variable mutual reluctance machine

by
 WILLIAM ROBERT GANDLER

B.S., Massachusetts Institute of Technology
(1974)

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
at the
MASSACHOSETTS INSTITUTE OF TECHNOLOGY
July, 1982
c William Robert Gandler 1982
The author hereby grants to M.I.T. permission to reproduce and to distribute copies of this thesis document in whole or in part.

Certified by:
Richard D. Thornton Thesis Supervisor

Arthur Smith
Chairman, Department Committee on Graduate Students Archives

Variable motual reluctance machine
by
William Robert Gandler
Submitted to the Department of Electrical Engineering and Computer Science on July 8, 1982, in partial fulfillment of the requirements for the Degree of Master of Science.

Abstract

The purpose of this thesis is to Purther William Wong's work in controlling the same experimental variable mutual reluctance machine. The complexity of the microprocessor based system and the accompanying software is increased beyond that used in the Wong implementation. Sense coil waveform detection of a new phase arrival generates an external interrupt to the microprocessor. Software programs using only position feedback and both position and velocity feedback that allowed independent speed and current level control were implemented. Current level control allows torque adjustment for different loads. Current level control is implemented by having a microprocessor informed DAC - op amp combination supply a reference voltage to one comparator input terminal while the voltage across a sensing resistor is supplied to the other comparator terminal. The current level at which the field transistor is turned off and the minimum and maximum levels that the phase currents are chopped between are controlled in this manner. Speed control is achieved by variation of a time delay between new phase detection and new phase switching. An excellent linear correlation was found to exist between the time delay and $1 /$ speed. Speed control via continuous phase current adjustment was also implemented but worked only over a very narrow speed range. Finally, a program outputting phase duration counts onto LEDs allowed acceleration profiles to be obtained.

Thesis Supervisor: Richard D. Thornton
Title: Professor of Electrical Engineering

ACKNOWLEDGEMENTS

I would like to thank my advisor, Professor Thornton. I am also grateful for the constant help and support of Davida Pekarsky, Poh Ser Hsu, and David Otten. Above all, I am grateful to my parents for their continuous support.

TABLE OF CONTENTS

1. Introduction

A 15 pole, 4 phase, variable mutual reluctance machine was designed by Professor Richard Thornton, and an experimental model was built by Pipat Eamsherangkoon. 1,2 This stepper like motor had a field winding and four phase windings -- A, B, C, and D. The phase windings A and C were wound in the same position but in opposite directions and likewise with phases B and D. A unipolar drive scheme was used because of its simplicity. Four sense windings were wound in the same manner as the phase windings so that the voltages across the sense windings were proportional to those across the phase windings.

William Wong, after making some modifications to the motor, used an INTEL 8748 microprocessor based motor drive that in a closed loop system determined position by voltage sensing across the sense windings, controlled choppers for current regulation in the motor phases, and performed switching of the phases. A three stage control program was used to bring the motor up to high speed with two phases on control, but the software program did not provide for variable speed control, and the chopper control was rather crude in that after the initial switch on time for a phase the duty cycle was kept constant. ${ }^{3}$

The purpose of this thesis is to further William Wong's work by implementation of current level control and speed control based upon the variation of a time delay between new phase detection and new phase switching. In addition, LEDs on which
acceleration profile information can be outputted are provided. The complexity of the microprocessor based system and the accompanying software is increased beyond that used in the Wong implementation. A photograph of the constructed circuit is shown in Figure 1.1.

2. Literature Survey of Step Motor Speed Control

2.1 Open Loop Control

If only limited performance is desired, stepping motors can be run open loop with phase switching pulses being given to the drive circuitry at carefully predetermined intervals. The step motor runs in synchronism with the pulse train provided that the motor can supply the needed torque and resonance problems are avoided. These resonance problems are related to the resonant frequency of the rotor. Periodic excitation of the rotor at its resonant frequency or some submultiple of it will reinforce the resonance and result in a loss of position synchronism, or a complete absence of motion, if insufficient damping is present. To prevent loss of synchronism during acceleration due to resonance points, it may be necessary to increase load inertia, increase load friction, or use a mechanical or viscous-inertia damper. 4,5

The maximum rate at which a step motor may be started or stopped depends upon both the frictional and inertial loads. This information is usually presented in the form of a start-stop family of curves, where each curve represents a different value of load inertia, and torque is plotted against the stepping rate.

In many cases the stopping rate of the motor is slightly greater than the starting rate. This is to be expected since friction binders acceleration but aids in deceleration. The final steady state speed that can be achieved is given by a curve of torque versus speed known as a slew curve. Since the inertial load of the rotor will only affect the amount of time required for the motor to reach the final steady state speed and not the value of the final speed, the final speed that can be achieved will be a function of the frictional load but will be independent of the inertial load.

In general, the shape of the acceleration or deceleration ramp given to a motor in open loop control is optimally determined by the slew curve for a given motor and driver combination At a given speed, if the frictional load torque is subtracted from the torque on the slew curve, then the torque available for accelerating the load is determined, and the maximum acceleration possible is given by the available torque divided by the sum of the rotor and load inertias. Since available torque falls with speed, the rate of acceleration must decrease. Likewise, the pace of deceleration should start slow and then continue at a quicker pace. The ideal deceleration ramp will be a mirror image of the ideal acceleration ramp. If the torque were constant with speed, then the optimum acceleration curve would be a linear ramp. If torque were to decrease rapidly with speed, then an exponential(or a curve close to an exponential) ramp might be optimal. In practice, linear ramps should be used if torque drops off only very slowly with speed, but exponential ramps should be used if torque drops off rapidly
with speed. ${ }^{4}$

2.1.1 An Example of a Microprocessor Based Open Loop

Control Scheme

An Intel 8080A microprocessor was used by Lafreniere to control pulses to a step motor motor driving a constant load in a computer output recorder. Time periods between motor pulses were controlled using time interval values stored in an acceleration/deceleration table. The table was optimized by running various profiles and saving a copy of the table that produced the optimum profile. Acceleration was accomplished using one linear segment and deceleration was accomplished using one to three piecewise linear segments as shown in Figure 1.2.

The necessary parameters used to generate the acceleration/deceleration tables were:

1. Start frequency(in steps/sec)
2. Maximum frequency
3. Acceleration slope(steps/sec ${ }^{2}$)
4. Deceleration slope 1
5. Deceleration slope 2
6. Deceleration slope 3
7. Stopping frequency
8. Deceleration frequency 2
9. Deceleration frequency 3

The stopping frequency had to be carefully chosen to obtain good settling characteristics.

The lowest stepping rate required was 200 steps/second and
for stepping at 200 steps/second each pulse had to be 5 milliseconds apart. In order that one eight-bit byte would represent 5 milliseconds, each count had to be equal to 5 milliseconds divided by 255 or approximately 20 microseconds. Thus, the number of counts stored in a byte represented the number of 20 microsecond delays required. Acceleration values were calculated from the equation:

$$
\begin{equation*}
D=1 /(((A \times S)+F 0)(I)) \tag{1}
\end{equation*}
$$

where
$D=$ delay count
$S=$ step number $(S=0$ to $N)$
$A=$ acceleration slope in steps/sec ${ }^{2}$
Fo = start frequency in steps/sec
$I=$ delay increment (20 microseconds)
The required table length was determined by the equation:

$$
\begin{equation*}
S=(F m-F o) / A \tag{2}
\end{equation*}
$$

with
Fm = maximum frequency
$S=$ steps required to reach maximum frequency
Fo = start frequency
$A=$ acceleration slope in steps/sec ${ }^{2}$
Deceleration tables were calculated in a similar way by going back from the stopping frequency toward the highest step rate.

In running the program instruction execution times are taken into account in setting the time delays. If the number of steps to be moved is sufficiently large, the acceleration table values will be used until maximum speed is achieved. If deceleration is
performed from maximum speed, then the microprocessor simply runs through the deceleration table. However, if maximum speed is not achieved by the point at which the number of steps remaining is equal to the number of steps in the deceleration table, then acceleration will continue only as long as the new acceleration frequency is less than the initial deceleration frequency that would be used for the remaining number of steps. When the initial deceleration frequency that would be used for the remaining steps is less than the new acceleration frequency, then the deceleration table is used for the rest of the steps. 6

Miyamoto and Goeldel in similar work noted that the use of a general acceleration/deceleration table became less optimal as the number of steps decreased, and so used different tables for different small step increments. They calculated the best acceleration profile with a computer simulation that compared the motor response over a small time increment with the present phase remaining on versus the response obtained if the next phase was switched on. The simulation chose the sequence yielding the higher velocity and used it to establish initial conditions for the next time interval. 7

2.2 Closed Loop Control

Step motors realize only limited performance in the open loop mode since there is no way to tell if the motor has missed a pulse or if the speed response is too oscillatory. If the input pulses arrive at too large a frequency, the motor may fail to follow. Great improvement of step motor performance can be
realized by using positional feedback and/or velocity feedback to determine the appropriate phase switching in relation to the rotor position. Closed loop control permits such improvements as more accurate position control, much higher speed control, and more constant speed control.

Closed loop control schemes traditionally use mechanical to electrical position transducers to provide feedback information of position and possibly velocity. Slotted disc tachometers with photoelectric sensors and permanent magnets mounted on the rotor with permanent magnet pick-up sensors on the stator are two commonly used schemes. Other schemes involve dc and ac tachometers, ac synchros, and potentiometers. In traditional closed loop control the motor is started initially with one pulse from the input command, and the following pulses are generated from the encoder assembly.

Recently closed loop motor systems have been implemented that use waveform detection; that is, feedback pulses are generated by a waveform detector. A waveform detector has obvious advantages over traditional encoders. The waveform detector can be completely an electronic device without any moving parts. Thus, it need not be mechanically linked to the motor. The motor could, therefore, be located out in a harsh environment with a detector, drive circuitry, and power supplies stowed away in a more favorable location.

The literature read showed only lead angle variation being used as a method of speed control in closed loop systems that employed waveform detection schemes. However, four other methods of closed loop speed control have certainly been used on other

1) Voltage regulated control increases speed by increasing voltage. In addition to feedback which does the phase to phase switching, feedback control of velocity is used for regulating the voltage. Proportional velocity feedback is used to reduce the system's time constant and integral velocity feedback can be used to reduce the steady state error in velocity. Such a scheme is less efficient than other speed control schemes.
2) A chopped voltage control of speed can be performed by varying the switching ratio, the fraction of the total time the voltage is on As with voltage regulated control, proportional and integral feedback may be employed. A nonlinear element should be put in the feedback loop so that the system does not try to drive the switching ratio higher than unity.
3) Bang-bang control whereby zero voltage is applied if the speed is too high and full voltage is applied if the speed is too low can also be used for speed control. However, such a scheme demands a continuous and accurate velocity feedback.
4) Finally, phase lock loop techniques may be used for speed regulation.

2.2.1 Haveform Detection

The waveform detection schemes implemented to date have all involved the detection of peaks $-\infty$ either maxima or minima $-\infty$ or zero crossings. To a fair extent the work has been experimental rather than analytical -- motor waveforms have been observed and only afterwards related back to rotor position and justified
analytically. Waveform detection schemes must be specifically tailored to the particular motor, driving circuitry, driving scheme, and operating conditions under consideration. In some work on variable reluctance step motors Kuo and Cassat found, for example, peaks that were present at low and high speeds but disappeared at medium speeds. 8 Kuo, Lin, and Goerke found a scheme in a permanent magnet step motor that worked by detecting phase peaks in one-phase-on operation, but this scheme could not be implemented in two-phase-on operation. 9 Often one waveform must be used for starting the motor and Iow speed operation and another waveform must be used for high speed operation. The detection schemes were complicated by the fact that switching of motor phases led to transients or noise that would lead to false detections if they were not ignored. This has been done by ignoring any detections for a predetermined interval around switching. In a closed loop control scheme used by Kuo, Lin, and Goerke a second noise rejecting circuit was also used to blank out false pulses caused by voltage peaks that were generated when the rotor was oscillating about the detent position when the motor was running at a low speed or coming to a stop. 9

Peak detection of waveforms can be implemented either by a sample-and-hold circuit or by a differentiation circuit. A sample-and-hold circuit samples the waveform at a high rate, and when the present sample magnitude is less than the previous sample magnitude, the circuit interprets this as a peak detection. A differentiation circuit consists of an op-amp connected as a differentiator followed by a zero crossing detector. Kuo, Lin, and Goerke found the peak detector to be the
most critical element in the controller. Inappropriate pole placement in the differentiator design would cause improper operation of the controller. 9 Likewise, Unger noted that a better peak detector would have improved the operation of his system. ${ }^{10}$

Either voltage or current sensing can be used to provide detections. In sensing a current, the current must be converted into a voltage. This is performed by putting a small resistor of known value in the current path and measuring the voltage developed across it. Since the resistor will increase power dissipation and hence reduce the motor efficiency, its value should be kept as small as possible. While either current peak sensing or voltage peak sensing schemes may be used, voltage peak sensing schemes have the advantage that dead zones do not occur in the voltage waveforms if suppression diodes are used. Because of the positive forward bias voltage of the suppression diode, a dead zone may be present in the current waveform under low stepping rates. This dead zone in the current waveform could cause false detection errors. 9

2.22 Speed Control via Lead Angle Variation

The waveform detection closed loop schemes that controlled speed did so by variation in the lead angle, the angle in advance of a particular equilibrium position at which the corresponding phase is turned on. Much of the literature uses the complementary concept of switching angle or feedback angle rather than lead angle. The switching angle is the angle the rotor
moves from an equilibrium position before receiving its first feedback pulse. If the switching angle is adegrees, after the initial starting pulse to the motor, the second pulse and all following pulses are sent after a degrees of motion from the equilibrium position. If the step angle is R degrees, then a switching angle of α degrees corresponds to a lead angle of $2 \mathrm{R}-\alpha$ degrees.

If currents were instantaneously established and decayed instantaneously, the same lead angle would produce maximum torque at all speeds, but obviousiy currents take time to buildup and decay. While the time required for current to buildup represents only a small distance at low speeds, this time represents a larger distance at higher speeds. Thus, the lead angle must be increased to increase speed. As speed increases, the maximum torque that can be produced must decrease due to increases in impedance and back emf. ${ }^{11}$ Thus, the maximum torque decreases at increased speeds, and the lead angle that produces the maximum torque increases. At low speeds small lead angles will produce more torque than large lead angles, but at high speeds large lead angles will produce more torque than small lead angles. Usually, a step motor operates at lead angles between 1 and 2.5 steps, with larger lead angles resulting in higher speed but lower torque. In a four phase step motor, the maximum speed is achieved at a lead angle of about 2.5 steps. 12 Usually, as the lead angle nears three steps, the speed will fall and eventually the motor will stall. It must be remembered that the assumption of constant speed operation is only valid if the average torque, Which is a function of lead angle, is counterbalanced by the drag
torque, including the coulomb frictional and viscous frictional torque, which is exerted on the rotor. The lead angle is adjusted in order to achieve this.

Average torque as a function of switching angle for constant speed operation has been calculated analytically. Tal calculated the average torque $=(1 / 2 \pi) \int\left\{\pi \mathrm{I}_{\mathrm{g}}(\theta) \mathrm{d} \theta\right.$
where $\theta=e l e c t r i c a l$ angle and $T_{g}(\theta)=$ generated torque for constant speed operation as a function of switching angle for two-phase bifilar wound permanent magnet stepping motors with two-phase-on constant voltage excitation and for three-phase permanent magnet stepping motors with one-phase-on constant voltage excitation. By taking a derivative, he then found the switching angle that maximized the average torque at a given speed and the resulting value of the maximum average torque. 13

Kuo used the above method and the principle of time continuity of flux linkages to calculate torque-speed curves for various switching angles that could be obtained in a two-phase bifilar wound permanent magnet step motor under various drive and control schemes. In addition to calculating the maximum average torque, he calculated the minimum average torque that could be used for stopping the motor. Specifically, chopping, bilevel, and two-phase-on control schemes were considered. Achopping drive was approximated by assuming that the chopper kept currents at a constant level. As expected, the magnitude of the maximum average torque for two-phase-on excitation was 20.5 times greater than for one-phase-on excitation, but oddy enough his calculations also showed that a bilevel drive resulted in only a
slight improvement in the torque produced in the one-phase-on scheme at low and medium speeds and actually decreased torque produced at high speeds. 14 Kuo, Lin, and Yen calculated torquespeed characteristics in three phase variable reluctance stepping motors using one-phase-on drive with constant voltage for different switching angles. ${ }^{15}$

The waveform figure used for detection must be sufficiently in advance of the equilibrium position of the switched on phase to provide a large enough lead angle to maintain the maximum desired speed. Smaller lead angles and hence lower speeds are achieved by adding in an electronic time delay between the time that waveform feature detection occurs and the time that phase switching occurs. Thus, by increasing the electronic time delay, the steady state speed is lowered.

