
Chapter 12

Biogeography and Ecology of Tulasnellaceae

Franz Oberwinkler, Darı́o Cruz, and Juan Pablo Suárez

12.1 Introduction

Schr€oter (1888) introduced the name Tulasnella in honour of the French physicians,
botanists and mycologists Charles and Louis René Tulasne for

heterobasidiomycetous fungi with unique meiosporangial morphology. The place-

ment in the Heterobasidiomycetes was accepted by Rogers (1933), and later also by

Donk (1972). In Talbot’s conspectus of basidiomycetes genera (Talbot 1973), the

genus represented an order, the Tulasnellales, in the Holobasidiomycetidae, a view

not accepted by Bandoni and Oberwinkler (1982). In molecular phylogenetic

studies, Tulasnellaceae were included in Cantharellales (Hibbett and Thorn

2001), a position that was confirmed by following studies, e.g. Hibbett et al.

(2007, 2014).

12.2 Systematics and Taxonomy

Most tulasnelloid fungi produce basidiomata on wood, predominantly on the

underside of fallen logs and twigs. Reports on these collections are mostly

published in local floras, mycofloristic listings, or partial monographic treatments.
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Unfortunately, the ecological relevance of Tulasnella fruiting on variously decayed
wood or on bark of trees is not understood. It would appear plausible to assume that

Tulasnella species are involved in wood decay, and that they may function in

anamorphic stages as mycobionts in close by habitats. Therefore it seemed imper-

ative to include in this overview of tulasnelloid mycobionts also reports on

basidiomata.

Though some well developed Tulasnella species can be recognized in the field

by the experienced mycologist with some certainty, correct identification of the

genus was only possible microscopically in pre-molecular times. Most tulasnelloid

fungi were sampled by collectors interested in corticiaceous fungi, Reports on these

collections are mostly published in local floras, mycofloristic listings, or partial

monographic treatments. Some of these publications are used to document biogeo-

graphical patterns on continental scales (Table 12.1). Because of considerable

taxonomic difficulties and inaccuracies in traditional microscopic identification of

Tulasnella morphospecies, they cannot be used for an attempt to disentangle their

distribution areas. However, molecular data may help to overcome this bottleneck.

In several Tulasnella species the hymenial surface has a rosy to faintly viola-

ceous tint (Fig. 12.1). Basidiomata consist of a few basal hyphae with or without

clamps. Normally a simple but rarely considerably thickened hymenium is devel-

oped. Subhymenial structures may be lacking, and consequently single generative

hyphae produce meiosporangia. Such growth forms or developmental stages cannot

be detected in the field. These are only detected microscopically by chance,

growing on the surface of other fungi, especially their hymenia. The growth can

be intrahymenial, e.g. in T. inclusa (Gloeotulasnella i., Christiansen 1959), or,

rather exotically, parasitising on amoebae (T. zooctonica, Drechsler 1969).
The anamorphic stage of Tulasnella has been named Epulorhiza (Moore 1987), and

it has been often used in mycorrhiza studies. Since the concept “One fungus ¼ one

name” was implemented at the International Botanical Congress XVIII, Melbourne,

July 2011 (McNeill and Turland 2011; McNeil et al. 2012), the name Epulorhiza
became synonymous. Nevertheless, articles dealing withEpulorhiza are included in our
review, even when it appears uncertain in several cases, whether or not Tulasnella is

involved. For the reason of taxonomic clarity in the following text, a short comment on

the Ceratobasidium-Rhizoctonia complex is included here. In various treatments, the

formal taxonomy of the so-called “form genus Rhizoctonia” has been dealt with

(e.g. González Garcia et al. 2006; Yang and Li 2012). As pointed out by Oberwinkler

et al. (2013), the name Ceratobasidium can only be applied for Ceratobasidium
calosporum and the genera Koleroga, Oncobasidium, Uthatobasidium, and

Ypsilonidium have to be put under synonymy of Rhizoctonia. The latter one has priority
over Thanatephorus. Unfortunately, these taxonomic re-arrangements were widely

ignored in a recent paper by Gónzalez et al. (2016).

Micromorphological characteristics of Tulasnella species include unique basidia
with strongly swollen sterigmata (Fig. 12.1), also called epibasidia, which is a

misleading term. After meiosis in the basidium, haploid nuclei and the basidial

cytoplasm migrate through the sterigmata into the terminally developing basidio-

spores. In the basal position, the sterigmata become secondarily septate. Apically
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Table 12.1 Compilation of perfect stages of Tulasnellaceae species, arranged according to Fig. 12.2

Regions Europe Asia Af America Pac Aus

Subdivisions N W C E S te tr N C S

Species Spores ●

T. eichleriana Globose–elliptical ● ● ● ● ● ● ● ●

T. violea ● ● ● ● ●

T. zooctonia ● ●

T. cystidiophora ● ● ●

T. pacifica ●

T. bourdotii ● ●

T. subglobispora ● ●

T. hyalina ● ●

Pseudotulasnella

guatemalensis

●

T. guttulata

T. traumatica ● ●

T. conidiata ● ●

T. valentini Oblong–elliptical ●

Stilbotulasnella conidiophora ●

T. albida ● ● ● ● ●

T. pinicola ● ● ●

T. thelephorea ● ● ● ● ●

T. asymmetrica ●

T. pruinosa ● ● ● ●

T. dissitispora Phaseoli-form-subcylin-

drical

●

T. tomaculum ● ● ● ● ● ● ●

T. andina ●

T. irregularis ●

T. fuscoviolacea ● ● ●

T. rubropallens ● ● ● ●

T. griseorubella ● ●

T. bifrons ● ●

T. robusta ●

T. cruciata ● ●

T. kirschneri ●

T. pallidocremea ●

T. balearica Sigmoid ●

T. deliquescens ● ●

T. quasiflorens ●

T. curvispora Allantoid ●

T. permacra ●

T. allantospora ● ● ● ● ● ●

T. danica ● ● ●

T. saveloides ● ● ●

T. aggregata ●

T. anguifera Spiral ●

T. interrogans ● ●

T. falcifera ●

T. helicospora ● ● ●

T. calospora Fusiform-subfusi-form ● ● ● ● ● ● ● ●

T. eremophila ●

T. kongoensis ●

T. brinkmannii ●

T. pallida ● ● ● ● ●

T. echinospora ● ● ●

● records arranged geographically. C central, E east, N north, S south, te temperate, tr tropical, W west. Literature: Europe: Bresadola

(1903), Bourdot and Galzin (1927), Pearson (1928), Strid (1975), Torkelsen (1977), Hjortstam (1978), Wojewoda (1978, 1983, 1986),

Hauerslev (1989), Roberts (1992, 1993a, b, 1994a, b, 1996, 1999, 2003), Due~nas (1996, 2001, 2005), Van de Put and Antonissen (1996),

Roberts and Piątek (2004), Ordynets (2012), Kunttu et al. (2015), Polemis et al. (2016). Asia: Do�gan and Kurt (2016). Africa: Crous et al.

(2015). North America: Rogers (1933), Olive (1946). Central America: Roberts (2006). South America: Martin (1939), Lopez (1987),

Greslebin and Rajchenberg (2001), Cruz et al. (2011, 2014, 2016), Nouhra et al. (2013). Pacific area: Olive (1957), Bandoni and

Oberwinkler (1982). Australia: Warcup and Talbot (1967, 1971, 1980). Orig
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partly septate basidia have been reported for Pseudotulasnella guatemalensis
(Lowy 1964). Basidiospores germinate by hyphae or secondary ballistospores.

