
Model-free Tracking Control of an Optical Fiber
Drawing Process using Deep Reinforcement Learning

by

Sangwoon Kim

B.S., Seoul National University (2018)

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Mechanical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2020

c○ Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Mechanical Engineering

May 15, 2020

Certified by. .
Brian W. Anthony

Principal Research Scientist, Department of Mechanical Engineering
Thesis Supervisor

Accepted by .
Nicolas Hadjiconstantinou

Graduate Officer

2

Model-free Tracking Control of an Optical Fiber Drawing

Process using Deep Reinforcement Learning

by

Sangwoon Kim

Submitted to the Department of Mechanical Engineering
on May 15, 2020, in partial fulfillment of the

requirements for the degree of
Master of Science in Mechanical Engineering

Abstract

A deep reinforcement learning (DRL) approach for tracking control of an optical
fiber drawing process is developed and evaluated. The DRL-based control is capable
of regulating the fiber diameter to track either steady or varying reference trajecto-
ries in the presence of stochasticity and non-linear delayed dynamics of the system.
With about 3.5 hours of real-time training, it outperformed other control models
such as open-loop control, proportional-integral (PI) control, and quadratic dynamic
matrix control (QDMC) in terms of diameter error. It does not require analytical
or numerical model of the system dynamics unlike model-based approaches such as
linear-quadratic regulator (LQR) or model predictive control (MPC). It can also track
reference trajectories that it has never experienced in the training process.1

Thesis Supervisor: Brian W. Anthony
Title: Principal Research Scientist, Department of Mechanical Engineering

1Part of this thesis is based on [1] with permission

3

4

Acknowledgments

This thesis would have never been possible without the support of many individuals

along the way. I would like to take the opportunity to appreciate every one of them.

First of all, I would like to thank my parents, Woongchul Kim and Eunsook

Hong, and my sisters, Jia Kim and Jiyun Kim, for supporting me throughout my

entire lifetime. Your love and care gave me the power to overcome hardships and

difficulties. Thank you for always being there and guiding me in the right direction.

Dr. Brian Anthony, my thesis advisor, helped me to come up with novel ideas

and make breakthroughs when my research is at a stalemate. The precious discussion

with you made me become a better researcher. Thank you for your guidance and for

being always supportive.

I want to thank every labmate, especially David Donghyun Kim and Shirley Lu.

The active discussion with you on the fiber machine has been the strongest driving

force for my research. Without the interaction, my research idea would have never

been realized.

5

6

Contents

1 Introduction 17

1.1 Tracking Control of Manufacturing Processes 17

1.2 Optical Fiber Drawing Process . 20

1.3 Deep Reinforcment Learning Approaches for Control 22

2 Background 25

2.1 Reinforcement Learning . 25

2.1.1 State-Action Value function Q(s,a) 25

2.1.2 Bellman Equation and Temporal Difference Method 26

2.1.3 Actor-Critic Approach . 27

2.1.4 Partial Observability . 29

3 Mechanical System Design 33

3.1 Design Overview . 33

3.2 Heating and Feeding System . 33

3.3 Cooling and Spooling System . 36

4 Learning Algorithm 37

4.1 Overview . 37

4.2 POMDP Formulation . 38

4.2.1 Observation . 39

4.2.2 Action . 40

4.2.3 Reward Function Design . 42

7

4.3 Network Architecture . 43

4.3.1 Actor Network . 43

4.3.2 Critic Network . 43

4.3.3 Window Length (L) . 44

4.3.4 When-Label (B) . 45

4.4 Initialization . 46

4.5 Control Thread . 46

4.5.1 Data generation and Storage 46

4.5.2 Exploration Strategy . 46

4.6 Train Thread . 47

4.6.1 Batch Sampling from History Memory (H) 47

4.6.2 Temporal Difference Method Implementation 47

4.6.3 Soft Target Network Updates 49

5 Implementation and Baselines 51

5.1 Hardware Setup . 51

5.2 Hyperparameters . 51

5.3 Training Target Diameter Trajectory Design 52

5.4 Baseline Control Methods . 52

5.4.1 Open-loop Control . 52

5.4.2 PI Feedback Control . 54

5.4.3 Quadratic Dynamic Matrix Control (QDMC) 54

6 Evaluation 57

6.1 Test on Various Target Diameter Trajectories 57

6.1.1 Steady Target . 57

6.1.2 Random Step Target . 59

6.1.3 Continuous Target . 63

6.2 Ablative Analysis . 66

6.2.1 Effect of Window Length . 66

6.2.2 Effect of Action-Speed Linear Mapping 68

8

6.2.3 Effect of When-Label . 68

7 Conclusion and Future Work 71

9

10

List of Figures

1-1 A typical time-temperature profile during the coffee roasting process

(Adapted from Wieland et al.[2] with permission) 19

1-2 A schematics of the fiber drawing process (Adapted from Choudhury

et al.[3]) . 20

1-3 Possible application of a fiber with varying diameter 22

2-1 Reinforcement Learning Schematics 26

3-1 Desktop fiber manufacturing system 34

3-2 Path of the fiber . 35

4-1 Learning algorithm overview . 38

4-2 Block diagram of the DRL control system 38

4-3 An example of a reference and a measured diameter trajectories. Not

only current measured diameter and reference diameter, but also future

reference diameter of 10, 20, 30, 40, 50 time steps ahead are included

in the state representation . 40

4-4 Action-speed linear mapping . 41

4-5 Network architecture . 44

5-1 An example of training reference trajectory. The reference takes ran-

dom step every 30 seconds. The maximum and minimum of the random

reference is 600 𝜇𝑚 and 300 𝜇𝑚. 53

5-2 Open-loop control with mass conservation model 53

5-3 PI feedback control with diameter error 54

11

6-1 (top) Steady reference target diameter at 550 𝜇𝑚 and measured diam-

eter trajectory of DRL model, PI feedback control, QDMC, and mass

conservation model open-loop control. (middle) The spool’s duty cycle

and the extruder’s feed rate of the DRL model controller. (bottom)

The spool’s duty cycle and the extruder’s feed rate of the QDMC. . . 58

6-2 (top) Random step reference target diameter and measured diameter

trajectory of DRL model, PI feedback control, and QDMC. (middle)

The spool’s duty cycle and the extruder’s feed rate of the DRL model

controller. (bottom) The spool’s duty cycle and the extruder’s feed

rate of the QDMC. 60

6-3 (top) Sinusoidal reference target diameter and measured diameter tra-

jectory of DRL model, PI feedback control, and QDMC. (middle) The

spool’s duty cycle and the extruder’s feed rate of the DRL model con-

troller. (bottom) The spool’s duty cycle and the extruder’s feed rate

of the QDMC. 61

6-4 (top) Chirp reference target diameter and measured diameter trajec-

tory of DRL model, PI feedback control, and QDMC. (middle) Mean

absolute error for the DRL model control, PI feedback control, QDMC.

Moving average of window size 500 (125 seconds) is applied. (bottom)

The spool’s duty cycle and the extruder’s feed rate of the DRL model

control. 62

6-5 (top) Random spline reference target diameter and measured diameter

trajectory of DRL model control. (bottom) The spool’s duty cycle and

the extruder’s feed rate of the DRL model controller. 63

6-6 Learning curve comparison with regard to the window length. Moving

average of 10,000 steps (41.8 minutes) is applied for the average reward. 64

12

6-7 (top) Random step reference target diameter and measured diameter

trajectory of DRL models with window length 50 and 1. Moving av-

erage of window size 40 (10 seconds) is applied. (middle) The spool’s

duty cycle and the extruder’s feed rate of the DRL model controller

with window length 50. (bottom) The spool’s duty cycle and the ex-

truder’s feed rate of the DRL model controller with window length

1. 65

6-8 Learning curve comparison between the DRL models of with and with-

out the linear mapping. Moving average of 10,000 steps (41.8 minutes)

is applied for the average reward. 66

6-9 (top) Random step reference target diameter and measured diameter

trajectory of DRL model with and without the linear mapping. Moving

average of window size 40 (10 seconds) is applied. (middle) The spool’s

duty cycle and the extruder’s feed rate of the DRL model controller

with the linear mapping. (bottom) The spool’s duty cycle and the

extruder’s feed rate of the DRL model controller without the linear

mapping. 67

6-10 Learning curve comparison between the DRL models of with and with-

out the when-label. Moving average of 10,000 steps (41.8 minutes) is

applied for the average reward. 68

6-11 (top) Steady reference target diameter and measured diameter trajec-

tory of DRL models with and without the when-label Moving average

of window size 40 (10 seconds) is applied. (middle) The spool’s duty

cycle and the extruder’s feed rate of the DRL model controller with

the when-label. (bottom) The spool’s duty cycle and the extruder’s

feed rate of the DRL model controller without the when-label. 69

7-1 Block diagram of the control system that combines the DRL approach

with the conventional PI feedback control. 71

13

14

List of Tables

1.1 Comparison between PID, LQR, MPC, and Model-free RL 18

5.1 Hyperparameters for model training 52

15

16

Chapter 1

Introduction

1.1 Tracking Control of Manufacturing Processes

The control of a manufacturing process is instrumental in achieving consistent quality

of materials or products at the desired rate. The design of an appropriate control

system is necessary to achieve the desired outcomes. One important requirement for

such a control system is to regulate output variables to track the desired reference

trajectories. The reference trajectories can be either steady or dynamically vary-

ing. For example, in chemical processes, concentration or flowrate of the chemicals

should follow the target reference trajectories. In thermal processes, temperature and

airflow should be controlled to track certain trajectories. Conventional proportional-

integral-derivative (PID) controller is widely used for the tracking control. Advanced

approaches like linear-quadratic regulator (LQR) or model predictive control (MPC)

are also often used.

In PID control, the controller takes measurements from sensors as input and

computes the control action based on the error between the measurement and the

target output. It is one of the most widespread controllers in industrial practice

due to its simple structure and ease of implementation. Since it leverages only the

difference between the actual value and the target value, it does not require a model

of the system. It works well in many control problems, especially when the desired

setpoint is steady. However, it requires manual tuning whenever the setpoint changes.

