmentation and
the generation of cortical surfaces,” NeuroImage, vol. 9, no. 5,
pp. 461–476, 1999.

[25] Y. Liu, A. Fedorov, R. Kikinis, and N. Chrisochoides, “Real-
time non-rigid registration of medical images on a cooperative
parallel architechture,” in Proceedings of the IEEE International
Conference on Bioinformatics and Biomedicine, pp. 401–404,
Washington, DC, USA, November 2009.

[26] F. Ino, K. Ooyama, and K. Hagihara, “A data distributed
parallel algorithm for nonrigid image registration,” Parallel
Computing, vol. 31, no. 1, pp. 19–43, 2005.

[27] G. E. Christensen, M. I. Miller, M. W. Vannier, and U.
Grenander, “Individualizing neuroanatomical atlases using a
massively parallel computer,” Computer, vol. 29, no. 1, pp. 32–
38, 1996.

[28] L. K. Ha, J. Krüuger, P. T. Fletcher, S. Joshi, and C. T. Silva,
“Fast parallel unbiased diffeomorphic atlas construction on
multi-graphics processing units,” in Proceedings of the Euro-
graphics Symposium on Parallel Graphics and Visualization,
Munich, Germany, March 2009.

[29] L. Risser, F. Vialard, R. Wolz, M. Murgasova, D. Holm, and
D. Rueckert, “Simultaneous multiscale registration using large
deformation diffeomorphic metric mapping,” IEEE Transac-
tions on Medical Imaging. In press.

Hindawi Publishing Corporation
International Journal of Biomedical Imaging
Volume 2011, Article ID 698908, 12 pages
doi:10.1155/2011/698908

Research Article

CUDA-Accelerated Geodesic Ray-Tracing for Fiber Tracking

Evert van Aart,1, 2 Neda Sepasian,1, 2 Andrei Jalba,1 and Anna Vilanova2

1 Department of Mathematics and Computer Science, Eindhoven University of Technology, 5600 MB Eindhove, The Netherlands
2 Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands

Correspondence should be addressed to Anna Vilanova, a.vilanova@tue.nl

Received 28 February 2011; Revised 17 June 2011; Accepted 24 June 2011

Academic Editor: Khaled Z. Abd-Elmoniem

Copyright © 2011 Evert van Aart et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Diffusion Tensor Imaging (DTI) allows to noninvasively measure the diffusion of water in fibrous tissue. By reconstructing the
fibers from DTI data using a fiber-tracking algorithm, we can deduce the structure of the tissue. In this paper, we outline an
approach to accelerating such a fiber-tracking algorithm using a Graphics Processing Unit (GPU). This algorithm, which is based
on the calculation of geodesics, has shown promising results for both synthetic and real data, but is limited in its applicability by
its high computational requirements. We present a solution which uses the parallelism offered by modern GPUs, in combination
with the CUDA platform by NVIDIA, to significantly reduce the execution time of the fiber-tracking algorithm. Compared to a
multithreaded CPU implementation of the same algorithm, our GPU mapping achieves a speedup factor of up to 40 times.

1. Introduction

Diffusion-Weighted Imaging (DWI) is a recent, noninvasive
Magnetic Resonance Imaging (MRI) technique that allows
the user to measure the diffusion of water molecules in
a given direction. Diffusion Tensor Imaging (DTI) [1]
describes the diffusion measured with DWI as a second-order
tensor. DWI works on the knowledge that the diffusion of
water molecules within biological tissue is influenced by the
microscopic structure of the tissue. The theory of Brownian
motion dictates that molecules within a uniform volume
of water will diffuse randomly in all directions, that is, the
diffusion is isotropic. However, in the presence of objects that
hinder the diffusion of water in some specific directions,
the diffusion will become anisotropic. In fibrous tissue, the
diffusion of water will be large in the direction parallel to
the fibers and small in perpendicular directions. Therefore,
DWI data is used to deduce and analyze the structure of
fibrous tissue, such as the white matter of the brain, and
muscular tissue in the heart. DWI data has been used during
the planning stages of neurosurgery [2], and in the diagnosis
and treatment of certain diseases, such as Alzheimer’s disease
[3], multiple sclerosis [4], and strokes [5]. Since the tissue
of the white matter is macroscopically homogeneous, other
imaging techniques, such as T2-weighted MRI, are unable to

detect the structure of the underlying fibers, making DWI
uniquely suitable for in vivo inspection of white matter.

The process of using the measured diffusion to recon-
struct the underlying fiber structure is called fiber tracking.
Many different fiber tracking algorithms have been devel-
oped since the introduction of DTI. This paper focuses
on an approach in which fibers are constructed by finding
geodesics on a Riemannian manifold defined by the DTI
data. This technique, called geodesic ray-tracing [6, 7], has
several advantages over other ones, such as its relatively low
sensitivity to measurement noise, and its ability to iden-
tify multiple solutions between two points, which makes it
suitable for analysis of complex structures.

One of the largest downsides of this algorithm is that it
is computationally expensive. Our goal is to overcome this
problem by mapping the geodesic ray-tracing algorithm onto
the highly parallel architecture of a Graphical Processing Unit
(GPU), using the CUDA programming language. Since fibers
can be computed independently of each other, the geodesic
ray-tracing algorithm can be meaningfully parallelized. As a
result, the running time can be reduced by a factor of up to
40, compared to a multithreaded CPU implementation. The
paper describes the structure of the CUDA implementation,
as well as the relevant design considerations.

2 International Journal of Biomedical Imaging

Figure 1: 3D glyphs visualizing diffusion tensors. The orientation
and sharpness of the glyphs depend on the eigenvectors and
eigenvalues of the diffusion tensor, respectively. In this image, the
glyphs have been colored according to the orientation of the main
eigenvector (e.g., a main eigenvector of (1, 0, 0) corresponds to a red
glyph, while a main eigenvector of (0, 0, 1) corresponds to a blue
glyph). This image was generated in the DTITool [11].

In the next section, we discuss the background theory
related to our method, including DTI and the geodesic
ray-tracing algorithm. Next, we give an overview of past
research related to the GPU-based acceleration of fiber
tracking algorithms. In Section 4, the implementation of
the geodesic ray-tracing algorithm on a GPU using CUDA
is discussed. Next, we show benchmarking results and
optimization strategies for the CUDA implementation in
Section 5, followed by a discussion of the results in Section 6,
and a conclusion in Section 7.

2. Background

2.1. Diffusion Tensor Imaging. DTI allows us to reconstruct
the connectivity of the white matter, thus giving us greater
insight into the structure of the brain. After performing
DWI for multiple different directions, we can model the
diffusion process using a second-order tensor D [1, 8]. D
is a 3 × 3 positive-definite tensor, which can be visualized
as an ellipsoid defined by its eigenvectors and eigenvalues,
as shown in Figure 1. Using the eigenvalues of a tensor, we
can quantify its level of anisotropy using anisotropy measures
[9, 10]. In areas with nearly isotropic diffusion, tensor
ellipsoids will be nearly spherical, and anisotropy measure
values will be low, while in areas with highly anisotropic
diffusion (due to the presence of fibers), ellipsoids will be
sharp and elongated, and anisotropy values will be high.
In anisotropic areas, the eigenvector corresponding to the
largest eigenvalue (the main eigenvector) will indicate the
direction of the fibrous structure.

2.2. Fiber Tracking Algorithms. DTI Fiber Tracking is the
process of digitally reconstructing the pathways of fibers in
fibrous tissue using the DTI tensor data, with the aim of
deducing the structure of the tissue. A common approach

to fiber tracking is to track lines from one or more seed
points, using a set of differential equations. The most
straightforward fiber tracking algorithm (generally called
the streamline method) uses the direction of the main
eigenvector as the local orientation of the fibers [12]. Thus, a
fiber in biological tissue may be reconstructed by integration
of the main eigenvector, using an Ordinary Differential
Equation (ODE) solver such as Euler’s method. Figure 2
illustrates the relation between the diffusion tensors and the
resulting fiber trajectories. Fiber tracking algorithms based
on this approach have been shown to achieve acceptable
results [13, 14], but are limited in their accuracy by a
high sensitivity to noise and to the partial volume effect
[15, 16].

One possible solution to the limitations of classic stream-
line methods is to use a global minimization solution, for
example, a front-propagation method. In such a method, a
front is propagated from a seed point throughout the entire
volume [17–19]. The local propagation speed of the front
depends on the characteristics of the DTI image, and fibers
are constructed by back-tracing through the characteristics
of the front. A subset of these front-propagation methods use
the theory of geodesics to find potential fiber connections
[19–21]. These algorithms generally compute the geodesics
(defined as the shortest path through a tensor-warped space)
by solving the stationary Hamilton-Jacobi (HJ) equation.
Geodesic algorithms have been shown to produce good
results and are generally more robust to noise than simple
streamline methods. One disadvantage, however, is that they
generally only find a single possible connection between
target regions, which is often not the correct solution in very
complex areas. Furthermore, research has shown it is possible
to have multiple fiber connections between regions of the
white matter [22].

2.3. Geodesic Ray-Tracing. The focus of this paper is a
relatively new fiber tracking algorithm based on geodesics,
as proposed by Sepasian et al. [6, 7]. The main advantages of
this algorithm, compared to those discussed in the previous
section, are the fact that it provides a multivalued solution
(i.e., it allows us to find multiple geodesics between regions
in the brain), and the fact that it is able to detect fibers
in regions with low anisotropy (e.g., regions of the white
matter with crossing fiber bundles). In Figure 3, we show
that this algorithm is capable of detecting complex structural
features, such as the divergence of the corpus callosum,
which cannot be captured using streamline-based methods.
Detailed validation of this algorithm is considered beyond
the scope of this paper; for an in-depth discussion on the
validity and applicability of the algorithm, we refer the reader
to the works by Sepasian et al. [6, 7].

A geodesic is defined as the shortest path on a Rie-
mannian manifold. This is a real, differentiable manifold,
on which each tangent space is equipped with a so-
called Riemannian metric, which is a positive-definite tensor.
Roughly speaking, the elements of the metric tensor are an
indication of the cost of (or energy required for) moving
in a specific direction. For DTI data, an intuitive choice
for the metric is the inverse of the diffusion tensor. Large

International Journal of Biomedical Imaging 3

(a) (b)

Figure 2: (a) Small group of fibers generated using a simple streamline method. The main eigenvectors of the diffusion tensors determine
the local orientation of the fibers. (b) Fibers showing part of the Cingulum and the corpus callosum. Both the glyphs in the left image and
the plane in the right image use coloring based on the direction of the main eigenvector, similar to Figure 1. Both images were generated in
the DTITool [11].

(a) (b)

Figure 3: Fibers of part of the corpus callosum, computed using the streamlines method (a) and the geodesic ray-tracing method (b). Fibers
were computed from seed points located in the center of the corpus callosum and are colored according to their local orientation (similar to
the glyphs in Figure 1). Unlike the streamline method, which only captures the most dominant bundles of the corpus callosum, the geodesic
ray-tracing method is able to correctly detect the divergence of the fiber bundles. This image was generated in the DTITool [11].

values in the DTI tensor correspond to small values in its
inverse, indicating low diffusion costs, and vice versa. Locally,
a geodesic will tend to follow the direction with the lowest
metric value, which is analogous to the direction with the
highest diffusion. We define the Riemannian metric as G =
D−1, where D is the diffusion tensor.

In the algorithm discussed in this paper, the trajectory of
a fiber is computed iteratively by numerically solving a set of
ODEs. The ODEs used to compute the trajectory of the fiber
are derived from the theory of geodesics in a Riemannian
manifold, as shown below.

Let x(τ) be a smooth, differentiable curve through a
volume described by parameter τ = [0,T], with derivative

vector ẋ(τ). We define the Riemannian length of x(τ) as
follows:

L(x) =
∫ T

0

√
ẋTGẋdτ. (1)

The geodesic is the line that minimizes the geodesic length
of (1). We can use the Euler-Lagrange equations to translate
this function to a set of ODEs, as described in detail by Jost
[23].

Let ẋγ and ẍγ be the first and second derivatives with
regard to τ, respectively, of the geodesic for dimension

4 International Journal of Biomedical Imaging

γ = (1, 2, 3). The ODEs that allow us to compute the
geodesics are given by the following equation:

ẍγ +
3∑

α=1

3∑
β=1

Γ
γ
αβẋ

αẋβ = 0, (2)

where Γ
γ
αβ are the so-called Christoffel symbols, defined as

follows:

Γ
γ
αβ =

3∑
σ=1

1
2

[
gγσ

(
∂

∂xα
gβσ +

∂

∂xβ
gασ − ∂

∂xσ
gαβ

)]
. (3)

Here, gi j represents element (i, j) of the inverse diffusion
tensor, while gi j represents an element of the original
diffusion tensor. We note that, in order to compute all
Christoffel symbols, we need to compute the derivatives of
the inverse DTI tensor in all three dimensions.

Given an initial position and an initial direction, we
can construct a path through the 3D DTI image, using the
second-order Runge-Kutta ODE solver. The initial position is
usually specified by the user, who is interested in a particular
area of the tissue (in our case, the white matter). For the
initial direction, we can use a large number of directions
per seed points (distributed either uniformly on a sphere, or
around the main eigenvector), and see which of the resulting
fibers intersect some user-specified target region. Doing
so increases our chances of finding all valid connections
between the seed point(s) and the target region(s).

This approach, which is referred to as the Region-to-
Region Connectivity approach, requires a suitable Con-
nectivity Measure [24], which quantifies the strength of
the connection between seed point and target region. In
other words, this measure symbolizes the probability that
a computed geodesic corresponds to an actual fibrous con-
nection in the white matter. While this paper does not discuss
the implementation of the Region-to-Region Connectivity
approach, we do note that in order to reliably find all
geodesics between the seed point(s) and the target region,
we need to compute a large amount of trajectories in
all directions. This need for a large amount of fibers, in
combination with the high computational complexity of the
algorithm itself, motivates our decision to parallelize the
geodesic ray-tracing algorithm.

3. Related Work

The possibility of using the GPU to accelerate fiber tracking
algorithms (using CUDA or other languages) has recently
been explored in other literature [25–28]. These implemen-
tations use either geometric shaders or fragment shaders
to accelerate the streamline tracking algorithm. With the
exception of Mittmann et al. [28], who introduce a stochastic
element, these papers all use the simple streamline method
for fiber tracking, in which the main eigenvector of the DTI
tensor is used as the direction vector for the integration step.
In addition to using algorithms with a lower computational
complexity than the geodesic ray-tracing algorithm discussed
in Section 2.3, these implementations differ from ours in the

sense that they use GPU shaders to compute the fibers, while
we use CUDA, which offers higher flexibility and a more
gentle learning curve than programmable GPU shaders [29].

More recently, Mittmann et al. introduced a GPU imple-
mentation of a simple streamline algorithm using CUDA
[30]. Compared to a multithreaded CPU implementation,
this GPU implementation allows for a significantly higher
frame rate, enabling real-time, interactive exploration of
large groups of fibers. The speedup factor, based on the
number of frames per second, is between 10 and 20 times.
The paper’s main focus, however, is interactivity, and a
technical discussion of the advantages and limitations of
CUDA in the context of fiber tracking algorithms is omitted.

Jeong et al. [31] have developed a CUDA implementation
of a fiber tracking algorithm based on the Hamilton-
Jacobi equation, which computes the fiber pathways by
propagating a front throughout the entire volume. Their
solution parallelizes the propagation of the front by dividing
the DTI image into blocks of 43 voxels, after which the front
is propagated through a number of such blocks in parallel.
This approach has been shown to be 50 to 100 times faster
than sequential implementations of similar algorithms on
a CPU. However, as stated in Section 2.3, the HJ algorithm
on which they base their implementation is not able to find
multiple connections between target regions. Furthermore,
the front-propagation algorithm used by Jeong et al. requires
a fundamentally different parallelization approach from our
ray-tracing method.

We therefore conclude that our solution is the first
CUDA-aided acceleration of a fiber tracking algorithm of
this complexity. As will be shown in the next sections,
the complex nature of the algorithm introduces a number
of challenges to the parallelization process. Furthermore,
the advantages of the geodesic ray-tracing algorithm, as
discussed in Section 2.3, suggest that its implementation will
also have practical applications.

4. Geodesic Fiber Tracking on the
GPU Using CUDA

4.1. Algorithm Overview. In Section 2.3, we introduced a
system of ODEs which can be used to compute the trajectory
of a fiber, given an initial position and direction. The basis
of our algorithm is an ODE solver which numerically solves
(2) using a fixed integration step length. Specifically, let x

γ
i be

the coordinate of point i along the fiber for dimension γ, and
let ẋ

γ
i be the local direction of the fiber in this point. Using

Euler as the ODE solver, we can compute x
γ
i+1 and ẋ

γ
i+1 (i.e.,

the position and direction at the next time step) as follows:

x
γ
i+1 = x

γ
i + hẋ

γ
i ,

ẋ
γ
i+1 = ẋ

γ
i − h

3∑
α=1

3∑
β=1

Γ
γ
αβẋ

αẋβ.
(4)

Here, h is a fixed step size, and Γ
γ
αβ is the Christoffel sym-

bol as defined in (3). In the implementation described below,
we use a second-order Runge-Kutta ODE solver instead of

International Journal of Biomedical Imaging 5

Processed
tensors

δG/δu

δG/δv

δG/δw

Seed
point

Get
neighbor

voxel
tensors

Inter-
polate
tensors

Compute
christoffel
symbols

Compute
next

position and
direction

YesNo

Output
fiber

Choice
Process
Data set

Stop
tracking?

Figure 4: Flowchart for the geodesic fiber tracking algorithm. Using the four input tensor fields, we compute the trajectory of a fiber using
a numerical ODE solver.

the Euler solver, but the basic method of numerically solving
the system of ODEs remains the same. When computing
the Christoffel symbols, the four required tensors (inverse
DTI tensors and its three derivates) are interpolated using
trilinear interpolation.

To summarize, a single integration step of the ODE solver
consists of the following actions.

(1) Compute the inverse diffusion tensor and its deriva-
tive in all three dimensions for the eight voxels
surrounding the current fiber point (x

γ
i).

(2) Interpolate the four tensors at the current fiber point.

(3) Compute all Christoffel symbols. According to (2)
and (3), we require nine symbols per dimension, for
a total of 27 symbols. However, using the symmetric
qualities of the diffusion tensor (and therefore, of its
inverse and the derivates of its inverse), we can reduce
this to 18 unique symbols.

(4) Using the Christoffel symbols, compute the position
and direction of the next fiber point.

(5) Repeat steps 1 through 4 until some stopping condi-
tion is met. By default, the only stopping condition is
the fiber leaving the volume of the DTI image.

We note that the first step may be performed as a pre-
processing step. While this increases the amount of memory
required by the algorithm, it also significantly decreases the
number of required computations per integration step. This
pre-processing step has been implemented in CUDA, but due
to its trivial implementation and relatively low running time
(compared the that of steps 2 through 5), we do not discuss
it in detail, instead focusing on the actual tracking process.
Figure 4 summarizes the tracking process of steps 2 through
5, assuming the four input tensor fields have been computed
in a pre-processing step.

4.2. CUDA Overview. The Region-to-Region Connectivity
approach outlined in Section 2.3 presents us with one
significant problem: it requires the computation of a large

number of geodesics. In combination with the relatively
complex ODEs presented in (2) (compared to the ODEs used
for simpler fiber tracking methods), this makes this approach
computationally expensive. Our aim is to overcome this
hurdle by implementing the algorithm in CUDA, of which
we give a quick overview in this section.

NVIDIA’s Compute Unified Device Architecture (CUDA)
[32] is a way to facilitate General-Purpose computing on
Graphics Processing Units (GPGPU). Modern GPUs contain
large number of generic processors in parallel, and CUDA
allows a programmer to utilize this large computational
power for nongraphical purposes. In CUDA, a kernel (usually
a small, simple function) is executed in parallel by a large
number of threads, each working on one part of the input
data. In a typical execution pattern, the host PC first uploads
the input data to the GPU, then launches a number of threads
that execute the kernel. The resulting data is then either
downloaded back to the host PC or drawn on the screen.

A CUDA-enabled GPU generally consists of the device
memory, which is between 512 MB and 2 GB on most
modern GPUs, and a number of multiprocessors [33]. Each
multiprocessor contains eight scalar processors (in most
current-generation GPUs; newer generations will have more
scalar processors per multiprocessor); a register file; a shared
memory block, which enables communication between the
scalar processors; and an instruction unit, which dispatches
instructions to the processors. The type of parallelism in
these multiprocessors is called Single Instruction, Multiple
Threads (SIMT), which differs from Single Instruction,
Multiple Data (SIMD) in the sense that the threads have
some level of independence. Ideally, all active threads in
a multiprocessor will execute the same instruction at the
same time; however, unlike SIMD, SIMT also allows for
branching threads using if-statements. While this does allow
the programmer to create more complex kernels, it also adds
an overhead in terms of execution time, since the different
branches must be executed sequentially. Therefore, it is best
to avoid branching behavior in kernels where possible.

One other important consideration when designing
CUDA algorithms is the memory hierarchy. The two

6 International Journal of Biomedical Imaging

Multiprocessor

Registers

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

Device memory

Global memory

Texture memory

Constant memory

Local memory

Shared memory

Registers

Shared memory

Multiprocessor

· · ·

Figure 5: General structure of a CUDA-enabled GPU, showing the
device memory, the multiprocessors, the scalar processors (SP), and
the relevant memory spaces.

memory blocks local to each multiprocessor—the register
file and the shared memory—both have low memory access
latencies. However, the available space in these two memory
blocks is limited, with typical values of 16 kB for the shared
memory, and 16 or 32 kB for the register file. The device
memory has far more storage space, but accessing this mem-
ory adds a latency of between 400 and 900 clock cycles [34].
The device memory contains four different memory spaces:

(i) Constant Memory, a small, read-only block best used
for constant values;

(ii) Texture Memory, a read-only space optimized for
texture reads;

(iii) Global Memory, the main random-access memory
space;

(iv) Local Memory, a per-thread extension of the register
file.

Local memory is used when the register file of a
multiprocessor cannot contain all variables of a kernel. Since
access latencies to the device memory are very high, the
use of large kernels is generally best avoided. As a general
rule, communication between the device memory and the
multiprocessors should be kept as low as possible. A second
important guideline is that the size of the kernels, in terms of
the number of registers per thread and the amount of shared
memory used per thread block, should be kept small. Doing
so will allow the GPU to run more threads in parallel, thus
increasing the occupancy of the scalar processors (i.e., the
percentage of time that each scalar processor is active). The
structure of a CUDA-enabled GPU is illustrated in Figure 5.

4.3. CUDA Implementation. Keeping in mind the advantages
and limitations of CUDA as discussed in Section 4.2, we can
design a CUDA implementation for the algorithm intro-
duced in Section 2.3. As mentioned in step 3 of the algorithm
as outlined in Section 4.1, we require the derivatives of
the inverse of the DTI tensor in all three dimensions. We
intuitively see that computing these derivatives for each
point along the fiber would be far too costly in terms of
the number of instructions, as computing these derivates

for all eight surrounding voxels (using two-sided numerical
derivation) would require the inversion of 32 diffusion
tensors. Therefore, we decide to precompute them instead.

This gives us four input tensors per voxel: the diffusion
tensor and the three derivatives of its inverse. With six unique
elements per tensor and four bytes per value, this gives us a
memory requirement of 4∗ 6∗ 4 = 96 Bytes per voxel. The
algorithm also has the seed points as input, which contain
the initial position and direction for each fiber. These seed
points are determined by the user, for example, by specifying
a region of interest in the image.

The output of the algorithm consists of a number
of fibers, each consisting of a list of 3D coordinates. In
postprocessing steps, these fibers can be filtered through the
target region(s) and sorted according to their Connectivity
Measure value, but these steps are not part of the CUDA
implementation discussed herein. Since CUDA does not
support dynamic memory allocation, we hard-coded a limit
in the number of iteration steps for each fiber, and statically
allocated an output array per fiber of corresponding size.
We note here that the choice of this limit may impact
performance: for high limits, more fibers will terminate
prematurely (due to leaving the volume), leading to lower
occupancy in later stages of the algorithm, while for lower
limits, the start-up overhead of the CUDA algorithm may
become relevant.

We intuitively recognize two different approaches for
parallelization of the geodesic ray-tracing algorithm: per-
region parallelization and per-fiber parallelization. The per-
region approach would entail loading a small region of the
image into the shared memory of a multiprocessor, tracking
a number of fibers through this region (using one thread per
fiber), and then loading the next region. While this approach
would guarantee low memory bandwidth requirements
between the multiprocessors and the device memory, it is
impractical due to two reasons. First, it is impossible to
guarantee that a region will contain a sufficient number of
fibers to enable meaningful parallelization. Second, due to
the limited size of the shared memory, these regions would
be very small (no more than approximately 160 voxels per
region), which would defeat the purpose of this approach. In
other words, this approach requires some degree of spatial
coherence between the fibers, and since we do not know their
trajectories beforehand, ensuring this spatial coherence is
highly impractical.

We therefore use the per-fiber parallelization approach,
in which each thread computes a single fiber. The main
advantage of this approach is that it does not require any
spatial coherence between the fibers to efficiently utilize
the parallelism offered by the GPU. As long as we have
a high number of seed points and initial directions, all
scalar processors of the GPU will be able to run their own
threads individual of the other threads, thus minimizing
the need for elaborate synchronization between threads, and
guaranteeing a stable computational throughput for all active
processors. The main disadvantage of this approach is that
it requires a higher memory throughput than the per-region
approach, as it does not allow us to avoid redundant memory
reads.

International Journal of Biomedical Imaging 7

The kernel that executes the fiber tracking process
executes the following steps, as summarized in Figure 4:

(1) Fetch the initial position and direction of the fiber.

(2) For the current fiber position, fetch the diffusion
tensor and the derivatives of its inverse, using trilinear
interpolation.

(3) Using these four tensors, compute the Christoffel
symbols, as defined in (3).

(4) Using the symbols and the current direction, com-
pute the next position and direction of the fiber, using
the ODEs of (2) with a second-order Runge-Kutta
step.

(5) Write the new position to the global memory.

(6) Stop if the fiber has left the volume or the maximum
number of steps has been reached. Otherwise, return
to Step 2.

4.4. Using Texture Memory. As noted in the previous sec-
tion, the main disadvantage of the per-fiber parallelization
approach is that it does not allow us to avoid redundant
reads. We can partially solve this problem by storing the
input images in texture memory, rather than in global
memory. Unlike global memory reads, texture memory
reads are cached through a number of small caches. These
caches can contain about 8 kB per multiprocessor, although
the actual amount varies per GPU. While we argue that
cached memory reads could reduce the required memory
throughput, we note that the lack of spatial coherence
between the fibers, coupled with the small cache sizes,
will largely negate the positive effects of cached memory
reads.

A second, more important advantage of the texture
memory is the built-in texture filtering functionality. When
reading texture data from a position located between grid
points, CUDA will apply either nearest-neighbor or linear
interpolation using dedicated texture filtering hardware.
When storing the input data in the global memory, all
interpolation must be done in-kernel, which increases both
the number of instructions per integration step, and the
amount of memory required by the kernels. By delegating the
interpolation process to this dedicated hardware, we are able
to reduce both the size and the computational complexity of
the kernels. The size is especially important in this case, as
smaller kernels allow for a higher degree of parallelism.

While we expect the use of texture-filtering interpolation
to be beneficial for the running time of our algorithm (which
we will demonstrate in the next Section), we do identify one
possible trade-off. One property of in-kernel interpolation is
that the values of the eight surrounding voxels can be stored
in either the local memory of the thread, or in the shared
memory of the multiprocessor. Doing so increases the size
of the threads, but also allows them to reuse some of this
data, thus reducing the memory throughput requirements.
Using texture-filtering interpolation, we cannot store the
surrounding voxel values, so we need to read them again
in every integration step. Thus, in-kernel interpolation

may require a significantly lower memory throughput than
texture-filtering interpolation, especially for small step sizes
(in which case it takes multiple steps for a fiber to cross a
cell). We analyze this trade-off through experimentation in
the next section.

5. Experiments and Results

For the experiments presented in this section, we used a
synthetic data set of 1024 × 64 × 64 voxels with 2048
predefined seed points. The seed points were distributed
randomly to mimic the low spatial coherence of the fibers,
and their initial directions were chosen in such a way that no
thread would terminate prematurely due to its fiber leaving
the volume (i.e., all fibers stay within the volume for the
predefined maximum number of integration steps, running
parallel to the long edge of the volume). While neither the
shape and content of the volume nor the fact that no fibers
leave the volume prematurely can be considered realistic, this
does allow us to benchmark the algorithm under maximum
load.

All experiments were conducted on an NVIDIA GTX
260, a mid-range model with 24 multiprocessors (for a total
of 192 scalar processors) and 1 GigaByte of device memory
[35].

It should be noted that we only consider the actual fiber
tracking process for our benchmarks. The data preparation
stage (which includes preprocessing and inverting the ten-
sors, and computing the derivatives of the inverse tensors)
has also been implemented in CUDA, but is considered
outside of the scope of this paper due to its low complexity,
trivial parallelization, and low running times compared to
the tracking stage. On the GTX 260, the data preparation
stage requires roughly 50 milliseconds per million voxels
[36], and only needs to be executed once per image. The
overhead resulting from the communication between the
CPU and GPU lies in the order of a few milliseconds.

5.1. Texture Filtering versus In-Kernel Filtering. In
Section 4.4, we stated that using the dedicated texture
filtering hardware for the trilinear interpolation step of our
algorithm would significantly reduce the size and complexity
of our kernel, allowing for an increase in performance.
We also identified a possible trade-off: for small step sizes,
in-kernel interpolation might be faster than texture-filtering
interpolation, as the former allows for data reuse, while the
latter does not. We test this hypothesis by varying the step
size between 0.05 (i.e., twenty steps per cell on average)
and 0.5 (two steps). The measured running times for the
two proposed interpolation methods are shown in Figure 6.
From this, we can conclude that, while small step sizes do
indeed reduce the running times for in-kernel interpolation,
texture-filtering interpolation is still the faster option for
typical step size values (between 0.1 and 0.2).

5.2. Limiting Factor. The performance of CUDA programs is
usually limited either by the maximum memory throughput
between the device memory and the multiprocessors, or

8 International Journal of Biomedical Imaging

0

20

40

60

80

100

120

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Step size

R
u

n
n

in
g

ti
m

e
(m

s)

Figure 6: Running time for varying step size for in-kernel
interpolation (blue) and texture-filtering interpolation (red).

by the maximum computational throughput of the scalar
processors. To find out which of these two is the limiting
factor for our algorithm, we first compute its performance in
terms of memory throughput and computational through-
put.

(i) When computing 2048 fibers, each executing 4096
integration steps, the algorithm takes approximately
165 milliseconds to complete. For each integration
step, a single thread needs to read 8 voxels ∗ 4
tensors ∗ 6 unique tensor elements ∗ 4 bytes = 768
bytes, and it writes 12 bytes (3D coordinates of the
new point). This gives us a total memory transfer
of 780 ∗ 2048 ∗ 4096 ≈ 6.54 GB. Dividing this
by the running time, we get an effective memory
throughput of approximately 3.97 GB/s, which is well
below the maximum 111.9 GB/s of the GTX 260.

(ii) To compute the computation throughput in FLOPS
(floating-point operations per second), we first
decompile the CUDA program using the decuda
software. By inspecting the resulting code, we learn
that each integration step uses 256 floating-point
instructions. Note that this does not include any
instructions needed for interpolation, since we are
using the dedicated texture filtering hardware for
this purpose. The algorithm performs a total of
256 ∗ 2048 ∗ 4096 = 2,147,483,648 floating-point
operations, giving us a computational throughput of
roughly 13 GFLOPS. Again, this is well below the
specified maximum of the GTX 260, which is 715
GFLOPS.

Since neither the memory throughput nor the computa-
tional throughput is close to the specified maximum, we need
to determine the limiting factor in a different way. We first
rule out the computational throughput as the limiting factor
by replacing the current second-order Runge-Kutta (RK2)
ODE solver by a simple Euler solver. This does not reduce
the amount of data transferred between device memory and
multiprocessors, but it does reduce the number of floating-
point operations per integration step from 256 to 195. This,
however, does not significantly impact the running time
(165.133 ms for RK2 versus 165.347 ms for Euler), indicating

Table 1: Effects on the running time and total memory throughput
of changing the amount of data read per voxel.

Data/Step (Byte) Time (ms) Bandwidth (GB/s)

768 165.133 38.8

640 134.124 40.0

512 103.143 41.6

384 90.554 35.6

that the computational throughput (i.e., processor load) is
not a limiting factor in our case.

To prove that the memory throughput is indeed the
limiting factor, we need to reduce the amount of data read
in each integration step, without changing the number of
instructions. We do so by using the knowledge that the four
input tensors of our synthetic data set share a number of
duplicate values. By removing some of the redundant reads,
we can reduce the memory requirements of each thread,
without compromising the mathematical correctness of the
algorithm. The results of this experiment are listed in Table 1.
From this, we can conclude that the performance of our
algorithm is limited by the memory throughput, despite
the actual throughput being significantly lower than the
theoretical maximum of the GTX 260. Possible explanations
for this discrepancy are listed in Section 6.

5.3. Speed-Up Factor

5.3.1. Setup. To evaluate the performance of our CUDA
implementation, we compare its running times to those of
a C++ implementation of the same algorithm running on a
modern CPU. In order to fully explore the performance gain,
we use four different CUDA-supported GPUs: the Quadro
FX 770M, the GeForce 8800 GT, the GeForce GTX 260,
and the GeForce GTX 470. The important specifications of
these GPUs are shown in Table 2. It should be noted that
our CUDA implementation was developed for the GTX 260
and was not modified for execution on the other GPUs. In
particular, this means that we did not optimize our algorithm
to make use of the improved CUDA features of the more
recent GTX 470 GPU.

The CPU running the C++ implementation is an Intel
Core i5 750, which has four cores, with a clock speed of
2.67 GHz. In terms of both date of release and price segment,
the i5 750 (released in fall 2009) is closest to the GTX 470
(spring 2010); at the time of writing, both are considered
mid- to high-range consumer products of the previous
generation.

For this benchmark, we use a brain DTI image with
dimensions of 128 × 128 × 30 voxels. Seed points are
placed in a small, two-dimensional region of 22 by 4 voxels,
located in a part of the corpus callosum. An approximation
of the seed region, as well as the resulting fibers, is shown
in Figure 8. Seed points are randomly placed within this
region, with a random initial direction. The number of
seed points varies from 1024 to 4096. This test thus closely

International Journal of Biomedical Imaging 9

Table 2: Specifications of the GPUs in the benchmark test of Section 5.3. Source: http://www.nvidia.com/content/global/global.php.

Device memory (MB) Memory bandwidth (GB/s) Number of scalar processors

Quadro FX 770M 512 25.6 32

GeForce 880 GT 512 57.6 112

GeForce GTX 267 896 111.9 192

GeForce GTX 470 1280 133.9 448

Table 3: Benchmark results for GPU and CPU implementation of the geodesic ray-tracing algorithm. For each configuration, we show the
running time (T) in seconds, and the Speed-Up factor (SU) relative to the best CPU timing, see Figure 7.

CPU FX 770M 8800 GT GTX 260 GTX 470

Number of seeds T T SU T SU T SU T SU

1024 1.403 0.761 1.8 0.273 5.1 0.225 6.2 0.087 16.1

2048 2.788 1.388 2.0 0.448 6.2 0.244 11.4 0.093 30.0

3072 4.185 1.995 2.1 0.760 5.5 0.256 16.3 0.107 39.1

4096 5.571 2.772 2.0 0.900 6.2 0.301 18.5 0.139 40.0

mimics a real-life application of the ray-tracing algorithm, as
demonstrated in Figure 8.

5.3.2. CPU Implementation. Our C++ implementation of
the algorithm features support for multiple threads of
execution (multithreading), which allows it to utilize the
parallelism offered by the CPU’s four cores. Let S be the
number of seed points and N the number of threads. We
assign S/N seed points to each CPU thread, thus having each
thread compute S/N fibers. We have measured the running
times of this CPU implementation for several different values
of N , and with S set to 4096 points. The results of this
benchmark can be seen in Figure 7. From these results, we
can conclude that parallelizing the CPU implementation
(using essentially the same fiber-level parallelism as for our
GPU implementation) can reduce the running times by a
factor of roughly 4.5. The fact that the performance increases
for N larger than the number of cores can be attributed to the
fact that a CPU core can switch to a different thread when the
active thread is waiting for data from the main memory of
the PC. From Figure 7, we can also conclude that 64 threads
is the best configuration for this algorithm and this CPU.

5.3.3. GPU Benchmark Results. We performed the same
benchmarking experiment on the four CUDA-enabled
GPUs, and we compared the running times to those of the
best CPU configuration. The results for this test are shown in
Table 3. From the results, we can conclude that our CUDA
implementation significantly reduces the running time of
the ray-tracing algorithm. Even on a mid-range GPU for
laptops like the FX 770M, the running time is reduced by a
factor of roughly two times. Using a high-end, recent GPU
like the GTX 470, we are even able to achieve a speed-up
factor of 40 times, which greatly increases the applicability of
the algorithm. The differences in speed-up factors between
the GPUs can be explained in part by the differences in
bandwidth—which was identified as the limiting factor in
Section 5.2—and by the number of processors.

0

5

10

15

20

25

30

1 2 4 8 16 32 64 128 256 512 1024

Number of threads

R
u

n
n

in
g

ti
m

e
(s

)

Figure 7: Running times (in seconds) for the multithreaded CPU
implementation of our algorithm.

6. Discussion

In previous sections, we described a CUDA implementation
of a geodesic fiber tracking method. This CUDA program
uses the knowledge that fibers can be computed indepen-
dently of one another to parallelize these computations,
thus reducing running times by a factor of up to 40 times,
compared to multithreaded CPU implementations of the
same algorithm.

While the algorithm does allow for meaningful paral-
lelization, we do note two problems that make full exploita-
tion of the parallelism offered by the GPU challenging.

(i) The algorithm requires a large amount of inter-
nal storage; between the four input tensors, the
Christoffel symbol, and the position and direction
of the fiber, even the most efficient version of
our implementation still required 43 registers per
thread, while typical values for CUDA algorithms are
between 8 and 32.