Dolipores with continuous parenthesomes are a constant ultrastructural feature in

Tulasnella (Fig. 12.1). However, parenthesomes could not be found in dolipores of

Stilbotulasnella conidiophora (Bandoni and Oberwinkler 1982). Other apparently

unique ultrastructural features include cell wall expansions filled with amorphous

matrix (Fig. 12.1). It is unknown whether this character is representative in all or

most of Tulasnella species. Morphological and ultrastructural characters were

indicative of a separate systematic position in former heterobasidiomycetous

fungi, but precise phylogenetic position of Tulasnella within Basidiomycota

remained unsettled.

There is a set of micromorphological characters in Tulasnella species, which

appear to be applicable for circumscribing taxa. However, even in the case of very

accurate microscopic work, there remains much uncertainty about the variability of

structural features. This explains at least partly why reliable species identification is

difficult and quite often questionable. This situation became strikingly evident,

when molecular analyses showed that morphospecies were often not verifiable or

included cryptic taxa (Taylor and McCormick 2008; Cruz et al. 2014). Whether the

finding of Linde et al. (2013) in Australian orchid mycorrhizae, that an eight-locus

analysis is broadly congruent with the solely ITS based result, can be generalized,

remains questionable. For taxonomic details and nomenclature of Tulasnella

Fig. 12.1 Tulasnella violea (a, d) and Tulasnella spp. (b, c): (a) hymenial surface, bar 5 mm; (b)

dolipore with continuous parenthesomes, bar 0.1 μm; (c) spirally growing hypha with cell wall

extensions (arrows), bar 2 μm; (d) section through basidiome with basidia and basidiospores, one

forming a secondary spore, bar 5 μm. From Oberwinkler (2012)
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species we refer to Cruz et al. (2014, 2016). Table 12.1 provides an overview about

the basic morphological features and distribution of Tulasnellaceae morphospecies.

12.3 Phylogenetic Position of Tulasnella

A sequence database for the identification of ectomycorrhizal basidiomycetes

included also Tulasnella (Bruns et al. 1998). Tulasnelloid orchid associates clus-

tered with good support within the cantharelloid clade. In an attempt to identify

single pelotons of Dactylorhiza majalis using single-strand conformation polymor-

phism and mitochondrial ribosomal large subunit DNA sequences, Kristiansen

et al. (2001) found two taxa, Tulasnella, and a second one, distantly related to

Laccaria. As sister of the Tulasnella cluster, Sebacina sp. was found, and both

together appeared in a neighbour position to cantharelloid fungi. An expanded

taxon set of basidiomycetes was used by Bidartondo et al. (2003) to resolve the

phylogenetic placement of Aneura (Cryptothallus) associated fungi (see Sect.

12.5.1). They were phylogenetically well supported with T. asymmetrica as a sister
taxon and T. obscura and T. calospora in the same clade. Similar results were

obtained by Kottke et al. (2003), focusing on the mycobiont of Aneura pinguis, and
Weiß et al. (2004) in an approach covering most of heterobasidiomycetous genera

sequenced at that time. Resupinate homobasidiomycetes were analyzed molecu-

larly by Binder et al. (2005), again fitting Tulasnella species to the cantharelloid

clade but without substantial support. The results of Moncalvo et al. (2006) in

analyzing the cantharelloid clade were also ambiguous concerning Tulasnella in

nuc-rDNA and RPB2 together with mtSSU genes. Shimura et al. (2009) sequenced

the Japanese Cypripedium macranthos mycobiont and found a weakly supported

sister relationship to Cantharellus spp. and related taxa, including Sistotrema sp., in
a very limited sampling. In a comprehensive analysis of publicly available

sequences of Ceratobasidiaceae s.l. and related taxa, Veldre et al. (2013) included

also some anamorphic tulasnelloid strains and T. cystidiophora. Both groups

clustered in a sister relationship and were positioned in the Cantharellales. Also

in the review on Agaricomycetes of Hibbett et al. (2014), the Tulasnellaceae are

included in the Cantharellales.

12.4 The Presumable Age of Tulasnella and Evolution

of Plant Associations

Taylor and Berbee (2006) dated Basidiomycota between 1489 and 452 Mya, the

huge timespan resulting from the uncertainty in determining the age of the asco-

mycetous fossil Paleopyrenomycites. A maximum age of the evolutionary root in

Marchantiophyta is calculated for 450 Mya by Clarke et al. (2011), 520–470 Mya
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by Cooper et al. (2012), and 475 Mya by Sun et al. (2014). In a detailed time scale,

Cooper et al. (2012) mark a divergence time of 100–50 Mya for Aneura pinguis and
A. mirabilis. It may be concluded that Tulasnellamycobionts share the same age of

their liverwort photobionts. The second calibration approach of Taylor and Berbee

(2006) was used by Garnica et al. (2016) to determine divergence times in

Sebacinales and other taxa of Basidiomycota. For Cantharellales they found

317–128 Mya with an average of 203 Mya. With some caution, a similar age

interval may be adopted for Tulasnellaceae. Orchids originated approximately

100–80 Mya before present (Givnish et al. 2015), thus indicating a similar age of

their mycobionts, including Tulasnella.
Yukawa et al. (2009) summarized the occurrence of ORM mycobionts in major

clades of the Orchidaceae. Tulasnellaceae were reported from Apostasioideae,

Vanillinae, Cypripedioideae, Disinae, Orchidinae, Goodyerinae, Prasophyllinae,

Diuridinae, Caladeniinae, Neottieae, Dendrobiinae, Malaxideae, Calypsoeae,

Pleurothallidinae, and Cymbidiinae.

12.5 Biotrophic Associations of Tulasnella

12.5.1 Tulasnella Associated with Liverworts

Liverwort mycobionts were examined in the course of an extensive study of

biodiversity in a tropical cloud forest in South Ecuador (Kottke et al. 2003). Aneura
pinguis was associated with Tulasnella species related to T. asymmetrica
(Fig. 12.2), while Jungermanniales (Lophozia spp. and Calypogeia muelleriana)
involved sebacinoid mycobionts. The same sequence group of T. asymmetrica
(AY152406) was recovered in a study on the enigmatic hepatic Aneura mirabilis
(as Cryptothallus mirabilis, Wickett and Goffinet 2008) mycobionts in Europe by

Bidartondo et al. (2003). Aneura mirabilis is a mycoheterotrophic liverwort and

specialized as an epiparasite on Tulasnella species that form ectomycorrhizae with

surrounding trees like Alnus glutinosa, Betula pubescens, Pinus pinaster,
P. muricata or Salix aurita and S. cinerea (Bidartondo et al. 2003). In a geograph-

ically strongly expanded study on liverwort-fungal symbioses, Bidartondo and

Duckett (2010) reported Aneuraceae-associated Tulasnella from Europe, North

and South America, East Asia and New Zealand.

Thallose European and Andean species of Aneuraceae (Metzgeriales) host

Tulasnella mycobionts of high diversity especially in the European samples

(Nebel et al. 2004; Pressel et al. 2010; Preußing et al. 2010). These interactions

were considered by Krause et al. (2011) as a model of early evolved symbiotic

associations. It is most likely that specific Tulasnella species occur together with

the hosts throughout their distribution range.
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Fig. 12.2 Dendrogram of Tulasnellaceae species inferred by Jaccard analysis of all available

structures from 48 taxa, including the new species Tulasnella andina and T. kirschneri. Names of

species presented in detail by Cruz et al. (2016) are written in bold. Seven groups are defined,

based on basidiospore morphology. Other characters are indicated by symbols: clamp connections

(unfilled circles), cystidia ( filled circles), chlamydospores ( filled stars). From Cruz et al. (2016)
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12.5.2 Ectomycorrhiza (EcM)

The ectomycorrhizal lifestyle in fungi, including Tulasnella, and dealing with

diversity, distribution and evolution, was reviewed by Tedersoo et al. (2010). In a

study on ectomycorrhizal liaisons between forest orchids and trees in the Bavarian

northern Frankenalb, Bidartondo et al. (2004) mention Tulasnella and tulasnelloid

fungi as “lineages that contain some ectomycorrhizal strains”, however, without

further explanation.

