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Motivation

Definition: Event

“Something that happens at a given
place and time between a group of
actors.” [CSG+02]

For large document collections,
how can we...

• obtain events from unstructured text?

• identify connections across documents?

• support ad-hoc event search?
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Graph Extraction from Unstructured Text

[SG16]
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Edge Weight Generation

For edges (x, y) for which y is a page or
sentence, count only (co-) occurrences:

ω(x, y) =

{
1 if y contains x

0 otherwise

For edges (x, y) between entity types
and terms, aggregate co-occurrence
instances I: sum over similarities
derived from sentence distances s.

ω(x, y) :=
∑
i∈I

exp(−s(x, y, i))

[SG16]
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LOADing Wikipedia

For the entire English Wikipedia
(∼ 4.5M articles with annotations):

• use only unstructured text.

• exclude pages of lists.

• exclude info boxes.

• exclude references.

Extract named entities with:

• Stanford NER for locations,
organizations and actors [FGM05]

• Heideltime for dates [SG13]
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Wikipedia LOAD Graph

edges LOC ORG ACT DAT TER SEN PAG
LOC 0
ORG 91 0
ACT 276 106 0
DAT 83 46 128 0
TER 183 94 317 57 0
SEN 71 21 84 38 412 0
PAG 0 0 0 0 0 54 0
nodes 2.7 3.4 7.1 0.2 4.9 53.5 4.5

Number of edges and nodes (in millions) of the LOAD graph of the
English Wikipedia. ∼ 2B edges and ∼ 76M nodes in total.
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Single Entity Queries

How can we rank nodes in one set Y by their neighbours in set X?
Adapt tf-idf scores to the graph [RV13]:

• Term frequency:
edge weights
tf(x, y) ≈ ω(x, y)

• Inverse document frequency:
number of neighbours
idf(x) ≈ |Y |

degY (x)

r(x, y) ≈ ω(x, y) log |Y |
degY (x)

〈LOC : (ACT,Mark Spitz)〉
location score
munich 1.00000
us 0.70651
states 0.49010
united states 0.46918

Query: 〈Y : (X, value)〉
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Multi-Entity Queries

How can we rank nodes in Y by neighbours in multiple sets Xn?
Combine individual set scores:

r(~x, y) :=
1

n
η(~x, y)

n∑
i=1

r(xi, y)

Ensure triangular cohesion when combining results:

η(~x, y) :=

{
1 if

∑n
i=1

∑n
j>iMyxiMyxj > 1

0 otherwise

Where M is the adjacency matrix of the graph.

Extraction and Applications of Implicit Networks from Unstructured Text Andreas Spitz 10 of 49



Motivation LOAD Network Applications KB Support Location Network Social Network Temporal Network Summary

Multi-Entity Queries

How can we rank nodes in Y by neighbours in multiple sets Xn?
Combine individual set scores:

r(~x, y) :=
1

n
η(~x, y)

n∑
i=1

r(xi, y)

Ensure triangular cohesion when combining results:

η(~x, y) :=

{
1 if

∑n
i=1

∑n
j>iMyxiMyxj > 1

0 otherwise

Where M is the adjacency matrix of the graph.

Extraction and Applications of Implicit Networks from Unstructured Text Andreas Spitz 10 of 49



Motivation LOAD Network Applications KB Support Location Network Social Network Temporal Network Summary

Summarization: Sentence Queries

How can sentences in S be used to describe combinations of
entities in Xn?

Find a sentence that contains them:

r(~x, s) :=

n∑
i=1

Msxi

〈SEN : (ACT,Mark Spitz)〉
Mark Spitz of the United States had a spectacular run, lining
up for seven events, winning seven Olympic titles and setting
seven world records.
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Entity Linking: Document Queries

Since we created the LOAD graph from Wikipedia, can we link
entities in Xn to pages P?