Lead angles that incorporate time delays have distinct advantages over fixed reference lead angles without any time delays. The electronic time delay results in better acceleration characteristics. Since the time delay corresponds to a smaller distance at low speeds, the effective lead angle is larger until the final speed is achieved, and at speeds above some low level that is quickly reached, the larger lead angles produce a higher torque that accelerates the motor more rapidly. Likewise, electronic time delay also provides the motor with better deceleration characteristics. In addition, electronic time delay makes the motor speed less dependent upon load variations. For example, if the load is increased, speed tends to decrease, so the rotor moves a shorter distance during the time delay, so the lead angle increases, tending to increase the speed, thereby
partially offsetting the effect of the load increase. ${ }^{12,16}$
In an optical detection system the angle of detection, the lead angle with no time delay, is always constant. This need not be the case in a waveform detection scheme. In one waveform detection scheme the angle of detection increased from 2.1 steps to 2.4 steps as the motor speed increased. The motor will operate properly as long as the curve of the detection angle versus steady state speed has a positive or zero slope. With such a curve, when the motor is loaded, the speed will be reduced and hence the lead angle is reduced. This is a welcome outcome since the smaller lead angle will produce a greater torque to apply to the load. A curve of detection angle versus steady state speed with a negative slope would not work, since applying a heavier load would slow the motor down and thus increase the lead angle so that less torque would be available, and eventually the motor would stall. 17

In control schemes with encoder feedback control, such as an optical scheme, the injection of extra pulses may be used to achieve a lead angle greater than two steps. In control schemes with waveform detection this would be analagous to the use of a small angle of detection using one waveform feature at low speeds and a large angle of detection using another waveform feature at high speeds. In both cases a larger lead angle causes a higher speed. ${ }^{8}$

2.2 .3 Speed Control with Traditional Logic Circuitry

Using traditional logic circuitry, the lead angle can be
varied via the use of a "fixed-unit time delay speed controller." The speed controller is composed of three main parts: a speed comparator, a time delay selector, and a time delay. The speed comparator compares the time taken to perform a motor step with the desired step period and decides whether or not the average speed over the last finished step is too fast or too slow. If the average step speed is too slow, the time delay selector adjusts the time delay for the next feedback pulse to be one fixed time unit less than the preceding time delay. If the average step speed is too fast, the time delay selector adjusts the time delay for the next feedback pulse to be one time unit greater than the previous time delay. Because the time delay can only be adjusted by one time unit after each feedback pulse, a tradeoff exists between the accuracy or fine tuning of the steady state speed and the time taken to achieve the steady state speed. A "variable-unit time delay controller" that uses a time delay increment which is proportional to the error in speed can be used to avoid this tradeoff but only at the expense of more complicated electronic circuitry if traditional logic circuitry is used. 12

Yackel has given the complete circuit diagram for one particular implementation of a fixed-unit time-delay speed controller. A network of gated one-shots can produce a delay of up to 70 fixed units with each unit being equal to 25 microseconds. 18
2.2.4 Microprocessor Control of Acceleratione Deceleration, and Constant Speed

Complex step motor control schemes require specially designed logic circuitry that is usually expensive and time consuming to construct. By using microprocessors complicated control algorithms may be implemented without complex logic circuitry at a lower cost.
B.H. Wells used an Intel 8080 microprocessor with a two microsecond cycle time to implement acceleration and deceleration algorithms on a three phase step motor with a feedback system using two photoelectric sensors and a slotted disc in an encoder arrangement. Speed was determined by the time between encoder pulses. For either acceleration, deceleration, or constant speed operation the microprocessor would perform four basic tasks for each motor step:

1. Delay a specified amount of time past an encoder interrupt of the microprocessor. The delay was calculated during the last step.
2. After the delay is over, send a pulse to the motor driver card.
3. Calculate the delay for the next step.
4. Wait until the next encoder interrupt which will restart the sequence.

To provide maximum acceleration, an algorithm is used to provide the motor with maximum torque at all times. With instantaneous buildup and decay of current, a switching angle of 0.75 times the step angle(or a lead angle of 1.25 steps) would produce maximum forward torque in a three phase step motor. However, the current has finite buildup and decay times, and the
finite buildup time must be included in the acceleration algorithm. The acceleration algorithm is:

1. Measure the time for the present step.
2. Predict time for the next step (TN).
3. Delay $=0.75(\mathrm{TN})$-buildup time

To predict the time for the next step, the following equation is used:

$$
\begin{equation*}
T_{\mathbf{k}+1}=T_{\mathbf{k}}+a\left(T_{\mathbf{k}}-T_{\mathbf{k}-1}\right) \tag{4}
\end{equation*}
$$

Changing the value of the constant α will change the degree of curvature. However, in order to implement an acceleration algorithm, a modification of equation (4) is necessary. If the time for the next step is predicted, then actually it is the time for the present step that is currently underway that is being predicted. To solve this problem an algorithm that predicts two steps in advance is used:

$$
\begin{equation*}
T_{k+2}=T_{k}+\alpha(\alpha+2)\left(T_{k}-T_{k-1}\right) \tag{5}
\end{equation*}
$$

Experimental data showed $\alpha(\alpha+2)=0.5$.
For 10 speed operation atilizing large switching angles, the execution order of the four basic steps could be rearranged as follows:

1. Calculate the delay for the next step once an encoder interrupt is received.
2. Delay the specified amount of time just calculated.
3. After the delay is over, send a pulse to the motor driver card.
4. Wait until the next encoder interrupt which will restart the sequence.

While this rearrangement of the four basic steps does not
allow a small enough switching angle for maximam speed operation, it has the advantage of requiring that step times be predicted only one step in advance rather than the two step in advance prediction that must be used with the first ordering given for the four basic steps. This, of course, improves the accuracy of the prediction.

For the first three steps, the two step in advance algorithm cannot be used. Two alternative measires can be used. First, encoders can be used to generate a sitable switching angle. Secondly, if the load is not subject to much variation, delays can be preselected. For the third step delay, the time value for the first step conld be included in a calculation.

Becanse deceleration took a mach smaller portion of the total time than acceleration, Wells used a simple deceleration scheme. By skipping one pulse and setting the delay to a constant, the lead angle was changed from about two steps (depending on the speed) to less than one step. When the motor had been decelerated, the delay was set to zero in order to provide a one step lead angle for slow constant speed.

Wells proposed but did not implement an algorithm for constant speed control. One 8 bit byte is used to specify the speed in steps/second divided by 10. A speed from 10 to 2550 steps/second is specified. A nominal delay is calculated for the specified speed. The unloaded speed versus switching angle carve is represented by a linear approximation. For the motor used the 1inear approximation is:

$$
\begin{equation*}
\alpha=9.4-(0.00571)(1 / T) \tag{6}
\end{equation*}
$$

with $\alpha=$ the switching angle and $T=$ sec/step. Also:

$$
\begin{equation*}
\text { delay }=(T a) / 15 \tag{7}
\end{equation*}
$$

with 15 the number of degrees/step.
By algebra this yields:

$$
\begin{equation*}
\text { delay }=0.627 \mathrm{~T}-3.81 \times 10^{-3} \tag{8}
\end{equation*}
$$

If one computer unit $=0.8 \times 10^{-6}$ second, then:

$$
\begin{equation*}
\operatorname{delay}_{\mu}=0.627 \mathrm{~T}_{\mu}-476 \tag{9}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{del} \mathrm{ay}_{\mu}=\left(7.84 \times 10^{4} /(\text { speed } / 10)\right)-476 \tag{10}
\end{equation*}
$$

A processor can perform this calculation before the motor is set in motion. After the nominal delay is calculated, the motor is accelerated until the acceleration algorithm calculates a delay less than the nominal value, and from this point on a special error routine is used instead of the acceleration routine. The error routine provides an adjustment in the delay proportional to the difference between the measured and desired speeds so as to minimize the error. The following control law is suggested:

$$
\begin{equation*}
\operatorname{del}^{a y_{k+2}}-\operatorname{del}^{2 y_{k+1}}=a\left(T_{n}-T_{z}\right) \tag{11}
\end{equation*}
$$

where $0<a<0.617$ in order to insure stability and T_{n} is the desired time for each step. ${ }^{19}$

2.2.5 Phase Superposition

Phase superposition refers to the overlap of phases or the extent to which phases are turned on simultaneously. Wetter, Jufer, and Imhof defined the rate of phase superposition as

$$
\begin{equation*}
\mathbf{k}_{\mathbf{s}}=\left(\mathrm{t}_{\mathbf{s}} / \mathrm{T}\right)(100) \tag{12}
\end{equation*}
$$

with $t_{s}=t i m e$ of superposition, the time phases are turned on
simultaneously, and $T=$ the interval between two phases switching on or $T=1 / f$ where $f=$ steps/second.

If P phases are present, $k_{s}=-100 \%$ if all phases are off and $k_{s}=(P-1)(100 \%)$ if all phases are on. In a four phase motor k_{s} would be:
-100\% for all phases off
0% for one phase on
100% for two phases on
200% for three phases on
300% for four phases on
By varying the phase overlap any particular percentage between -100% and 300% could be achieved.

The rate of phase superposition yielding maximum torque was found to vary from one frequency to another. For a definite fixed load, the superposition rate that minimized speed oscillations or maximized dynamic stability was not necessarily the same as that resulting in maximum torque. 20

2.2.6 Specific Schemes Implemented or Simulated

Singh and Kuo did a computer simulation of a single stack four phase variable reluctance stepping motor using dual voltage drive that drove the printhead in a high-speed impact printer system. After an excursion of an even number of steps ranging from 2 to 100, the printhead had to come to rest in a fully damped manner with a tolerance of about seven percent of a motor step within 30 milliseconds. The simulation was performed by integrating six nonlinear equations for the motor using the simulation was accomplished via seven steps:

1. The best switching angle for acceleration was determined.
2. The number of steps after which deceleration started was determined.
3. The best switching angle for deceleration was determined.
4. Either (a) the number of steps after which the switching angle was changed for low velocity operation was determined or a probably better method (b) the proper motor speed at which to change the switching angle for low velocity operation was determined.
5. The low velocity switching angle was determined.
6. The pulse to the last step was inhibited with delayed last step damping.
7. At low velocity indicating near peak overshoot the last pulse was given.

The motor came to a uniform low speed mode before the command to stop so that a single damping scheme was possible for all step increments. 21

Frus and Kuo ran a three phase single stack variable reluctance step motor in the one-phase-on scheme using detection from a waveform in the on-phase mode. 17
J.D. Unger used parameters in the current waveforms of a three phase variable reluctance step motor in the one-phase-on scheme to determine the damping delays needed for optimum damping using an electronic backphasing scheme. A "position" peak that occurred in the current waveform of one phase exactly when the rotor crossed the detent position of another phase provided the
initial information needed for damping. It told the system to begin the damping process. The time difference between the "position" peak and a peak in another phase current following shortly thereafter was found to vary with load, so the time difference between these two peaks provided information that told how much time should pass after the "position" peak until a backphasing pulse was applied. The duration of the backphasing pulse was kept constant to avoid circuit complexity, but modifying it would have yielded some damping improvement. ${ }^{10}$

Kuo and Cassat, working with a three phase variable reluctance step motor, developed a control scheme for one-phaseon operation by detecting current peaks in the phases. First-off mode detection was defined as detection of a waveform feature in a phase that was on during the last cycle and second-off mode detection was defined as detection of a waveform feature that was on two cycles ago. It was found that peak detection in the onphase current was difficult to predict and not advisable, for even if peaks were found at low and high speeds, they might vanish completely at medium speeds. The first-off mode was usually reliable at all speeds and recommended for closed loop control. The second-off mode could only be used after the motor was brought up to speed, but had the advantage of sometimes allowing higher speeds. Switching the waveform detection from the first-off mode to the second-off mode is analagous to the injection of an extra pulse in a closed loop scheme with an encoder and optical detection. 8

Pittet and Jufer used as feedback detection of a zero in a
current difference to achieve closed loop control of a one phase stepping motor. They have referred to such closed loop control as self-synchronization. ${ }^{22}$

Mckee used current feedback from the on-phase of a three phase variable reluctance step motor to achieve load adaptive damping of single steps using electronic backphasing. The height of the current waveform was found to be inversely proportional to the square root of the inertia. As the height decreased, both the optimal time after the peak to begin the backphasing pulse and the optimal duration of the backphasing pulse increased exponentially. The correct timer intervals for optimal damping are achieved by application of a scaled version of the amplitude of the peak to the timer's RC network. This is possible because the pulse width of the timer increases exponentially as the voltage decreases; that is, the relation is fortuitously similar to those between the amplitude height of the local peak and the two timer parameters. 23

Lin, Kuo, and Goerke found three waveform detection schemes that coud be employed in a bifilar-wound four phase permanent magnet step motor. The voltage waveforms across the phase windings exhibited detectable peaks, a positive peak in the first-off mode and a negative peak in the third-off mode, at practically all speeds. A closed loop scheme was developed that was based on detecting the first positive peak in the first-off mode. Current waveforms had detectable peaks at low speeds, but, unfortunately, at high speeds peaks did not not always appear in one specific phase. However, detectable peaks could always be found in the difference between currents in opposite phases, such
as $i_{a}-i_{c}$ or $i_{i}-i_{d}$, if the two phases were in the first-off and third-off modes. This control scheme based on current differences was successfully implemented in the one-phase-on scheme, but because of the existence of some unknown parameter could not be implemented in the two-phase-on scheme. Finally, detent positions of a permanent magnet step motor were detected by sensing the zero crossings of the back emf generated by the permanent magnet flux linkage while the rotor was turning. The voltage across phase a was written:

$$
\begin{equation*}
\nabla_{a}=R_{a} i_{a}+d \lambda_{a} / d t \tag{13}
\end{equation*}
$$

with λ_{a} being the flux linkage of phase a which was expressed as

$$
\begin{equation*}
\lambda_{a}=L_{a} i_{a}-L_{c} i_{c}+K_{1} \cos \theta \tag{14}
\end{equation*}
$$

with L_{a} and L_{c} the average inductances of phases a and c, K_{1} the maximum flux 1 inkage due to the permanent magnet, and θ the rotor position in electrical radians. Taking the derivative of equation (14):

$$
\begin{equation*}
d \lambda_{a} / d t=L\left[\left(d i_{a} / d t\right)-\left(d i_{c} / d t\right)\right]-K_{1} \omega s i n \theta \tag{15}
\end{equation*}
$$

where $L=L_{a}=L_{c}$ and $\omega=d \theta / d t$.
Then using simple algebra on equations (13) and (15):

$$
\begin{equation*}
\mathbf{K}_{1 \omega \sin \theta}=L\left[\left(d i_{a} / d t\right)-\left(d i_{c} / d t\right)\right]-V_{a}+R_{a} i_{a} \tag{16}
\end{equation*}
$$

$K_{1 \omega s i n \theta}$ was defined as the backemf generated by the permanent magnet and was obtained by using the appropriate op-amp network on measurements of $L\left[d\left(i_{a}-i_{c}\right) / d t\right], V_{a}$, and $R_{a} i_{a}$.

By similar manipulations a back emf waveform of the type - $\mathbf{K}_{1} \omega \cos \theta$ can be obtained with phase B and phase D. In theory a pair of measurements of $K_{1} \omega s i n \theta$ and $-K_{1} \omega \cos \theta$ could have been used to uniquely determine the rotor position, but in practice the
amount of switching noise did not allow this to be done, so zero crossings were detected to show rotor detent positions. For operation over a wide speed range, zero crossings of the firstoff and second-off modes were used. However, when the motor was started, because the speed was very low, there were no detectable zero crossings in the off-mode waveforms, so the peak of the onphase back emf was used for starting the motor. This peak in wsinghas the advantage of showing load-adaptation characteristics. The back emf detection scheme has the adrantage over other waveform detection schemes of being invariant under different drive schemes. Both one-phase-on and two-phase-on drives yield the same back emf waveform. This scheme has the disadvantages of requiring a complex controller and placing an npper 1 imit on the steady state speed due to noise occupying an increasing portion of the back emf waveform at higher speeds due to an increased frequency of switching between the phases in this constant voltage drive scheme. 9,24

Figure 1.2 Acceleration/Deceleration Profile Used by Lafreniere

1. The Three Phase States Encountered During Chopping

Suppose phase D is being chopped on and off. The resalting phase B and D current waveforms are shown in Figure 2.1. The three states of voltage and current situations existing in the field and phase coils are shown in Fignres 2.2a-2.2c.

When phase Dis chopped off, an opposite current of nearly equal magnitude appears in the reverse coupled phase B. When phase D is off, the phase B current and the field current are being retarned to the voltage supply through a diode in antiparallel with the field coil.

When phase D is first switched on, by reverse compling it almost immediately assumes a value equal in magnitude to that of the phase B current at the end of τ_{3}, the interval of reverse current flow. During τ_{1} the phase D current is less than the field current. As the phase D current increases, less of the field current flows through the diode antiparallel to the field coil and more flows through the phase D coil. τ_{1} ends and τ_{2} begins when the value of the phase D current becomes equal to the value of the field current. During τ_{2} the phase $\begin{gathered}\text { current is }\end{gathered}$ equal to the field current and the diode antiparallel to the field coil is off. Since approximately the entire supply voltage is across the phase D coil during τ_{1}, while during τ_{2} the supply voltage is spread across both the field and phase coils, the phase D current rises more quickly during τ_{1} than during τ_{2}. With a duty cycle of 0.5 , ib will decay all the way to zero producing an interval of zero torque, so the duty cycle should be
kept greater than 0.5 .
2. Position Detection by Sense Coil Voltages

$$
\nabla_{D}=L_{D D} d\left(i_{D}\right) / d t+L_{D F}(\theta) d\left(i_{F}\right) / d t+i_{F} \omega d L_{D F}(\theta) / d \theta
$$

represents the voltage across phase coil D in τ_{1} and τ_{2} when phase current flows only through the D coil. Likewise,

$$
V_{F}=L_{F F} d\left(i_{F}\right) / d t+L_{F D}(\theta) d\left(i_{D}\right) / d t+i_{D} \omega d L_{F D}(\theta) / d \theta
$$

represents the voltage in the field coil in τ_{1} and τ_{2}. When phase current flows only through the D coil during τ_{1} the additional constraint $V_{F}=-V_{D O N}$ is present. At startup the terms containing ω are very small and may be ignored. So at startup during $\boldsymbol{\tau}_{1}$

$$
L_{F F d}\left(i_{F}\right) / d t+L_{F D}(\theta) d\left(i_{D}\right) / d t=-V_{D O N}
$$

Noting that $L_{F D}(\theta)$, a sinusoidal function of position, can be either positive or negative, $L_{F F}$ is always positive, and $V_{D O N}$ is close to zero, it is seen that during $\tau_{1} d\left(i_{F}\right) / d t a t$ startup can be either positive or negative.

$$
V_{B}=L_{B B} d\left(i_{B}\right) / d t+L_{B F}(\theta) d\left(i_{F}\right) / d t+i F \omega d L_{B F}(\theta) / d \theta
$$

represents the voltage across the phase B coil during τ_{3} when phase current flows only through the B coil. Likewise,

$$
V_{F}=L_{F F} d\left(i_{F}\right) / d t+L_{F B}(\theta) d\left(i_{B}\right) / d t+i_{B} \omega d L_{F B}(\theta) / d \theta
$$

represents the field coil voltage during τ_{3} when phase current flows only through the B coil. $V_{F}=-V_{D O N}$ during τ_{3}, so at startup during τ_{3}

$$
L_{F F d}\left(i_{F}\right) / d t+L_{F B}(\theta) d\left(i_{B}\right) / d t=-V_{D O N}
$$

Noting that $L_{F B}(\theta)$, a sinusoidal function of position, can be either positive or negative, $L_{F F}$ is always positive, and $V_{D O N}$ is
close to zero it is seen that during $\tau_{3} d\left(i_{F}\right) / d t a t$ startup can be either positive or negative.