10 International Journal of Biomedical Imaging

(a) (b)

Figure 8: Fibers computed using the CUDA ray-tracing algorithm in real data. (a) All fibers computed from a seeding region in part of
the corpus callosum. (b) In order to properly analyze the computed fibers, a postprocessing step is needed. In this case, fibers were filtered
through two target regions of interest and ranked and colored according to their Connectivity Measure value (see Section 2.3). The yellow
polygon approximates the seeding region used for the benchmarks in Section 5.3. Both images were generated in the DTITool [11].

(ii) More importantly, the algorithm requires a large
amount of data transfer, and as a result, the memory
throughput becomes its limiting factor. This problem
is far from trivial to solve, and while some options do
exist, they all have their own downsides.

(1) Reducing the number of bits per input value
would lower the required memory throughput,
but comes at the cost of reduced accuracy.

(2) Allowing fibers to reuse the input data used for
interpolation greatly increases the size of the
kernel and does not work with texture-filtering
interpolation, the use of which has been shown
to be very beneficial in our case.

(3) Sharing the input data between threads in
one multiprocessor requires some sort of spa-
tial coherence between the fibers, which is
extremely difficult to guarantee.

As noted, the memory throughput between the device
memory and the multiprocessors is the limiting factor for
our performance. However, as noted in Section 5.2, the
actual throughput is well below the theoretical maximum
of the device. Below, we list some possible causes for this
difference.

(iii) Most Random-Access Memory (RAM) configura-
tions experience a certain overhead when subsequent
reads access different parts of a data range. Since a
low spatial locality of the seed points will lead to such
scattered access pattern, this overhead may explain
our relatively low memory throughput.

(iv) According to CUDA documentation [32], texture
reads have been optimized for 2D spatial locality, pre-
sumably using a space-filling curve. The absence of
spatial locality prevents our algorithm from utilizing
these optimizations.

(v) The throughput of the texture fetching and filtering
units may become a limiting factor when large
numbers of voxels are involved. The documentation
of the GTX 260 states that it should be able to
process 36.9 billion texels per second [33], while
our implementation only loads 39 billion bytes (of
multibyte texels) per second. However, this figure is
based on 2D bilinear interpolation, while we use 3D
trilinear interpolation.

We expect the first point to be the main contributing
factor, though we have not conducted experiments to either
prove or disprove this hypothesis.

The GPU-based acceleration of the geodesic ray-tracing
algorithm for DTI is a useful technique, but its imple-
mentation poses several challenges. Part of the problem in
accelerating numerical integration algorithms such as the
one under discussion in the paper is that it almost inevitably
introduces unpredictable memory access patterns, while
existing CUDA algorithms generally use access patterns that
are more regular and predictable, and thus easier to optimize.
This is a fundamental problem without an easy solution,
and one that is not restricted to CUDA-enabled GPUs,
but applies to other parallel platforms as well. Still, despite
our implementation achieving suboptimal performance, we
do believe that its significant speed-up factor of up to 40
times, coupled with the low cost and high availability of
CUDA-enabled hardware, makes it a practical solution to
the computational complexity of the geodesic ray-tracing
algorithm for fiber tracking, and a good starting point for
future acceleration of similar algorithms.

7. Conclusion and Future Work

In this paper, we discussed the GPU-based acceleration of
a geodesic ray-tracing algorithm for fiber tracking for DTI.

International Journal of Biomedical Imaging 11

One of the advantages of this algorithm is its ability to find
multivalued solutions, that is, multiple possible connections
between regions of the white matter. However, the high
computational complexity of the algorithm, combined with
the fact that we need to compute a large amount of
trajectories if we want to find the right connection, makes
it slow compared to similar algorithms. To overcome this
problem, we accelerated the algorithm by implementing a
highly parallel version on a GPU, using NVIDIA’s CUDA
platform. We showed that despite the large kernel size and
high memory requirements of this GPU implementation, we
were able to speed up the algorithm by a factor of up to 40.
This significant reduction in running time using cheap and
widely available hardware greatly increases the applicability
of the algorithm.

Aside from further optimization of our current GPU
implementation, with the aim of further reducing its running
time, we identify two possible extensions of the work pre-
sented in this paper.

(i) At the moment, the computed fibers are downloaded
back to the CPU, where they are postprocessed and
subsequently visualized. A more direct approach
would be to directly visualize the fibers computed by
our algorithm, using the available rendering features
of the GPU. If we can also implement the necessary
postprocessing steps in CUDA, we can significantly
reduce the amount of memory that needs to be
transferred between the CPU and the GPU, thus
accelerating the complete fiber tracking pipeline.

(ii) The Region-to-Region Connectivity method is a
valuable application of the geodesic ray-tracing algo-
rithm. This method introduces three extra steps: (1)
computing a suitable Connectivity Measure, either
while tracking the fibers or during a post-processing
step, (2) filtering the computed fibers through a
target region, and (3) sorting the remaining fibers
according to their Connectivity Measure, showing
only those fibers with high CM values. These three
steps have currently been implemented on a CPU,
but implementing them on a GPU can reduce the
overall processing time of the fiber tracking pipeline,
as noted above.

(iii) The DTI model is limited in its accuracy by its inabil-
ity to model crossing fibers. High Angular Resolution
Diffusion Imaging (HARDI) aims to overcome this
limitation by measuring and modeling the diffusion
in more directions [37]. An extension of the algo-
rithm presented in Section 2.3 which uses HARDI
data rather than DTI data would theoretically be
more accurate, particularly in complex areas of the
white matter. Such an extension may, for example,
be realized by using the Finsler metric tensor (which
depends both on the position and local orientation of
the fiber), rather than the Riemannian metric tensor
[38, 39]. While the extended algorithm for HARDI
would likely be more complex in terms of both
number of computations and amount of required

memory, a CUDA-based acceleration using the par-
allelization principles presented in this paper will still
be significantly faster than any CPU implementation.

We note that, while these extensions would be valuable
additions, the current CUDA implementation already pro-
vides a practical and scalable solution for the acceleration of
geodesic ray-tracing.

Acknowledgment

This project was supported by NWO project number
639.021.407.

References

[1] P. J. Basser, J. Mattiello, and D. Lebihan, “Estimation of
the effective self-diffusion tensor from the NMR spin echo,”
Journal of Magnetic Resonance, Series B, vol. 103, no. 3, pp.
247–254, 1994.

[2] A. F. DaSilva, D. S. Tuch, M. R. Wiegell, and N. Hadjikhani, “A
primer on diffusion tensor imaging of anatomical substruc-
tures,” Neurosurg Focus, vol. 15, no. 1, p. E4, 2003.

[3] S. E. Rose, F. Chen, J. B. Chalk et al., “Loss of connectivity
in Alzheimer’s disease: an evaluation of white matter tract
integrity with colour coded MR diffusion tensor imaging,”
Journal of Neurology Neurosurgery and Psychiatry, vol. 69, no.
4, pp. 528–530, 2000.

[4] M. Filippi, M. Cercignani, M. Inglese, M. A. Horsfield, and
G. Comi, “Diffusion tensor magnetic resonance imaging in
multiple sclerosis,” Neurology, vol. 56, no. 3, pp. 304–311,
2001.

[5] D. K. Jones, D. Lythgoe, M. A. Horsfield, A. Simmons, S. C.R.
Williams, and H. S. Markus, “Characterization of white matter
damage in ischemic leukoaraiosis with diffusion tensor MRI,”
Stroke, vol. 30, no. 2, pp. 393–397, 1999.

[6] N. Sepasian, J. H. M. ten Thije Boonkkamp, A. Vilanova, and
B. M. ter Haar Romeny, “Multi-valued geodesic based fiber
tracking for diffusion tensor imaging,” in Proceedings of the
Workshop on Diffusion Modelling and the Fiber Cup (MICCAI
’09), pp. 6–13, 2009.

[7] N. Sepasian, A. Vilanova, L. Florack, and B. M. Ter Haar
Romeny, “A ray tracing method for geodesic based trac-
tography in diffusion tensor images,” in Proceedings of the
Workshop on Mathematical Methods in Biomedical Image
Analysis (MMBIA ’08), 2008.

[8] C. G. Koay, L. -C. Chang, J. D. Carew, C. Pierpaoli, and P.
J. Basser, “A unifying theoretical and algorithmic framework
for least squares methods of estimation in diffusion tensor
imaging,” Journal of Magnetic Resonance, vol. 182, no. 1, pp.
115–125, 2006.

[9] P. J. Basser and C. Pierpaoli, “Microstructural and physio-
logical features of tissues elucidated by quantitative-diffusion-
tensor MRI,” Journal of Magnetic Resonance B, vol. 111, no. 3,
pp. 209–219, 1996.

[10] P. Van Gelderen, M. H.M. De Vleeschouwer, D. DesPres, J.
Pekar, P. C.M. Van Zijl, and C. T.W. Moonen, “Water diffusion
and acute stroke,” Magnetic Resonance in Medicine, vol. 31, no.
2, pp. 154–163, 1994.

[11] Eindhoven University of Technology, Department of Biomed-
ical Engineering, Biomedical Image Analysis Group, “DTI-
Tool,” http://bmia.bmt.tue.nl/Software/DTITool.

12 International Journal of Biomedical Imaging

[12] S. Wakana, H. Jiang, L. M. Nagae-Poetscher, P. C. M. Van Zijl,
and S. Mori, “Fiber tract-based atlas of human white matter
anatomy,” Radiology, vol. 230, no. 1, pp. 77–87, 2004.

[13] P. J. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi,
“In vivo fiber tractography using DT-MRI data,” Magnetic
Resonance in Medicine, vol. 44, no. 4, pp. 625–632, 2000.

[14] T. E. Conturo, N. F. Lori, T. S. Cull et al., “Tracking neuronal
fiber pathways in the living human brain,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 96, no. 18, pp. 10422–10427, 1999.

[15] M. Lazar, D. M. Weinstein, J. S. Tsuruda et al., “White matter
tractography using diffusion tensor deflection,” Human Brain
Mapping, vol. 18, no. 4, pp. 306–321, 2003.

[16] C. Poupon, J. -F. Mangin, C. A. Clark et al., “Towards inference
of human brain connectivity from MR diffusion tensor data,”
Medical Image Analysis, vol. 5, no. 1, pp. 1–15, 2001.

[17] M. Jackowski, C. Y. Kao, M. Qiu, R. T. Constable, and L. H.
Staib, “White matter tractography by anisotropic wavefront
evolution and diffusion tensor imaging,” Medical Image
Analysis, vol. 9, no. 5 SPEC. ISS., pp. 427–440, 2005.

[18] S. Jbabdi, P. Bellec, R. Toro, J. Daunizeau, M. Pélégrini-
Issac, and H. Benali, “Accurate anisotropic fast marching for
diffusion-based geodesic tractography,” International Journal
of Biomedical Imaging, vol. 2008, no. 1, 2008.

[19] C. Lenglet, R. Deriche, and O. Faugeras, “Inferring white
matter geometry from diffusion tensor MRI: Application to
connectivity mapping,” Lecture Notes in Computer Science, vol.
3024, pp. 127–140, 2004.

[20] L. O’Donnell, S. Haker, and C. F. Westin, “New approaches
to estimation of white matter connectivity in diffusion tensor
MRI: elliptic PDEs and geodesics in a tensor-warped space,”
in Proceedings of the International Conference on Medical Image
Computing and Computer-Assisted Intervention (MICCAI’02),
vol. 5, pp. 459–466, 2002.

[21] E. Prados, C. Lenglet, J. -P. Pons et al., “Control theory and
fast marching techniques for brain connectivity mapping,”
in Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, vol. 1, pp. 1076–
1083, 2006.

[22] G. J. M. Parker, C. A. Wheeler-Kingshott, and G. J. Barker,
“Distributed anatomical connectivity derived from diffusion
tensor imaging,” in Proceedings of the Information Processing
in Medical Imaging, vol. 2082 of Lecture Notes in Computer
Science, pp. 106–120, 2001.

[23] J. Jost, Riemannian Geometry and Geometric Analysis,
Springer, New York, NY, USA, 5th edition, 2008.

[24] L. Astola, L. Florack, and B. M. ter Haar Romeny, “Measures
for pathway analysis in brain white matter using diffusion
tensor images,” in Proceedings of the Information processing
in medical imaging, vol. 4584 of Lecture Notes in Computer
Science, pp. 642–649, 2007.

[25] A. Köhn, J. Klein, F. Weiler, and H. -O. Peitgen, “A GPU-
based fiber tracking framework using geometry shaders,” in
Proceedings of SPIE Medical Imaging, vol. 7261, p. 72611J,
2009.

[26] P. Kondratieva, J. Krüger, and R. Westermann, “The applica-
tion of GPU particle tracing to diffusion tensor field visualiza-
tion,” in Proceedings of the IEEE Visualization Conference, pp.
73–78, 2005.

[27] T. McGraw and M. Nadar, “Stochastic DT-MRI connectivity
mapping on the GPU,” IEEE Transactions on Visualization and
Computer Graphics, vol. 13, no. 6, pp. 1504–1511, 2007.

[28] A. Mittmann, E. Comunello, and A. von Wangenheim,
“Diffusion tensor fiber tracking on graphics processing units,”

Computerized Medical Imaging and Graphics, vol. 32, no. 7, pp.
521–530, 2008.

[29] T.-T. Wong, “Shader programming vs CUDA,” in Proceedings
of the IEEE World Congress on Computational Intelligence,
2008.

[30] A. Mittmann, T. H.C. Nobrega, E. Comunello et al., “Per-
forming real-time interactive fiber tracking,” Journal of Digital
Imaging, vol. 24, no. 2, pp. 339–351, 2010.

[31] W.-K. Jeong, P. T. Fletcher, R. Tao, and R. T. Whitaker, “Inter-
active visualization of volumetric white matter connectivity in
DT-MRI using a parallel-hardware Hamilton-Jacobi solver,” in
Proceedings of the IEEE Visualization, vol. 13, no. 6, pp. 1480–
1487, November 2007.

[32] NVIDIA, “CUDA—programming guide,” Version 2.3.1, 2009,
http://www.nvidia.com.

[33] NVIDIA, “Technical brief—NVIDIA GeForce GTX 200 GPU
architectural overview,” 2008, http://www.nvidia.com.

[34] NVIDIA, “CUDA—C programming best practices guide,”
2009, http://www.nvidia.com.

[35] NVIDIA, “GeForce GTX 260—specifications,” 2010, http://
www.nvidia.com.

[36] E. van Aart, Acceleration of a geodesic fiber-tracking algorithm
for diffusion tensor imaging using CUDA, M.S. thesis, Eind-
hoven University of Technology, Eindhoven, The Netherlands,
2010.

[37] D. S. Tuch, T. G. Reese, M. R. Wiegell, N. Makris, J. W. Bel-
liveau, and J. Van Wedeen, “High angular resolution diffusion
imaging reveals intravoxel white matter fiber heterogeneity,”
Magnetic Resonance in Medicine, vol. 48, no. 4, pp. 577–582,
2002.

[38] L. Astola and L. Florack, “Finsler geometry on higher order
tensor fields and applications to high angular resolution
diffusion imaging,” Lecture Notes in Computer Science, vol.
5567, pp. 224–234, 2009.

[39] L. Florack, E. Balmashnova, L. Astola, and E. Brunenberg, “A
new tensorial framework for single-shell high angular resolu-
tion diffusion imaging,” Journal of Mathematical Imaging and
Vision, vol. 38, no. 3, pp. 171–181, 2010.

Hindawi Publishing Corporation
International Journal of Biomedical Imaging
Volume 2011, Article ID 473128, 11 pages
doi:10.1155/2011/473128

Research Article

High-Performance 3D Compressive Sensing MRI Reconstruction
Using Many-Core Architectures

Daehyun Kim,1 Joshua Trzasko,2 Mikhail Smelyanskiy,1 Clifton Haider,2

Pradeep Dubey,1 and Armando Manduca2

1 Parallel Computing Lab, Intel Corporation, 2200 Mission College Boulevard Santa Clara, CA 95054, USA
2 The Center for Advanced Imaging Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA

Correspondence should be addressed to Armando Manduca, manduca.armando@mayo.edu

Received 30 March 2011; Accepted 3 June 2011

Academic Editor: Yasser M. Kadah

Copyright © 2011 Daehyun Kim et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Compressive sensing (CS) describes how sparse signals can be accurately reconstructed from many fewer samples than required by
the Nyquist criterion. Since MRI scan duration is proportional to the number of acquired samples, CS has been gaining significant
attention in MRI. However, the computationally intensive nature of CS reconstructions has precluded their use in routine clinical
practice. In this work, we investigate how different throughput-oriented architectures can benefit one CS algorithm and what levels
of acceleration are feasible on different modern platforms. We demonstrate that a CUDA-based code running on an NVIDIA Tesla
C2050 GPU can reconstruct a 256 × 160 × 80 volume from an 8-channel acquisition in 19 seconds, which is in itself a significant
improvement over the state of the art. We then show that Intel’s Knights Ferry can perform the same 3D MRI reconstruction in
only 12 seconds, bringing CS methods even closer to clinical viability.

1. Introduction and Motivation

Magnetic resonance imaging (MRI) is a noninvasive medical
imaging modality commonly used to investigate soft tissues
in the human body. Clinically, MRI is attractive as it offers
flexibility, superior contrast resolution, and use of only
nonionizing radiation. However, as the duration of a scan is
directly proportional to the number of investigated spectral
indices, obtaining high-resolution images under standard
acquisition and reconstruction protocols can require a
significant amount of time. Prolonged scan duration poses
a number of challenges in a clinical setting. For example,
during long examinations, patients often exhibit involuntary
(e.g., respiration) and/or voluntary motion (e.g., active
response to discomfort), both of which can impart spatial
blurring that may compromise diagnosis. Also, high tem-
poral resolution is often needed to accurately depict physio-
logical processes. Under standard imaging protocols, spatial
resolution must unfortunately be sacrificed to permit quicker
scan termination or more frequent temporal updates.

Rather than executing a low spatial resolution exam,
contemporary MRI protocols often acquire only a subset

of the samples associated with a high-resolution exam and
attempt to recover the image using alternative reconstruction
methods such as homodyne detection [1] or compressive
sensing (CS). CS theory asserts that the number of samples
needed to form an accurate approximation of an image is
largely determined by the image’s underlying complexity
[2, 3]. Thus, if there exists a means of transforming the
image into a more efficient (i.e., sparse or compressible)
representation, less time may actually be required to collect
the data set needed to form the high-resolution image [4].

Background-suppressed contrast-enhanced MR angiog-
raphy (CE-MRA) is a very natural clinical target for CS
methods. As the diagnosis of many conditions like peripheral
vascular disease are based on both vessel morphology and
hemodynamics, high spatial and temporal resolution images
are consequently needed. CS enables the acquisition of all of
this information in a single exam. Although several authors
(e.g., [5–8]) have successfully demonstrated the application
of CS methods to CE-MRA, the computationally intensive
nature of these applications has so far precluded their clinical
viability (e.g., published CS reconstruction times for a single
3D volume (CE-MRA or not) are often on the order of

2 International Journal of Biomedical Imaging

hours [4, 7, 9–11]). As the results of a CE-MRA exam are
often needed as soon as the acquisition completes (either
for immediate clinical intervention or to guide additional
scans), it is not practical to wait for the result of any currently
implemented CS reconstructions. Instead, linear or other
noniterative reconstructions that can be executed online
(e.g., [12]) must be used even if they provide suboptimal
results.

With the goal of reducing CS+MRI reconstruction times
to clinically practical levels, several authors have recently
considered the use of advanced hardware environments
for their reconstruction implementations. Most of these
techniques have focussed on the reconstruction of MRI data
acquired using phased-array (i.e., multicoil) receivers, as
this is the dominant acquisition strategy used in clinical
practice. Chang and Ji [13, 14] considered a coil-by-
coil approach to reconstructing phased-array MRI data.
Although this strategy leads to natural task parallelization,
with each element of a multicore processor independently
handling the reconstruction on one coil image, they only
demonstrated reconstruction times on the order of minutes,
per 2D slice which is not clinically viable. Moreover, disjoint
reconstruction of phased-array MRI data is well known
to exhibit suboptimal performance when compared against
joint reconstruction strategies like SENSE [15] and GRAPPA
[16] and so, this strategy is of limited utility. Murphy et
al. [17] later demonstrated that the SPIRiT reconstruction
algorithm [18], which is a generalization of GRAPPA [16],
can be significantly accelerated using graphics processors.
They generated high-quality parallel image reconstructions
in on the order of minutes per 3D volume, representing a
significant advance towards clinical feasibility. More recently,
Trzasko et al. [7, 8, 19] demonstrated CS reconstructions of
time-resolved 3D CE-MRA images acquired using parallel
imaging and a state-of-the-art Cartesian acquisition with
a projection-reconstruction-like sampling (CAPR) strategy
[12] also in a matter of only minutes per 3D volume using
an advanced code implementation on a cluster system [20].
Their algorithm, which is essentially a generalization of
SENSE [15] that employs auxiliary sparsity penalties and
an efficient inexact quasi-Newton solver, was demonstrated
to yield high quality reconstruction of 3D CE-MRA data
acquired at acceleration rates upwards of 50x.

In this paper, we focus on Trzasko et al.’s CS+MRI
reconstruction strategy for 3D CE-MRA and investigate the
development, optimization, and performance analysis on
several modern parallel architectures, including the latest
quad- and six-core CPUs, NVIDIA GPUs, and Intel Many
Integrated Core Architecture (Intel MIC). Our optimized
implementation on a dual-socket six-core CPU is able to
reconstruct a 256× 160× 80 volume of the neurovasculature
from an 8-channel, 10x accelerated (i.e., 90% undersampled)
data set within 35 seconds, which is more than a 3x improve-
ment over other conventional implementations [8, 19].
Furthermore, we show that our CS implementation scales
very well to the larger number of cores in today’s throughput-
oriented architectures. Our NVIDIA Tesla C2050 implemen-
tation reconstructs the same dataset in 19 seconds, while our
Intel’s Knights Ferry further reduces the reconstruction time

to 12 seconds, which is considered clinically viable. Finally,
our research simulator shows that the reconstruction can be
done in 6 seconds on 128 cores, suggesting that many-core
architectures are a promising platform for CS reconstruction.

2. Methods

2.1. Acquisition and Recovery of CE-MRA Images. Following
[12], CAPR adopts a SENSE-type [15] parallel imaging
strategy. As such, the targeted data acquisition process for
one time frame can be modeled as⎡⎢⎢⎢⎢⎢⎢⎢⎣

g1

g2

...

gC

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

ΦF Γ1

ΦF Γ2

...

ΦF ΓC

⎤⎥⎥⎥⎥⎥⎥⎥⎦ f + n, (1)

where f is a discrete approximation of the underlying image
of interest, Γc is the cth coil sensitivity function, F is the 3D
discrete Fourier transform (DFT) operator, Φ is a (binary)
sampling operator that selects a prescribed subset of k-
space values, n is complex additive white Gaussian noise
(AWGN), and gc is signal observed by the cth coil sensor. As
described in [19], raw CAPR k-space data is background-
subtracted and view-shared prior to execution of the CS
reconstruction procedure. We let hc(t) denote the result after
such preprocessing of gc.

It was demonstrated in [8, 19] that background-
suppressed CE-MRA images acquired by systems of the form
in (1) can be accurately recovered by (approximately) solving
the following unconstrained optimization problem:

ṽ = arg min
v

J(v), (2)

where the cost functional

J(v) = α
∑
n∈η

P(Dnv) +
C∑
c=1

‖ΦF Γcv − hc‖2
2, (3)

Dn is the finite spatial difference operator for some offset
direction n (in the neighborhood η), and the penalty
functional

P(v) =
∑
x∈Ω

ρ(v(x)), (4)

for some concave metric functional ρ(·) [21]. Following [7],
the nonconvex Laplace functional

ρ(·) = 1− exp
(
σ−1|·|), σ ∈ [0,∞) (5)

is herein adopted. Although not considered here, the �1-
norm (ρ(·) = | · |) could also be used if so desired.

2.2. Numerical Optimization. In [7], an efficient inexact
quasi-Newton algorithm was proposed for (approximately)
solving (2) to reconstruct CAPR CE-MRA images. For
completeness, this algorithm is briefly reviewed. Recall that

International Journal of Biomedical Imaging 3

complex quasi-Newton iterations [22] are typically of the
form

vi+1 = vi − B−1(vi)L(vi), (6)

where the gradient of J(v) (taken with respect to v [23]) and
B(·) is an approximation of the complex Hessian of J(v).
The term “inexact” arises when Δi is only approximately
determined, such as via truncated conjugate gradient (CG)
iteration. More specifically, given (3),

L(vi) = α
∑
n∈η

D∗nΛ(Dnvi)Dnvi

+
C∑
c=1

Γ∗c F ∗Φ∗(ΦF Γcvi − kc(t)),

(7)

where the (ε > 0 smoothed) diagonal operator

Λ(Dnvi)(x,x) = 1
2|[Dnvi](x)|εi

·
∂ρ
(
|[Dnvi](x)|εi

)
∂|[Dnvi](x)|εi

. (8)

In their work, Trzasko et al. [8, 19] adopted the following
analytical linear Hessian approximation:

B(vi) = α

2

∑
n∈η

D∗nΛ(Dnvi)Dn +
C∑
c=1

Γ∗c F ∗Φ∗ΦF Γc, (9)

which can be considered a generalization of Vogel and
Oman’s “lagged diffusivity” model [24] for total variation
(TV) denoising and deblurring. For improved convergence,
decreasing continuation is also performed on the functional
smoothing parameter, ε [25].

In [19], an efficient C++ implementation of the
above algorithm employing the templated class frame-
work described by Borisch et al. [20] and both the
MPI (http://www-unix.mcs.anl.gov/mpi/) and OpenMP
(http://www.openmp.org/) libraries was described and exe-
cuted on an 8-node dedicated reconstruction cluster, where
each node had two 3.4 GHz Intel Xeon processors and
16 GB memory. For a single 256 × 160 × 80 head volume
reconstruction from 8-channel data and only 6 difference
neighbors, reconstruction times of slightly less than 2
minutes were reported. Although these times represent a
significant advancement over other existing works, they are
still too long for routine clinical use.

3. Experiments

We used five datasets (two artificial and three clinical) to
analyze the CS performance on three platforms: Intel CPUs,
NVIDIA GPUs, and Intel MIC.

3.1. Experimental Data and Reconstruction Specifications.
Five datasets are used for our experiments, whose volume
size and memory footprint are: (256 × 64 × 64, 224 MB),
(256× 160× 32, 280 MB), (256× 160× 80, 700 MB), (256×
160×84, 735 MB), and (256×160×88, 770 MB), in the order
of dataset 1 to 5, respectively. Datasets 1 and 2 were artificially

generated, Dataset 3 represents a noncontrast-enhanced
brain, and Datasets 4 and 5 represent contrast-enhanced
vasculature. All MRI data were acquired on a 3T GE Signa
scanner (v.20) using an 8-channel head array using the CAPR
acquisition sequence. Prior to reconstruction, view sharing
was performed on datasets 3–5, and background reference
subtraction on dataset 4 and 5 as described in [12]. For
all experiments, 5 outer and 15 inner (CG) iterations were
executed under W = 1 (corresponding to 26 finite difference
neighbors). ε-continuation (0.1 reduction) was performed at
each outer iteration. Figure 1 shows the current clinical [12]
and CS-type reconstruction [19] results for dataset 5. The CS
reconstruction results for all versions optimized for different
architectures discussed below were visually identical to that
shown here. All architectures are compliant with IEEE single-
precision floating-piont arithmetic standard [26].

3.2. Computing Architectures

Intel Core i7 Processor. The Intel Core i7 processor is an
×86-based multicore architecture which provides four/six
cores (731 M/1.17 B transistors) on the same die. It features
a superscalar out-of-order core supporting 2-way hyper-
threading and 4-wide SIMD. Each core is backed by 32 KB L1
and 256 KB L2 caches, and all cores share an 8 MB/12 MB L3
cache. Quad and six-core CPUs provide 100 Gflops and 135
Gflops of peak single-precision computation respectively,
as well 32 GB/s of peak memory bandwidth. To optimize
CS on Core i7 processors, we took advantage of its SSE4
instructions using the Intel ICC auto-vectorizing compiler
as well as hand-vectorization intrinsics. We parallelized the
code with OpenMP and adopted a highly optimized FFT
implementation from Intel’s Math Kernel Library (MKL)
10.2.

NVIDIA Tesla. The NVIDIA Tesla C2050 [27, 28] (3 B
transistors) provides 14 multiprocessors, each with 32 scalar
processing units that share 128 KB of registers and a 64 KB
on-chip memory. 32 scalar units are broken into two
groups, where each group runs in lockstep. It features a
hardware multithreading, which allows hundreds of thread
contexts running concurrently to hide memory latency.
All multiprocessors share a 768 KB L2 cache. The on-chip
memory is software configurable, and it can be split into a
48 KB cache and a 16 KB shared memory space, or vice versa.
Its peak single-precision computing performance is about
1.03 Tflops and its on-board GDDR memory provides up to
144 GB/s bandwidth. We used the CUDA [29] programming
environment to implement CS on Tesla C2050. CUDA allows
programmers to write a scalar program that is automatically
organized into thread blocks to be run on multiprocessors.
CUDA provides an open source FFT library (CUFFT 3.1
[30]) although more optimized FFT implementations such
as Nukada and Matsouka’s [31] have been published.

3.2.1. Intel’s Knights Ferry. Intel MIC is an Aubrey Isle- [32]
based platform and Intel’s Knights Ferry [33] is its first
silicon implementation with 32 cores running at 1.2 GHz.

4 International Journal of Biomedical Imaging

(a) (b)

(c) (d)

Figure 1: Sagittal maximum intensity projection (MIP) images (column 1) and coronal cross-section images (column 2) for test data set
5. (a-b) represent the current clinical reconstruction protocol result, and (c-d) represent the CS reconstruction. Note the relatively superior
vascular conspicuity and parotid gland homogeneity in the CS reconstruction images.

It is an ×86-based many-core processor based on small
in-order cores that combines the full programmability of
today’s general-purpose CPU architectures with the compute
throughput and memory bandwidth capabilities of modern
GPU architectures. Each core is a general-purpose processor,
which has a scalar unit based on the Pentium processor
design, as well as a vector unit that supports 16 32-bit float
or integer operations per clock. It is equipped with two levels
of cache: a low latency 32 KB L1 cache and a larger globally
coherent total 8 MB L2 cache that is partitioned among the
cores. It offers a peak throughput of 1.2 Tflops (single-
precision). Because Intel MIC is based on ×86, it provides
a natural extension to the conventional ×86 programming
models. Thus, we could use similar data and thread level
implementation as on Core i7 processors.

3.3. Assessment of Computational Burden. Figure 2(a) shows
the overview of our CS implementation. The targeted CS
reconstruction algorithm is composed of multiple iterations
of 3D matrix arithmetics. We divide the reconstruction

model outlined in (6) into six stages based on the loop
structure (denoted as Stage1, Stage2, etc.). More specifically,
Stage1, Stage2, and Stage3 correspond with computation of
the left and right terms of (7), respectively. Analogously,
Stage4, Stage5, and Stage6 correspond with computation
of the left and right terms of (9), respectively. Each stage
performs a series of matrix computations such as elemen-
twise additions and 3D FFTs. The pie chart in Figure 2(b)
shows the execution time breakdown of the key kernels.
FFT3D (performed in Stage2 and Stage5) is the most time-
consuming and accounts for 46% of the total execution time.
To achieve optimal performance, FFT requires architecture-
specific optimization. Thus, we use the best FFT libraries
available for each architecture. Simple elementwise matrix
arithmetics (Matrix) are the second most time-consuming
kernels. Because they stream large amount of data from/to
the main memory, our optimizations focus on hiding latency
and utilizing bandwidth efficiently. Diff3D (in Stage1 and
Stage4) calculates the differences from the original matrix
to its shifted copy. Since the same data are used multiple

International Journal of Biomedical Imaging 5

5×

for

for (main iteration)

Stage 1

(NC Iteration)
Stage 2

{

[

[

[

[

{

}

}

Stage 3

Stage 4

Stage 5
(NC iteration)

Stage 6

27×

8×

15×
27×

8×

for

(CG iteration)for

or (dx : −w tow)
f

f

or (dx : −w tow)f

f
or (dy : −w tow)

for (dy : −w tow)

or (dz : −w tow)

for (dz : −w tow)

(a)

Matrix
33%

Geval
7%

Di 3D
14%

FFT3D
46%

(b)

Figure 2: (a) CS implementation overview. (b) Execution time breakdown.

times, we block the matrix to exploit data reuse in fast on-die
memories. GEval (in Stage1 and Stage3) performs transcen-
dental operations such as division and exponentiation that
are implicit within (8). On GPUs, we take advantage of fast
math functions; however, the performance gain due to the
faster math is marginal because GEval comprises only 7% of
the total execution time.

4. Architecture-Aware Optimization

Architecture-aware optimization can improve performance
significantly. Naive implementation often misses a large
amount of performance potential. In order to realize
maximum performance potential, we discuss a number
of important architecture-aware optimizations for our CS
implementation. Our optimization techniques are general,
and thus can be applied to all three architectures (CPU, GPU,
and Intel MIC). In particular, since a CPU and MIC share the
same programming model, an optimized CPU code can be
ported to Intel MIC without much modification. However,
the CUDA programming model is quite different from a
CPU’s. It requires significant effort to port a CPU code to
GPUs, and it may be easier to program it from scratch for
GPUs.

4.1. Vectorizing and Multithreading. We take advantage
of modern parallel architectures through vectorizing and
multithreading our CS implementation. The main data
structures in CS are 3D matrices. Because each element of
the matrix is computed independently in most kernels, we
exploit the element-level parallelism. In other words, we can
pack multiple elements into a vector computation and/or
divide elements among multiple threads arbitrarily, without
concern of data dependency.

We start by vectorizing the inner-most loop of 3D
matrix kernels. A kernel is usually is composed of three
nested loops for each of the dimensions, x, y, and z, as
shown in Figure 3(a). Because there is no data dependency
between elements, it is possible to vectorize within any of
the iterations. However, it is most efficient to vectorize the
inner-most loop, since it exhibits sequential memory accesses
along the x axis. Vectorization along the y or z axis requires
gathering elements from nonsequential memory locations,
resulting in poor performance. In addition, most loops in CS
do not contain data-dependent control flow diversions (i.e.,
“if” statements), which helps maintain high vector efficiency.

Second, we perform 3D partitioning of the 3D matrix
evenly among multiple threads, as shown in Figure 3(b).
For each partition, the computation requirement is almost
identical, and memory access patterns are very regular.
Thus, our coarse-grain static partitioning provides good
load balancing. Though fine-grain dynamic partitioning may
provide better load balancing, it gives rise to interthread
communication overhead. In dynamic partitioning, a par-
tition that is assigned to a thread at one stage may be
assigned to another thread at another stage, which incurs
data communication from the initial thread to the next. In
our static partitioning, a partition is always assigned to the
same thread throughout multiple stages, thus interthread
communication is not required.

It is not trivial to vectorize and multithread FFT due to its
butterfly access patterns and bit-reversal element shuffling.
However, this has been studied for decades and optimization
techniques are well known. FFT3D optimization in our CS
implementation uses techniques discussed in [34], details of
which are out of scope of this paper.

4.2. Loop Fusion. Our CS implementation performs a series
of simple elementwise matrix operations. For example,

6 International Journal of Biomedical Imaging

for (i = 0; i < Z; i + +)

for (j = 0; j < Y ; j + +)

{

{

{

}
}

}

...

// z-axis

// y-axis

// x-axis

for (k = 0; k < X ; k+ = VECTOR WIDTH)

// Vector Computations

(a)

Thread 0 Thread 1

Thread 2 Thread 3

(b)

Figure 3: (a) Vectoring 3-nested loop. (b) Multithreading 3D matrix.

Input
matrix

A

Input
matrix

B

Temp
matrix

Temp
matrix

Temp
matrix

Temp
matrix

Output
matrix

D

Output
matrix

C

Element

multiply

Element

multiply

Exponential

math

Element
square

multiply

Element

add

Figure 4: Example of loop fusion applied for Stage3.

Figure 4 shows a high-level overview of Stage3 which corre-
sponds to assembly of the cost functional gradient defined
in (7) following construction of its elements in Stage1
and Stage2. This stage is composed of five computation
substages for two input matrices, A and B, and two output
matrices, C and D. More specifically, A contains the set of all
intermediary data generated using Diff3D and B contains the
set of all intermediary data generated using FFT3D. C then
corresponds to the weighting matrix defined in (8), whereas
D is the entire composite variable in (7). One possible
implementation is to execute each computation stage entirely
before proceeding to the next state, as illustrated with the
dotted arrows in the figure. For example, we first multiply
matrices A and B, then we perform an exponentiation of
the result, and so forth. While this approach is easy to
implement, its memory behavior is inefficient. Because each
stage sweeps through the entire 3D matrix and the size of
the matrix is usually larger than the last level cache size,
temporary matrices between stages cannot be retained within
the cache, which results in cache thrashing, memory traffic
increase, and, therefore, overall performance degradation. A
better implementation is to block the computation so that
its temporary data is kept within the cache. Main memory

accesses will occur only at the beginning to read the input
matrix and at the end to write the output matrix. We
optimize even further to process the entire computation at
the element level as shown in the solid arrow in the figure. We
read an element from each of matrix A and matrix B, perform
the five computations, and write the result to matrix C and
D. Then, we move onto the next element, and so on. This
optimization is called loop fusion, because it fuses multiple
small loops of individual computations into one big loop of
a combined computation. Because it handles one element at
a time, data can be kept in the registers, which eliminates
the need for the temporary matrix and, therefore, removes
intermediate memory loads/stores completely. Also, because
a fused loop performs more computation before it accesses
the next element, it has more time to hide memory latency
through data prefetches.

4.3. Cache Blocking through Data Partitioning. Most matrix
operations in CS read/write only one element from an
input matrix to an output matrix. Once an element is
processed, the same element is not accessed again. However,
Diff3D requires 27 neighbor elements to compute an output
element. In other words, an input element is reused 27

International Journal of Biomedical Imaging 7

Scheme 1 Scheme 2

Figure 5: Cache blocking through data partitioning.

