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Executive Summary 

The conservation of rare plants is a challenging and ever evolving task. As almost 90% of the world’s 

flora depends on animal pollinators for reproduction, it is critical that these pollinators are accounted for 

in conservation strategies. This document summarizes a literature review conducted by the BLM which 

attempts to address the best way to conserve these pollinators, and presents a novel solution endorsed by 

the BLM Colorado State Botanist (Carol Dawson).  

We begin by presenting a list of 15 rare plant species which occur on BLM land within Colorado and 

summarize all known insect visitors to each plant. In reviewing how these data have been used by the 

Fish and Wildlife Service (FWS) to create buffer distances (protected areas around the occupied habitat of 

the rare plants), we point out several concerns with their methods. Our concerns include limitations in 

both the available pollinator data and in the equations which have been used to determine foraging 

distances of these pollinators.   

After conducting an extensive literature review on the foraging behaviors of both social and solitary bee 

species, we suggest that a 500 meter buffer is appropriate around all bee-pollinated rare plants in 

Colorado. We feel that this is a reasonable distance that will protect the entire pollinator community, 

rather than only those species which have been observed visiting each plant.  

Our literature review suggests that the majority of solitary bees forage within such an area naturally, 

meaning that their nests sites are likely to be protected. Social bees often forage at great distances from 

their nests (up to several kilometers), and are willing to cross inhospitable habitat in order to reach their 

forage. Thus, even if some social bees nest outside of our buffers, the protection of such large tracts of 

land ought to provide sufficient foraging opportunities to attract these social species. Together, these 

observations validate the recommendation of the State Botanist that a 500 meter buffer be implemented 

around Colorado rare plants. 
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Introduction 

The Bureau of Land Management (BLM) manages 8.3 million acres of land in the state of Colorado on 

which at least 75 rare plant species grow. These rare plants have either been formally listed under the 

Endangered Species Act or identified by the BLM State Director as Sensitive Species. The BLM must 

develop and implement appropriate conservation measures in the management of Bureau special status 

species and the ecosystems upon which they depend. Recently, conservationists have begun to pay a lot of 

attention to how rare plants interact with their pollinators, as approximately 87% of the world’s flora 

depends on animal pollinators for reproduction and the maintenance of genetic viability (Ollerton et al. 

2011). Thus, it is paramount that pollinators be taken into account when designing conservation measures 

for rare plants. This document discusses how the Bureau (and other land managers) can best consider 

native pollinators while protecting the rare plants that fall within their purview. 

Of particular concern to land managers is how far pollinators (in our case represented primarily by native 

bees) fly. Pollination is likely to suffer if plant populations are separated by a distance greater than 

pollinators fly, or alternately, if a pollinator’s nesting biology is not taken into account (Cane 2001). 

Different bee species have a wide variety of nesting requirements, and often the resources required for 

nesting are spatially separated from the flowers that the bees forage at and pollinate (Westrich 1996, Cane 

2001). Thus, simply protecting occupied habitat is not enough to guarantee persistence of our rare plants, 

we must also provide appropriate nesting habitat within the pollinator’s flight range. As it is 

extraordinarily difficult to locate native bee nests in the field (Dramstad 1996, Darvill et al. 2004, 

Goulson 2010), land managers are accounting for nesting requirements by creating protective buffers 

around occupied habitat.  

The Fish and Wildlife Service (FWS) has produced a draft Guidance for Section 7 Consultations that 

Include Plants within the State of Colorado document that incorporates plant species-specific potential 

buffer distances (FWS calls them “plant consideration zones,” or sometimes “plant set-back distances”). 

These areas are used to calculate whether surveys and/or consultation needs to occur under Section 7. The 

widths of the buffers vary by plant species, and have been created based on what is known or inferred 

about the foraging distance of the pollinators known to visit each specific plant. To date, these numbers 

are primarily based on one key paper (Greenleaf et al. 2007), which predicts bee flight distances based on 

body size. The proposed buffer distances range from 100 m (Phacelia submutica) to 1000 m (Penstemon 

debilis and P. penlandii, as well as 3 other species that are not focus plant species of this review), and are 

summarized in Table 1.  

The document that follows provides a summary and an interpretation of an in-depth literature review 

conducted by the BLM that sought to broaden our knowledge regarding the foraging distances of native 

pollinators. Upon completion of the literature review we (with the endorsement of the BLM Colorado 

State Botanist, Carol Dawson) propose a single buffer distance of 500 meters for all Colorado rare plants 

that depend on native bees for pollination.  
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The plants & their pollinators 

The plants 

The BLM has compiled a list of 15 rare Colorado plant species (“focus plant species”) that exist on land 

managed by the Bureau (see Table 1). These plants provide a lens through which to look at appropriate 

buffer distances. All but one of the species have been recognized under the Endangered Species Act 

(either as a candidate, proposed, threatened, or endangered species) and 3 of the 15 have been designated 

BLM Sensitive Species. These rare plant species reflect a diverse array of taxa, representing 8 genera in 7 

families. They grow in many different habitats, from deserts to shrub-steppe communities to high alpine 

environments.  

 

The visitors 

These plants are visited by a diverse assemblage of native insects; including bees, wasps, ants, flies, 

butterflies, and even a beetle. Despite this diversity, across the plant taxa the majority of the described 

visitors are solitary bees (Fig. 1). Bumblebees also appear to play an important role for several of the 

plant species, and while non-bee visitors are prevalent for a few of the species, generally they are not 

common. Honeybees have only been observed visiting 3 of our focus plants. Due to these patterns of 

observed visitor compositions, this review focuses entirely on native bees (both solitary and social). 

Because ants are believed to play a large role in the pollination of Eriogonum pelinophilum (Bowlin et al. 

1992) and Phacelia submutica is believed to be self-pollinated (Service 2011a, Clark 2012), both deserve 

further study and the recommendations from this review should not be applied without additional species-

specific knowledge. 

 

The bees 

Estimates suggest that there may be as many as 20,000 species of bees worldwide, approximately 3,500 

of which are found in North America above Mexico (Michener 2007, Mader et al. 2011). A recent 

synthesis listed 946 extant bee species in Colorado, and even this is believed to be an underestimate as not 

all parts of the state have been thoroughly surveyed (Scott et al. 2011). While much of agriculture is now 

dependent on introduced and managed honeybee hives for pollination, native plants have traditionally 

relied on native bees, and it seems that this is still the case for our focus plant species. Indeed, there is 

evidence that honeybees are less effective pollinators of many plants (Winfree 2010) and that they 

compete for resources with native bees in the areas in which they coexist (Thomson 2004). Thus, 

counting on honeybees to provide effective pollination services for our rare plants is neither likely to 

work nor ecologically responsible. Instead, we must focus on protecting native pollinator communities. 

Bees are some of the most effective pollinators because they are lifelong obligate florivores, actively 

gathering pollen to feed their young and nectar to feed themselves. While other insects often visit flowers 

to collect nectar, any pollen they transfer is accidental. As active foragers, bees can be broadly split into 

three strategic groups. Polylectic bees are generalists, visiting a variety of plant species, while oligolectic 

species specialize on a limited number of taxa. Cleptoparasitic bees are parasites which lay their eggs in 
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brood cells that have already been created and provisioned by other bees. Thus, they do not actively 

forage for pollen, and tend to be much less important as pollinators. 

