

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

WASHINGTON, DC 20460 OFFICE OF CHEMICAL SAFETY AND POLLUTION PREVENTION

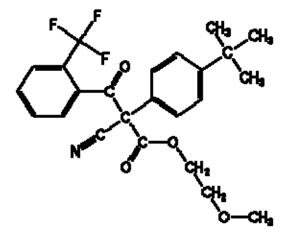
> PC Code: 138831 DP Barcode: D398494 Date: February 26, 2014

> > 2/26/14 Sandenler 2/21/11

MEMORANDUM

Subject: Cyflumetofen: *Revised* New Chemical Ecological Risk Assessment for Section 3 New Use on Citrus, Pome Fruits, Grapes, Strawberries, Tomatoes, Tree Nuts, and Ornamentals

- To: Driss Benmhend, Risk Manager Reviewer Richard Gebken, Product Manager Team 10 Insecticide Branch Registration Division (7505P) Office of Pesticide Programs
- From: Robin Sternberg, Ph.D., Wildlife Biologist Stephen Wente, Ph.D., Biologist Sujatha Sankula, Ph.D., Branch Chief Environmental Risk Branch 1 Environmental Fate and Effects Division (7507P) Office of Pesticide Programs


This assessment supercedes the previous assessment dated April 25, 2013 and corrects typos on pages 24 (replacement of "less than 21 days" with "less than 22 days" and deletion of "(Check this value)") and pages 61-62 (replacement of "greater than test concentrations" with "less than test concentrations").

Attached is the new chemical ecological risk assessment for the miticide, cyflumetofen.

Based on Agency Level of Concern (LOC) exceedances, results of this screening-level ecological risk assessment indicate that the proposed uses of cyflumetofen have the potential for direct adverse effects to listed and non-listed mammals from chronic exposure as well as listed dicots. Risk quotients (RQs) could not be calculated for monocots due to the lack of appropriate endpoints for seedling emergence. However, direct adverse effects to listed monocots are expected based on a comparison of terrestrial plant EECs and available seedling emergence data. In addition, given the inability to determine a seedling emergence EC₂₅ for monocots, risk to non-listed monocots cannot be precluded. A Tier II seedling emergence continuation study is necessary to reduce uncertainty in the characterization of risk to listed and non-listed monocots.

NEW CHEMICAL REGISTRATION ECOLOGICAL RISK ASSESSMENT

Cyflumetofen

CAS Number 400882-07-7

US EPA PC CODE 138831

Prepared by:

Robin Sternberg, Ph.D., Wildlife Biologist Stephen Wente, Ph.D., Biologist Environmental Risk Branch I

Reviewed by:

Meghan Radtke, Ph.D., Biologist Faruque Khan, Ph.D., Senior Fate Scientist Environmental Risk Branch I Environmental Fate and Effects Division U. S. Environmental Protection Agency Office of Pesticide Programs Environmental Fate and Effects Division Environmental Risk Branch I 1200 Pennsylvania Ave., NW Mail Code 7507P Washington, DC 20460

Contents

1]	Execu	tive Summary	6
2]	Proble	m Formulation	7
	2.1	S	tressor: Source and Distribution	8
	2	2.1.1	Source and Intensity	8
	4	2.1.2	Pesticide Type, Class, and Mode of Action	9
	4	2.1.3	Physical/Chemical/Fate and Transport Properties	9
	4	2.1.4	Overview of Pesticide Usage	. 10
	2.2	R	eceptors: The Biological Entities Exposed to the Stressor	. 10
	4	2.2.1	Effects to Aquatic and Terrestrial Organisms	. 10
	4	2.2.2	Ecosystems Potentially at Risk	. 11
	2.3	A	ssessment Endpoints	. 11
	2.4	C	onceptual Model	. 13
	4	2.4.1	Risk Hypothesis	. 13
	4	2.4.2	Exposure Pathways of Concern	. 13
	2.5	A	nalysis Plan	. 14
	4	2.5.1	Stressors of Concern	. 14
	4	2.5.2	Measures of Exposure	. 15
	4	2.5.3	Measures of Effect	. 17
	2	2.5.4	Integration of Exposure and Effects	. 18
	2	2.5.5	Endangered Species Assessments	. 19
	2	2.5.6	Endocrine Disruptor Screening Program	. 19
	2.6	D	ata Gaps	. 20
	2	2.6.1	Environmental fate	. 20
	2	2.6.2	Ecological Effects	. 22
3]	Fate a	nd Transport Characterization	. 24
	3.1	D	egradation	. 26
	2	3.1.1	Hydrolysis	. 26
	2	3.1.2	Aquatic Photolysis	. 26
		3.1.3	Soil photolysis	. 26
	2	3.1.4	Aerobic Soil Metabolism	. 27
	2	3.1.5	Anaerobic Soil Metabolism	. 27
		3.1.6	Aerobic Aquatic Metabolism	. 28
	2	3.1.7	Anaerobic Aquatic Metabolism	. 28

	3.2	Mobi	lity	. 28
	3.2.	1 V	olatility	. 28
	3.2.	2 A	dsorption/desorption – Parent	. 28
	3.2.	3 A	dsorption/desorption – Degradates	. 29
	3.3	Field	Studies	. 29
	3.4	Bioco	oncentration	. 30
4	Exp	osure A	Assessment	. 30
	4.1	Terres	strial Exposure	. 30
	4.1.	1 B	irds, Mammals, and Terrestrial Invertebrates	. 30
	4.1.	2 Te	errestrial (Upland and Semi-Aquatic) Plants	. 31
	4.2	Aquat	tic Exposure	. 32
	4.2.	1 A	quatic Bioaccumulation	. 37
5	Effe	cts Ch	aracterization	. 38
	5.1	Effect	ts to Terrestrial Organisms	. 38
	5.1.	1 Bi	irds	. 38
	5.1.	2 M	lammals	. 43
	5.1.	3 Te	errestrial Invertebrates	. 44
	5.1.	4 Te	errestrial (Upland and Semi-Aquatic) Plants	. 44
	5.2	Effect	ts to Aquatic Organisms	. 46
	5.2.	1 Pa	arent Cyflumetofen	. 46
	5.2.	2 D	egradates of Cyflumetofen	. 52
	5.3	Revie	ew of Incident Data	. 53
6	Risl	c Chara	acterization	. 54
	6.1	Risk l	Estimation	. 54
	6.1.	1 D	irect Effects to Terrestrial Organisms	. 54
	6.1.	2 D	irect Effects to Aquatic Organisms	. 56
	6.2	Risk l	Description	. 60
	6.2.	1 D	irect Effects to Birds, Reptiles, and Terrestrial-Phase Amphibians	. 61
	6.2.	2 D	irect Effects to Mammals	. 61
	6.2.	3 D	irect Effects to Terrestrial Invertebrates	. 62
	6.2.	4 D	irect Effects to Terrestrial (Upland and Semi-Aquatic) Plants	. 63
	6.2.	5 D	irect Effects to Fish, Aquatic-Phase Amphibians, and Aquatic Invertebrates	. 64
	6.2.	6 D	irect Effects to Sediment-Dwelling (Benthic) Invertebrates	. 65
	6.2.	7 D	irect Effects to Aquatic Plants	. 65

(5.3	Summary of Direct Effects	66
(5.4	Indirect Effects	66
(5.5	Federally Threatened and Endangered (Listed) Species Concerns	67
	6.5.1	Action Area	67
	6.5.2	2 Taxonomic Groups Potentially at Risk	67
7	Unc	ertainties	70
,	7.1	Data Gaps	70
	7.1.1	Environmental Fate	70
	7.1.2	2 Ecological Effects	71
8	Refe	rences	71
9	Bibl	iography of Cited MRIDs	72
Ap	pendix	A: Input and Results of Screening Imbibition Program (SIP v. 1.0)	80
Ap	pendix	B: Input and Output of Screening Tool for Inhalation Risk (STIR v. 1.0)	82
-	-	C: Cyflumetofen and Its Environmental Transformation Products and Degradation	85
-	1	D: Parent and Total Toxic Residue (TTR) PestDF Degradation Half-life Estimation and Available Degradate Study Half-life Estimation Output	98
Ap	pendix	E: Example PRZM/EXAMS Modeling Output and AgDRIFT® Input Data Summary	
		x F: Listed Species That Overlap at the County Level with Areas Where Cyflumetofen ed To Be Used as Identified by LOCATES (v. 2.2.5)	

1 Executive Summary

The purpose of this screening-level ecological risk assessment is to evaluate potential risks to non-target species, both non-listed and federally-listed endangered and threatened species (hereafter referred to as non-listed and listed species, respectively), from proposed uses of the new insecticide, cyflumetofen.

Cyflumetofen (2-methoxyethyl (*RS*)-2-(4-*tert*-butylphenyl)-2-cyano-3-oxo-3-(α , α , α -trifluoro-*o*-tolyl)propionate) is a non-systemic, contact miticide that provides knockdown and residual control of tetranychid mites. Cyflumetofen acts as a mitochondria complex II electron transport inhibitor and is classified as a Group 25 acaricide by the Insecticide Resistance Action Committee (IRAC).

Proposed uses of cyflumetofen include citrus, pome fruits, grapes, strawberries, tomatoes, tree nuts, and ornamentals. The proposed maximum single application rate and maximum application rate per crop cycle or year are 0.2 lb a.i./A and 0.4 lb a.i./A, respectively, corresponding to a maximum of 2 applications per crop cycle or year. The proposed minimum application interval is 14 days. Cyflumetofen is formulated as a suspension concentrate and is proposed to be applied via ground equipment. Aerial application is proposed only for tomatoes.

The parent chemical, cyflumetofen, is expected to degrade rapidly in the environment, but undergoes a complex series of transformations that result in the production of many degradates of concern. Some of the degradates of concern are much more persistent than the parent.

A summary of direct and indirect effects to non-listed and listed taxa from the proposed uses of cyflumetofen is provided in **Table 1-1**. Direct or indirect effects to specific listed species have not been definitively determined; further investigation into temporal, geographical, and biological associations between the proposed uses and affected taxa is needed before definitive effects determinations can be made.

Based on Agency Level of Concern (LOC) exceedances, results of this screening-level ecological risk assessment indicate that the proposed uses of cyflumetofen have the potential for direct adverse effects to listed and non-listed mammals and listed dicots. Risk quotients (RQs) could not be calculated for monocots due to the lack of appropriate endpoints for seedling emergence. However, direct adverse effects to listed monocots are expected based on a comparison of terrestrial plant EECs and available seedling emergence data. In addition, given the inability to determine a seedling emergence EC_{25} for monocots, risk to non-listed monocots cannot be precluded. A Tier II seedling emergence continuation study is necessary to reduce uncertainty in the characterization of risk to listed and non-listed monocots.

 Table 1-1. Summary of Direct and Indirect Effects Associated with Proposed Uses of Cyflumetofen

Taxon	Risk Con Direct E	Risk Concern for Indirect Effects to	
	Non-Listed	Listed**	Listed Species?**
Birds	No	No	Yes ^{a,b}
Reptiles	No	No	Yes ^{a,b}

Taxon	Risk Con Direct E	Risk Concern for Indirect Effects to	
	Non-Listed	Listed**	Listed Species?**
Terrestrial-phase amphibians	No	No	Yes ^{a,b}
Mammals	Yes (chronic exposure ^c)	Yes (chronic exposure ^c)	Yes ^b
Terrestrial invertebrates	No ^d	No ^d	Yes ^{a,b}
Terrestrial (upland and semi-aquatic) plants : monocots	Yes ^e	Yes ^f	Yes ^a
Terrestrial (upland and semi-aquatic) plants: dicots	No	Yes	Yes ^a
Freshwater fish	No	No	Yes ^b
Aquatic-phase amphibians	No	No	Yes ^b
Freshwater invertebrates	No	No	Yes ^b
Estuarine/marine fish	No	No	Yes ^b
Estuarine/marine invertebrates	No	No	Yes ^b
Sediment-dwelling (benthic) invertebrates	No	No	Yes ^b
Aquatic vascular plants	No	No	Yes ^b
Aquatic non-vascular plants	No	NA	Yes ^b

NA = not applicable because there are no listed aquatic non-vascular plants

* Unless otherwise specified, the Agency Level of Concern (LOC) was exceeded.

** Direct or indirect effects to specific species have not been definitively determined; further investigation into temporal, geographical, and biological associations between the proposed uses and affected taxa is needed before definitive effects determinations can be made.

^a due to direct effects to non-listed mammals

^b due to direct effects to non-listed monocots which cannot be precluded given the inability to determine a seedling emergence EC_{25} for monocots

^c small and medium mammals consuming short grass, tall grass, broadleaf plants, or arthropods and large mammals consuming short grass or tall grass

^d Given the insecticidal mode of action of cyflumetofen, the potential for risk to sensitive, non-target terrestrial invertebrates exists.

^e Given the inability to determine a seedling emergence EC₂₅ for monocots, risk to non-listed monocots cannot be precluded.

^f Although RQs could not be calculated for listed monocots due to the lack of a NOAEC for seedling emergence, adverse direct effects to listed monocots are expected based on a comparison of terrestrial plant EECs and the available seedling emergence data.

2 **Problem Formulation**

The purpose of this assessment is to evaluate the environmental fate and ecological risks for the registration of the new chemical, cyflumetofen. As a new insecticide being proposed for use in the United States, EPA is required under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) to ensure that cyflumetofen does not have the potential to cause unreasonable adverse effects to the environment. A "preliminary assessment" to determine the potential for direct and indirect effects to federally-listed endangered and threatened species (hereafter referred to listed species) is also conducted. Further investigation into temporal, geographical, and biological associations between the proposed uses of cyflumetofen and affected listed taxa is needed before definitive effects determinations can be made. To these ends, this assessment follows EPA guidance on conducting ecological risk assessments (USEPA, 1998) and the Office of Pesticide Program's policies for assessing risk to non-target and listed organisms (USEPA, 2004).

Among the end products of the EPA pesticide registration process is a determination of whether a product is eligible for registration and, if so, a description of how the product may be used. A

label represents the legal document that stipulates how and where a given pesticide may be used. End-use labels describe the formulation type, acceptable methods of application, where the product may be applied, and any restrictions on how applications may be conducted. Thus, the use, or potential use, described by the pesticide's labels is considered "the action" being assessed. This assessment is in support of the new chemical registration of cyflumetofen.

2.1 Stressor: Source and Distribution

2.1.1 Source and Intensity

Cyflumetofen, a non-systemic, contact miticide, is a new chemical that is undergoing registration by BASF. In addition to the technical, two end-use products are being proposed for registration in the United States (**Table 2-1**). According to the proposed labels, the products would provide knockdown and residual control of tetranychid mites (**Table 2-2**) in citrus, grapes, pome fruits, strawberries, tomatoes, tree nuts, and ornamentals (**Table 2-3**).

Tuble 2 11 Troposed Lind Use Troducts of Cynumetoren				
End-Use Product	Use % Active Type of Formulation		Type of Formulation	Registration
		Ingredient		Number
Nealta TM miticide	Citrus, grapes, pome fruits, strawberries, tree nuts, tomatoes	18.7	Suspension concentrate	7969-GGA
Sultan TM miticide	Ornamentals	18.7	Suspension concentrate	7969-GGT

 Table 2-1. Proposed End-Use Products of Cyflumetofen

Common Name	Scientific name
Carmine	Tetranychus cinnabarinus
Citrus red	Panonychus citri
Banks grass	Oligonychus pratensis
Brown almond	Bryobia rubrioculus
Brown wheat	Petrobia lateens
European red	Panonychus ulmi
Texas citrus	Eutetranychus banks
Spider mites	
McDaniel	Tetranychus mcdaniel
Pacific spider	Tetranychus pacificus
Spruce spider	Oligonychus ununguis
Strawberry spider	Tetranychus turkestan
Two spotted	Tetranychus urticae
Willamette	Eotetranychus willamettei
Yuma	Eotetranychus yumensis

Table 2-3. Proposed Uses of Cyflumetofen

Citrus Fruit Group					
Calamondin Citrus citron Citrus hybrids Chironja					
Grapefruit	Kumquat	Lemon	Lime		
Mandarin orange	Pummelo	Satsuma	Tangelo		
(sweet and sour)	Tangerine	Tangor	-		
Grapes					
	Pome Fruit Group				
Apple	Crabapple	Loquat	Mayhaw		
Oriental Pear	Pear	Quince			

	Strawberry				
	Tom	ato			
	Tree Nut	s Group			
Almonds	Beech nut	Brazil nut	Butternut		
Cashew	Chestnut	Chinquapin	Filbert		
Hickory nut	Macadamia nut	Pecan	Walnuts		
			(black and English)		
Ornamentals					
annual and perennial herbaceous plants we			ees and shrubs		

2.1.2 Pesticide Type, Class, and Mode of Action

Cyflumetofen is a non-systemic, contact miticide that belongs to the benzoylacetonitrile class of compounds. It is classified as a Group 25 acaricide by the Insecticide Resistance Action Committee (IRAC); the only other active ingredient in this group – cyenopyrafen – is not registered in the United States. Cyflumetofen acts as a mitochondria complex II electron transport inhibitor resulting in knockdown and residual control of the egg, nymph, and adult stages of tetranychid mites.

2.1.3 Physical/Chemical/Fate and Transport Properties

Cyflumetofen is non-volatile, has limited solubility in water, and is quite lipophilic and therefore would be expected to absorb to foliage surfaces and soil (Koc of 1.3×10^5 ml/g) at the site of application. Selected physical and chemical properties are summarized in **Table 2-4**. Once deposited, either at the site of application or farther afield through runoff and/or spray drift, the parent molecule is expected to degrade quickly through multiple fate processes (half-lives of hours to several days) under environmental conditions.

Property	Value
Common Name	Cyflumetofen
Chemical Name	2-methoxyethyl (<i>RS</i>)-2-(4- <i>tert</i> -butylphenyl)-2-cyano-3-oxo-3-(α , α , α -trifluoro-o-
CAS Number	tolyl)propionate 400882-07-7
Pesticide Class	Mitochondria complex II electron transport inhibitor (IRAC Group 25) – Acaricide
Molecular Formula	$C_{24}H_{24}F_3NO_4$
Molecular Weight	447.45g/mol
Physical State	Milky white, odorless suspension concentrated liquid, with density of 1.0682 g/cm3 @ 20°C
Vapor Pressure	$< 4.43 \times 10^{-8}$ torr at 25°C
Water Solubility	28 μg/L
Henry's Law Constant	$< 9.3 \times 10^{-7} \text{ Pa}^{*}\text{m}^{3}/\text{mol at } 20^{\circ}\text{C}$
Log Kow	4.3 at 25°C

 Table 2-4.
 Selected Physical and Chemical Properties for Cyflumetofen

IRAC = Insecticide Resistance Action Committee

Cyflumetofen forms many degradates with a wide range of fate properties (*e.g.*, from highly soluble to less soluble than the parent). Many of these degradates were considered degradates of concern by EFED due to the presence of a cyano group ($C \equiv N$). However, the reason for developing a very broad and inclusive set of degradates of concern is more out of a concern for efficiency in the Ecological Risk Assessment, rather than the toxicological properties of the

individual degradates. Attempts to quantify exposure and effects for each of the many individual degradates of cyflumetofen would produce considerable uncertainty in the risk assessment. Instead, a strategy was devised to estimate a maximum exposure to total cyflumetofen degradates and show that even in the most conservative case with all of the potential degradates of concern assumed to be the most toxic degradate that the degradates would not pose a risk individually or as a group. Note that this strategy is applied to the aquatic portions of the risk assessment. Other arguments are provided for the terrestrial portions of this assessment. This definition of the degradates of concern in the drinking water assessment conducted for human health concerns by the Agency's Health Effects Division, which included only the parent and "AB" degradates (described in **Section 3**; Negrón-Encarnación, 2013).

2.1.4 Overview of Pesticide Usage

Proposed uses of cyflumetofen include citrus, pome fruits, grapes, strawberries, tomatoes, tree nuts, and ornamentals. Cyflumetofen is formulated as a suspension concentrate and is proposed to be applied via ground equipment. Aerial application is proposed only for tomatoes. Application information is provided in **Table 2-5**. Since this a new chemical, the Agency does not have any usage information for cyflumetofen. The assessment assumes one crop cycle per year.

Use	Form.	App. Method	Max. Single App. Rate (lb a.i./A)	Max. Number of App.	Max. App. Rate Per Crop Cycle or Year (lb a.i./A)	Min. App. Interval (Days)	PHI (Days)
Citrus			0.2	2/crop cycle	0.4	14	7
Grapes			0.2	2/crop cycle	0.4	14	14
Pome fruits	Nealta TM	Ground	0.2	2/crop cycle	0.4	14	7
Strawberries	miticide		0.2	2/crop cycle	0.4	14	1
Tree nuts			0.2	2/crop cycle	0.4	14	7
Tomatoes		Aerial, ground	0.2	2/crop cycle	0.4	14	3
Ornamentals ^a	Sultan TM miticide	Ground	0.2	2/yr	0.4	14	NA

 Table 2-5. Application Information for Proposed Uses of Cyflumetofen

App. = application; Form. = formulation; Max. = maximum; Min. = minimum; NA = not applicable; PHI = Preharvest interval

^a annual and perennial herbaceous plants and woody trees and shrubs

2.2 Receptors: The Biological Entities Exposed to the Stressor

2.2.1 Effects to Aquatic and Terrestrial Organisms

Table 2-6 provides examples of taxonomic groups and species that are tested to help understand potential ecological effects of pesticides to non-target organisms. Within each of these very broad taxonomic groups, a measure of effect from acute and/or chronic exposure is selected from the available data.

Table 2-6. Taxonomic Groups and Test Species Evaluated for Ecological Effects in Screening-Level Risk Assessments

Taxonomic Group	Example(s) of Representative Species		
Birds ¹	Mallard duck (Anas platyrhynchos)		
Blius	Bobwhite quail (Colinus virginianus)		
Mammals	Laboratory rat (<i>Rattus norvegicus</i>)		
Terrestrial invertebrates	Honeybee (Apis mellifera)		
Freshwater fish ²	Bluegill sunfish (Lepomis macrochirus)		
Freshwater fish	Rainbow trout (Oncorhynchus mykiss)		
Freshwater invertebrates	Water flea (Daphnia magna)		
Estuarine/marine fish	Sheepshead minnow (Cyprinodon variegatus)		
Estuarine/marine invertebrates	Mysid (Americamysis bahia)		
Estuarme/marme invertebrates	Eastern oyster (Crassostrea virginica)		
Terrestrial plants ³	Monocots – corn (Zea mays)		
Terrestriai plants	Dicots – soybean (<i>Glycine max</i>)		
Aquatic vascular plants	Duckweed (Lemna gibba)		
	Green algae (Pseudokirchneriella subcapitata)		
A quatia non vacaular planta	Freshwater diatom (Navicula pelliculosa)		
Aquatic non-vascular plants	Marine diatom (Skeletonema costatum)		
	Cyanobacterium (Anabaena flos-aquae)		

¹ Birds serve as surrogates for terrestrial-phase amphibians and reptiles.

² Freshwater fish serve as surrogates for aquatic-phase amphibians.

³ Four species of two families of monocots, of which one is corn; six species of at least four dicot families, of which one is soybeans.

2.2.2 Ecosystems Potentially at Risk

The ecosystems potentially at risk include aquatic and terrestrial areas adjacent to or downstream from the application site. In addition, organisms that use the application site as part of their habitat (*e.g.*, birds foraging for insects within application areas) are also considered to be part of the ecosystems potentially at risk.

2.3 Assessment Endpoints

FIFRA Part 158 guideline toxicity tests (CFR 40 §158.630, 2009) are intended to determine pesticide effects on a variety of organisms, including birds, mammals, fish, terrestrial and aquatic invertebrates, and plants. These tests include both short-term and long-term exposure periods and evaluate the survival, reproduction, and/or growth of laboratory species. The studies, when available, are used to evaluate the potential of a pesticide to cause adverse effects, to determine whether further testing is required, and to determine the need for precautionary label statements to minimize the potential adverse effects to non-target animals and plants (CFR 40 §158.630, 2009).

Assessment endpoints are intended to represent valued attributes of the environment that, if detrimentally altered, could pose a risk to the environment. The assessment endpoints of this ecological risk assessment include terrestrial and aquatic animal and plant mortality following acute exposure to cyflumetofen and terrestrial and aquatic animal reproduction, growth and survival effects from chronic exposure to cyflumetofen. Surrogate species are used to represent all freshwater fish (2000+) and bird (680+) species in the United States. For mammals, acute studies are usually limited to the Norway rat (*Rattus norvegicus*) or the house mouse (*Mus musculus*). Usually data from estuarine/marine testing are limited to a crustacean, a mollusk, and a fish. The assessment of risk or hazard makes the assumption that avian toxicity is similar to

terrestrial-phase amphibians and reptiles, unless more appropriate data are available. The same assumption is made for fish and aquatic-phase amphibians. The most sensitive toxicity endpoints are used from surrogate test species to estimate treatment-related direct effects on mortality and reproductive and growth assessment endpoints.

For terrestrial and semi-aquatic plants, the screening assessment endpoints for non-target species (crops and non-crop plant species) are based on the emergence and growth of seedlings and vegetative vigor of annuals. Measures of effect for this assessment focus on alterations to plant emergence and/or to active growth.

For aquatic plants, the assessment endpoint is the maintenance and growth of standing crop or biomass. Measures of effect for this assessment focus on non-vascular, *e.g.*, algae, and vascular plant, *e.g.*, duckweed (*Lemna gibba*), growth rates and biomass measurements.

The Agency acknowledges that pesticides have the potential to exert indirect effects upon listed organisms by, for example, perturbing forage or prey availability, altering the extent of nesting habitat, and creating gaps in the food chain. In conducting a screen for indirect effects, the endpoints for each taxonomic group are used to make inferences concerning the potential for indirect effects upon listed species that rely upon non-listed organisms as resources critical to their life cycle.

The endpoints are typically derived from registrant-submitted studies which have undergone review and were classified as "acceptable" (conducted under guideline conditions and considered to be scientifically valid) or "supplemental" (conditions deviated from guidelines but the results are considered to be scientifically valid). Additional details on EFED's study classification system and study guidelines can be found in the Agency's Overview Document (USEPA, 2004).

Assessment endpoints can also be derived from the open literature. Toxicity data from the open literature are identified via the ECOTOX¹ search engine which is maintained by the U.S. EPA Office of Research and Development (ORD). To be included in the ECOTOX database, papers must meet several criteria. Data that pass the ECOTOX screen are evaluated relative to the data provided by the registrant and may be incorporated qualitatively or quantitatively into the risk assessment after a formal review conducted in accordance with current guidelines for evaluating ecological toxicity data in the open literature.² Specific studies may warrant inclusion in the ecological risk assessment when:

- tested endpoints are more sensitive than those in registrant data;
- the test data are based on under-represented taxa; and/or
- the data include ecologically relevant endpoints not normally evaluated in registrant studies

Although all endpoints are measured at the individual level, they can provide some insight about the potential for adverse effects at higher levels of biological organization (e.g. populations and

¹ USEPA 2011. Ecotoxicity database <u>http://cfpub.epa.gov/ecotox/</u>

http://www.epa.gov/pesticides/science/efed/policy_guidance/team_authors/endangered_species_reregistration_work group/esa_evaluation_open_literature.htm

communities). For example, pesticide effects on individual survivorship have important implications for both population rates and habitat carrying capacity.

No cyflumetofen studies from the open literature were identified using the public version of $ECOTOX^3$.

2.4 Conceptual Model

2.4.1 Risk Hypothesis

The Agency presumes the following risk hypothesis for this screening-level ecological risk assessment:

Based on mode of action, the proposed use patterns, and the sensitivity of non-target aquatic and terrestrial species, the proposed uses of cyflumetofen have the potential to reduce survival, reproduction, and/or growth in non-target terrestrial and aquatic animals and plants through direct application, spray drift and/or runoff. These non-target organisms include Federally-listed threatened and endangered species as well as non-listed species.

To pose an ecological risk, a chemical must reach non-target organisms at concentrations found to cause adverse effects. The analysis of ecological exposure pathways in this assessment includes an examination of the source and potential migration pathways of cyflumetofen exposure and the determination of potential adverse effects to non-target species.

2.4.2 Exposure Pathways of Concern

This screening-level ecological risk assessment considers potential exposure to cyflumetofen as a result of direct application, spray drift, and runoff.

For terrestrial vertebrates, the major route of exposure to cyflumetofen is considered to be via dietary ingestion of food items such as seeds, plants, and/or animals that have cyflumetofen residues as a result of direct application, spray drift, and runoff. Exposure to parent cyflumetofen through the consumption of drinking water alone is not considered a potential concern for birds or mammals based on the results of EFED's Screening Imbibition Program (SIP v. 1.0)⁴ using parent cyflumetofen's solubility (0.0281 mg/L) and non-definitive endpoints for mammalian and avian acute oral toxicity (rat and bobwhite quail LD₅₀ > 2000 mg/kg-bw, MRIDs 48542669 and 48542772, respectively) and endpoints for mammalian and avian chronic toxicity (rat NOAEC = 9.21 mg/kg-bw/day, MRID 48542702; mallard NOAEC = 930 mg/kg-diet, MRID 48542778; bobwhite quail NOAEC = 154 mg/kg-diet, MRID 48542777; **Appendix A**). Exposure to terrestrial vertebrates through inhalation is considered unlikely given cyflumetofen's low vapor pressure and the results of EFED's Screening Tool for Inhalation Risk (STIR v. 1.0)⁵ using conservative non-definitive endpoints for mammalian and avian acute oral toxicity (LD₅₀ > 2000 mg/kg-bw) and a conservative non-definitive endpoint for mammalian acute inhalation toxicity (LC₅₀ > 2.65 mg/L, MRID 48542672) (**Appendix B**).

³ Quick Database Query conducted on CAS number 400882-07-7 at <u>http://cfpub.epa.gov/ecotox/</u>

⁴ http://www.epa.gov/oppefed1/models/terrestrial/index.htm#sip

⁵ <u>http://www.epa.gov/oppefed1/models/terrestrial/index.htm#stir</u>

For terrestrial invertebrates, the major routes of exposure to cyflumetofen are considered to be direct contact as a result of direct application and spray drift and dietary ingestion of plants/pollen/nectar, animals, and/or soil that have cyflumetofen residues as a result of direct application, spray drift, and runoff.

For terrestrial (upland and semi-aquatic) non-target plants, the major routes of exposure to cyflumetofen are considered to be direct contact as a result of direct application and spray drift and root uptake via soil contaminated via spray drift and runoff.

For aquatic animals, the major route of exposure to cyflumetofen is considered to be uptake via the respiratory surface (gills) or the integument from surface water/sediment that has cyflumetofen residues as a result of spray drift, runoff, and leaching to groundwater from soil.

For aquatic plants, the major routes of exposure to cyflumetofen are considered to be uptake from surface water/sediment containing cyflumetofen residues as a result of spray drift, runoff, and leaching to groundwater from soil.

2.5 Analysis Plan

As with any pesticide, there is concern regarding the potential effects cyflumetofen use may pose to non-target animals and plants. This document characterizes the environmental fate of cyflumetofen to assess whether its use as proposed on the label provides a means of exposure to non-target species. Additionally, the toxicity of cyflumetofen is characterized. Then both potential exposure and effects are integrated to estimate the likelihood of adverse effects (risk) to non-target listed and non-listed animals and plants that could potentially affect the registration decision of cyflumetofen under FIFRA, the Food Quality Protection Act (FQPA), and the Endangered Species Act (ESA).

2.5.1 Stressors of Concern

Cyflumetofen forms many degradates. Eleven of these degradates are considered degradates of concern by EFED due to the presence of a cyano group (C=N) and for some degradates, similarity in structure to the parent molecule. Ten of the 11 degradates of concern are considered to be major degradates (occurring as >10% of the applied radioactivity) in the registrant-submitted fate studies. Only AB-12 was a minor degradate (<10% of the applied radioactivity). Again as stated in Section 2.1.3, the purpose of identifying a large and inclusive list of degradates of concern is to make the risk assessment more efficient by addressing the maximum possible exposure to degradates of potential concern, comparing this exposure to the most toxic degradate endpoints, and showing that the degradates individually and as a group do not pose risks to the environment.

2.5.1.1 Aquatic Assessment

For the aquatic exposure assessment, both cyflumetofen and its degradates of concern were included in the risk assessment. Calculating exposure to the parent was accomplished using standard EFED methods. However, estimating exposure to the degradates is more challenging

and was accomplished by making conservative assumptions of the estimated environmental concentrations (EECs) using a modified total toxic residue (TTR) approach. Typically in the TTR approach, all of the degradates of concern are assumed as toxic as the **parent**. This assumption is considered conservative (protective of the environment) for most chemicals because structural changes in molecules as pesticides degrade tend to result in chemicals that are less toxic. Additionally, degradates are typically smaller and often more water soluble than the parent molecule, which typically results in a molecule that is easier to excrete from target and non-target organisms resulting in more limited exposure durations.

In the case of cyflumetofen and its degradates, the available toxicity data indicates that cyflumetofen is more toxic than its degradates. However, toxicity data is only available for selected degradates (**Section 5**). In the modified TTR approach used in this assessment, all of the degradates of concern are assumed to be as toxic as the most toxic degradate for which data is available rather than as toxic as the parent. The modified TTR approach essentially treats the parent and degradates of concern persist in fate studies; and 2) occurs at concentrations over time commensurate with the sum of the concentrations of the parent and all degradates of concern at each sampling date in the fate studies. The chemicals included in the TTR approach include: cyflumetofen, A-1, A-2, A-18, AB-1, AB-7, AB-11, AB-12, AB-15, AB-1 dimer (which is dimer of two AB-1 molecules joined together), AU16 (which is dimer of two A-1 molecules joined together), and AU17 (which is dimer of an A-1 and AB-1 molecules joined together). The TTR half-lives are discussed in **Section 3**. Structures of cyflumetofen and its degradates are presented in **Appendix Table C-1**.

This modified TTR approach is considered conservative (protective of environmental concerns) because the EECs of the most toxic degradate is likely to be less than the TTR EECs (*i.e.*, not all of the TTR exposure is to that most toxic degradate). Further, the potential of the degradates of concern for which toxicity data is unavailable is discussed in terms of how much more toxic would that degradate have to be than the most toxic degradate for there to be an effect to aquatic ecological listed and non-listed species.

2.5.1.2 Terrestrial Assessment

For the terrestrial exposure assessment, exposure is based on the parent cyflumetofen alone since there is no defined process for including specific degradates in terrestrial exposure estimates using the current model (*i.e.*, T-REX). Additionally, while consideration of degradates in the terrestrial assessment would lengthen the window of exposure, it would not affect the resulting RQs.

2.5.2 Measures of Exposure

To estimate risks to aquatic and terrestrial organisms from exposure to cyflumetofen, all exposure modeling and resulting risk conclusions are made based on maximum application rates, application methods, and any mitigation measures specifically indicated on the label. Models used to predict estimated environmental concentrations (EECs) of cyflumetofen are discussed on

OPP's model website⁶ and include: PRZM (<u>Pesticide Root Zone Model</u>) and EXAMS (<u>EX</u>posure <u>Analysis Modeling System</u>), T-REX, and TerrPlant.

2.5.2.1 PRZM and EXAMS

PRZM and EXAMS are simulation models coupled with the linkage program shell, PE5, which incorporates the standard scenarios developed by EFED. The models generate daily exposures and calculate 1-in-10 year EECs that may occur in surface water bodies adjacent to application sites. PRZM simulates pesticide fate and transport as a result of leaching, direct spray drift, runoff and erosion from an agricultural field, and EXAMS estimates environmental fate and transport of pesticides in a surface water body for a 30-year period. The standard scenarios used for ecological pesticide assessments assume application to a 10-hectare agricultural field that drains into an adjacent 1-hectare water body that is 2 meters deep (20,000 m³ volume) with no outlet. The combined models (i.e., PRZM/EXAMS) are designed to estimate pesticide concentrations found in the water body (standard pond) at the edge of the treated field. As such, they provide high-end values of the pesticide concentrations that might be found in ecologically sensitive environments following pesticide application. The location of the field is specific to the crop being simulated using site-specific information on the soils, weather, cropping, and management factors associated with the scenario. The crop/location scenario is intended to represent a high-end exposure site on which the crop is normally grown. Based on historical rainfall patterns, the receiving water body receives multiple runoff events during the years simulated. Weather and agricultural practices are simulated for 30 years so that the 10-year exceedance probability at the site can be estimated. The simulation is generated using 30 years of meteorological data, typically, encompassing the years from 1961 to 1990. Additional information on these models can be found at OPP's model website⁷.

2.5.2.2 T-REX

The T-REX model (v1.5.1; August 20, 2012), a Tier 1 model for screening-level assessments of pesticides, is used to estimate terrestrial animal exposure values resulting from possible dietary ingestion of cyflumetofen residues on vegetative matter and insects present on non-food and food items from exposure to cyflumetofen. This model incorporates the Kenaga nomograph, as modified by Fletcher *et al.* (1994), which is based on a large set of actual field residue data. The upper limit values from the nomograph represent the 95th percentile of residue values from actual field measurements (Hoerger and Kenaga, 1972). In all screening-level assessments, the organisms are assumed to consume 100% of their diet as one food type. The T-REX model determines (1) EECs for different food items of birds and mammals, (2) risk to birds and mammals via calculation of risk quotients (RQs), and (3) EECs (*i.e.*, for tall grass) to evaluate risk to terrestrial invertebrates from dietary exposure.

2.5.2.3 TerrPlant

TerrPlant (v1.2.2; October 29, 2009), a Tier 1 model for screening-level assessments of pesticides, is used to estimate exposure to terrestrial plants from single pesticide applications; the model does not consider exposures to plants from multiple pesticide applications. TerrPlant

⁶ <u>http://www.epa.gov/oppefed1/models/terrestrial/index.htm</u>

⁷ http://www.epa.gov/oppefed1/models/water/index.htm

determines (1) EECs in runoff and in spray drift and (2) risk to non-listed and listed species of monocots and dicots inhabiting dry (upland) and semi-aquatic areas via calculation of RQs.

2.5.2.4 AgDRIFT

The AgDRIFT (v 2.1.1) model⁸ is used to estimate spray drift from aerial and ground spray applications. In addition, AgDRIFT is used to estimate buffer distances, *i.e.*, the distance offsite where effects to non-target organisms are no longer expected, in cases where a proposed use of cyflumetofen results in a LOC exceedance. The AgDRIFT spray drift model has undergone thorough peer review and can be used to provide estimates of off-target spray drift deposition from aerial and ground boom application methods (USEPA 1997, 1999). Tier 1 AgDRIFT conditions are used to estimate spray drift deposition from pesticide applications as allowed by product labels.

2.5.2.5 KABAM

KABAM (Kow (based) Aquatic BioAccumulation Model; v. 1.0; April 9, 2009) is used to estimate potential bioaccumulation of hydrophobic organic pesticides in freshwater aquatic food webs and subsequent risks to mammals and birds via consumption of contaminated aquatic prey. KABAM is composed of two parts: 1) a bioaccumulation model estimating pesticide concentrations in aquatic organisms and 2) a risk component translating exposure and toxicological effects of a pesticide into risk estimates for mammals and birds consuming contaminated aquatic prey. The bioaccumulation portion of KABAM is based on an aquatic food web bioaccumulation model published by Arnot and Gobas (2004). The bioaccumulation portion of KABAM relies on a pesticide's octanol-water partition coefficient (Kow) to estimate uptake and elimination constants through respiration and diet of aquatic organisms in different trophic levels. Pesticide tissue concentrations in aquatic organisms are calculated for different trophic levels of a food web through diet and respiration. In the risk component of KABAM, pesticide concentrations in aquatic organisms are used to estimate dose- and dietary-based exposures and associated risk quotients for mammals and birds consuming aquatic organisms.

2.5.3 Measures of Effect

Measures of effect are obtained from a suite of registrant-submitted guideline studies conducted with a limited number of surrogate species or studies found in the open literature. The test species are not intended to be representative of the most sensitive species but rather are selected based on their ability to thrive under laboratory conditions. The acute measures of effect routinely used for listed and non-listed animals in screening level assessments are the LD₅₀, LC₅₀ or EC₅₀, depending on taxon (**Table 2-6**). LD stands for "Lethal Dose", and LD₅₀ is the amount of a material (*e.g.*, mg/kg-bw), given all at once, that is estimated to cause the death of 50% of a group of test organisms. LC stands for "Lethal Concentration", and LC₅₀ is the concentration of a chemical (*e.g.*, mg/kg-diet; mg/L) that is estimated to kill 50% of a sample population. EC stands for "Effective Concentration", and the EC₅₀ is the concentration of a chemical that is estimated to produce some measured effect (*e.g.*, mortality; reduced growth and/or reproduction) in 50% of the test population. Endpoints for chronic measures of exposure for listed and non-

⁸ <u>http://www.agdrift.com</u>

listed organisms are the NOAEL or NOAEC. NOAEL stands for "No Observed-Adverse-Effect-Level" and refers to the highest tested dose (*e.g.*, mg/kg-bw) of a substance that has been reported to have no harmful (adverse) effects on a test population. The NOAEC (*i.e.*, "No-Observed-Adverse-Effect-Concentration") is the highest test concentration (*e.g.*, mg/kg-diet; mg/L) at which none of the observed results were statistically different from the control. For non-listed plants, the Agency uses $EC_{25}(IC_{25})$ for terrestrial plants and EC_{50} (IC₅₀) for aquatic plants; for listed plants, the Agency uses the $EC_{05}(IC_{05})$ or NOAEC (**Table 2-7**).

Taxon	Assessment	Measure of Effect
Birds	Acute/sub-acute	Lowest LD ₅₀ (single oral dose)/LC ₅₀ (sub-acute dietary)
Blids	Chronic	Lowest NOAEC (21-week reproduction)
Mammals	Acute	Lowest LD ₅₀ (single oral dose)
wammais	Chronic	Lowest NOAEC (two-generation reproduction)
Terrestrial invertebrates	Acute	Lowest LD ₅₀ (acute contact)
Terrestrial plants: monocots and dicots	Acute/chronic	<u>Non-listed</u> : Lowest EC_{25} (IC ₂₅) (seedling emergence and vegetative vigor) <u>Listed</u> : EC_{05} (IC ₀₅) or NOAEC associated with the lowest EC_{25} (IC ₂₅) (seedling emergence and vegetative vigor)
Fish and aquatic	Acute	Lowest EC_{50} or LC_{50} (acute toxicity tests)
invertebrates	Chronic	Lowest NOAEC (early life-stage or full life-cycle tests)
Aquatic plants: vascular and non-vascular	Acute/chronic	<u>Non-listed</u> : Lowest EC_{50} (IC ₅₀) <u>Listed</u> : EC_{05} (IC ₀₅) or NOAEC associated with the lowest EC_{50}

Table 2-7. <i>A</i>	Acute and	Chronic M	leasures	of Effect
----------------------------	-----------	-----------	----------	-----------

Where available, sublethal effects observed in both registrant-submitted and open literature studies will be evaluated qualitatively. Such effects may include behavioral changes (e.g., lethargy and changes in coloration). However, quantitative assessments of risks are limited to those endpoints that can be directly linked to the Agency's assessment endpoints of impaired survival, growth, and reproduction.

Information on the potential effects of cyflumetofen to non-target organisms is also collected from reviews of incidents associated with the use of cyflumetofen.

The assessment of risk for direct effects to non-target organisms makes the assumption that the toxicity of cyflumetofen to birds is similar to terrestrial-phase amphibians and reptiles. The same assumption is made for the relationship between fish and aquatic-phase amphibians.

2.5.4 Integration of Exposure and Effects

Risk characterization is the integration of exposure and ecological effect characterizations to determine the potential ecological risk from the use of cyflumetofen and the likelihood of direct and indirect effects to non-target organisms in aquatic and terrestrial habitats. The exposure and effects data are integrated to evaluate potential adverse ecological effects on non-target species. The risk quotient (RQ) method will be used to compare estimated exposure and measured toxicity values. Acute and chronic EECs will be divided by acute and chronic toxicity values. The resulting, unitless RQs will then be compared to the Agency's Levels of Concern (LOC) (USEPA, 2004). As outlined in the Overview Document (USEPA, 2004), the likelihood of effects to individual organisms from particular uses of a chemical may also be estimated using the probit dose-response slope and either the LOC or the actual calculated risk quotient value.

Collectively, these methods are used to indicate when cyflumetofen's use, as directed on the labels, has the potential to cause adverse direct or indirect effects to non-target organisms.

2.5.5 Endangered Species Assessments

Consistent with the Agency's responsibility under the Endangered Species Act (ESA), the Agency evaluates risks to Federally-listed threatened and/or endangered (listed) species from registered uses of cyflumetofen. This assessment is conducted in accordance with the Overview Document (USEPA, 2004), provisions of the Endangered Species Act (ESA), and the Services' *Endangered Species Consultation Handbook* (USFWS/NMFS, 1998).

The assessment of effects associated with the registration of cyflumetofen is based on an action area. The action area is considered to be the area directly or indirectly affected by the federal action, as indicated by the exceedance of Agency LOCs used to evaluate direct or indirect effects. The Agency's approach to defining the action area under the provisions of the Overview Document (USEPA, 2004) considers the results of the risk assessment process to establish boundaries for that action area with the understanding that exposures below the Agency's defined LOCs constitute a no-effect threshold. For the purposes of this assessment, attention is focused on the footprint of the action (*i.e.*, the area where cyflumetofen application occurs) and all areas where offsite transport (*i.e.*, spray drift, runoff, etc.) may result in potential exposure that exceeds the Agency's LOCs. Specific measures of ecological effect that define the action area for listed species include any direct and indirect effects and/or potential modification of its critical habitat, including reduction in survival, growth, and reproduction as well as the full suite of sublethal effects available in the effects literature. Therefore, the action area extends to a point where environmental exposures are below any measured lethal or sublethal effect threshold for any biological entity at the whole organism, organ, tissue, and cellular level of organization. In situations where it is not possible to determine the threshold for an observed effect, the action area is assumed to encompass the entire United States.

2.5.6 Endocrine Disruptor Screening Program

As required by FIFRA and the Federal Food, Drug, and Cosmetic Act (FFDCA), EPA reviews numerous studies to assess potential adverse outcomes from exposure to chemicals. Collectively, these studies include acute, subchronic and chronic toxicity, including assessments of carcinogenicity, neurotoxicity, developmental, reproductive, and general or systemic toxicity. These studies include endpoints which may be susceptible to endocrine influence, including effects on endocrine target organ histopathology, organ weights, estrus cyclicity, sexual maturation, fertility, pregnancy rates, reproductive loss, and sex ratios in offspring. For ecological hazard assessments, EPA evaluates acute tests and chronic studies that assess growth, developmental and reproductive effects in different taxonomic groups and reviews these data and selects the most sensitive endpoints for relevant risk assessment scenarios from the existing hazard database. However, as required by FFDCA section 408(p), cyflumetofen is subject to the endocrine screening part of the Endocrine Disruptor Screening Program (EDSP).

EPA has developed the EDSP to determine whether certain substances (including pesticide active and other ingredients) may have an effect in humans or wildlife similar to an effect produced by a "naturally occurring estrogen, or other such endocrine effects as the Administrator

may designate." The EDSP employs a two-tiered approach to making the statutorily required determinations. Tier 1 consists of a battery of 11 screening assays to identify the potential of a chemical substance to interact with the estrogen, androgen, or thyroid (E, A, or T) hormonal systems. Chemicals that go through Tier 1 screening and are found to have the potential to interact with E, A, or T hormonal systems will proceed to the next stage of the EDSP where EPA will determine which, if any, of the Tier 2 tests are necessary based on the available data. Tier 2 testing is designed to identify any adverse endocrine-related effects caused by the substance, and establish a dose-response relationship between the dose and the E, A, or T effect.

Under FFDCA section 408(p), the Agency must screen all pesticide chemicals for endocrine effects. Between October 2009 and February 2010, EPA issued test orders/data call-ins for the first group of 67 chemicals, which contains 58 pesticide active ingredients and 9 inert ingredients. For additional information on the EDSP program, visit <u>http://www.epa.gov/endo/</u>.

2.6 Data Gaps

Submission of data to eliminate data gaps would reduce uncertainties in the ecological risk assessment. Data gaps have been assigned either a low or high potential to add value to the ecological risk assessment. While still considered data gaps according to 40 CFR Part 158, data from low potential studies are unlikely to change risk conclusions, and alternate methods and weight of evidence can be used in the absence of data. In contrast, data from high potential studies are likely to impact risk conclusions and allow the Agency to be better able to characterize potential risks by eliminating uncertainties for both non-listed and listed species that cannot be accounted for using alternate methods or weight of evidence.

2.6.1 Environmental fate

Table 2-8 provides environmental fate studies by MRID that offer data for each guideline requirement as well as study classifications and whether or not further data are needed to support the ecological risk assessment (*i.e.*, whether there is a data gap).

Table 2-8. Environmental Fate Data for Cyllumetolen and Remaining Data Gaps						
Guideline	Description	MRID (parent unless otherwise specified)	Classification	Data Gap?	Comments	
835.2120 161-1	Hydrolysis	48542624 48542625	Supplemental Acceptable	No	MRID 48542624 did not identify/quantify degradates.	
835.2240 161-2	Photodegradation in Water	48542627	Acceptable	No		
835.2410 161-3	Photodegradation in Soil	48542750 (A-label) 48542751 (B-label)	Acceptable Acceptable	No		
835.4100	Aerobic Soil Metabolism - parent	48542745 48542748 48542752	Acceptable Acceptable Acceptable	No	Of the 8 soils studied, only 2 used an A-label.	
162-1	Aerobic Soil Metabolism - degradate	48542754 (B-1) 48542755 (AB-1) 48542756 (B-3)	Supplemental Supplemental Supplemental	No	Did not identify/ quantify degradates. Not radio-labeled.	

 Table 2-8. Environmental Fate Data for Cyflumetofen and Remaining Data Gaps

Guideline	Description	MRID (parent unless otherwise specified)	Classification	Data Gap?	Comments
835.4200 162-2	Anaerobic Soil Metabolism	48542749	Acceptable	No	
835.4300 162-4	Aerobic Aquatic Metabolism	48542768 48542770 48542771	Acceptable Acceptable Acceptable	No	
835.4400 162-3	Anaerobic Aquatic Metabolism	48542769	Acceptable	No	
835.1230 163-1	Sediment and soil Adsorption/ Desorption	48542759 (parent) 48542760 (B-1) 48542761 (AB-1) 48542762 (B-3) 48542763 (B-1, B-3, and A-2) 48542786 (AB-1 dimer)	Supplemental Supplemental Supplemental Supplemental Supplemental Supplemental	No	Did not use Agency approved methods.
835.1240 163-1	Soil column leaching	48542764 (B-1) 48542765 (B-1)	Supplemental Supplemental	No	Not required
835.6100 164-1	Terrestrial Field Dissipation	48542757	Not classified yet	In review	Storage stability study is not finished. Preliminary results show parent not stable for as long as samples stored before analysis.
850.6100	Analytical Method - Soil	48542828 (parent, A-2, B-3, B-1, and AB-1 dimer) 48542647 (parent, A-2, B-3, B-1, and AB-1 dimer)	Acceptable Acceptable	No	
850.6100	Analytical Method - Water	48542650 (parent) 48542651 (B-1) 48542652 (B-3)	Acceptable Acceptable Acceptable	No	
850.6100	Analytical Method- Sediment	48542657 (AB-1)	Acceptable	No	
850.1730 165-4	Accumulation in fish	48542785	Acceptable	No	Did not identify/ quantify degradates.

Because there were no aquatic risks identified in this assessment, there are no fate related studies that would have a **high potential** to affect the ecological risk assessment for cyflumetofen.

Data from the following fate guideline studies are considered to have **low potential** to add value to the ecological risk assessment for cyflumetofen:

Guideline 835.1240 – **Soil Column Leaching of Parent:** Cyflumetofen has hydrophobic characteristics and is unlikely to persist long in wet aerobic/anaerobic environments. Therefore, it is unlikely that the parent will leach in substantial quantities.

Guideline 835.6100 – Terrestrial Field Dissipation: The 2-year storage stability is incomplete but interim reports appear to show that cyflumetofen cannot be stored for long in frozen soil

samples without degradation. Therefore, it is likely that the study will need to be repeated, but a non-radiolabeled field study cannot address the unextracted residue issue using the current analytical methods. If an analytical method using harsher extraction methods was shown to greatly reduce unextracted residues, it would be more useful to repeat the terrestrial field dissipation study with the harsher extraction methods.

2.6.2 Ecological Effects

Table 2-9 provides ecological effects studies by MRID that offer data for each guideline requirement as well as study classifications and whether or not further data are needed to support the ecological risk assessment (*i.e.*, whether there is a data gap).

Guideline	Description	MRID (parent unless otherwise specified)	Classification	Data Gap?	Potential for Additional Data to Add Value
850.1010	Acute toxicity freshwater invertebrates	48542789 48542790 (A-2) 48542787 (B-1) 48542788 (B-2) 48542921 (form.)	Acceptable Acceptable Acceptable Supplemental Supplemental	No	NA
850.1025 850.1055	Acute toxicity estuarine/marine mollusk	48542810	Acceptable	No	NA
850.1035 850.1045	Acute toxicity estuarine/marine invertebrate	48542711	Acceptable	No	NA
	Acute toxicity freshwater fish (cold water species)	48542779 48542780 (form.)	Acceptable Supplemental	No	NA
850.1075	Acute toxicity freshwater fish (warm water species)	48542780 48542782 (A-2) 48542781 (B-1)	Acceptable Acceptable Acceptable	No	NA
	Acute toxicity estuarine/marine fish	48542812	Acceptable	No	NA
850.1300	Aquatic invertebrate life cycle (freshwater)	48542791	Acceptable	No	NA
850.1350	Aquatic invertebrate life cycle (saltwater)			Yes	Low
950 1400	Fish early life stage (freshwater)	48542783	Supplemental	Yes	Low
850.1400	Fish early life stage (saltwater)			Yes	Low
850.1740	Whole sediment: acute marine invertebrates	48542798	Acceptable	No	NA
	Whole sediment: chronic freshwater invertebrates	48542802 48542801 (AB-1) 48542803 (AB-1 dimer)	Acceptable Acceptable Acceptable	No	NA
850.2100	Avian oral toxicity (upland game or waterfowl species)	48542772 48542773	Acceptable	No	NA

Table 2-9. Ecological Effects Data for Cyflumetofen and Remaining Data Gaps

Guideline	Description	MRID (parent unless otherwise specified)	Classification	Data Gap?	Potential for Additional Data to Add Value
	Avian oral toxicity (passerine species)	48542774	Acceptable	No	NA
850.2200	Avian dietary toxicity (upland game species)	48542775	Acceptable	No	NA
830.2200	Avian dietary toxicity (waterfowl species)	48542776	Acceptable	No	NA
850.2300	Avian reproduction (upland game species)	48542777	Acceptable	No	NA
850.2300	Avian reproduction (waterfowl species)	48542778	Acceptable	No	NA
850.3020	Honeybee acute contact toxicity	48542805	Acceptable	No	NA
850.4100	Seedling emergence (terrestrial plants)	48542933	Supplemental	Yes	High
850.4150	Vegetative vigor (terrestrial plants)	48542932	Acceptable	No	NA
850.4400	Aquatic plant growth (aquatic vascular plant toxicity)	48542804	Acceptable	No	NA
850.4500	Aquatic plant growth (aquatic non-vascular plant: algal toxicity)	48542792 48542793 48542795 48542796 (AB-11) 48542797 (B-1) 48542922 (form.)	Acceptable Acceptable Acceptable Acceptable Supplemental Supplemental	No	NA
850.4550	Aquatic plant growth (aquatic non-vascular plant: cyanobacteria toxicity)	48542794	Acceptable	No	NA

form. = formulation; NA = not applicable; FW = freshwater; SW = saltwater

Data from the following guideline studies are considered to have **high potential** to add value to the ecological risk assessment for cyflumetofen:

Guideline 850.4100 – Seedling Emergence and Seedling Growth: Acceptable seedling emergence data are not available. The submitted seedling emergence study (MRID 48542933) was classified as Supplemental because for the most sensitive monocot – oat, dry weight and shoot length of the lowest treatment group (*i.e.*, 0.000706 lb a.i./A) were significantly reduced (*i.e.*, 33.2 and 27.3 %, respectively) when compared to the control group resulting in the lack of a NOAEC for monocots. In addition, an EC₂₅ for monocots could not be determined because the oat endpoints of dry weight and shoot length displayed an atypical concentration-response relationship leading to issues with model convergence (see **Figure 5-1**). A continuation, Tier II test with oat is necessary to reduce uncertainty in characterizing risk to listed and non-listed monocots and is considered to have a high potential to add value to the ecological risk assessment.

