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Abstract in English 

Montane conditions represent a relatively unfavorable climate for most plants and their 

pollinators. Consequently, zoogamous plant species growing at high elevations are expected to 

be pollen limited. According to the “reproductive assurance” and “transmission advantage” 

hypotheses, such pollen-limited plants will adapt more toward self-pollination than plants in 

communities with more reliable pollination. To test such predictions, I studied reproduction 

strategies and pollen limitation of ten zoogamous plant species at three elevations (2,800 m 

a.s.l. 3,500 m a.s.l. and 4,000 m a.s.l.) in montane grasslands on Mount Cameroon, 

West/Central Africa. I compared seed sets produces by plants with four treatments in our 

extensive hand-pollination experiments: autogamy, geitonogamy, outcrossing, and natural 

control. One experimental species was found to be self-incompatible, six species were partially 

self-compatible, and one was completely self-compatible and predominantly selfing. In five of 

these plant species, I compared the reproduction strategies and pollen limitation among the 

elevations. I found that pollen limitation did rise in two species, we expect this to be due to the 

fact that the species were already pollen limited at 2,800 m a.s.l. Contrary to the two 

hypotheses, selfing did not rise with elevation in any of our experimental species at the 

intraspecific level. I believe it to be due to the fact that plants in our lowest elevation were not 

fully capable of unassisted self-pollination, which other studies have shown is necessary in 

species which exhibit rising selfing rates with elevations. It is however possible, that the studied 

species are more selfing than species in lower elevations on an interspecific level. 

Key words: self-compatibility, pollen limitation, self-pollination, elevation, adaptation 

 

 

 

 

 

 

 

 

 



Abstrakt v čestině 

Vysokohorské oblasti představují relativně nepříznivé klimatické podmínky pro většinu druhů 

rostlin a jejich opylovačů. Proto se předpokládá, že u zoogamních rostlin se s rostoucí 

nadmořskou výškou bude zvyšovat i limitace opylení (tzv. pollen limitation). Hypotézy o 

“reprodukční jistotě” (reproductive assurance) a “výhodě přenosu” (transmission advantage) 

předpokládají, že u takových druhů či populací začnou převládat adaptace vedoucí k 

samoopylení. Předpoklady reprodukčních strategií a limitace opylení ověřuji v této studii u 

deseti zoogamních druhů rostlin ve třech nadmořských výškách (2 800 m n.m., 3 500 m n.m. 

a 4 000 m n.m.) v horských trávníkách Kamerunské hory. Porovnával jsem počet 

vyprodukovaných semen květů po čtyřech experimentálních zásazích: autogamie, 

geitonogamie, cizoprašnost a přirozená kontrola). Jeden druh nebyl self-kompatibilní 

(schopný se opylit vlastním pylem), šest bylo částečně self-kompatibilních a jeden druh byl 

plně self-kompatibilní. U pěti druhů jsem rozdíly v reprodukčních strategiích a v limitaci 

opylení porovnal mezi nadmořskými výškami. Míra limitace opylení se zvyšovala s 

nadmořskou výškou pouze u dvou druhů, což zdůvodňuji potenciálně vysokými hodnotami již 

v nejnižší nadmořské výšce (2 800 m n.m.). U samoopylení jsem nezaznamenal předpokládány 

výrazný nárůst s nadmořskou výškou. Zkoumané rostlinné druhy v nejnižší elevaci 

nevykazovaly výraznou schopnost samoopylení, která byla zaznamenána u druhů rostlin, u 

nich se zvýšená schopnost se stoupajícím gradientem prokázala. Je však možné, že zkoumané 

druhy jsou více schopné samoopylení na mezidruhové úrovni, než druhy v nižších polohách. 

Klíčová slova: self-kompatibilita, limitace opylení, samo-opylení, elevace, adaptace 
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1. Introduction 

Most angiosperms (~90% of diversity; Ollerton et al., 2011) rely on animal vectors for transfer 

of male gametes (pollen) onto the female reproductive organs (stigmas) of flowers to ensure 

efficient reproduction (pollination). These vectors are known as pollinators and are extremely 

important for the plant life cycle. Plants have been able to colonize most biomes on the planet, 

some plant species adapting to the harshest of conditions, even high arctic and alpine 

environments, where pollinators tend to be scarce (Arroyo et al., 1982; Blionis et al., 2001; 

McCall & Primack, 1992). When there are not enough pollinators to efficiently pollinate plant 

flowers, plants are often subjected to what is known as pollen limitation. Pollen limitation is 

defined as a reduction of reproductive success because of a shortage in pollen supply (Knight 

et al., 2005; Torres-Díaz et al., 2011). Plant species experiencing such situations have various 

ways of coping with it to ensure reproduction, especially in species that are short lived and 

under reproductive time pressure.  

Plants are primarily self-incompatible, meaning that they are only able to be pollinated 

by pollen genetically different from their own, which is called outcrossing (or xenogamy) 

(Ferrer & Good-Avila, 2007; Wright et al., 2013). However, many plant species have become 

secondarily self-compatible (or at least partially self-compatible) meaning that they become 

capable of reproducing using the pollen from a genetically identical individual (Ferrer & Good-

Avila, 2007; Takebayashi & Morrell, 2001). When plants become self-compatible, they are 

usually able to produce seeds by self-pollination (or selfing). Dafni et al., (1995) defines two 

categories of selfing; facilitated selfing, where a pollen vector is necessary, and autonomous 

selfing, which does not require a vector. We can further distinguish facilitated selfing in plants 

by whether their ovule is able to be pollinated from pollen within one flower (autogamous 

selfing) or having to rely on pollen from a different flower of the same plant (geitonogamous 

selfing)(Dafni et al., 1995). However, the terminology of various types of selfing has been used 

inconsistently in the past throughout pollination studies. For this thesis, we use the terminology 

found in Arroyo et al., (2006), where autogamous and autonomous selfing are viewed as 

synonymous, i.e. autogamous selfing refers to self-pollination within one flower, regardless of 

involvement of a pollen vector. Some plants have also been known to completely avoid the 

need for ovule fertilization altogether by becoming apomictic, i.e. producing a genetically 

identical copy of the female plant from an unfertilized ovule (Schinkel et al., 2016).  
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There has been some debate on self-compatibility in the past years, mostly focusing on 

the criticism that self-compatibility has for long been viewed as a qualitative trait, treating 

plants as either self-compatible or self-incompatible (Razanajatovo et al., 2016). However, 

many plant species are at least partially self-compatible, meaning they are capable of 

reproducing with genetically identical pollen, although the seed quality and/or quantity could 

be lesser than if reproducing with outcrossing pollen (Ferrer & Good-Avila, 2007). It has been 

proven that the transition to self-compatibility (or at least partial self-compatibility) is among 

the most common plant adaptations (Barrett, 2002; Takebayashi & Morrell, 2001). Although 

the debate is still ongoing, self-compatibility of plants is starting to be viewed more as a 

gradient between the two strategies (Razanajatovo et al., 2016). 