17

Control Method Predictive Analytical Model
PID no not required
LQR no required
MPC yes required

Model-free RL yes not required

Table 1.1: Comparison between PID, LQR, MPC, and Model-free RL

Also, since it does not look forward but only sees the error at the present and the

past, it yields significant delay when the desired reference dynamically varies faster

than its response bandwidth. These limitations of PID control can be improved with

the model-based approaches like LQR or MPC.

While PID controller focuses on reducing the error between the output and the

desired reference, LQR represents the system as a state-space model and optimizes to

stabilize the system to the desired state. This generally enables a more stable control

for LQR over PID controllers. While P, I, D parameters need to be tuned in PID

controller, LQR optimizes the control by minimizing a cost function. Therefore, the

operators only need to define the cost function based on their control objective and do

not need to retune the parameters when the setpoint changes. However, a model of

the system is necessary to establish the state-space model and the performance of the

controller is sensitive to model accuracy. Also, since LQR is interested in stabilizing

the system to a certain desired state, it cannot predictively control the system when

the future reference trajectory is dynamically varying.

Unlike PID and LQR, MPC can predictively track the future reference trajectory.

Using the system model, MPC predicts the output trajectory during a certain time-

horizon and computes the error between the predicted trajectory and the reference

trajectory. Then it computes the optimal control plan to minimize the error and

exerts the first control action of the control plan. The above process of predicting and

optimizing is repeated at every timestep. Thereby, MPC can minimize the expected

future error between the actual and the reference trajectory. Since the prediction

is based on a system model, accurate modeling of the system by either analytic or

empirical analysis is necessary. Therefore, when the accurate model of the system is

18

Figure 1-1: A typical time-temperature profile during the coffee roasting process
(Adapted from Wieland et al.[2] with permission)

unavailable due to the high complexity of the system, it is hard to implement MPC.

As described above, PID and LQR are not predictive, and LQR and MPC are

hard to implement when there is no accurate model of the system. Therefore, when

the model of the system is hard to be achieved, PID, LQR and MPC cannot be

used to regulate the output variables to a dynamically varying reference trajectory.

For example, in a coffee roasting process, the quality of the coffee is defined by the

temperature trajectory during the roasting process. As shown in Figure 1-1, the

temperature follows a typical type of profile during the roasting process. Industry

coffee roasters usually rely on a PID controller or rule of thumb to regulate the

temperature to track the reference trajectory. However, since there is a time delay

between the burner level change and temperature change, the tracking error occurs

when a PID controller is used. Model-based methods such as LQR and MPC are also

hard to be used because the process involves complex heat and mass transfer. The

complexity of the process makes it hard to establish an analytical or numerical model.

In this work, we use deep reinforcement learning (DRL) to develop a model-free and

predictive control system for manufacturing processes that require varying reference

target trajectory and involve complex non-linear delayed dynamics. We develop and

deploy the control system on the optical fiber drawing process, focusing on regulating

19

Figure 1-2: A schematics of the fiber drawing process (Adapted from Choudhury et
al.[3])

to track time-varying reference trajectories for fiber diameter.

1.2 Optical Fiber Drawing Process

Figure 1-2 shows a schematics of the typical optical fiber drawing process. A preform

rod with a large diameter is fed into the heater at the upstream. The preform is

heated and pulled to the downstream. This causes the material to form the neck-

down profile and transform it into a small diameter fiber. The fiber then goes through

the cooling process and routed on the pulley to a winding drum.

A number of studies have modeled the neck-down shape and temperature dis-

tribution. Early models of the neck-down shape and temperature distribution were

validated experimentally [4]. The initial models were extended for non-isothermal

conditions [5]. The modern approach using iterative methods to improve the model

20

were introduced [3]. Models were improved by incorporating the physics and proper-

ties of the drawing process including the gas flow and iris opening sizes [6, 7]. There

was also research done to simplify the model [8], along with research to enable high-

speed drawing as well [9, 10]. The fiber process models were further augmented to

include stochastic characteristics [11] and to evaluate parameters critical to stabilizing

the fiber diameter [12].

In addition to the numerical model of the process, control of the fiber diameter has

been studied. While control of the industrial fiber draw tower heavily relies on classical

PID feedback control, more advanced model-based control approaches were studied.

Most of them focused on maintaining a steady diameter. Mulpur and Thompson

developed a modal diameter control method based on simulation [13]. They assumed

isothermal temperature profiles and utilized a modal control method. They also de-

veloped nonlinear control on the optical fiber diameter [14]. State-space modeling

of the optical fiber drawing process coupled with linear-quadratic Gaussian optimal

controllers was investigated [15, 16]. Improved models of the neck-down profile and

control of the draw tension enabled high-speed production [17]. Reduced-order mod-

els were coupled with robust control methods [18]. This long history of modeling

and controlling the optical fiber manufacturing process focuses on maintaining the

diameter at a fixed set point.

When the reference diameter trajectory varies over time, conventional PID con-

trollers or model-based controllers mentioned above are either hard to implement or

yield non-optimal performance. The PID controllers compute control actions based

on only the present and past error between actual and the target diameter. There-

fore, it results in a significant error when the target reference changes faster than the

bandwidth of the PID controllers. In the model-based methods, new state models

at new setpoints are required when the setpoints change [15]. A dynamic model of

the transition between different setpoints is also required. However, the model for

the dynamic transition is hard to be achieved because it requires considering complex

non-linear dynamics caused by mass flow, rheology, fluid dynamics, heat transfer,

vibration, etc. In this work, we use DRL to allow the controller to continuously track

21

(a) An example of fiber with varying di-
ameter

(b) An example of fabric weaved with the
varying diameter fiber

Figure 1-3: Possible application of a fiber with varying diameter

a varying reference diameter without requiring a CFD model for the setpoint changes

on.

We expect that the capability of producing fiber with varying diameter will enable

us to embed various physical or optical properties to the fiber. Furthermore, the fabric

made out of such fiber may have special properties as well, which we can exploit for a

certain purpose. For example, if the fibers in Figure 1-3a are weaved into the fabric,

it will form an interlocking structure, as shown in Figure 1-3b. This fabric is expected

to be resistive to slipping between fibers while having a relatively low bending rigidity.

Thus, if we have a control system capable of supporting varying geometries, we can

customize the properties of the produced fiber or fabric.

1.3 Deep Reinforcment Learning Approaches for Con-

trol

The availability of computation power in recent years has triggered a strong interest

in control methods that utilize machine learning, especially model-free DRL. Model-

free DRL based algorithms have outperformed the humans in playing the game of

Go [19] and Atari [20]. It is successful in the simulation of physical tasks [21], heat

exchanging process control [22], and AUV control [23]. It also performs well in real-

22

world applications such as robot manipulation [24], high precision assembly tasks [25]

and flying quadrotor [26]. One of the strengths that enabled the success of model-free

DRL is that it does not require an accurate model as a prerequisite. Even when the

model is inaccurate or unknown, the DRL agent can learn and optimize the control

policy by interacting with the system. Without prior knowledge about the system,

the DRL agent estimates the best control action by learning from trial and error.

This thesis discusses how the model-free DRL algorithm can be used to optimally

and predictively control the fiber drawing process without an analytical or numerical

model of the system. We focus on regulating the diameter to the reference trajectories,

either steady or varying. We apply the DRL framework to the desktop fiber drawing

system, which has been developed in Device Realization Laboratory at MIT [27].

Compared to industrial optical fiber draw towers, which are typically a few stories

tall, it is significantly smaller so that it fits on a tabletop. The associated cost to

build and operate the system is relatively small.

23

24

Chapter 2

Background

2.1 Reinforcement Learning

Reinforcement learning (RL) is a programming method that trains the control agents

to maximize rewards or minimize the penalty. As shown in Figure 2-1, the RL agent

interacts with the environment at each time step. It receives the observation and

reward from the environment, then computes the action based on its policy. The

environment is affected by the action and the new reward that corresponds to the

new state of the environment is computed. The cycle is repeated until the task is

over. In this cycle, the action that resulted in high reward is ‘reinforced’. In other

words, the agent tends to prefer the action that is similar to the reinforced action. As

a result, the agent converges to the optimal policy, which takes the optimal action to

maximize the expected future reward. In the manufacturing process, a controller and

a manufacturing process can be considered as the agent and the environment; the

controller receives the observations through sensor readings and computes the control

inputs.

2.1.1 State-Action Value function Q(s,a)

The state-action value function, also called the Q-function, represents the expected

future reward when taking a certain action at a certain state, then thereafter following

25

Agent
(Controller)

Environment
(Mfg. Process)

State / Reward
(Sensor Reading)

Action
(Control Input)

Figure 2-1: Reinforcement Learning Schematics

the agent’s policy,

𝑄𝜇(𝑠𝑡, 𝑎𝑡) = E𝜇[𝑅𝑡|𝑆𝑡 = 𝑠𝑡, 𝐴𝑡 = 𝑎𝑡], (2.1)

where 𝑅𝑡 and 𝜇 represents the expected future reward and the agent’s policy, respec-

tively. The expected future reward 𝑅𝑡, also called return, is often discounted with a

discount factor 𝛾 ∈ [0, 1),

𝑅𝑡0 = 𝑟𝑡0 + 𝛾𝑟𝑡0+1 + 𝛾2𝑟𝑡0+2 + ... =
𝑒𝑛𝑑∑︁
𝑡=𝑡0

𝛾𝑡−𝑡0𝑟𝑡, (2.2)

where 𝑟𝑡 is the reward at time 𝑡. The discount factor 𝛾 models the notion that

a state and an action have decreased relation with the state and reward that are

farther separated in time. Therefore, the reward is discounted at each time step by

multiplying the discount factor 𝛾. As a result, when optimizing the return, the agent

is biased on the more recent time steps.