In a wet Tasmanian sclerophyll forest, Tedersoo et al. (2008a) report several

unidentified Tulansella species associated with Eucalyptus regnans (Myrtaceae),

Nothofagus cunninghamii (Nothofagaceae), and Pomaderris apetala
(Rhamnaceae). The authors mention that Tulasnella is commonly observed in

Tasmania but seldom recorded in the Northern Hemisphere as EcM mycobionts.

This comment appears hardly probable for the real ECM occurrence of Tulasnella,
but matches literature information at present. Nevertheless, when studying the

community composition of Picea abies and Betula pendula seedlings in three

Estonian old-growth forests, Tedersoo et al. (2008b) found that “ordination ana-

lyses suggested that decay type determined the composition of EcM fungal com-

munity in dead wood”. In fact, in this study, Tulasnella EcMs were verified for the

first time in the Northern Hemisphere besides the experimental synthesis study of

Bidartondo et al. (2003).

12.5.3 Tulasnella Orchid Mycorrhiza (OM)

In seed germination experiments of orchids, Bernard (1899, 1909) and Burgeff (1909,

1932, 1936) detected the importance of fungal mycobionts during the early develop-

mental stages. At that time, identification of the mycobionts was impossible. In

addition, Burgeff (1932) treated the biology of symbiosis in tropical orchids exten-

sively. After a review of OMs by Rasmussen (2002), Dearnaley (2007) updated new

publications in this field. The trophic relationships in orchid mycorrhizae, including

Tulasnellaceae, and their implications for conservation were summarized by Rasmus-

sen and Rasmussen (2007). In a review on mutualistic, root-inhabiting fungi of orchids,

Kottke and Suárez (2009) compiled also reports of tulasnelloid mycobionts, some of

them associated with epiphytic tropical orchids. The complex of requirements of

germination and seedling establishment in orchids, including tulasnelloid mycobionts,

were comprehensively treated by Rasmussen et al. (2015). Suárez and Kottke (2016)

summarized their overview on ORMs in tropical mountain forests in Ecuador that main

fungal partners, including Tulasnella, correspond to findings in other biomes. Partial

genome sequences of two Tulasnella mycobionts, originating from Australian

Chiloglottis and Drakaea orchid species, may allow to obtain insight in evolutionary

trends of tulasnelloid OM (Ruibal et al. 2013).
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12.6 Biogeography of Tulasnella

12.6.1 Europe

Europe has the most abundant records of Tulasnella as fruit-bodies and in molec-

ular identification events from plant roots (Fig. 12.3). Hadley (1970) reported no

specificity of Tulasnella calospora in symbioses tests with European orchids,

Coeloglossum viride, Dactylorhiza purpurella, Goodyera repens and the tropical

Cymbidium canaliculatum, Epidendrum radicans, Laeliocattleya cv., Spathoglottis
plicata, and considered it as a potential universal orchid symbiont. Dijk et al. (1997)

stated that “Epulorhiza repens has been isolated from a vast amount of terrestrial

orchids, and is considered a ubiquitous orchid endophyte”. Tulasnella was the

predominant mycobiont in 59 root samples of seven European and North American

Cypripedium species (Shefferson et al. 2005). In addition, mycorrhizal specificity

of 90 populations of 15 Cypripedium taxa across Europe, Asia, and North America

was quantified by Shefferson et al. (2007). The orchids were associated almost

exclusively with Tulasnellaceae mycobionts.

The mycobiont septal structure of native terrestrial French Dactylorhiza majalis
(Strullu and Gourret 1974) and Italian D. maculata, D. sambucina, and Platanthera
bifolia (Filipello Marchisio et al. 1985) was studied with the transmission electron

microscope. They authors found dolipores with continuous parenthesomes, suggesting

Sebacina and/or Tulasnella mycobionts, which were finally identified by Andersen

(1990) as T. deliquescens and T. calospora, respectively. A remarkable experimental

approach was carried out by Smreciu and Currah (1989), who studied symbiotic and

asymbiotic germination of seeds of north temperate terrestrial orchids in Europe and

Fig. 12.3 Sampling localities for Tulasnella spp., extracted from literature. Tulasnelloid associ-

ates with liverworts are marked with green dots. Orchid mycorrhizae (red dots) summarize isolates

of Tulasnella from orchid roots and molecularly identified samples. Tulasnelloid ectomycorrhizae

are marked with yellow dots. Lignicolous (blue dots) means that basidiomata were collected on

wood
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North America. The European species includedDactylorhiza maculata,D. sambucina,
Epipactis palustris, E. purpurata, Gymnadenia conopsea, G. odoratissima, Neottia
nidus-avis, Nigritella nigra, and Orchis morio. It appears that mycobionts of these

mostly widespread orchids were predominantly tulasnelloid fungi, except in N. nidus-
avis and E. purpurata. Rasmussen and Rasmussen (1991) tried to identify experimen-

tally the environmental conditions for germination and seedling development in

D. majalis together with T. calospora. A stimulating effect of Tulasnella (Epulorhiza
repens) and Rhizoctonia (Ceratorhiza sp.) on the growth of Dutch Dactylorhiza spp.

and Orchis morio was reported by Dijk and Eck (1995). Single-strand conformation

polymorphism and mitochondrial ribosomal large subunit DNA sequences were used

by Kristiansen et al. (2001) to identify T. deliquescens and Laccaria sp. as D. majalis
mycobionts from single pelotons. Various fungal strains, isolated from non orchid

sources were used to test symbiotic germination of British D. fuchsii (Salman et al.

2001). Besides Ceratobasidium cornigerum, also T. helicospora stimulated germina-

tion of the orchid seeds and promoted seedling growth. From a wetland of Bavaria,

Bidartondo et al. (2004) reported Tulasnella as a mycobiont ofD. majalis. Unidentified
Tulasnella OM symbionts were found in D. baltica, E. atrorubens, and O. militaris in
Estonian mine tailing hills and pristine sites (Shefferson et al. 2008). Most likely the

seed germination experiments of the boreal-alpine D. lapponica, collected from the

Solendet Nature Reserve in Central Norway, were enhanced by tulasnelloid

mycobionts (Øien et al. 2008). In analyzing the mycobionts of five Dactylorhiza
species in Belgium, Jacquemyn et al. (2012) concluded that orchid rarity is related to

mycorrhizal specificity and fungal distribution. In an extensive study of 114 sampled

individuals from one to three populations of 14 species of Dactyorhiza in Belgium,

France, Italy, Portugal, Sweden and the United Kingdom, Jacquemyn et al. (2016b)

suggested that habitat-driven variation occurs in mycorrhizal communities in which

Tulasnella plays an essential role.

Tulasnelloid mycobionts of Epipactis palustris were reported from Northeast

Bavarian wetlands (Bidartondo et al. 2004). Multiple independent colonization

events of former lignite mining areas in Eastern Germany by E. palustris were

documented by Esfeld et al. (2008) and observed in different rockgarden areas of

Tuebingen Botanical Garden by the first author between 1975 and 1995 (unpubl). In

a comparative study of E. helleborine, E. neerlandica, and E. palustris in Belgium,

Tulasnella was only retrieved from the latter photobiont (Jacquemyn et al. 2016a).

In ten North American and European Goodyera species, Tulasnella was only found
inG. pubescens andG. repens in the USA (McCormick et al. 2004; Shefferson et al.

2010). In their study on carbon and nitrogen exchange in Goodyera repens, Liebel
et al. (2015) found Tulasnella and Ceratobasidium as the most frequent mycobionts

of the orchid species.