Although selfing can provide plants the ability to reproduce when pollen from 

conspecific individuals is scarce, it has often been referred to as an “evolutionary dead end” 

(Schemske & Lande, 1985; Takebayashi & Morrell, 2001). The reason for this is that lack of 

genetic diversity (among other things) could potentially lead to inbreeding depression in a 

population, in other words the accumulation of negative mutations, which may reduce fitness 

of a species (Barrett et al., 2014; Park et al., 2017). Plants utilize various adaptations to avoid 

selfing, from spatial and temporal separation of reproductive organs within a flower 

(herkogamy and dichogamy, respectively)(Goodwillie et al., 2005) to separating the two sexes 

within plant individuals completely (dioecy) (Henry et al., 2018; Willmer, 2011). Plants that 

have colonized environments inhospitable for pollinators utilize various additional adaptations 

to minimizing selfing. 

High montane habitats are an example of a setting unfavorable for pollinators (Egawa 

& Itino, 2020; Lefebvre et al., 2018). The higher a mountain is (of course relative to the 

latitude), the more inhospitable the conditions become, with low temperatures and strong winds 

being only some of the factors limiting pollinator abundance, diversity and in turn, activity 

(Arroyo et al., 1985; Totland, 1997). The decrease in pollinators results in pollen limitation of 

the plant species which occur in these conditions (Arroyo et al., 1985; Jiang & Xie, 2020; 

Knight et al., 2005). The “increased pollination probability hypothesis” provides one solution 

to this problem. It states that flower showiness and longevity should increase with the rising 

elevation, in order to attract as many pollinators for as long as possible under the sub-optimal 

scenarios (Bingham & Orthner, 1998). In theory, the increasing longevity would provide more 

time for pollinators to locate and pollinate the flower. Torres-Díaz et al., (2011) conducted a 
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study in the high Andes of central Chile and observed Chaetanthera renifolia (Asteraceae) had 

an increased receptiveness of its stigmas when it was not pollinated, compared to experimental 

flowers of the same species which had been pollinated. Trunschke & Stöcklin, (2017) described 

an increase in longevity in several species between two elevations in the Central Swiss Alps, 

located 1,000 m a.sl. apart. Out of the six experimental species observed, increased flower 

longevity was detected in three species: Euphrasia montana (Orobanchaceae), Primula 

farinose (Primulaceae) and Trifolium alpinum (Fabaceae). In both mentioned studies, the 

experimental plants were shown to rely on pollinators and did not have tendencies to selfing, 

while also not suffering from pollen limitation. 

Decrease in vegetative growth is another common trend in species in high elevations 

(Hautier et al., 2009; Olejniczak et al., 2018; Yaqoob & Nawchoo, 2017). Studies have also 

shown that maximum reproductive output (i.e. the maximum quantity of seeds a flower is 

capable of producing) can decrease with rising elevations and inhospitable conditions (Straka 

& Starzomski, 2015; Wenk & Falster, 2015; Yaqoob & Nawchoo, 2017). The “energy-

constraint hypothesis” suggests that fluctuating environmental conditions at high elevations 

may reduce photosynthetic rates, the energy for seed development and seed provisioning 

(Herbert G. Baker, 1972; Guo et al., 2010). It has been documented that for some plant species 

in higher elevations, it is more advantageous to stop reproducing sexually and only disperse 

clonally (Hautier et al., 2009; Milla et al., 2009). There is a fine line between cases in which 

these changes are considered adaptations and when they become inevitable reactions to the 

harsh conditions of the environment. This however depends on individual species and their 

ability to adapt toward inhospitable conditions (Fischer et al., 2013; Halbritter et al., 2018). 

Certain plant species have however been known to buffer some of the hitherto 

mentioned negative effects by becoming selfing (de Vos et al., 2012; Zhang & Li, 2008). It is 

believed that ~15% of plants are predominantly selfing (>80% instance of selfing) and many 

more are capable of reproducing through a combination of selfing and outcrossing (Barrett, 

2002; Vogler & Kalisz, 2001). The reason for this is that for some plants, the risks of selfing 

outweigh the disadvantages of not reproducing at all in conditions unfavorable to pollinators, 

and may therefore even provide an advantage (Mattila et al., 2020). Baker’s law is a theory 

stating that selfing species may be more readily adapted towards colonizing new habitats due 

to not having to rely on pollinators (Baker, 1955; Cheptou, 2012; Lowry & Lester, 2006; 

Randle et al., 2009). This theory, which was first observed on several species from the family 

Plumbaginaceae (Baker, 1948) has become one of the fundamental ideas of plant reproduction. 
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The argument for this theory was based around the idea that selfing species would be best 

equipped to colonize islands, that was however disproven by the reality that many island 

species are non-selfing or even strictly outcrossing (Cheptou, 2012). Although there is still 

debate around Baker’s law, the idea that selfing facilitates plants when pollination conditions 

are sub-optimal has been explored in several other hypotheses.  

The “autogamy reproductive assurance hypothesis” states that when the mates or 

pollinators are scarce, plants will evolve toward selfing in order to compensate for the 

insufficient pollen transfer (Arroyo et al., 2006). This might happen precisely in habitats where 

the environmental productivity is quite low, and the area cannot support many organisms, such 

as alpine conditions. This hypothesis argues that the main selective advantage of selfing lies in 

the assured seed set, meaning that the plant will produce at least some seeds instead of none at 

all (Schoen et al., 1996). The “automatic selection hypothesis” (also called the “transmission 

advantage hypothesis”) provides a view on why plants might choose selfing over outcrossing 

on the genetic level. It argues, that selfing genes (i.e. genes that promote reproduction through 

selfing) have a 3:2 transmission advantage over outcrossing genes (i.e. genes that only allow 

outcrossing pollination) (Fisher, 1941; Stone et al., 2014). Although studies in the past tried to 

identify which of these hypotheses is more accurate, more recent studies have started viewing 

them as co-operative processes in the transition from outcrossing to selfing (Barrett et al., 2014; 

Busch & Delph, 2012; Cheptou, 2012). 

 High elevation mountains, which tend to have inhospitable conditions for pollinators, 

have served as a proxy to test these hypotheses. Some studies, which have been cited as proof 

of these hypotheses tested only one alpine elevation, in which they found a large amount of 

selfing species compared to lower elevations, but of different species. Berry & Calvo, (2016) 

compared selfing instances from fourteen plant species in a lower elevation with four different 

species in a higher elevation and discovered the four higher species to be more selfing than 

their lower counterparts. Medan et al., (2002) conducted a similar study and found higher 

selfing rates in species located in higher elevations in the Mendoza Province, Argentina. Biella 

et al., (2021) proved that a high elevated Linaria (Plantaginaceae) species is self-compatible, 

unlike its sister species in the lowlands and Ling et al., (2017) found Prunella vulgaris 

(Lamiaceae) to be selfing in alpine environments. Although these types of studies do provide 

examples of higher selfing in higher elevations on an interspecific level, they do not provide 

answers about the change along elevation within a species.  
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 When studies assessed breeding systems along an elevational gradient on an 

intraspecific level, the results become more complicated. Some studies did find higher 

instances of selfing in higher elevation positioned species. Seguí et al., (2018) proved Viola 

maculate (Violaceae) to become more reliant on cleistogamy (a form of selfing, which occurs 

in an unopened flower) with rising elevation (1,600 m a.sl.- 2,500 m a.s.l. gradient), and 

Etcheverry et al., (2008) found Vigna caracalla (Fabaceae) to be predominately selfing in its 

highest elevation due to pollen limitation. More studies have been appearing that do not find 

the rising elevation to be a driving factor of increasing self-pollination in species, which are 

not already self-compatible. Gugerli, (1998) found no difference in selfing instances in 

Saxifraga oppositofolia (Boraginaceae) over a 500 m gradient, Young et al., (2002) came to 

same results in self-incompatible Rutidosis leiolepis (Asteraceae) over a 400 m gradient. 