2.1.2 Bellman Equation and Temporal Difference Method

A large number of computations are typically required to calculate the Q-value with

the Monte-Carlo method by trying the entire trajectory multiple times. Therefore,

the temporal difference method with the Bellman equation (2.5) is widely used to

solve this issue by bootstrapping the Q-value estimation between consecutive time

26

step,

𝑄𝜇(𝑠𝑡, 𝑎𝑡) = E𝜇[𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + ...|𝑆𝑡 = 𝑠𝑡, 𝐴𝑡 = 𝑎𝑡] (2.3)

= E𝜇[𝑟𝑡 + 𝛾(𝑟𝑡+1 + 𝛾𝑟𝑡+2 + ...)|𝑆𝑡 = 𝑠𝑡, 𝐴𝑡 = 𝑎𝑡] (2.4)

= E𝜇[𝑟𝑡 + 𝛾𝑄𝜇(𝑠𝑡+1, 𝜇(𝑠𝑡+1))|𝑆𝑡 = 𝑠𝑡, 𝐴𝑡 = 𝑎𝑡] (2.5)

This Bellman equation compares the Q-values with a single time step difference. The

error between the left and right side of the equation is called the temporal differ-

ence (TD) error. By iterating the Bellman equation, the Q-value can be estimated

with significantly less computation. The simplest temporal difference update can be

expressed as below (2.6):

𝑄𝜇(𝑠𝑡, 𝑎𝑡)← 𝑄𝜇(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡 + 𝛾𝑄𝜇(𝑠𝑡+1, 𝜇(𝑠𝑡+1))−𝑄𝜇(𝑠𝑡, 𝑎𝑡)] (2.6)

where 𝛼 is the step-size of the update.

2.1.3 Actor-Critic Approach

The actor-critic approach is often used for reinforcement learning [28]. The approach

approximates both policy and value function with the actor and the critic. An actor

acts as the agent observing a state from the environment and computing actions

accordingly. The critic evaluates the actor’s action by estimating value function. A

critic takes the observations and the actions as the inputs and computes the value

estimation. Based on the critic’s evaluation, the actor is updated along the direction

that increases the value estimation. Simultaneously, the critic is also updated by

minimizing the TD error in the Bellman equation. Consequently, the critic converges

near the true value function and the actor is optimized to maximize the value function.

In deep reinforcement learning, multilayer perceptrons are often used as function

approximators for the actor and the critic (e.g. deep deterministic policy gradient

(DDPG) [21]). Recurrent Neural Networks (RNN) are used to consider the history

of the observations and actions (e.g. recurrent deterministic policy gradient (RDPG)

27

[29]). There are some cases where multiple critics are used (e.g. twin delayed DDPG

(TD3) [30]).

Deep Deterministic Policy Gradient (DDPG)

Algorithm 1 Deep Deterministic Policy Gradient
1: Initialize critic networks 𝑄𝜃, and actor network 𝜋𝜑 with random parameters 𝜃, 𝜑
2: Initialize target networks 𝜃′ ← 𝜃, 𝜑′ ← 𝜑
3: Initialize empty replay buffer 𝑅
4: for episode = 1 : M do
5: Sample the initial state 𝑠0
6: for timestep = 1 : T do
7: Observe state 𝑠𝑡
8: execute action 𝑎𝑡 = 𝜋𝜑(𝑠𝑡) + 𝜖 , 𝜖: exploration noise
9: Observe state 𝑠𝑡+1 and reward 𝑟𝑡

10: store transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) to the replay buffer 𝑅
11: Sample a mini-batch of N transitions from 𝑅: (𝑠𝑖𝑡, 𝑎

𝑖
𝑡, 𝑟

𝑖
𝑡, 𝑠

𝑖
𝑡+1)

12: Compute target values for each transition:̃︀𝑎𝑖𝑡+1 ← 𝜋𝜑′(𝑠𝑖𝑡+1)
𝑦𝑖 ← 𝑟𝑖𝑡 + 𝛾𝑄𝜃′(𝑠

𝑖
𝑡+1,̃︀𝑎𝑖𝑡+1)

13: Compute critic update:

∆𝜃 = 1
𝑁

∑︀
𝑖(𝑦

𝑖 −𝑄𝜃(𝑠
𝑖
𝑡, 𝑎

𝑖
𝑡))

𝜕𝑄𝜃(𝑠
𝑖
𝑡,𝑎

𝑖
𝑡)

𝜕𝜃

14: Compute actor update:

∆𝜑 = 1
𝑁

∑︀
𝑖
𝜕𝑄𝜃(𝑠

𝑖
𝑡,𝜋𝜑(𝑠

𝑖
𝑡))

𝜕𝑎

𝜕𝜋𝜑(𝑠
𝑖
𝑡)

𝜕𝜑

15: Update target networks:
𝜃′𝑖 ← 𝜏𝜃𝑖 + (1− 𝜏)𝜃′𝑖, 𝜑

′ ← 𝜏𝜑 + (1− 𝜏)𝜑′

16: end for
17: end for

DDPG is one of the most widely used actor-critic methods. It approximates the

actor and the critic with multilayer perceptrons. While the actor interacts with the

environment by exerting actions and receiving observations, the critic evaluates the

actor’s action with the Q-value estimation. Target actor and the target critic network

are also used to facilitate the stable convergence. The pseudo-code of this algorithm

is outlined in Algorithm 1.

First, the actor and the critic networks are initialized by randomly assigning the

values of each parameter. The target actor and the target critic are initialized by

28

copying parameter values from the actor and the critic. The empty replay buffer is

also initialized. A replay buffer is a storage unit that stores previous actions and ob-

servations. After the initialization, the agent starts to interact with the environment.

At each timestep of each episode, the actor computes the "greedy" action. Then the

exploration noise is added to the greedy action before it is exerted to the environment.

The action with the exploration noise is executed and then the actor observes a new

state and a reward. These states, actions, and rewards are stored in the replay buffer

for the later use in the training.

The training starts after a reasonable amount of states, actions, and rewards data

are collected in the replay buffer. First, a mini-batch of transition data is sampled

from the replay buffer. Then, the target value of each transition is computed from

the target networks and compared with Q-value estimation of the critic to compute

the TD error. The mean squared error of TD error is used as the loss and the critic

is updated by minimizing the loss. The actor is updated along the direction of Q-

value estimation increment. Lastly, the target networks are updated by interpolating

between old parameters of the target actor and the target critic networks and new

parameters of the actor and the critic networks.

2.1.4 Partial Observability

Partially Observed Markov Decision Process (POMDP)

Full observability means that the observation can represent the current state com-

pletely. Therefore, if the state is fully observed, then the probability distribution of

the next state only depends on the current observation and the current action. This

types of model is called a Markov decision process (MDP). On the other hand, par-

tial observability means that the observation can represent only partial components

of the full state. Therefore, the probability distribution of the next state cannot be

determined based on the current observation and the current action. This model is a

partially observed Markov decision process (POMDP).

In the fiber drawing process discussed in Chapter 3, sensors measure the diameter

29

of the fiber, temperature of the heating chamber, speed of the spool motor, and feed

rate of the extruder. However, this is not a full observation mainly due to delayed

dynamics. The diameter response to the feed rate or the spool speed change is delayed

by the time it takes for material to flow through the system. Therefore, the history

of observations and actions are needed to predict the future states accurately. One

solution to this problem is using RNNs. RNNs pass activation values to consecutive

time step so the inputs at the previous time steps are considered when computing

outputs. On the other hand, a non-recurrent network computes its outputs from

scratch at each time step so only the current input is considered.

Long Short Term Memory (LSTM)

A neural network is generally updated using knowledge of the gradient. In a typical

feed-forward network, the gradient is backpropagated from the output layer to the

input layer. In RNNs, the gradient is also backpropagated through time (BPTT) to

consider the previous inputs while updating. LSTM is a type of RNN that enables

BPTT to reach farther time steps without vanishing gradient by using gate mechanism

[31]. Therefore, LSTM is widely used in domains such as robot manipulation [32],

self-driving cars [33] and language modeling [34].

Recurrent Deterministic Policy Gradient (RDPG)

RDPG is a modified version of DDPG. While DDPG uses non-recurrent multilayer

perceptrons to represent the actor and the critic, the RDPG uses RNN to represent

the networks. By using RNN, it can consider the history of interaction between the

agent and the environment. Therefore, RDPG generally works better than DDPG in

controlling POMDP, where the state of the system is not fully observed. Algorithm 2

summarizes the pseudocode of the RDPG. It is similar to DDPG except that it uses

RNN and BPTT to update the networks.

30

Algorithm 2 Recurrent Deterministic Policy Gradient
1: Initialize critic networks 𝑄𝜃, and actor network 𝜋𝜑 with random parameters 𝜃, 𝜑
2: Initialize target networks 𝜃′ ← 𝜃, 𝜑′ ← 𝜑
3: Initialize empty replay buffer 𝑅
4: for episode = 1 : M do
5: Initialize the environment
6: Initialize empty history ℎ0

7: for timestep = 1 : T do
8: Observe observation 𝑜𝑡
9: ℎ𝑡 ← ℎ𝑡−1, 𝑎𝑡−1, 𝑜𝑡, append observation and previous action to the history

10: execute action 𝑎𝑡 = 𝜋𝜑(ℎ𝑡) + 𝜖 , 𝜖: exploration noise
11: end for
12: Store the full history (𝑜1, 𝑎1, 𝑟1, ..., 𝑜𝑇 , 𝑎𝑇 , 𝑟𝑇) in replay buffer 𝑅
13: Sample a mini-batch of N episodes from 𝑅: (𝑜𝑖1, 𝑎

𝑖
1, 𝑟

𝑖
1, ..., 𝑜

𝑖
𝑇 , 𝑎

𝑖
𝑇 , 𝑟

𝑖
𝑇)

14: Construct history slices: ℎ𝑖
𝑡 = (𝑜𝑖1, 𝑎

𝑖
1, ..., 𝑜

𝑖
𝑡)

15: Compute target values for each transition:̃︀𝑎𝑖𝑡+1 ← 𝜋𝜑′(ℎ𝑖
𝑡+1)

𝑦𝑖 ← 𝑟𝑖𝑡 + 𝛾𝑄𝜃′(ℎ
𝑖
𝑡+1,̃︀𝑎𝑖𝑡+1)

16: Compute critic update (BPTT):

∆𝜃 = 1
𝑁𝑇

∑︀
𝑖(𝑦

𝑖 −𝑄𝜃(ℎ
𝑖
𝑡, 𝑎

𝑖
𝑡))

𝜕𝑄𝜃(ℎ
𝑖
𝑡,𝑎

𝑖
𝑡)

𝜕𝜃

17: Compute actor update (BPTT):

∆𝜑 = 1
𝑁𝑇

∑︀
𝑖
𝜕𝑄𝜃(𝑡

𝑖
𝑡,𝜋𝜑(ℎ

𝑖
𝑡))

𝜕𝑎

𝜕𝜋𝜑(ℎ
𝑖
𝑡)

𝜕𝜑

18: Update target networks:
𝜃′𝑖 ← 𝜏𝜃𝑖 + (1− 𝜏)𝜃′𝑖, 𝜑

′ ← 𝜏𝜑 + (1− 𝜏)𝜑′

19: end for

31

32

Chapter 3

Mechanical System Design

3.1 Design Overview

Figure 3-1a shows a CAD overview of the desktop fiber manufacturing system [27].