1 cache line
padding

1 cache line
padding

for
2D XY plane

X-axis

Y-axis

256 elements = 16 cache lines

Figure 6: Cache line padding for 3D matrix.

times for 27 different output elements. To capture the data
reuse, a cache-aware partitioning is required. For brevity,
we explain our optimization with a 2D matrix shown in
Figure 5. To compute an output, it requires 9 surrounding
inputs. Scheme 1 is a cache-ignorant partitioning. It accesses
elements from the beginning to the end of the current row
before accessing elements in the the next row. It fails to
capture data reuse if the matrix is too large. Initially, it caches
the first 3× 3 inputs to calculate the first output. But when it
reaches the end of the row, the first 3× 3 inputs are likely to
be evicted from the cache if the number of elements touched
during the row traversal exceeds the cache size. As a result,
3 × 3 inputs are reloaded from memory to calculate the first
output of the next row even though 2 × 3 of these inputs
have been already read before. Scheme 2 solves this problem
by a cache-aware partitioning. It partitions the matrix in
the middle of the row. Instead of moving to the end of a
row, it stops at the end of the partition and moves down to
the next row. It can reuse the inputs from the previous row
before they are replaced from the cache. When we divide a
matrix into four partitions, scheme 2 will show better cache
behavior than scheme 1. We extend the same cache-aware
data partitioning technique to a 3D matrix to implement
Diff3D.

4.4. Cache Line Padding for 3D Matrix. Though the main
data structure in CS is a 3D matrix, the main memory access
pattern is simple streaming that accesses data from the first
to the last sequentially. However, Diff3D and FFT3D also
access data nonsequentially along the y and z axis. Memory
accesses with a large power-of-two stride show poor cache
behavior due to cache conflicts. For example, this can occur
when multiple data elements from adjacent matrix rows map
to the same cache line. As the result, access to the second

XY Plane 2D FFT

1D FFT on

1D FFT on

1D FFT on

X-axis

X-axis

Z-axis

Z-axis

Y-axis

Y-axis

(cache blocking)

Figure 7: Last-level cache blocking for 3D FFT.

element results in the eviction of the first element from the
cache. To solve the problem, we pad the matrix as shown
in Figure 6. Each row along the X-axis is padded with one
empty cache line at the end. Without padding, accesses along
the Y-axis have stride of 16 cache lines (power of two). We
break the power-of-two stride by adding one extra cache line
per row, which will reduce cache conflict misses. Note that,
in addition to the padding at the end of row along the X-axis,
we may also need to add another padding at the end of each
XY 2D plane, if the size of Y dimension is also power of two.

4.5. Last-Level Cache Blocking for 3D FFT. 3D FFT can be
computed as multiple 1D FFTs along the X-, Y- and Z-axis.
For a 256 × 160 × 80 matrix as our reference dataset, we
can first perform 12800 256-point 1D FFTs along the X-axis,
followed by 20480 160-point 1D FFTs along the Y-axis, and
finally 40960 80-point 1D FFTs along the Z-axis. However,
performing 1D FFTs, one axis at a time is not cache efficient,
because it requires sweeping the entire matrix, which incurs
a lot of cache misses due to the fact that the matrix does
not fit into last-level cache. Instead, we perform 2D FFTs
for each 2D XY plane, then we perform 1D FFTs for the z
axis, shown in Figure 7. For a given z axis value, we preload
the corresponding XY plane to the cache, perform 1D FFTs
along the X-axis then the y axis (a 2D FFT for the entire XY
plane), and then store the resulting XY plane to the memory.
Because last-level caches are usually larger than a single XY
plane (320 KB for the reference dataset), our XY plane cache
blocking is very effective in reducing memory bandwidth
requirements. Note that larger last-level caches in Intel Core
i7 processor and Intel’s Knights Ferry than Tesla C2050 are
beneficial for the 2D cache blocking. As each thread/core
works on a different XY plane, multiple 2D blocks should be
kept in the cache. In addition, as the size of datasets increases,
the corresponding 2D blocks also get larger. Therefore, to
achieve good system-level and dataset-level scalability, large
last-level caches are critical.

4.6. Synchronization: Barrier and Reduction. CS is composed
of a large number of parallel stages separated by global
barriers (routines that synchronize threads in a parallel

8 International Journal of Biomedical Imaging

Base MKL Vector Tile

E
xe

cu
ti

on
ti

m
e

(s
)

Sp
ee

du
p

Execution time
Speedup

175

152

127
116 116

73

561
1.15

1.38
1.51 1.51

2.39

3.21

0

20

40

60

80

100

120

140

160

180

200

0

0.5

1

1.5

2

2.5

3

3.5

1
thread

2
thread

4
thread

Figure 8: Impact of optimization on a quad-core CPU.

system). When threads finish computation in the parallel
region, they synchronize on a barrier before proceeding to
the next parallel region. Efficient barrier synchronization is
paramount for high scalability. On a system with a small
number of cores such as Intel Core i7 processor, barrier
overhead is only ∼2% of total execution time. But as we
increase the number of threads (i.e., 128 threads on Intel’s
Knights Ferry), we observe up to ∼10% overhead with
our hand-optimized barrier implementation. Without the
optimized barrier, the synchronization overhead would be
too large, therefore resulting in poor performance. On GPUs,
the barrier overhead is even worse. We implement a global
barrier by launching a new kernel, that is, synchronizing
with CPU, which costs one kernel launch overhead at
minimum. While there exist faster barrier implementations
that run entirely on GPU, they require nonstandard memory
consistency model assumption.

Another synchronization primitive used in CS is reduc-
tion. In Stage3 and Stage6, it reduces a 3D matrix to
one scalar value. To implement this reduction, we used a
software privatization technique. Each thread performs local
reduction into its private scalar variable. After all threads are
done, the global reduction is performed, which aggregates all
local values. To implement the global reduction, we use an
atomic memory operation. While atomics are generally slow
on modern parallel architectures, their overhead in our CS
implementation is small, due to the small fraction of time
spent in the global reduction.

5. Results

We compare performance of our CS implementation on
three modern parallel architectures and provide in-depth
performance analysis from a computer architecture perspec-
tive.

5.1. Impact of Performance Optimization. We applied the var-
ious optimizations discussed in Section 4 to our CS imple-
mentation. We demonstrate the impact of each individual

optimization on overall performance. Figure 8 shows the
performance improvement of our CS implementation first
as a single-threaded program on an Intel Core i7 pro-
cessor as we incrementally applied our optimizations and
subsequently as a multithreaded program. The vertical bar
represents the execution time in seconds for each optimiza-
tion step, and the line shows the corresponding relative
speedup over the baseline, Base, which is the original single-
threaded implementation of the algorithm compiled with the
highest level of optimization, including autovectorization,
function in-lining, and interprocedural optimization. As our
first optimization, we replaced the FFTW [35] used in the
original implementation with the faster Intel MKL. This
results in a 1.15x speedup as represented by the second
bar MKL. Second, we hand-vectorize the codes that can
not be autovectorized by the compiler. Hand-vectorization
provides an additional 1.19x speedup (Vector). Third, we
apply cache blocking to exploit data reuse in the Diff3D
kernel, which shows another 1.10x speedup (Tile). Through
these three single-thread optimizations, we achieve an overall
1.51x speedup over the baseline implementation. To take
advantage of multiple cores/threads, we parallelize the appli-
cation. For FFT3D, we use the parallel implementation of the
MKL library, and for the other kernels, we hand-parallelize
using the OpenMP library. Parallelization achieves another
1.58x speedup on two cores over the single-core baseline and
a 2.14x speedup on four cores. Overall, by combining the
single-thread optimization and the multithread paralleliza-
tion, we achieve a 3.21x performance improvement from the
baseline implementation, which reduces the total execution
time from 175 seconds (Base) to 56 seconds (4 Cores).

5.2. Performance Comparison: CPU, GPU, and Intel MIC.
Figure 9 compares CS performance on three architectures:
Intel dual-socket six-core Core i7 processor (Intel Xeon
processor X5670 at 2.93 GHz), NVIDIA Tesla C2050 (at
1.15 GHz attached to Intel Core i7 processor 960 at 3.2 GHz),
and Intel’s Knights Ferry (at 1.2 GHz attached to Intel Core
i7 processor 960 at 3.2 GHz). We normalize the speedups
with respect to the optimized quad-core Core i7 processor
(Intel Core i7 processor 975 at 3.33 GHz) implementation
(56 second runtime) from the previous section and show
them only for dataset 1, 2, and 3. Since their dimensions
are similar, the performance results for datasets 4 and 5
are correspondingly very similar to those for dataset 3 in
terms of both execution time and relative performance across
different architectures. Thus, for the sake of brevity, only
the results for dataset 3 are shown in Figure 9. For Tesla
C2050 and Knights Ferry, we show two speedup bars: one
without data transfer overhead from the CPU host and
the other with the overhead. The data transfer overhead
results in small performance degradation, because CS spends
significant time performing computation, and can hide most
of the data transfer time.

The dual-socket six-core Core i7 processor (total 12
cores) performs about 1.6x faster (35 s) than the quad-core
CPU (56 s), thanks to the increased core count and memory

International Journal of Biomedical Imaging 9

No PCI-E transfer overhead
With PCI-E transfer overhead

0

2

4

6

8

10

12

R
el

at
iv

e
sp

ee
du

p

Tesla
C2050

Knights
Ferry

Tesla
C2050

Knights
Ferry

Tesla
C2050

Knights
Ferry

1.6 1.6 1.9 1.8

6.8
6.2

5.4 5.1

1.6

3 2.9

4.6 4.5

7.5

9.9

256× 64× 64 256× 160× 32 256× 160× 80

Dual-Socket
Core i7

Dual-Socket
Core i7

Dual-Socket
Core i7

Figure 9: Performance comparison between Dual-Socket Core i7, Tesla C2050, and Knights Ferry with respect to Quad-Core Core i7.

Table 1: Performance analysis.

Kernel
Execution time

breakdown
Speedup of Knights

Ferry/Core i7

FFT3D 46% ∼4x

Diff3D 14% ∼6x

GEval 7% ∼7x

Matrix 33% ∼4x

Overall 100% 4.6x

bandwidth. The Tesla C2050 GPU platform is 2.9x faster than
the quad-core CPU for dataset 3. However, its performance
exhibits large variance across datasets. Tesla C2050 shows
about 7.5x speedup for dataset 1 but shows only 1.8x speedup
for dataset 2. For dataset 3 (actual clinical data), Knights
Ferry achieves 4.5x speedup over the quad-core CPU, which
is about 1.57x faster than Tesla C2050. Knights Ferry allows
reconstructing the real anatomical dataset within a clinically
feasible 12 seconds, which is a significant improvement over
existing CS implementations.

Note that Core i7 processor and Knights Ferry are more
efficient than Tesla C2050 in terms of resource utilization.
Though Tesla C2050 has about ∼4x peak flops and ∼3x
peak bandwidth than Core i7 processor, it only provides
∼2x performance. Also, while Knights Ferry delivers∼10%±
flops/bandwidth of Tesla C2050, Knights Ferry shows about
55% speedup over Tesla C2050. Finally, Tesla C2050’s big
performance variance across datasets is due to FFT opti-
mization. We believe that CUFFT 3.1 is specially optimized
for small power of two datasets like dataset 1. Thus, its
FFT performance on dataset 1 is significantly better than on
dataset 2 and 3.

6. Discussion

To elucidate the apparent impact architecture choice has on
CS performance, we now provide an in-depth discussion on

the performance of kernel-level operations. We then discuss
the parallel scalability of CS performance to address future
CMP systems.

6.1. In-Depth Performance Analysis. We provide further in-
sights into the achieved performance by breaking down the
entire application into small microkernels and analyzing
the microkernels individually. We focus on the Intel quad-
core Core i7 processor and Intel’s Knights Ferry due to
the lack of performance analysis tools in NVIDIA’s CUDA
environments. Table 1 shows the summary of our analysis.
There are two columns for each kernel. The first column
shows the fraction of execution time spent in the kernel
inside the sequential code. The second column shows the
speedup achieved by Knights Ferry over Core i7 processor on
the kernel. Dataset 3 (single-precision complex 256 × 160 ×
80) is used for the analysis.

FFT3D is the most important kernel occupying 46%
of the total execution time. For the reference dataset, the
Intel MKL library achieves ∼30 Gflops on Core i7 processor
and our in-house FFT library achieves ∼175 Gflops on
Knights Ferry, which are the best performances that can
be achieved on both architectures today. Therefore, for
FFT3D, we estimated ∼6x speedup of Knights Ferry over
Core i7 processor and actually obtained ∼4x speedup, which
indicates that we might improve Knights Ferry performance
further.

Diff3D performs a 2-point convolution. It subtracts the
original matrix and its shifted matrix by dx, dy, and dz: out
= In-In Shifted(dx, dy, dz). Because the computation is a
simple subtraction and the data size is large (∼200 MB), it
is bandwidth bound. Considering the memory bandwidth
of Core i7 processor and Knights Ferry, we expected ∼4x
speedup of Knights Ferry over Core i7 processor. In actual
implementation, we achieved ∼6x speedup, which indicates
that Core i7 processor may have room to improve.

10 International Journal of Biomedical Imaging

Speedup

Sp
ee

du
p

Execution time

E
xe

cu
ti

on
ti

m
e

(s
)

1
co

re

2
co

re
s

4
co

re
s

8
co

re
s

16
co

re
s

32
co

re
s

64
co

re
s

12
8

co
re

s

309

152

79

41 22 12 8 6
0

50

100

150

200

250

300

350

0

10

20

30

40

50

60

1 2.03
3.9

7.56

14.16

24.91

37.4

55.19

Figure 10: Performance scalability of future many-core implemen-
tations.

Table 2: Summary of performance across different hardware.

Execution time Speedup

Core i7 processor 1 Core, Not Optimized 175 s 1.0x

Core i7 processor 1 Core, Optimized 116 s 1.5x

Literature Best [19] ∼100 s 1.7x

Core i7 processor 4 Cores 56 s 3.1x

Core i7 processor Dual-Socket 12 Cores 35 s 5.0x

NVIDIA Tesla C2050 19 s 9.2x

Intel’s Knights Ferry (32 Cores) 12 s 14.5x

Research CMP Simulation (128 Cores) 6 s 29.1x

GEval involves transcendental operations. In our
hand-optimized microbenchmark, exponentiation takes∼37
cycles/element in Core i7 processor and∼0.88 cycles/element
in Knights Ferry, and square-root computation takes ∼4.5
cycles/element in Core i7 processor and∼0.56 cycles/element
in Knights Ferry. Based on the microbenchmark perfor-
mance, we estimated ∼8x speedup of Knights Ferry over
Core i7 processor, and its actual performance (∼7x) is close
to our estimation.

Matrix computes simple element-wise arithmetics. In
many cases, it is bandwidth bounded, because computations
are simple addition, subtraction, or multiplication. However,
we also optimize it by fusing multiple computations together
to exploit register and cache blocking. Considering the
peak memory bandwidth on both architectures, Knights
Ferry is expected to be ∼4x faster than Core i7 processor.
Considering the peak floating point performance, Knights
Ferry is expected to be ∼12x faster than Core i7 processor.
In reality, we achieved ∼4x speedup of Knights Ferry over
Core i7 processor, which indicates that the kernel is currently
bandwidth-bound on both architectures.

6.2. Future CMP Scalability. Chip multiprocessors (CMPs)
provide applications with an opportunity to achieve much

higher performance, as the number of cores continues
to grow over time in accordance with Moore’s law. For
CMPs to live up to their promise, it is important that as
the number of cores continues to grow the performance
of the application running on CMPs also increases com-
mensurately. To gain insights into how the CS algorithm
will scale on future many-core architectures, we modeled
a feasible but hypothetical future CMP processor (running
at 1 GHz with 256 KB/core cache) on our cycle-accurate
research simulator and Figure 10 shows its CS performance
scalability. We observe that CS scales well as we increase the
number of cores. In particular, our 64-core configuration
achieves 37x speedup over a single-core configuration, which
is almost 60% parallel efficiency. Moving further, our 128-
core configuration achieves 55x speedup over single-core
configuration which is little less than 50% efficiency. Table 2
compiles the predicted 128-core acceleration together with
the previously discussed results for Intel Core i7 processor,
NVIDIA Tesla C2050, and Intel’s Knights Ferry. Although
a 256 × 160 × 80 data volume may be considered large
by numerical computing standards, it is relatively small
by modern clinical standards and volumes many times
larger are routinely encountered in practice. Moreover, many
contemporary acquisition trends are migrating from single-
phase to time-resolved paradigms, where a 3D “movie” of
dynamic anatomy and physiology (e.g., of contrast flowing
into and out of vessels) is created. Thus, the scalability of
CMPs is paramount to seeing CS-type and other nonlinear
reconstruction methods become practical for such imaging
scenarios. Overall, existing and future many-core architec-
tures are very promising platforms for accelerating the CS
reconstruction algorithm to make it clinically viable.

7. Conclusion

In this work, we have shown that advanced computing ar-
chitectures can facilitate significant improvements in the
performance of CS MRI reconstructions and particularly
that optimized use of modern many-core architectures can
significantly diminish the computational barrier associated
with this class of techniques. This suggests that as many-
core architectures continue to evolve, CS methods can be
employed in routine clinical MRI practice. Although CE-
MRA was targeted in this work, the implication of the results
apply to many other MRI applications as well as other areas
in medical imaging such as dose reduction in computed
tomography.

Acknowledgments

A preliminary version of this work was presented in [36].
The Mayo Clinic Center for Advanced Imaging Research
is partially supported by the National Institute of Health
(RR018898). The authors thank David Holmes III for his
help in establishing the collaboration between Mayo Clinic
and Intel Corporation and Stephen Riederer for providing
them with access to CAPR MRI data.

International Journal of Biomedical Imaging 11

References

[1] D. C. Noll, D. G. Nishimura, and A. Macovski, “Homodyne
detection in magnetic resonance imaging,” IEEE Transactions
on Medical Imaging, vol. 10, no. 2, pp. 154–163, 1991.

[2] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty
principles: exact signal reconstruction from highly incomplete
frequency information,” IEEE Transactions on Information
Theory, vol. 52, no. 2, pp. 489–509, 2006.

[3] D. L. Donoho, “Compressed sensing,” IEEE Transactions on
Information Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[4] M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: the
application of compressed sensing for rapid MR imaging,”
Magnetic Resonance in Medicine, vol. 58, no. 6, pp. 1182–1195,
2007.

[5] M. Lustig, J. Santos, D. Donoho, and J. Pauly, “Rapid MR
angiography with randomly under-sampled 3DFT trajectories
and non-linear reconstruction,” in Proceedings of the 14th
ISMRM Scientific Meeting & Exhibition, p. 695, Seattle, Wash,
USA, May 2006.

[6] T. Çukur, M. Lustig, and D. G. Nishimura, “Improving non-
contrast-enhanced steady-state free precession angiography
with compressed sensing,” Magnetic Resonance in Medicine,
vol. 61, no. 5, pp. 1122–1131, 2009.

[7] J. Trzasko, C. Haider, and A. Manduca, “Practical nonconvex
compressive sensing reconstruction of highly-accelerated 3d
parallel mr angiograms,” in Proceedings of the IEEE Interna-
tional Symposium on Biomedical Imaging, pp. 274–277, July
2009.

[8] J. Trzasko, C. Haider, E. Borisch et al., “Sparse-CAPR: Highly-
accelerated 4D CE-MRA with parallel imaging and nonconvex
compressive sensing,” Magnetic Resonance in Medicine. In
press.

[9] A. Bilgin, T. Trouard, M. Altbach, and N. Raghunand,
“Three dimensional compressed sensing for dynamic MRI,” in
Proceedings of the 16th ISMRM Scientific Meeting & Exhibition,
p. 337, Ontario, Canda, May 2008.

[10] M. Doneva, H. Eggers, J. Rahmer, P. B ornert, and A. Mertins,
“Highly undersampled 3d golden ratio radial imaging with
iterative reconstruction,” in Proceedings of the 16th ISMRM
Scientific Meeting & Exhibition, p. 336, Ontario, Canda, May
2008.

[11] Y.-C. Kim, S. S. Narayanan, and K. S. Nayak, “Accelerated
three-dimensional upper airway MRI using compressed sens-
ing,” Magnetic Resonance in Medicine, vol. 61, no. 6, pp. 1434–
1440, 2009.

[12] C. R. Haider, H. H. Hu, N. G. Campeau, J. Huston, and S. J.
Riederer, “3D high temporal and spatial resolution contrast-
enhanced MR angiography of the whole brain,” Magnetic
Resonance in Medicine, vol. 60, no. 3, pp. 749–760, 2008.

[13] C.-H. Chang and J. Ji, “Compressed sensing MRI with multi-
channel data using multi-core processors,” in Proceedings of the
31st Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC ’09), pp. 2684–2687,
Minneapolis, Minn, USA, September 2009.

[14] C.-H. Chang and J. Ji, “Compressed sensing MRI with multi-
channel data using multicore processors,” Magnetic Resonance
in Medicine, vol. 64, no. 4, pp. 1135–1139, 2010.

[15] K. Pruessmann, M. Weiger, P. Bornert, and P. Boesinger,
“Advances in sensitivity encoding with arbitrary k-space
trajectories,” Magnetic Resonance in Medicine, vol. 46, no. 4,
pp. 638–651, 2001.

[16] M. A. Griswold, P. M. Jakob, R. M. Heidemann et al.,
“Generalized autocalibrating partially parallel acquisitions

(GRAPPA),” Magnetic Resonance in Medicine, vol. 47, no. 6,
pp. 1202–1210, 2002.

[17] M. Murphy, K. Keutzer, S. Vasanawala, and M. Lustig,
“Clinically feasible reconstruction time for L1-SPIRiT parallel
imaging and compressed sensing MRI,” in Proceedings of the
ISMRM Scientific Meeting & Exhibition, p. 4854, Stockholm,
Sweden, May 2010.

[18] M. Lustig and J. Pauly, “SPIRiT: iterative self-consistent paral-
lel imaging recosntruction from arbitrary k-space,” Magnetic
Resonance in Medicine, vol. 64, no. 4, pp. 457–471, 2010.

[19] J. Trzasko, C. Haider, E. Borisch, S. Riederer, and A. Manduca,
“Nonconvex compressive sensing with parallel imaging for
highly accelerated 4D CE-MRA,” in Proceedings of the ISMRM
Scientific Meeting & Exhibition, p. 347, Stockholm, Sweden,
May 2010.

[20] E. Borisch, R. Grimm, P. Rossmann, C. Haider, and S.
Riederer, “Real-time high-throughput scalable MRI recon-
struction via cluster computing,” in Proceedings of the 16th
ISMRM Scientific Meeting & Exhibition, p. 1492, Ontario,
Canda, May 2008.

[21] J. Trzasko and A. Manduca, “Highly undersampled mag-
netic resonance image reconstruction via homotopic L0-
minimization,” IEEE Transactions on Medical Imaging, vol. 28,
no. 1, Article ID 4556634, pp. 106–121, 2009.

[22] A. van den Bos, “Complex gradient and Hessian,” IEE
Proceedings: Vision, Image and Signal Processing, vol. 141, no.
6, pp. 380–382, 1994.

[23] D. H. Brandwood, “A complex gradient operator and its
application in adaptive array theory,” IEE Proceedings, Part F,
vol. 130, no. 1, pp. 11–16, 1983.

[24] C. R. Vogel and M. E. Oman, “Fast, robust total variation-
based reconstruction of noisy, blurred images,” IEEE Transac-
tions on Image Processing, vol. 7, no. 6, pp. 813–824, 1998.

[25] R. Chartrand, “Exact reconstruction of sparse signals via
nonconvex minimization,” IEEE Signal Processing Letters, vol.
14, no. 10, pp. 707–710, 2007.

[26] D. Stevenson, “IEEE standard for binary floating-point arith-
metic,” Tech. Rep., 1985, http://ieeexplore.ieee.org/xpls/abs
all.jsp?arnumber=30711.

[27] Nvidia’s Next Generation CUDA Compute Architecture:
FERMI, 2009.

[28] TESLA C2050 and C2070 Computing Processor Board, 2010.
[29] NVIDIA, “NVIDIA CUDA Programming Guide, Version

2.3.1,” 2009.
[30] CUDA CUFFT Library 3.1, 2010.
[31] A. Nukada and S. Matsuoka, “Auto-tuning 3-D FFT library

for CUDA GPUs,” in Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis
(SC ’09), pp. 1–10, ACM, New York, NY, USA, November
2009.

[32] L. Seiler, D. Carmean, E. Sprangle et al., “Larrabee: a many-
core x86 architecture for visual computing,” Proceedings of
SIGGRAPH, vol. 27, no. 3, 2008.

[33] K. Skaugen, ISC 2010 Keynote.
[34] A. C. Chow, G. C. Fossum, and D. A. Brokenshire, “A

programming example: large FFT on the cell broadband
engine,” IBM, 2005.

[35] M. Frigo et al., “The design and implementation of FFTW3,”
Proceedings of the IEEE, vol. 93, no. 2, pp. 216–231, 2005.

[36] D. Kim, J. D. Trzasko, M. Smelyanskiy, C. R. Haider, A.
Manduca, and P. Dubey, “High-performance 3D compressive
sensing MRI reconstruction,” in Proceedings of the IEEE
Engineering in Medicine and Biology Society, pp. 3321–3324,
Buenos Aires, Argentina, August 2010.

Hindawi Publishing Corporation
International Journal of Biomedical Imaging
Volume 2011, Article ID 843924, 11 pages
doi:10.1155/2011/843924

Research Article

Mapping Iterative Medical Imaging Algorithm on Cell Accelerator

Meilian Xu and Parimala Thulasiraman

Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada R3T 2N2

Correspondence should be addressed to Parimala Thulasiraman, thulasir@cs.umanitoba.ca

Received 9 March 2011; Accepted 3 July 2011

Academic Editor: Khaled Z. Abd-Elmoniem

Copyright © 2011 M. Xu and P. Thulasiraman. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Algebraic reconstruction techniques require about half the number of projections as that of Fourier backprojection methods,
which makes these methods safer in terms of required radiation dose. Algebraic reconstruction technique (ART) and its variant
OS-SART (ordered subset simultaneous ART) are techniques that provide faster convergence with comparatively good image
quality. However, the prohibitively long processing time of these techniques prevents their adoption in commercial CT machines.
Parallel computing is one solution to this problem. With the advent of heterogeneous multicore architectures that exploit data
parallel applications, medical imaging algorithms such as OS-SART can be studied to produce increased performance. In this
paper, we map OS-SART on cell broadband engine (Cell BE). We effectively use the architectural features of Cell BE to provide an
efficient mapping. The Cell BE consists of one powerPC processor element (PPE) and eight SIMD coprocessors known as synergetic
processor elements (SPEs). The limited memory storage on each of the SPEs makes the mapping challenging. Therefore, we present
optimization techniques to efficiently map the algorithm on the Cell BE for improved performance over CPU version. We compare
the performance of our proposed algorithm on Cell BE to that of Sun Fire ×4600, a shared memory machine. The Cell BE is five
times faster than AMD Opteron dual-core processor. The speedup of the algorithm on Cell BE increases with the increase in the
number of SPEs. We also experiment with various parameters, such as number of subsets, number of processing elements, and
number of DMA transfers between main memory and local memory, that impact the performance of the algorithm.

1. Introduction

Medical imaging such as X-ray computed tomography has
revolutionized medicine in the past few decades. The use
of X-ray computed tomography has increased rapidly since
1970 when Radon’s technique for reconstructing images
from a set of projections was first introduced in the medical
field. In 2007, it was estimated that more than 62 million
scans per year were obtained in United States and about 4
million for children [1]. The number of scanners has also
increased in many countries due to the ease of using these
machines. The commonly used analytic technique in CT
scanners to produce diagnostic evaluation of an organ or the
region of interest is Fourier back projection (FBP). This tech-
nique requires a large number of projections measured
uniformly over 180◦ to 360◦ [2], inducing a large amount of
radiation into the body to produce quality images. Therefore,
there has been a lot of interest in developing algorithms
that minimize the radiation dose without impairing image

quality. One such class of algorithms [2, 3] that has been
studied are iterative or algebraic algorithms.

Theoretically, iterative methods require about half of the
number of projections as that of FBP method [4], which
makes these methods safer in terms of required radiation
dose. Compared to FBP method, iterative methods have
the added advantage of producing reconstructions of better
quality when data is incomplete, dynamic, or noisy. These
methods solve a linear system of equations and pass through
many iterations of computation to reconstruct the image.
Each equation corresponds to a ray. A projection angle
comprises many such rays within the same angle. For the
purpose of illustration, we assume Q projection angles and
M rays in total.

There are basically four steps in the iterative reconstruc-
tion algorithm: (i) forward projection, (ii) error correction,
(iii) back projection, and (iv) image update. The algorithm
terminates when the convergence criterion is satisfied. There
are several iterative algorithms in the literature. These

2 International Journal of Biomedical Imaging

algorithms all follow the four steps mentioned above but
differ as to when the image updates are performed. The
number of updates determines the quality of the image and
also gives an upper bound on the total computation time [5].
We believe that we can make use of the tremendous amount
of raw computational power available on Cell BE to provide
faster performance and convergence of iterative algorithms.
We assume in this paper that an iteration comprises steps (i)
to (iii) followed by an image update.

Historically, the algebraic reconstruction technique
(ART), a ray-based method, proposed by Gordon et al. [6],
is the first representative iterative algorithm. ART iterates
through the three steps (one iteration) for each ray, and
then updates the image at the end of step three. Note
that an image update is done for each ray which is highly
time consuming. Also, this is very sequential in nature.
Simultaneous iterative reconstruction technique (SIRT) [7]
improves upon ART and iterates through steps (i) to (iii)
for all the rays before performing an image update. This
method requires many iterations for accurate results and,
therefore, has a slower convergence rate. Simultaneous
algebraic reconstruction technique (SART) [8] combines the
good properties of ART and SIRT. The algorithm works
on projections. SART passes through steps (i) to (iii) for
rays within one projection, followed by an image update.
This is done iteratively for each of the Q projections. Note
that since the image is updated after computing the rays
of each of the Q projections, the convergence rate is faster
and the number of iterations compared to SIRT is reduced.
Both SART and SIRT produce better-quality images than
ART. However, they are computationally intensive. The
convergence rate of simultaneous methods can be further
accelerated through ordered-subsets (OS) technique [1, 9].
Ordered subsets method partitions the projection data into
disjoint subsets and processes the subsets sequentially. For
ART, each ray corresponds to one subset. Therefore, for
M rays, there are M subsets. In the case of SIRT, all rays
(M) correspond to one subset only. A subset in SART may
correspond to all the rays in one projection angle or combine
several projections of different angles into one subset. This
is called OS-SART [10]. Due to the fast convergence rate
of SART, in this paper, we consider parallelization of SART
using the ordered-subsets (OS) technique. Though OS-SART
can reduce the reconstruction time with respect to the
convergence rate and produce images with high quality, it is
still prohibitively time consuming due to its computation-
intensive nature, especially for large images with high-res-
olution requirements.

One approach to increase the performance of the OS-
SART algorithm is to parallelize the algorithm on modern
heterogeneous multicore systems which aim to reduce the
gap between the application required performance and the
delivered performance [11]. The cell broadband engine
(Cell BE) [12] is one such architecture. This architecture
supports coarse-grained data parallel applications. In OS-
SART each of the subset performs the same algorithm (same
instructions) supporting data parallelism.

In this paper, we use a domain-decomposition method,
which subdivides the problem into disjoint subsets. In OS-
SART, each subset has to be computed iteratively. Therefore,
the projection angles are further subdivided and assigned
to the synergetic processor elements (SPE). Each SPE can
compute independently and concurrently without any com-
munication, reducing communication overhead. Due to the
limited local store on each of the SPEs, we incorporate
optimization techniques in OS-SART.

The paper is organized as follows. Section 2 lists a se-
lection of related work. Section 3 gives a brief introduction to
iterative reconstruction techniques and OS-SART algorithm.
Section 4 analyzes the properties and complexities of OS-
SART and introduces the rotation-based projector and
back-projector used in OS-SART algorithm for this paper.
Section 5 lists the highlights of Cell processor, with the Cell-
based OS-SART algorithm followed in Section 6. Experiment
results are given in Section 7, followed by discussions in
Section 8. Section 9 will conclude this paper.

2. Related Work

Compared to parallel computing research on analytic tech-
niques, research on iterative techniques is few. Laurent et
al. [13] parallelized the block-ART and SIRT methods for
3D cone beam tomography. The authors developed a fine-
grained parallel implementation, which introduced more
frequent communications and degraded the performance
of their algorithm. Backfrieder et al. [14] used web-based
technique to parallelize maximum-likelihood expectation-
maximization (ML-EM) iterative reconstruction on sym-
metric multiprocessor clusters. A java-applet enabled web-
interface was used to submit projection data and recon-
struction tasks to the cluster. Li et al. [15] parallelized
four representative iterative algorithms: EM, SART and their
ordered subsets (OS) versions for cone beam geometry on a
Linux PC cluster. They used micro-forward-back-projection
technique to improve the parallelization at the ray level
during forward projection.

Gordon [16] parallelized 2D ART using a linear processor
array. The author investigated both sequential ART and
parallel ART algorithm on different phantom data with or
without noise introduced for different number of projec-
tion views. Kole and Beekman [17] parallelized ordered
subset convex algorithm on a shared memory platform
and achieved almost linear speedup. Melvin et al. [18]
parallelized ART on a shared memory machine and observed
that the speedup of ART on shared memory architectures was
limited due to the frequent image update of the ray-based
ART algorithm. The parallel algorithm incurred commu-
nication and synchronization overheads and degraded the
performance. Subsequent to this work, Xu and Thulasiraman
[19] considered the parallelization of OS-SART on shared
memory homogeneous multicore architecture. The OS-
SART algorithm produces higher granularity for paralleliza-
tion to reduce the above-mentioned communication and
synchronization latencies. The algorithm was experimented
on a CPU-based shared memory machine which provides

International Journal of Biomedical Imaging 3

only few dozen nodes. Due to synchronization and com-
munication overheads of shared memory machines, the
authors were unable to produce improved performance
gain. In this work, the algorithm takes advantage of Cell
BE’s architecture: the SPEs (coprocessors) compute fine
grained independent tasks, while the PPE performs the
tedious tasks of gathering and distributing data. We overlap
computation and communication through mechanisms such
as direct memory access available on the Cell BE to tolerate
synchronization and communication overheads.

Mueller and Yagel investigated SART [20], SIRT, and OS-
SIRT on an older heterogeneous multicore GPU hardware.
They found that the special architecture and programming
model of GPU adds extra constraints on the real-time per-
formance of ordered subset algorithms. Xu et al. [21] recently
implemented OS-SIRT and SART on the GPU architecture
and claimed that SART or its subsequent OS-SART is not a
suitable algorithm for implementation on GPU and does not
provide increased performance gain though the convergence
rate is faster than SIRT.

In this paper, we show that OS-SART algorithm is suit-
able for parallelization on the Cell BE and compare the re-
sults to our earlier work on homogeneous multicore archi-
tecture [19].

3. Iterative Reconstruction Techniques and
OS-SART Algorithm

In this section, we start with an illustration of the iterative
reconstruction technique. In Figure 1, f (x, y) is an unknown
image of an object and pi is a ray of one projection at an angle
θ. Many such projection data may be acquired via scanners.
In this paper, we assume that 1D detector array is used to
acquire projection data by impinging parallel beams onto a
2D object. The object is superimposed on a square grid of
N = n2 cells, assuming each cell is made up of homogeneous
material having a constant attenuation coefficient value f j
in the jth cell [2]. A ray is a strip of width τ in x-y plane
as shown in Figure 1. In most cases, the ray width τ is
approximately equal to the cell width. A line integral along
a particular strip is called raysum, which corresponds to
the measured projection data in the direction of that ray. A
projection (or view or projection view) is defined as all rays
projecting to the object at the same angle.

Let pi be the raysum measured for ray i as shown in
Figure 1. Assume that all raysums are represented using
one-dimensional array. The reconstruction problem can be
formulated to solve a system of linear equations as follows:

N∑
j=1

wij f j = pi, i = 1, 2, . . . ,M, (1)

where M is the total number of rays. wij is the weighting
factor that represents the contribution of jth cell along the
ith ray. The weighting factor can be calculated as (i) the
fractional area of the jth cell intercepted by the ith ray or
(ii) the intersection length of the ith ray by jth cell when
the ray width τ is small enough to be considered as a single

f2n

fn

fn2

f1

f(x,y)

τ

f3

fn+1

p i

p i+1

θx

y

1D detector array

Source

f2

Figure 1: Illustration of iterative methods.

line. In this paper, we use the latter (Siddon’s method) and
will be explained in the next section. Note that for different
rays, wij ’s have different values for the same jth image cell.
The left side of each equation in (1) is used as the forward
projection operator for the specific ray i. In Figure 1, most of
wij ’s are zero since only a small number of cells contribute
to any given raysum. For example, there are only ten nonzero
wij ’s for projection pi if we consider using the fractional areas
as the contributions.

All the rays in one projection corresponds to one subset
in SART. In OS-SART, a subset may consist of many such
projections. Figure 2 shows a flow chart for OS-SART. The
algorithm iterates over many ordered subsets sequentially
before checking the convergence criterion. The image cells
are updated with

f r,l+1
j = f r,l

j + λ·
∑

i∈OSl

[(
pi −

∑N
k=1 wik f

r,l
k

)
/
∑N

k=1 wik

]
·wij∑

i∈OSl

wij
,

j = 1, 2, . . . N ,
(2)

where pi is the raysum of ray i, wij is the weighting factor, r is
the iteration index, and l is the subset index. λ is a relaxation
parameter used to reduce noise. Let, corresponding subset
index (CIS), CIS = {1, 2, . . . ,Q} correspond to indices of Q
projections for the total of M rays. CIS is partitioned into T
nonempty disjoint subsets OSl, 0 ≤ l < T .

Recall that each subset is computed iteratively. The
computation of the pixel values for a subset, l + 1 requires
that the subset l has already been computed and the
image has been updated. Using this updated image, (2) is

computed. As you can see, f r,l+1
j depends on the weighting

factors wij and the pixel values computed for the subset l,

f r,l
j . Therefore, although there is synchronization between

4 International Journal of Biomedical Imaging

Start

Initial estimate image

Calculate projection data for one
projection (forward projection)

End

N

Calculate corrections (error correction)

Calculate normalized correction()

Update image cells (image update)

Y

N Complete all
projections?