Bees exhibit a wide diversity of life history traits. A primary division can be drawn between social and 

solitary species. Honeybees and bumblebees are social, creating large colonies run by a single queen. 

These colonies tend to be present throughout the season, which means that the species that live in them 

are usually generalists, forced as they are to forage on a temporally changing diversity of floral resources. 

In return, the social bees provide pollination services to many different plants. Solitary species are far 

more common, accounting for c. 90% of all described bee species (Mader et al. 2011). Each solitary 

female creates a nest for her own young. During her short adult life (generally 3-6 weeks [Mader et al. 

2011]), she gathers pollen to provision brood cells in which she lays her eggs. Because only one bee is 

flying in and out of these nests, they are extraordinarily difficult to locate. Many solitary bees are also 

generalists, though due to their generally short lifespan some species are able to be specialists.  

However, it is misleading to divide social and solitary bees so neatly. Some bees (which I have grouped 

with the solitary bees in this document for simplicity’s sake) fall somewhere in the middle of the sociality 

spectrum. Without forming traditional colonies, these species may nest communally, sharing an area or 

even a nest entrance with several to hundreds of individuals. However, within this common space each 

female creates her own nest and provisions her own brood cells for her young. Thus, their foraging 

behaviors are much more similar to those of the solitary bees than to those of the social species.  

Different bee species exhibit different nesting behaviors (Cane 1991). Many are ground-nesters, either 

creating their own burrows or using existing holes dug out by rodents or other small animals. Some 

bumblebee species nest aboveground, especially in grassy tussocks. Some solitary bees nest in pithy 

stems, and others nest in pre-existing cavities in wood, rocks, or even snail shells. While it is tempting to 

attempt to manage habitats for specific nesting materials, this diversity in nesting preferences and a lack 

of species-specific nesting data makes it very difficult. Instead, if the bees are currently present and 

pollinating our plants than it means that they must have sufficient nesting habitat already. By placing a 

buffer around the habitat occupied by the plant we ought to be protecting enough nesting habitat to 

sustain the bee populations as well, especially if the buffer encompasses the typical foraging distance of a 

species. 

Taken together, these varied life history traits help explain the difficulties involved in creating buffer 

distances based on a pollinator’s foraging distance, as many different factors are likely to influence how 

far a bee forages from its nest. This diversity will be discussed throughout this review. 

 

A note on data 

While Figure 1 summarizes all recorded visitors to each of the 15 focus plant species, the available 

pollinator data vary widely in quality and completeness. Some species have been heavily studied and 

many potential pollinators have been described, while others have never even been studied. For example, 

54 species have been observed visiting Penstemon debilis (McMullen 1998), while I was unable to find 

any records that looked for insect visitors to Eutrema penlandii or Penstemon harringtonii. What’s more, 

different pollinator studies follow various methodologies and overall sampling effort is unequal between 

plant species. Thus, while the total numbers of species that have been observed visiting a plant are 
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represented in both Table 1 and Figure 1, it is unlikely that any of these numbers represent the true 

number of insect pollinators. On one hand, further sampling and studies will probably reveal more visitors 

as more effort is expended looking for them, especially because pollinator species composition often 

changes between years (Petanidou et al. 2008). On the other hand, we must remember that not all visitors 

are pollinators (Kwak et al. 1998, Forup & Memmott 2005), and that these numbers may overestimate the 

number of species that are ecologically important. At present, however, these data are what have been 

used to create the proposed buffer distances by the FWS.  

 

Why the status quo is insufficient 

Species composition 

The primary issue with using the proposed buffer distances is that they are based on supposed foraging 

distances of specific pollinators. As discussed above, our knowledge of which pollinators are important 

for each plant is limited. The majority of the studies which have been conducted did not distinguish 

between insect visitors and insect pollinators, an important oversight as visitation does not guarantee or 

even adequately predict pollination (Kwak et al. 1998, Forup & Memmott 2005). Further, there is good 

evidence that plant-pollinator communities and their interactions are highly variable over time (Price et 

al. 2005, Petanidou et al. 2008) and that often the important pollinators will change between years 

(Burkle & Alarcon 2011). Several pollinator studies demonstrate this theory, finding that only 20% of all 

pollinators in a study site were present all four years of the study (Petanidou et al. 2008) and that only 

25% of pollinator-plant interactions observed in one year were present in the next (Dupont et al. 2009). 

Even the authors of the study reporting the insect visitors of Spiranthes diluvialis (one of our focus plants) 

after the third year of observations noted that the species composition was significantly different from 

what had been reported after the first two years (Pierson et al. 2000).  

Together, these studies suggest that we can’t make conclusive statements about the required pollinators 

for each specific plant based on only a few years of data. Unfortunately, this is the amount of data that is 

often available. For 11 of the 13 focus species for which insect visitors have been observed, the pollinator 

observations have occurred over the course of only one or two years (Karron 1987, Heil & Porter 1990, 

Warren 1990, McMullen 1998, Rechel et al. 1999, Tepedino et al. 1999, Lewinsohn & Tepedino 2004, 

Lewinsohn et al. 2005, Tepedino 2009, Tepedino et al. 2011). Visitation data were collected over the 

course of three seasons for the remaining two species (Penstemon grahamii: Lewinsohn & Tepedino 

2004, Lewinsohn et al. 2005, Tepedino 2008; Spiranthes diluvialis: Sipes & Tepedino 1995, Pierson et al. 

2000). While these data are certainly interesting and useful to have, neither two nor three years of study is 

enough to be even relatively certain of the important pollinators. Thus, it is difficult to justify using such 

limited data to devise conservation strategies. 

 

Network resiliency 

Luckily, it doesn’t seem that we need to know all of the specific plant-pollinator interactions that occur, 

nor do we need to worry about year-to-year shifts in pollinator composition. Pollination networks are 

resilient to such natural changes, incorporating both species redundancy and a nested structure 
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(Bascompte et al. 2003, Memmot et al. 2004, Olesen et al. 2008, Burkle & Alarcon 2011). Redundancy 

refers to the fact that the majority of species are generalists (the proportion of specialists is likely to have 

been overestimated in the past [Petanidou et al. 2008]), and thus not dependent on a single partner species 

for persistence. Therefore, even if a pollinator is lost from a network its function can usually be replaced 

by another pollinator, especially if the plant species affected is a generalist. There is no evidence that any 

of our focus plants depend on a single pollinator species or genus for reproduction, meaning that they can 

take advantage of this resiliency.  

The nestedness of a network categorizes how connected the various species involved in mutualistic 

interactions are. In a highly nested network the more specialist species interact with a proper subset of the 

more generalist partners (Bascompte et al. 2003). In other words, a highly nested network is characterized 

by asymmetrical specialization, in which a specialist bee may pollinate a generalist flower, or a specialist 

flower may be pollinated by a generalist bee. Asymmetrical specialization is resilient because it means 

that the extinction of a specialist is unlikely to result in its partner’s extinction. This pattern seems to be 

much more common than the traditionally accepted theory that the majority of specialist pollinators and 

specialist flowers evolved together (Bascompte et al. 2003, Memmott et al. 2004). A nested, redundant 

network can easily deal with some changes in species composition, and due to the abundance of such 

networks it seems quite likely that our rare plants are components in just such a network. Therefore, they 

too should be quite resilient; not only to natural year-to-year variation, but also to slight changes brought 

about by development. 