Because the diode antiparallel to the field coil is off during $\boldsymbol{\tau}_{2}$, $d\left(i_{F}\right) / d t$ must always be positive during τ_{2}. In conclusion, at startup $d\left(i_{F}\right) / d t$ is always positive during τ_{2} but can assume either polarity during τ_{1} or τ_{3}. This is verified experimentally by repetitively switching a single phase while the motor shaft is slowly turned manually.

Rather than sensing directly from the phase coils, sensing is actually performed on separate sense windings, which are wound in the same manner as the phase windings so that the voltages across the sense windings are proportional to the voltages across the phase windings. This is done so that the voltage swing on the sense windings will be within the -5 to +5 volt range of the comparator. If sensing had been performed directly from the phase windings, positive and negative comparator input voltage limits larger than the $20 V$ used to supply the field and phase coils would have been needed, and positive and negative supply voltages greater than 20 V would have been needed to power the comparators.

When chopping is being performed on a given phase, waveform detection is performed on the following phases's sense coil voltage. Hence, when $A-B-C-D-A$ activation is employed, when phase D is being chopped sensing will be done on sense coil A to detect the arrival of phase A. Crossings of the sense voltages from negative to positive polarity cause detections, so phase D is turned off and phase A is turned on when the polarity of the A sense voltage becomes positive.

The voltage across the phase A coil is:
$\nabla_{A}=L_{A A^{d}}\left(i_{A}\right) / d t+L_{A B} d\left(i_{B}\right) / d t+L_{A C d}\left(i_{C}\right) / d t+L_{A D d}\left(i_{D}\right) / d t+$ $L_{A F}(\theta) d\left(i_{F}\right) / d t+i_{F} \omega d L_{A F}(\theta) / d \theta$
$L_{A B}$ and $L_{A D}$ are small and since sensing is only done in phase A when phase A and phase C have been turned off long enough for the A and C phase currents to have decayed to zero, then $d i_{A} / d t=0$ and dic/dt $=0$ during a phase A sensing. Then when sensing phase A:

$$
v_{A}=L_{A F}(\theta) d\left(i_{F}\right) / d t+i_{F} \omega d L_{A F}(\theta) / d \theta
$$

At startup when the field transistor is turned on and the entire supply voltage falls across the field coil giving a large $d(i F) / d t$, the polarities of the $L_{A F}(\theta) d(i F) / d t, L_{B F}(\theta) d(i F) / d t$, and $L_{D F}(\theta) d\left(i_{F}\right) / d t$ voltages are sensed to indicate the initial position. After the initial sensing at turnon, before the motor picks up speed and the $i_{F \omega d L_{A F}(\theta) / d \theta \text { term predominates over the }}$ $L_{A F}(\theta) d\left(i_{p}\right) / d t$ term, sensing must only be performed on phase A just before phase D is chopped off, that is, during τ_{2} when the field current is equal to the phase D current. As previously discussed, $d\left(i_{F}\right) / d t$ is always positive during τ_{2} but can be of either polarity during τ_{1} or τ_{3}. Thus, the $L_{A F}(\theta) d\left(i_{F}\right) / d t$ term only conveys positional information during the τ_{2} interval.

Torque for phase $A, T_{A}=i_{A} i_{F} d L_{A F}(\theta) / d \theta$, becomes positive 180 degrees before the equilibrium position for phase A. Thus, the $i_{F \omega d L_{A F}(\theta) / d \theta}$ term becomes positive at the same time the torque becomes positive, 180 degrees before the equilibrium position. The $L_{A F}(\theta) d\left(i_{F}\right) / d t$ term becomes positive only at the start of the second half of the positive torque interval for
phase A, 90 degrees before the equilibrium for phase A. At turnon the initial sensing of position based parely on
$L_{A F}(\theta) d\left(i_{F}\right) / d t, \quad L_{B F}(\theta) d\left(i_{F}\right) / d t, \quad$ and $L_{D F}(\theta) d\left(i_{F}\right) / d t \quad t e r m s$ activates the phase that is located between 180 and 90 degrees from the equilibrium position.

Startup failures may occur when ω is very low and
$L_{A F}(\theta) d\left(i_{F}\right) / d t$ predominates over $i_{F} \omega^{\omega d L_{A F}}(\theta) / d \theta$. Then, phase A is turned on 90 degrees before its equilibrium position, and if ω remains very low, switching to phase B will not occur until phase A is at its equilibrium position. Suppose that phase A arrives at its equilibrinm position and phase B has just missed being detected. Then, the motor will stay indefinitely at the phase A equilibrim position and phase B will never be detected.

Increasing the initial acceleration by increasing the field current will solve this problem.

When phase D is being chopped, phase A is being used for waveform detection, and ω is appreciable, then the $i_{F \omega L_{A F}}(\theta) / d \theta$ term predominates over the $L_{A F}(\theta) d(i F) / d t$ term. In a one phase on scheme, phase A is activated 180 degrees before its equilibrinm position and phase A is turned off and phase B is turned on when phase A is 90 degrees before its equilibrium position. In a two phase on scheme, phase A would be trarned on 180 degrees before its equilibrium position and turned off at its equilibrinm position, that is, phase A would be on during the entire interval of positive torque except during windows occurring in the second half of its positive torque interval when it would be turned off so that i_{A} would decay to zero to allow sensing in phase C. The use of such windows would have the

Figure 2.1
Phase D is chopped on and off 3 times.

1. Overall Block Diagram

An overall block diagram of the hardware scheme employed is shown in Figure 3.1.
2. The Case For Dsing Fast Recovery Diodes

Current and voltage waveforms showing how switching compares for real and ideal diodes are sketched in Figure 3.2. Fast turnon diodes will have more ideal turn-on characteristics than slow diodes and fast turn-off diodes will have more ideal turn-off characteristics than slow diodes. Technological considerations usually result in a fast turn-off diode being fast turn-on. Generally, the turn-on surge voltages and power losses are of secondary importance compared to turn-off surge voltages and power losses.

When phase D was chopped on and off in my predecessor's circuit, a circuit without snubber networks but with diodes connected antiparallel to the switching transistors to allow reverse phase current flow, then a careful examination of phases B and D revealed positive current spikes occurring in both phases during the instant of phase D turn-on. A highly schematic nonscaled diagram of these current spikes is shown in Figure 3.3. These current spikes were caused by a reverse current flowing through the diode in phase B immediately after that diode was reverse biased. Since coils B and D are reverse coupled, a current spike in phase D had to occur in the same direction so that an immediate change in flux did not take place. To minimize
these spikes in my scheme a MR852 fast recovery diode was used instead of the 1 N4720 general purpose rectifier used by my predecessor.

The recovery charge Q_{R}, equal to the integral of reverse current through the diode, is of ten 200 to 500 times greater in a standard diode than in a fast diode. Thus, the use of fast diodes allows near total or total suppression of these current surges to be achieved. The energy produced each turn-off is equal to $Q_{R} E_{C}$, where E_{C} is the reverse voltage across the diode immediately after switching. By taking the worst case, where all of the energy is dissipated in the diode, an upper bound on the diode power dissipation due to switching is obtained. Thus, $P=Q_{R} C_{C}{ }^{f}$, where f is the switching frequency, gives the worst case diode switching power dissipation Hence, the use of fast diodes drastically reduces the diode switching power dissipation High losses during switching would prohibit the use of standard diodes at high frequencies.

Eliminating the diode reverse surge current also eliminates extra turn-on losses of the power transistor. Often, the turn-on losses of a transistor are concentrated in its structure(hot spots), and result in a fast fatigue of the transistor.

RC networks are often put in parallel with standard diodes to protect them against high surge voltages at turn-off. Generally, to eliminate surge voltages replacing standard diodes with fast diodes is better than using standard diodes with RC protection networks; the RC networks consume a large amount of energy at high frequencies.

One final advantage of the use of fast diodes is the reduction of radioelectric interference. During diode switching, an abrupt variation of current and hence of magnetic field takes place. The amplitude of the interference is proportional to the recovered charge Q_{R}.

Fast diodes have some drawbacks; increased leakage currents, greater forward voltage drops, and lower maximum reverse voltage ratings are often the penalties of making a diode fast. 1

3. Transistor Switching Network

The transistor switching network used for the 4 phase coils is shown in Figure 3.4. The transistor switching network used for the field coil is shown in Figure 3.5.2 The field network is the same as that used for a phase coil except that a 7405 is used instead of a 7401, the flywheel diode, a MR821, is placed antiparallel to the field coil, and the sensing resistance measures out to .079 ohms rather than .080 ohms.

In my predecessor's scheme a . 075 ohm wire wound resistor was used as a sensing resistance, but a wire wound resistor acts as an inductance. Noninductive sensing resistances were constructed by placing 16 - $1 / 2$ watt carbon resistors averaging 1.28 ohms in parallel. Placing the resistors between 2 cut pieces of a PC board, each with 16 holes, allowed a neat compact construction Since the standard deviation of different samples around a mean is inversely proportional to the square root of the sample size, paralleling resistors had the advantage of producing sensing resistances whose standard deviation around a mean value was $1 / 4$ the standard deviation of the individual 1.28 ohm
resistors around a mean value. The value of the sensing resistances was kept as small as possible to minimize power losses. Finally, note that tantalum capacitors of a few microfarads were used to keep the collectors of T_{1} and T_{3} and the emitters of T_{2} from deviating from their steady state voltages.

3.1. Discussion of the Switching Network

A and C are reverse coupled phases and B and D are reverse coupled phases. Suppose phase D is on and no other phase is carrying current. When the phase D power transistor is turned off, the phase D coil voltage drops and changes polarity so as to maintain the phase D coil current. If perfect reverse coupling were present, the phase D coil voltage would drop to $-\left(\nabla_{S}+\right.$ $\left.2 V_{\text {DON }}\right)$, $\nabla_{C E}$ of transistor D would rise from $\nabla_{C E}(S A T)$ to $2 V_{S}+$ $3 V_{\text {DON }}$, and the voltage across the reverse coupled phase B coil would rise to $V_{S}+2 V_{D O N}$ When the phase B coil voltage reached $V_{S}+2 V_{D O N}$, then the current in the phase D coil would stop and a current of equal magnitude would flow through phase B in the reverse direction so as to maintain continuity of flux. However, due to imperfect coupling or leakage inductances, this transfer of energy to the reverse coupled phase is not perfect. Because of the leakage inductance, at turn-off of phase D with no snubber network present, $\nabla_{C E}$ of transistor D exhibits a brief duration large positive voltage spike before settling to a steady state value of $2 V_{S}+3 V_{D O N}$ and the phase D coil voltage exhibits a brief duration large negative voltage spike before settling to a value of $-\left(\mathrm{V}_{\mathrm{S}}+2 \mathrm{~V}_{\mathrm{DON}}\right)$.

A turn-off snubber is used to attenate the brief duration positive voltage spike in collector to emitter voltage due to the leakage inductance. If a snubber is not used, the power transistor is quickly destroyed by the occurrence of collector to emitter voltages much greater than the $\mathrm{V}_{\text {CEO }}$ rating of the transistor. The turn-off snabber network nsed is shown in Figure 3.6.

As the value of the capacitance increases, the turn-off switching time increases since $d V_{C E} / d t$ decreases, but the turnoff switching losses in the transistor decrease. For small values of capacitance, the total turn-off losses of the snubber and transistor are smaller than those of the unaided transistor.

Let the phase current be I_{P} and assume that during the transistor fall time t_{f} the current in the inductive load remains constant. During the fall time t_{f} the current decreases linearly in the transistor and increases correspondingly in the capacitor. Then, if no leakage inductance is present, at the completion of transistor turnoff, the voltage V_{0} across the transistor is given by:

$$
\mathrm{CV}_{0}=\int \delta^{f} I_{\text {capacitor }}{ }^{d t}
$$

Therefore, $V_{0}=I_{P t} / 2 C$, the $V C E$ across the transistor at the end of turnoff in the absence of leakage inductance. Thus, in the absence of leakage inductance, the turn-off switching power dissipation of the transistor is decreased by making $\mathrm{I}_{\mathrm{p}}^{\mathrm{f}} \mathrm{f} / \mathbf{2 C}$ く $2 V_{S}+3 V_{D O N}$, the value to which $V_{C E}$ rises.

Now consider the effect of the leakage inductance L_{E}. If the transistor has been completely turned off and all of the current is flowing into the snubber, $L_{E} I_{P}{ }^{2 / 2}$, the energy in the
leakage inductance, must be transferred to the snubber. This energy will increase the value of $V_{C E}$ above $2 V_{S}+3 V_{D O N}$ by a ΔV such that

$$
\begin{aligned}
\mathrm{L}_{\mathrm{E}} \mathrm{I}^{2} / 2 & =C\left[\left(2 \nabla_{S}+3 \nabla_{D O N}+\Delta \nabla\right)^{2}-\left(2 \nabla_{S}+3 \nabla_{D O N}\right)^{2}\right] / 2 \\
& =C\left[(\Delta \nabla)^{2}+2(\Delta V)\left(2 \nabla_{S}+3 \nabla_{D O N}\right)\right] / 2
\end{aligned}
$$

Thus, to obtain a particular ΔV for a given leakage inductance L_{E} set

$$
C=L_{E} I_{P} 2 /\left[(\Delta V)^{2}+2 \Delta V\left(2 V_{S}+3 V_{D O N}\right)\right]
$$

Also, the capacitor and resistor values must be chosen so that the capacitor is completely discharged during the on interval of the transistor, that is, RC << toN-

In addition, R must be large enough so that the turn-on discharge current of the capacitor

$$
\Delta i=\left[2 V_{S}+3 V_{D O N}+\Delta V-V_{C E}(S A T)\right] / R
$$

that will flow through the transistor at turn-on does not become too excessive.

Finally, the power rating of the resistor must be larger than $\left[C\left(2 V_{S}+3 V_{D O N}+\Delta V\right)^{2} f\right] / 2$, where f is the switching frequency.

The question arises as to whether to use a turn-on switching aid network to reduce the power transistor turn-on switching losses and reduce the turn-on surge currents. Generally, turn-on switching transients are less of a danger to transistors than turn-off switching transients so only a turn-off snubber is used. ${ }^{3,4}$

3.2. Calculations for the Transistor Switching Network

```
        \(\mathrm{V}_{\mathrm{EC}}(\mathrm{SAT})\) of \(\mathrm{T}_{2}=0.5 \mathrm{~V}\)
\(+\nabla_{B E}\) of \(T_{1}=0.6 \nabla\)
\(+\nabla_{B E}\) of \(T_{P}=0.8 \nabla\)
+ Voltage across sensing resistor \(=0.25 V\)
+ Voltage across R1
```

$$
=5.0 \mathrm{~V}
$$

Thus, the voltage across $\mathrm{R}_{1}=2.85 \mathrm{~V}$.
Let the base current into T_{P} be 1 imited to 200 mamp.

$$
\mathrm{R}_{1}=2.85 \mathrm{~V} / 0.2 \mathrm{amps}=150 \mathrm{hms}
$$

The transistor specifications indicate that this level of base current should drive the transistor well into saturation for collector currents up to 5 amps.

Let the current through $\mathrm{R}_{3}=2$ ma.

$$
\mathbf{R}_{3}=0.6 \mathrm{~V} / 2 \mathrm{ma}=330 \mathrm{ohms}
$$

Let 4 ma come from the base of T_{2}.

$$
R_{4}=(4.4 \mathrm{~V}-0.2 \mathrm{~V}) /(4 \mathrm{ma}+2 \mathrm{ma})=680 \text { ohms }
$$

Voltage across $\mathrm{R}_{2}=9.5 \mathrm{~V}$. Let 20 ma f1ow through R2.

$$
\mathrm{R}_{2}=9.5 \mathrm{~V} / 20 \mathrm{ma}=470 \text { ohms }
$$

No current limiting resistor is put in series with the 1N4933 diode since the peak reverse base current pulled from the 2N6339 is experimentally determined to be 0.6 amps.
t_{f} for the 2 N 6339 is about $.13 \mu \mathrm{sec}$ at 2.0 amps. Ignoring the leakage inductance, at the end of t_{f} the transistor collector to emitter voltage $\mathrm{V}_{\mathrm{O}}=\mathrm{IPt}_{\mathrm{f}} / 2 \mathrm{C}$. Let $\mathrm{V}_{0}=\mathrm{V}_{\mathrm{CE}} / 2=60 \mathrm{~V}$. Then $\mathrm{C}=\mathrm{I}_{\mathrm{Pt}}^{\mathrm{f}} \mathrm{f} / 2 \mathrm{~V}_{\mathrm{O}}=(2 \mathrm{amps})\left(1.3 \times 10^{-7} \mathrm{sec}\right) / 2(60 \mathrm{~V})=2.2 \times 10^{-9} \mathrm{farad}$

Now consider the effects of leakage inductance.

$$
\mathrm{L}_{\mathrm{EA}}=\mathrm{LEC}=20 \mu \mathrm{~h} .{ }^{5}
$$

Assume $2 V_{S}+3 V_{D O N}$ is kept to $80 V_{\text {. }}$ To be safe keep $2 V_{S}+3 V_{D O N}+$ ΔV to 100 V . Then $\Delta V=20 \mathrm{~V}$.

$$
\begin{aligned}
& \quad \mathrm{C}=\left[\mathrm{L}_{\left.\mathrm{E} \mathrm{P}_{\mathrm{P}}{ }^{2}\right] /\left[(\Delta V)^{2}+2 \Delta V\left(2 \mathrm{~V}_{\mathrm{S}}+3 \mathrm{~V}_{\mathrm{DON}}\right)\right]}^{=\left[\left(20 \times 10^{-6} \mathrm{H}\right)(2 \mathrm{amps})^{2}\right] /\left[(20)^{2}+2(20)(80)\right]}\right. \text { =2.2×10-8 farad}
\end{aligned}
$$

Clearly the leakage inductance determines the size of the capacitor used in the turn-off snabber.

At turnoff,
$\Delta V_{C E} / \Delta t=I_{p} / C=2$ amps $/ 2.2 \times 10^{-8}$ farad $=10^{8} \mathrm{volts} / \mathrm{sec}$ If $\Delta V_{C E}=100 \nabla$, then the turn-off switching time Δt is only 1 $\mu \mathrm{sec}$.

