

1

Lecture 08

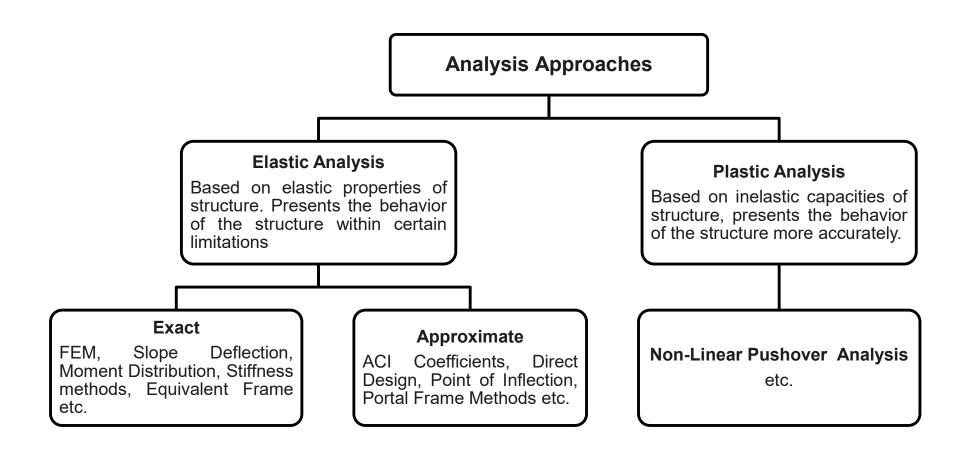
Gravity Load Analysis of RC Structures

By: Prof. Dr. Qaisar Ali Civil Engineering Department UET Peshawar

drqaisarali@uetpeshawar.edu.pk

https://drqaisarali.com

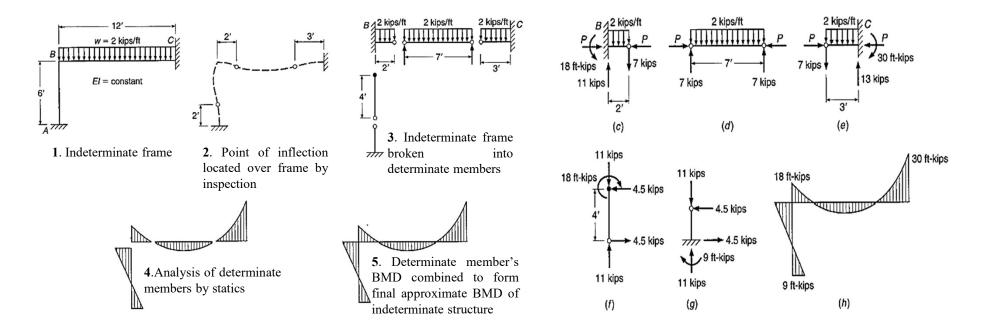
Prof. Dr. Qaisar Ali



Lecture Contents

- Analysis Approaches
- Point of Inflection Method
- Equivalent Frame Method
- Case Study
- Limit Analysis
- Plastic Analysis
- References

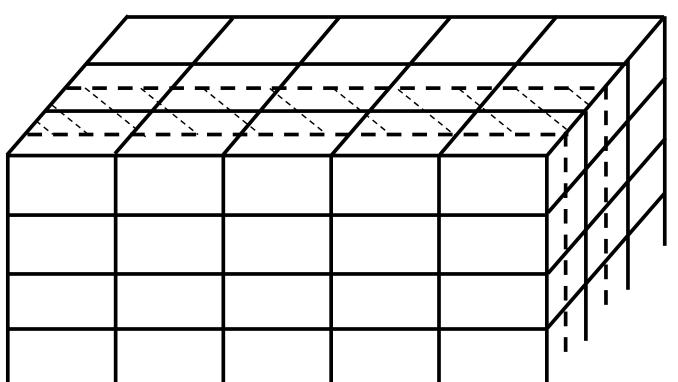
□ Analysis Approaches


□ Analysis Approaches

- The approximate analysis methods such as ACI Coefficients and Direct Design Method have been discussed in detail in earlier lectures.
- In this lecture, another approximate method known as Point of Inflection Method will be briefly discussed.
- The exact analysis methods such as Slope Deflection, Moment Distribution and Stiffness method etc. have already been studied. The Equivalent Frame Analysis method will be discussed in detail in this lecture.

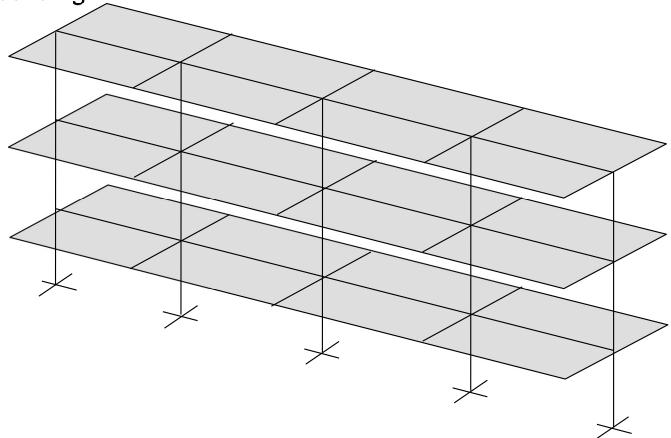
Point of Inflection Method

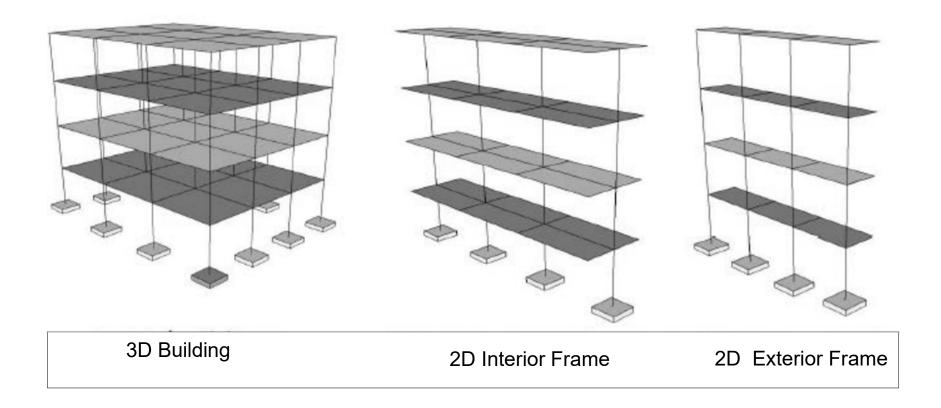
- In this method, points of inflection are located on the frame and the members are assumed separate determinate members at point of inflection.
- The individual members can be analyzed by statics as shown below.



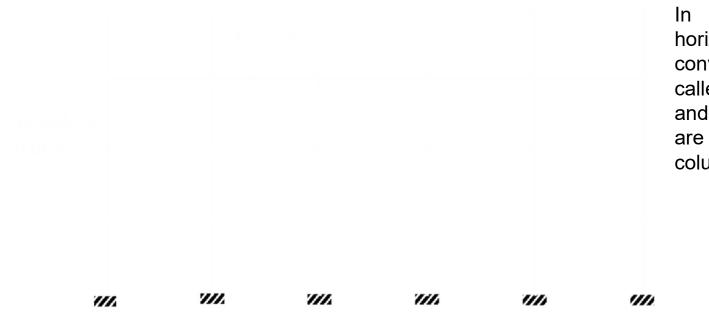
Prof. Dr. Qaisar Ali

Equivalent Frame Method (ACI 8.11)


 Consider a 3D structure shown in figure. It is intended to transform this 3D system to 2D system for facilitating analysis. This is done using the transformation technique of Equivalent Frame Method (ACI 318-14 8.11).

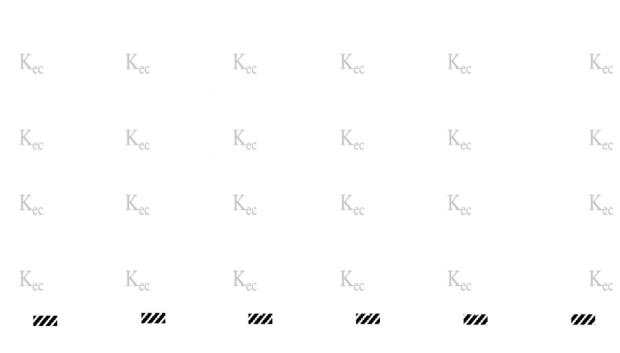

Equivalent Frame Method (ACI 8.11)

• The width of the frame is same as in DDM. The length of the frame extends up to full length of 3D system and the full height of the building.


□ Equivalent Frame Method (ACI 8.11)

Equivalent Frame Method (ACI 8.11)

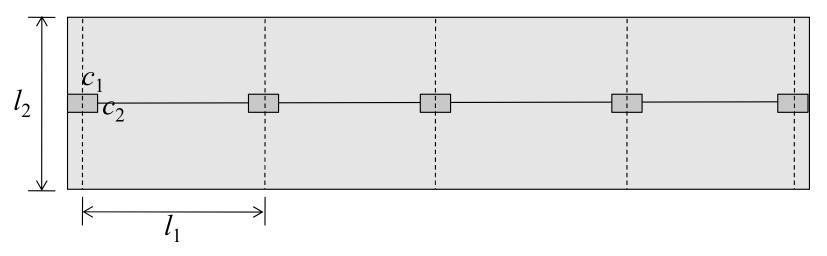
• This 3D frame is converted to a 2D frame by taking the effect of stiffnesses of laterally present members (slabs and beams).



In EFA method, the horizontal members of the converted 2D frame are called slab-beam members and the vertical members are called equivalent columns.

Equivalent Frame Method (ACI 8.11)

• This 3D frame is converted to a 2D frame by taking the effect of stiffnesses of laterally present members (slabs and beams).



