

United States Department of Agriculture

United States Department of Agriculture

Animal and Plant Health Inspection Service

May 20, 2020

Version 3.0

Importation of *Citrus maxima* **for consumption from Vietnam into the United States and Territories**

A Qualitative, Pathway-Initiated Pest Risk Assessment

Agency Contact:

Plant Epidemiology and Risk Analysis Laboratory Science and Technology Plant Protection and Quarantine Animal and Plant Health Inspection Service United States Department of Agriculture 1730 Varsity Drive, Suite 300 Raleigh, NC 27606

Executive Summary

The Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA) prepared this document to assess pest risks associated with importing commercially-produced fruit of pummelo, *Citrus maxima* (Rutaceae), for consumption from Vietnam into the United States and Territories. Based on the market access request submitted by Vietnam, we considered the pathway to include the following processes and conditions: hand-picked fresh fruit. The pest risk ratings depend upon the application of all conditions of the pathway as described. Fruit produced under different conditions was not evaluated and may have a different pest risk.

Using scientific literature, port-of-entry pest interception data, and information from the government of Vietnam, we developed a list of pests with quarantine significance for the United States that occur in Vietnam (on any host) and are associated with the commodity plant species (anywhere in the world).

We determined that the below listed pests are candidates for risk management. In the current risk assessment, the listed arthropods and fungi met the threshold to likely cause unacceptable consequences of introduction and have a reasonable likelihood of introduction. The pathogen *Xanthomonas citri* subsp. *citri* (citrus canker) has a limited distribution in the United States and is considered a quarantine pest. USDA-APHIS previously conducted pest risk assessments examining the likelihood that this pathogen will spread through the movement of commercial citrus fruit intended for consumption. USDA-APHIS has determined that asymptomatic or commercially packed fruit is not an epidemiologically significant pathway for the introduction and establishment of these pathogens into new areas. For the above reasons, it was not analyzed in the pest risk assessment; however, additional import requirements will be specified in the risk management document as a condition of entry for citrus fruit from Vietnam to the United States.

Pest type	Taxonomy	Scientific name	Likelihood of Introduction overall rating
Arthropod	Diptera: Tephritidae	Bactrocera dorsalis (Hendel)	High
		<i>Zeugodacus cucurbitae</i> (Coquillett)	Medium
	Lepidoptera: Yponomeutidae	Prays endocarpa Meyrick	Medium
Fungi	Diaporthales: Cryphonectriaceae	<i>Cylindrocarpon lichenicola</i> (C. Massal.) D. Hawksw	Medium
	Botryosphaeriales: Botryosphaeriaceae	Phyllosticta citriasiana Wulandari, Crous & Gruyter	Medium
Bacteria		<i>Xanthomonas citri</i> subsp. <i>citri</i> (ex Hasse) Gabriel et al.	Analyzed previously ^a

^a Plant pests with limited distribution and under official control in the United States; therefore, additional import requirements may be required.

Detailed examination and choice of appropriate phytosanitary measures to mitigate pest risk are addressed separately from this document.

Table of Contents

Executive Summary	1
Table of Contents	2
 Introduction	3 3 3 3
 2. Pest List and Pest Categorization 2.1. Pest list 2.2. Notes on pests identified in the pest list 2.4. Pests selected for further analysis 	4 4 0
3. Assessing Pest Risk Potential 1 3.1. Introduction 1 3.2. Assessment results 1	1 2 12 13
4. Summary and Conclusions of Risk Assessment 2	23
5. Literature Cited	23
6. Appendix: Pests with non-quarantine status	33

1. Introduction

1.1. Background

The Plant Epidemiology and Risk Analysis Laboratory of the USDA Animal and Plant Health Inspection Service (APHIS), Plant Protection and Quarantine (PPQ) prepared this document to assess the pest risk associated with the importation of commercially-produced fresh fruit of pummelo (*Citrus maxima* Merrill) for consumption from Vietnam (referred to as the export area) into the United States and Territories (referred to as the PRA area).

This is a qualitative risk assessment; the likelihood of pest introduction is expressed as a qualitative rating rather than in numerical terms. This methodology is consistent with guidelines provided by the International Plant Protection Convention (IPPC) in the International Standard for Phytosanitary Measures (ISPM) No. 11, "Pest Risk Analysis for Quarantine Pests" (IPPC, 2017b). The use of biological and phytosanitary terms is consistent with ISPM No. 5, "Glossary of Phytosanitary Terms" (IPPC, 2017a).

As defined in ISPM No. 11, this document comprises Stage 1 (Initiation) and Stage 2 (Risk Assessment) of risk analysis. Stage 3 (Risk Management) will be covered in a separate document.

1.2. Initiating event

The importation of fruits and vegetables for consumption into the United States is regulated under Title 7 of the Code of Federal Regulations, Part 319.56 (7 CFR §319.56). Under this regulation, the entry of pummelo fruit from Vietnam into the United States is not authorized. This commodity pest list was initiated due to a request by the Plant Protection Department of Vietnam to change the Federal regulation to allow entry (Vietnam Plant Protection, 2016).

1.3. Description of the pathway

A pathway is "any means that allows the entry or spread of a pest" (IPPC, 2017a). In the context of this document, the pathway is the commodity to be imported, together with all the processes the commodity undergoes (from production through importation and distribution) that may have an impact on pest presence. The following description of this pathway focuses on those relevant conditions and processes. The conclusions in this document are therefore contingent on the application of all components of the pathway as described.

1.4.1. Description of the commodity

The specific pathway of concern is the importation of fresh fruit of pummelo for consumption.

1.4.2. Summary of the production, harvest and post-harvest procedures, and shipping and storage conditions being considered.

The pummelo originates from the lowland tropics and is not grown commercially above elevations of 400 m. Vietnamese production is mostly in the southern part of the country, although some cultivars can be grown in the northern and central areas. Fruit color varies from yellow to green (Vietnam Plant Protection, 2016).

Orchards are monitored weekly for pests. When pest populations exceed the economic injury level, chemical pesticides are applied (Vietnam Plant Protection, 2016).

Pummelo is hand-harvested six to seven months after flowering on cool days without extreme sunlight, fog, or rain. After harvest, damaged fruits are culled, and the remaining fruits are dried, dipped into sodium hypochlorite one-percent solution, dried again, dipped in Citrashine solution, dried again, wrapped in mesh polystyrene, and placed into cold storage. The fruits are later packed into cartons for transport (Vietnam Plant Protection, 2016).

For the purposes of assessing risk in the document, post-harvest practices, shipping and storage conditions are not considered.

2. Pest List and Pest Categorization

The pest list is a compilation of plant pests with regulatory status for the United States. This includes pests that are both present in Vietnam (on any host) and are known to be associated with pummelo (anywhere in the world). Species on the pest list with a reasonable likelihood of being present on the commodity at the time of harvest could follow the pathway into the United States and are therefore analyzed to determine their pest risk potential. Pests are considered to be of quarantine significance if they are actionable at U.S. ports of entry. This includes known quarantine pests, regulated non-quarantine pests, pests under official control or considered for official control, and pests that require evaluation for regulatory action.

2.1. Pest list

In Table 1, we list the quarantine pests that occur in the export area on any host and are associated with the commodity species, whether in the export area or elsewhere. For each pest, we indicate 1) the part of the plant the pest is generally associated with and 2) whether the pest is likely to remain with the commodity in a viable form following harvesting from the field and prior to any post-harvest processing. We developed this pest list based on the scientific literature, port-of-entry pest interception data, and information provided by the government of Vietnam. Pests in shaded rows were selected for further evaluation, because they are likely to remain associated with the harvested commodity (Table 2); for these pests we also denote U.S. distribution as appropriate.

Table 1. Quarantine pests associated with pummelo (in any country) and present in Vietnam (on any host).

Pest name	Presence in Vietnam	Host association	Plant part(s) ¹	Considered further?
INSECTA				
COLEOPTERA				
Cerambycidae				

¹ The plant parts listed are those for the plant species under analysis. If the information has been extrapolated, such as from plant part association on other plant species, we note that.

Pest name	Presence in Vietnam	Host association	Plant part(s) ¹	Considered further?
Anoplophora chinensis (Forster)	Vietnam Plant Protection, 2016; Whittle, 1992	Vietnam Plant Protection, 2016	Stem (Vietnam Plant Protection, 2016)	No.
Nadezhdiella cantori (Hope)	Whittle, 1992	Wang et al., 2002	Stem (Wang et al., 2002)	No.
<i>Chelidonium</i> argentatum (Dalman)	n Vietnam Plant V (Dalman) Protection, Pr 2016; Whittle, 1992		Stem (Vietnam Plant Protection, 2016)	No.
Chrysomelidae				
<i>Clitea metallica</i> Chen	Vietnam Plant Protection, 2016; Whittle, 1992	Vietnam Plant Protection, 2016	Leaf (Vietnam Plant Protection, 2016)	No.
Curculionidae				
Hypomeces squamosus Fabricius	Vietnam Plant Protection, 2016; Whittle, 1992	Vietnam Plant Protection, 2016	Leaf, root (Vietnam Plant Protection, 2016)	No.
DIPTERA				
Tephritidae				
Bactrocera dorsalis (Hendel)	Waterhouse, 1993a	Huang and Chi, 2014	Fruit (Huang and Chi, 2014)	Yes. Present in Hawaii (Vargas et al., 2010)
Zeugodacus cucurbitae (Coquillett) syn. Bactrocera cucurbitae, Dacus cucurbitae	Boontop et al., 2017	Tan and Lee, 1982	Fruit (Tan and Lee, 1982)	Yes. Present in Hawaii (Carey et al., 1985)
HEMIPTERA				
Aleyrodidae				
Aleurocanthus woglumi Ashby	Whittle, 1992	Pena et al., 2008	Leaf (Medina- Gaud et al., 1991)	No. Present in Hawaii (Culliney et al., 2003), Florida (Dowell et al., 1979; Hart et al., 1978), and Texas (Meagher and French, 2004)
Aleurocanthus spiniferus (Quaintance)	CABI, 2019	Rae et al., 2000	Leaf (Gyeltshen et al., 2005)	No. Present in Hawaii (Paulson and Kumashiro, 1985)
Aphididae				

Pest name	Presence in	Host	Plant part(s) ¹	Considered
Tourse tour situities has	Vietnam	Association	Namla anna da d	further?
(Kirkaldy) syn.: T. citricada (Kirkaldy)	waternouse, 1993b	Michaud, 1998	Newly expanded shoot, leaf, flower bud (Michaud, 1998)	No. Pummelo is a poor host of <i>T</i> . <i>citricada</i> (Ghosh et al., 2014). Present in Florida and Puerto Rico (Michaud, 1998)
Coccidae				
Ceroplastes rubens Maskell	Whittle, 1992	Williams and Watson, 1990	Twig, leaf (Krull and Basedow, 2005)	No. Present in Florida (Hamon and Williams, 1984) and Hawaii (Gimpel et al., 1974)
<i>Pulvinaria aurantii</i> Cockerell	Vietnam Plant Protection, 2016	Vietnam Plant Protection, 2016	Leaf (Vietnam Plant Protection, 2016)	No.
Psyllidae				
<i>Diaphorina citri</i> Kuwayama	Vietnam Plant Protection, 2016	Vietnam Plant Protection, 2016	Fruit, leaf (Vietnam Plant Protection, 2016)	No. Limited distribution in California (Bayles et al., 2017)
Pentatomidae				. ,
Rhynchocoris poseidon Kirkaldy	Vietnam Plant Protection, 2016; Whittle, 1992	Vietnam Plant Protection, 2016	Leaf (Vietnam Plant Protection, 2016)	No.
Pseudococcidae				
<i>Nipaecoccus viridis</i> (Newstead)	Ben-Dov, 1994	Mani and Krishnamoorthy, 2008	Shoot, fruit, leaf, stem, flower (Mani and Krishnamoorthy, 2008)	No. See discussion in section 2.2. Present in Florida (Stocks, 2013)
<i>Pseudococcus cryptus</i> Hempel	Ben-Dov, 1994	Ben-Dov, 1994	Twig, fruit, leaf, (Blumberg et al., 1999)	No. See discussion in section 2.2. Present in Hawaii and the U.S. Virgin Islands (Ben-Dov, 1994)
LEPIDOPTERA				
Gracillariidae				
Phyllocnistis citrella Stainton	Vietnam Plant Protection, 2016	Vietnam Plant Protection, 2016	Leaf (Vietnam Plant Protection, 2016)	No. Present in Florida (Heppner, 1993)
Noctuidae				