Y

N

Y

Complete all
subsets?

Convergence?

back projection

Figure 2: Framework of OS-SART reconstruction technique.

subsets, there is no synchronization within a subset. We
exploit this parallelism on Cell BE.

The image estimate for each angle can be stored in
main memory. The correction ((pi−

∑N
k=1 wik f

r,l
k)/

∑N
k=1 wik)

and back projection (
∑

i∈OSl
[(pi −

∑N
k=1 wik f

r,l
k)/

∑N
k=1 wik] ·

wij/
∑

i∈OSl
wij) for the subset is a cumulative result of

correction and back projection of different angles in the

subset of the current iteration. Therefore, these can be
done in parallel also. The only step that requires sequential
computation in (2) is the image update. This step requires
the cumulative result of the correction and back projection
contributions from all angles in the subset.

The calculation of weighting factors are not only com-
putationally intensive, they are also memory bound. In the

International Journal of Biomedical Imaging 5

next section, we use a technique that saves on memory and
computation for efficient computation on Cell BE.

4. Optimization Techniques on Cell BE

The sequential OS-SART algorithm is presented in Figure 2.
The forward projection and back projection steps are the
most time-consuming parts of the algorithm. The compu-
tation complexity of each step is: O(I × T × Q/T × n2) =
O(I × Q × n2), where I is the total number of iterations. Let
Q = n. Then, the computation complexity of the algorithm
is O(n3), making OS-SART computationally intensive. The
OS-SART algorithm is also memory bound. The memory
requirement for the forward projection step includes the
space required for storing the weighting factors matrix (wij)
for one subset and the entire image. The space for the matrix
and the image are O(M/T × n2) and O(n2), respectively.
Since M normally has the same magnitude as N = n2 [2],
the memory complexity of OS-SART is O(n4), making this
algorithm memory intensive.

Typically, the detector array is rotated around an image,
and the matrix is computed for all rays within a projection
angle. For Q projections, there will exist Q such matrices.
In general, the matrix wij is quite large. On the Cell BE,
we are limited by the amount of memory available on each
of the SPEs. Although, we could store the values in main
memory, transferring data from main memory to local stores
in SPE a few chunks at a time, it will degrade the performance
of the algorithm due to intensive communication overhead.
Therefore, in this paper, we use a rotation-based algorithm
[22, 23] that is less sensitive to memory. In this method,
the image is rotated around the detector array (instead of
the detector array being rotated around the image) at a base
angle θ. The values of wij are calculated for this angle and
stored as reference. Let us call this wbase

i j . This is a one-time
computation. To calculate the projection values at an angle
θi, the forward projection starts by rotating the object at
angle θi using bilinear interpolation method. The method
then computes the forward projection data by summing
over all nonzero pixels along each ray in the rotated image.
That is, the pixel values are calculated using the reference
matrix, wbase

i j and the rotated image. The back projection
starts with the traditional back projection process, followed
by rotating the object back with −θi. Note that the main
memory only stores one base weighting factor matrix which
is significantly less than storing Q weighting factor matrices
as in nonrotation-based methods.

As mentioned in the previous section, there are two
ways of calculating the weighting factors. In this paper, we
use Siddon’s method [24], since it reduces the computing
complexity from O(N3) of the general ray tracing method
to O(3N).

5. Cell Broadband Engine

The Cell BE processor is a chip multiprocessor (CMP) with
nine processor elements, one PPE and eight SPEs, operating
on a modified shared memory model [25]. Other important

architectural features include a memory controller, an I/O
controller, and an on-chip coherent bus EIB (element
interconnect bus) which connects all elements on the single
chip. The SPU (synergistic processing unit) in an SPE
is a RISC-style processing unit with an instruction set
and a microarchitecture. The PPE is the typical CPU, 64-
bit PowerPC architecture which provides operating system
support. The eight SPEs are purposely designed for high per-
formance data-streaming and data-intensive computation
via large number of wide uniform registers (128-entry 128-
bit registers). One of the drawback of the Cell BE is the small
amount of private local store (256 KB) available on each of
the SPEs.

The most important difference between the PPE and
SPEs is the way they access the main memory. PPE accesses
the main memory directly with load and store instructions
that move data between the main memory and a private
register file, just like conventional processors access main
memory. On the other hand, SPEs cannot access the main
memory directly. They have to issue direct memory access
(DMA) commands to move data and instructions between
the main memory and their own local store. However,
DMA transfers can be done without interrupting the SIMD
operations on SPEs if the operands of SIMD operations
are available in the local store. This 3-level organization of
storage (register file, local store, and main memory), with
asynchronous DMA transfers between local store and main
memory, is a radical difference from conventional architec-
tures and programming models [25] which complicates the
programming effort by requiring explicit orchestration of
data movements.

6. Cell-Based OS-SART Algorithm

There are four important routines in our proposed rotation-
based OS-SART algorithm: forward projection, rotating
the image, back projection, and creating reference matrix
wbase
i j . By using a profiling tool, gprof, we determined the

percentage of execution time spent on these routines. This
was done to determine which routines require more effort in
parallelization. Figure 3 shows the results for these routines
for varying image sizes, with 20 subsets for 1 and 20
iterations. For both iterations, we notice that the rotation of
the image is the most time consuming part. For 20 iterations,
the forward projection, back projection, and rotation are
also time consuming. The creation of the reference matrix is
negligible. Therefore, from this figure we can see that forward
projection, back projection, and rotation require efficient
parallelization.

On the Cell BE, the creation of the reference matrix is
computed by the PPE and stored in main memory. This is
a one-time computation. The PPE controls the algorithm. It
also assigns the projection angles to each of the SPEs. Given
Q projection angles and T subsets, Q/T projection angles are
assigned to each subset. The angles within the subset, OSl, are
further divided. For P SPEs, each SPE is assigned Q/(T ∗ P)
projection angles. This process is repeated for each subset.
The PPE schedules the angles to the SPEs. At the end of the

6 International Journal of Biomedical Imaging

0

20

40

60

80

100

120

Number of subsets and ite ar tions

Profiles of OS-SART for di erent number of subsets and iterations

from gprof

(%
)

512 back projection

512 forward projection

512 lookup table

512 otation

256 back projection

256 forward projection

256 lookup table

256

128 back projection

128 forward projection

128 lookup table

128

iteration
1 subset,
1 iterations

1subset,
20

20 subset, 20 subset,

r otationr otationr

iteration1 iterations20

Figure 3: Profile results of OS-SART.

calculation of SPEs on a subset, the PPE performs the image
update and assigns angles from the next subset, OSl+1, to each
SPE.

Each of the SPEs performs the following computations
for their assigned angles θj . First, it rotates the image at
an angle θj . Then, it computes the forward projection by
accessing the reference weighting factor matrix and the image
from main memory via asynchronous DMA transfers. Due
to the limited local store in each of the SPEs, the matrix and
image are accessed in chunks. Transferring data from main
memory to local store is called DMAin [25]. Depending on
the size of the image, this process may take several rounds.
In the next step, the SPEs perform the error correction at
the end of the forward projection computation. After error
correction step, the SPE performs the back projection. The
SPE sends the data back to main memory in chunks, called
DMAout [25]. This is again due to the limited memory
on each SPE. Finally, the SPE rotates the image back to its
original position and stores this in main memory. The above
process is done by an SPE for each of its assigned angles.

In our paper, we balance the load on each of the SPEs by
assigning the same number of projection angles.

Algorithms 1 and 2 show the pseudocode of the PPE and
SPE algorithms discussed above.

7. Evaluation and Results

We have tested our proposed algorithm on two architectures:
Cell BE and Sun Fire x4600. The Cell BE [26] is PowerXCell 8i
processor in IBM QS22 Blade. It runs at 3.2 GHz with 16 GB
of shared memory. The compiler is IBM xlc for both PPU
and SPU. The Sun Fire x4600 is a distributed shared memory
machine with eight AMD dual-core Opteron processors
(16 cores in total) running at 1 GHz with 1 M cache per core
and 4 GB memory per processor. OpenMP [27] is used for
this environment.

The projection data is obtained from CTSim simulator
3.0.3 [28]. CTSim simulates the process of transmitting X-
rays through phantom objects. In this work, we focus on 2D

International Journal of Biomedical Imaging 7

Require: PPE creates threads to carry out the time-consuming parts on SPEs and setup related environments
(1) while (r < R) do
(2) for l = 0 to T do
(3) send messages to all SPEs to start a new subset l;
(4) wait for all SPEs to complete the forward projection, corrections, and backprojection step;
(5) accumulate error corrections for each pixel;
(6) update images;
(7) end for
(8) end while

Algorithm 1: Parallel OS-SART on PPE.

Require: receive related environment variables from PPE, p is the total number of SPEs used, Q is the total number of projections,
T is the total number of subsets,
(1) nuO f Chunks = n/rowsPerDMA {n is the one dimension size of the image, rowsPerDMA is the number of rows of the image
for each DMA transfer.}
(2) while (r < R) do
(3) for l = 0 to T do
(4) wait for and receive messages from PPE to start new subset l;
(5) {go through forward projection, correction, backprojection step for assigned projections in the subset l}
(6) for j = 0 to Q/(T × p) do
(7) {forward projection}
(8) locate the projection index q for the current SPE and j;
(9) rotate the current image clockwise by the corresponding angle for projection q;
(10) for k = 0 to nuO f Chunks do
(11) DMAin related data from the main memory, including the base weighting factors matrix, the current image;
(12) calculate and accumulate the raysums for the forward projection step in SIMD way;
(13) end for
(14) {corrections}
(15) calculate and accumulate the raysum corrections;
(16) {bacprojection}
(17) fork = 0 to nuO f Chunks do
(18) DMAin related data, including the weighting factors;
(19) calculate and accumulate backprojection for each pixel in SIMD way;
(20) DMAout the backprojection data;
(21) end for
(22) rotate the image counter clockwise by the corresponding angles for the projectin q;
(23) end for
(24) end for
(25) end while

Algorithm 2: Parallel OS-SART on SPE.

images to test the feasibility of our proposed parallel OS-
SART algorithm. We use the Shepp-Logan phantom image
of size 256× 256, and 360 projections over 360 degrees. The
choice of a relaxation factor has an impact on the number of
iterations and reconstruction quality. The relaxation factor is
usually chosen within the interval (0.0, 1.0] [5]. Mueller et al.
note that a smaller λ provides a less noisy reconstruction but
may increase the number of iterations for convergence. The
authors through their experiments conclude that λ within
the interval [0.02, 0.5] produces better reconstruction images
with less number of iterations. Therefore, in this paper, we
experiment with λ = 0.2.

Figure 4 shows the sequential computation time
with varying number of subsets for both the Cell processor
(1 SPE) and the AMD Opteron dual-core processor (1 core).

The figure shows that the number of ordered subsets impacts
the processing time for both the Cell and the Opteron
processor. In both cases, execution time increases with
increasing subsets. This can be easily explained as follows. As
the number of subset increases, the number of image update
also increases. Since the image update is done by the PPE
and has to be done sequentially, the sequential portion of the
algorithm, therefore, limits the performance on the entire
algorithm confirming Amdhal’s law. As can be seen from
the speed up curve, for one subset, the algorithm running
on one SPE is over 5 times faster than on one core of the
AMD Opteron processor. For 360 subsets, the Cell BE is
2.7 times faster than AMD Opteron processor. Note that
for larger subsets, the number of DMA transfers between
the local store and main memory increases on the Cell BE,

8 International Journal of Biomedical Imaging

0

2

4

6

8

10

12

1 5 10 15 30 60 180 360

Homogeneous multicore
Cell BE

E
xe

cu
ti

on
ti

m
e

(s
)

Execution time versus subset number

Subset number

Figure 4: Computation time versus number of subsets for one it-
eration.

increasing execution time. However, compared to AMD
Opteron processor, the Cell BE still performs better.

Figure 5 shows the computation time and speedup for
different number of SPEs and AMD cores. We set the
number of subsets T = 20, the total number of projections,
Q = 360, the total number of processors P = 8, to
reconstruct the image for I = 10 iterations. Each subset
is assigned 360/20 = 18 projection angles. Among the
360 projection angles, we can randomly select 18 angles
for each of the subsets. However, in our algorithm, we
follow the equation mentioned in Section 3. That is, the
ordered subset OSl is created by grouping the projections
(PRq, 0 ≤ q < 360) whose indices q satisfy q mod T =
l. Therefore, for the 360 projections, OS0 will consist of
projections 0, 20, 40, . . . , 340. OS1 will consist of projections
1, 21, 41, . . . , 341. The algorithm starts with OS0. The 18
projection angles from OS0 are then subdivided and assigned
to SPEs. Therefore, in Figure 5, for 8 SPEs, 360/(20 ∗ 8)
projection angles are assigned to each SPE which performs
forward projection, back projection, error correction, and
rotation on their locally assigned data.

Since the Cell BE consists of 8 SPEs (processing elements
or cores), our comparison on AMD Opteron is also for max-
imum of 8 cores. Figure 5 shows that the speedup on Cell BE
is better than AMD Opteron processor when the number of
processing elements used is less than 4. However, the speedup
drops for Cell BE when more SPEs are used due to increased
number of DMA transfers. This is due to the limited amount
of local store available on each of the SPEs. As more SPEs
are added, the number of DMA transfer increases since
only a small amount of data can be DMAed in or DMAed
out from main memory to local store and vice versa. This
adds to memory latency and communication overhead. It

1 2 4 8

Sp
ee

du
p

Cell BE
Cell BE speedup

0 0

10

20

30

40

50

1

2

3

4

5

660

Core

Speedup of cell over AMD Opteron dual core

E
xe

cu
ti

on
ti

m
e

(s
)

AMD Opteron dual core
AMD Opteron dual core speedup

number

Execution time and speedup versus core number

Figure 5: Computation time and speedup versus number of
SPEs/cores for 20 subsets and 10 iterations.

was observed that the communication portion (including
the DMA transfers and synchronization overhead) increased
from 62% for one SPE to 86% for eight SPEs. The AMD
HyperTransport technology attributes to the better speedup
when more AMD cores are involved.

Figure 6 shows the computation and communication
times of the proposed algorithm for different DMA transfer
sizes. We experimented with 1, 4, 8, or 16 image rows for
each DMA transfer from main memory to the local stores
and vice versa. As the figure indicates, the DMA transfers
significantly add to communication cost dominating the
total execution time of OS-SART on Cell BE. The commu-
nication/computation ratio is significant for larger SPEs.

Figure 7 investigates the scalability of our algorithm for
varying problem size and image size. As the number of
SPE increases for a given problem size, the execution time
decreases. The speedup of the algorithm for any image size on
8 SPEs is approximately 2.8, and the speedup increases as the
number of SPE increases. Therefore, current implementation
of the OS-SART with rotation-based algorithm is scalable
with increasing problem and machine sizes.

Finally, Figure 8 illustrates the reconstructed images
(256 × 256) obtained at different iterations. The number of
subsets is 20. The image quality increases for more number
of iterations. This result shows the accuracy of the algorithm.

8. Discussion

High-performance computing is moving towards exascale
computing. Heterogeneous parallel machines with acceler-
ators such as graphical processing units (GPUs) have dem-
onstrated their capabilities beyond graphics rendering or
general purpose computing and are proved to be well suited

International Journal of Biomedical Imaging 9
(s

)

0

5

10

15

20

25
1

ro
w

2
ro

w
s

8
ro

w
s

16
ro

w
s

1
ro

w

2
ro

w
s

8
ro

w
s

16
ro

w
s

1
ro

w

2
ro

w
s

8
ro

w
s

16
ro

w
s

1
ro

w

2
ro

w
s

8
ro

w
s

16
ro

w
s

1 2 4 8

T
im

e

SPE number

Communication time and computation time for

di erent DMA size and

Computation time
Communication time

SPE and DMA row numbernumber

Figure 6: Computation time and communication time versus
number of SPEs and number of image rows per DMA transfer for
20 subsets and 10 iterations.

0

0.5

1

1.5

2

2.5

3

3.5

70

80

1 2 4 8

Sp
ee

du
p

Execution time and speedup for di erent image size

Execution time (512× 512)

Execution time (256× 256)
Execution time (128× 128)Speedup (512× 512)
Speedup (256× 256)

Speedup (128× 128)

0

10

20

30

40

50

60

E
xe

cu
ti

on
ti

m
e

(s
)

SPE number

Figure 7: Computation time and speedup versus number of SPEs
for different image sizes using 20 subsets and 10 iterations.

for data intensive applications. However, the communication
bottleneck for data transfer between the GPU and CPU
has led to the design of the AMDs accelerated processing
unit (APU), which combines CPU and GPU on a single
chip. This new architecture poses new challenges. First,
algorithms have to be redesigned to take advantage of this
architecture. In addition, the programming models differ
between vendors lacking the portability of algorithms across
various heterogeneous platforms. With the future of general
purpose computing moving towards APUs, it is important
to understand the behaviour of these architectures on high
performance computing applications.

As a stepping stone to understand the applications that
can be studied on APUs, we have designed, developed,
and implemented the OS-SART computed tomography
algorithm on on-chip accelerator, the Cell BE. Cell BE has
features similar to the APU. Therefore, we strongly believe
that the algorithm design would remain intact without any
modifications. That is the major impact of our algorithm
design. Our algorithm carefully takes into consideration the
different components of the Cell BE, the PPE (or CPU), and
SPE (SIMD processors) and subdivides the tasks accordingly.
Fine-grained data intensive tasks are offloaded to SPEs,
while tedious tasks of data distribution and gathering are
performed by the PPE. On an APU, the PPE tasks can be
computed by the CPU and SPE tasks by the GPUs.

Porting of the algorithms from Cell BE to AMD APU is
not straight forward due to the different programming par-
adigm. However, recently, OpenCL has been regarded as the
standard programming model for heterogeneous platforms.
The parallel code used in the paper can be rewritten in
OpenCL providing easy portability onto the APUs.

One of the drawback of Cell BE is its limited memory
storage on SPEs. The APU rectifies this with its large GPU
memory size. The many cores available on the GPU will
allow increased number of iterations for more accuracy for
the same data size used in this paper without degrading the
performance. We will also have the ability to experiment with
larger data sizes.

Finally, in commercial CT machines, the Fourier back
projection method is the algorithm of choice. This is partly
due to the tremendous amount of computational power
(required by iterative techniques) only obtained through su-
percomputers, making them unusable or unaffordable due
to very high computational cost. However, with powerful
general purpose computers in the market, it should be easy
to develop iterative algorithms for use in real time to help
medical practitioners with real time diagnosis.

9. Conclusions and Future Work

In this paper, we efficiently mapped the OS-SART algorithm
using the architectural features of the Cell BE. One of the
main drawback of the Cell BE is the limited memory storage
on each of the SPEs. To circumvent this problem, we used
rotation-based algorithm that incorporates a technique to
calculate the projection angles using less memory. Though
this was efficient, it also added to the number of transfers
required to DMAin and DMAout the data from main
memory to local store on SPE, which was a bottleneck as
the number of SPEs increased. However, in comparison to
a shared memory machine, the proposed algorithm on Cell
BE performed much better.

The results showed that the number of ordered subsets
impacts the sequential processing time on one SPE. However,
Cell-based OS-SART on one SPE was five times faster than
OS-SART on AMD Opteron core for one subset and one
iteration. As the number of subsets increased with number
of iterations, the speedup also increased. In the future, we
will modify the algorithm using double buffering to overlap

10 International Journal of Biomedical Imaging

(a) iteration 5 (b) iteration 10 (c) iteration 20 (d) original shepp-Logan phantom

Figure 8: Reconstructed images at different iterations for 20 subsets.

DMA transfers with computations in order to alleviate the
impact of DMA transfers.

Acknowledgments

The first author thanks Dr. Soo-Jin Lee for his description
for MIPL Reconstruction Program. The second author ac-
knowledges partial support from Natural Sciences and En-
gineering Research Council (NSERC) of Canada.

References

[1] D. J. Brenner and E. J. Hall, “Computed tomography—an
increasing source of radiation exposure,” The New England
Journal of Medicine, vol. 357, no. 22, pp. 2277–2284, 2007.

[2] A. C. Kak and M. Slaney, Principles of Computerized Tomo-
graphic Imaging, IEEE Press, New York, NY, USA, 1988.

[3] A. H. Andersen, “Algebraic reconstruction in CT from limited
views,” IEEE Transactions on Medical Imaging, vol. 8, no. 1, pp.
50–55, 1989.

[4] H. Guan and R. Gordon, “Computed tomography using alge-
braic reconstruction techniques (ART) for three-dimensional
electron microscopy and X-ray photography,” Physics in
Medicine and Biology, no. 41, pp. 1727–1743, 1996.

[5] K. Mueller, Fast and accurate three dimensional reconstruction
from cone-beam projecton data using algebraic methods, Ph.D.
thesis, The Ohio State University, Columbus, Ohio, USA,
1998.

[6] R. Gordon, R. Bender, and G. T. Herman, “Algebraic recon-
struction techniques (ART) for three-dimensional electron
microscopy and X-ray photography,” Journal of Theoretical
Biology, vol. 29, no. 3, pp. 471–481, 1970.

[7] P. Gilbert, “Iterative methods for the three-dimensional recon-
struction of an object from projections,” Journal of Theoretical
Biology, vol. 36, no. 1, pp. 105–117, 1972.

[8] A. H. Andersen and A. C. Kak, “Simultaneous algebraic re-
construction technique (SART): a superior implementation of
the ART algorithm,” Ultrasonic Imaging, vol. 6, no. 1, pp. 81–
94, 1984.

[9] H. M. Hudson and R. S. Larkin, “Accelerated image recon-
struction using ordered subsets of projection data,” IEEE
Transactions on Medical Imaging, vol. 13, no. 4, pp. 601–609,
1994.

[10] G. Wang and M. Jiang, “Ordered-subset simultaneous alge-
braic reconstruction techniques (OS-SART),” Journal of X-Ray
Science and Technology, vol. 12, no. 3, pp. 169–177, 2004.

[11] R. Banton., “5 critical factors to consider when choosing a pro-
cessing solution for your HPC application,” Technical Report,
Mercury White Paper, 2008.

[12] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Mae-
urer, and D. Shippy, “Introduction to the cell multiprocessor,”
IBM Journal of Research and Development, vol. 49, no. 4-5, pp.
589–604, 2005.

[13] C. Laurent, F. Peyrin, J. M. Chassery, and M. Amiel, “Par-
allel image reconstruction on MIMD computers for three-
dimensional cone-beam tomography,” Parallel Computing,
vol. 24, no. 9-10, pp. 1461–1479, 1998.

[14] W. Backfrieder, S. Benkner, and G. Engelbrecht, “Web-based
parallel ML EM reconstruction for SPECT on SMP clusters,”
in Proceedings of the International Conference on Mathematics
and Engineering Techniques in Medicine and Biological Science,
Las Vegas, Nev, USA, 2001.

[15] X. Li, J. Ni, and G. Wang, “Parallel iterative cone beam CT
image reconstruction on a PC cluster,” Journal of X-Ray Science
and Technology, vol. 13, no. 2, pp. 1–10, 2005.

[16] D. Gordon, “Parallel ART for image reconstruction in CT
using processor arrays,” International Journal of Parallel,
Emergent and Distributed Systems, vol. 21, no. 5, pp. 365–380,
2006.

[17] J. S. Kole and F. J. Beekman, “Parallel statistical image re-
construction for cone-beam x-ray CT on a shared memory
computation platform,” Physics in Medicine and Biology, vol.
50, no. 6, pp. 1265–1272, 2005.

[18] C. Melvin, M. Xu, and P. Thulasiraman, “HPC for iterative
image reconstruction in CT,” in Proceedings of the ACM Cana-
dian Conference on Computer Science and Software Engineering,
(C3S2E ’08), Quebec, Canada, May 2008.

[19] M. Xu and P. Thulasiraman, “Rotation based algorithm for
parallelizing OS-SART for CT on homogeneous multicore
architecture,” in Proceedings of The Twelfth IASTED Inter-
national Conference on Signal and Image Processing, Maui,
Hawaii, USA, Augest 2010.

[20] K. Mueller and R. Yagel, “Rapid 3-D cone-beam recon-
struction with the simultaneous algebraic reconstruction
technique (SART) using 2-D texture mapping hardware,” IEEE
Transactions on Medical Imaging, vol. 19, no. 12, pp. 1227–
1237, 2000.

[21] F. Xu, K. Mueller, M. Jones, B. Keszthelyi, J. Sedat, and
D. Agard, “On the efficiency of iterative ordered subset
reconstruction algorithms for acceleration on GPUs,” in Pro-
ceedings of the 11th International Conference on Medical Image
Computing and Computer Assisted Intervention, (MICCAI ’08),
New York, NY, USA, Sept 2008.

International Journal of Biomedical Imaging 11

[22] E. V. R. Bella, A. B. Barclay, and R. W. Schafer, “A Comparison
of rotation-based methods for iterative reconstruction algo-
rithms,” IEEE Transactions on Nuclear Science, vol. 43, no. 6,
pp. 3370–3376, 1996.

[23] S. Lee and S. Kim, “Performance comparison of projector-
backprojector paris for iterative tomographic reconstruction,”
in Proceedings of the SPIE, Applications of Digital Image
Processing, pp. 656–667, Bellingham, Wash, USA, 2003.

[24] R. L. Siddon, “Fast calculation of the exact radiological path
for a three-dimensional CT array,” Medical Physics, vol. 12, no.
2, pp. 252–255, 1985.

[25] A. Arevalo, R. M. Matinata, M. Pandian et al., “Programming
the cell broadband engine examples and best practices,”
Technical Report, IBM Redbooks, 2007.

[26] Sharcnet, http://www.sharcnet.ca.
[27] OpenMP, http://www.openmp.org.
[28] Ctsim, http://www.ctsim.org.

Hindawi Publishing Corporation
International Journal of Biomedical Imaging
Volume 2011, Article ID 137604, 15 pages
doi:10.1155/2011/137604

Research Article

On the Usage of GPUs for Efficient Motion Estimation in
Medical Image Sequences

Jeyarajan Thiyagalingam,1, 2 Daniel Goodman,1, 3 Julia A. Schnabel,4

Anne Trefethen,1, 2 and Vicente Grau1, 4

1 Oxford e-Research Centre, University of Oxford, Oxford OX1 3QG, UK
2 Institute for the Future of Computing, Oxford Martin School, University of Oxford, Oxford OX1 3BD, UK
3 School of Computer Science, The University of Manchester, Manchester M13 9PL, UK
4 Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK

Correspondence should be addressed to Jeyarajan Thiyagalingam, jeyarajan.thiyagalingam@oerc.ox.ac.uk

Received 1 April 2011; Accepted 3 June 2011

Academic Editor: Yasser M. Kadah

Copyright © 2011 Jeyarajan Thiyagalingam et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Images are ubiquitous in biomedical applications from basic research to clinical practice. With the rapid increase in resolution,
dimensionality of the images and the need for real-time performance in many applications, computational requirements demand
proper exploitation of multicore architectures. Towards this, GPU-specific implementations of image analysis algorithms are
particularly promising. In this paper, we investigate the mapping of an enhanced motion estimation algorithm to novel GPU-
specific architectures, the resulting challenges and benefits therein. Using a database of three-dimensional image sequences, we
show that the mapping leads to substantial performance gains, up to a factor of 60, and can provide near-real-time experience. We
also show how architectural peculiarities of these devices can be best exploited in the benefit of algorithms, most specifically for
addressing the challenges related to their access patterns and different memory configurations. Finally, we evaluate the performance
of the algorithm on three different GPU architectures and perform a comprehensive analysis of the results.

1. Introduction

Motion estimation is one of the fundamental and crucial
operations in machine vision and in video-processing appli-
cations. The process is often computationally intensive, and
minimising the time for estimation across a number of
frames is often a key objective in interactive image/video pro-
cessing applications. As we will see in forthcoming sections,
the task is repetitive and renders itself for exploitation in
parallel architectures. With the rise of multicore machinery,
such as many-core microprocessors and graphics processing
units (GPUs), it is natural that the abundant amount of
parallelism available on these systems to be exploited by
mapping the algorithms on them. Among these, usage
of GPUs has become increasingly common across many
scientific domains.

There are several reasons for such a wide adoption
of GPUs across many scientific disciplines. Modern GPUs

contain hundreds of computational cores and have become
available at a fraction of the cost of an equivalent con-
ventional CPU-based system. This relative measure of
performance versus price and performance versus power
ratios between GPU-based architectures and CPU-based
architectures further encourages the choice of GPUs.

However, the performance gains are not without signif-
icant challenges. Firstly, the identification and exploitation
of any parallelism in the application is the responsibility
of the developers. Often, this requires extensive remapping
work rather than simple program transformations and often
change in the fundamental algorithm. Secondly, the GPU
programming model is not oblivious to the underlying
architecture. Detailed knowledge of the architecture is fun-
damental for writing effective GPU-based applications.

These issues are partly overcome by different program-
ming models, such as OpenCL [1] or CUDA [2, 3]. In
practice, although these programming models simplify the

2 International Journal of Biomedical Imaging

task of programming these devices, they are far from
providing abstractions at the domain-specific level.

GPU implementations of some specific image processing
algorithms have already been made available, including
optical flow algorithms as those outlined by Marzat et al.
[4]. However, in this paper, we consider a more complex,
complete and enhanced version of the original optical flow
algorithm. The motion estimation algorithm we use in this
paper combines local and global optimisations and preserves
the volume during motion estimation—a key requirement
for cardiovascular medical image analysis. We then map our
motion estimation algorithms on to three different GPU
systems with appropriate optimizations. We have chosen
the systems whose GPU architectures are representative of
the time line and relevant to the important architectural
aspects of GPUs. We effectively demonstrate the applicability
of the algorithm using a set of three-dimensional image
sequences. Using this as an evaluation phase, we discuss and
highlight the relative merits and demerits of architecture-
based realization of the algorithm and resulting impacts on
the overall performance. To the best of our knowledge, in the
context of GPUs, there is no comprehensive discussion of a
motion estimation algorithm of this level in the literature.
Our comprehensive analysis on the effect of architecture
and programming decisions can be abstracted for different
image processing applications. We believe this would be
a highly valuable resource for (biomedical) image analysis
researchers, and this is, thus, the fundamental aim and
contribution of this paper.

The rest of this paper is organized as follows: Sections 2
and 3 serve as a background for the rest of the paper. We first
discuss the GPU-based systems in Section 2, highlighting the
differences to the conventional CPU-based system wherever
applicable. Then, we discuss the mathematics behind motion
estimation in Section 3 and concisely formulate the motion
estimation algorithm. This is then followed by Section 4,
where we discuss the implementation and mapping aspects
in detail highlighting the architectural aspects wherever
necessary. We evaluate the performance of the enhanced
algorithm in Section 5 along with the presentation of our
analysis. Finally, we conclude the paper in Section 6 summa-
rizing our key findings and directions for further research.

2. Parallelism with GPUs

Exploiting graphics cards or accelerator cards for their
computational capability is not a new concept. However,
historically they have been exceptionally hard to pro-
gram and demanded programmers to have a rather in-
depth understanding of the cards, their instruction set,
or familiarity with OpenGL calls and Shader languages.
However, with the introduction of compute unified device
architecture (CUDA) by Nvidia, this setting has improved
rather significantly. The CUDA is both a programming
model as well as a hardware model coupled together to
provide considerably high-level utilization of the GPUs.
As will be observed, it is still the case that an intimate
knowledge must be maintained to leverage their potential,

but it is relatively easier than Shader languages or OpenGL
calls.

2.1. GPU Architecture. A compute unified device architec-
ture- (CUDA-) enabled GPU is connected to the host system
via a high-speed shared bus, such as PCI Express. We show
an internal arrangement of a typical GPU in Figure 1(a).
Each GPU consists of an array of streaming multiprocessors.
Each streaming multiprocessor is packed with a number
of scalar processing cores, named streaming processors, or
simply cores. This is shown in Figure 1(b). These scalar
processors are the fundamental computing units which
execute CUDA threads. For example, the Nvidia Tesla C2070
GPU has 14 streaming multiprocessors and each streaming
multiprocessor consists of 32 streaming processors, yielding
448 processing cores in total. The number of cores per
multiprocessor or the number of multiprocessors per GPU
varies from device to device. In CUDA, all threads are created
and managed by the hardware. As a result, the overheads
are almost negligible, and this leads to the possibility of
executing a large number of threads at a time and to switch
between them almost instantaneously.

Unlike multicore CPUs where the processor currently
contains a relatively small number of cores each of which is
capable of operating completely independently of each other,
computational cores inside GPUs work in tandem and in a
lock-stepped fashion.

Apart from the number of computational cores, one of
the important aspects on which GPUs vary from CPUs is
their memory subsystem. In GPUs, the traditional control
logic dedicated to data management is used for computa-
tional cores, maximizing the space for these. This renders the
data placement operations to be defined by the programmer
with little or no assistance from hardware. However, to facil-
itate better placement strategies, GPUs are equipped with
different memories. For example, in conventional CPUs, data
placement is voluntarily done and in the absence of any
placement, the control logic is responsible for raising the
data through various different memory levels, to maintain
coherency and to store them. In contrast, in the context of
GPUs, the programmer is responsible for moving the data
to appropriate memory. Such a liberated approach leads to
considerably intricate programming model. For example, the
way thread contexts are handled or how the data are moved
around or the guarantee on the availability of the data prior
to a computation are now left to the programmer.

Recently, GPUs have evolved rather significantly in this
respect. GPUs are differentiated by their compute capability.
The compute capability describes the features supported by
a CUDA hardware. These features vary between devices from
generation to generation in respect of maximum number of
threads, support for IEEE-compliant double precision and
alike. GPUs with a compute capability of less than 2.0, do
not support any automatic data placement or coherency
mechanisms. However, from devices with compute capability
of 2.0, known as Fermi-based architectures, this has changed.
Fermi-based devices contain cache memories but with the
possibility of performing volunteer data management. This
means that even in the presence of cache memories (see

International Journal of Biomedical Imaging 3

Registers

Registers

Registers

Registers

L2 cache

H
O

ST
IN

T
E

R
FA

C
E

G
IG

A
T

H
R

E
A

D
D

R
A

M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

MP 1 MP 2 MP 8

MP 16MP 10MP 9

(a)

LD/ST

LD/ST
LD/ST

LD/ST
LD/ST

LD/ST

LD/ST

LD/ST
LD/ST
LD/ST
LD/ST

LD/ST

LD/ST
LD/ST

LD/ST

LD/ST

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

SFU

SFU

SFU

SFU

Instruction cache

Warp scheduler Warp scheduler

Interconnect network
64 KB shared memory/L1 cache

Uniform cache

Dispatch unit Dispatch unit

Registers

(b)

Figure 1: The overall architecture of a modern Fermi-based GPU device (a) and the inner details of a multiprocessor (b). Multiprocessors
are configured around a shared level-2 cache and register files. Each multiprocessor has a number of computational cores and a level-1 cache.
In the earlier versions of architectures such as C1060, these two cache levels do not exist, and the absence is facilitated by explicitly managed
memories. This includes shared, constant, and texture memories. Image adopted from CUDA Programming Guide [2].

below), there is still some aspect regarding the data place-
ment and management left to the developer. A more detailed
information can be found in the CUDA Programming Guide
[2].

In the latest generation of GPUs (based on Fermi archi-
tecture), the memory system is partially arranged in hier-
archical manner and computational units are arranged
alongside this memory system. A GPU typically has the
following memory subsystems: global memory, a common
level-2 cache, a combined private level-1 and shared memory,
constant cache and texture cache. The global memory (also
known as device memory) is common to processors (and
thus to all threads) and has a high access latency. The private
level-1 cache is exclusive to a streaming multiprocessor and
has a low-latency connection. The level-2 cache is common
across processors, and it has a better latency than global
memory.

Both constant and texture memories are read-only mem-
ories separated from the shared memory. With the intro-
duction of cache memories in GPUs, aggressive exploitation
of both constant and texture memories is performed only
when absolutely necessary. However, their load granularity
(number of words loaded upon a load instruction) is
different. As a result, sometimes, it is beneficial to utilize
them. The constant memory allows each group of processors
to store a selection of constants that they are going to use
for the computation locally to allow fast access, without
any coalesced memory access issues between processors.

The texture memory provides read only access to data and
follows a similar architecture to constant memory, except
that instead of having a designated memory for the card as a
whole, textures are bound to data stored in the card’s global
memory which leads to larger data capacity. As the memory
is designed for storing textures in graphics applications, the
memory supports a range of hardware-based functions such
as interpolating the value of points that are not on integer
locations.

Furthermore, the private level-1 cache is reconfigurable.
This finite amount of memory pool can be configured so
that part of it can be used as a shared memory, while
the remaining is used as a cache memory. This enables
the applications to receive partial data placement support.
The system supports fixed number of such configurations,
and a configuration suitable for a given application is
often not known in advance and thus may need to be
determined by experimentation. The total memory available
for shared-memory and/or level-1 cache on current Fermi-
based systems is 64 KB. This is normally used to buffer inputs
and outputs to allow computations that do not naturally fit
the coalesced memory access pattern to take advantage of
the fast data transfers. This private first-level caches/shared
memory are available to every streaming multiprocessor. In
addition to this, there is a 768 KB shared secondary-level
cache, which can be turned off if needed.

On GPUs, memory bandwidth to the computational
cores is typically higher than that found on a CPU, meaning

4 International Journal of Biomedical Imaging

that cores are less likely to suffer from starvation for
data. Furthermore, this connection often has additional
optimizations if certain patterns of access are adhered to
and often take the form of coalesced memory accesses. If
the memory is accessed by threads at random (uncoalesced),
each memory load is performed independently; however, if
all the cores in a group in order access consecutive memory
locations (coalesced), starting from an offset into memory
that is a multiple of 16, then 16 memory loads can be done
in the time usually required to perform a single one.