The transistor can handle 25 amps continuous current. So let the initial current discharge of the turn-off snubber

$$
\Delta i=\left(2 V_{S}+3 V_{D O N}+\Delta V\right) / R<100 V / R=10 \text { amps }
$$

$$
\mathrm{R}=100 \mathrm{~V} / 10 \mathrm{amps}=10 \mathrm{ohms}
$$

$\mathrm{RC}=(100 \mathrm{hms})\left(2.2 \times 10^{-8} \mathrm{farad}\right)=.22 \mu \mathrm{sec}$, Which will be far less than the on interval of the transistor.
4. Pushbutton Inputs to the 8039 Microprocessor

The three pushbutton inputs to the 8039 are shown in Figure 3.7. Traditional debounce latches with nand gates follow each of the pushbuttons. Since a microprocessor reset sets all the output ports to one thereby turning on all the transistors, a long RESET input to the microprocessor would burn out a fuse or one or more transistors. Thus, a 74121 monostable is used to keep the $\overline{\operatorname{RESET}}$ input short in duration. The RESET pin must be held at ground(. 5 V) for at least 10 milliseconds if a reset is performed just as the power supply comes within tolerance.

However, only 5 machine cycles are required if the power is already on and the oscillator has stabilized. Since a reset is always performed many seconds after the circuit has been powered up, the pulse width need only be at least 5 machine cycles $=$ $5(1.36 \mu \mathrm{sec})=6.8 \mu \mathrm{sec}$. The monostable RC network gields a pulse width $=0.7 \mathrm{RC}=0.7\left(1.5 \times 10^{4} \mathrm{a}\right)\left(10^{-9} \mathrm{farad}\right)=10.5 \mu \mathrm{sec}$.

5. Intel Microcomprter Components

The Intel microcomputer parts used are shown in Figures 3.8a-c. One 8039 microprocessor, one 8212 address latch, two 2716-1 2X $x 8$ EPROMs, one 8185-2 1X $x 8$ bit static RAM, and three 8243 I/O expanders are used.

New programs are installed by erasing the EPROMs under UV light for 25 minutes and then programming with the universal prom programmer of an Intel microcomputer development system. With programs of 2K or less of memory space only the \#1 2716-1 EPROM is required. Because the EPROMs are continuously removed from their sockets for reprogramming, zero insertion pressure (ZIP) sockets are used for the EPROMs. Use of regular sockets would rapidly lead to pin destruction through mechanical wear during DIP insertion and extraction.

Note that the 2716-1 is used instead of the 2716. The 2716-1 is the same $2 \mathrm{X} \times 8$ EPROM as the 2716. It has just been selected out because of a faster speed. According to the 1979 Intel Component Data Catalog the 2716 has a maximum access time of or an address to output delay time of 450 nsec. For the 2716-1 the maximum access time is $\mathbf{3 5 0} \mathbf{n s e c}$. The 8039
microcomputer has a maximum address setup to data in time of 400 nsec. The 8212 address 1 atch has a maximum write enable to output delay time of 40 nsec. Thus, the EPROM must have a maximum acess time no greater than $400-40=360 n s e c$. Therefore, the 2716 - 1 is suitable while the 2716 is not. Using one $4 \mathrm{~K} \times$ 2732 EPROM would be simpler than using two $2 \mathrm{X} \times 8$ EPROMs, but unfortunately EPSEL lab does not have the equipment needed to program a 4X $x 8$ EPROM.

The 8039 has an 8-bit CPU, an 128×8 RAM data memory, and an 8 bit timer/event counter. The 8039 operates with an 11 MHz crystal whose output is divided to form $1.36 \mu s e c$ machine cycles consisting of 5 machine states. Each instruction is executed in one or two machine cycles.

Two 8 pin SPST switches provide input data to the 16 ports on the \#2 8243 I/O expander. Such information as the phase to be tested, the maximum and minimum phase current levels, the initial switching delay time, and the frequency with which the delay time is updated can be inputted on these switches. Input data should be read in with the high order bit corresponding to P73, P63, P53, or P43 and data should be outputted with the high order bit corresponding to P73, P63, P53, or P43 because if this order is reversed then the ordering of bits in the accumalator becomes opposite to the ordering of bits on the I / O expanders and arithmetic cannot be performed on accumulator numbers moving between the accumalator and an I / O expander.

The \#3 8243 I/O expander is used for two purposes. Before or while the motor is running, it outputs current level information to the DAC latches. After the motor has stopped
running, it can output phase duration counts to 7407 buffers driving LEDs thereby allowing acceleration profiles to be obtained.

The 8185-2 RAM is used solely to store the phase duration counts used in acceleration profiles.

6. Current Level Regulation

Four types of current level information are provided. When the motor is started, the field transistor is turned on. As soon as the field current reaches a desired field current level determined by the field DAC input to the field comparator, the field transistor is turned off and the desired phase transistor is turned on. After a phase transistor has been turned on, the phase current rises until it reaches a maximum current level determined by the maximum DAC input to that particular phase's maximum comparator. After the maximum current level has been reached, the phase transistor is chopped off and a reverse current flows in the complementary phase. When the complementary reverse phase current has fallen in magnitude to minimum reverse current level determined by the minimam DAC input to that particular complementary phase's minimum comparator, then the original phase transistor is chopped on again. The bottom DAC and comparator are present solely to check for proper functioning of reverse phase coupling. The bottom comparators prevent a phase turn on signal unless the reverse current detected is above a certain magnitude. If very little or no reverse phase coupling occurs, and the reverse phase current is always less than the
bottom current value, then the phase current will not be chopped on again, a new phase will not be detected, and the motor will stop.

To illustrate this better, suppose the field current level is setat 2.9 amps, the maximum current level is set at 3 amps, the minimam current level is set at 1.5 amps , and the bottom current level is set at 0.5 amps. Then, the field transistor is turned off forever(unless a restart occurs) when the field current reaches 2.9 amps. Phase currents are chopped off when they reach 3 amps and are chopped back on again as soon as a reverse complementary phase current between 1.5 and 0.5 amps is detected. If reverse phase coupling is functioning properly, a detection of a reverse phase current between 1.5 and 0.5 amps will occur as soon as the magnitude of the reverse phase current has decreased to 1.5 amps. Thus, chopping will keep the phase currents between 1.5 amps and 3 amps .

Figure 3.9 shows the eight 74LS75 1atches used to output current level information from the \#3 8243 I/O expander to the four DACs. Since each 1atch has 4 bits and each DAC has 8 bits, two latches are used for each DAC. An 8243 can sink 5 ma at . 45 V on each of its 16 I/O lines simultaneously. On each I/O line is a 7407 (driving a LED) requiring a $\mathbf{- 1 . 6} \mathrm{ma}$ low level input current. Each enable or G input on a 74 LS 75 requires a $\mathbf{- 1 . 6} \mathrm{ma}$ low level input current. Then, the 4 enable pins required to address the 2 latches driving 1 DAC require -6.4 ma low level input current. Hence, the 4 enables for the 2 latches driving 1 DAC mast be driven by 2 separate $1 / 0$ lines.

Figure 3.10 shows the DAC - op amp networks used to generate
reference voltage levels for the current level comparators. The field and maximum DAC - op amp networks generate outputs between 0 and +0.5 volts. The minimam and bottom DAC - op amp networks generate outputs botwecn 0 and -0.5 volts. The op amps input to pots with wipers positioned to input $4 / 5$ of the output voltage as a reference level to a comparator input terminal. With pots compensations can be made for differences in phase comparators and sensing resistances. A pot was used for the field comparator only so the scale factor for the field current level would be the same as that for the other current levels. Reference voltages With magnitudes up to 400 mv can be placed at the comparator input terminals with mit increments to the DAC corresponding to gradations of 1.56 mv at the comparator terminals. Gradations of 1.56 mvacross a . 080Ω sensing resistance correspond to current gradations of $1.56 \mathrm{~m} / .0800=20 \mathrm{ma}$. When the power transistor is turned on, 0.2 amp of base current flows through the power transistor so for any given maximum current level $I_{\text {max }}$ not exceeding an upper bound of 4.8 amps set the comparator reference Voltage at $16 \mathrm{mv}+\mathrm{I}_{\mathrm{MAX}}(80 \mathrm{mv} / \mathrm{amp})$.

Of course, the current-carrying capacity of the wire used for winding the motormust also be considered. Varnish coated number 19 copper wire was used for winding the motor. 6 According to one reference \#18 wire has a current-carrying capacity of 11 amps and \#20 wire has a current-carrying capacity of 7 amps, 7 so by interpolation the motor wiring should have a current-carrying capacity of 9 amps.

Careful attention must be given to grounding issues to
ensure the proper functioning of the comparators. All the sensing resistances employed in this circuit - the 4 resistances sensing the phase currents, the resistance sensing the current through the field transistor, and the resistance sensing whether or not the diode antiparallel to the field coil is on - have all been located physically close together so that the distance and hence the inductance of the wires joining the ground sides of these sensing resistances is minimized so the voltage variation between the grounds of the sensing resistances is as small as possible. This will prevent problems cansed by the fact that comparators have a poor common mode rejection ratio. The ground terminal of the sensing resistances is tied directly to the gronnd terminal of the circuit board and does not connect with the logic chip grounds until the ground terminal. This separation of logic and power grounds is necessary to prevent the occurrence of noise in the logic grounds from the switching of the power transistor currents into the inductance presented by the logic grounds. Note that the pots determining reference levels for the comparators are connected to the ground side of the corresponding sensing resistance rather than to the logic ground whereas the ground pins for the comparators are connected to the logic grounds(Figures 3.11,3.12a-b, and 3.14). This is necessary becanse use of a logic ground for the pot would have the effect of putting a long wire length or an inductance between the input terminals of the comparator - the distance being the Wire distance from the ground side of the sensing resistance to the ground terminal along the power ground wire plus the length along the logic ground wire from the ground terminal to the logic
ground point connected to the reference pot.
To prevent comparator oscillation compensation networks were applied to some of the comparators used in this circuit(Figures 3.11, 3.12a-b, and 3.14). Oscillations are particularly a problem with the maximum level comparators because of the slow rate of rise of the phase current towardits final value during the τ_{2} state. Positive feedback or hysteresis applied to the balance pin 5 removes these oscillations. The $.002 \mu \mathrm{f}$ capacitor between the 2 balance pins serves as a high frequency filter. It provides a low impedance shant to any high frequency noise. The resistor network for comparator compensation was determined experimentally. Networks were constructed with the 2.2Ka and 33K Ω resistors and the value of the third resistor was increased until a square wave input would not cause oscillations in any one of four 311 comparators tested.

The network for sensing the field current level is shown in Figure 3.11.

The network used for current regulation of phases A and C is shown in Figures 3.12a-e. An identical network is used for current regulation of phases B and D. The two monostables shown in Figure 3.12e that provide the clocking for the JX flip flops of phases A and C will also provide the clocking for the JK flip flops of phases B and D.

The monostables shown in Figure 3.12 c that produce 5.7 and $1.89 \mu s e c$ positive pulses cause a delay of $5.7 \mu s e c$ to occur before the J input of the flip flop shown in Figure 3.12d can be presented with the information that the phase current has reached
its apper limit. The current must exceed its maximum limit for $5.7 \mu \mathrm{sec}$ to send a signal to the J inprt. This serves two purposes. First, it ensures that a transient maximum current detection occrring right at the instant of transistor turnon does not immediately turn the transistor off again. Second, it allows sensing to be done in the $5.7 \mu s e c$ just before the phase is turned off. Since not all phase chops include a τ_{2} state, this does not ensure that all the detections will occur during the τ_{2} state, but it does ensure that the current will reach the specified maximum level before the next phase activation occurs.

The monostables shown in Figure 3.12c that produce $12.6 \mu s e c$ negative pulses ensure that a phase is not tnrned on immediately after being turned off - that is, it makes sure that a detection does not occur during the current transfer between the two reverse coupled phases.

7. External Interrupt Generation

An external interrupt to the 8039 microcomputer is generated whenever a next phase detection is made. The circuitry used to accomplish this task is shown in Figures 3.13 to 3.16.

Figure 3.13 shows the comparators used to detect the sense coil voltage polarities. As discussed in chapter two, at startup the outputs from these comparators provide the initial position information to the \#1 8243 I/O expander. Note that the ground of the sense coils is tied directly to the ground terminal of the circuit board. The LM111 specifications indicate that neither input terminal should be allowed to become more negative than the negative supply voltage. With the 1 N 4148 diodes connecting $-5 V$
to the noninverting terminals, negative voltage spikes occurring in the sense waveforms cannot become more negative than one diode drop below -5V.

Figure 3.14 shows a comparator network used to detect the presence of state τ_{2}. During τ_{2} the diode antiparallel to the field coil is off and a positive voltage exists across the field coil. At least 3 V will appear across the 5.6 Ma resistor during
 With this PNP transistor an $i_{B}=.54 \mu a$ yields an ic $>110 \mu a$. Hence, a collector current of $110 \mu \mathrm{a}$ is set equal to a reference Voltage of 0.1V. Thus, a sensingresistor of $0.1 \mathrm{~V} / 110 \mu \mathrm{a}=1 \mathrm{Ka}$ is used. No more than $50 V$ ever appears across the field coil. Then, $i_{B}=50 \mathrm{~V} / 5.6 \mathrm{MQ}=8.9 \mu \mathrm{a}$. For this PNP transistor an $\mathrm{i}_{\mathrm{B}}=$ $8.9 \mu \mathrm{yields}$ an $\mathrm{i}_{\mathrm{C}}<3.7 \mathrm{ma}$. Hence, (3.7ma)(1Ka)=3.7V is the largest voltage that should appear at the positive input terminal of the 311 comparator. The 1.2K resistor is put in merely as an added protection for the comparator. The positive input voltage limit is 30 V above the negative supply or 25 V . Thus, if the PNP transistor shorts, the maximum voltage appearing at the positive input terminal will be equal to (1K $/(1 \mathrm{~K} \Omega+1.2 \mathrm{~K} \Omega)(50 \mathrm{~V})=23 \mathrm{~V}$, and the comparator will be protected.

Figure 3.15 shows the network that determines if a $\boldsymbol{\tau}_{2}$ state is an external interrupt requirement. When OVERRIDE $\boldsymbol{\tau}_{\mathbf{2}}$ RESTRICTION $=0$, an interrupt can only occur during state $\boldsymbol{\tau}_{2}$. When OVERRIDE τ_{2} RESTRICTION $=1$, then an interrupt can occur during τ_{1} or τ_{2}.

When sensing phase $A, V_{A}=L_{A F}(\theta) d\left(i_{F}\right) / d t+i_{F} \omega d L_{A F}(\theta) / d \theta$.

At startup the $L_{A F}(\theta) d\left(i_{F}\right) / d t$ term predominates. Thus, at startup all detection of the next phase must be done during $\boldsymbol{r}_{\mathbf{2}}$ When the polarity of $d(i p) / d t$ is known to be positive rather than during τ_{1} or τ_{3} when the polarity of $d\left(i_{F}\right) / d t$ can be either positive or negative. As the motor speeds up, the iFwdidar(θ)/d θ term predominates and detection of the next phase need not be restricted to τ_{2}. In fact, with high speed operation the number of chops is maintained at a smaller and more uniform number if detection occurs during both τ_{1} and τ_{2}. When next phase detection is restricted to τ_{2}, the average number of chops per phase becomes larger and less uniform. A string of phases containing mostly one or two chops will also show an occasional phase containing three, four, or five chops. In summary, at startup OVERRIDE τ_{2} RESTRICTION should be 0 but should become 1 as speed increases.

The question arises as how to determine the proper point for switching OVERRIDE τ_{2} RESTRICTION from 0 to 1 . The switching
 over the $L_{A F}(\theta) d\left(i_{F}\right) / d t$ term. Since $d\left(i_{F}\right) / d t$ is proportional to the supply voltage and for a phase containing a fixed number of chops ω is proportional to the supply voltage, then for a phase containing a fixed number of chops ω is proportional to $d\left(i_{F}\right) / d t$. Hence, since $i_{F}, L_{A F}(\theta)$, and $\operatorname{dLAF}^{(\theta) / d \theta}$ are independent of supply voltage, the switching of OVERRIDE τ_{2} RESTRICTION from 0 to 1 should occur when the number of chops per phase falls below a certain level.

In the network shown whenever the number of chops per phase is less than a value determined by the input data switches for 2
consecutive phases, then OVERRIDE τ_{2} RESTRICTION is equal to 1. Otherwise, OVERRIDE τ_{2} RESTRICTION is equal to 0 . If 1111 or 1110 is the initial valne put on the input data switch, then OVERRIDE τ_{2} RESTRICTION is equal to 0 . If 1101 is the initial value, then whenever only one chop per phase occurs for two consecutive phases, OVERRIDE τ_{2} RESTRICTION is equal to 1. If 0000 is the initial value on the input data switch, then whenever the number of chops per phase is less than fifteen for 2 consecutive phases, OVERRIDE τ_{2} RESTRICTION is equal to 1.

A chain of three 74LS04 inverters is used to ensure that the load input of the 74LS161 is low for a sufficient time before the clock goes high.

Figure 3.16 shows the network generating the external interrupt to the 8039 microcomputer. The interrupt is sampled every machine cycle during ALE, so the pulse of the monostable serving as a nand gate input must be at least one machine cycle in length or $1.36 \mu s e c$ long. To prevent a false reading cansed by a glitch or transient, a sense coil positive voltage during a phase maximum current signal must be confirmed 2.31 usec later to indicate a next phase detection. This is particularly important in preventing a false detection during a short CURMAX glitch that could occur at transistor turnon if OVERRIDE τ_{2} RESTRICTION $=1$.

8. Misce11aneous Details

According to T.I. gold plating on wire wrap posts is not necessary. A T.I. technical report concludes that unplated wrap is stable after exposure to harsh environments. 8 Therefore, the
use of unplated wire wrap sockets is not expected to cause any problem.

Adequate use is made of capacitors. Before using the circuit three hage electrolytic capacitors are attached to the board's barrier strip for voltage supplies. They are placed between the power supply voltage and ground, +5 V and ground, and -5V and ground. $0.1 \mu f$ ceramic capacitors are used between +5 V and ground and where applicable between $-5 V$ and ground for every DIP on the board. In addition, six electrolytic $1000 \mu f$ capacitors are scattered over the board. Also, tantalum capacitors of a few microfarads are used to keep the collectors of T_{1} and T_{3} and the emitters of T_{2} from deviating from their steady state voltages. Finally, .05 f ceramic and $6.8 \mu \mathrm{f}$ tantalum capacitors are used to keep comparator reference voltges constant.