Pest name	Presence in	Host	Plant part(s) ¹	Considered	
	Vietnam	association		further?	
Achaea janata (Linnaeus)	Waterhouse, 1993b	Ngampongsai et al., 2005	Fruit (Ngampongsai et al., 2005)	No. Fruit-piercing moths feed on fruit as adults by sucking juices (Sands and Liebregts, 2005) but would not remain with fruit through harvest	
Eudocima phalonia (Clerck) syn.: E. fullonia (Clerck)	Waterhouse, 1993b	Denton et al., 1989	Fruit (Denton et al., 1989)	No. Fruit-piercing moths feed on fruit as adults by sucking juices (Sands and Liebregts, 2005) but would not remain with fruit through harvest	
Papilionidae					
Papilio demoleus Linnaeus	Vietnam Plant Protection, 2016	Vietnam Plant Protection, 2016	Leaf (Vietnam Plant Protection, 2016)	No.	
Papilio polytes Linnaeus	Vietnam Plant Protection, 2016	Vietnam Plant Protection, 2016	Leaf (Vietnam Plant Protection, 2016)	No.	
Pyralidae					
Citripestis Vietnam Plant sagittiferella Moore Protection, 2016; Whittle, 1992		Vietnam Plant Protection, 2016	Fruit (Vietnam Plant Protection, 2016)	No. Infestation causes fruit to rot and drop early (CABI, 2019), making it unlikely the insect would be harvested with the fruit. This is probably why the pest has never been intercepted on fruit entering the United States (PestID, 2019).	
Tortricidae					
Adoxophyes privatana (Walker)	Vietnam Plant Protection, 2016	Vietnam Plant Protection, 2016	Leaf (Vietnam Plant Protection, 2016)	No.	
Archips atrolucens Diakonoff	Dang et al., 2016	Vang et al., 2013	Leaf (Vang et al., 2013)	No.	
Homona coffearia (Nietner)	Dang et al., 2016; Whittle, 1992	Whittle, 1992	Leaf (Vang et al., 2013)	No.	

Pest name	Presence in Vietnam	Host association	Plant part(s) ¹	Considered further?
Yponomeutidae				
Prays citri Millière	Vang et al., 2011; Vietnam Plant Protection, 2016	Vang et al., 2011; Vietnam Plant Protection, 2016	Fruit (Vietnam Plant Protection, 2016), flowers, young shoots (Conti and Fisicaro, 2015)	No. Larvae feed on flowers, young shoots, and developing fruit, causing fruit to drop (Conti and Fisicaro, 2015).
Prays endocarpa Meyrick	Vang et al., 2011; Vietnam Plant Protection, 2016	Vang et al., 2011; Vietnam Plant Protection, 2016	Fruit (Vietnam Plant Protection, 2016)	Yes
NEMATODES				
Radopholus similis (Cobb) Thorne	Goodey et al., 1965; Nguyet et al., 2003	Goodey et al., 1965 (Affecting <i>C. grandis</i> , a synonym of <i>C.</i> <i>maxima</i>)	Root (Goodey et al., 1965)	No. Restricted distribution in the United States (Florida, Hawaii, Louisiana, Texas, Puerto Rico, and the U.S. Virgin Islands) (CABI, 2019; Oramas-Nival and Roman, 2006; Roman et al., 1974; UGA, 2018). Reportable / actionable (PestID, 2019).
FUNGI AND CHROM	IISTANS			
Capnodium citri Penz.	Vietnam Plant Protection, 2016; Whittle, 1992	French, 1989	Fruit, leaf, stem (Timmer et al., 2000)	No. Present in the continental United States (French, 1987), Puerto Rico, and the U.S. Virgin Islands (Stevenson, 1975). No evidence of presence in Hawaii.
Clitocybe tabescens (Scop.) Bres, syn.: Armillariella tabescens (Scop.) Singer	Vietnam Plant Protection, 2016	Alfieri et al., 1984	Root, stem (Timmer et al., 2000)	No. Present in the continental United States (Alfieri et al., 1984). No evidence of presence in Hawaii, Puerto Rico, or the U.S. Virgin Islands

Pest name	Presence in Vietnam	Host association	Plant part(s) ¹	Considered further?
Cylindrocarpon lichenicola (C. Massal.) D. Hawksw syn.: Fusarium lichenicola C. Massal.	Amby et al., 2015	Amby et al., 2015	Fruit (Amby et al., 2015)	Yes. This species was reported as a human pathogen in the continental United States (Iwen et al., 2000; Summerbell and Schroers, 2002). No evidence of presence in Hawaii, Puerto Rico or the U.S. Virgin Islands.
Didymella citri	Vietnam Plant Protection, 2016	Vietnam Plant Protection, 2016	Stem (Vietnam Plant Protection, 2016)	No.
<i>Erythricium</i> salmonicolor (Berk. & Broome) Burds, syn.: <i>Corticium</i> salmonicolor Berk. & Broome	Mordue and Gibson, 1976	Peregrine and Bin Ahmad, 1982	Bark, limbs (Timmer et al., 2000)	No. Present in the continental United States (Alfieri et al., 1984), Puerto Rico, and the U.S. Virgin Islands (Stevenson, 1975). No evidence of presence in Hawaii.
<i>Meliola citricola</i> (Syd. & P. Syd.)	Whittle, 1992	Peregrine and Bin Ahmad, 1982	Fruit, leaf (Whittle, 1992)	No. See discussion in section 2.2.
Phyllosticta beltranii Penzig	Vietnam Plant Protection, 2016	Vietnam Plant Protection, 2016	Leaf (Vietnam Plant Protection, 2016)	No.
<i>Phyllosticta citriasiana</i> Wulandari, Crous & Gruyter	Wulandari et al., 2009	Wulandari et al., 2009	Fruit (Wulandari et al., 2009)	Yes.
Septobasidium albidum Pat.	Kiet, 1998	Farr and Rossman, 2019	Leaf (Kiet, 1998)	
BACTERIA AND PH	YTOPLASMAS			
<i>'Candidatus</i> Liberibacter asiaticus' Jagoueix, Bové, & Garnier, 1994	Tomimura et al., 2009	Kumagai et al., 2013	Systemic (Puttamuk et al., 2014)	No. Present in the continental United States (Kumagai et al., 2013), Puerto Rico, and the U.S. Virgin Islands (CABI, 2019). No evidence of presence in Hawaii. See discussion in section 2.2.

Pest name	Presence in Vietnam	Host association	Plant part(s) ¹	Considered further?
Xanthomonas citri subsp. citri (ex Hasse) Gabriel et al. syn.: X. axonopodis pv. citri (Vauterin, et al.), X. campestris pv. citri (Hasse) Dye	Vietnam Plant Protection, 2016; Whittle, 1992	Timmer et al., 2000	Fruit, leaf, stem (Timmer et al., 2000)	No, analyzed previously. Restricted distribution in the United States (Florida, Louisiana, and Texas) (CABI, 2019) and under official control. The transportation of fruit is regulated by 7 CFR 301.75-7. No evidence of presence in Hawaii, Puerto Rico, or the U.S. Virgin Islands. See discussion in section 2.2.
VIRUSES AND VIRC	DIDS			
Pospiviroid Citrus exocortis viroid (CEVd)	Vietnam Plant Protection, 2016	Vietnam Plant Protection, 2016	Systemic (Hajeri, 2010)	No. Restricted distribution in the United States (Arizona, California, Florida, Louisiana, and Texas) (CABI, 2019). No evidence of presence in Hawaii, Puerto Rico, or the U.S. Virgin Islands. See discussion in section 2.2.

2.2. Notes on pests identified in the pest list

Nipaecoccus viridis (Newstead); Pseudococcus cryptus Hempel

The mealybugs, *Nipaecoccus viridis* (Newstead) and *Pseudococcus cryptus* Hempel are highly unlikely to become established in the United States through imports of pummelo because fruit for consumption is unlikely to come into contact with citrus trees, and mealybugs have only limited mobility to find new hosts. Adult females and late instar nymphs are largely sessile, and although early instars are more active, they only move short distances. Grasswitz and James (2008) studied movement of *Pseudococcus maritimus* nymphs and found little tendency for them to move away from the point where they were released. The farthest movement was 90 cm, but most distances were considerably shorter. Cid et al. (2010) found that *Planococcus citri* nymphs hatched in bark crevices of grapevines and rarely made it up to the green parts of the vines unless populations were very large. Nymphs stopped moving upward when they encountered places in the bark to feed and did not appear to move between plants. In a study with the mealybugs

Rastrococcus mangiferae, *R. iceryoides*, and *R. invadens*, none of the *Rastrococcus* spp. actively migrated between trees, from trees to soil, or from trees to debris (Narasimham and Chacko, 1991).

Meliola citricola is a sooty mold (McKenzie, 2013), and although it is found in Vietnam and is potentially associated with pummelo, it is not pathogenic on the plant and is not quarantine significant (McKemy, 2010). Sooty molds grow on surfaces where deposits of honeydew from insects have accumulated (Laemmien, 2011).

'Candidatus Liberibacter asiaticus' was not selected for further analysis as the fruit alone is not a pathway for pathogen dissemination. While the pathogen is associated with the seed (Tatineni et al., 2008; Timmer et al., 2000), it is not considered to be transmitted by seed. The pathogen is vector transmitted by *Diaphorina citri* (Hall, 2008) and the vector is unlikely to be associated with harvested fruit.

Xanthomonas citri subsp. *citri*, the causal agent of citrus canker, has a limited distribution in the United States and is a quarantine pest. Although this bacterium is associated with fruits and may enter the country, several conditions need to occur in order for it to become established, (Agrios, 2005; Colhoun, 1973; IPPC, 2017b; Leben, 1974; Lichtenthaler, 1998). Xanthomonas citri subsp. citri cannot directly penetrate host tissues, and for infection to occur, the pathogen must have optimal temperature and moisture conditions, a vector, a susceptible host, and activation of virulence genes for an extended period of time (Agrios, 2005; Melotto et al., 2006; Vidaver and Lambrecht, 2004). This means that for transmission of bacteria from infected fruit to susceptible host plants, several events must occur at the same time: a) infected fruit must arrive in an area where hosts are available; b) a host must be at a susceptible stage for infection to occur; c) inoculum of X. citri subsp. citri must be produced on the imported fruit; d) inoculum produced on infected fruit must spread to susceptible host via an insect vector, by human assistance or wind-driven rain to result in infection and disease development (Agrios, 2005; Eigenbrode et al., 2018; Francl, 2001; Hirano and Upper, 2000; Kunkel and Chen, 2006; Leben, 1974; Melotto et al., 2006; Vidaver and Lambrecht, 2004). All of these events would need to occur with appropriate timing in order for X. citri subsp. citri to establish. We therefore conclude that imported infected fruit for consumption has a low to negligible likelihood of establishment. Based on this information, we did not further analyze this disease in this pest risk assessment; however, additional import requirements may be specified in the risk management document as a condition of entry for citrus fruit from Vietnam to the United States.

Citrus exocortis viroid (CEVd) is a pospiviroid that is graft-transmitted; dissemination occurs primarily through propagation of symptomless budwood. The viroid is also transmitted mechanically as a contaminant of cutting and pruning tools. Seed and vector transmission have not been demonstrated (Timmer et al., 2000). Fruit for consumption is considered to pose a low risk for establishment of viruses and viroids and is considered a dead end pathway. We concluded that the virus has a negligible likelihood of coming into contact with host material in the United States and Territories via fruit for consumption.