2.2. CUDA/GPU Programming Model. The CUDA program-
ming model, which is an extension of the C program-
ming language, relies on this hardware support to provide
concurrency. In the model, computations are expressed as
special functions known as kernels. A kernel is launched
from the host-CPU and executed by N threads using the
available computational cores (and N is usually in the range
of several thousands) on the GPU. All threads are organized
as a one- or two-dimensional grid of thread blocks. Each
block can be one-, two-, or three-dimensional. Threads in
a block are assigned to the same streaming multiprocessor
during execution. With a unique numbering scheme for
threads, each thread can be made to compute on a different
subset of the input data so that the execution leads to the
single program multiple data (SIMD) style parallelism. The
memory system arrangement is such that potential data
locality among threads can be exploited by computational
cores.

The CUDA programming model evolved over time
and originally the model relied on manual placement of
data—which means that the application developer is solely
responsible for moving the data from the host memory
to the device memory (or in reverse direction) and to
exploit any reuse by relying on shared memory or constant
cache. However, modern GPUs partially support automatic
data placement, most specifically to cache memories. As
discussed in the previous section, the level-1 cache memory
can be configured as cache memory or as shared memory
or as both. Yet, it is the responsibility of the programmer
to make the right judgement on the amount of memory
to be dedicated for cache or for shared memory and to
ensure that the latencies are hidden and memory requests
to the device memory are linearized for best bandwidth
exploitation (hardware memory coalescing). The hardware
support is available only for the data movement from and
to the cache memory. In line with the conventional parallel
programming models, memory transfers (corresponding
to communication overheads) may offset the benefits of
parallelization, if it dominates the execution time. As a result,
it is performance critical that memory transfers around the
system and within the GPU are minimized as much as
possible. For example, if a kernel feeds another kernel with
its output, it is beneficial to retain the data in the GPU device
memory without any intermediate transfers to the host.

The latest generation of CUDA devices support a number
of other features which we do not explore in this paper.
This includes the ability to launch multiple kernels and the
utilization of unified memory.

3. Motion Estimation

3.1. Background. Images are fundamental in a wide range of
biomedical applications, covering most aspects of medical
research and clinical practice. Improvements in technology
have brought increased resolution and higher dimensionality
datasets (three-dimensional and higher); furthermore, stud-
ies involving several modalities are becoming more common.
In these circumstances, it is indispensable to have means for
automated image analysis.

Given the dataset sizes and the limited time per patient
available in clinical settings, the speed of image analysis
algorithms is crucial.

Imaging technologies have become integral part of all
aspects of clinical patient management, from diagnosis
to guidance of minimally invasive surgical interventions.
Estimation of organ motion is necessary in many of these
applications, either because motion provides an indication
of the presence of pathologies (as in the case of cardiac
imaging), or because the presence of motion is detrimental
to the accuracy of the result (as in the effect of respiratory
motion in the assessment of other organs).

Motion estimation has been profusely investigated in
machine vision and video coding applications, where min-
imising the time for estimation across a number of frames
is often a key objective in interactive applications. Medical
imaging shares some (but not all) aspects with these and adds
the common use of three (or higher) dimensional sequences.
As an example, so far widely used two-dimensional echocar-
diography (ultrasound imaging of the heart) is being grad-
ually replaced by real-time 3D echocardiography (RT3D).
RT3D scans can typically consist of 2003 voxels per frame,
with approximately 20 frames per scan. Local estimation of
structure motion is required for assessing a range of heart
conditions. In order to be fitted in the clinical protocol,
this estimation would need to be done in a few seconds,
ideally in real time. In Figure 2, motion estimation is
illustrated in a sample echocardiographic sequence. Many
other applications within the biomedical imaging field exist,
in some routine clinical cases reaching image sizes of 5123

voxels per frame, which can be much larger in basic science
applications (e.g., analysis of histopathology slices).

A number of algorithms have been proposed to estimate
motion in medical image sequences. In fact, the problem
of motion estimation is sometimes just considered as an
image registration (alignment) procedure, where registration
between consecutive frames, or between each frame and a
specific one selected as reference, is performed. This opens
up the possibility of using any of the approaches proposed
in the extensive registration literature. For an overview of
registration methods, the reader is addressed to reviews such
as [5–8].

In this paper, we use a motion estimation algorithm
based on the optical flow approach. While we do not
claim that this method is optimal for any particular task,
optical flow methods are present in many state of the art
algorithms for motion estimation and biomedical imaging.
The particular optical flow algorithm applied here, described
in Sections 3.2 and 3.3, has the additional advantage of

International Journal of Biomedical Imaging 5

(a) (b) (c)

(d) (e) (f)

Figure 2: Example of motion estimation in a cardiac ultrasound sequence. (a) Original slice at end diastole. (b) Original slice at end systole.
(c) Image (b) after alignment to image (a). (d) Estimated motion vector field, shown superimposed on (a). (e), (f) Images (a) and (c),
respectively, with the endocardial contour superimposed. Note how the shapes are matched by the motion estimation process and all motion
estimation and resampling were performed in 3D; a sample 2D slice is shown for clarity.

combining several generic image analysis operations (con-
volutions, interpolations, and iterative solution of partial
differential equations). This makes it a good exemplar case
to illustrate the possibilities and limitations of biomedical
image analysis using GPUs, which is one of the aims of this
paper.

3.2. Hybrid Motion Estimation Algorithm. In this paper, we
use the motion estimation approach proposed by Bruhn
et al. [9], which combines classic solutions to optical
flow estimation proposed by Horn and Schunck [10] and
Lucas and Kanade [11], as the baseline version. There are
several reasons why we believe this is a particularly relevant
algorithm for our purpose. In [9], Bruhn et al. reported
excellent results including a quantitative comparison in
which the algorithm is shown to outperform a number
of previously published optical flow approaches. In their
subsequent paper [12], they proposed different means of
improving the computational performance of the algorithm
in a uniprocessor platform, which makes it an excellent
example to explore the peculiarities of multicore versus
single-core implementations. Finally, the algorithm contains
a number of individual operations which are commonly

found in medical image analysis applications, and thus could
be reused.

Optical flow methods are based on the assumption that
corresponding points in two consecutive frames of an image
sequence have the same intensity values. This condition can
be linearized considering only the first terms of the Taylor
expansion, which in the case of 3D images gives

Ixu + Iyv + Izw + It = 0, (1)

where Ix,y,z,t are spatiotemporal partial derivatives of the
image pixel intensities I and u,v, and w are displacement
vector components. Equation (1) is a constraint equation
and direct estimation of u, v, and w by minimising the
derivatives therein is an underdetermined problem, and
additional constraint(s) are required. Under this circum-
stance, the most that can be done is obtain the projection
of the vectors in the corresponding direction of the image
gradients Ix,y,z, which is referred to as the aperture problem.

Several alternatives have been proposed to solve the
aperture problem. In [10], Horn and Schunck propose a vari-
ational approach, where it is assumed that the motion field is

6 International Journal of Biomedical Imaging

smooth in the neighbourhood of estimation and it seeks to
minimize

E(u, v,w) =
∫∫ ((

Ixu + Iyv + Izw + It
)2

+α
(
|∇u|2 + |∇v|2 + |∇w|2

))
dx dy dz.

(2)

In other words, (1) is transformed into a cost term (Ixu+
Iyv + Izw + It)

2 to be minimized along with a regularization
term α(|∇u|2+|∇v|2+|∇w|2) which assures well-posedness.
Furthermore, α is the weight of the regularization term which
links intensity variation and motion.

In [11], Lucas and Kanade assume that the local motion
is constant within a certain neighbourhood ρ; this provides
a system of linear equations which can be directly solved.
The method adopted in this paper, originally presented by
Bruhn et al. [9], utilises a hybrid of both the approaches
described above. This approach exploits regularization both
at the local [11] and at the global level [10]. In short, the
approach involves calculating the matrix

Jρ(∇4I) = Kρ ∗
(
∇4I∇4I

T
)

, (3)

where, following the notations from Bruhn et al. [9], ∇4I is
a column vector containing the derivatives of I with respect
to x, y, z, and t and Kρ is a Gaussian kernel with variance
ρ, which is convolved with each of the matrix components.
J0 is used to represent the matrix before the application of
the Gaussian filter. This leads to following functional to be
minimized:∫

Ω

(
wTJρ(∇4I)w + α|∇w|2

)
dx dy dz, (4)

along with the definitions of

w = [u, v,w, 1]T , |∇w|2 = |∇u|2 + |∇v|2 + |∇w|2.
(5)

The functional in (4) is minimized by solving its correspond-
ing Euler-Lagrange equations

0 = Δu− 1
α

(J11u + J12v + J13w + J14),

0 = Δv − 1
α

(J21u + J22v + J23w + J24),

0 = Δw − 1
α

(J31u + J32v + J33w + J34),

(6)

where Δu represents the Laplacian of u, and we use, as in [9],
the notation Ji j to refer to the values at position (i, j) in the
matrix Jρ(∇4I). With this, (6) can be expressed as a system of
linear equations in the form of Ax = b, where

A = ∇4I ×∇4I
T , x =

⎡⎢⎢⎢⎣
u

v

w

⎤⎥⎥⎥⎦, b =

⎡⎢⎢⎢⎣
Δu

Δv

Δw

⎤⎥⎥⎥⎦, (7)

where the Laplacian for a spatial point i can be approximated
from the neighbourhood elements as below:

Δu = 6ui −
∑

j∈N(i)

uj

h2
. (8)

We represent the three-dimensional six-neighbourhood of i,
as N(i) and h is the image resolution.

The total number of equations/unknowns given in (6) is
3NxNyNz, which means an iterative solving method needs
to be used. In [9], Bruhn et al. used the successive over-
relaxation (SOR) method. The SOR method changes the
motion values on the fly; that is, the calculation of motion
at iteration k will use the motion values already calculated
at that iteration. An alternative is the Jacobi method, which
bases the calculation of all motion values at iteration k only
on the values from the previous iteration, thus allowing a
more efficient parallelization. The equation to calculate ui for
each voxel i is

u
(k+1)
i =

∑
j∈N(i) u

(k)
j −

(
h2/α

)(
J12,iv

(k)
i + J13,iw

(k)
i + J14,i

)
|N| + (h2/α)J11,i

,

(9)

where the superscript k denotes the iteration number and
|N| is the number of neighbours of voxel i within the
domain. J12,i represents the value of the component (1, 2)
of the J matrix in (3), calculated at voxel i in the image
and calculated at the start of the iterative procedure (i.e.,
independent of iteration number k). Similar expressions can
be easily found for the components of the motion field along
the y and z axes, respectively, v and w. The algorithm thus
starts with an initialization for u, v, and w (zero in our case)
and a precalculation of the J values, and iteratively calculates
the values of uk, vk, and wk until convergence is reached.
Calculation of u at voxel i, thus, requires the values of u, v,
and w at the same voxel i and the values of u at neighbouring
voxels j, all from the result of the previous iteration.

Using a linear approximation as in (1) works only in the
case of very small motions, which is overly restrictive for
general medical imaging applications. In order to overcome
this limitation, it is possible to apply the whole procedure
within an iterative framework, where the motion field is
calculated, applied to the moving image, and the motion
estimation process starts again using this newly resampled
image. Note that this does not require recalculation of
the spatial gradients Ix, Iy , Iz, as these are calculated on
the fixed image. In the same way, the whole procedure
can be embedded in a multiresolution framework without
any major changes. We present the overall algorithm in
Algorithm 1 and discuss in detail below.

In summary, the algorithm can be divided into these sub-
tasks, whose GPU implementation is described below.

(1) Calculate the derivatives of the image intensities
with respect to spatial and temporal coordinates:
Ix, Iy , Iz, and It.

(2) Calculate the cross-products of the derivatives (this
would correspond to the matrix J0(∇4I)).

International Journal of Biomedical Imaging 7

I1 ← Initialize()
I2 ← Initialize()
Ix ←Dx(I1)
Iy ←Dy(I1)
Iz ←Dz(I1)
for 1 to R

It ←Dt(I1, I2)
J0(∇4I) ← ∇4I ×∇4IT

Jp(∇4I)← Kρ ∗ J0(∇4I)
A← Jρ(∇4I)
[Δu,Δv,Δw]← Jacobi (u, v, w, h, Nx , Ny , Nz)
x ← eqnSolve(A, b)
I2 ← reSample(I1, x)

end for

Algorithm 1: The estimation algorithm without the volume
preserving term (see Section 3.3. The meanings of the symbols
remain as in the text. I1 represents a static image I(x, y, z, t) and
I2 represents a moving image I(x, y, z, t + 1). First, the Image I1

is initialized and partial derivatives are computed. D denotes the
partial derivative operator. Following this, the algorithm is applied
repeatedly R times. Each time of the iteration, as a precursor to
solve (6), values of Δu,Δv and Δw are computed using Jacobi
method. The routine Jacobi performs this operation. One this is
available, all the unknowns, given by x, are solved iteratively using
the routine eqnSolve, which solves a system of linear equations.
Then the solutions are used to resample the image to estimate the
moving image I2.

(3) Convolve each one of the components of the matrix
above with a Gaussian filter Kρ to produce Jρ(∇4I).

(4) The resulting system of linear equations given in (6)
are solved using eqnSolve which deploys an iterative
technique. This necessitates estimating the Laplacian
values using Jacobi.

(5) Apply this motion field to all the frames of a moving
image along with resampling wherever necessary.

(6) All of the above are applied repeated R times where
the solution converges.

To simplify the notation, in Algorithm 1 and in sub-
sequent sections, we assume that the motion vectors are
calculated between two images I1 and I2, corresponding to
two consecutive frames in the temporal sequence.

3.3. Enhanced Volume-Conserving Motion Estimation. Car-
diac muscle is to a large extent incompressible [13, 14],
and thus, in this application, it is important for the
estimated motion field to preserve the original volume
locally. A number of algorithms have been proposed to
estimate incompressible motion fields, with the Jacobian
being commonly used as a measure of volume change. In this
paper, we use the variational optical flow first introduced by
Song and Leahy [15], where an additional term is introduced
in the minimization to favour divergence-free motion fields,

which together with the diffusion-free term ensures volume
preservation. Equation (4) thus becomes∫

Ω

(
wTJρ(∇4I)w + α|∇w|2 + β · div(w)

)
dx dy dz. (10)

The solution is then computed using the Euler-Lagrange
equation, similarly to the derivation presented above. The
original algorithm presented in Algorithm 1 can be modified
to account the preserving term we introduce here.

4. GPU Parallelization

The original algorithm exhibits abundance amount of par-
allelism at the pixel level. The CUDA architecture, where
parallelism exists at the single instruction multiple data
(SIMD) level, is particularly suitable for exploiting such a
fine-grained parallelism. Although exploiting this appears
rather trivial at the algorithmic level, the data placement
and management posed considerable challenges in realising
the algorithm. Furthermore, the continuous evolving of the
architecture has a direct impact on the way the algorithms
are realized.

The raw-data for the computation is represented as a
vector of NxNyNz elements, with the best possible spatial
locality along one of the dimensions (in our case, this is x).
In the case where the size of the raw image to provide any
undesirable effects for coalesced access, we pad the image
appropriately. This leads to constant strided access along
other two dimensions (stride of Nx along the y-axis and
NxNy along z-axis). Although nonlinear layouts may provide
some performance benefits, we have not considered them, to
minimize the addressing issues. Initial set of images will be
denoted by I1 (fixed image) and I2 (moving image).

As we have discussed in Section 2, the complexity of
modern GPU architectures in terms of data placement and
management directly impacts the way that the algorithm is
realized. In particular, the Fermi architecture supports both
shared and cache memory. Though predetermined, a finite
pool of memory can be used as a full shared memory, or as
cache memory or in hybrid fashion. There is no well deter-
mined method for establishing which configuration will lead
to better results. In our case, the repeated application of the
algorithm may benefit from shared-memory, but this brings
additional overheads to the data movement. Alternatively,
the shared-memory functionality can be turned off, and
we could configure the available memory as a level-1 (L1)
cache, which will simplify the management. We foresee that
since the accesses are constant strides, the latter configuration
is likely to provide better results. However, to verify this,
we implemented both methods. In the following sections,
we outline how we have implemented this among a set of
key functions which are central to the motion estimation
algorithms outlined in Section 3.

4.1. Gradient Calculation. From the two initial three-
dimensional images (I1 and I2), the gradient values are calcu-
lated using a forward difference approximation: Ix(x, y, z) =
I(x+1, y, z)−I(x, y, z), assuming that two consecutive voxels
are separated by unit distance. These are calculated on the

8 International Journal of Biomedical Imaging

16

1

1

4

Figure 3: An example of the shared memory tiles used complete
with a halo on two sides to store the extra values that are required.

fixed image I1. In the same way, the value of the temporal
derivative is approximated by the finite difference I2(x, y, z)−
I1(x, y, z). Border voxels are dealt with by assigning their
corresponding derivatives to zero, rather than assigning
periodic boundary conditions. The cross-products are then
calculated, producing a total of nine extra values per voxel:
I2
x , I2

y , I2
z IxIy , IxIz, IyIz, IxIt, IyIt, and IzIt.

The simplest strategy to parallelize this calculation would
be to allocate a thread to every pixel. However, given the
memory arrangement described above, this would result in
each thread performing five loads from main memory (the
values of I1 at the corresponding voxel, the three forward
neighbours in x, y, z and the value of I2), including one
that is uncoalesced (the value I1(i + 1, j, k) as x values are
consecutive, and so they do not have an appropriate stride
for coalesced memory access). To reduce this overhead, we
could either rely on the L1 cache or use the shared memory,
a common technique we will be reusing in realising other
key routines. The data is first partitioned into cubes along
the x and y directions (each cube containing the full range
of z values). As the computation for each cube is looking
forward, for each cube, we also require a halo of size one
along the x and y directions, as shown in Figure 3. However,
the partitioned cube may still not fit the shared memory.
For this reason, we process the image as slices along the
z direction. This introduces a halo of size one along the z
direction as well. This means that the shared memory for
each block of threads needs to be of size (X + 1,Y + 1, 2).
Image values are then loaded into shared memory, with each
thread loading its interior (i.e. nonhalo) voxel in its image I1

at that z value, and the value of the corresponding voxel in
image I2. The halo values are then loaded in by a subset of
the threads. This subset is constructed by giving each thread
a number k such that k = thread Idx.x + thread Idx.y × X
and then selecting the threads where k < X + Y + 1. Each
of these threads will load one value for the halo in the x
and y directions. This means each thread needs to perform a
maximum of three loads instead of five, with Y + 1 of these
being uncoalesced per z value. As mentioned before, loading
all the values in the z direction in one go is not possible
with current shared memory sizes of only 64 KB per group
of eight processors on these cards. Thus, we only store the
values for z and z + 1 in the shared memory at any one
time. However, the number of loads from global memory
is kept down by moving the data around within the shared
memory as the z values change. Once all the computations
have been performed for the lower z plane in the image,
this plane is discarded from the shared memory. Then, the

z + 1 plane is copied allowing it to become the new z plane.
Once this has been completed, a new z + 1 plane is loaded.
Diagrams demonstrating this can be seen in Figure 4. For this
application, we cut the data into pieces of size 32 × 4. This
size was chosen through experimentation and maintaining
the necessary constraint that the x dimension is a multiple of
16 in order to maintain coalesced memory accesses.

4.2. Smoothing. After the cross-products of the derivatives
have been calculated, a Gaussian filter is applied to each of
them. This is performed by convolving the image with a
kernel approximating the Gaussian, in the following way:

fσ
(
x, y, z

) = i=Kx∑
i=−Kx

j=Ky∑
j=−Ky

k=Kz∑
k=−Kz

gσ
(
i, j, k

)
f
(
x − i, y − j, z − k

)
,

(11)

with gσ being the values of the kernel obtained by sampling
a Gaussian function. The kernel has a size (2Kx + 1, 2Ky +
1, 2Kz + 1), where the values of Kx, Ky , and Kz are captured
as Kρ in Algorithm 1; the values of Kx, Ky , and Kz need
to be large enough to provide an accurate approximation
to the Gaussian but not too large to avoid unnecessary
calculations. Large values of sigma require large kernels, and
thus impose a big computational load. As an alternative, the
3D convolution can be separated into three one-dimensional
convolutions, one in each of the x, y, and z directions. This is
the approach we have used. For simplicity of notation, in the
next Section we assume Nx = Ny = Nz, and we use the value
K = 2Nx + 1

As mentioned above, a naive implementation would just
use a separate thread for each value within a given set.
However, this approach also suffers from the number of
global memory loads, which this time are a function of
the kernel size (K) being applied, giving 3K loads from
the dataset plus 3K accesses to load the kernel for the
convolution in each direction. Of these, 3K accesses to load
the kernel, and the K accesses to perform the convolution in
the x direction will be uncoalesced. Clearly, this will cause a
server bottleneck, so once again, we use the shared memory
to reduce the cost of this. Additionally, we also use the
constant memory on this occasion.

Half of the global memory accesses can be removed by
simply storing the kernel in constant memory instead of
global memory. This change does require a maximum size
for the kernel to be set, but as this maximum can be in the
thousands, this is not a restriction on the design.

The method for utilising the shared memory is the same
as in Gradient calculation. Each thread loads some of the data
ensuring coalesced memory accesses, and then all the threads
share this loaded data to perform the computation. However,
as the computation takes the form of three separate passes
due to the separation of the three-dimensional convolution
into three separate one-dimensional linear ones, it has to be
formed from three separate CUDA invocations. This means
that in any given invocation, the computation will only be
looking in one direction. This is important, as the shared
memory is not large enough to store sufficient information to

International Journal of Biomedical Imaging 9

z

x

y

(a) (b)

(c) (d)

Figure 4: (a) the initial state of the shared memory. (b) after the plane z has been deleted. (c) the top tile (z = 1) has been moved into the
position of the bottom tile (z). (d) new data with the next z coordinate value is then loaded into the space created by moving the top tile. In
each instance, the different shades of Gray represent different layers within the piece of data that we are reading from into shared memory.

look in all three directions at the same time. This behaviour
also means it is necessary to construct a different style of
solution for the x direction to the y and z directions to take
into account the need for coalesced memory accesses.

4.3. Solving the System of Linear Equations. For solving the
system of linear equations, we implemented the two different
variants of the Jacobi method: one version will rely on the
L1-cache (without any shared memory), and the other will
use the shared memory. Both approaches reduce the number
of global memory accesses, in particular uncoalesced ones. In
the case of the shared memory version, as before, we partition
the data into tiles each with a halo, and these tiles are slices
along the z dimension. However, on this occasion, given both
the forward and the backward neighbours are used, the halo
occupies both edges in both x and y as shown in Figure 4, and
we maintain three tiles at any given moment bar the first and
last values in the z direction, as zero padding at the borders
is assumed. Due to the limited size of the shared memory,
each of the z planes is computed in turn, so increasing the
available memory for a given computation and so increasing
the ratio of values computed to halo values loaded.

4.4. Intensity Interpolation. As explained above, due to
the linear approximation introduced in (1) the above
process has to be repeated in an iterative motion esti-
mation/interpolation cycle. Having estimated the motion
between the two images, it is now necessary to apply this
motion to the moving one and interpolate the image intensi-
ties at the new positions. We use a trilinear approach, where
the value of the image at each position is linearly interpolated
from the values of their eight immediate neighbours. While
there is a range of interpolation techniques including nearest
neighbour, tricubic and different spline-based methods, in
this application the trilinear method was deemed a good
compromise between accuracy and speed. However, staying
in line with the over arching aim of this work, we ensured
that our framework is easily amenable to a different method.

The smoothness constraint in (4) and (10) means that
there should be a high degree of locality associated with
the reads required to sample for pixels that share locality
in the original image. Despite this pattern, there is no way
to determine the locations in advance, so it is not possible
to use the shared memory to save on access times or to
overcome the inevitable uncoalesced memory accesses. For
these reasons, we turned to the texture memory to provide
caching for the data accesses to improve the performance
of this phase. Once the original image is mapped to a
texture, it would have been possible to get the texture
functionality already available in the device to perform the
interpolation instead of writing new code. However, this
is only implemented to a sufficient accuracy for displaying
pixels on computer screens, to around four decimal places,
and is inflexible in that we would be restricted to the
interpolation techniques supported by the cards, rather
than being able to extend this code to perform alternative
interpolation techniques. As such, we map the data structure
to a texture with a call from the host and then perform the
interpolation on a one thread per voxel basis. Each thread
calculates the location of and extracts the eight closest voxels
from the texture memory. Having done this, it performs the
calculation and saves the result back to the main memory.
Because of the use of the texture memory as a cache, the
locality of the eight pixels, and the locality of any other
interpolated points within the blocks executed on a given
group of cores results in both coalesced memory accesses and
data reuse.

The use of the texture memory instead of the shared
memory to overcome the limitations of the memory system
makes this piece of code by far the simplest and demonstrates
how much clearer CUDA code can be once all concerns
about memory management are abstracted away. However,
experiments with the use of texture memory shows that it is
actually two orders slower than shared-memory counterpart,
and thus, we will not be discussing this any further. We
attribute the overheads to the losses.

10 International Journal of Biomedical Imaging

Table 1: Details of systems used for evaluation.

Parameters System 1 System 2 System 3

System name C1060 GTX480 C2070

Host CPU
Xeon 5110

(Harpertown)
Intel Core i7

Xeon 5650
(Gulftown)

Host CPU speed 1.6 GHz 2.8 GHz 2.67 GHz

Host OS
Ubuntu 10.10

(64 bit)
Ubuntu 10.10

(32 bit)
Ubuntu 10.10

(64 bit)

Kernel 2.6.35 2.6.31 2.6.35

Host RAM 2 GB 4 GB 24 GB

Host L1-cache 64 KB 64 KB 64 KB

Host L2-cache 4 MB 8 MB 12 MB

GPU series C1060 GTX480 C2070

Compute
capability

1.3 2.0 2.0

Device memory 1 GB 4 GB 6 GB

Multiprocessors 24 16 14

Cores per MP 8 16 32

Total cores 192 512 498

GPU L1-cache 16 KB 64 KB 64 KB

(Shared memory)

GPU L2-cache N/A 128 KB 128 KB

CUDA version 4.0 3.3 3.2

Compiler flags
-O3 –arch =

sm 13
-O3 –arch =

sm 2.0
-O3 –arch =

sm 2.0

5. Experimental Evaluation

5.1. Experimental Procedure. The task of performance com-
parison of an application on CPU- and GPU-based systems is
highly dependent on a number of factors. These include the
underlying operating system, compilers used, optimization
flags, order of the optimizations and caching policies of the
platforms in question [16]. With this in light, it is difficult to
conclude that an application will always lead to performance
improvement on another platform. For this reason, to gain
more insight into the benefits, we use three different systems
to compare and analyse the performance results. The details
of the systems on which we performed our experiments are
shown below in Table 1.

There are different metrics by which we could compare
the benefits. In this paper, we treat the version compiled
for the host CPU as the baseline version. The computation
on the GPU involves more than raw-computation on the
GPU cores. This includes data transfers and associated
managements. However, in our context, we see that the
data will persist in the GPU for subsequent runs, and
therefore, we report the performance results excluding the
data transfer times. For the rest of the section, we evaluated
the performance of the algorithm as follows.

(1) For each system, we perform the runs a number of
times in an unperturbed condition, and we chose the
median of the measurements.

(2) We use a database of three-dimensional image se-
quences of varying sizes to test our algorithm under
different configurations (see below). The database
includes synthetic images wherever needed, which
does not affect the results.

(3) The nonsystem-specific and algorithm-specific pa-
rameters are tested for their influence on the overall
performance of the algorithm. This includes the
kernel size and number of iterations.

(4) The overall motion estimation algorithm, as dis-
cussed in the previous sections, contains a number
of components and each of them gain significant
speedups when run on the GPU. We evaluate the
speedups gained by different components.

(5) Different variants of the implementations are used
to assess the impact of shared memory, L1 and L2
cache memories on the algorithm. For this, we run
the following variants.

(a) A shared memory version. This is available on
all systems. In the modern systems, the L1-
cache is turned off and the full pool of memory
is used as shared memory. On the C1060
system, this is the standard configuration.

(b) A nonshared memory version. On Fermi-based
systems (GTX480 and C2070), this effectively
turns on the L1-cache. In addition to this, this
approach simplifies the overall programming as
complicated techniques such as tiling are not
needed, and thus purely relying on the loading
resolution of the cache controllers on the GPU.

(c) A no-L1 mode. This turns off the L1 and shared
memory mode and thus purely relies on L2-
cache. This configuration does not exist on the
older systems (C1060).

5.2. Experimental Results. We first present the impact of the
number of iterations (denoted by R in Algorithm 1) and of
the kernel size (denoted by Kρ in Alogrithm 1), on the overall
speedup in Figure 5. We evaluate the impact of the number of
iterations using two different fixed size images (1283 and 2563

images) on all three platforms, for a range of iterations. For
each platform, we pick the best performing versions (among
shared memory, nonshared memory and non-L1-mode) and
then we vary the number of iterations. As observed, the
number of iterations does not have a noticeable impact on
the overall speedups across all platforms. Although varying
the image size changes the maximum speedup (speedup
increases as image size increases), for a given image, the
number of iterations do not alter the speedup by a large
degree. This is because, although increasing the number
of iterations benefits from overall reuse per transfer, the
inter- and intraiteration spatial locality in the cache is
not in favour of the application. This essentially carries
an important message: although the execution time for
increased number of iterations will rise, the speed up will
not be affected. However, the kernel size has an impact on

International Journal of Biomedical Imaging 11

0

10

20

30

40

50

60

70

C1060 (128)

GTX480 (128)

C2070 (128)

C1060 (256)

GTX480 (256)

C2070 (256)

Sp
ee

du
p

ag
ai

n
st

se
qu

en
ti

al
ve

rs
io

n

Impact of iterations on the algorithm

Number of iterations

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00 10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

(a)

0

5

10

15

20

25

30

35

40

3 7 31 35 39 43 47 51 55 59 63

Kernel size

E ect of kernel size on smoothing speedup

Sp
ee

du
p

11 15 19 23 27

(b)

Figure 5: (a) shows the impact of number of iterations in the overall
speed up of the algorithm. We show the impact for two different
image sizes. (b) shows the impact of kernel size on the overall speed
up of the algorithm.

the overall performance of the algorithm. As the kernel size
increases, the number of accesses to memory per floating
point operation (FLOP) decreases and this improves the
GPU speedups. Furthermore, if the kernel size were to exceed
the size of the CPU cache, this observation will change
considerably.

Provided that for a given case, the number of iterations
and the kernel sizes are fixed, the overall speedup is only
affected by the size of the image. In the remaining part of
this section, we keep the number of iterations and the kernel
size constant, and we only vary the image size.

As stated above, the overall motion estimation algorithm
has a number of operations, which are componentized in our

0

10

20

20 30

30

40

40 50

50

60

60

70

70

80

80 90

90

100

100 180

Speedup of pipeline components

Size of x, y and z dimension

T
im

es
sp

ee
du

p

Calculate gradient

Smooth

Solve linear system
Total

Resample

110 120 130 140 150 160 170

Figure 6: Speed up of the different components of the motion
estimation algorithm for different size of images on the C1060
platform.

case, and their speedups on the GPU vary with the problem
size. This is shown in Figure 6 for the C1060 platform. Here,
all components of the algorithm show significant gains in
speedup. The kernel size for the smoothing is 15. Different
parts of the pipeline have different access patterns, leading
to different overall behaviour. However, both the gradient
calculation and linear system solution use the same access
patterns both on the host and the GPU, explaining the similar
shape. The presence of local spikes in speed up is due to
the different optimal sizes between CPU and GPU. In our
case, we observe that the Gaussian filter achieved a speed
up of around 25 times, and the data generation and image
interpolation achieved speedups close to 90 times in the
best case. The worst case values (slowdowns) were observed
for very small image sizes (e.g., around 5 times slowdown
for Gaussian), which are not shown here. However, the
overall speed up is much less than the best speedups of all
components and this is currently limited to 60 times. We
also observed the highest percentage of the time being spent
solving the linear equations and smoothing the data.

Having presented the performance of fine-grained
aspects of the GPU performance, we present the overall per-
formance behaviour of the algorithm on different systems.
As stated in the previous section, different variants of the
implementations are tested for their performance.

The speedup on the C1060 system is shown in Figure 7
for two different configurations. One with the shared
memory being exploited and the other one without any
shared memory utilization. In overall, the shared memory
implementation is faster than nonshared memory imple-
mentation. For the reasons discussed in Section 2, accessing
shared memory is faster than accessing the device memory.

12 International Journal of Biomedical Imaging

0

10

20

30

40

50

60

50 75 100 125 150 175 225 250200

Sp
ee

du
p

ag
ai

n
st

se
qu

en
ti

al
ve

rs
io

n

on C1060

Cubic root of the image size

Shared

No shared

Speedups

(a)

0

100

200

300

400

500

600

700

800

Cubic root of the image size

(M
B

/s
)

H2D (S)

D2H (S)

H2D (NS)
D2H (NS)

Host-to-device/device-to-host bandwidth

Sp
ee

d

50 75 100 125 150 175 225 250200

(b)

Figure 7: (a) shows the overall speed up of the algorithm on the
C2070 system with the data transfer times excluded while (b) shows
the variation of transfer speed with the image size.

This improved the implementation so less time is spent
on wait states, thus the overall speedup gains. One other
observation, for which further investigations are needed, is
sudden slowdowns at image size of 2003 which are more
pronounced on the shared memory implementation.

Reporting speedups as in the figures above can be
sometimes slightly misleading. In particular, this is true when
slowdowns on the CPU side are translated as speedups.
For this reason, we present the raw runtimes in Table 2. In
addition to this, the transfer speed rate between the host
and device and vice versa varies with data size. As per the
configuration, the rate is biased towards the direction in
which the transfer occurs (data transfer rate from device to
host is much higher than transfer rates from host to device)
but rarely achieves the peak rate of respective systems.

Figure 8 shows the performance of the algorithm on the
GTX480 system. Since GTX480 GPU is based on the Fermi
architecture, the GPU contains two levels of caches, (L1
and L2) one which can be configured either as a shared

Table 2: Raw runtimes of the algorithm on the C1060 system.

Cubic root of
image size

CPU time
(ms)

GPU time
(with shared

memory)
(ms)

GPU time
(without shared

memory)
(ms)

50 1272 86 96

75 4457 245 257

100 11362 355 443

125 21112 531 771

150 45101 895 1123

175 62310 1147 1594

200 96703 3036 2856

225 134668 3473 3834

250 176238 4261 6016

0

10

20

30

40

50

50

60

70

75 100 125 150 175 225 250200

GTX480

ag
ai

n
st

se
qu

en
ti

al
ve

rs
io

n

on

Cubic root of the image size

Shared

No shared

No L1

Speedups

Sp
ee

du
ps

Figure 8: The overall speedup of the algorithm on the GTX480
system for different image sizes with the image size (with the data
transfer times excluded).

memory, as a L1-cache or a mix of both. We ran our
implementation under three different configurations. First,
we ran the algorithm with no-shared memory option. This
is the default and triggers the usage of L1 and L2 caches
of the system. Under this setup, the implementation does
not need to have any extensive shared-memory mapping
procedures. Then, we performed the same experiment
with the shared memory variant of the implementation.
Under this configuration, the L1-cache is fully configured
as a shared memory system and our implementation takes
the full responsibility of the loading and data placement.
Finally, we run the implementation with the L1-cache being
completely turned off. This renders both the shared memory
and L1 not available to the application, thus fully relying on
the L2 cache, which cannot be turned off.

As can be observed in Figure 8, the default configuration
outperforms the other two versions. In other words, exten-
sively tuning the application for shared memory usage is
not optimal under the new architecture. Two reasons can be

International Journal of Biomedical Imaging 13

Table 3: Raw runtimes of the algorithm on the GTX480 system.

Cubic root
of
image size

CPU time
(ms)

GPU time
(with
shared

memory)
(ms)

GPU time
(without
shared

memory)
(ms)

GPU time
(without

L1)
(ms)

50 671 49 26 49

75 2379 155 83 155

100 5788 272 150 265

125 11338 440 240 435

150 23714 677 373 671

175 31369 955 554 942

200 47914 2037 1101 1999

225 66870 2357 1275 2312

250 91610 2864 1564 2823

attributed to this failure. Firstly, the data management and
placement overheads cannot compete with the automatic
placement provided by the L1-cache. Secondly, the L2-cache
deploys the inclusive policy, which feeds the L1 without any
extra wait states.

However, turning off the L1-cache does not affect the per-
formance significantly since the L2-cache is active. Very close
inspection of Figure 8 and runtimes in Table 3 reveal that
even after turning off the L1-cache, the overall performance
of the shared memory implementation is outperformed.
Again, we explain this based on the efficiency and loading
policies of the cache controllers on GPU. Furthermore,
a performance drop at the image size 1753 is observed
similar to what was observed on the C1060 system, but
here, the nonshared memory implementation suffers from
slowdowns.

Finally, we present the performance of the algorithm on
the C2070 system in Figure 9. Since the system has no device
memory, we were able to run the algorithm with considerably
large image sizes (up to 5253).

Similar to the GTX480 system, the default configuration,
where no shared memory was utilized, performs better
than the other two version. All the other observations
align with the previous observations on GTX480 system.
Furthermore, as before, even relying on the Level-2 cache is
sufficient enough to gain substantial speedups. Furthermore,
a performance drop observed on the C1060 and GTX480
systems observed here as well, where the observation is
repeated. Although all of these observations have been visible
in other systems, one subtle feature of this C2070 system is
that it has a built-in error checking and correction (ECC)
mechanism for the GPU memory.

Historically, in the context of GPUs, error rates were
not an issue—as this only affected the color of the pixel.
However, this is no longer the case with GPUs being used
as part of the HPC systems as the soft error rates in DRAM
are high. Despite this, previous generations of GPUs did
not support ECC and only recently this support has started
to arrive. In our case, C2070 supports ECC. However, the
ECC comes with the penalty on runtimes due to overheads

75

80

90

125 175 225 2

C2070on

Cubic root of the image size

325 37575 425 475 525

NoSHM

SHM

No L1

0

10

20

30

40

50

60

70

ag
ai

n
st

se
qu

en
ti

al
ve

rs
io

n

Speedups

Sp
ee

du
ps

Figure 9: The overall speed up of the algorithm on the C2070
system for different image sizes (with the data transfer times
excluded).