Three 3 amp fuses are present in the circuit. They are located between the power supply voltage and ground, +5 V and ground, and -5 V and ground.

Figure 3.1 An overall block diagram of the hardware scheme used

IDEAL DIODE

Figure 3.2
Current and voltage waveforms for real and ideal diodes

i_{D}

i_{B}

Figure 3.3 A highly schematic drawing of current spikes due to
the use of slow diodes

Figure 3.4 Switching network used for the 4 phase coils

Figure 3.6 Snubber

Figure 3.7 Pushbutton inputs to the 8039 microcomputer

Figure 3.8a Intel microprocessor components

P73 to P40 also output to the DAC latches. See Figure 3.9.

Figure 3.8c Intel microprocessor components

Figure 3.9 DAC Latches. The inputs to the DAC 1atches are from the \#3 8243 IO expander and the outputs are to the 4 DACS.

For field and maximum phase current lovels:

4 10KO PEASE POTS WITH WIPER ON COMPARATOR NONINVERTING INPUT TERMINAL FOR MAXIMDM CURRENT LEVEL
1 5K\& FIELD POT WITR WIPER ON COMPATATOR NONINVERTING INPUT TERMINAL FOR FIELD CURRENT LEVEL
For minimm and botton phase crryent levels:

4 10KR PRASE POTS WITH WIPER ON COMPARATOR NONINVERTING INPUT TERMINAL FOR MINIMUM CURRENT LEVEL
4 10KR PRASE POTS TITH WIPER ON COMPATATOR INVERTING INPUT TERMINAL FOR BOTTOM CURRENT LEVEL

Fignre 3.10 DAC op amp networks used to generate reference
voltage levels

Figure 3.11 Network for sensing the field current level

Figure 3.12 a Network used for carrent regriation of phases A and C

ozré oxnita

Figure 3.12d

Figure 3.12 e

Figure 3.14 The comparator detects the presence of state τ_{2}

Figure 3.15 Network determines if a τ_{2} state is an external
interrapt requirement.

Figure 3.16 Network generating the external interrupt to the microcomputer

1. Simple Test Programs

An important part of a good design procedure for a system is the inclusion of simple test programs used for checking or debugging the circuitry. Two such programs are included here.

The first one is titled D TO A SECTION TEST. This program sends reference voltage levels to the appropriate comparator input terminals. This allows an information route going from the input data switches to the input switch I/O expander to the 8039 microcomputer to the LED/DAC I/O expander to the 74LS75 DAC latches to the DACs to the op amps to the pots to the comparator input terminals to be easily debugged.

The second test program is titled TRANSISTOR SWITCHING TEST. With this program any of the 5 transistor switching banks can be repetitively switched. A phase bank will be repetitively switched between a specified minimum and maximum current level. If the field transistor bank is tested, the field current is brought up to the specified field current level and then the field transistor is turned off for 44.6 milliseconds, a time duration which allows the field current sufficient time to decay to zero. Then, the field transistor bank is switched on again. This program allows easy debugging of the transistor switching banks.

2. The RUN THE MOTOR Program

In the program titled RON THE MOTOR the current level values
used at startup are replaced with a second set of values when a button is pressed. Thus, since the motor's greatest current requirement occurs at startup, the phase current levels can be decreased once steady state motion is achieved. This program will now be examined in some detail.

The initial reset state sets all the output ports to one thereby turning on all the transistors. The transistors are turned off, the input switch I / O expander is enabled, and the LED/DAC I/O and main program I/O expanders are disabled. When TO is pressed, the field and first maximum values are inputted to RAM locations on the 8039 via the input switch I/O expander. When T1 is pressed, the first minimum and bottom values are inputted. Then, $T O$ is pressed to input the second maximum value. Finally, $T 1$ is pressed to input the second minimum and bottom values.

TO is pressed to start the motor running. The LED/DAC I/O expander is enabled and the input switch I / O expander is disabled. The first set of current level values stored in the 8039 RAM are outputted from the 8039 RAM to the DAC latches via the LED/DAC I/O expander. Then, the LED/DAC I/O expander is disabled and the main program I/O expander is enabled. After an 18 unit timer wait, the field transistor is turned on until the field current level rises to the desired value. A delayed check of the field current level is made for extra certainty. Then, an initial position sensing is made by inputting the sense coil voltage polarities to the main program I/O expander. The initial sensing information causes the phase located between 180 and 90 degrees from its equilibrium position to be activated as the
field transistor is turned off. The location containing the first interrupt address is stored in R3, the timer is started from zero, and the external interrupt is enabled. Before the current levels are changed, when the program is waiting for the first interrupt or is between interrupts, it will circle in a simple loop testing for six timer overflows since the last phase turnon and for the pressing of the T1 button.

The generation of an external interrupt will cause the execution of the first of the program's two external interrupt routines. The first interrupt routine turns off the old phase, turns on the new phase, restarts the timer from zero, updates the phase registers containing the present and next phase information, and resets R 4 to allow for another 10 restart attempts.

Before the current levels are changed, after a new phase has been activated, if more than 6 timer overflows occur before an external interrupt indicating a next phase detection occurs, then a restart occurs. In a restart the phase transistor is turned off and the program is reentered earlier at the MREST location where the 18 unit timer wait occurs just before the field transistor is tlarned on. Ten consecutive restart attempts are allowed. After ten consecutive unsuccessful restart attempts the transistors are turned off until the TO button is pressed again. Pressing the $T 0$ button resets $R 4$ to allow another 10 restart attempts and causes the program to be reentered at the MREST location.

When the T 1 button is pressed, the location containing the
second interrupt address is stored in R3 and the next interrupt generated will cause the execution of the second rather than the first interrupt routine. The instructions at the beginning of the second interrupt routine are identical to those in the first routine. Then, it disables the main program I/O expander and enables the LED/DAC I/O expander. The second set of current level values are then moved out from the 8039 RAM to the DAC latches replacing the first set of values. The LED/DAC I/O expander is disabled and the main program I / O expander is enabled. Finally, the address of the first interrupt routine is stored in $R 3$ so that all further interrupts will result in execution of the first interrupt routine. Between interrupts the program circles in a simple loop testing for six timer overflows since the new phase activation. If six timer overflows occur, then the program is reentered earlier at the START2 location where R 4 is reset to allow 10 consecutive restart attempts just before the first set of current level values is outputted to the DAC latches.

This program will accelerate the motor up to a maximum speed of about one chop per phase relatively quickly. Although most of the phase intervals contain only one chop, an occasional phase has more than one so the speeds obtained are slightly less than would be obtained by purely one chop per phase. Because the current rate of change across an inductance is proportional to vol tage, then at higher voltages the amount of time per chop is less and hence the speed is greater. Also, since higher current levels take longer to achieve, once a current level that can maintain a speed of one chop per phase is reached, further
increases in the current level increase the time per chop and hence decrease the speed. At 20 V with the current levels kept between 1.75 and 3.15 amps, a speed of 1625 R.P.M. is obtained.

3. Speed Control Programs

The program titled CONSTANT SWITCHING DELAY allows constant load speed control. A time delay is put at the start of every interrupt routine so that a time delay exists exists between the detection of the new phase and the switching on of the new phase. The 8 low bits of time delay are stored in R 1 and the 8 high bits of time delay are stored in R2. The first interrupt routine takes advantage of these stored timed delays by starting as follows:

SERVE1: DJNZ R1,SERVE1 ; DECREMENT TEE 8 LOW BITS OF TIME DELAY
DJNZ R2,SERVE1 ; DECREMENT THE 8 HIGH BITS OF TIME DELAY
The execution of a DJNZ R_{r} (decrement register and jump if the contents are not zero) instruction requires 2 instruction cycles or 2.72 microseconds. Thus, time delays can be changed in increments of 2.72 microseconds. Unfortunately, the use of 2 DJNZ instructions adds 5.44 microseconds to the minimum possible delay since both DJNZ instructions must be passed through at least one time during the execution of an interrupt routine.

Steady state speed decreases as time delay increases. Measurements of speed resulting from the inputted constant time delays were obtained for the unloaded motor running with a 20 V supply voltage and the phase currents kept between 1.75 and 3.15 amps over a speed range going from 17.6 to 1625 R.P.M. At speeds
equal to or greater than 108 R.P.M. a stroboscope was used for measurements. For speeds less than 108 R.P.M. visual counting was performed with the aid of a stopwatch or a pushbutton electronic counter. The results are shown in Table 4.1 with speed in R.P.M. and $1 /($ speed in R.P.M.) resulting from the inputted constant time delay in units of 2.72 microseconds(exceeding the minimum possible 5.44 microsecond delay caused by one pass through the 2 DJNZ instructions).

Plots of time delay in units of 2.72 microseconds versus 1/(speed in R.P.M.) are shown in Figures 4.1a-c. These plots of delay units versus $1 / s p e e d$ show a very good linear fit. Performing a least squares fit on the 131 data points with a HP33C calculator yields the linear equation: delay in units of 2.72 microseconds $=3.190 \times 105(1 /$ (speed in R.P.M.)) - 130.3
with an excellent correlation coefficient of .99957. As mentioned in Chapter 1 B.H. Wells expected an equation relating delay and speed of the above type to result for a step motor whose unloaded speed versus switching angle curve was nearly linear. 1

The program titled VARIABLE SWITCHING DELAY runs the motor at a fixed speed by continuously varying the time delay between new phase detection and new phase switching. The 8039 timer is used to measure the time interval for 4 consecutive phases so as to eliminate measurement problems caused by differences in the individual phases. A calculation of the actual time interval for 4 consecutive phases minus the desired time interval for 4 consecutive phases is performed using 2 register arithmetic. If
the result is positive, then the motor speed is too slow and the delay time is decreased. If the result is negative, then the motor speed is too fast and the delay time is increased. If the result is zero, then the speed is correct and the delay time is left unchanged. The number of phases that are to elapse between every set of 4 consecutive phases that is used for speed correction is fed in on the input data switches. At low speeds the maximum correction rate is compatible with good speed regulation, but at high speeds the maximum correction rate causes marked fluctuations in speed to occur. Decreasing the correction rate alleviates this problem. This program could run the unloaded motor with a $20 V$ supply voltage and phase currents kept between 1.75 and 3.15 amps over a speed range going from 100 R.P.M. to 1640 R.P.M. Because Peedback is used, this program can be employed in varying load situations.

The program titled CONSTANT SPEED VIA VARYING CURRENT runs the motor at a fixed speed by continuously varying the phase current levels. The minimum phase current level is always set equal to half the maximum level. The 8039 timer is used to measure the time interval for 4 consecutive phases. A calculation of the actual time interval for 4 consecutive phases minus the desired time interval for 4 consecutive phases is performed using 2 register arithmetic. If the result is positive, then the motor speed is too slow and the current level is increased. If the result is negative, then the motor speed is too fast and the current level is decreased. If the result is zero, then the speed is correct and the current level is left
unchanged.
The number of phases that are to elapse between every set of 4 consecutive phases that is used for speed correction is fed in on the input data switches. Table 4.2 shows the speed fluctuations around an average speed of 1565 RoP.M. resulting in this varying current scheme from changing the number of phases elapsing between every set of 4 consecutive phases that is used in speed correction. The best speed correction occurs with 20 to 24 interspersed phases. A narrow range of updating rates yields maximum speed stability, and updating either more or less frequently increases the speed fluctuations.

This program can only run the motor with average speeds ranging from 1400 to 1710 R.P.M. The upper speed bound occurs because the time per phase chop increases as current level increases so once a speed near one chop per phase is reached fur ther current level increases decrease the speed. The lower speed bound occurs because the current starts to fall to zero very precipitously.

4. Acceleration Profile Program

The program titled SUMMARY ACCELERATION PROFILE runs the motor from rest to full speed while storing in the 8185-2 RAM timer duration counts for 512 sets of the designated number of consecutive phases. In this program the timer interrupt is used to increment the 8 upper time bits when a time counter overflow occurs. After 512 sets have been stored in the RAM, all transistors are turned off so the motor stops. Then, TO and T1 are alternately pressed to read out the timer duration counts in
the LEDs.
Three trials were performed with timer counts obtained for sets of 60 consecutive phases or 1 revolution.(The program titled TRANSISTOR SWITCHING TEST can be used to prove that 60 phases occur per revolution by single stepping the motor in an $A-B-C-D-A$ activation sequence.) In these trials measurements were made for the unloaded motor running at 20∇ supply voltage and phase currents kept between 1.75 and 3.15 amps. Table 4.3 shows the number of timer counts in each of the first 100 revolutions for each trial. The final average speed is taken as that speed given by averaging the timer counts of the last 20 revolutions. Half final average speed is obtained at some point from 14 to 16 revolutions and $9 / 10$ final average speed is obtained at some point from 39 to 43 revolutions.

Table 4.1 Speed in R.P.M. and $1 /($ speed in R.P.M.) resulting from the inputted constant time delays in units of 2.72 microseconds.

DELAY IN UNITS OF 2.72 MICROSECONDS

0	1625	6.154×10^{-4}
4	1610	6.211×10^{-4}
6	1595	6.270×10^{-4}
8	1580	6.329×10^{-4}
10	1565	6.390×10^{-4}
12	1550	6.452×10^{-4}
14	1540	6.494×10^{-4}
16	1530	6.536×10^{-4}
20	1515	6.601×10^{-4}
24	1490	6.711×10^{-4}
28	1470	6.803×10^{-4}
32	1455	6.873×10^{-4}
36	1435	6.969×10^{-4}
38	1420	7.042×10^{-4}
40	1410	7.092×10^{-4}
44	1390	7.194×10^{-4}
48	1370	7.299×10^{-4}
50	1360	7.353×10^{-4}
52	1345	7.435×10^{-4}
56	1325	7.547×10^{-4}
60	1305	7.663×10^{-4}
64	1285	7.782×10^{-4}
68	1265	7.905×10^{-4}
72	1250	8.000×10^{-4}
76	1235	8.097×10^{-4}
80	1220	8.197×10^{-4}
84	1210	8.264×10^{-4}
88	1200	8.333×10^{-4}
96	1180	$8.475 \times 10-4$
100	1165	8.584×10^{-4}
104	1150	8.696×10^{-4}
108	1140	8.772×10^{-4}
112	1125	8.889×10^{-4}
116	1115	8.969×10^{-4}
120	1110	9.091×10^{-4}
124	1090	9.174×10^{-4}
128	1080	$9.259 \times 10-4$
136	1060	9.434×10^{-4}
140	1050	9.524×10^{-4}
144	1035	9.662×10^{-4}
152	1015	9.852×10^{-4}
160	995	1.005×10^{-3}
168	975	$1.026 \times 10-3$
176	955	1.047×10^{-3}
184	935	$1.070 \times 10-3$
192	915	1.093×10^{-3}
200	900	1.111×10^{-3}
208	880	1.136×10^{-3}
216	860	1.163×10^{-3}

DELAY IN UNITS OF 2.72 MICROSECONDS

SPEED IN R.P.M.

840

224	840
232	830

240
248
815
800
256
264
272
280
288
304
312
320
328
336
344
360
364
368
372
376
384
400
416
432
448
480
512
544
576
608
640
704
768
800
832
864
896
960
1024
1088
1152
1216
1280
1408
1536
1664
1792
1920
2048
2304
2432

785
770
760
750
740
720
705
668
655
646
646
640
630
619
617
610
600
583
575
554
552
526
514
483
470
458
432
405
375
360
346
335
326
305
288
270
256
244
236
217
203
190
178
167
158
142
135
1.190×10^{-3}
1.205×10^{-3}
1.227×10^{-3}
1.250×10^{-3}
1.274×10^{-3}
1.299×10^{-3}
1.316×10^{-3}
1.333×10^{-3}
1.351×10^{-3}
1.389×10^{-3}
1.418×10^{-3}
1.497×10^{-3}
1.527×10^{-3}
1.548×10^{-3}
1.548×10^{-3}
1.563×10^{-3}
1.587×10^{-3}
$1.616 \times$
1.621×10^{-3}
1.639×10^{-3}
$1.667 \times$
1.715×10^{-3}
1.739×10^{-3}
$1.805 \times$
1.812×10^{-3}
$1.901 \times$

DELAY IN UNITS OF 2.72 MICROSECONDS

2560	130	$7.692 \times 10-3$
2816	119	8.403×10^{-3}
3072	108	$9.259 \times 10-3$
3328	100	1.000×10^{-2}
3584	91.6	1.092×10^{-2}
3840	84.3	1.186×10^{-2}
4096	77.8	1.285×10^{-2}
4352	72.8	1.374×10^{-2}
4608	67.8	1.475×10^{-2}
4864	64.1	1.560×10^{-2}
5120	60.9	1.642×10^{-2}
5376	57.8	1.730×10^{-2}
5632	55.4	1.805×10^{-2}
5888	52.1	1.919×10^{-2}
6144	49.7	2.012×10^{-2}
6400	48.0	2.083×10^{-2}
6656	46.2	2.165×10^{-2}
7168	42.8	2.336×10^{-2}
7680	40.6	2.463×10^{-2}
8192	38.2	2.618×10^{-2}
8704	35.8	$2.793 \times 10-2$
9216	34.2	2.924×10^{-2}
9728	32.1	3.115×10^{-2}
10240	30.9	3.236×10^{-2}
11264	28.2	3.546×10^{-2}
12288	25.8	3.876×10^{-2}
13312	23.7	4.219×10^{-2}
14336	23.1	4.329×10^{-2}
15360	20.5	4.878×10^{-2}
16384	19.3	5.181×10^{-2}
17408	17.6	5.682×10^{-2}

E.017 x^{s}

Table 4.2 The speed iluctuations around an average speed of 1565 RoP.M. observed for differing numbers of phases elapsing between every set of 4 consecutive phases used in speed correction in the program titled CONSTANT SPEED VIA VARYING CURRENT

ELAPSED PHASES	MINIMOM SPEED	MAXIMUM SPEED
1	1310	1910
2	1280	1910
4	1300	1880
8	1300	1840
16	1520	1610
20	1540	1590
24	1540	1590
28	1480	1550
32	1500	1630
64	1460	1640
128	1360	1720
256	1280	1720

Table 4.3 Three acceleration profiles showing the number of timer counts for each of the first 100 revolutions as the motor is accelerated from rest to full speed