Use sentences to find the page that contains them most frequently:

r(~x, p) :=
∑
s∈S

n∑
i=1

MsxiMsp

〈PAG : (ACT,Mark Spitz)〉
Wiki page ID 66265: Mark Spitz
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Sentence and Document Queries

〈SEN : (ACT,Mark Spitz)〉
Mark Spitz of the United States had a spectacular run, lining
up for seven events, winning seven Olympic titles and setting
seven world records.

〈PAG : (ACT,Mark Spitz)〉
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Extraction and Applications of Implicit Networks from Unstructured Text Andreas Spitz 13 of 49



Motivation LOAD Network Applications KB Support Location Network Social Network Temporal Network Summary

Sentence and Document Queries

〈SEN : (ACT,Mark Spitz)〉
Mark Spitz of the United States had a spectacular run, lining
up for seven events, winning seven Olympic titles and setting
seven world records.

〈PAG : (ACT,Mark Spitz)〉
Wiki page ID 66265: Mark Spitz

Extraction and Applications of Implicit Networks from Unstructured Text Andreas Spitz 13 of 49



Motivation LOAD Network Applications KB Support Location Network Social Network Temporal Network Summary

Event Extraction and Completion

Intuition:

• Events correspond to triangular
structures in the network

• Participating entities can be used to
complete events
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Query Answering Speed
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Asymptotic complexity of entity queries: O(degX(y) degY (x))
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Historic Event Evaluation Data

Evaluation data set from a “This Day in History” website

• old enough to not contain
Wikipedia data

• exactly one date per sentence

• 500 hand-annotated
historic events

• example: Ernest Hemingway,
Red Cross volunteer, wounded
in Italy on 1918-07-08.

[SG16]
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Evaluation on Historic Event Data

Retrieving Dates of Historic Events
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LOAD Network: Summary

The Good:

• fast entity and event exploration

• can support most entity-related IE tasks

• can be extended to any kind of entity

• scalable and parallelizable

The Bad (i.e. ongoing work):

• no streaming data support (yet)

• entity triangles 6= events: requires filtering

The Ugly:

• strong dependence on quality of NER
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Adding Knowledge Base Support: Wikidata
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Named Entity Extraction in Wikipedia & Wikidata
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Wikidata Challenges: Location, Location, Location

Coverage comparison of populated places in GeoNames (yellow)
and human settlements in Wikidata (red).

[SDR+16]
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Wikidata Challenges: Organizational Issues

Subclasses of organization (Q43229)

• overlap with locations
(company headquearters)

• overlap with persons
(small architecture and law firms)

• form a complicated hierarchy
that is difficult to clean

[SDR+16]
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Wikidata Challenges: Actors Acting Up

[SDR+16]
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Wikidata Challenges: In Times Gone By

Subclasses of former entity:

• discretize time

• hard-code temporal information

• create classes that are
perpetually in the past

[SDR+16]
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Summary: Wikidata Supported NER in Wikipedia

Challenges:

• complicated, evolving hierarchies

• hard-coded, discretized information

• achieving full coverage in NER is difficult

• limited to Wikipedia as a source of text

Benefits:

• easy entity extraction

• easy entity linking

• creates a language-agnostic LOAD network from Wikipedia
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Location Subnetwork

[SGG16, GSSG15]
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Graph Extraction from Text

s(v, w) := distance in sentences between toponyms v and w

d(v, w) := exp

(
−s(v, w)

2

)
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Edge Aggregation

Distance-based cosine for nodes v and w:

dicos(v, w) :=

∑
i di(v) di(w)√∑

i di(v)
2
√∑

i di(w)
2
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Nonreciprocal Relationships

Dirk Beyer, Wikimedia Commons
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Inducing Edge Directions

Normalize weights of outgoing edges:

ω(v → w) :=
dicos(v, w)∑
x∈V dicos(v, x)
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Network Overview

Network statistics:

|V | |E| density clustering coefficient

723, 779 178, 890, 238 6.8 · 10−4 0.56

Node types:

Wikidata location hierarchy:
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Network Properties
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Network Centrality

city cdeg cindeg cHdeg cHindeg

Paris 63,150 89.87 8,064 7.56
New York City 79,398 71.74 9,294 12.12
Chicago 54,217 51.84 8,074 7.70
Los Angeles 49,961 51.47 7,276 7.76
Washington, D.C. 62,858 51.05 8,138 8.65
Boston 45,895 50.43 6,121 6.08
Philadelphia 51,237 45.19 6,372 5.03
Vienna 35,724 44.55 4,827 7.44
Moscow 29,026 43.77 4,644 19.47
San Francisco 43,759 40.87 6,029 4.76

Network between the top 10 European cities by in-degree centrality.
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Centrality-Based Hierarchy Classification
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Classification into classes country and city based on centrality.
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Geographically Embedded Network

city
connection strength

 0.007 - 0.015 
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Legend
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Disambiguation Problem

Locations of towns and cities with the name Heidelberg.
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Network-based Toponym Disambiguation

Given a document with toponyms, the
following information is available:

• a set of locations L in the network

• a set of seeds S ⊆ L in the
document (unambiguous toponyms)

• an ambiguous toponym t in the
document with candidates l ∈ L

Resolve toponyms by their neighbourhood in the network:

resolve(t) := argmax
l∈L

∑
s∈S

ω(l, s)
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Evaluation on AIDA CoNLL-YAGO data set

Precision in % mean distance in km
all seeds ambig. all seeds ambig.

WLND 85.7 86.0 85.6 327.5 522.9 179.1
AIDA 84.9 86.0 83.2 120.4 87.7 142.3
BDIST 81.6 86.0 78.5 683.1 522.9 800.8
BMIN 81.4 86.0 78.8 650.9 522.9 745.0

WLDN Wikipedia Location Network disambiguation
AIDA AIDA named entity disambiguation
BDIST Baseline using minimum geographic distance
BMIN Baseline using lowest Wikidata ID
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Location Network Summary

Refined method for implicit network extraction:

• improves the weighting scheme (dicos),

• includes direction for edges,

• supports disambiguation and entity linking,

• is language-agnostic and supports alternative spellings
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Social Subnetwork

[GSG15]
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(Un-) Availability of Social Network Data
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Motivation LOAD Network Applications KB Support Location Network Social Network Temporal Network Summary

Wikipedia Social Network: Metrics
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Motivation LOAD Network Applications KB Support Location Network Social Network Temporal Network Summary

Summary Social Network

Benefits of an implicit social network from Wikipedia:

• large-scale social network based on real persons

• entity linking adds personal information

• stand-in data set for unavailable online social networks
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Temporal Subnetwork

[SSBG15]
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Motivation LOAD Network Applications KB Support Location Network Social Network Temporal Network Summary

Date Similarity: U.S. Elections Days

Date similarities:

• can we recognize dates
with similar content?

Example: U.S. Election days

• Always on the Tuesday
after the first Monday in
November

• Every four years:
presidential Election Day
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Motivation LOAD Network Applications KB Support Location Network Social Network Temporal Network Summary

Predicting U.S. Elections Days

Model: bipartite graph

Prediction:

• Collaborative Filtering

• For example: cosine
similarity of adjacencies
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Predicting U.S. Elections Days

Model: bipartite graph

Prediction:

• Collaborative Filtering

• For example: cosine
similarity of adjacencies
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Summary: Implicit Textual Networks

LOAD network:

• fast entity and event exploration

• can support most entity-related IE tasks

• can be extended to any kind of entity

• scalable and fast

• language-agnostic with entity linking

Entity-based subnetworks of LOAD:

• flexible selection / extraction for individual tasks

• allow more involved weighting (edge direction, dicos)

LOAD your data for entity-based analyses.
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Available for download:
• Wikipedia LOAD networks

• Social and location subnetworks

• Code for generating LOAD networks

• Code for LOAD query interface

http://dbs.ifi.uni-heidelberg.de/index.php?id=load

http://dbs.ifi.uni-heidelberg.de/index.php?id=data
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