Fungi from the roots of the common terrestrial orchid Gymnadenia conopsea
included typical ORMs of the Tulasnellaceae and Ceratobasidiaceae as well as several

ectomycorrhizal taxa of the Pezizales (Stark et al. 2009). In this orchid, Těšitelová et al.

(2013) found evidence that polyploidization can be associated with a shift in their

tulasnelloid mycorrhizal symbionts. Among a variety of ascomycetous and
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basidiomycetous associates ofHimantoglossum adriaticum, Tulasnellaceae were iden-
tified in two protected areas of Central Italy (Pecoraro et al. 2013).

Liparis loeselii and Hammarbya paludosa are wetland specialists associated

with tulasnelloid mycobionts in Hungary (Illyés 2011). In situ and in vitro germi-

nation of L. loeselii were studied by Illyés et al. (2005). They found Tulasnella
(Epulorhiza) and Ceratobasidium (Rhizoctonia) as mycorrhizal partners. Broader

samplings with Dactylorhiza incarnata, Epipactis palustris, Gymnadenia
conopsea, Ophrys oestrifera, Op. sphegodes, and Orchis militaris, Or. palustris,
and Or. purpurea indicated Tulasnella associations to prefer wetter habitats (Illyés

et al. 2009), or to tolerate a wide spectrum of water availability (Illyés et al. 2010).

Here, the question arises, what constrains the distribution of orchid populations

(McCormick and Jacquemyn 2014), a question that should better be modified into

what constrains the distribution of orchid-mycobiont associations. Recently

Jacquemyn et al. (2015b) reported Tulasnellaceae in the roots and the soil of the

green Neottia ovata (Listera ovata) in eastern Belgium. It is noteworthy to mention

that tulasnelloid mycobionts have not been found in the achlorophyllous N. nidus-
avis (e.g. Selosse et al. 2002).

The mycorrhizal fungal diversity of Orchis militaris, including tulasnelloid

associates, detected in some Hungarian habitats, is considered to be essential for

the wide ecological range of the orchid species (Ouanphanivanh et al. 2007). In a

multidisciplinary approach of the simultaneously investigated mediterranean

Orchis simia, O. anthropophora, and their hybrid O. � bergonii, Schatz et al.

(2010) compared leaf growth, seed viability, emitted scent, and mycorrhizal species

and their rate of infection. The mycobionts were unidentified Tulasnella species.

Five Orchis species, O. anthropophora, O. mascula, O. militaris, O. purpurea, and
O. simia, sampled from the Netherlands to Italy by Jacquemyn et al. (2010),

contained a majority of Tulasnella mycobionts. In three closely related and hybrid-

izing species, O. anthropophora, O. militaris, and O. purpurea, the influence of

mycorrhizal associations on reproductive isolation of the orchids appeared to be of

minor importance (Jacquemyn et al. (2011a). Girlanda et al. (2011) reported

Tulasnella calospora mycobionts in the mediterranean meadow orchids Ophrys
fuciflora, Anacamptis laxiflora, O. purpurea, and Serapias vomeracea. In a com-

prehensive survey of 16 European and Mediterranean Orchis species, Jacquemyn

et al. (2011b) found dominating Tulasnella OMs from the Netherlands, Belgium,

France, Portugal, Italy, Cyprus, and Israel. For the persistence and rarity of A. morio
and Dactylorhiza fuchsii in Belgian habitats, Bailarote et al. (2012) suggested that

fungal diversity with dominating Tulasnella are not necessarily related. Studies

conducted in the Gargano National Park in southern Italy by Jacquemyn et al.

(2014, 2015a) comprised Anacamptis pyramidalis, A. (Orchis) morio,
A. papilionacea, Neotinea maculata, N. ustulata, Orchis anthropophora,
O. italica, O. pauciflora, O. provincialis, O. quadripunctata, Ophrys apulica, Op.
biscutella, Op. bombyliflora, Op. sphegodes, Op. sicula, Op. tenthredinifera,
Serapias bergonii, S. cordigera, S. lingua, and S. vomeracea. The mycobionts of

coexisting orchid species had distinct mycorrhizal communities and were predom-

inantly recruited by Tulasnella and Rhizoctonia (“Ceratobasidiaceae”). A broad
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spectrum of mycobionts, including Tulasnella, were found to be associated with

O. tridentata in Central Italy by Pecoraro et al. (2012). The temporal variation in

mycorrhizal diversity of A. morio from North Italian meadows was analysed by

Ercole et al. (2014). The fungi, manually isolated from pelotons, were common

Tulasnella in autumn and winter, the pezizacean clade very frequent in spring, and

Ceratobasidium more frequent in summer. In 16 Mediterranean orchid species of

the genera Anacamptis, Ophrys, Orchis, and Serapias, Pellegrino et al. (2014)

found 18 operational taxonomic units (OTUs) of Tulasnella and

“Ceratobasidiaceae”. Mycobiont analyses of the mediterranean Op. bertolonii
revealed Tulasnella as the dominant fungal partner (Pecoraro et al. 2015). The

fine-scale spatial distribution of OM fungi, including Tulasnella, in soils of host-

rich mediterranean grasslands of northern Italy was screened by Voyron et al.

(2016) and found to be extremely sporadic. The spatially tight dependency of

tulasnelloid associates of orchids was clearly documented in populations of

A. morio, Gymnadenia conopsea, and O. mascula in Southern Belgium (Waud

et al. 2016a). Also in Belgium, the majority of mycobionts of O. mascula and

O. purpurea appeared to be Tulasnella (Waud et al. 2016b).

Bidartondo et al. (2004) reported Tulasnella as mycobiont of Platanthera
chlorantha from the Bavarian Frankenalb. In a study on the evolution of endemic

Azorean orchids, also ORMs were analyzed, and T. calospora and Tulasnella spp.

were found in Platanthera species (Bateman et al. 2014). Kohout et al. (2013)

studied the fungal communities associated with Pseudorchis albida in the Šumava

National Park, Czech Republic. The mycobionts of the orchid were four unnamed

Tulasnella strains. In protocorms of P. albida, also from this country, and in

Serapias parviflora from Sardinia, Tulasnella spp. were detected by St€ockel et al.
(2014). Protocorms of the mediterranean orchid Serapias vomeracea were colo-

nized by Tulasnella calospora in an experimental study of Balestrini et al. (2014).

12.6.2 Temperate Asia

Whole rDNA analyses of roots and leaves of Bletilla ochracea from a mountain

near Guiyang in Guizhou Province, China, provided a high number of fungal OTUs,

dominated by ascomycetes (Tao et al. 2008). In addition, also Epulorhiza sp. could
be identified. Eom (2012) isolated T. calospora, T. irregularis, and Tulasnella
sp. from terrestrial Korean Bletilla striata, Calanthe discolor, Cymbidium
goeringii, and Pogonia minor. Eom (2015) identified T. calospora and Tulasnella
sp. in Cephalanthera falcata, C. longibracteata, Platanthera chlorantha, and

P. mandarinorum in Korea. Jiang et al. (2011) isolated Tulasnella spp. from

Changnienia amoena, an orchid distributed in various provinces of Central China.

Lee and You (2000) identified Tulasnella repens in the native Korean Cymbid-
ium goeringii. Korean species of Cymbidium were successfully inoculated with

Tulasnella repens by Lee et al. (2001). In a comparative study, Ogura-Tsujita et al.