KsbrepresentstheKeccombined stiffness of slaband longitudinal beam andKecrepresentsmodified column stiffness

□ Stiffness of Slab Beam Member K_{sb}

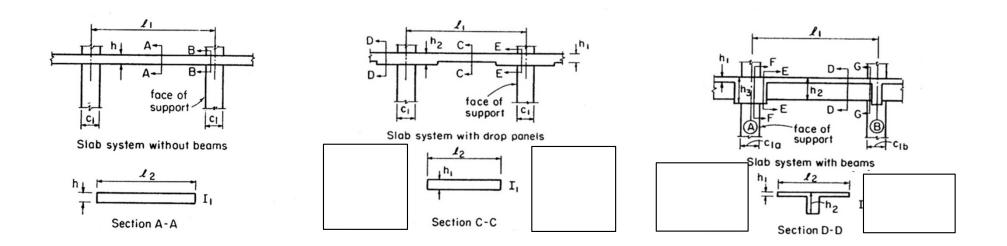
- The stiffness of slab beam $(K_{sb} = kEI_{sb}/I)$ consists of combined stiffness of slab and any longitudinal beam present within.
- For a span, the k factor is a direct function of ratios c_1/l_1 and c_2/l_2
- Tables are available for determination of k for various conditions of slab systems.

Plan view of a floor of width I_2 which is to be converted to slab beam line element

Prof. Dr. Qaisar Ali

□ Stiffness of Slab Beam Member K_{sb}

***** Determination of k

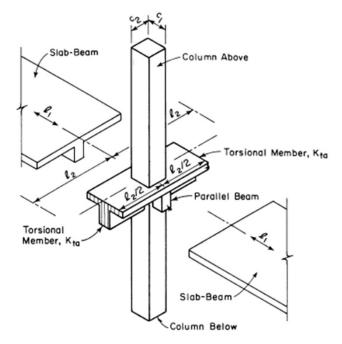

FEM	(uniform loa	$d w) = Mw\ell_2$	ℓ_1^2	K (stiffness) = $kE\ell_2 t^3/12\ell_1$				
		c	arryover fac	tor = COF				
				C2/-	l ₂)			
c_1/ℓ_1		0.00	0.05	0.10	0.15	0.20	0.25	
0.00	М	0.083	0.083	0.083	0.083	0.083	0.083	
	k	4.000	4.000	4.000	4.000	4.000	4.000	
	COF	0.500	0.500	0.500	0.500	0.500	0.500	
0.05	М	0.083	0.084	0.084	0.084	0.085	0.085	
	k	4.000	4.047	4.093	4.138	4.181	4.222	
	COF	0.500	0.503	0.507	0.510	0.513	0.516	
0.10	М	0.083	0.084	0.085	0.085	0.086	0.087	
	k	4.000	4.091	4.182	4.272	4.362	4.449	
	COF	0.500	0.506	0.513	0.519	0.524	0.530	
0.15	М	0.083	0.084	0.085	0.086	0.087	0.088	
	k	4.000	4.132	4.267	4.403	4.541	4.680	
	COF	0.500	0.509	0.517	0.526	0.534	0.543	
0.20	М	0.083	0.085	0.086	0.087	0.088	0.089	
	k	4.000	4.170	4.346	4.529	4.717	4.910	
	COF	0.500	0.511	0.522	0.532	0.543	0.554	
0.25	М	0.083	0.085	0.086	0.087	0.089	0.090	
	k	4.000	4.204	4.420	4.648	4.887	5.138	
	COF	0.500	0.512	0.525	0.538	0.550	0.563	
$x = (1 - c_2)$	ℓ/ℓ_2^3	1.000	0.856	0.729	0.613	0.512	0.421	

 ${}^{a}c_{1}$ and c_{2} are the widths of the column measured parallel to ℓ_{1} and ℓ_{2} . Source: [13-16].

□ Stiffness of Slab Beam Member K_{sb}

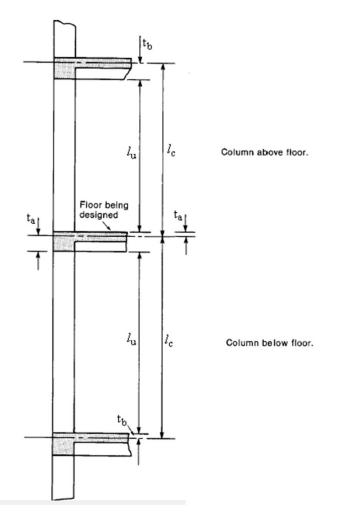
✤ Determination of I_{sb}

□ Stiffness of Equivalent Column K_{ec}


- Stiffness of equivalent column consists of stiffness of actual columns (above and below the slab) plus stiffness of torsional members.
- Mathematically,

$$\frac{1}{K_{ec}} = \frac{1}{\sum K_c} + \frac{1}{\sum K_t}$$
$$K_{ec} = \frac{\sum K_c \times \sum K_t}{\sum K_c + \sum K_t}$$

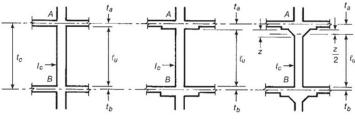
where;


 $\sum K_c$ = sum of flexural stiffnesses of columns above and below the slab.

 $\sum K_t$ = Torsional stiffness of attached torsional members

□ Stiffness of Equivalent Column K_{ec}

- General formula of flexural stiffness is given by K = kEI/I
- Design aids are available from which value of k can be readily obtained for different values of (t_a/t_b) and (I_u/I_c) .
- These design aids can be used if moment distribution method is used as method of analysis.



□ Stiffness of Equivalent Column K_{ec}

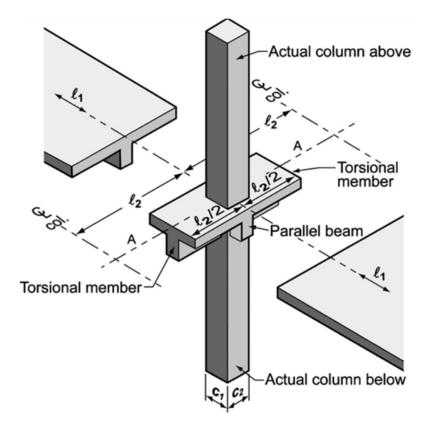
* Determination of k

	l_c/l_u									
t_a/t_b		1.05	1.10	1.15	1.20	1.25	1.30	1.35	1.40	1.45
0.00	k_{AB}	4.20	4.40	4.60	4.80	5.00	5.20	5.40	5.60	5.80
	C_{AB}	0.57	0.65	0.73	0.80	0.87	0.95	1.03	1.10	1.17
0.2	k_{AB}	4.31	4.62	4.95	5.30	5.65	6.02	6.40	6.79	7.20
	C_{AB}	0.56	0.62	0.68	0.74	0.80	0.85	0.91	0.96	1.01
0.4	k_{AB}	4.38	4.79	5.22	5.67	6.15	6.65	7.18	7.74	8.32
	C_{AB}	0.55	0.60	0.65	0.70	0.74	0.79	0.83	0.87	0.91
0.6	k_{AB}	4.44	4.91	5.42	5.96	6.54	7.15	7.81	8.50	9.23
	C_{AB}	0.55	0.59	0.63	0.67	0.70	0.74	0.77	0.80	0.83
0.8	k_{AB}	4.49	5.01	5.58	6.19	6.85	7.56	8.31	9.12	9.98
	C_{AB}	0.54	0.58	0.61	0.64	0.67	0.70	0.72	0.75	0.77
1.0	k_{AB}	4.52	5.09	5.71	6.38	7.11	7.89	8.73	9.63	10.60
	C_{AB}	0.54	0.57	0.60	0.62	0.65	0.67	0.69	0.71	0.73
1.2	k_{AB}	4.55	5.16	5.82	6.54	7.32	8.17	9.08	10.07	11.12
	C_{AB}	0.53	0.56	0.59	0.61	0.63	0.65	0.66	0.68	0.69
1.4	k_{AB}	4.58	5.21	5.91	6.68	7.51	8.41	9.38	10.43	11.57
	C_{AB}	0.53	0.55	0.58	0.60	0.61	0.63	0.64	0.65	0.66
1.6	k_{AB}	4.60	5.26	5.99	6.79	7.66	8.61	9.64	10.75	11.95
	C_{AB}	0.53	0.55	0.57	0.59	0.60	0.61	0.62	0.63	0.64
1.8	k_{AB}	4.62	5.30	6.06	6.89	7.80	8.79	9.87	11.03	12.29
	C_{AB}	0.52	0.55	0.56	0.58	0.59	0.60	0.61	0.61	0.62

Prof. Dr. Qaisar Ali

□ Stiffness of Equivalent Column K_{ec}

* Determination of k


					l _c	$/l_u$				
t_a/t_b		1.05	1.10	1.15	1.20	1.25	1.30	1.35	1.40	1.45
2.0	k_{AB}	4.63	5.34	6.12	6.98	7.92	8.94	10.06	11.27	12.59
	C_{AB}	0.52	0.54	0.56	0.57	0.58	0.59	0.59	0.60	0.60
2.2	k_{AB}	4.65	5.37	6.17	7.05	8.02	9.08	10.24	11.49	12.85
	C_{AB}	0.52	0.54	0.55	0.56	0.57	0.58	0.58	0.59	0.59
2.4	k_{AB}	4.66	5.40	6.22	7.12	8.11	9.20	10.39	11.68	13.08
	C_{AB}	0.52	0.53	0.55	0.56	0.56	0.57	0.57	0.58	0.58
2.6	k_{AB}	4.67	5.42	6.26	7.18	8.20	9.31	10.53	11.86	13.29
	C_{AB}	0.52	0.53	0.54	0.55	0.56	0.56	0.56	0.57	0.57
2.8	k_{AB}	4.68	5.44	6.29	7.23	8.27	9.41	10.66	12.01	13.48
	C_{AB}	0.52	0.53	0.54	0.55	0.55	0.55	0.56	0.56	0.56
3.0	k_{AB}	4.69	5.46	6.33	7.28	8.34	9.50	10.77	12.15	13.65
	C_{AB}	0.52	0.53	0.54	0.54	0.55	0.55	0.55	0.55	0.55
3.5	k_{AB}	4.71	5.50	6.40	7.39	8.48	9.69	11.01	12.46	14.02
	C_{AB}	0.51	0.52	0.53	0.53	0.54	0.54	0.54	0.53	0.53
4.0	k_{AB}	4.72	5.54	6.45	7.47	8.60	9.84	11.21	12.70	14.32
	C_{AB}	0.51	0.52	0.52	0.53	0.53	0.52	0.52	0.52	0.52
4.5	k_{AB}	4.73	5.56	6.50	7.54	8.69	9.97	11.37	12.89	14.57
	C_{AB}	0.51	0.52	0.52	0.52	0.52	0.52	0.51	0.51	0.51
5.0	k_{AB}	4.75	5.59	6.54	7.60	8.78	10.07	11.50	13.07	14.77
	C_{AB}	0.51	0.51	0.52	0.52	0.51	0.51	0.51	0.50	0.49
6.0	k_{AB}	4.76	5.63	6.60	7.69	8.90	10.24	11.72	13.33	15.10
	C_{AB}	0.51	0.51	0.51	0.51	0.50	0.50	0.49	0.49	0.48
7.0	k_{AB}	4.78	5.66	6.65	7.76	9.00	10.37	11.88	13.54	15.34
	C_{AB}	0.51	0.51	0.51	0.50	0.50	0.49	0.48	0.48	0.47
8.0	k_{AB}	4.78	5.68	6.69	7.82	9.07	10.47	12.01	13.70	15.54
	C_{AB}	0.51	0.51	0.50	0.50	0.49	0.49	0.48	0.47	0.46
9.0	k_{AB}	4.80	5.71	6.74	7.89	9.18	10.61	12.19	13.93	15.83
	C_{AB}	0.50	0.50	0.50	0.49	0.48	0.48	0.47	0.46	0.45
		Sour	ce: Reinforc	ed Concret	e Mechanic	s and Desig	n 6 th Ed. Pag	ie #1100		

Prof. Dr. Qaisar Ali

Stiffness of Torsional Member Kt

- Torsional members (transverse members) provide moment transfer between the slab-beams and the columns.
- Assumed to have constant cross-section throughout their length.