Arroyo et al., (2006) did find selfing in all elevations over a 1 000 m gradient in Chilean Andes, 

it was however on a fully self-compatible, predominantly selfing species Chaetanthera 

euphrasiodes (Asteraceae). Wirth et al., (2010) proved that Eritrichum nanum (Boraginaceae) 

was more self-pollinated in lower, compared to higher elevations, where the cost of producing 

seeds was too high for the plant. More similar studies have come out in recent years (Black et 

al., 2019; Dai et al., 2017). However, in all of these mentioned studies, when the plant was 

found to have increased selfing in higher elevations compared to lower ones, the plant was 

already self-compatible in the lower elevations, but was not subjected to such intense pollen 

limitation and in turn did not have to resort to selfing. This would imply that the adaptation to 

self-compatibility would have had to happen before the plants colonized the higher elevations 

and only then started utilizing selfing more (Arroyo et al., 2006) 

To my knowledge, only one recent study has tested the change in breeding systems 

along an elevational gradient in Africa. Black et al., (2019) found no pollen limitation and no 

instances of selfing in self-incompatible Cineraria erodioides (Asteraceae) along an 

elevational gradient of 500 m a.s.l. In this study, I examined the breeding systems of several 

plant species in montane grasslands along an elevational gradient of the Central/West Africa’s 

highest peak, Mount Cameroon. Mount Cameroon is a volcanic mountain located in the Gulf 

of Guinea, starting at the sea level and extending inland for about 25 kilometers until reaching 

its highest point, 4,095 m a.s.l. Being host to some 2,300 species of plants (~100 of those 

endemic)(Cheek et al., 1996), Mount Cameroon National Park was established in 2009. The 

area has two main seasons, a rainy season from June to October and a dry season from 

November to May. The peak is surrounded by a tropical forest, but at around 2,200 m a.s.l. the 
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forest is replaced by natural montane grasslands. The grasslands are prone to burning, either 

natural wildfires resulting from the lack of water in the dry season or by the National Park 

officials as a precautionary measure against wildfires getting out of hand. 

We chose this location to test the mentioned hypotheses about plant breeding systems 

along elevation by hand-pollination experiments on ten plant species at three elevations in the 

grasslands above the timberline. We set three hypotheses to test: (1) reproductive output of 

individual plant species decreases towards the higher elevations; (2) populations at higher 

altitudes are more pollen limited; (3) autonomous self-pollination increases towards the higher 

elevations. 
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2. Materials and methods 

2.1 Study area and plant species 

The study was situated above the timberline on the western slope of Mount Cameroon, along 

the Guiness Trail from Buea to the summit. Originally, the study was meant to include four 

elevations (2,300 m a.s.l. 2,800 m a.s.l., 3,500 m a.s.l. and 4,000 m a.s.l., sampled over two 

years) to represent the complete elevational gradient of the montane grasslands. However, the 

outbreak of Covid-19 made it impossible. In 2019, following the plans, the study was 

performed at the two mid-elevations 2,800 m a.s.l. (surroundings of the Hut 2, 4°11'38"N, 

9°11'51"E) and 3,500 m a.s.l. (surroundings of the Wevondi Cave, 4°12'14"N, 9°11'9"E). The 

epidemiological situation allowed to carry the study out at the highest elevation 4,000 m a.s.l. 

(surroundings of the Hut 3, 4°12'33"N, 9°10'48"E) in 2020, under the leadership of Ishmeal N. 

Kobe and his local assistants. The lowest elevation 2,300 m a.s.l. (surroundings of Mann’s 

Spring; 4°8'40"N, 9°7'14"E) would have been right above the timberline and would have been 

the most species-rich site. The 2,800m elevation hosts species-rich grasslands, supplemented 

by abundant shrubs and even a few solitary trees. The 3,500m elevation was characterized by 

species-poorer grasslands on a steep windy slope with rare shrubs. The 4,000m elevation was 

already in the alpine zone with species-poor sparse montane vegetation growing mostly on old 

lava screes. In each elevation, we evenly set study plots, where we would carry out our hand-

pollination experiments. Plots were chosen based on their accessibility, plant species 

abundance, and expected protection against potential fires.  

In 2019, we identified all flowering zoogamous plant species within the studied 

elevations. We selected 10 plant species (Table 1) following these criteria: 

i. Distribution in at least two of the studied elevations. 

ii. Enough specimens at individual elevations.   

iii. Suitability for hand pollination experiments, i.e. with large and robust flowers or 

inflorescences, with several flowers or inflorescences per plant specimen, and with 

easily accessible pollen and stigmas. 

 In the four studied Asteraceae species (Table 1) which have inflorescences, we assessed 

each inflorescence (hereinafter called flower) as one experimental unit, instead of each floret 

individually.  
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Table 1. – List of the experimental plant species with the amounts of treatment replicates produced in each elevation. 
Treatments: A (Autogamy), G (Geitonogamy), O (Outcrossing), C (Control), n.f. (not flowering) - where there were not 
enough flowers for a certain treatment or when species did not appear in a given elevation. 

 

2.2 Pollination experiment 

To reveal the plant species breeding system, we carried out four treatments (Fig. 1) on the 

chosen plant species and compared the quantity of seed sets (i.e. the number of seeds produced 

by individual experimental flowers) among different treatments and elevations. Flowers treated 

by autogamy were kept bagged to avoid transfer of pollen from another flower, flowers treated 

by geitonogamy were hand-pollinated with pollen from a different flower of the same 

individual, flowers treated with outcrossing were hand-pollinated with pollen from a different 

individual (at least 100 m far away, to increase the probability that it would be a genetically 

different individual; Fig 2B), and control flowers were left exposed for natural pollination.  

 

A G O C A G O C A G O C

Asteraceae

Crepis hypochoeridea 225 223 13 10 12 10 7 5 10 15 38 34 23 35

Senecio purpureus 345 277 31 25 27 35 7 8 7 7 38 34 23 35

Lactuca inermis 127 94 14 n.f. 9 18 9 n.f. 10 11 10 n.f. 1 4

Senecio burtonii 192 86 19 17 15 21 3 5 1 6 n.f. n.f. n.f. n.f.

Hypericaceae

Hypericum revolutum 124 94 7 11 15 13 n.f. n.f. n.f. n.f. 15 9 12 11

Geraniaceae

Geranium arabicum 42 35 9 n.f. 10 18 n.f. n.f. n.f. n.f. n.f. n.f. n.f. n.f.