Data from the following guideline studies are considered to have **low potential** to add value to the ecological risk assessment for cyflumetofen:

Guideline 850.1350 – Mysid Chronic Toxicity Test: Aquatic invertebrate life cycle toxicity data for an estuarine/marine invertebrate are required under 40 CFR Part 158 if the product is expected to enter the environment in significant concentrations because of its expected use or mobility patterns. No studies have been submitted for this data requirement. Given that there is no evidence to indicate that estuarine/marine animals are substantially more sensitive to cyflumetofen than freshwater animals, fulfilling this data requirement has a low potential to add value to the ecological risk assessment. In the absence of these data, toxicity to estuarine/marine invertebrates from chronic exposure to cyflumetofen will be characterized using toxicity data for freshwater invertebrates (*e.g., Daphnia*).

Guideline 850.1400 – Fish Early Life Stage Toxicity Test, freshwater: Acceptable early life stage toxicity data are not available for a freshwater fish. The submitted freshwater fish early life stage study was classified as supplemental because the high:low ratio and percent coefficient of variation for measured test concentrations were 2.1 and 27%, respectively, exceeding the 1.5 and 20% maxima for acceptable variability in aquatic studies (MRID 48542783). Since repeating this study is likely to yield the same variability with respect to exposure concentrations due to the rapid hydrolysis of cyflumetofen in aqueous environments, fulfilling this data requirement has a low potential to add value to the ecological risk assessment. In the absence of these data, toxicity to freshwater fish from chronic exposure to cyflumetofen will be characterized using the NOAEC (= $31.6 \mu g/L$) from the submitted study (MRID 48542783) and acknowledging the associated uncertainty.

Guideline 850.1400 – Fish Early Life Stage Toxicity Test, estuarine/marine: Early life stage toxicity data for an estuarine/marine fish are required under 40 CFR Part 158 if the product is expected to enter the environment in significant concentrations because of its expected use or mobility patterns. No studies have been submitted for this data requirement. Given that there is no evidence to indicate that estuarine/marine animals are substantially more sensitive to cyflumetofen than freshwater animals, fulfilling this data requirement has a low potential to add value to the ecological risk assessment. In the absence of these data, toxicity to estuarine/marine fish from chronic exposure to cyflumetofen will be characterized using toxicity data for freshwater fish.

3 Fate and Transport Characterization

Cyflumetofen is not persistent in the environment and rapidly converts to degradates via abiotic hydrolysis reactions ($DT_{50} = 9.75$ hours at pH 7) and biotic reactions with (DT_{50} of less than 22 days). Many of the degradates (*e.g.*, A-2, A-18, AB-1, and B-1) are much more persistent than the parent. Maximum formation fractions and limited chemical property and mobility data for the degradates identified in cyflumetofen fate studies appear in **Appendix Table C-1**, and transformation pathways are depicted in **Appendix Figures C-1** through **C-5** for abiotic hydrolysis, aquatic photolysis, aerobic soil metabolism, aerobic aquatic metabolism, and anaerobic aquatic metabolism, respectively.

Cyflumetofen has two rings, both of which were radio-labeled in fate studies. The phenyl ring label (see cyflumetofen structure in **Figure 3-1** for location) is referred to as the A label, and the tolyl ring label is referred to as the B label. These label designations were used in naming the cyflumetofen degradates. Degradates that retain only the A label (phenyl ring) typically are named with the prefix "A", whereas degradates that retain only the B label (tolyl ring) typically are named with the prefix "B". Degradates that retain both rings are named with the prefix "B".

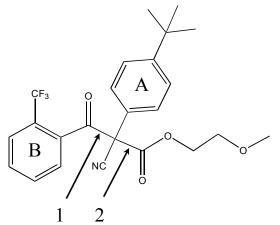


Figure 3-1. Cyflumetofen chemical structure with A and B rings denoted and bonds identified that are important in the initial degradation of the molecule through most fate pathways.

There are two bonds that readily break (denoted in **Figure 3-1**) in all of the fate studies involving water other than photolysis (*i.e.*, hydrolysis, aerobic and anaerobic soil and aquatic metabolism, and terrestrial field dissipation studies). If the bond denoted 1 in **Figure 3-1** breaks, the A and B degradates are formed. If the bond denoted 2 in **Figure 3-1** breaks (or less typically, some other bond on the same unlabeled side chain), the AB degradates are formed.

"B" degradates (*i.e.*, tolyl ring degradates; B-1 and B-3) are water soluble (range: 363.3 - 13,000 mg/L), have low estimated Koc's (range: 79 - 121.5 L/kg-organic carbon), and lack the cyano group (C=N) of the parent. "A" degradates (*i.e.*, phenyl ring degradates; A-1, A-2, A-12, and A-18) are also water soluble (range: 28.94 - 201.8 mg/L) and have low estimated Koc's (range: 113.7 - 1200 L/kg-organic carbon), but most (A-1, A-2, and A-18) retain the cyano group of the parent. The "AB" degradates (AB-1, AB-7, AB-11, AB-15, and AB-12) have low water solubility (range: 0.01 - 0.142 mg/L), high estimated Koc's (range: 10,400 - 85,630 L/kg-organic carbon), and retain the cyano group of the parent.

Some of the degradates that have a cyano group (A-1 and AB-1) formed dimers in the fate studies (AB-1 Dimer, AU16, and AU17). The dimers are formed by two molecules with cyano groups bonding together (2 only) at the carbon to which the cyano group is attached in each molecule (the carbon atom located between the 1 and 2 bonds in **Figure 3-1**). It is not clear whether these dimers would actually form in the environment or simply form during the sample extraction process. These dimers are predicted (EpiSuite v4.10) to have extremely low water solubility (range: $4 \times 10^{-10} - 7 \times 10^{-3}$ mg/L) and high Koc's (range: $50,600 - 1.6 \times 10^{8}$ L/kg-organic carbon).

For comparison, cyflumetofen has a comparatively low water solubility of 0.0277 mg/L at 20°C (MRID 48542621) and Koc of 131,826 L/kg-organic carbon. Only degradates AB-11, AB-12, AB-1 dimer, AU16 (dimer), and AU17 (dimer) are predicted to have lower water solubilities than the parent. Similarly, only degradates AB-12, AB-1 dimer, and AU17 (dimer) are predicted to have higher Kocs than the parent. Therefore, the vast majority of the degradates are expected to be more mobile than the parent. (All degradate data on solubility and Koc data were estimated using EpiSuite v4.10 and are included in **Appendix Table C-1**. For purposes of consistency with the estimated degradate data provided, the water solubility and Koc values reported in this paragraph and **Appendix Table C-1** are also EpiSuite estimates. The text following this point in the document is based on registrant-submitted cyflumetofen fate studies.)

3.1 Degradation

3.1.1 Hydrolysis

Cyflumetofen's hydrolytic degradation appears to be pH dependent, with degradation rate increasing (half-life time [DT₅₀] decreasing) and with increasing pH. The DT₅₀ values decrease from 7.42 days at pH 4, to 6.16 days at pH 5, to 0.406 days (~9.7 hours) at pH 7, to 0.00518 days (~7.5 minutes) at pH 9 (T = 25°C; average of both labels, MRID 48542625). Hydrolytic degradation in the A-labeled studies yielded: A-1, A-18, A-2, and AB-1 (**Appendix Figure C-1**). All of the A-labeled hydrolysis degradates retain a cyano-group and therefore, are of concern. Therefore in terms of TTR half-life calculation, cyflumetofen is stable to hydrolysis since it only produces degradates of concern (**Appendix Table D-1**). Hydrolytic degradation in the B-labeled studies yielded: AB-1 and B-1. (Notice, the production of B-1 which does not have a cyanogroup in the B-label study does not indicate that the TTR half-life should not be considered stable since it results in the production of A-1. A-1 just does not show up in the B-label studies.)

A second study (MRID 48542624), measured hydrolysis rates at 3 temperatures (20, 25, and 40°C) and three pHs (4, 7, and 9). (No degradates were identified or quantified in this study.) At 25°C, the results were similar (9.25 days at pH 4, 5 hours at pH 7, and 12 minutes at pH 9).

3.1.2 Aquatic Photolysis

The aqueous photolysis study shows a photo transformation half-life in distilled water of about 1.2 hours or 0.0511 days (T = 25°C; average of both labels, MRID 48542627). This same study provides a similar estimate of 0.04 days natural water at 25°C (average of both labels). Degradates produced included degradates of concern (A-1, A-18, A-2, AB-1, AB-6, AB-7, and AB-15) and degradates not of concern (A-14, A-12, and B-1) (**Appendix Figure C-2**). The TTR half-life in distilled water is 17.6 days (**Appendix Table D-1**).

3.1.3 Soil photolysis

Soil photolysis studies were conducted for the parent, cyflumetofen, with a DT_{50} value of 4.9 days (A-label, MRID 48542750) and 5.9 days (B-label, MRID 48542751). Degradates produced included degradates of concern (AB-8, AB-11, and AB-12) and degradates not of concern (AB-13 and B-1). Maximum occurrence of unextracted residues ranged from 25.5 to 47.7% of applied radioactivity. The highest unextracted residue value came from the A-labeled soil,

possibly indicating some contribution from an A-labeled chemical that would not show up in the B-labeled studies (~22% more in A- than B-labels from the same soil). The TTR half-life from the A-label study is 68.5 days (**Appendix Table D-1**).

3.1.4 Aerobic Soil Metabolism

Aerobic soil metabolism DT_{50} values from eight soils were available from registrant-submitted studies for the parent, cyflumetofen, with half-lives ranging from 2.24 to 13.3 days (MRIDs 48542745, 48542748, and 48542752). However, only two of these soils were studied with an A-label radio-tracer. Degradates produced included degradates of concern (A-1, A-2, AB-1, AU17, and AB-1 dimer) and degradates not of concern (B-1, B-3, and A-12) (**Appendix Figure C-3**). Maximum occurrence of unextracted residues ranged from 21.6 to 43.4% of applied radioactivity. The highest unextracted residue value came from the A-labeled soil, possibly indicating some contribution from an A-labeled chemical that would not show up in the B-labeled studies (~8-10% more in A- than B-labels from the same soil). The TTR half-lives from the A-label studies are 64.1 and 846 days (**Appendix Table D-1**).

Aerobic soil metabolism studies using non-radiolabeled material were conducted for three of the degradates of cyflumetofen. Because non-radiolabeled material was used, no estimate of unextractable residues can be made. Additionally, no degradates were identified in these studies. The degradate B-1 was studied in three European soils yielding degradation curves that roughly approximated first-order degradation kinetics with half-lives of 4.98, 16.8, and 36.3 days (**Appendix Table D-2** – separate from the parent degradation graphs in **Appendix Table D-1**). Similarly, B-3 yielded degradation curves that roughly approximated first-order degradation kinetics with half-lives of 6.32, 9.56, and 8.46 days. Both of these chemicals (B-1 and B-3) have relatively similar structures, are expected to be hydrophilic (see EpiSuite estimated water solubilities and Kocs in **Appendix Table C-1**), and seem to behave very similarly in terms of aerobic soil degradation (similar half-lives and shape of the degradation curve).

Degradate AB-1 (non-radiolabeled) was also studied in three European soils, yielded radically different degradation curves from those of B-1 and B-3. The AB-1 degradation curves initially dropped steeply to 14%, 13%, and 11% of applied radioactivity at their 24 hour sampling. These degradation curves then flattened-out to yield an almost linear decline for the remaining 119 days of the studies for final measurements at 120 days of 8%, 6%, and 3% of applied radioactivity. AB-1 is expected to be hydrophobic.

The Agency's interpretation of these AB-1 studies is the initial decline is likely due to the formation of unextractable residues and potentially, formation of dimers, rather than rapid degradation to simpler molecules. In the radio-labeled aerobic soil metabolism studies, AB-1 was a major degradate that persisted to the end of the studies. Potentially, AB-1 may persist in soil and sediment in some form of equilibrium with soil water or overlying and pore water in aquatic systems. Additional data from longer-term (at least 1 year duration) radio-labeled studies using more rigorous extraction methods (optimized to extract AB-1 and its degradates) would be beneficial in understanding the fate of this degradate.

3.1.5 Anaerobic Soil Metabolism

Anaerobic soil metabolism DT_{50} values from four soils were available from registrant-submitted studies for the parent, cyflumetofen, with half-lives ranging from 1.78 to 10.4 days (MRID 48542749). However, only one of these soils was studied with an A-label radio-tracer. Degradates produced included degradates of concern (A-1, A-2, AB-1, and AB-1 dimer) and degradates not of concern (B-1, B-3, and A-12). Maximum occurrence of unextracted residues ranged from 16.3 to 32.4% of applied radioactivity. The highest unextracted residue value came from the A-labeled soil, possibly indicating some contribution from an A-labeled chemical that would not show up in the B-labeled studies (~10% more in A- than B-labels from the same soil). The TTR half-life from the A-label study is 264 days (**Appendix Table D-1**).

3.1.6 Aerobic Aquatic Metabolism

Aerobic aquatic metabolism DT_{50} values from four systems were available from registrantsubmitted studies for the parent, cyflumetofen, with half-lives ranging from 0.3 to 21.4 days (MRIDs 48542768, 48542770, and 48542771). All of these systems were studied with both Aand B-label radio-tracers. Degradates produced included degradates of concern (A-1, A-2, AB-1, and AB-1 dimer) and degradates not of concern (B-1, B-3, and A-12) (**Appendix Figure C-4**). Maximum occurrence of unextracted residues ranged from 14 to 44.2% of applied radioactivity. The highest unextracted residue values came from A-labeled soils, probably indicating some contribution from an A-labeled chemical that would not show up in the B-labeled studies (~2.7 -20% more in A- than B-labels from the same soil). The TTR half-lives from the A-label studies range from 16.4 to 149 days (**Appendix Table D-1**).

3.1.7 Anaerobic Aquatic Metabolism

Anaerobic aquatic metabolism DT_{50} values from two systems were available from registrantsubmitted studies for the parent, cyflumetofen, with half-lives ranging from 4.76 to 21.5 days (MRID 48542769). All of these systems were studied with both A- and B-label radio-tracers. Degradates produced included degradates of concern (A-2 and AB-1) and degradates not of concern (B-1 and A-12) (**Appendix Figure C-5**). Maximum occurrence in each system of unextracted residues ranged from 4.1 to 12.1% of applied radioactivity. However, unlike the other metabolism studies, there was no difference in unextracted residues in terms of percent applied radioactivity in one system (Pennsylvania), whereas the other system (Florida) had the highest unextracted residue values in the B-labeled samples (~8% more in B- than A-labeled samples from the Florida soil). The TTR half-lives from the A-label studies range from 3780 (Pennsylvania) to 31,300 (Florida) days (**Appendix Table D-1**).

3.2 Mobility

3.2.1 Volatility

Cyflumetofen appears to be non-volatile. This is supported by its water solubility (0.0277 mg/L at 20°C; MRID 48542621) and low vapor pressure ($< 4.43 \times 10^{-8}$ torr at 25°C; MRID 48542611) and Henry's Law constant ($< 9.3 \times 10^{-7}$ Pa*m³/mol at 20°C; MRID 48542612).

3.2.2 Adsorption/desorption – Parent

The organic carbon normalized soil adsorption coefficient (Koc) of OK-5101 pure was determined by an HPLC method. Phenol, 4-methylbenzamide, methylbenzoate, naphthalene, 1,2,3-trichlorobenzene, fenthion, phenanthrene and p,p-DDT were used for the calibration standards. The organic carbon normalized soil adsorption coefficient (Koc) of OK-5101 pure was calculated to be 131,826 L/kg_{oc} (MRID 48542759).

3.2.3 Adsorption/desorption – Degradates

The adsorption behavior of B-1 to soil was studied in three soils using the batch equilibrium method: Speyer 2.2 soil (2.29% organic carbon (OC), loamy sand), Speyer 2.3 soil (1.02% OC, sandy loam) and Speyer 6S soil (1.9% OC, sandy clay). Adsorption isotherms were determined over a concentration range of 0.1-5 mg/L. Based on the kinetics experiment, B-1 hardly adsorbs to the soil. Therefore, the equilibrium time could not be determined accurately. B-1 adsorbs only very weakly to soil and can be considered highly mobile (MRID 48542760).

AB-1 in soils was studied in the same three soils. At a soil:solution ratio of only 1:200 the percentage adsorption was \ge 87% in Speyer 2.2 and Speyer 2.3 soils and \ge 30% in Speyer 6S soil. Given the strong adsorption of AB-1 to soil even at a very low soil:solution ratio and the low water solubility (0.0277 mg/L) in combination with the limit of quantification of 0.005 mg/L, isotherms could not be determined. Instead, the adsorption coefficient was determined in duplicate for each soil at soil solution ratios of 1:100 and 1:200. Based on the resulting Kom values (\ge 2.6 x 10³ ml/g) AB-1 should be considered immobile (MRID 48542761).

B-3 in soils was studied in the same three soils. Adsorption of B-3 on soil could be described by Freundlich adsorption isotherms. K_{foc} values were 11.726 (Speyer 2.2), 12.202 (Speyer 6S), and 16.863 L/kg (Speyer 2.3) for a mean of 13.597 and 1/n values were 0.874, 0.959 and 1.039, respectively (mean 0.957) (MRID 48542762).

The adsorption/desorption behavior of the radiolabeled metabolites of cyflumetofen B-1, B-3 and A-2 was investigated on different US and European soils. The six soils covered a range of pH from 5.8 to 8.1, a range of organic carbon content from 0.28% to 3.84% and four different USDA textural classes: Silty Clay Loam, Loam, Loamy sand and Sandy Loam. The average adsorption Koc was 4.4, 22.8, and 865 for B-1, B-3 and A-2, respectively (MRID 48542763).

The adsorption/desorption potential of the AB-1 dimer was investigated in four US soils, which included sandy loam, clay loam, sand, and loam and one German sandy loam soil. The soils covered a range of pH from 6.1 to 8.1 and a range of organic carbon content from 0.08 to 2.26. The adsorption coefficients Kd and Koc were estimated using 1 concentration level (0.28 ng/mL). The estimated Kd values for all the test soils ranged from 237.47 to 4341.91 L/kg. The adsorption coefficient, Koc, derived from the Kd values for the test soils was > 103,000 L/kg, indicating that the test substance AB-1 dimer is immobile in the test soils. The Koc value was also estimated by the HPLC method to be 8,315,788 L/kg.

3.3 Field Studies

The interpretation of the terrestrial field dissipation studies (MRID 48542757) awaits the completion of the storage stability study (interim report is MRID 48542829). Some of the

terrestrial field dissipation samples were held under frozen conditions for 2 years. The interim report indicates that the parent cyflumetofen does not appear to be stable under the frozen storage conditions used in the study. This lack of stability of the parent would likely reduce the concentrations of the parent chemical measured at each time point and potentially enhance the concentration of degradates at each time point. It appears likely that the terrestrial field dissipation study may need to be repeated.

3.4 Bioconcentration

The measured BCF is approximately $200 \times$ in whole fish (other tissues were not measured separately) based on TRR (total radioactive residues). The BCF study is somewhat problematic in that the TRR was still increasing at the end of the accumulation phase. The identity of radioactivity measured in the BCF study was not determined in the fish BCF study. Therefore, it is unknown whether it is parent, degradate(s), or some combination of parent and degradate(s) that is accumulating in the fish. However, the rate of accumulation appears to slow over the 21 day accumulation phase with concentrations only doubling from day 1 (approximately $100 \times$) to day 21 (approximately $200 \times$) (MRID 48542785).

4 Exposure Assessment

4.1 Terrestrial Exposure

4.1.1 Birds, Mammals, and Terrestrial Invertebrates

Input parameters for T-REX⁹ (**Table 4-1**) include a maximum application rate, number of applications, application interval, a default EFED foliar dissipation half-life of 35 days, and definitive toxicity endpoints for birds and mammals.

Use	Maximum Single Application Rate (lb a.i./A)	Maximum Number of Applications (Minimum Application Interval, Days)	Other Parameters ¹
Citrus Grapes Pome fruits Strawberries Tree nuts Tomatoes Ornamentals	0.2	2 (14)	Foliar dissipation half-life = 35 days (default) Avian NOAEC = 154 mg a.i./kg-diet (bobwhite quail; MRID 48542777) Mammalian NOAEC = 150 mg/kg-diet (9.21 mg/kg-bw) (rat; MRID 48542702)

 Table 4-1. Input Parameters for T-REX Modeling Scenarios

¹ Avian acute oral, avian sub-acute dietary, and mammalian acute oral endpoints are non-definitive (*i.e.*, >) and are thus not included in this table because they cannot be used to calculate RQs.

⁹ <u>http://www.epa.gov/oppefed1/models/terrestrial/index.htm#trex</u>

Results of T-REX modeling of cyflumetofen residue levels on dietary food items of mammals and birds are provided in **Tables 4-2**, **4-3**, and **4-4**. Results include dietary-based values (*i.e.*, mg/kg-food item) and dose-based values (*i.e.*, mg/kg-bw).

Table 4-2. Avian Dose-Based (mg/kg-bw) Estimated Exposure Concentrations (EECs)^a

		Dose-Base	Dose-Based EECs (mg/kg-bw) ^b			
Use	Feeding Category	Small	Medium	Large		
		(20 g)	(100 g)	(1000 g)		
Citrus	Short grass	96.10	54.80	24.53		
Grapes	Tall grass	44.04	25.12	11.24		
Pome fruits	Broadleaf plants	54.05	30.82	13.80		
Strawberries	Fruits/pods	6.01	3.42	1.53		
Tree nuts	Arthropods	37.64	21.46	9.61		
Tomatoes	Seeds	1.33	0.76	0.34		
Ornamentals	Seeus	1.55	0.70	0.34		

^a upper bound Kenaga values

^b Minimum and maximum EECs are in **BOLD**.

Table 4-3. Mammalian Dose-Based (mg/kg-bw) Estimated Exposure Concentrations (EECs)^a

			Dose-Based EECs (mg/kg-bw) ^b			
Use	Feeding Category	Small	Medium	Large		
		(15 g)	(35 g)	(1000 g)		
Citrus	Short grass	80.45	55.60	12.89		
Grapes	Tall grass	36.87	25.48	5.91		
Pome fruits	Broadleaf plants	45.25	31.27	7.25		
Strawberries	Fruits/pods	5.03	3.47	0.81		
Tree nuts	Arthropods	31.51	21.78	5.05		
Tomatoes	Seeds	1.12	0.77	0.18		
Ornamentals	50005	1.12	0.77	0.10		

^a upper bound Kenaga values

^b Minimum and maximum EECs are in **BOLD**.

Table 4-4. Avian and Mammalian Dietary-Based (mg/kg-diet) Estimated Exposure Concentrations (EECs)^a

Use	Feeding Category	Dietary-Based EECs ^b (mg/kg-diet)
Citrus	Short grass	84.38
Grapes	Tall grass	38.67
Pome fruits	Broadleaf plants	47.46
Strawberries	Fruits/pods/seeds	5.27
Tree nuts		
Tomatoes	Arthropods	33.05
Ornamentals	-	

^a upper bound Kenaga values

^b Minimum and maximum EECs are in **BOLD**.

4.1.2 Terrestrial (Upland and Semi-Aquatic) Plants

Input parameters for TerrPlant¹⁰ (**Table 4-5**) include a maximum application rate, incorporation depth (1 inch; default), water solubility (0.0281 mg/L) to inform the run-off fraction (1%), spray drift fraction (1% for ground application; 5% for aerial application), and definitive toxicity endpoints from seedling emergence (SE) and vegetative vigor (VV) studies.

EECs used to evaluate potential risk to terrestrial plants are provided in Table 4-6.

Use (Application Method)	Maximum Single Application Rate (lb a.i./A)	Spray Drift Fraction ^a (%)	Other Parameters
Citrus Grapes Pome fruits Strawberries Tree nuts Tomatoes Ornamentals (Ground)	0.2	1	Incorporation depth = ≤ 1 inch Runoff fraction = 1% <u>SE endpoints (MRID 48542933)b</u> Dicot (Tomato) EC ₂₅ = 0.0393 lb a.i./A NOAEC = 0.000706 lb a.i./A
Tomatoes (aerial)	0.2	5	<u>VV endpoints (MRID 48542932)</u> ^c Monocot & Dicot NOAEC = 0.273 lb a.i./A

 Table 4-5. Input Parameters for TerrPlant Modeling Scenarios

SE = seedling emergence; VV = vegetative vigor

^a 1% for ground application; 5% for aerial application

^b monocot SE endpoints are not available (*i.e.*, definitive) or could not be determined

^c monocot and dicot VV EC₂₅ endpoints are non-definitive (*i.e.*, >)

Table 4-6. Terrestrial (Upland and Semi-aquatic) Plant Estimated Exposure Concentrations (EECs)

Use (Application		f EEC .i./A)	Spray Drift EEC (lb a.i./A)	Total Loading EEC (Runoff + Spray Drift) (lb a.i./A)			
Method)	Dry (Upland) Areas	Semi-Aquatic Areas	All Areas	Dry (Upland) Areas	Semi-Aquatic Areas		
Citrus Grapes Pome fruits Strawberries Tree nuts Tomatoes Ornamentals (ground)	0.002	0.02	0.002	0.004	0.022		
Tomatoes (aerial)	0.002	0.02	0.01	0.012	0.03		

4.2 Aquatic Exposure

¹⁰ <u>http://www.epa.gov/oppefed1/models/terrestrial/index.htm#terrplant</u>

The environmental fate properties used for modeling parent only and the total toxic residues (TTR) for cyflumetofen are summarized in Table 4-7 and Table 4-8.

Parameter (Units)	Input Value and Unit	Source/Comments				
Maximum Application Rate	See Table 4-10	Labels				
Minimum Reapplication Interval	See Table 4-10	Labels				
Modeling Scenarios	See Table 4-10	Professional Judgment				
Initial Application Dates (dd-mm)	See Table 4-10	Professional Judgment				
Application Method	Cam = 2	Foliar spray				
Application Efficiency Fraction	Aerial -0.95 or ground -0.99	Default				
Spray Drift Loading Fraction	Aerial – 0.305	AgDRIFT -15 mph, boom height $=15$ ft				
	Ground – 0.027	(aerial) / 2 ft (ground), droplet size = fine				
Incorporation depth (cm)	0	Default				
Molecular Weight (g/mole)	447.45	MRID 48542621				
Water Solubility (mg/L)	0.028	MRID 48542621				
Vapor Pressure (torr)	4.43×10^{-8}	MRID 48542611				
K _{OC} (L/kg _{oc})	72,000	Professional Judgment – a Koc value was				
		chosen to represent a low-end value for				
		the parent and be consistent with the				
		degradates of concern that are considered				
		likely to be more persistent.				
Hydrolysis t _{1/2} (days)	0.406	TTR – MRID 48542625				
Aqueous Photolysis t _{1/2} (days)	0.0511	TTR – MRID 48542627				
Aerobic Soil Metabolism t _{1/2} (days)	27.51 ²	TTR – MRIDs 48542745, 48542748, and				
		48542752				
Aerobic Aquatic Metabolism $t_{\frac{1}{2}}$ (days)	38.89 ³	TTR – MRIDs 48542769, 48542770, and				
		48542771				
Anaerobic Aquatic Metabolism t _{1/2}	6.59 ⁴	TTR – MRID 48542769				
(days)						

Table 4-7. PRZM/EXAMS Input Parameter Values for Parent Only Modeling

¹ Input Parameter Guidance Manual, Pesticides (Version 2.1; Oct. 22, 2009) ² Aerobic soil metabolism TTR half-lives of 2.24, 4.98, 2.27, 2.36, 3.4, 4.37, 13.3, and 2.53 days. ³ Aerobic aquatic metabolism TTR half-lives of 21.4, 18.3, 11.3, and 0.297 days. ⁴ Anaerobic aquatic metabolism TTR half-lives of 21.5 and 4.76 days.

Table 4-8. PRZM/EXAMS Input Parameter Values for Total Toxic Residues Modeling

Parameter (Units)	Input Value and Unit	Source/Comments
Maximum Application Rate	See Table 4-10	Labels
Minimum Reapplication Interval	See Table 4-10	Labels
Modeling Scenarios	See Table 4-10	Professional Judgment
Initial Application Dates (dd-mm)	See Table 4-10	Professional Judgment
Application Method	Cam = 2	Foliar spray
Application Efficiency Fraction	Aerial -0.95 or ground -0.99	Default
Spray Drift Loading Fraction	Aerial – 0.305	AgDRIFT -15 mph, boom height $=15$ ft
	Ground – 0.027	(aerial) / 2 ft (ground), droplet size = fine
Incorporation depth (cm)	0	Default
Molecular Weight (g/mole)	447.45	MRID 48542621
Water Solubility (mg/L)	0.028	MRID 48542621
Vapor Pressure (torr)	4.43×10^{-8}	MRID 48542611
K _{OC} (L/kg _{oc})	72,000	Professional Judgment – a Koc value was chosen to represent a low-end value for

Parameter (Units)	Input Value and Unit	Source/Comments				
		the degradates of concern that are considered likely to be more persistent.				
Hydrolysis t _{1/2} (days)	Stable	TTR – MRID 48542625				
Aqueous Photolysis $t_{\frac{1}{2}}$ (days)	17.6	TTR – MRID 48542627				
Aerobic Soil Metabolism $t_{\frac{1}{2}}$ (days)	1096 ²	TTR – MRIDs 48542745 and 48542748				
Aerobic Aquatic Metabolism $t_{\frac{1}{2}}$ (days)	173 ³	TTR – MRIDs 48542769, 48542770, and 48542771				
Anaerobic Aquatic Metabolism t _{1/2} (days)	$60,000^4$	TTR – MRID 48542769				

¹ Input Parameter Guidance Manual, Pesticides (Version 2.1; Oct. 22, 2009)

² Aerobic soil metabolism TTR half-lives of 61.4 and 846 days.

³ Aerobic aquatic metabolism TTR half-lives of 149, 99.2, 16.4, and 40.3 days.

⁴ Anaerobic aquatic metabolism TTR half-lives of 31,300 and 3780 days.

The label-required spray application conditions (release height greater than 15 feet above crop canopy and droplet size category of fine) are likely to transport cyflumetofen through spray drift in excess of EFED's default spray drift assumptions. Additionally, the label specifies 15 mph as the maximum wind speed during application. Non-default AgDRIFT modeling inputs are summarized in **Table 4-9**. AgDRIFT output is provided in **Appendix E**.

I abit I >1 Summar	of itom Denant ingDitti i filoating inputs								
Parameter	Aerial Application	Ground Application							
Droplet Size	Fine $(DV_{05} = 179.6 \ \mu m)$	ASAE Very fine to fine ($DV_{05} = 175 \ \mu m$)							
Boom Height	15 ft. above ground	24" on label (20" modeled)							
Data Percentile	NA	90 th percentile							
Wind Speed	15 mph	NA							
Spray Volume		NA							

 Table 4-9.
 Summary of Non-Default AgDRIFT Modeling Inputs

NA = Not Applicable

The aquatic parent only and TTR EECs for the various scenarios and application practices are listed in **Table 4-10**. (See **Appendix E** for representative output from PRZM/EXAMS.) Surface water Parent only EECs for the proposed uses of cyflumetofen ranged from 0.26 to 3.2 μ g/L for peak EECs, 0.016 to 0.20 μ g/L for 1-in-10 year 21-day average EECs, and 0.006 to 0.078 μ g/L for 1-in-10 year 60-day average EECs. Surface water TTR EECs for the proposed uses of cyflumetofen ranged from 0.48 to 7.8 μ g/L for peak EECs, 0.25 to 5.1 μ g/L for 1-in-10 year 21-day average EECs.

Pore water TTR EECs change slowly over time, displaying little inter-annual variation and ranging from 0.14 to 3.0 μ g/L for peak EECs, 1-in-10 year 21-day average EECs, and 1-in-10 year 60-day average EECs across all scenarios (**Table 4-10**). Over multi-year time scales though, both surface water (**Figure 4-1c**) and pore water (**Figure 4-1d**) TTR EECs increase with time. (Notice that because inter-annual variation is small for pore water TTR EECs in **Figure 4-1d**, the peak, 21-day, and 60-day plot on top of each other for the same year.)

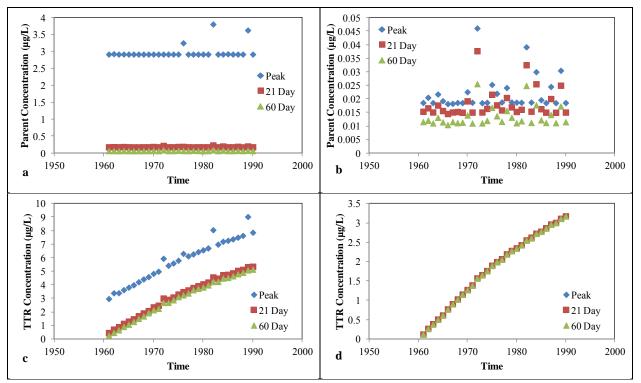


Figure 4-1. Temporal variation in cyflumetofen parent only surface (a) and benthic pore (b) water and total toxic residue (TTR) surface (c) and benthic pore (d) water estimated environmental concentrations (EECs).

Table 4-9. Parent Only and Total Toxic Residue (TTR) Estimated Environmental Concentrations (EECs) in Surface and Benthic Pore Water Cyflumetofen

1 2

Cynumetorei	Aerial (A) or	Max.		Max. App.	Min.	Parent Only EECs (µg/L)			Total Toxic Residue EECs (µg/L)				
	Ground (G) /			Rate Per Crop	App.			Benthic				Benthic	
Use/	Initial App.						rface Wa		Pore Water		urface Wa		Pore Water
Scenario	Dates (d-m)	(lb a.i./A)	of App.	(lb a.i./A)	(Days)	Peak	21-day	60-day	21-day	Peak	21-day	60-day	21-day
Citrus		-									-		_
CA	G / 1-1	0.2	2/CC	0.4	14	0.258	0.016	0.006	0.002	0.478	0.253	0.233	0.140
FL	G / 1-1	0.2	2/CC	0.4	14	0.272	0.019	0.007	0.003	2.583	1.859	1.836	1.150
Grapes													
CA Grapes	G / 1-1	0.2	2/CC	0.4	14	0.258	0.017	0.007	0.002	0.553	0.328	0.308	0.186
CA Wine	G / 1-1	0.2	2/CC	0.4	14	0.445	0.037	0.016	0.010	2.458	1.503	1.470	0.914
Grapes									0.010	2.438			
NY Grapes	G / 1-6	0.2	2/CC	0.4	14	0.869	0.053	0.023	0.015	5.271	3.404	3.358	2.093
Pome Fruit													
NC	G / 1-6	0.2	2/CC	0.4	14	0.447	0.035	0.015	0.008	2.801	1.595	1.513	0.933
OR	G / 1-6	0.2	2/CC	0.4	14	0.258	0.016	0.006	0.002	1.322	1.064	1.036	0.645
PA	G / 1-6	0.2	2/CC	0.4	14	0.508	0.025	0.011	0.006	2.920	1.927	1.869	1.163
Strawberry													
CA	G / 1-1	0.2	2/CC	0.4	14	0.262	0.018	0.007	0.002	0.897	0.629	0.609	0.373
FL	G / 1-1	0.2	2/CC	0.4	14	0.259	0.016	0.006	0.002	2.495	1.897	1.859	1.142
Tree Nuts													
CA Almond	G / 1-1	0.2	2/CC	0.4	14	0.260	0.018	0.007	0.002	0.772	0.523	0.501	0.308
OR Filberts	G / 1-6	0.2	2/CC	0.4	14	0.258	0.016	0.006	0.002	1.289	1.035	1.006	0.626
GA Pecans	G / 1-6	0.2	2/CC	0.4	14	0.886	0.041	0.017	0.011	3.488	2.126	2.065	1.286
Tomatoes													
CA	A / 1-6	0.2	2/CC	0.4	14	2.914	0.176	0.065	0.015	5.012	2.501	2.271	1.357
CA	G / 1-6	0.2	2/CC	0.4	14	0.258	0.016	0.006	0.001	0.575	0.352	0.331	0.202
EI	A / 1-6	0.2	2/CC	0.4	14	2.980	0.185	0.069	0.016	6.058	3.566	3.349	2.029
FL	G / 1-6	0.2	2/CC	0.4	14	0.329	0.025	0.010	0.004	2.439	1.699	1.680	1.056
DA	A / 1-6	0.2	2/CC	0.4	14	3.216	0.202	0.078	0.025	7.833	5.108	4.891	3.000
PA	G / 1-6	0.2	2/CC	0.4	14	0.961	0.042	0.019	0.012	3.947	2.974	2.914	1.822
Nursery/Orna	mental												
CA	G / 1-1	0.2	2/yr	0.4	14	0.413	0.032	0.014	0.008	3.115	1.510	1.481	0.913
FL	G / 1-1	0.2	2/yr	0.4	14	0.259	0.016	0.006	0.002	2.262	1.594	1.575	0.985
MI	G / 1-4	0.2	2/yr	0.4	14	0.264	0.018	0.007	0.002	2.572	1.903	1.858	1.160
NJ	G / 1-4	0.2	2/yr	0.4	14	0.279	0.022	0.009	0.004	2.624	1.732	1.704	1.062
OR	G / 1-4	0.2	2/yr	0.4	14	0.258	0.016	0.006	0.002	0.807	0.589	0.568	0.350
TN	G / 1-4	0.2	2/yr	0.4	14	0.259	0.019	0.008	0.003	2.311	1.739	1.726	1.076

1 Although the TTR EECs are increasing over time, it is important to note that in reality the

2 accumulating mass of TTRs is changing in chemical composition over time (see the complex

3 degradation pathways in **Appendix Figures C-1 to C-5**). The TTR EECs include all of the

4 degradates that retain the cyano group expressed as the equivalent concentration of parent if all

5 of those degradates were transformed back into the parent.

6

7 Typically, the degradation process proceeds from more complex (higher molecular weight) and less water soluble chemicals to simpler and more water soluble chemicals. ¹⁴Carbon dioxide was 8 9 produced in quantities greater than 5% of applied radioactivity in the A-labeled studies of the 10 aerobic soil and aerobic aquatic metabolism studies (Appendix Table C-1). (The simpler chemicals that retain the cyano-group occur in the A-label studies.) Additionally, A-12 (which 11 12 does not have a cyano-group but degrades from intermediate degradates that do possess a cyano-13 group) was detected in anaerobic soil and anaerobic aquatic metabolism studies. Therefore over 14 time, it might be expected that the accumulated TTR mass represents mostly degradates slowly 15 undergoing complete mineralization in aerobic environments or converting to degradates that are 16 not of concern (e.g., A-12) in anaerobic environments. This is probably a good assumption for the fraction of cyflumetofen that degrades through the pathway involving an initial break of the 17 18 bond denoted #1 in Figure 3-1, since this break results in the production of mostly simple

19 molecules. However, the pathway involving an initial break of the bond #2 in Figure 3-1 results

20 in the "AB" chemicals, which appear to be much more persistent.

21

Finally, the fate data also show the formation of dimers, which are complex (higher molecular weight) chemicals with very low water solubilities in the hydrolysis, aerobic and anaerobic soil

24 metabolism, aerobic aquatic metabolism, and terrestrial field dissipation studies (**Appendix** 25 Table C 1). If these dimensions are actually forming in the annihilation (a,b) and (a,b) and

25 Table C-1). If these dimers are actually forming in the environment (not a laboratory artifact), it 26 is difficult to predict their environmental fate from the registrant-submitted fate data. Often

these dimers were at their highest concentrations at, or near, the end of the fate studies

(Appendix Table C-1). Additionally, the aerobic and anaerobic soil metabolism and aerobic

and anaerobic aquatic metabolism studies had high proportions of the total applied radioactivity

30 as unextractable, and therefore unidentified, residues.

31 32

4.2.1 Aquatic Bioaccumulation

The KABAM model (v. 1.0) was used to model a single high-end scenario based on the highest
 TTR EECs that result from any of the assessed uses of cyflumetofen (aerial application to

35 Pennsylvania tomatoes). This scenario was chosen to represent the highest potential for 36 bioaccumulation from the currently proposed outflumate for uses (Table 4.11)

- 36 bioaccumulation from the currently proposed cyflumetofen uses (**Table 4-11**).
- 37

38 **Table 4-11. Bioaccumulation Model Input Values for Cyflumetofen**

Parameter	Input Value	Source
Pesticide Name	Cyflumetofen	
Log K _{OW}	4.3	MRID 48542623
K _{oc}	72,000	Professional Judgment – a Koc value was chosen to represent a low-end value for the degradates of concern that are considered likely to be more persistent.
Concentration in sediment pore water (ppb)	2.9998	highest TTR EECs: aerial application to Pennsylvania
Concentration in water column(ppb)	5.1084	tomatoes

5 Effects Characterization

Data from registrant-submitted studies used to characterize the effects of parent cyflumetofen and degradates to non-target organisms are described in this section.

No cyflumetofen studies from the open literature were identified using the public version of ECOTOX¹¹.

5.1 Effects to Terrestrial Organisms

Summaries of data used to characterize the effects of parent cyflumetofen and degradates to terrestrial organisms are provided in **Tables 5-1** (parent) and **5-2** (degradates). The most sensitive definitive toxicity endpoints used in RQ calculations are bolded.

5.1.1 Birds

Based on studies with mallard duck, bobwhite quail, and zebra finch, cyflumetofen is practically non-toxic to birds on an acute oral basis. No mortality or sublethal effects were noted in the acute oral studies with zebra finch and mallard duck (MRIDs 48542774 and 48542773, respectively). There was no mortality in the study with bobwhite quail (MRID 48542772). However, hunched posture was observed in males from the 222 mg a.i./kg-bw treatment group and in males and females from the 667 and 2000 mg a.i./kg-bw treatment groups resulting in a NOAEL of 74 mg a.i./kg-bw based on clinical signs of toxicity. With the exception of one female from the 2000 mg/kg-bw treatment group showing abnormal posture of the head from Day 4 onwards, all animals recovered between days 1 and 3.

Based on studies with mallard duck and bobwhite quail, cyflumetofen is practically non-toxic to birds on a sub-acute dietary basis. No mortality or sublethal effects were noted in the acute oral study with mallard duck (MRIDs 48542776). In the study with bobwhite quail (MRID 485427775), there was 10% mortality (1 out of 10) in the second highest treatment group (*i.e.*, 2333 mg a.i./kg-diet). This death was considered incidental since no mortality occurred in the highest treatment group (*i.e.*, 5033 mg a.i./kg-diet). In addition, reduced weight gain was observed in the 2333 and 5033 mg a.i./kg-diet treatment groups resulting in a NOAEC of 1133 mg a.i./kg-diet based on sublethal effects.

In the reproduction study with mallard duck (MRID 48542778), one mortality was reported with the cause of death unknown. A statistically-significant decrease in eggshell thickness was detected in the lowest treatment group (*i.e.*, 160 mg a.i./kg-diet) but not the intermediate and highest treatment groups. Since the reduction in eggshell thickness was not concentration-dependent, and there were no treatment-related effects detected for any adult, offspring, or other reproductive parameter at any treatment level, the NOAEC for this study was set at the highest treatment level (*i.e.*, 930 mg a.i./kg-diet).

¹¹ Quick Database Query conducted on CAS number 400882-07-7 at <u>http://cfpub.epa.gov/ecotox/</u>

Assessment Endpoint	Measurement Endpoint	TGAI / Form. (%)	Species	Toxicity Values ^{1,2} (Effects) & Acute Toxicity Classification (if applicable)	Source & Classification
Survival, growth,	Most sensitive avian	TGAI	Bobwhite quail	$14 - day LD_{50} > 2000 mg a.i./kg-bw (nom)$	MRID 48542772
and reproduction	acute oral LD_{50}	(98.4)	(Colinus	14-day NOAEL = 74 mg a.i./kg-bw (nom)	Acceptable
of birds		()0.4)	virginianus)	(no mortality; NOAEL based on clinical signs of toxicity	Receptable
(surrogate for			vii ginianas)	including hunched posture)	
reptiles and				Practically non-toxic	
terrestrial-phase		TGAI	Zebra finch	14-day $LD_{50} > 2000 \text{ mg a.i./kg-bw (nom)}$	MRID 48542774
amphibians)		(98.4)	(Taeniopygia	14-day NOAEL = 2000 mg a.i./kg-bw (nom)	Acceptable
		(2011)	guttata)	(no mortality or sublethal effects)	11000ptillo10
			8	Practically non-toxic	
		TGAI	Mallard duck	14-day LD ₅₀ > 2250 mg a.i./kg-bw (nom)	MRID 48542773
		(98.0)	(Anas	14-day NOAEL = $2250 \text{ mg a.i./kg-bw}$ (nom)	Acceptable
		()	platyrhynchos)	(no mortality or sublethal effects)	· · · I · · · ·
				Practically non-toxic	
	Most sensitive avian	TGAI	Bobwhite quail	$8 - day LC_{50} > 5033 mg a.i./kg-bw (m)$	MRID 48542775
	sub-acute dietary	(98.0)	(Colinus	8-day NOAEC = $1133 \text{ mg a.i./kg-bw}(m)$	Acceptable
	LC ₅₀		virginianus)	(10% [1 out of 10] mortality at 2333 mg a.i./kg-diet; NOAEC	-
				based on reduced body weight gain)	
				Practically non-toxic	
		TGAI	Mallard duck	8-day $LC_{50} > 5760 \text{ mg a.i./kg-bw (m)}$	MRID 48542776
		(98.4)	(Anas	8-day NOAEC = 5760 mg a.i./kg-bw (m)	Acceptable
			platyrhynchos)	(no mortality or sublethal effects)	
				Practically non-toxic	
	Most sensitive avian	TGAI	Bobwhite quail	22-week NOAEC = $154 \text{ mg a.i./kg-diet (m)}$	MRID 48542777
	chronic NOAEC	(98.4)	(Colinus	22-week LOAEC = $389 \text{ mg a.i./kg-diet}(m)$	Acceptable
			virginianus)	(NOAEC based on eggs cracked per pen and eggs not	
				cracked/eggs laid)	
		TGAI	Mallard duck	22-week NOAEC = 930 mg a.i./kg-diet (m)	MRID 48542778
		(98.4)	(Anas	22-week LOAEC $>$ 930 mg a.i./kg-diet (m)	Acceptable
			platyrhynchos)	(no effects)	
Survival, growth,	Most sensitive	TGAI	Han Wistar rat	14-day (females) $LD_{50} \ge 2000 \text{ mg/kg-bw}$	MRID 48542669
and reproduction	mammalian acute	(98.0)	(Rattus	(no mortality; 1 out of 5 females with loose feces on study	Acceptable
of mammals	LD_{50}		norvegicus)	day 1 only)	
				Practically non-toxic	
	Most sensitive	TGAI	Wistar	Two-generation reproduction	MRID 48542702
	mammalian chronic	(97.67)	Hannover	Parental	Acceptable
	NOAEC		(Rattus	NOAEL = $150 \text{ mg/kg-diet} (9.21/13.8 \text{ mg/kg-bw/day in})$	
			norvegicus)	males/females)	

Table 5-1. Endpoints Used to Characterize the Effects of Cyflumetofen to Terrestrial Organisms

Assessment	Measurement	TGAI /	Species	Toxicity Values ^{1,2} (Effects) & Acute Toxicity Classification	Source &
Endpoint	Endpoint	Form. (%)		(if applicable)	Classification
				LOAEL = 500 mg/kg-diet (30.6/46.6 mg/kg-bw/day in)	
				males/females)	
				(based on effects to adrenals: increased organ weights and histopathology)	
				Reproductive	
				Male NOAEL \geq 1500 mg/kg-diet (89.4 mg/kg-bw/day)	
				Female NOAEL = $500 \text{ mg/kg-diet} (39.4 \text{ mg/kg-tw/day})$	
				Female LOAEL = $1500 \text{ mg/kg-diet} (141.1 \text{ mg/kg-bw-day})$	
				(based on hormone changes and increased estrous cycle	
				length)	
				Offspring	
				$\overline{\text{NOAEL}} = 150 \text{ mg/kg-diet} (9.21/13.8 \text{ mg/kg-bw/day in})$	
				males/females)	
				LOAEL = 500 mg/kg-diet (30.6/46.6 mg/kg-bw/day in)	
				males/females)	
				(based on effects to adrenals: increased organ weights and	
				histopathology)	
Survival, growth,	Most sensitive	TGAI	Honey bee	Acute contact	MRID 48542805
and reproduction	terrestrial	(98.0)	(Apis mellifera)	96-hr $LD_{50} > 100 \ \mu g \ a.i./bee \ (nom)$	Acceptable
of terrestrial	invertebrate			96-hr NOAEL = $20.7 \mu g a.i./bee (nom)$	
invertebrates	(honeybee) acute			(NOAEL based on statistically-significant mortality; 10, 0, 7,	
	LD_{50}			20, and 13% in the 4.3, 9.4, 20.7, 45.5, and 100 µg a.i./bee	
				treatment groups) Practically non-toxic	
		Form.	Honey bee	Acute contact	MRID 48542914
		(20.4)	(Apis mellifera)	48-hr LD ₅₀ > 100 μ g a.i./bee (nom)	Acceptable
		(20.4)	(Apis menijeru)	$48-\text{hr} \text{ NOAEL} = 4.6 \ \mu\text{g a.i./bee (nom)}$	Acceptable
				(no statistically-significant mortality; NOAEL based on	
				lethargy)	
				Practically non-toxic	
		Form.	Honey bee	Acute oral	MRID 48542923
		(20.3)	(Apis mellifera)	96-hr LD ₅₀ > 116 μ g a.i./bee (nom)	Acceptable
		× ,		96-hr NOAEL = 116 μ g a.i./bee (nom)	1
				(no statistically-significant mortality)	
				Practically non-toxic	
		Form.	Parasitic wasp	Limit test	MRID 48542924
		(20.3)	(Aphidius	48-hr LR ₅₀ > 1.2 lb a.i./A (nom)	Acceptable
			rhopalosiphi)	48-hr NOAEC = 1.2 lb a.i./A (nom)	(non-guideline)

Assessment	Measurement	TGAI /	Species	Toxicity Values ^{1,2} (Effects) & Acute Toxicity Classification	Source &
Endpoint	Endpoint	Form. (%)		(if applicable)	Classification
				(no mortality or sublethal effects)	
		Form.	Predatory mite	Limit test	MRID 48542925
		(20.3)	(Typhlodromus	7-day $LR_{50} > 1.2$ lb a.i./A (nom)	Acceptable
			pyri)	7-day NOAEC = $1.2 \text{ lb a.i./A} \pmod{100}$	(non-guideline)
				(5 and 11% mortality in the control and 1.2 lb a.i./A treatment	
				group, respectively; no sublethal effects)	
		TGAI	Earthworm	14-day $LC_{50} > 1000 \text{ mg a.i./kg-dw (soil; nom)}$	MRID 48542824
		(98.0)	(Eisenia fetida	14-day NOAEC = 100 mg a.i./kg-dw (soil; nom)	Acceptable
			fetida)	(no mortality; NOAEC based on reduced weight gain)	(non-guideline)
		Form.	Earthworm	14-day $LC_{50} > 1050 \text{ mg a.i./kg-dw (soil; nom)}$	MRID 48542916
		(20.4)	(Eisenia fetida	14-day NOAEC = 106 mg a.i./kg-dw (soil; nom)	Acceptable
			fetida)	(10% mortality at 1.1 mg a.i./kg-dw; NOAEC based on	(non-guideline)
				reduced weight gain)	
		TGAI	Earthworm	28- & 56-day NOAEC = 1000 mg a.i./kg-dw (soil; nom)	MRID 48542808
		(98.4)	(Eisenia fetida	28- & 56-day LOAEC > 1000 mg a.i./kg-dw (soil; nom)	Acceptable
			fetida)	(based on mortality, growth, and reproduction)	(non-guideline)
Survival, growth	Seedling emergence:	Form.	Oat	21/22-day EC ₂₅ : Could not be determined	MRID 48542933
and reproduction	Most sensitive	(19.64)	(Avena sativa)	21/22-day EC ₀₅ : Could not be determined	Supplemental
of terrestrial plants	monocot EC ₂₅ and			21/22-day NOAEC < 0.000706 lb a.i./A (m)	(due to lack of a
	NOAEC			(based on dry weight & shoot length)	definitive
	Seedling emergence:		Tomato	21-day EC_{25} (95% C.I.) = 0.0393 (0.0174-0.0889) lb a.i./A (m)	NOAEC for
	Most sensitive dicot		(Lycopersicon	21-day NOAEC = 0.000706 lb a.i./A (m)	monocots)
	EC ₂₅ and NOAEC		esculentum)	(based on dry weight)	
	Vegetative vigor:	Form.	Could not be	21-day $EC_{25} > 0.250/0.268/0.273$ lb a.i./A (m)	MRID 48542932
	Most sensitive	(19.64)	determined	21-day NOAEC = 0.250/0.268/0.273 lb a.i./A (m)	Acceptable
	monocot EC ₂₅ and			(endpoint depends on species tested)	
	NOAEC				
	Vegetative vigor:		Could not be	21-day $EC_{25} > 0.250/0.268/0.273$ lb a.i./A (m)	
	Most sensitive dicot		determined	21-day NOAEC = 0.250/0.268/0.273 lb a.i./A (m)	
	EC ₂₅ and NOAEC			(endpoint depends on species tested)	

Form = formulation; NS = not specified; TGAI = technical grade active ingredient ¹ **BOLD** values used in RQ calculations ² m = measured; mm = mean-measured; nom = nominal

Assessment	Degradate	Species	Toxicity Values ¹ (Effects)	Source &
Endpoint	(%)			Classification
Survival, growth,	AB-1	Earthworm	14-day $LC_{50} > 1000 \text{ mg/kg-dw}$ (soil; nom)	MRID 48542806
and reproduction	(99.8)	(Eisenia fetida	14-day NOAEC = 100 mg/kg-dw (soil; nom)	Acceptable
of terrestrial		fetida)	(2.5, 0, 0, 2.5, 12.5, and 20% mortality in the control, 100,	(non-guideline)
invertebrates			180, 320, 560, and 1000 mg a.i./kg-dw treatment groups;	
(earthworms)			NOAEC based on reduced weight gain)	
	B-1	Earthworm	14-day LC ₅₀ > 1000 mg/kg-dw (soil; nom)	MRID 48542807
	(99.1)	(Eisenia fetida	14-day NOAEC = 1000 mg/kg-dw (soil; nom)	Acceptable
		fetida)	(no mortality; NOAEC based on mortality and weight gain)	(non-guideline)

Table 5-2. Endpoints Used to Characterize the Effects of Degradates of Cyflumetofen to Terrestrial Organisms

1 nom = nominal

In the reproduction study with bobwhite quail (MRID 48542777), eight incidental mortalities were reported; the mortalities were mostly attributed to head and/or neck lesions. In addition, there was a statistically-significant increase in eggs cracked per pen and a statistically-significant decrease in eggs not cracked per eggs laid resulting in a NOAEC of 154 mg a.i./kg-diet.