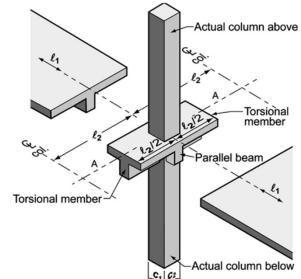
Prof. Dr. Qaisar Ali

General Stiffness of Torsional Member K_t

• The torsional stiffness K_t of the torsional member is given as:

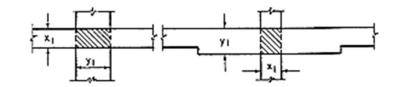
$$K_t = \sum \left[\frac{9E_{cs}C}{l_2 \left(1 - \frac{C_2}{l_2}\right)^3} \right]$$

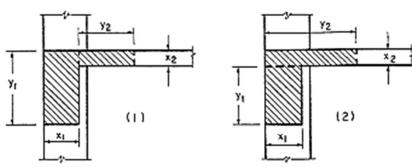
• If beams frame into the support in the direction of analysis, the torsional stiffness K_t needs to be increased.

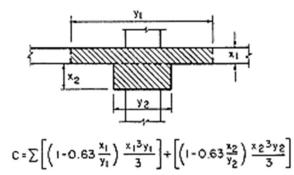

$$K_{ta} = \frac{K_t I_{sb}}{I_s}$$

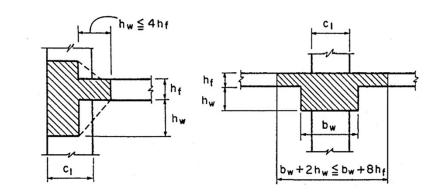
where;

 E_{cs} = modulus of elasticity of slab concrete;


 I_{sb} = I of slab with beam;


 $I_s = I$ of slab without beam = $I_2 h^3/12$


□ Stiffness of Torsional Member K_t


* Cross Sectional Constant C

Use larger value of C computed from (1) or (2)

Moment Distribution Method

- The original derivation of EFM assumed that moment distribution would be the procedure used to analyze the slabs.
- In lieu of computer software, moment distribution is a convenient hand calculation method for analyzing partial frames in the Equivalent Frame Method.
- Next slides discuss the application of Moment Distribution Method to complete the analysis using EFM.

Updated: Dec 09, 2023 Department of Civil Engineering, University of Engineering and Technology Peshawar, Pakistan

General

 K_{sb1}

K_{sb2}

 K_{ec}

Moment Distribution Method

- ***** Distribution Factors
 - i. Slab Beam Distribution Factors

$$DF_{2\to 1} = \frac{K_{sb1}}{K_{sb1} + K_{sb} + K_{ec}}$$

$$DF_{2\to3} = \frac{K_{sb}}{K_{sb1} + K_{sb} + K_{ec}}$$

 K_{sb1}

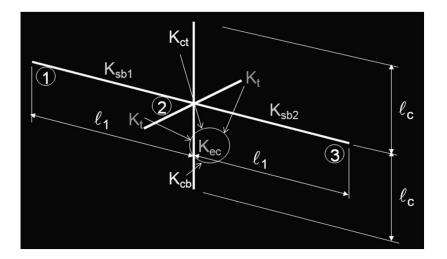
K_{sb2}

 K_{ec}

Moment Distribution Method

- ***** Distribution Factors
 - ii. Equivalent Column Distribution Factor

$$DF = \frac{K_{ec}}{K_{sb1} + K_{sb2} + K_{ec}}$$


Moment Distribution Method

- Distribution of Unbalanced Moments to Columns
- Portion of Unbalanced Moment from Beam to Upper Column

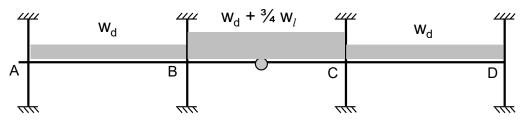
$$DF_{uc} = \frac{K_{ct}}{K_{cb} + K_{ct}}$$

- Portion of Unbalanced Moment from Beam to Lower Column

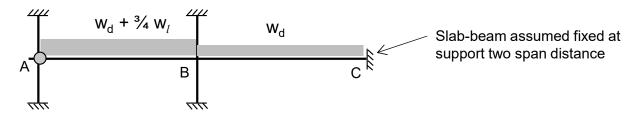
$$DF_{lc} = \frac{K_{cb}}{K_{cb} + K_{ct}}$$


□ Arrangement of Live Loads

- ACI 8.11.1 states that when the loading pattern is known, the equivalent frame shall be analyzed for that load.
- When $LL \leq 0.75DL$
 - Maximum factored moment when Full factored LL on all spans
- Other cases
 - Pattern live loading using 0.75 (Factored LL) to determine maximum factored moment.


Prof. Dr. Qaisar Ali

□ Arrangement of Live Loads


(2) Loading pattern for positive design moment in span AB'

(3) Loading pattern for positive design moment in span BC'

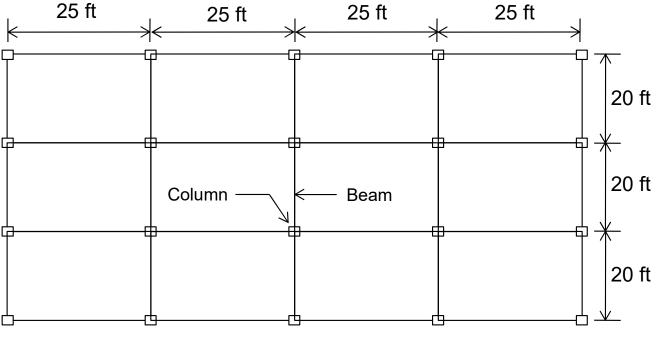
□ Arrangement of Live Loads

(4) Loading pattern for negative design moment at support A'

(5) Loading pattern for negative design moment at support B'

□ Summary of Analysis Steps in EFM

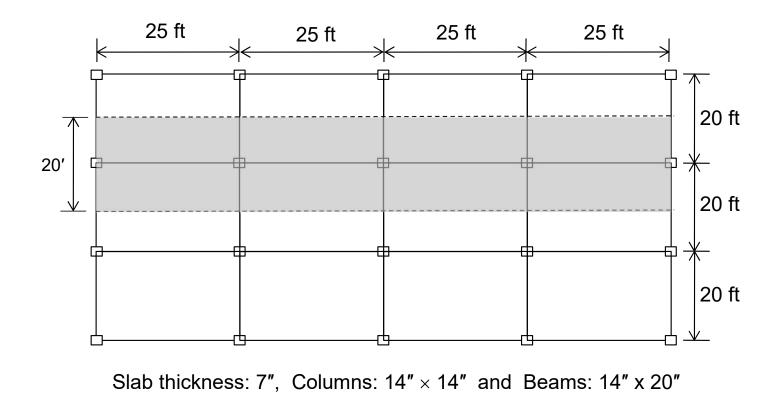
- > Extract the 3D frame from the 3D structure.
- > Extract a story from 3D frame for gravity load analysis.
- > Identify EF members i.e., slab beam, torsional member and columns.
- > Find stiffness (kEI/I) of each EF member using tables.
- Assign stiffnesses of each EF member to its corresponding 2D frame member.


□ Summary of Analysis Steps in EFM

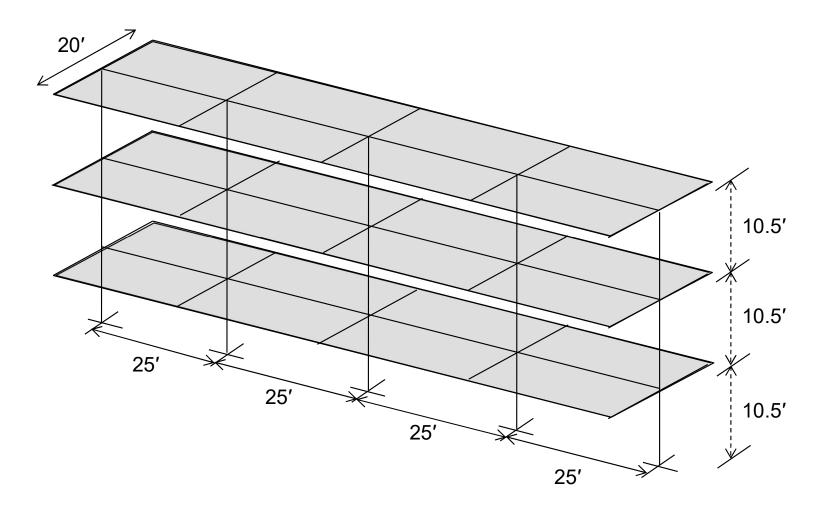
- Analyze the obtained 2D frame using Moment Distribution method of analysis to get longitudinal moments based on center-to-center span.
- Distribute slab-beam longitudinal moment laterally using lateral distribution procedures of DDM.
- > Slab analysis can be done using DDM.

Problem Statement

Analyze the building whose typical floor is shown below, using Equivalent Frame Method.