2.3.3. Organisms identified only to the genus level

For this pest list, we identified the following genera that are reported on pummelo in Vietnam: *Anormensis* sp., and *Lawana* sp. (Hemiptera: Flatidae) (Vietnam Plant Protection, 2016). We

found no evidence that *Lawana* sp. occurs in the United States, so it would be considered a quarantine genus.

2.4. Pests selected for further analysis

We identified four quarantine pests for further analysis (Table 2).

Pest type	Taxonomy	Scientific name
Arthropod	Diptera: Tephritidae	Bactrocera dorsalis (Hendel)
		Zeugodacus cucurbitae (Coquillett)
	Lepidoptera: Yponomeutidae	Prays endocarpa Meyrick
Fungi	Diaporthales: Cryphonectriaceae	<i>Cylindrocarpon lichenicola</i> (C. Massal.) D. Hawksw
	Botryosphaeriales: Botryosphaeriaceae	<i>Phyllosticta citriasiana</i> Wulandari, Crous & Gruyter

Table 2. Pests selected for further analysis.

3. Assessing Pest Risk Potential

3.1. Introduction

For each pest analyzed, we estimate its overall pest risk potential. Risk is described by the likelihood of an adverse event, the potential consequences, and the uncertainty associated with these parameters. For each pest, we determine if an endangered area exists within the PRA area. The endangered area is defined as the portion of the PRA area where ecological factors favor pest establishment and where pest presence would likely result in economically important losses. If a pest causes an unacceptable impact, that means it would adversely affect agricultural production by causing 10 percent or greater yield loss or increasing production costs or would impact an environmentally important host or international trade. Once an endangered area has been determined, the overall risk of the pest is then determined by assessing the likelihood of its introduction into the endangered area on the imported commodity.

The likelihood of introduction is based on the likelihoods of entry and establishment. We qualitatively assess risk using the ratings Low, Medium, and High. The risk factors comprising the likelihood of introduction are interdependent, so the model is multiplicative rather than additive. We define the different risk categories as follows:

High: Pest introduction is highly likely to occur.

- Medium: Pest introduction is possible, but for that to happen, the exact combination of required events needs to occur.
- Low: Pest introduction is unlikely to occur because one or more of the required events are unlikely to happen or because the full combination of required events is unlikely to align properly in time and space.

Uncertainty is addressed within the assessment as follows:

Negligible uncertainty: Additional or better evidence is very unlikely to change the rating. Low uncertainty: Additional or better evidence probably will not change rating. Moderate uncertainty: Additional or better evidence may or may not change rating. High uncertainty: Reliable evidence is not available.

3.2. Assessment results

3.2.1. Bactrocera dorsalis (Hendel) (Diptera: Tephritidae)

Bactrocera dorsalis is a destructive pest of fruits and vegetables in eastern Asia (Aketarawong et al., 2014) and across sub-Saharan Africa (Drew et al., 2005; Mwatawala et al., 2006). It is present in the United States (Hawaii) (Vargas et al., 2010). At least one outbreak of the pest was eradicated in southern Florida (Alvarez et al., 2015). The name *B. dorsalis* includes the Sri Lankan and African variant *B. invadens*, which has been shown to be extremely invasive across Africa (Schutze et al., 2015).

Climatic suitability	Bactrocera dorsalis is present in tropical areas of southeastern Asia
	(Aketarawong et al., 2014) and sub-Saharan Africa (Drew et al., 2005),
	as well as in the United States (Hawaii) (Vargas et al., 2010). These areas
	correspond to global Plant Hardiness Zones 10-12 in the United States
	(Stephens et al., 2007; Takeuchi et al., 2019).
Hosts in PRA Area	Potential hosts within Plant Hardiness Zones 10-12 in the United States
	(excluding Hawaii, where <i>B. dorsalis</i> is established) include <i>Citrus</i> spp.
	Mangifera indica (mango), Psidium guava (guava), Cucumis spp.
	(melon), Cucurbita spp. (gourd), Capsicum spp. (pepper) (Goergen et al.,
	2011), Prunus persica (peach), and Pyrus domestica (pear) (Ye and Liu,
	2005).
Economically	Economically important plants in Plant Hardiness Zones 10-12 include
important hosts at	mango, guava, pepper, melon, and peach.
risk ^a	
Pest potential on	This pest is likely to cause unacceptable consequences because it feeds
economically	internally in fruit hosts, has a large host range, and has been shown to be
important hosts at	very invasive in new areas such as Africa (Hanna et al., 2004).
risk	
Defined Endangered	The endangered area includes Puerto Rico and areas of the continental
Area	United States in Plant Hardiness Zones 10-12
a As defined by ISDM No. 1	1 summary 2 "accompanies live immentant heats" refers to both commencial and non

Defining the endangered area for *Bactrocera dorsalis* within the United States

^a As defined by ISPM No. 11, supplement 2, "economically important hosts" refers to both commercial and nonmarket (environmental) plants (IPPC, 2017b).

Assessing the likelihood of introduction of *Bactrocera dorsalis* into the endangered area via pummelo fruit imported from Vietnam

Risk Element	Risk Rating	Uncertainty Rating	Evidence for rating (and other notes as necessary)
Likelihood of			
Entry			
Pest prevalence on the harvested commodity	Medium	Medium	In a study in Senegal, <i>B. dorsalis</i> infested pummelo at a rate of two flies per kilogram of fruit examined, compared to 155 flies per kilogram of guaya (Boinahadii et al. 2019)

Risk Element	Risk	Uncertainty	Evidence for rating (and other notes as
	Rating	Rating	necessary)
Likelihood of	Medium	Low	Post-harvest processes were not considered in
surviving post-			this assessment, so the rating stays at Medium.
harvest processing			
before shipment			
Likelihood of	Medium	Low	Transport and storage conditions were not
surviving transport			considered in this assessment, so the rating stays
and storage			at Medium.
conditions of the			
consignment			
Overall	Medium		
Likelihood of			
Entry			
Likelihood of	High	High	Bactrocera dorsalis has wide host range (CABI,
Establishment			2019), and adults are strong fliers, allowing
			them find new hosts over long distances (Chen
			et al., 2015).
Likelihood of	High		
Introduction			
(combined			
likelihoods of entry			
and establishment)			

3.2.2. Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae)

Zeugodacus cucurbitae, the melon fly, infests fruits and vegetables of many plant species, many in the family Cucurbitaceae. Probably originally from India, the fly has spread into East Asia, several Pacific Islands, and parts of Africa (McQuate et al., 2017). It is also known from Hawaii (Carey et al., 1985).

Defining the endangered area for Zeugodacus cucurbitae within the United States

0 0	
Climatic suitability	Zeugodacus cucurbitae is present in Vietnam, tropical regions of East and West Africa India Pakistan Bangladesh much of southeast Asia
	and southern areas of China (McQuate et al., 2017). These areas
	correspond to global Plant Hardiness Zones 10-12 in the United States.
Hosts in PRA Area	There have been 136 plant taxa from 62 plant genera and 30 plant
	families identified as natural hosts of <i>B. cucurbitae</i> (McQuate et al.,
	2017). The preferred hosts are mostly in the plant families Cucurbitaceae,
	Solanaceae, and Fabaceae (McQuate et al., 2017). Zeugodacus
	cucurbitae can also feed on Citrus spp. (White and Elson-Harris, 1992).
Economically	Economically important plants in Plant Hardiness Zones 10-12 include
important hosts at	melons, cucumbers, squash, peppers, and citrus.
risk ^a	
Pest potential on	This pest is likely to cause unacceptable consequences because it feeds
economically	internally in fruit hosts, has a large host range, and has been shown to be

important hosts at	invasive in new areas such as Africa and Hawaii (White and Elson-
risk	Harris, 1992).
Defined Endangered	The endangered area includes Puerto Rico and areas of the continental
Area	United States in Plant Hardiness Zones 10-12.

^a As defined by ISPM No. 11, supplement 2, "economically important hosts" refers to both commercial and nonmarket (environmental) plants (IPPC, 2017b).

Assessing the likelihood of introduction of *Zeugodacus cucurbitae* into the endangered area via pummelo fruit imported from Vietnam

Risk Element	Risk Rating	Uncertainty Rating	Evidence for rating (and other notes as necessary)
Likelihood of Entry	8	8	
Pest prevalence on the harvested commodity	Low	Medium	Only one study (Tan and Lee, 1982) reports <i>Z. cucurbitae</i> feeding on <i>C. maxima</i> . Other references to use of Citrus as a host are sporadic and generally considered atypical (McQuate et al., 2017).
Likelihood of surviving post- harvest processing before shipment	Low	Low	Post-harvest processes were not considered in this assessment, so the rating stays at Medium.
Likelihood of surviving transport and storage conditions of the consignment	Low	Low	Transport and storage conditions were not considered in this assessment, so the rating stays at Medium.
Overall Likelihood of Entry	Low		
Likelihood of Establishment	High	High	Females can lay multiple eggs inside a single fruit (Botha et al., 2004), so only one infested fruit has the potential to introduce the fly. The larvae leave the fruit in as little as 5 days to pupate (Botha et al., 2004). Once adults develop, they can fly to find new hosts (Dhillon et al., 2005). <i>Bactrocera cucurbitae</i> has wide host range (McQuate et al., 2017) and hosts are found throughout the endangered area.
Likelihood of Introduction (combined likelihoods of entry and establishment)	Medium		

3.2.3. Prays endocarpa Meyrick (Lepidoptera: Yponomeutidae)

Larvae of *Prays endocarpa* feed exclusively on fruit, especially pummelo (Vang et al., 2011). Early infestations cause fruit to drop, but when larvae infest more mature fruit, they cause blemishing on the surface. Although pummelo is not widely cultivated in the United States, the insect could potentially become a problem on other citrus varieties.

Climatic suitability	The insect is present in Vietnam (Vang et al., 2011), parts of India, the Philippines, Malaysia, Indonesia, and the United States (Northern Mariana Islands and Guam) (CABI, 1990), corresponding to global Plant Hardiness Zones 11-12 in the United States (Takeuchi et al. 2019)
Hosts in PRA Area	<i>Prays endocarpa</i> larvae feed on pummelo and other citrus fruits (Vang et al., 2011). Citrus is grown in Puerto Rico, Florida, and California within Plant Hardiness Zones 11-12 (NASS, 2018).
Economically important hosts at risk ^a	Citrus is the only economically important host at risk.
Pest potential on economically important hosts at risk	This pest is likely to cause unacceptable consequences because larvae mine the peel of fruit, causing early stage fruit to drop and more mature fruit to develop tumors on the peel, which decreases the commercial value of the fruit (Vang et al., 2011). We have some uncertainty about whether infested fruit would ever be harvested and shipped. <i>Prays</i> <i>endocarpa</i> has never been intercepted at a U.S. port of entry (PestID, 2019).
Defined Endangered Area	The endangered area comprises parts of Florida, Puerto Rico and possibly California where citrus is grown in Plant Hardiness Zones 11-12.

Defining the endangered area for Prays endocarpa within the United States

^a As defined by ISPM No. 11, supplement 2, "economically important hosts" refers to both commercial and nonmarket (environmental) plants (IPPC, 2017b).

Assessing the likelihood of introduction of *Prays endocarpa* into the endangered area via pummelo fruit imported from Vietnam

Risk Element	Risk Rating	Uncertainty Rating	Evidence for rating (and other notes as necessary)
Likelihood of Entry	8	8	•
Pest prevalence on the harvested commodity	Low	High	Feeding by larvae usually causes fruit to drop. When larvae infest more mature fruit, the rind becomes discolored (Vang et al., 2011), making damage quite visible to harvesters.
Likelihood of surviving post- harvest processing before shipment	Low	Medium	Post-harvest processing was not considered in this risk assessment, so the rating from the previous step remains.