5.1.2 Mammals

Based on a study with female rats, cyflumetofen is practically non-toxic to mammals on an acute oral basis. In this limit study (MRID 48542669), no mortality, treatment-related necropsy findings, or changes in weight were reported; however, one out of the 5 tested females exhibited loose feces on study day 1 only.

In the 2-generation study with rats (MRID 48542702), adrenal weights were increased in P and F_1 parental females at $\geq 500 \text{ mg/kg-diet}$. In parental males at 1500 mg/kg-diet, adrenal weights were increased in the P and F_1 generations. In addition, ovary weights were increased in P generation females at 1500 mg/kg-diet only. Histopathological examination of the adrenals revealed an increased incidence of hypertrophy of the zona glomerulosa at $\geq 500 \text{ mg/kg-diet}$ in P generation females and F_1 generation males and females and in P males at 1500 mg/kg-diet. Additionally in the adrenals, an increased incidence of vacuolation of the zona fasciculata cells was observed at 1500 mg/kg-diet in P generation females and in both sexes of the F_1 generation. An increased incidence of vacuolation of the interstitial cells of the ovary was also noted at 1500 mg/kg-diet (9.21/13.8 mg/kg-bw/day in males/females) based on effects on the adrenals (increased organ weights and histopathology).

An increase in estrous cycle length was noted at 1500 mg/kg-diet. In addition, decreased FSH levels were noted at 500 mg/kg-diet and above and decreased progesterone was noted at 150 mg/kg-diet and above in F₁ females. As for the decreases in progesterone at 150 and 500 ppm, and in FSH at 500 mg/kg-diet in females, there were no corresponding changes in estrous cycle length or reproductive performance after sexual maturation at these dose levels. In females at 1500 mg/kg-diet, increased estrous cycle length was accompanied by decreases in FSH, progesterone and 17β-estradiol. These findings resulted in a reproductive NOAEL in females of 500 mg/kg-diet (46.6 mg/kg-bw/day) based on hormone changes and increased estrous cycle length; the reproductive NOAEL in males is \geq 1500 mg/kg-diet (89.4 mg/kg-bw/day).

Adrenal weights were increased at 500 mg/kg-diet and above in both sexes of both generations of offspring. Microscopic examination of the adrenals revealed an increased incidence of hypertrophy of the zona glomerulosa cells in both generations of males at \geq 500 mg/kg-diet and in both generations of females at 1500 mg/kg-diet. Additionally in the adrenals, an increased incidence of hypertrophy of the zona fasciculata cells was noted at \geq 500 mg/kg-diet in F₁ males and females and F₂ males and at 1500 mg/kg-diet in F₂ females. Delayed sexual maturation was observed in females (increased time to vaginal opening) at \geq 500 mg/kg-diet, and in males (increased time to preputial separation) at 1500 mg/kg-diet. These findings resulted in an offspring NOAEL is 150 mg/kg-diet (9.21/13.8 mg/kg-bw/day in males/females) based on effects on the adrenals (increased organ weights and histopathology) in both sexes and a delay in sexual maturation of females.

5.1.3 Terrestrial Invertebrates

Based on two honey bee contact toxicity studies, one with technical grade active ingredient (TGAI; MRID 48542805) and one with a 20.4% formulation (MRID 48542914), and a honey bee acute oral toxicity study with a 20.4% formulation, cyflumetofen is practically non-toxic to terrestrial invertebrates. In the acute contact toxicity study with technical grade cyflumetofen, mortality after 96 hours in the 4.3, 9.4, 20.7, 45.5, and 100 μ g a.i./bee treatment groups was 10, 0, 7, 20, and 13%, respectively, resulting in a NOAEC of 20.7 μ g a.i./bee based on statistically-significant mortality in the 45.5 μ g a.i./bee treatment group. In the acute contact and oral toxicity studies with a 20.4% formulation of cyflumetofen, there was no statistically-significant mortality after 48 and 96 hours, respectively. However, observed lethargy in the acute contact study with a formulation resulted in a NOAEL of 4.6 μ g a.i./bee based on sublethal effects.

Toxicity data from non-guideline studies are also available for arthropods and earthworms (**Tables 5-1** and **5-2**). Acute limit tests with two beneficial terrestrial arthropods – the parasitic wasp (*Aphidius rhopalosiphi*) and the predatory mite (*Typhlodromus pyri*) – using a 20.3% formulation of cyflumetofen both yielded a LR₅₀ of >1.2 lb a.i./A and a NOAEC and 1.2 lb a.i./A. No mortality or sublethal effects were noted in the test with *A. rhopalosiphi*, and no sublethal effects or statistically-significant mortality were noted in the test with *T. pyri* (MRIDs 48542924 and 48542725, respectively).

A series of sub-chronic and/or chronic toxicity tests were conducted with earthworms (*Eisenia fetida fetida*) using technical grade cyflumetofen, a 20.4% formulation of cyflumetofen, and degradates AB-1 and B-1 at concentrations up to 1000 mg/kg-dw soil. For the sub-chronic, 14-day toxicity studies, NOAECs of 100-106 mg/kg-dw soil for technical grade and formulated cyflumetofen and degradate AB-1 were based on reduced weight gain (MRIDs 48542824, 48542916, 48542806) whereas the NOAEC for degradate B-1 was set at the highest treatment level (1000 mg/kg-dw soil; MRID 48542807). For the chronic, 56-day toxicity study, the NOAEC was set at the highest treatment level (1000 mg/kg-dw soil; MRID 48542808).

5.1.4 Terrestrial (Upland and Semi-Aquatic) Plants

In the vegetative vigor study (MRID 48542932), the most sensitive monocot and dicot species could not be determined because the NOAEC was the highest treatment level (*i.e.*, 0.250/0.268/0.273 lb a.i./A) for all tested species.

Species-specific endpoints for the seedling emergence study (MRID 48542933) are provided in **Table 5-3**. The most sensitive dicot was tomato, and the most sensitive monocot was oat. For oat, an EC₂₅ could not be determined because the concentration-response relationship for dry wieght and shoot length was atypical leading to issues with model convergence (See **Figure 5-1**). In addition, oat dry weight and shoot length of the lowest treatment group (*i.e.*, 0.000706 lb a.i./A) were significantly reduced (*i.e.*, 33.2 and 27.3%, respectively) when compared to the control group resulting in the lack of a NOAEC for monocots and a Supplemental classification for the study.

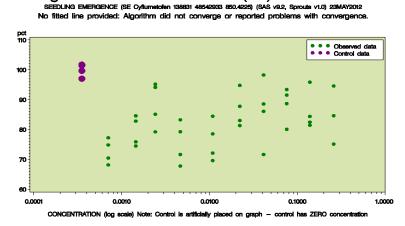

Species	Most Sensitive	NOAEC/LOAEC	% reduction ^a at	EC ₂₅
	Endpoint	(lb a.i./A)	NOAEC/LOAEC	(lb a.i./A)
Monocots				
Oat (Avena sativa)	Dry weight	<0.000706/0.000706	/33.2	CBD ^a
	Shoot length	<0.000706/0.000706	/27.3	
Onion (Allium sepa)	Survival	0.0235/0.045	13.9/15.6	>0.267
Corn (Zea mays)	None	0.260/>0.260	NA	>0.260
Ryegrass (Lolium perenne)	None	0.260/>0.260	NA	>0.260
Dicots				
Tomato (Lycopersicon esculentum)	Dry weight	0.000706/0.00145	2.1/29.3	0.0393
Cucumber (Cucumis sativa)	Dry weight	0.0222/0.0413	14.3/15.5	>0.260
Sugarbeet (Beta vulgaris)	Emergence	0.139/0.260	7.7/10.3	>0.260
Radish (Raphanus sativus)	None	0.260/>0.260	NA	>0.260
Lettuce (Lactuca sativa)	None	0.260/>0.260	NA	>0.260
Soybean (<i>Glycine max</i>)	None	0.260/>0.260	NA	>0.260

Table 5-3. Species-Specific Endpoints for Seedling Emergence

CBD = could not be determined; NA = not applicable

^a if NOAEC < highest treatment concentration

^b While statistically-significant reductions were detected, there were issues with model convergence. Therefore, an EC_{25} could not be determined.

Length Inhibition Concentrations (ICx) for Oat

Weight Inhibition Concentrations (ICx) for Oat

SEEDLING EMERGENCE (SE Cyllumetoten 138831 48542933 850.4229) (SAS V92, Sproute v1.0) 23MAY2012 No fitted line provided: Algorithm did not converge or reported problems with convergence.

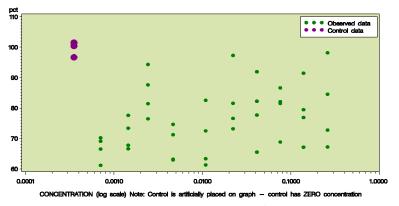


Figure 5-1. Seedling emergence length and weight data for oat graphed in terms of exposure concentration (lb a.i./A) using SAS (v. 8.2), Sprouts (v. 1.0)

5.2 Effects to Aquatic Organisms

Summaries of data used to characterize the effects of cyflumetofen and degradates to aquatic organisms are provided in **Tables 5-3** (parent) and **5-4** (degradates). The most sensitive definitive toxicity endpoints used in RQ calculations are bolded.

5.2.1 Parent Cyflumetofen

5.2.1.1 Fish

Fish acute and early life stage toxicity studies with technical grade cyflumetofen were conducted as limit tests because of the low solubility of cyflumetofen (*i.e.*, 28.1 μ g/L at 20°C). Meanmeasured concentrations of 17.5 μ g a.i./L for rainbow trout (MRID 48542779), 29.2 and 31.6 μ g a.i./L for fathead minnow (MRIDs 48542780 and 48542783; acute and early life stage tests, respectively), and 7.59 μ g a.i./L for sheepshead minnow (MRID 48542783) were achieved using a saturator column and flow-through exposure. An acute toxicity study with rainbow trout was also conducted with a 20.4% formulation of cyflumetofen which resulted in a mean-measured concentration of 837 μ g a.i./L (MRID 48542920). A non-guideline juvenile growth study with carp that achieved mean-measured concentrations of 7.2, 16, 34, 72 and 179 μ g a.i./L was conducted using a flow through exposure and a solvent consisting of 1:1 mixture of dimethylformamide (DMF) and cremophor.

Based on studies with rainbow trout, fathead minnow, and sheepshead minnow, technical grade cyflumetofen is practically non-toxic to fish up to the tested solubility limit on an acute basis. No mortality or sublethal effects were noted in any of the acute studies (MRIDs 48542779, 48542780, and 48542783), including the study with a 20.4% formulation of cyflumetofen (MRID 48542920).

In the early life stage study with fathead minnow (MRID 48542783), there were no effects on hatching success, survival, or growth (length and dry weight). The study was classified as Supplemental because the high:low ratio and percent coefficient of variation for measured test concentrations were 2.1 and 27%, respectively, exceeding the 1.5 and 20% maxima for acceptable variability in aquatic studies.

5.2.1.1 Aquatic Invertebrates

Similar to fish, aquatic invertebrate acute and chronic toxicity studies with technical grade cyflumetofen were conducted as limit tests because of the low solubility of cyflumetofen (*i.e.*, 28.1 μ g/L at 20°C). Mean-measured concentrations of 17.2 and 16.2 μ g a.i./L for *Daphnia magna* (MRIDs 48542789 and 48542791; acute and chronic tests, respectively), 6.30 μ g a.i./L for Eastern oyster (MRID 48542810) and 22.7 μ g a.i./L for mysid shrimp (MRID 48542811) were achieved using a saturator column and flow-through exposure. An acute toxicity study with *Daphnia magna* was also conducted with a 20.4% formulation of cyflumetofen which resulted a mean-measured concentration of 744 μ g a.i./L (MRID 48542921).

Based on studies with daphnids, Eastern oyster, and mysid shrimp, technical grade cyflumetofen is practically non-toxic to aquatic invertebrates up to the tested solubility limit on an acute basis.

Assessment Endpoint	Measurement Endpoint	TGAI (%)	Species	Toxicity Values ^{1,2} (Effects) & Acute Toxicity Classification (if applicable)	Source & Classification
Survival, growth, and	Most sensitive	TGAI	Rainbow trout	Limit test	MRID 48542779
reproduction of freshwater fish (surrogate for aquatic- phase amphibians)	freshwater fish acute LC_{50}	(97.08)	(Oncorhynchus mykiss)	96-hr LC ₅₀ > 17.5 μ g a.i./L (mm) 96-hr NOAEC = 17.5 μ g a.i./L (mm) (no mortality or sublethal effects) Practically non-toxic up to solubility limit	Acceptable
		TGAI (97.08)	Fathead minnow (Pimephales promelas)	Limit test 96-hr LC ₅₀ > 29.2 μ g a.i./L (mm) 96-hr NOAEC = 29.2 μ g a.i./L (mm) (no mortality or sublethal effects) Practically non-toxic up to solubility limit	MRID 48542780 Acceptable
		Form. (20.4)	Rainbow trout (Oncorhynchus mykiss)	Limit test 96-hr $LC_{50} > 837 \ \mu g \ a.i./L \ (mm)$ 96-hr NOAEC = 837 $\ \mu g \ a.i./L \ (mm)$ (no mortality or sublethal effects)	MRID 48542920 Supplemental (due to use of a form.)
	Most sensitive freshwater fish chronic NOAEC	TGAI (97.08)	Fathead minnow (<i>Pimephales promelas</i>)	Limit test Early life-stage 34-day NOAEC = 31.6 µg a.i./L (TWA) 34-day LOAEC > 31.6 µg a.i./L (TWA) (no effects)	MRID 48542783 Supplemental (due to variable exposure concentrations)
		TGAI (98.4)	Carp (Cyprinus carpio)	Juvenile growth 28-day $EC_{50} = 180.65 \ \mu g \ a.i./L \ (mm)$ 28-day NOAEC = 72 $\ \mu g \ a.i./L \ (mm)$ (based on growth rate)	MRID 48542784 Supplemental (due to use of a non- standard species)
Survival, growth, and reproduction of estuarine/marine fish	Most sensitive estuarine/marine fish acute LC ₅₀	TGAI (97.08)	Sheepshead minnow (Cyprinodon variegatus)	Limit test 96-hr $LC_{50} > 7.59 \ \mu g a.i./L \ (mm)$ 96-hr NOAEC = 7.59 $\mu g a.i./L \ (mm)$ (no mortality or sublethal effects) Practically non-toxic up to solubility limit	MRID 48542812 Acceptable
Survival, growth, and reproduction of freshwater invertebrates	Most sensitive freshwater invertebrate acute EC ₅₀	TGAI (97.08)	Water flea (<i>Daphnia magna</i>)	Limit test 48-hr EC ₅₀ > 17.2 μ g a.i./L (mm) 48-hr NOAEC = 17.2 μ g a.i./L (mm) (no effects) Practically non-toxic up to solubility limit	MRID 48542789 Acceptable
		Form. (20.4)	Water flea (Daphnia magna)	Limit test 48-hr $EC_{50} > 744 \ \mu g \ a.i./L \ (mm)$ 48-hr $NOAEC = 744 \ \mu g \ a.i./L \ (mm)$ (no effects)	MRID 48542921 Supplemental (due to use of a form.)

 Table 5-3. Endpoints Used to Characterize the Effects of Cyflumetofen to Aquatic Organisms

Assessment Endpoint	Measurement	TGAI (%)	Species	Toxicity Values ^{1,2} (Effects) & Acute Toxicity Classification (if applicable)	Source & Classification
	Endpoint Most sensitive freshwater invertebrate	TGAI (97.08)	Water flea (Daphnia magna)	Limit test	MRID 48542791 Acceptable
	chronic NOAEC	(97.08)	(Daphnia magna)	21-day NOAEC = 16.2 μ g a.i./L (mm) 21-day LOAEC > 16.2 μ g a.i./L (mm) (no effects)	Acceptable
Survival, growth, and reproduction of estuarine/marine invertebrates	Most sensitive estuarine/marine invertebrate acute EC_{50} or LC_{50}	TGAI (97.08)	Eastern oyster (<i>Crassostrea virginica</i>)	Limit test 96-hr EC ₅₀ > 6.30 μ g a.i./L (mm) 96-hr NOAEC = 6.30 μ g a.i./L (mm) (no effects) Practically non-toxic up to solubility limit	MRID 48542810 Acceptable
		TGAI (97.08)	Mysid shrimp (<i>Mysidopsis bahia</i>)	Limit test 96-hr LC ₅₀ > 22.7 μ g a.i./L (TWA) 96-hr NOAEC = 22.7 μ g a.i./L (TWA) (no mortality or sublethal effects) Practically non-toxic up to solubility limit	MRID 48542811 Acceptable
Survival, growth, and reproduction of sediment-dwelling invertebrates	Most sensitive sediment invertebrate acute LC ₅₀	TGAI (97.08 non- radio; 96.0 radio)	Amphipod (Leptocheirus plumulosus)	Spiked sediment exposure <u>Sediment concentrations</u> 10-day LC ₅₀ >787 mg TRR/kg-dw (mm) 10-day NOAEC = 787 mg TRR/kg-dw (mm) <u>Pore water concentrations</u> 10-day LC ₅₀ > 19.7 mg TRR/L 10-day NOAEC = 19.7 mg TRR/L <u>Overlying water concentrations</u> 10-day LC ₅₀ > 5.2 mg TRR/L 10-day NOAEC = 5.2 mg TRR/L 10-day NOAEC = 5.2 mg TRR/L (no statistically-significant mortality)	MRID 48542798 Acceptable
	Most sensitive sediment invertebrate chronic NOAEC	TGAI (98.4 non- radio; ≥ 96.4 radio)	Non-biting midge (Chironomus riparius)	Spiked water exposure <u>Overlying water concentrations</u> 28-day $EC_{50} > 65.9 \ \mu g \ a.i./L (TWA)$ 28-day NOAEC = 65.9 $\mu g \ a.i./L (TWA)$ (no statistically-significant effects on rates of emergence and development)	MRID 48542799 Acceptable
		TGAI (97.08)	Non-biting midge (Chironomus riparius)	Spiked sediment exposure Sediment concentrations 28-day $EC_{50} > 419 \text{ mg a.i./kg-dw}$ (mm) 28-day NOAEC = 26.5 mg a.i./kg-dw (mm) Pore water concentrations 28-day $EC_{50} > 10.4 \text{ µg a.i./L}$ (mm)	MRID 48542802 Acceptable

Assessment Endpoint	Measurement Endpoint	TGAI (%)	Species	Toxicity Values ^{1,2} (Effects) & Acute Toxicity Classification (if applicable)	Source & Classification
				28-day NOAEC = $0.12 \ \mu g \ a.i./L \ (mm)$ <u>Overlying water concentrations</u> 28-day EC ₅₀ > $0.11 \ \mu g \ a.i./L \ (mm)$ 28-day NOAEC = $0.03 \ \mu g \ a.i./L \ (mm)$ (based on emergence rate)	
Survival, growth and reproduction of aquatic plants	Aquatic non-vascular species: Most sensitive EC ₅₀	TGAI (97.08)	Green alga (Pseudokirchneriella subcapitata)	Tier II 96-hr $EC_{50} > 23.8 \ \mu g \ a.i./L \ (im)$ 96-hr NOAEC = 23.8 $\mu g \ a.i./L \ (im)$ (no effects)	MRID 48542792 Acceptable
		TGAI (97.08)	Cyanobacterium (Anabaena flos-aqua)	Tier II 96-hr $EC_{50} > 31.5 \ \mu g \ a.i./L \ (im)$ 96-hr NOAEC = 31.5 $\ \mu g \ a.i./L \ (im)$ (no effects)	MRID 48542793 Acceptable
		TGAI (97.08)	Marine diatom (<i>Skeletonema costatum</i>)	Tier II 96-hr $EC_{50} > 33.6 \ \mu g \ a.i./L \ (im)$ 96-hr NOAEC = 33.6 $\ \mu g \ a.i./L \ (im)$ (no effects)	MRID 48542794 Acceptable
		TGAI (97.08)	Freshwater diatom (Navicula pelliculosa)	Tier II 96-hr $EC_{50} > 34.3 \ \mu g \ a.i./L \ (im)$ 96-hr NOAEC = 34.3 $\ \mu g \ a.i./L \ (im)$ (no effects)	MRID 48542795 Acceptable
		Form. (20.4)	Green alga (Pseudokirchneriella subcapitata)	Tier I 72-hr $EC_{50} > 340 \ \mu g a.i./L (TWA)$ 72-hr NOAEC = 340 $\mu g a.i./L (TWA)$ (no effects)	MRID 48542922 Supplemental (due to guideline deviations & use of a form.)
	Aquatic vascular species: Most sensitive EC ₅₀	TGAI (97.08)	Duckweed (<i>Lemna gibba</i>)	Tier II 7-day $EC_{50} > 38.3 \ \mu g \ a.i./L \ (im)$ 7-day NOAEC = 38.3 $\ \mu g \ a.i./L \ (im)$ (no effects)	MRID 48542804 Acceptable

Form = formulation; C.I. = confidence interval; TGAI = technical grade active ingredient; TRR = total radioactive residues ¹**BOLD** values used in RQ calculations ² im = initial-measured; mm = mean-measured; nom = nominal; TWA = time-weighted average, measured

Assessment	Measurement	Degradate	Species	Toxicity Values ^{1,2} (Effects) & Acute Toxicity	Source &
Endpoint	Endpoint	(%)	D 1 1	Classification (if applicable)	Classification
Survival, growth,	Most sensitive	A-2	Rainbow trout	96-hr LC ₅₀ (95% C.I.) = 7.09 (5.04-9.96) mg a.i./L (mm)	MRID 48542782
and reproduction	freshwater fish	(98.3)	(Oncorhynchus	96-hr NOAEC < 5.04 mg a.i./L (mm)	Acceptable
of freshwater fish	acute LC ₅₀		mykiss)	(NOAEC based on sublethal effects including loss of	
(surrogate for				equilibrium, unbalanced swimming, faulty respiratory	
aquatic-phase				function, and non-typical pigmentation)	
amphibians)		D 1	Rainbow trout	Moderately toxic $O(\ln LC) > 070$ magning $L(mm)$	MRID 48542781
		B-1		96-hr $LC_{50} > 97.9 \text{ mg a.i./L (mm)}$	
		(99.9)	(Oncorhynchus	96-hr NOAEC = $97.9 mg a.i./L (mm)$	Acceptable
			mykiss)	(no mortality or sublethal effects)	
<u>Constant</u>	Mastanitian	A-2	Weter Cor	At most slightly toxic (2.5) (2.5) (2.5) (2.5) (2.5) (2.5) (2.5)	MRID 48542790
Survival, growth,	Most sensitive freshwater		Water flea	$48-hr EC_{50} (95\% C.I.) = 10.52 (8.50-13.10) mg a.i./L (mm)$	
and reproduction of freshwater	invertebrate acute	(98.3)	(Daphnia	Probit Slope (95% C.I.) = 4.20 (2.77-5.62)	Acceptable
invertebrates	EC_{50}		magna)	48-hr NOAEC = 3.83 mg a.i./L (mm) (NOAEC based on immobility)	
inverteorates	EC_{50}			Slightly toxic	
		B-1	Water flea	Limit test	MRID 48542787
		Б-1 (99.99)	(Daphnia	48-hr EC ₅₀ > 177.5 mg a.i./L (mm)	Acceptable
		(99.99)	(Daphnia magna)	$48-\text{hr} \text{ EC}_{50} > 177.5 \text{ mg a.i./L (mm)}$ 48-hr NOAEC = 177.5 mg a.i./L (mm)	Acceptable
			magna)	(no statistically-significant effects; 5% [1 out of 20]	
				immobility at 177.5 mg a.i./L)	
				Practically non-toxic	
		B-2	Water flea	Limit test	MRID 48542788
		(99.9)	(Daphnia	$48-hr EC_{50} > 0.020 \text{ mg a.i./L (mm)}$	Supplemental
		(55.5)	(Daphilia magna)	48 -hr NOAEC = 0.020 mg a.i./L (mm)	(due to lack of a
			magnaj	(no statistically-significant effects; 5% [1 out of 20]	negative control)
				immobility at 0.020 mg a.i./L)	negative control)
				Practically non-toxic up to the limit concentration	
Survival, growth,	Most sensitive	AB-1	Non-biting	Spiked sediment exposure	MRID 48542801
and reproduction	sediment	(99.8)	midge	Sediment concentrations	Acceptable
of sediment-	invertebrate	(33.0)	(Chironomus	28-day EC ₅₀ (95% C.I.) = 120 (100-130) mg a.i./kg-dw (mm)	11000ptuolo
dwelling	chronic NOAEC		riparius)	28-day NOAEC = $36.1 mg a.i./kg-dw (mm)$	
invertebrates				Probit Slope = 16.8 ± 4.14	
				Pore water concentrations	
				$\overline{28\text{-day EC}_{50} (95\% \text{ C.I.})} = 68 (48\text{-}95) \text{ mg a.i./L (mm)}$	
				28-day NOAEC = 34.2 mg a.i./L (mm)	
				Probit Slope = 4.53 ± 2.88	
				Overlying water concentrations	
				$\overline{28\text{-day EC}_{50}}$ (95% C.I.) = 23 (21-25) mg a.i./L (mm)	

 Table 5-4. Endpoints Used to Characterize the Effects of Degradates of Cyflumetofen to Aquatic Organisms

Assessment	Measurement	Degradate	Species	Toxicity Values ^{1,2} (Effects) & Acute Toxicity	Source &
Endpoint	Endpoint	(%)		Classification (if applicable)	Classification
				28-day NOAEC = 9.06 mg a.i./L (mm)	
				Probit Slope = 11.3 ± 1.96	
				(based on emergence rate)	
		AB-1	Non-biting	Spiked sediment exposure	MRID 48542803
		dimer	midge	Sediment concentrations	Acceptable
		(92.9)	(Chironomus	28-day $EC_{50} > 75.3 \text{ mg a.i./kg-dw (mm)}$	
			riparius)	28-day NOAEC = 75.3 mg a.i./kg-dw (mm)	
				Pore water concentrations	
				28-day $EC_{50} > 5.61 \ \mu g \ a.i./L \ (mm)$	
				28-day NOAEC = 5.61 μ g a.i./L (mm)	
				Overlying water concentrations	
				28-day $EC_{50} > 27.4 \ \mu g \ a.i./L \ (mm)$	
				28 -day NOAEC = $27.4 \ \mu g \ a.i./L \ (mm)$	
				(no statistically-significant effects on rates of emergence and	
				development)	
Survival, growth	Aquatic non-	AB-11	Green alga	Tier I	MRID 48542796
and reproduction	vascular species:	(99.6)	(Pseudo-	96-hr $EC_{50} > 0.483$ mg a.i./L (im)	Acceptable
of aquatic plants	Most sensitive		kirchneriella	96-hr NOAEC = 0.483 mg a.i./L (im)	
	EC ₅₀		subcapitata)	(no effects)	
		B-1	Green alga	Tier II	MRID 48542797
		(99.99)	(Pseudo-	96-hr $EC_{50} > 102.7 \text{ mg a.i./L} (mm)$	Supplemental
			kirchneriella	96-hr NOAEC < 0.10 mg a.i./L (nom)	(due to lack of a
			subcapitata)	(NOAEC based on cell density, growth rate, and yield)	definitive
					NOAEC)

Form = formulation; C.I. = confidence interval ¹**BOLD** values used in RQ calculations ² im = initial-measured; mm = mean-measured; nom = nominal; TWA = time-weighted average, measured

No mortality or sublethal effects were noted in any of the acute studies (MRIDs 48542789, 48542810, and 48542811), including the study with a 20.4% formulation of cyflumetofen (MRID 48542921).

In the chronic study with daphnids (MRID 48542791), there were no effects on parental survival, number of offspring per surviving parent, or growth (length and dry weight) (MRID 48542791).

5.2.1.2 Sediment-Dwelling (Benthic) Invertebrates

In an acute spiked sediment test conducted with the marine amphipod *Leptocheirus plumulosus* (MRID 48542798) and cyflumetofen, there was no statistically-significant mortality resulting in a non-definitive LC₅₀ endpoint (*i.e.*, >) and the NOAEC being set at the highest treatment concentration: 787 mg TRR/kg-dw, 19.7 mg TRR/L, and 5.2 mg TRR/L for sediment, pore water, and overlying water. It should be noted that these endpoints are expressed in terms of total radioactive residue and thus may represent parent cyflumetofen as well as degradates.

Chronic spiked water and spiked sediment tests with the freshwater midge *Chironomus riparius* were conducted with cyflumetofen. In the test with spiked water, there were no statistically-significant effects on rates of emergence or development with the NOAEC being 65.9 μ g a.i./L for overlying water (MRID 48542799). In the test with spiked sediment, the NOAECs of 26.5 mg a.i./kg-dw, 0.12 μ g a.i./L, and 0.03 μ g a.i./L for sediment, pore water, and overlying water were based on reduced rates of emergence (MRID 48542802).

5.2.1.3 Aquatic Plants

Aquatic plant Tier II studies were conducted with technical grade cyflumetofen (MRIDs 48542792-5, 48542804). In addition, a Tier I green algal study was conducted with a 20.4% formulation of cyflumetofen (MRID 48542922). Toxicity endpoints for studies testing technical grade cyflumetofen are based on initial-measured concentrations because the rapid hydrolysis of cyflumetofen typically resulted in concentrations that were below the level of detection or quantification at study termination. No effects were noted in any of the aquatic plant studies.

5.2.2 Degradates of Cyflumetofen

5.2.2.1 Freshwater Fish

Rainbow trout toxicity tests were conducted with cyflumetofen degradates A-2 and B-1. A-2 is moderately toxic to freshwater fish with a 96-hour LC_{50} of 7.09 mg a.i./L (MRID 48542782) whereas B-1 is at most slightly toxic to freshwater fish with a 96-hour LC_{50} of >97.9 mg a.i./L (MRID 48542781). No mortality or sublethal effects were reported in the study with B-1. In the study with A-1, 100% mortality was observed in the four highest treatment groups (*i.e.*, 9.96, 19.24, 38.91, and 81.37 mg a.i./L). In the lowest treatment group of 5.04 mg a.i./L which had 0% mortality, reported sublethal effects included unbalanced swimming, faulty respiratory function, loss of equilibrium, and non-typical pigmentation. The former two sublethal effects were observed at 3-6 hours post-exposure, and loss of equilibrium was observed at 3-6 and 24 hours post-exposure; only non-typical pigmentation persisted until study termination at 96 hours. Therefore, a non-definitive NOAEC of <5.04 mg a.i./L was set for A-2 based on sublethal effects.

5.2.2.2 Freshwater Invertebrates

Daphnia toxicity tests were conducted with cyflumetofen degradates A-2, B-1, and B-2; tests with the latter two degradates were limit tests. A-2 is slightly toxic to freshwater invertebrates with an EC_{50} of 10.52 mg a.i./L (MRID 48542790); B-1 is practically non-toxic to freshwater invertebrates with an EC_{50} of >177 mg a.i./L (MRID 48542787); and B-2 is practically non-toxic up to the limit concentration (*i.e.*, 0.020 mg a.i./L; MRID 48542788). The NOAEC for the study with A-2 was set at 3.83 mg a.i./L based on immobility observed at higher concentrations. In the studies with B-1 and B-2, since there was no statistically-significant immobility, the NOAEC was set at the highest treatment concentration (*i.e.*, 177.5 mg a.i./L and 0.020 mg a.i./L, respectively).

5.2.2.3 Sediment-Dwelling (Benthic) Invertebrates

Chronic spiked sediment tests with *Chironomus riparius* were conducted with degradates AB-1 and AB-1 dimer. Endpoints in the test with AB-1 were based on reduced emergence rates with NOAECs of 36.1 mg a.i./kg-dw, 34.2 mg a.i./L, and 9.06 mg a.i./L for sediment, pore water, and overlying water (MRID 48542801). There were no statistically-significant effects on rates of emergence or development in the test with AB-1 resulting in the NOAEC being set at the highest treatment concentration: 75.3 mg a.i./kg-dw, 5.61 µg a.i./L, and 27.4 µg a.i./L for sediment, pore water, and overlying water (MRID 48542803).

5.2.2.4 Aquatic Plants

Toxicity tests with the green alga *Pseudokirchneriella subcapitata* were conducted with the cyflumetofen degradates AB-11 and B-1. There were no effects in the limit test with AB-11 (MRID 48542796). In the test with B-1, the EC₅₀ was non-definitive (*i.e.*, >102.7 mg a.i./L), and there was no NOAEC (*i.e.*, <0.10 mg a.i./L) due to statistically-significant effects at the lowest treatment concentration (MRID 48542797). However, there is uncertainty associated with the latter study because of the lack of a clear concentration-response relationship.

5.3 Review of Incident Data

Reviews of the Ecological Incident Information System (EIIS, version 2.1) and the Avian Incident Monitoring System (AIMS) were conducted on March 21, 2013. There are no reported incidents for cyflumetofen in the EIIS or AIMS databases. In addition to the incidents recorded in EIIS and AIMS, additional pesticide incidents are reported to the Agency in aggregated incident reports. Ecological incidents reported in aggregate reports include those categorized as 'minor fish and wildlife' (W-B), 'minor plant' (P-B), and 'other non-target' (ONT) incidents. 'Other non-target' incidents include reports of adverse effects to insects and other terrestrial invertebrates. As of April 3, 2013, there have been no aggregate cyflumetofen ecological incidents reported to the Agency. Given that this is a new chemical that has not been registered for use in the United States, the existence of ecological incident reports would be unlikely.

6 Risk Characterization

6.1 Risk Estimation

Estimates of exposure to and toxicity of cyflumetofen are integrated using standard risk quotient (RQ) methods to evaluate the potential for adverse ecological effects to mammalian, avian, aquatic, and other non-target species. RQ results for non-target terrestrial and aquatic animals and plants are described in this section and represent expected direct effects to organisms (*i.e.* effects from direct toxicity to cyflumetofen exposure) in contrast to indirect effects to organisms resulting from a modification of a resource such as loss of their prey or habitat.

6.1.1 Direct Effects to Terrestrial Organisms

6.1.1.1 Birds, Reptiles, and Terrestrial-Phase Amphibians

Avian chronic, dietary-based RQs were calculated for the maximum application rate for each proposed use of cyflumetofen using the NOAEC from the bobwhite quail reproduction study (154 mg a.i./kg-diet; MRID 48542777). Avian chronic, dietary-based RQs range from 0.03 to 0.55 across all uses and feeding categories (**Table 6-1**). Therefore, the avian chronic LOC of 1 is not exceeded for birds of any feeding categories regardless of the proposed use.

No avian acute RQs were calculated because avian acute oral and sub-acute dietary toxicity studies for cyflumetofen have non-definitive endpoints (*i.e.*, >). Risk to birds from acute exposure to cyflumetofen as a result of the proposed uses is discussed in the Risk Description section of this document.

Use	Feeding Category	Dietary-Based RQs
Citrus	Short grass	0.55
Grapes Pome fruits	Tall grass	0.25
Strawberries	Broadleaf plants	0.31
Tree nuts Tomatoes	Fruits/pods	0.03
Ornamentals	Arthropods	0.21

Table 6-1. Avian Chronic Dietary-Based Risk Quotients (RQs)

6.1.1.2 Mammals

Mammalian chronic dose- and dietary-based RQs were calculated for the maximum application rate for each proposed use of cyflumetofen using the NOAEC from a rat 2-generation reproduction study (150 mg/kg-diet, 9.21 mg/kg-bw/day; MRID 48542702). Mammalian chronic dose- and dietary-based RQs range from 0.03 to 3.97 and 0.22 to 0.56, respectively, across all uses and feeding categories (**Tables 6-2** and **6-3**). The mammalian chronic LOC of 1 is exceeded small and medium mammals consuming short grass, tall grass, broadleaf plants, or arthropods and large mammals consuming short grass or tall grass.

No mammalian acute dose-based RQs were calculated because the mammalian acute oral toxicity study for cyflumetofen has a non-definitive endpoint (i.e., >). No mammalian acute

dietary-based RQs were calculated because a mammalian acute dietary-based endpoint (*i.e.*, LC_{50} , mg/kg-diet) is not available. Risk to mammals from acute exposure to cyflumetofen as a result of the proposed uses is discussed in the Risk Description section of this document.

		Chron	Chronic Dose-Based RQs			
Use	Feeding Category	Small (15 g)	Medium (35 g)	Large (1000 g)		
	Short grass	3.97*	3.39*	1.82*		
Citrus Grapes Pome fruits Strawberries Tree nuts Tomatoes	Tall grass	1.82*	1.56*	0.83		
	Broadleaf plants	2.24*	1.91*	1.02*		
	Fruits/pods	0.25	0.21	0.11		
	Arthropods	1.56*	1.33*	0.71		
Ornamentals	Seeds	0.06	0.05	0.03		

Table 6-2. Mammalian Chronic Dose-Based Risk Quotients (RQs)

* exceeds mammalian chronic LOC (=1)

Table 6-3. Mammalian Chronic Dietary-Based Risk Quotients (RQs)	Table 6-3. Mammalian	Chronic Dietary-Based Ris	k Ouotients (ROs)
---	----------------------	---------------------------	-------------------

Use	Feeding Category	Chronic Dietary-Based RQs
Citrus Grapes Pome fruits Strawberries Tree nuts Tomatoes Ornamentals	Short grass	0.56
	Tall grass	0.26
	Broadleaf plants	0.32
	Fruits/pods/seeds	0.04
	Arthropods	0.22

6.1.1.3 Terrestrial Invertebrates

RQs for terrestrial invertebrates were not calculated because only non-definitive toxicity endpoints (*i.e.*, >) are available for honeybees. Risk to terrestrial invertebrates from exposure to cyflumetofen as a result of the proposed uses is discussed in the Risk Description section of this document.

6.1.1.4 Terrestrial (Upland and Semi-Aquatic) Plants

RQs for dicots were calculated for the maximum application rate and application method (ground, aerial) for each proposed use using the EC₂₅ and NOAEC for the most sensitive dicot from the seedling emergence study (tomato, EC₂₅/NOAEC = 0.0393/0.000706 lb a.i./A, MRID 48542933) and dicot NOAEC from the vegetative vigor study (NOAEC = 0.273 lb a.i./A, MRID 48542932). RQs for monocots were not calculated due to the lack of definitive endpoints for monocots (*i.e.*, seedling emergence EC₂₅: could not be determined because the concentration-response relationship for dry weight and shoot length was atypical leading to issues with model convergence; seedling emergence NOAEC < 0.000706 lb a.i./A; vegetative vigor EC₂₅ > 0.250 lb a.i./A). Risk to listed monocots from exposure to cyflumetofen as a result of the proposed uses will be discussed in the Risk Description section of this document.

RQs for terrestrial (upland and semi-aquatic) plants are provided in **Table 6-4**. For dicots inhabiting dry (upland) areas, RQs from exposure via total loading range from 0.10 to 17. For dicots inhabiting semi-aquatic areas, RQs from exposure via total loading range from 0.56 to 42. RQs from exposure via spray drift alone range from <0.1 to 14 for dicots. The terrestrial plant LOC of 1 is exceeded for listed dicots from exposure via total loading (runoff and spray drift) and spray drift alone for all proposed uses.

Use (Application Method)	Plant Type	-	RQs for Exposure via Total Loading (Runoff + Spray Drift)		
		Dry (Upland) Areas	Semi-Aquatic Areas	All Areas	
Citrus Grapes	Non-listed monocot	Not calc	culated ^a	Not calculated ^b	
Pome fruits Strawberries	Listed monocot	Not calc	Not calculated ^c		
Tree nuts Tomatoes	Non-listed dicot	0.10	0.56	<0.1	
Ornamentals (ground)	Listed dicot	5.67*	31.16*	2.83*	
	Non-listed monocot	Not calc	culated ^a	Not calculated ^b	
Tomatoes	Listed monocot	Not calc	culated ^c	Not calculated ^c	
(aerial)	Non-listed dicot	0.31	0.76	0.25	
	Listed dicot	17.00*	42.49*	14.16*	

Table 6-4. Terrestrial (Upland and Semi-Aquatic) Plant Risk Quotients (RQs)

App. = application; SE = seedling emergence; VV = vegetative vigor

*exceeds terrestrial plant LOC (=1)

^a due to lack of a SE EC_{25} for monocots

^b due to due to the non-definitive VV EC_{25} for monocots and lack of a SE EC_{25} for monocots

^c due to the lack of a SE NOAEC for monocots

6.1.2 Direct Effects to Aquatic Organisms

6.1.2.1 Fish, Aquatic-Phase Amphibians, and Aquatic Invertebrates

Fish acute toxicity endpoints are available for parent cyflumetofen (freshwater, estuarine/marine) and degradates A-2 (freshwater) and B-1 (freshwater). Aquatic invertebrate acute toxicity endpoints are available for parent cyflumetofen (freshwater, *Daphnia*; estuarine/marine, oyster and mysid shrimp) and degradates A-2 (freshwater, *Daphnia*), B-1 (freshwater, *Daphnia*), and B-2 (freshwater, *Daphnia*). All of the acute toxicity studies with parent cyflumetofen were conducted as limit tests due to its low solubility and have non-definitive endpoints. Collectively, the data from these acute studies indicate that degradate A-2 is more toxic than parent cyflumetofen, B-1, and B-2.

Freshwater fish and invertebrate acute RQs were calculated for the maximum application rate for each proposed use using definitive toxicity endpoints for degradate A-2 (rainbow trout $LC_{50} = 7.09 \text{ mg/L}$, MRID 48542782; daphnid $EC_{50} = 10.52 \text{ mg/L}$, MRID 48542790) and surface water TTR residue EECs. These RQs represent risk based on the conservative assumption that the

collective toxicity of the parent and all of its degradates is equivalent to the toxicity of the most toxic chemical among the parent and degradates for which data is available.

Freshwater fish and invertebrate chronic RQs were calculated for the maximum application rate for each proposed use using NOAECs from the early life-stage study with fathead minnow (31.6 μ g a.i./L; MRID 48542783) and the life cycle study with *Daphnia* (16.2 μ g a.i./L; MRID 48542791), respectively, and surface water parent only EECs because the chronic toxicity studies were conducted with technical grade cyflumetofen, and the level of exposure to degradates in these studies is unknown.

Freshwater fish and invertebrate acute RQs are all <0.01; freshwater fish and invertebrate chronic RQs for parent cyflumetofen are all <0.01. Therefore the aquatic animal acute and chronic LOCs of >0.05 and 1, respectively, are not exceeded for freshwater fish and invertebrates regardless of the proposed use.

No acute RQs were calculated for estuarine/marine fish and invertebrates due to the lack of definitive acute toxicity endpoints. No chronic RQs were calculated for estuarine/marine fish and invertebrates because there are no chronic toxicity endpoints, and application of an acute to chronic ratio (ACR) from data for the freshwater counterparts to existing acute toxicity endpoints for estuarine/marine taxa is not possible (*i.e.*, the freshwater fish and invertebrate and estuarine/marine fish and invertebrate acute toxicity endpoints are non-definitive). Risk to estuarine/marine fish as a result of the proposed uses of cyflumetofen is discussed in the Risk Description section of this document.

6.1.2.2 Sediment-Dwelling (Benthic) Invertebrates

Sub-chronic RQs for estuarine/marine sediment-dwelling invertebrates were calculated for the maximum application rate for each proposed use using the NOAEC of 19.7 mg TRR/L from a spiked sediment toxicity study with *L. plumulosus* (MRID 48542798) and both 21-day parent only benthic pore water EECs and 21-day TTR benthic pore water EECs. RQs were calculated for both types of EECs (*i.e.*, parent only, and TTR) because the degree to which "Total Radioactive Residue" represents parent only versus total toxic residues (*i.e.*, parent and degradates) is unknown.

For parent cyflumetofen, chronic RQs for freshwater sediment-dwelling invertebrates were calculated for the maximum application rate for each proposed use using NOAECs from spiked water and sediment toxicity studies with *C. riparius* (spiked water NOAEC = 65.9 μ g a.i./L, MRID 48542799; spiked sediment NOAEC = 0.12 μ g a.i./L, MRID 48542802) and 21-day parent only surface water EECs and 21-day parent only benthic pore water EECs, respectively. For degradates AB-1 and AB-1 dimer, chronic RQs for freshwater sediment-dwelling invertebrates were calculated for the maximum application rate for each proposed use using NOAECs from spiked sediment toxicity studies with *C. riparius* (AB-1 NOAEC = 34.2 mg a.i./L, MRID 48542801; AB-1 dimer NOAEC = 5.61 μ g a.i./L, MRID 48542803) and 21-day TTR benthic pore water EECs. The RQs calculated with degradate toxicity endpoints represent risk based on the conservative, underlying assumption that the collective toxicity of the parent and all of its degradates is equivalent to the toxicity of the tested degradate.

Sub-chronic RQs for *L. plumulosus* exposed to sediment spiked with parent cyflumetofen are all <0.01; chronic RQs for *C. riparius* exposed to sediment spiked with parent cyflumetofen range from 0.02 to 0.21; chronic RQs for *C. riparius* exposed to sediment spiked with degradate AB-1 are all <0.01; RQs for *C. riparius* exposed to sediment spiked with degradate AB-1 dimer range from 0.02 to 0.53; and RQs for *C. riparius* exposed to water spiked with parent cyflumetofen range are all <0.01 (**Table 6-5**). Therefore, the aquatic animal acute and chronic LOCs of >0.05 and 1 are not exceeded for sediment-dwelling invertebrates regardless of the proposed use.

PRZM/EXAMS	Method of		,	Spiked Sedim	Spiked Water		
Use/Scenario	App.	Estuarin	e/marine		Freshwater		
		<i>L. plun</i> Cyflun		C. ripariusC. ripariusC. ripariusCyflumetofenDegradateDegradateEndpointAB-1AB-1 DimerEndpointEndpointEndpoint		C. riparius Cyflumetofen Endpoint	
		21-Day Parent Only Benthic Pore Water EEC	21-Day TTR Benthic Pore Water EEC	21-Day Parent Only Benthic Pore Water EEC	21-Day TTR Benthic Pore Water EEC	21-Day TTR Benthic Pore Water EEC	21-Day Parent Only Surface Water EEC
Citrus							
CA	Ground	< 0.01	< 0.01	0.02	< 0.01	0.02	< 0.01
FL	Ground	< 0.01	< 0.01	0.03	< 0.01	0.20	< 0.01
Grapes	·						
CA Grapes	Ground	< 0.01	< 0.01	0.02	< 0.01	0.03	< 0.01
CA Wine Grapes	Ground	< 0.01	< 0.01	0.08	< 0.01	0.16	< 0.01
NY Grapes	Ground	< 0.01	< 0.01	0.13	< 0.01	0.37	< 0.01
Pome fruits							
NC	Ground	< 0.01	< 0.01	0.07	< 0.01	0.17	< 0.01
OR	Ground	< 0.01	< 0.01	0.02	< 0.01	0.11	< 0.01
PA	Ground	< 0.01	< 0.01	0.05	< 0.01	0.21	< 0.01
Strawberries	<u>.</u>						
CA	Ground	< 0.01	< 0.01	0.02	< 0.01	0.07	< 0.01
FL	Ground	< 0.01	< 0.01	0.02	< 0.01	0.20	< 0.01
Tree nuts							
CA Almond	Ground	< 0.01	< 0.01	0.02	< 0.01	0.05	< 0.01
OR Filberts	Ground	< 0.01	< 0.01	0.02	< 0.01	0.11	< 0.01
GA Pecans	Ground	< 0.01	< 0.01	0.09	< 0.01	0.23	< 0.01
Tomatoes							
СА	Aerial	< 0.01	< 0.01	0.13	< 0.01	0.24	< 0.01
	Ground	< 0.01	< 0.01	0.01	< 0.01	0.04	< 0.01
FL	Aerial	< 0.01	< 0.01	0.13	< 0.01	0.36	< 0.01
	Ground	< 0.01	< 0.01	0.03	< 0.01	0.19	< 0.01
PA	Aerial	< 0.01	< 0.01	0.21	< 0.01	0.53	< 0.01
ГА	Ground	< 0.01	< 0.01	0.10	< 0.01	0.32	< 0.01
Ornamentals							
CA	Ground	< 0.01	< 0.01	0.07	< 0.01	0.16	< 0.01
FL	Ground	< 0.01	< 0.01	0.02	< 0.01	0.18	< 0.01
MI	Ground	< 0.01	< 0.01	0.02	< 0.01	0.21	< 0.01
NJ	Ground	< 0.01	< 0.01	0.03	< 0.01	0.19	< 0.01
OR	Ground	< 0.01	< 0.01	0.02	< 0.01	0.06	< 0.01
TN	Ground	< 0.01	< 0.01	0.03	< 0.01	0.19	< 0.01

 Table 6-5. Sediment-Dwelling (Benthic) Invertebrates Risk Quotients (RQs)

6.1.2.3 Aquatic Plants

RQs for listed aquatic plants were calculated for the maximum application rate for each proposed use using the NOAECs from toxicity studies with parent cyflumetofen (duckweed NOAEC = $38.3 \mu g a.i./L$, MRID 48542804; most sensitive algal NOAEC = $23.8 \mu g a.i./L$, MRID 48542792) and degradate AB-11 (green algal NOAEC = 0.483 mg a.i./L, MRID 48542797) and parent only surface water EECs and TTR surface water EECs, respectively. RQs calculated with the degradate toxicity endpoint for AB-11 represent risk based on the conservative, underlying assumption that the collective toxicity of the parent and all of its degradates is equivalent to the toxicity of AB-11.

For parent cyflumetofen, RQs for listed non-vascular and vascular aquatic plants range from 0.01 to 0.08 and 0.01 to 0.14, respectively; for degradate AB-11, RQs for listed non-vascular plants range from <0.01 to 0.01 (**Table 6-6**). Therefore, the aquatic plant LOC of 1 is not exceeded for listed aquatic vascular and non-vascular plants regardless of the proposed use.

For degradate B-1, RQs for listed aquatic non-vascular plants were not calculated because of the lack of a NOAEC (*i.e.*, <). RQs for non-listed aquatic plants were not calculated because EC_{50} endpoints for parent cyflumetofen and degradates AB-11 and B-1 are non-definitive (*i.e.*, >). Risk to listed aquatic plants from exposure to B-1 and risk to non-listed aquatic plants from exposure to cyflumetofen and degradates AB-11 and B-1 as a result of the proposed uses will be discussed in the Risk Description section of this document.

PRZM/EXAMS	Method of	Aquatic Vascular	Aquatic Non-Vascular	Aquatic Non-Vascular
Use/Scenario	App.	Plant	Plant	Plant
		Cyflumetofen	Cyflumetofen	DegradateAB-11
		Endpoint	Endpoint	Endpoint
		Peak Parent Only	Peak TTR	Peak TTR
		Surface Water EEC	Surface Water EEC	Surface Water EEC
Citrus				
CA	Ground	0.01	0.01	<0.01
FL	Ground	0.01	0.01	0.01
Grapes				
CA Grapes	Ground	0.01	0.01	<0.01
CA Wine Grapes	Ground	0.01	0.02	0.01
NY Grapes	Ground	0.02	0.04	0.01
Pome fruits				
NC	Ground	0.01	0.02	0.01
OR	Ground	0.01	0.01	<0.01
PA	Ground	0.01	0.02	0.01
Strawberries				
CA	Ground	0.01	0.01	<0.01
FL	Ground	0.01	0.01	0.01
Tree nuts				
CA Almond	Ground	0.01	0.01	<0.01
OR Filberts	Ground	0.01	0.01	<0.01
GA Pecans	Ground	0.02	0.04	0.01
Tomatoes				
CA	Aerial	0.08	0.12	0.01

Table 6-6. Listed Aquatic Plant Risk Quotients (RQs)

PRZM/EXAMS	Method of	Aquatic Vascular	Aquatic Non-Vascular	Aquatic Non-Vascular	
Use/Scenario	App.	Plant	Plant	Plant	
		Cyflumetofen	Cyflumetofen	DegradateAB-11	
		Endpoint	Endpoint	Endpoint	
		Peak Parent Only	Peak TTR	Peak TTR	
		Surface Water EEC	Surface Water EEC	Surface Water EEC	
	Ground	0.01	0.01	< 0.01	
FL	Aerial	0.08	0.13	0.01	
ГL	Ground	0.01	0.01	0.01	
РА	Aerial	0.08	0.14	0.02	
FA	Ground	0.03	0.04	0.01	
Ornamentals					
CA	Ground	0.01	0.02	0.01	
FL	Ground	0.01	0.01	< 0.01	
MI	Ground	0.01	0.01	0.01	
NJ	Ground	0.01	0.01	0.01	
OR	Ground	0.01	0.01	< 0.01	
TN	Ground	0.01	0.01	< 0.01	

6.1.2.4 Aquatic Bioaccumulation

KABAM was used to calculate risk quotients from a bioaccumulation pathway for food items that may be consumed by listed and non-listed species. The RQs for bioaccumulation risk did not exceed levels of concern for mammals or birds (**Table 6-7**).

Wildlife Species	Ac	cute	Chronic					
_	Dose Based	Dietary Based	Dose Based	Dietary Based				
Mammals								
Fog/water shrew	0.001	N/A	0.116	0.021				
Rice rat/star-nosed mole	0.001	N/A	0.140	0.021				
Small mink	0.001	N/A	0.176	0.028				
Large mink	0.001	N/A	0.195	0.028				
Small river otter	0.001	N/A	0.210	0.028				
Large river otter	0.001	N/A	0.247	0.031				
Birds								
Sandpipers	0.003	0.001	N/A	0.025				
Cranes	0.000	0.001	N/A	0.025				
Rails	0.001	0.001	N/A	0.029				
Herons	0.000	0.001	N/A	0.029				
Small osprey	0.000	0.001	N/A	0.034				
White pelican	0.000	0.001	N/A	0.037				

Table 6-7. Bioaccumulation Risk Quotients (RQs) for Mammals and Birds

6.2 Risk Description

The following risk description explains the overall direct effect conclusions regarding potential ecological risk from the proposed uses of cyflumetofen. The risk description takes into consideration all lines of evidence including: risk estimates (*i.e.*, RQ results); information on the chance of individual effect (*i.e.*, mortality or immobilization) for the acute RQ values; comparisons of non-definitive toxicity endpoints (*i.e.*, >) to EECs; data from monitoring, field studies, and reported incidents that may provide additional insights into the likelihood of exposure; and other factors that modify the likelihood of exposure such as timing of application,

overlap of area affected and the degree of effect with the presence/absence of taxa, species sensitivity distribution, and presence/absence of dietary items.

6.2.1 Direct Effects to Birds, Reptiles, and Terrestrial-Phase Amphibians

Avian acute RQs were not calculated because avian acute oral and subacute-dietary toxicity studies for cyflumetofen have non-definitive endpoints (*i.e.*, >). Instead, the most sensitive, non-definitive acute dose- and dietary-based toxicity values for birds were compared directly to the highest avian acute dose- and dietary-based EECs for the proposed uses of cyflumetofen.