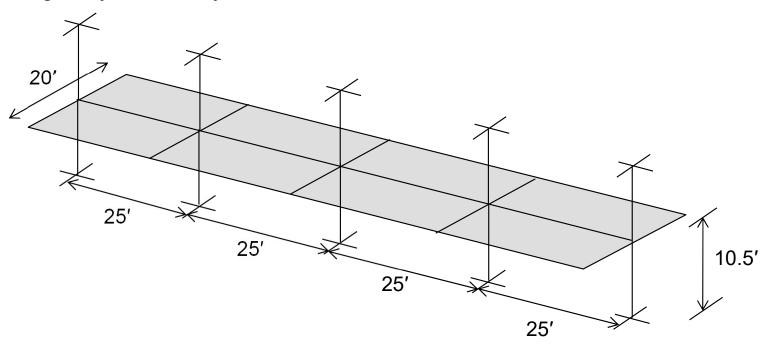
Slab thickness: 7", Columns: $14" \times 14"$ and Beams: $14" \times 20"$


□ Solution

> Step 1: 3D Frame Selection

□ Solution

> Step 2: 3D Frame Extraction



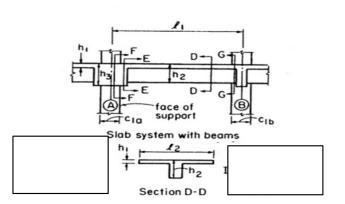
□ Solution

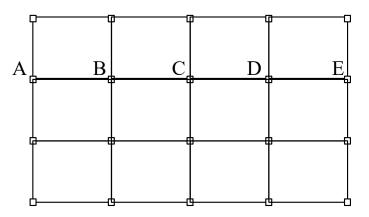
> Step 3: Extraction of Single Story from 3D frame

 According to ACI 8.11.2.5, it shall be permitted to assume that the far ends of columns built integrally with the structure are considered to be fixed for gravity load analysis.

Frame Extracted from at Intermediate Story

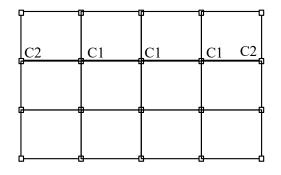
Prof. Dr. Qaisar Ali




□ Solution

> Step 4: Calculation of Stiffnesses

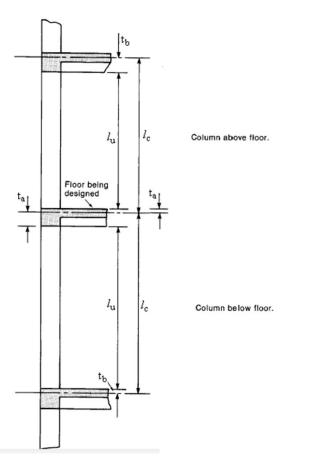
	Slab beam stiffness (K _{sb})									
Span	I_1 and c_1 I_2 and c_2 c_1/I_1 c_2/I_2 k I_{sb} $K_{sb}=kEI_{sb}/I_1$									
AB	25' & 14" 20' and 14" 0.0467 0.058 4.051 25844 349E									
	The remaining spans will have the same values as the geometry is same. Table A-20 (Reinforced concrete: Mechanics and Design, 3 rd Ed)									



□ Solution

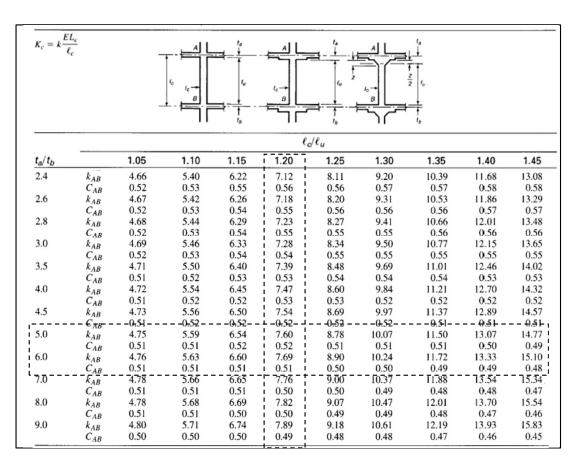
- > Step 4: Calculation of Stiffnesses
 - ii. Equivalent Column Stiffness Calculation

$$\frac{1}{K_{ec}} = \frac{1}{\sum K_c} + \frac{1}{\sum K_t}$$



Calculation of K _t									
Column location	l ₂	с ₂	C = ∑ (1 – 0.63x/y)x³y/3 (in⁴)	$K_{t} = \sum 9E_{cs}C/\{I_{2}(1 - c_{2}/I_{2})^{3}\}$					
C2	20′	14"	11208	3792.63E _{cs}					
C1	20′	14"	12190	4295.98E _{cs}					

□ Solution


- > Step 4: Calculation of Stiffnesses
 - ii. Equivalent Column Stiffness Calculation

□ Solution

- Step 4: Calculation of Stiffnesses
 - ii. Equivalent Column Stiffness Calculation

Prof. Dr. Qaisar Ali

□ Solution

Step 4: Calculation of Stiffnesses

ii. Equivalent Column Stiffness Calculation

$$\frac{1}{K_{ec}} = \frac{1}{\sum K_c} + \frac{1}{\sum K_t}$$

	Calculation of ∑K _c for Column C2											
Column location	I _c	l _u	I _c / I _u	I _c (in ⁴) 14″ × 14″ column	t _a /t _b	k _{AB}	$K_c = k(EI_c/I_c)$					
C2 (bottom)	10.5′ (126″)	106″	1.20	14 × 14 ³ /12 = 3201	16.5/3.5 = 4.71	7.57	192E _{cc}					
C2 (top)	10.5′ (126″)	106″	1.20	14 × 14 ³ /12 = 3201	3.5/16.5= 0.21	5.3	135E _{cc}					
	$\Sigma K_c = 192E_{cc} + 135E_{cc} = 327E_{cc}$											

□ Solution

> Step 4: Calculation of Stiffnesses

ii. Equivalent Column Stiffness Calculation

$$\frac{1}{K_{ec}} = \frac{1}{\sum K_c} + \frac{1}{\sum K_t}$$

	Calculation of ∑K _c for Column C1											
Column location	I _c	l _u	I _c / I _u	l _c (in ⁴) 14″ × 14″ column	t _a /t _b	k _{AB}	$K_c = k(EI_c/I_c)$					
C1 (bottom)	10.5′ (126″)	106″	126/106 ≈ 1.20	14 × 14 ³ /12 = 3201	16.5/3.5 = 4.71	7.57	192E _{cc}					
C1 (top)	10.5′ (126″)	106″	126/106 ≈ 1.20	14 × 14³/12 = 3201	3.5/16.5= 0.21	5.3	135E _{cc}					
	$\Sigma K_c = 192E_{cc} + 135E_{cc} = 327E_{cc}$											

□ Solution

> Step 4: Calculation of Stiffnesses

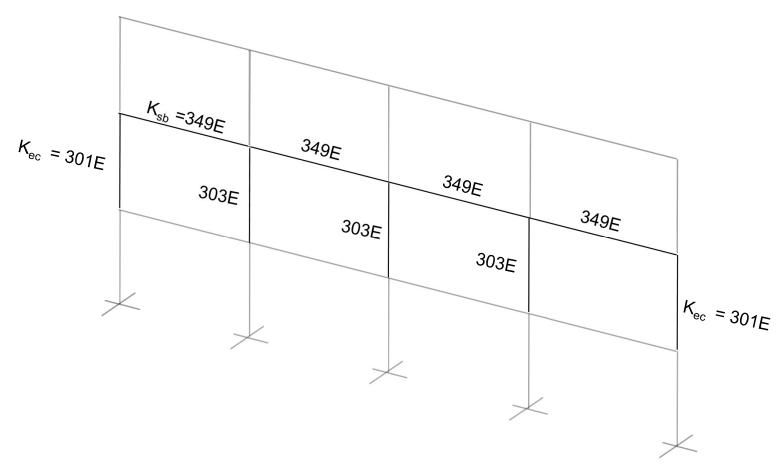
ii. Equivalent Column Stiffness Calculation

For column C2 (exterior column), we have

$$\frac{1}{K_{ec}} = \frac{1}{\sum K_c} + \frac{1}{\sum K_t} = \frac{1}{327E_{cc}} + \frac{1}{3792.63E_{cs}}$$

Because the slab and the columns have the same strength concrete, $E_{cc} = E_{cs} = E_{c}$. Therefore,

 $K_{ec} = 301 E_c$


Similarly, for column C1 (interior column), we get

$$\frac{1}{K_{ec}} = \frac{1}{\sum K_c} + \frac{1}{\sum K_t} = \frac{1}{327E_{cc}} + \frac{1}{4295.98E_{cs}}; \quad K_{ec} = 303E_c$$

Prof. Dr. Qaisar Ali

- > Step 4: Calculation of Stiffnesses
 - ii. Equivalent Column Stiffness Calculation

- > Step 4: Calculation of Stiffnesses
 - ii. Equivalent Column Stiffness Calculation
 - As the ground story is same as 1st one, therefore the stiffness calculated shall also be assigned to ground story.
 - For the top story, the slab beam stiffness will be same as lower stories. However, the equivalent stiffness of the top story column is computed next.