Risk Element	Risk	Uncertainty	Evidence for rating (and other notes as
	Rating	Rating	necessary)
Likelihood of surviving transport and storage	Low	Medium	Transport and shipping conditions were not considered in this risk assessment, so the rating from the previous step remains.
conditions of the consignment			
Overall	Low		
Likelihood of			
Entry			
Likelihood of Establishment	Medium	High	<i>Prays endocarpa</i> adults can fly to infest new hosts (Vang et al., 2011), but they would have to survive to adulthood in infested fruit that was placed near commercial orchards in order to become established.
Likelihood of	Medium		
Introduction			
(combined			
likelihoods of entry and establishment)			

3.2.4. Cylindrocarpon lichenicola (Diaporthales: Cryphonectriaceae)

Cylindrocarpon lichenicola (syn.: *Fusarium lichenicola*) is a saprophytic soil fungus generally considered to be a human and animal pathogen (Iwen et al., 2000; Summerbell and Schroers, 2002). In 2015, this pathogen was first discovered with fruit rot in pummelo during storage and transportation. Under experimental conditions, it has been shown to have the potential to infect other citrus fruits (Amby et al., 2015).

Defining the endangered area for Cylindrocarpon lichenicola within the PRA Area

	\mathbf{J}
Climatic suitability	Africa: Somalia (Iwen et al., 2000; Summerbell and Schroers, 2002);
	Asia: India (Usharani and Ramarao, 1981), Japan (Iwen et al., 2000;
	Summerbell and Schroers, 2002), Oman (Al-Sadi et al., 2011), and
	Vietnam (Amby et al., 2015); Europe: Germany (Iwen et al., 2000;
	Summerbell and Schroers, 2002); North America: the United States
	(Iwen et al., 2000; Summerbell and Schroers, 2002); South America:
	Argentina (Iwen et al., 2000; Summerbell and Schroers, 2002) and
	Ecuador (Thomas et al., 2008); Oceania: Papua New Guinea (Shaw,
	1984) and Tahiti (Iwen et al., 2000; Summerbell and Schroers, 2002).
	The reports from Argentina, Germany, Somalia, and the United States
	were of <i>C. lichenicola</i> as a human pathogen.
	Based on a comparison of this distribution with a global map of Plant
	Hardiness Zones (Magarey et al., 2008), we estimate it could establish in
	Plant Hardiness Zones 9-13 in the United States. These Hardiness Zones
	include the southern continental United States, Hawaii and the island
	territories.

Hosts in PRA Area	Natural hosts Citrus maxima (pummelo) (Amby et al., 2015) and
	Theobroma gileri (mountain cocoa) (Thomas et al., 2008). Artificial
	inoculation hosts include Citrus aurantiifolia (lime) (Amby et al., 2015),
	Citrus deliciosa (mandarin), Citrus latifolia (Tahiti lime or Persian lime),
	Citrus nobilis (king orange), and Citrus sinensis (orange)(Amby et al.,
	2015). This pathogen has also been reported as causing corm rot of
	Colocasia esculenta (taro) (Usharani and Ramarao, 1981).
	All of these plants except Tahiti lime and mountain cocoa occur within
	the climatically suitable parts of the PRA area (GBIF, 2018; NRCS,
	2019).
Economically	Orange and mandarin are economically important fruit crops (NASS,
important hosts at	2018).
risk ^a	
Pest potential on	Cylindrocarpon lichenicola is the causal agent of fruit rot in pummelo
economically	fruit during storage and transport. Infected fruits may decay completely
important hosts at	in two to three days (Amby et al., 2015).
risk	
Defined Endangered	This species has previously been reported as a human pathogen in the
Area	continental United States (Iwen et al., 2000; Summerbell and Schroers,
	2002), but we could not find evidence of its presence in Hawaii, Puerto
	Rico or the U.S. Virgin Islands. Therefore, the endangered zone includes
	areas of Hawaii, Puerto Rico and U.S. Virgin Islands within Plant
	Hardiness Zones 9-13.
^a As defined by ISPM No. 1	1. supplement 2. "economically important hosts" refers to both commercial and non-

^a As defined by ISPM No. 11, supplement 2, "economically important hosts" refers to both commercial and nonmarket (environmental) plants (IPPC, 2017b).

Assessing the likel	lihood of introduction of Cylindrocarpon lichenicola into the endang	gered
area via pummelo	imported from Vietnam	

Risk Element	Risk Rating	Uncertainty Rating	Evidence for rating (and other notes as necessary)
Likelihood of Entry	8	8	
Pest prevalence on the harvested commodity	High	Low	Pummelo is a host species, and fruits are the primary infection site of <i>C. lichenicola</i> (Amby et al., 2015).
Likelihood of surviving post- harvest processing before shipment	High	Low	Pummelo fruit rot has been reported to occur during storage and transportation, which indicates that this pathogen can survive post- harvest processing prior to shipment (Amby et al., 2015). Based on this evidence, the rating for the previous risk element was left unchanged.

Risk Element	Risk	Uncertainty	Evidence for rating (and other notes as
	Rating	Rating	necessary)
Likelihood of surviving transport and storage conditions of the consignment	High	Low	Transport and storage procedures in the exporting area are not being considered as part of this assessment; however, the losses reported in the literature occurred during storage and transport (Amby et al., 2015), which shows that this pathogen can remain viable under such conditions. We did not change the previous risk rating.
Overall	High		
Likelihood of			
Entry			
Likelihood of Establishment	Low	Medium	Pummelo will be imported for consumption only, which would limit the probability of introducing <i>C. lichenicola</i> directly into natural or agricultural environments where hosts may be available. Plant material for consumption, such as fresh fruits and vegetables, is generally considered to pose a low risk as a pathway for establishment of fungi (Palm and Rossman, 2003). Establishment by wind-blown spores is influenced by the quantity of spores produced, the number of spores that become airborne, wind direction and speed, the ability of spores to survive adverse environmental conditions, and the availability of susceptible hosts (Roberts and Boothroyd, 1972). These considerations suggest that a set of conditions optimal for the infection of new hosts would be unlikely to occur, so <i>C. lichenicola</i> would have a low likelihood of establishment.
Likelihood of Introduction (combined likelihoods of entry and establishment)	Medium		

3.2.5. Phyllosticta citriasiana Wulandari, Crous & Gruyter (Botryosphaeriales:

Botryosphaeriaceae)

Phyllosticta citriasiana causes tan spots on fruits that eventually become necrotic. The symptoms caused by *P. citriasiana* closely resemble those of *Guignardia citricarpa*, the causal agent of citrus black spot (Wulandari et al., 2009).

Defining the endange	Defining the endangered area for <i>Phyllosticta citriasiana</i> within the PRA Area			
Climatic suitability	Asia : China (Guangdong, Guangxi, Fujian and Hangzhou) (Wang et al., 2012; Wulandari et al., 2009), Thailand (Wulandari et al., 2009), and			
	Vietnam (Wulandari et al., 2009).			
	Based on a comparison of this distribution with a global map of Plant			
	Hardiness Zones (Takeuchi et al., 2019; Widrlechner, 1997), we estimate			
	it could establish in Plant Hardiness Zones 9-13 in the United States.			
	These Zones include the southern continental United States, Hawaii and the island territories			
Llosts in DD A Area	Dymmele is the only known heat (Form and December 2010; Wong et al.			
Hosts III PKA Afea	2012: Wulandari at al. 2000)			
F : 11	$\frac{2012}{W} = \frac{11}{10} \frac{1}{10} \frac{1}{$			
Economically	We found limited information on the production of pummelo in the			
important hosts at	United States because it falls under the "other citrus" category in the			
risk ^a	official U.S. statistics. Production in this category is reported from			
	Arizona, California, Hawaii, Louisiana, and Texas, with a total of 202 acres (NASS, 2019).			
Pest potential on	Phyllosticta citriasiana appears to be a harmful pathogen of pummelo, as			
economically	it causes a tan spot on fruit (Wulandari et al., 2009). Small, pin-like, red			
important hosts at	to brown spots appear when infected fruits start maturing. The spots			
risk	enlarge and become sunken with brown to grey centers and reddish			
	brown rims (Wang et al., 2013).			
Defined Endangered	The endangered zone includes areas of the continental United States,			
Area	Hawaii, Puerto Rico, and the U.S. Virgin Islands within Plant Hardiness			
	Zones 9-13 where hosts are present.			

^a As defined by ISPM No. 11, supplement 2, "economically important hosts" refers to both commercial and nonmarket (environmental) plants (IPPC, 2017b).

Assessing the likelihood of introduction of *Phyllosticta citriasiana* into the endangered area via pummelo imported from Vietnam

Risk Element	Risk	Risk Uncertainty Evidence for rating (and other notes		
	Rating	Rating	necessary)	
Likelihood of				
Entry				
Pest prevalence on	High	Low	Pummelo is a host species, and fruits are the	
the harvested			primary infection sites of P. citriasiana (Wang	
commodity			et al., 2012; Wulandari et al., 2009).	

Risk Element	Risk	Uncertainty	ty Evidence for rating (and other notes as	
	Rating	Rating	necessary)	
Likelihood of surviving post- harvest processing before shipment	High	Low	Disease caused by <i>P. citriasiana</i> was reported to occur during storage, transportation, and marketing, which indicates that this pathogen can survive post-harvest processing prior to shipment (Wang et al., 2012). Based on this evidence, the rating for the previous risk element was left unchanged.	
Likelihood of surviving transport and storage conditions of the consignment	High	Low	Transport and storage procedures in the exporting area are not being considered as part of this assessment; however, disease was reported to continue developing in pummelo during storage and transport (Wang et al., 2012), which shows that this pathogen can remain viable under such conditions. We did not change the previous risk rating.	
Overall Likelihood of Entry	High			

Risk Element	Risk Rating	Uncertainty Rating	Evidence for rating (and other notes as necessary)	
Likelihood of Establishment	LUW	Low	Pummelo is the only known host of <i>P. citriasiana</i> (Farr and Rossman, 2019; Wang et al., 2013; Wulandari et al., 2009). Pummelo fruit production is very limited within the United States. "Other citrus," which includes pummelo, was reported to be grown in the United States on a total of 202 acres in 2017. The majority of this was produced in California (107 acres), Hawaii (52 acres), and Texas (31 acres), with the remaining 12 acres in Arizona and Louisiana (NASS, 2019). This represents 0.024 percent of the total citrus acreage in the United States.	
			Pummelo will be only imported for consumption, which will limit the probability of introducing <i>P. citriasiana</i> directly into natural or agricultural environments where hosts may be available. Plant material for consumption, such as fresh fruits and vegetables, is considered generally to pose a low risk as a pathway for establishment of fungi (Palm and Rossman, 2003). Several events must occur for <i>P. citriasiana</i> to move from imported fruit and infect pummelo in the United States. 1) Infected fruit must arrive in an area with available hosts that is conducive for infection and disease development; 2) a host needs to be in a susceptible physiological stage for infection to occur; 3) <i>P. citriasiana</i> spores must be produced on the fruit; 4) spores must be released from lesions on the infected fruit; 5) water contaminated with spores must be brought into contact with host tissue in a susceptible stage for infection; and 6) enough time must elapse with the relevant weather conditions remaining conducive for infection to occur. It is highly unlikely that all of these events would occur, so we conclude that this pathogen would have a low likelihood of establishment.	

Risk Element	Risk	Uncertainty	Evidence for rating (and other notes as
	Rating	Rating	necessary)
Likelihood of	Medium		
Introduction			
(combined			
likelihoods of entry			
and establishment)			

4. Summary and Conclusions of Risk Assessment

Of the organisms associated with pummelo worldwide and present in the export area, we identified four that are quarantine pests for the PRA area, are likely to exceed the threshold for unacceptable consequences in the PRA area, and have a reasonable likelihood of following the commodity pathway (Table 3). Thus, these pests are candidates for risk management. These results represent a baseline estimate of the risks associated with the import commodity pathway as described in section 1.4.

Table 3. Summary of pests selected for further evaluation and determined to be candidates for risk management. All of these pests meet the threshold for unacceptable consequences of introduction and have a reasonable likelihood of following the commodity pathway.