Geranium mascatense 41 29 4 n.f. 7 21 n.f. n.f. n.f. n.f. n.f. n.f. n.f. n.f.

Caryophyllaceae

Silene biafrae 32 29 n.f. n.f. n.f. n.f. 9 n.f. 10 6 n.f. n.f. n.f. n.f.

Ranunculaceae

Clematis simensis 85 77 18 19 19 22 n.f. n.f. n.f. n.f. n.f. n.f. n.f. n.f.

Gentianaceae

Swertia mannii 29 18 5 3 1 5 3 1 0 0 n.f. n.f. n.f. n.f.

Elevation 2,800 Elevation 3,500 Elevation 4,000

Family                          

Plant species

Total no. of 

experimental 

flowers

Total no. 

of mature 

seed sets

Matured seed sets for individual treatment per 

elevation (m a.s.l.)
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 In each study plot, we identified the experimental plant species and covered several 

dozens of their unopened buds with nylon mesh bags (M. Bartoš et al., 2020) to avoid any 

pollination event prior to our own experiment (Fig 2A). The nylon bags were made in various 

sizes to fit the different plant species’ flower sizes. The smallest bags (6x8 cm) were used to 

cover Swertia mannii and both Geranium species, the medium bags (8x10 cm) were used to 

cover both Senecio species, Lactuca inermis, Silene biafrae, and Clematis simensis, and the 

largest bags (10x15 cm) covered the buds of Crepis hypochoeridea and Hypericum revolutum. 

For each three experimental buds covered on a single plant we left one bud uncovered and 

labeled it with a cotton string to make sure the control flowers will be of the same age as the 

experimental flowers. We made sure to leave enough uncovered untreated flowers on each 

plant individual as a pollen source for the treatment geitonogamy. If, however, there were even 

more available buds, we bagged them as well, to ensure having as many replicates per plant as 

possible. For each plant species, we aimed to test no less than 40 replicates (10 for each 

treatment) in each elevation. The total amount of the experimental plants in each elevation can 

be found in Table 1. Each experimental plant individual was assigned a unique number. We 

observed flowering of each experimental plant species, especially how long it takes flower 

buds to open, how long the anthers produce (potentially viable) pollen, and how long the flower 

stigmas are receptive (by observation of their drying though a magnifying glass). Based on this, 

we concluded the best time to carry out our hand pollination experiments.  

Figure 1. The four experimental treatments illustrating pollen transfer (yellow arrows) on the studied 
plant species. Illustrator: Barbora Drozdová 
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When a flower opened and we observed its stigma to be receptive, we unbagged it, 

performed one of the treatments, bagged it again, and labelled the mesh bag with a tag 

symbolizing the treatment. The hand pollination was performed by obtaining a conspecific 

flower/inflorescence and brushing the pollen of the obtained flower to a stigma(s) of the treated 

flower. The success of the pollen transfer was checked using a magnifying glass. After a flower 

had been treated, it was covered again with the mesh bag and left covered until the end of the 

experiment to prevent the loss of seeds, which the flowers would produce. Control flowers 

were bagged in the same way, after they had finished flowering. In the case of the Asteraceae 

species, in which the flowering period of an inflorescence took ~one week, hand pollination 

was repeated each day until all the individual florets in the inflorescence had flowered. Some 

plant species did not have enough flowers open at one time to carry out all treatments. In the 

case of Lactuca inermis,  both Geranium species, and Silene biafrae, a maximum of two opened 

flowers were found per plant. In such cases, the available bagged flowers were then only treated 

with autogamy + control or outcrossing + control.  

Figure 2. Various stages of the experiment on Senecio purpureus. (A) Bagged buds; (B) Outcrossing hand pollination;(C) 
Seed counting, the seeds in the upper left corner were counted as fully developed, whilst the rest were considered 

undeveloped. 
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2.3 Quantification of the reproductive success 

All bags from the experimental and control flowers were collected ~30-40 days after the 

experiments when the flowers were fruiting. Each mesh bag containing a fruit was cut off, 

placed inside a paper bag, and labeled with the plant code containing elevation, study plot 

number, plant species, plant number, and applied treatment. The bagged fruits were dried by 

silica gel. 

Once the fruits had been transported to the Czech Republic, they were separated based on 

species. For each plant species, a chart was produced based on ca 10 bags (each containing one 

flower/inflorescence) to compare which seeds should be counted as fully developed and which 

should not. Most species’ seeds were counted in a small paper tray using a stereomicroscope 

(Fig 2C). The seeds of Hypericum revolutum were produced in a pod made up of five individual 

chambers. Due to their small size, the Hypericum seeds were counted using a counting grid.  

 Of the ten species sampled, only eight were usable. For Swertia mannii and Geranium 

mascatense, only a few replicates were considered viable. Due to this, the species were not 

used in the analysis of breeding systems and pollen limitation. Of the remaining eight species, 

all produced a varied amount of “useless” experimental flowers. Most often, the fruits labeled 

“useless” were infested by an insect herbivore, in other cases the flower fell down from 

unknown reasons (i.e. flower abortions were unrecognizable from mechanical disturbances), 

or the experiment obviously failed (such as a lost tag, or development of another flower inside 

the bag). “Useless” fruits were not counted in the data analysis. In the case of Hypericum 

revolutum, at least one chamber was labeled as “useless” in the majority cases. In turn, the 

number of seeds produced per flower was counted as the total number of seeds divided by the 

amount of uninfected pods. In the case of Crepis hypochoeridea, many of the bags collected 

were labeled as “useless” (39.5 %). However, the ability of the species to produce seeds even 

when it had a pest led us to use said specimens. The amounts of used bags by elevation and 

treatment for each experimental species is summarized in Table 1. 
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2.4 Statistical analysis 

For the five species, from which we had treatments from in at least two elevations (Senecio 

purpureus, Senecio burtonii, Lactuca inermis, Crepis hypochoeridea, Hypericum revolutum) 

we analyzed the changes in seed sets throughout elevations. For the whole statistical analysis 

of our results we used R version 1.3.959 (R Core Team, 2020).  

To answer the main questions, we used the amounts of individual flower seeds sets and 

compared them with each other. Maximum reproductive output of individual plant species 

between elevations was tested by comparing the outcrossing seed sets throughout elevations 

for individual plants. Outcrossing seed sets were regarded as the highest number of seeds a 

flower can produce under pollen saturation from a genetically different individual. To uncover 

the severity of pollen limitation in different elevations, we used the seed sets of outcrossing 

(the maximum) and control (the realized amount) treatments. By comparing the treatments, we 

analyzed the proportion of seeds which the control flower is capable of producing under the 

same condition in a given elevation. To assess the ability of a flower to become self-pollinated, 

we compared the seed sets of outcrossing treatment with both autogamy and geitonogamy. 

Whenever comparing any treatment with outcrossing, we primarily used the values from the 

same plant individual. When there was more than one outcrossing replicate per individual, we 

used their average. In the case where there were no outcrossing treatments for a given plant, 

we used the average seed set from the outcrossing treatment of the plant species in each 

elevation. 