The DRL-based control system was developed, trained, and evaluated on this physical

system (Figure 3-1b). It miniaturizes a typical industrial fiber draw tower. It is

composed of several sub-systems: an extruder system, a cooling system, and a spool

system. The preform rod of 7.11 mm diameter is first fed into the extruder system,

where it is heated over its glass-transition temperature and becomes deformable. As

it is heated, it is pulled to the downstream as a thin fiber by going through the neck-

down profile. The fiber then enters the cooling system and is immersed in coolant.

Lastly, the fiber exits the coolant and is wrapped around the pulley in the spooling

system.

3.2 Heating and Feeding System

The extruder system is shown in Figure 3-1c. The extruder system is composed of

a heating chamber and a feeding actuator. The heating chamber has a sensor and

heating elements to control the temperature. The feeding actuator feeds the preform

into the heating chamber at a controlled speed.

The heating chamber has two cartridge heaters each operating at 40W. It also has

33

(a) Overview

(b) Physical system

(c) Heating and feeding system
(d) Spooling system

Figure 3-1: Desktop fiber manufacturing system

34

Figure 3-2: Path of the fiber

a resistance temperature detector (RTD) to measure the temperature. In the center

of the heating chamber, a hole slightly larger than the preform diameter is machined.

The temperature is kept constant throughout the process with a manually tuned PID

controller.

The feeding actuator is composed of a stepper motor and an idler. The feed rate

is controlled by the stepper motor speed. The stepper motor takes 3,200 steps per

one revolution and the diameter of the roller attached to the stepper motor is 18.9

mm. Therefore, the feed speed of the preform rod can be calculated as below,

𝑣preform =
𝐷

2
𝜃 =

18.9 mm
2

× 2𝜋 rad/rev
3,200 step/rev

× 𝑓 [step/sec] (3.1)

= 1.85e-2 mm/step× 𝑓 [step/sec], (3.2)

where 𝐷, 𝜃, and 𝑓 are diameter of the roller, angular velocity of the motor, and

frequency of the step. As the feed rate increases, the fiber diameter increases given a

35

fixed spool velocity.

3.3 Cooling and Spooling System

After the fiber comes out of the extruder system, the fiber goes through the cooling

and spooling system. The overall path of the fiber is shown in Figure 3-1a with a red

arrow. First, the fiber will go through the laser micrometer for diameter measurement

before it enters the coolant. After the fiber comes out of the cooling system, the fiber

enters the spool system.

The detailed design of the spool system is shown in Figure 3-1d. The main function

of the spool system is to collect the fiber and to provide speed feedback to control the

fiber diameter. The spool is rotated by a DC motor with encoder attachment. The

spool and the DC motor is mounted to the stage that is actuated by a lead screw

and a stepper motor. The stage movement along the lead screw allows the fiber to

be spread out evenly on the spool. The limit switches limit the range of the linear

motion of the stage to ensure the fiber does not go off the spool’s ends. The diameter

of the spool is 20 mm. As the spool spins faster, the fiber goes under tension and

diameter reduces given a fixed feed rate.

36

Chapter 4

Learning Algorithm

4.1 Overview

The learning algorithm inspired by DDPG [21], RDPG [29], and other variations

[32, 35] is used for developing and training the controller. Figure 4-1 shows the

overview of the learning method and the pseudocode is elaborated in Algorithm 3.

Four LSTM networks compose the overall model: actor, critic, target actor and target

critic. The networks are manipulated in the three sub-processes: initialization, control

thread, and train thread. The control thread and the train thread run simultaneously

throughout the entire process.

In the control thread, the sensors attached to the system measure the state and

the actor computes the action accordingly. The reward is computed using the reward

function. These observations, actions and rewards are then stored in the history

memory H. In the train thread, a mini-batch of data sampled from the history

memory is fed into a critic and the critic computes the Q-value as an output. The

Q-value is then compared with the target value computed by target networks and

the critic is updated by minimizing the difference between the Q-value and the target

value. Finally, the actor is updated by maximizing the critic’s evaluation (Q-value).

37

Actor

Actor

Reward
Function

Actor Actor

Critic

Target
Actor

Target
Critic

Actor

r+γQ′

History
Memory

ht-1

rt
at-1

ht

Q

Control Thread
Train Thread critic update

actor update

Figure 4-1: Learning algorithm overview

Spool
Motor

Plant

Measured
Diameter

Reference
Diameter

Duty
Cycle

DRL
Agent

Extruder
Motor

Measured
Velocity

Feedrate

Figure 4-2: Block diagram of the DRL control system

4.2 POMDP Formulation

The system should be formulated as POMDP or MDP to implement the algorithm.

As mentioned in Section 2.1.4, sensor measurements of the fiber drawing system only

observes the partial component of the system, mainly due to the delayed dynamics.

Therefore, we formulate the process as POMDP by defining observation, action, and

reward.

38

4.2.1 Observation

Observations are the numerical values that help the actor and the critic to estimate the

optimal action and the true Q-value. It includes physical measurements from sensors

or other numerical values that are necessary for the agent to learn the optimal policy.

Our formulation of observation includes the below components:

The Spool Angular Velocity is measured by a encoder attached to the spool

motor. The motor has a gearbox ratio of 131.25 : 1 and the encoder has a resolution

of 64 counts per revolution of the motor input shaft, which corresponds to 8,400

counts per revolution of the output shaft. The angular velocity is calculated by

dividing number of counts by time interval of the sampling. The sampling rate is set

to 4 Hz.

The Fiber Diameter is measured by a laser micrometer, which is mounted be-

tween the extruder and the cooling bath. After the fiber come out from the extruder

and becomes thinner by going through the neck-down profile, the micrometer mea-

sures its diameter right before the fiber enters the coolant. The sensor is capable of

measuring minimum diameter of 200 𝜇m and maximum diameter of 28 mm. The

repeatability of measurement is 5 𝜇m. The linearity is ±0.1% of full scale (28 𝜇m).

The Cumulative Sum of Extruder Feedrate represents how much fiber has

produced during the current production run. This is important information because

the system is not time-invariant due to the accumulation of drawn fiber on the spool.

As the fiber is drawn and wrapped around the spool, the effective radius of the spool

increases with respect to time. Therefore, the linear velocity of the fiber increases

when the spool’s angular velocity is a constant value. Consequently, if the stacking

fiber on the spool is not considered and the spool is run with a constant angular

velocity, the linear velocity increases and results in a thinner fiber. We assume that

there is a very strong relationship between the cumulative summation value and

the effective radius of the spool, and therefore include the summation value in the

39

present
futurepast

50 timesteps

di
am

et
er

measured

reference

403020100

Figure 4-3: An example of a reference and a measured diameter trajectories. Not only
current measured diameter and reference diameter, but also future reference diameter
of 10, 20, 30, 40, 50 time steps ahead are included in the state representation

observation.

The Target Diameter is the diameter of the desired reference trajectory of di-

ameter. The target diameter at the present time step and of several future target

diameters are included (10, 20, 30, 40, 50 time steps ahead). This is because the

agent requires the future reference in order to predictively regulate the output to

track the reference. In other words, the observation looks as far as 50 time steps

(12.5 seconds) ahead. Therefore, the actor and the critic can estimate the optimal

action and the Q-value precisely unless the dynamic response time to control input

longer than 12.5 seconds. In the desktop fiber drawing system, majority of the delayed

dynamics responses happen in less than 10 seconds.

4.2.2 Action

Actions are the control inputs that are computed by the actor network and executed

on the environment. In the desktop fiber drawing system, the actions include the

command spool input and the command extruder input.

The Spool Input Command determines the PWM duty cycle input to the spool

motor. The duty cycle is constrained to have a minimum value of 7.8% and a maxi-

40

(a) Motor’s duty cycle vs. speed relation be-
fore linear mapping

(b) Action input vs. speed relation after lin-
early mapping action input to the speed

Figure 4-4: Action-speed linear mapping

mum value of 100%. The spool input value is normalized that the value is 0 when the

duty cycle is minimum and 1 when the duty cycle is maximum. The relation between

the spool motor’s duty cycle and the spool speed is shown in Figure 4-4a. The slope is

steeper at the lower duty cycle and more flat at the higher duty cycle. In other words,

at the low velocity, the velocity is very sensitive to the variation of the duty cycle.

Consequently, if the spool input is mapped just linearly with the duty cycle, then it

will be hard to control the velocity precisely. Therefore, we do polynomial regression

on Figure 4-4a and convert the spool input so that it has a linear relation with the

velocity, as shown in Figure 4-4b. This way, by reducing a degree of nonlinearity, it

enables more precise control at a low velocity.

The Extruder Input Command determines the frequency of the stepper motor

that pushes the preform into the heating element. The stepper motor frequency is

constrained to have a minimum value of 5 Hz and a maximum value of 30 Hz, each

corresponds to 9.28e-2 mm/s (5.57 mm/min) and 5.57e-1 mm/s (33.4 mm/min). The

extruder input is normalized in the same way as the spool input so that the value is

0 and 1 when the frequency is minimum and maximum. Contrast to the spool input,

since the preform feed-rate is proportional to the frequency, the extruder input is

linearly mapped with the stepper motor’s frequency.