- > Step 4: Calculation of Stiffnesses
 - ii. Equivalent Column Stiffness Calculation

	Calculation of $\sum K_c$ for Column C2 (Top Story)											
Column location	I _c	l _u	I _c / I _u	l _c (in ⁴) 14″ × 14″ column	t _a /t _b	k _{AB}	$K_c = k(EI_c/I_c)$					
C2 (bottom)	10.5′ (126″)	100″	126/106 ≈ 1.20	14 × 14 ³ /12 = 3201	16.5/3.5 = 4.71	7.57	192E _{cc}					
	$\Sigma K_c = 192E_{cc}$ Similarly for interior column, $\Sigma K_c = 192E_{cc}$											

□ Solution

- > Step 4: Calculation of Stiffnesses
 - ii. Equivalent Column Stiffness Calculation

For column C2, we have

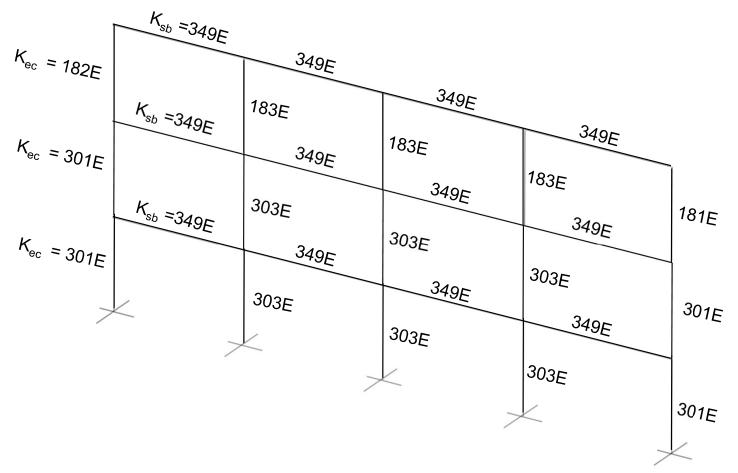
$$\frac{1}{K_{ec}} = \frac{1}{\sum K_c} + \frac{1}{\sum K_t} = \frac{1}{192E_{cc}} + \frac{1}{3792.63E_{cs}}$$

Because the slab and the columns have the same strength concrete, $E_{cc} = E_{cs} = E_{c}$. Therefore,

 $K_{ec} = 182E_c$

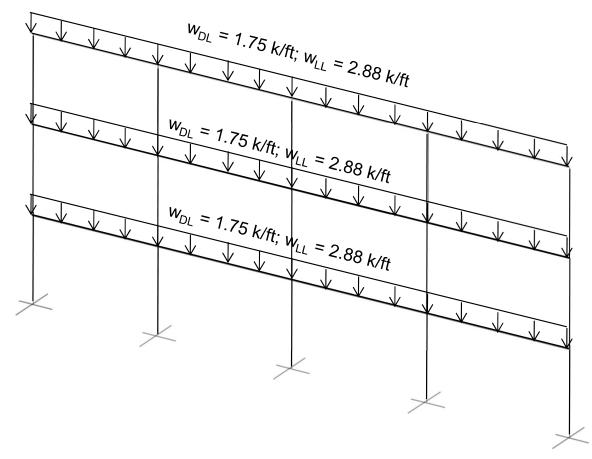
Similarly, for column C1, we get

$$\frac{1}{K_{ec}} = \frac{1}{\sum K_c} + \frac{1}{\sum K_t} = \frac{1}{92E_{cc}} + \frac{1}{4295.98E_{cs}}; \quad K_{ec} = 183E_c$$


Prof. Dr. Qaisar Ali

□ Solution

> Step 4: Calculation of Stiffness


* Equivalent Frame

□ Solution

> Step 5: Frame Analysis Using Moment Distribution Method

Load on frame for Bending Analysis:

As the horizontal frame element represents slab beam, load is computed by multiplying slab load with width of frame

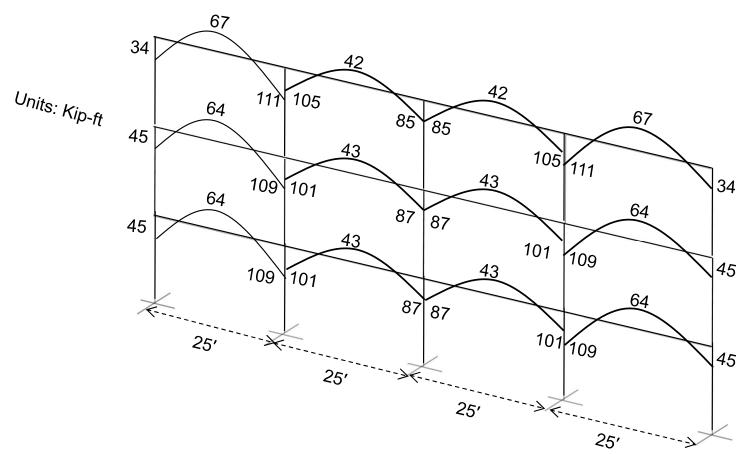
 $w_{DL} = 0.0875 \times 20 = 1.75 \text{ kip/ft}$ $w_{LL} = 0.144 \times 20 = 2.88 \text{ kip/ft}$

□ Solution

> Step 5: Frame Analysis Using Moment Distribution Method

Analysis Results for Dead Loads (interior story).

Joint		А			в			с			D			E	
CarryOver			0.5	034		0.5	034		0.5	034		0.5	034		
DF	0.000	0.463	0.537	0.348	0.303	0.348	0.348	0.303	0.348	0.348	0.303	0.348	0.537	0.463	0.000
	Slab	Column	Slab	Slab	Column	Slab	Slab	Column	Slab	Slab	Column	Slab	Slab	Column	Slab
FEM	0.000	0.000	91.802	-91.802	0.000	91.802	-91.802	0.000	91.802	-91.802	0.000	91.802	-91.802	0.000	0.000
Bal	0.000	-42.532	-49.270	/0.000	0.000	0.000	/0.000	0.000	0.000	/ 0.000	0.000	0.000	/49.270	42.532	0.000
Carry over			0.000	-24.804		0.000⊭	0.000		0.000	0.000		24.804	[™] 0.000		
Bal	0.000	0.000	0.000	8.638	7.527	8.638	/0.000	0.000	0.000	/-8.638	-7.527	-8.638	/0.000	0.000	0.000
Carry over			4.349⊭	0.000		0.000	4.349		-4.349	⁵ 4 0.000		0.000	-4.349		
Bal	0.000	-2.015	-2.334	/ 0.000	0.000	0.000	/0.000	0.000	0.000	/ 0.000	0.000	0.000	/2.334	2.015	0.000
Carry over			0.0004	-1.175		0.000	[™] 0.000		0.000	0.000		1.175	[™] 0.000		
Bal	0.000	0.000	0.000	/0.409	0.357	0.409	/ 0.000	0.000	0.000	/-0.409	-0.357	-0.409	/ 0.000	0.000	0.000
Carry over			0.206	0.000		0.000	0.206		-0.206	0.000		0.000	-0.206		
Bal	0.000	-0.095	-0.111	/0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	/ 0.111	0.095	0.000
Carry over			0.000	-0.056		0.000	0.000		0.000	0.000		0.056	[™] 0.000		
Bal	0.000	0.000	0.000	/0.019	0.017	0.019	/0.000	0.000	0.000	/-0.019	-0.017	-0.019	/0.000	0.000	0.000
Carry over			0.010	0.000		0.000⊭	0.010		-0.010	0.000		0.000	-0.010		
Bal	0.000	-0.005	-0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.005	0.000
Carry over			0.000	-0.003		0.000	0.000		0.000	0.000		0.003	0.000		
Bal	0.000	0.000	0.000	0.001	0.001	0.001	0.000	0.000	0.000	-0.001	-0.001	-0.001	0.000	0.000	0.000
Carry over			0.000	0.000		0.000	0.000		0.000	0.000		0.000	0.000		
Bal	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Carry over			0.000	0.000		0.000	0.000		0.000	0.000		0.000	0.000		
Bal	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Carry over			0.000	0.000		0.000	0.000		0.000	0.000		0.000	0.000		
Bal	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Total	0.000	-44.647	44.647	-108.771	7.901	100.870	-87.237	0.000	87.237	-100.870	-7.901	108.771	-44.647	44.647	0.000


□ Solution

- > Step 5: Frame Analysis Using Moment Distribution Method
 - Analysis Results for Dead Loads (top storey).

Joint		A			В			с			D			E	
CarryOver			0.5	034		0.5	034		0.5	034		0.5	034		
DF	0.000	0.344	0.656	0.396	0.209	0.396	0.396	0.209	0.396	0.396	0.209	0.396	0.656	0.344	0.000
	Slab	Column	Slab	Slab	Column	Slab	Slab	Column	Slab	Slab	Column	Slab	Slab	Column	Slab
FEM	0.000	0.000	91.802	-91.802	0.000	91.802	-91.802	0.000	91.802	-91.802	0.000	91.802	-91.802	0.000	0.000
Bal	0.000	-31.611	-60.191	/0.000	0.000	0.000	/0.000	0.000	0.000	/ 0.000	0.000	0.000	60.191	31.611	0.000
Carry over			0.000	-30.301		0.000⊭	0.000		0.000	0.000		30.301	⁵ 4 0.000		
Bal	0.000	0.000	0.000	/11.985	6.330	11.985	/0.000	0.000	0.000	/-11.985	-6.330	-11.985	/0.000	0.000	0.000
Carry over			6.034	0.000		0.000	6.034		-6.034	0.000		0.000	-6.034		
Bal	0.000	-2.078	-3.956	/ 0.000	0.000	0.000	/0.000	0.000	0.000	/ 0.000	0.000	0.000	/ 3.956	2.078	0.000
Carry over			0.000	-1.992		0.000	[™] 0.000		0.000	0.000		1.992	× 0.000		
Bal	0.000	0.000	0.000	/0.788	0.416	0.788	/0.000	0.000	0.000	/-0.788	-0.416	-0.788	/ 0.000	0.000	0.000
Carry over			0.397	× 0.000		0.000	0.397		-0.397	0.000		0.000	× -0.397		
Bal	0.000	-0.137	-0.260	/0.000	0.000	0.000	/0.000	0.000	0.000	/ 0.000	0.000	0.000	/0.260	0.137	0.000
Carry over			0.000	-0.131		0.000	0.000		0.000	0.000		0.131	[™] 0.000		
Bal	0.000	0.000	0.000	/0.052	0.027	0.052	/0.000	0.000	0.000	/-0.052	-0.027	-0.052	/0.000	0.000	0.000
Carry over			0.026	[™] 0.000		0.000⊭	0.026		-0.026	0.000		0.000	-0.026		
Bal	0.000	-0.009	-0.017	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.017	0.009	0.000
Carry over			0.000	-0.009		0.000	0.000		0.000	0.000		0.009	0.000		
Bal	0.000	0.000	0.000	0.003	0.002	0.003	0.000	0.000	0.000	-0.003	-0.002	-0.003	0.000	0.000	0.000
Carry over			0.002	0.000		0.000	0.002		-0.002	0.000		0.000	-0.002		
Bal	0.000	-0.001	-0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.000
Carry over			0.000	-0.001		0.000	0.000		0.000	0.000		0.001	0.000		
Bal	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Carry over			0.000	0.000		0.000	0.000		0.000	0.000		0.000	0.000		
Bal	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Total	0.000	-33.835	33.835	-111.406	6.776	104.631	-85.344	0.000	85.344	-104.631	-6.776	111.406	-33.835	33.835	0.000

- > Step 5: Frame Analysis Using Moment Distribution Method
 - * Analysis Results for Dead Loads (values at centerline).