This resiliency has been documented and discussed in several studies. Petanidou et al. (2008) state that “it 

is very likely that the great majority of both plants and pollinators will find new interaction partners if 

their present partners vanish.” Memmott et al. (2004) modeled species loss in pollinator communities, and 

found that if the most specialized pollinators were removed first (ecologically likely as they tend to be 

rarer and seem to be more susceptible to extinction) plant species went extinct very slowly in response 

until the vast majority of pollinators were lost. Even if more highly-linked species were lost first, the 

overall decline in plant diversity was no worse than linear (Memmott et al. 2004). This exercise 

demonstrated that the extreme “extinction vortexes” that have been predicted elsewhere are unlikely to 

occur due to pollinator loss. Moreover, even in restored ecosystems where the pollinator community has 

changed significantly, the new community has been shown to maintain pollination services (Forup & 

Memmott 2005, Williams 2011). These studies suggest that our focus plants should be able to sustain the 

loss of some of their current pollinators, as the networks in which they exist ought to provide alternative 

pollinators that will be able to functionally replace those that are lost. 

 

Conserving the pollinator community 

None of the above is meant to imply that we can ignore pollinators while designing conservation 

strategies. With extreme fragmentation, all pollinator communities are likely to be lost, and no amount of 

resiliency can prevent this. Instead, the above argument is presented in order to demonstrate that creating 

buffer distances based on a small number of known insect visitors is not a responsible decision. Rather, 

we should attempt to conserve an entire healthy pollinator community, even if we don’t know which 

species may make up the community. Maintaining species diversity is more important than maintaining 

the individual species that are present at any one time, as the majority of plants depend on a diverse 
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community of pollinators (Slagle & Hendrix 2009, Williams 2011). Because we have so little knowledge 

about what bee species may make up the various communities in each ecosystem, we advocate attempting 

to preserve as many species as possible in each location. The easiest way to do this is to create a single 

buffer distance that applies across ecosystems, though determining an appropriate width for this buffer is, 

of course, challenging.  

 

Issues with the equations currently used 

So far, foraging distances of North American bees as they relate to the conservation of Colorado rare 

plants have been estimated primarily from a few key papers (Gathmann & Tscharntke 2002, Greenleaf et 

al. 2007). These papers each present equations that predict a species’ maximum flight distance based on 

body size, either length (Gathmann & Tscharntke 2002) or intertegular span (the length between the wing 

tegulae; Greenleaf et al. 2007). Because bumblebees are the largest bee species in our ecosystems, any 

plant species for which bumblebee visitors have been observed has been given a buffer distance of 1000 

m (Table 1). For plants which seem to be visited only by smaller bees (i.e. Osmia), buffer distances are as 

low as 400 m. Beyond the issues discussed above regarding the use of observed visitors to create buffers, 

there are several problems related to using these specific papers as our sole predictor of foraging distance. 

Primarily, while the equations are relatively robust (especially in Greenleaf et al. 2007), they are 

developed using a limited number of bee species. None of the species used are known pollinators of our 

rare plants, and the vast majority are not even found in North America.  

The species used also encompass many different bee families. This choice by Greenleaf et al. (2007) 

allows their equations to be applied to any and all bee species. However, it ignores the vast variability in 

sociality, life history, foraging behaviors, and nesting habits that are also likely to play a role in species-

specific foraging distances. Species that nest in large colonies, such as bumblebees, should logically 

utilize a greater area in order to provision the entire nest (Goulson 2010) than solitary bees need if only 

provisioning a couple dozen brood cells. This trend can be hidden if all species are grouped together, as 

bumblebees also tend to be larger than solitary bees. Oligolectic (specialist) bees can be expected to travel 

further than generalists if the forage on which they’re specialized grows in a patchy distribution (e.g. 

Zurbuchen et al. 2010a). Bees that are present throughout the entire season, or which have more than one 

generation per year, may at times need to travel long distances in order to reach seasonally available 

forage (Roulston & Goodell 2011). Finally, bees are likely to display adaptations and thus forage 

distances that are specific to their habitat. The distribution of plants in a desert is dramatically different 

from the distribution of plants in the tropics, which is again different from within a temperate forest. 

These variations in bee ecologies highlight some factors other than body size which probably contribute 

to foraging distances. We must consider functional groups separately in order to take these differences 

into account before developing conservation recommendations based on foraging distances. 

The third problem with using the equation from Greenleaf et al. (2007) is that it is calculated to predict 

maximum flight distance, and doesn’t necessarily tell us much at all about actual foraging distance. In this 

context, “flight distance” means the maximum distance that an individual or species is physically capable 

of flying, while “foraging distance” refers to how far these species generally travel while actively 

foraging. Because of these fundamental differences, manipulative (i.e. experimental) study designs 

generally test maximum flight distances, while observational studies are better for measuring foraging 
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distances. However, this distinction illustrates the difficulty faced by researchers who study these topics. 

It is far easier to experimentally measure the distance an individual can physically fly than it is to design 

an observational study that sheds light on the greatest foraging distance traveled, especially as foraging 

distance varies by individual (Zurbuchen et al. 2010c), by resource availability in the specific habitat 

(Darvill et al. 2004, Wolf & Moritz 2008), and by season (Osborne et al. 1999, Knight et al. 2005, Wolf 

& Moritz 2008, Elliott 2009). In any case, even if one were able to determine a maximum foraging 

distance for a specific bee species, there is growing acceptance that the maximum foraging distance is not 

nearly as important for conservation as the mean foraging distance (Zurbuchen et al. 2010c). 

The flight distance studies used by Greenleaf et al. (2007) to create their equations fall into two 

categories. The first are homing experiments, in which bees are displaced various distances from their 

nest and the rate of return is calculated from each distance. The furthest distance from which 10% of 

individuals return is assumed to be the maximum flight distance. Greenleaf et al. also used these studies 

to calculate a “typical” flight distance, from which 50% of individuals returned (Williams, personal 

communication in Tepedino 2009, corrects misstatements from the original Greenleaf et al. 2007 paper). 

Even if the equation they created works perfectly to determine how far a bee is capable of flying, multiple 

inferences must be made to link these flight distance data to an average foraging distance for the species 

(Knight et al. 2005, Westphal et al. 2006), a fact which Greenleaf et al. concede.  

The second method used is a feeder-training method, in which plant/feeder patches are placed at various 

distances from the nest and the number of bees that forage at the patch at each distance is observed. While 

this is a more applicable study design, it is generally limited to use with oligolectic bees and, as discussed 

above, oligolectic species may be expected to fly further than generalists of the same size. Overall it is 

difficult to accept that these equations will perfectly predict foraging distances of the bees which we are 

interested in, and once we take varying species composition into account they become almost impossible 

to trust to create meaningful buffers. 

 

Our strategy 

This section has discussed some of the difficulties involved in creating plant species specific buffers. 

Pollinator composition for each plant species is often not known or poorly documented, and compounding 

this issue, composition is variable across time and space. However, plant-pollinator communities are 

resilient to this variation due to built-in redundancy and a nested structure. Thus, conservation 

recommendations should focus on the entire community, not simply the few potential pollinators that may 

have been observed during a year or two of study. Determining foraging distances of individual 

pollinators is also problematic, as the equations used to date are built from studies that test flight distance 

rather than foraging distance and are based on a limited number of species. Further, those species are all 

lumped together into one equation that doesn’t take variability in life histories into account.  