Pest type	Taxonomy	Scientific name	Likelihood of Introduction overall rating
Arthropod	Diptera: Tephritidae	Bactrocera dorsalis (Hendel)	High
		<i>Zeugodacus cucurbitae</i> (Coquillett)	Medium
	Lepidoptera: Yponomeutidae	Prays endocarpa Meyrick	Medium
Fungi	Diaporthales: Cryphonectriaceae	Cylindrocarpon lichenicola (C. Massal.) D. Hawksw	Medium
	Botryosphaeriales: Botryosphaeriaceae	<i>Phyllosticta citriasiana</i> Wulandari, Crous & Gruyter	Medium

Detailed examination and choice of appropriate phytosanitary measures to mitigate pest risk are not addressed in this document.

5. Literature Cited

Agrios, G. N. 2005. Plant Pathology. Elsevier Academic Press, San Diego, California. 922 pp.
Aketarawong, N., C. R. Guglielmino, N. Karam, M. Falchetto, M. Manni, F. Scolari, L. M. Gomulski, G. Gasperi, and A. R. Malacrida. 2014. The oriental fruitfly *Bactrocera dorsalis* s.s. in East Asia: disentangling the different forces promoting the invasion and shaping the genetic make-up of populations. Genetica 142:201-213.

Al-Sadi, A. M., F. A. Al-Said, A. H. Al-Jabri, I. H. Al-Mahmooli, A. H. Al-Hinai, and A. W. A. M. de Cock. 2011. Occurrence and characterization of fungi and oomycetes transmitted via potting mixtures and organic manures. Crop Protection 30:38-44.

- Alfieri, S. A., C. Wehlburg, K. R. Langdon, and J. W. Kimbrough. 1984. Index of Plant Diseases in Florida. Division of Plant Industry Bulletin (Bulletin 11). Flordia Department of Agriculture & Consumer Services, Gainesville, FL. 389 pp.
- Alvarez, S., E. A. Evans, and A. W. Hodges. 2015. Estimated Costs and Regional Economic Impacts of the Oriental Fruit Fly (*Bactrocera dorsalis*) Outbreak in Miami-Dade County, Florida.
- Amby, D. B., T. Thuy, B. Ho, C. Kosawang, T. Son, and H. J. L. Jørgensen. 2015. First report of *Fusarium lichenicola* as a causal agent of fruit rot in pomelo (*Citrus maxima*). Plant Disease 99:1278.
- Bayles, B. R., S. M. Thomas, G. S. Simmons, E. E. Grafton-Cardwell, and M. P. Daugherty. 2017. Spatiotemporal dynamics of the Southern California Asian citrus psyllid (*Diaphorina citri*) invasion. PloS ONE 12:e0173226.
- Ben-Dov, Y. 1994. A Systematic Catalogue of the Mealybugs of the World. Intercept Ltd, Andover, UK. 686 pp.
- Blumberg, D., Y. Ben-Dov, and Z. Mendel. 1999. The citriculus mealybug, *Pseudococcus cryptus* Hempel, and its natural enemies in Israel: history and present situation [Abstract]. Entomologica 33:233-242.
- Boinahadji, A. K., E. V. Coly, E. O. Dieng, and T. D. P. M. Sembene. 2019. Interactions between the oriental fruit fly *Bactrocera dorsalis* (Diptera, Tephritidae) and its host plants range in the Niayes area in Senegal. Journal of Entomology And Zoology Studies 7:855-861.
- Boontop, Y., M. K. Schutze, A. R. Clarke, S. L. Cameron, and M. N. Krosch. 2017. Signatures of invasion: using an integrative approach to infer the spread of melon fly, *Zeugodacus cucurbitae* (Diptera: Tephritidae), across Southeast Asia and the West Pacific. Biological Invasions 19:1597-1619.
- Botha, J., A. Reeves, and D. Hardie. 2004. Melon fruit fly (*Bactrocera cucurbitae*) with reference to other fruit fly species of importance to the cucurbit industry: Exotic threat to Western Australia (No. 5/2004). <u>Factsheet</u>, State of Western Australia, Department of Agriculture: 1-2.
- CABI. 1972. Distribution Maps of Pests, No. 305: *Coccus viridis* (Green). Commonwealth Agricultural Bureaux, Wallingford, UK.
- CABI. 1990. Distribution Maps of Plant Diseases No. 2512: *Prays endocarpa*. Commonwealth Mycological Institute, Wallingford, UK.
- CABI. 2019. Crop Protection Compendium. CAB International. https://www.cabi.org/cpc/.
- Carey, J., E. Harris, and D. McInnis. 1985. Demography of a native strain of the melon fly, *Dacus cucurbita*e, from Hawaii. Entomologia experimentalis et applicata 38:195-199.
- Chen, M., P. Chen, H. Ye, R. Yuan, X. Wang, and J. Xu. 2015. Flight capacity of *Bactrocera dorsalis* (Diptera: Tephritidae) adult females based on flight mill studies and flight muscle ultrastructure. Journal of Insect Science 15:1-7.
- Cid, M., S. Pereira, C. Cabaleiro, and A. Segura. 2010. Citrus mealybug (Hemiptera: Pseudococcidae) movement and population dynamics in an arbor-trained vineyard. Journal of Economic Entomology 103:619-630.
- Colhoun, J. 1973. Effects of environmental factors on plant disease. Annual Review of Phytopathology 11:343-364.

- Conti, F., and R. Fisicaro. 2015. Integrated strategies to monitor and control citrus flower moth, *Prays citri* (Lepidoptera: Yponomeutidae) on nursery trees of the Mediterranean area. Acta Horticulturae 1065:1165-1171.
- Culliney, T. W., W. T. Nagamine, and K. K. Teramoto. 2003. Introductions for Biological Control in Hawaii 1997-2001. Proceedings of the Hawaiian Entomological Society 36:145-153.
- Dang, C.-H., C.-H. Nguyen, C. Im, and T.-D. Nguyen. 2016. Synthesis and application of pheromones for integrated pest management in Vietnam. Pages 103-128 *in* H. Gill, (ed.). Integrated Pest Management (IPM): Environmentally Sound Pest Management. IntechOpen, Rijeka, Croatia.
- Dao, H. T., G. A. C. Beattie, G. W. Watson, V. L. Pham, V. L. Nguyen, D. K. Le, T. H. Nguyen, D. V. Nguyen, and P. Holford. 2018. Citrus diaspidids in Viet Nam: New, and confirmation of previous, records based on morphological and molecular verification of taxa. Journal of Asia-Pacific Entomology 21:81-96.
- Denton, G. R. W., R. Muniappan, M. Marutani, J. McConnell, and T. S. Lali. 1989. Biology and natural enemies of the fruit-piercing moth *Othreis fullonia* (Lepidoptera: Noctuidae) from Guam. 1989 Agricultural Development in the American Pacific Crop Protection Conference, Honolulu, HI. May 18-19, 1989.
- Dhillon, M. K., R. Singh, J. S. Naresh, and H. C. Sharma. 2005. The melon fruit fly, Bactrocera cucurbitae: A review of its biology and management. Journal of Insect Science 5:1-16.
- Dowell, R. V., F. W. Howard, R. H. Cherry, and G. E. Fitzpatrick. 1979. Field studies of the host range of the Citrus Blackfly, *Aleruocanthus woglumi* (Homoptera: Aleyrodidae). The Canadian Entomologist 111:1-6.
- Drenth, A., and D. I. Guest. 2004. Diversity and Management of *Phytophthora* in Southeast Asia (ACIAR Monograph No. 114). Australian Centre for International Agricultural Research, Canberra, Australia. 238 pp.
- Drew, R. A. I., K. Tsuruta, and I. M. White. 2005. A new species of pest fruit fly (Diptera: Tephritidae: Dacinae) from Sri Lanka and Africa. African Entomology 13:149-154.
- Eigenbrode, S. D., N. A. Bosque-Pérez, and T. S. Davis. 2018. Insect-Borne Plant Pathogens and Their Vectors: Ecology, Evolution, and Complex Interactions. Annual Review of Entomology 63:169-191.
- Erwin, D. C., and O. K. Ribeiro. 1996. *Phytophthora* diseases worldwide. The American Phytopathological Society, St. Paul, MN. 562 pp.
- Farr, D. F., and A. Y. Rossman. 2019. Fungal Databases, U.S. National Fungus Collections. United States Department of Agriculture, Agriculture Research Service. <u>https://nt.ars-grin.gov/fungaldatabases/</u>.
- Ferwerda-Licha, M. 2002. First report of algal leaf spot caused by *Cephaleuros virescens* Kunze on longan trees in Puerto Rico. Journal of Agriculture of the University of Puerto Rico 86:65-66.
- Francl, L. J. 2001. The Disease Triangle: a plant pathological paradigm revisited. The Plant Health Instructor. The American Phytopathological Society, St. Paul, MN.
- French, A. M. 1987. California Plant Disease Host Index. Part 1: Fruits and nuts. California Department of Food and Agriculture, Sacramento, CA. 39 pp.
- French, A. M. 1989. California plant disease host index. California Department of Food and Agriculture, Division of Plant Industry, Sacramento, CA. 394 pp.

- GBIF. 2018. GBIF. Global Biodiversity Information Facility (GBIF), Online Database. <u>http://data.gbif.org/welcome.htm</u>.
- Ghosh, A., A. Das, R. Meena, and V. Baranwal. 2014. Evidence for resistance to Citrus tristeza virus in pomelo (*Citrus maxima* Merr.) grown in Darjeeling and Sikkim hills of India. Phytoparasitica 42:503-508.
- Gimpel, W. F., D. R. Miller, and J. A. Davidson. 1974. A systematic revision of the wax scales, genus *Ceroplastes*, in the United States (Homoptera: Coccoidea, Coccidae). University of Maryland, Agricultural Experiment Station, College Park, MD. 85 pp.
- Goergen, G., J.-F. Vayssières, D. Gnanvossou, and M. Tindo. 2011. Bactrocera invadens (Diptera: Tephritidae), a new invasive fruit fly pest for the Afrotropical region: host plant range and distribution in West and Central Africa. Environmental Entomology 40:844-854.
- Goodey, J. B., M. T. Franklin, and D. J. Hooper. 1965. T. Goodey's The Nematode Parasites of Plants Catalogued Under Their Hosts (Third). Commonwealth Agricultural Bureaux, Farnham Royal, UK. 183 pp.
- Grasswitz, T. R., and D. G. James. 2008. Movement of grape mealybug, *Pseudococcus maritimus*, on and between host plants. Entomologia Experimentalis et Applicata 129:268-275.
- Gyeltshen, J., A. Hodges, and G. S. Hodges. 2005. Orange Spiny Whitefly, *Aleurocanthus spiniferus* Quaintance (Insecta: Hemiptera: Aleyrodidae). (EENY341). University of Florida, Institute of Food and Agricultural Sciences Extension, Gainesville, FL. 4 pp.
- Hajeri, S. 2010. Study of molecular and biological properties of *Citrus exocortis viroid* and *Dweet mottle virus*. University of California, Riverside, Riverside, CA. pp. 149.
- Hamon, A., and M. L. Williams. 1984. The soft scale insects of Florida (Homoptera: Coccoidea: Coccidae). Arthropods of Florida and Neighboring Land Areas. Florida Department of Agricultural and Consumer Services, Division of Plant Industry. 194 pp.
- Hanna, R., G. G., J.-F. Vayssieres, M. Tindo, and D. Gnanvossou. 2004. The Asian fruit fly *Bactrocera invadens* in West and Central Africa: infestation rates and seaonsonal dynamics in West and Central Africa. International Institute of Tropical Agriculture, Cotonou, Benin. 118 pp.
- Hart, W. G., A. Selhime, D. P. Harlan, S. J. Ingle, R. M. Sanchez, and R. H. Rhode. 1978. The introduction and establishment of parasites of citrus blackfly, *Aleurocanthus woglumi* in Florida [Hem.: Aleyrodidae]. Entomophaga 23:361-366.
- Heppner, J. B. 1993. Citrus leafminer, *Phyllocnistis citrella*, in Florida (Lepidoptera: Gracillariidae: Phyllocnistinae). Tropical Lepidoptera Research 4:49-64.
- Hirano, S. S., and C. D. Upper. 2000. Bacteria in the Leaf Ecosystem with Emphasis on *Pseudomonas syringae* - a Pathogen, Ice Nucleus, and Epiphyte. Microbiology and Molecular Biology Reviews 64:624-653.
- Huang, Y., and H. Chi. 2014. Fitness of *Bactrocera dorsalis* (Hendel) on seven host plants and an artificial diet. Turkish Journal of Entomology 38:401-414.
- IPPC. 2017a. International Standards For Phytosanitary Measures, Publication No. 5: Glossary of phytosanitary terms. Food and Agriculture Organization of the United Nations, Secretariat of the International Plant Protection Convention (IPPC), Rome, Italy. 20 pp.
- IPPC. 2017b. International Standars For Phytosanitary Measures, Publication No. 11: Pest risk analysis for quarantine pests.