0

5

10

15

20

25

30

35

40
50

50

75 10
0

12
5

15
0

17
5

32
5

22
5

45

64 20
0

30
0

12
8

25
6

Cubic root of the image size

32 35
0

37
5

27
5

42
5

45
0

47
5

40
0

50
0

52
5

V
ar

ia
ti

on
fr

om
th

e
be

st
ca

se
(%

)
Impact of GPU ECC on runtimes

Figure 10: The variation of the runtime when ECC is enabled as a
percentage of the best case for the C2070 system.

associated with a large number of check bits. To evaluate the
impact of ECC, we ran the algorithm with and without ECC.
To avoid any direct influence of L1 on this, we turned off
the level-1 cache. We report the variation of the runtimes
as a percentage of the best case, the non-ECC version, in
Figure 10. However, in our case, we did not see any difference
in accumulated errors, which is a random event. As can be
observed, the variation diminishes as image sizes increases
but is more pronounced at the power-of-two problem sizes.
At the power-of-two problem sizes, the number of check
bits required for ECC is higher than for nonpower-of-two
problem sizes [17], and thus overheads are considerably
high. We assume that with increasing data size, the accesses
are more consolidated to blocks, and thus the number of
separate checks reduces.

6. Conclusions

In this paper, we investigated the mapping of an enhanced
motion estimation algorithm to a number of GPU-specific

14 International Journal of Biomedical Imaging

architectures, resulting challenges and benefits therein. Using
a database of three-dimensional image sequences, we showed
that the mapping leads to substantial performance gains, up
to a factor of 60, and can provide near-real-time experience.
By doing this, we gained more insight into the process. From
our investigation, we observed the following.

(i) Although the presence of different memory subsys-
tems are key in GPU programming, their significance
is diminishing. We witnessed this simply with the use
of shared and constant memories against level-1 and
level-2 caches. Partly, this observation is very influ-
ential across image processing applications—where
working with large amounts of data is a fundamental
requirement. In modern Fermi-based systems, the
loading resolution of the cache controllers amortizes
the overheads in managing different memory subsys-
tems.

(ii) In three-dimensional image processing applications,
the spatial locality can only be exploited along one
dimension in the CPU, while there is no spatial
locality in the other two dimensions. This leads to
benefits along one of the dimensions on the CPU.
Meanwhile, on the GPU-front, nonspatially local
dimensions benefit from coalesced memory access.
However, memory accesses along the remaining
dimension do not benefit from coalesced memory
access. These two facts are difficult to assess without
detailed profiling but are evident in the fact that
coalesced access leads to better performance.

(iii) In three-dimensional image processing applications,
increasing the number of smoothing iterations on the
GPU will not change the overall speedup although it
increases the absolute runtimes.

(iv) Even in the absence of the level-1 (L1) cache, the
performance was sustained by the level-2 cache.

(v) Error correction and checking (ECC) is necessary for
reliable outputs. However, wherever possible, this can
be traded off for performance.

(vi) In a typical image processing application, the motion
estimation pipeline is repeatedly applied for subse-
quent frames of image sequences, and therefore, it is
valid to assume that the data will persist on the device
and long-term runtime benefits will amortize the cost
of host-to-device and device-to-host transfers.

(vii) The overall cost per performance is very attractive.
The cost of a 512-core GPU is only a quarter
of a 16-core CPU-based system (as of mid 2011).
Nevertheless, the GPU-based system yields noticeable
performance benefits. Furthermore, the evolving and
simplified architectural and programming models,
makes this an excellent option for biomedical image
processing applications.

Although our work has exploited several different aspects
of the GPU-architecture, there are several different aspects
which may be improved.

(i) For extremely large datasets, where the device mem-
ory cannot hold the entire dataset, it may be neces-
sary to perform distributed processing using multiple
GPUs. Although both our algorithm and the software
framework can easily be extended to cover this, the
immediate benefits on near-real-time experience is
not known.

(ii) The current Fermi-based GPUs support concurrent
kernel execution, which permits launching multi-
ple kernels in a concurrent fashion. This feature
essentially liberates the GPU and unlocks it from
traditional SIMD-style processing. The exact benefits
still need to be investigate especially in the context of
three-dimensional image processing applications.

(iii) To alleviate the intricacies relating to conditionals,
the current version of the algorithm does a fixed
number of iterations. A more suitable method is
needed to adaptively control the convergence rate.

With all these, we find that although exploiting architec-
tural peculiarities rendered tangible benefits, these benefits
are narrowing with the evolving architecture and simplified
programming models. The future of GPU architectures will
incorporate prefetching [18] and will support abstractions at
the higher level.

Acknowledgments

The authors would like to thank Professor Mike Giles from
the Mathematics Institute, University of Oxford, and Jing
Guo from the University of Hertfordshire for their invaluable
inputs. They also would like to thank the anonymous
reviewers for their feedback and comments on the work
presented in this paper. This research is supported by the
Oxford Martin School, University of Oxford. V. Grau is
supported by an RCUK Academic Fellowship.

References

[1] Khronos Group: The OpenCL Specification 1.1 (Last accessed
May 20, 2011) http://www.khronos.org/opencl/.

[2] NVIDIA Corporation: NVIDIA CUDA Compute Unified
Device Architecture Programming Guide 3.0 (June 2010).

[3] D. B. Kirk and H. W. Wen-mei, Programming Massively
Parallel Processors: A Hands-on Approach, Morgan Kauffmann,
Boston, Mass, USA, 1st edition, 2010.

[4] J. Marzat, Y. Dumortier, and A. Ducrot, “Real-time dense and
accurate parallel optical flow using CUDA,” in Proceedings of
the 17th International Conference in Central Europeon Com-
puter Graphics, Visualization and Computer Vision (WSCG
’09), 2009.

[5] D. L. G. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes,
“Medical image registration,” Physics in Medicine and Biology,
vol. 46, no. 3, pp. R1–R45, 2001.

International Journal of Biomedical Imaging 15

[6] J. B. A. Maintz and M. A. Viergever, “A survey of medical image
registration,” Medical Image Analysis, vol. 2, no. 1, pp. 1–36,
1998.

[7] B. Zitová and J. Flusser, “Image registration methods: a
survey,” Image and Vision Computing, vol. 21, no. 11, pp. 977–
1000, 2003.

[8] T. Mäkelä, P. Clarysse, O. Sipilä et al., “A review of cardiac
image registration methods,” IEEE Transactions on Medical
Imaging, vol. 21, no. 9, pp. 1011–1021, 2002.

[9] A. Bruhn, J. Weickert, and C. Schnrr, “Lucas/Kanade meets
Horn/Schunck: combining local and global optic flow meth-
ods,” International Journal of Computer Vision, vol. 61, pp.
211–231, 2005.

[10] B. K. P. Horn and B. G. Schunck, Determining Optical
Flow. Technical report, Massachusetts Institute of Technology,
Cambridge, Mass, USA, 1980.

[11] B. D. Lucas and T. Kanade, “An iterative image registration
technique with an application to stereo vision,” in Proceedings
of the 7th International Joint Conference on Artificial Intelligence
(IJCAI ’81), pp. 674–679, 1981.

[12] A. Bruhn, J. Weickert, T. Kohlberger, and C. Schnörr, “A
multigrid platform for real-time motion computation with
discontinuity-preserving variational methods,” International
Journal of Computer Vision, vol. 70, no. 3, pp. 257–277, 2006.

[13] F. Yin, C. Chan, and R. Judd, “Compressibility of perfused
passive myocardium,” American Journal of Physilogy, vol. 271,
no. 5, pp. H1864–H1870, 1996.

[14] F. Yin, C. Chan, and R. Judd, “Compressibility of perfused
passive myocardium,” IEEE Transactions on Medical Imaging,
vol. 271, no. 8, pp. H1864–H1870, 1996.

[15] S. M. Song and R. M. Leahy, “Computation of 3-D velocity
fields from 3-D cine CT images of a human heart,” IEEE
Transactions on Medical Imaging, vol. 10, no. 3, pp. 295–306,
1991.

[16] R. Damelio, Basics of Benchmarking, Productivity Press, 1st
edition, 1995.

[17] R. W. Hamming, “Error detecting and error correcting codes,”
Bell System Technical Journal, vol. 26, no. 2, pp. 147–160, 1950.

[18] J. L. Hennessy and D. A. Patterson, Computer Architecture:
A Quantitative Approach, Morgan Kauffmann, Boston, Mass,
USA, 3rd edition, 2002.

Hindawi Publishing Corporation
International Journal of Biomedical Imaging
Volume 2011, Article ID 572187, 16 pages
doi:10.1155/2011/572187

Research Article

Efficient Probabilistic and Geometric Anatomical Mapping Using
Particle Mesh Approximation on GPUs

Linh Ha,1 Marcel Prastawa,1 Guido Gerig,1 John H. Gilmore,2 Cláudio T. Silva,1

and Sarang Joshi1

1 Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
2 Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA

Correspondence should be addressed to Linh Ha, lha@sci.utah.edu

Received 2 March 2011; Revised 6 May 2011; Accepted 3 June 2011

Academic Editor: Aly A. Farag

Copyright © 2011 Linh Ha et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Deformable image registration in the presence of considerable contrast differences and large size and shape changes presents
significant research challenges. First, it requires a robust registration framework that does not depend on intensity measurements
and can handle large nonlinear shape variations. Second, it involves the expensive computation of nonlinear deformations
with high degrees of freedom. Often it takes a significant amount of computation time and thus becomes infeasible for
practical purposes. In this paper, we present a solution based on two key ideas: a new registration method that generates
a mapping between anatomies represented as a multicompartment model of class posterior images and geometries and an
implementation of the algorithm using particle mesh approximation on Graphical Processing Units (GPUs) to fulfill the
computational requirements. We show results on the registrations of neonatal to 2-year old infant MRIs. Quantitative validation
demonstrates that our proposed method generates registrations that better maintain the consistency of anatomical structures over
time and provides transformations that better preserve structures undergoing large deformations than transformations obtained
by standard intensity-only registration. We also achieve the speedup of three orders of magnitudes compared to a CPU reference
implementation, making it possible to use the technique in time-critical applications.

1. Introduction

Our work is motivated by the longitudinal study of early
brain development in neuroimaging, which is essential to
predict the neurological disorders in early stages. The study,
however, is challenging due to two primary reasons: the
large-scale nonlinear shape changes (the image processing
challenge) and the huge amount of computational power the
problem requires (the computational challenge). The image
processing challenge involves robust image registration to
define anatomical mappings. While robust image registra-
tions have been studied extensively in the literature [1–3],
registration of the brain at early development stage is still
challenging as the growth process can involve very large-
scale size and shape changes, as well as changes in tissue
properties and appearance (Figure 1). Knickmeyer et al. [4]
showed that the brain volume grows by 100% the first year
and 15% the second year, whereas the cerebellum shows

220% volume growth for the first and another 15% for the
second year. These numbers indicate very different growth
rates of different anatomical structures. Through regression
on shape representations, Datar et al. [5] illustrated that the
rapid volume changes are also paralleled by significant shape
changes, which describe the dynamic pattern of localized,
nonlinear growth. A major clinical research question is to
find a link between cognitive development and the rapid,
locally varying growth of specific anatomical structures.
This requires registration methods to handle large-scale
and also nonlinear changes. Also, the process of white
matter myelination, which manifests as two distinct white
matter appearance patterns primarily during the first year of
development, imposes another significant challenge as image
intensities need to be interpreted differently at different
stages.

To approach these problems, a robust registration
method is necessary for mapping longitudinal brain MRI to

2 International Journal of Biomedical Imaging

• Total volume grows 115%
• Cerebellum grows 235%

Sagittal
180—two weeks 180—two years

(a) Large-scale deformation

Two-intensity
distribution of wm

Coronal
180—two weeks 180—two years

One-intensity
distribution of wm

(b) Intensity distribution change

Figure 1: Registration challenges of human brains at early development stages. The image show significant shape and size changes of
an infant brain of subject 180 from two weeks to two years as well as the changing white matter properties and appearance due to the
myelination.

a reference space so that we can perform reliable analysis of
the tissue property changes reflected in MR measurements.
This method should not rely on raw intensity measurements,
while it should be capable of estimating large structural
deformations. Xue et al. [6] addressed these issues by
proposing a registration scheme for neonatal brains by
registering inflated cortical surfaces extracted from the MRI.
Their registration method does not make use of voxel-wise
image information and is not intended to capture growth
in internal structures. It is designed for analyzing cortical
surfaces, and it does not define a transformation for the
whole brain volume.

In this paper, we propose a new registration framework
for longitudinal brain MRI that makes use of underlying
anatomies, which are represented by geometries and class
posterior images. This framework can match internal regions
and simultaneously preserve a consistent mapping for the
boundaries of relevant anatomical objects. We show results
of registering neonatal brain MRI to 2-year old brain MRI of
the same subjects obtained in a longitudinal neuroimaging
study. Our method consistently provides transformations
that better preserve time-varying structures than those
obtained by intensity-only registration [7].

The study presents a significant computational challenge
because dense, free-form mapping is computationally expen-
sive. In particular, a correspondence-free geometric norm
such as “currents” has computational complexity of O(M2)
where M is the number of geometric elements, which is in
the same order of the image volume [8]. These methods
require supercomputing power to run [9], but still take a
considerable amount of time to complete. While access to
a supercomputer system or even a cluster is not available
to most researchers, robust registration in the presence of
large deformations is essential. Fortunately, this computation
problem finds an economical solution via the work of
High-Performance Computing (HPC) General Processing
on Graphical Processing Units (GPUs) community. Mod-
ern GPUs, which are available on commodity hardware,

could offer several teraflops of peak performance, which is
equivalent to that of a super computer in the mid-90s. There
have been a number of image processing applications being
implemented on GPUs [10–13]. Most applications achieve
from 20x to several magnitudes of speedup when moved to
GPUs in comparison to conventional CPU versions. A closely
related example is the fast Greedy Iterative Diffeomorphic
registration framework by Ha et al. [14] using GPUs that
achieved 60x speedup in comparison to an optimized, fully
parallel version running on an eight-core Xeon 3.2 Ghz sever.

However, mapping algorithms from the CPU to the GPU
is nontrivial. The GPU programming model is significantly
different from the CPU programming model. While GPUs
are highly efficient for parallel data processing, they are
slow for serial scalar code, which exists in any processing
algorithms. To achieve a high performance, it often requires
developers to reformulate the problem so that it is mapped
well to the GPU architecture. In this paper, we present
the implementation of our registration framework on
commodity GPUs. We introduce two primary performance
improvements with a combination of two approaches: (1)
an algorithmic improvement using a particle mesh approach
and (2) parallelisation using GPUs. We are able to solve the
practical problem in real time and gain speedup of nearly
three magnitudes order over CPU reference implementation.

2. Related Work

The development of image registration is the major focus
of computational anatomy [3, 15–17]. There are two large
bodies of research that our method is developed on: large
deformation diffeomorphic registration and multicompart-
ment registration via surface matching.

The analysis of shape and size in anatomical images
models anatomy as a deformable template [18]. Common
image registration techniques based on thin-plate splines
and linear-elastic models [19, 20] have a small deformation
assumption and cannot be used due to the large localized

International Journal of Biomedical Imaging 3

deformations associated with early brain development. The
large deformation model for computing transformations
developed by Christensen et al. [21] overcomes the limita-
tions of the small deformations model by ensuring that the
transformations computed between imagery are diffeomor-
phic (smooth and invertible). Based on the large deformation
framework by Miller and Younes [3], Beg et al. [22] derived
the Large Deformation Diffeomorphic Metric Mapping
(LDDMM) algorithm. This method computes an optimal
velocity field that satisfies the Euler-Lagrange variational
minimization constraints. Our method is developed upon
the greedy approach proposed by Christensen et al. [21]
that often reports high registration quality comparable to
LDDMM approach but requires significantly lower amount
of computation.

Surface matching is usually considered a semiautomatic
procedure and a “point correspondence” task. First, a small
number of anatomical features such as landmark points and
curve are identified by hand. Next, each of these features
of the discretized surface finds its corresponding feature
on the target. This matching information is then used to
guide the transformation of the entire surface [19, 23, 24].
This approach, however, has a fundamental issue due to
discretization. The currents distance was introduced by
Vaillant and Glaunès [25] as a way of comparing shapes
(point sets, curves, surfaces) without having to rely on
computing correspondences between features in each shape.

Most of the current registration techniques currently
being used in computational anatomy are based on single-
subject anatomy [18, 25–27]. This approach is limited since
a single anatomy cannot faithfully represent the complex
structural variability and development of the subjects. Our
method is based on the multicompartment model proposed
by Glaunes and Joshi [28] which defines a combined
measurement acting on different anatomical features such as
point, curve, and surface to enhance registration quality.

Existing works refer to computational anatomy, espe-
cially free-from matching, as a robust but computationally
expensive framework which is difficult to achieve in real
time on commodity hardware [9, 29, 30]. In this paper, we
consider GPU implementation as an integral part of our
work and an essential contribution that allows scientists to
accurately register images and geometries in time-critical
applications.

3. Method

We propose a new registration method that makes use of the
underlying anatomy in the MR images. Figure 2 shows an
overview of the registration process. We begin by extracting
probabilistic and geometric anatomical descriptors from
the images, followed by computing a transformation that
minimizes the distance between the anatomical descriptors.

3.1. Anatomical Descriptors. We represent brain anatomy as
a multicompartment model of tissue class posteriors and
manifolds. We associate each position x with a vector of
tissue probability densities. In a given anatomy, we capture
the underlying structures by estimating, for each image, the

class posterior mass functions associated with each of the
classes. Given Ω as the underlying coordinate system of the
brain anatomies, each anatomy Ai=1,...,N is represented as

Ai=
{
pi,c=1(x), . . ., pi,c=Nc(x), Mi, j=1(2), . . ., Mi, j=Ns(2)⊂Ω

}
,

(1)

where Nc is the number of probability images, Ns is the
number of surfaces, pc(x) is the class posterior for tissue c
at location x, and M j(2) are 2-dimensional submanifolds of
Ω (surfaces).

As we are interested in capturing major growth of
the white matter and gray matter growth, we rep-
resent brain anatomy as a tuple of the probabilities
{pwm(x), pgm}(x),pcsf (x)} representing class posterior proba-
bilities of white matter, gray matter, and cerebrospinal fluid
respectively, followed by the surfaces of white matter, gray
matter, and cerebellum.

The classification of brain MR images with mature white
matter structures into class posteriors is well studied. We
extract the posteriors from 2-year old brain MR images using
the segmentation method proposed by van Leemput et al.
[31]. The method generates posterior probabilities for white
matter (wm), gray matter (gm), and cerebrospinal fluid (csf).
These probabilities can then be used to generate surfaces
from the maximum a posteriori tissue label maps.

The classification of neonatal brain MR images is chal-
lenging as the white matter structure undergoes myelination,
where the fibers are being covered in myelin sheathes. Several
researchers have proposed methods that make use of prior
information from an atlas or template that takes into account
the special white matter appearance due to myelination [32].
We use the method described by Prastawa et al. [33] for
extracting the tissue class posteriors of neonatal brain MRI,
which includes for myelinated wm, nonmyelinated wm, gm,
and csf. These can then be used to create an equivalent
anatomy to the 2-year old brain by combining the two white
matter class probabilities which then leads to a single white
matter surface.

The white matter and gray matter surfaces are generated
from the maximum a posteriori (MAP) segmentation label
maps using the marching cubes algorithm [34]. The cere-
bellum surfaces are generated from semiautomated segmen-
tations that are obtained by affinely registering a template
image followed by a supervised level set segmentation. The
cerebellum has a significant role in motor function, and
it is explicitly modeled as it undergoes the most rapid
volume change during the first year of development and thus
presents a localized large-scale deformation.

3.2. Registration Formulation. Given two anatomies A1 and
A2, the registration problem can be formulated as an
estimation problem for the transformation h that minimizes

ĥ = argmin
h

E(h ·A1, A2)2 + D(h, e)2 , (2)

where h · A1 is the transformed anatomy, E(·, ·) is a
metric between anatomies, and D(·, e) is a metric on a
group of transformations that penalizes deviations from

4 International Journal of Biomedical Imaging

+ , , ,

, ,

, , ,

, ,

h

Figure 2: Overview of the proposed registration method that can handle large deformations and different contrast properties, applied to
mapping brain MRI of neonates to 2-year olds. We segment the brain MRIs and then extract equivalent anatomical descriptors by merging
the two different white matter types present in neonates. The probabilistic and geometric anatomical descriptors are then used to compute
the transformation h that minimizes the distance between the class posterior images, as well as the distance between surfaces represented as
currents.

the identity transformation e. The anatomy is transformed
using backward mapping for probability image and forward
mapping for geometries:

h ·A1 = h ·
{
pi,c=1(x), . . . , pi,c=Nc(x),

Mi, j=1(2), . . . , Mi, j=Ns(2)
}

=
{
pi,c=1(x) ◦ h−1, . . . , pi,c=Nc(x) ◦ h−1,

h
(
Mi, j=1(2)

)
, . . . ,h

(
Mi, j=Ns(2)

)}
.

(3)

We define distance between anatomies E by defining a
norm on an anatomy as a combination of the L2 norm
on the class posteriors and a Reproducing Kernel Hilbert
space norm on the manifolds defined as “currents” through
Glaunes et al. [1]. This norm does not require prior
knowledge on geometric correspondence, as compared to
other geometry matching methods [19, 23, 24] that require
explicit specification of geometric correspondences. More
precisely, they require that a certain point q in object A is
the same (anatomically) as point q in object B; hence, object
A and object B are required to have the same number of
elements and the same ordering of elements. In comparison,
the currents norm defines distance between objects based
on the norm measurement of the union of the geometric
objects. The currents norm is thus correspondence-free and
does not require the objects in comparison to have equal
number of elements and the same ordering or anatomical
definition.

In contrast to Iterative Closest Point (ICP) algorithm [35]
which defines correspondence based on the closest features
on the Euclidean space, the currents matching algorithm
compares each element to all other elements. Since there may
not exist an anatomically homologous correspondence for
every feature due to discretization, the currents matching is
more robust than existing methods. Manifolds with different
number of elements (resolutions) can thus be matched using
the currents norm due to this property. For an oriented
surface M(2) in R3 the norm [M(2)] is the vector-valued
Borel measure corresponding to the collection of unit normal
vectors to M(2), distributed with density equal to the
element of surface area ds and can be written as η(x)ds(x),
where η(x) is the unit normal and ds(x) is the surface
measure at point x. The currents representation forms a
vector space that admits linear operations, unlike other
surface representations such as the Signed Distance Map
[36–38].

Given an anatomy A the k-norm of [A] is composed as

‖[A]‖2
k = ‖P(x)‖L2 + ‖[M(2)]‖k, (4)

where the probabilistic norm is defined as

‖P(x)‖L2 =
Nc∑
c=1

∥∥p1,c(x)− p2,c(x)
∥∥L2

k

=
∫
Ω
|p1,c(x)− p2,c(x)|2dx

(5)

International Journal of Biomedical Imaging 5

and the currents norm is given by

‖[M(2)]‖k =
∫∫

M(2)
k
(
x, y

)〈
η(x),η

(
y
)〉
dμ(x)dμ

(
y
)
,

(6)

where k(·, ·) is a shift-invariant kernel (e.g., Gaussian or
Cauchy).

When M(2) is a discrete triangular mesh with Nf faces,
a good approximation of the norm can be computed by
replacing [M(2)] by a sum of vector-valued Dirac masses

‖[M(2)]‖2
k =

Nf∑
f=1

Nf∑
f ′=1

〈
η
(
f
)
,η
(
f ′
)〉
k
(
c
(
f
)
, c
(
f ′
))

, (7)

where Nf is the number of faces of the triangulation and, for
any face f , c(f) is its center and η(f) its normal vector with
the length capturing the area of each triangle.

Having defined the norm on probability images
and surfaces, the dissimilarity metric between anatomies
‖[A1]− [A2]‖2

k is given by

wp

Nc∑
c=1

∥∥p1,c(x)−p2,c(x)
∥∥L2

k +wg

Ns∑
j=1

∥∥∥[M1, j(2)−M2, j(2)
]∥∥∥2

k

= wp

Nc∑
c=1

∫
Ω

∣∣p1,c(x)− p2,c(x)
∣∣2
dx

+ wg

Ns∑
j=1

∥∥∥[M1, j(2)∪
(
−M2, j(2)

)]∥∥∥2

k
,

(8)

where the distance between two surface currents
‖[M1, j(2)−M2, j(2)]‖

k
= ‖[M1(2) ∪ (−M2(2))]‖k is

computed as the norm of the union between surface M1(2)
and surface M2(2) with negative measures, wp and wg are
scalar weights that balance the influence of probabilistic and
geometric presentations.

We use the large deformation framework [3] that
generates dense deformation maps in Rd by integrating
time-dependent velocity fields. The flow equation is given
by ∂hv(t, x)/∂t = v(t,hv(t, x)), with h(0, x) = x, and
we define h(x) := hv(1, x), which is a one-to-one map
in Rd, that is, a diffeomorphism. The diffeomorphism is
constructed as a fluid flow that is smooth and invertible.
The invertibility of the mapping is a desirable property as it
enables analysis in different spaces and time points as needed.
We define an energy functional that ensures the regularity
of the transformations on the velocity fields: ‖v(t, ·)‖2

V =∫
Rd 〈Lv(t, x),Lv(t, x)〉dx, where L is a differential operator

acting on vector fields. This energy also defines a distance in
the group of diffeomorphisms:

D2(h, e) = inf
v,pv(1,·)=h

∫ 1

0
‖Lv(t)‖2

Vdt. (9)

The registration optimizations in this paper are per-
formed using a greedy approach by iteratively performing

gradient descent on velocity fields and updating the trans-
formations via an Euler integration of the O.D.E. At each
iteration of the algorithm the velocity field is calculated by
solving the PDE:

Lv = F(h), (10)

where v is the transformation velocity field, L = α∇2 + β∇ ·
∇ + γ, and F(h) is the variation of ‖[h ·A1] − [A2]‖2

k with
respect to h. This variation is a combination of the variation
of the L2 norm on the class posteriors and of the currents
norm, computed using the gradient

∂‖[M(2)]‖2
k

∂xr
=

∑
f |xr∈ f

[
∂η
(
f
)

∂xr

] Nf∑
f ′=1

k
(
c
(
f ′
)
, c
(
f
))
η
(
f ′
)

+
2
3

Nf∑
f ′=1

∂k
(
c
(
f
)
, c
(
f ′
))

∂c
(
f
) η

(
f ′
)t
η
(
f
)
,

(11)

given that points {xr , xs, xt} form the triangular face f and its
center c(f) = (xr + xs + xt)/3 and its area-weighted normal
η(f) = (1/2)(xs − xr)⊗ (xt − xr).

The currents representation is generalized to account for
not only surface meshes but also other m-submanifolds such
as point sets or curves. The currents associated to an oriented
m-submanifold M is the linear functional [M] defined by
[M](ω) = ∫

M ω. When M(0) = ⋃
xi is a collection of

points [M(0)] is a set of Dirac delta measures centered at
the points that is, [M(0)] = ∑

i αiδ(x − xi). When M(1)
is a curve in R3, [M(1)] is the vector-valued Borel measure
corresponding to the collection of unit-tangent vectors to the
curve, distributed with density equal to the element of length
dl:

‖[M(1)]‖2
k =

Nl∑
l=1

Nl∑
l′=1

〈
τ(l), τ(l′)

〉
k(c(l), c(l′)), (12)

whereNl is the number of line segments and, for any segment
l with vertices v0 and v1, c(l) = (vo + v1)/2 is its center and
τ(l) = v1 − v0 is its tangent vertor with its length capturing
the length of the line segment.

Using extra submanifold presentation helps capture
important properties of the target anatomy and hence could
potentially direct the registration and improve the result; see
Glaunes et al. [1] for more details.

4. Efficient Implementation

The implementation of our registration framework is based
on two critical sections: large deformation diffeomorphic
image registration and currents norm computation. The
former requires a linear solver (10) on an M × M matrix
where M is the number of input volume elements (≈10
millions on typical brain image). The linear system is
sparse and there exists efficient solver with complexity of
O(M log(M)). The performance is even further amortized
using a multiscale iterative method resembling a multigrid

6 International Journal of Biomedical Imaging

solver. The method maps well to the GPU architecture
and significantly reduces the running time from several
hours on eight-core sever to a few minutes on commodity
hardware. We refer to the work by Ha et al. [14] for details
of the method and implementation of large deformation
diffeomorphic registration on GPUs. Here, we concentrate
on the problem of how to implement norm computation
efficiently based on GPU methodologies.

At a broad level, the GPUs consist of several streaming
multiprocessors—each of them contains a number of strea-
ming processors and a small shared memory unit. GPUs
are good at handling data stream in parallel with processing
kernels [39]. The underlying program structure is described
by streams of data passing through computation kernels.
Given a set of data (an input stream), a series of operations
(kernel functions) are applied to each element in the stream
and produce another set of output data (an output stream).
The program is constructed by chaining these computa-
tions together. This formulation has been used to design
efficient GPU-based sorting and numerical computations
[14, 40, 41].

4.1. Particle Mesh Approximation for Currents Norm Compu-
tation. The major challenge of computing the currents norm
(7) for real brain surfaces is the high computational cost
to compute the dissimilarity metric of all pairs of surface
elements, which is O(N2

f), where Nf is the number of faces.
A surface extracted from an N3 volume has the average
complexity of N2.46 faces [8], that produces millions surfaces
for a typical 2563 input.

For computational tractability, Durrleman et al. [42]
used a sparse representation of the surface based on matching
pursuit algorithm. On the other hand, an efficient framework
based on the standard fast Gauss transform [43] requires
the construction and maintenance of the kd-tree structures
on the fly. The primary problem of these approaches is that
while the performance is insufficient for real-time applica-
tions on conventional systems, they are too sophisticated to
make use of processing power of modern parallel computing
models on GPUs. Also in practice, we use large kernel width
for the currents norm to match major structures. This is not
ideal for kd-tree-based implementations that are designed
for querying small set of nearest neighbor. Implementing
these ideas on GPUs imposes other challenges, and they are
unlikely to be efficient.

Here, we employ a more parallelizable approach based on
the Particle Mesh approximation (PM). This approximation
has been extensively studied in a closely related problem—
the cosmological N-body simulation, which requires the
computation of the interaction between every single pair of
objects (see Hockney and Eastwood [44] for details).

The particle mesh approximation, as shown in Figure 3,
includes four main steps.

Grid building which determines the discretization
error or the accuracy of the approximation. It also
specifies the computational grid, the spacial con-
straints of the computation. The quantization step in
each spacial direction determines the grid size, hence,

Build grid

Splatting

Interpolation

Update grid
(integration)

Figure 3: Particle mesh approximation algorithm to transform
the computation from irregular domain to regular domain based
on four basic steps: grid construction, splatting, integration, and
interpolation.

the complexity of the grid computation. The finer the
grid means the higher quality of the approximation
but the more computation involving.

Splatting that maps computation from an unstruc-
tured grid to a structured grid. It is the inverse
operation of the interpolation.

Integration which performs the grid computation and
updating step. As the computation, which involves
kernel convolution and gradient computation, is
taking place in a regular domain, the integration
can exploit the parallel processing power of special
computing units such as GPUs.

Interpolation that interprets computational results
from the image space back to the geometrical space,
in other words, to reconstruct the unstructured grid
out of the structured domain. Marching Cube [34]
is an example of techniques using interpolation to
extract isosurfaces from MR images.

The splatting/interpolation operation pair works as a
connection between the computation on regular domain
and irregular domain. We will go into details of how to
implement this interface on the parallel architecture as
the method can be widely used not only for the norm
computation but any mixed—geometric and probabilistic—
computation in general. We consider this strategy as a crucial
method for efficient parallel computation on an irregular
domain.

The error in particle mesh approximation is influenced
by two factors: the grid spacing and the width of the
convolution kernel, as shown in Figure 4. We chose the
image grid spacing, thus the error is bounded by the image
resolution. As being aforementioned, we use large kernel
widths in practice which is ideal for PM. Note that PM
approximation breaks down when kernel width is less than
grid spacing.

While the approximation helps reduce the complexity
to M logM where M is the volume size of the embedded
grid, the total complexity of the method is still very high.
On a high-end workstation with 8-CPU cores, a highly
optimized multithreaded implementation in C++ takes
several hours for one matching pair hence cannot be used
for parameter exploration and real-time analysis. Based on
the GPU framework by Ha et al. [14], we developed an

International Journal of Biomedical Imaging 7

Exact
256

512
1024

T
im

e
pe

r
it

er
at

io
n

(s
)

Number of points in each set

45

40

35

30

25

20

15

10

5

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time versus number of points

(a)

64 128 256 512 1024
5

10

15

20

25

30

Grid size

E
rr

or
(%

)

Percent error versus grid size (5000 points) (σ = 0.03)

(b)

Figure 4: (a) shows the run time comparisons between direct computation and the particle mesh implementation for various grid size.
Shown in (b) is the percent error for different for 5000 randomly generated points with different mesh sizes.

implementation that runs entirely on the GPU to exploit
parallel efficiency of regular grid presentation.

4.2. Efficient Implementation of Particle Mesh Method on
GPUs. To achieve the maximum performance efficiency, we
optimized the four steps of particle mesh method on GPUs.
Here, we describe the performance keys and important
details to implement these steps.

4.2.1. Grid Building. Without prior information, compu-
tational grid is typically chosen as a discretization of the
bounding box with extra border regions to prevent out-of-
bound quantization error. Since probabilistic and geometric
descriptors coexist in our representation, the computational
grid is effectively chosen as the original grid. This selection
guarantees that it will not introduce further quantization
errors than the original discretized errors inherent to the
construction of geometric descriptors. This strategy also
limits the complexity of the combining technique to the
original order of computation if we use only probabilistic
terms.

4.2.2. Splatting. The main purpose of the splatting function
is to construct a regular n-dimensional scalar or vector field
from its discrete sample points. The constructed grid should
satisfy an inverse operation, the interpolation, so that when
applied to the reconstructed grid will reproduce the sample
points. In other words, Interpolation (Splatting (E)) = E
with E is an arbitrary input. This duality of splatting and
interpolation reflects the fact that probabilistic and geometry
descriptors are just the domain representations of the same
subject. Hence, we could unify their computation without
losing accuracy. We also exploit the duality to validate the

correctness of our implementation of the splatting function
through its dual counterpart.

The splatting function is defined by Trouvé and Younes
[45] through a linear operator ℵ that applies a mapping
vector field v : Zd → R to a discrete image I : Zd → R to
perform an interpolation on the grid Gv = {x+v(x)|x ∈ Zd},
mathematically saying

(ℵI)(x) = (I)(x + v(x)), (13)

with I being linear interpolation, defined by

(I)(I)(x)=
∑

ε∈{0,1}d
cε(x)I(�x1�+ε1, �x2� + ε2, . . ., �xd� + εd),

(14)

with �z� being the integer part of real number z and {z} =
z − �z� is the fractional part. The coefficient cε(x) is defined
as

cε(x) =
d∏
i=1

(εi + (1− 2εi)xi). (15)

While the splatting operator was defined through a vector
field, the splatting conversion from the irregular grid to the
regular domain for an arbitrary input is defined as being
a zero vector field. Figure 5 displays the construction of
a regular grid presentation of geometrical descriptors in
2D through splatting operator. The value at a grid point
is computed by accumulating values interpolated at that
point from its geometrical neighbors. Thus, closer neighbors
will have more influence on the value of the point than
farther points. In fact, we only need to consider the one-ring
neighbors as farther points have a negligible contribution to

8 International Journal of Biomedical Imaging

Figure 5: Geometrical conversion based on a splatting function
with zero velocity field v (13). The method served as a bridge to
transform the computation from an irregular grid to a regular grid
which allows an efficient parallel implementation.

its final value. We also assume that the field is continuous and
smooth.

Though the splatting operator has a linear complexity in
terms of the size of geometry descriptors, it is the perfor-
mance bottleneck in practice. The single CPU thread-based
splatting function is too slow for interactive applications.
Even close discrete points do not share the same cache as the
definition of a neighbor in 3D does not map to a neighbor in
the linear CPU cache. The multithread-based CPU splatting,
which assigns each thread a single geometrical element,
however, has a resource-fighting problem. That is, when we
integrate grid value from its neighbor submanifold elements,
it is likely that there are several elements in the neighbor,
and these elements, which are assigned different threads, may
try to accumulate the grid value at the same time. GPU
implementation also has to face with the resource-fighting
problem.

We can apply mutex locking to resolve the conflict.
However, it is inefficient with thousands of threads on GPUs.
A better solution is based on atomic operations, which are
guaranteed to complete without being interrupted by the
actions of other threads. Currently, CUDA does not support
atomic operations for floating point numbers but integer
numbers. Here we propose two different approaches for
splatting computation: the collision-free splatting scheme via
a fast parallel sorting and the atomic splatting scheme using
a fixed-point representation.

The collision-free splatting scheme is applied for systems
without any atomic operation support. As shown in Figure 6,
we employ a fast parallel sorting to resolve the shared-
resource fighting problem. The algorithm involves three
steps.

(i) Compute the contribution of each geometrical
descriptor to grid nodes.

(ii) Sort the contribution based on node indexes. The
contribution array is segmented based on node
indexes.

(iii) Apply a parallel segmented prefix sum scan [40] to
integrate all node values.

All of these steps are implemented efficiently in parallel
on the GPU. The first step is simply a pointwise computation.
For the second step, we apply the fast parallel sorting
[41]. The third step is performed using the optimal seg-
mented scan function in the CUDA Performance Processing
library (CUDPP) [40]. The sorting scheme on CUDA is a

magnitude faster than an optimal multithreaded, multicore
implementation on CPUs [29]. While this scheme is quite
efficient and is the only solution on CUDA 1.0 devices, its
performance largely depends on implementations of two
essential functions: the parallel sorting and the segmented
scan. Also the memory requirement of the method is
proportional to the number of shooting points (which can be
as large as the grid size) and the size of the neighbor (which
is eight for 3D implementation). The memory usage become
even worse as fast parallel sorting based on radix sorting
that could not perform in-place but out-of-place sorting so
the method requires another copy of the contribution array.
In many circumstances, we found a better solution both in
terms of performance and memory usage based on atomic
operations supported on the CUDA 1.1 and later devices.