By studying the major functional groups of pollinating bees separately and then pulling the resulting 

information together into a single proposed buffer distance, we hope to overcome these difficulties. We 

believe that we have come to a solid scientific recommendation that will hopefully protect the entire 

community. By using one inclusive buffer distance we will avoid protecting only a small subset of the 

entire pollinator community (as this may be all that has been observed to date) while also creating a single 

conservation strategy which will be easier to implement and explain to stakeholders. In the rest of this 



 

Conserving Native Pollinators  9 

 

document we will first discuss the buffer distances required by bumblebees and other social bees and then 

consider those required by solitary bees before drawing the two groups together. 

 

Bumblebees 

Introduction 

Pollinator guilds are generally dominated by solitary bees, while bumblebees tend to play a secondary 

role (see Fig. 1). However, bumblebees are the largest of our native pollinators, providing the driving 

force behind the widest buffers suggested by FWS (1000 m). They have also been much more thoroughly 

studied than solitary bees, making them a good group to discuss first.  

Bumblebees all belong to the genus Bombus in the family Apidae, and nest in large colonies that tend to 

be present from spring until fall. Because these colonies persist for so long, bumblebees take advantage of 

many different floral resources throughout the season (they’re generalists). Due to their large colonies and 

generalist foraging strategies, they can be expected to forage great distances from their nests. While the 

literature currently supports this expectation, it took some time to get to this point. 

 

History of thought 

Bombus foraging strategies are a complex and poorly understood topic. Bumblebees are big bees, and so 

are expected to have the ability to fly long distances (e.g. Gathmann & Tscharntke 2002, Greenleaf et al. 

2007). Until recently, however, researchers assumed that they would choose to forage near their nests if 

resources were readily available to maximize energy efficiency (reviewed in Goulson 2010). The results 

of several mark-recapture studies conducted on bees caught while foraging reinforced this theory, 

reporting flight distances of only a few hundred meters (see, e.g., Bowers 1985, Bhattacharya et al. 2003, 

Elliott 2009). Despite the fact that nest location was unknown, researchers assumed that because the bees 

were caught repeatedly within a small area they probably nested nearby. Several early studies that marked 

bumblebees at the nest built this assumption into their methods, sampling only within a few hundred 

meters of the nest. Researchers reported low foraging distances based on the small percentage of bees that 

were recaptured, while explaining away the disappearance of many bees.  

Dramstad (1996) reviewed these papers and suggested that the “missing” bees were simply foraging 

outside of the heavily sampled area in which the researchers expected to find them, then backed this 

hypothesis up with data of her own. She demonstrated a high recapture rate of bumblebees marked while 

foraging inside her study meadows, but extremely low recapture rates of those bees marked at nests 

placed at the edge of the same meadow. The bees, she concluded, returned repeatedly to favored forage 

sites (site constancy) but the location of that forage was not necessarily near the location of the nests, and 

in fact, it was likely to be some distance away. Her paper has been cited 76 times since its publication, 

reflecting a general shift in the understanding of bumblebee foraging patterns as more scientists come to 

accept this explanation (e.g. Saville et al. 1997, Cresswell et al. 2000, Walther-Hellwig & Frankl 2000, 

Chapman et al. 2003, Darvill et al. 2004, Knight et al. 2005, Osborne et al. 2008). 
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Bumblebee specific problems with the current equations 

Beyond the fact that the equations currently in use are based on maximum flight distances gathered from 

homing experiments and group together many different taxa (see discussion in “Issues with the equations 

currently used”), they are not even appropriate for predicting bumblebee flight distances. Gathmann and 

Tscharntke (2002) based their models solely on solitary bee species, making them unfit to model 

bumblebee flight distances at all. Greenleaf et al. (2007), on the other hand, included one data point 

gathered from Bombus terrestris, a European bumblebee. The remainder of their input data came from 

solitary bees and honeybees. A single data point from a bumblebee is simply not enough to convincingly 

demonstrate that this equation will work for the Bombus species that we are concerned about. 

 

Alternative methods to determine foraging distance 

So if we can’t predict bumblebee foraging distances from equations based on body size or from homing 

experiments, how can we determine the scale at which the bees forage? Observational techniques, while 

generally unable to tell us anything about maximum flight distance, are much more reliable for learning 

about the true ecology of a species. By observing bees in the field, researchers can determine how far a 

bee actually travels on a day-to-day basis, rather than how far it is capable of travelling when forced to. 

There are several observational techniques that have been used to quantify Bombus foraging distances. 

One of these methods is measuring the genetic relatedness of foraging bumblebees. This works because 

all foragers within a colony are sisters, and thus if two sisters are found at a distance of 300 m from each 

other it can be assumed that they each traveled at least 150 m from the nest. Studies utilizing this method 

have returned a wide range of foraging distances. Bombus terrestris was found to have a median foraging 

distance of 0.62-2.8 km (max foraging distance 0.87-3.9 km) in one study (Chapman et al. 2003), a max 

distance of up to 758 m in another (Knight et al. 2005), and a maximum of 625 m in a third (Darvill et al. 

2004). Bombus pascuorum had a similarly wide range reported in these studies, from a max foraging 

distance of 0.72-3.2 km (Chapman et al. 2003), to 449 m (Knight et al. 2005), to staying within 312 m 

(Darvill et al. 2004). Knight et al. (2005) also looked at B. lapidarius (max foraging distance 450 m) and 

B. pratorum (max distance 674 m). While this method is observational, it also has built in assumptions 

related to nest density. Further, as it returns such a wide range of numbers, it clearly does not lead to an 

easy conclusion about a species’ average foraging distance. 

A popular method to estimate foraging ranges is to mark bees at the nest and attempt to recapture them 

while foraging. This method has its own built in assumptions and issues and also returns a wide range of 

bumblebee foraging distances, from <100 m to 2.2 km (see Dramstad 1996, Saville et al. 1997, Walther-

Hellwig & Frankl 2000, Dramstad et al. 2003, Kreyer et al. 2004, Wolf & Moritz 2008). A related 

technique is to attach harmonic radar transponders to bees as they leave the nest, then to track their 

movements. Osborne et al. (1999) used this technology to observe bumblebee behaviors, but were limited 

in their conclusions because the transponders only worked up to 700 m from the radar dish, and only if 

the bee remained within a clear line of sight.  

Westphal et al. (2006) examined the spatial scale at which different bumblebee species utilized resources 

in order to estimate foraging distances. They returned large resource use areas which varied greatly by 

species, from circles with a 250 m diameter for B. pratorum to a 3,000 m diameter for B. terrestris. When 
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Goulson (2010) reviews this study, he suggests dividing the numbers in half in order to gain a better 

estimate of foraging distance, as nests are likely to occur in the center of these resource use circles. Thus, 

foraging distances range from 125 m to 1,500 m (Goulson 2010). Overall, Wolf and Moritz (2008) 

summarize the state of our knowledge quite well, declaring that “estimates of foraging ranges have one 

aspect in common: they are highly variable.” 

 

The forage landscape 

These studies do succeed in demonstrating that bumblebees as a genus don’t seem to be “doorstep 

foragers,” only selecting forage that is near their nest (though some rare, specialized species appear to be 

the exception [see Walther-Hellwig & Frankl 2000]). Instead, many of the authors report that bumblebees 

will fly over seemingly acceptable forage in order to get to a different patch (Dramstad 1996, Saville et al. 