(2012) tried to find a correlation in mycobiont’s association in Cymbidium during

248 F. Oberwinkler et al.



the evolution of autotrophy to mycoheterotrophy. Tulasnella dominated in the

autotrophic C. dayanum, were less frequent in mixotrophic C. goeringii and

C. lancifolium and absent in mycoheterotrophic C. macrorhizon and C. aberrans.
In five Korean terrestrial orchids, C. goeringii, Spiranthes sinensis, Calanthe
discolor, Bletilla striata, and Pogonia minor, Youm et al. (2012) identified

Tulasnella calospora, T. irregularis, T. sp., and Sebacina vermifera.
The mycobiont of the threatened orchid Cypripedium macranthos var.

rebunense, from Rebun Island northwest of Hokkaido was identified as Tulasnella
(Shimura et al. 2009). Mycobionts of six endangered slipper orchid species from

Southwestern China, Paphiopedilum micranthum, P. armeniacum, P. dianthum,
Cypripedium flavum, C. guttatum, and C. tibeticum, were identified as Tulasnella
spp. by Yuan et al. (2010). Hayakawa et al. (1999) isolated Tulasnella deliquescens
from naturally occurring protocorms, seedlings, and adult Japanese Dactylorhiza
aristata. Most of the OM fungi in Dendrobium fimbriatum and D. officinale from

Guangxi were identified as members of the Tulasnellaceae by Xing et al. (2013).

Tan et al. (2014) used their Tulasnella isolates ofD. officinale from Yunnan to carry

out seed germination experiments. They found different interactive capacities in

two fungal strains.

As mycobionts of Epipactis thunbergii, Eom and Kim (2013) identified i. a.

T. calospora and Tulasnella sp. E. thunbergii and Habenaria radiata were colo-

nized by the ecologically adapted, associated with various mycobionts in manmade

wetlands in the Hiroshima Prefecture, Japan (Cowden and Shefferson 2013). While

a diverse suite of fungal symbionts was found in H. radiata, E. palustris was nearly
exclusively inhabited by Tulasnella spp. Based on the morphology and cultures of

isolates with anastomoses, Uetaka et al. (1999) identified Epulorhiza repens in the

Japanese terrestrial orchids Gymnadenia camtschatica, Platanthera tipuloides and
Pogonia japonica. In nine species of the genus Holcoglossum from Yunnan and

Guangxi, T. calospora and the anamorphic tulasnelloid Epulorhizawere found (Tan
et al. 2012). From different populations of Liparis japonica in Northeast China,

Ding et al. (2014) identified fungi of the T. calospora species group. In situ and

in vitro specificity between mycobionts and Spiranthes sinensis var. amoena was

analyzed by Masuhara and Katsuya (1994). The germination was mainly induced

by Tulasnella (as Rhizoctonia repens).

12.6.3 Subtropical and Tropical Asia

Apostasioideae are considered the basal group of the Orchidaceae (Chase et al.

2003). Five studied Apostasia species had Botryobasidium and Ceratobasidium
mycobionts, and the related Neuwiedia veratrifolia was associated with

Ceratobasidium and Tulasnella (Yukawa et al. 2009). Most of the mycobiont

isolates of Neuwiedia veratrifolia, collected in Borneo, could be assigned to

Tulasnella by Kristiansen et al. (2004).
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The mycobiont of the “Chinese King Medicine Orchid”, Anoectochilus
roxburghii, was identified as Epulorhiza sp. and was successfully used in

co-culture experiments to improve the growth of the host plant (Li et al. 2012).

Dan et al. (2012) found that eight of 42 OM fungal strains tested including three

Epulorhiza spp. enhanced the growth of the host plantlets. The endophyte promot-

ing the growth and contents of kinsenosides and flavonoids of A. formosanus was
identified as Epulorhiza sp. by Zhang et al. (2013). Likewise, in seven localities of

Taiwan, Jiang et al. (2015) isolated mycobionts of this medicinally used orchid. No

increase in orchid seed germination was found when Tulasnella strains were

applied that clustered in clade III of their study. Mycobionts of the Chinese

medicinal orchid Dendrobium officinale were identified as Epulorhiza sp. and

inoculation of the fungus resulted in promoted seedling growth (Jin et al. 2009).

For symbiotic seed germination of D. draconis and Grammatophyllum speciosum,
native orchids of Thailand, the anamorph of Tulasnella calospora proved to be most

effective to stimulate protocorm development (Nontachaiyapoom et al. 2011). In

contrast, Salifah et al. (2011) found that seed germination rates in this orchid were

best when co-cultured with Fusarium sp. Five Tulasnella isolates of four

Dendrobium species from Chiang Rai Province of Thailand showed different

promoting effects on seed germination (Swangmaneecharern et al. 2012). The in

situ seed baiting of the epiphytic D. aphyllum from the Xishuangbanna tropical

Botanical Garden in South Yunnan, studied by Zi et al. (2014), revealed Tulasnella
spp. as mycobionts. In contrast, Agustini et al. (2016) isolated Rhizoctonia-like
fungi from D. lancifolium var. papuanum and Calanthe triplicata from Papua,

which was considered of “Ceratobasidium” relationship. Khamchatra et al.

(2016a) isolated T. violea and Epulorhiza repens from the Thai epiphytic

D. friedricksianum. Under in vitro culture conditions, Wang et al. (2016) found

promoted D. catenatum seedling growth from Hainan with dual inoculation of

Epulorhiza and Enterobacter or Herbaspirillum bacteria.

Commercially grown Thai species and hybrids of Cymbidium,Dendrobium, and
Paphiopedilum were used by Nontachaiyapoom et al. (2010) for isolation of

mycobionts. They identified Tulasnella anamorphs. Tulasnella spp., isolated from

wild and horticulturally grown Cymbidium spp. in SW-China, were used to test

growth differences in co-cultures with C. hybridum, an important pot ornamental

orchid (Zhao et al. 2014a). In addition, deep sequencing-based comparative tran-

scriptional profiles of these photo- and mycobionts were carried out (Zhao et al.

2014b). The positive experiments were indicative for application in Cymbidium’s
commercial cultivation. Mycobionts of C. faberi, C. goeringii, and C. goeringii var.
longibracteatum, also from SW-China, included Tulasnella spp. (Huang and Zhang
2015). Yu et al. (2015) isolated and identified endophytes, and Tulasnella ORMs

from roots of C. goeringii and C. faberi.
The germination and development of the terrestrial Arundina chinensis,

Spathoglottis pubescens, and Spiranthes hongkongensis from various locations of

Hong Kong were found to be strongly stimulated by Epulorhiza isolates (Shan et al.
2002). Isolated E. repens from the Thai terrestrial S. plicata enhanced seed germi-

nation in vitro considerably (Athipunyakom et al. 2004a). From this orchid species
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of Papua, Sufaati et al. (2012) reported Tulasnella mycobionts. In a study on

mycorrhizal associations and root morphology of 31 terrestrial and epiphytic

orchids species of the Western Ghats, southern India, also S. spicata was included

(Sathiyadash et al. 2012). Regarding the mycobionts, there is only the single remark

that the orchids “had moniliform structures resembling those of Tulasnella
calospora (Epulorhiza repens) in the cortical and root hair cells”.

In the endangered epiphytic Thai slipper orchid Paphiopedilum villosum,
Tulasnella sp. could be identified as mycobiont (Khamchatra et al. 2016b). A highly

compatible Epulorhiza strain was used to demonstrate promotion of seed germina-

tion and protocrom development in Papilionanthe teres from Xishuangbanna,

South China (Zhou and Gao 2016). In seed germination and seedling development

of the Thai terrestrial orchid Pecteilis susannae, the incubation of Tulasnella
enhanced growth considerably (Chutima et al. 2011). Isolates from the tropical

orchids Arachnis sp., Arundina graminifolia, Dendrobium crumenatum,
Diplocaulobium enosmum, Oncidium hybr., Vanda hybr., and Spathoglottis plicata
in Singapore comprised both Sebacina and Tulasnellamycobionts (Ma et al. 2003).