The atomic splatting scheme resolves the shared-resource
fighting problem using atomic operations. While atomic
floating point operations are currently not supported, it
is possible to simulate this operation based on a fixed-
point presentation. In particular, instead of accumulating
the floating point buffer, we explicitly convert floating point
values to integer representations through a scale. This allows
the accumulation to be performed on integer buffers.

The parallel splatting accumulation is implemented by
assigning each geometrical descriptor a GPU thread, which
computes the contribution to the neighbor grid points based
on its current value and distances to the neighbor grids.
These floating point contribution values are then converted
to integer presentation through a scale number, which is
normally chosen as a power of two (we use 220, in practice)
so that a fast shifting function is sufficient to perform the
scale. The atomic integer adding operator allows values to be
accumulated atomically at each grid point concurrently from
thousand of threads. In our implementation, the contribu-
tion computations—upscale and the integer accumulation
steps—are merged to one processing kernel to eliminate (1)
an extra contribution buffer, (2) extra memory bandwidth
usage to store, reload, and rescale the contribution buffer
from the global memory, and (3) the call overheads of the
three different GPU processing kernel. The accumulation
result is then converted back to floating value by the division
to the same scale value.

We further amortize the performance on later generation
of GPU devices using the atomic shared-memory operations,
which are a magnitude faster than operations on GPU
global memory. We exploit the fact that in diffeomorphic
registration the velocity field is often smooth and show large
coherence between neighbors, so it is likely that two close
points will share the same neighbors. Thus, it would be
better to accumulate the values of the shared neighbors in the
shared memory instead of the global memory. We assign each
block of threads a close set of splatting points and maintain
a shared memory accumulation buffer between threads of
the same block. The accumulation results on the shared
memory are then atomically added to the accumulation
buffer on the global memory. This approach exploits the
fast atomic functions on the shared memory and at the
same time reduces the number of global atomic operations.
This optimization is especially effective on a dense velocity

International Journal of Biomedical Imaging 9

1 2 3 4

5 6 7 8

9 10 11 12

Collision-free splatting scheme

1

3

2

(a)

1 2 5 6 2 3 6 7 11106 7

2 3 5 6 7 10 11

1

1

1 2 66

7

7

22

2 3

3

5

5

6

666

7

7

10

10

11

11

(1) Contribution bu er

(2) Sorting based on node index

(3) Accumulation based on the segmented scan

(b)

Figure 6: Collision-free splatting implementation using fast parallel sorting. The method is based on ordering the node contribution ID to
resolve resource conflicts which allows a parallel efficient integration based on an optimal parallel prefix scan implementation.

field, which shows significant coherency between neighbor
points.

4.2.3. Interpolation. Even though the probabilistic and geo-
metric descriptors are represented by independent data
structures on separate domains, they are, in fact, different
representatives of the same anatomical subject that is
updated during ODE integration under the influence of the
time-dependent velocity field along a registration evolution
path. While the computation occurs on the regular grid,
interpolation is necessary to maintain the consistency of
multicompartment anatomies as they undergo deformation.
Given a deformation h, we update probabilistic images using
backward mapping and geometries using forward mapping
(3).

A computationally efficient version of ODE integration
is the recursive equation that computes the deformation at
time t based on the deformation at the time t − 1. That
is, ht = ht−1(x + v(t − 1)). This computation is done
by a reverse mapping operator (Figure 7), which assigns
each destination grid point a value interpolated from the
source volume grid’s neighbor points. The reason for using
a reverse mapping operator instead of a forward mapping
one is to avoid missing data values at the grid points that
makes computation of forward mappings intractable. A
reverse mapping requires the maintenance of reverse velocity
fields. The update of geometric descriptors is based on a
forward vector field derived by inverting direction of the
reverse velocity field. Algorithmically, the probabilistic and
geometric descriptors are updated in opposite directions.
The updating process of geometric descriptors is illustrated
in Figure 8.

While the selection of interpolation strategies such as 3D
linear interpolation, cubic interpolation, high-order interpo-
lation depends on the quality requirement of the registration,
the updating process of both probabilistic and geometric
descriptor needs to share the same interpolation strategy so
that they are consistent with one another. In practice, 3D
linear interpolation is the most popular technique because

it is computationally simple and efficient and it can produce
satisfactory results especially with large kernel width for
currents norm. On GPUs, this interpolation process is fully
hardware accelerated with 3D texture volume support from
CUDA 2.0 APIs. Another optimization is based on the
texture cache that helps improve the lookup time from the
source volume due to large coherency in the diffeomorphic
deformation fields.

4.3. Other Performance Optimizations. Besides an optimized,
parallel implementation for particle mesh computation,
we further improve the performance with parallel sur-
face normal and multiscale computation on GPUs. These
optimizations keep the entire processing flow on GPUs,
eliminating the need to transfer the data back and forth
between CPU memory and GPU memory which is the main
bottleneck for many GPU applications.

4.3.1. Parallel Surface Normal Computation on GPUs. While
the geometrical descriptor involved in our registration
framework was defined as a surface element (a triangle)
with all property values on its vertices, the computation
was defined at the centroid following its normal direction
and weighted by the size of the surface element (11). This
computation requires the computation of a weighted normal
at the centroid of each surface element from the geometric
descriptors. We perform this operation in parallel on the
GPU by assigning each surface element a thread. We then
employ the texture cache to load the geometrical data from
global memory; while the neighbor triangle shared the same
vertices, the loading values are highly likely in the cache and
cost almost the same amount of time to access from the
shared memory. We also store the three components of the
normal in three separated arrays to allow coalesced access
that gives better memory bandwidth efficiency.

4.3.2. Multiscale Computation on GPUs. Multiscale registra-
tion is an advanced registration technique to improve quality
of the results by registering anatomies at different scale levels.
The method also handles the local optimal matching of

10 International Journal of Biomedical Imaging

Destination volume Source volume Trilinear interpolation

F−1

Figure 7: Reverse mapping based on 3D trilinear interpolation that eliminates the missing data of a forward mapping. The implementation
on GPU exploits the hardware interpolation engine to achieve significant speedup.

Velocity field

Geometry
descriptor

(a) Velocity interpolation (b) Geometry update

Figure 8: Geometries are updated through the interpolation from the velocity field. This step maintains the consistency between probabilistic
and geometrical compartments of the mixture model.

One-scale registration

(a)

Two-scale level registration

(b)

Target image

(c)

Figure 9: Multiscale registration using different sizes of computation kernels helps capture large- and small-scale changes in different levels
and also increases the convergence rate of the algorithm.

gradient-descent optimization. In our registration frame-
work, the primary purpose of doing multiscale computation
is to capture both the large changes in the shape and also
the small changes as the registration anatomy converged to
the target. The method effectively handles the nonlinear,
localized shape changes, as is shown in Figure 9. It also
serves as an effective method to increase the convergence rate
and reduces the running time significantly. The challenge
of applying multiscale computation is that there is no
mathematical foundation for exact multiscale computation
on a regular grid. The level-of-detail techniques (LOD) are
the only approximations that gives no guarantee on the
quality. Here, we achieve the multiresolution effect through

changing the size of a registration kernel, such that we use a
larger kernel width and step size to mimic the effect of large-
scale and smaller kernel width and step size to capture the
details. Our method did not require resampling of the grids,
so there are no additional quantization errors.

5. Results

For evaluation, we used an AMD Phenom II X4 955 CPU
commodity system, 6 GB DDR3 1333, with NVIDIA GT0260
GPU 896 MB. We quantify both aspects of the method:
registration quality and performance. Runtime is measured
in millisecond.

International Journal of Biomedical Imaging 11

(a) (b) (c) (d)

Figure 10: Registration results of neonates mapped to 2-year olds. From left to right: (a) neonatal T1 image after affine registration, (b)
reference T1 image at 2 years, followed by (c) neonatal T1 after deformable mutual information registration using B-splines, and (d) after
combined probabilistic and geometric registration. From top to bottom: subjects 0012, 0102, 0106, 0121, 0130, and 0146. We note that
the initial affine registration for subject 0102 (second row, second column) is incorrect; however our method managed to compensate and
generate improved result compared to deformable mutual information registration.

5.1. Registration Quality. We have applied the registration
method for mapping neonatal MRI scans to 2-year MRI
scans of the same subjects in ten datasets. The datasets are
taken from an ongoing longitudinal neuroimaging study
with scans acquired at approximately two weeks, one year,
and two years of age. Due to rapid early brain development,

each longitudinal MR scan shows significant changes in
brain size and in tissue properties. For comparison, we also
applied the standard intensity-based deformable registration
using mutual information (MI) metric and B-spline trans-
formation proposed by Rueckert et al. [7], which has been
applied for registering 1-year old and 2-year old infants [46].

12 International Journal of Biomedical Imaging

(a) (b) (c) (d)

Figure 11: Registration results of neonates mapped to 2-year olds. From left to right: (a) neonatal T1 image after affine registration, (b)
reference T1 image at 2 years, followed by (c) neonatal T1 after deformable mutual information registration using B-splines, and (d) after
combined probabilistic and geometric registration. From top to bottom 0156, 0174, 0177, and 0180.

Both deformable registration methods are initialized using
the same global affine transformation generated using the
mutual information metric. The T1-weighted images before
and after registration using the different approaches for the
first three subjects are shown in Figures 10 and 11.

A quantitative study of the performance of the reg-
istration method is performed by measuring the overlap
between the transformed segmentation maps of neonates to
the segmentation maps of 2-year olds. Since we consider the
segmentation maps at two years of age to be the standard, we
use the following overlap metric:

Overlap(h · S0, S2) = |h · S0∩ S2|
|S2| , (16)

where h·S0 is the transformed neonate segmentation map, S2
is the reference 2-year segmentation map, and | · | indicates
the volume of a binary map. We note that this metric gives
considerably lower values for deviation from S2 than the
standard Dice coefficient. Table 1 shows the quantitative

analysis for the brain parenchyma (a combination of white
matter and grey matter) and cerebellum segmentation maps
without registration, using standard MI registration, and
our method. We use brain parenchyma since white matter
and grey matter on their own are hard to distinguish
in early developing brains. Registration using MI fails
for parenchyma because it does not account for the two
white matter distributions in neonates. Registration using
both probabilistic and geometric descriptors provides better
results and is generally more stable for the structures of
interest. In particular, our method better preserves the shape
of the cerebellum, which has weak intensity boundaries in
regions where it touches the cerebrum and thus cannot
be registered properly using only image-based information.
Another significant challenge is that the cerebellum growth
is distinctly different from the growth of neighboring
structures. Using cerebellum boundary represented by cur-
rents, our method captures the growth better than MI
registration.

International Journal of Biomedical Imaging 13

Table 1: Overlap measures comparing the registered segmentation maps against the reference segmentation maps for the parenchyma and
cerebellum structure, obtained through without deformation (None), deformable mutual information registration (MI), and our proposed
method (P + G).

Subject 0012 0102 0106 0121 0130 0146 0156 0174 0177 0180

Parenchyma
None 0.829 0.545 0.813 0.833 0.921 0.750 0.818 0.837 0.782 0.707

MI 0.799 0.449 0.754 0.777 0.902 0.708 0.780 0.832 0.774 0.687

P + G 0.903 0.883 0.884 0.868 0.881 0.860 0.875 0.879 0.913 0.874

Cerebellum
None 0.573 0.263 0.506 0.506 0.638 0.555 0.535 0.503 0.526 0.593

MI 0.755 0.212 0.588 0.515 0.732 0.820 0.713 0.569 0.631 0.777

P + G 0.881 0.821 0.875 0.878 0.858 0.899 0.907 0.885 0.896 0.892

Table 2: Runtime comparison, in milliseconds, of different splatting implementations on volume sized 144 × 192 × 160 and 160 × 224
× 160 using collision-free sorting approach, atomic operation with fixed point presentation, atomic operation on the shared memory and
CPU reference.

Size Method CPU Sorting Atomic Atomic shared

144 × 192 × 160
Random 826 105 29 30

Diffeomorphic 331 110 105 14

Singular 224 105 40 41

160 × 224 × 160
Random 1435 215 75 76

Diffeomorphic 775 224 152 21

Singular 347 215 144 144

Table 3: Runtime comparison, in milliseconds, of different 3D
interpolation implementations for reverse mapping operator with-
out memory caching (GPU global), with linear texture cache (1D
linear) and hardware accelerated interpolation using 3D texture.
The GPU-accelerated implementation is about 40 times faster than
CPU reference and gives identical results.

Method CPU GPU global 1D linear 3D texture

256 × 256 × 256 777 30 24 19

160 × 224 × 160 209 10.4 7.3 6.8

144 × 192 × 160 173 6.8 4.8 5.4

160 × 160 × 160 149 6.6 5.0 5.2

5.2. Performance. We quantify the performance with two
critical steps in particle mesh approach: the splatting and
the interpolation. We measured the performance with typical
volume sizes.

Splatting. The splatting performance varies largely depend-
ing on the regularity of the deformation fields due to
memory collision problem. Here we measured with three
types of deformation fields: a random deformation, which
maps points randomly over the whole volume, a diffeomor-
phic deformation, the typical type of deformation from the
registration of brain images that we use in our framework,
and a singular deformation, which collapses to a point in the
volume. Table 2 shows the runtime comparison in millisec-
onds of different splatting implementations mentioned in
Section 4.2.2: CPU reference, collision-free sorting approach,
atomic fixed-point operation, and atomic operation with
shared memory.

The result shows that the performance gain of GPU
approaches varies depending on the regularity of the defor-
mation field inputs. The singular deformation has the lowest
performance gain because most of the value accumulated
to a small point neighbor hence parallel accumulation is
greatly limited. Though having better performance gain,
the random deformation spreads out in the whole volume
that leads to ineffective caching (both in GPUs and CPUs).
Fortunately, our atomic optimization with shared memory
achieved the best performance gain with diffeomorphic
deformation which we used in practice. The main reason
is that the diffeomorphic deformation shows large coher-
ence between neighbor points that allows more effective
caching through GPU shared memory. The collision-free
approach based on sorting shows stable performance since
it is independent from the memory collision of other
approaches.

Interpolation. Table 3 shows the runtime comparison in
milliseconds of different 3D interpolation implementations:
CPU reference, simple approach (GPU global memory),
linear 1D texture, and 3D texture.

The interpolation runtime shows that reverse mapping
using the accelerated hardware achieves the best performance
and is about 38x faster than CPU reference implementation
on the evaluation hardware. However, this method suffers
from lower floating point accuracy. To not further introduce
more errors to the approximation, we apply the 1D-linear
texture-cache implementation instead which is as fast as
the accelerated hardware but retains the floating point
precision. The method produces results equivalent to the
CPU reference.

14 International Journal of Biomedical Imaging

Table 4: Time elapsed, in minutes, for registration using deformable mutual information (MI) on the CPU (AMD Phenom II X4 955, 6 GB
DDR3 1333) and our proposed approach (P + G) on the GPU (NVIDIA GTX 260, 896 MB) with 1000 iterations of gradient descent.

Subject 0012 0102 0106 0121 0130 0146 0156 0174 0177 0180

MI on CPU 92 63 103 92 101 112 106 99 91 96

P + G on GPU 9 8 8 8 8 7 9 8 7 7

Overall Performance. We have also compared the perfor-
mance between our method and the standard MI registra-
tion. Registration using our approach on the GPU takes 8
minutes on average, while registration on the CPU using
mutual information metric and B-spline transformation
takes 100 minutes on average. Detailed time measures are
listed in Table 4.

Overall, computing the currents norm and its gradient
between a surface with 160535 triangular faces and another
with 127043 faces takes approximately 504 seconds on CPU,
while it takes 0.33 seconds with our GPU implementation.
The speed gain is in order of three magnitudes over the
equivalent CPU implementation using particle mesh, while
the computing time for the exact norm on CPU is difficult
to measure since it takes significantly longer. The proposed
algorithm typically converges in 1000 iterations, so on
average it takes less than eight minutes to register two
anatomies. This allows us to perform parameter exploration
and real-time analysis on a single desktop with commodity
GPU hardware.

6. Conclusions

We have proposed a registration framework that makes use
of the probabilistic and geometric structures of anatomies
embedded in the images. This allows us to enforce matching
of important anatomical features represented as regional
class posteriors and tissue boundaries. Our framework
allows us to register images with different contrast properties
by using equivalent anatomical representations, and we
have demonstrated results for registering brain MRIs with
different white matter appearances at early stages of growth.
The overlap validation measures in Table 1 show that
geometric constraints, particularly for the cerebellum, are
crucial for registering structures undergoing significant
growth changes.

In the future, we plan to apply this framework in
early neurodevelopmental studies for analyzing the effects
of neurological disorders such as autism and fragile X
syndrome. The proposed registration framework is generic
and independent of the application domain; it can thus be
applied to any registration where one encounters large-scale
deformation and different appearance patterns. We also want
to incorporate other submanifolds representations and their
computation such as point sets (M(0)) and curves (M(1)).
Such additional representations are potentially critical in
clinical applications involving anatomical landmark points
(e.g., anterior commissure and posterior commissure) as well
as curve structures (e.g., blood vessels, sulcal lines, white
matter fiber tracts). All these computations can be done
efficiently and entirely on GPUs and potentially will improve

the results by guiding the registration process to preserve
critical geometries. The efficiency of the GPU method also
provides an opportunity to apply the algorithm for high-
quality atlas formation using our framework on a GPU
cluster, which gives us the ability to perform statistical
tests that are previously impossible due to excessive time
requirements.

Acknowledgments

This work is supported by NIH Grants 5R01EB007688 and
Conte Center MH064065, UCSF Grant P41 RR023953, and
NSF Grant CNS-0751152.

References

[1] J. Glaunes, A. Trouvé, and L. Younes, “Diffeomorphic match-
ing of distributions: a new approach for unlabelled point-
sets and sub-manifolds matching,” in Proceedings of IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR ’04), pp. 712–718, July 2004.

[2] P. Lorenzen, B. Davis, and S. Joshi, “Unbiased atlas formation
via large deformations metric mapping,” in the 8th Interna-
tional Conference on Medical Image Computing and Computer-
Assisted Intervention (MICCAI ’05), vol. 3750 of Lecture Notes
in Computer Science, pp. 411–418, October 2005.

[3] M. I. Miller and L. Younes, “Group actions, homeomor-
phisms, and matching: a general framework,” International
Journal of Computer Vision, vol. 41, no. 1-2, pp. 61–84, 2001.

[4] R. C. Knickmeyer, S. Gouttard, C. Kang et al., “A structural
MRI study of human brain development from birth to 2
years,” Journal of Neuroscience, vol. 28, no. 47, pp. 12176–
12182, 2008.

[5] M. Datar, J. Cates, P. T. Fletcher, S. Gouttard, G. Gerig, and
R. Whitaker, “Particle based shape regression of open surfaces
with applications to developmental neuroimaging,” in the 12th
International Conference on Medical Image Computing and
Computer-Assisted Intervention (MICCAI ’09), vol. 5762 of
Lecture Notes in Computer Science, pp. 167–174, 2009.

[6] H. Xue, L. Srinivasan, S. Jiang et al., “Longitudinal cortical
registration for developing neonates,” in the 10th International
Conference on Medical Imaging and Computer-Assisted Inter-
vention (MICCAI ’07), vol. 4792 of Lecture Notes in Computer
Science, pp. 127–135, October 2007.

[7] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O.
Leach, and D. J. Hawkes, “Nonrigid registration using free-
form deformations: application to breast mr images,” IEEE
Transactions on Medical Imaging, vol. 18, no. 8, pp. 712–721,
1999.

[8] C. E. Scheidegger, J. M. Schreiner, B. Duffy, H. Carr, and C.
T. Silva, “Revisiting histograms and isosurface statistics,” IEEE
Transactions on Visualization and Computer Graphics, vol. 14,
no. 6, pp. 1659–1666, 2008.

International Journal of Biomedical Imaging 15

[9] G. E. Christensen, M. I. Miller, M. W. Vannier, and U.
Grenander, “Individualizing neuroanatomical atlases using a
massively parallel computer,” Computer, vol. 29, no. 1, pp. 32–
38, 1996.

[10] A. Eklund, M. Andersson, and H. Knutsson, “Phase based
volume registration using CUDA,” in IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP
’10), pp. 658–661, March 2010.

[11] P. Micikevicius, “3D finite difference computation on GPUs
using CUDA,” in the 2nd Workshop on General Purpose
Processing on Graphics Processing Units (GPGPU-2 ’09), p. 79,
March 2009.

[12] M. Roberts, M. C. Sousa, and J. R. Mitchell, “A work-
efficient GPU algorithm for level set segmentation,” in the 37th
International Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’10), July 2010.

[13] C. I. Rodrigues, D. J. Hardy, J. E. Stone, K. Schulten, and W.
M. W. Hwu, “GPU acceleration of cutoff pair potentials for
molecular modeling applications,” in the 5th Conference on
Computing Frontiers (CF ’08), pp. 273–282, May 2008.

[14] L. Ha, J. Kruger, S. Joshi, and C. T. Silva, Multiscale Unbiased
Diffeomorphic Atlas Construction on Multi-GPUs, vol. 1,
Elsevier, New York, NY, USA, 2011.

[15] B. Avants and J. C. Gee, “Geodesic estimation for large
deformation anatomical shape averaging and interpolation,”
NeuroImage, vol. 23, no. 1, pp. S139–S150, 2004.

[16] T. Rohlfing, D. B. Russakoff, and C. R. Maurer, “Expectation
maximization strategies for multi-atlas multi-label segmen-
tation,” in the 18th International Conference on Information
Processing in Medical Imaging, vol. 2732 of Lecture Notes in
Computer Science, pp. 210–221, 2003.

[17] P. M. Thompson and A. W. Toga, “A framework for computa-
tional anatomy,” Computing and Visualization in Science, vol.
5, no. 1, pp. 13–34, 2002.

[18] U. Grenander and M. I. Miller, “Computational anatomy: an
emerging discipline,” Quarterly of Applied Mathematics, vol.
56, no. 4, pp. 617–694, 1998.

[19] F. L. Bookstein, Morphometric Tools for Landmark Data:
Geometry and Biology, Cambridge University Press, 1991.

[20] M. I. Miller, G. E. Christensen, Y. Amit, and U. Grenander,
“Mathematical textbook of deformable neuroanatomies,” Pro-
ceedings of the National Academy of Sciences of the United States
of America, vol. 90, no. 24, pp. 11944–11948, 1993.

[21] G. E. Christensen, R. D. Rabbitt, and M. I. Miller, “Deformable
templates using large deformation kinematics,” IEEE Transac-
tions on Image Processing, vol. 5, no. 10, pp. 1435–1447, 1996.

[22] M. F. Beg, M. I. Miller, A. Trouvé, and L. Younes, “Computing
large deformation metric mappings via geodesic flows of
diffeomorphisms,” International Journal of Computer Vision,
vol. 61, no. 2, pp. 139–157, 2005.

[23] V. Camion and L. Younes, “Geodesic interpolating splines,” in
Proceedings of the 3rd International Workshop on Energy Mini-
mization Methods in Computer Vision and Pattern Recognition
(EMMCVPR ’01), pp. 513–527, London, UK, 2001.

[24] S. C. Joshi and M. I. Miller, “Landmark matching via large
deformation diffeomorphisms,” IEEE Transactions on Image
Processing, vol. 9, no. 8, pp. 1357–1370, 2000.

[25] M. Vaillant and J. Glaunès, “Surface matching via currents,” in
the 19th International Conference on Information Processing in
Medical Imaging (IPMI ’05), pp. 381–392, July 2005.

[26] J. Glaunès, A. Qiu, M. I. Miller, and L. Younes, “Large defor-
mation diffeomorphic metric curve mapping,” International
Journal of Computer Vision, vol. 80, no. 3, pp. 317–336, 2008.

[27] A. W. Toga and P. Thompson, “Brain warping,” in Brain
Warping, pp. 1–26, Academic Press, New York, NY, USA, 1999.

[28] J. A. Glaunes and S. Joshi, “Template estimation from unla-
beled point set data and surfaces for computational anatomy,”
in the International Workshop on Mathematical Foundations of
Computational Anatomy, 2006.

[29] B. C. Davis, E. Bullitt, P. T. Fletcher, and S. Joshi, “Population
shape regression from random design data,” in the 11th
IEEE International Conference on Computer Vision (ICCV ’07),
October 2007.

[30] S. Durrleman, X. Pennec, A. Trouvé, P. Thompson, and
N. Ayache, “Inferring brain variability from diffeomorphic
deformations of currents: an integrative approach,” Medical
Image Analysis, vol. 12, no. 5, pp. 626–637, 2008.

[31] K. Van Leemput, F. Maes, D. Vandermeulen, and P. Suetens,
“Automated model-based tissue classification of MR images of
the brain,” IEEE Transactions on Medical Imaging, vol. 18, no.
10, pp. 897–908, 1999.

[32] S. K. Warfield, M. Kaus, F. A. Jolesz, and R. Kikinis, “Adaptive,
template moderated, spatially varying statistical classification,”
Medical Image Analysis, vol. 4, no. 1, pp. 43–55, 2000.

[33] M. Prastawa, J. H. Gilmore, W. Lin, and G. Gerig, “Automatic
segmentation of MR images of the developing newborn
brain,” Medical Image Analysis, vol. 9, no. 5, pp. 457–466, 2005.

[34] W. E. Lorensen and H. E. Cline, “Marching cubes: a high reso-
lution 3D surface construction algorithm,” ACM SIGGRAPH
Computer Graphics, vol. 21, no. 4, pp. 163–169, 1987.

[35] Z. Zhang, “Iterative point matching for registration of free-
form curves and surfaces,” International Journal of Computer
Vision, vol. 13, no. 2, pp. 119–152, 1994.

[36] H. A. El Munim and A. A. Farag, “Shape representation
and registration using vector distance functions,” in IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR ’07), June 2007.

[37] K. M. Pohl, J. Fisher, S. Bouix et al., “Using the logarithm of
odds to define a vector space on probabilistic atlases,” Medical
Image Analysis, vol. 11, no. 5, pp. 465–477, 2007.

[38] A. Tsai, A. Yezzi, W. Wells et al., “A shape-based approach to
the segmentation of medical imagery using level sets,” IEEE
Transactions on Medical Imaging, vol. 22, no. 2, pp. 137–154,
2003.

[39] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and
J. C. Phillips, “GPU computing,” Proceedings of the IEEE, vol.
96, no. 5, Article ID 4490127, pp. 879–899, 2008.

[40] M. Harris, J. Owens, S. Sengupta, Y. Zhang, and A. Davidson,
CUDPP: CUDA Data Parallel Primitives Library, 2007.

[41] D. G. Merrill and A. S. Grimshaw, “Revisiting sorting for
GPGPU stream architectures,” in the 19th International Con-
ference on Parallel Architectures and Compilation Techniques
(PACT ’10), pp. 545–546, September 2010.

[42] S. Durrleman, X. Pennec, A. Trouvé, and N. Ayache, “Sparse
approximation of currents for statistics on curves and sur-
faces,” in the 11th International Conference on Medical Image
Computing and Computer-Assisted Intervention (MICCAI ’08),
vol. 5242 of Lecture Notes in Computer Science, pp. 390–398,
September 2008.

[43] L. Greengard and J. Strain, “The fast gauss transform,” SIAM
Journal on Scientific and Statistical Computing, vol. 12, no. 1,
pp. 79–94, 1991.

[44] R. W. Hockney and J. W. Eastwood, Computer Simulation
Using Particles, Taylor and Francis, 1989.

16 International Journal of Biomedical Imaging

[45] A. Trouvé and L. Younes, “Metamorphoses through lie group
action,” Foundations of Computational Mathematics, vol. 5, no.
2, pp. 173–198, 2005.

[46] P. Aljabar, K. K. Bhatia, M. Murgasova et al., “Assessment
of brain growth in early childhood using deformation-based
morphometry,” NeuroImage, vol. 39, no. 1, pp. 348–358, 2008.

Hindawi Publishing Corporation
International Journal of Biomedical Imaging
Volume 2011, Article ID 640208, 12 pages
doi:10.1155/2011/640208

Research Article

Heterogeneous Computing for Vertebra Detection and
Segmentation in X-Ray Images

Fabian Lecron, Sidi Ahmed Mahmoudi, Mohammed Benjelloun,
Saı̈d Mahmoudi, and Pierre Manneback

Computer Science Department, Faculty of Engineering, University of Mons, Place du Parc, 20 7000 Mons, Belgium

Correspondence should be addressed to Fabian Lecron, fabian.lecron@umons.ac.be and
Sidi Ahmed Mahmoudi, sidi.mahmoudi@umons.ac.be

Received 8 March 2011; Accepted 3 June 2011

Academic Editor: Yasser M. Kadah

Copyright © 2011 Fabian Lecron et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The context of this work is related to the vertebra segmentation. The method we propose is based on the active shape model (ASM).
An original approach taking advantage of the edge polygonal approximation was developed to locate the vertebra positions in a X-
ray image. Despite the fact that segmentation results show good efficiency, the time is a key variable that has always to be optimized
in a medical context. Therefore, we present how vertebra extraction can efficiently be performed in exploiting the full computing
power of parallel (GPU) and heterogeneous (multi-CPU/multi-GPU) architectures. We propose a parallel hybrid implementation
of the most intensive steps enabling to boost performance. Experimentations have been conducted using a set of high-resolution
X-ray medical images, showing a global speedup ranging from 3 to 22, by comparison with the CPU implementation. Data transfer
times between CPU and GPU memories were included in the execution times of our proposed implementation.

1. Introduction

The general context of the present work is the cervical
vertebra mobility analysis on X-ray images. The objective is
to be able to automatically measure the vertebral angular
movements. The issue is to determine the angles between
adjacent vertebræ on radiographs characterized by 3 patient’s
positions: flexion, neutral, and extension.

In [1], Puglisi et al. describe a protocol for the analysis
of cervical vertebra mobility applied to hospital diagnosis
or to scientific research. They show that for the mobility
analysis, the vertebra contour needs to be defined by a human
operator. This operation can be performed on the original or
the digitized radiograph. One contribution of this paper is to
develop automated methods to provide such data.

One way to extract quantitative data is to segment the
vertebræ by digital image processing. Nowadays, regular
radiography of the spine is the cheapest and the fastest way
for a physician to detect vertebral abnormalities. Further-
more, as far as the patient is concerned, this procedure is sure
and noninvasive. Despite these advantages, the segmentation

of X-ray images is very challenging due to their nature. They
are characterized by very poor contrast, blended contours,
and the human body complexity is responsible for the fact
that some parts of the image could be partially or completely
hidden by other organs. In a medical context, a key variable
has to be taken into account: the time. It is crucial to
develop efficient applications with a reduced execution time,
especially in the case of urgent diagnosis. To do so, one can
imagine to use a parallel-based architecture such as cluster,
grid computing, graphics processing units (GPUs).

The GPUs represent an efficient solution to solve this
problem. However, such a solution does not exploit the CPU
multiple computing units (cores) present in the majority of
computers. Moreover, the solution based on GPU is seriously
hampered by the high costs of data transfer between CPU
and GPU memories. To limit these constraints, we propose
a parallel hybrid implementation which allows exploiting
effectively the full computing power of heterogeneous archi-
tectures. Notice that heterogeneous architectures dispose of
both multiple CPU and multiple GPU cores. The proposed
implementation is applied on the most intensive step of

2 International Journal of Biomedical Imaging

vertebra segmentation method. Indeed, we develop a parallel
hybrid implementation of the recursive contour extraction
technique using Canny’s criteria [2]. Our choice to parallelize
this method is due to its noise robustness and its reduced
number of operations. These factors allow applying the
application on large sets of medical images and enable to
have more precise results for vertebra extraction. Our work
is especially dedicated to the use of large images databases.
Therefore, our framework could be used in a medical context
given the growing number of patients. Another application
could be associated to the search and the navigation in large
images and videos databases, such as in [3].

The remainder of the paper is organized as follows:
related works are described in Section 2. Section 3 presents
the CPU implementation of the proposed method based
on active shape model. Section 4 discusses the use of GPU
for image processing algorithms, while Section 5 is devoted
to the parallel hybrid implementation of our approach,
exploiting effectively the full computing power of heteroge-
neous architectures. Section 6 presents the obtained results
of vertebra extraction using a data set of medical images and
compares the performance between CPU, GPU and hybrid
implementations. Finally, Section 7 concludes and proposes
further work.

2. Related Work

One can find two kinds of related work for which vertebra
segmentation and optimal edge detection in medical images
are the fundamental processing steps: the first one is related
to sequential solutions for vertebra extraction using CPUs,
and the second is related to the use of GPU to accelerate
image processing algorithms, which can be exploited for
medical applications.

2.1. Vertebra Segmentation on CPU. If we study the seg-
mentation approaches described in the literature, we can
observe that their effectiveness depends on the related
medical imagery modality. One can distinguish 3 types
of modality: the conventional radiography (X-ray), the
computed tomography (CT) and the magnetic resonance
(MR).

With regard to the MR images, a watershed algorithm has
been used in [4] to segment and reconstruct intervertebral
disks. The idea is to provide preoperative data with an image-
guided surgery system. The method uses a combination of
statistical and spectral texture features to discriminate closed
regions representing intervertebral disks. Recently, Huang
et al. have used a learning-based approach applied to the
vertebra detection and segmentation on MR images [5].
To this end, features such as Harr wavelet are extracted on
images to train an AdaBoost learning algorithm. Finally, a
normalized graph cut algorithm is used to segment the exact
contour of the vertebræ. A similar approach has also been
proposed for the vertebra segmentation in the context of
CT images. In [6], lumbar vertebræ are segmented by the
minimization of the graph cut associated to a CT image.

Still in this context, the active contour algorithm which
deforms and moves a contour submitted to internal and
external energies is applied in [7]. In this work, Klinder
et al. provides a framework dedicated to the detection,
identification, and segmentation of CT images for the
computer-assisted surgery. Concerning the segmentation
part, they use a constrained deformable model defined in
[8]. In the same idea, the level set method, which makes an
interface evolve in the image, has also been dedicated to the
vertebra segmentation in [9, 10]. The main drawback of these
methods remains the strong influence of an initialization
close to the target.

To deal with X-ray images, methods only based on the
image information are not adapted. The efficient methods
for MR or CT images are not suitable for radiographs because
of the blended contours. An exact segmentation needs
additional details about the object of interest. For this reason,
a template matching algorithm combined with a polar
signature system has been proposed in [11]. Other model-
based methods such as active shape model [12] and active
appearance model [13] showed their effectiveness. Basically,
an active shape model is a statistical model generated from
a set of training samples. A mean shape model is computed
and placed near the vertebræ of interest on the radiograph.
ASM search applies deformations on this mean shape so
that it corresponds to the real vertebra contour. An active
appearance model is based on the same principle but intro-
duces a model of the underlying distribution of intensity
around the landmarks. In this paper, since we do not need the
information about the texture, we decided to use active shape
model to characterize and segment the vertebræ. ASM and
AAM have been, respectively, used in [14–16] and [17–20]
for the vertebra segmentation. However, the models used are
global ones, that is, defined by several vertebræ. The interest
of that model is to provide information about the curvature
and the dependence between two vertebræ. Nevertheless,
in the context of the vertebral mobility analysis, the global
models cannot explain all the curvature variability since 3
particular patient’s positions are studied. The only way to
achieve the segmentation is to use a local vertebra model.
However, in order to ensure an exact contour extraction,
we need to precisely initialize the segmentation step by
placing mean shape very close to the vertebræ of interest.
In the literature, the generalized Hough transform (GHT) is
often used for that matter. In [21], the authors try to take
advantage of the GHT on radiographs in a fully automatic
way, but they present a segmentation rate equal to 47% for
lumbar vertebræ without providing information about the
detection rate. Very recently, Dong and Zheng have proposed
a method combining GHT and the minimal intervention of
a user with only 2 clicks in the image [22].

2.2. GPU for Image Processing. Many image processing and
rendering algorithms are known by their high consumption
of both computing power and memory. Beyond of image
rendering, most of image processing algorithms contain
phases which consist of similar calculations between image
pixels. These facts make these algorithms prime candidates

International Journal of Biomedical Imaging 3

for acceleration on GPU by exploiting processing units in
parallel. In this category, Yang et al. implemented several
classic image processing algorithms on GPU with CUDA
[23]. OpenVIDIA project [24] has implemented different
computer vision algorithms running on graphics hard-
ware such as single or multiple graphics processing units,
using OpenGL [25], Cg [26], and CUDA [27]. Luo and
Duraiswami proposed a GPU implementation [28] of the
Canny edge detector [29]. There are also some GPU works
in medical imaging for new volumetric rendering algorithms
[30, 31] and magnetic resonance (MR) image reconstruction
on GPU [32]. Otherwise, there are different works for the
exploitation of heterogeneous architectures of multicores
and GPUs. Ayguadé et al. proposed a flexible programming
model for multicores [33]. StarPU [34] provides a unified
runtime system for heterogeneous multicore architectures
(CPUs and GPUs), enabling to develop effective scheduling
strategies.

Actually, our contribution is to propose firstly an original
automated approach to detect the vertebra location in a
radiograph which will be used for the initialization of
the segmentation phase. Next, we develop a model-based
segmentation procedure especially adapted to the vertebral
mobility study. We also contribute with improving perfor-
mance of vertebra segmentation in X-ray medical images,
by implementing the most intensive step of the proposed
approach on heterogeneous architectures composed of both
CPUs and GPUs. Indeed, we propose a parallel hybrid
implementation of edge detection step using Deriche-Canny
method [2] that enables a better noise removing and requires
a less number of operations than Canny method. This hybrid
implementation allows an efficient exploitation of the full
computing power of heterogeneous architectures (multi-
CPU/multi-GPU) and enables to more improve performance
than the GPU implementation described in [35].

3. General Framework

In this paper, we propose an original approach for the ver-
tebra segmentation in the context of the vertebral mobility
analysis. Our method is actually based on the active shape
model. Global statistical models generally used in the liter-
ature are not able to explain the spine curvature variability
induced by the 3 positions: extension, neutral, and flexion.
Therefore, we decided to use a local vertebra model implying
an exact initialization of the ASM-based segmentation, that
is, placing the mean shape close to the vertebræ of interest.
For that matter, we need to locate the position of all the
vertebral bodies. To this end, vertebra features are detected
according to an original procedure. Actually, the anterior
corners of each vertebra are located in the radiograph by
an approach based on the edge polygonal approximation.
Once we have extracted the vertebra position, we can start
the segmentation procedure.