An acute oral study with bobwhite quail yielded the most sensitive, non-definitive avian dosebased toxicity endpoints, $LD_{50} > 2000 \text{ mg a.i./kg-bw}$ and NOAEL = 74 mg a.i./kg-bw based on the sublethal effect of hunched posture (MRID 48542772). A sub-acute dietary study with bobwhite quail yielded the most sensitive, non-definitive avian dietary-based endpoints, $LC_{50} >$ 5033 mg a.i./kg-diet and NOAEC = 1133 mg a.i./kg-diet based on the sublethal effect of reduced weight gain (MRID 48542775).

The highest avian dose-based EECs correspond to those for small birds (20 g) and range from 1.33 (seeds) to 96.10 (short grass) mg/kg-bw. Dietary-based EECs range from 5.27 (fruits/pods/seeds) to 84.38 (short grass) mg/kg-diet. These EECs are unlikely to cause avian mortality since they are roughly 2-3 orders of magnitude less than test concentrations that caused no mortality in toxicity study. Similarly, these EECs are unlikely to cause reduced weight gain since they are at least an order of magnitude less than test concentrations that caused this sublethal effect in the bobwhite quail sub-acute dietary study. However, the range of dose-based EECs does include test concentrations that were associated with sublethal effects (*i.e.*, hunched posture) in the acute oral study with bobwhite quail. Given that hunched posture was not observed in the sub-acute dietary or chronic, reproductive studies with bobwhite quail, the potential for cyflumetofen to cause this effect as a result of the proposed uses is low. Therefore, this comparative analysis suggests that the likelihood of adverse effects to birds, reptiles, and terrestrial-phase amphibians from acute exposure to cyflumetofen for all proposed uses is low.

The avian chronic LOC (=1) is not exceeded for birds of any feeding category regardless of use. suggesting that the likelihood of adverse effects to birds, reptiles, and terrestrial-phase amphibians from chronic exposure to cyflumetofen for all proposed uses is low.

6.2.2 Direct Effects to Mammals

Mammalian acute RQs were not calculated because the mammalian acute oral toxicity study has a non-definitive endpoint (*i.e.*, >), and a mammalian acute dietary-based endpoint (*i.e.*, LC₅₀, mg/kg-diet) is not available. Instead, the non-definitive acute dose-based toxicity endpoint for mammals was compared directly to the highest mammalian acute dose-based EECs for the proposed uses of cyflumetofen.

An acute oral study with female Wistar rats yielded the non-definitive dose-based toxicity endpoint of $LD_{50} > 2000 \text{ mg a.i./kg-bw}$ (MRID 48542669). The highest mammalian dose-based EECs correspond to those for small mammals (15 g) and range from 1.12 (seeds) to 80.45 (short

grass) mg/kg-bw. These EECs are unlikely to result in mammalian mortality or sublethal effects since they are roughly 2-3 orders of magnitude less than test concentrations that caused no mortality or transitory sublethal effects in the acute oral toxicity study. Therefore, this comparative analysis suggests that the likelihood of adverse effects to mammals from acute exposure to cyflumetofen for all proposed uses is low.

The mammalian chronic LOC of 1 is exceeded for small and medium mammals consuming short grass, tall grass, broadleaf plants, or arthropods and large mammals consuming short grass or tall grass for all of the proposed uses of cyflumetofen. The exceedances across multiple sizes and feeding categories of mammals suggest that they may be at risk from chronic exposure as a result of the proposed uses of cyflumetofen. Reducing the foliar dissipation half-life in T-REX from the default of 35 days to 1 day and number of applications from 2 to 1 still results in chronic LOC exceedances for small and medium consuming short grass or broadleaf plants, small mammals consuming tall grass, and large mammals consuming short grass.

6.2.3 Direct Effects to Terrestrial Invertebrates

Presently, the Agency does not have a formal methodology for evaluating risk to non-target terrestrial invertebrates. Instead, acute contact- and dietary-based EECs for the proposed uses of cyflumetofen were calculated (**Table 6-7**) and directly compared to acute contact- and oral-based toxicity values for honey bees, respectively.

Table 6-7. Calculation of Contact and Diet	arv EECs for Honev Bees
Tuble 0 7. Culculation of Confuct and Dict	ary ELCS for money bees

Contact EEC for forager bees receiving direct spray (µg a.i./bee) =					
maximum single application rate (lb a.i./A) x 2.7 (μ g a.i./bee per 1 lb a.i./A) =					
$0.2 \text{ lb a.i./A x } 2.7 \mu\text{g a.i./bee per 1 } \text{ lb a.i./A} =$					
0.54 μg a.i./bee					
Dietary (oral) EEC for adult bees (µg a.i./bee) =					
T-REX-generated upper-bound EECs for tall grass (mg a.i./kg-diet = μ g a.i./g-diet) x 0.292 (g/day) ^b =					
$38.67 \ \mu g \ a.i./g-diet^a \ge 0.292 \ (g/day) =$					
11.29 µg a.i./bee					

^a from **Table 4-4**

^b most conservative food consumption rate for worker bees

For both technical grade cyflumetofen and a 20.4% formulation of cyflumetofen, the honey bee acute contact LD_{50} is >100 µg a.i./bee (MRIDs 48542805 and 48542914). This non-definitive contact toxicity endpoint is almost 3 orders of magnitude greater than the honey bee contact EEC of 0.54 µg a.i./bee. The NOAEL of 20.7 µg a.i./bee for the acute contact study with technical grade cyflumetofen, which is based on statistically-significant mortality at 45.5 lb a.i./bee, is almost 2 orders of magnitude greater than the honey bee contact EEC. The NOAEL of 4.6 µg a.i./bee for the acute contact study with a 20.4% formulation of cyflumetofen, which is based on the sublethal effect of lethargy, is almost an order of magnitude greater that the honey bee contact EEC. For a 20.3% formulation of cyflumetofen, the acute oral LD₅₀ is >116 µg a.i./bee, and the NOAEL is 116 µg a.i./bee (MRID 48542923). These oral toxicity endpoints are an order of magnitude greater than the honey bee dietary (oral) EEC of 11.29 µg a.i./bee.

Additional toxicity data from studies with beneficial terrestrial arthropods bolsters the conclusion of the low likelihood of adverse effects to non-target terrestrial invertebrates from the proposed

uses of cyflumetofen. Acute limit tests with two beneficial terrestrial arthropods – the parasitic wasp (*A. rhopalosiphi*) and the predatory mite (*T. pyri*) – using a 20.3% formulation of cyflumetofen both yielded a LR₅₀ of >1.2 lb a.i./A and a NOAEC of 1.2 lb a.i./A which are greater than the single maximum application rate of 0.2 lb a.i./A for cyflumetofen (MRIDs 48542924 and 48542725).

Collectively, this comparative analysis suggests that the likelihood of adverse effects to honey bees and some beneficial terrestrial arthropods from acute contact and/or dietary/oral exposure to cyflumetofen for all proposed uses appears to be low. However, given the insecticidal mode of action of cyflumetofen, the potential for risk to sensitive, non-target terrestrial invertebrates exists.

6.2.4 Direct Effects to Terrestrial (Upland and Semi-Aquatic) Plants

The terrestrial plant LOC of 1 is not exceeded for non-listed dicots from exposure via total loading (runoff and spray drift) or spray drift only regardless of use suggesting that the likelihood of adverse effects to non-listed dicots from exposure to cyflumetofen for all proposed uses is low. In contrast, the terrestrial plant LOC of 1 is exceeded for listed dicots from exposure via total loading and spray drift only for all proposed uses suggesting that listed dicots may be at risk from exposure as a result of the proposed uses of cyflumetofen.

It should be noted that the most sensitive dicot in the seedling emergence study – tomato – is one of the proposed uses for cyflumetofen; the seedling emergence EC_{25} and NOAEC for tomato are 0.0393 lb a.i./A and 0.000706 lb a.i./A, respectively. However, effects noted in the seedling emergence study should not be applicable to the proposed uses of cyflumetofen since application presumably will not occur until plants reach the vegetative growth stage when no effects are expected based on results of the vegetative vigor study (*i.e.*, in the vegetative vigor study, there were no statistically-significant effects on tomato up to the highest concentration tested – 0.273 lb a.i./A – which is greater than the proposed maximum single application rate of 0.2 lb a.i./A).

RQs were not calculated for monocots due to the lack of appropriate endpoints for monocots. Specifically, for the most sensitive monocot of oat, a seedling emergence EC_{25} could not be determined because the endpoints of dry weight and shoot length displayed atypical concentration-responses leading to issues with model convergence. In addition, dry weight and shoot length of the lowest treatment group (*i.e.*, 0.000706 lb a.i./A) were significantly reduced when compared to the control group resulting in the lack of a NOAEC for monocots. In the absence of RQs for monocots, the lowest seedling emergence treatment concentration that yielded significant effects – 0.000706 lb a.i./A – was compared to the range of terrestrial plant EECs as presented in **Table 4-6** (*i.e.*, 0.002-0.02 lb a.i./A). The comparison indicates that terrestrial plant EECs are greater than an exposure concentration that caused a significant a decrease in oat dry weight and shoot length implying that listed monocots may be at risk from exposure via total loading (runoff and spray drift) and spray drift only for all proposed uses. Furthermore, given the inability to determine a seedling emergence EC_{25} for monocots, risk to non-listed monocots cannot be precluded.

Overall, adverse effects to terrestrial plants (listed dicots and all monocots) from exposure to cyflumetofen as a result of the proposed uses are possible. A Tier II seedling emergence

continuation study with oat is necessary to reduce uncertainty associated with the risk conclusion for non-listed monocots as well as buffer distances for listed monocots.

6.2.4.1 Buffer Distances for Reducing Risk to Non-Target Terrestrial Plants from Spray Drift

Buffer distances for listed dicots and listed and non-listed monocots were determined via AgDRIFT using the NOAEC and EC_{25} endpoints for seedling emergence in **Table 5-3**. These buffer distances are provided in **Table 6-8**. In the absence of a NOAEC for oat, buffer distances for oat were calculated using the LOAEC. Therefore, the distance offsite where effects to oat are no longer expected are actually greater than those presented in the table. It should be noted that buffer distances for the aerial application scenarios exceed the AgDRIFT Tier 1 aerial modeling limit of ~1000 feet for oat and tomato.

	Distance (feet) From the Edge of Field Where the RQ Falls Below the								
	Terrestrial Plant LOC for Seedling Emergence Endpoints								
Species			pplication	1 ^a		Aerial Ap	plication		
Species	VF-F D	rop Size	F-M/C I	Drop Size	VF-F D	rop Size	F-M Drop Size		
	Listed	Non- listed	Listed	Non- listed	Listed	Non- listed	Listed	Non- listed	
Monocots									
Oat (Avena sativa) ^b	299	CBD ^c	138	CBD ^c	>1000	CBD ^c	>1000	CBD ^c	
Onion (Allium sepa)	10	CBD^d	3	CBD^d	256	CBD^d	82	CBD^d	
Corn (Zea mays)	0	CBD^d	0	CBD^d	0	CBD^d	0	CBD^d	
Ryegrass (Lolium perenne)	0	CBD^d	0	CBD^d	0	CBD^d	0	CBD^d	
Dicots									
Tomato (Lycopersicon esculentum)	299		138		>1000		>1000		
Cucumber (Cucumis sativa)	10		3		269		89		
Sugarbeet (Beta vulgaris)	3	NA	3	NA	0	NA	0	NA	
Radish (Raphanus sativus)	0	NA	0	INA	0	INA	0	INA	
Lettuce (Lactuca sativa)	0		0		0		0		
Soybean (Glycine max)	0		0		0		0		

CBD = could not be determined; NA = not applicable

VF-F = ASAE Very Fine to Fine; F-M/C = ASAE Fine to Medium/Course; F-M = ASAE Fine to Medium

^a Low boom (20 inches)

^b buffer distances calculated using the LOAEC due to the lack of a NOAEC

^c While statistically-significant reductions were detected, there were issues with model convergence. Therefore, an EC_{25} could not be determined.

^d The EC₂₅ is greater than the highest tested concentration.

6.2.5 Direct Effects to Fish, Aquatic-Phase Amphibians, and Aquatic Invertebrates

The acute RQs calculated for freshwater fish and invertebrate represent risk based on the conservative assumption that the collective toxicity of parent cyflumetofen and all of its degradates is equivalent to the toxicity of the most toxic chemical among the parent and degradates for which data is available (*i.e.*, degradate A-2). Even under this conservative assumption, acute aquatic animal LOCs (>0.05) were not exceeded for freshwater fish or invertebrates regardless of use suggesting that the likelihood of adverse effects to freshwater fish

and invertebrates and aquatic-phase amphibians from acute exposure as a result of the proposed uses of cyflumetofen is low.

It should be noted that the freshwater fish acute toxicity study with A-2 yielded a NOAEC of <5.04 mg a.i./L (MRID 48542782). This NOAEC is based on sublethal effects including unbalanced swimming, faulty respiratory function, loss of equilibrium, and non-typical pigmentation observed at the lowest concentration tested. Overall, the likelihood of adverse effects to freshwater fish and aquatic-phase amphibians from acute exposure to A-2 is considered low because: 1) acute RQs calculated using the LC₅₀ endpoint did not exceed LOCs; 2) no sublethal effects were observed in fish acute toxicity studies with parent cyflumetofen where the organisms were presumably exposed to A-2 as a result of rapid hydrolysis, and 3) TTR surface water EECs, which represent parent cyflumetofen and multiple degradates including A-2, are at least 3 orders of magnitude less than the observed NOAEC for A-2.

The aquatic animal chronic LOC (=1) is not exceeded for freshwater fish or invertebrates regardless of use suggesting that the likelihood of adverse effects to freshwater fish and invertebrates and aquatic-phase amphibians from chronic exposure as a result the proposed uses of cyflumetofen is low.

Estuarine/marine fish and invertebrate RQs were not calculated because of the lack of appropriate toxicity endpoints. Based on a comparison of acute toxicity endpoints between freshwater and estuarine/marine organisms, there is no indication that estuarine/marine fish/invertebrates are more sensitive to parent cyflumetofen than freshwater fish/invertebrates. In addition, estuarine/marine fish/invertebrates would have to be several orders of magnitude more sensitive than freshwater fish/invertebrates to the most toxic degradate tested, A-2, to exceed Agency LOCs suggesting that the likelihood of adverse effects to estuarine/marine fish and invertebrates as a result of the proposed uses of cyflumetofen is low.

6.2.6 Direct Effects to Sediment-Dwelling (Benthic) Invertebrates

The aquatic animal acute and chronic LOCs (>0.05 and 1, respectively) are not exceeded for sediment-dwelling (benthic) invertebrates regardless of use suggesting that the likelihood of adverse effects to benthic invertebrates from acute or chronic exposure to cyflumetofen for all proposed uses is low.

6.2.7 Direct Effects to Aquatic Plants

The aquatic plant LOC (=1) is not exceeded for listed aquatic plants exposed to parent cyflumetofen or degradate AB-11 regardless of use suggesting that the likelihood of adverse effects to listed aquatic plants as a result of the proposed uses of cyflumetofen is low.

It should be noted that a *P. subcapitata* toxicity study with B-1 yielded a NOAEC of <0.10 mg a.i./L based on cell density, growth rate, and yield (MRID 48542797). However, there is uncertainty associated with this NOAEC due to the lack of a clear concentration-response relationship. Given that B-1 was not considered in the TTR approach for modeling surface water EECs because of its low expected toxicity (*i.e.*, due to lack of a cyano group) and the actual NOAEC for B-1would have to be 2 orders of magnitude lower than the lowest concentration

tested to exceed the Agency LOC for listed aquatic plants, the likelihood of adverse effects to aquatic non-vascular plants from exposure to B-1 for all proposed uses is considered low.

RQs for non-listed aquatic plants were not calculated for parent cyflumetofen or degradates AB-11 and B-1 because of the lack of definitive EC_{50} endpoints (i.e., >). Given that risk to listed aquatic plants is based on the NOAEC, which is a more sensitive endpoint than the EC_{50} , and there were no exceedances for listed aquatic plants, the likelihood of adverse effects to non-listed aquatic non-vascular and vascular plants as a result of the proposed uses of cyflumetofen is low.

6.3 Summary of Direct Effects

A summary of the direct effects of cyflumetofen to terrestrial and aquatic taxa is provided in **Table 6-9**.

Taxon	Risk Concern for Direct Effects?	
	Non-Listed	Listed*
Birds (surrogate for terrestrial-phase amphibians and reptiles)	No	No
Mammals	Yes (chronic exposure ^a)	Yes (chronic exposure ^a)
Terrestrial invertebrates	No	No
Terrestrial (upland and semi-aquatic) plants : monocots	Yes ^b	Yes
Terrestrial (upland and semi-aquatic) plants: dicots	No	Yes
Freshwater fish (surrogate for aquatic-phase amphibians)	No	No
Freshwater invertebrates	No	No
Estuarine/marine fish	No	No
Estuarine/marine invertebrates	No	No
Sediment-dwelling (benthic) invertebrates	No	No
Aquatic vascular plants (vascular and non-vascular)	No	No
Aquatic non-vascular plants	No	NA

Table 6-9. Summary of Direct Effects

NA = not applicable because there are no listed aquatic non-vascular plants

* Direct or indirect effects to specific listed species have not been definitively determined; further investigation into temporal, geographical, and biological associations between the proposed uses and affected taxa is needed before definitive effects determinations can be made.

^a small and medium mammals consuming short grass, tall grass, broadleaf plants, or arthropods and large mammals consuming short grass or tall grass

^b Given the inability to determine a seedling emergence EC_{25} for monocots, risk to non-listed monocots cannot be precluded.

6.4 Indirect Effects

Direct effects to mammals (non-listed and listed) from chronic exposure could result in indirect effects to terrestrial organisms including birds, terrestrial invertebrates, and terrestrial plants due to general habitat modification and/or food/prey supply disruption.

Direct effects to monocots (listed and non-listed) and listed dicots could result in indirect effects to terrestrial organisms including birds, mammals, and terrestrial invertebrates due to general habitat modification (most likely due to effects on non-listed plants), host plant loss, and/or food supply disruption as well as indirect effects to aquatic organisms due to changes in water quality and/or habitat.

6.5 Federally Threatened and Endangered (Listed) Species Concerns

6.5.1 Action Area

For listed species assessment purposes, the action area is considered to be the area affected directly or indirectly by the federal action and not merely the immediate area involved in the action. At the initial screening-level, the risk assessment considers broadly described taxonomic groups and conservatively assumes that listed species within those broad groups are located on or adjacent to the treated site and aquatic organisms are assumed to be located in a surface water body adjacent to the treated site. The assessment also assumes that the listed species are located within an assumed area that has the relatively highest potential exposure to the pesticide, and that exposures are likely to decrease with distance from the treatment area.

If the assumptions associated with the screening-level action area result in risk quotients that are below the listed species LOCs, a "no effect" determination conclusion is made with respect to listed species in that taxa, and no further refinement of the action area is necessary. Furthermore, risk quotients below the listed species LOCs for a given taxonomic group indicate no concern for indirect effects upon listed species that depend upon the taxonomic group covered by the risk quotients in excess of the listed species LOCs for a given taxonomic group, a potential for a "may affect" conclusion exists and may be associated with direct effects upon listed species belonging to that taxonomic group or may extend to indirect effects upon listed species that depend upon that taxonomic group as a resource. In such cases, additional information on the biology of listed species, the locations of these species, and the locations of use sites could be considered to determine the extent to which screening assumptions regarding an action area apply to a particular listed organism. These subsequent refinement steps could consider how this information would affect the action area for a particular listed organism and may potentially include areas of exposure that are downwind and downstream of the pesticide use site.

6.5.2 Taxonomic Groups Potentially at Risk

The Level I screening assessment process for listed species uses the generic taxonomic groupbased process to make inferences on direct effect concerns for listed species. The first iteration of reporting the results of the Level I screening is a listing of pesticide use sites and taxonomic groups for which RQ calculations reveal values that meet or exceed the listed species LOCs or other evidence suggests that adverse effects are likely or cannot be precluded (for more information see, USEPA, 2004).

Results of this screening-level ecological risk assessment indicate that the proposed uses of cyflumetofen have the potential for direct adverse effects to listed mammals, dicots, and monocots (**Table 6-10**).

The Agency acknowledges that pesticides have the potential to exert indirect effects upon listed organisms by, for example, perturbing forage or prey availability, altering the extent of nesting habitat, and creating gaps in the food chain. In conducting a screen for indirect effects, direct effect LOCs for each taxonomic group are used to make inferences concerning the potential for

indirect effects upon listed species that rely upon non-listed organisms in these taxonomic groups as resources critical to their life cycle.

Results of this screening-level ecological risk assessment indicate that the proposed uses of cyflumetofen have the potential for direct adverse effects to non-listed mammals and monocots. Therefore, there is potential for indirect effects to all listed species that depend on non-listed mammals and monocots for food, habitat, or other environmental resources (**Table 6-10**). Species-specific concerns for indirect effects to listed organisms will require a determination of the coincidence of cyflumetofen use with locations of listed species and the biologically-based resources upon which they depend.

 Table 6-10. Risk to Listed Taxa Associated with Potential Direct or Indirect Effects from the Proposed Uses of Cyflumetofen*

Listed Taxon	Direct Effects	Indirect Effects
Birds	No	Yes ^{a,b}
Reptiles	No	Yes ^{a,b}
Terrestrial-phase amphibians	No	Yes ^{a,b}
Mammals	Yes (chronic exposure)	Yes ^b
Terrestrial invertebrates	No	Yes ^{a,b}
Terrestrial (upland and semi-aquatic) plants : monocots	Yes	Yes ^a
Terrestrial (upland and semi-aquatic) plants: dicots	Yes	Yes ^a
Freshwater fish	No	Yes ^b
Aquatic-phase amphibians	No	Yes ^b
Freshwater invertebrates	No	Yes ^b
Estuarine/marine fish	No	Yes ^b
Estuarine/marine invertebrates	No	Yes ^b
Sediment-dwelling (benthic) invertebrates	No	Yes ^b
Aquatic vascular plants	No	Yes ^b
Aquatic non-vascular plants	NA	Yes ^b

NA = not applicable because there are no listed aquatic non-vascular plants

* Direct or indirect effects to specific listed species have not been definitively determined; further investigation into temporal, geographical, and biological associations between the proposed uses and affected taxa is needed before definitive effects determinations can be made.

^a due to direct effects to non-listed mammals

^b due to direct effects to non-listed monocots which cannot be precluded given the inability to determine a seedling emergence EC_{25} for monocots

6.5.2.1 Probit Slope Dose-Response Analysis of LOC and Acute RQ Values

As part of risk estimation, the Agency provides additional information on the potential for acute direct effects to exposed individuals in terms of the chance of an individual event (*i.e.*, mortality or immobilization) should exposure at the EEC actually occur for a species with sensitivity to cyflumetofen on par with the acute toxicity endpoint selected for RQ calculation. This is accomplished using the slope of the dose-response relationship available from the toxicity study used to establish the acute toxicity measures of effect for each taxonomic group. The individual effects probability associated with the acute RQ is based on the mean estimate of the slope and an assumption of a probit dose-response relationship. In addition to a single effects probability are also provided to account for variance in the slope, if available. Individual effect probabilities are

calculated based on an Excel spreadsheet tool IECv1.1 (Individual Effect Chance Model Version 1.1) developed by U.S. EPA, OPP, Environmental Fate and Effects Division (June 22, 2004). The model provides the option of inserting taxa-specific probit slopes and confidence intervals. If specific information is not available, the model uses a default value of 4.5 for the probit slope and 2 and 9 for the upper and lower 95% confidence interval bounds.

For cyflumetofen, avian, mammalian, fish, and aquatic invertebrate acute toxicity studies with parent cyflumetofen yielded non-definitive endpoint values (*i.e.*, >), so this probit slope analysis is not applicable.

6.5.2.2 Critical Habitat

In the evaluation of pesticide effects on designated critical habitat, consideration is given to the physical and biological features (constituent elements) of a critical habitat identified by the U.S. Fish and Wildlife and National Marine Fisheries Services (the Services) as essential to the conservation of a listed species and which may require special management considerations or protection. The evaluation of effects for a screening-level pesticide risk assessment focuses on the biological features that are constituent elements and is accomplished using the screening-level taxonomic analysis (RQs) and levels of concern (LOCs) that are used to evaluate direct and indirect effects to listed organisms.

The screening-level risk assessment has identified potential concerns for indirect effects to listed species dependent upon some non-listed species (mammals and monocots). In light of the potential for indirect effects, the next step for EPA and the Services is to identify which listed species and their designated critical habitat(s), if applicable, are potentially implicated. Analytically, the identification of such species and their critical habitat can occur by determining whether the action area overlaps designated critical habitat or the occupied range of any listed species. If so, EPA would examine whether the pesticide's potential effects to non-listed species would affect the listed species indirectly, or directly affect a constituent element of the critical habitats. At present, the information reviewed by EPA does not permit use of this analytical approach to make a definitive identification of species that are potentially affected indirectly or designated critical habitats that are potentially affected directly by the proposed uses of cyflumetofen.

This screening-level risk assessment for critical habitats provides a listing of potential biological features that, if they are constituent elements of one or more critical habitats, would be of potential concern. These correspond to the taxa identified above as being of potential concern for adverse effects. This should serve as an initial step in problem formulation for further assessment of designated critical habitat impacts outlined above, should additional work be necessary.

6.5.2.3 Co-occurrence Analysis

The goal of the analysis for co-location is to determine whether sites of cyflumetofen proposed use are geographically associated with known locations of listed species. At the screening level, this analysis is accomplished using the LOCATES (version 2.2.5) database. The database uses location information for listed species at the county level and compares it to agricultural census

data (from 2007) for crop production at the same county level of resolution. The product is a listing of federally-listed species that are located within counties known to produce the crops upon which cyflumetofen is proposed to be used. The current analysis is based on the following proposed uses of cyflumetofen: almonds, apples, chestnut, cironjas, citron, citrus fruit-all, grapefruit, grapes, hazel nuts (filberts), kumquats, lemons, lemons and limes, limes, macadamia nuts, pears-all, pears-Bartlett, pears-other, pecans-all, pecans-improved, pecans-native and seedling, tangelo, tangerine, walnuts-English. For potential direct effects, only listed mammals, monocots, and dicots will be considered, since they were the only taxa for which direct risks were identified. For indirect effects, all other taxa will be considered since there is a potential for indirect effects to taxa that might rely on non-listed mammals and monocots for some stage of their life-cycle.

LOCATES identified a total of 1368 listed species that overlap at the county level with areas where cyflumetofen is proposed to be used (see **Appendix F** for a complete species list). This preliminary analysis indicates that there is a potential for cyflumetofen use to overlap with listed species and that a more refined assessment is warranted. The more refined assessment should involve clear delineation of the action area associated with proposed uses of cyflumetofen and best available information on the temporal and spatial co-location of listed species with respect to the action area. This analysis has not been conducted for this assessment.

7 Uncertainties

A description of basic assumptions, uncertainties, strengths, and limitations of a typical risk assessment is described in Chapter 6 of the Agency's Overview Document (USEPA, 2004) and includes those related to exposure for all taxa, those related to exposure for aquatic species, those related to exposure for terrestrial animals, those related to the effects assessment, and those associated with the acute LOC values. Additional uncertainties for this assessment are discussed below.

7.1 Data Gaps

7.1.1 Environmental Fate

Uncertainties in the fate data with the dimers and unextracted residues were described in detail in **Sections 2.6** and **4.2**. Dimers that formed in the hydrolysis, aerobic and anaerobic soil metabolism, aerobic aquatic metabolism, and terrestrial field dissipation studies. Unextracted residues formed in the aerobic and anaerobic soil metabolism and aerobic and anaerobic aquatic metabolism studies. The issues of dimers and unextracted residues are somewhat intertwined in that: the dimers are expected to be hydrophobic and would likely accumulate in soil and sediment; the dimers and unextracted residues tend to occur at their highest quantities at the end of the fate studies; and high quantities of dimers and unextracted residues tend to occur in the same studies (aerobic and anaerobic soil metabolism and aerobic aquatic metabolism).

The concern would be that dimers will form, persist and accumulate in the environment. However, this risk assessment did not identify risks to aquatic organisms. Therefore, it seems further clarification on these issues would be unlikely to change this aquatic risk finding. If future risk assessments were to identify aquatic risks, more information of the formation of dimers and composition of the unextracted residues might be useful.

7.1.2 Ecological Effects

Oat data from a Tier II seedling emergence continuation study (**Guideline 850.4100 – Seedling Emergence and Seedling Growth**) would allow the Agency to better characterize potential risks by eliminating uncertainties for both non-listed and listed monocots that cannot be accounted for using alternate methods or weight of evidence. The submitted seedling emergence study (MRID 48542933) was classified as Supplemental because for the most sensitive monocot – oat, dry weight and shoot length of the lowest treatment group (*i.e.*, 0.000706 lb a.i./A) were significantly reduced (*i.e.*, 33.2 and 27.3 %, respectively) when compared to the control group resulting in a non-definitive NOAEC for monocots. In addition, an EC_{25} for monocots could not be determined because the oat endpoints of dry weight and shoot length an displayed atypical concentration-response relationship leading to issues with model convergence

8 References

- Arnot, J.A. and F.A.P.C. Gobas. 2004. A food web bioaccumulation model for organic chemicals in aquatic ecosystems. Environmental Toxicology & Chemistry, 23 (10): 2343-2355.
- Fletcher, J.S., J.E. Nellessen, and T.G. Pfleeger. 1994. Literature review and evaluation of the EPA food-chain (Kenaga) nomogram, an instrument for estimating pesticide residues on plants. Environmental Toxicology & Chemistry 13:1383-1391.
- Hoerger, F. and E. E. Kenaga. 1972. Pesticide Residues on Plants: Correlation of Representative Data as a Basis for Estimation of their Magnitude in the Environment. <u>In</u> F. Coulston and F. Korte, eds., *Environmental Quality and Safety: Chemistry, Toxicology, and Technology*, Georg Thieme Publ., Stuttgart, West Germany, pp. 9-28.
- USEPA. 1999. Downwind Deposition Tolerance Bounds for Orchards. Scientific Advisory Panel background document. Office of Pesticide Programs. Washington, D.C. July 23, 1999. http://www.epa.gov/scipoly/sap/1999/july/airblast.pdf
- USEPA. 1997. Estimating Drinking Water Exposure as a Component of the Dietary Risk Assessment; Spray Drift Program, Washington, D.C. <u>http://www.epa.gov/scipoly/sap/meetings/1997/121097</u>
- USEPA. 1998. Guidelines for Ecological Risk Assessment. Risk Assessment Forum, Office of Research and Development, Washington, D.C. EPA/630/R-95/002F. April 1998. http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=30759
- USEPA. 2004. Overview of the Ecological Risk Assessment Process in the Office of Pesticide Programs. United States Environmental Protection Agency (USEPA). Environmental Fate and Effects Division. Office of Pesticide Programs. Available at: <u>http://www.epa.gov/espp/consultation/ecorisk-overview.pdf</u>

U.S. Fish and Wildlife Service (USFWS) and National Marine Fisheries Service (NMFS). 1998. Endangered Species Consultation Handbook: Procedures for Conducting Consultation and Conference Activities Under Section 7 of the Endangered Species Act. Final Draft. March 1998.

9 Bibliography of Cited MRIDs

Fate studies

- 48542624 Knight, L. (2004) OK-5101 Hydrolysis Under Laboratory Conditions. Project Number: OTSA/0076/US/OCR, OSK/035/032048, EU/OSK/035. Unpublished study prepared by Huntingdon Life Sciences, Ltd. 75p.
- 48542625 Nakamura, H. (2004) (Carbon 14)OK-5101 (Phenyl-ring-U-and tolyl-ring-U-label): A Hydrolysis Study. Project Number: OTSA/0156/EN//FR/US/OCR, EU/IET/02/8006. Unpublished study prepared by Institute of Environmental Toxicology. 167p.
- 48542626 Knight, L. (2004) OK-5101 Photodegradation in Water and Quantum Yield of Direct Photodegradation in Water. Project Number: OTSA/0078/US/OCR, OSK/036/032551, EU/OSK/036. Unpublished study prepared by Huntingdon Life Sciences, Ltd. 104p.
- 48542627 Ohyama, K. (2004) (Carbon 14)OK-5101 (Phenyl-ring-U-and Tolyl-ring-U-label): A Photolysis Study in Water. Project Number: OTSA/0157/EN//FR/US/OCR, EU/IET/02/8007. Unpublished study prepared by Institute of Environmental Toxicology. 193p.
- 48542750 Noorloos, B.; Brands, C.; Stienstra, N. (2007) Photodegradation of A-(Ring-U-(Carbon 14)) OK-5101 on Soil Surfaces. Project Number: 2007/1067406/US/OCR EU/477282. Unpublished study prepared by Notox B.V. 54p.
- 48542751 Noorloos, B.; Brands, C.; Stienstra, N. (2007) Photodegradation of B-(Ring-U-(Carbon 14)) OK-5101 on Soil Surfaces. Project Number: 2007/1067407/US/OCR EU/475932. Unpublished study prepared by Notox B.V. 56p.
- 48542759 Iijima, K. (2004) OK-5101 Pure: Adsorption Study in Soil. Project Number: A/0044/EN//FR/US/OCR EU/IET/01/6018/11. Unpublished study prepared by Institute of Environmental Toxicology. 30p.
- 48542760 Noorloos, B.; Stienstra, N. (2011) Adsorption of B-1 on Three Soils (Including Amendment No. 1). Project Number: 2011/7005177/OCR EU/475897. Unpublished study prepared by Notox B.V. 47p.
- 48542761 Noorloos, B.; Stienstra, N. (2011) Adsorption of AB-1 on Three Soils (Including Amendment No. 1). Project Number: 2011/7005180/OCR EU/475919. Unpublished study prepared by Notox B.V. 50p.

- 48542762 Brands, C.; Willems, H. (2008) Adsorption of B-3 on Three Soils. Project Number: 2008/1098894/US/OCR EU/487923. Unpublished study prepared by Notox B.V. 47p.
- 48542763 Vasques, A. (2011) Adsorption/Desorption Behavior of Cyflumetofen Metabolites (Carbon 14)-B1, (Carbon 14)-B3 and (Carbon 14)-A2 on Different US and European Soils. Project Number: 2011/1257446/US/OCR U/2119/11 EU/379627. Unpublished study prepared by BASF S.A.: Global Environmental and Consumer Safety Laboratory - GENCS. 198p.
- 48542786 Singh, M.; Traversa, E. (2011) Adsorption/Desorption of AB-1 Dimer Metabolite (Reg. No. 5756389) of BAS 9210 I: Final Report. Project Number: 2011/7005168/OCR 111/06/01 415935. Unpublished study prepared by BASF Crop Protection. 62p.
- 48542764 Tan, N. (2009) Leaching of B-1 in Three Soils. Project Number:
 2009/1126720/US/OCR EU/488795. Unpublished study prepared by Notox B.V. 36p.
- 48542765 Tan, N. (2009) Leaching of B-1 in One Soil. Project Number:
 2009/1126721/US/OCR EU/490991. Unpublished study prepared by Notox B.V. 29p.
- 48542766 Brands, C. (2008) Photochemical Degradation of A-(Ring-U-(Carbon 14))OK-5101 in Water. Project Number: OTSA/0341/FR/US/OCR EU/477293. Unpublished study prepared by Notox B.V. 43p.
- 48542767 Brands, C. (2008) Photochemical Degradation of B-(Ring-U-(Carbon 14))OK-5101 in Water. Project Number: OTSA/0342/FR/US/OCR EU/475943. Unpublished study prepared by Notox B.V. 56p.
- 48542629 Willems, H. (2008) OK-5101 Atkinson Calculation. Project Number: OTSA/0330/FR/US/OCR, EU/480228. Unpublished study prepared by Notox B.V. 7p.
- 48542746 Knight, L. (2007) OK-5101 Investigations into the Identity of Aerobic Soil Metabolites of OK-5101. Project Number: 2007/1067405/US/OCR NOT0003/072339 EU/NOT0003. Unpublished study prepared by Huntingdon Life Sciences, Ltd. 37p.
- 48542747 Willems, H. (2008) OK-5101 Estimation of Soil DT50 and DT90 Values Using Degradation Data Taken from a Soil Degradation Study by Knight L. (2004) - Annex IIA 7.1.1. Project Number: OTSA/0431/FR/US/OCR US/488454. Unpublished study prepared by Notox B.V. 19p.
- 48542748 Ta, C.; Strobush, A. (2011) Aerobic Soil Metabolism of (Carbon 14)-BAS 9210 I: Final Report. Project Number: 2011/7000200/OCR 111/13/01 US/350780. Unpublished study prepared by Agvise Inc., BASF Corporation and BASF SE. 318p.
- 48542752 Brands, C. (2011) Determination of the Aerobic Degradation Rate of B-(Ring-U-(Carbon 14))OK-5101 in Three Soils (Including Amendment No. 1). Project

Number: 2011/7005186/OCR EU/478338. Unpublished study prepared by Notox B.V. 80p.

- 48542753 Willems, H. (2008) OK-5101 Estimation of Soil DT50 and DT90 Values Using Degradation Data Taken from a Soil Degradation Study by Brands (2008)- Annex IIA 7.2.1. Project Number: 2008/1098893/US/OCR EU/488456. Unpublished study prepared by Notox B.V. 23p.
- 48542754 Brands, C.; Corral, E. (2011) Determination of the Aerobic Degradation Rate of B-1 in Three Soils (Including Amendment 1 and Amendment 2). Project Number: 2011/7005183/OCR EU/485925. Unpublished study prepared by Notox B.V. 44p.
- 48542755 Brands, C.; Corral, E. (2010) Determination of the Aerobic Degradation Rate of AB-1 in Three Soils (Including Amendment No. 1). Project Number: 2010/1224815/US/OCR EU/485926. Unpublished study prepared by Notox B.V. 50p.
- 48542756 Brands, C.; Corral, E. (2010) Determination of the Aerobic Degradation Rate of B-3 in Three Soils (Including Amendment No. 1). Project Number: 2010/1224816/US/OCR EU/487925. Unpublished study prepared by Notox B.V. 46p.
- 48542749 Ta, C.; Traversa, E. (2011) Anaerobic Soil Metabolism of (Carbon 14)-BAS 9210 I: Final Report. Project Number: 2011/7005339/OCR US/350781. Unpublished study prepared by BASF Corporation and Agvise Laboratories, Inc. 203p.
- 48542768 Ta, C.; Traversa, E. (2011) Aerobic Aquatic Metabolism of (Carbon 14)-BAS 9210 I: Final Report. Project Number: 2011/7000768/OCR 111/14/01 US/395301. Unpublished study prepared by BASF Corporation and Agvise, Inc. 203p.
- 48542769 Singh, M. (2011) BAS 9210 I (Cyflumetofen): Anaerobic Aquatic Metabolism: Final Report. Project Number: 2011/7001153/OCR 111/07/01 US/350777. Unpublished study prepared by Agvise Laboratories, Inc., and BASF Agro Research. 196p.
- 48542647 Perez, S.; Miska, J.; Saha, M. (2011) Independent Laboratory Validation of BASF Analytical Method D1002: Determination of Cyflumetofen (BAS 9210 I) and its Metabolites in Soil Using LC-MS/MS: Final Report. Project Number: 2011/7005075/OCR, 379626, ADPEN/2K11/903/379626. Unpublished study prepared by ADPEN Laboratories, Inc. 156p.
- 48542757 Jordon, J.; Warren, R. (2011) Terrestrial Field Dissipation of Cyflumetofen (BAS 9210 I) following Applications of BAS 9210 0I in Orchard/Vineyard and Row Crop Use Patterns. Project Number: 2011/7004042/OCR 111/27/02 US/350785. Unpublished study prepared by BASF Agricultural Research Center. 926p.
- 48542828 Carter, M. (2011) Validation of BASF Analytical Method D1002: Determination of Cyflumetofen (BAS 9210 I) and Its Metabolites in Soil using LC-MS/MS. Project Number: 2011/7005073/OCR, US/ADPEN/2K11/416947. Unpublished study prepared by ADPEN Laboratories, Inc. 209p.
- 48542829 Gordon, B. (2011) Freezer Storage Stability of Cyflumetofen (BAS 9210 I) and Its

Relevant Metabolites in Soil Samples. Project Number: 2011/7002604/OCR, 350786. Unpublished study prepared by BASF Crop Protection. 135p.

48542785 Bouwman, L. (2007) Bioconcentration Test in Carp with OK-5101 (Flow-through). Project Number: 2007/1067412/US/OCR EU/472872. Unpublished study prepared by Notox B.V. 61p.

Ecological effects studies

- 48542772 Teunissen, M. (2011) Acute Oral Toxicity Study in Northern Bobwhite with OK-5101 (Including Amendment No. 1). Project Number: 2011/7005171/OCR EU/381926. Unpublished study prepared by Notox B.V. 74p.
- 48542773 Gallagher, S.; Beavers, J. (2006) OK-5101: An Acute Oral Toxicity Study with the Mallard. Project Number: 2006/1048773/US/OCR EU/181/116. Unpublished study prepared by Wildlife International, Ltd. 58p.
- 48542774 Zok, S. (2010) BAS 9210 I (Cyflumetofen) Acute Toxicity in the Zebra Finch (*Taeniopygia guttata*) after Single Oral Administration (LD50). Project Number: 2010/1009633/US/OCR 15W0510/095034 375046. Unpublished study prepared by BASF SE. 69p.
- 48542775 Teunissen, M. (2011) 5-Day Dietary Toxicity Study in Northern Bobwhite with OK-5101 (Including Amendment No. 1). Project Number: 2011/7005174/OCR EU/381937. Unpublished study prepared by Notox B.V. 107p.
- 48542776 Gallagher, S.; Martin, K.; Beavers, J. (2006) OK-5101: A Dietary LC50 Study with the Mallard. Project Number: 2011/7005174/OCR EU/381937. Unpublished study prepared by Wildlife International, Ltd. 65p.
- 48542777 Temple, D.; Beavers, J.; Martin, K. et al. (2008) OK-5101: A Reproduction Study with the Northern Bobwhite Quail. Project Number: 2008/1098900/US/OCR EU/181/118. Unpublished study prepared by Wildlife International, Ltd. 161p.
- 48542778 Zok, S. (2010) BAS 9210 I (Cyflumetofen) 1-Generation Reproduction Study on the Mallard Duck (*Anas platyrhynchus*) by Administration in the Diet. Project Number: 2010/1065743/US/OCR 72W0510/095026 350826. Unpublished study prepared by BASF SE. 351p.
- 48542779 Salinas, E. (2011) BAS 9210 I (Cyflumetofen) Acute Toxicity Study with the Rainbow Trout (*Oncorhynchus mykiss*). Project Number: 2011/1109258/US/OCR 12F0510/09E023 365853. Unpublished study prepared by BASF SE. 45p.
- 48542780 Salinas, E. (2011) BAS 9210 I (Cyflumetofen) Acute Toxicity Study with the Fathead Minnow (*Pimephales promelas*). Project Number: 2011/1102368/US/OCR 19F0510/09E024 375047. Unpublished study prepared by BASF SE. 47p.
- 48542781 Nierzedska, E. (2011) Reg.No. 104415 (Metabolite B-1 of BAS 9210 I, Cyflumetofen) - Acute Toxicity for Rainbow Trout. Project Number:

2011/1123577/US/OCR 1869190 W/31/11. Unpublished study prepared by Institute of Industrial Organic Chemistry. 37p.

- 48542782 Nierzedska, E. (2011) Reg.No. 133276 (Metabolite A-2 of BAS 9210 I, Cyflumetofen) - Acute Toxicity for Rainbow Trout. Project Number: 2011/1123576/US/OCR 382915 1/86/91/99. Unpublished study prepared by Institute of Industrial Organic Chemistry. 39p.
- 48542783 Salinas, E. (2011) BAS 9210 I (Cyflumetofen) Early Life-stage Toxicity Test on the Fathead Minnow (*Pimephales promelas*) in a Flow-through System. Project Number: 2011/1109259/US/OCR 375050 50F0510/09E021. Unpublished study prepared by BASF SE. 84p.
- 48542784 Migchielsen, M. (2011) Carp, Juvenile Growth test 28 Days with OK-5101 (Flow-through) (Including Amendment No. 1). Project Number: 2011/7005297/OCR EU/475763. Unpublished study prepared by Notox B.V. 46p.
- 48542787 Migchielsen, M. (2008) Acute Toxicity Study in *Daphnia magna* with B-1 (Static). Project Number: 2008/1098912/US/OCR EU/488671. Unpublished study prepared by Notox B.V. 27p.
- 48542788 Bouwman, L. (2009) Acute Toxicity Study in *Daphnia magna* with B-2 (Static). Project Number: 2009/1126740/US/OCR EU/488674. Unpublished study prepared by Notox B.V. 26p.
- 48542789 Salinas, E. (2011) BAS 9210 I (Cyflumetofen) Acute Toxicity (Immobilisation) Study in the Water Flea *Daphnia magna* STRAUS (Including Amendment No. 1). Project Number: 2011/7006303/OCR 50E0510/09E025 375048. Unpublished study prepared by BASF SE. 54p.
- 48542790 Swierkot, A. (2011) Reg.No. 133276 (Metabolite A-2 of BAS 9210 I, Cyflumetofen)
 Daphnia magna Acute Immobilization Test. Project Number: 2011/1124105/US/OCR W/33/11 1/86/91/87. Unpublished study prepared by Institute of Industrial Organic Chemistry. 36 p.
- 48542791 Salinas, E. (2011) BAS 9210 I (Cyflumetofen) *Daphnia magna* Reproduction Test. Project Number: 2011/1109261/US/OCR 51E0510/09E022 375049. Unpublished study prepared by BASF SE. 58p.
- 48542792 Bergfield, A. (2011) BAS 9210 I: Static Toxicity Test with the Green Alga, *Pseudokirchneriella subcapitata*. Project Number: 2011/7001354/OCR US/65258 350816. Unpublished study prepared by ABC Laboratories, Inc. 65p.
- 48542793 Rebstock, M. (2011) BAS 9210 I: Static Toxicity Test with the Blue-green Alga, *Anabaena flos-aquae*. Project Number: 2011/7001234/OCR 350817 65259. Unpublished study prepared by ABC Laboratories, Inc. 60p.
- 48542794 Rebstock, M. (2011) BAS 9210 I: Static Growth Inhibition Test with the Marine Diatom, *Skeletonema costatum*. Project Number: 2011/7000375/OCR SUBNO/201104/05/01 65261. Unpublished study prepared by ABC Laboratories, Inc. 62p.

- 48542795 Rebstock, M. (2011) BAS 9210 I: Growth Inhibition Test with the Freshwater Diatom, *Navicula pelliculosa*. Project Number: 2011/7000374/OCR SUBNO/201104/03/01 65260. Unpublished study prepared by ABC Laboratories, Inc. 62p.
- 48542796 Migchielsen, M. (2011) Fresh Water Algal Growth Inhibition Test with AB-11 (Including Amendment No. 1). Project Number: 2011/7005237/OCR EU/488678. Unpublished study prepared by Notox B.V. 36p.
- 48542797 Migchielsen, M. (2008) Fresh Water Algal Growth Inhibition Test with B-1. Project Number: 2008/1098913/US/OCR EU/488672. Unpublished study prepared by Notox B.V. 34p.
- 48542798 Gerke, A. (2011) BAS 9210 I: Whole Sediment Acute Toxicity to the Marine Amphipod, *Leptocheirus plumulosus*. Project Number: 2011/7000699/OCR 105/02/01 375053. Unpublished study prepared by ABC Laboratories, Inc. 68p.
- 48542799 Koopmans, D. (2009) Sediment-water Chironomid Toxicity Test Using Water Spiked with OK-5101. Project Number: 2009/1126743/US/OCR EU/487988. Unpublished study prepared by Notox B.V. 59p.
- 48542801 Desmares-Koopmans, M. (2009) Sediment-Water Chironomid Toxicity Test Using Sediment Spiked with AB-1. Project Number: 2009/1126744/OCR, 489663. Unpublished study prepared by Notox B.V. 52p.
- 48542802 Backfisch, K.; Weltje, L. (2011) Chronic Toxicity of Reg. No. 5465430 (BAS 9210 I; Cyflumetofen) to the Non-Biting Midge *Chironomus riparius* - A Spiked Sediment Study. Project Number: 2010/1145507/OCR, 375052. Unpublished study prepared by BASF Aktiengesellschaft. 39p.
- 48542803 Weltje, L.; Backfisch, K. (2011) Chronic Toxicity of Reg. No. 5756389 (AB-1 Dimer; Metabolite of Cyflumetofen) to the Non-Biting Midge *Chironomus riparius* -A Spiked Sediment Study. Project Number: 2011/1266754/OCR, 382909. Unpublished study prepared by BASF SE. 44p.
- 48542804 Bergfield, A. (2011) BAS 9210 I: Growth Inhibition Test with the Freshwater Aquatic Plant, Duckweed, *Lemna gibba*. Project Number: 2011/7005069/OCR, 375041, 65262. Unpublished study prepared by ABC Laboratories, Inc. 71p.
- 48542805 Geuijen, W. (2002) Acute Contact Toxicity Study in the Honeybee with OK-5101 (Laboratory Test). Project Number: OTSA/0080/FR/OCR, 358594. Unpublished study prepared by Notox B.V. 23p.
- 48542806 Migchielsen, M. (2008) Acute Toxicity Study in the *Earthworm Eisenia fetida* with AB-1. Project Number: 2008/1098914/OCR, 488673. Unpublished study prepared by Notox B.V. 25p.
- 48542807 Migchielsen, M. (2008) Acute Toxicity Study in the *Earthworm Eisenia fetida* with B-1 (Combined Limit/Range-Finding Test). Project Number: 2008/1098915/OCR, 488670. Unpublished study prepared by Notox B.V. 19p.

- 48542808 McCormac, A. (2009) Determination of Chronic (Sub-Lethal) Toxicity of Technical-Grade OK-5101 to the Earthworm *Eisenia fetida* in an Artificial Soil Substrate. Project Number: 2009/1126745/OCR, NOT/09/1. Unpublished study prepared by Mambo-Tox, Ltd. 40p.
- 48542810 Gerke, A. (2011) BAS 9210 I: Effect on New Shell Growth of the Eastern Oyster (*Crassostrea virginica*). Project Number: 2011/7005234/OCR, 350824, 65256. Unpublished study prepared by ABC Laboratories, Inc. 61p.
- 48542811 Bergfield, A. (2011) BAS 9210 I: Acute Toxicity to the Mysid Shrimp, *Americamysis bahia*, Determined under Flow-Through Conditions. Project Number: 2011/7005280/OCR, 65255, 350823. Unpublished study prepared by ABC Laboratories, Inc. 55p.
- 48542812 Gerke, A. (2011) BAS 9210 I: Acute Toxicity to the Sheepshead Minnow, *Cyprinodon variegatus*, Determined under Flow-Through Conditions. Project Number: 2011/7005233/OCR, 65254, 350822. Unpublished study prepared by ABC Laboratories, Inc. 56p.
- 48542824 Van-Sikkelerus, B. (2003) Acute Toxicity Study in the Earthworm *Eisenia fetida* with OK-5101 (Combined Range-Finding and Limit Test). Project Number: OTSA/0108/OCR, 358605. Unpublished study prepared by Notox B.V. 16p.
- 48542914 Geuijen, W. (2006) Acute Contact Toxicity Study in the Honeybee with OK-5101 20% SC (Laboratory Test). Project Number: EU/472927 OTSA/0309/FR/US/OCR. Unpublished study prepared by Notox B.V. 21p.
- 48542916 Geuijen, W. (2006) Acute Toxicity Study in the Earthworm *Eisenia fetida fetida* (Sic) with OK-5101 20% SC. Project Number: OTSA/0323/FR/US/OCR EU/472938. Unpublished study prepared by Notox B.V. 21p.
- 48542920 Migchielsen, M. (2006) 96-Hour Acute Toxicity Study in Rainbow Trout with OK-5101 20% SC (Static). Project Number: OTSA/0304/FR/US/OCR EU/472894. Unpublished study prepared by Notox B.V. 27p.
- 48542921 Migchielsen, M. (2006) Acute Toxicity Study in *Daphnia magna* with OK-5101 20% SC (Static). Project Number: OTSA/0303/FR/US/OCR EU/472905. Unpublished study prepared by Notox B.V. 28p.
- 48542922 Migchielsen, M. (2006) Fresh Water Algal Growth Inhibition Test with OK-5101 20% SC. Project Number: OTSA/0302/FR/US/OCR EU/472916. Unpublished study prepared by Notox B.V. 32p.
- 48542923 Geuijen, W. (2003) Acute Oral Toxicity Study in the Honeybee with OK-5101 20 SC (Laboratory Test). Project Number: OTSA/0137/FR/US/OCR EU/366751. Unpublished study prepared by Notox B.V. 22p.
- 48542924 Geuijen, W. (2004) Toxicity Study in the Parasitic Wasp *Aphidius rhopalosiphi* with OK-5101 20 SC (Laboratory Test). Project Number: OTSA/0142/US/OCR EU/386156. Unpublished study prepared by Notox B.V. 18p.

- 48542925 Geuijen, W. (2004) Dose Response Toxicity Study in the Predatory Mite *Typhlodromus pyri* with OK-5101 20 SC (Laboratory Test). Project Number: OTSA/0143/US/OCR EU/386167. Unpublished study prepared by Notox B.V. 20p.
- 48542932 Lee, B. (2011) Cyflumetofen 20SC: Effects on the Vegetative Vigor of Non-target Terrestrial Plants (Tier II). Project Number: 2011/7000530/OCR 350814 65248. Unpublished study prepared by ABC Laboratories, Inc. 114p.
- 48542933 Lee, B. (2011) Cyflumetofen 20SC: Effects on the Seedling Emergence and Growth of Non-target Terrestrial Plants (Tier II). Project Number: 2011/7000529/OCR 65247 350813. Unpublished study prepared by ABC Laboratories, Inc. 125p.

Appendix A: Input and Results of Screening Imbibition Program (SIP v. 1.0)

Assumptions:

SIP employs the following conservative assumptions to derive upper bound exposure estimates:

1) The chemical concentration in drinking water is at the solubility limit in water (at 25°C).

2) The assessed animals obtain 100% of their daily water needs through drinking water.

3) The daily water need is equivalent to the daily water flux rate as calculated by Nagy and Peterson (1988).

4) The body weight of the assessed bird is equivalent to the smallest generic bird modeled in T-REX (i.e., 20 g). This assumption results in the highest ratio of exposure to toxicity for the 3 assessed avian body weights of T-REX (i.e., 20, 100, 1000 g).