REVOLUTION \#	TRIAL \#1	TRIAL \#2	TRIAL \#3
1	3943	3545	2936
2	1745	2040	4067
3	3031	1511	4011
4	4098	2057	3406
5	2969	3679	3529
6	3121	2849	2894
7	2800	3167	2359
8	2611	3026	2286
9	2315	2437	2093
10	1982	2168	1915
11	1970	2145	1793
12	1837	1962	1713
13	1733	2107	1711
14	1657	1857	1764
15	1562	1767	1510
16	1503	1582	1413
17	1450	1511	1384
18	1399	1448	1340
19	1351	1401	1387
20	1317	1362	1267
21	1264	1315	1233
22	1249	1279	1199
23	1214	1245	1196
24	1174	1219	1131
25	1170	1193	1127
26	1124	1173	1102
27	1114	1135	1087
28	1085	1109	1066
29	1068	1100	1065
30	1069	1071	1015
31	1035	1063	1016
32	1018	1045	1010
33	999	1089	982
34	1000	1012	979
35	980	1010	966
36	962	984	954
37	957	963	936
38	946	966	943
39	936	948	926
40	927	936	916
41	934	936	910
42	901	939	913
43	930	909	895
44	889	910	888
45	895	909	934
46	893	895	938
47	881	876	867
48	876	896	872
49	868	865	853

REVOLUTION \#	TRIAL \#1	TRIAL \#2	TRIAL \#3
50	859	876	857
51	871	881	852
52	862	869	857
53	859	857	830
54	858	853	856
55	844	868	831
56	846	857	845
57	849	854	836
58	952	856	833
59	824	858	833
60	831	836	877
61	830	857	891
62	830	833	825
63	832	858	877
64	870	855	822
65	873	900	820
66	823	847	819
67	815	900	818
68	819	831	818
69	819	910	819
70	819	878	811
71	821	840	820
72	816	822	868
73	817	829	814
74	819	831	814
75	814	830	808
76	815	821	822
77	817	821	812
78	867	822	868
79	814	819	815
80	815	878	815
81	813	823	813
82	813	824	813
83	819	877	813
84	862	824	813
85	818	825	815
86	812	823	922
87	870	879	817
88	815	827	812
89	872	879	816
90	815	828	925
91	819	871	815
92	814	826	830
93	814	827	823
94	816	822	814
95	815	820	822
96	869	820	830
97	872	820	882
98	815	818	817
99	815	819	876
100	821	987	879
average Last	829.0	842.0	837.4
20 REVOLUTIONS			

TRIAL \#1 TRIAL \#2 TRIAL \#3

REV. TO ACHIEVE	14	16	15
1/2 FINAL SPEED			
REV. TO ACHIEVE	42	43	39
9/10 FINAL SPEED			

 OTIT A GETMD TEGT
lin. mb^{2}
ITAE GUIFCE STATFMENT

1	- TESTIAE
7	: THTS PRMRAM TESTS THE RFFFRENE VGTAGE IEVES GENT TU THE
3	
4	
5	
6	
7	
9	

	9	
	11	
	11	
	12	
	18	
	14	; TNTICATE THE VAIE TO PE APG IFT TA THE IME WTHF7S AE THF WGT
	15	: SIMUTFIMNT BIT AND PGO AG THE EGGT GIDNIGTANT ATT.
	16	
	17	; FIEI. 0 TAT:
	19	
	17	: FICl! пaio
	20	: PGI = I FNARES THE LATCH ADIRGGSIMG THE 4 HIGA BTTS TE THE
	21	: MAXIMEMTTP) IAT.
	7	: PSO = 1 FNARES THE IATCH ADLRESSNG THE 4 !OW ETTG N TE
	23	; MAXIMMMTOP) IAC,
	24	
	25	
	76	
	27	: MINTMM(MTDIAE) MAC.
	Q	
	79	: BITTOM SAA.
	3	
	31	: BITTIM DAE.
	92	-
0000	37	Ifif 0
	34 Sverst:	: GGTEM FESET
60n 0409	7	MP REGFT
	\%	
mot	37	MRT 2
	\% FXTINT:	: FXTEPNA TNTEFRSIPT
0n\% 15	37	[fe $\}$
mot 8	40	FETR
	41	
ก007	42	Mf17 7
	4\% TIMINT:	: TTME TNTEFEIFT
(107 3¢	44	OTS TMTI
कne 7	45	GETS
	46	
00077	47 RESET:	MV As HOH
فhot 3 A	49	
Mnt. 27	49 HFPF:	
	5	
Doty if	5	WMU $A, F 7$
onts ars	5	M0 54, A
60\% or	F	MTMTI A.F\%
0010 an	Ef	MTV RE, 4

 0 TO A SETON TEST

tro nel	17 NF	SIITEE STATEMFNT
00110	55	mun A.ps
0015	St	MTV R6.A
001300	57	mon A, P4
014 AF	59	mov ri.a
mots 9340	59	
01773	60	
mig Ff:	4	MU A.F4
0019	62	mive P7,A
O01A FTI	63	MTV A.RS
0018 F	64	MMD Ph, A
की10. FE	65	miv A, B_{6}
0103	66	MOUD PS.A
601F FF	67	MOU A, ${ }^{\text {a }}$,
01F 3	68	MUII P4, A
0020780	6	
boge 040\%	70	
	71	ENT

16R SMEDAS

CXTINT OOMS HERF OOOC RESET 0009 SYSRST OOGO TIMTNT OMOT

Im: MR l	ITMC	grimpe statement
	1	ThansigTn sulthimi test
	2	
	3	
	4	
	5	: THE MaCS
	6	; 1,) ON P73 TO P60, TUE TTP SET GF HATA THPIT SWITHES, TMUCATE
	7	
	8	
	7	; IF IATA TNPIT GUITGES, IWMICATE THE VAILE TO BE APPLIET On
	10	
	11	- PRESS 70.
	12	; 2, InN P73 TO P60 INITCATE THE VALIE TO RE AFPUIETI TO THE MAS.
	13	
	14	
	15	; ROTTMM GOMFARATIRS.
	16	; PRFSS IT,
	17	
	18	; P73 = 1 TESTS PHACE $A_{\text {\% }}$.
	19	- P72 = 1 TESTE PHAGE 8.
	70	; P71 = 1 TESTS PHACE P\%
	21	
	22	: PHAGE CIRRENTS ARE SWITCHED RETWEEN THE SELECTED MINIMIM ANI
	23	; MAXIMGM VAlILSS,
	24	; IF WWF IF TME ABINE ARE CHISEN, THE FIEID IS TESTED, AFTES
	25	
	26	; OFF FIR ABOHIT 44.6 MILLISECONIS.
	27	- Press 70
	78	; 4.) TO SEICCT A MEW TRANSISTGR BGNK MFREIY Change thf

	39	; VALIE ME THE P7 SUITMES.
0000	31	日RTS 0
	32 SYSRST:	: SVETEM RESET
00000409	32	, AP RESET
0003	34	483
00.3	3 ExtINT:	: FXTFRNAL INTERRIPT
000315	37	0151
000488	38	RETR
0007	4	gil 7
	41 TMMNT:	; TIMER INTEERIFT
000738	42	016 TINTT
00982	4.3 44	RFTR
0009720	45 ESSET:	MTN A. \#SOH
00838	46	
tome 39	47	 : FXPANLER AND FNADE THE INPIT SWITGA ID EXPANER.
mom 260 n	49 MATM:	INTO MATN
600 36\%	50 HERE!	JTO HFRE : WAIT FRR TO TO HE PRESED
0011 of	51	MOII A.P7 ; WVE IN THE 4 HTGH BIT
012 Ac	9	
0015 of	5	
0014 A	5	

 TRANGISTIR SNITCHING TEST

Im: fing	LTME	SURTE STATEMENT
0015 on	5	MOVI A,ps ; MOUE TN THE 4 HIGH BITE
0014 AF	5	
017 or	57	MIVT A, P4 : WNE IN THE 4 IG4 ETTS
0018 ar	58	
0194619	59 HEPF?:	. NTI HERE\%
0010517	60 HFRES:	IT! HERS3: WAIT FOA Tt to se freseri
0010 if	6	MONS A,F7 ; MOVE IN THF 4 HIGH SITS
onte 48	62	MOV FO,A ; IF THE MINIMIM DACS VALIE
0015 of	68	MTM A,Pt : Mme TN THE 4 lote BITS
0000 AS	6.4	MON AI, A ; IF THE MINIMM IAS. VAIIE
02100	65	MOVD A, PS ; MIVE IN THE 4 HISAH BITS
002 A	66	Miv R2, A : OF THE gitum mas valie
6n2 of	1.7	MIVI A,P4 : MINE IN THE A LOU BITS
0024 an	19	min re, a ; Of THE GITTOM DAC Valle
$00 \% 52940$	69	WIS A, \#40H ; MTSARLE THE INPIT SWITCH 10 EXPANIER
00738	70	
008020 C	71	MOU A, \#OCH : DISAEAE THE 2 MAXTMM ПAC LATCXES
02430	72	MOUD PS, A ; AND FNADE THE 2 FIDID DAT ATCIES
mpr 7 mon	73	MN A. \#OOH: MSAEAE THE 2 MINIMIM ANTI 2 BITTIM LATCNES
00035	74	mivil P4, A
OOP FF:	75	MIN A.R4 : MIVE THE 4 HIGH GITS
607 3	75	MUN P7, A : DIIT TO THE FIELT DAS.
003 Fm	77	MON A. R5 ; MITF THE 4 [DU BITS
0021 -	73	
0022303	79	MTV A, \#OSH ; MIGABE THE ? FIELI IAF. LATCHFS
0034310	80	MOU PS,A P AND FNATSE THE \% MAYTMM DAC LATCHES
MOE PF	8)	MOU A.RK : MONE THE 4 MIGH BITS
0036	8	
0037 FF	88	MON A.R7 - MTNE THE 4 LION BITS
003835	84	MJUn Ph, $;$ TIT TO THE MAXIWIM VALIE TAC:
0039200	85	MIV A, \#foh : misafie The 2 maximim valie lac latches
003830	2\%	Move P5, A
mot 705	07	MOV A. \#MCH : ENAELE THE ? MINTMM VALUE IAC: LATCHES
0095	88	mivo P4, A
003 FP	8	MOU A, RO : WINE THE 4 HIGH BITS
00403 F	90	MOVI P7.A : DITT TO THE MTNIMIM VAIUE DAI.
0041 FP	91	WOV A,R1 : WTVE THF 4 IIL BITS
0042 ?	72	WMO Ph, A : OIT TO THE MINIMIM YALIE [GIC.
00432303	98	MOU A, \#OZH : DISARE THF 2 M MTNM DAC. LATCHES

00453	94	
cois FA	95	MIN A,R? ; MTYF THE 4 HIGH BITS
0047 3F	96	MIND P7, A ; IIT TO THE EITTMM BAF:
0048 F	97	MIV A,R3 ; WIVF THE 4 ITON BITS
0049 \%	98	MOND PL.A : GIT TO THE EITTOM IPC
m04 7300	99	MOV A, \#ONH : DTGAEIE THF 2 EITTMM TAC. LATCHES
motr 3	100	moun P4, A
0045 24.4n	101 HEREA:	, WTO HEFE4
00853645	102 HERES:	ITO HERES : WATT FIR TO TO RE ORESEEI
005180	$102 \mathrm{MOV} A$,	OH: : IISAELE THE IEDIMAT II EXPANTER
005337	10481 TL P1	
00.40 F	105 SEIECT:	mavn A.p7
00557270	108	IRS AOWIY
05750 ?	107	IR2 Efin Y
0059387	108	,
OOSE Prs.	109	Jmotamy

```
TGTG-TT MG-AE|PT-4 MACRO ACSMELER, VQ.0 PAGF 3
```

mangetan githming tegt

Iof ne!	LTNF	S⿴囗me statement
	110	
0 OET 2900	111 Frney:	MOV A, \#OM : EMAPLE THE MAIN FRITRAM TI EXPAMIER
OLF 3 A	117	GITI P2, ${ }^{\text {P }}$,
$060 \% 00$	113	MOV A. HOMH : TIGN TN THE FIELI Thangictin
(1) ${ }^{\text {a }}$	114	
mose of	115 FPNC:	
moth at	$11 /$	MN 21, A
6) 5	117	MOUD A,PG : MIFIEM UTH A TEIAYFD CHETK
006\% 59	118	AN. A, E_{1}
0671268	119	(18) FITF
0490046	120	dip FSEMT
man 2 On	121 FOFF:	HOW A, 4 COH : TIIN GFF THE FIEIT TRANEIGTIS
004078	192	
mote 34	123	
mer 27	124	If A : WATT FOR AMITT 44,6 MILISESMDS
01706	25	Mov T, A,
0074	126	STRT T
007781804	167	
00741678	179 UAIT:	ITF MIRE
0074, 0474	\$0	.MP WATT
0078 F974	131 MnRE:	TUNZ R1, WAIT
07745	129	STMP TNT
00740454	34	IMP SEEET
0071285	f Ammy:	MOV A. BH 1 H
077	18	MITM PI, A P TRN ON HAGE A
00000454	19	MP SEIECT
notem?	139 Bna Y :	MTV A. HSOH
004439	140	
M06 04EA	141	IMP CFLET
007204	14.3 Cony:	M10 $\mathrm{A}, \mathrm{HALH}$
009\%	144	GiTL Pl, A T TRN ON Phase -
003 ALE 4	145	. MP SEIEST
mon 2 ma	147 mow y:	MVN A, \#hit
Wher 9	149	
OHP O4EA	14989	, MF SEECT
	! 1 !	EMI

Hen mbous													
Amay y (m7T	Enk 4 Ond	Tan y	0677	min Y	009:	EYTINT	008	FIfP	0065	FTML	0 mb	FEME	06
AFRE कीF	HERE DO17	1FRES	6013	HRE4	0041	HFES	0645	Mald	0000	ARE	क7	तीt	not
Plert mes	Sverst 000	TIMINT	0607	WAT	0074								

[^0]| IfI: IRJ | 1 1欹 | GIMIE STATEMENT |
| :---: | :---: | :---: |
| | 1 | : PRMRAM T] Etiv THE MTHAR |
| | $?$ | |
| | 3 | |
| | 4 | - FITE TAP UAIIF FEn IN TN THF INPIT [ATA GUTTMEG, A FESTART |
| | 5 | |
| | 6 | |
| | 7 | |
| | 9 | \% GUTTHES, FRESGNG THE TO BITTIW WIL START THE WITTR ANT EREGING |
| | 9 | |
| | 10 | : LEVES WITH A GECMN SET IF MAXIMIM AND HINTMM PHACF LEVESS. |
| | 11 | |
| | 17 | |
| | 13 | |
| | 14 | : JNDIGATE JETESTION IF THE NEXT PHASE WIL EE TFIGGTRED YY 7ERG |
| | 15 | |
| | 16 | : PRLARTTV. |
| | 17 | : TI GIN THF MMTMR: |
| | 16 | |
| | 19 | |
| | \% | : TO F4O, THE DOTTIM SET DF DATA IWPIT EATTEHE, TNDIATE THE FIEST |
| | 21 | |
| | 2 | : CMPFARATORG WTTH PGS AS THE MES ANT F4O AS THE LSB. |
| | 23 | : PRESG T0, |
| | 24 | |
| | 75 | |
| | 26 | : F4O INMTCATF THE FIEGT VALUE TO EE APCI IET TO THF IIG ADTMEGGTMS |
| | 77 | ; THE EITTM DIMPARATME. |
| | \% | ; PHESS TI. |
| | 29 | |
| | 30 | - PRESE TO, |
| | 3 | |
| | 32 | ; P4O INDIGATE THF GOTNI BOTTOA VALE. |
| | 3 | : PRECE T1, |
| | 34 | : S. PRESG TO TO START THE MITOR HITH THE FIRST SET IF VALIEG, |
| | 35 | : 6,1 FRES TI TO REFIAE THE FIRST STT IE VAIUSGUTH THE SEINO |
| | 34 | : SET. |
| | 37 | |
| 0000 | 39 | ORfi 0 |
| | 37 SYGFST: | : GVGTEM RFGET |
| 00040408 | 40 | MP RESET |
| | 41 | |
| mat | 42 | mpf 2 |
| | 43 FXTINT: | : EXTERNA TMTFREIPT |
| On¢ Fr | 44 | |
| 0064 ES | 45 | MPP AA : TS STGRED AT THE ATDNESS TN HS |
| | 44 | |
| 007 | 47 | Indi 7 |
| | 49 TMATT: | - THRR INTERRIPT |
| 667 | 47 | TS TMTI |
| ต\%n 93 | 5 | FETP |
| | 5 | |
| OW? ¢F | Fe ratal | IR IM SEFUE |
| فणय 46 | E\% ПATA2: | IS TH SERUE2 |
| | 54 | |

IMT. OBI IINF SOIRCE STATEMENT

0000 2300	S5 RECET:	
00039	5^{6}	
O00F 3A	7	ITIT F2,A ; migable the main program in Expanier
OMOC 260 F	59 HEREI:	WTO 3 PRE!
00112411	. 99 HFRE?	.ITO HERE2 : WAIT FOR TO TO BE PRESSED
$0013 \mathrm{B620}$	60	MON RO. 370 H
0015 OF	61	MOUT A,P7 ; MINE THE 4 HIGH RITS OF THE
001640	62	
001718	6	TME: RO
001808	64	Movi A,b : MOUE THE 4 low gits of the
0019 A0	65	
Onta 18	66	INS R0
0018 on	67	\#TNI A,F5 ; MOVE THE 4 HICH BITS IF THE FIRST
On15. 40	48	
001718	69	INC PO
ODIF Of.	70	MOVD A,P4 : MOVE THE 4 LIU BITS OF THE FIRST
0 OfF A0	71	MUV RRI, A : MAXIMM VALIE TO DATA MEMORY LIMATIDN $23 H$
0070460	72 IERES:	WTI HERES
0072.622	73 Hept 4 :	ITI HERE4 ; WAIT FOR TI TO BE PRESSEI
007418	74	INC PO
0025 of	75	MND A,P7 : MOUE THE 4 HIGH BITS IF THE FIRST
0076 A0	75	MIM aro, a minimm valie Ti mata mbmory lichtion 244
007718	77	INC RO
0088 of	78	MOVD A,Ph : MINE THE 4 lOU BITS OF THE FIRST
007980	79	
007 10	30	INS, 70
002R 0n	81	MOUD A,P5 ; MOUF THE 4 HICN EITS OF THF FIRST
007080	32	
00218	83	INE: 80
ONE UR	84	MOVI A,FA : MOUE THE 4 IOW RITS OF THE FIRST
00\% A0	85	
00302630	8. HERES:	ATTO HEFES
00932	37 HERES:	JTO HEPES : WAIT FOR TO TI BF PRESSEII
003418	88	TMC RO
008507	89	MOUT A,P5 ; MOUE THE 4 HIGH BITS OF THE SECOND
0034 A0	90	
009718	91	TME RO
0088 or:	92	MOTI A.P4 : MTUE THF 4 lOW EITS GF THE CEMOND
003940	73	
00304630	94 HFRE7:	ANTI HERE7
mo3r 56m	95 HERES:	ITI HERES : WAIT FOR TI TO GF PRESAEI
00\% 17	96	14r. Rio
003F if	97	MOND A,P7 ; NOTE THE 4 HITH BITS IF THE SECENI
0040 A0	98	
004118	99	INT: RO
0042 or	100	MONT A.Pb : MNUE THE 4 liow EITS OF THE SECOND
0043 A0	101	
004418	107	jni. RO
M14. 01	108	MOMI A.FS: MIPE THE 4 HIGH BITS IF THE SEMNI
Mo4b An	104	
004718	105	TM: R0
0048 or	106	MONI A, P4 : MUE THE 4 lOW RITE TS THE REONT
O64 90	107	
D04A 2R.4A	109 HEPF9:	INTO HEFE9
064036	109 HERET0:	,T0 HPREIO : Walt Fin to remme thf mitig starte