Mycobionts isolated from pelotons of Calanthe rubens, Ca. rosea, Cymbidium
sinense, Cy. tracyanum, Goodyera procera, Ludisia discolor, Paphiopedilum
concolor, P. exul, P. godefroyae, P. niveum and P. villosum were identified as

Epulorhiza calendulina, E. repens, and Tulasnella sp. among multiple mycobionts

(Athipunyakom et al. 2004b). Suryantini et al. (2015) reported on Epulorhiza and

Tulasnella spp. associated with epiphytic Ca. vestita and Bulbophyllum beccarii
from West Kalimantan. Seed germination of the epiphytic, therapeutically valuable

orchid Coelogyne nervosa, endemic to south India, was higher when inoculated

with Epulorhiza sp. (Sathiyadash et al. 2014).

12.6.4 North America

Rhizoctonia anaticula was described by Currah (in Currah et al. 1987), based on

five isolates of native Alberta orchids, and later transferred into the tulasnelloid

anamorphic genus Epulorhiza (Currah et al. 1990). The same mycobiont was also

isolated from Calypso bulbosa and Platanthera obtusata sampled in various loca-

tions of Alberta (Currah and Sherburne 1992; Currah et al. 1988). The TEM

micrographs indicate tulasnelloid fungi (Currah and Sherburne 1992). Smreciu

and Currah (1989) recovered potentially high percentage of tulasnelloid

mycobionts in symbiotic and asymbiotic germination of seeds of north temperate

terrestrial orchids Amerorchis rotundifolia, Ca. bulbosa, Coeloglossum viride,
Corallorhiza maculata, Co. trifida, Cypripedium calceolus, Goodyera repens,
Platanthera hyperborea, P. obtusata, and P. orbiculata, four of them also occurring

in Europe. So far, it remains unsettled what Ceratobasidium cereale, a mycobiont

of G. repens, is (Peterson and Currah 1990). In germination experiments of

P. hyperborea seeds, mycobionts of uncertain taxonomic position, like Rhizoctonia
cerealis or Ceratorhiza goodyerae-repentis, were used (Richardson et al. 1992).
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The orchid–mycobiont association was studied in detail in Goodyera repens, a
terrestrial orchid of the eastern United States (McCormick et al. 2006). It was found

that protocorms and adult orchids were able to switch with closely related

Tulasnella fungi. In germination tests of seeds of Goodyera discolor, Liparis
liliifolia and Tipularia discolor, McCormick et al. (2012) used fungal strains

isolated from adult orchids and found that Tulasnella was involved in all cases.

Shefferson et al. (2005) detected Tulasnella spp. in root samples of Cypripedium
californicum, C. fasciculatum and C. montanum in California; C. candidum and

C. parviflorum in Illinois and Kentucky, C. guttatum in Alaska. Whitridge and

Southworth (2005) reported Tulasnellaceae associated with Cypripedium
fasciculatum, and with Piperia sp. One of the rarest North American terrestrial

orchids, Piperia yadonii, showed non-specific ORMs, including Tulasnellaceae

(Pandey et al. 2013). In Encyclia tampensis of South Florida, Zettler et al.

(2013), reported T. irregularis as mycobiont and essential fungal partner during

seed germination. The symbiotic germination of Spiranthes lacera, with a naturally
occurring endophyte, Ceratorhiza cf. goodyerae-repentis, and with Epulorhiza
repens was tested by Zelmer and Currah (1997). The orchid occurs in the eastern,

northern and central parts of North America. The symbiotic germination of

S. brevilabris showed Epulorhiza mycobionts, and the reintroduction of the endan-

gered orchid, native to Florida, was discussed by Stewart et al. (2003).

In an integrated approach to Rhizoctonia taxonomy, Mordue et al. (1989)

succeeded in taxonomically separating orchid isolates, i.e. tulasnelloid mycobionts

from other Rhizoctonia-like fungi. A key and notes for the genera of fungi,

mycorrhizal with orchids, and a new species in the genus Epulorhiza, was provided
by Currah and Zelmer (1992). Ceratorhiza pernacatena and Epulorhiza
calendulina were described as mycorrhizal fungi of terrestrial orchids in the

Canadian prairies by Zelmer and Currah (1995), tulasnelloid mycobionts at least

in one case. Epulorhiza inquilina was proposed for the mycobiont of the mature

orchids Platanthera clavellata, P. cristata and P. integrilabia in Canada (Currah

et al. 1997). For the propagation of the auto-pollinated terrestrial P. clavellata in the
southern Appalachians, Epulorhiza spp. strains were applied in vitro by Zettler and
Hofer (1998). In P. praeclara of midwestern prairies, Epulorhiza and Ceratorhiza
were found and used in symbiotic seed germination and coinoculations by Sharma

et al. (2003a, b). Also in the endangered Hawaiian endemic Platanthera
leucophaea, Epulorhiza was found as mycobiont (Zettler et al. 2005).

Seeds of the endangered epiphytic orchid Epidendrum nocturnum from Florida

were germinated in vitro with Epulorhiza repens (Massey and Zettler 2007; Zettler

et al. 2007). Mycorrhized seedlings could successfully be reintroduced in the

Florida Panther National Wildlife Refuge. Symbiotic seed germinations of three

semi-aquatic orchids, Habenaria macroceratitis, H. quniqueseta, and H. repens
from Florida had Epulorhiza mycobionts (Stewart and Zettler 2002). Later, in

H. macroceratitis, Stewart and Kane (2006) isolated six Epulorhiza strains.

Epulorhiza sp. was present in seed germination of H. repens in situ beyond its

range in southern North America (Keel et al. 2011).
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12.6.5 Central and South America

Unfortunately, in their study on basidiomycetous endophytes from the roots of

epiphytic orchids in La Selva, Costa Rica, Richardson et al. (1993) use the generic

names Moniliopsis and Ceratorhiza for the isolates. Though it is most likely that

Tulasnella is included in these fungi, verification is impossible. Otero et al. (2002)

isolated Rhizoctonia-like fungi inclusive of Tulasnella from orchids in Puerto Rico.

They included the epiphytic species Campylocentrum fasciola, C. filiforme,
Ionopsis satyrioides, I. utricularioides, Psychilis monensis, Tolumnia variegata,
and the terrestial Erythrodes plantaginea, Oeceoclades maculata, and Oncidium
altissimum. In Brazil, Epulorhiza epiphytica was isolated from mycorrhizal roots of

epiphytic orchids and described as a new tulasnelloid anamorph by Pereira et al.

(2003), and additional ORMs from neotropical orchids were characterized mor-

phologically and molecularly by Pereira et al. (2005b), and for Laeliinae by

Almeida et al. (2007).

Kottke et al. (2008) used sequence data of Tulasnella and other mycobionts to

interprete fungal networks between diverse photobionts, including epiphytic

orchids and Aneuraceae. Mosquera-Espinosa et al. (2010) studied 12 fungal isolates

of eight Colombian orchids and reported Ceratobasidium spp. as mycobionts.

However, a proper taxonomic identification was not achieved. Mycorrhizal net-

works with prominent Tulasnella OM mycobionts were considered to promote and

stabilize the neotropical mountain rain forest (Kottke et al. 2013). Cruz et al. (2014)

analyzed the variability of micromorphological features of basidiomata and the

genomic polymorphism of Tulasnella ORMs in South Ecuadorian orchid species of

the genera Elleanthus, Maxillaria, Pleurothallis, Prostechea, and Stelis. From five

terrestrial orchids of Córdoba, Argentina, Aa achalensis, Cyclopogon elatus,
Habenaria hexaptera, Pelexia bonariensis, and Sacoila australis, Fernández Di

Pardo et al. (2015) isolated various mycobionts, including Epulorhiza. Suárez and
Kottke (2016) summarized main mycobionts, including Tulasnella, and their spec-

ificities in neotropical orchids of South Ecuadorian rain forests. In an Andean cloud

forest of South Ecuador, Suárez et al. (2006) found that diverse tulasnelloid fungi

form mycorrhizae with epiphytic Pleurothallis lilijae, Stelis concinna, S. hallii, and
S. superbiens. A study of Suárez et al. (2016) in Ecuador revealed that Teagueia
spp. were associated with members of Tulasnellaceae, corresponding to four OTUs.