- > Step 5: Frame Analysis Using Moment Distribution Method
 - Analysis Results for Dead Loads

	E-W Interior Frame Analysis (Top Story)										
Length	Longitudinal moment section	Longitudinal moments (LM)	Column Strip Moment %age factor (Graph A4)	Column Strip slab Moment (CSSM) = 0.15CSM	Column strip Beam Moment (BM)= 0.85CSM	Middle Strip slab Moment					
	Ext -	34	0.93	5	27	2.38					
25′-0″ (Exterior)	+	67	0.8	8	46	13.4					
()	Int -	111	0.8	13	75	22.2					
	-	105	0.8	13	71	21					
25'-0" (Interior)	+	42	0.8	5	29	8.4					
	-	85	0.8	10	58	17					

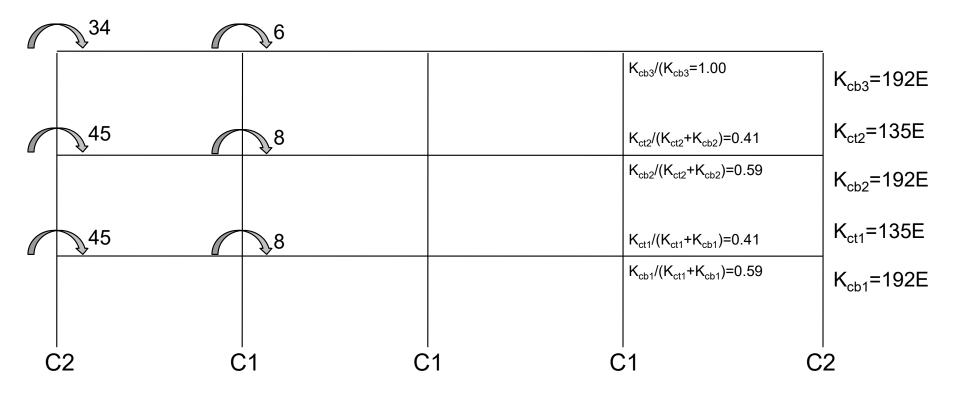
- > Step 5: Frame Analysis Using Moment Distribution Method
 - Analysis Results for Dead Loads

E-W Interior Frame Analysis (Intermediate Story)										
Length	Longitudinal moment section	Longitudinal moments (LM)	Column Strip Moment %age factor (Graph A4)	Column Strip slab Moment (CSSM) = 0.15CSM	Column strip Beam Moment (BM)= 0.85CSM	Middle Strip slab Moment				
	Ext -	45	0.93	6	36	3.15				
25′-0″ (Exterior)	+	64	0.8	8	44	12.8				
(Int-	109	0.8	13	74	21.8				
	-	101	0.8	12	69	20.2				
25'-0" (Interior)	+	43	0.8	5	29	8.6				
	-	87	0.8	10	59	17.4				

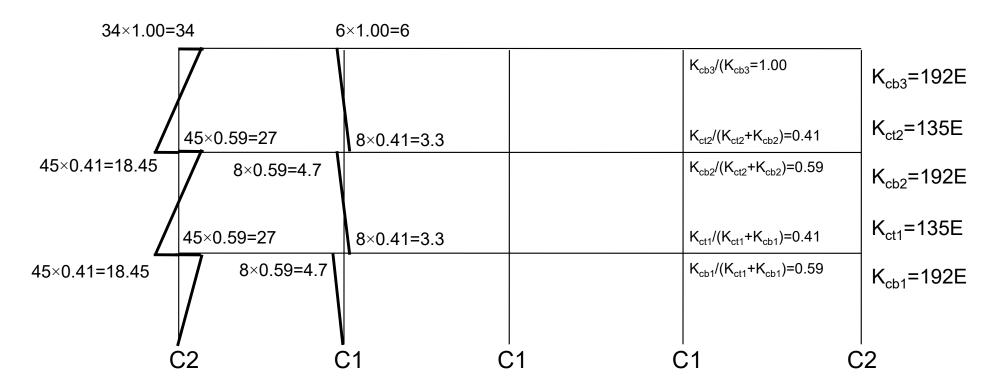
□ Solution

- > Step 5: Frame Analysis Using Moment Distribution Method
 - ✤ Analysis Results for Dead Loads
 - Analysis of columns for DL (factors for moment distribution)

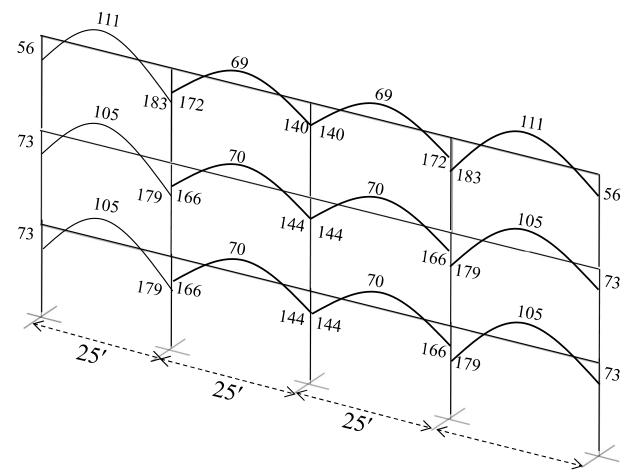
The computed unbalanced longitudinal moments shall be transferred to columns and shall be distributed to top and bottom columns as follows:


$$DF_{uc} = \frac{K_{ct}}{K_{cb} + K_{ct}}$$
 (Portion of unbalanced moment to upper column)

$$DF_{uc} = \frac{K_{cb}}{K_{cb} + K_{ct}}$$
 (Portion of unbalanced moment to lower column)


Solution

- > Step 5: Frame Analysis Using Moment Distribution Method
 - * Analysis Results for Dead Loads
 - Analysis of columns for DL (factors for moment distribution)



- > Step 5: Frame Analysis Using Moment Distribution Method
 - Analysis Results for Dead Loads
 - Analysis of columns for DL

- > Step 5: Frame Analysis Using Moment Distribution Method
 - ✤ Analysis Results for Live Loads

- > Step 5: Frame Analysis Using Moment Distribution Method
 - ✤ Analysis Results for Live Loads
 - Distribution of Moments to Slab and Beam

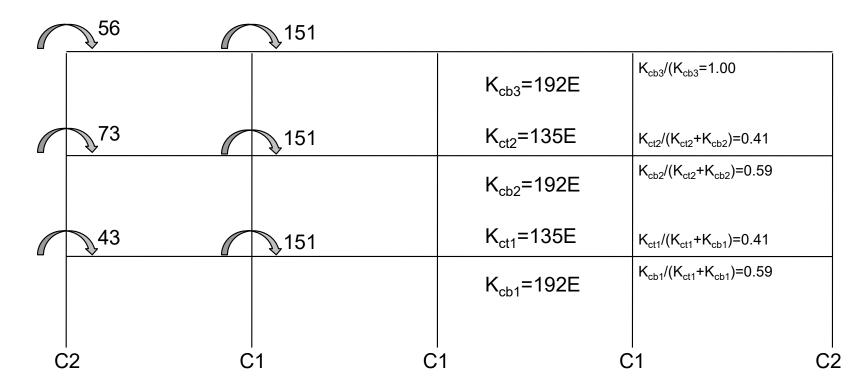
E-W Interior Frame Analysis (Top Story)										
Length	Longitudinal moment section	Longitudinal moments (LM)	Column Strip Moment %age factor (Graph A4)	Column Strip slab Moment (CSSM) = 0.15CSM	Column strip Beam Moment (BM)= 0.85CSM	Middle Strip slab Moment				
	Ext -	56	0.93	7.8	44	3.92				
25′-0″ (Exterior)	+	111	0.8	13.3	75	22.2				
()	Int-	183	0.8	22.0	124	36.6				
	-	172	0.8	20.6	117	34.4				
25'-0" (Interior)	+	69	0.8	8.3	47	13.8				
	-	140	0.8	16.8	95	28				

- > Step 5: Frame Analysis Using Moment Distribution Method
 - ✤ Analysis Results for Live Loads
 - Distribution of Moments to Slab and Beam

E-W Interior Frame Analysis (Interior Story)										
Length	Longitudinal moment section	Longitudinal moments (LM)	Column Strip Moment %age factor (Graph A4)	Column Strip slab Moment (CSSM) = 0.15CSM	Column strip Beam Moment (BM)= 0.85CSM	Middle Strip slab Moment				
	Ext -	73	0.93	10.2	58	5.11				
25′-0″ (Exterior)	+	105	0.8	12.6	71	21				
	Int -	179	0.8	21.5	122	35.8				
	-	166	0.8	19.9	113	33.2				
25'-0" (Interior)	+	70	0.8	8.4	48	14				
(interior)	-	144	0.8	17.3	98	28.8				

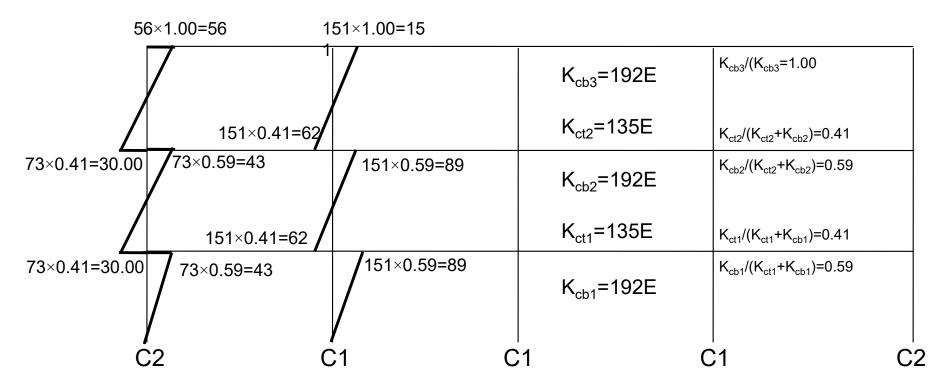
□ Solution

- > Step 5: Frame Analysis Using Moment Distribution Method
 - ✤ Analysis Results for Live Loads
 - Analysis of columns for LL (factors for moment distribution)


The computed unbalanced longitudinal moments shall be transferred to columns and shall be distributed to top and bottom columns as follows:

$$DF_{uc} = \frac{K_{ct}}{K_{cb} + K_{ct}}$$
 (Portion of unbalanced moment to upper column)

$$DF_{uc} = \frac{K_{cb}}{K_{cb} + K_{ct}}$$
 (Portion of unbalanced moment to lower column)