1997, Osborne et al. 1999, Walther-Hellwig & Frankl 2000, Dramstad et al. 2003, Osborne et al. 2008). 

The reason they do this ultimately seems to come down to patch quality.  

Cresswell et al. (2000) present an economic flight model that suggests bumblebees could beneficially fly 

up to 10 km to reach a patch of particularly rewarding forage, while Wolf and Moritz (2008) were able to 

explain 80% of forage distance variation by distance from the nest and forage quality. Bumblebees are 

fast fliers (Riley et al. 1999), so not much time is wasted travelling to a distant site. If the energy 

expended flying to a distant site can be compensated for by the increased rewards found there, it will be 

economically viable for a bumblebee to make that flight (Cresswell et al. 2000). Also, bumblebees are 

known to exhibit site constancy (Osborne & Williams 2001), so once they have found a great forage patch 

they are likely to return to it over and over again, explaining the short flight distances found by studies 

that mark bees while foraging (e.g. Bowers 1985, Bhattacharya et al. 2003, Elliott 2009). 

 

Relating these data to our pollinators 

As discussed above, foraging estimates vary remarkably between species, with very little consensus. 

Further complicating this matter, to date every single bumblebee species for which flight range has been 

calculated is European (Dramstad 1996, Saville et al. 1997, Walther-Hellwig & Frankl 2000, Chapman et 

al. 2003, Dramstad et al. 2003, Darvill et al. 2004, Kreyer et al. 2004, Knight et al. 2005, Wolf & Moritz 

2008). There is next to no data available regarding foraging range of North American bumblebees, and 

that which does exist tends to have marked the bees while foraging (Bowers 1985, Elliott 2009).  

So, with the data limitations that currently exist, is it even possible to make conclusions about the 

foraging distances of the bumblebees that we’re interested in? Despite the wide variation in recorded 

flight distances, there are interspecific trends that emerge (Fig. 2) when one compares the five studies 

which have provided foraging distance estimates for more than one species (Walther-Hellwig & Frankl 

2000, Chapman et al. 2003, Darvill et al. 2004, Knight et al. 2005, and Westphal et al. 2006). Bombus 

terrestris generally had a longer foraging range than any other bumblebee it was studied with. Walther-

Hellwig and Frankl, Chapman et al., Darvill et al., and Westphal et al. all found a positive correlation 

(though none calculated it statistically) between foraging distance and body size, in that the larger bees 

foraged greater distances. However, Knight et al. found that B. pratorum, the smallest observed bee, had 
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the second greatest foraging distance. They suggested instead that foraging distance could be related to 

colony size, though they didn’t quantify colony size, and it appears that B. pratorum makes small colonies 

anyway. Despite this incongruence, there seems to be a growing acceptance that foraging distance is 

related to colony size (see Goulson 2010). The bigger the colony, the reasoning goes, the larger a foraging 

area would need to be in order to supply enough food and avoid intraspecific competition (Knight et al. 

2005). While this makes sense, it is interesting that Goulson (2010) accepts it as the only predictor of 

foraging distance without mentioning that for all bees studied body size decreases with decreasing colony 

size. Thus, it is difficult to separate these two factors, and indeed both may contribute to a species’ 

average foraging distance. Unfortunately, neither factor has a clear linear relationship with foraging 

distance that we would be able to apply to our bumblebees (Fig. 2).  

 

Conservation recommendations 

There is good evidence that many bumblebees are able to fly further than a kilometer to forage. Taking 

this into account, how can we responsibly provide for their protection and continued presence as 

pollinators of our native rare plants without fencing off miles and miles around the entire habitat? 

Bumblebee nests are notoriously difficult to find in the field, even by experts (Dramstad 1996, Darvill et 

al. 2004, Goulson 2010), and the area in which they may occur is enormous (assuming a bumblebee flight 

distance of 1 km would give 776 acres of potential nest sites) and so it seems infeasible to survey for 

nests during preliminary site surveys. Without knowing where the nests occur, how can we protect the 

bees? 

While bumblebees travel long distances to good patches of forage, they generally are not foraging during 

their journey to or from their forage patch. In fact, in Europe they are often forced to cross large areas of 

crops with little or no reward to reach forage (Walther-Hellwig & Frankl 2000), and they have been 

shown to be able to cross barriers such as hedges, forests, and roads to reach their food source 

(Bhattacharya et al. 2003, Kreyer et al. 2003, Krewenka et al. 2011). They have even been observed 20 

km from land over an 80 km stretch of water (Mikkola 1984 in Osborne et al. 1999). When bees leave 

their nests they tend to know where they’re going, zooming away immediately in the direction of their 

forage patch (Osborne et al. 1999). These data suggest that the habitat between bumblebee nests and 

bumblebee forage does not necessarily need to be contiguous.  

If bumblebee habitat does not need to be contiguous (an idea with is supported explicitly by Goulson et 

al. [2011]), what does this mean for our conservation strategy? It means that a close neighborhood of high 

quality forage is extraordinarily important, while it also provides some leeway in how large that 

neighborhood needs to be. Bumblebees are attracted to large patches of good forage (Goulson 2010), and 

if we put a reasonably sized buffer around our focus plants, there is a good chance that enough flowers 

will be included to attract the bees. Within these patches it is important that the diversity of flora allows 

for flowering throughout the season, as bumblebee colonies are long-lived and individuals are more likely 

to return to a place if forage is available from spring until fall. There is also evidence that queens establish 

their colonies in areas with high availability of early-season forage (Suzuki et al. 2009), and that these 

sites are often reused over several generations (Michener 2007, pg 105). So there is a chance that colonies 

may become established within the buffer zones we create around occupied habitat if early-season forage 
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is abundant. Even if the bumblebees nest at some distance away, however, they can still act as pollinators 

due to their ability to fly long distances and cross barriers.  

Thus, bumblebee maximum foraging distances are not crucial when designating buffer distances. Instead, 

it is simply important that we maintain plant diversity within the protected areas to attract Bombus 

pollinators. While it is challenging to determine the perfect size for protecting a plant community, we can 

shed some light on ideal buffer distances by looking at the requirements of solitary bees.  

 

Non-Bombus social bees 

While bumblebees are very characteristic social bees, they are not alone. The Meliponini tribe (family 

Apidae), consists of many tropical social bees, while the tribe Halictini (family Halictidae) includes 

several social species. These species fall within genera that include both solitary and social species, 

specifically Lasioglossum and Halictus. The genus Xylocopa (Apidae) is semisocial, meaning that two 

generations often inhabit the same nest. Some species even exhibit different degrees of sociality 

depending on where they are within the species’ range (e.g. Halictus tripartitus [Packer et al. 2007]). This 

intermixing of social and solitary species, as well as our limited knowledge about the sociality of many 

bees, makes it difficult to characterize the foraging patterns of all social bees.  

However, several studies suggest that these social bees can be safely grouped with bumblebees when 

creating buffer distances. Beil et al. (2008) studied foraging distances of a social Lasioglossum, and found 

that it flew much further than predicted by body size. However, they also found that it crossed a barrier (a 

pine plantation) in order to get to its forage. Krewenka et al. (2011) found that Lasioglossum were also 

able to cross hedges. Xylocopa tends to have very large flight distances (Pasquet et al. 2008), and so it 

almost certainly crosses barriers when seeking out forage. The Meliponini tribe does not exist in Colorado 

and therefore does not need to be included in our analysis. Thus, while the above discussion about 

bumblebees does not specifically include other social bees, it does seem to apply, and we consider all 

social bees to be included when discussing the possibility of non-contiguous habitat conservation. 