All detected mycobionts had a wide geographical distribution.

Experiments for a symbiotic propagation to reintroduce endangered Mexican

terrestrial Bletia urbana, B. campanulata, and Dichromanthus aurantiacus were

carried out by Ortega-Larrocea and Rangel-Villafranco (2007), applying anamor-

phic Tulasnella strains. Ovando et al. (2005) isolated and screened endophytic fungi
from the roots of the epiphytic orchids Brassavola nodosa, Cattleya skinneri, and
C. aurantiaca from Tuzantán, South Mexico. The isolated strains were assigned to

11 fungal genera. Eight strains, used for germination experiments, did not show any

promoting effects. However, three strains, including Epulorhiza, provided mycor-

rhizal characteristics in C. aurantiaca. A new tulasnelloid anamorph, Epulorhiza
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amonilioides, lacking monilioid hyphae in pure culture, was isolated from

Brassavola and Encyclia species and described by Almeida et al. (2014) from

Bahia, Brazil. When analyzing three sympatric epiphytic Cymbidieae, Cyrtochilum
flexuosum, C. myanthum, and Maxillaria calantha from two sites of South Ecua-

dorian mountain rain forests, Cevallos et al. (2016) concluded that these orchids

have site-adjusted OM communities with keystone mycobionts, including

Tulasnella. In testing seed germination and protocorm development of

Cyrtopodium glutiniferum from Brazil, Pereira et al. (2015) found promotion by

mycorrhizal fungi of the tulasnelloid anamorphs Epulorhiza spp. In roots of four

Vanilla species from Puerto Rico, Costa Rica and Cuba, Porras-Alfaro and Bayman

(2007) found mycobionts of Ceratobasidium, Thanatephorus and Tulasnella.
Epulorhiza spp. was isolated from various Brazilian Epidendrum species (Pereira

2009, Pereira et al. 2009, 2011a, b, 2014a). From the epiphytic E. stamfordianum,
Erycina crista-galli, and Stelis quadrifida from Southeast Chiapas, Mexico,

Ceratorhiza and Epulorhiza mycobionts were reported by Cruz Blası́ (2007). Two

different Tulasnella species were found to be associated with South Ecuadorian

E. rhopalostele, an orchid preferably growing on dead trees (Riofrı́o et al. 2013).

Populations of E. firmum in Costa Rica had highly diverse and spatially heterogeneous

mycobionts, including six Tulasnella strains (Kartzinel et al. 2013). The mycobionts of

E. secundum, a widespread Brazilian orchid, were identified as Tulasnella spp. by

Pereira et al. (2014a) and as T. calospora by Nogueira et al. (2014). In vitro seed

germination and protocorm development of BrazilianOncidium flexuosumwas studied

with mycobionts of Epulorhiza and Ceratorhiza, earlier isolated from this orchid

(Pereira et al. 2005a, c), and Da Silva Coelho et al. (2010) reported regeneration and

production of the fungal protoplasts.

Epulorhiza epiphytica was isolated from Polystachya concreta and the African

Oeceoclades maculata, naturalized in the Neotropics, by Pereira et al. (2005b).

Nine unnamed morphotypes of fungi, associated with O. maculata, were isolated

from the understory of Avocado in Brazil by Teixeira et al. (2015).

In the mycorrhizal association of the terrestrial Chilean orchid Bipinnula
fimbriata also tulasnelloid ORMs were present (Steinfort et al. 2010). Mujica

et al. (2016) found that mycorrhizal diversity, including Tulasnella, decreased in

habitats of B. fimbriata and B. plumosa with higher N, but increased with P

availability in B. fimbriata. Morphological and molecular characterization con-

firmed that Chilean Chloraea collicensis and C. gavilumycorrhizal partners belong

to Tulasnella (Pereira et al. 2014b). In contrast, Atala et al. (2015) reported

mycobionts with possible Thanatephorus teleomorphs from the critically endan-

gered Chilean C. cuneata. However, the data presented cannot exclude tulasnelloid
associates. In a study by Herrera et al. (2016), in six Chloraea species and Bipinnula
fimbriata from Chilean Coastal Range and Andes. Tulasnella spp. were found as

dominating mycobionts. Fracchia et al. (2014) found promoted see germination

through tulasnelloid and Ceratobasidium-like fungi in Gavilea australis, an endan-
gered terrestrial orchid from south Patagonia.
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12.6.6 Africa

Martos et al. (2012) identified a bipartite network including 73 orchid species and

95 taxonomic units of mycorrhizal fungi across the natural habitats of Reunion

Island. 58 tulasnellaceous OTUs were found in 73 orchid species, thus representing

the most frequent OM mycobionts. In their study on the evolution of endemic

Azorean orchids, Bateman et al. (2014) reported also the mycorrhizal association of

Tulasnella aff. Calospora with Platanthera algeriensis in Morocco. Most of the

OM fungi of the Itremo region in the Central Highlands of Madagascar were

identified as Tulasnella (Yokoya et al. 2015). The symbiotic seedling development

of the terrestrial Cynorkis purpurea, also from the Itremo area, has been tested

experimentally by Rafter et al. (2016). Though epiphyte-derived Sebacina cultures

had the strongest influence, also Tulasnella appeared as an advantageous

mycobiont. Disa bracteata of South Africa was associated with Tulasnella spp. in

West and South Australia as in its country of origin (Bonnardeaux et al. 2007). In an

attempt to elucidate the impact of above- and belowground mutalisms in

South African orchid diversification, an irregular pattern of fungal associates,

including 35, unspecified Tulasnella individuals, were detected (Waterman et al.

2011). The authors concluded that “shifts in fungal partner are important for

coexistence but not for speciation” of the host plants.

12.6.7 Australia

When Warcup and Talbot (1967) succeeded to isolate and cultivate OM fungi from

terrestrial Australian orchids, and finally obtained perfect states of Rhizoctonias, a new

era of experimental mycology and especially of studies in symbiotic systems began.

Tulasnella calosporawas found to be the perfect state of three cultures considered to be
Rhizoctonia repens. Isolates were obtained from South Australia (Acianthus exsertus,
Caladenia reticulata, Cymbidium canaliculatum, Dendrobium sp., Diuris longifolia,
D. maculata, and Thelymitra antennifera). Tulasnella asymmetrica was described as a
new species and as mycobiont of Thelymitra luteocilium from the Australian Mt. Lofty

Range. In a second contribution of the authors (Warcup and Talbot 1971), the

description of Tulasnella asymmetrica was emended and further orchid hosts were

reported from the Mt. Lofty Range: Thelymitra aristata (also Cape Jervis),

T. grandiflora, and T. pauciflora. Additional hosts were Th. epipactoides (Eyre

Peninsula), and Dendrobium tetragonum from North Queensland. The basidial stage

of the morphotype of T. allantosporawith clamps was obtained fromMt. Lofty isolates

of Corybas dilatatus, and basidiocarp samples without clamps were collected on fallen

Eucalyptuswood in the same locality. The perfect stage of T. violea developed from an

isolate obtained from Th. aristata, collected in Uley, Eyre Peninsula. Tulasnella
cruciata was introduced as new to science, isolated from the Mt. Lofty Range orchids