1 mP ORI	I.JNE	goline statement
OOPE RCFb	110 START2:	
00502340	111	
005239	112	
0058200	113	MOV A, \#OCH : IIEAEAE THE 2 MAYIMM UAC LATCIES
005537	114	MIUN PS.A ; ANI FNARUS THE 2 FIFLD DAC. LATCHS
(0)S6 77	115	CR A : DISAEP E THE ? MINTMM
00573	$11 / 6$	NOUD P4, A A AND ? BITTM RAS. LATCHES
0058 mbo	117	MOU $\mathrm{FO}, \# 2 \mathrm{OH}$
$005 A$	113	MTN A, QRO : MOUE THE 4 HIEH GITS

0683	119	MOVI P7, A : OUT TO THF FIEID TAC
005c 18	120	IWS. RO
$0 \mathrm{OH} F 0$	121	MMU A,gRO ; WIVE THE 4 ICON BITS
m05F 35	172	MOUD Ph, A ; IIT TO THE FIELD DAC
On5 2 Na	128	MON A,\#03H ; DICARLE THE 2 FIEIII SAC IATCHES
006130	124	MINI PS,A ; AND ENABAE THE 2 MAXIMMY DAT, LATCHES
00218	175	TWC RO
$0063 \% 0$	126	MTU A, QRO : MIVE THE FIRST 4 HICH SITS
(004, 3 F	137	MINO P7, A : OIT TO THE MAXJMIM VALIE [AC
m06 19	128	INS RO
00\% F0	129	MOU A, @PO ; MIVE THE FIRST 4 IGIU EITS
006735	130	
006877	181	Mr a : DISAREE THF 7 MAXTMIM lat latches
006930	122	MOUD P5,A
OMS 230\%	183	MOU A, \#OH : EMABEE THE 2 MINTMMMC IATCHES
0045. 35	134	MOUD P4, A
can 18	185	INS. RO
OnS Fo	136	
nose 35	137	MOVI P7, ; OIT TO THE MTNIMIM VALIE BAI:
007018	138	IN: 80
0071 FO	139	MOU A.GRO : MOVE THE FIRST 4 [OL BITS
0072 \%	140	MJUD Pb, ; TITT TI THE MINIMIM VALIE IAC.
00752303	141	MON A. WOSH ; ITGAELE THE ? MINTMM IAC LATMES
007520	142	
0076.18	143	INS FO
0077 \%0	144	MRN A. QRO ; WIUF THE FIRST 4 HIGH SITS
m078 \%	14.5	
007918	146	TNE RO
607A F0	147	MSN A, PRO : MOVF THE FIRST 4 GIUN BITS
0078	149	MOUD PG,A ; OUT TO THE ROTTOM VAUE GAC
00778	149	IR A : MTGAPIE THE 2 gittom nac lathes
0070	150	MUD P4,A
0075	151	MIN A, \#MOH : MIGADE THE IER/IAC: 00 Expanicr
000039	152	DIT]. P1, A
00927	159	
00023 A	15.4	DIT] 92, ${ }^{\text {a }}$
01030487	15:	IMP MTEST
	15	
	157	; GIEROITIMES
0085	158 WATTIT:	MIV A, \#-1 : WATT1T HATSS FIR 1 TIMER INIT
009762	159 WATTTM:	WH T, A WAITTM UAITS FOR \# OF INITS IF TIMF
00925	180	STAT T : GGAA TO THAT IN A
C039 1680	161 HAITTF:	,ITF WTMR : WATTTF WATTS FOR TIMER FLAG
T0, 0489	162	WOP UATTTF
09845	Sa htMa	GTOP TCNT
mer	164	RETT

In: ne	LTWE	gurate statmment
	fisi	
	164	: EXTERNA INTEFAIPT RIITMES
Mor FF	167 कruel:	Mov A, 26
0060450	168	IE! A. WFOH
क0, 9	169	
Whas 9 OR	170	
605 27	17%	18A
007612	178	M ${ }^{\text {N T, A }}$
0077	174	STRT T : START THE THGR FROM 0
mon mioh	175 176	
OMA FF:	177	MON A, RG : IPTATE FHASE RESTETERS R7, FG
60\% 45	179	HiN B7, A
mot 47	179	Stap A
00974	160	DR A,RE
G9\%	15	뎟
G7F 50F	182	A $\mathrm{H}_{\text {H }} \mathrm{A}, \mathrm{HOFH}$
MAI AF	188	MOU R6, A

	134	
O0A2 3	185	
	18%	
Dut not	187	
MAE 93	169	RETR
	190	
gnat FF	191 Sruez:	MM A RG.
0047 4\%0	102	Off $A, 4 \mathrm{HOOH}$
009\% 99	198	
OLAA STE	194	
	175	
ตid: 77	176	19A
mall 2	197	mul T, A
nat 55	198	STRT T : START THE TTMER FROM 0
GAF PMOL	109	
OnP FF	क)	
MD2 AF	202	Miv R7, ${ }^{\text {a }}$
ORS 47	O6	glap A
OOP4 4F	204	nfil A.Rt
O0f F7	76	뎃
WE, 50\%	706	Amil A, HOCH
mpa A	77	MN R6, A
GE\% \%	09	
	210	
ORA ABO	211	
क日t: 97%	712	
QEF 750	713	
जक 3	214	
¢0\% 7	215	Cr A : mbeap the mintmm and mitum lut lathes
की \%	216	mon P4, A
me नक	77	mid Fo. 42 CH
0 m 50	18	
क人\%	79	

lnc 08	LIMF	munte statmment
00.7 19	20	ine ro
008 F	271	MIN A, RO : MINE THE SFITNO 4 lob RITS
00\%9 2	22	
McA 27	223	Cf A : MISARIE THE MAXIMITM DAC. LATCHES
6icn 3	24	mivo PE, A
mme mos	225	MON A, WOCH ; FNAELE THE MINTMIM IAC LATCHES
nore 3	224	mati P4, A
Oof 16	277	INTS RO
nomo FO	288	MON A, QRO ; WNE THE STMAM 4 HIGH BITS
mon S	270	MOVII P7, A : SIIT TI THE MINIMIM VALIE MAT:
nom? is	730	[10. 80
oma Fo	231	WOV A, ARO: MTNF THE SECTHI 4 lill BITS
000435	202	MOUD PG, A : GIT TO THE MINTMM VAlLE DAE:
00512302	73	MIV A, \#OBH : MCAEAE THE 2 MINTMIM DAC LATEHFS
00973	234	MTUD P4,A : AND FNARIE THE ? BITTCM DAC LATCHES
0018 18	28	TN: RO
000970	26	MOU A. PRO : MOUF THE SECDNO 4 HIEH BITS
0 OLC 3	237	MIND P7, ; OIT TO THE BOTTIW IAC.
0019	236	TNC 80
ondr. Fo	29	MOV A, BRO : MINE THE SECOND 4 IOL HITS
Onde 3	240	MOUI Pb, A ; git TI THE BITTM [AAS:
6MIF 27	241	CLR A : IISAEAE THE 2 RITTOM IAC IATCHES
0nme n :	242	MIXM P4, A
00808960	743	OLI P1, H8OH : DIGAFLE THE IEDI/IAC IO EXPAMER
00 C 9ATF	244	ANH P2, \#TFH ; EMABLE THE MAIN PRIMRAM IO EXPAMIER
OEE R R O\%	246	
0056	247	; OF THE FIRST WTERRPT ROITIUE IN RS

	249	
$\begin{aligned} & \text { onf } 7 \text { 2F } \\ & \text { onF9 } \end{aligned}$	250 MREST:	MTN A, \#-18 : START MEI AYEIT FRR 19 INTTS
	751	CALL WATTM
	252	
OMER 8910	26	
	754	; dirnent readhes the value determinco gy the fien mas
OEED OF	755 Fims	
(10)FF 99	26	MOU R1, A
Offe of	27	MOUD A.PG ; CIMFTEM WTTH A SELAYET OHECK
$00 \% 057$	28	ANM. A, BI
OAF 1785	259	. PO O MEN
OOF3 O4FI	240	, MP FIN
	761	
OfF	26.7 Mars:	
00F6 2400	263	IMP NPAGF
0100	74	0 OH 100 H
0100 :706		1808080
0108780	26 ¢nam:	.R3 GAO : GNGETI TM MANIMS PRETTICN A
01042410	267	
0106316	7 tan Smer	
01003410	769	
	771	
0104 grot	772 5AO:	MTV R7, MOH
O10C PEOD	77%	MIN RR, \#0\%
01058400	274	. MP P S!

 GIIN THE MTIR

10 Cl O.	IWF	GUGEC STATFMENT
0190 FRO2	275 ¢00:	Muv 27.4084
019804	276	MOU RT. 4044
01142470	777	MP 31
016 FFot	278 S0:	Mov 67, 4044
0198 BCO	279	MOV 86. \#0, ${ }^{\text {d }}$
0114870	200	MP 51
011 CrO	281 sma:	MTV P7, \#034
Off Prot	289	Mov B6. \#0:H
	294	: GTACE 1
	7 c	
01202004	28681	
0193	287	muly Pb,
0189 mog	\%9	: ADMFSS IN FB
$0+25 \mathrm{FF}$	290	MNV A,RL.
0126	291	
0177 FF	02	MIV A, R7
0178 AEO	79	OR A, \#OEOH
01248	294	OITL PI, A; TIRN OFF THF FIELI AND TIRN ON THE ATECTET PHAGE
01789905	295	
019027	97	d7 A
0t25 29	790	mid T, A
0185	299	STRT T : START THF THER FROM 0
01.0 prow	(\%)	
	301	
01800	302	FN I : ENAPIE THF FYTFRIAL INTPREIPT
0 One 4r.F	304 wirkl	INT1 WIRKL?
018 tch	305	ITF NIETI
01872489	94,	IMP WIFET 1
0139 FmO	37 mRETI	
0138	308	IIC I
017. 6	309	STIP TINT
01319449	310	MP AFSTRT
	311	
Ot, 5tia	317 UnPM2:	IT1 9
014! 1645	313	IT M MRETO

486549484840466068

314	mp Whto?
315 marte:	ThN RE, WIRAT\%
316	TIS 1
217	STPP TMT
318 RFETMT:	MTN A. \#OTH : THEN OFF THE TRANGICTR
319	OIII P1,A
क0	
32	M1 A. ${ }^{4}$
?	17 HFRFI 1
\%	ME Mrest
ST HEFFII:	WTO HFEFI
375 HEPEIT:	(170) HERE?
कh	Miv C4, $\mathrm{H}-10$: ALIW 10 RGTART ATTEAFTS
97	M M MFST
\%	
\%	: STAFF $\%$

［im．n8．	ITME	GURTE STATMENT
0411341	55 HERES	$1 T 0$ HFPR？：WATT FOR TO TO ES PRESES
0013860	Fib	MON RO， 4704
mis of	57	WVI！A，p7
001447	59	SUP A
（a）t AA	59	MOU R2，A
Dota of	60	mph $A, P 6$
ف10 4A	4	nfi A． F ？
mola A0	62	
01818	63	TNC RO
mic m	6	的UTI APs
6017 47	65	\1AP A
MiF ata	64	MOU ©0，A
कीF \％	67	WIVI $A, P 4$
On¢ 44	6	01．A，FP
की1 A0	69	

Mo？ 462	70 HPRES：	WTI HERS
0 OH 4.84	71 HFFPS：	IT1 HEFE ：WAIT FIR TI TO EF PESGED
00\％： 8	72	［40 P0
6077 0\％	73	MMI A．F7
W08 47	74	SuAP a
को 84	7	mil Re，A
W．\％	7%	中n H_{6}
冈ri 4	7	$\cdots 2,0$
क क	－	
को 16	7	7min mo
कF in	80	mun A．Ps
कec 47	81	gwh A
0\％ 24	32	MOU F\％，A
की 0	83	mivi A，${ }^{\text {m }}$
me fa	84	（18）A．${ }^{2}$
6ms A0	85	
0034764	86 Hepes：	WTO LERES
004． 2 m	a7 HFPES	ITO HEFEG ；WATT FOR TO TO PE PGEGED
0080 of	88	MIUN A，P7
06947	9	GuF A
门07A AA	70	Mil 2 CO A
198 0	91	when $A, F t$
Mm． 4 A	72	
mm A9	95	MNA，A ：PIT THE 3 HIDH EITS IN RI
me on	94	Mणn APS
W\％ 47	95	Char ${ }^{\text {a }}$
M 40 A	84	Marma
क041 of：	77	MOIT A．Fi
942 4	98	Ofl A，Re ：PIT THE IOW BITS IN A
mut 17	89	 ；The gandest time melay
6\％4 19	102	 －THE MalIET TTW MOAY
C4E 18	108	
moth 60	104	
047 F	15	Mgl $A_{B} \mathrm{Ri}$
mat 18	106	
0649 30	107	
mea rain	19	Wh Antoh ；Traft

\|for me	LINF	SURCE STATEMFNT
0045: 39	110	
004020 C	111	MMY A.\#OCH : DISARIE THE 2 MAXIMIM TAF LATCHES
004530	112	WIUD SSA - ANM ETARIE THE 2 FIED SAC IATCHES
GEOO 77	113	ITS A : IISAEAE THE 2 MINIMIM
00513	114	MOVD P4, A : AMI 2 R RTTMM DAC. IATCHES
00508180	115	MMV FO. \#20H
0054 F	116	
OLE 3	117	MTVI PG, A P THE FIELD DAF
005647	110	
00573	117	NONO P7, A : THF FIFLII TAC.
0058.203	120	
005480	121	
005818	122	[$\mathrm{N} \mathrm{S}^{5} \mathrm{SO}$
OMES FO	123	
00510	124	WIDD Pb, A THE MAXIMM VAPIE DAC
OSE 47	175	SUAP A ; WIVE THE A HTGH BITS TN LOCATTON $21 H$ IIT To
b095 3F	126	
$0060 \% 7$	127	dRA
004130	1%	
0062 200	129	miv A moch
006438	180	
006519	131	IWC RO
0066 FO	138	
00478	133	
006847	134	SUAP A : MOUE THF 4 HICH EITS IN LOMATION 2\%H OIT TO
00693	1.35	
OOLA 2003	136	
OMA, 3	137	
(0)6T 18	189	INC no
Once F0	139	
O06F 35	140	M MU PE,A ; THE MTTTM DAE
017047	141	
00713	142	MOUD P7, A ; THE BOTTM OAC
007277	143	DR A
0073 \%	144	MOUR P4.A : DISAEdE THE ? ROTTIM IRAC LATCHES
0074220	145	MOV A, \#OCOH
007639	146	nuti. Pl, ; grgande the lem/IMG in Expanirg
(0)77 27	147	CRA
07793 A	149	
00794679	149 HFPET:	WTI YERET
67R 5i/7R	150) MEPES:	IT HERES ; WAIT FIR TI TO RE PRESSEII
0070 PCF	15	
OMT R RROO	1F2 START\%: 150	mol re, wo matal : store the mation contajning the firgt ; TNTRRUFT MOFFS INRO
00812304	154	
00033	155	
0094 PM14	15	
mbsh 04Fe	1.57	MMP MRFST
	159	
	160	: SIRRCUITINES
008275	16. WhITIT:	MOY A, \#-1 ; Mattit hatts fin 1 TMER INIT
008 A 5	162 WAITTM:	
008855	16.3	STRT T : CDIA TI THAT IN A
mer 1690	IEA WAITTF:	ITF WTMP ; WATTTF WAITS FIR TIMER FIAT

```
lir. IRT LINE SOMROE STATEMENT
```