Table 1. Inputs		
Parameter	Value	
Chemical name	cyflumetofen]
Solubility (in water at 25°C; mg/L)	0.0281	
Mammalian LD ₅₀ (mg/kg-bw)	2000	Non-definitive endpoint
Mammalian test species	laboratory rat	
Body weight (g) of "other" mammalian species		
Mammalian NOAEL (mg/kg-bw)	9.21	
Mammalian test species	laboratory rat	
Body weight (g) of "other" mammalian		
species		
Avian LD ₅₀ (mg/kg-bw)	2000	NOTE: Non-definitive
Avian test species	northern bobwhite quail	
Body weight (g) of "other" avian species		_
Mineau scaling factor	1.15	
Malland NOAEO (mallan diat)	000	-
Mallard NOAEC (mg/kg-diet)	930	-
Bobwhite quail NOAEC (mg/kg-diet)	154	_
NOAEC (mg/kg-diet) for other bird species		_
Body weight (g) of other avian species		_
NOAEC (mg/kg-diet) for 2nd other bird species		
Body weight (g) of 2nd other avian species		

Table 2. Mammalian Results

Parameter	Acute	Chronic
Upper bound exposure (mg/kg-bw)	0.0048	0.0048
Adjusted toxicity value (mg/kg-bw)	1538.3211	7.0840
Ratio of exposure to toxicity	0.0000	0.0007
Conclusion*	Drinking water exposure alone is NOT a potential concern for mammals	Drinking water exposure alone is NOT a potential concern for mammals

Table 3. Avian Results

Parameter	Acute	Chronic
Upper bound exposure (mg/kg-bw)	0.0228	0.0228
Adjusted toxicity value (mg/kg-bw)	1440.8590	16.3699
Ratio of exposure to acute toxicity	0.0000	0.0014
Conclusion*	Drinking water exposure alone is NOT a potential concern for birds	Drinking water exposure alone is NOT a potential concern for birds

*Conclusion is for drinking water exposure alone. This does not combine all routes of exposure. Therefore, when aggregated with other routes (*i.e.*, diet, inhalation, dermal), pesticide exposure through drinking water may contribute to a total exposure that has potential for effects to non-target animals.

Appendix B: Input and Output of Screening Tool for Inhalation Risk (STIR v. 1.0)

A. Ground application

Welcome to the EFED

Screening Tool for Inhalation Risk This tool is designed to provide the risk assessor with a rapid method for determining the potential

significance of the inhalation exposure route to birds and mammals in a risk assessment.

Input		
Application and Chemical Information		
Enter Chemical Name	cyflumetofen	
Enter Chemical Use	all proposed uses	
Is the Application a Spray? (enter y or n)	у	
If Spray What Type (enter ground or air)	ground	
Enter Chemical Molecular Weight (g/mole)	447.45	
Enter Chemical Vapor Pressure (mmHg)	4.40E-08	
Enter Application Rate (lb a.i./acre)	0.2	
Texisity Properties		
Toxicity Properties Bird		
Enter Lowest Bird Oral LD ₅₀ (mg/kg bw)	2000	Non-definitive endpoint
Enter Mineau Scaling Factor	1.15	
Enter Tested Bird Weight (kg)	0.178	
Mammal		
Enter Lowest Rat Oral LD ₅₀ (mg/kg bw)	2000	Non-definitive endpoint
Enter Lowest Rat Inhalation LC ₅₀ (mg/L)	2.65	Non-definitive endpoint
Duration of Rat Inhalation Study (hrs)	4	
Enter Rat Weight (kg)	0.35	
Output		
Results Avian (0.020 kg)		
Maximum Vapor Concentration in Air at Saturation (mg/m ³)	1.06E-03	
Maximum 1-hour Vapor Inhalation Dose (mg/kg)	1.33E-04	
Adjusted Inhalation LD ₅₀	1.48E+01	
Ratio of Vapor Dose to Adjusted Inhalation LD ₅₀	9.01E-06	Exposure not Likely Significant
Maximum Post-treatment Spray Inhalation Dose (mg/kg)	2.11E-02	
Ratio of Droplet Inhalation Dose to Adjusted Inhalation LD ₅₀	1.43E-03	Exposure not Likely Significant

Results Mammalian (0.015 kg)		
Maximum Vapor Concentration in Air at Saturation		
(mg/m ³)	1.06E-03	
Maximum 1-hour Vapor Inhalation Dose (mg/kg)	1.67E-04	
Adjusted Inhalation LD ₅₀	1.58E+02	
		Exposure not Likely
Ratio of Vapor Dose to Adjusted Inhalation LD ₅₀	1.06E-06	Significant
Maximum Post-treatment Spray Inhalation Dose (mg/kg)	2.66E-02	
Ratio of Droplet Inhalation Dose to Adjusted Inhalation		Exposure not Likely
LD ₅₀	1.68E-04	Significant

B. Aerial application

Welcome to the EFED

Screening Tool for Inhalation Risk This tool is designed to provide the risk assessor with a rapid method for determining the potential

significance of the inhalation exposure route to birds and mammals in a risk assessment.

Input

прас		1
Application and Chemical Information		
Enter Chemical Name	cyflumetofen	
Enter Chemical Use	tomato	
Is the Application a Spray? (enter y or n)	у	
If Spray What Type (enter ground or air)	air	
Enter Chemical Molecular Weight (g/mole)	447.45	
Enter Chemical Vapor Pressure (mmHg)	4.40E-08	
Enter Application Rate (lb a.i./acre)	0.2	
Toxicity Properties		
Bird		
Enter Lowest Bird Oral LD ₅₀ (mg/kg bw)	2000	Non-definitive endpoint
Enter Mineau Scaling Factor	1.15	
Enter Tested Bird Weight (kg)	0.178	
Mammal		
Enter Lowest Rat Oral LD ₅₀ (mg/kg bw)	2000	Non-definitive endpoint
Enter Lowest Rat Inhalation LC ₅₀ (mg/L)	2.65	Non-definitive endpoint
Duration of Rat Inhalation Study (hrs)	4	
Enter Rat Weight (kg)	0.35	
Output		

Results Avian (0.020 kg)		
Maximum Vapor Concentration in Air at Saturation		
(mg/m ³)	1.06E-03	
Maximum 1-hour Vapor Inhalation Dose (mg/kg)	1.33E-04	
Adjusted Inhalation LD ₅₀	1.48E+01	
Ratio of Vapor Dose to Adjusted Inhalation LD_{50}	9.01E-06	Exposure not Likely Significant
Maximum Post-treatment Spray Inhalation Dose (mg/kg)	1.92E-02	
Ratio of Droplet Inhalation Dose to Adjusted Inhalation LD ₅₀	1.30E-03	Exposure not Likely Significant
Results Mammalian (0.015 kg)		
Maximum Vapor Concentration in Air at Saturation (mg/m ³)	1.06E-03	
Maximum 1-hour Vapor Inhalation Dose (mg/kg)	1.67E-04	
Adjusted Inhalation LD ₅₀	1.58E+02	
Ratio of Vapor Dose to Adjusted Inhalation LD_{50}	1.06E-06	Exposure not Likely Significant
Maximum Post-treatment Spray Inhalation Dose (mg/kg)	2.42E-02	
Ratio of Droplet Inhalation Dose to Adjusted Inhalation LD ₅₀	1.53E-04	Exposure not Likely Significant

Appendix C: Cyflumetofen and Its Environmental Transformation Products and Degradation Pathways

Code Name/ Synonym	Chemical Name, Solubility, and \mathbf{K}_{OC}	Chemical Structure	Study Type	MRID	Label, Maximum %AR (day)	Final %AR (study length)
		PARENT				
Cyflumetofen BAS 92102I OK-5101	IUPAC: 2-methoxyethyl (<i>RS</i>)-2-(4- tert-butylphenyl)-2-cyano-3-oxo-3- (α , α , α -trifluoro-o-tolyl)propionate CAS: 2-methoxyethyl α -cyano- α - [4-(1,1-dimethylethyl)phenyl]-β- oxo-2-(trifluoromethyl) benzenepropanoate CAS No.: 400882-07-7 Formula: C ₂₄ H ₂₄ F ₃ NO ₄ MW: 447.45g/mol SMILES: FC(F)(F)c2cccc2C(=O)C(C#N)(c1 ccc(cc1)C(C)(C)C)C(=O)OCCOC		Hydrolysis pH4 Hydrolysis pH5 Hydrolysis pH7 Hydrolysis pH9 Aqueous photolysis Aerobic soil NJ Aerobic soil CA Aerobic soil CA Aerobic soil WI Aerobic soil 1 Aerobic soil 2 Aerobic soil 3 Aerobic soil	48542625 48542627 48542748 48542752 48542752		6.38 (30) 4.00 (30) <loq (30)<br=""><loq (1)<br=""><loq (2)<br="">2.75 (120) 5.04 (120) 1.93 (120) 3.19 (120) 10.6 (120) 5.4 (120) 1.8 (181) A <loq (120)<="" td=""></loq></loq></loq></loq>
	<u>Mobility</u> Water solubility: 0.0281 mg/L Koc: 173,900 L/kg		Anaerobic soil NJ Anaerobic soil CA Anaerobic soil IN Anaerobic soil WI	48542748		B 0.7 (120) B 2.1 (120) B 0.5 (120) B 1.2 (120)
		* #	Aerobic aquatic FL Aerobic aquatic PA	48542768		A 19.0 (133) B 1.7 (133) A 12.7 (133) B 2.5 (133)
		 # Denotes position of A-[ring-U-¹⁴C]OK-5101 radiolabelled in the phenyl ring * Denotes position of B-[ring-U-¹⁴C]OK-5101 radiolabelled in the tolyl ring 	Aerobic aquatic 1 Aerobic aquatic 2 Anaerobic aquatic FL	48542770 48542771 48542769	-	

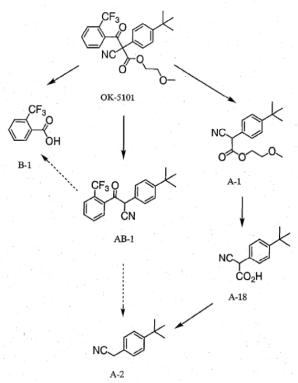
 Table 2. Cyflumetofen and Its Environmental Transformation Products.

Code Name/ Synonym	Chemical Name, Solubility, and K _{OC}	Chemical Structure	Study Type	MRID	Label, Maximum %AR (day)	Final %AR (study length)	
			Anaerobic aquatic PA			A <loq (120)<br="">B <loq (120)<="" td=""></loq></loq>	
			TFD WA			<loq (195)<="" td=""></loq>	
			TFD NY	48542757		<loq (372)<="" td=""></loq>	
			TFD FL	105 12757		<loq (134)<="" td=""></loq>	
			TFD CA			<loq (104)<="" td=""></loq>	
	MAJO	R (>10%) TRANSFORMATIC	ON PRODUCTS				
A-1 (A label	Formula: C ₁₆ H ₂₁ NO ₃		Hydrolysis pH4		26.94 (21)	21.03 (30)	
only)	MW: 275.35 g/mol	\setminus /	Hydrolysis pH5		10.02 (7)	0.51 (30)	
() () () () () () () () () () () () () (SMILES: C(C#N)(c1ccc(cc1)C(C)(C)C)C(=O))OCCOC		Hydrolysis pH7	48542625	14.44% (8 hours)	<0.22 (30)	
	Mobility		Hydrolysis pH9		28.27% (15 min)	<loq (1)<="" td=""></loq>	
	Water solubility: 38 mg/L		Anaerobic soil NJ		A 20.8 (120)	20.8 (120)	
]	Koc: 459.1 L/kg (EpiSuite	NC	Anaerobic soil CA	48542748	B label mea	asured only,	
	estimates)	II O	Anaerobic soil IN	40342740	Metabolism stud	ies did not follow	
			Anaerobic soil WI		this de	is degradate	
A-2 (A label	Formula: $C_{12}H_{15}N$		Hydrolysis pH4		14.55 (30)	14.55 (30)	
only)	MW: 173.26 g/mol		Hydrolysis pH5	48542625	14.12 (21)	12.41 (30)	
omy)	SMILES: C(C#N)(c1ccc(cc1)C(C)(C)C)		Hydrolysis pH7	40342023	44.12 (30)	44.12 (30)	
	C(C#N)(CTCCC(CCT)C(C)(C)C)		Hydrolysis pH9		15.05 (1.5 h)	6.17 (1)	
	Mobility	\searrow –	Aerobic soil NJ		2.58 (7)	0.44 (120)	
	Water solubility: 34.95mg/L		Aerobic soil CA	18512718	B label measured	d anter Study did	
	Koc: 1200 L/kg (EpiSuite		Aerobic soil IN	+05+27+0		nis degradate	
	estimates)	<pre></pre>	Aerobic soil WI		not follow u		
			Anaerobic aquatic FL	48542769	46.15 (90)	25.79 (120)	
		NC/	Anaerobic aquatic PA	+03+2707	26.02 (62)	13.65 (120)	
			TFD WA		<loq< td=""><td><loq (195)<="" td=""></loq></td></loq<>	<loq (195)<="" td=""></loq>	
			TFD NY	48542757	<loq< td=""><td><loq (372)<="" td=""></loq></td></loq<>	<loq (372)<="" td=""></loq>	
			TFD FL	48342737	<loq< td=""><td><loq (134)<="" td=""></loq></td></loq<>	<loq (134)<="" td=""></loq>	
			TFD CA		<loq< td=""><td><loq (104)<="" td=""></loq></td></loq<>	<loq (104)<="" td=""></loq>	
A-12 (A label	Formula: $C_{11}H_{14}O_2$	0, /	Anaerobic soil NJ		9.9 (120)	9.9 (120)	
only)	MW: 178.23 g/mol		Anaerobic soil CA	48542749	B label measured		
,, <i>j</i>	SMILES:	HOÝ	Anaerobic soil IN		not follow th	nis degradate	

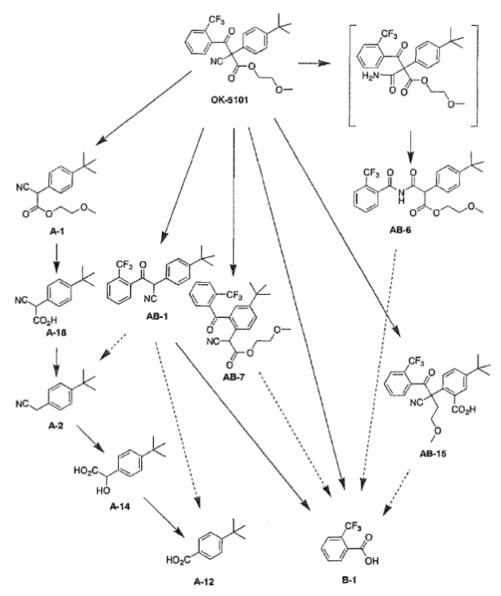
Code Name/ Synonym	Chemical Name, Solubility, and K _{OC}	Chemical Structure	Study Type	MRID	Label, Maximum %AR (day)	Final %AR (study length)
	C(=O)(c1ccc(cc1)C(C)(C)C)O		Anaerobic soil WI			
			Aerobic aquatic FL	40540760	17.6 (15)	0.8 (133)
	Mobility		Aerobic aquatic PA	48542768	4.5 (8)	<loq (133)<="" td=""></loq>
	Water solubility: 28.94 mg/L Koc: 113.7 L/kg (EpiSuite		Anaerobic aquatic FL	10-10-10	Not de	etected
	estimates)		Anaerobic aquatic PA	48542769	30.53 (15)	20.28 (120)
A-18 (A label	Formula: C ₁₃ H ₁₅ NO ₂	× /	Hydrolysis pH4		12.63 (30)	12.63 (30)
only)	MW: 217.27 g/mol	Y	Hydrolysis pH5	105 10 (05	8.63 (21)	7.37 (30)
Ulliy)	SMILES:		Hydrolysis pH7	48542625	36.22 (5)	10.85 (10)
	C(C#N)(c1ccc(cc1)C(C)(C)C)C(=O)		Hydrolysis pH9		48.8 (1)	48.8 (1)
Mobility Water solubility: 201.8 mg/L Koc: 139 L/kg (EpiSuite estimates)	NC OH Aero	Aerobic aquatic 1		4.9 (30)	1.9 (98)	
		Aerobic aquatic 2	48542770	22.7 (5)	11.3 (57)	
AB-1 (both Formula: C ₂₀ H ₁₈ F ₃ NO		Hydrolysis pH4		34.8 (30)	34.8 (30)	
labels)	MW: 345.37 g/mol SMILES:		Hydrolysis pH5	48542625	23 67 (14)	23.35 (30)
labels)			Hydrolysis pH7		44.51 (5)	36.96 (10)
	FC(F)(F)c2cccc2C(=O)C(C#N)(c1 ccc(cc1)C(C)(C)C)		Hydrolysis pH9		45.68 (1)	45.68 (1)
	$\operatorname{ccc}(\operatorname{cc1})\operatorname{C}(\operatorname{C})(\operatorname{C})\operatorname{C})$		Aerobic soil NJ		9.72 (58)	3.83 (120)
	Mobility		Aerobic soil CA	40540740	6.8 (29)	2.17 (120)
	Water solubility: 0.142 mg/L		Aerobic soil IN	48542748	6.25 (58)	3.29 (120)
	Koc: 66,920 L/kg (EpiSuite	25	Aerobic soil WI		11.06 (16)	6.86 (120)
	estimates)	CF3	Aerobic soil	48542745	A 8.3 (59) B 7.8 (30)	3.8 (181) 5.1 (181)
			Anaerobic soil NJ		A 20.8 (120) B 23.5 (7)	20.8 (120) 19.4 (120)
		NC	Anaerobic soil CA	48542749	B 19.9 (7)	9.6 (120)
			Anaerobic soil IN		B 19.6 (30)	17.2 (120)
			Anaerobic soil WI		B 31.2 (30)	26.8 (120)
			Aerobic aquatic FL		A 8.5 (133) B 11.8 (8)	8.5 (133) 10.5 (133)
			Aerobic aquatic PA	48542768	A 3.8 (30) B 7.2 (100)	3.8 (133) 5.1 (133)
			Aerobic aquatic 1	48542770	A 6.6 (15) B <loq< td=""><td><loq (98)<br=""><loq (103)<="" td=""></loq></loq></td></loq<>	<loq (98)<br=""><loq (103)<="" td=""></loq></loq>
			Aerobic aquatic 2	48542771	A 15.1 (29)	2.4 (57)

Code Name/ Synonym	Chemical Name, Solubility, and K _{OC}	Chemical Structure	Study Type	MRID	Label, Maximum %AR (day)	Final %AR (study length)
					B 16.2 (0.7)	2.4 (103)
			Anaerobic aquatic FL	10512760	A 34.61 (120) B 26.11 (120)	34.61 (120) 26.11 (120)
			Anaerobic aquatic PA	48542769	A 38.77 (15) B 38.3 (30)	22.81 (120) 22.56 (120)
			Fate S	Studies Usi	ng AB-1 as Pare	
			Aerobic soil 1		95 (0)	8 (120)
			Aerobic soil 2	48542755	88 (0)	6 (120)
			Aerobic soil 3		90 (0)	3 (120)
AB-7	Formula: $C_{24}H_{24}F_3NO_4$ MW: 447.46 SMILES: C(C#N)(c1c(C(=O)c2cccc2C(F)(F)(F))(cc(cc1)C(C)(C)C)C(=O)OCCO)C(C) C Mobility Water solubility: 0.05367 mg/L Koc: 25,600 L/kg (EpiSuite estimates)	CF3 NC O	Aquatic Photolysis	48542627	10.82 (4 hrs.)	5.73 (2)
AB-11	CAS No.: 400882-00-0		Aerobic aquatic 1		Not de	etected
	Formula: $C_{24}H_{24}F_3NO_3$ MW: 431.5 SMILES: FC(F)(F)c2ccccc2C(=O)C(C#N)(c1 ccc(cc1)C(C)(C)C)C(=O)OC(C)C Mobility Water solubility: 0.0102 mg/L Koc: 85,630 L/kg (EpiSuite estimates)	CF3 0 NC 0	Aerobic aquatic 2	48542770	A 13.7 (0.7)	5.9 (57)

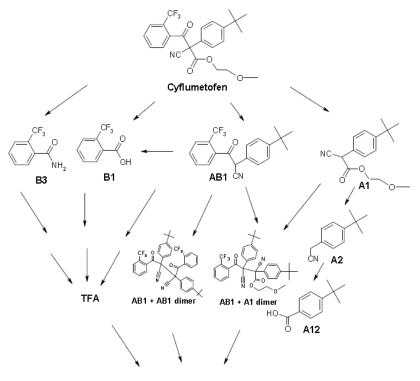
Code Name/ Synonym	Chemical Name, Solubility, and \mathbf{K}_{OC}	Chemical Structure	Study Type	MRID	Label, Maximum %AR (day)	Final %AR (study length)
AB-15	Formula: C ₂₄ H ₂₄ F ₃ NO ₄ MW: 447.46 SMILES: FC(F)(F)c2ccccc2C(=O)C(C#N)(c1 c(C(=O)O)cc(cc1)C(C)(C)C)CCOC <u>Mobility</u> Water solubility: 0.04085 mg/L Koc: 10,400 L/kg (EpiSuite estimates)	$CF_{3} \qquad \bigcirc \qquad $	Aquatic Photolysis	48542627	54.67 (2)	54.67 (2)
AB-1 Dimer	Formula: $C_{40}H_{36}F_6N_2O_2$		Aerobic soil NJ		25.37 (120)	25.37 (120)
	MW: 690.73		Aerobic soil CA	48542748	18.7 (120)	18.7 (120)
	SMILES: C(C#N)(c1ccc(cc1)C(C)(C)C)(FC(Aerobic soil IN	40342740	10.7 (120)	10.7 (120)
	F)(F)c2ccccc2C(=O))C(C#N)(c1ccc		Aerobic soil WI		23.0 (120)	23.0 (120)
	(cc1)C(C)(C)C)(FC(F)(F)c2cccc2 C(=O))		Anaerobic soil NJ		A 14.1 (3) B 16.1 (3)	12.6 (120) 8.4 (120)
			Anaerobic soil CA	48542748		14.6 (120)
	<u>Mobility</u> Water solubility: 4.082×10 ⁻¹⁰	NC	Anaerobic soil IN	4	B 12.8 (3)	7.7 (120)
	mg/L		Anaerobic soil WI		B 12.4 (3)	10.2 (120)
	Koc: 1.617×10 ⁸ L/kg (EpiSuite estimates)	∕∖ F ₃ C′	Aerobic aquatic FL	48542768	A 5.5 (30) B 3.8 (30)	4.9 (133) 2.5 (133)
			Aerobic aquatic PA	100-12/00	A 5.0 (133) B 6.8 (133)	5.0 (133) 6.8 (133)


Code Name/ Synonym	Chemical Name, Solubility, and K _{OC}	Chemical Structure	Study Type	MRID	Label, Maximum %AR (day)	Final %AR (study length)
			TFD WA	48542757	0.004 ppm (14)	<loq (195)<="" td=""></loq>
			TFD NY		0.012 ppm (132)	<loq (372)<="" td=""></loq>
			TFD FL		0.003 ppm (14)	<loq (134)<="" td=""></loq>
			TFD CA		0.003 ppm (5)	<loq (104)<="" td=""></loq>
AU16 (A-1/A-1	Formula: C ₃₂ H ₄₀ N ₂ O ₆		Hydrolysis pH4	48542625	6.56 (14)	5.53 (30)
Dimer) (A	MW: 548.69g/mol		Hydrolysis pH5		15.78 (30)	15.78 (30)
label only)	SMILES:		Hydrolysis pH7	48342023	5.03 (10)	5.03 (10)
laber only)	C(C#N)(c1ccc(cc1)C(C)(C)C)(C(= O)OCCOC)C(C#N)(c1ccc(cc1)C(C)C)(C)C(C)C)C(C)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C)C(C)		Hydrolysis pH9		4.16(1)	4.16(1)
)(C)C)(C(=O)OCCOC)		Aerobic soil NJ		A 2.33 (59)	0.46 (120)
			Aerobic soil CA			
	<u>Mobility</u>		Aerobic soil IN	48542748	B label measured only, Degradate not followed in this study	
	Water solubility: 0.00722 mg/L Koc: 50,600 L/kg (EpiSuite estimates)	× · · · ·	Aerobic soil WI			
AU17 (A-1/AB-	Formula: C ₃₆ H ₃₈ F ₃ N ₂ O ₄	CF ₃ Hydrolysi	Hydrolysis pH4		7.76 (21)	6.39 (30)
1 Dimer)	MW: 619.71g/mol		Hydrolysis pH5	48542625	21.09 (30)	21.09 (30)
(both labels)	SMILES: C(C#N)(c1ccc(cc1)C(C)(C)C)(FC(Hydrolysis pH7	48342023	Not detected	
	F(F)(F)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)(C)		Hydrolysis pH9		Not de	etected
	(cc1)C(C)(C)C(c=0)OCCOC)		Aerobic soil NJ		6.93 (29)	5.92 (120)
		NC Q	Aerobic soil CA		8.2 (120)	8.2 (120)
	Mobility		Aerobic soil IN	48542748	4.79 (16)	3.09 (120)
	Water solubility: 1.728×10 ⁻⁶ mg/L Koc: 2.86×10 ⁶ L/kg (EpiSuite estimates)	\times \circ \sim	Aerobic soil WI		3.88 (120)	3.88 (120)
B-1	IUPAC: o-trifluoromethylbenzoic		Hydrolysis pH4	48542625	48.4 (30)	48.4 (30)
2-(trifluoro	acid CAS: 2-(trifluoromethyl)benzoic	CF3	Hydrolysis pH5		52.62 (30)	52.62 (30)
`			Hydrolysis pH7		53.17 (2)	52.85 (10)
methyl)	acid		Hydrolysis pH9		50.31 (1)	50.31 (1)
benzoic acid	uora		Aerobic soil NJ		30.85 (16)	<loq (120)<="" td=""></loq>
2-TFMBA	CAS No.: 433-97-6	Он	Aerobic soil CA	48542748	43.79 (58)	42.08 (120)
(B label only)	Formula: CF ₃ C ₆ H ₄ COOH		Aerobic soil IN		23.97 (7)	0.21 (120)
(B laber only)	MW: 190.12 g/mol		Aerobic soil WI		21.0 (7)	0.56 (120)
	SMILES: OC(=O)c1ccccc1C(F)(F)F		Aerobic soil 1		55.2 (21)	33.8 (120)
	OC(=O)c1ccccc1C(F)(F)F		Aerobic soil 2	48542752	43.2 (35)	2.6 (120)
			Aerobic soil 3		52.8 (58)	43.0 (120)

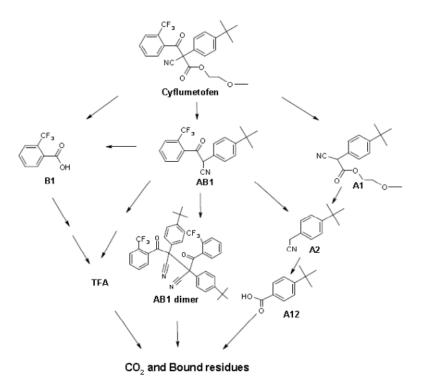
Code Name/ Synonym	Chemical Name, Solubility, and K _{OC}	Chemical Structure	Study Type	MRID	Label, Maximum %AR (day)	Final %AR (study length)
	<u>Mobility</u>		Aerobic soil	48542745	22.9 (6)	2.7 (181)
	Water solubility: 363.3 mg/L (EpiSuite estimate) Koc: 79 L/kg		Anaerobic soil NJ	48542749	49 (120)	49 (120)
			Anaerobic soil CA		50.3 (120)	50.3 (120)
			Anaerobic soil IN		50.1 (120)	50.1 (120)
			Anaerobic soil WI		44.2 (120)	44.2 (120)
			Aerobic aquatic FL	48542768	58.1 (15)	26.5 (133)
			Aerobic aquatic PA		60.2 (59)	33.8 (133)
		Aerobic aquatic 1	40540771	56.8 (62)	52.5 (103)	
			Aerobic aquatic 2	48542771	84.4 (12)	67.6 (103)
			Anaerobic aquatic FL	4x 34 / / 69	68.78 (90)	63.38 (120)
			Anaerobic aquatic PA		72.39 (90)	63.88 (120)
		TFD WA TFD NY TFD FL	49542757	0.030 ppm (1)	<loq (195)<="" td=""></loq>	
				0.056 ppm (3)	<loq (372)<="" td=""></loq>	
			TFD FL	48542757	0.026 ppm (24)	<loq (134)<="" td=""></loq>
			TFD CA		0.079 ppm (19)	<loq (104)<="" td=""></loq>
			Fate	Studies Us	ing B-1 as Paren	t
			Aerobic soil 1		102 (0)	<loq (120)<="" td=""></loq>
		Aerobic soil 2	48542754	105 (0)	1.3 (120)	
			Aerobic soil 3		100 (0)	20 (120)
B-3 2-(trifluoro	benzamide		Aerobic soil NJ	48542748	4.98 (7)	<loq (120)<="" td=""></loq>
		CF ₃ O NH ₂ O Aerobic Aerobic Aerobic Aerobic Anaerob Ana Ana Anaerob Ana Ana Anaerob Ana Ana Ana Ana Ana Ana Ana Ana Ana Ana	Aerobic soil CA		17.96 (16)	<loq (120)<="" td=""></loq>
			Aerobic soil IN		4.62 (7)	<loq (120)<="" td=""></loq>
• /			Aerobic soil WI		3.21 (16)	0.99 (120)
			Aerobic soil 1	48542752 12.7 (6)	23.0 (21)	5.2 (120)
			Aerobic soil 2		12.7 (6)	<loq (120)<="" td=""></loq>
			Aerobic soil 3		4.8 (21)	<loq (120)<="" td=""></loq>
			Anaerobic soil NJ	48542749	A B 0.9 (58)	<loq (120)<="" td=""></loq>
			Anaerobic soil CA		B 2.9 (30)	2.0 (120)
			Anaerobic soil IN		B 3.0 (15)	<loq (120)<="" td=""></loq>
			Anaerobic soil WI		B 1.3 (30)	<loq (120)<="" td=""></loq>
			TFD WA	48542757	<loq< td=""><td><loq (195)<="" td=""></loq></td></loq<>	<loq (195)<="" td=""></loq>
			TFD NY		<loq< td=""><td><loq (372)<="" td=""></loq></td></loq<>	<loq (372)<="" td=""></loq>
			TFD FL		<loq< td=""><td><loq (134)<="" td=""></loq></td></loq<>	<loq (134)<="" td=""></loq>


Code Name/ Synonym	Chemical Name, Solubility, and K _{OC}	Chemical Structure	Study Type	MRID	Label, Maximum %AR (day)	Final %AR (study length)
			TFD CA		0.005 ppm (14)	<loq (104)<="" th=""></loq>
			Fate	Studies Us	ing B-3 as Paren	t
			Aerobic soil 1		86 (0)	5.6 (48)
			Aerobic soil 2	48542756	87 (0)	1.5 (48)
			Aerobic soil 3		87 (0)	0.2 (48)
Unextracted residues (both	(not applicable)		Aerobic soil NJ		B 35.04 (58) A 43.07 (120)	32.59 (120) 43.07 (120)
			Aerobic soil CA	48542748	B 21.58 (120)	21.58 (120)
labels)			Aerobic soil IN	-	B 38.29 (58)	37.98 (120)
			Aerobic soil WI		B 35.66 (58)	31.59 (120)
			Aerobic soil 1		B 32.1 (58)	30.1 (120)
			Aerobic soil 2	48542752	B 40.1 (120)	40.1 (120)
			Aerobic soil 3		B 38.4 (35)	33 (120)
			Aerobic soil	48542745	A 43.4 (14) B 34.9 (59)	37.9 (181) 30.7 (181)
				A 32.4 (120) B 22.6 (3)	32.4 (120) 14.6 (120)	
			Anaerobic soil CA	48542749	B 20 (1)	18.3 (120)
			Anaerobic soil IN		B 21.2 (3)	15.4 (120)
			Anaerobic soil WI		B 16.3 (7)	14.6 (120)
			Aerobic aquatic FL	40540760	A 34.3 (133) B 29.8 (100)	34.3 (133) 22.6 (133)
			Aerobic aquatic PA	48542768	A 44.2 (59) B 23.7 (100)	21.5 (133) 14.7 (133)
			Anaerobic aquatic FL		A 4.12 (120) B 12.07 (90)	4.12 (120) 11.15 (120)
			Anaerobic aquatic PA	48542769	A 8.73 (90) B 8.39 (30)	7.46 (120) 8.33 (120)
Carbon dioxide	Carbon dioxide	0==0	Aerobic soil NJ	48542748	B 24.1 (120) A 17.3 (120)	24.1 (120) 17.3 (120)
	Formula: CO ₂ MW: 44.1 g/mol SMILES: O=C=O		Aerobic soil CA		B 9.9 (120)	9.9 (120)
			Aerobic soil IN		B 17.6 (120)	17.6 (120)
			Aerobic soil WI		B 17.3 (120)	17.3 (120)
			Aerobic soil 1	105 105 50	B 9.5 (120)	9.5 (120)
			Aerobic soil 2	48542752	B 20.7 (120)	20.7 (120)

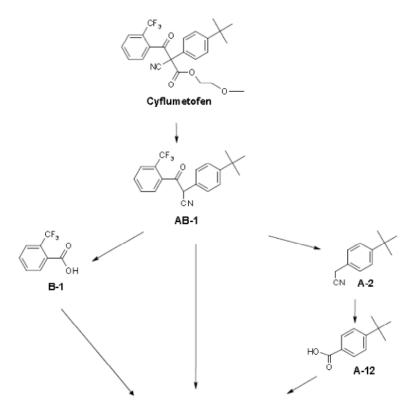
Code Name/ Synonym	Chemical Name, Solubility, and K _{OC}	Chemical Structure	Study Type	MRID	Label, Maximum %AR (day)	Final %AR (study length)
			Aerobic soil 3		B 1.8 (90)	1.7 (120)
			Aerobic soil	48542745	A 27.9 (181) B 39.3 (181)	27.9 (181) 39.3 (181)
			Anaerobic soil NJ		A 2.6 (120) B 1.0 (120)	2.6 (120) 1.0 (120)
			Anaerobic soil CA	48542749	B 0.8 (120)	0.8 (120)
			Anaerobic soil IN		B 1.0 (120)	1.0 (120)
			Anaerobic soil WI		B 1.0 (120)	1.0 (120)
			Aerobic aquatic FL	48542768	A 8.3 (133) B 3.0 (133)	8.3 (133) 3.0 (133)
			Aerobic aquatic PA		A 8.3 (133) B 3.3 (133)	8.3 (133) 3.3 (133)
			Aerobic aquatic 1	48542770	A 19.9 (98) B 2.8 (103)	19.9 (98) 2.8 (103)
			Aerobic aquatic 2	48542771	A 1.8 (57) B 3.2 (103)	1.8 (57) 3.2 (103)
			Anaerobic aquatic FL	49542760	A 0.53 (120) B 0.06 (120)	0.53 (120) 0.06 (120)
			Anaerobic aquatic PA	48542769 ntic PA	A 1.53 (120) B 0.16 (120)	1.53 (120) 0.16 (120)
	MINO	R (<10%) TRANSFORMATION	PRODUCTS		·	•
AB-12	Formula: C ₃₂ H ₃₂ F ₃ NO ₃	Aerobic aquatic 1		Not detected		
	MW: 535.6 SMILES: FC(F)(F)c2cccc2C(=O)C(C#N)(c1 ccc(cc1)C(C)(C)C)C(=O)OC(c1ccc (cc1)C(C)(C)C) Mobility Water solubility: 1.074×10^{-5} mg/L Koc: 7.876×10^{6} (EpiSuite estimates)	CF3 0 NC 0	Aerobic aquatic 2	48542770	A 7.6 (2)	1.9 (57)


^A nd means "not detected". AR means "applied radioactivity". MW means "molecular weight". LOQ means "limit of quantitation". Bolded values are laboratory study values >10%AR. TFD means Terrestrial Field Dissipation Study.

1. Appendix Figure C-1 Abiotic hydrolysis.

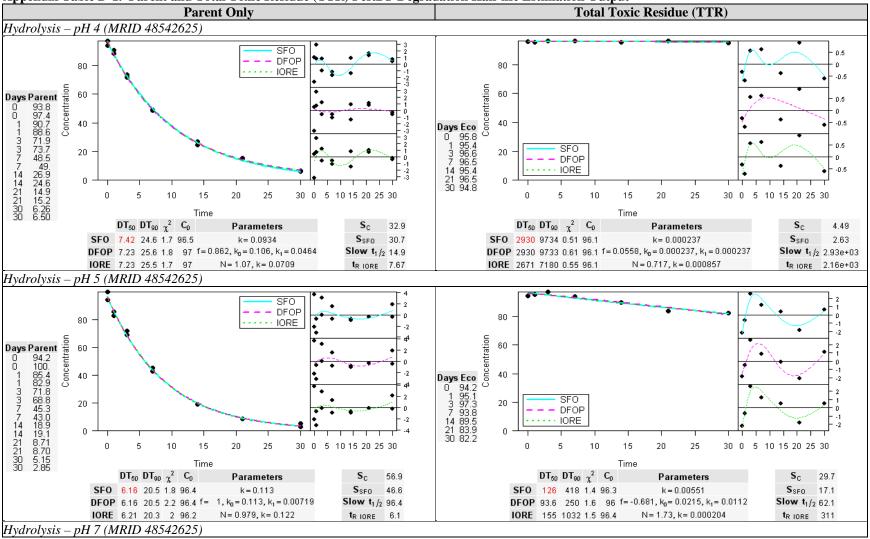


Appendix Figure C-2. Aquatic photolysis.

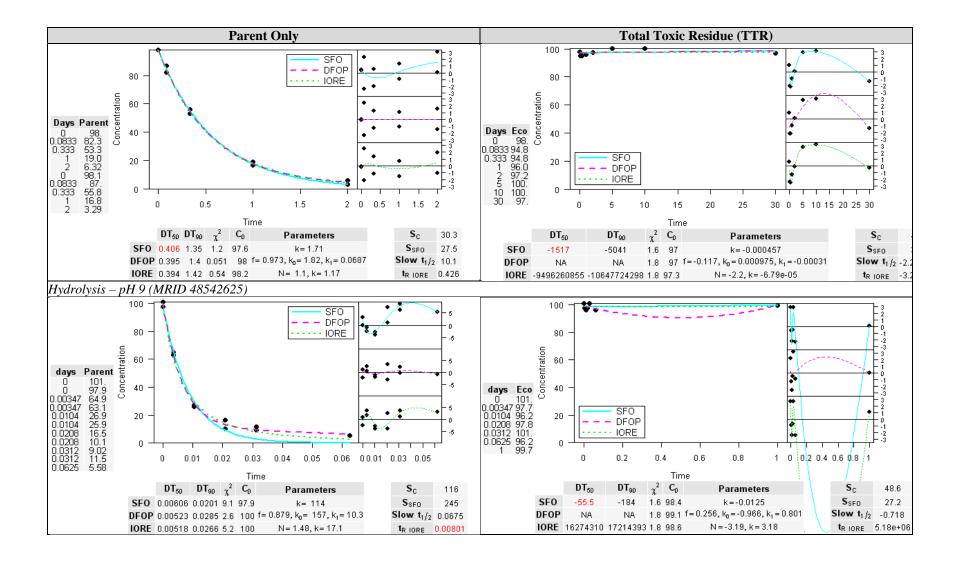


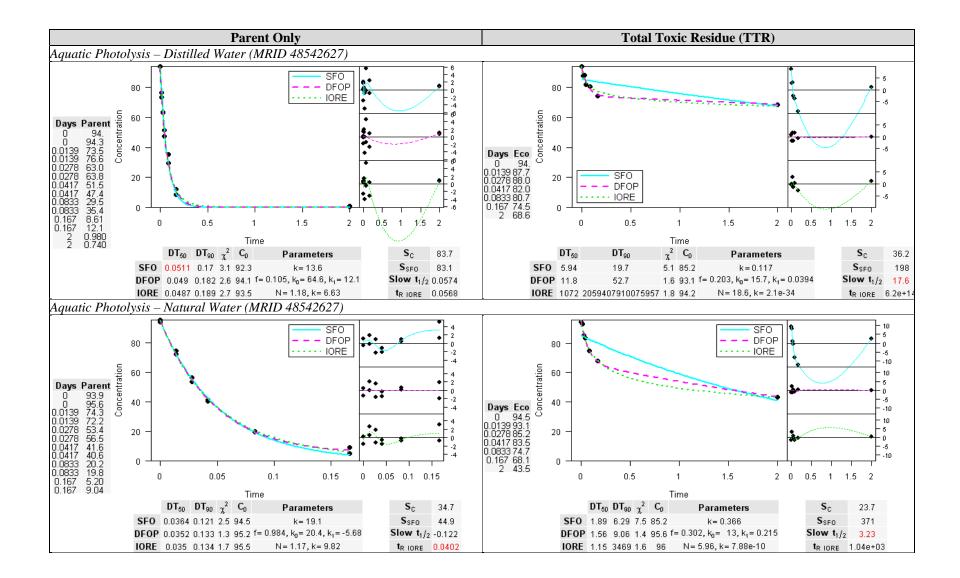
CO₂ and Bound residues

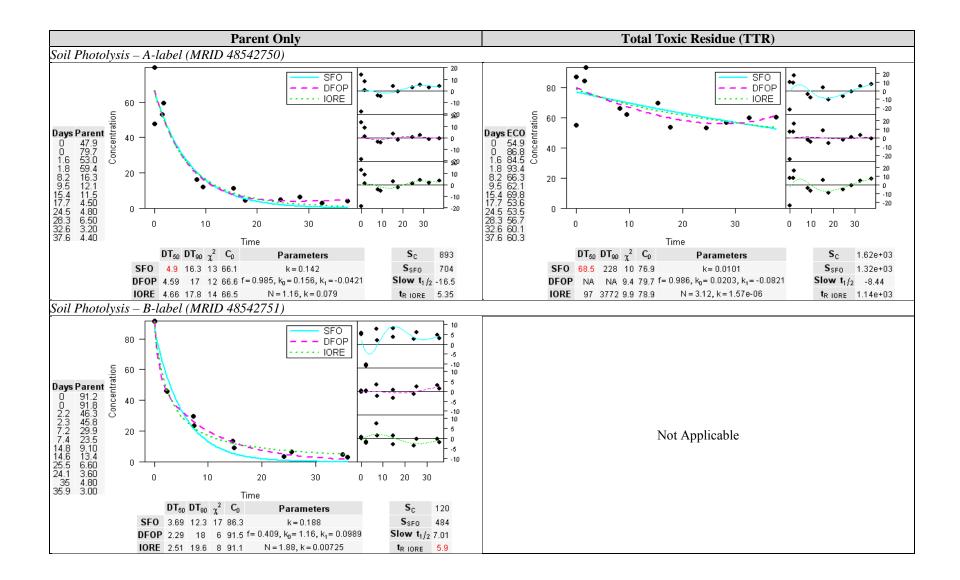
Appendix Figure C-3. Aerobic soil metabolism.

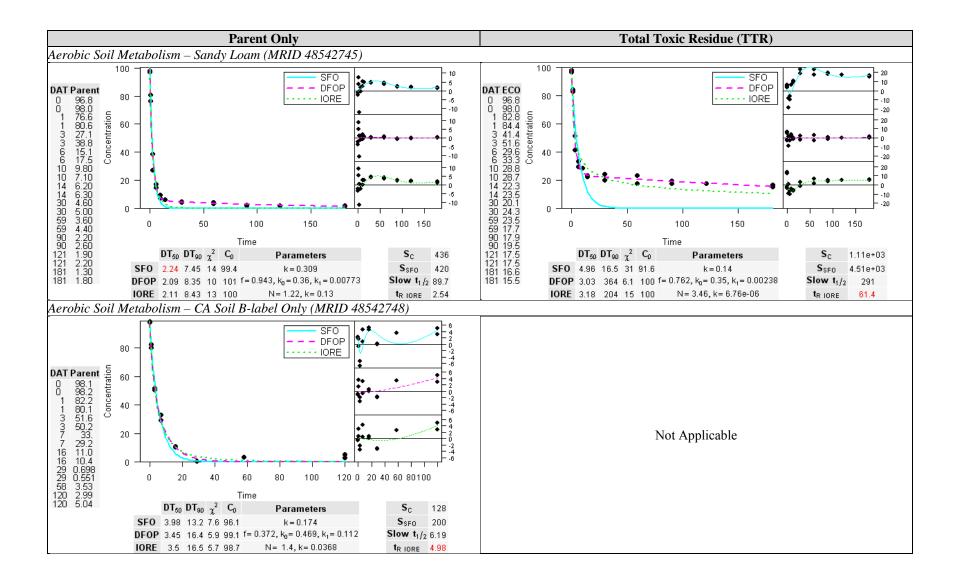


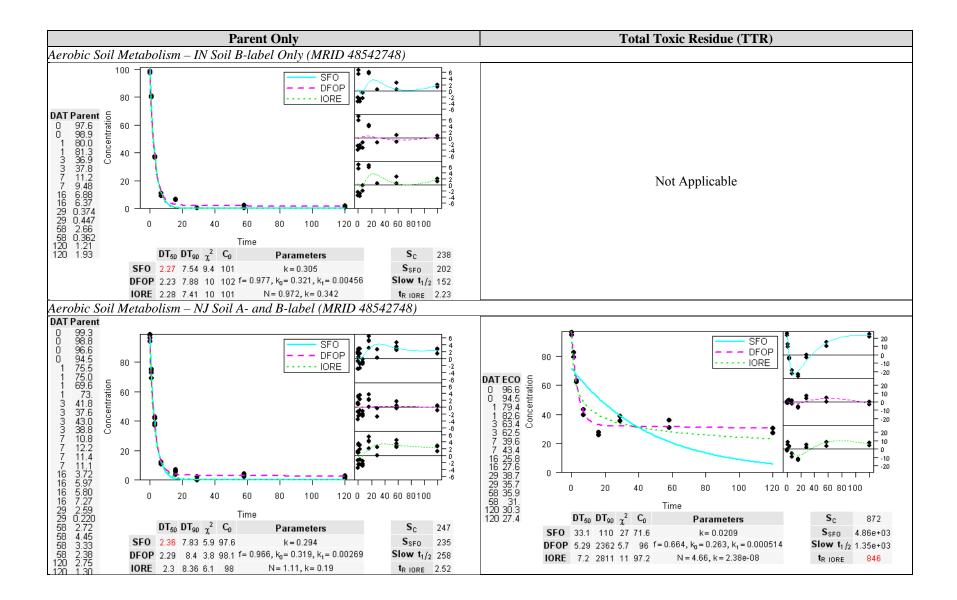
Appendix Figure C-4. Aerobic aquatic metabolism.

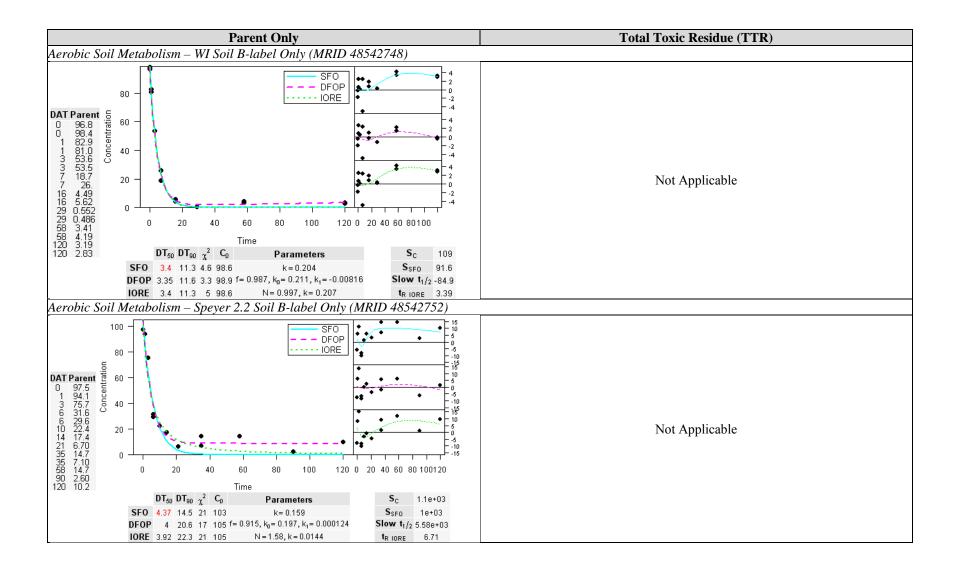


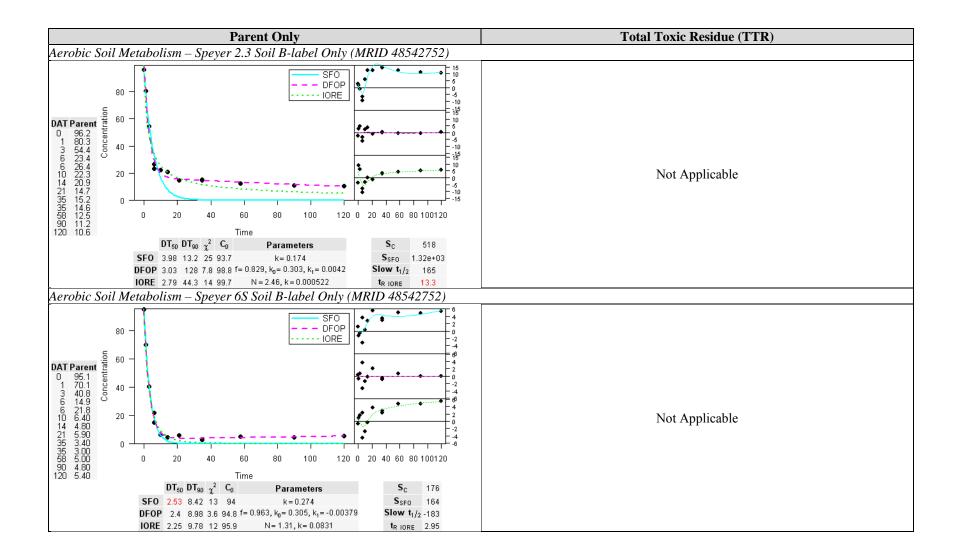

 ${\rm CO}_2$ and Bound residues Appendix Figure C-5. Anaerobic aquatic metabolism.