Acianthus caudatus and Th. pauciflora, while the strain of Th. fusco-lutea originated

12 Biogeography and Ecology of Tulasnellaceae 255



from Pomonal, Victoria. In the third joint effort of Warcup and Talbot (1980) to obtain

perfect states of OM mycobionts they succeeded with T. irregularis sp. nov., isolated
from Dendrobium dicuphum, sampled near Darwin, Northern Territory. In studying

the specificity of ORMs in Australian terrestrial orchids, Warcup (1971) reported that

Th. aristata is at least associated with three species of Tulasnella. In the “Orchids of

South Australia” (Bates andWeber 1990), T. calospora is listed as mycobiont in orchid

species of the genera Acianthus, Diuris, Orthoceras, and Thelmytra. For the latter one
and Acianthus, also T. cruciata is mentioned. The symbiotic germination of some

Australian terrestrial orchids was analyzed byWarcup (1973) who reported that various

isolates of T. calospora differed markedly in the efficiency with which they stimulated

germination of the Diuris and Thelymitra photobionts. A close association of this

mycobiont with Diuris and Orthoceras orchids was confirmed by Warcup (1981).

The mycorrhizal specificity of D. fragrantissima with Tulasnella spp. and persistence

in a reintroduced population west of Melbourne was studied by Smith et al. (2007,

2010). In D. magnifica and Prasophyllum giganteum, T. calospora was found, and in

Pyrorchis nigricans isolates T. danica were identified (Bonnardeaux et al. 2007).

A narrow group of monophyletic Tulasnella symbiont lineages is associated

with multiple species of Chiloglottis in New South Wales and the Australian

Capital Territory (Roche et al. 2010). For Tulasnella OM species delimitation in

the Australian orchid genera Chiloglottis, Drakaea, Paracaleana and Arthrochilus,
Linde et al. (2013) used six nuclear loci, two mitochondrial loci, the photo- and

mycobiont association and sampling locations in an integrated approach. They

found that the Chiloglottis isolates belong to one species, and those from Drakaea
and Paracaleana to a sister taxon, a result in accordance with previous ITS

analyses. Boddington and Dearnaley (2009) reported a putative mycorrhizal

Tulasnella-like fungus in the tropical epiphytic Dendrobium speciosum of

Queensland. In studies of Drakaea species in Southwest Australia, Phillips et al.

(2011, 2014) found no evidence that Tulasnella specificity contributed to the rarity

of the orchids.

According to Brundrett (2007), most West Australian orchids studied have

highly specific mycorrhizal associations with fungi in the Rhizoctonia alliance,

most likely including Tulasnella spp. The nutrient-acquisition patterns of ORMs,

inclusive of Tulasnella, appear to explain the diversification in terrestrial orchids in
this biodiversity hotspot (Nurfadilah et al. 2013).

Milligan and Williams (1988) obtained 27 tentatively identified Tulasnella
calospora isolates from Microtis spp. at seven sites in the Sydney region. The

specificity of associations between M. parviflora and Epulorhiza spp. was studied

by Perkins et al. (1995). The compatibility webs of brief encounters, lasting

relationships and alien invasions of West Australian terrestrial orchids were studied

by Bonnardeaux et al. (2007), documenting that M. media, together with the

invasive Disa bracteata, had the most ORMs. Mycorrhizal preference apparently

promotes habitat invasion of M. media in Western Australia (De Long et al. 2013).

When studying the effects of endophytic fungi on New Zealand terrestrial

M. unifolia, Spiranthes novae-zelandiae, and Thelymitra longifolia, Frericks
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(2014) obtained Tulasnella calospora isolations and compared them with strains of

various geographical origins.

The rare subterranean, achlorophyllous orchid Rhizanthella gardneri from

western Australia lives in a more than triple association with autotrophic and

heterotrophic partners in which, apparently, two Tulasnella species are involved

(Warcup 1985). In a taxonomic study and an experimental approach to grow

Rhizanthella gardneri together with Melaleuca scalena (Myrtaceae), Bougoure

et al. (2009a, b) used as mycobiont an unidentified, so-called “Ceratobasidium”
with the positive result that 5% of carbon fed toMelaleuca as 13CO2 was transferred

to R. gardneri. Further studies are needed to clarify the taxonomy and whether

diverse mycobionts are involved in this association.

12.7 Conclusions

Our literature search for Tulasnella on a global scale confirmed that distribution

patterns are biased by sampling. Nevertheless, there is unequivocal documentation

that Tulasnella as a group and certain morphological species have global distribu-

tion. Furthermore, it appears obvious that the world-wide distribution of orchids

may reflect a similar occurrence of their mycobionts, for which Tulasnella species

play a crucial role. The same may be true for Tulasnella associates of certain

liverworts. In addition, lignicolous basidiomata of Tulasnella are reported from

collecting areas of mycologists, interested in corticioid fungi. Apart from these

restrictions, a more adequate interpretation of Tulasnella’s biogeography is the

distribution pattern of suited habitats which appear to occur in a nearly world-wide

range.
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on Andean Orchids. Universidad Técnica Particular de Loja, Loja, Ecuador, pp 84–99

Kottke I, Beiter A, Weiß M, Haug I, Oberwinkler F, Nebel M (2003) Heterobasidiomycetes form

symbiotic associations with hepatics: Jungermanniales have sebacinoid mycobionts while

Aneura pinguis (Metzgeriales) is associated with a Tulasnella species. Mycol Res 107:957–968
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Orchis militaris habitats. Táj€okológiai Lapok 5:325–332

Ovando I, Damon A, Bello R, Ambrosio D, Albores V, Adriano L, Salvador M (2005) Isolation of

endophytic fungi and their mycorrhizal potential for the tropical epiphytic orchids Cattleya
skinneri, C. aurantiaca and Brassvola nodosa. Asian J Plant Sci 4:309–315

Pandey M, Sharma J, Taylor D, Yadon VL (2013) A narrowly endemic photosynthetic orchid is

non-specific in its mycorrhizal associations. Mol Ecol 22:2341–2354

Pearson AA (1928) New British Heterobasidiae. Trans Br Mycol Soc 13:69–74

Pecoraro L, Girlanda M, Kull T, Perini C, Perotto S (2012) Analysis of fungal diversity in Orchis
tridentata Scopoli. Dent Eur J Biol 7:850–857

Pecoraro L, Girlanda M, Kull T, Perini C, Perotto S (2013) Fungi from the roots of the terrestrial

photosynthetic orchid Himantoglossum adriaticum. Plant Ecol Evol 146:145–152
Pecoraro L, Girlanda M, Liu Z-J, Huang L, Perotto S (2015) Molecular analysis of fungi associated

with the Mediterranean orchid Ophrys bertolonii Mor. Ann Microbiol 65:2001–2007

Pellegrino G, Luca A, Bellusci F (2014) Relationships between orchid and fungal biodiversity:

mycorrhizal preferences in Mediterranean orchids. Plant Biosyst 3504:1–10

Pereira MC (2009) Diversidade e especificidade micorrı́zica em orquı́deas do gênera Epidendrum.
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Pereira OL, Rollemberg CL, Borges AC, Matsuoka K, Kasuya MCM (2003) Epulorhiza
epiphytica sp. nov. isolated from mycorrhizal roots of epiphytic orchids in Brazil. Mycoscience

44:153–155

Pereira OL, Kasuya MCM, Borges AC, Fernandes de Araújo E (2005a) Morphological and
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Suárez JP, Weiss M, Abele A, Garnica S, Oberwinkler F, Kottke I (2006) Diverse tulasnelloid

fungi form mycorrhizas with epiphytic orchids in an Andean cloud forest. Mycol Res

110:1257–1270
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