41

4.2.3 Reward Function Design

A careful design of the reward function is required in order to ensure the performance

of the algorithm. The reward function is designed as below (4.1).

𝑟𝑡 = −|𝑑𝑡 − 𝜁𝑡|+ 𝛼𝑓𝑡 + 𝐶, (4.1)

where 𝛼 and 𝐶 are positive scalars, and 𝑑 and 𝜁 are the measured and the reference

diameter in 100 𝜇𝑚. The consection terms of the reward function represents the

diameter error, extruder feed rate, and the offset.

Diameter Error

The first term represents the difference between the reference diameter and the mea-

sured diameter at each step. Since the control objective is to regulate the diameter

to the reference diameter as close as possible, the reward decreases as the difference

increases.

Extruder Feedrate

The second term is proportional to the feed rate of the material and thus represents

the mass production rate of the fiber. The 𝛼 is set to 0.106 s/mm, which makes this

term to have an order of approximately ten times smaller than the first term. This

term is needed to ensure the uniqueness of the input action combination. There are

two input actions (the spool and the extruder input), which regulate only one output

measurement (diameter). Therefore, there could be several input action combinations

that yield a similar diameter. For example, a combination of a high spool input and

a high extruder input can lead to a similar diameter as when a low spool input and a

low extruder input is used. However, by adding the second term, the model chooses

the combination that maximizes the production rate when there are several other

options with similar diameter output.

42

Offset

The offset term is used to facilitate the learning. If there is no offset term, the reward

will be negative at most times. This will lead the model to think that the actions

in the operable boundary are worse than the actions that are outside of the operable

region, especially at the early stage of the learning. In this case, the action can be

trapped near the operable boundary. The offset term is set to 1 so that it has the

similar scale with other terms.

4.3 Network Architecture

4.3.1 Actor Network

The actor network structure is shown in Figure 4-5a. The structure of the target

actor is identical to that of the actor. Each of the circles in the figure represents

the LSTM network. The number of layers of the LSTM networks is set to 5 and the

number of nodes in each layer is set to 512. The networks recur through L time steps.

L is the window length and the window is a span of time where the networks take

inputs. The outputs of the networks are determined by the inputs that are within the

window length. At each time step, the action taken at one time step before and the

following observation is fed into the actor. The action output is computed by passing

the activation values of the last recursion through a fully connected layer.

4.3.2 Critic Network

The critic network structure is shown in Figure 4-5b. The target critic has the same

structure as the critic network. The critic network takes similar form as the actor

network but the input and output elements are different. The number of layers and

nodes of the LSTM network are set to 5 and 512. At each time step, an observation at

each time step and the following action is fed into the critic and the Q-value output

is computed by passing the activation values of the last recursion through a fully

connected layer.

43

ct-L+1 ct-L+2 ct...
at

at-L, ot-L+1,
BL-1 = 1

at-1, ot,
B0 = 0

fully connected layer

at-L+1, ot-L+2,
BL-2

Window of length L
(a) Actor network

ct-L+1 ct-L+2 ct...
Qt

ot-L+1, at-L+1,
BL-1 = 1

ot, at,
B0 =0

fully connected layer

ot-L+2, at-L+2,
BL-2

Window of length L
(b) Critic network

Figure 4-5: Network architecture

4.3.3 Window Length (L)

In the original RDPG paper [29], which our model is inspired by, the activation

values of the LSTM network are propagated from the beginning to the end of each

episode. The gradients are back-propagated to the beginning of the episode, and

the updates are done between each episode rather than within the episodes. One

problem with this method is that computation time increases as the episode gets

longer since the gradient must back-propagate through the entire episode. Therefore,

the computational requirement can become a bottleneck if we want to train the model

in real-time. In the case of the fiber drawing system, each episode is thousands of

time steps long (tens of minutes). Therefore, the computation time becomes long for

44

each training iteration, which makes it hard to train the model in real-time.

Thus, we consider only the time span that significantly affects the state of the sys-

tem, rather than the entire episode. We set the length of the window, through which

the networks look into the system (Figure 4-5). The networks do the computations

for control and updates only within the window. The window size should be long

enough to capture the delayed dynamics of the system. One of the longest delayed

dynamics in the fiber drawing system is the delay between the feed rate change and

the response in diameter. When we apply a step change to the feed rate, it takes

about ∼10 seconds (∼40 time steps for given sample rate) for the response to show

up in the diameter. Therefore, the window length should be at least ∼40 time steps

to capture the delayed dynamics.

In the original RDPG, the model is trained by minimizing the Bellman equation’s

temporal difference (TD) error based on Q-value computed at every time step of the

episode. However, as we set a finite window length, outputs at the early part of the

window will be less accurate than that of the later part. This is because the result is

computed based on less information. For example, the output at the first time step

of the window is based on only one observation and one action. Therefore, we only

consider the last Q-value computed within the window, as depicted in Figure 4-5b.

4.3.4 When-Label (B)

To facilitate the learning, when-labels are augmented to the inputs. When-labels have

scalar values between 0 and 100 so that it has a similar scale with other inputs. It

indicates how far ago from the present did each observation and action happened. It

forms an arithmetic sequence, where the most recent inputs have a when-label value

of 0 and the oldest inputs within the window size have a value of 100 (Figure 4-5).

Without when-label, the LSTM network processes the inputs in the same way, no

matter when the input data is produced. In contrast, the network can process the

inputs more efficiently if it knows when the input data arrived.

45

4.4 Initialization

The first step of the algorithm is initializing each network. The parameters of the

actor and the critic are initialized using the Glorot initialization [36]. Then, the

parameters of the actor and the critic are copied to the target actor and the target

critic. Next, the empty history memory H is initialized. Lastly, the history buffer ℎ

of window length 𝐿 is initialized. The history buffer is a buffer that contains the 𝐿

most recent observations and actions.

4.5 Control Thread

The control thread is where the actor receives the observation from the system and

computes the input action. Exploration noise is added to the actor’s output action

(greedy action) in order to find a better action in the action space.

4.5.1 Data generation and Storage

First, the actor receives the observation and the reward is computed by a reward

function in (4.1). Next, the observation and the most recent action are appended

to the history buffer ℎ. The actor then takes the history buffer as the input and

computes a greedy action. An exploration noise is added to the greedy action to

explore the action space. Lastly, the action with the exploration noise is exerted on

the fiber drawing system as the control input. The reward, observation, and action

are added to the history memory H at each time step.

4.5.2 Exploration Strategy

An Ornstein-Uhlenbeck (OU) process [37] with a decay factor 𝛽 is used for the ex-

ploration noise. It can be expressed as below.

𝑑𝑥𝑡 = −𝜃 𝑥𝑡 𝑑𝑡 + 𝜎𝑡 𝑑𝑊𝑡 (4.2)

𝜎𝑡 = 𝛽 𝜎𝑡−1 (4.3)

46

where 𝜃 is a parameter that determines the degree of attraction that pulls variable

to zero, 𝑊 express the Wiener process, and 𝜎 is a volatility of the process. The

volatility is decreased by the factor of 𝛽 at each time step. Since the exploration noise

is attracted to zero, the noise has a mean value of zero. The process is temporally

correlated so it is effective when learning on physical systems, which is also temporally

correlated.

4.6 Train Thread

The train thread run in parallel with the control thread. It is composed of three

steps: batch sampling from history memory (H), temporal difference method imple-

mentation, and soft target network updates.

4.6.1 Batch Sampling from History Memory (H)

First, N samples of memory slice, which have a length of 𝐿+ 2, are sampled from the

history memory H. Each sample does not include the beginning or the end of the

episode to ensure that the memory slices have the same length. The random sampling

decouples temporal correlation between samples and makes the algorithm to avoid

bias. In contrast, if only recent samples are used, then the algorithm will be biased

to only recent history.

4.6.2 Temporal Difference Method Implementation

Next, using the target networks, we compute the target value 𝑦𝑖 as described in

Algorithm 3. The target value 𝑦𝑖 is used as the right hand side term of (2.5). Then,

the mean square value of the TD error (MSE) becomes,

MSE =
1

𝑁

∑︁
𝑖

(𝑦𝑖 −𝑄𝜃(̃︀ℎ𝑖
𝑡−1, 𝑎

𝑖
𝑡−1))

2. (4.4)

47

Therefore, the critic gradient that decreases MSE can be computed with BPTT,

∆𝜃 =
1

𝑁

∑︁
𝑖

(𝑦𝑖 −𝑄𝜃(̃︀ℎ𝑖
𝑡−1, 𝑎

𝑖
𝑡−1))

𝜕𝑄𝜃(̃︀ℎ𝑖
𝑡−1, 𝑎

𝑖
𝑡−1)

𝜕𝜃
. (4.5)

By applying this gradient, the critic is updated. The Adam optimizer [38] is used

as the gradient descent optimizer. After updating the critic, the actor can also be

updated by applying gradient that increases the Q-value. The chain rule is used to

compute the gradient,

∆𝜑 =
1

𝑁

∑︁
𝑖

𝒞

(︃
𝜕𝑄𝜃(̃︀ℎ𝑖

𝑡−1, 𝜋𝜑(ℎ𝑖
𝑡−1))

𝜕𝑎

)︃
𝜕𝜋𝜑(ℎ𝑖

𝑡−1)

𝜕𝜑
, (4.6)

where 𝒞(·) is a gradient transformation inspired by [35], which bounds actions between

the maximum and the minimum.