- Iwen, P. C., S. R. Tarantolo, D. A. Sutton, M. G. Rinaldi, and S. H. Hinrichs. 2000. Cutaneous infection caused by *Cylindrocarpon lichenicola* in a patient with acute myelogenous leukemia. Journal of clinical microbiology 38:3375-3378.
- Khuong, G. B. 1983. Plant-parasitic nematodes of South Viet Nam. Journal of nematology 15:319.
- Kiet, T. T. 1998. Preliminary checklist of macrofungi of Vietnam. Feddes repertorium 109:257-277.
- Krull, S. M. E., and T. Basedow. 2005. Evaluation of the biological control of the pink wax scale *Ceroplastes rubens* Maskell (Hom., Coccidae) with the introduced parasitoid *Anicetus beneficus* Ishii & Yasumatsu (Hym., Encyrtidae) in the Central province of Papua New Guinea. Journal of Applied Entomology 129:323-329.
- Kumagai, L., C. LeVesque, C. Blomquist, K. Madishetty, Y. Guo, P. Woods, S. Rooney-Latham, J. Rascoe, T. Gallindo, and D. Schnabel. 2013. First report of *Candidatus* Liberibacter asiaticus associated with citrus Huanglongbing in California. Plant Disease 97:283.
- Kunkel, B. N., and Z. Chen. 2006. Virulence Strategies of Plant Pathogenic Bacteria. Prokaryotes 2:421-440.
- Laemmien, F. F. 2011. Pest Notes: Sooty Mold, publication 74108. University of California Statewide Integrated Pest Management Program, Davis, CA. 3 pp.
- Leben, C. 1974. Survival of Plant Pathogenic Bacteria. (100). Ohio Agricultural Research and Development Center, Wooster, Ohio. 24 pp.
- Leong, S. L., L. T. Hien, T. V. An, N. T. Trang, A. D. Hocking, and E. S. Scott. 2007. Ochratoxin A-producing Aspergilli in Vietnamese green coffee beans. Letters in Applied Microbiology 45:301-306.
- Lichtenthaler, H. 1998. The stress concept in plants: an introduction. Annals of the New York Academy of Sciences 851:98-187.
- Lin, Y. P., T. Kondo, P. Gullan, and L. G. Cook. 2013. Delimiting genera of scale insects: molecular and morphological evidence for synonymising *Taiwansaissetia* Tao, Wong and Chang with *Coccus* Linnaeus (Hemiptera: Coccoidea: Coccidae). Systematic Entomology 38:249-264.
- Luong, T., L. Huynh, H. Hoang, L. Tesoriero, L. Burgess, H. Phan, and P. Davies. 2010a. First report of *Pythium* root rot of chrysanthemum in Vietnam and control with metalaxyl drench. Australasian Plant Disease Notes 5:51-54.
- Luong, T. M., L. M. T. Huynh, T. V. Le, L. W. Burgess, and H. T. Phan. 2010b. First report of Sclerotinia blight caused by *Sclerotinia sclerotiorum* in Quang Nam, Vietnam. Australasian Plant Disease Notes 5:42-44.
- Magarey, R., D. Borchert, and W. Schlegel. 2008. Global plant hardiness zones for phytosanitary risk analysis. Scientia Agricola 65:54-59.
- Mani, M., and A. Krishnamoorthy. 2008. Biological suppression of the mealybugs *Planococcus citri* (Risso), *Ferrisia virgata* (Cockerell) and *Nipaecoccus viridis* (Newstead) on pummelo with *Cryptolaemus montrouzieri* Mulsant in India. Journal of Biological Control 22:169-172.
- Maxwell, A., S. L. Jackson, D. Bernie, and G. E. S. J. Hardy. 2005. PCR-identification of *Mycosphaerella* species associated with leaf diseases of *Eucalyptus*. Mycological Research 109:992-1004.
- McKemy, J. 2010. The quarantine status of a sooty mold. Personal communication from McKemy, J., United States Department of Agriculture, Nationa Identification Service, to

H. Hartzog, Risk Analyst, United States Department of Agriculture, Center for Plant Health Science and Technology on 9 August 2010.

- McKenzie, E. 2013. *Meliola citricola*. Department of Agriculture and Food, Western Australia, New South Wales Department of Primary Industries, Plant Health Australia, Queensland Department of Primary Industries and Fisheries, Queensland University of Technology, Pests and Diseases Image Library.
- McQuate, G. T., N. J. Liquido, and K. A. Nakamichi. 2017. Annotated world bibliography of host plants of the melon fly, *Bactrocera cucurbitae* (Coquillett)(Diptera: Tephritidae). Insecta Mundi 527:1–339.
- Meagher, R. L., and J. V. French. 2004. Augmentation of Parasitioids for Biological Control of Citrus Blackfly in Southern Texas. Florida Entomologist 87:186-193.
- Medina-Gaud, S., F. D. Bennett, and R. A. Franqui. 1991. La Mosca Negra de los Citricos, *Aleurocanthus woglumi* Ashby (Homoptera:Aleyrodidae), en Puerto Rico. The Journal of Agriculture of the University of Puerto Rico 75:301-305.
- Melotto, M., W. Underwood, J. Koczan, K. Nomura, and S. J. He. 2006. Plant Stomata Function in Innate Immunity against Bacterial Invasion. Cell 126:969-980.
- Michaud, J. P. 1998. A review of the literature on *Toxoptera citricida* (Kirkaldy) (Homoptera: Aphididae). The Florida Entomologist 81:37-61.
- Miller, D. R., V. L. Blackburn, J. A. Davidson, and W. F. Gimpel, Jr. 1985. Pest risk assessment of armored scales on certain fruit [report submitted to USDA, Animal and Plant Health Inspection Service, Plant Protection and Quarantine]. United States Department of Agriculture (USDA), Agricultural Research Service, Beltsville, MD. 35 pp.
- Mordue, J. E. M., and I. A. S. Gibson. 1976. *Corticium salmonicolor*. (CMI Descriptions of Pathogenic Fungi and Bacteria No. 511). CAB International, Wallingford, UK. 2 pp.
- Mwatawala, M. W., M. De Meyer, R. H. Makundi, and A. P. Maerere. 2006. Seasonality and host utilization of the invasive fruit fly, *Bactrocera invadens* (Dipt., Tephritidae) in central Tanzania. Journal of Applied Entomology 130:530-537.
- Narasimham, A. U., and M. J. Chacko. 1991. The distribution of some *Rastrococcus* spp. (Homoptera: Pseudococcidae) on mango in India. Bulletin of Entomological Research 81:445-448.
- NASS. 2018. Citrus Fruits. 2018 Summary. USDA National Agricultural Statistics Service (NASS), Washington D.C. . 35 pp.
- NASS. 2019. 2017 Census of Agriculture. United States Department of Agriculture, National Agricultural Statistics Service (NASS), Washington D.C.
- Nelson, S. C. 2008. *Cephaleuros* species, the plant-parasitic green algae. University of Hawaii CTAHR Plant Disease Fact Sheet (PD-43). University of Hawaii at Manoa, College of Tropical Agriculture and Human Resources, Honolulu, HI. 6 pp.
- Ngampongsai, A., B. Barrett, S. Permkam, N. Suthapradit, and R. Nilla-or. 2005. A preliminary study on some ecological aspects of the fruit piercing moths in Songkhla Province of Southern Thailand. Songklanakarin Journal of Science and Technology 27:1135-1145.
- Nguyen, Q. A., N. H. Dau, and T. T. D. Nguyen. 2000. Results of a study on the presence of *Aspergillus flavus* in maize fields during harvest. Khoa Hoc Ky Thuat Thu Y (Veterinary Sciences and Techniques) 7:63-67.
- Nguyet, D. T. M., T. T. T. Thuy, N. T. Tuyet, D. M. Tu, N. T. Yen, D. T. Thanh, and H. H. Nhi. 2003. Occurrence of *Pratylenchus coffeae* and occurrence, damage and reproduction of *Radopholus similis* in the Northern and Central Highlands of Vietnam. Towards

management of *Musa* nematodes in Asia and the Pacific, Laguna, Philippines. December 1-5, 2003.

- NIS. 2008. Change in action status for armored scales (Hemiptera: Diaspididae) on material for consumption (NIS action policy, March 25, 2008). United States Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine, National Identification Services (NIS).
- NRCS. 2019. The PLANTS Database. United States Department of Agriculture, Natural Resources Conservation Service (NRCS), The National Plant Data Center. <u>http://plants.usda.gov</u>.
- Oramas-Nival, D., and J. Roman. 2006. Histopatología de los nematodos *Radopholus similis*, *Pratylenchus coffeae*, *Rotylenchulus reniformis* y *Meloidogyne incognita* en plátano (*Musa acuminata* x *M. balbisiana*, AAB). Journal of Agriculture of the University of Puerto Rico 90:83-97.
- Palm, M. E., and A. Y. Rossman. 2003. Invasion pathways of terrestrial plant-inhabiting fungi. Pages 31-43 in G. M. Ruiz and J. T. Carlton, (eds.). Invasive Species: Vectors and Management Strategies. Island Press, Washington, D.C.
- Pangnakorn, U., and S. Chuenchooklin. 2015. Effectiveness of biopesticide against insects pest and its quality of pomelo (*Citrus maxima* Merr.). International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering 9:285-288.
- Paulson, G. S., and B. R. Kumashiro. 1985. Hawiian Aleyrodidae. Proceedings of the Hawaiian Enomological Society 25:103-124.
- Pena, M. R., J. D. Vendramim, A. L. Lourencao, N. M. da Silva, P. T. Yamamoto, and M. da Silva Goncalves. 2008. Occurrence of citrus blackfly, *Aleurocanthus woglumi* Ashby (Hemiptera: Aleyrodidae) in the state of Sao Paulo. Revista de Agricultura 83:61-65.
- PERAL. 2007. Phytosanitary risks associated with armored scales in commercial shipments of fruit for consumption to the United States, Revision Original. United States Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Center for Plant Health Science and Technology, Plant Epidemiology and Risk Analysis Laboratory (PERAL), Raleigh, NC. 24 pp.
- Peregrine, W. T. H., and K. Bin Ahmad. 1982. Brunei: a first annotated list of plant diseases and associated organisms. (Phytopathological Paper No. 27). Commonwealth Mycological Institute, Wallingford, UK. 87 pp.
- PestID. 2019. Pest Identification Database (PestID). United States Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine. <u>https://mokcs14.aphis.usda.gov/aqas/login.jsp</u>
- Pretorius, M. C., P. W. Crous, J. Z. E. Groenwald, and U. Braun. 2003. Phylogeny of some cercosporoid fungi from *Citrus*. Sydowia 55:286-305.
- Puttamuk, T., S. Zhang, Y. Duan, A. Jantasorn, and N. Thaveechai. 2014. Effect of chemical treatments on '*Candidatus* Liberibacter asiaticus' infected pomelo (*Citrus maxima*). Crop Protection 65:114-121.
- Raabe, R. D. 1966. Check list of plant diseases previously unreported in Hawaii. Plant Disease Reporter 50:411-414.
- Rae, D. G., D. M. Watson, M. D. Huang, Y. J. Cen, B. Z. Wang, A. Z. Beattie, W. G. Liang, B. L. Tan, and D. G. Liu. 2000. Efficacy and phytoxicity of multiple petroleum oil sprays on sweet orange (*Citrus sinensis* L.) and pummelo (*C. grandis* L.) in Southern China. International Journal of Pest Management 46:125-140.