To analyze whether pollen limitation (PL) rises with elevation on Mount Cameroon, 

we calculated a pollen limitation index for each control (C) treatment. We used an index 

developed by Larson & Barrett (2000): 

PL = 1 – ( SC / SO ) 

where SC is the quantity of seeds produced per C treatment and SO is the quantity of seeds 

produced by the outcrossing (O) treatment. PL ranges from 0 to 1, 0 meaning no pollen 

limitation and 1 meaning full pollen limitation. For the few cases of PL<0, we considered 

PL=0. The negative value means that the control produced more seed than the outcrossing 

treatment, which would mean no pollen limitation anyway. To answer the question of whether 

plants tend to reproduce more by self-pollination in higher elevations we used two indexes 

from our hand-pollination experiments. The first index was of treatments autogamy (A) against 
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O: (A/O), by which we analyzed the ability of a flower to reproduce without any additional 

pollen transfer. The second index was of geitonogamy (G) against O: (G/O), used to analyze 

self-compatibility of a species along with the reproductive output when pollen saturated from 

a genetically identical individual.  

 To identify self-compatibility among species, we used the distributions found in 

Matallana et al., (2010); G/O < 0.2 was considered self-incompatible, 0.7 > G/O > 0.2 was 

considered partially self-compatible and G/O > 0.7 was considered self-compatible. In the 

cases of plant species on which we did not carry out the treatment geitonogamy, we used A/O 

to assess self-compatibility. 

Due to the high amount of zero values and integers which the individual species ratios 

produced, the criteria for using a parametric test were not met in any of the analyses. We 

therefore performed non-parametric Kruskal-Wallis tests to assess the relationship of these 

numbers on elevation. We analyzed the dependent variable “index” as numeric and tested its’ 

relation to the variable “elevation”, which we treated as an ordinal categorical factor. First, we 

assessed the p-value of the overall dataset for each plant, analyzing the values based on 

elevation. If inter-elevational differences were significant (p-value <0.05) for the plant species 

flowering at three elevations, we performed a Nemenyi post-hoc test to reveal differences 

among elevations in the form of their individual p-values. We set distance to “Chisquare” in 

order to break ties between individual values in the Nemenyi post-hoc tests.   
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3. Results 

Overall, the hand pollination experiments were carried out with 1,242 individual flowers from 

the ten experimental plant species. Out of the eight species with sufficient data, one species 

was found to be self-compatible (Crepis hypochoeridea), six species were found to be partially 

self-compatible (Senecio purpureus, Lactuca inermis, Hypericum revolutum, Geranium 

arabicum, Silene biafrae, Clematis simensis) and one species was found to be self-incompatible 

(Senecio burtonii) (Fig. 3). Altogether, only five of the experimental species flowered at 

multiple studied elevations (Table 2). Three species (Crepis hypochoeridea, Senecio purpureus 

and Lactuca inermis) were treated at three elevations, whilst the remaining two species 

(Hypericum revolutum and Senecio burtonii) were treated at two elevations only.  

Figure 3. Scatterplot of A/O and G/O based on species by elevations. 

Table 2. Results of non-parametric Kruskal-Wallis tests analyzing differences in reproduction systems of individual plant 
species among elevations on Mount Cameroon. Indexes included are O (outcrossing), PL (pollen limitation), A/O 
(autogamy/outcrossing), G/O (geitonogamy/outcrossing) 

chi-square df P-value chi-square df P-value chi-square df P-value chi-square df P-value

Crepis hypochoeridea 0.242 2 0.886 11.923 2 0.003** 13.915 2 < 0.001*** 3.083 2 0.214

Senecio purpureus 28.338 2 < 0.001*** 48.835 2 < 0.001*** 6.778 2 0.034* 4.531 2 0.104

Lactuca inermis 5.26 2 0.072 5.354 1 0.021* 16.978 1 0.005**

Senecio burtonii 0.296 1 0.587 3.212 1 0.073 NA 1 1 0.597 1 0.440

Hypericum revolutum 21.13 1 < 0.001***

not analysed

not analysednot analysednot analysed

Species
PL A/OO G/O

el 2,800, 

el 3,500

el 2,800, 

el 4,000

el 3,500, 

el 4,000

el 2,800, 

el 3,500

el 2,800, 

el 4,000

el 3,500, 

el 4,000

el 2,800, 

el 3,500

el 2,800, 

el 4,000

el 3,500, 

el 4,000

Crepis hypochoeridea 0.849 0.133 0.007** 0.602 0.034* 0.006**

Senecio purpureus 0.863 < 0.001*** 0.014* 0.054 < 0.001*** 0.399 < 0.001***< 0.001***< 0.001***

not analysed

A/O

Species

PLO

Table 3. Results of Nemenyi post-hoc tests comparing differences in reproduction systems among individual 
elevations; the post-hoc tests were performed only for the species flowering at three elevations (el) 
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3.1 Crepis hypochoeridea  

 Even though the self-compatible Crepis hypochoeridea did not have a significant 

difference in outcrossing ability between elevations (Kruskal-Wallis; O: H=0.242, df= 2, 

P=0.886) (Table 2, Fig. 4A), we found a significance difference in PL (K-W; PL: H=11.923, 

df= 2, P=0.003) (Table 2). The Nemenyi test in Table 3 revealed, that the significant outcome 

was between elevation 3,500 and elevation 4,000 (since Crepis produced less seeds in the 

former elevation) but did not differ much from elevation 2,800 (Fig. 4B). When fully saturated 

with genetically identical pollen, no significant difference was found between seed sets 

throughout elevation (K-W; G/O: H=3.083, df= 2, P=0.214), but there was a difference in the 

autogamous index treatments (K-W; A/O: H=13.915, df= 2, P=<0.001). Results of the post-

hoc Nemenyi-test show significant variance of A/O between elevations 2,500 with 4,000 and 

3,500 and 4,000 (Fig. 4C). This suggests that even though the self-compatibility did not 

decrease, Crepis was less capable of unassisted selfing in the elevation 4,000 than in elevations 

2,500 and 3,500.  

3.2 Senecio purpureus 

 The outcrossing values of partially self-compatible Senecio purpureus turned out to be 

significantly different among elevations (K-W: O; H=28.338, df= 2, P=<0.001) (Table 2) and 

the Nemenyi-test revealed, that the reproductive output of the species differed between the 

lower two elevations (2,800 and 3,500) and the highest elevation, 4,000 (Table 3, Fig 4A). 

Pollen limitation was also observed to be significant among elevations (K-W: PL; H=48.835, 

df= 2, P=<0.001) (Table 2). The Nemenyi-test showed us, that pollen limitation was not very 

high at elevation 2,800, but it did rise with increasing elevation (Table 3, Fig 4B). A/O of 

Senecio was found to be significant, but G/O was not (K-W; A/O: H=6.778, df= 2, P=0.034, 

G/O: H=4.531, df=2, P=0.104). From the Nemenyi-test for A/O we can interpret, that the 

differences were very significant between the outcomes of the individual indexes. However, 

when looking at Fig. 3 or Fig. 4C we can observe, that the values which were different were 

very small and Senecio was in fact quite incapable of autogamous selfing. Self-compatibility 

did not decrease with elevation, but autogamous selfing did (Fig. 4D).  