Gradient Transformation

The gradient transformation 𝒞(·) is:

𝒞(∇𝑎) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇𝑎 · (𝑎𝑚𝑎𝑥 − 𝑎)/(𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛),

if ∇𝑎 suggests increasing 𝑎 and 𝑎 > 𝑎𝑚𝑎𝑥

∇𝑎 · (𝑎− 𝑎𝑚𝑖𝑛)/(𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛)

if ∇𝑎 suggests decreasing 𝑎 and 𝑎 < 𝑎𝑚𝑖𝑛

∇𝑎, otherwise

,
(4.7)

where 𝑎𝑚𝑎𝑥 and 𝑎𝑚𝑖𝑛 are the maximum and the minimum of the operable action. If the

gradient∇𝑎 suggests increasing action and the action computed by actor exceeded the

maximum action, the transform reverses the direction of gradient so that the action

can revert to the operable action space. Thus, the action can be bounded within the

operable action space.

48

4.6.3 Soft Target Network Updates

Lastly, the target actor and the target critic is updated by applying the soft update,

(𝜃′𝑖, 𝜑
′)← (𝜏𝜃𝑖 + (1− 𝜏)𝜃′𝑖, 𝜏𝜑 + (1− 𝜏)𝜑′), (4.8)

where 𝜏 is a very small positive scalar value. This soft updates of the target networks

enable the stable convergence of the model [21].

49

Algorithm 3 Learning Algorithm
1: Initialize critic networks 𝑄𝜃, and actor network 𝜋𝜑 with random parameters 𝜃, 𝜑
2: Initialize target networks 𝜃′ ← 𝜃, 𝜑′ ← 𝜑
3: Initialize empty history memory 𝐻
4: for production run = 1 : M do
5: Initialize empty history buffer ℎ0 of length 𝐿

// Control Thread
6: while spool is not full do
7: Observe observation 𝑜𝑡 and reward 𝑟𝑡
8: ℎ𝑡 ← ℎ𝑡−1, 𝑎𝑡−1, 𝑜𝑡, append observation and previous action to the history

buffer
9: if 𝑡 > 𝐿 then

10: discard the oldest observation 𝑜𝑡−𝐿 and action 𝑎𝑡−𝐿 from ℎ𝑡

11: end if
12: select action 𝑎𝑡 = 𝜋𝜑(ℎ𝑡) + 𝜖 , 𝜖: exploration noise (OU process)
13: append 𝑟𝑡, 𝑜𝑡, 𝑎𝑡 to the history memory 𝐻
14: end while

// Train Thread
15: while spool is not full do
16: Sample a mini-batch of N sequences from 𝐻:

(𝑟𝑖𝑡−𝐿−1, 𝑜
𝑖
𝑡−𝐿−1, 𝑎

𝑖
𝑡−𝐿−1, ..., 𝑟

𝑖
𝑡, 𝑜

𝑖
𝑡, 𝑎

𝑖
𝑡)

17: Construct history buffers:
ℎ𝑖
𝑡 = (𝑎𝑖𝑡−𝐿, 𝑜

𝑖
𝑡−𝐿+1, ..., 𝑎

𝑖
𝑡−1, 𝑜

𝑖
𝑡)̃︀ℎ𝑖

𝑡 = (𝑜𝑖𝑡−𝐿+1, ..., 𝑎
𝑖
𝑡−1, 𝑜

𝑖
𝑡)

18: Compute target values for each sequence:̃︀𝑎𝑖𝑡 ← 𝜋𝜑′(ℎ𝑖
𝑡)

𝑦𝑖 ← 𝑟𝑖𝑡 + 𝛾𝑄𝜃′(̃︀ℎ𝑖
𝑡,̃︀𝑎𝑖𝑡)

19: Compute critic update (using BPTT):

∆𝜃 = 1
𝑁

∑︀
𝑖(𝑦

𝑖 −𝑄𝜃(̃︀ℎ𝑖
𝑡−1, 𝑎

𝑖
𝑡−1))

𝜕𝑄𝜃(̃︀ℎ𝑖
𝑡−1,𝑎

𝑖
𝑡−1)

𝜕𝜃

20: Compute actor update (using BPTT):

∆𝜑 = 1
𝑁

∑︀
𝑖 𝒞
(︁

𝜕𝑄𝜃(̃︀ℎ𝑖
𝑡−1,𝜋𝜑(ℎ

𝑖
𝑡−1))

𝜕𝑎

)︁
𝜕𝜋𝜑(ℎ

𝑖
𝑡−1)

𝜕𝜑

21: Update target networks:
𝜃′𝑖 ← 𝜏𝜃𝑖 + (1− 𝜏)𝜃′𝑖, 𝜑

′ ← 𝜏𝜑 + (1− 𝜏)𝜑′

22: end while
23: end for

50

Chapter 5

Implementation and Baselines

5.1 Hardware Setup

The temperature of the heating chamber was set to 80∘C, where the fiber drawing

is stable with minimal diameter fluctuation. The temperature was controlled with

PI controller. The stage speed was set to 9.28 mm/s. Adtech W220-3824 glue-sticks

composed of ethylene-vinyl acetate and room temperature water were used as the

material and coolant. For the neural network computation, Nvidia’s RTX 2080 was

used. Sensor measurements and computation results were received and transmitted

to PJRC Teensy 3.5 board, an Arduino-based microcontroller. The Teensy 3.5 then

controlled the motors and drivers based on the computation results. The frequency

of the control and sensing was set to 4 Hz.

5.2 Hyperparameters

The hyperparameters of the algorithms were set to the values in Table 5.1. The mini-

batch size 𝑁 was chosen to allow the stable computation. If the mini-batch size is too

big, it requires too much computation power and may result in unstable computation.

Learning rate were carefully tuned to ensure the stable and fast convergence of the

parameters. The convergence is slow when the learning rate is small. On the other

hand, if the learning rate is to big, the convergence can be unstable and the parameters

51

Parameter Value
Minibatch size (𝑁) 32
Actor learning rate 1e-6
Critic learning rate 5e-6

Soft update factor (𝜏) 0.05
History memory (H) size 75,000

Discount factor (𝛾) 0.99
OU volatility / speed / decay rate (𝛽) 10 / 0.1 / 0.999925

window length (𝐿) 50

Table 5.1: Hyperparameters for model training

can fluctuate or blow up.

5.3 Training Target Diameter Trajectory Design

To train the model so that it can track the arbitrary step change, a training target

trajectory that includes random step changes was used for training (Figure 5-1).

The interval of each step is 120 time steps (30 seconds), and each step’s diameter is

randomly sampled between 300 𝜇𝑚 and 600 𝜇𝑚.

5.4 Baseline Control Methods

Several baseline control methods were used to compare the performance of the DRL

algorithm with baseline methods. Open-loop control based on mass conservation

model and a classical PI feedback control were used as baselines.

5.4.1 Open-loop Control

Unlike closed-loop feedback control, an open-loop control computes spool’s angular

velocity input from a model and does not feedback measured diameter to compensate

error. Only the angular velocity is controlled by integral control. We used mass

conservation model to compute the inputs for the open-loop control.

52

Figure 5-1: An example of training reference trajectory. The reference takes random
step every 30 seconds. The maximum and minimum of the random reference is 600
𝜇𝑚 and 300 𝜇𝑚.

Mass
Conservation

Model
PI Gain Spool

Motor Plant

Reference
Diameter

Command
Velocity

Velocity
Feedback

+
-

Duty
Cycle

Measured
Diameter

Measured
Velocity

Figure 5-2: Open-loop control with mass conservation model

Mass Conservation Model

The mass conservation model is a model that is based on the assumption that the

mass flow rate of the raw material is the same as the mass flow rate of the drawn

fiber. Assuming the constant density, the mass conservation model can be expressed

as:

𝑣preform𝐴preform = 𝑣fiber𝐴fiber = 𝑟spool𝜔spool𝐴fiber, (5.1)

where 𝑣, 𝐴, 𝑟, 𝜔 are linear speed, cross-sectional area, radius and angular speed. This

model assumes a constant 𝑟spool, which means that it does not consider the increase of

the effective radius due to the fiber stacking up on the spool. 𝑣preform can be computed

53

Mass
Conservation

Model PI Gain Spool
Motor Plant

Command
Velocity

Velocity
Feedback Diameter

Feedback

+
-

PI Gain

Reference
Diameter

-

-

+

Duty
Cycle

Measured
Diameter

Measured
Velocity

Figure 5-3: PI feedback control with diameter error

with 3.2 so 𝜔spool can be computed as:

𝜔spool =
𝑣preform

𝑟spool

𝐴preform

𝐴fiber
=

𝑣preform

10 mm
(
6.86 mm
𝐷fiber

)2, (5.2)

where 𝐷fiber is the target fiber diameter.

5.4.2 PI Feedback Control

In the PI feedback controller, the error between measured and target diameter is fed

back to the controller to compensate the error Figure 5-3. The P, I parameters were

manually tuned at the set point diameter of 550 𝜇𝑚. The material feed rate was fixed

to 0.37 mm/s and only the spool speed was controlled with P, I gain.

5.4.3 Quadratic Dynamic Matrix Control (QDMC)

QDMC [39, 40] is a type of model-based control that uses the step response model

of the system. Under the assumptions that the system is linear and time-invariant,

it predicts the future diameter and optimizes the present and future inputs by mini-

mizing the cost function:

𝐽 =

𝑝∑︁
𝑖=1

(𝑑ref
𝑡+𝑖 − 𝑑𝑡+𝑖)

2 + 𝑟
𝑐−1∑︁
𝑖=0

∆u𝑡+𝑖
2, (5.3)

where 𝑑 is the predicted diameter in 100 𝜇𝑚. ∆u𝑡+𝑖 is the input change. 𝑝 and 𝑐 are

the prediction and control horizon. 𝑝 is set to 50 because our DRL controller also

looks 50 timesteps ahead. 𝑐 is set 25, half of the prediction horizon. 𝑟 is a weighting

factor that defines ratio of importance between output error and input change. The

54

controller code was developed based on [41].

The model requires the response in diameter to a step change of each input. The

square root of the extruder feed rate (
√
𝑓) and reciprocal of the square root of com-

mand spool speed (1/
√
𝜔) were used as the inputs since the diameter is proportional

to
√︀

𝑓/𝜔 according to the mass conservation principle. Each input is normalized that

the minimum and maximum are 0 and 1. The diameter response to the step change

of
√
𝑓 was measured at spool speeds of 0.6, 1, 1.4 revolution/second, then the average

response was used for the step response model. For the diameter response to the step

change of 1/
√
𝜔, the average response at extruder feed rates of 0.19, 0.37, 0.56 mm/s

was used for the model.