- Roberts, D. A., and C. W. Boothroyd. 1972. Fundamentals of Plant Pathology. W.H. Freeman & Co., San Francisco.
- Roistacher, C. N., and P. Moreno. 1990. The worldwide threat from destructive isolates of Citrus Tristeza Virus - A review. Pages 7-19 *in* R. H. Brlansky, R. F. Lee, and L. W. Timmer, (eds.). Proceedings of the Eleventh IOCV Conference. International Organization of Citrus Virologists, Riverside, CA.
- Roman, J., X. Rivas, and J. Rodriguez. 1974. Chemical control of the nematodes of plantains. Nematropica 4:5.
- Sands, D., and W. Liebregts. 2005. Biological control of fruit piercing moth (*Eudocima fullonia* [Clerck]) (Lepidoptera: Noctuidae) in the Pacific: Exploration, specificity and evaluation of parasitoids. International Symposium on Biological Control of Arthropods (FHTET-2005-08), Davos, Switzerland. September 12-16, 2005.
- Sankar, V., P. C. Tripathi, G. Karunakaran, and R. S. Kumbar. 2014. Pummelo. Indian Institute of Horticultural Research, Central Horticultural Experiment Station, Kodagu, India. 10 pp.
- Saponari, M., and R. K. Yokomi. 2010. Use of the coat protein (CP) and minor CP intergene sequence to discriminate severe strains of *Citrus tristeza virus* (CTV) in three U.S. CTV isolate collections. Pages 43-57 in M. E. Hilf, L. W. Timmer, R. G. Milne, and J. V. da Graca, (eds.). Proceedings of the 17th Conference, IOCV. International Organization of Citrus Virologists, Riverside, CA.
- Sasser, J. N., and C. C. Carter (eds.). 1985. An Advanced Treatise on *Meloidogyne*. Volume I: Biology and Control. North Carolina State University, Department of Plant Pathology and the United States Agency for International Development, Raleigh, North Carolina. 617 pp.
- Schutze, M. K., K. Mahmood, A. N. A. Pavasovic, W. Bo, J. Newman, A. R. Clarke, and S. L. Cameron. 2015. One and the same: integrative taxonomic evidence that *Bactrocera invadens* (Diptera: Tephritidae) is the same species as the Oriental fruit fly *Bactrocera dorsalis*. Systematic Entomology 40:472-486.
- Shaw, D. E. 1984. Microorganisms in Papua New Guinea. Research Bulletin. Department of Primary Industries, Port Moresby, Papua New Guinea. 334 pp.
- Stephens, A., D. J. Kriticos, and A. Leriche. 2007. The current and future potential geographical distribution of the oriental fruit fly, *Bactrocera dorsalis* (Diptera: Tephritidae). Bulletin of Entomological Research 97:369-378.
- Stevenson, J. A. 1975. The Fungi of Puerto Rico and the American Virgin Islands. Reed Herbarium, Baltimore, MD. 743 pp.
- Stocks, I. C. 2013. Recent adventive scale insects (Hemiptera: Coccoidea) and whiteflies (Hemiptera: Aleyrodidae) in Florida and the Caribbean region. Pages 342-362 *in* J. E. Peña, (ed.). Potential Invasive Pests of Agricultural Crops. CAB International, Boston.
- Summerbell, R. C., and H. J. Schroers. 2002. Analysis of phylogenetic relationship of *Cylindrocarpon lichenicola* and *Acremonium falciforme* to the *Fusarium solani* species complex and a review of similarities in the spectrum of opportunistic infections caused by these fungi. Journal of Clinical Microbiology 40:2866-2875.
- Takeuchi, Y., G. Fowler, and A. S. Joseph. 2019. SAFARIS: Global plant hardiness zone development. North Carolina State University, Center for Integrated Pest Management; US Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Science and Technology, Plant Epidemiology and Risk

Analysis Laboratory, Raleigh, NC. Last accessed August 2019, <u>https://safaris.cipm.info/safarispestmodel/StartupServlet?phz</u>.

- Tan, K. H., and S. L. Lee. 1982. Species diversity and abundance of *Dacus* (Diptera; Teptritidae) in fine ecosystems of Penang, West Malaysia. Bulletin of Entomological Research Supplement Series 72:709-716.
- Thomas, S. E., J. Crozier, M. C. Aime, H. C. Evans, and K. A. Holmes. 2008. Molecular characterisation of fungal endophytic morphospecies associated with the indigenous forest tree, *Theobroma gileri*, in Ecuador. Mycological Research 112:852-860.
- Thuan, T., N. Tho, and B. Tuyen. 2008. First report of *Rhizoctonia solani* subgroup AG 1-ID causing leaf blight on durian in Vietnam. Plant Disease 92:648.
- Timmer, L. W., S. M. Garnsey, and J. H. Graham (eds.). 2000. Compendium of Citrus Diseases, Second edition. APS Press, St. Paul, MN. 92 pp.
- Tomimura, K., S.-I. Miyata, N. Furuya, K. Kubota, M. Okuda, S. Subandiyah, T.-H. Hung, H.-J. Su, and T. Iwanami. 2009. Evaluation of genetic diversity among '*Candidatus* Liberibacter asiaticus' isolates collected in Southeast Asia. Phytopathology 99:1062-1069.
- UGA. 2018. Widely Prevalent Nematodes of the United States. University of Georgia, Center for Invasive Species and Ecosystem Health. <u>https://www.prevalentnematodes.org/</u>.
- USDA-ARS. 1960. Index of plant diseases in the United States. USDA Agriculture Handbook. United States Department of Agriculture, Agricultural Research Service.
- Usharani, P., and P. Ramarao. 1981. Corm rot of *Colocasia esculenta* caused by *Cylindrocarpon lichenicola*. Note. Indian Phytopathology 34:381-382.
- Vang, L. V., N. D. Do, L. K. An, P. K. Son, and T. Ando. 2011. Sex pheromone components and control of the citrus pock caterpillar, *Prays endocarpa*, found in the Mekong Delta of Vietnam. Journal of Chemical Ecology 37:134-140.
- Vang, L. V., H. N. Thuy, C. N. Q. Khanh, P. K. Son, Q. Yan, M. Yamamoto, U. Jinbo, and T. Ando. 2013. Sex pheromones of three citrus leafrollers, *Archips atrolucens*, *Adoxophyes privatana*, and *Homona* sp., inhabiting the Mekong Delta of Vietnam. Journal of Chemical Ecology 39:783-789.
- Vargas, R. I., J. C. Pinero, R. F. L. Mau, E. B. Jang, and L. M. Klungness. 2010. Area-wide suppression of the Mediterranean fruit fly, *Ceratitis capitata*, and the Oriental fruit fly, *Bactrocera dorsalis*, in Kamuela, Hawaii. Journal of Insect Science 10:1-16.
- Vidaver, A. K., and P. A. Lambrecht. 2004. Bacteria as Plant Pathogens. American Phytopathological Society (APS), St. Paul, MN. Last accessed 8/29/2018, <u>https://www.apsnet.org/edcenter/intropp/PathogenGroups/Pages/Bacteria.aspx</u>.
- Vietnam Plant Protection. 2016. Technical Market Access Submission. Ministry of Agriculture, Plant Protection Department, Hanoi, Vietnam. 21 pp.
- Walters, S. A., and K. R. Barker. 1994. Current distribution of five major *Meloidogyne* species in the United States. Plant Disease 78:772-774.
- Wang, P., X. Song, and H. Zhang. 2013. Isolation and characterization of Aschersonia placenta from citrus orchards and its pathogenicity towards *Dialeurodes citri* (Ashmead). Journal of invertebrate pathology 112:122-128.
- Wang, Q., W. Zeng, L. Chen, J. Li, and X. Yin. 2002. Circadian reproductive rhythms, pairbonding, and evidence for sex-specific pheromones in *Nadezhdiella cantori* (Coleoptera: Cerambycidae). Journal of Insect Behavior 15:527-539.

- Wang, X., G. Chen, F. Huang, J. Zhang, K. D. Hyde, and H. Li. 2012. *Phyllosticta* species associated with citrus diseases in China. Fungal diversity 52:209-224.
- Waterhouse, D. F. 1993a. Biological Control: Pacific Prospects Supplement 2. The Australian Centre for International Agricultural Research, (ACIAR), Bruce, Australia. 138 pp.
- Waterhouse, D. F. 1993b. The Major Arthropod Pests and Weeds of Agriculture in Southeast Asia: Distribution, importance and origin. The Australian Centre for International Agricultural Research, Canberra, Australia. 141 pp.
- Wellman, F. L. 1977. Dictionary of Tropical American Crops and Their Diseases. The Scarecrow Press, Metuchen, NJ. 495 pp.
- White, I. M., and M. M. Elson-Harris. 1992. Fruit flies of economic significance: Their identification and bionomics. CAB International and the Australian Center for International Agricultural Research (ACIAR), Wallingford, UK. 601 pp.
- Whittle, A. M. 1992. Diseases and pests of citrus in Viet Nam. FAO Plant Protection Bulletin 40:75-81.
- Widrlechner, M. P. 1997. Hardiness Zones in China. United States Department of Agriculture, Agricultural Research Service, Ames, IA, U.S.A.
- Williams, D. J., and G. W. Watson. 1988. The Scale Insects of the Tropical South Pacific Region: The Mealybugs (Pseudococcidae) (Part 2). CAB International, Wallingford, UK. 260 pp.
- Williams, D. J., and G. W. Watson. 1990. The Scale Insects of the Tropical South Pacific region. Part 3, The Soft Scales (Coccidae) and other families. CAB International Institute of Entomology, Wallingford, UK. 267 pp.
- Wolf, F. A. 1930. A parasitic alga, *Cephaleuros virescens* Kunze, on citrus and certain other plants. Journal of the Elisha Mitchell Scientific Society 45:187-205.
- Wulandari, N., C. To-Anun, K. Hyde, L. Duong, J. De Gruyter, J. Meffert, J. Groenewald, and P. Crous. 2009. *Phyllosticta citriasiana* sp. nov., the cause of Citrus tan spot of *Citrus maxima* in Asia. Fungal Diversity 34:23-39.
- Ye, H., and J.-H. Liu. 2005. Population dynamics of the oriental fruit fly, *Bactrocera dorsalis* (Diptera: Tephritidae) in the Kunming area, southwestern China. Insect Science 12:387-392.
- Zehavi, A., and D. Rosen. 1987. Population trends of the spirea aphid, *Aphis citricola* van der Goot, in a citrus grove in Israel. Journal of Applied Entomology 104:271-277.
- Zhang, X. 2000. The extra effective insecticides for control of pomelo scales. South China Fruits 29:23.

6. Appendix: Pests with non-quarantine status

We found some evidence of the below listed organisms being associated with pummelo and present in Vietnam. Because these organisms are not regulated for the United States (PestID, 2019; or as defined by ISPM 5, IPPC, 2017b), we did not list them in Table 1 of this risk assessment. Moreover, we did not evaluate the strength of the evidence for their association with pummelo or their presence in Vietnam. Because we did not evaluate the strength of the evidence, we consider the following pests to have only "potential" association with the commodity and presence in Vietnam. For organisms **not** present in the United States, we also provide justification for their non-actionable status.

All armored scales (Diaspididae) are non-actionable at U.S. ports of entry on fruit for consumption (NIS, 2008). Even if an armored scale species is not present in the United States, PPQ considers it non-actionable on fruit for consumption because these insects have a very limited ability to disperse to host plants so are highly unlikely to establish via this pathway (Miller et al., 1985; PERAL, 2007).