3.3 Lactuca inermis 

 Partially self-compatible Lactuca inermis was sampled in three elevations, but only one 

replicate produced seeds in elevation 4,000 out of all the flowers treated. This replicate was 
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treated with autogamy and because we did not have any seed-sets from replicates outcrossing 

or control, we were not able to produce PL and A/O indexes in elevation 4,000. When we 

analyzed the reproductive output of Lactuca based on all three elevations, the result was not 

significant (K-W; O: H=5.26, df= 2, P=0.072) (Table 2, Fig. 4A). The insignificance was 

because elevation 4,000 only had one replicate of outcrossing and it had a seed set of zero. 

Unfortunately, the second expedition in the year 2020 only produced one replicate of both 

outcrossing and control in the whole elevation 4,000 due to the overall low quantities of 

Lactuca in said elevation. The rest of the indexes were only calculated with elevations 2,800 

and 3,500. A significant difference between elevations was found for both pollen limitation 

and autogamous selfing in Lactuca (K-W; PL: H=5.354, df= 1, P=0.021, A/O: H=16.978, df= 

2, P=0.005) (Table 2). Lactuca became more pollen limited from elevation 2,800 to 3,500 (Fig. 

4B) and produced less seeds in elevation 3,500 when treated with autogamy than in elevation 

(2,800) (Fig. 4C). 

3.4 Senecio burtonii 

 Self-incompatible Senecio burtonii was sampled in two elevations and was the most 

infested species, with 52.2% of all seeds resulting in being labeled “useless”. Because of this, 

only one replicate of outcrossing was used for elevation 3,500; it produced 17 seeds, which 

was used to measure all the subsequent indexes. The reproductive output of Senecio did not 

differ between the two elevations (K-W; O: H=0.296, df= 1, P=0.587) (Table 2, Fig. 4A). 

Pollen limitation looked as if it was lower in elevation 3,500 that elevation 2,800 (Fig. 4B), but 

the difference between the values was insignificant (K-W; PL: H=3.212, df= 1, P=0.073). G/O 

was insignificant for this species (K-W; G/O: H=0.597, df= 1, P=0.440), and in A/O there was 

no difference whatsoever (Table 3), as Senecio was unable to produce any seeds treated by 

autogamy in either elevation (Fig. 4C). 

3.5 Hypericum revolutum 

 Partially self-compatible Hypericum revolutum was sampled in two elevations, however 

it did not produce seeds in elevation 4,000. Intuitively, the significance in reproductive output 

is evident (K-W; O: H=23.13, df=1, P=<0.001) (Table 2, Fig. 4A), however we were not able 

to produce results for PL, A/O and G/O. Hypericum did not produce seeds in elevation 4,000. 
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3.6 Species sampled in only one elevation 

Unfortunately, we have three viable species sampled in only one elevation, since the 

second year of fieldwork did not go as originally planned. Geranium arabicum and Silene 

biafrae, which were both sampled in only one elevation, very capable of producing seeds by 

treatment autogamy in the elevation 2 800 and 3 500, respectively (Fig. 4C). Both species were 

found to be partially self-compatible, but seeing as the compatibility was measured from A/O, 

it is possible that the species are fully self-compatible. Clematis simensis, which was sampled 

in only elevation 2 800 was observed to have a twice as high G/O as A/O and was capable of 

selfing (Figs. 3, 4CD) 
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Figure 4. Outcomes of studied indexes on experimental plants species based on elevation: top of each bar indicates mean 
value, error bars are 95% confidence intervals. Individual letters symbolize significance results of Nemenyi post-hoc tests.  
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4. Discussion 

4. 1 Breeding systems of individual experimental species 

Although plants are primarily self-incompatible, the shift from self-incompatibility to self-

compatibility is one of the most common adaptations in the plant kingdom (Barrett, 2002; 

Vogler & Kalisz, 2001). Of our experimental species, I was only able to find previous breeding 

system studies carried out on Geranium mascatense (Geraniaceae), the rest have not been 

analyzed until now. 

 The family Asteraceae can be found worldwide and has various breeding strategies, 

from completely selfing Conyza canadensis to self-incompatible Erigeron annuus (Hao et al., 

2011). Ferrer & Good-Avila, (2007) produced a survey of studies measuring self-compatibility 

in plants, and found that of 571 Asteraceae taxa represented, 61% were self-incompatible, 10% 

were partially self-compatible and the remaining 27% were self-compatible. Of the self-

compatible (or at least partially self-compatible) species, only few have been proven to be 

predominately selfing, for example Tragopogon mirus (Soltis et al., 1995), or Stephanomeria 

malheurensis (Brauner & Gottlieb, 1987). Most species studies are predominately outcrossing, 

even when they can be self-compatible (Ferrer & Good-Avila, 2007).  

 Crepis is a genus of Asteraceae with some 200 known species (Andersson & Shaw, 

1994). Hughes & Babcock, (1950) found various outcomes when testing the compatibility of 

Crepis foetida, observing some individuals to be able to produce autogamous seeds but others 

none at all. Andersson, (1989) found Crepis tectorum to be self-compatible, but not 

predominantly selfing. Cheptou et al., (2002) predicted that another species, Crepis sancta 

would be predominately selfing based on the assessed evidence but found no reproductive 

assurance through selfing in a study focusing on outcrossing in three populations around 

Montpellier, France. Our results provide evidence that the African species Crepis 

hypochoeridea is fully self-compatible and utilizes selfing in all elevations.  

 Senecio is another genus of the family Asteraceae that is diversified worldwide. A study 

from 1985 tested the breeding systems of 32 Australian Senecio species and found 19 species 

to be self-incompatible and 13 to be self-compatible (Lawrence, 1985). Hiscock, (2000) 

analyzed one species in the genus, Senecio quallidus and found it to be self-incompatible. More 

recently, Ferrer & Good-Avila, (2007) found that out of 12 species studied, most were self-

compatible or at least partially self-compatible. Senecio purpureus is distributed throughout 
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the grasslands across Africa, whereas Senecio burtonii is a species primarily found in 

Cameroonian montane grasslands. We found Senecio purpureus to be partially self-compatible 

but presume that it does not utilize selfing. Senecio burtonii was observed to be self-

incompatible and is thus presumed primarily outcrossing.  

 The last of our studied Asteraceae was from the genus Lactuca.  The genus is often 

viewed as completely self-compatible and selfing, due to the cultivation of Lactuca sativa 

(Lindqvist, 1960). Zohary, (1991) found seven species of Lactuca to be predominately selfing 

in a study comparing them to Lactuca sativa. The survey study of 571 Asteraceae species by 

Ferrer & Good-Avila, (2007) analyzes 124 species of Lactuca and found the majority to be 

self-compatible or at least partially self-compatible. They did not however provide information 

on selfing qualities of the species. The African species we studied, Lactuca inermis, seemed to 

be partially self-compatible, being able to produce half as many seeds through autogamy as the 

outcrossing treatment in the lowest elevation, but did not produce many seeds by selfing in the 

higher elevations.  