The weighting factor 𝑟 also needs to be tuned. If it is too large, the input changes

too slow and results in a slow diameter response. If too small, the input responds

too sensitive to disturbances or model error and results in fluctuation in diameter.

Weighting factors of 5, 10, 20, 40, 80, 160, 320 were tested on the same reference

diameter trajectory that was used for the training of the DRL controller. The mean

error increased significantly at a weighting factor of 5 and 320. Between 10 and 160,

the mean error difference was less than 10%. Therefore, 𝑟 was set to 40.

55

56

Chapter 6

Evaluation

The trained controller was tested on various target diameter trajectories: steady,

random step, and continuous. The controller was compared with three other baseline

methods. Average error and response delay time were compared. Effect of several

implemented modifications were also evaluated: action-speed linear mapping, window

length, when-label.

6.1 Test on Various Target Diameter Trajectories

The model was trained for approximately 50,000 time steps (3.5 hours) and tested

on several target trajectories: steady, random step, chirp and random spline. Each

controller was tested 5 times for each of trajectories and the average responses are

shown in the plots. Moving average of 40 timesteps is applied and moving standard

deviation (×1.96) is shown as the shaded areas in Fig. 6-1,6-2,6-3,6-5.

6.1.1 Steady Target

In the steady target trajectory case, the DRL controller was compared with the mass

conservation model, PI control, and QDMC (Fig. 6-1).

In the mass conservation model, there was a decreasing trend of diameter with

respect to time. Since the model did not consider the increase in the spool radius

57

Figure 6-1: (top) Steady reference target diameter at 550 𝜇𝑚 and measured diameter
trajectory of DRL model, PI feedback control, QDMC, and mass conservation model
open-loop control. (middle) The spool’s duty cycle and the extruder’s feed rate of
the DRL model controller. (bottom) The spool’s duty cycle and the extruder’s feed
rate of the QDMC.

58

and maintained the constant angular speed, the linear speed of the fiber increased

and the diameter decreased with respect to time. In comparison, the DRL control,

PI control, and QDMC maintained diameter close to the target. In DRL control, it

can be seen from the figure that ratio of the extruder input (material feed rate) to

the spool input increased with respect to time. It means that it compensated the

effect of the stacking spool by feeding more material and rotating the spool slower.

Similarly, in PI control, it maintained the constant diameter by decreasing the spool’s

angular speed with respect to time. As a result, the DRL controller showed an average

diameter (551.3 𝜇𝑚) and a standard deviation (29.3 𝜇𝑚) similar to that of the PI

control (545.5 / 25.9 𝜇𝑚) and QDMC (548.6 / 28.4 𝜇𝑚)

6.1.2 Random Step Target

The random step target used for testing had an interval of 50 seconds (Fig 6-2). When

the PI controller was used for this trajectory, measured diameter response showed 5.7

seconds of average time lag estimated by the cross correlation analysis. It sometimes

was not able to settle to the reference diameter within a single interval and sometimes

it showed offshoot. Contrastly, the DRL controller and QDMC only showed -0.5

seconds and 0.5 seconds of time lag, respectively. They manipulated input actions in

advance to the step changes. For the DRL controller, the spool input changed 4.5

seconds ahead of the steps and the extruder input changed 8.0 seconds in advance to

the steps, both estimated by the cross correlation analysis. This is consistent with

the intuition that pulling the fiber from the spool induces faster response in diameter

change than feeding material from the extruder. This predictive control was possible

since we fed into the DRL controller the information about the future trajectory as

the observation. The DRL networks perceive the future reference trajectory as far as

50 timesteps (12.5 seconds) away so it can handle the dynamic change that happens

within less than 12.5 seconds.

59

Figure 6-2: (top) Random step reference target diameter and measured diameter
trajectory of DRL model, PI feedback control, and QDMC. (middle) The spool’s
duty cycle and the extruder’s feed rate of the DRL model controller. (bottom) The
spool’s duty cycle and the extruder’s feed rate of the QDMC.

60

Figure 6-3: (top) Sinusoidal reference target diameter and measured diameter tra-
jectory of DRL model, PI feedback control, and QDMC. (middle) The spool’s duty
cycle and the extruder’s feed rate of the DRL model controller. (bottom) The spool’s
duty cycle and the extruder’s feed rate of the QDMC.

61

Figure 6-4: (top) Chirp reference target diameter and measured diameter trajectory
of DRL model, PI feedback control, and QDMC. (middle) Mean absolute error for
the DRL model control, PI feedback control, QDMC. Moving average of window size
500 (125 seconds) is applied. (bottom) The spool’s duty cycle and the extruder’s feed
rate of the DRL model control.

62

Figure 6-5: (top) Random spline reference target diameter and measured diameter
trajectory of DRL model control. (bottom) The spool’s duty cycle and the extruder’s
feed rate of the DRL model controller.

6.1.3 Continuous Target

Although the model was trained using a discontinuous step-changing target, it was

tested on continuous target trajectories: sine, chirp (sine sweep) and random spline

target (Fig. 6-3, 6-4, 6-5). In the sine reference, the mean and the amplitude were

set to 450 𝜇𝑚 and 100 𝜇𝑚 and the frequency was set to 0.016 Hz (0.1 rad/s). The

chirp trajectory swept from 0.01 Hz to 0.06 Hz with a chirpyness 10−4 Hz/s. The

mean and the amplitude were fixed to 450𝜇𝑚 and 100𝜇𝑚. The random spline target

was generated by connecting several points with a B-spline curve. The diameter of

each points were set between 350𝜇𝑚 and 550𝜇𝑚 and the time step difference between

adjacent points were set between 20 time steps (5 seconds) and 80 time steps (20

seconds) so that it includes various frequency components with various amplitude.

In the sine reference, the DRL model and QDMC showed better performance in

terms of diameter error and phase delay. The PI feedback control showed significant

delay and overshoot.

63

Figure 6-6: Learning curve comparison with regard to the window length. Moving
average of 10,000 steps (41.8 minutes) is applied for the average reward.

In the chirp trajectory, all the controllers showed the increasing trend in root mean

squared error (RMSE) as the sine frequency increases because there is a physical

limit on how fast the system can respond to the input changes. The PI controller

showed significantly larger root mean squared error (RMSE) than other methods at all

frequency range. The DRL controller and QDMC showed similar RMSE at below 20

mHz and at over 50 mHz. Between 20 mHz and 50 mHz, the DRL controller showed

significantly less RMSE than QDMC. It was able to regulate the RMSE under 40

𝜇𝑚 until the sine frequency reached 45 mHz, while QDMC was able to regulate only

until 25 mHz. It implies that the RL controller has advantages over QDMC especially

when the reference trajectory involves fast and continuous change.

The DRL model controller was also able to track the random spline trajectory

with various frequency and amplitude by gradually varying the input actions. It

shows that the learned controller can be used for not only specific types of trajectory

but also other trajectory types that it has never observed during the training process.

64

Figure 6-7: (top) Random step reference target diameter and measured diameter
trajectory of DRL models with window length 50 and 1. Moving average of window
size 40 (10 seconds) is applied. (middle) The spool’s duty cycle and the extruder’s
feed rate of the DRL model controller with window length 50. (bottom) The spool’s
duty cycle and the extruder’s feed rate of the DRL model controller with window
length 1.

65

Figure 6-8: Learning curve comparison between the DRL models of with and without
the linear mapping. Moving average of 10,000 steps (41.8 minutes) is applied for the
average reward.

6.2 Ablative Analysis

6.2.1 Effect of Window Length

Models with several different window lengths are compared. The learning curve com-

parison shows that the window length must be long enough to achieve optimal perfor-

mance (Fig. 6-6). When the window length is 1, it computes the input action based

on only one time step of observation. Therefore, it cannot consider the previous his-

tory of the process. Also, it cannot capture the stochastic nature of the system. As

a result, the computed input action fluctuates violently as shown in Fig. 6-7. The

model with window length 25 was also not as good as that with window length 50.

This is because 25 time steps (6.25 seconds) are not enough to capture the delayed

dynamics when the step change occurs. As mentioned earlier, change in the extruder

input should occur 8.0 seconds earlier than the diameter step change. Therefore, the

window length should be at least 32 time steps (8.0 seconds) to capture these delayed

dynamics.

66

Figure 6-9: (top) Random step reference target diameter and measured diameter
trajectory of DRL model with and without the linear mapping. Moving average of
window size 40 (10 seconds) is applied. (middle) The spool’s duty cycle and the
extruder’s feed rate of the DRL model controller with the linear mapping. (bottom)
The spool’s duty cycle and the extruder’s feed rate of the DRL model controller
without the linear mapping.

67

Figure 6-10: Learning curve comparison between the DRL models of with and without
the when-label. Moving average of 10,000 steps (41.8 minutes) is applied for the
average reward.

6.2.2 Effect of Action-Speed Linear Mapping

Fig. 6-8 shows that the action-speed linear mapping is critical to achieving a good

performance. The model without the linear mapping converged to the average reward

approximately 0.2 smaller than the model with the mapping. This means that the

average diameter error was approximately 20 𝜇𝑚 bigger. The model showed poor

performance especially when the target diameter was large, where low spool speed is

required (Fig. 6-9). This is because it is hard to control the speed precisely at the

low speed range if action-speed is not linearly mapped. Linearly mapping the spool

action to the speed enables the model to control the speed precisely throughout the

entire speed range and result in better performance.

6.2.3 Effect of When-Label

Fig. 6-10 shows that the when-label speeds up the learning, especially at the early

phase of the learning. The when-label helps the learning of the model by provid-

ing additional information about the time history of when the data was observed.

Thereby, the model can learn the process faster than when the label is not provided.