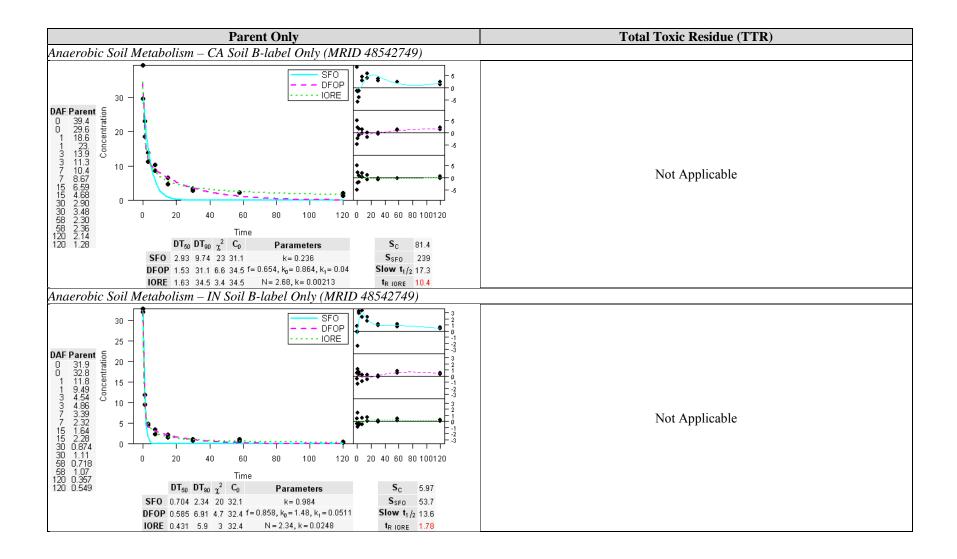

Appendix D: Parent and Total Toxic Residue (TTR) PestDF Degradation Half-life Estimation Output and Available Degradate Study Half-life Estimation Output

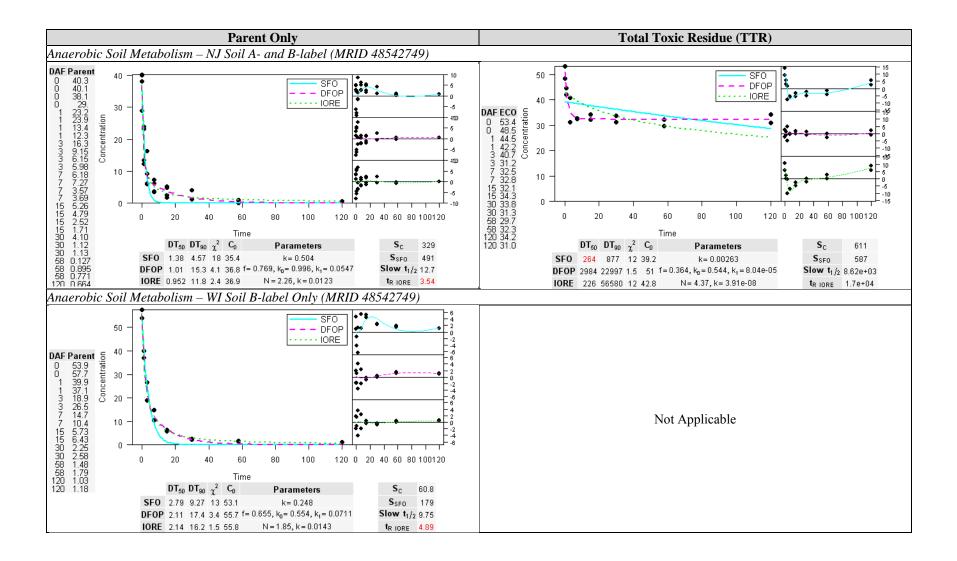


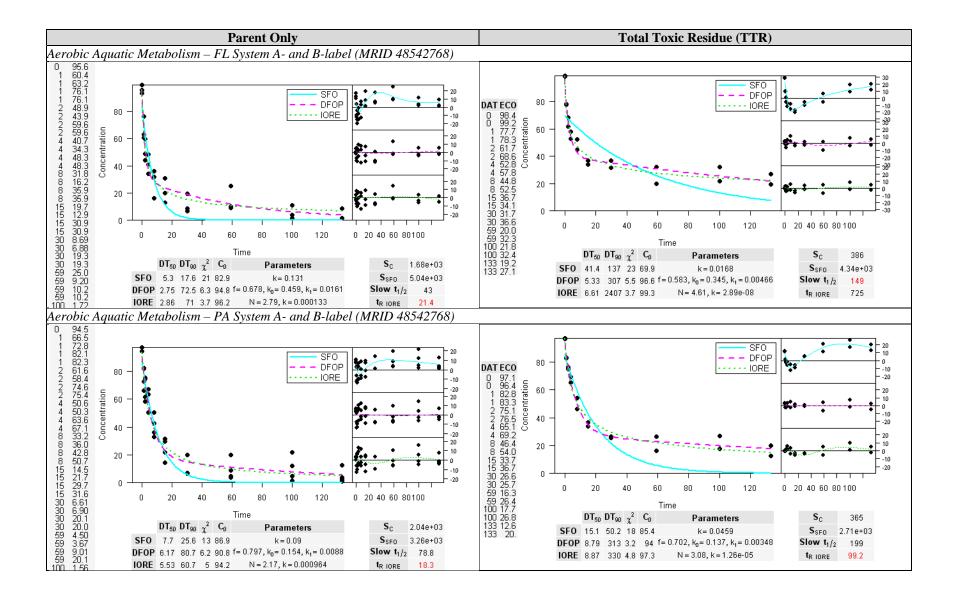

Appendix Table D-1. Parent and Total Toxic Residue (TTR) PestDF Degradation Half-life Estimation Output

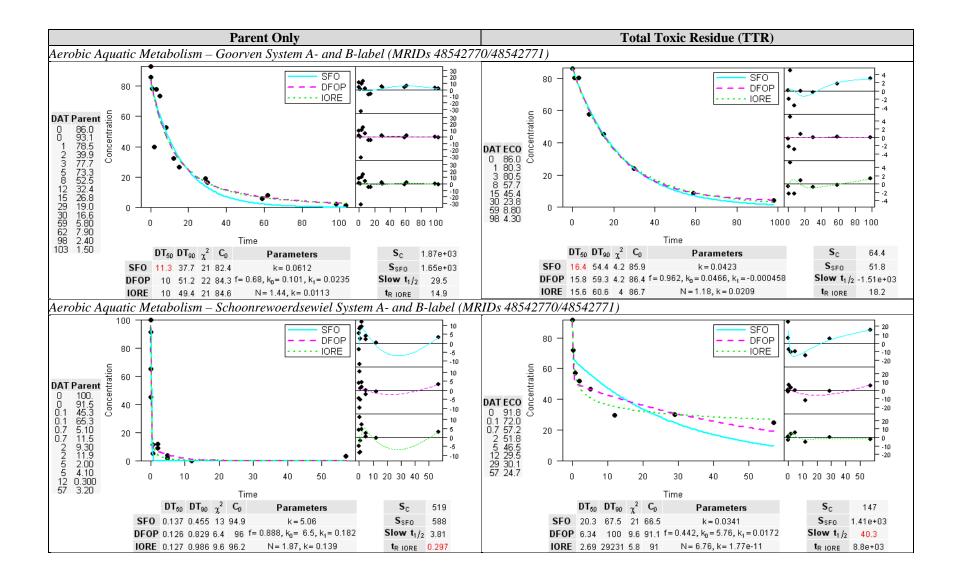


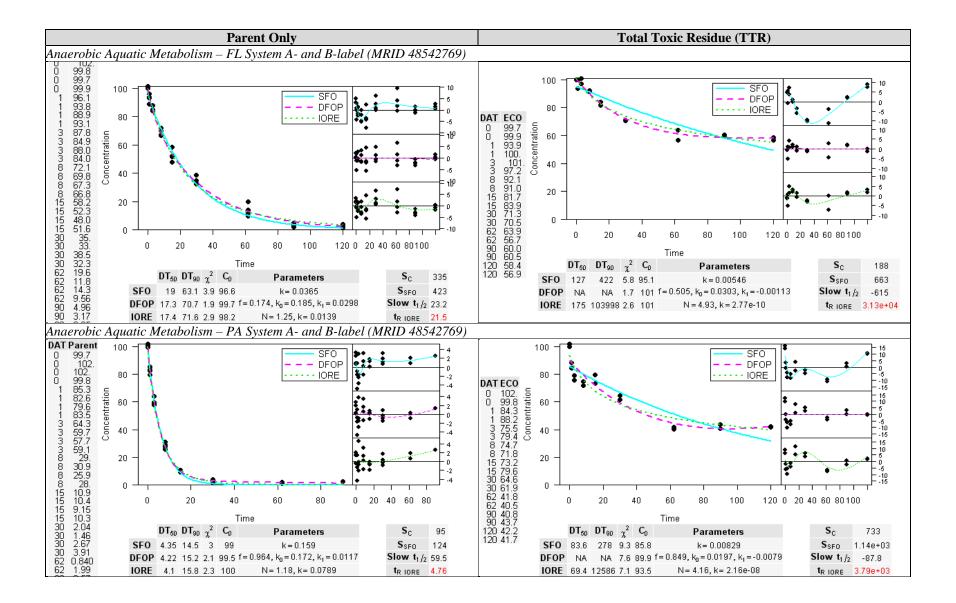


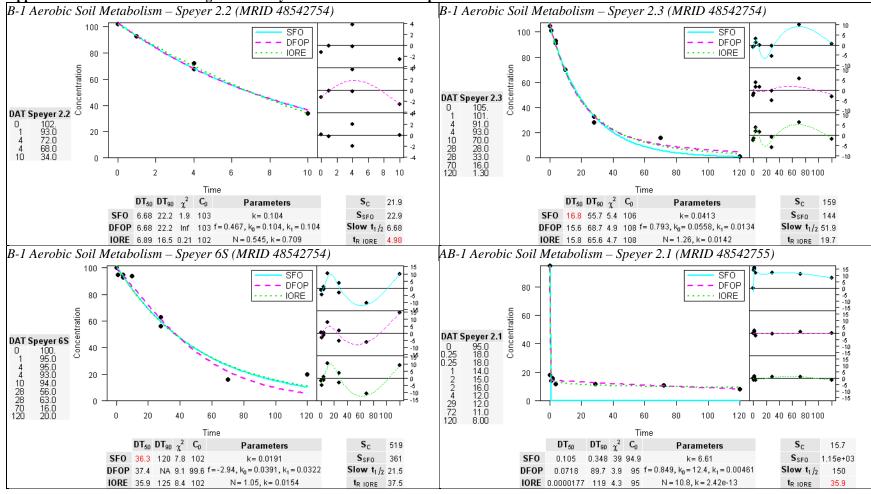


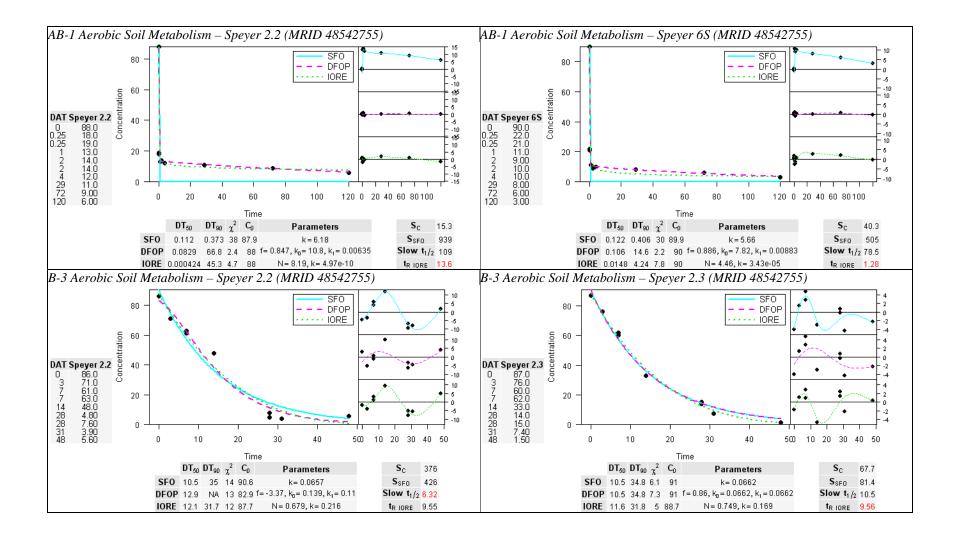


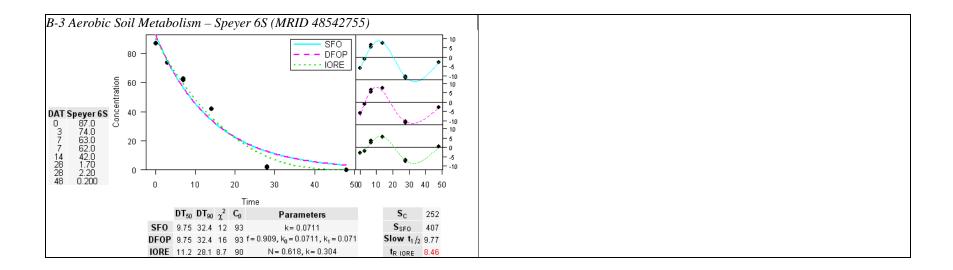












Appendix Table D-2. Available Degradate Study Half-life Estimation Output

Appendix E: Example PRZM/EXAMS Modeling Output and AgDRIFT® Input Data Summary

Surface Water - Aerial PA Tomatoes

```
stored as Cyflu.out
Chemical: Cyflumetofen
PRZM environment: PAtomatoSTD.txtmodified Tueday, 29 May 2007 at 14:01:58
EXAMS environment: pond298.exv modified Tueday, 26 August 2008 at 06:14:08
Metfile: w14751.dvf modified Tueday, 26 August 2008 at 06:15:00
Water segment concentrations (ppb)
```

Year	Peak	96 hr	21 Day	60 Day	90 Day	Yearly
1961	2.964	1.058	0.454	0.2667	0.2435	0.1253
1962	3.39	1.356	0.7062	0.4681	0.4407	0.3393
1963	3.395	1.488	0.8839	0.6628	0.6261	0.5379
1964	3.619	1.711	1.134	0.9079	0.8638	0.7529
1965	3.806	1.899	1.301	1.074	1.045	0.9381
1966	3.98	2.073	1.468	1.274	1.263	1.141
1967	4.203	2.297	1.692	1.509	1.487	1.37
1968	4.41	2.503	1.9	1.681	1.666	1.562
1969	4.582	2.675	2.072	1.927	1.893	1.764
1970	4.821	3.015	2.347	2.14	2.099	1.97
1971	4.98	3.073	2.471	2.242	2.251	2.145
1972	5.935	4.202	3	2.682	2.617	2.407
1973	5.417	3.512	2.907	2.685	2.657	2.573
1974	5.587	3.682	3.077	2.877	2.847	2.754
1975	5.793	3.872	3.294	3.114	3.062	2.944
1976	6.297	4.128	3.469	3.241	3.197	3.112
1977	6.111	4.204	3.6	3.379	3.333	3.25
1978	6.256	4.349	3.779	3.622	3.571	3.431
1979	6.426	4.519	3.915	3.722	3.675	3.589
1980	6.559	4.652	4.048	3.816	3.769	3.691
1981	6.702	4.783	4.18	3.976	3.938	3.834
1982	8.044	5.335	4.556	4.229	4.167	4.003
1983	6.979	5.075	4.471	4.236	4.191	4.116
1984	7.19	5.538	4.722	4.477	4.422	4.288
1985	7.26	5.354	4.755	4.522	4.475	4.393
1986	7.368	5.461	4.858	4.648	4.628	4.528
1987	7.491	5.584	5.04	4.798	4.749	4.668
1988	7.625	5.718	5.116	4.901	4.855	4.767
1989	9.021	6.288	5.322	5.084	5.04	4.9
1990	7.856	5.949	5.348	5.136	5.109	5.017

Sorted	result	s							
Prob.	Peak	96 hr	21	Day	60 Day	90 Day	Yearly		
0.0322	5806451	L6129	9.	021	6.288	5.348	5.136	5.109	5.017
0.0645	1612903	322581	8.	044	5.949	5.322	5.084	5.04	4.9
0.0967	7419354	183871	7.	856	5.718	5.116	4.901	4.855	4.767
0.1290	3225806	54516	7.	625	5.584	5.04	4.798	4.749	4.668

0.161290322580645	7.491	5.538	4.858	4.648	4.628	4.528	
0.193548387096774	7.368	5.461	4.755	4.522	4.475	4.393	
0.225806451612903	7.26	5.354	4.722	4.477	4.422	4.288	
0.258064516129032	7.19	5.335	4.556	4.236	4.191	4.116	
0.290322580645161	6.979	5.075	4.471	4.229	4.167	4.003	
0.32258064516129	6.702	4.783	4.18	3.976	3.938	3.834	
0.354838709677419	6.559	4.652	4.048	3.816	3.769	3.691	
0.387096774193548			3.915				
0.419354838709677			3.779				
0.451612903225806			3.6		3.333		
	6.111						
	5.935						
	5.793				2.847		
0.580645161290323					2.657		
	5.417						
	4.98						
0.67741935483871	4.821	3.015	2.347	2.14	2.099	1.97	
0.709677419354839	4.582	2.675	2.072	1.927	1.893	1.764	
0.741935483870968	4.41	2.503	1.9	1.681	1.666	1.562	
0.774193548387097	4.203	2.297	1.692	1.509	1.487	1.37	
0.806451612903226	3.98	2.073	1.468	1.274	1.263	1.141	
0.838709677419355	3.806	1.899	1.301	1.074	1.045	0.9381	
0.870967741935484	3.619	1.711	1.134	0.9079	0.8638	0.7529	
0.903225806451613	3.395	1.488	0.8839	0.6628	0.6261	0.5379	
0.935483870967742	3.39	1.356	0.7062	0.4681	0.4407	0.3393	
0.967741935483871	2.964	1.058	0.454	0.2667	0.2435	0.1253	
0.1 7.8329 5.7046	5.1084	4.8907				verages:	2.83035
0.1 7.8329 5.7046 Inputs generated by			Averag	e of ye		verages:	2.83035
Inputs generated by	pe5.pl		Averag	e of ye		verages:	2.83035
Inputs generated by Data used for this	pe5.pl		Averag	e of ye		verages:	2.83035
Inputs generated by Data used for this Output File: Cyflu	pe5.pl run:		Averag	e of ye		verages:	2.83035
Inputs generated by Data used for this	pe5.pl run:		Averag	e of ye		verages:	2.83035
Inputs generated by Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario:	pe5.pl run: .dvf PAtoma	- Nove	Averag emeber :	e of ye		verages:	2.83035
Inputs generated by Data used for this Output File: Cyflu Metfile: w14751	pe5.pl run: .dvf PAtoma	- Nove	Averag emeber :	e of ye		verages:	2.83035
Inputs generated by Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario:	pe5.pl run: .dvf PAtoma ile:	- Nove	Averag emeber :	e of ye		verages:	2.83035
Inputs generated by Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f	pe5.pl run: .dvf PAtoma ile: Cyflum	- Nove toSTD.t pond29 etofen	Averag emeber : ext 8.exv	e of ye	early av	verages:	2.83035
Inputs generated by Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name:	pe5.pl run: .dvf PAtoma ile: Cyflum	- Nove toSTD.t pond29 etofen	Averag emeber : .xt 8.exv Units	e of ye	early av	verages:	2.83035
Inputs generated by Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variab	pe5.pl run: .dvf PAtoma ile: Cyflum ole Name	- Nove toSTD.t pond29 etofen eValue	Averag emeber : .xt 8.exv Units	e of ye 2006 Commen	early av	verages:	2.83035
Inputs generated by Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variab Molecular weight	pe5.pl run: .dvf PAtoma ile: Cyflum ole Name mwt henry	- Nove toSTD.t pond29 etofen eValue	Averag emeber : ext 8.exv Units g/mol atm-m^	e of ye 2006 Commen	early av	verages:	2.83035
Inputs generated by Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variab Molecular weight Henry's Law Const.	pe5.pl run: .dvf PAtoma ile: Cyflum ble Name mwt henry vapr	- Nove toSTD.t pond29 etofen 447.45 4.43e-	Averag emeber : ext 8.exv Units g/mol atm-m^	e of ye 2006 Commen 3/mol	early av	verages:	2.83035
Inputs generated by Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variab Molecular weight Henry's Law Const. Vapor Pressure	pe5.pl run: .dvf PAtoma ile: Cyflum ole Name mwt henry	- Nove toSTD.t pond29 etofen 447.45 4.43e-	Averag emeber : ext 8.exv Units g/mol atm-m^	e of ye 2006 Commen 3/mol	early av	verages:	2.83035
Inputs generated by Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variab Molecular weight Henry's Law Const. Vapor Pressure Solubility sol Kd Kd	pe5.pl run: .dvf PAtoma ile: Cyflum ole Name mwt henry vapr 0.028 mg/L	- Nove toSTD.t pond29 etofen 447.45 4.43e-	Averag emeber : ext 8.exv Units g/mol atm-m^	e of ye 2006 Commen 3/mol	early av	verages:	2.83035
Inputs generated by Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variab Molecular weight Henry's Law Const. Vapor Pressure Solubility sol Kd Kd Koc Koc 72000	pe5.pl run: .dvf PAtoma ile: Cyflum le Name mwt henry vapr 0.028 mg/L mg/L	- Nove toSTD.t pond29 etofen Value 447.45 4.43e- mg/L	Averag emeber : ext 8.exv Units g/mol atm-m^ 8	e of ye 2006 Commen 3/mol torr	ts		2.83035
Inputs generated by Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variab Molecular weight Henry's Law Const. Vapor Pressure Solubility sol Kd Kd Koc Koc 72000 Photolysis half-lif	pe5.pl run: dvf PAtoma ile: Cyflum ole Name mwt henry vapr 0.028 mg/L mg/L e	- Nove toSTD.t pond29 etofen Value 447.45 4.43e- mg/L kdp	Averag emeber : ext 8.exv Units g/mol atm-m^ 8 17.6	e of ye 2006 Commen 3/mol torr days	ts Half-1	ife	2.83035
Inputs generated by Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variab Molecular weight Henry's Law Const. Vapor Pressure Solubility sol Kd Kd Koc Koc 72000 Photolysis half-lif Aerobic Aquatic Met	pe5.pl run: .dvf PAtoma ile: Cyflum ble Name mwt henry vapr 0.028 mg/L mg/L e abolism	- Nove toSTD.t pond29 etofen Value 447.45 4.43e- mg/L kdp kbacw	Averag emeber : xt 8.exv Units g/mol atm-m^ 8 17.6 173	e of ye 2006 Commen 3/mol torr days days	ts Half-1 Halfif	ife e	2.83035
Inputs generated by Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variab Molecular weight Henry's Law Const. Vapor Pressure Solubility sol Kd Kd Koc Koc 72000 Photolysis half-lif Aerobic Aquatic Met	pe5.pl run: .dvf PAtoma ile: Cyflum ole Name mwt henry vapr 0.028 mg/L mg/L e abolism etaboli	- Nove toSTD.t pond29 etofen 447.45 4.43e- mg/L kdp kbacw sm	Averag emeber : xt 8.exv Units g/mol atm-m^ 8 17.6 173 kbacs	e of ye 2006 Commen 3/mol torr days days 6e4	Half-l Halfif days	ife e Halfife	2.83035
Inputs generated by Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variab Molecular weight Henry's Law Const. Vapor Pressure Solubility sol Kd Kd Koc Koc 72000 Photolysis half-lif Aerobic Aquatic Metabo	pe5.pl run: dvf PAtoma ile: Cyflum ole Name mwt henry vapr 0.028 mg/L mg/L e abolism etaboli	- Nove toSTD.t pond29 etofen Value 447.45 4.43e- mg/L kdp kbacw sm asm	Averag emeber 2 ext 8.exv Units g/mol atm-m^8 17.6 173 kbacs 1096	e of ye 2006 Commen 3/mol torr days days 6e4 days	ts Half-1 Halfif	ife e Halfife	2.83035
Inputs generated by Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variab Molecular weight Henry's Law Const. Vapor Pressure Solubility sol Kd Kd Koc Koc 72000 Photolysis half-lif Aerobic Aquatic Met Anaerobic Aquatic M	pe5.pl run: .dvf PAtoma ile: Cyflum ble Name mwt henry vapr 0.028 mg/L mg/L e abolism etaboli lism 0	- Nove toSTD.t pond29 etofen Value 447.45 4.43e- mg/L kdp kbacw sm asm days	Averag emeber : ext 8.exv Units g/mol atm-m^ 8 17.6 173 kbacs 1096 Half-1	e of ye 2006 Commen 3/mol torr days days 6e4 days ife	Half-l Halfif days Halfif	ife e Halfife e	2.83035
Inputs generated by Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variab Molecular weight Henry's Law Const. Vapor Pressure Solubility sol Kd Kd Koc Koc 72000 Photolysis half-lif Aerobic Aquatic Met Anaerobic Aquatic Met Anaerobic Soil Metabo Hydrolysis: pH 7 Method: CAM	pe5.pl run: dvf PAtoma ile: Cyflum ole Name mwt henry vapr 0.028 mg/L mg/L e abolism etaboli lism 0 2	- Nove toSTD.t pond29 etofen Value 447.45 4.43e- mg/L kdp kbacw sm asm days intege	Averag emeber : ext 8.exv Units g/mol atm-m^ 8 17.6 173 kbacs 1096 Half-1	e of ye 2006 2006 3/mol torr days days 6e4 days ife See PR	Half-l Halfif days	ife e Halfife e	2.83035
Inputs generated by Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variab Molecular weight Henry's Law Const. Vapor Pressure Solubility sol Kd Kd Koc Koc 72000 Photolysis half-lif Aerobic Aquatic Met Anaerobic Aquatic Met Anaerobic Aquatic M Aerobic Soil Metabo Hydrolysis: pH 7 Method: CAM	pe5.pl run: dvf PAtoma ile: Cyflum ole Name mwt henry vapr 0.028 mg/L mg/L e abolism etaboli lism 0 2 :	- Nove toSTD.t pond29 etofen Value 447.45 4.43e- mg/L kdp kbacw sm asm days intege DEPI	Averag emeber : 2.xt 8.exv Units g/mol atm-m^ 8 17.6 173 kbacs 1096 Half-l r	e of ye 2006 Commen 3/mol torr days days 6e4 days ife	Half-l Halfif days Halfif	ife e Halfife e	2.83035
Inputs generated by Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variab Molecular weight Henry's Law Const. Vapor Pressure Solubility sol Kd Kd Koc Koc 72000 Photolysis half-lif Aerobic Aquatic Met Anaerobic Aquatic Met Anaerobic Aquatic M Aerobic Soil Metabo Hydrolysis: pH 7 Method: CAM Incorporation Depth Application Rate:	pe5.pl run: dvf PAtoma ile: Cyflum ole Name mwt henry vapr 0.028 mg/L mg/L e abolism etaboli lism 0 2 : TAPP	- Nove toSTD.t pond29 etofen Value 447.45 4.43e- mg/L kdp kbacw sm asm days intege DEPI .224	Averag emeber : ext 8.exv Units g/mol atm-m^ 8 17.6 173 kbacs 1096 Half-l r kg/ha	e of ye 2006 2006 3/mol torr days days 6e4 days ife See PR cm	Half-l Halfif days Halfif ZM manu	ife e Halfife e	2.83035
Inputs generated by Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variab Molecular weight Henry's Law Const. Vapor Pressure Solubility sol Kd Kd Koc Koc 72000 Photolysis half-lif Aerobic Aquatic Met Anaerobic Aquatic Met Anaerobic Aquatic M Aerobic Soil Metabo Hydrolysis: pH 7 Method: CAM	pe5.pl run: dvf PAtoma ile: Cyflum ole Name mwt henry vapr 0.028 mg/L mg/L e abolism etaboli lism 0 2 : TAPP	- Nove toSTD.t pond29 etofen Value 447.45 4.43e- mg/L kdp kbacw sm asm days intege DEPI .224 APPEFF	Averag emeber : 2.xt 8.exv Units g/mol atm-m^ 8 17.6 173 kbacs 1096 Half-l r kg/ha .95	e of ye 2006 2006 3/mol torr days days 6e4 days ife See PR cm fracti	Half-l Halfif days Halfif ZM manu	ife e Halfife e	

Application I	Date Date	1-6	dd/mm or dd/mmm or dd-mm or dd-mmm
Interval 1	interval	14	days Set to 0 or delete line for single app.
app. rate 1	apprate		kg/ha
Record 17:	FILTRA		
IPSCND	0 1		
UPTKF			
Record 18:	PLVKRT		
PLDKRT	1		
FEXTRC	0.5		
Flag for Inde	ex Res. Run	IR	EPA Pond
Flag for rund	off calc.	RUNOFF	Frone none, monthly or total(average of entire run)

Benthic Pore Water - Aerial PA Tomatoes

```
stored as Cyfluben.out
Chemical: Cyflumetofen
PRZM environment: PAtomatoSTD.txtmodified Tueday, 29 May 2007 at 14:01:58
EXAMS environment: pond298.exv modified Tueday, 26 August 2008 at 06:14:08
Metfile: w14751.dvf modified Tueday, 26 August 2008 at 06:15:00
Benthic segment concentrations (ppb)
```

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980	0.1238 0.2696 0.3895 0.5097 0.614 0.771 0.905 1.027 1.154 1.27 1.391 1.572 1.661 1.763 1.897 1.992 2.07 2.194 2.281 2.348	0.1238 0.2696 0.3895 0.5095 0.6139 0.771 0.905 1.027 1.154 1.27 1.391 1.572 1.66 1.763 1.897 1.992 2.07 2.194 2.281 2.348	0.1225 0.2695 0.3894 0.5079 0.6138 0.7709 0.9046 1.027 1.153 1.27 1.391 1.571 1.654 1.761 1.896 1.992 2.066 2.192 2.28 2.347	0.2642 0.3791 0.5036 0.6132 0.767 0.9013 1.025 1.148 1.269 1.383 1.568 1.649 1.759 1.894 1.991 2.055	0.1187 0.2583 0.3688 0.5015 0.6126 0.7649 0.8974 1.024 1.147 1.266 1.379 1.566 1.647 1.759 1.893 1.989 2.05 2.186 2.277 2.33	0.0589 0.1907 0.3178 0.4526 0.5705 0.6918 0.8381 0.9593 1.086 1.216 1.325 1.483 1.595 1.709 1.824 1.933 2.022 2.133 2.232 2.299		
				2.548 2.604				
				2.721				
	2.778							
1986	2.87	2.87	2.865	2.858	2.855	2.821		
1987	2.963	2.963	2.962	2.958	2.956	2.91		
	3.007							
	3.111							
1990	3.174	3.174	3.173	3.172	3.168	3.131		
Prob.		96 hr	-	60 Day	-	-		
	5806451							
	1612903							
0.0967	7419354	838./T	3.007	3.006	3.004	3	2.999	2.977

0.129032258064516	2 962	2.963	2 962	2 0 5 9	2 956	2.91	
0.16129032258064510	2.903	2.903	2.865	2.858		2.821	
0.193548387096774		2.87			2.855	2.739	
0.225806451612903		2.726				2.672	
0.258064516129032		2.627				2.563	
0.290322580645161	2.554				2.595	2.303	
0.32258064516129	2.334		2.352		2.345	2.389	
		2.428			2.421	2.299	
0.354838709677419					2.33		
0.387096774193548		2.281 2.194	2.28			2.232	
0.419354838709677							
0.451612903225806		2.07		2.055		2.022	
0.483870967741936		1.992		1.991	1.989	1.933	
0.516129032258065	1.897	1.897		1.894		1.824	
0.548387096774194					1.759	1.709	
0.580645161290323		1.66			1.647	1.595	
0.612903225806452		1.572			1.566		
0.645161290322581		1.391					
0.67741935483871	1.27	1.27	1.27		1.266	1.216	
0.709677419354839		1.154					
0.741935483870968		1.027					
0.774193548387097		0.905					
0.806451612903226		0.771					
0.838709677419355		0.6139					
0.870967741935484		0.5095					
	0.3895						
	0.2696						
0.967741935483871	0.1238	0.1238	0.1225	0.1202	0.1187	0.05893	
0 1 0 0000 0 0015		0 0050	0 0047	0 0700			
0.1 3.0026 3.0017	2.9998	2.9958					
			Average	e or ye	arly at	verages:	1.75605766666667
Transition areas and to all have		Marra	malaan	0000			
Inputs generated by	peg.pr						
	T · T	10000	IIIEDEI 2	2006			
		10000	IIIEDEI 2	2006			
Data used for this		10000	MEDEI 2	2008			
Data used for this Output File: Cyflu	run:	1000		2008			
Data used for this Output File: Cyflu Metfile: w14751	run: dvf			2006			
Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario:	run: dvf PAtoma	toSTD.t	xt	2006			
Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f	run: dvf PAtoma ile:	toSTD.t pond29	xt	2006			
Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name:	run: dvf PAtoma ile: Cyflum	toSTD.t pond29 etofen	xt 8.exv				
Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variak	run: dvf PAtoma ile: Cyflum ole Name	toSTD.t pond29 etofen Value	xt 8.exv Units		ts		
Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variak Molecular weight	run: dvf PAtoma ile: Cyflum ole Name mwt	toSTD.t pond29 etofen Value 447.45	xt 8.exv Units g/mol	Commen	ts		
Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variak Molecular weight Henry's Law Const.	run: PAtoma ile: Cyflum Dle Name mwt henry	toSTD.t pond29 etofen Value 447.45	xt 8.exv Units g/mol atm-m^	Commen 3/mol	ts		
Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variak Molecular weight Henry's Law Const. Vapor Pressure	run: PAtoma ile: Cyflum ole Name mwt henry vapr	toSTD.t pond29 etofen Value 447.45 4.43e-	xt 8.exv Units g/mol atm-m^ 8	Commen	ts		
Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variak Molecular weight Henry's Law Const. Vapor Pressure Solubility sol	run: PAtoma ile: Cyflum ole Name mwt henry vapr 0.028	toSTD.t pond29 etofen Value 447.45 4.43e-	xt 8.exv Units g/mol atm-m^ 8	Commen 3/mol	ts		
Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variak Molecular weight Henry's Law Const. Vapor Pressure Solubility sol Kd Kd	run: PAtoma ile: Cyflum ole Name mwt henry vapr 0.028 mg/L	toSTD.t pond29 etofen Value 447.45 4.43e-	xt 8.exv Units g/mol atm-m^ 8	Commen 3/mol	ts		
Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variak Molecular weight Henry's Law Const. Vapor Pressure Solubility sol Kd Kd Koc Koc 72000	run: PAtoma ile: Cyflum ole Name mwt henry vapr 0.028 mg/L mg/L	toSTD.t pond29 etofen Value 447.45 4.43e- mg/L	xt 8.exv Units g/mol atm-m^ 8	Commen 3/mol torr			
Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variak Molecular weight Henry's Law Const. Vapor Pressure Solubility sol Kd Kd Koc Koc 72000 Photolysis half-lif	run: PAtoma ile: Cyflum ole Name mwt henry vapr 0.028 mg/L mg/L e	toSTD.t pond29 etofen Value 447.45 4.43e- mg/L kdp	xt 8.exv Units g/mol atm-m^ 8 17.6	Commen 3/mol torr days	Half-1		
Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variak Molecular weight Henry's Law Const. Vapor Pressure Solubility sol Kd Kd Koc Koc 72000 Photolysis half-lif Aerobic Aquatic Met	run: PAtoma ile: Cyflum ole Name mwt henry vapr 0.028 mg/L mg/L e abolism	toSTD.t pond29 etofen Value 447.45 4.43e- mg/L kdp kbacw	xt 8.exv Units g/mol atm-m^ 8 17.6 173	Commen 3/mol torr days days	Half-l Halfif	e	
Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variak Molecular weight Henry's Law Const. Vapor Pressure Solubility sol Kd Kd Koc Koc 72000 Photolysis half-lif Aerobic Aquatic Met	run: dvf PAtoma ile: Cyflum ole Name mwt henry vapr 0.028 mg/L mg/L e abolism etaboli	toSTD.t pond29 etofen Value 447.45 4.43e- mg/L kdp kbacw sm	xt 8.exv Units g/mol atm-m^ 8 17.6 173 kbacs	Commen 3/mol torr days days 6e4	Half-l Halfif days	e Halfife	
Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variak Molecular weight Henry's Law Const. Vapor Pressure Solubility sol Kd Kd Koc Koc 72000 Photolysis half-lif Aerobic Aquatic Met Anaerobic Aquatic M	run: dvf PAtoma ile: Cyflum ole Name mwt henry vapr 0.028 mg/L mg/L e abolism etaboli lism	toSTD.t pond29 etofen Value 447.45 4.43e- mg/L kdp kbacw sm asm	xt 8.exv Units g/mol atm-m^ 8 17.6 173 kbacs 1096	Commen 3/mol torr days days 6e4 days	Half-l Halfif	e Halfife	
Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variak Molecular weight Henry's Law Const. Vapor Pressure Solubility sol Kd Kd Koc Koc 72000 Photolysis half-lif Aerobic Aquatic Met Anaerobic Aquatic M Aerobic Soil Metabo Hydrolysis: pH 7	run: dvf PAtoma ile: Cyflum ole Name mwt henry vapr 0.028 mg/L mg/L e abolism etaboli lism 0	toSTD.t pond29 etofen Value 447.45 4.43e- mg/L kdp kbacw sm asm days	xt 8.exv Units g/mol atm-m^ 8 17.6 173 kbacs 1096 Half-1	Commen 3/mol torr days days 6e4 days ife	Half-l Halfif days Halfif	e Halfife e	
Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variak Molecular weight Henry's Law Const. Vapor Pressure Solubility sol Kd Kd Koc Koc 72000 Photolysis half-lif Aerobic Aquatic Met Anaerobic Aquatic M Aerobic Soil Metabo Hydrolysis: pH 7 Method: CAM	run: dvf PAtoma ile: Cyflum ole Name mwt henry vapr 0.028 mg/L mg/L e abolism etaboli lism 0 2	toSTD.t pond29 etofen Value 447.45 4.43e- mg/L kdp kbacw sm asm days intege	xt 8.exv Units g/mol atm-m^ 8 17.6 173 kbacs 1096 Half-1	Commen 3/mol torr days days 6e4 days ife See PR	Half-l Halfif days	e Halfife e	
Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variak Molecular weight Henry's Law Const. Vapor Pressure Solubility sol Kd Kd Koc Koc 72000 Photolysis half-lif Aerobic Aquatic Met Anaerobic Aquatic Met Anaerobic Soil Metabo Hydrolysis: pH 7 Method: CAM Incorporation Depth	run: dvf PAtoma ile: Cyflum ole Name mwt henry vapr 0.028 mg/L mg/L e abolism etaboli lism 0 2 :	toSTD.t pond29 etofen Value 447.45 4.43e- mg/L kdp kbacw sm asm days intege DEPI	xt 8.exv Units g/mol atm-m [*] 8 17.6 173 kbacs 1096 Half-1 r	Commen 3/mol torr days days 6e4 days ife	Half-l Halfif days Halfif	e Halfife e	
Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variak Molecular weight Henry's Law Const. Vapor Pressure Solubility sol Kd Kd Koc Koc 72000 Photolysis half-lif Aerobic Aquatic Met Anaerobic Aquatic Met Anaerobic Soil Metabo Hydrolysis: pH 7 Method: CAM Incorporation Depth Application Rate:	run: dvf PAtoma ile: Cyflum ole Name mwt henry vapr 0.028 mg/L mg/L e abolism etaboli lism 0 2 : TAPP	toSTD.t pond29 etofen Value 447.45 4.43e- mg/L kdp kbacw sm asm days integes DEPI .224	xt 8.exv Units g/mol atm-m [*] 8 17.6 173 kbacs 1096 Half-l r kg/ha	Commen 3/mol torr days days 6e4 days ife See PR cm	Half-l Halfif days Halfif ZM manu	e Halfife e	
Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variak Molecular weight Henry's Law Const. Vapor Pressure Solubility sol Kd Kd Koc Koc 72000 Photolysis half-lif Aerobic Aquatic Met Anaerobic Aquatic Met Anaerobic Aquatic M Aerobic Soil Metabo Hydrolysis: pH 7 Method: CAM Incorporation Depth Application Rate: Application Efficie	run: dvf PAtoma ile: Cyflum ole Name mwt henry vapr 0.028 mg/L mg/L e abolism etaboli lism 0 2 : TAPP ncy:	toSTD.t pond29 etofen Value 447.45 4.43e- mg/L kdp kbacw sm asm days intege DEPI .224 APPEFF	xt 8.exv Units g/mol atm-m [*] 8 17.6 173 kbacs 1096 Half-1 r kg/ha .95	Commen 3/mol torr days days 6e4 days ife See PR cm fracti	Half-l Halfifd days Halfifd ZM manu on	e Halfife e al	
Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variak Molecular weight Henry's Law Const. Vapor Pressure Solubility sol Kd Kd Koc Koc 72000 Photolysis half-lif Aerobic Aquatic Met Anaerobic Aquatic Met Anaerobic Aquatic M Aerobic Soil Metabo Hydrolysis: pH 7 Method: CAM Incorporation Depth Application Rate: Application Efficie Spray Drift DRFT	run: dvf PAtoma ile: Cyflum ole Name mwt henry vapr 0.028 mg/L mg/L e abolism etaboli lism 0 2 : TAPP ncy: .305	toSTD.t pond29 etofen Value 447.45 4.43e- mg/L kdp kbacw sm asm days integes DEPI .224 APPEFF fractio	xt 8.exv Units g/mol atm-m [*] 8 17.6 173 kbacs 1096 Half-l r kg/ha .95 on of a	Commen 3/mol torr days days 6e4 days ife See PR cm fracti pplicat	Half-l Halfifo days Halfifo ZM manu on cion ra	e Halfife e al te applied t	
Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variak Molecular weight Henry's Law Const. Vapor Pressure Solubility sol Kd Kd Koc Koc 72000 Photolysis half-lif Aerobic Aquatic Met Anaerobic Aquatic Met Anaerobic Aquatic M Aerobic Soil Metabo Hydrolysis: pH 7 Method: CAM Incorporation Depth Application Efficie Spray Drift DRFT Application Date	run: dvf PAtoma ile: Cyflum ole Name mwt henry vapr 0.028 mg/L mg/L e abolism etaboli lism 0 2 : TAPP ncy: .305 Date	toSTD.t pond29 etofen Value 447.45 4.43e- mg/L kdp kbacw sm asm days integes DEPI .224 APPEFF fractio 1-6	xt 8.exv Units g/mol atm-m^ 8 17.6 173 kbacs 1096 Half-l r kg/ha .95 on of a dd/mm	Commen 3/mol torr days days 6e4 days ife See PR cm fraction pplication	Half-l Halfifo days Halfifo ZM manu on cion ra mm or c	e Halfife al te applied t dd-mm or dd-	mmm
Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variak Molecular weight Henry's Law Const. Vapor Pressure Solubility sol Kd Kd Koc Koc 72000 Photolysis half-lif Aerobic Aquatic Met Anaerobic Aquatic Met Anaerobic Aquatic Met Anaerobic Soil Metabo Hydrolysis: pH 7 Method: CAM Incorporation Depth Application Rate: Application Efficie Spray Drift DRFT Application Date Interval 1 interv	run: dvf PAtoma ile: Cyflum ole Name mwt henry vapr 0.028 mg/L mg/L e abolism etaboli lism 0 2 : TAPP ncy: .305 Date val	toSTD.t pond29 etofen Value 447.45 4.43e- mg/L kdp kbacw sm asm days integes DEPI .224 APPEFF fractio	xt 8.exv Units g/mol atm-m [*] 8 17.6 173 kbacs 1096 Half-1 r kg/ha .95 on of a dd/mm days	Commen 3/mol torr days days 6e4 days ife See PR cm fraction pplication	Half-l Halfifo days Halfifo ZM manu on cion ra mm or c	e Halfife al te applied t dd-mm or dd-	
Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variak Molecular weight Henry's Law Const. Vapor Pressure Solubility sol Kd Kd Koc Koc 72000 Photolysis half-lif Aerobic Aquatic Met Anaerobic Aquatic Met Anaerobic Aquatic Met Anaerobic Soil Metabo Hydrolysis: pH 7 Method: CAM Incorporation Depth Application Rate: Application Efficie Spray Drift DRFT Application Date Interval 1 interva	run: dvf PAtoma ile: Cyflum ole Name mwt henry vapr 0.028 mg/L e abolism etaboli lism 0 2 : TAPP ncy: .305 Date ral :e	toSTD.t pond29 etofen Value 447.45 4.43e- mg/L kdp kbacw sm asm days integes DEPI .224 APPEFF fractio 1-6	xt 8.exv Units g/mol atm-m^ 8 17.6 173 kbacs 1096 Half-l r kg/ha .95 on of a dd/mm	Commen 3/mol torr days days 6e4 days ife See PR cm fraction pplication	Half-l Halfifo days Halfifo ZM manu on cion ra mm or c	e Halfife al te applied t dd-mm or dd-	mmm
Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variak Molecular weight Henry's Law Const. Vapor Pressure Solubility sol Kd Kd Koc Koc 72000 Photolysis half-lif Aerobic Aquatic Met Anaerobic Aquatic Met Anaerobic Aquatic Met Anaerobic Soil Metabo Hydrolysis: pH 7 Method: CAM Incorporation Depth Application Efficie Spray Drift DRFT Application Date Interval 1 interva app. rate 1 apprat	run: dvf PAtoma ile: Cyflum ole Name mwt henry vapr 0.028 mg/L e abolism etaboli lism 0 2 : TAPP ncy: .305 Date ral :e	toSTD.t pond29 etofen Value 447.45 4.43e- mg/L kdp kbacw sm asm days integes DEPI .224 APPEFF fractio 1-6	xt 8.exv Units g/mol atm-m [*] 8 17.6 173 kbacs 1096 Half-1 r kg/ha .95 on of a dd/mm days	Commen 3/mol torr days days 6e4 days ife See PR cm fraction pplication	Half-l Halfifo days Halfifo ZM manu on cion ra mm or c	e Halfife al te applied t dd-mm or dd-	mmm
Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variak Molecular weight Henry's Law Const. Vapor Pressure Solubility sol Kd Kd Koc Koc 72000 Photolysis half-lif Aerobic Aquatic Met Anaerobic Aquatic Met Anaerobic Aquatic Met Anaerobic Soil Metabo Hydrolysis: pH 7 Method: CAM Incorporation Depth Application Rate: Application Efficie Spray Drift DRFT Application Date Interval 1 interva app. rate 1 apprat Record 17: FILTRA	run: dvf PAtoma ile: Cyflum ole Name mwt henry vapr 0.028 mg/L e abolism etaboli lism 0 2 : TAPP ncy: .305 Date ral :e	toSTD.t pond29 etofen Value 447.45 4.43e- mg/L kdp kbacw sm asm days integes DEPI .224 APPEFF fractio 1-6	xt 8.exv Units g/mol atm-m [*] 8 17.6 173 kbacs 1096 Half-1 r kg/ha .95 on of a dd/mm days	Commen 3/mol torr days days 6e4 days ife See PR cm fraction pplication	Half-l Halfifo days Halfifo ZM manu on cion ra mm or c	e Halfife al te applied t dd-mm or dd-	mmm
Data used for this Output File: Cyflu Metfile: w14751 PRZM scenario: EXAMS environment f Chemical Name: Description Variak Molecular weight Henry's Law Const. Vapor Pressure Solubility sol Kd Kd Koc Koc 72000 Photolysis half-lif Aerobic Aquatic Met Anaerobic Aquatic Met Anaerobic Aquatic Met Anaerobic Soil Metabo Hydrolysis: pH 7 Method: CAM Incorporation Depth Application Efficie Spray Drift DRFT Application Date Interval 1 interva app. rate 1 apprat	run: dvf PAtoma ile: Cyflum ole Name mwt henry vapr 0.028 mg/L mg/L e abolism etaboli lism 0 2 : TAPP ncy: .305 Date ral	toSTD.t pond29 etofen Value 447.45 4.43e- mg/L kdp kbacw sm asm days integes DEPI .224 APPEFF fractio 1-6	xt 8.exv Units g/mol atm-m [*] 8 17.6 173 kbacs 1096 Half-1 r kg/ha .95 on of a dd/mm days	Commen 3/mol torr days days 6e4 days ife See PR cm fraction pplication	Half-l Halfifo days Halfifo ZM manu on cion ra mm or c	e Halfife al te applied t dd-mm or dd-	mmm

PLDKRT FEXTRC 0.5 Flag for Index Res. Run IR EPA Pond Flag for runoff calc. RUNOFF none none, monthly or total(average of entire run)

AgDRIFT® Input Data Summary – Aerial

AgDRIFT® Input Data Summary --General--Tier: II Title: Untitled Notes: Calculations Done: Yes Run ID: AgDRIFT® 2.1.1 03-14-2013 11:27:08 Default values appear when they differ from the Current values. --Aircraft-------Default-----Default-----Name Air Tractor AT-401 Type Slow Fixed-wing Boom Length (%) 76.3 Boom Height (ft) 15 10 Flight Lines 20 --Drop Size Distribution-- -----Current----- -----Default------Default------Name ASAE Fine to Medium Type Basic # Drop Categories Diam (um) Diam (um) Frac Frac 0.0010 1 10.77 2 16.73 0.0003 3 19.39 0.0007 4 22.49 0.0003 5 26.05 0.0007 30.21 6 0.0010 7 35.01 0.0010 8 40.57 0.0020 9 47.03 0.0033 0.0053 10 54.50 11 63.16 0.0067 12 73.23 0.0090 13 84.85 0.0133 14 98.12 0.0223 113.71 15 0.0330 131.73 0.0393 16 17 152.79 0.0480 177.84 0.0647 18 19 205.84 0.0830 20 238.45 0.1147 21 276.48 0.1283 22 320.60 0.1380 23 0.1127 372.18 24 430.74 0.0640 25 498.91 0.0440 26 578.54 0.0317 27 670.72 0.0203 28 0.0093 777.39 0.0010 29 900.61 30 1044.42 0.0007 31 1210.66 0.0003

Swath Swath Width Swath Displacement	Current60 ft 0.3722 x Swath Width	Default
Spray Material	Current	Default
Nonvolatile Rate (lb/ac)	1	0.501
Active Rate (lb/ac)	1	0.2505
Spray Volume		
Rate (gal/ac)	10	2
Carrier Type	Water	
Meteorology	Current	Default
Wind Speed (mph)	15	10
Temperature (deg F)	86	
Relative Humidity (%)	50	
Transport	Current	Default
Flux Plane (ft)	0	

Appendix F: Listed Species That Overlap at the County Level with Areas Where Cyflumetofen Is Proposed To Be Used as Identified by LOCATES (v. 2.2.5)

Based on the following crops: almonds, apples, chestnut, cironjas, citron, citrus fruit-all, grapefruit, grapes, hazel nuts (filberts), kumquats, lemons, lemons and limes, limes, macadamia nuts, pears-all, pears-Bartlett, pears-other, pecans-all, pecans-improved, pecans-native and seedling, tangelo, tangerine, walnuts-English

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Coqui, Golden	Eleutherodactylus jasperi	Т	Amphibian	No
Frog, California Red-legged	Rana aurora draytonii	Т	Amphibian	No
Frog, Chiricahua Leopard	Rana chiricahuensis	Т	Amphibian	No
Frog, Dusky Gopher (Mississippi DPS)	Rana capito sevosa	Е	Amphibian	No
Frog, Mountain Yellow-legged	Rana muscosa	Е	Amphibian	No
Guajon	Eleutherodactylus cooki	Т	Amphibian	No
Ozark Hellbender	Cryptobranchus alleganiensis bishopi	Е	Amphibian	No
Salamander, Barton Springs	Eurycea sosorum	Е	Amphibian	No
Salamander, California Tiger	Ambystoma californiense	Е	Amphibian	No
Salamander, Cheat Mountain	Plethodon nettingi	Т	Amphibian	No
Salamander, Desert Slender	Batrachoseps aridus	Е	Amphibian	No
Salamander, Frosted Flatwoods	Ambystoma cingulatum	Т	Amphibian	No
Salamander, Red Hills	Phaeognathus hubrichti	Т	Amphibian	No
Salamander, Reticulated flatwoods	Ambystoma bishopi	Е	Amphibian	No
Salamander, San Marcos	Eurycea nana	Т	Amphibian	No
Salamander, Santa Cruz Long-toed	Ambystoma macrodactylum croceum	Е	Amphibian	No
Salamander, Shenandoah	Plethodon shenandoah	Е	Amphibian	No
Salamander, Sonora Tiger	Ambystoma tigrinum stebbinsi	Е	Amphibian	No
Salamander, Texas Blind	Typhlomolge rathbuni	Е	Amphibian	No
Toad, Arroyo Southwestern	Bufo californicus (=microscaphus)	Е	Amphibian	No
Toad, Houston	Bufo houstonensis	Е	Amphibian	No
Toad, Puerto Rican Crested	Peltophryne lemur	Т	Amphibian	No
Harvestman, Bee Creek Cave	Texella reddelli	Е	Arachnid	No
Harvestman, Bone Cave	Texella reyesi	Е	Arachnid	No

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Harvestman, Cokendolpher Cave	Texella cokendolpheri	Е	Arachnid	No
Meshweaver, Braken Bat Cave	Cicurina venii	Е	Arachnid	No
Meshweaver, Government Canyon Bat Cave	Cicurina vespera	Е	Arachnid	No
Meshweaver, Madla's Cave	Cicurina madla	Е	Arachnid	No
Meshweaver, Robber Baron Cave	Cicurina baronia	Е	Arachnid	No
Pseudoscorpion, Tooth Cave	Tartarocreagris texana	Е	Arachnid	No
Spider, Government Canyon Bat Cave	Neoleptoneta microps	Е	Arachnid	No
Spider, Kauai Cave Wolf	Adelocosa anops	Е	Arachnid	No
Spider, Spruce-fir Moss	Microhexura montivaga	Е	Arachnid	No
Spider, Tooth Cave	Leptoneta myopica	Е	Arachnid	No
Akekee	Loxops caeruleirostris	Е	Bird	No
'Akepa, Hawaii	Loxops coccineus coccineus	Е	Bird	No
'Akepa, Maui	Loxops coccineus ochraceus	Е	Bird	No
'Akia Loa, Kauai (Hemignathus procerus)	Hemignathus procerus	Е	Bird	No
'Akia Pola'au (Hemignathus munroi)	Hemignathus munroi	Е	Bird	No
Albatross, Short-tailed	Phoebastria (=Diomedea) albatrus	Е	Bird	No
Blackbird, Yellow-shouldered	Agelaius xanthomus	Е	Bird	No
Bobwhite, Masked	Colinus virginianus ridgwayi	Е	Bird	No
Caracara, Audubon's Crested	Polyborus plancus audubonii	Т	Bird	No
Condor, California	Gymnogyps californianus	Е	Bird	No
Coot, Hawaiian (=Alae keo keo)	Fulica americana alai	Е	Bird	No
Crane, Mississippi Sandhill	Grus canadensis pulla	Е	Bird	No
Crane, Whooping	Grus americana	Е	Bird	No
Creeper, Hawaii	Oreomystis mana	Е	Bird	No
Creeper, Oahu (Alauwahio)	Paroreomyza maculata	Е	Bird	No
Crow, Hawaiian ('Alala)	Corvus hawaiiensis	Е	Bird	No
Crow, Mariana	Corvus kubaryi	Е	Bird	No
Curlew, Eskimo	Numenius borealis	Е	Bird	No
Duck, Hawaiian (Koloa)	Anas wyvilliana	Е	Bird	No
Eider, Steller's	Polysticta stelleri	Т	Bird	No
Elepaio, Oahu	Chasiempis sandwichensis ibidis	Е	Bird	No
Falcon, Northern Aplomado	Falco femoralis septentrionalis	Е	Bird	No
Flycatcher, Southwestern Willow	Empidonax traillii extimus	Е	Bird	No

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Gnatcatcher, Coastal California	Polioptila californica californica	Т	Bird	No
Goose, Hawaiian (Nene)	Branta (=Nesochen) sandvicensis	Е	Bird	No
Hawk, Hawaiian (Io)	Buteo solitarius	Е	Bird	No
Hawk, Puerto Rican Broad-winged	Buteo platypterus brunnescens	Е	Bird	No
Hawk, Puerto Rican Sharp-shinned	Accipiter striatus venator	Е	Bird	No
Honeycreeper, Crested ('Akohekohe)	Palmeria dolei	Е	Bird	No
Kauai creeper	Oreomystis bairdi	Е	Bird	No
Kingfisher, Guam Micronesian	Halcyon cinnamomina cinnamomina	Е	Bird	No
Kite, Everglades Snail	Rostrhamus sociabilis plumbeus	Е	Bird	No
Megapode, Micronesian (La Perouse's)	Megapodius laperouse	Е	Bird	No
Moorhen, Hawaiian Common	Gallinula chloropus sandvicensis	Е	Bird	No
Moorhen, Mariana Common	Gallinula chloropus guami	Е	Bird	No
Murrelet, Marbled	Brachyramphus marmoratus	Т	Bird	No
Nightjar, Puerto Rico	Caprimulgus noctitherus	Е	Bird	No
Nuku Pu'u, Kauai	Hemignathus lucidus hanapepe	Е	Bird	No
Nuku Pu'u, Maui	Hemignathus lucidus affinus	Е	Bird	No
'O'o, Kauai (='A'a)	Moho braccatus	Е	Bird	No
'O'u (Honeycreeper)	Psittirostra psittacea	Е	Bird	No
Owl, Mexican Spotted	Strix occidentalis lucida	Т	Bird	No
Owl, Northern Spotted	Strix occidentalis caurina	Т	Bird	No
Palila	Loxioides bailleui	Е	Bird	No
Parrot, Puerto Rican	Amazona vittata	Е	Bird	No
Parrotbill, Maui	Pseudonestor xanthophrys	Е	Bird	No
Petrel, Hawaiian Dark-rumped	Pterodroma phaeopygia sandwichensis	Е	Bird	No
Pigeon, Puerto Rican Plain	Columba inornata wetmorei	Е	Bird	No
Plover, Piping	Charadrius melodus	E/T	Bird	No
Plover, Western Snowy	Charadrius alexandrinus nivosus	Т	Bird	No
Po'ouli	Melamprosops phaeosoma	Е	Bird	No
Prairie-chicken, Attwater's Greater	Tympanuchus cupido attwateri	Е	Bird	No
Rail, California Clapper	Rallus longirostris obsoletus	Е	Bird	No
Rail, Guam	Rallus owstoni	Е	Bird	No
Rail, Light-footed Clapper	Rallus longirostris levipes	Е	Bird	No
Rail, Yuma Clapper	Rallus longirostris yumanensis	Е	Bird	No

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Scrub-Jay, Florida	Aphelocoma coerulescens	Т	Bird	No
Shearwater, Newell's Townsend's	Puffinus auricularis newelli	Т	Bird	No
Shrike, San Clemente Loggerhead	Lanius ludovicianus mearnsi	Е	Bird	No
Sparrow, Cape Sable Seaside	Ammodramus maritimus mirabilis	Е	Bird	No
Sparrow, Florida Grasshopper	Ammodramus savannarum floridanus	Е	Bird	No
Sparrow, San Clemente Sage	Amphispiza belli clementeae	Т	Bird	No
Stilt, Hawaiian (=Ae'o)	Himantopus mexicanus knudseni	Е	Bird	No
Stork, Wood	Mycteria americana	Е	Bird	No
Swiftlet, Mariana Gray (=Vanikoro)	Aerodramus vanikorensis bartschi	Е	Bird	No
Tern, California Least	Sterna antillarum browni	Е	Bird	No
Tern, Interior (population) Least	Sterna antillarum	Е	Bird	No
Tern, Roseate	Sterna dougallii dougallii	E/T	Bird	No
Thrush, Large Kauai	Myadestes myadestinus	Е	Bird	No
Thrush, Small Kauai (Puaiohi)	Myadestes palmeri	Е	Bird	No
Towhee, Inyo Brown	Pipilo crissalis eremophilus	Т	Bird	No
Vireo, Black-capped	Vireo atricapilla	Е	Bird	No
Vireo, Least Bell's	Vireo bellii pusillus	Е	Bird	No
Warbler (=Wood), Golden-cheeked	Dendroica chrysoparia	Е	Bird	No
Warbler (=Wood), Kirtland's	Dendroica kirtlandii	Е	Bird	No
Warbler, Bachman's	Vermivora bachmanii	Е	Bird	No
Warbler, nightingale reed (old world warbler)	Acrocephalus luscinia	Е	Bird	No
White-eye, Bridled (Nossa)	Zosterops conspicillatus conspicillatus	Е	Bird	No
White-eye, Rota Bridled	Zosterops rotensis	Е	Bird	No
Woodpecker, Ivory-billed	Campephilus principalis	Е	Bird	No
Woodpecker, Red-cockaded	Picoides borealis	Е	Bird	No
Alabama pearlshell	Margaritifera marrianae	Е	Bivalve	No
Bankclimber, Purple	Elliptoideus sloatianus	Т	Bivalve	No
Choctaw Bean	Villosa choctawensis	Е	Bivalve	No
Combshell, Southern (=Penitent mussel)	Epioblasma penita	Е	Bivalve	No
Combshell, Upland	Epioblasma metastriata	Е	Bivalve	No
Elktoe, Appalachian	Alasmidonta raveneliana	Е	Bivalve	No
Fanshell	Cyprogenia stegaria	Е	Bivalve	No
Fatmucket, Arkansas	Lampsilis powelli	Т	Bivalve	No