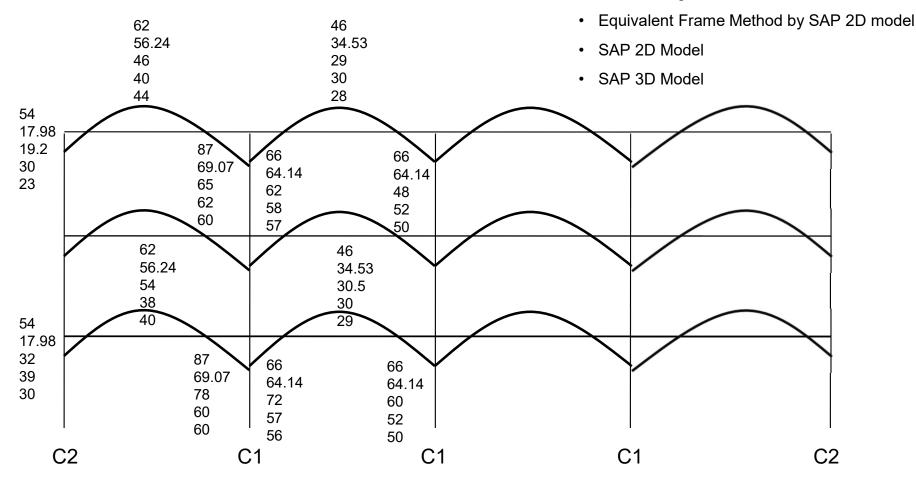


- > Step 5: Frame Analysis Using Moment Distribution Method
 - ✤ Analysis Results for Live Loads
 - Analysis of columns for LL (factors for moment distribution)

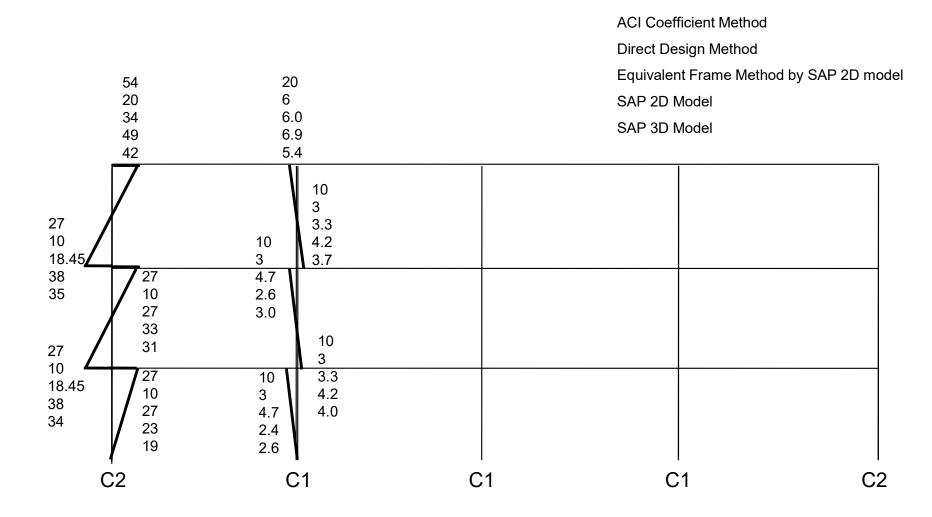
- > Step 5: Frame Analysis Using Moment Distribution Method
 - ✤ Analysis Results for Live Loads
 - Analysis of columns for LL (factors for moment distribution)

Updated: Dec 09, 2023 Department of Civil Engineering, University of Engineering and Technology Peshawar, Pakistan

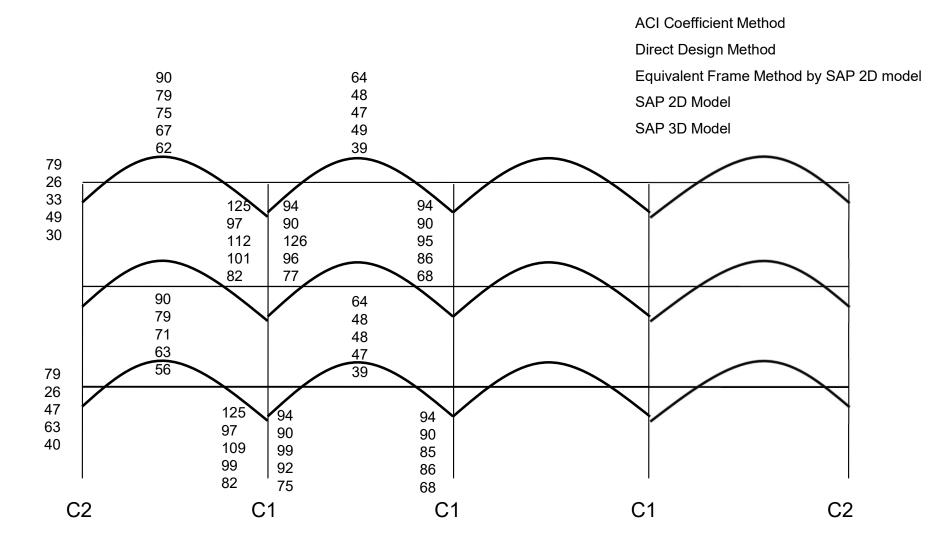
Case Study


Comparison of the Results of EFM, ACI Coefficient Method, DDM & SAP 2D Model with respect to SAP2000 3D Line Model

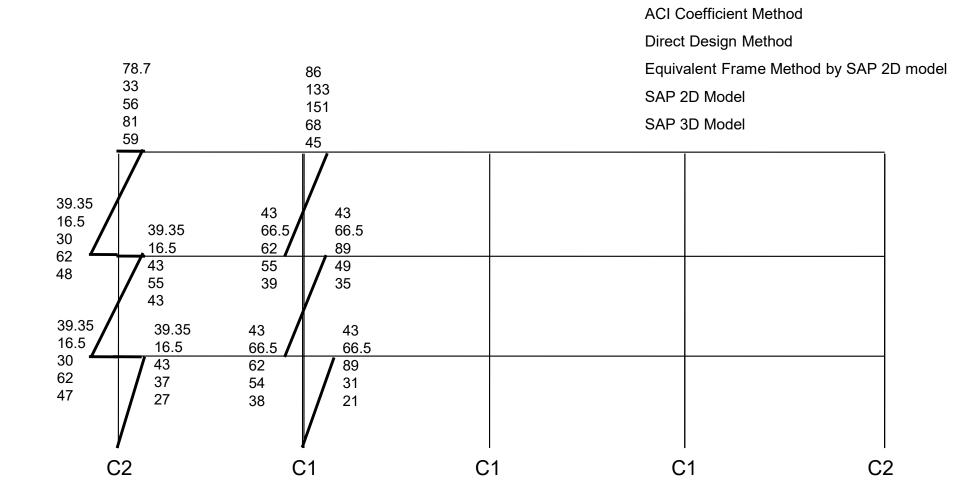
Prof. Dr. Qaisar Ali


Dead Load Bending Moment in Beams

- ACI Coefficient Method
- Direct Design Method



Dead Load Bending Moment in Columns



□ Live Load Bending Moment in Beams

Prof. Dr. Qaisar Ali

□ Live Load Bending Moment in Columns

□ Introduction

- Most RC structures are designed using following approach:
 - Moments, shears, and axial forces in RC structures are found by elastic theory.
 - The actual proportioning of members is done by strength methods, in which inelastic section and member response is considered.
- Although this design approach is safe and conservative but is inconsistent to total analysis-design process.

Redistribution

- A frame normally will not fail when the nominal moment capacity of just one critical section is reached:
 - A plastic hinge will form at that section.
 - Large rotation at constant resisting moment will occur.
 - Load transfer to other locations (having more capacity) along the span will occur.
 - On further increase in load, additional plastic hinges may form at other locations along the span.
 - As a result, structure will collapse, but only after a significant redistribution of moments.

□ Redistribution

- Full use of the plastic capacity of reinforced concrete beams and frames requires an extensive analysis of all possible mechanisms and an investigation of rotation requirements and capacities at all proposed hinge locations.
- On the other hand, a restricted amount of redistribution of elastic moments can safely be made without complete analysis yet may be sufficient to obtain most of the advantages of limit analysis.

Redistribution of Moments in Continuous Flexural Members

• A limited amount of redistribution is permitted by ACI Code 6.6.5. depending upon a rough measure of available ductility, without explicit calculation of rotation requirements and capacities.

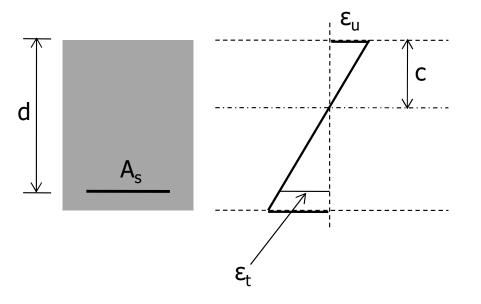
Redistribution of Negative Moments in Continuous Flexural Members

- The net tensile strain in the extreme tension steel at nominal strength ϵ_t given in eq. below, is used as an indicator of rotation capacity.
- The ACI Code Section 6.6.5 states "except where approximate values for moments are used, it shall be permitted to increase or decrease negative moments calculated by elastic theory at supports of continuous flexural members for any assumed loading arrangement by not more than $1000\varepsilon_t$ percent, with a maximum of 20 percent".