Also, the model with the when-label computed more consistent outputs. In compari-

68

Figure 6-11: (top) Steady reference target diameter and measured diameter trajectory
of DRL models with and without the when-label Moving average of window size 40
(10 seconds) is applied. (middle) The spool’s duty cycle and the extruder’s feed rate
of the DRL model controller with the when-label. (bottom) The spool’s duty cycle
and the extruder’s feed rate of the DRL model controller without the when-label.

69

son, the model without when-label showed some fluctuation in its outputs, as shown

in Fig. 6-11. This high-frequency fluctuation is unrealizable since the system cannot

physically respond to such high frequency.

70

Chapter 7

Conclusion and Future Work

We introduced the compact fiber drawing system and implemented the control strat-

egy to it. The drawing system is significantly smaller and less expensive than in-

dustrial fiber draw towers, so it is suitable for prototyping fiber and thus can facili-

tate smart fiber research and novel controllers. We developed a DRL based control

method that can be deployed to the desktop system. We focused on regulating the

fiber diameter to track various target trajectories. By modifying and customizing

DRL algorithms, we were able to improve the performance of the control in terms of

tracking error. With neither analytical nor numerical models of the physical system,

the controller learned to track various types of target trajectories under the stochas-

ticity and the non-linear delayed dynamics of the system. It was also able to track

the target that it had never experienced in the training process.

Mass
Conservation

Model PI Gain
Spool
Motor

PlantCommand
Velocity

Velocity
Feedback

Measured
Diameter

+
-

PI Gain

Reference
Diameter

-

-

+

Duty
Cycle

DRL
Agent

Extruder
Motor

Diameter
Feedback

Measured
Velocity

Feedrate

+

Figure 7-1: Block diagram of the control system that combines the DRL approach
with the conventional PI feedback control.

71

Our DRL algorithm can be easily deployed to other processes that require regula-

tory control. Especially, it is beneficial when the process is hard to model and requires

accurate predictive tracking. For example, it can be used in the process that involves

heat/mass transfer or chemical reaction such as coffee roasting and oil refining.

One drawback of the current method is that it requires a lot of data to train the

DRL model. While it is not a big problem when the data is cheap, it can make the

implementation unrealistic when the cost for data collection is high. On top of that,

the exploration noise used for training may cause the safety problem to the system.

Therefore, the maximum and minimum boundary of the actions must be carefully

decided when designing the model.

As future work, one can develop a way to improve the data efficiency of the training

so that the amount of data and time required for training is reduced. For example,

the DRL approach and the conventional PID controller can be combined as shown in

Fig 7-1. By augmenting the DRL agent to the PI feedback controller, the DRL agent

can use the PI controller as the starting point and improve the performance by the

training.

72

Bibliography

[1] Sangwoon Kim, David Kim, and Brian Anthony. Dynamic control of a fiber
manufacturing process using deep reinforcement learning. Unpublished.

[2] Flurin Wieland, Alexia N. Gloess, Marco Keller, Andreas Wetzel, Stefan
Schenker, and Chahan Yeretzian. Online monitoring of coffee roasting by proton
transfer reaction time-of-flight mass spectrometry (ptr-tof-ms): towards a real-
time process control for a consistent roast profile. Analytical and Bioanalytical
Chemistry, 402(8):2531–2543, Mar 2012.

[3] S. R. Choudhury, Y. Jaluria, and S. H.-K. Lee. A computational method for gen-
erating the free-surface neck-down profile for glass flow in optical fiber drawing.
Numerical Heat Transfer Part A: Applications, 35(1):1–24, 1999.

[4] U. C. Paek and R. B. Runk. Physical behavior of the neck-down region during
furnace drawing of silica fibers. Journal of Applied Physics, 49(8):4417–4422,
1978.

[5] A. L. Yarin. Stationary configuration of fibers formed under nonisothermal con-
ditions. Journal of Applied Mechanics and Technical Physics, 23(6):865–870,
Nov 1982.

[6] S.H.K. Lee and Y. Jaluria. Simulation of the transport processes in the neck-
down region of a furnace drawn optical fiber. International Journal of Heat and
Mass Transfer, 40(4):843 – 856, 1997.

[7] S. Roy Choudhury and Y. Jaluria. Practical aspects in the drawing of an optical
fiber. Journal of Materials Research, 13(2):483–493, 1998.

[8] A. Mawardi and R. Pitchumani. Optical fiber drawing process model using an
analytical neck-down profile. IEEE Photonics Journal, 2010.

[9] Z. Yin and Y. Jaluria. Neck down and thermally induced defects in high-speed
optical fiber drawing. ASME Journal of Heat Transfer, 2000.

[10] Zhilong Yin and Y. Jaluria. Thermal transport and flow in high-speed optical
fiber drawing. ASME Journal of Heat Transfer, 120, 1998.

73

[11] Andryas Mawardi and Ranga Pitchumani. Numerical simulations of an optical
fiber drawing process under uncertainty. J. Lightwave Technol., 26(5):580–587,
Mar 2008.

[12] Susan H. Law, Geoffrey W. Barton, and Thanh N. Phan. The causes and nature
of diameter variations along optical fiber, 2005.

[13] A. Mulpur and C. Thompson. Modal diameter control of linear isothermal op-
tical fibers. In Proceedings of IEEE International Conference on Control and
Applications, pages 433–438 vol.1, Sep. 1993.

[14] A. Mulpur and C. Thompson. Nonlinear control of optical fiber diameter varia-
tions. IEEE Transactions on Control Systems Technology, 4(2):152–162, March
1996.

[15] S. Tchikanda and Kok-Meng Lee. State space modeling for optical fiber drawing
process. In Proceedings of the 2002 American Control Conference (IEEE Cat.
No.CH37301), volume 6, pages 4954–4959 vol.6, May 2002.

[16] S. Tchikanda, Kok-Meng Lee, and Z. Zhou. A state space model for modern feed-
back control of optical fiber drawing process. In Proceedings 2003 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics (AIM 2003), vol-
ume 2, pages 856–861 vol.2, July 2003.

[17] Zhiyong Wei, Kok-Meng Lee, Serge W. Tchikanda, Zhi Zhou, and Siu-Ping Hong.
Free surface flow in high speed fiber drawing with large-diameter glass preforms.
ASME Journal of Heat Transfer, 126, 2004.

[18] Zhiyong Wei, Kok-Meng Lee, and Zhi Zhou. A reduced order model for robust
control of optical fiber drawing. volume 73, 01 2004.

[19] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,
Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go
with deep neural networks and tree search. Nature, 529:484, January 2016.

[20] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing atari with deep
reinforcement learning. CoRR, abs/1312.5602, 2013.

[21] Timothy P. Lillicrap, Jonathan J. Hunt, Alexand er Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. arXiv e-prints, page arXiv:1509.02971, Sep 2015.

[22] S. P. K. Spielberg, R. B. Gopaluni, and P. D. Loewen. Deep reinforcement
learning approaches for process control. In 2017 6th International Symposium

74

on Advanced Control of Industrial Processes (AdCONIP), pages 201–206, May
2017.

[23] R. Cui, C. Yang, Y. Li, and S. Sharma. Adaptive neural network control of auvs
with control input nonlinearities using reinforcement learning. IEEE Transac-
tions on Systems, Man, and Cybernetics: Systems, 47(6):1019–1029, June 2017.

[24] S. Gu, E. Holly, T. Lillicrap, and S. Levine. Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates. In 2017 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pages 3389–3396,
May 2017.

[25] T. Inoue, G. De Magistris, A. Munawar, T. Yokoya, and R. Tachibana. Deep
reinforcement learning for high precision assembly tasks. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 819–
825, Sep. 2017.

[26] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter. Control of a quadrotor with
reinforcement learning. IEEE Robotics and Automation Letters, 2(4):2096–2103,
Oct 2017.

[27] David D. Kim and Brian Anthony. Design and fabrication of desktop fiber
manufacturing kit for education. In Dynamic Systems and Control Conference,
2017.

[28] Richard S. Sutton, David Mcallester, Satinder Singh, and Yishay Mansour. Pol-
icy gradient methods for reinforcement learning with function approximation.
In In Advances in Neural Information Processing Systems 12, pages 1057–1063.
MIT Press, 2000.

[29] Nicolas Heess, Jonathan J Hunt, Timothy P Lillicrap, and David Silver.
Memory-based control with recurrent neural networks. arXiv e-prints, page
arXiv:1512.04455, Dec 2015.

[30] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Function Approx-
imation Error in Actor-Critic Methods. arXiv e-prints, page arXiv:1802.09477,
Feb 2018.

[31] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[32] D. R. Song, C. Yang, C. McGreavy, and Z. Li. Recurrent deterministic policy
gradient method for bipedal locomotion on rough terrain challenge. In 2018
15th International Conference on Control, Automation, Robotics and Vision
(ICARCV), pages 311–318, Nov 2018.

[33] F. Altché and A. de La Fortelle. An lstm network for highway trajectory predic-
tion. In 2017 IEEE 20th International Conference on Intelligent Transportation
Systems (ITSC), pages 353–359, Oct 2017.

75

[34] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. Lstm neural networks
for language modeling. In INTERSPEECH-2012, 2012.

[35] Matthew Hausknecht and Peter Stone. Deep reinforcement learning in parame-
terized action space. In Proceedings of the International Conference on Learning
Representations (ICLR), May 2016.

[36] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In In Proceedings of the International Conference
on Artificial Intelligence and Statistics (AISTATS’10). Society for Artificial In-
telligence and Statistics, 2010.

[37] G. E. Uhlenbeck and L. S. Ornstein. On the theory of the brownian motion.
Phys. Rev., 36:823–841, Sep 1930.

[38] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimiza-
tion. arXiv e-prints, page arXiv:1412.6980, Dec 2014.

[39] C. R. Cutler and B. L. Ramaker. Dynamic matrix control??a computer control
algorithm. Joint Automatic Control Conference, 17:72, 1980.

[40] CARLOS E. GARCIA and A.M. MORSHEDI. Quadratic programming solution
of dynamic matrix control (qdmc). Chemical Engineering Communications, 46(1-
3):73–87, 1986.

[41] Matthias Freiherr von Adrian-Werberg. Mpc quadratic dynamic matrix controler
with soft constraints.

76