 

Solitary Bees 

Introduction 

Solitary bees are a far more diverse group than bumblebees, accounting for more than 90% of the 

approximately 3,500 bee species native to the United States (Mader et al. 2011, Scott et al. 2011). These 

c. 3,150 species come from 6 different families and hundreds of unique genera. Within Colorado, 946 bee 

species in 66 genera have been described and only 23 of these species are bumblebees (Scott et al. 2011). 

Accordingly, a wide range of life history traits, foraging behaviors, and nesting habits are found within 

the solitary bees. Due to this wide range of characteristics, it is even more difficult to determine typical 

foraging distances of solitary bees than it is for bumblebees. Therefore, while a few specific distances will 

be discussed here, the majority of this section of the review will focus on factors that are important to 

consider while designating buffer distances.  
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It is important to note that some genera contain both solitary and social species (i.e. Halictus, 

Lasioglossum, and Xylocopa). These genera are often grouped together with the purely solitary species, a 

practice which will be followed here. The social species within these genera were addressed at the end of 

the bumblebee section. 

 

Methods to determine foraging distance 

Many of the methods discussed above to measure Bombus foraging distances are also used for solitary 

bees. Homing is a popular experimental technique, which has been used for several species and has 

returned distances up to 23 km (e.g. Janzen 1971, Vicens & Bosch 2000). Feeder-training experiments are 

also commonly applied to solitary bees, and have returned foraging distances between 140 m and 2100 m 

(e.g. van Nieuwstadt & Iraheta 1996, Kuhn-Neto et al. 2009, Zurbuchen et al. 2010a, 2010b, 2010c). 

Mark-recapture studies are the simplest observational method and have been conducted by marking bees 

both at the nest and while foraging. When marked while foraging these numbers are subject to the same 

issues discussed at the beginning of the bumblebee section, specifically that without knowledge of the 

nesting location it is impossible to know how far the bee traveled to get to the forage it is on. As 

interpatch flights are generally not indicative of distance traveled from the nest (Dramstad 1996), it is 

difficult to use these data to answer the questions that we are interested in. Nonetheless, these mark-

recapture studies have returned a wide range of foraging distances, from 130 m to 2470 m (e.g. Kapyla 

1978, Araujo et al. 2004, Franzen et al. 2009). 

Radio tracking has been successfully implemented for the large Xylocopa flavorufa. In this situation the 

researchers attached radio-trackers to the bees at their forage and tracked them back to their nests. They 

found that this large carpenter bee occasionally foraged at distances up to 6 km from its nest, though the 

median distance travelled was 720 m (Pasquet et al. 2008). 

Another observational technique is pollen analysis. In this case, researchers create a map of all available 

forage within an area, and capture bees as they are returning to their nests or collect provisioned brood 

cells. They then analyze the bees’ pollen loads and match the pollen to known locations of forage, 

determining the minimum distance the bee must have flown to reach that specific plant. Maximum 

foraging distances observed using this technique range from 180 m to 1250 m (e.g. Rust 1990, Hembach 

1993 in Zurbuchen et al. 2010c, Westrich 1996, Beil et al. 2008). 

Finally, foraging distances have occasionally been reported from studies which did not track specific bees 

at all, only noted that the bees seemed to live within their forage. Using this method, two bees were 

observed to forage within 50 m of their nests (Westrich 1996, Miliczky 2008). 

Altogether, a huge range of solitary bee foraging distances have been reported using a variety of 

techniques on a diverse selection of bee species. The question is how to relate these numbers to our 

pollinators and our ecosystems. 
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Problems with grouping taxa 

Just as it is irresponsible to group bumblebees and solitary bees together when determining forage 

distances, there are certain solitary bee groups that should not be included in our analysis. The primary 

group that we ought to exclude is the cleptoparasites. These bees do not provision their own brood cells, 

instead laying their eggs in others’ pre-prepared nests. Thus, they don’t actively forage for pollen and are 

unlikely to be providing important pollination services to any plants. While they are important to conserve 

for their own unique value, they don’t play a role in the pollination puzzle and shouldn’t be considered 

when creating buffers.  

The second group that it is important to separate out is the tropical bees. Tropical bees include the 

stingless bees (Meliponini), Euglossine bees, and many Xylocopa (carpenter bees). Many flight and 

foraging distance studies have been conducted on these species (i.e. Janzen 1971, Roubik & Aluja 1983, 

van Nieuwstadt & Iraheta 1996, Araujo et al. 2004), often returning extraordinarily high results. Indeed, 

these studies create outliers in many graphs, reporting flight distances of up to 23 km (Janzen 1971). 

These data can be explained, however, by the ecosystem in which tropical bees live and forage. The 

tropics are characterized by extremely low species density, and individual conspecific trees may be 

separated by 100 m or more (Janzen 1971), forcing a foraging female to travel very long distances in 

between hosts during each foraging trip. The ecosystems in which our focus plants grow are very 

different, as forage is generally much more readily available. Bees in the temperate zone are usually not 

required to fly such long distances, as is demonstrated by a simple comparison of observed flight 

distances. While foraging distances of tropical v. temperate bees have not been specifically compared in 

any literature I was able to find, Araujo et al. (2004) found that flight distances of stingless bees (found in 

the tropics) could be predicted by wing size. They also included IT spans for each species in their paper, 

allowing their data to be compared to those of Greenleaf et al. (2007) (see Fig. 3). The trends displayed 

by this figure are clear - bees of approximately the same size tend to fly farther in the tropics than in the 

temperate zone. Therefore, in order to maintain the integrity of our results, it is important to exclude 

tropical bees from our analysis and from our buffer distance calculations. 

 

Do maximum flight distances accurately predict foraging distances? 

Once we have excluded those species that are not even potential pollinators of our rare plants, we still 

must look at how relevant the available data are. Most studies attempt to determine the maximum flight 

distance (generally through experimental methods such as homing), and such numbers are what were used 

to create the equations by Greenleaf et al. (2007) and Gathmann and Tscharntke (2002). However, there 

is a good deal of evidence that the maximum flight (or forage) distances are achieved by only a few 

individuals (Zurbuchen et al. 2010c), and that there are significant fitness costs for those that do fly such 

long distances (Peterson & Roitberg 2006, Williams & Kremen 2007, Zurbuchen et al. 2010b). Many 

studies with long reported flight distances reflect this, reporting max flight distances that were only 

reached by a few individuals, and with median flight distances significantly shorter (i.e. Pasquett et al. 

2008 report a maximum foraging range for Xylocopa flavorufa of 6,040 m, while the median distance 

flown was only 720 m). While Beil et al. (2008) report much longer foraging distances for small solitary 

bees than predicted by Greenleaf et al. (2007), these distant resources were only reached on c. 10 of 558 

foraging trips. This trend is the thesis of Zurbuchen et al. (2010c), who summarized available maximum 
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flight distances of solitary bees and found that they were often higher than predicted by Greenleaf et al. 

(2007). However, they continue, because such a small number of individuals actually fly the maximum 

distance, the distance at which 50% of the population forages is a much more useful tool for conservation. 

As very few studies have quantified this, they conclude by stating that a “close neighbourhood of suitable 

nesting sites and flower rich foraging habitats may be crucial for maintaining populations of bees.” 