Organism	In Vietnam	In U.S.	Host association	Notes
ACARI				
Eriophyidae				
Phyllocoptruta oleivora	Vietnam Plant	Non-quarantine	Rae et al., 2000;	
Ashmead	Protection,	(PestID, 2019;	Vietnam Plant	
	2016; Whittle,	Rae et al., 2000;	Protection, 2016	
	1992	Vietnam Plant		
		Protection, 2016)		
Tarsonemidae				
Polyphagotarsonemus	Vietnam Plant	Non-quarantine	Vietnam Plant	
latus (Banks)	Protection, 2016	(PestID, 2019)	Protection, 2016	
Tetranychidae				
Panonychus citri	Vietnam Plant	Non-quarantine	Rae et al., 2000;	
(McGregor)	Protection,	(PestID, 2019)	Vietnam Plant	
	2016; Whittle,		Protection, 2016	
	1992			
INSECTA				
HEMIPTERA				
Aleyrodidae				
Dialeurodes citri	Whittle, 1992	Non-quarantine	Wang et al., 2013	
(Ashmead)		(PestID, 2019)		
Aphididae				
Aphis fabae Scopoli	Whittle, 1992	CABI, 2019.	Zehavi and	
syn.: A. <i>citricola</i> van		Non-quarantine	Rosen, 1987	
der Goot		(PestID, 2019)		
Toxoptera aurantii	Whittle, 1992	Non-quarantine	Sankar et al.,	
(Boyer de		(PestID, 2019)	2014	
Fonscolombe)				
Coccidae				
Coccus hesperidum	CABI, 2019	Non-quarantine	Williams and	
(Linnaeus)		(PestID, 2019)	Watson, 1990	

Coccus viridis (Green)	CABI, 1972	Non-quarantine (PestID, 2019)	Lin et al., 2013
Pulvinaria psidii	Vietnam Plant	Non-quarantine	Vietnam Plant
Maskell, syn.:	Protection, 2016	(PestID, 2019)	Protection, 2016
Chloropulvinaria psidii			
Borchsenius			
Saissetia coffeae	Ben-Dov, 1994	Non-quarantine	Ben-Dov,
(Walker)		(PestID, 2019)	1994William and
D [•] • I [•] I (11 ()		<i>(</i> :)	Watson, 1990
Diaspididae (all non-acti	onable on truit for o	consumption)	D (1 2000
Aonidiella aurantii	Vietnam Plant	Non-quarantine	Rae et al., 2000;
(Maskell)	Protection, 2016	(PestID, 2019)	Vietnam Plant
A oni di alla aitrina	Dec at al 2019		Protection, 2016
(Cognillett)	Dao et al., 2018		Dao et al., 2018
<u>(Coquille inornata</u>	Dao et al. 2018		Dao et al. 2018
McKenzie	Dao et al., 2018		Dao et al., 2018
Aspidiotus destructor	Dao et al 2018		Dao et al 2018
Signoret	Duo et ul., 2010		Duo et ul., 2010
Aspidiotus excisus	Dao et al., 2018		Dao et al., 2018
Green	···· · · · · · · · · · · · · · · · · ·		
Chrysomphalus	Dao et al., 2018	Non-quarantine	Dao et al. 2018
aonidum (Linnaeus)		(PestID, 2019)	
syn.: C. ficus Ashmead			
Chrysomphalus	Dao et al., 2018		Dao et al., 2018
bifasciculatus Ferris			
Chrysomphalus	Dao et al., 2018		Dao et al., 2018
dictyospermi (Morgan)			
Fiorinia theae Green	Dao et al., 2018		Dao et al., 2018
Hemiberlesia	Dao et al., 2018		Dao et al., 2018
cyanophylli (Signoret)	W1 :		D 1 2010
Lepidosaphes beckii	Whittle, 1992		Dao et al., 2018
(Inewman)	Dec at al 2019		Dec et al. 2019
(Doolcord)	Dao et al., 2018		Dao et al., 2018
(Fackaru)	Dao et al. 2018		Dao et al. 2018
Williams & Watson	Dao et al., 2018		Dao et al., 2018
Octaspidiotus	Dao et al 2018		Dao et al 2018
stauntoniae (Takahashi)	Duo et uii, 2010		Duo et un, 2010
Parlatoria cinerea	Dao et al., 2018		Dao et al., 2018
(Hadden in Doane &	···· · · · · · · · · · · · · · · · · ·		
Hadden)			
Parlatoria pergandii	Dao et al., 2018		Rae et al., 2000
Comstock			
Parlatoria ziziphi	Whittle, 1992		Dao et al., 2018
(Lucas)			
Pinnaspis aspidistrae	Dao et al., 2018		Dao et al., 2018
(Signoret)			
Pseudaonidia	Dao et al., 2018		Dao et al., 2018
trilobitiformis (Green)			

Unaspis citri	Dao et al 2018		Dao et al 2018	
(Comstock)	Duo et un, 2010		Duo ot all, 2010	
Margarodidae				
Icerya purchasi	Whittle, 1992	Non-quarantine	Zhang, 2000	
Maskell	,	(PestID, 2019)	Ċ,	
Pseudococcidae		· · ·		
Planococcus citri	Dang et al.,	Non-quarantine	Mani and	
(Risso)	2016; Vietnam	(PestID, 2019;	Krishnamoorthy,	
	Plant Protection,	Mani and	2008; Vietnam	
	2016	Krishnamoorthy,	Plant Protection,	
		2008; Vietnam	2016	
		Plant Protection,		
	D D 1004	<u>2016)</u>	D D 1004	
Pseudococcus	Ben-Dov, 1994	Non-quarantine	Ben-Dov, 1994;	
Torgispinus (Targioni Torzetti)		(PestiD, 2019; Mani and	Watson 1988	
1022011)		Krishnamoorthy	watson, 1988	
		2008: Vietnam		
		Plant Protection,		
		2016)		
THYSANOPTERA				
Thripidae				
Scirtothrips dorsalis	Vietnam Plant	Pangnakorn and	Pangnakorn and	
Hood	Protection, 2016	Chuenchooklin,	Chuenchooklin,	
		2015; Vietnam	2015; Vietnam	
		Plant Protection,	Plant Protection, 2016	
NEMATODES		2010	2010	
Meloidogyne incognita	Vietnam Plant	Sasser and Carter.	Vietnam Plant	
(Kofoid & White)	Protection, 2016	1985; UGA,	Protection, 2016	
Chitwood		2018; Walters and		
		Barker, 1994		
Meloidogyne javanica	Vietnam Plant	Sasser and Carter,	Vietnam Plant	
(Treub) Chitwood	Protection, 2016	1985; UGA,	Protection, 2016	
		2018; Walters and		
Tulor obulus	Vhuona 1002	Barker, 1994	Coodey et al	
1 ylenchulus saminanatrans (Cobb)	Milliong, 1985	UGA $2019;$	1065	
FUNGI		000, 2010	1705	
Alternaria alternata	Vietnam Plant	French, 1989:	French, 1989	
(Fr.: Fr.) Keissl.	Protection, 2016	Raabe, 1966;	- ,	
· · · ·		Stevenson, 1975		
Alternaria citri Ellis &	Whittle, 1992	Farr and	French, 1989	
N. Pierce		Rossman, 2019		
Aspergillus flavus Link	Nguyen et al.,	French, 1989;	French, 1989	
	2000	Raabe, 1966;		
	¥ . 1	Stevenson, 1975	D ' 1D'	
Aspergillus niger Tiegh.	Leong et al.,	Altieri et al.,	Peregrine and Bin	
	2007	1984; Kaabe,	Aninad, 1982	

-			1966; Stevenson, 1975	
-	Athelia rolfsii (Curzi) Tu & Kimbr. syn.: Corticium rolfsii Curzi, Pellicularia rolfsii E. West (anamorph: Sclerotium rolfsii Sacc)	CABI, 2019	Alfieri et al., 1984; Raabe, 1966; Wellman, 1977	Alfieri et al., 1984
-	Botryosphaeria rhodina (Cooke) Arx [anamorph: Lasiodiplodia theobromae (Pat.) Griffon & Maubl.] syn.: Physalospora rhodina Cooke, Diplodia natalensis Pole-Evans	Farr and Rossman, 2019	Alfieri et al., 1984; Raabe, 1966; Wellman, 1977	French, 1989
	<i>Cephaleuros virescens</i> Kunze	Vietnam Plant Protection, 2016	Ferwerda-Licha, 2002; Nelson, 2008; Wolf, 1930	Wolf, 1930
-	<i>Elsinoë fawcettii</i> (Britanc. & Jenkins) (anamorph: <i>Sphaceloma</i> <i>fawcettii</i> var. <i>fawcettii</i> Jenkins)	Whittle, 1992	CABI, 2019; Farr and Rossman, 2019	Peregrine and Bin Ahmad, 1982
-	Fusarium solani (Mart.) Sacc.	Vietnam Plant Protection, 2016	French, 1989; Stevenson, 1975; USDA-ARS, 1960	French, 1989
	Glomerella cingulata (Stonem.) Spauld. & Schrenk [anamorph: Colletotrichum gloeosporioides (Stonem.) Spauld. & Schrenk]	Whittle, 1992	Alfieri et al., 1984; Raabe, 1966; Stevenson, 1975	Peregrine and Bin Ahmad, 1982
_	Mycosphaerella citri Whiteside 1972, syn.: Zasmidium citri (Whiteside) Crous 2009 [anamorph: Stenella citri-grisea (F.E. Fisher) Sivan.]	Maxwell et al., 2005	Alfieri et al., 1984; Pretorius et al., 2003; Stevenson, 1975	Pretorius et al., 2003
-	<i>Penicillium digitatum</i> (Pers.: Fr.) Sacc.	Vietnam Plant Protection, 2016	Alfieri et al., 1984; Raabe, 1966; Stevenson, 1975	Alfieri et al., 1984
-	<i>Penicillium italicum</i> Wehmer	Vietnam Plant Protection, 2016	Alfieri et al., 1984; Raabe,	Alfieri et al., 1984

		1966; Stevenson,	
Phytophthora capsici Leonian	Drenth and Guest, 2004	1975 Raabe, 1966; Stevenson, 1975;	USDA-ARS, 1960
		USDA-ARS, 1960	
Phytophthora citrophthora (R.H. Sm. & E. Sm) syn.: P. palmivora Butl.	Drenth and Guest, 2004	French, 1989; Raabe, 1966; Stevenson, 1975	French, 1989
Phytophthora nicotianae Brenda de Haan, syn.: P. parasitica Dastur, P. nicotianae var. parasitica (Brenda de Haan) Tucker	Drenth and Guest, 2004	French, 1989; Raabe, 1966	French, 1989
Phytophthora palmivora var. palmivora (E.J. Butler) E.J. Butler, syn.: P. palmivora (E.J. Butler) E.J. Butler	Drenth and Guest, 2004	Alfieri et al., 1984; Stevenson, 1975; USDA- ARS, 1960	Erwin and Ribeiro, 1996
Pythium aphanidermatum (Edson) Fitzp.	Luong et al., 2010a	French, 1989; Raabe, 1966; Stevenson, 1975	French, 1989
Schizophyllum commune Fr.: Fr.	Kiet, 1998	French, 1989; Raabe, 1966; Stevenson, 1975	French, 1989
Sclerotinia sclerotiorum (Lib.) de Bary	Luong et al., 2010b	Raabe, 1966	French, 1989
<i>Thanatephorus</i> <i>cucumeris</i> (A. B. Frank) Donk, 1956	Thuan et al., 2008	French, 1989; Stevenson, 1975; USDA-ARS, 1960	French, 1989
VIRUS AND VIROIDS			
Citrus tristeza virus closterovirus (CTV)	Whittle, 1992	CABI, 2019; Roistacher and Moreno, 1990; Saponari and Yokomi, 2010	CABI, 2019