$$\varepsilon_t = \frac{\epsilon_u (d-c)}{c}$$

Prof. Dr. Qaisar Ali

Redistribution of Negative Moments in Continuous Flexural Members


$$\varepsilon_{t} = \varepsilon_{u}(d - c)/c)$$

$$\varepsilon_{u} = 0.003$$

As example, for given A_s if:

$$d = 16.5'' ; c = 4''$$

$$\varepsilon_{t} = 0.009$$

$$1000\varepsilon_{\rm t} = 9 \% < 20 \%$$

Redistribution of Negative Moments in Continuous Flexural Members

• Graphical representation of ACI code provision

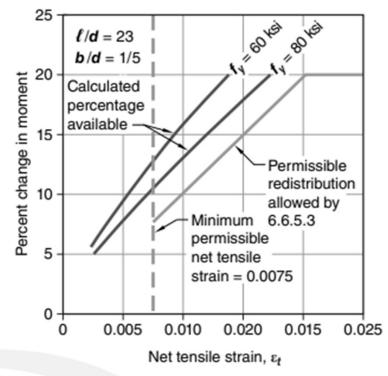
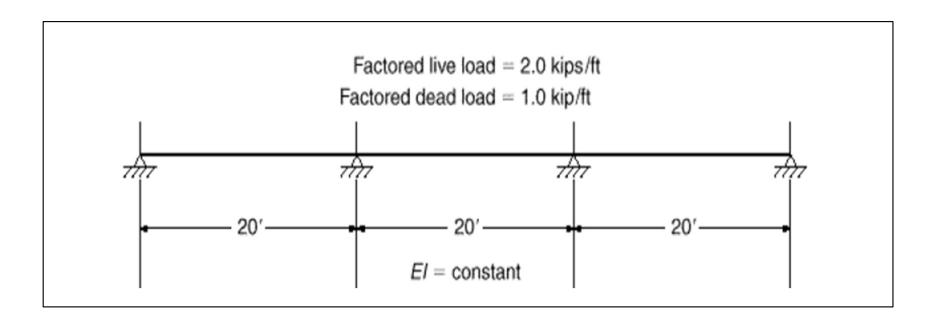
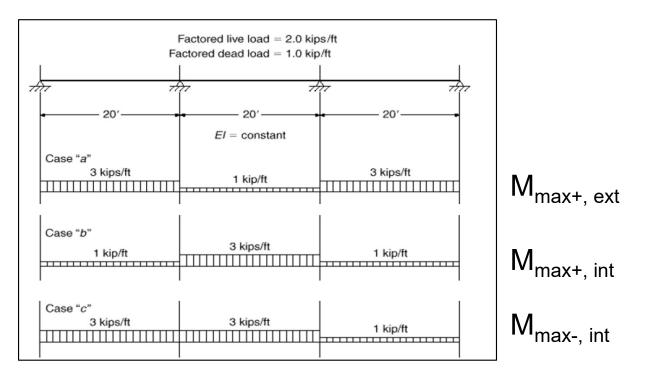


Fig. R6.6.5—Permissible redistribution of moments for minimum rotation capacity.


Redistribution of Negative Moments in Continuous Flexural Members

- The modified negative moments shall be used for calculating moments at sections within the spans.
- Redistribution of negative moments shall be made only when ε_t is equal to or greater than 0.0075 at the section at which moment is reduced (ACI 6.6.5.1).

Problem Statement

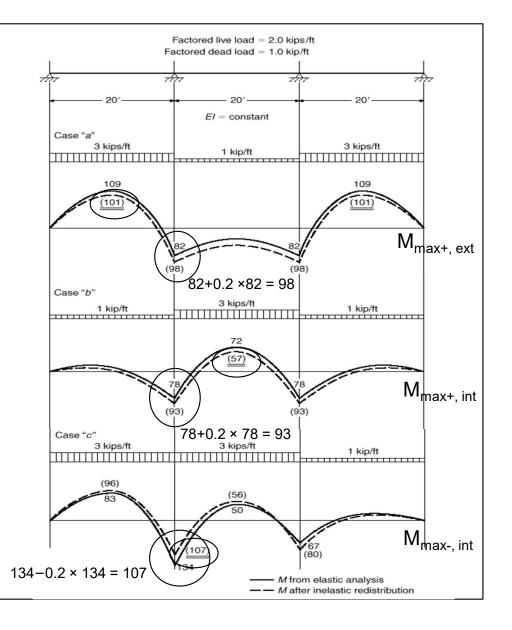

• For the beam shown, find moment redistribution.

□ Solution

- To obtain maximum moments at all critical design sections. it is necessary to consider three alternative loadings.
- It will be assumed that 20 % adjustment of support moment is permitted throughout.

□ Solution

Decrease in exterior positive moment:


If negative moment is increased 20 %, the result is decrease in $M_{max+,ext}$ from 109 to 101

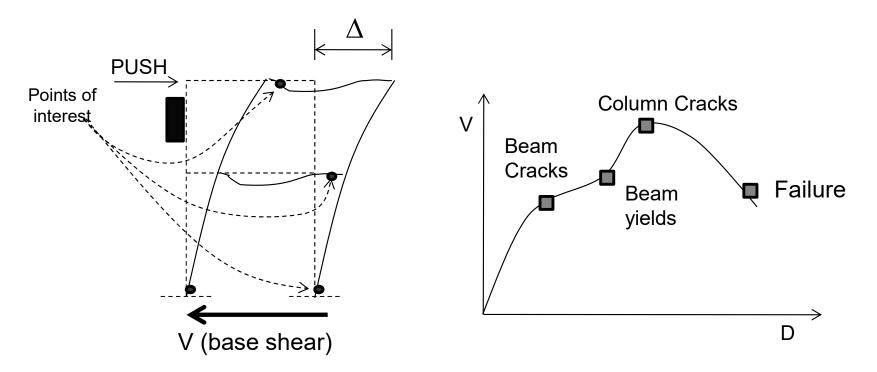
Decrease in interior positive moment:

If negative moment is increased 20 %,the result is decrease in $M_{max+,int}$ from 72 to 57

Decrease in interior negative moment:

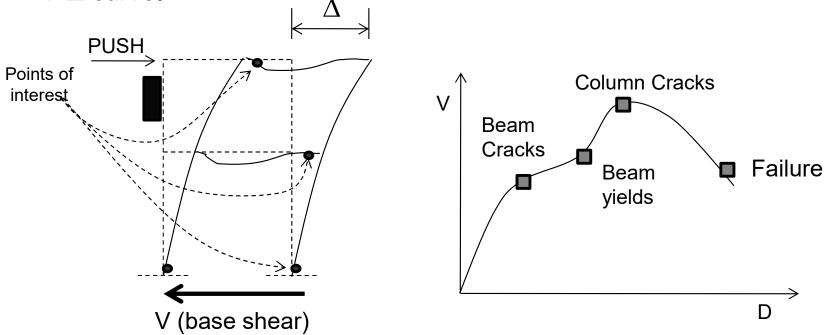
If negative moment is decreased 20 %, positive moments increase in both spans.

Conclusion on Redistribution of Moments


- The net result is a reduction in design moments over the entire beam.
- This modification of moments does not mean a reduction in safety factor below that implied in code safety provisions; rather, it means a reduction of the excess strength that would otherwise be present in the structure because of the actual redistribution of moments that would occur before failure.
- It reflects the fact that the maximum design moments are obtained from alternative load patterns, which could not exist concurrently.
- The result is a more realistic appraisal of the actual collapse load of the indeterminate structure.

Plastic Analysis

Non-Linear Static (Pushover) Analysis


- Points on the structure whose performance (when it yields, cracks or fails) is required to be monitored are selected.
- The structure is pushed at the top.

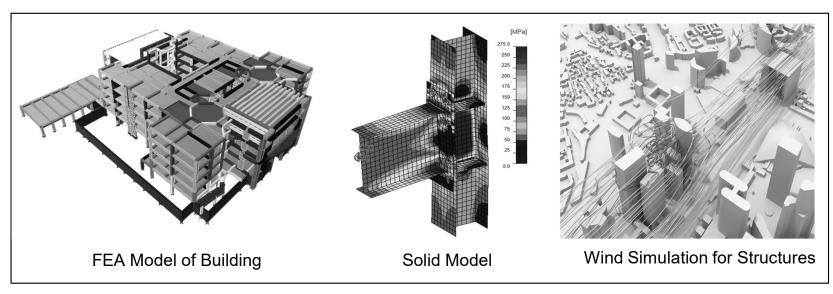
Plastic Analysis

Non-Linear Static (Pushover) Analysis


- Top Drift (D) and corresponding base-shear (V) is calculated and plotted on V-Δ curve.
- Structure is further pushed in steps and V- Δ curve is plotted. Also, performance of the selected points is monitored and marked on the V- Δ curve.

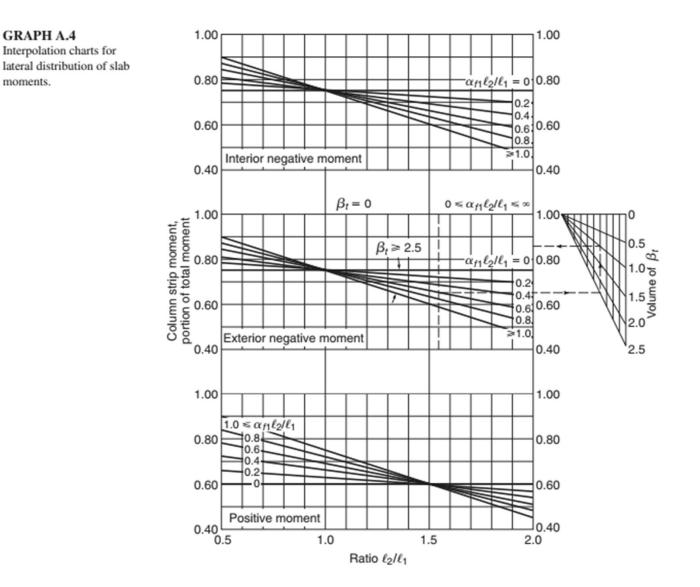
Plastic Analysis

Non-Linear Static (Pushover) Analysis


- Therefore, a single chart that shows the performance of the whole structure (or separate charts for all points of interests) is obtained.
- These charts can be used to identify points where the strengthening of structure is required (i.e points that fail or start to fail in the start of the curve).

Modern Analysis Tools

- In earlier times, structural analysis was largely limited to simplified models and manual calculations, focusing primarily on static loads and linear elastic behavior.
- Today, modern tools can perform analysis with full nonlinear material and geometric behavior from the elastic to plastic stages including cracking, buckling, post-buckling, P-Delta effects, contact, complete element separation, collision, and effects of falling debris.


References

- Reinforced Concrete Mechanics and Design (7th Ed.) by James MacGregor.
- Design of Concrete Structures 14th / 15th edition by Nilson, Darwin and Dolan.
- Building Code Requirements for Structural Concrete (ACI 318-19)
- Portland Cement Association (PCA 2002)

Updated: Dec 09, 2023 Department of Civil Engineering, University of Engineering and Technology Peshawar, Pakistan

Source: Design of Concrete Structures 14th / 15th edition by Nilson, Darwin and Dolan.

Prof. Dr. Qaisar Ali