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
fuzzy pigtoe	Pleurobema strodeanum	Т	Bivalve	No
Kidneyshell, Triangular	Ptychobranchus greenii	E	Bivalve	No
Mucket, Orange-nacre	Lampsilis perovalis	Т	Bivalve	No
Mucket, Pink (Pearlymussel)	Lampsilis abrupta	E	Bivalve	No
Mussel, Acornshell Southern	Epioblasma othcaloogensis	E	Bivalve	No
Mussel, Alabama Moccasinshell	Medionidus acutissimus	Т	Bivalve	No
Mussel, Black (=Curtus' Mussel) Clubshell	Pleurobema curtum	E	Bivalve	No
Mussel, Clubshell	Pleurobema clava	E	Bivalve	No
Mussel, Coosa Moccasinshell	Medionidus parvulus	Е	Bivalve	No
Mussel, Cumberland Combshell	Epioblasma brevidens	Е	Bivalve	No
Mussel, Cumberland Elktoe	Alasmidonta atropurpurea	Е	Bivalve	No
Mussel, Cumberland Pigtoe	Pleurobema gibberum	Е	Bivalve	No
Mussel, Dark Pigtoe	Pleurobema furvum	Е	Bivalve	No
Mussel, Dwarf Wedge	Alasmidonta heterodon	Е	Bivalve	No
Mussel, Fat Threeridge	Amblema neislerii	Е	Bivalve	No
Mussel, Fine-lined Pocketbook	Lampsilis altilis	Т	Bivalve	No
Mussel, Fine-rayed Pigtoe	Fusconaia cuneolus	Е	Bivalve	No
Mussel, Flat Pigtoe (=Marshall's Mussel)	Pleurobema marshalli	Е	Bivalve	No
Mussel, Georgia pigtoe	Pleurobema hanleyianum	Е	Bivalve	No
Mussel, Gulf Moccasinshell	Medionidus penicillatus	E	Bivalve	No
Mussel, Heavy Pigtoe (=Judge Tait's Mussel)	Pleurobema taitianum	Е	Bivalve	No
Mussel, Heelsplitter Carolina	Lasmigona decorata	Е	Bivalve	No
Mussel, Heelsplitter Inflated	Potamilus inflatus	Т	Bivalve	No
Mussel, Ochlockonee Moccasinshell	Medionidus simpsonianus	Е	Bivalve	No
Mussel, Oval Pigtoe	Pleurobema pyriforme	E	Bivalve	No
Mussel, Ovate Clubshell	Pleurobema perovatum	E	Bivalve	No
Mussel, Oyster	Epioblasma capsaeformis	Е	Bivalve	No
Mussel, Ring Pink (=Golf Stick Pearly)	Obovaria retusa	Е	Bivalve	No
Mussel, Rough Pigtoe	Pleurobema plenum	Е	Bivalve	No
Mussel, Scaleshell	Leptodea leptodon	Е	Bivalve	No
Mussel, Shiny Pigtoe	Fusconaia cor	Е	Bivalve	No
Mussel, Shiny-rayed Pocketbook	Lampsilis subangulata	Е	Bivalve	No
Mussel, snuffbox	Epioblasma triquetra	Е	Bivalve	No

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Mussel, Southern Clubshell	Pleurobema decisum	Е	Bivalve	No
Mussel, Southern Pigtoe	Pleurobema georgianum	Е	Bivalve	No
Mussel, Speckled Pocketbook	Lampsilis streckeri	Е	Bivalve	No
Mussel, Winged Mapleleaf	Quadrula fragosa	Е	Bivalve	No
Narrow Pigtoe	Fusconaia escambia	Т	Bivalve	No
Pearlshell, Louisiana	Margaritifera hembeli	Т	Bivalve	No
Pearlymussel, Alabama Lamp	Lampsilis virescens	Е	Bivalve	No
Pearlymussel, Appalachian Monkeyface	Quadrula sparsa	Е	Bivalve	No
Pearlymussel, Birdwing	Lemiox rimosus	Е	Bivalve	No
Pearlymussel, Cracking	Hemistena lata	Е	Bivalve	No
Pearlymussel, Cumberland Bean	Villosa trabalis	Е	Bivalve	No
Pearlymussel, Cumberland Monkeyface	Quadrula intermedia	Е	Bivalve	No
Pearlymussel, Curtis'	Epioblasma florentina curtisii	Е	Bivalve	No
Pearlymussel, Dromedary	Dromus dromas	Е	Bivalve	No
Pearlymussel, Fat Pocketbook	Potamilus capax	Е	Bivalve	No
Pearlymussel, Green-blossom	Epioblasma torulosa gubernaculum	Е	Bivalve	No
Pearlymussel, Higgins' Eye	Lampsilis higginsii	Е	Bivalve	No
Pearlymussel, Little-wing	Pegias fabula	Е	Bivalve	No
Pearlymussel, Orange-footed	Plethobasus cooperianus	Е	Bivalve	No
Pearlymussel, Pale Lilliput	Toxolasma cylindrellus	Е	Bivalve	No
Pearlymussel, Purple Cat's Paw	Epioblasma obliquata obliquata	Е	Bivalve	No
Pearlymussel, Tubercled-blossom	Epioblasma torulosa torulosa	Е	Bivalve	No
Pearlymussel, Turgid-blossom	Epioblasma turgidula	Е	Bivalve	No
Pearlymussel, White Cat's Paw	Epioblasma obliquata perobliqua	Е	Bivalve	No
Pearlymussel, White Wartyback	Plethobasus cicatricosus	Е	Bivalve	No
Pearlymussel, Yellow-blossom	Epioblasma florentina florentina	Е	Bivalve	No
Purple Bean	Villosa perpurpurea	Е	Bivalve	No
Rabbitsfoot, Rough	Quadrula cylindrica strigillata	Е	Bivalve	No
Rayed Bean	Villosa fabalis	Е	Bivalve	No
Riffleshell, Northern	Epioblasma torulosa rangiana	Е	Bivalve	No
Riffleshell, Tan	Epioblasma florentina walkeri (=E. walkeri)	Е	Bivalve	No
Rock-pocketbook, Ouachita (=Wheeler's pm)	Arkansia wheeleri	Е	Bivalve	No
Round Ebonyshell	Fusconaia rotulata	Е	Bivalve	No

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Sheepnose mussel	Plethobasus cyphyus	Е	Bivalve	No
Slabshell, Chipola	Elliptio chipolaensis	Т	Bivalve	No
Southern Kidneyshell	Ptychobranchus jonesi	Е	Bivalve	No
Southern Sandshell	Hamiota australis	Т	Bivalve	No
Spectaclecase mussel	Cumberlandia monodonta	Е	Bivalve	No
Spinymussel, Altamaha	Elliptio spinosa	Е	Bivalve	No
Spinymussel, James River	Pleurobema collina	Е	Bivalve	No
Spinymussel, Tar River	Elliptio steinstansana	E	Bivalve	No
Stirrupshell	Quadrula stapes	Е	Bivalve	No
Tapered Pigtoe	Fusconaia burkei	Т	Bivalve	No
Cypress, Gowen	Cupressus goveniana ssp. goveniana	Т	Conf/cycds	No
Cypress, Santa Cruz	Cupressus abramsiana	Е	Conf/cycds	No
Torreya, Florida	Torreya taxifolia	Е	Conf/cycds	No
Coral, Elkhorn	Acropora palmata	Т	Coral	No
Coral, Staghorn	Acropora cervicornis	Т	Coral	No
Amphipod, Illinois Cave	Gammarus acherondytes	Е	Crustacean	No
Amphipod, Kauai Cave	Spelaeorchestia koloana	Е	Crustacean	No
Amphipod, Noel's	Gammarus desperatus	Е	Crustacean	No
Amphipod, Peck's Cave	Stygobromus (=Stygonectes) pecki	Е	Crustacean	No
Crayfish, Cave (Cambarus aculabrum)	Cambarus aculabrum	Е	Crustacean	No
Crayfish, Cave (Cambarus zophonastes)	Cambarus zophonastes	E	Crustacean	No
Crayfish, Nashville	Orconectes shoupi	Е	Crustacean	No
Crayfish, Shasta	Pacifastacus fortis	Е	Crustacean	No
Fairy Shrimp, Conservancy Fairy	Branchinecta conservatio	Е	Crustacean	No
Fairy Shrimp, Longhorn	Branchinecta longiantenna	E	Crustacean	No
Fairy Shrimp, Riverside	Streptocephalus woottoni	E	Crustacean	No
Fairy Shrimp, San Diego	Branchinecta sandiegonensis	Е	Crustacean	No
Fairy Shrimp, Vernal Pool	Branchinecta lynchi	Т	Crustacean	No
Isopod, Lee County Cave	Lirceus usdagalun	Е	Crustacean	No
Isopod, Madison Cave	Antrolana lira	Т	Crustacean	No
Isopod, Socorro	Thermosphaeroma thermophilus	Е	Crustacean	No
Shrimp, Alabama Cave	Palaemonias alabamae	E	Crustacean	No
Shrimp, California Freshwater	Syncaris pacifica	Е	Crustacean	No

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Shrimp, Kentucky Cave	Palaemonias ganteri	Е	Crustacean	No
Shrimp, Squirrel Chimney Cave	Palaemonetes cummingi	Т	Crustacean	No
Tadpole Shrimp, Vernal Pool	Lepidurus packardi	Е	Crustacean	No
(ncn)	Cyanea kolekoleensis	Е	Dicot	Yes
(ncn)	Keysseria (=Lagenifera) erici	Е	Dicot	Yes
(ncn)	Keysseria (=Lagenifera) helenae	Е	Dicot	Yes
(ncn)	Lysimachia iniki	Е	Dicot	Yes
(ncn)	Lysimachia pendens	Е	Dicot	Yes
(ncn)	Lysimachia scopulensis	Е	Dicot	Yes
(ncn)	Lysimachia venosa	Е	Dicot	Yes
(ncn)	Phyllostegia hispida	Е	Dicot	Yes
(ncn)	Phyllostegia renovans	Е	Dicot	Yes
(ncn)	Platydesma cornuta var. cornuta	Е	Dicot	Yes
(ncn)	Platydesma cornuta var. decurrens	Е	Dicot	Yes
(ncn)	Schiedea attenuata	Е	Dicot	Yes
(ncn)	Stenogyne kealiae	Е	Dicot	Yes
(ncn)	Tetraplasandra bisattenuata	Е	Dicot	Yes
(ncn)	Tetraplasandra flynnii	Е	Dicot	Yes
(ncn)	Tetraplasandra lydgatei	Е	Dicot	Yes
Abutilon sandwicense (ncn)	Abutilon sandwicense	Е	Dicot	Yes
Achyranthes mutica (ncn)	Achyranthes mutica	Е	Dicot	Yes
Achyranthes splendens var. rotundata (ncn)	Achyranthes splendens var. rotundata	Е	Dicot	Yes
Adobe Sunburst, San Joaquin	Pseudobahia peirsonii	Т	Dicot	Yes
a'e	Zanthoxylum oahuense	Е	Dicot	Yes
A'e (Zanthoxylum dipetalum var. tomentosum)	Zanthoxylum dipetalum var. tomentosum	Е	Dicot	Yes
A'e (Zanthoxylum hawaiiense)	Zanthoxylum hawaiiense	Е	Dicot	Yes
'Aiea (Nothocestrum breviflorum)	Nothocestrum breviflorum	Е	Dicot	Yes
'Aiea (Nothocestrum peltatum)	Nothocestrum peltatum	Е	Dicot	Yes
Akoko	Chamaesyce remyi var. kauaiensis	Е	Dicot	Yes
'akoko	Chamaesyce eleanoriae	Е	Dicot	Yes
'Akoko (Chamaesyce celastroides var. kaenana)	Chamaesyce celastroides var. kaenana	Е	Dicot	Yes
'Akoko (Chamaesyce deppeana)	Chamaesyce deppeana	Е	Dicot	Yes
'Akoko (Chamaesyce herbstii)	Chamaesyce herbstii	Е	Dicot	Yes

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
'Akoko (Chamaesyce kuwaleana)	Chamaesyce kuwaleana	Е	Dicot	Yes
'Akoko (Chamaesyce rockii)	Chamaesyce rockii	Е	Dicot	Yes
'Akoko (Chamaesyce skottsbergii var. skottsbe	Chamaesyce skottsbergii var. kalaeloana	Е	Dicot	Yes
'Akoko (Euphorbia haeleeleana)	Euphorbia haeleeleana	Е	Dicot	Yes
alani	Melicope christophersenii	Е	Dicot	Yes
alani	Melicope degeneri	Е	Dicot	Yes
alani	Melicope hiiakae	Е	Dicot	Yes
alani	Melicope makahae	Е	Dicot	Yes
alani	Melicope paniculata	Е	Dicot	Yes
alani	Melicope puberula	Е	Dicot	Yes
Alani (Melicope adscendens)	Melicope adscendens	Е	Dicot	Yes
Alani (Melicope balloui)	Melicope balloui	Е	Dicot	Yes
Alani (Melicope haupuensis)	Melicope haupuensis	Е	Dicot	Yes
Alani (Melicope knudsenii)	Melicope knudsenii	Е	Dicot	Yes
Alani (Melicope lydgatei)	Melicope lydgatei	Е	Dicot	Yes
Alani (Melicope mucronulata)	Melicope mucronulata	Е	Dicot	Yes
Alani (Melicope ovalis)	Melicope ovalis	Е	Dicot	Yes
Alani (Melicope pallida)	Melicope pallida	Е	Dicot	Yes
Alani (Melicope quadrangularis)	Melicope quadrangularis	Е	Dicot	Yes
Alani (Melicope saint-johnii)	Melicope saint-johnii	Е	Dicot	Yes
Alani (Melicope zahlbruckneri)	Melicope zahlbruckneri	Е	Dicot	Yes
Allocarya, Calistoga	Plagiobothrys strictus	Е	Dicot	Yes
Alsinidendron obovatum (ncn)	Alsinidendron obovatum	Е	Dicot	Yes
Alsinidendron trinerve (ncn)	Alsinidendron trinerve	Е	Dicot	Yes
Alsinidendron viscosum (ncn)	Alsinidendron viscosum	Е	Dicot	Yes
Amaranth, Seabeach	Amaranthus pumilus	Т	Dicot	Yes
Ambrosia, San Diego	Ambrosia pumila	Е	Dicot	Yes
Ambrosia, South Texas	Ambrosia cheiranthifolia	Е	Dicot	Yes
Amphianthus, Little	Amphianthus pusillus	Т	Dicot	Yes
'Anaunau (Lepidium arbuscula)	Lepidium arbuscula	Е	Dicot	Yes
'Anunu (Sicyos alba)	Sicyos alba	Е	Dicot	Yes
Aster, Decurrent False	Boltonia decurrens	Т	Dicot	Yes
Aster, Florida Golden	Chrysopsis floridana	Е	Dicot	Yes

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Aster, Ruth's Golden	Pityopsis ruthii	Е	Dicot	Yes
Auerodendron pauciflorum (ncn)	Auerodendron pauciflorum	Е	Dicot	Yes
Aupaka (Isodendrion hosakae)	Isodendrion hosakae	Е	Dicot	Yes
Aupaka (Isodendrion laurifolium)	Isodendrion laurifolium	Е	Dicot	Yes
Aupaka (Isodendrion longifolium)	Isodendrion longifolium	Т	Dicot	Yes
Avens, Spreading	Geum radiatum	Е	Dicot	Yes
awikiwiki	Canavalia napaliensis	Е	Dicot	Yes
'Awiwi (Centaurium sebaeoides)	Centaurium sebaeoides	Е	Dicot	Yes
'Awiwi (Hedyotis cookiana)	Hedyotis cookiana	Е	Dicot	Yes
Ayenia, Texas	Ayenia limitaris	Е	Dicot	Yes
Baccharis, Encinitas	Baccharis vanessae	Т	Dicot	Yes
Barbara Buttons, Mohr's	Marshallia mohrii	Т	Dicot	Yes
Barberry, Island	Berberis pinnata ssp. insularis	Е	Dicot	Yes
Barberry, Nevin's	Berberis nevinii	Е	Dicot	Yes
Bariaco	Trichilia triacantha	Е	Dicot	Yes
Bearclaw poppy, Dwarf	Arctomecon humilis	Е	Dicot	Yes
Bedstraw, El Dorado	Galium californicum ssp. sierrae	Е	Dicot	Yes
Bedstraw, Island	Galium buxifolium	Е	Dicot	Yes
Bellflower, Brooksville	Campanula robinsiae	Е	Dicot	Yes
Birch, Virginia Round-leaf	Betula uber	Т	Dicot	Yes
Bird's-beak, Palmate-bracted	Cordylanthus palmatus	Е	Dicot	Yes
Bird's-beak, Pennell's	Cordylanthus tenuis ssp. capillaris	Е	Dicot	Yes
Bird's-beak, salt marsh	Cordylanthus maritimus ssp. maritimus	Е	Dicot	Yes
Bird's-beak, Soft	Cordylanthus mollis ssp. mollis	Е	Dicot	Yes
Birds-in-a-nest, White	Macbridea alba	Т	Dicot	Yes
Bittercress, Small-anthered	Cardamine micranthera	Е	Dicot	Yes
Bladderpod, Dudley Bluffs	Lesquerella congesta	Т	Dicot	Yes
Bladderpod, Kodachrome	Lesquerella tumulosa	Е	Dicot	Yes
Bladderpod, Lyrate	Lesquerella lyrata	Т	Dicot	Yes
Bladderpod, Missouri	Lesquerella filiformis	Т	Dicot	Yes
Bladderpod, San Bernardino Mountains	Lesquerella kingii ssp. bernardina	Е	Dicot	Yes
Bladderpod, Spring Creek	Lesquerella perforata	Е	Dicot	Yes
Bladderpod, White	Lesquerella pallida	Е	Dicot	Yes

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Bladderpod, Zapata	Lesquerella thamnophila	Е	Dicot	Yes
Blazing Star, Ash Meadows	Mentzelia leucophylla	Т	Dicot	Yes
Blazing Star, Heller's	Liatris helleri	Т	Dicot	Yes
Blazing Star, Scrub	Liatris ohlingerae	Е	Dicot	Yes
Bluecurls, Hidden Lake	Trichostema austromontanum ssp. compactum	Т	Dicot	Yes
Blue-star, Kearney's	Amsonia kearneyana	Е	Dicot	Yes
Bluet, Roan Mountain	Hedyotis purpurea var. montana	Е	Dicot	Yes
Bonamia menziesii (ncn)	Bonamia menziesii	Е	Dicot	Yes
Bonamia, Florida	Bonamia grandiflora	Т	Dicot	Yes
Boxwood, Vahl's	Buxus vahlii	Е	Dicot	Yes
Broom, San Clemente Island	Lotus dendroideus ssp. traskiae	Е	Dicot	Yes
Buckwheat, Cushenbury	Eriogonum ovalifolium var. vineum	Е	Dicot	Yes
Buckwheat, Ione (incl. Irish Hill)	Eriogonum apricum (incl. var. prostratum)	Е	Dicot	Yes
Buckwheat, Scrub	Eriogonum longifolium var. gnaphalifolium	Т	Dicot	Yes
Buckwheat, Southern Mountain Wild	Eriogonum kennedyi var. austromontanum	Т	Dicot	Yes
Buckwheat, Steamboat	Eriogonum ovalifolium var. williamsiae	Е	Dicot	Yes
Bush-mallow, San Clemente Island	Malacothamnus clementinus	Е	Dicot	Yes
Bush-mallow, Santa Cruz Island	Malacothamnus fasciculatus var. nesioticus	Е	Dicot	Yes
Buttercup, Autumn	Ranunculus aestivalis (=acriformis)	Е	Dicot	Yes
Butterfly Plant, Colorado	Gaura neomexicana var. coloradensis	Т	Dicot	Yes
Butterweed, Layne's	Senecio layneae	Т	Dicot	Yes
Butterwort, Godfrey's	Pinguicula ionantha	Т	Dicot	Yes
Button-celery, San Diego	Eryngium aristulatum var. parishii	Е	Dicot	Yes
Cactus, Arizona Hedgehog	Echinocereus triglochidiatus var. arizonicus	Е	Dicot	Yes
Cactus, Bakersfield	Opuntia treleasei	Е	Dicot	Yes
Cactus, Black Lace	Echinocereus reichenbachii var. albertii	Е	Dicot	Yes
Cactus, Brady Pincushion	Pediocactus bradyi	Е	Dicot	Yes
Cactus, Bunched Cory	Coryphantha ramillosa	Т	Dicot	Yes
Cactus, Chisos Mountain Hedgehog	Echinocereus chisoensis var. chisoensis	Т	Dicot	Yes
Cactus, Cochise Pincushion	Coryphantha robbinsorum	Т	Dicot	Yes
Cactus, Colorado hookless	Sclerocactus glaucus	Т	Dicot	Yes
Cactus, Knowlton	Pediocactus knowltonii	Е	Dicot	Yes
Cactus, Kuenzler Hedgehog	Echinocereus fendleri var. kuenzleri	Е	Dicot	Yes
Cactus, Lee Pincushion	Coryphantha sneedii var. leei	Т	Dicot	Yes

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Cactus, Lloyd's Mariposa	Echinomastus mariposensis	Т	Dicot	Yes
Cactus, Mesa Verde	Sclerocactus mesae-verdae	Т	Dicot	Yes
Cactus, Nellie Cory	Coryphantha minima	Е	Dicot	Yes
Cactus, Nichol's Turk's Head	Echinocactus horizonthalonius var. nicholii	Е	Dicot	Yes
Cactus, Pariette	Sclerocactus brevispinus	Т	Dicot	Yes
Cactus, Peebles Navajo	Pediocactus peeblesianus peeblesianus	Е	Dicot	Yes
Cactus, Pima Pineapple	Coryphantha scheeri var. robustispina	Е	Dicot	Yes
Cactus, San Rafael	Pediocactus despainii	Е	Dicot	Yes
Cactus, Siler Pincushion	Pediocactus (=Echinocactus,=Utahia) sileri	Т	Dicot	Yes
Cactus, Sneed Pincushion	Coryphantha sneedii var. sneedii	Е	Dicot	Yes
Cactus, Star	Astrophytum asterias	Е	Dicot	Yes
Cactus, Tobusch Fishhook	Ancistrocactus tobuschii	Е	Dicot	Yes
Cactus, Uinta Basin hookless	Sclerocactus wetlandicus	Т	Dicot	Yes
Cactus, Winkler	Pediocactus winkleri	Т	Dicot	Yes
Cactus, Wright Fishhook	Sclerocactus wrightiae	Е	Dicot	Yes
Calyptranthes Thomasiana (ncn)	Calyptranthes thomasiana	Е	Dicot	Yes
Campion, Fringed	Silene polypetala	Е	Dicot	Yes
Capa Rosa	Callicarpa ampla	Е	Dicot	Yes
Catchfly, Spalding's	Silene spaldingii	Т	Dicot	Yes
Catesbaea Melanocarpa (ncn)	Catesbaea melanocarpa	Е	Dicot	Yes
Cat's-eye, Terlingua Creek	Cryptantha crassipes	Е	Dicot	Yes
Ceanothus, Coyote	Ceanothus ferrisae	Е	Dicot	Yes
Ceanothus, Pine Hill	Ceanothus roderickii	Е	Dicot	Yes
Ceanothus, Vail Lake	Ceanothus ophiochilus	Т	Dicot	Yes
Centaury, Spring-loving	Centaurium namophilum	Т	Dicot	Yes
Chaffseed, American	Schwalbea americana	Е	Dicot	Yes
Chamaecrista glandulosa (ncn)	Chamaecrista glandulosa var. mirabilis	Е	Dicot	Yes
Chamaesyce Halemanui (ncn)	Chamaesyce halemanui	Е	Dicot	Yes
Checker-mallow, Keck's	Sidalcea keckii	Е	Dicot	Yes
Checker-mallow, Kenwood Marsh	Sidalcea oregana ssp. valida	Е	Dicot	Yes
Checker-mallow, Nelson's	Sidalcea nelsoniana	Т	Dicot	Yes
Checker-mallow, Pedate	Sidalcea pedata	Е	Dicot	Yes
Checker-mallow, Wenatchee Mountains	Sidalcea oregana var. calva	Е	Dicot	Yes

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Chumbo, Higo	Harrisia portoricensis	Т	Dicot	Yes
Chupacallos	Pleodendron macranthum	Е	Dicot	Yes
Clarkia, Pismo	Clarkia speciosa ssp. immaculata	Е	Dicot	Yes
Clarkia, Presidio	Clarkia franciscana	Е	Dicot	Yes
Clarkia, Springville	Clarkia springvillensis	Т	Dicot	Yes
Clarkia, Vine Hill	Clarkia imbricata	Е	Dicot	Yes
Cliffrose, Arizona	Purshia (=cowania) subintegra	Е	Dicot	Yes
Clover, Fleshy Owl's	Castilleja campestris ssp. succulenta	Т	Dicot	Yes
Clover, Leafy Prairie	Dalea foliosa	Е	Dicot	Yes
Clover, Monterey	Trifolium trichocalyx	Е	Dicot	Yes
Clover, Prairie Bush	Lespedeza leptostachya	Т	Dicot	Yes
Clover, Running Buffalo	Trifolium stoloniferum	Е	Dicot	Yes
Clover, Showy Indian	Trifolium amoenum	Е	Dicot	Yes
Cobana Negra	Stahlia monosperma	Т	Dicot	Yes
Coneflower, Smooth	Echinacea laevigata	Е	Dicot	Yes
Cordia bellonis (ncn)	Cordia bellonis	Е	Dicot	Yes
Coyote-thistle, Loch Lomond	Eryngium constancei	Е	Dicot	Yes
Crownbeard, Big-leaved	Verbesina dissita	Т	Dicot	Yes
Crownscale, San Jacinto Valley	Atriplex coronata var. notatior	Е	Dicot	Yes
Cyanea undulata (ncn)	Cyanea undulata	Е	Dicot	Yes
Cycladenia, Jones	Cycladenia jonesii (=humilis)	Т	Dicot	Yes
Daisy, Lakeside	Hymenoxys herbacea	Т	Dicot	Yes
Daisy, Parish's	Erigeron parishii	Т	Dicot	Yes
Daisy, Willamette	Erigeron decumbens var. decumbens	Е	Dicot	Yes
Daphnopsis hellerana (ncn)	Daphnopsis hellerana	Е	Dicot	Yes
Dawn-flower, Texas Prairie (=Texas Bitterweed)	Hymenoxys texana	Е	Dicot	Yes
DeBeque phacelia	Phacelia submutica	Т	Dicot	Yes
Delissea rhytodisperma (ncn)	Delissea rhytidosperma	Е	Dicot	Yes
Dogweed, Ashy	Thymophylla tephroleuca	Е	Dicot	Yes
Dropwort, Canby's	Oxypolis canbyi	Е	Dicot	Yes
Dubautia latifolia (ncn)	Dubautia latifolia	Е	Dicot	Yes
Dubautia pauciflorula (ncn)	Dubautia pauciflorula	Е	Dicot	Yes
Dudleya, Conejo	Dudleya abramsii ssp. parva	Т	Dicot	Yes

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Dudleya, Marcescent	Dudleya cymosa ssp. marcescens	Т	Dicot	Yes
Dudleya, Santa Clara Valley	Dudleya setchellii	Е	Dicot	Yes
Dudleya, Santa Cruz Island	Dudleya nesiotica	Т	Dicot	Yes
Dudleya, Santa Monica Mountains	Dudleya cymosa ssp. ovatifolia	Т	Dicot	Yes
Dudleya, Verity's	Dudleya verityi	Т	Dicot	Yes
Dwarf-flax, Marin	Hesperolinon congestum	Т	Dicot	Yes
Erubia	Solanum drymophilum	Е	Dicot	Yes
Eugenia Woodburyana	Eugenia woodburyana	Е	Dicot	Yes
Evening-primrose, Antioch Dunes	Oenothera deltoides ssp. howellii	Е	Dicot	Yes
Evening-primrose, Eureka Valley	Oenothera avita ssp. eurekensis	Е	Dicot	Yes
Evening-primrose, San Benito	Camissonia benitensis	Т	Dicot	Yes
Fiddleneck, Large-flowered	Amsinckia grandiflora	Е	Dicot	Yes
Flannelbush, Mexican	Fremontodendron mexicanum	Е	Dicot	Yes
Flannelbush, Pine Hill	Fremontodendron californicum ssp. decumbens	Е	Dicot	Yes
Fleabane, Zuni	Erigeron rhizomatus	Т	Dicot	Yes
Four-o'clock, Macfarlane's	Mirabilis macfarlanei	Т	Dicot	Yes
Frankenia, Johnston's	Frankenia johnstonii	Е	Dicot	Yes
Fringe Tree, Pygmy	Chionanthus pygmaeus	Е	Dicot	Yes
Fringepod, Santa Cruz Island	Thysanocarpus conchuliferus	Е	Dicot	Yes
Fruit, Earth (=geocarpon)	Geocarpon minimum	Т	Dicot	Yes
Geranium, Hawaiian Red-flowered	Geranium arboreum	Е	Dicot	Yes
Gerardia, Sandplain	Agalinis acuta	Е	Dicot	Yes
Gesneria pauciflora (ncn)	Gesneria pauciflora	Т	Dicot	Yes
Gilia, Hoffmann's Slender-flowered	Gilia tenuiflora ssp. hoffmannii	Е	Dicot	Yes
Gilia, Monterey	Gilia tenuiflora ssp. arenaria	Е	Dicot	Yes
Goetzea, Beautiful (Matabuey)	Goetzea elegans	Е	Dicot	Yes
Golden Sunburst, Hartweg's	Pseudobahia bahiifolia	Е	Dicot	Yes
Goldenrod, Blue Ridge	Solidago spithamaea	Т	Dicot	Yes
Goldenrod, Houghton's	Solidago houghtonii	Т	Dicot	Yes
Goldenrod, Short's	Solidago shortii	Е	Dicot	Yes
Goldenrod, White-haired	Solidago albopilosa	Т	Dicot	Yes
Goldfields, Burke's	Lasthenia burkei	Е	Dicot	Yes
Goldfields, Contra Costa	Lasthenia conjugens	Е	Dicot	Yes

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Gooseberry, Miccosukee	Ribes echinellum	Т	Dicot	Yes
Gouania hillebrandii (ncn)	Gouania hillebrandii	Е	Dicot	Yes
Gouania meyenii (ncn)	Gouania meyenii	Е	Dicot	Yes
Gouania vitifolia (ncn)	Gouania vitifolia	Е	Dicot	Yes
Gourd, Okeechobee	Cucurbita okeechobeensis ssp. okeechobeensis	Е	Dicot	Yes
Grass, Hairy Orcutt	Orcuttia pilosa	Е	Dicot	Yes
Grass, Sacramento Orcutt	Orcuttia viscida	Е	Dicot	Yes
Grass, Slender Orcutt	Orcuttia tenuis	Т	Dicot	Yes
Ground-plum, Guthrie's	Astragalus bibullatus	Е	Dicot	Yes
Groundsel, San Francisco Peaks	Senecio franciscanus	Т	Dicot	Yes
Gumplant, Ash Meadows	Grindelia fraxino-pratensis	Т	Dicot	Yes
ha`iwale	Cyrtandra kaulantha	Е	Dicot	Yes
ha`iwale	Cyrtandra sessilis	Е	Dicot	Yes
Haha	Cyanea calycina	Е	Dicot	Yes
Haha	Cyanea dolichopoda	Е	Dicot	Yes
haha	Cyanea eleeleensis	Е	Dicot	Yes
Haha	Cyanea kuhihewa	Е	Dicot	Yes
Haha	Cyanea lanceolata	Е	Dicot	Yes
haha	Cyanea purpurellifolia	Е	Dicot	Yes
Haha (Cyanea acuminata)	Cyanea acuminata	Е	Dicot	Yes
Haha (Cyanea asarifolia)	Cyanea asarifolia	Е	Dicot	Yes
Haha (Cyanea copelandii ssp. copelandii)	Cyanea copelandii ssp. copelandii	Е	Dicot	Yes
Haha (Cyanea copelandii ssp. haleakalaensis)	Cyanea copelandii ssp. haleakalaensis	Е	Dicot	Yes
Haha (Cyanea Crispa) (=Rollandia crispa)	Cyanea (=Rollandia) crispa	Е	Dicot	Yes
Haha (Cyanea glabra)	Cyanea glabra	Е	Dicot	Yes
Haha (Cyanea grimesiana ssp. grimesiana)	Cyanea grimesiana ssp. grimesiana	Е	Dicot	Yes
Haha (Cyanea grimesiana ssp. obatae)	Cyanea grimesiana ssp. obatae	Е	Dicot	Yes
Haha (Cyanea hamatiflora ssp. carlsonii)	Cyanea hamatiflora ssp. Carlsonii	Е	Dicot	Yes
Haha (Cyanea hamatiflora ssp. hamatiflora)	Cyanea hamatiflora ssp. hamatiflora	Е	Dicot	Yes
Haha (Cyanea humboldtiana)	Cyanea humboldtiana	Е	Dicot	Yes
Haha (Cyanea koolauensis)	Cyanea koolauensis	Е	Dicot	Yes
Haha (Cyanea lobata)	Cyanea lobata	Е	Dicot	Yes
Haha (Cyanea longiflora)	Cyanea longiflora	Е	Dicot	Yes

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Haha (Cyanea mceldowneyi)	Cyanea mceldowneyi	Е	Dicot	Yes
Haha (Cyanea pinnatifida)	Cyanea pinnatifida	Е	Dicot	Yes
Haha (Cyanea platyphylla)	Cyanea platyphylla	Е	Dicot	Yes
Haha (Cyanea recta)	Cyanea recta	Т	Dicot	Yes
Haha (Cyanea remyi)	Cyanea remyi	Е	Dicot	Yes
Haha (Cyanea shipmanii)	Cyanea shipmannii	E	Dicot	Yes
Haha (Cyanea stictophylla)	Cyanea stictophylla	E	Dicot	Yes
Haha (Cyanea St-Johnii) (=Rollandia St-Johnii)	Cyanea st-johnii	E	Dicot	Yes
Haha (Cyanea superba)	Cyanea superba	Е	Dicot	Yes
Haha (Cyanea truncata)	Cyanea truncata	E	Dicot	Yes
haiwale	Cyrtandra gracilis	Е	Dicot	Yes
haiwale	Cyrtandra paliku	Е	Dicot	Yes
haiwale	Cyrtandra waiolani	Е	Dicot	Yes
Ha'Iwale (Cyrtandra crenata)	Cyrtandra crenata	Е	Dicot	Yes
Ha'Iwale (Cyrtandra dentata)	Cyrtandra dentata	Е	Dicot	Yes
Ha'Iwale (Cyrtandra giffardii)	Cyrtandra giffardii	Е	Dicot	Yes
Ha'Iwale (Cyrtandra limahuliensis)	Cyrtandra limahuliensis	Т	Dicot	Yes
Ha'Iwale (Cyrtandra munroi)	Cyrtandra munroi	Е	Dicot	Yes
Ha'iwale (Cyrtandra oenobarba)	Cyrtandra oenobarba	Е	Dicot	Yes
Ha'Iwale (Cyrtandra polyantha)	Cyrtandra polyantha	Е	Dicot	Yes
Ha'Iwale (Cyrtandra subumbellata)	Cyrtandra subumbellata	E	Dicot	Yes
Ha'Iwale (Cyrtandra tintinnabula)	Cyrtandra tintinnabula	Е	Dicot	Yes
Ha'Iwale (Cyrtandra viridiflora)	Cyrtandra viridiflora	Е	Dicot	Yes
Haplostachys Haplostachya (ncn)	Haplostachys haplostachya	E	Dicot	Yes
Harebells, Avon Park	Crotalaria avonensis	E	Dicot	Yes
Harperella	Ptilimnium nodosum	Е	Dicot	Yes
Hau Kauhiwi (Hibiscadelphus woodi)	Hibiscadelphus woodii	Е	Dicot	Yes
Hau Kuahiwi (Hibiscadelphus distans)	Hibiscadelphus distans	Е	Dicot	Yes
Hau Kuahiwi (Hibiscadelphus giffardianus)	Hibiscadelphus giffardianus	Е	Dicot	Yes
Hau Kuahiwi (Hibiscadelphus hualalaiensis)	Hibiscadelphus hualalaiensis	Е	Dicot	Yes
Hayun Lagu (Tronkon Guafi)	Serianthes nelsonii	Е	Dicot	Yes
Heartleaf, Dwarf-flowered	Hexastylis naniflora	Т	Dicot	Yes
Heather, Mountain Golden	Hudsonia montana	Т	Dicot	Yes

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Heau (Exocarpos luteolus)	Exocarpos luteolus	Е	Dicot	Yes
Hedyotis degeneri (ncn)	Hedyotis degeneri	Е	Dicot	Yes
Hedyotis parvula (ncn)	Hedyotis parvula	Е	Dicot	Yes
Hedyotis StJohnii (ncn)	Hedyotis stjohnii	Е	Dicot	Yes
Hesperomannia arborescens (ncn)	Hesperomannia arborescens	Е	Dicot	Yes
Hesperomannia arbuscula (ncn)	Hesperomannia arbuscula	Е	Dicot	Yes
Hesperomannia lydgatei (ncn)	Hesperomannia lydgatei	Е	Dicot	Yes
Hibiscus, Clay's	Hibiscus clayi	Е	Dicot	Yes
Higuero De Sierra	Crescentia portoricensis	Е	Dicot	Yes
ho'awa	Pittosporum napaliense	Е	Dicot	Yes
Holei (Ochrosia kilaueaensis)	Ochrosia kilaueaensis	Е	Dicot	Yes
Holly, Cook's	Ilex cookii	Е	Dicot	Yes
Howellia, Water	Howellia aquatilis	Т	Dicot	Yes
Hypericum, Highlands Scrub	Hypericum cumulicola	Е	Dicot	Yes
Ilex sintenisii (ncn)	Ilex sintenisii	Е	Dicot	Yes
Iliau (Wilkesia hobdyi)	Wilkesia hobdyi	Е	Dicot	Yes
Ipomopsis, Holy Ghost	Ipomopsis sancti-spiritus	Е	Dicot	Yes
Ivesia, Ash Meadows	Ivesia kingii var. eremica	Т	Dicot	Yes
Jacquemontia, Beach	Jacquemontia reclinata	Е	Dicot	Yes
Jewelflower, California	Caulanthus californicus	Е	Dicot	Yes
Jewelflower, Metcalf Canyon	Streptanthus albidus ssp. albidus	Е	Dicot	Yes
Jewelflower, Tiburon	Streptanthus niger	Е	Dicot	Yes
Joint-vetch, Sensitive	Aeschynomene virginica	Т	Dicot	Yes
kamakahala	Labordia helleri	Е	Dicot	Yes
kamakahala	Labordia pumila	Е	Dicot	Yes
Kamakahala (Labordia cyrtandrae)	Labordia cyrtandrae	Е	Dicot	Yes
Kamakahala (Labordia lydgatei)	Labordia lydgatei	Е	Dicot	Yes
Kamakahala (Labordia tinifolia var. wahiawaen)	Labordia tinifolia var. wahiawaensis	Е	Dicot	Yes
Kauila (Colubrina oppositifolia)	Colubrina oppositifolia	Е	Dicot	Yes
kaulu	Pteralyxia macrocarpa	Е	Dicot	Yes
Kaulu (Pteralyxia kauaiensis)	Pteralyxia kauaiensis	Е	Dicot	Yes
Kio'Ele (Hedyotis coriacea)	Hedyotis coriacea	Е	Dicot	Yes
Kiponapona (Phyllostegia racemosa)	Phyllostegia racemosa	Е	Dicot	Yes

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
ko`oko`olau	Bidens amplectens	Е	Dicot	Yes
Koki'o (Kokia drynarioides)	Kokia drynarioides	Е	Dicot	Yes
Koki'o (Kokia kauaiensis)	Kokia kauaiensis	Е	Dicot	Yes
Koki'o Ke'oke'o (Hibiscus waimeae ssp. hannerae)	Hibiscus waimeae ssp. hannerae	Е	Dicot	Yes
Kolea	Myrsine knudsenii	Е	Dicot	Yes
kolea	Myrsine mezii	Е	Dicot	Yes
Kolea (Myrsine juddii)	Myrsine juddii	Е	Dicot	Yes
Kolea (Myrsine linearifolia)	Myrsine linearifolia	Т	Dicot	Yes
Ko'oko'olau (Bidens micrantha ssp. kalealaha)	Bidens micrantha ssp. kalealaha	Е	Dicot	Yes
Ko'oloa'ula (Abutilon menziesii)	Abutilon menziesii	Е	Dicot	Yes
kopiko	Psychotria grandiflora	Е	Dicot	Yes
kopiko	Psychotria hobdyi	Е	Dicot	Yes
Kuawawaenohu (Alsinidendron lychnoides)	Alsinidendron lychnoides	Е	Dicot	Yes
Kulu'I (Nototrichium humile)	Nototrichium humile	Е	Dicot	Yes
Larkspur, Baker's	Delphinium bakeri	Е	Dicot	Yes
Larkspur, San Clemente Island	Delphinium variegatum ssp. kinkiense	Е	Dicot	Yes
Larkspur, Yellow	Delphinium luteum	Е	Dicot	Yes
Laukahi Kuahiwi (Plantago hawaiensis)	Plantago hawaiensis	Е	Dicot	Yes
Laukahi Kuahiwi (Plantago princeps)	Plantago princeps	Е	Dicot	Yes
Laulihilihi (Schiedea stellarioides)	Schiedea stellarioides	Е	Dicot	Yes
Layia, Beach	Layia carnosa	Е	Dicot	Yes
Lead-plant, Crenulate	Amorpha crenulata	Е	Dicot	Yes
Leather-flower, Alabama	Clematis socialis	Е	Dicot	Yes
Leather-flower, Morefield's	Clematis morefieldii	Е	Dicot	Yes
lehua makanoe	Lysimachia daphnoides	Е	Dicot	Yes
Lessingia, San Francisco	Lessingia germanorum (=L.g. var. germanorum)	Е	Dicot	Yes
Liliwai (Acaena exigua)	Acaena exigua	Е	Dicot	Yes
Lipochaeta venosa (ncn)	Lipochaeta venosa	Е	Dicot	Yes
Liveforever, Laguna Beach	Dudleya stolonifera	Т	Dicot	Yes
Liveforever, Santa Barbara Island	Dudleya traskiae	Е	Dicot	Yes
Lobelia monostachya (ncn)	Lobelia monostachya	Е	Dicot	Yes
Lobelia niihauensis (ncn)	Lobelia niihauensis	Е	Dicot	Yes
Lobelia oahuensis (ncn)	Lobelia oahuensis	Е	Dicot	Yes

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Locoweed, Fassett's	Oxytropis campestris var. chartacea	Т	Dicot	Yes
Lomatium, Bradshaw's	Lomatium bradshawii	Е	Dicot	Yes
Lomatium, Cook's	Lomatium cookii	Е	Dicot	Yes
Loosestrife, Rough-leaved	Lysimachia asperulaefolia	Е	Dicot	Yes
Lousewort, Furbish	Pedicularis furbishiae	Е	Dicot	Yes
Lupine, Clover	Lupinus tidestromii	Е	Dicot	Yes
Lupine, Kincaid's	Lupinus sulphureus (=oreganus) ssp. kincaidii (=var. kincaidii)	Т	Dicot	Yes
Lupine, Nipomo Mesa	Lupinus nipomensis	Е	Dicot	Yes
Lupine, Scrub	Lupinus aridorum	Е	Dicot	Yes
Lyonia truncata var. proctorii (ncn)	Lyonia truncata var. proctorii	Е	Dicot	Yes
Lysimachia filifolia (ncn)	Lysimachia filifolia	Е	Dicot	Yes
Lysimachia lydgatei (ncn)	Lysimachia lydgatei	Е	Dicot	Yes
Mahoe (Alectryon macrococcus)	Alectryon macrococcus	Е	Dicot	Yes
Makou (Peucedanum sandwicense)	Peucedanum sandwicense	Т	Dicot	Yes
Malacothrix, Island	Malacothrix squalida	Е	Dicot	Yes
Malacothrix, Santa Cruz Island	Malacothrix indecora	Е	Dicot	Yes
Mallow, Kern	Eremalche kernensis	Е	Dicot	Yes
Mallow, Peter's Mountain	Iliamna corei	Е	Dicot	Yes
Manioc, Walker's	Manihot walkerae	Е	Dicot	Yes
Manzanita, Del Mar	Arctostaphylos glandulosa ssp. crassifolia	Е	Dicot	Yes
Manzanita, Ione	Arctostaphylos myrtifolia	Т	Dicot	Yes
Manzanita, Morro	Arctostaphylos morroensis	Т	Dicot	Yes
Manzanita, Pallid	Arctostaphylos pallida	Т	Dicot	Yes
Manzanita, Santa Rosa Island	Arctostaphylos confertiflora	Е	Dicot	Yes
Ma'o Hau Hele (Hibiscus brackenridgei)	Hibiscus brackenridgei	Е	Dicot	Yes
Ma'oli'oli (Schiedea apokremnos)	Schiedea apokremnos	Е	Dicot	Yes
Ma'oli'oli (Schiedea kealiae)	Schiedea kealiae	Е	Dicot	Yes
Mapele (Cyrtandra cyaneoides)	Cyrtandra cyaneoides	Е	Dicot	Yes
Meadowfoam, Butte County	Limnanthes floccosa ssp. californica	Е	Dicot	Yes
Meadowfoam, Large-flowered Woolly	Limnanthes floccosa ssp. Grandiflora	Е	Dicot	Yes
Meadowfoam, Sebastopol	Limnanthes vinculans	Е	Dicot	Yes
Meadowrue, Cooley's	Thalictrum cooleyi	Е	Dicot	Yes

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Mehamehame (Flueggea neowawraea)	Flueggea neowawraea	Е	Dicot	Yes
Milkpea, Small's	Galactia smallii	Е	Dicot	Yes
Milk-vetch, Applegate's	Astragalus applegatei	Е	Dicot	Yes
Milk-vetch, Ash Meadows	Astragalus phoenix	Т	Dicot	Yes
Milk-vetch, Braunton's	Astragalus brauntonii	Е	Dicot	Yes
Milk-vetch, Clara Hunt's	Astragalus clarianus	Е	Dicot	Yes
Milk-vetch, Coachella Valley	Astragalus lentiginosus var. coachellae	Е	Dicot	Yes
Milk-vetch, Coastal Dunes	Astragalus tener var. titi	Е	Dicot	Yes
Milk-vetch, Cushenbury	Astragalus albens	Е	Dicot	Yes
Milk-vetch, Deseret	Astragalus desereticus	Т	Dicot	Yes
Milk-vetch, Fish Slough	Astragalus lentiginosus var. piscinensis	Т	Dicot	Yes
Milk-vetch, Heliotrope	Astragalus montii	Т	Dicot	Yes
Milk-vetch, Holmgren	Astragalus holmgreniorum	Е	Dicot	Yes
Milk-vetch, Jesup's	Astragalus robbinsii var. jesupi	Е	Dicot	Yes
Milk-vetch, Lane Mountain	Astragalus jaegerianus	Е	Dicot	Yes
Milk-vetch, Mancos	Astragalus humillimus	Е	Dicot	Yes
Milk-vetch, Pierson's	Astragalus magdalenae var. peirsonii	Т	Dicot	Yes
Milk-vetch, Sentry	Astragalus cremnophylax var. cremnophylax	Е	Dicot	Yes
Milk-vetch, Shivwits	Astragalus ampullarioides	Е	Dicot	Yes
Milk-vetch, Triple-ribbed	Astragalus tricarinatus	Е	Dicot	Yes
Milk-vetch, Ventura Marsh	Astragalus pycnostachyus var. lanosissimus	Е	Dicot	Yes
Milkweed, Mead's	Asclepias meadii	Т	Dicot	Yes
Milkweed, Welsh's	Asclepias welshii	Т	Dicot	Yes
Mint, Garrett's	Dicerandra christmanii	Е	Dicot	Yes
Mint, Lakela's	Dicerandra immaculata	Е	Dicot	Yes
Mint, Longspurred	Dicerandra cornutissima	Е	Dicot	Yes
Mint, Otay Mesa	Pogogyne nudiuscula	Е	Dicot	Yes
Mint, San Diego Mesa	Pogogyne abramsii	Е	Dicot	Yes
Mint, Scrub	Dicerandra frutescens	Е	Dicot	Yes
Mitracarpus Maxwelliae	Mitracarpus maxwelliae	Е	Dicot	Yes
Mitracarpus Polycladus	Mitracarpus polycladus	Е	Dicot	Yes
Monardella, Willowy	Monardella linoides ssp. viminea	Е	Dicot	Yes
Monkey-flower, Michigan	Mimulus glabratus var. michiganensis	Е	Dicot	Yes

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Monkshood, Northern Wild	Aconitum noveboracense	Т	Dicot	Yes
Morning-glory, Stebbins	Calystegia stebbinsii	Е	Dicot	Yes
Mountainbalm, Indian Knob	Eriodictyon altissimum	Е	Dicot	Yes
Mountain-mahogany, Catalina Island	Cercocarpus traskiae	Е	Dicot	Yes
Munroidendron racemosum (ncn)	Munroidendron racemosum	Е	Dicot	Yes
Mustard, Carter's	Warea carteri	Е	Dicot	Yes
Mustard, Slender-petaled	Thelypodium stenopetalum	Е	Dicot	Yes
Myrcia Paganii	Myrcia paganii	Е	Dicot	Yes
na`ena`e	Dubautia imbricata imbricata	Е	Dicot	Yes
na`ena`e	Dubautia plantaginea magnifolia	Е	Dicot	Yes
Na`ena`e	Dubautia waialealae	Е	Dicot	Yes
Naenae	Dubautia kalalauensis	Е	Dicot	Yes
Naenae	Dubautia kenwoodii	Е	Dicot	Yes
Na'ena'e (Dubautia herbstobatae)	Dubautia herbstobatae	Е	Dicot	Yes
Na'ena'e (Dubautia plantaginea ssp. humilis)	Dubautia plantaginea ssp. humilis	Е	Dicot	Yes
Nani Wai'ale'ale (Viola kauaensis var. wahiawaensis)	Viola kauaiensis var. wahiawaensis	Е	Dicot	Yes
Nanu (Gardenia mannii)	Gardenia mannii	Е	Dicot	Yes
Na'u (Gardenia brighamii)	Gardenia brighamii	Е	Dicot	Yes
Naupaka, Dwarf (Scaevola coriacea)	Scaevola coriacea	Е	Dicot	Yes
Navarretia, Few-flowered	Navarretia leucocephala ssp. Pauciflora	Е	Dicot	Yes
Navarretia, Many-flowered	Navarretia leucocephala ssp. plieantha	Е	Dicot	Yes
Navarretia, Spreading	Navarretia fossalis	Т	Dicot	Yes
Nehe (Lipochaeta fauriei)	Lipochaeta fauriei	Е	Dicot	Yes
Nehe (Lipochaeta kamolensis)	Lipochaeta kamolensis	Е	Dicot	Yes
Nehe (Lipochaeta lobata var. leptophylla)	Lipochaeta lobata var. leptophylla	Е	Dicot	Yes
Nehe (Lipochaeta micrantha)	Lipochaeta micrantha	Е	Dicot	Yes
Nehe (Lipochaeta tenuifolia)	Lipochaeta tenuifolia	Е	Dicot	Yes
Nehe (Lipochaeta waimeaensis)	Lipochaeta waimeaensis	Е	Dicot	Yes
Neraudia angulata (ncn)	Neraudia angulata	Е	Dicot	Yes
Neraudia ovata (ncn)	Neraudia ovata	Е	Dicot	Yes
Neraudia sericea (ncn)	Neraudia sericea	Е	Dicot	Yes
Nioi (Eugenia koolauensis)	Eugenia koolauensis	Е	Dicot	Yes
Niterwort, Amargosa	Nitrophila mohavensis	Е	Dicot	Yes

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
nohoanu	Geranium kauaiense	Е	Dicot	Yes
Nohoanu (Geranium multiflorum)	Geranium multiflorum	Е	Dicot	Yes
Oahu wild coffee	Psychotria hexandra ssp. Oahuensis	Е	Dicot	Yes
Oak, Hinckley	Quercus hinckleyi	Т	Dicot	Yes
'Oha (Delissea rivularis)	Delissea rivularis	Е	Dicot	Yes
'Oha (Delissea subcordata)	Delissea subcordata	Е	Dicot	Yes
'Oha (Delissea undulata)	Delissea undulata	Е	Dicot	Yes
'Oha (Lobelia gaudichaudii koolauensis)	Lobelia gaudichaudii ssp. koolauensis	Е	Dicot	Yes
'Oha Wai (Clermontia drepanomorpha)	Clermontia drepanomorpha	Е	Dicot	Yes
'Oha Wai (Clermontia lindseyana)	Clermontia lindseyana	Е	Dicot	Yes
'Oha Wai (Clermontia oblongifolia ssp. mauiensis)	Clermontia oblongifolia ssp. mauiensis	Е	Dicot	Yes
'Oha Wai (Clermontia peleana)	Clermontia peleana	Е	Dicot	Yes
'Oha Wai (Clermontia pyrularia)	Clermontia pyrularia	Е	Dicot	Yes
'Oha Wai (Clermontia samuelii)	Clermontia samuelii	Е	Dicot	Yes
'Ohai (Sesbania tomentosa)	Sesbania tomentosa	Е	Dicot	Yes
'Ohe'ohe (Tetraplasandra gymnocarpa)	Tetraplasandra gymnocarpa	Е	Dicot	Yes
'Olulu (Brighamia insignis)	Brighamia insignis	Е	Dicot	Yes
Opuhe (Urera kaalae)	Urera kaalae	Е	Dicot	Yes
Oxytheca, Cushenbury	Oxytheca parishii var. goodmaniana	Е	Dicot	Yes
Pagosa Skyrocket	Ipomopsis polyantha	Е	Dicot	Yes
Paintbrush, Ash-grey Indian	Castilleja cinerea	Т	Dicot	Yes
Paintbrush, Golden	Castilleja levisecta	Т	Dicot	Yes
Paintbrush, San Clemente Island Indian	Castilleja grisea	Е	Dicot	Yes
Paintbrush, Soft-leaved	Castilleja mollis	Е	Dicot	Yes
Paintbrush, Tiburon	Castilleja affinis ssp. neglecta	Е	Dicot	Yes
Palo Colorado (Ternstroemia luquillensis)	Ternstroemia luquillensis	Е	Dicot	Yes
Palo de Jazmin	Styrax portoricensis	Е	Dicot	Yes
Palo de Nigua	Cornutia obovata	Е	Dicot	Yes
Palo de Ramon	Banara vanderbiltii	Е	Dicot	Yes
Palo de Rosa	Ottoschulzia rhodoxylon	Е	Dicot	Yes
Pamakani (Viola chamissoniana ssp. chamissoniana)	Viola chamissoniana ssp. chamissoniana	Е	Dicot	Yes
Papala	Charpentiera densiflora	Е	Dicot	Yes
Parachute Beardtongue	Penstemon debilis	Т	Dicot	Yes