 The family Hypericaceae has a nearly worldwide distribution, with self-fertilization 

being common, but not universal (Robson, 1977). Hypericum perforatum was found to be self-

compatible and sometimes prone to reproduction through apomixy (Mártonfi et al., 1996). 

Hypericum cumulicola was observed to produce almost as many seeds through self-pollination 

as with cross-pollination (Evans et al., 2003). On the other hand, Abrahamson & Vander Kloet, 

(2014) found Hypericum edisonianum to be self-incompatible and reliant on outcrossing pollen 

in hand-pollination experiments. Our experimental species, Hypericum revolutum is a typical 

Afromontane species and has been studied in experiments focusing on its pollinator 

assemblages (Bartoš et al., 2015; Janeček et al., 2007), no studies have yet been carried out to 

assess its breeding system though. Our results indicate, that Hypericum revolutum was partially 

self-compatible and capable of producing similar quantities of seeds through both autogamy 

and geitonogamy in the elevation 2,800, it was not however able to produce any seeds in the 

highest elevation studied. 

 The family Geraniaceae is also spread across most of the world, although mostly 

inhabiting temperate and sub-tropical regions and not so often found in the tropics. Fiz et al., 

(2008) produced a detailed pollination experiment and found that of the experimental 

Geranium species, 15 % were predominantly selfing, whilst the rest were more prone to mixed 

mating. Of our two experimental species Fiz et al., (2008) had already studied Geranium 
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mascatense, and found it to have a mixed mating system. We do not have proper data for this 

species to produce studied indexes, but we do know that no seeds were produced in the 

replicants treated with autogamy. Our other experimental species from Geraniaceae, Geranium 

arabicum has not appeared in any study analyzing its breeding system. We found it to be 

partially self-compatible based on A/O since it was impossible to produce geitonogamous 

treatments. It is possible that this species is fully self-compatible, as it produced a high quantity 

of seems when treated with autogamy. 

 One of our experimental species was from the genus Silene of the Caryophyllaceae 

family. Studies examining the breeding systems of Silene point out that although primarily 

viewed as an outcrossing genus, some experimental species tend to reproduce by selfing (Buide 

et al., 2015; Kephart et al., 1999). Kephart et al., (1999) found selfing in Silene douglasii and 

Davis & Delph, (2005) identified that Silene noctiflora self-pollinated itself even before 

opening its flower. Buide et al., (2015) carried out a pollination experiment on two co-

flowering species (Silene niceensis and Silene ramosissima) in southern Spain and discovered 

that although both were self-compatible, only Silene ramosissima was predominantly selfing. 

Our data indicated that the Cameroonian endemic species Silene biafrae was partially self-

compatible based on its A/O index. Similarly to Geranium arabicum, it is possible that this 

species is fully self-compatible, since it produced almost as many seeds when treated with 

autogamy as with outcrossing in 3,500 m a.s.l.  

 Clematis is a genus with ~350 known species of the family Ranunculaceae. Redmond 

& Stout, (2018) pointed out that self-pollination was not uncommon in Clematis, which they 

tested on Clematis vitabla, and found it to be partially self-compatible, but not predominantly 

selfing. N. Jiang et al., (2010) produced results of hand pollination experiments which 

concluded that of their three experimental species, all were self-compatible, two of which were 

adapted toward high selfing rates (Clematis akebiodes and Clematis rehderiana) and one was 

predominantly outcrossing (Clematis chrysocoma). Our results indicate that the African 

species Clematis simensis is partially self-compatible and capable of reproducing by selfing, 

when outcrossing pollen is limited.  

 Unfortunately, the data of our last experimental species, Swertia mannii from the family 

Gentianaceae was insufficient and so we could not make any deductions about its breeding 

system. We presume that the pollination experiment could have been carried out incorrectly on 

this species, since the mean control treatment seed set was twice as high as the outcrossing 
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treatment seed set. However, we cannot say for sure since only one replicate of outcrossing 

was not labeled “useless” in elevation 2,800 and none was recovered from elevation 3,500. To 

my knowledge, no other study on the breeding system of Swertia mannii exists which we could 

compare to our data.  

4. 2 Variations in reproductive output among elevations 

Overall, we expected a decrease in reproductive output with increasing elevation in our 

experimental plant species. The “energy-constraint hypothesis” states, that species in 

unfavorable conditions are limited by obtainable energy which they could use to invest in 

reproductive output. (Abdusalam & Li, 2019; Knight et al., 2005). It is well documented that 

the harsh conditions in higher elevations may impact the reproductive success of plants, 

resulting in plants not being able to produce as many seeds as plants in the lower elevations 

(García-Camacho & Totland, 2009; Hautier et al., 2009; Körner, 2003; Stigter, 2019). Of our 

five experimental plant species, we found a significant decrease in the maximum reproductive 

output in three of them (Fig. 3A).   

 The decrease in reproductive output of Senecio purpureus and Lactuca inermis was 

very similar to what was expected, with each rising population being able to produce less seeds 

than the previous. In Lactuca however, we only produced one replicant in the highest elevation, 

so the results might not indicate the proper outcome. The complete decrease of all flower seed 

sets in elevation 4,000 of Hypericum revolutum was not expected and could have two 

explanations. First, which I believe is the case, is that the inhospitable conditions made it nearly 

impossible for the plants to produce seeds due to the high energy demands, to which the species 

was not adapted. I do not have data to assess the viability of pollen, or the receptivity of stigmas 

in the elevation 4,000, which could be used to assess if the problem arose in just one part of 

the reproductive cycle or if the whole flower was sterile. I do however know that in the lower 

elevation, the species was quite capable of reproducing with selfing. From observation, it can 

be said that the Hypericum plants in elevation 2,800 were much larger and took on formations 

of big shrubs, whereas in the elevation 4,000 they were more bushes low to the ground, with 

less flowers blooming. These observations allow the prediction that the plant was resource 

limited, due to which the plants in the higher elevation might have been unable to produce 

seeds at all. Various studies have proven that if the conditions become too harsh for a plant, it 

might be forced to resort only to clonal reproduction, instead of sexual reproduction (Willmer, 

2011; Young et al., 2002). It can also be possible that these plants reproduce sexually only once 
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in a few years, or more specifically when the conditions are above average in the highest 

elevation, and the plant opts to invest into seeds. Unfortunately, our data does not provide this 

information.   

 A question might then arise about how the plants which inhabit these elevations got 

there in the first place, seeing as they are unable to reproduce regularly. The term “ecological 

trap” is used to describe scenarios, where organisms settle in sub-optimal habitats, which might 

have appeared to provide suitable conditions at first (Gardner et al., 2018; Robertson & Hutto, 

2006). A simple answer to the question, how the plant species which do not reproduce in the 

highest elevation got there, is that the seeds from lower elevations were transported higher by 

wind. This could have been the case for some Asteraceae, since their seeds are adapted toward 

wind dispersal, with the crown consisting of a pappus of hairs. It is also possible, that the fruits 

of the flowers were eaten by birds, which transported the seeds into the higher elevations. The 

seeds were able to start germinating and growing when the conditions were exceptionally good, 

however due to the unfavorable conditions which inevitably arose, the plants were not able to 

reproduce sexually.   