(Zurbuchen et al. 2010c). 

Other studies demonstrate wide gaps between maximum homing distance and typical foraging distance. 

For example, Osmia cornuta has been shown to return to its nest from 1.8 km away, but it forages within 

100-200 m of the nest when forage is readily available (Vicens & Bosch 2000). van Nieuwstadt & Iraheta 

(1996) state that “more than 75% of the foraging activity normally occurs within 40% of the maximum 

foraging distance.” Zurbuchen et al. (2010c) performed feeder-training experiments on two species of 

solitary bees, and found that while the maximum foraging distances were 1100 m and 1400 m, 50% of the 

individuals stopped foraging before 225 m and 300 m, respectively. So despite the fact that many species 

are capable of traveling long distances, few individuals do. Why is this? 

Hypotheses have been presented suggesting that long flight distances have detrimental consequences for 

an individual’s health and life span (Williams & Kremen 2007, Zurbuchen et al. 2010b), perhaps through 

wear on the wings (Torchio & Tepedino 1980). While these ideas are difficult to test, several more recent 

studies have shown that reproduction is negatively impacted (Peterson & Roitberg 2006, Williams & 

Kremen 2007, Zurbuchen et al. 2010b). This is due to the fact that females are able to provision fewer 

brood cells if they are forced to expend more time and energy flying long distances to their forage. In 

some cases, if a nest is too distant from the bee’s forage the female will be unable to create enough brood 

cells to replace herself, making the population unsustainable (Zurbuchen et al. 2010b). The brood cells 

that she does provision may also contain less pollen, leading to higher offspring mortality (Zurbuchen et 

al. 2010b). Finally, beyond a lower reproductive count, long distance flights can also skew the sex ratio of 

a population (Peterson & Roitberg 2006), as males are smaller and require less pollen to grow to maturity.  

If few individuals fly long distances to forage, and those that do are penalized, the natural conclusion is 

that generally solitary bees must nest near their food source. This knowledge makes it clear that creating 

buffer distances based on maximum flight capabilities is not necessary. The majority of bee nests are 

likely to be within comfortable flying distance of the bees’ forage, making the distance at which 50% of 

bees stop foraging a much more useful number. Even if we accidentally separate a bee nest from our 

plants, solitary bees have been shown to cross barriers to get to their forage just as bumblebees have 

(Zurbuchen et al. 2010a). All evidence is pointing towards maintaining small, resource rich habitat 

parcels around our rare plants in order to account for solitary bees. But we have to be careful: how small 

is too small? 

 

A second look at Greenleaf et al. (2007) 

To determine appropriate buffer distances that will maintain solitary bee pollination services, we return to 

Greenleaf et al. (2007). This time, however, rather than taking their data at face value we manipulate it to 

reflect everything that has been discussed thus far in this review. First, a look at the data used to create 

their equation that predicts homing distance. When all of their data points are included, the resulting 

graph doesn’t reveal very much about an ideal buffer distance (Fig. 4). However, when we limit the graph 
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to only solitary bee genera traditionally found in Colorado by removing the bumblebee, tropical bee, oil-

collecting bee (Dasypoda altercator), and carpenter bee (Xylocopa virginica), the graph is very different 

(Fig. 5). (As a side note, Xylocopa virginica has recently been documented in Colorado [Scott et al. 

2011]. However, this represents an expansion of its range, and no Xylocopa are recorded pollinators of 

our focus plants. They are very large bees, with lengthy recorded flight distances. If they do become 

pollinators of our focus plants at some point in the future, it is likely that they will be able to cross 

barriers/development in order to reach the plants.) 

Essentially, what we have done in figure 5 is to remove the outliers. The data that are left tell a 

compelling story. Most notable is the fact that only two bee species exhibited “typical” homing distances 

(the distance from which 50% of individuals return) that were greater than 500 m. This provides a sound 

platform from which to explore appropriate buffer distances. If other studies also suggest that many native 

solitary bees forage at or under 500 m, this could be a perfect buffer zone for their preservation. To 

explore this possibility, we utilized the extensive pollinator flight distance summary provided by 

Greenleaf et al. (2007) in their supplementary materials (their Table S3).  

Figure 6 shows a subset of the observed flight distance data that were summarized by Greenleaf et al. in 

the third table of their supplement. In this graph, as in figure 5, all bumblebees and tropical bees have 

been removed. The single honeybee point was also excluded. Following the above discussion about the 

importance of using observational methods, we also removed all data points from studies that used 

manipulative techniques, meaning that there are no data points from homing or feeder-training 

experiments. Finally, we chose not to include any of the distances gathered from “nest-forager 

association” studies. This technique attempts to locate all nests and foraging bees of a specific species, 

then measures the distance between the located bee and the nearest known nest. However, the distances 

that were reported using this technique were often very large (up to 11.3 km for a medium sized Nomia), 

and Greenleaf et al. (2007) report that “it was not clear that all nests in the area had been located.” 

Because it is notoriously difficult to locate bee nests in the field (Goulson 2010), we assume that the 

reported flight distances were likely to be large overestimates, and have chosen to exclude them. In the 

figure that is left, 2/3 of the bees foraged within 500 m of their nest (Fig. 6). While this is admittedly not 

all of the bees, we feel that it is a common enough trend to base our conservation recommendation on. If 

we protect 500 m of habitat on all sides of our rare plant species, we should be able to preserve the nests 

of at least 2/3 of the potential solitary bee pollinators while also preserving enough forage to attract the 

pollinators whose nests are outside of this buffer zone. 

 

Recommendations 

Finding a balance 

When an organization such as the BLM is in charge of managing such a large amount of land, 

maintaining balance is a concept that comes up over and over again. Due to our multiple-use mandate, it 

is imperative that we account for many different interests. We want to protect rare plants, and use the best 

possible science to do so. However, we also must permit some development. Clearly, the best thing for 

natural systems is often for humans to leave them well enough alone. But, in the case where this is 

unreasonable, we want to protect the plants from harm as best we can. 
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We must be judicious when deciding how much protection the plants need, however. An initial draft of a 

recent study by BIO-Logic, Inc suggests that there are few to no discernible negative effects on Physaria 

congesta or P. obcordata reproduction indirectly caused by oil and gas development in the Piceance 

Basin (Graff 2012), and several ongoing monitoring studies by the BLM show that some other 

populations of rare plants are doing quite well. Total plant density of Astragalus osterhoutii in one 

location, for example, has shown a steady increase over the past 7 years. During this time it is also 

important to note that neither the number of flowering stems nor the number of fruiting stems have 

decreased, suggesting that pollination is not suffering (BLM data, unpublished). Both total number of 

stems and the number of reproductive stems of Penstemon debilis have remained steady over the past 8 

years at Anvil Points, and in some years the ground has been littered with seeds (BLM data, unpublished). 

While only two years of monitoring have been completed to date for Penstemon penlandii, we have 

recorded an increase in the number of rosettes in each plot (BLM data, unpublished). None of these plants 

appear to be showing any signs of pollen limitation with the protections that they currently enjoy, which 

belies the need to create large buffers around them now. 

As we have seen no catastrophic declines in our focus plant species, we must be moderate while creating 

buffers. We are currently carefully monitoring many of the focus species of this review, and have plans to 

expand our monitoring program. Thus, these ongoing monitoring efforts will alert us if there are any 

population declines. If we observe any such declines, we will certainly reevaluate and attempt to 

determine whether buffer distances need to be extended. However, we believe that implementing the 

proposed buffer distance of 500 m will avoid any such declines, and will instead maintain healthy 

populations of our rare plants.  