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Pawpaw, Beautiful	Deeringothamnus pulchellus	Е	Dicot	Yes
Pawpaw, Four-petal	Asimina tetramera	Е	Dicot	Yes
Pawpaw, Rugel's	Deeringothamnus rugelii	Е	Dicot	Yes
Penny-cress, Kneeland Prairie	Thlaspi californicum	Е	Dicot	Yes
Pennyroyal, Todsen's	Hedeoma todsenii	Е	Dicot	Yes
Penstemon, Blowout	Penstemon haydenii	Е	Dicot	Yes
Pentachaeta, Lyon's	Pentachaeta lyonii	Е	Dicot	Yes
Pentachaeta, White-rayed	Pentachaeta bellidiflora	Е	Dicot	Yes
Peperomia, Wheeler's	Peperomia wheeleri	Е	Dicot	Yes
Peppergrass, Slick Spot	Lepidium papilliferum	Т	Dicot	Yes
Phacelia, Clay	Phacelia argillacea	Е	Dicot	Yes
Phacelia, Island	Phacelia insularis ssp. insularis	Е	Dicot	Yes
Phacelia, North Park	Phacelia formosula	Е	Dicot	Yes
Phlox, Texas Trailing	Phlox nivalis ssp. texensis	Е	Dicot	Yes
Phlox, Yreka	Phlox hirsuta	Е	Dicot	Yes
Phyllostegia hirsuta (ncn)	Phyllostegia hirsuta	Е	Dicot	Yes
Phyllostegia kaalaensis (ncn)	Phyllostegia kaalaensis	Е	Dicot	Yes
Phyllostegia knudsenii (ncn)	Phyllostegia knudsenii	Е	Dicot	Yes
Phyllostegia mannii (ncn)	Phyllostegia mannii	Е	Dicot	Yes
Phyllostegia mollis (ncn)	Phyllostegia mollis	Е	Dicot	Yes
Phyllostegia parviflora (ncn)	Phyllostegia parviflora	Е	Dicot	Yes
Phyllostegia velutina (ncn)	Phyllostegia velutina	Е	Dicot	Yes
Phyllostegia waimeae (ncn)	Phyllostegia waimeae	Е	Dicot	Yes
Phyllostegia warshaueri (ncn)	Phyllostegia warshaueri	Е	Dicot	Yes
Phyllostegia wawrana (ncn)	Phyllostegia wawrana	Е	Dicot	Yes
Pilo (Hedyotis mannii)	Hedyotis mannii	Е	Dicot	Yes
pilo kea lau li`i	Platydesma rostrata	Е	Dicot	Yes
Pinkroot, Gentian	Spigelia gentianoides	Е	Dicot	Yes
Pitaya, Davis' Green	Echinocereus viridiflorus var. davisii	Е	Dicot	Yes
Pitcher-plant, Alabama Canebrake	Sarracenia rubra alabamensis	Е	Dicot	Yes
Pitcher-plant, Green	Sarracenia oreophila	Е	Dicot	Yes
Pitcher-plant, Mountain Sweet	Sarracenia rubra ssp. jonesii	Е	Dicot	Yes
Plum, Scrub	Prunus geniculata	Е	Dicot	Yes

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Po'e (Portulaca sclerocarpa)	Portulaca sclerocarpa	Е	Dicot	Yes
Polygala, Lewton's	Polygala lewtonii	Е	Dicot	Yes
Polygala, Tiny	Polygala smallii	Е	Dicot	Yes
Polygonum, Scott's Valley	Polygonum hickmanii	Е	Dicot	Yes
Pondberry	Lindera melissifolia	Е	Dicot	Yes
Poolfish, Pahrump (= Pahrump Killifish)	Empetrichthys latos	Е	Dicot	Yes
Popcornflower, Rough	Plagiobothrys hirtus	Е	Dicot	Yes
Popolo 'Aiakeakua (Solanum sandwicense)	Solanum sandwicense	Е	Dicot	Yes
Popolo Ku Mai (Solanum incompletum)	Solanum incompletum	Е	Dicot	Yes
Poppy, Sacramento Prickly	Argemone pleiacantha ssp. pinnatisecta	Е	Dicot	Yes
Poppy-mallow, Texas	Callirhoe scabriuscula	Е	Dicot	Yes
Potato-bean, Price's	Apios priceana	Т	Dicot	Yes
Potentilla, Hickman's	Potentilla hickmanii	Е	Dicot	Yes
Prickly-apple, Fragrant	Cereus eriophorus var. fragrans	Е	Dicot	Yes
Prickly-ash, St. Thomas	Zanthoxylum thomasianum	Е	Dicot	Yes
Primrose, Maguire	Primula maguirei	Т	Dicot	Yes
Pua'ala (Brighamia rockii)	Brighamia rockii	Е	Dicot	Yes
Pussypaws, Mariposa	Calyptridium pulchellum	Т	Dicot	Yes
Rattleweed, Hairy	Baptisia arachnifera	Е	Dicot	Yes
Reed-mustard, Barneby	Schoenocrambe barnebyi	Е	Dicot	Yes
Reed-mustard, Clay	Schoenocrambe argillacea	Т	Dicot	Yes
Reed-mustard, Shrubby	Schoenocrambe suffrutescens	Е	Dicot	Yes
Remya kauaiensis (ncn)	Remya kauaiensis	Е	Dicot	Yes
Remya montgomeryi (ncn)	Remya montgomeryi	Е	Dicot	Yes
Remya, Maui	Remya mauiensis	Е	Dicot	Yes
Rhododendron, Chapman	Rhododendron chapmanii	Е	Dicot	Yes
Ridge-cress (=Pepper-cress), Barneby	Lepidium barnebyanum	Е	Dicot	Yes
Rock-cress, Braun's	Arabis perstellata E. L. Braun var. ampla Rollins	Е	Dicot	Yes
Rock-cress, Hoffmann's	Arabis hoffmannii	Е	Dicot	Yes
Rock-cress, McDonald's	Arabis mcdonaldiana	Е	Dicot	Yes
Rock-cress, Santa Cruz Island	Sibara filifolia	Е	Dicot	Yes
Rock-cress, Shale Barren	Arabis serotina	Е	Dicot	Yes
Rock-cress, Small	Arabis perstellata E. L. Braun var. perstellata Fernald	Е	Dicot	Yes

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Rosemary, Apalachicola	Conradina glabra	Е	Dicot	Yes
Rosemary, Cumberland	Conradina verticillata	Т	Dicot	Yes
Rosemary, Etonia	Conradina etonia	Е	Dicot	Yes
Rosemary, Short-leaved	Conradina brevifolia	Е	Dicot	Yes
Roseroot, Leedy's	Sedum integrifolium ssp. leedyi	Т	Dicot	Yes
Rush-pea, Slender	Hoffmannseggia tenella	Е	Dicot	Yes
Rush-rose, Island	Helianthemum greenei	Т	Dicot	Yes
Sandalwood, Lanai (='Iliahi)	Santalum freycinetianum var. lanaiense	Е	Dicot	Yes
Sandlace	Polygonella myriophylla	Е	Dicot	Yes
Sand-verbena, Large-fruited	Abronia macrocarpa	Е	Dicot	Yes
Sandwort, Bear Valley	Arenaria ursina	Т	Dicot	Yes
Sandwort, Cumberland	Arenaria cumberlandensis	Е	Dicot	Yes
Sandwort, Marsh	Arenaria paludicola	Е	Dicot	Yes
Sanicula mariversa (ncn)	Sanicula mariversa	Е	Dicot	Yes
Sanicula purpurea (ncn)	Sanicula purpurea	Е	Dicot	Yes
Schiedea haleakalensis (ncn)	Schiedea haleakalensis	Е	Dicot	Yes
Schiedea helleri (ncn)	Schiedea helleri	Е	Dicot	Yes
Schiedea hookeri (ncn)	Schiedea hookeri	Е	Dicot	Yes
Schiedea kaalae (ncn)	Schiedea kaalae	Е	Dicot	Yes
Schiedea kauaiensis (ncn)	Schiedea kauaiensis	Е	Dicot	Yes
Schiedea membranacea (ncn)	Schiedea membranacea	Е	Dicot	Yes
Schiedea nuttallii (ncn)	Schiedea nuttallii	Е	Dicot	Yes
Schiedea spergulina var. leiopoda (ncn)	Schiedea spergulina var. leiopoda	Е	Dicot	Yes
Schiedea spergulina var. spergulina (ncn)	Schiedea spergulina var. spergulina	Т	Dicot	Yes
Schiedea, Diamond Head (Schiedea adamantis)	Schiedea adamantis	Е	Dicot	Yes
Schoepfia arenaria (ncn)	Schoepfia arenaria	Т	Dicot	Yes
Sea-blite, California	Suaeda californica	Е	Dicot	Yes
Silene hawaiiensis (ncn)	Silene hawaiiensis	Т	Dicot	Yes
Silene lanceolata (ncn)	Silene lanceolata	Е	Dicot	Yes
Silene perlmanii (ncn)	Silene perlmanii	Е	Dicot	Yes
Silversword, Haleakala ('Ahinahina)	Argyroxiphium sandwicense ssp. macrocephalum	Т	Dicot	Yes
Silversword, Ka'u (Argyroxiphium kauense)	Argyroxiphium kauense	Е	Dicot	Yes
Silversword, Mauna Kea ('Ahinahina)	Argyroxiphium sandwicense ssp. sandwicense	Е	Dicot	Yes

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Skullcap, Florida	Scutellaria floridana	Т	Dicot	Yes
Skullcap, Large-flowered	Scutellaria montana	Т	Dicot	Yes
Snakeroot	Eryngium cuneifolium	Е	Dicot	Yes
Sneezeweed, Virginia	Helenium virginicum	Т	Dicot	Yes
Snowbells, Texas	Styrax texanus	Е	Dicot	Yes
Spermolepis hawaiiensis (ncn)	Spermolepis hawaiiensis	Е	Dicot	Yes
Spineflower, Ben Lomond	Chorizanthe pungens var. hartwegiana	Е	Dicot	Yes
Spineflower, Howell's	Chorizanthe howellii	Е	Dicot	Yes
Spineflower, Monterey	Chorizanthe pungens var. pungens	Т	Dicot	Yes
Spineflower, Orcutt's	Chorizanthe orcuttiana	Е	Dicot	Yes
Spineflower, Robust	Chorizanthe robusta va r. robusta	Е	Dicot	Yes
Spineflower, Scotts Valley	Chorizanthe robusta var. hartwegii	Е	Dicot	Yes
Spineflower, Slender-horned	Dodecahema leptoceras	Е	Dicot	Yes
Spineflower, Sonoma	Chorizanthe valida	Е	Dicot	Yes
Spiraea, Virginia	Spiraea virginiana	Т	Dicot	Yes
Spurge, Deltoid	Chamaesyce deltoidea ssp. deltoidea	Е	Dicot	Yes
Spurge, Garber's	Chamaesyce garberi	Т	Dicot	Yes
Spurge, Hoover's	Chamaesyce hooveri	Т	Dicot	Yes
Spurge, Telephus	Euphorbia telephioides	Т	Dicot	Yes
Stenogyne angustifolia (ncn)	Stenogyne angustifolia var. angustifolia	Е	Dicot	Yes
Stenogyne campanulata (ncn)	Stenogyne campanulata	Е	Dicot	Yes
Stenogyne kanehoana (ncn)	Stenogyne kanehoana	Е	Dicot	Yes
Stickseed, Showy	Hackelia venusta	Е	Dicot	Yes
Stickyseed, Baker's	Blennosperma bakeri	Е	Dicot	Yes
Stonecrop, Lake County	Parvisedum leiocarpum	Е	Dicot	Yes
Sumac, Michaux's	Rhus michauxii	Е	Dicot	Yes
Sunflower, Pecos	Helianthus paradoxus	Т	Dicot	Yes
Sunflower, San Mateo Woolly	Eriophyllum latilobum	Е	Dicot	Yes
Sunflower, Schweinitz's	Helianthus schweinitzii	Е	Dicot	Yes
Sunray, Ash Meadows	Enceliopsis nudicaulis var. corrugata	Т	Dicot	Yes
Taraxacum, California	Taraxacum californicum	Е	Dicot	Yes
Tarplant, Gaviota	Deinandra increscens ssp. villosa	Е	Dicot	Yes
Tarplant, Otay	Deinandra (=Hemizonia) conjugens	Т	Dicot	Yes

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Tarplant, Santa Cruz	Holocarpha macradenia	Т	Dicot	Yes
Ternstroemia subsessilis (ncn)	Ternstroemia subsessilis	Е	Dicot	Yes
Tetramolopium arenarium (ncn)	Tetramolopium arenarium	Е	Dicot	Yes
Tetramolopium capillare (ncn)	Tetramolopium capillare	Е	Dicot	Yes
Tetramolopium filiforme (ncn)	Tetramolopium filiforme	Е	Dicot	Yes
Tetramolopium lepidotum ssp. lepidotum (ncn)	Tetramolopium lepidotum ssp. lepidotum	Е	Dicot	Yes
Tetramolopium remyi (ncn)	Tetramolopium remyi	Е	Dicot	Yes
Tetramolopium rockii (ncn)	Tetramolopium rockii	Т	Dicot	Yes
Thelypody, Howell's Spectacular	Thelypodium howellii spectabilis	Т	Dicot	Yes
Thistle, Chorro creek Bog	Cirsium fontinale var. obispoense	Е	Dicot	Yes
Thistle, Fountain	Cirsium fontinale var. fontinale	Е	Dicot	Yes
Thistle, La Graciosa	Cirsium loncholepis	Е	Dicot	Yes
Thistle, Pitcher's	Cirsium pitcheri	Т	Dicot	Yes
Thistle, Sacramento Mountains	Cirsium vinaceum	Т	Dicot	Yes
Thistle, Suisun	Cirsium hydrophilum var. hydrophilum	Е	Dicot	Yes
Thornmint, San Diego	Acanthomintha ilicifolia	Т	Dicot	Yes
Thornmint, San Mateo	Acanthomintha obovata ssp. duttonii	Е	Dicot	Yes
Townsendia, Last Chance	Townsendia aprica	Т	Dicot	Yes
Trematolobelia singularis (ncn)	Trematolobelia singularis	Е	Dicot	Yes
Tuctoria, Green's	Tuctoria greenei	Е	Dicot	Yes
Twinpod, Dudley Bluffs	Physaria obcordata	Т	Dicot	Yes
Uhiuhi (Caesalpinia kavaiensis)	Caesalpinia kavaiense	Е	Dicot	Yes
Umbel, Huachuca Water	Lilaeopsis schaffneriana var. recurva	Е	Dicot	Yes
Uvillo	Eugenia haematocarpa	Е	Dicot	Yes
Vernonia Proctorii (ncn)	Vernonia proctorii	Е	Dicot	Yes
Vervain, California	Verbena californica	Т	Dicot	Yes
Vetch, Hawaiian (Vicia menziesii)	Vicia menziesii	Е	Dicot	Yes
Vigna o-wahuensis (ncn)	Vigna o-wahuensis	Е	Dicot	Yes
Viola helenae (ncn)	Viola helenae	Е	Dicot	Yes
Viola oahuensis (ncn)	Viola oahuensis	Е	Dicot	Yes
Wahine Noho Kula (Isodendrion pyrifolium)	Isodendrion pyrifolium	Е	Dicot	Yes
Wallflower, Ben Lomond	Erysimum teretifolium	Е	Dicot	Yes
Wallflower, Contra Costa	Erysimum capitatum var. angustatum	Е	Dicot	Yes

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Wallflower, Menzie's	Erysimum menziesii	Е	Dicot	Yes
Warea, Wide-leaf	Warea amplexifolia	Е	Dicot	Yes
Watercress, Gambel's	Rorippa gambellii	Е	Dicot	Yes
Water-willow, Cooley's	Justicia cooleyi	Е	Dicot	Yes
Whitlow-wort, Papery	Paronychia chartacea	Т	Dicot	Yes
Wild-buckwheat, Clay-loving	Eriogonum pelinophilum	Е	Dicot	Yes
Wild-buckwheat, Gypsum	Eriogonum gypsophilum	Т	Dicot	Yes
Wings, Pigeon	Clitoria fragrans	Т	Dicot	Yes
Wireweed	Polygonella basiramia	Е	Dicot	Yes
Woodland-star, San Clemente Island	Lithophragma maximum	Е	Dicot	Yes
Woolly-star, Santa Ana River	Eriastrum densifolium ssp. sanctorum	Е	Dicot	Yes
Woolly-threads, San Joaquin	Monolopia (=Lembertia) congdonii	Е	Dicot	Yes
Xylosma crenatum (ncn)	Xylosma crenatum	Е	Dicot	Yes
Yellowhead, Desert	Yermo xanthocephalus	Т	Dicot	Yes
Yerba Santa, Lompoc	Eriodictyon capitatum	Е	Dicot	Yes
Ziziphus, Florida	Ziziphus celata	Е	Dicot	Yes
(ncn)	Diellia mannii	Е	Ferns	No
(ncn)	Doryopteris angelica	Е	Ferns	No
(ncn)	Doryopteris takeuchii	Е	Ferns	No
Asplenium fragile var. insulare (ncn)	Asplenium fragile var. insulare	Е	Ferns	No
aumakua, Palapalai	Dryopteris crinalis podosorus	Е	Ferns	No
Diellia erecta (ncn)	Diellia erecta	Е	Ferns	No
Diellia falcata (ncn)	Diellia falcata	Е	Ferns	No
Diellia pallida (ncn)	Diellia pallida	Е	Ferns	No
Diellia unisora (ncn)	Diellia unisora	Е	Ferns	No
Diplazium molokaiense (ncn)	Diplazium molokaiense	Е	Ferns	No
Fern, Adiantum vivesii	Adiantum vivesii	Е	Ferns	No
Fern, Alabama Streak-sorus	Thelypteris pilosa var. alabamensis	Т	Ferns	No
Fern, American hart's-tongue	Asplenium scolopendrium var. americanum	Т	Ferns	No
Fern, Elaphoglossum serpens	Elaphoglossum serpens	Е	Ferns	No
Fern, Pendant Kihi (Adenophorus periens)	Adenophorus periens	Е	Ferns	No
Fern, Thelypteris inabonensis	Thelypteris inabonensis	Е	Ferns	No
Fern, Thelypteris verecunda	Thelypteris verecunda	Е	Ferns	No

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Fern, Thelypteris yaucoensis	Thelypteris yaucoensis	Е	Ferns	No
'Ihi'Ihi (Marsilea villosa)	Marsilea villosa	Е	Ferns	No
Pauoa (Ctenitis squamigera)	Ctenitis squamigera	Е	Ferns	No
Polystichum calderonense (ncn)	Polystichum calderonense	Е	Ferns	No
Pteris lidgatei (ncn)	Pteris lidgatei	Е	Ferns	No
Quillwort, Black-spored	Isoetes melanospora	Е	Ferns	No
Quillwort, Louisiana	Isoetes louisianensis	Е	Ferns	No
Quillwort, Mat-forming	Isoetes tegetiformans	Е	Ferns	No
Tectaria Estremerana	Tectaria estremerana	Е	Ferns	No
Tree Fern, Elfin	Cyathea dryopteroides	Е	Ferns	No
Wawae'Iole (Phlegmariurus (=Huperzia) mannii)	Huperzia mannii	Е	Ferns	No
Wawae'Iole (Phlegmariurus (=Lycopodium) nutans)	Lycopodium (=Phlegmariurus) nutans	Е	Ferns	No
Catfish, Yaqui	Ictalurus pricei	Т	Fish	No
Cavefish, Alabama	Speoplatyrhinus poulsoni	Е	Fish	No
Cavefish, Ozark	Amblyopsis rosae	Т	Fish	No
Chub, Bonytail	Gila elegans	Е	Fish	No
Chub, Chihuahua	Gila nigrescens	Т	Fish	No
Chub, Gila	Gila intermedia	Е	Fish	No
Chub, Humpback	Gila cypha	Е	Fish	No
Chub, Hutton Tui	Gila bicolor ssp.	Т	Fish	No
Chub, Mohave Tui	Gila bicolor mohavensis	Е	Fish	No
Chub, Oregon	Oregonichthys crameri	Е	Fish	No
Chub, Owens Tui	Gila bicolor snyderi	Е	Fish	No
Chub, Pahranagat Roundtail	Gila robusta jordani	Е	Fish	No
Chub, Slender	Erimystax cahni	Т	Fish	No
Chub, Sonora	Gila ditaenia	Т	Fish	No
Chub, Spotfin	Erimonax monachus	Т	Fish	No
Chub, Virgin River	Gila seminuda (=robusta)	Е	Fish	No
Chub, Yaqui	Gila purpurea	Е	Fish	No
Chucky Madtom	Noturus crypticus	Е	Fish	No
Cui-ui	Chasmistes cujus	Е	Fish	No
Cumberland darter	Etheostoma susanae	E	Fish	No
Dace, Ash Meadows Speckled	Rhinichthys osculus nevadensis	Е	Fish	No

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Dace, Blackside	Phoxinus cumberlandensis	Т	Fish	No
Dace, Clover Valley Speckled	Rhinichthys osculus oligoporus	Е	Fish	No
Dace, Desert	Eremichthys acros	Т	Fish	No
Dace, Foskett Speckled	Rhinichthys osculus ssp.	Т	Fish	No
Dace, Independence Valley Speckled	Rhinichthys osculus lethoporus	E	Fish	No
Dace, Moapa	Moapa coriacea	E	Fish	No
Darter, Amber	Percina antesella	E	Fish	No
Darter, Bayou	Etheostoma rubrum	Т	Fish	No
Darter, Bluemask (=jewel)	Etheostoma sp.	Е	Fish	No
Darter, Boulder	Etheostoma wapiti	Е	Fish	No
Darter, Cherokee	Etheostoma scotti	Т	Fish	No
Darter, Duskytail	Etheostoma percnurum	Е	Fish	No
Darter, Etowah	Etheostoma etowahae	Е	Fish	No
Darter, Fountain	Etheostoma fonticola	Е	Fish	No
Darter, Goldline	Percina aurolineata	Т	Fish	No
Darter, Leopard	Percina pantherina	Т	Fish	No
Darter, Maryland	Etheostoma sellare	Е	Fish	No
Darter, Niangua	Etheostoma nianguae	Т	Fish	No
Darter, Okaloosa	Etheostoma okaloosae	E	Fish	No
Darter, Relict	Etheostoma chienense	Е	Fish	No
Darter, Slackwater	Etheostoma boschungi	Т	Fish	No
Darter, Snail	Percina tanasi	Т	Fish	No
Darter, Vermilion	Etheostoma chermocki	E	Fish	No
Darter, Watercress	Etheostoma nuchale	E	Fish	No
Gambusia, Big Bend	Gambusia gaigei	E	Fish	No
Gambusia, Clear Creek	Gambusia heterochir	E	Fish	No
Gambusia, Pecos	Gambusia nobilis	E	Fish	No
Gambusia, San Marcos	Gambusia georgei	E	Fish	No
Goby, Tidewater	Eucyclogobius newberryi	E	Fish	No
Laurel dace	Chrosomus aylori	E	Fish	No
Logperch, Conasauga	Percina jenkinsi	E	Fish	No
Logperch, Roanoke	Percina rex	E	Fish	No
Madtom, Neosho	Noturus placidus	Т	Fish	No

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Madtom, Pygmy	Noturus stanauli	Е	Fish	No
Madtom, Scioto	Noturus trautmani	Е	Fish	No
Madtom, Smoky	Noturus baileyi	Е	Fish	No
Madtom, Yellowfin	Noturus flavipinnis	Т	Fish	No
Minnow, Devils River	Dionda diaboli	Т	Fish	No
Minnow, Loach	Tiaroga cobitis	Е	Fish	No
Minnow, Rio Grande Silvery	Hybognathus amarus	Е	Fish	No
Pupfish, Ash Meadows Amargosa	Cyprinodon nevadensis mionectes	Е	Fish	No
Pupfish, Comanche Springs	Cyprinodon elegans	Е	Fish	No
Pupfish, Desert	Cyprinodon macularius	Е	Fish	No
Pupfish, Devils Hole	Cyprinodon diabolis	Е	Fish	No
Pupfish, Leon Springs	Cyprinodon bovinus	Е	Fish	No
Pupfish, Owens	Cyprinodon radiosus	Е	Fish	No
Pupfish, Warm Springs	Cyprinodon nevadensis pectoralis	Е	Fish	No
Rockfish, Bocaccio	Sebastes paucispinis	Е	Fish	No
Rush darter	Etheostoma phytophilum	Е	Fish	No
Salmon, Atlantic	Salmo salar	Е	Fish	No
Salmon, Chinook	Oncorhynchus (=Salmo) tshawytscha	E/T	Fish	No
Salmon, Chum	Oncorhynchus (=Salmo) keta	Т	Fish	No
Salmon, Coho	Oncorhynchus (=Salmo) kisutch	E/T	Fish	No
Salmon, Sockeye	Oncorhynchus (=Salmo) nerka	Е	Fish	No
Sawfish, Smalltooth	Pristis pectinata	Е	Fish	No
Sculpin, Pygmy	Cottus paulus (=pygmaeus)	Т	Fish	No
Shiner, Arkansas River	Notropis girardi	Т	Fish	No
Shiner, Beautiful	Cyprinella formosa	Т	Fish	No
Shiner, Blue	Cyprinella caerulea	Т	Fish	No
Shiner, Cahaba	Notropis cahabae	Е	Fish	No
Shiner, Cape Fear	Notropis mekistocholas	Е	Fish	No
Shiner, Palezone	Notropis albizonatus	Е	Fish	No
Shiner, Pecos Bluntnose	Notropis simus pecosensis	Т	Fish	No
Shiner, Topeka	Notropis topeka (=tristis)	Е	Fish	No
Silverside, Waccamaw	Menidia extensa	Т	Fish	No
Smelt, Delta	Hypomesus transpacificus	Т	Fish	No

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Spikedace	Meda fulgida	Е	Fish	No
Spinedace, Big Spring	Lepidomeda mollispinis pratensis	Т	Fish	No
Spinedace, Little Colorado	Lepidomeda vittata	Т	Fish	No
Spinedace, White River	Lepidomeda albivallis	Е	Fish	No
Springfish, Hiko White River	Crenichthys baileyi grandis	Е	Fish	No
Springfish, Railroad Valley	Crenichthys nevadae	Т	Fish	No
Springfish, White River	Crenichthys baileyi baileyi	Е	Fish	No
Squawfish, Colorado	Ptychocheilus lucius	Е	Fish	No
Steelhead	Oncorhynchus (=Salmo) mykiss	E/T	Fish	No
Stickleback, Unarmored Threespine	Gasterosteus aculeatus williamsoni	Е	Fish	No
Sturgeon, Alabama	Scaphirhynchus suttkusi	Е	Fish	No
Sturgeon, Gulf	Acipenser oxyrinchus desotoi	Т	Fish	No
Sturgeon, North American green	Acipenser medirostris	Т	Fish	No
Sturgeon, Pallid	Scaphirhynchus albus	Е	Fish	No
Sturgeon, Shortnose	Acipenser brevirostrum	Е	Fish	No
Sturgeon, Shovelnose	Scaphirhynchus platorynchus	SAT	Fish	No
Sturgeon, White	Acipenser transmontanus	Е	Fish	No
Sucker, June	Chasmistes liorus	Е	Fish	No
Sucker, Lost River	Deltistes luxatus	Е	Fish	No
Sucker, Modoc	Catostomus microps	Е	Fish	No
Sucker, Razorback	Xyrauchen texanus	Е	Fish	No
Sucker, Santa Ana	Catostomus santaanae	Т	Fish	No
Sucker, Shortnose	Chasmistes brevirostris	Е	Fish	No
Sucker, Warner	Catostomus warnerensis	Т	Fish	No
Topminnow, Gila (Yaqui)	Poeciliopsis occidentalis	Е	Fish	No
Trout, Apache	Oncorhynchus apache	Т	Fish	No
Trout, Bull	Salvelinus confluentus	Т	Fish	No
Trout, Gila	Oncorhynchus gilae	Е	Fish	No
Trout, Greenback Cutthroat	Oncorhynchus clarki stomias	Т	Fish	No
Trout, Lahontan Cutthroat	Oncorhynchus clarki henshawi	Т	Fish	No
Trout, Little Kern Golden	Oncorhynchus aguabonita whitei	Т	Fish	No
Trout, Paiute Cutthroat	Oncorhynchus clarki seleniris	Т	Fish	No
Woundfin	Plagopterus argentissimus	Е	Fish	No

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Yellowcheek darter	Etheostoma moorei	Е	Fish	No
Abalone, Black	Haliotis cracherodii	Е	Gastropod	No
Abalone, White	Haliotis sorenseni	Е	Gastropod	No
Ambersnail, Kanab	Oxyloma haydeni kanabensis	Е	Gastropod	No
Campeloma, Slender	Campeloma decampi	Е	Gastropod	No
Cavesnail, Tumbling Creek	Antrobia culveri	Е	Gastropod	No
Elimia, Lacy	Elimia crenatella	Т	Gastropod	No
Hornsnail, rough	Pleurocera foremani	Е	Gastropod	No
Limpet, Banbury Springs	Lanx sp.	Е	Gastropod	No
Marstonia, Royal (=Royal Snail)	Pyrgulopsis ogmorhaphe	Е	Gastropod	No
Pebblesnail, Flat	Lepyrium showalteri	Е	Gastropod	No
Riversnail, Anthony's	Athearnia anthonyi	Е	Gastropod	No
Rocksnail, interrupted	Leptoxis foremani	Е	Gastropod	No
Rocksnail, Painted	Leptoxis taeniata	Т	Gastropod	No
Rocksnail, Plicate	Leptoxis plicata	Е	Gastropod	No
Rocksnail, Round	Leptoxis ampla	Т	Gastropod	No
Shagreen, Magazine Mountain	Mesodon magazinensis	Т	Gastropod	No
Snail, Armored	Pyrgulopsis (=Marstonia) pachyta	Е	Gastropod	No
Snail, Bliss Rapids	Taylorconcha serpenticola	Т	Gastropod	No
Snail, Chittenango Ovate Amber	Succinea chittenangoensis	Т	Gastropod	No
Snail, Flat-spired Three-toothed	Triodopsis platysayoides	Т	Gastropod	No
Snail, Iowa Pleistocene	Discus macclintocki	Е	Gastropod	No
Snail, Lioplax Cylindrical	Lioplax cyclostomaformis	Е	Gastropod	No
Snail, Morro Shoulderband	Helminthoglypta walkeriana	Е	Gastropod	No
Snail, Newcomb's	Erinna newcombi	Т	Gastropod	No
Snail, Noonday	Mesodon clarki nantahala	Т	Gastropod	No
Snail, O'ahu Tree (Achatinella abbreviata)	Achatinella abbreviata	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella apexfulva)	Achatinella apexfulva	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella bellula)	Achatinella bellula	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella buddii)	Achatinella buddii	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella bulimoides)	Achatinella bulimoides	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella byronii)	Achatinella byronii	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella caesia)	Achatinella caesia	Е	Gastropod	No

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Snail, O'ahu Tree (Achatinella casta)	Achatinella casta	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella cestus)	Achatinella cestus	E	Gastropod	No
Snail, O'ahu Tree (Achatinella concavospira)	Achatinella concavospira	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella curta)	Achatinella curta	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella decipiens)	Achatinella decipiens	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella decora)	Achatinella decora	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella dimorpha)	Achatinella dimorpha	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella elegans)	Achatinella elegans	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella fulgens)	Achatinella fulgens	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella fuscobasis)	Achatinella fuscobasis	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella juddii)	Achatinella juddii	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella juncea)	Achatinella juncea	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella lehuiensis)	Achatinella lehuiensis	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella leucorraphe)	Achatinella leucorraphe	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella lila)	Achatinella lila	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella livida)	Achatinella livida	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella lorata)	Achatinella lorata	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella mustelina)	Achatinella mustelina	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella papyracea)	Achatinella papyracea	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella phaeozona)	Achatinella phaeozona	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella pulcherrima)	Achatinella pulcherrima	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella pupukanioe)	Achatinella pupukanioe	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella rosea)	Achatinella rosea	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella sowerbyana)	Achatinella sowerbyana	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella spaldingi)	Achatinella spaldingi	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella stewartii)	Achatinella stewartii	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella swiftii)	Achatinella swiftii	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella taeniolata)	Achatinella taeniolata	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella thaanumi)	Achatinella thaahumi	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella turgida)	Achatinella turgida	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella valida)	Achatinella valida	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella viridans)	Achatinella viridans	Е	Gastropod	No
Snail, O'ahu Tree (Achatinella vittata)	Achatinella vittata	Е	Gastropod	No

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Snail, O'ahu Tree (Achatinella vulpina)	Achatinella vulpina	Е	Gastropod	No
Snail, Pecos Assiminea	Assiminea pecos	Е	Gastropod	No
Snail, Snake River Physa	Physa natricina	Е	Gastropod	No
Snail, Tulotoma	Tulotoma magnifica	Т	Gastropod	No
Snail, Virginia Fringed Mountain	Polygyriscus virginianus	Е	Gastropod	No
Springsnail, Alamosa	Tryonia alamosae	Е	Gastropod	No
Springsnail, Bruneau Hot	Pyrgulopsis bruneauensis	Е	Gastropod	No
Springsnail, Chupadera	Pyrgulopsis chupaderae	Е	Gastropod	No
Springsnail, Koster's	Juturnia kosteri	Е	Gastropod	No
Springsnail, Roswell	Pyrgulopsis roswellensis	Е	Gastropod	No
Springsnail, San Bernardino	Pyrgulopsis bernardina	Е	Gastropod	No
Springsnail, Socorro	Pyrgulopsis neomexicana	Е	Gastropod	No
Springsnail, Three Forks	Pyrgulopsis trivialis	Е	Gastropod	No
Beetle, American Burying	Nicrophorus americanus	Е	Insect	No
Beetle, Casey's June	Dinacoma caseyi	Е	Insect	No
Beetle, Coffin Cave Mold	Batrisodes texanus	Е	Insect	No
Beetle, Comal Springs Dryopid	Stygoparnus comalensis	Е	Insect	No
Beetle, Comal Springs Riffle	Heterelmis comalensis	Е	Insect	No
Beetle, Delta Green Ground	Elaphrus viridis	Т	Insect	No
Beetle, Helotes Mold	Batrisodes venyivi	Е	Insect	No
Beetle, Hungerford's Crawling Water	Brychius hungerfordi	Е	Insect	No
Beetle, Kretschmarr Cave Mold	Texamaurops reddelli	Е	Insect	No
Beetle, Mount Hermon June	Polyphylla barbata	Е	Insect	No
Beetle, Northeastern Beach Tiger	Cicindela dorsalis dorsalis	Т	Insect	No
Beetle, Ohlone Tiger	Cicindela ohlone	Е	Insect	No
Beetle, Puritan Tiger	Cicindela puritana	Т	Insect	No
Beetle, Salt Creek Tiger	Cicindela nevadica lincolniana	Е	Insect	No
Beetle, Tooth Cave Ground	Rhadine persephone	Е	Insect	No
Beetle, Valley Elderberry Longhorn	Desmocerus californicus dimorphus	Т	Insect	No
blackline Hawaiian damselfly	Megalagrion nigrohamatum nigrolineatum	Е	Insect	No
Butterfly [Cassius Blue, Ceraunus Blue, Nickerbean Blue]	Leptotes and Hemiargus and Cyclargus genus	SAT	Insect	No
Butterfly, Bay Checkerspot (Wright's euphydryas)	Euphydryas editha bayensis	Т	Insect	No
Butterfly, Behren's Silverspot	Speyeria zerene behrensii	E	Insect	No

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Butterfly, Callippe Silverspot	Speyeria callippe callippe	Е	Insect	No
Butterfly, Ceranus Blue	Hemiargus ceraunus antibubastus	SAT	Insect	No
Butterfly, El Segundo Blue	Euphilotes battoides allyni	Е	Insect	No
Butterfly, Fender's Blue	Icaricia icarioides fenderi	Е	Insect	No
Butterfly, Karner Blue	Lycaeides melissa samuelis	Е	Insect	No
Butterfly, Lange's Metalmark	Apodemia mormo langei	Е	Insect	No
Butterfly, Lotis Blue	Lycaeides argyrognomon lotis	Е	Insect	No
Butterfly, Miami Blue	Cyclargus thomasi bethunebakeri	Е	Insect	No
Butterfly, Mission Blue	Icaricia icarioides missionensis	Е	Insect	No
Butterfly, Mitchell's Satyr	Neonympha mitchellii mitchellii	Е	Insect	No
Butterfly, Myrtle's Silverspot	Speyeria zerene myrtleae	Е	Insect	No
Butterfly, Nickerbean Blue	Cyclargus ammon	SAT	Insect	No
Butterfly, Oregon Silverspot	Speyeria zerene hippolyta	Т	Insect	No
Butterfly, Palos Verdes Blue	Glaucopsyche lygdamus palosverdesensis	Е	Insect	No
Butterfly, Quino Checkerspot	Euphydryas editha quino (=E. e. wrighti)	Е	Insect	No
Butterfly, Saint Francis' Satyr	Neonympha mitchellii francisci	Е	Insect	No
Butterfly, San Bruno Elfin	Callophrys mossii bayensis	Е	Insect	No
Butterfly, Smith's Blue	Euphilotes enoptes smithi	Е	Insect	No
Butterfly, Uncompangre Fritillary	Boloria acrocnema	Е	Insect	No
Crimson Hawaiian damselfly	Megalagrion leptodemas	Е	Insect	No
Damselfly, Flying Earwig Hawaiian	Megalagrion nesiotes	Е	Insect	No
Damselfly, Pacific Hawaiian	Megalagrion pacificum	Е	Insect	No
Dragonfly, Hine's Emerald	Somatochlora hineana	Е	Insect	No
Fly, Delhi Sands Flower-loving	Rhaphiomidas terminatus abdominalis	Е	Insect	No
Fly, Hawaiian picture-wing	Drosophila aglaia	Е	Insect	No
Fly, Hawaiian picture-wing	Drosophila hemipeza	Е	Insect	No
Fly, Hawaiian picture-wing	Drosophila heteroneura	Е	Insect	No
Fly, Hawaiian picture-wing	Drosophila montgomeryi	Е	Insect	No
Fly, Hawaiian picture-wing	Drosophila mulli	Т	Insect	No
Fly, Hawaiian picture-wing	Drosophila musaphilia	Е	Insect	No
Fly, Hawaiian picture-wing	Drosophila neoclavisetae	Е	Insect	No
Fly, Hawaiian picture-wing	Drosophila obatai	Е	Insect	No
Fly, Hawaiian picture-wing	Drosophila ochrobasis	Е	Insect	No

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Fly, Hawaiian picture-wing	Drosophila substenoptera	Е	Insect	No
Fly, Hawaiian picture-wing	Drosophila tarphytrichia	Е	Insect	No
Grasshopper, Zayante Band-winged	Trimerotropis infantilis	Е	Insect	No
Hawaiian picture-wing Fly	Drosophila sharpi	Е	Insect	No
Moth, Blackburn's Sphinx	Manduca blackburni	Е	Insect	No
Moth, Kern Primrose Sphinx	Euproserpinus euterpe	Т	Insect	No
Naucorid, Ash Meadows	Ambrysus amargosus	Т	Insect	No
Oceanic Hawaiian damselfly	Megalagrion oceanicum	Е	Insect	No
Rhadine exilis (ncn)	Rhadine exilis	Е	Insect	No
Rhadine infernalis (ncn)	Rhadine infernalis	Е	Insect	No
Skipper, Carson Wandering	Pseudocopaeodes eunus obscurus	Е	Insect	No
Skipper, Laguna Mountain	Pyrgus ruralis lagunae	Е	Insect	No
Skipper, Pawnee Montane	Hesperia leonardus montana	Т	Insect	No
Cladonia, Florida Perforate	Cladonia perforata	Е	Lichen	No
Lichen, Rock Gnome	Gymnoderma lineare	Е	Lichen	No
Bat, Gray	Myotis grisescens	Е	Mammal	Yes
Bat, Hawaiian Hoary	Lasiurus cinereus semotus	Е	Mammal	Yes
Bat, Indiana	Myotis sodalis	Е	Mammal	Yes
Bat, Lesser (=Sanborn's) Long-nosed	Leptonycteris curasoae yerbabuenae	Е	Mammal	Yes
Bat, Little Mariana Fruit	Pteropus tokudae	Е	Mammal	Yes
Bat, Mariana Fruit (=Mariana Flying Fox)	Pteropus mariannus mariannus	Т	Mammal	Yes
Bat, Mexican Long-nosed	Leptonycteris nivalis	Е	Mammal	Yes
Bat, Ozark Big-eared	Corynorhinus (=Plecotus) townsendii ingens	Е	Mammal	Yes
Bat, Virginia Big-eared	Corynorhinus (=Plecotus) townsendii virginianus	Е	Mammal	Yes
Bear, American Black	Ursus americanus	SAT	Mammal	Yes
Bear, Grizzly	Ursus arctos horribilis	Т	Mammal	Yes
Bear, Louisiana Black	Ursus americanus luteolus	Т	Mammal	Yes
Bison, Wood	Bison bison athabascae	Е	Mammal	Yes
Caribou, Woodland	Rangifer tarandus caribou	Е	Mammal	Yes
Deer, Columbian White-tailed	Odocoileus virginianus leucurus	Е	Mammal	Yes
Ferret, Black-footed	Mustela nigripes	Е	Mammal	Yes
Fox, San Joaquin Kit	Vulpes macrotis mutica	Е	Mammal	Yes
Fox, San Miguel Island	Urocyon littoralis littoralis	Е	Mammal	Yes

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Fox, Santa Catalina Island	Urocyon littoralis catalinae	Е	Mammal	Yes
Fox, Santa Cruz Island	Urocyon littoralis santacruzae	Е	Mammal	Yes
Fox, Santa Rosa Island	Urocyon littoralis santarosae	Е	Mammal	Yes
Gray Wolf	Canis lupus	Е	Mammal	Yes
Jaguar	Panthera onca	Е	Mammal	Yes
Jaguarundi, Gulf Coast	Herpailurus (=Felis) yagouaroundi cacomitli	Е	Mammal	Yes
Jaguarundi, Sinaloan	Herpailurus (=Felis) yagouaroundi tolteca	Е	Mammal	Yes
Kangaroo Rat, Fresno	Dipodomys nitratoides exilis	Е	Mammal	Yes
Kangaroo Rat, Giant	Dipodomys ingens	Е	Mammal	Yes
Kangaroo Rat, Morro Bay	Dipodomys heermanni morroensis	Е	Mammal	Yes
Kangaroo Rat, San Bernardino Merriam's	Dipodomys merriami parvus	Е	Mammal	Yes
Kangaroo Rat, Stephens'	Dipodomys stephensi (incl. D. cascus)	Е	Mammal	Yes
Kangaroo Rat, Tipton	Dipodomys nitratoides nitratoides	Е	Mammal	Yes
Killer whale, Southern Resident DPS	Orcinus orca	Е	Mammal	Yes
Lynx, Canada	Lynx canadensis	Т	Mammal	Yes
Manatee, West Indian	Trichechus manatus	Е	Mammal	Yes
Mountain Beaver, Point Arena	Aplodontia rufa nigra	Е	Mammal	Yes
Mouse, Alabama Beach	Peromyscus polionotus ammobates	Е	Mammal	Yes
Mouse, Anastasia Island Beach	Peromyscus polionotus phasma	Е	Mammal	Yes
Mouse, Choctawhatchee Beach	Peromyscus polionotus allophrys	Е	Mammal	Yes
Mouse, Pacific Pocket	Perognathus longimembris pacificus	Е	Mammal	Yes
Mouse, Perdido Key Beach	Peromyscus polionotus trissyllepsis	Е	Mammal	Yes
Mouse, Preble's Meadow Jumping	Zapus hudsonius preblei	Т	Mammal	Yes
Mouse, Salt Marsh Harvest	Reithrodontomys raviventris	Е	Mammal	Yes
Mouse, Southeastern Beach	Peromyscus polionotus niveiventris	Т	Mammal	Yes
Mouse, St. Andrew Beach	Peromyscus polionotus peninsularis	Е	Mammal	Yes
Ocelot	Leopardus (=Felis) pardalis	Е	Mammal	Yes
Otter, Northern Sea	Enhydra lutris kenyoni	Т	Mammal	Yes
Otter, Southern Sea	Enhydra lutris nereis	Т	Mammal	Yes
Panther, Florida	Puma (=Felis) concolor coryi	Е	Mammal	Yes
Prairie Dog, Utah	Cynomys parvidens	Т	Mammal	Yes
Pronghorn, Sonoran	Antilocapra americana sonoriensis	Е	Mammal	Yes
Puma (=Cougar), Eastern	Puma (=Felis) concolor (all subsp. except coryi)	Е	Mammal	Yes

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Rabbit, Pygmy	Brachylagus idahoensis	Е	Mammal	Yes
Rabbit, Riparian Brush	Sylvilagus bachmani riparius	Е	Mammal	Yes
Seal, Guadalupe Fur	Arctocephalus townsendi	Т	Mammal	Yes
Seal, Hawaiian Monk	Monachus schauinslandi	Е	Mammal	Yes
Seal, spotted	Phoca largha	Т	Mammal	Yes
Sea-lion, Steller	Eumetopias jubatus	E/T	Mammal	Yes
Sheep, Peninsular Bighorn	Ovis canadensis nelsoni	Е	Mammal	Yes
Sheep, Sierra Nevada Bighorn	Ovis canadensis sierrae	Е	Mammal	Yes
Shrew, Buena Vista Lake Ornate	Sorex ornatus relictus	Е	Mammal	Yes
Squirrel, Carolina Northern Flying	Glaucomys sabrinus coloratus	Е	Mammal	Yes
Squirrel, Delmarva Peninsula Fox	Sciurus niger cinereus	Е	Mammal	Yes
Squirrel, Mount Graham Red	Tamiasciurus hudsonicus grahamensis	Е	Mammal	Yes
Squirrel, Northern Idaho Ground	Spermophilus brunneus brunneus	Т	Mammal	Yes
Vole, Amargosa	Microtus californicus scirpensis	Е	Mammal	Yes
Vole, Florida Salt Marsh	Microtus pennsylvanicus dukecampbelli	Е	Mammal	Yes
Vole, Hualapai Mexican	Microtus mexicanus hualpaiensis	Е	Mammal	Yes
Whale, beluga	Delphinapterus leucas	Е	Mammal	Yes
Whale, Finback	Balaenoptera physalus	Е	Mammal	Yes
Whale, Gray	Eschrichtius robustus	Е	Mammal	Yes
Whale, Humpback	Megaptera novaeangliae	Е	Mammal	Yes
Whale, North Atlantic right	Eubalaena glacialis (incl. australis)	Е	Mammal	Yes
Whale, Sei	Balaenoptera borealis	Е	Mammal	Yes
Whale, Sperm	<i>Physeter catodon</i> (=macrocephalus)	Е	Mammal	Yes
Wolf, Red	Canis rufus	Е	Mammal	Yes
Woodrat, Riparian	Neotoma fuscipes riparia	Е	Mammal	Yes
Alopecurus, Sonoma	Alopecurus aequalis var. sonomensis	Е	Monocot	Yes
Amole, Cammatta Canyon	Chlorogalum purpureum var. reductum	Т	Monocot	Yes
Amole, Purple	Chlorogalum purpureum var. purpureum	Т	Monocot	Yes
Aristida chaseae (ncn)	Aristida chaseae	Е	Monocot	Yes
Arrowhead, Bunched	Sagittaria fasciculata	Е	Monocot	Yes
Beaked-rush, Knieskern's	Rhynchospora knieskernii	Т	Monocot	Yes
Beargrass, Britton's	Nolina brittoniana	Е	Monocot	Yes
Beauty, Harper's	Harperocallis flava	Е	Monocot	Yes

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Bluegrass, Hawaiian	Poa sandvicensis	Е	Monocot	Yes
Bluegrass, Mann's (Poa mannii)	Poa mannii	Е	Monocot	Yes
Bluegrass, Napa	Poa napensis	Е	Monocot	Yes
Bluegrass, San Bernardino	Poa atropurpurea	Е	Monocot	Yes
Brodiaea, Chinese Camp	Brodiaea pallida	Т	Monocot	Yes
Brodiaea, Thread-leaved	Brodiaea filifolia	Т	Monocot	Yes
Bulrush, Northeastern (=Barbed Bristle)	Scirpus ancistrochaetus	Е	Monocot	Yes
Cranichis Ricartii	Cranichis ricartii	Е	Monocot	Yes
Fritillary, Gentner's	Fritillaria gentneri	Е	Monocot	Yes
Grass, California Orcutt	Orcuttia californica	Е	Monocot	Yes
Grass, Colusa	Neostapfia colusana	Т	Monocot	Yes
Grass, Eureka Dune	Swallenia alexandrae	Е	Monocot	Yes
Grass, Fosberg's Love	Eragrostis fosbergii	Е	Monocot	Yes
Grass, San Joaquin Valley Orcutt	Orcuttia inaequalis	Т	Monocot	Yes
Grass, Solano	Tuctoria mucronata	Е	Monocot	Yes
Grass, Tennessee Yellow-eyed	Xyris tennesseensis	Е	Monocot	Yes
Hala Pepe (Pleomele hawaiiensis)	Pleomele hawaiiensis	Е	Monocot	Yes
Hilo Ischaemum (Ischaemum byrone)	Ischaemum byrone	Е	Monocot	Yes
Iris, Dwarf Lake	Iris lacustris	Т	Monocot	Yes
Irisette, White	Sisyrinchium dichotomum	Е	Monocot	Yes
Kamanomano (Cenchrus agrimonioides)	Cenchrus agrimonioides	Е	Monocot	Yes
Ladies'-tresses, Canelo Hills	Spiranthes delitescens	Е	Monocot	Yes
Ladies'-tresses, Navasota	Spiranthes parksii	Е	Monocot	Yes
Ladies'-tresses, Ute	Spiranthes diluvialis	Т	Monocot	Yes
Lau'ehu (Panicum niihauense)	Panicum niihauense	Е	Monocot	Yes
Lepanthes eltorensis (ncn)	Lepanthes eltoroensis	Е	Monocot	Yes
Lily, Minnesota Trout	Erythronium propullans	Е	Monocot	Yes
Lily, Pitkin Marsh	Lilium pardalinum ssp. pitkinense	Е	Monocot	Yes
Lily, Tiburon Mariposa	Calochortus tiburonensis	Т	Monocot	Yes
Lily, Western	Lilium occidentale	Е	Monocot	Yes
lo`ulu	Pritchardia hardyi	Е	Monocot	Yes
Lo`ulu (Pritchardia affinis)	Pritchardia affinis	Е	Monocot	Yes
Lo`ulu (Pritchardia kaalae)	Pritchardia kaalae	Е	Monocot	Yes

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Lo`ulu (Pritchardia napaliensis)	Pritchardia napaliensis	Е	Monocot	Yes
Lo`ulu (Pritchardia schattaueri)	Pritchardia schattaueri	Е	Monocot	Yes
Lo`ulu (Pritchardia viscosa)	Pritchardia viscosa	E	Monocot	Yes
Manaca, palma de	Calyptronoma rivalis	Т	Monocot	Yes
Mariscus fauriei (ncn)	Mariscus fauriei	E	Monocot	Yes
Mariscus pennatiformis (ncn)	Mariscus pennatiformis	E	Monocot	Yes
Onion, Munz's	Allium munzii	E	Monocot	Yes
Orchid, Eastern Prairie Fringed	Platanthera leucophaea	Т	Monocot	Yes
Orchid, Western Prairie Fringed	Platanthera praeclara	Т	Monocot	Yes
Pa'iniu	Astelia waialealae	E	Monocot	Yes
Panicgrass, Carter's (Panicum fauriei var.carteri)	Panicum fauriei var. carteri	Е	Monocot	Yes
Pelos del Diablo	Aristida portoricensis	Е	Monocot	Yes
Pink, Swamp	Helonias bullata	Т	Monocot	Yes
Piperia, Yadon's	Piperia yadonii	E	Monocot	Yes
Platanthera holochila (ncn)	Platanthera holochila	Е	Monocot	Yes
Poa siphonoglossa (ncn)	Poa siphonoglossa	Е	Monocot	Yes
Pogonia, Small Whorled	Isotria medeoloides	Т	Monocot	Yes
Pondweed, Little Aguja Creek	Potamogeton clystocarpus	E	Monocot	Yes
Pu'uka'a (Cyperus trachysanthos)	Cyperus trachysanthos	Е	Monocot	Yes
Seagrass, Johnson's	Halophila johnsonii	Т	Monocot	Yes
Sedge, Golden	Carex lutea	Е	Monocot	Yes
Sedge, Navajo	Carex specuicola	Т	Monocot	Yes
Sedge, White	Carex albida	E	Monocot	Yes
Trillium, Persistent	Trillium persistens	E	Monocot	Yes
Trillium, Relict	Trillium reliquum	E	Monocot	Yes
Walnut, Nogal	Juglans jamaicensis	E	Monocot	Yes
Water-plantain, Kral's	Sagittaria secundifolia	Т	Monocot	Yes
Wild-rice, Texas	Zizania texana	E	Monocot	Yes
Alligator, American	Alligator mississippiensis	Т	Reptile	No
Boa, Puerto Rican	Epicrates inornatus	Е	Reptile	No
Boa, Virgin Islands Tree	Epicrates monensis granti	Е	Reptile	No
Crocodile, American	Crocodylus acutus	Т	Reptile	No
Lizard, Blunt-nosed Leopard	Gambelia silus	Е	Reptile	No

Common Name	Scientific Name	Status	Taxon	Potential for Direct Effects to Taxon?
Lizard, Coachella Valley Fringe-toed	Uma inornata	Т	Reptile	No
Lizard, Island Night	Xantusia riversiana	Т	Reptile	No
Lizard, St. Croix Ground	Ameiva polops	Е	Reptile	No
Rattlesnake, New Mexican Ridge-nosed	Crotalus willardi obscurus	Т	Reptile	No
Sea turtle, green	Chelonia mydas	E/T	Reptile	No
Sea turtle, hawksbill	Eretmochelys imbricata	Е	Reptile	No
Sea turtle, leatherback	Dermochelys coriacea	Е	Reptile	No
Sea turtle, loggerhead	Caretta caretta	E/T	Reptile	No
Skink, Blue-tailed Mole	Eumeces egregius lividus	Т	Reptile	No
Skink, Sand	Neoseps reynoldsi	Т	Reptile	No
Snake, Atlantic Salt Marsh	Nerodia clarkii taeniata	Т	Reptile	No
Snake, Eastern Indigo	Drymarchon corais couperi	Т	Reptile	No
Snake, Giant Garter	Thamnophis gigas	Т	Reptile	No
Snake, Northern Copperbelly Water	Nerodia erythrogaster neglecta	Т	Reptile	No
Snake, San Francisco Garter	Thamnophis sirtalis tetrataenia	Е	Reptile	No
Tortoise, Desert	Gopherus agassizii	Т	Reptile	No
Tortoise, Gopher	Gopherus polyphemus	Т	Reptile	No
Turtle, Alabama Red-bellied	Pseudemys alabamensis	Е	Reptile	No
Turtle, Bog	Clemmys muhlenbergii	Т	Reptile	No
Turtle, Flattened Musk	Sternotherus depressus	Т	Reptile	No
Turtle, Plymouth Red-bellied	Pseudemys rubriventris bangsi	Е	Reptile	No
Turtle, Ringed Map	Graptemys oculifera	Т	Reptile	No
Turtle, Yellow-blotched Map	Graptemys flavimaculata	Т	Reptile	No
Whipsnake (=Striped Racer), Alameda	Masticophis lateralis euryxanthus	Т	Reptile	No