 There is also a second explanation for low seed sets in elevation 4,000, it being that the 

flowers were harvested too early there. The fruits of flowers were harvested ~40 days after the 

last pollination experiment in the first year (2019), and ~30 days in the second year (2020). It 

is possible that the 30 days were not enough for the plants in the highest elevation to produce 

fruits, however the first replicates produced in 2020 had the same amount of time to mature as 

the last replicates produced in 2019 (40 days), since the experiment was carried out for ten days 

in the later year. It is however possible that for the two species, which produced low seed sets 

(Lactuca inermis and Hypericum revolutum), 40 days was not enough time. Both Crepis 

hypochoeridea and Senecio purpureus had set seed within the time limit provided.  

4.3 Self-compatibility and pollen limitation  

From published studies dealing with pollen limitation, we can imply that the highest levels of 

pollen limitation are found in species that are self-incompatible (Knight et al., 2005). Studies 

analyzing pollen limitation among elevations which did not find pollen to be limited were 

carried out on plant species, which were highly selfing and were not reliant on pollinators for 

pollen transfer in any elevation (Mary T.K. Arroyo et al., 2006; Gómez, 2002; Hargreaves et 

al., 2015). Of the studies which did observe rising pollen limitation with elevation, the vast 

majority reported it on plant species, which were self-incompatible or in some cases partially 
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self-compatible (N. Jiang et al., 2010; Torres-Díaz et al., 2011; Totland & Sottocornola, 2001). 

With this in mind, we would expect to find highest levels of pollen limitation in Senecio 

burtonii, and also potentially in Senecio purpureus and Lactuca inermis.  

 We found pollen limitation to rise significantly in only two of our experimental studies 

(Fig. 3B). Partially self-compatible Senecio purpureus and Lactuca inermis suffered most from 

pollen limitation with rising elevation. Although pollen limitation did not rise among elevations 

in all species, it is important to keep in mind that our lowest elevation was already significantly 

high (2,800 m a.s.l.), thus the plant species in this elevation might have already been 

significantly pollen limited. I believe this is the case of self-incompatible Senecio burtonii, 

which did not show an increase in pollen limitation, probably because it was already severely 

pollen limited in elevation 2,800 (Fig. 3B). Crepis hypochoeridea was not pollen limited 

overall, which is presumed to be a result of its self-compatibility. 

4.4 Selfing along elevation  

Both the “reproductive assurance hypothesis” and the “transmission advantage hypothesis” 

predict, that selfing rates should rise with elevation in plants to make up for the decrease in 

pollination caused by the fluctuating environmental conditions (Busch & Delph, 2012; Schoen 

et al., 1996; Stone et al., 2014). If our results were to be in accordance with one of the two 

hypotheses, all the species would experience a raised amount of selfing in the higher elevations. 

It is true that studies which observed certain plant species in only one elevation found them to 

be able to reproduce with selfing (Biella et al., 2021; Ling et al., 2017). It is has also been 

observed, that selfing rates do tend to rise between elevations on an interspecific level (Berry 

& Calvo, 2016; Medan et al., 2002). However, from extensive research, increased selfing rates 

throughout elevations are mainly only found in species, which were already self-compatible in 

the lower elevations (Black et al., 2019; Dai et al., 2017; Etcheverry et al., 2008; Wirth et al., 

2010; Young et al., 2002). Those species only utilized selfing more in the higher elevation, 

where the conditions for pollination were worse and selfing ensured reproduction. Considering 

what the studies mentioned above have examined, that selfing does not rise unless the species 

is already self-compatible, we could expect rise in four experimental species, which could 

potentially become more self-compatible.  

 Our results indicate that none of our experimental species became more selfing among 

elevations. Of the four species, it was not too surprising in the two Senecio species. Since 

Senecio burtonii was self-incompatible, a rise in selfing was not expected. Although Senecio 
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purpureus was partially self-compatible, it was considered a primarily outcrossing species due 

to its’ very low selfing capabilities. In accordance with studies quantifying breeding systems, 

both Senecio species would be the least expected to have selfing rise with elevation, since they 

were unable to properly utilize selfing in the lowest studied elevation. Lactuca inermis also 

showed a decrease in selfing rates, contrary to what would be expected from a species capable 

of producing half as many seeds through autogamy as outcrossing in the lowest elevation. It is 

possible, that Lactuca produced seeds by selfing only when the conditions were exceptionally 

good in the higher. In both elevation 3,500 and 4,000, only one autogamous treatment produced 

seeds in each elevation. I was surprised to find that the species, which was labeled as 

predominantly selfing, Crepis hypochoeridea, produced significantly less seeds when treated 

with autogamy in the highest elevation than in the two lower elevations. However, self-

compatibility did not decrease among elevations Crepis. 

 Overall, although I did not find significant rise in selfing rates on an intraspecific level, 

it is possible that the experimental species have higher selfing rates on an interspecific level 

compared to lower elevations. Considering various published studies, it can be deemed 

improbable that our experimental species, which did not show significant selfing rates in the 

lowest elevation would be capable of self-pollination with rising elevation. To better 

understand the breeding systems of our experimental species, we must still carry out 

experiments on species in elevation 2,300. Unfortunately, until then, not much can be said 

about species with only one elevation sampled. In the future, I am looking forward to both 

increasing my knowledge of the species which we already have sampled in multiple elevations, 

along with learning about how species which we only have sampled in one elevation (such as 

Clematis simensis and Geranium arabicum) reproduce in the lowest elevation of the grasslands 

on Mount Cameroon. 
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5. Conclusion 

We carried out experiments on 10 plant species on the grasslands above the timberline of 

Mount Cameroon to assess the differences between pollen limitation and breeding systems of 

these plants along an elevational gradient. We successfully identified previously unknown 

breeding systems of eight species, one which turned out to be self-incompatible, six which 

were partially self-compatible and one which was fully self-compatible. The maximum 

reproductive output of our experimental plant species located in multiple elevations either 

decreased (two species) or was statistically insignificant throughout elevations (three species). 

Contrary to predictions, our analysis does not reveal a significant increase in pollen limitation 

by elevation in all species, this could be however that the plants were already limited in our 

lowest elevation sampled. The results from our study are also contradictory to the “reproductive 

assurance hypothesis” and the “transmission advantage hypothesis”, as none of the species 

became more adapted towards selfing with increasing elevation. In fact, even a predominantly 

selfing species produced less seeds when treated with autogamy in the highest elevation. 

However, taking into account that our lowest elevation was already very high (2 800 m.a.s.l.), 

we can assume that on an interspecific level, the plants which we studied might be more self-

compatible than those located in lower elevations. We plan on sampling elevation 2 300 m.a.sl. 

in the upcoming year to assess how to better understand the whole reproductive system of 

montane plant species on the grasslands above the timberline of Mount Cameroon. 
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