 

A new approach 

Our knowledge of the important pollinators for each focus plant species is patchy at best. When combined 

with our lack of knowledge regarding bee species-specific foraging distances, it seems presumptuous to 

create plant species-specific buffer distances. This is compounded when changing species composition 

between years and network resiliency is taken into account. Thus, as we have shown in this review, the 

currently proposed buffer distances from the FWS are insufficient. Instead, we have developed a 

recommendation that takes the very different foraging strategies of social and solitary bees into account. 

Our proposed buffer distance can be applied to all of our focus plant species which depend on native bees 

for pollination, thereby protecting the entire pollinator community while also simplifying the protection 

process.  

 

A 500 meter buffer distance 

In order to reach the buffer distance of 500 m, we reviewed the important literature regarding social and 

solitary bee flight distances. We found that some bees (especially bumblebees and other social species) 

are able to fly extremely long distances. However, there is compelling evidence that their habitat need not 

remain contiguous. Instead, it is most important that the protected habitat is large enough to maintain 

enough floral diversity to attract these far-flying pollinators. If the early-season forage is rich enough, it 
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may entice bumblebees to nest within the protected area, and even if the queens don’t choose these 

protected areas as nest sites, they are still large enough to attract foraging bees. 

While researchers have also reported long solitary bee foraging distances, the majority of individuals 

remain near the nest. This is probably due to high costs associated with long foraging trips; including 

fewer provisioned brood cells, increased offspring mortality, and skewed offspring sex ratios. When 

Greenleaf et al. (2007)’s data are corrected to remove social bees, bees not found in North America, and 

data points from manipulative experiments, they show that the typical foraging distance for many solitary 

bee species seems to be less than 500 m.  

Five hundred meters on all sides of occupied habitat almost certainly will create an area that is large 

enough to maintain floral diversity. Thus, beyond allowing solitary bees to nest within protected habitat, 

it should also provide a tempting patch of flowers for any social bees that nest nearby. Overall, 500 m 

seems to be both a reasonable and a responsible buffer distance that will protect the entire pollinator 

community around Colorado rare plants.   
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Tables and Figures 

 

Species FWS Proposed 

Set-back (m) 

Observed 

Insect Visitors 

Status Endangered 

Species Act 

BLM 

Sensitive? 

Astragalus microcymbus 500 2 G1/S1 Candidate Yes 

Astragalus osterhoutii 1000 5 G1/S1 Endangered No 

Eriogonum pelinophilum 250 37 G2/S2 Endangered No 

Eutrema penlandii 500 0 G1G2/S1S2 Threatened No 

Penstemon debilis 1000 54 G1/S1 Threatened No 

Penstemon grahamii 500 9 G2/S1 Proposed No 

Penstemon harringtonii n.a. 0 G3/S3 None Yes 

Penstemon penlandii 1000 28 G1/S1 Endangered No 

Penstemon scariosus var. 

albifluvis 500 13 G4T1/S1 Candidate Yes 

Phacelia formosula 500 15 G1/S1 Endangered No 

Phacelia submutica 100 0 G4T2/S2 Threatened No 

Physaria congesta 600 4 G1/S1 Threatened No 

Physaria obcordata 600 22 G1G2/S1S2 Threatened No 

Sclerocactus glaucus 700 7 G3/S3 Threatened No 

Spiranthes diluvialis 800 24 G2G3/S2 Threatened No 

 

Table 1. The focus plant species of this review. “FWS Proposed Set-back” distances have been drawn 

from the FWS draft guidance for Section 7 consultations and are equivalent to the buffer distances 

discussed in this document. Penstemon harringtonii is not recognized under the Endangered Species Act 

and therefore not included in the Section 7 consultations document. Observed insect visitors are a count 

of all insect species that have been reported visiting each species. (Compiled from: Karron 1987, 

McMullen 1998, Naumann et al. 1988, Heil & Porter 1990, Warren 1990, Sipes & Tepedino 1995, 

Rechel et al. 1999, Tepedino et al. 1999, Pierson et al. 2000, Lewinsohn & Tepedino 2004, Lewinsohn et 

al. 2005, Tepedino 2008, Tepedino 2009, Service 2011b, Tepedino et al. 2011) 
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Figure 1. Recorded observed visitors to each of the 15 focus plant species. Bars represent the number of 

species observed, not the number of individuals. No insects have been recorded visiting Eutrema 

penlandii, Penstemon harringtonii, or Phacelia submutica, but this reflects a lack of information, not 

necessarily a lack of pollinators. The studies included followed different methodologies and expended 

different amounts of effort. Therefore this graph demonstrates both the wide variation in what is known 

and the possible differences between visitor compositions (but see “Why the status quo is insufficient”). 

(Compiled from: Karron 1987, McMullen 1998, Naumann et al. 1988, Heil & Porter 1990, Warren 1990, 

Sipes & Tepedino 1995, Rechel et al. 1999, Tepedino et al. 1999, Pierson et al. 2000, Lewinsohn & 

Tepedino 2004, Lewinsohn et al. 2005, Tepedino 2008, Tepedino 2009, Tepedino et al. 2011) 
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Figure 2. Estimated or observed foraging distances from all studies that compared multiple Bombus 

species. Species are arranged by both decreasing body size (from Knight et al. 2005) and decreasing 

colony size (from Goulson 2010). Average colony size is in parentheses after each species. The foraging 

distances from Westphal et al. (2006) follow the interpretation found in Goulson (2010), while the 

foraging distances depicted from Chapman et al. (2003) are the lower limits of their maximum foraging 

range estimates. This graph is best used to compare interspecific trends rather than to determine actual 

foraging distances, as not all data from the studies are included. (Compiled from: Walther-Hellwig & 

Frankl 2000, Chapman et al. 2003, Darvill et al. 2004, Knight et al. 2005, Westphal et al. 2006) 
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Figure 3. Demonstrates the different flight distances observed for solitary bees found in the tropics v. 

those found in temperate zones. With a few anomalies, bees of equivalent size fly farther in the tropics. 

Data are from Araujo et al. (2004) and from observed flight distances in Table S3 from Greenleaf et al. 

(2007), which summarizes many other studies. Bumblebees, a single honeybee, and distances found by 

nest-forage association techniques were not included in this graph. Reasons for these omissions can be 

found in “A second look at Greenleaf et al. (2007).” 
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Figure 4. “Typical” homing distance (distance from which 50% of bees return) for all species used by 

Greenleaf et al. (2007) to create their homing distance equation. (Data from Greenleaf et al. 2007 

supplementary materials Table S3). 

 

 

 

Figure 5. Typical homing distances of the genera found in Colorado that are used by Greenleaf et al. 

(2007). The oval encompasses all points which are 0.5 km or less. Points from a bumblebee, tropical bee, 

oil-collecting bee, and carpenter bee were removed. (Data from Greenleaf et al. 2007 Table S1) 
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Figure 6. A subset of observed solitary bee flight distances summarized in Table S3 (from Greenleaf et al. 

2007). The oval encompasses all foraging distances equal to or less than 0.5 km. Data not included in this 

graph were from bumblebees, tropical bees, or were found via manipulative or nest-forage association 

techniques. The reasons for excluding these data are discussed in the text. 
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