3.1. Learning. The learning phase starts with the creation of
a sample of images. In our case, we use X-ray radiographs
focused on the cervical vertebræ C3 to C7 (see Figure 2).

Actually, each item of the sample has to be described by
an information, that is, the coordinates of some landmarks
located on the item contour. These points need to correspond
on the different shapes in the sample. The resulting marked
vertebræ are not directly exploitable. Every shape in the
sample has particular position and orientation. Building a
relevant statistical model requires to align the shapes. To this
end, we use an alignment approach based on the Procrustes
analysis and detailed in [36].

3.2. Modelization. As soon as all the vertebra shapes are
aligned, they can be used to build the active shape model. To
do so, the mean shape is first computed and then a group of
other allowable shapes is derived by moving the landmarks
in specific directions, obtained by a principal component
analysis (PCA) of the data. We refer the reader to [12] for
more detail about the modelization.

3.3. Initialization. In order to initialize the segmentation
procedure, the mean shape has to be placed close to a
vertebra of interest. In [37], we proposed an original method
to locate points of interest in a radiograph. Here, we use
part of this work but we also detect the vertebræ by their
anterior corners. First, a user is asked to mark out 2 points
in the image to determine a region of interest (ROI) by
the higher anterior corner of the C3 vertebra and the lower
anterior corner of the C7 vertebra. Then, all the vertebral
bodies are detected with a process composed of 4 steps: a
contrast-limited adaptive histogram equalization to improve
the image contrast, an edge detector, an anterior corner
detection, and finally the vertebra localization.

3.3.1. Contrast-Limited Adaptive Histogram Equalization.
The X-ray images we deal with have very poor contrast.
Before any further process, we need to improve the image
quality. A simple histogram equalization has no impact on
the radiographs. Therefore, we propose to use a specific
method: the contrast-limited adaptive histogram equaliza-
tion [38].

The principle is to divide the image in contextual regions.
In each of them, the histogram is equalized. Nevertheless,
this transformation induces visual boundaries around the
contextual regions. To get rid of this effect, a bilinear
interpolation scheme is used. Let A, B, C, and D be the
centers of contextual regions (see Figure 1). For a pixel pi
with an intensity r, we can write

s = (1− y
)
[(1− x)TA(r) + xTB(r)]

+ y[(1− x)TC(r) + xTD(r)]
(1)

where Tk stands for the equalization transformation of the
region k, and s for the new value of the pixel pi.

Only applying this scheme is still dependent to the
increase of the noise in the radiograph. One way to decrease it
is to reduce the contrast improvement in the homogeneous
areas. A contrast factor is then defined to limit the highest
peaks in the equalized histogram. The pixels above this factor
limit are uniformly redistributed in the histogram.

4 International Journal of Biomedical Imaging

A B

C D

x

y

Figure 1: Image sample divided in 4 contextual regions.

3.3.2. Edge Detection. The Canny edge detector, introduced
in [29] allows to detect edges in an image by taking advantage
of the information given by the intensity gradient. Let I be
this image. The first step is to reduce the noise by removing
isolated pixels. To this aim, the image is convolved with the
Gaussian filter defined by (2).

G
(
x, y

) = 1
2πσ2

e−(x2+y2)/2σ2
. (2)

Next, the Sobel operator is applied on the resulting
image. Let A be this image. The operator is based on a couple
of masks defined by the relation (3). With this information,
the gradient of a pixel can be computed by

Gx =

⎛⎜⎜⎝
−1 0 1

−2 0 2

−1 0 1

⎞⎟⎟⎠∗ A Gy =

⎛⎜⎜⎝
−1 −2 −1

0 0 0

1 2 1

⎞⎟⎟⎠∗ A, (3)

G =
√
G2
x + G2

y , (4)

Additional information about the gradient orientation is
simply given by:

θ = arctan

(
Gy

Gx

)
. (5)

Once the gradient has been computed for every pixel,
only maxima have to be retained. High gradient intensity
stands for high probability of edge presence. Finally, the
last phase makes a hysteresis binarization. High and low
thresholds are defined in such a way that, for each pixel, if
the gradient intensity is

(i) lower than the low threshold, the point is rejected,

(ii) greater than the high threshold, the point is part of
the edge,

(iii) between the low and the high thresholds, the point is
accepted only if it is connected to an already accepted
point.

3.3.3. Corner Detection. In this work, we propose to locate
the vertebræ by firstly detecting some features: the anterior
vertebra corners. To this end, we present a method based
on the geometrical definition of a corner; that is, a point is
considered as a corner if it is located at the intersection of
two segment lines. The idea is to perform an edge polygonal
approximation. Usually, works about the polygonal approxi-
mation detect the dominant points in the image and build a
polygonal approximation. Here, we do the opposite by using
the polygonal approximation to detect features in the image.

The Canny algorithm provides the edges on the image
but only acts on the pixel values. In order to carry out
the polygonal approximation algorithm, we need to define
the contours as sets of points. Therefore, a simple contour
tracking approach has been developed.

The algorithm used in this paper is the one proposed
by Douglas and Peucker in [39]. This approach is based
on the principle that a polyline represented by n points
can be reduced in a representation with 2 points if the
distance between the segment line joining the extremities of
the polyline and the farthest point from this line is lower
than a given threshold. The first stage concerns the selection
of the extremities E1 and E2 of the polyline. Let A be the
farthest point from the segment line ‖E1E2‖ and d the
distance between the point A and ‖E1E2‖. Three scenarios
are considered:

(i) if d ≤ ε, all the points situated between E1 and E2 are
removed,

(ii) if d > ε, the algorithm is recursively applied on 2 new
polylines: ‖E1A‖ and ‖AE2‖,

(iii) if there is no point between E1 and E2, the polyline is
no longer reducible.

3.3.4. Vertebra Localization. Now that we have detailed how
to detect corners in a general way, let us explain how to only
detect the vertebra ones. Among all the corners detected by
our approach based on the edge polygonal approximation,
the ones describing a vertebra need to be distinguished.

The first stage of our procedure is to build a statistical
model of the spine curvature in order to extract the mean
shape. The landmarks of the model are the anterior vertebra
corners. An illustration is given at the Figure 2. Notice that
here, the goal is not to explain precisely the curvature but
just to have a way to locate vertebra anterior corners. The
next step brings a user to mark out the higher anterior corner
of the C3 vertebra and the lower anterior corner of the C7
vertebra to define a ROI. Then, we perform an alignment
between these two particular points and the mean shape of
the spine curvature model. Finally, for each landmark, we
search the closest corner detected by the approach based on
the edge polygonal approximation. Note that a specific order
has to be followed: from the top to the bottom of the image
(the opposite could be considered). This order is crucial to
avoid the algorithm swapping lower and higher corners of
two successive vertebræ.

International Journal of Biomedical Imaging 5

C3

C4

C5

C6

C7

Figure 2: Landmarks for the spine curvature modelization.

3.4. Segmentation. The statistical model allowing to identify
acceptable shapes of the object of interest is now defined.
However, we still have to present how the search in the
image is conducted during the segmentation. To this end, the
grey level variation has to be locally evaluated around each
landmark in the sample. Then, a mean profile of the texture
(gradient intensity) can be deduced. After the initialization,
a local analysis of the texture is carried out around each
landmark of the initial shape. The goal is to find the best
match with the mean profile previously determined. The
distance used for the profile comparison is the Mahalanobis
distance. This search implies that the landmarks are moved
during the segmentation. The procedure is repeated until the
convergence, that is, when the match between the current
shape profile and the mean one is no more improved.

4. Image Processing on GPU

Image processing algorithms represent an excellent topic for
acceleration on GPU, since the majority of these algorithms
have sections which consist of a common computation
over many pixels. This fact is due to the exploitation of
the high number of GPU’s computing units in parallel.
As a result, we can say that graphics cards represent an
efficient tool for boosting performance of image processing
techniques. This section describes firstly the key factors of
GPUs and the programming languages used to exploit their
high power and secondly the proposed development scheme
for image processing on GPU, based upon CUDA for parallel
constructs and OpenGL for visualization.

4.1. GPU Programming. Graphics processing units (GPUs)
have dramatically evolved during last years as shown in
Figure 3. This evolution makes them a very high attractive

6800Ultra Core i7 980x
Core quad

GTX480

GTX280
8800 GTX

P4 HT3.4

2000

1500

1000

500

0

CPU
GPU

2003 2004 2005 2006 2007 2008 2009 2010 2011

G
Fl

op
s

Figure 3: Computational Power: GPU versus CPU. Derived from
[40].

hardware platform for general purpose computation. For a
better exploitation of this high power, the GPUs memory
bandwidth has also significantly increased. Furthermore,
the advent of GPGPU (general purpose graphics processing
unit) languages enabled exploiting GPU for more types of
application and not only for image rendering and video
games. In this context, NVIDIA launched the API CUDA
(compute unified device architecture) [27], a programming
approach which exploits the unified design of the most
current graphics processing units from NVIDIA. Under
CUDA, GPUs consist of many processor cores which can
address directly to GPU memories. This fact allows a more
flexible programming model. As a result, CUDA has rapidly
gained acceptance in domains where GPUs are used to
execute different intensive parallel applications.

4.2. Image Processing Model Based on CUDA and OpenGL.
We propose in this paragraph a model for image processing
on graphics processors, enabling to load, treat, and display
images on GPU. This model is represented by a scheme
development based upon CUDA for parallel constructs
and OpenGL for visualization, which reduces data transfer
between device and host memories. This scheme is based on
four steps (Figure 4):

(i) copy input data,

(ii) threads allocation,

(iii) parallel processing with CUDA,

(iv) output results.

(1) Copy Input Data: The transfer of input data (images)
from host (CPU) to device (GPU) memory enables
to apply GPU treatments on the copied image.

(2) Threads Allocation: After loading the input data
(images) on GPU memory, the threads number in the
grid of GPU has to be selected so that each thread can
perform its processing on one or a group of pixels.
This allows threads to process in parallel on image

6 International Journal of Biomedical Imaging

Input
image

CPU

Store

Image on

GPU
Threads

allocation
CUDA parallel

processing

Output
images

Display

Result

1 image

1 2 3

4

OpenGL
visualization

Output video

GPU

N images (N>1)

Figure 4: Image Processing on GPU based on CUDA and OpenGL.

pixels. We note that the selection of the number of
threads depends on the number of pixels.

(3) Parallel Processing with CUDA: The CUDA functions
(kernels) are executed N times using the N selected
threads in the previous step.

(4) Output Results: After processing, results can be
presented using two different scenarios.

(i) OpenGL Visualization: The visualization of out-
put images using the graphics library OpenGL
is fast, since it exploits buffers already existing
on GPU. Indeed, the compatibility of OpenGL
with CUDA enables to avoid more data trans-
fer between host and device memories. This
scenario is useful when parallel processing is
applied on one image only since we cannot
display many images using one video output
(one GPU disposes of one video output).

(ii) Transfer of results: the visualization with
OpenGL is impossible in the case of applying
treatments on a set of images using one video
output only. In this case, the transfer of results
(output images) from GPU to CPU memory
is required. This transfer time represents an
additional cost for the application.

5. Hybrid Implementation on
Heterogeneous Architectures

We presented in Section 3 the implementation details and
steps of the proposed method of vertebra extraction on CPU.
One disadvantage of this method is the computing time
which increases significantly with the number of images and
their resolution. Actually, the execution time of the edge
detection is approximately 3 or 4 times greater than the time
for histogram equalization and polygonal approximation.
The ASM search procedure is not adapted for a parallel

implementation due to the number of iterations which are
dependent with each other. We proposed in [35] a solution
based on the exploitation of the high power of GPUs in
parallel. However, this solution does not exploit the CPU
multiple computing units (cores) present in the majority of
computers. Moreover, the solution based on GPU is ham-
pered by the costs of data transfer between CPU and GPU
memories. To reduce these constraints, we propose a parallel
hybrid implementation which allows exploiting effectively
the full computing power of heterogeneous architectures
(multi-CPU/multi-GPU). This implementation is applied
on the most intensive step of the vertebra segmentation
method: edge detection. This section is presented in two
parts: the first part describes our GPU implementation of
edge detection step based on a recursive method. The second
part describes the hybrid implementation of edge detection
step on heterogeneous architectures.

5.1. GPU Implementation. This section describes the GPU
implementation of edge detection step based on a recursive
algorithm using Canny’s design [2]. The noise truncature
immunity and the reduced number of required operations
make this method very efficient. This technique is based on
four principale steps:

(i) recursive gradient computation (Gx, Gy).

(ii) gradient magnitude and direction computation.

(iii) non-maxima suppression.

(iv) hysteresis and thresholding.

We note that the recursive gradient computation step
applies a Gaussian smoothing before filtering the image
recursively using two Sobel filters in order to compute the
gradients Gx and Gy . While the steps of gradient magnitude
and direction computation, nonmaxima suppression, and
hysteresis represent the same steps used for Canny filter
described in Section 3.3.2.

International Journal of Biomedical Imaging 7

1 for (i = 0; i < n; ++i) {\ \ n: number of images

2 img = cvLoadImage (Input image};
3 starpu data handle img handle;

4 starpu vector data register(&img handle);

5 queue = add(queue, img, img handle);

6 }

Listing 1: Loading of input images with StarPU.

The proposed GPU implementation of this recursive
method is based on the parallelization of all the steps listed
below on GPU using CUDA.

5.1.1. Recursive Gaussian Smoothing on GPU. The GPU
implementation of the recursive Gaussian smoothing step is
developed using the CUDA SDK individual sample package
[41]. This parallel implementation is applied on Deriche
recursive method [2]. The advantage of this method is that
the execution time is independent of the filter width. The
use of this technique for smoothing allows to have a better
noise truncature immunity which represents an important
requirement for our application.

5.1.2. Sobel Filtering on GPU. The recursive GPU implemen-
tation of this step is provided from the CUDA SDK indi-
vidual sample package [41]. This parallel implementation
exploits both shared and texture memories which allow to
boost performance. This step applies a convolution of the
source image by two Sobel filters of aperture size 3 in order to
compute horizontal and vertical gradients Gx and Gy at each
pixel. The GPU implementation is based firstly on a parallel
horizontal convolution across the columns for computing Gx

and secondly on a parallel vertical convolution across the
lines for computing Gy .

5.1.3. Gradient Magnitude and Direction Computing on GPU.
Once the horizontal and vertical gradients (Gx and Gy)
have been computed, it is possible to calculate the gradient
magnitude (intensity) using (4) and the gradient direction
using (5). The CUDA implementation of this step is applied
in parallel on image pixels, using a GPU grid computing
containing a number of threads equal to image pixels
number. Thus, each thread calculates the gradient magnitude
and direction of one pixel of the image.

5.1.4. Nonmaxima Suppression on GPU. After computing
the gradient magnitude and direction, we apply a CUDA
function (kernel) which enumerates the local maxima (pixels
with high gradient intensity) and deletes all nonridge pixels
since local maxima are considered as a part of edges. We
proposed to load the values of neighbors pixels (left, right,
top, and bottom) in shared memory, since these values are
required for the search of local maxima. The number of
selected threads for parallelizing this step was also equal to
image pixels number.

5.1.5. Hysteresis on GPU. Hysteresis represents the final step
to product edges. It is based on the use of two thresholds T1

and T2. Any pixel in the image that has a gradient magnitude
greater than T1 is presumed to be an edge pixel and is marked
as such immediately. Then, all the pixels connected to this
edge pixel and that have a gradient intensity greater than T2

are also selected as edge pixels. The GPU implementation
of this step is achieved using the method described in [28].
Notice that we exploit also the GPU’s shared memory for a
fast loading of connected pixels values.

5.2. Hybrid Implementation. The GPU implementation
described below allowed to improve considerably the per-
formance of edge detection step in the case of processing
one image only, since results can be visualized quickly with
OpenGL [35]. However, if we apply treatments on a set of
medical images (as required in our proposed method of
vertebra detection), the transfer of results (output images)
from GPU to CPU memory will be required. This transfer
time represents an important cost for the application. Thus,
we propose to implement the edge detection step on a
set of medical images, by exploiting the full computing
power of heterogeneous architectures (multi-CPU/multi-
GPU) that enables to have faster solutions, with less transfer
of data between CPU and GPU memories, as the images
processed on CPU do not require any transfer. The proposed
implementation is based on the executive support StarPU
[34] which provides a unified runtime system for het-
erogeneous multicore architectures. Therefore, our hybrid
implementation of the edge detection step applied on a set
of X-ray images can be described in three steps: loading of
input images, hybrid processing with StarPU, and updating
and storing results.

5.2.1. Loading of Input Images. First, we have to load the
input images in queues so that StarPU can apply treatments
on images present on these queues. Listing 1 summarizes this
step.

Line 2 allows loading the image in main memory, lines
3 and 4 enable to allocate a buffer (handle) StarPU which
disposes of the loaded image address. Line 5 is used to add
this image and the buffer StarPU in a queue that will contain
all the images to treat.

5.2.2. Hybrid Processing with StarPU. Once the input images
are loaded, StarPU can launch the CPU and GPU functions
of edge detection (described, respectively, in Section 3.3.2

8 International Journal of Biomedical Imaging

1 static starpu codelet cl = {
2 .where = STARPU CPU|STARPU CUDA, // CPU & GPU cores

3 .cpu func = cpu impl, // define CPU fct

4 .cuda func = cuda impl, // define GPU fct

5 .nbuffers = 1 // buffers number

6 } ;

Listing 2: The codelet StarPU.

1 while (queue != NULL) {
2 task = starpu task create(); //Create task

3 task→cl = &cl; //Define the codelet

4 task→handle = queue→img handle; //Define the buffer

5 task→handle.mode = STARPU RW; //Mode Read/Write

6 starpu task submit(task); //Submit the task

7 queue = queue→next; //Move to next image

8 }

Listing 3: Submission of tasks to the set of images.

and 5.1) on heterogeneous processing units (CPUs and
GPUs). StarPU is based on two main structures: the codelet
and the task. The codelet defines the computing units that
could be exploited (CPUs or/and GPUs), and the related
implementations (Listing 2). The StarPU tasks apply this
codelet on the set of images.

In our case, each task is created and launched to treat
one image in the queue. The scheduler of StarPU distributes
automatically and effectively the tasks on the heterogeneous
processing units. StarPU enables also an automatic transfer
of data from CPU to GPU memory if tasks are executed on
GPU. (Listing 3).

5.2.3. Updating and Storing Results. When all the StarPU
tasks are completed, the results of GPU treatments must
be repatriated in the buffers. This update is provided by a
specific function in StarPU. This function enables also to
transfer data from GPU to CPU memory in the case of
treatments applied on GPU.

6. Experimental Results

6.1. Segmentation. The validation of the cervical mobility
evaluation is made by the validation of the segmentation
approach. If we can be sure to know exactly the contour of
the vertebræ, we can efficiently evaluate the angles between
them. In order to do this, we use a sample of 51 radio-
graphs coming from the NHANES II database of the Nation-
al Library of Medicine (http://archive.nlm.nih.gov/proj/dxp-
net/nhanes/nhanes.php). These images are the digitized ver-
sions of X-ray films collected during 1976–1980. Persons
aged 25 through 74 were examined. Interesting data in
this work are radiographs focused on the cervical vertebræ.
Actually, we study the 5 vertebral bodies C3 to C7. Note that

ASM contour

Theoretical contour

Point-to-line distance

Figure 5: Point-to-line distance characterizing the error between a
theoretical contour and an ASM-segmented contour.

the resolution is the same for all images, that is, 1763× 1755
pixels. We then chose randomly 51 X-ray films allowing the
visual presence of the vertebræ C3 to C7. This way, we can fix
the test set to validate the segmentation method.

One way to measure the segmentation error is to
compute the distance between the ASM contour and a
theoretical contour defined by a specialist. Therefore, a gold
standard has been defined for the 51 radiographs of the test
set. The chosen distance for measuring the segmentation
error is the point-to-line distance. Used in [15, 16], the
principle is to compute the length of the perpendicular
dropped from each landmark of the theoretical contour to
the spline evaluated between the landmarks of the ASM
contour. A visual representation of the point-to-line distance
is provided at the Figure 5.

International Journal of Biomedical Imaging 9

Further in this paragraph, we present statistical results on
the segmentation error. The reader will find the mean error
(in px) for the sample of 51 radiographs, the median (in px),
and finally the failure rate. These indicators are computed at
each vertebra level (from C3 to C7). Let us remark that the
segmentation error is given in pixels. However, the scanner
used by the NLM to digitize the radiographs was of 146 dpi.
Therefore, we can consider that 1 px is approximately equal
to 0.2 mm. In order to determine the failure rate, we followed
the example presented in [16]. The segmentation error is
divided in success and failure distribution. Therefore, we
consider as a failure any error greater than 3 standard
deviations from the mean of the success distribution.

Before the analysis of the segmentation results, we need
to measure the quality of the initialization based on the
detection of the vertebræ in the radiograph. As we previously
noticed, the goal of detecting corners in cervical spine
radiographs is to initialize the mean shape of the ASM
search. In [37], we showed the benefits of the polygonal
approximation dedicated to the points of interest detection
by comparing it with the Harris detector [42]. The Harris and
Stephen’s definition of a corner uses the information of the
Hessian matrix of grey level intensities. This detector is based
on the local autocorrelation matrix of a signal on a region
defined around each point, which measures the local changes
of the signal in different directions. However, the results show
that in the particular context of cervical spine radiographs,
the intensity gradient information is not useful for detecting
the points of interest. Actually, we demonstrate the interest
of using a geometrical definition of a corner for its detection.
Another advantage of the polygonal approximation is that
once the Canny parameters have been chosen, only one
parameter remains to be fixed: the threshold ε. Furthermore,
there is no influence between the Canny parameters and the
one of the polygonal approximation.

In this section, we evaluate the influence of the initial-
ization on the results. Table 1 shows the segmentation results
with an initialization totally accomplished by a user. In fact,
it was asked him to mark out manually all the vertebræ
on the radiograph. We used a distinctive model for each
vertebra level. In the literature [17–20], the models used are
global ones. Their advantage is to bring information about
the spine curvature, but they cannot efficiently accomplish
a local segmentation. The only way to do this is to use a
local vertebra model, but it requires a precise initialization
close to the object of interest. The results of the Table 1 show
the advantage to use such a model. The segmentation error
is about 2.90 px and the percentage of failures is more than
acceptable for each vertebra level (compared to the literature,
see, for instance [15, 17–20]).

We could have stopped the experiments here, but it is
not conceivable to ask a user to mark out all the vertebræ
on every image he has to segment. For this reason, one
of the contributions of this paper is to propose a semi-
automatization of the ASM initialization. The data related
to the Table 2 present the results based on this automated
initialization. The analysis of the table demonstrates two
particular trends. First, if we consider the mean segmentation
error, we notice that its value is slightly increased in

Table 1: Statistical results on the error segmentation: local vertebra
model (manual initialization).

Vert. Mean (px) Median (px) Fail. (%)

C3 2.95 2.30 7.84

C4 2.63 2.43 1.96

C5 2.74 2.20 3.92

C6 2.98 2.65 3.92

C7 3.11 2.54 1.96

Table 2: Statistical results on the error segmentation: local vertebra
model (automated initialization).

Vert. Mean (px) Median (px) Fail. (%)

C3 2.97 2.36 7.84

C4 3.74 2.42 7.84

C5 2.86 2.34 5.88

C6 3.48 2.73 9.80

C7 3.27 2.50 5.88

comparison with the Table 1. A meticulous analysis permits
to target the step of the procedure responsible for this
phenomenon. In fact, the results degradation is due to the
points of interest detection by the polygonal approximation.
Nevertheless, this effect is minimal if we look at the results of
the Table 2.

A particular limitation of our approach could arise in a
specific case. If two vertebræ are merged, the corner detection
could confuse a higher corner of a vertebra with the lower
corner and the adjacent vertebra. Finally, we give the user
a visual illustration of the whole framework to perform the
vertebra segmentation at the Figure 6.

6.2. Performance. On the one hand, we can say that the
quality of the vertebra segmentation remains identical since
the procedure has not changed. Only the architecture and
the implementation did. On the other hand, the exploitation
of heterogeneous architectures (multi-CPU/multi-GPU) in
parallel for vertebra extraction enabled to accelerate the
computation time. This acceleration is due to the hybrid
implementation for edge detection step based on a recursive
method using Deriche-Canny method. This fact allowed to
apply our proposed method on large sets of X-ray medical
images in order to have more precision for vertebra detection
results.

Figure 7(a) presents the comparison of the comput-
ing times between sequential (CPU), parallel (GPU), and
hybrid (multi-CPU/multi-GPU) implementations of the
edge detection step, applied on a set of 200 images using dif-
ferent resolutions. Figure 7(b) shows the speedups obtained
with these implementations. The accelerations presented at
Figure 7 are due to two level of parallelism: a low-level and a
high-level parallelization.

(i) A low-level parallelization by porting the edge detec-
tion step on GPU (parallel processing between pixels
in image: intraimage parallel processing).

10 International Journal of Biomedical Imaging

(a) Original image (b) Edge detection (c) Edge polygonal approxi-
mation

(d) Points of interest detection

(e) Vertebra detection (f) Segmentation result

Figure 6: Illustration of the whole framework for the segmentation.

(ii) A high-level parallelization (interimages parallel pro-
cessing) enabling to exploit simultaneously both
CPUs and GPUs cores so that each core treats a subset
of images.

Experimentations have been conducted on several plat-
forms, that is, GPU Tesla C1060 and CPU Dual core:

(i) CPU: Dual Core 6600, 2.40 GHz, 2 GB RAM of
Memory.

(ii) GPU: NVIDIA Tesla C1060, 240 CUDA cores, 4 GB of
Memory.

7. Conclusion

In this paper, we proposed a framework for vertebra
segmentation based on a local statistical model. An original
process in order to locate vertebræ in a radiograph has been
developed. The principle is to detect features characterizing
the vertebræ: the anterior corners. The extraction procedure
is composed of 4 steps: a contrast-limited adaptive histogram

equalization to improve the image contrast, an edge detec-
tion, an anterior corner detection, and finally the vertebra
localization.

Generally, the computation time and noise immunity
truncature represent the most important requirements in
medical image processing and specifically for our applica-
tion. The graphics processors provided a solution by exploit-
ing the GPU’s computing units in parallel. However, this
solution is hampered by the costs of data transfers between
CPU and GPU memories. Thus, we proposed a parallel
hybrid implementation of the recursive edge method using
Deriche-Canny approach. This implementation allowed to
exploit the full computing power of heterogeneous architec-
tures. Moreover, this solution requires a less transfer of data
between CPU and GPU memories, as the treatments on CPU
do not require any transfer.

As future work, we plan to develop a fully automatic
segmentation approach based on a learning method such as
support vector machine (SVM). The main issue is to find
an efficient descriptor to train the supervised model. We
also aim to provide an automatic parallel implementation

International Journal of Biomedical Imaging 11

512× 512 1024× 1024 1472× 1760
0

10

20

30

40

50

60

70

1CPU

1GPU

1GPU-2CPU

2GPU-4CPU

4GPU-8CPU

Images number = 200

C
om

pu
ti

n
g

ti
m

e
(s

)

Image resolution

(a) Computing time of edge detection step using hybrid platforms

1GPU

1GPU-2CPU

2GPU-4CPU

4GPU-8CPU

Images number = 200

Image resolution

25

20

15

10

5

0

Sp
ee

du
p

512× 512 1024× 1024 1472× 1760 3936× 3936

(b) Speedup obtained for edge detection step using hybrid platforms

Figure 7: Performance of recurive edge detection using heterogeneous architectures.

exploiting the full computing power of hybrid architec-
tures. This implementation could choose automatically the
processing units for each step of our medical application.
Thus, the most intensive steps (initialization: edge detection)
would be implemented on heterogeneous platforms (multi-
CPU/multi-GPU), and the less intensive or not parallelizable
steps (learning, modelization, and segmentation) would
exploit the CPU multiple cores (multi-CPU).

Acknowledgments

The authors would like to thank the Communauté Française
de Belgique for supporting this work under the ARC-OLIMP
Research Project, Grant no. AUWB-2008-13-FPMs11. They
aknowledge also the support of the European COST action
IC0805 “Open European Network for High Performance
Computing on Complex Environment”.

References

[1] F. Puglisi, R. Ridi, F. Cecchi, A. Bonelli, and R. Ferrari,
“Segmental vertebral motion in the assessment of neck range
of motion in whiplash patients,” International Journal of Legal
Medicine, vol. 118, no. 4, pp. 235–239, 2004.

[2] R. Deriche, “Using Canny’s criteria to derive a recursively
implemented optimal edge detector,” International Journal of
Computer Vision, vol. 1, no. 2, pp. 167–187, 1987.

[3] X. Siebert, S. Dupont, P. Fortemps, and D. Tardieu, “Mediacy-
cle: browsing and performing with sound and image libraries,”
in QPSR of the Numediart Research Program, T. Dutoit and B.
Macq, Eds., vol. 2, pp. 19–22, 2009.

[4] C. Chevrefils, F. Chériet, C.-E. Aubin, and G. Grimard,
“Texture analysis for automatic segmentation of intervertebral
disks of scoliotic spines from MR images,” IEEE Transactions

on Information Technology in Biomedicine, vol. 13, no. 4, pp.
608–620, 2009.

[5] S.-H. Huang, Y.-H. Chu, S.-H. Lai, and C. L. Novak,
“Learning-bBased vertebra detection and iterative nor-
malized-cut segmentation for spinal MRI,” IEEE Transactions
on Medical Imaging, vol. 28, no. 10, Article ID 4967966, pp.
1595–1605, 2009.

[6] M. Aslan, A. Ali, H. Rara et al., “A novel 3d segmentation of
vertebral bones from volumetric ct images using graph cuts,”
in Advances in Visual Computing, vol. 5876 of Lecture Notes
in Computer Science, pp. 519–528, Springer, Berlin, Germany,
2009.

[7] T. Klinder, J. Ostermann, M. Ehm, A. Franz, R. Kneser,
and C. Lorenz, “Automated model-based vertebra detection,
identification, and segmentation in CT images,” Medical Image
Analysis, vol. 13, no. 3, pp. 471–482, 2009.

[8] J. Weese, M. Kaus, C. Lorenz, S. Lobregt, R. Truyen, and V.
Pekar, “Shape constrained deformable models for 3D medical
image segmentation,” in Information Processing in Medical
Imaging, vol. 2082 of Lecture Notes in Computer Science,
Springer, Berlin, Germany, 2001.

[9] H. Shen, A. Litvin, and C. Alvino, “Localized priors for the
precise segmentation of individual vertebras from ct volume
data,” in Medical Image Computing and Computer-Assisted
Intervention MICCAI 2008, vol. 5241 of Lecture Notes in
Computer Science, pp. 367–375, Springer, Berlin, Germany,
2008.

[10] S. Tan, J. Yao, M. M. Ward, L. Yao, and R. M. Summers,
“Level set based vertebra segmentation for the evaluation of
ankylosing spondylitis,” in Medical Imaging: Image Processing,
vol. 6144 of Proceedings of SPIE, pp. 58–67, San Diego, Calif,
USA, February 2006.

[11] M. Benjelloun and S. Mahmoudi, “X-ray image segmentation
for vertebral mobility analysis,” International Journal of Com-
puter Assisted Radiology and Surgery, vol. 2, no. 6, pp. 371–383,
2008.

12 International Journal of Biomedical Imaging

[12] T. F. Cootes and C. J. Taylor, “Active shape models—
‘smart snakes’,” in Proceedings of the British Machine Vision
Conference, pp. 266–275, Springer, Berlin, Germany, 1992.

[13] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appearance
models,” in 5th European Conference on Computer Vision, pp.
484–498, Springer, Berlin, Germany, 1998.

[14] L. R. Long and G. R. Thoma, “Use of shape models to search
digitized spine X-rays,” in 13th IEEE Symposium on Computer-
Based Medical Systems, pp. 46–50, IEEE Computer Society,
2000.

[15] P. P. Smyth, C. J. Taylor, and J. E. Adams, “Automatic
measurement of vertebral shape using active shape models,”
Image and Vision Computing, vol. 15, no. 8, pp. 575–581, 1997.

[16] P. P. Smyth, C. J. Taylor, and J. E. Adams, “Vertebral shape:
Automatic measurement with active shape models,” Radiology,
vol. 211, no. 2, pp. 571–578, 1999.

[17] M. G. Roberts, T. F. Cootes, and J. E. Adams, “Linking
sequences of active appearance sub-models via constraints:
an application in automated vertebral morphometry,” in
Proceedings of the 14th British Machine Vision Conference, pp.
349–358, Norwich, UK, 2003.

[18] M. G. Roberts, T. F. Cootes, and J. E. Adams, “Vertebral
shape: automatic measurement with dynamically sequenced
active appearance models,” in Medical Image Computing and
Computer-Assisted Intervention-MICCAI 2005, vol. 3750 of
Lecture Notes in Computer Science, pp. 733–744, Springer,
Berlin, Germany, 2005.

[19] M. G. Roberts, T. F. Cootes, and J. E. Adams, “Automatic
segmentation of lumbar vertebrae on digitised radiographs
using linked active appearance models,” in Proceedings of the
Medical Image Understanding and Analysis Conference, pp.
120–124, Manchester, UK, July 2006.

[20] M. G. Roberts, T. F. Cootes, E. Pacheco, T. Oh, and J. E.
Adams, “Segmentation of lumbar vertebrae using part-based
graphs and active appearance models,” in Proceedings of the
12th International Conference on Medical Image Computing
and Computer-Assisted Intervention, pp. 1017–1024, Springer,
2009.

[21] G. Zamora, H. Sari-Sarraf, and L. R. Long, “Hierarchical
segmentation of vertebrae from x-ray images,” in Proceedings
of the Medical Imaging 2003: Image Processing, vol. 5032 of
Proceedings of SPIE, pp. 631–642, San Diego, Calif, USA,
February 2003.

[22] X. Dong and G. Zheng, “Automated vertebra identification
from X-ray images,” in Image Analysis and Recognition, vol.
6112 of Lecture Notes in Computer Science, pp. 1–9, 2010.

[23] Z. Yang, Y. Zhu, and Y. pu, “Parallel image processing based
on CUDA,” in Proceedings of the International Conference
on Computer Science and Software Engineering, pp. 198–201,
Wuhan, China, December 2008.

[24] J. Fung, S. Mann, and C. Aimone, “OpenVIDIA : parallel gpu
computer vision,” in Proceedings of the ACM Multimedia, pp.
849–852, Hilton, Singapore, November 2005.

[25] OpenGL, “OpenGL Architecture Review Board: ARB vertex
program. Revision 45,” 2004, http://oss.sgi.com/projects/ogl-
sample/registry.

[26] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard,
“Cg: A system for programming graphics hardware in a C-
like language,” ACM Transactions on Graphics, vol. 22, pp. 896–
907, 2003.

[27] NVIDIA, “NVIDIA CUDA,” 2007, http://www.nvidia.com/
cuda.

[28] Y. M. Luo and R. Duraiswami, “Canny edge detection
on NVIDIA CUDA,” in Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition
Workshops, Anchorage, Alaska, USA, June 2008.

[29] J. Canny, “A computational approach to edge detection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.
8, no. 6, pp. 679–698, 1986.

[30] Y. Heng and L. Gu, “GPU-based volume rendering for medical
image visualization,” in Proceedings of the 27th Annual Inter-
national Conference of the IEEE Engineering in Medicine and
Biology Society, pp. 5145–5148, Shanghai, China, September
2005.

[31] M. Smelyanskiy, D. Holmes, J. Chhugani et al., “Mapping
high-fidelity volume rendering for medical imaging to CPU,
GPU and many-core architectures,” IEEE Transactions on
Visualization and Computer Graphics, vol. 15, no. 6, pp. 1563–
1570, 2009.

[32] T. Schiwietz, T. Chang, P. Speier, and R. Westermann, “MR
image reconstruction using the GPU,” in Proceedings of the
Medical Imaging: Visualization, Image-Guided Procedures, and
Display, Proceedings of SPIE, pp. 646–655, San Diego, Calif,
USA, March 2006.

[33] E. Ayguadé, R. M. Badia, F. D. Igual, J. Labarta, R. Mayo, and
E. S. Quintana-Orti, “An extension of the starSs programming
model for platforms with multiple GPUs,” in Proceedings of the
15th International Euro-Par Conference on Parallel Processing
(Euro-Par ’09), pp. 851–862, 2009.

[34] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacre-
nier, “StarPU: a unified platform for task scheduling on
heterogeneous multicore architectures,” in Concurrency and
Computation: Practice and Experience, Euro-Par 2009, pp. 863–
874, 2009.

[35] S. A. Mahmoudi, F. Lecron, P. Manneback, M. Benjelloun, and
S. Mahmoudi, “GPU-based segmentation of cervical vertebra
in X-ray images,” in Proceedings of the High-Performance
Computing on Complex Environments Workshop, in conjunction
with the IEEE International Conference on Cluster Computing,
pp. 1–8, 2010.

[36] C. Goodall, “Procrustes methods in the statistical analysis of
shape,” Journal of the Royal Statistical Society. Series B, vol. 53,
no. 2, pp. 285–339, 1991.

[37] F. Lecron, M. Benjelloun, and S. Mahmoudi, “Points of
interest detection in cervical spine radiographs by polygonal
approximation,” in Proceedings of the 2nd International Con-
ference on Image Processing Theory, Tools and Applications, pp.
81–86, IEEE Computer Society, 2010.

[38] S. M. Pizer, E. P. Amburn, J. D. Austin et al., “Adaptive
histogram equalization and its variations,” Computer Vision,
Graphics, and Image Processing, vol. 39, no. 3, pp. 355–368,
1987.

[39] D. H. Douglas and T. K. Peucker, “Algorithms for the
reduction of the number of points required to represent a
digitized line or its caricature,” Cartographica, vol. 10, no. 2,
pp. 112–122, 1973.

[40] GPU4VISION, “GPU4VISION,” 2010, http://www.gpu4vi-
sion.org.

[41] NVIDIA, “NVIDIA CUDA SDK code samples,” http://devel-
oper.download.nvidia.com/compute/cuda/sdk/website/
samples.html.

[42] C. Harris and M. Stephens, “A combined corner and edge
detector,” in Proceedings of the 4th Alvey vision conference, vol.
15, pp. 147–151, Manchester, UK, 1988.