Oner 049C	165 UTMP:	MPP WAITTF
009685	166 WTMP:	STMP TINT
009193	167 168	RETR
	169	; EXTFRNAL TNTERRIPT ROUITINES
00975977	170 SPRE1:	
0094 EAg2	171	Inİ R2, SEFVE : DETEMENT 8 HIGH BITS Tf THE GEIAY
	172	
0096 FE	178	MiN A.RE
0097430	174	981 A, H0FOH
06903	175	OITT P1, A ; TIFN OFF THE OLI PHASE ANI TIRN ON THE NEW PYASE
0094 9975	176	
	177	
609227	178	¢R A
00906	179	MOU T, A
OTPF E	180	STRT T : START THF TMER FRTM 0
(0) 3 F P 91014	181	
Onal FE	18	WIV A,R6: IPTATE PYASE RETISTERE R7,RS
OTA 2 AF	184	miv ri,a
649 47	185	SUAP A
$0 \mathrm{ma4} 45$	136	1nR. A, Rh
@AS F7	187	Fl. A
0046 Exoc	189	AN A, HOH
made AF	19	Whin mb,
00492	190	
	192	
OMAA RTFA	178	
	194	
OMAC: RE24	195	
OAFP Co	196	
mar ${ }^{\text {a }}$	197	MN R1, 4 : INTM Al
(m) 18	198	InC Ro
(nat Fo	199	
map 4	80	MOU ROA - TNM R?
med 98	901	SFTR
	702 afure	
0174 F984	203 SFPVF2:	
mbi FAB4	8044	
60\% E	206	
mot 4 an	\%77	[if A, \#OFOH
DIAR 89	96	
dart gomp	309	
OnP 77	21	万8 A
mRF 6	712	mid T.A
motes	213	STRT T : STAMT THE
कn: Bm	744	
Mas FF	716	
60\%4 AF	217	MORTA A
oms 47	218	gwap A
0 m 45	217	(RI A,RE

bome 98 F	29	
om? on	730	MND A,Fs
mns 47	21	SHA 4
mm4 AA	\%	mot R2,A
omen of	93	MmP A.F4
Onm 44	04	IR A FO
007 49	28	MOY E1.A : FIT THE 3 LIM BITS [NT!
mis of	2\%	MTII A,F?
0019 47	97	Shap A
OOTA AA	¢	MOV R2, A
nomb of	29	Mun A, Pb
काIT. 40	240	net A,R2
Whr $A A$	241	MIV R2,A : PIT TH 3 HID GITS IN 2%
OMF 19	742	- कMAIEST TME MEI A
Comf $1 A$	244	
	245	: OMALEST TIME DEA A
mpo F\%	246	MOU A PI
06: 204	247	
dafs Al	248	min aro, A ; INTO Luation zat
mer ca	\% 47	M, A, B ?
MFE 18	250	INS RO : FIT THF O HICH EITS OF TME TEIAY
Ofrs do	Tt	MOV EROA ; [NTH ImATIN DSH
6F7 9940	\%?	
OF\% TATE	E	
ORE EPTP	24	; AnOES IN m
men 9	76	FFTR
	77	
hre 2 gr	QS MPSST:	
क0) 149	${ }_{26} 8$	CAI WAITM
6are 2910	$\frac{61}{8}$	
$\mathrm{OHF}_{4} \mathrm{OF}$	FA FIN:	
Dots at	264	Wण 31.4
OF\% Of	25	
0 mF 59	2h	An A, Al
कrs tha:	767	(120) MEES
OFA OTP4	76	SMP
	269	
Dofer or	270 WEF:	
कry 240	27	MP WPATE
0100	77	URE the
04091704	273 MPAE;	. $\mathrm{B0} \mathrm{~m}$ 6m
010\% 7204	774 8047:	

Inf. 0 ¢ 1	L.TMF	ghine statrment
01042415	275	- MP Smo ; mavic mi maning pmsituin n
01063716	276 3050:	
01092410	277	
	279	
010 A git	290) 3401	HOU 87.4014
010 CFO	281	MON R $6,40 \mathrm{H}$
O105 2470	207	, MP Sl
0110 EFO	283 S60:	MIV R7, HO
0112 PCO	284	my R6,
01142400	25	, MP Sl
0146 cou	20\% Sr0:	M10 87.4 CO 4
018 FFOS	787	Mov R6, 402 H
0114 2420	208	MP 61
OITC PFOA	20960	MOV $77,40 \mathrm{OH}$
OtIF SEOt	99	MuV 86.4014
	291	
	292	: STAGF :

0120 PR 24	$29451:$	MNT P0, \#7 4 H
0127 FO	295	
0173 A9	296	MOV R1, 4 : INTO PI
012419	297	INC: R0)
0175 F0	298	MTN A, QRO : PIT THF 8 HTG4 EITS OF TIME IELAY IN LGATIGN 2 EH
0126 AA	298	MU1 R2, A : TNTO B7.
0127 FF	301	O10 A, R6
01783	302	MOUD P7, A ENAREE NEXT Phace to inplit to intranipt
0199 FF	303	Mid A, R7
01248350	304	ORL A, \#OFOH
0178	305	IUTM PI, A : TIRN DFF THE FIEL AND TIRN ON THE GELGTED PHASE
01709975	304	
017F 27	308	QRA
01306	309	WTVT T,A
01315	310	STRT T : START THF TMPR FROM 0
019805	317	EN T : Fngrie Thf External Internilt
0133265	314 WREXL:	INTO WITRI?
0155	315	, ITF MIRET1
01379428	316	WPationl
0139 mm	317 MRETI:	
017815	318	DIS 1
013685	317	STIP TINT
01302463	220	IMP PESTRT
01582648	Th. WTREL 2 :	ITO CHANG1
0141445	32	ITE MIRET2
01432435	74	IMP Whekt?
0145 Fmg	32, mRET?	
014715	36	ME I
014845	377	STMP TRT
01492463	3	. MP RESTRT

TSTS-T1 Mer MASTANT :WI	-41 Matan TELAY	MMPAER, V3.0	PACE 7
Im. An!	! TME	SUROE STATEMENT	
0498 BEOA	20 (HANAT: 331 302 383	MON RO. HITN MATAO:	STDRE THE IMATION CTNTAIMING THE ATIGESS OF THE [NTERATM ROITTME THAT CHANGS THE DTAY TME IN R?
01404459	384 HORU3:	WT: What 4	
014F 165:	335	ITF MITET?	
0151244π	28	MP WIRKI 3	
0 OLP Eman	337 MRTT3:		
015.5	20	IIS 1	
0158 6.5	39	STMP TINT	
01572463	340	MP RESTRT	
015956 F	342 MRRIL 4 :	IT1 cimamaz	
0158165	343	JTF MRET4	
015124.5	344	MP MIEXL4	
015 Fm 9	34.5 mReTt	MaNZ R5, WMRX 4	
016115	346	DIS 1	
016265	347	STIP TMAT	
01632360	249 RESTRT:		
016.59	349	DITL P1, A P TRN ITF	F THE TRANSISTMR
016419	30	IN R C - IF 10 TRIA	S ARE IP THEN STUP TILL TI IS PRESED ABAN
0167 Fi.	51	MIV A,R4	
0169 rebr	26	17 STEP	
01640475	353	MP START?	
$0145: 0479$	354 STEP: 35	MPP HERF7	
OTLE REOA	$\begin{aligned} & 35 \text { CHAND: } \\ & 357 \\ & 359 \end{aligned}$	MOU RS.\#IOA TATA?	stmRe the location mataining the ammees ir THF TNTERQPT RMTLME THAT DHANGS THE DEIA TIME IN RS

$01702430 \quad 369 \quad$ WP WMRKL. 1

IGER SYMROLS														
Dhangi 0f 48	CHANG?	0165	IATAI	0009	[ATAZ	000A	EXTTNT	0002	Fin	0074	HEREI	OMOF	HCP?	0011
HFRES 007	HFRE4	0024	HERES	0094	HFRE 6	023	HFPr	0079	Hench	0079	what!	0139	mRET?	1145
WRETS 015	MTRET4	015 F	MRFST	One	MEN	OOFP	NPASF	0100	FFSET	0008	ASSTRT	016	gañ	0107
Soms 0106	51	0120	SAn	0104	880	0110	90	0116	917)	019	spruel	1072	GFine?	0034
GTART? 007F	STEP	012.	SYSRST	0000	TMINT	0007	WAITIT	0088	WAITTF	mes	WATTTM	0084	40kN!	0133

ASEMPLY OMMPIETE, W ERRMR

PAGE i
Watame swithlur meay

$100 \mathrm{OB}, \mathrm{l}$	ITME	grimge statruent
	1	
	$?$	
	3	
	4	- ts alnum to ris intil it neagics a level netrnmari ay the
	5	- Fielit ial value fen in in the infit tata gittafs, a regtart
	6	
	7	; CIRRENT HIU BF KEPT FETUFEN MAXTMM Ant MINTMM LEVES DETEMTNET
	3	
	9	: THE TNITIAL TIMF IFLAY ANI THF TIMF INTERVA FOn a Coucerlitue
	10	
	11	; GUITCHES, THE PAICHATIM IF ACTIAL TIME IMTERUAL - TESTED
	12	
	13	: FEGIGTER ARITHMTIC, IF THE RESHT IS PRGITIVF, THFN THE MITIR
	14	
	15	
	16	
	17	; and the thlay time is left larhemign, a restart will not hegtore
	19	
	19	
	20	; FIFRY ST DF 4 MNGEDITUE PHASS THAT IS ISFD FDR SOCEI GROEITION.
	21	: EXTFRNAL INTERSIPTS TO INIICATE DETECTIMN OE THE NEXT PHASF
	22	
	2	; From negatue to pigitive pol arity.
	24	; TO SIN THF MOTMA:
	\%	
	26	
	27	; ON P5s To P4O, THF BgTtM SET Of INFUT IATA SUITCHES, [MTICATE
	29	
	29	; (TIP) CIMPARATIRS WITH P53 AS THE MG8 ANI F40 AS THE LSE,
	30	$\div \text { ORES } 70$
	31	
	2	
	38	
	34	- BOTTGM COMPARATORS,
	s	: PRESS TI,
	3	: 3.1 IN P7S to f40 indicate the initial mfiay time.
	37	; Prese To.
	88	
	39	
	40	; This bit ujet genve as a + bh - Sidin in the simtraction offratuan
	41	
	42	: PRFSS T!,
	4.3	
	44	
	45	; FIR SPFFD MMRECTITN.
	4	$; \text { PRES To }$
	47	(A_{1}) PRESS TI TI FIN OR RESTART THF MITOR,
	48	
	49	
	50	: TO AND Tt,
	5	
0000	51	0 nCO
	5	GYGTEM RESET
0000 9496	5.4	. MP PESTT

Im. 19.1	I.INE	ghes statrment

0003	56	
	57 FXTINT:	; EXITRNA INTRRRIPT
mon 6	58	
000483	5	
	60	
	4	
6007	62	Off 7
	6 TIMINT:	; TIMER TNTERETIPT
00078	64	OTS TMMT
mod 93	65	RETR
	64	
0009 16	67 natal:	IR IGM GTRVE1
000448	63 IITATA:	nh IOA SFPNF?
000 RFA	69 [atas:	DR ITM SERUE
	70	
	71	: CIIRRITTMES
0002. 7 c	72 waltit:	MOV A.\#-I ; WAITTT WATTS FOR I TIMER INIT
000 F C	73 HAITTM:	MIN T,A : WAITTM WAITS FIR \# aF IINITS OF TIME
O0\% 58	74	STRT T; EDIAL TI THAT IN A
0010 1614	75 WAITTF:	ITF WTME : WAIITF WAITS FIR TIMFR FIAG
00120410	76	. MP MAITTF
0014	77 UTMR:	STOP TCNT
00159	$\begin{aligned} & 73 \\ & 79 \end{aligned}$	RETT
	90	: FXTERNAL TNTEFPAPT GOIITINFS
m014 7916	31 SFRUE:	
motr fald	88	
Cota FF	84	MTV $A, 76$
00174300	85	
moin 39	86	
GME 90nF	87	ANL PL, HOMFH ; TIRN OFF THF PROHIDITTON DF DAF RETHATIDN
007027	29	A8A
00162	90	Mn T,A
00775	91	STRT T ; START THF TTMER FRIM 0
mat bge	97	MIV RO, \#SEH : CIEAR THE 3 HITH RITS OF ACTUAL TME IN LITATMON
008 AO	93	WOU RRO, A : SHH FIR THE HEST 4 FHACE CVCLE
00 OL R m 44	94	MTN R5.4\%0 : NIMPER OF TTMER ONERFLIUS EEFGRE A PFSTART IS FNTERED
	75	
00\% FE	96	
6\% AF	97	HTV R7.A
W\%A 47	98	gWAF A
002945	97	Ril A, Rh
m7. 87	100	Fi. A
mon Einf	104	AM. A, \#OFt
00505	104	
	105	
0031 Mr	104	
	107	
	169	

 vARTARE ONITGHAB DEAY

1 ms mal	! INE
1036 99	110
008718	111
002 Fo	112
0037 AA	113
00\% 688	115
come Fo	116
003107	117
00FP C.642	118

004080	119	MTN GRO.A
004: 73	120	RETR
(04) 4808	121 RACKCO:	
0044 ¢0	127	
00450838	123	
0047 40	124	WN PROA : PEFIFE A SPEEII CIINT IS MAIE
0043 BPOA	175	MOV R3, \#IN DATA2 ; STURE THE IGATION GONTANING THE ADURESS
	126	; IF THE WTERFIPT THAT OTINTS FITR 4 FHACSS
	177	- IN F 3
004893	18	RETR
	129	
0048 45	130 SPRUE?	STIP TINT : STIP THE TIMES DUNT
	131	
0040. F94E	137	GINT R1, SERUF2: [ECREMFNT THE Q IGM BITS OF TIME IELAY
004F EA4	18	DINT R2, GENF? : DECRENT THE S HIGH BITS If TME DEAY
	134	
0080 FF	135	SOU A, Rh
0051 42F0	13	OR A WOEOH
0 Mc 39	137	
0054 gan	120	ANS PI, HOAFH ; TIFN IFF THE PROHISTITON IF [AC, RECULATION
	139	
0056 42	140	MOV A, T
$0 \mathrm{mb} \mathrm{AA}^{\text {a }}$	141	MIU RO.A : PITT THE TIMER COINT IN R2.
00.7827	147	MरA
005962	143	$\operatorname{Mov} T, A$
MEA ET	44	STRT I : START THE TMER FRIM 0
6058 phta	14.5	
	146	
MSTI FE	147	MNU A,G6 : IPDATF FUASE REGTSTFES R7,R6
doff Ar	149	Mil R7,A
(10)5 47	149	gluap A
006045	${ }^{5} 50$	Om. A, Rh
006157	151	Fi. A
006250 F	159	A AN. $\mathrm{A}, \mathrm{WOFH}$
0064 AE	156	MiN R6, A
	154	
004535	155	MIND P7,A : CNAFIE NEXT PHASE TO INFIT TO INTEFRIPT
math mfat	156	MON R4.\#-10 ; IF AN INMERSPEEI MTMES ALISW 10 RESTATT ATTEAETS
	19	
0068 RP 29	159	MOV RO.\#2\%H
004 Fo	160	Miv a, aro
0048 C 7	161	Fl A
कnar 40	187	
OOL 120 n	16	WO MEITH ; HAUE DMMETED 4 \& PHACE CYCE
005%	164	- Pi strict - ilhat startimg a curie

vartant E SUTMTMG DGIAV

Im. ney	1 THE	SMRIPF STATEMENT
00718884	165	
	16.4	
D073 FA	167	Min 4.72
007460	168	
0075 A0	169	
(1076. FSF?	170	WN: FINTS
007818	171	
007910	177	[NT: QRO : EIAPSED OITGIDE THE INTLRFIPT
007A 04F?	17.3	IMP FINTS
00758884	174 SIRTST:	MOY RO, 3 34H
6075 FA	175	
007F 40	176	MOU ARO,A : $\mathrm{IN}_{34 \mathrm{H}}$
(008) 18024	177	MIV R0, H_{2} H4
0092 FO	179	Miv A, QRO
0 R 307	179	IEC A [IECREMENT STHEE 1 REFRESENS THE SHREGT IELAV THE
	180	
OMA AA	191	
0485	162	7n: Ro
(1986 70	182	

008707	164	DEC A : DEMEMENT STHE I REPRESENTS THE GHRTES IRIAY TIME
	16	; ANT O REFRESENTS THF ICMGEST IEIAY TIWE IN LOCATION 2 LH
002987	186	日月5
09967	187	FRT: A F FITATE THE 8 HIGH RITS TO THE RIGHT
008424	183	4, ${ }^{\text {A, }}$, 2
O088 67	189	RRT. A : RITATE THF 8 ICH BITS TI THE FITHT
0nf 8 A	190	YCH A, Q 2
0080 97	191	TR C
618F 67	197	RPIS A : RITATE THE 8 HTGH BITS TO THE RIGHT
mag 74	193	Y $\mathrm{CH} \mathrm{A}, \mathrm{m}$?
008067	194	RRI; A : FITATE THF 8 IOW BITS TI THE RITHT
	195	
	176	: ACTHAL TIMF GITSITE THE INTEREIPT in location suh, nite that
	197	
	198	
	199	
	∞	
0991834	701	MIV RO, H 34 H
$009 \% 6$	208	ADM A, बN0
009480	703	MUV ERO, A
0095 is	204	
60\%6 FA	205	
009770	706	Anme. A, eri)
0078 40	207	MOU PRO.A
0099 OfF?	209	IMP FINTS
mop rex	209 TEITH:	
009 Fl	711	 ; IN THF ADCMMATMR
O09 96a?	217	.1N7 WATSE1
0060 04A4	21.8	MP TMPRE ; NO OTHER PHASFS ELAPGE HETUEFN FVERY STT OF 4
00478808	$714 \text { HATSPI: }$; AMMESE IN RS
noad 9894	214. TOHEPF:	Why R0, H 34 H
MAAK FA	217	
064760	288	AMD A, GRO : ACTMUATM
oma fers	219	Whe skrin

10\%. 08.1	I.INE	GMIRCE STATPMENT
gica is	20	Wh Ro : IPDATE THE 3 HICH EITS OF ACTMA TIM IN SA
006810	221	THC aro
00ers 85%	22 STPIN:	MTV R0, H 2 CH
OAAF 37	723	CFI. A
OMAF 60	224	ADIM A GRO
008087	225	
60Rt AA	224	MIV F2.A - IESIRED TIME IN 12
MRF FGS	727	MON RO, HSE4 : PIT THE O HIGH EITS TF ACTUA TIME IN THE
0084 F0	29	
Onfs biou	729	 ; 354 FIT THE WEXT CUCLE
6087 8877	231	Mow $\mathrm{RO}, 4774 \mathrm{H}$
t099 37	228	Qी $\dot{4}$
CORA 70	72	
60R2 37	234	CP. A ; TIME
OORC FOTF	26	UP7 IEIMC ; ACTIA TIME IS LESS THAN DEGIRED TIME
	236	: ACTIA S PEED IS GREATER THAN DESTRED SPEET
	27	: INCREASE THE TIMF TELAY
Ong 9hes	28	
1000 FA	289	
0 Cl 96m	340	W7 MFImP
$00304 F ?$	241	MPP FINIS
009684	247 Oflime	MOV Fio, 324 H
09770	243	MIN $A, M R O$
001807	744	IES A : DFGREMENT ERIM THF 8 ITM RITS ANO PIT THF NCU VALIE EN
nic\% A0	245	
OHA CAEE	246	
	247	
	248	: THE HITHEST TIME IEIAY

0nc: 04F? 0 OFF 19	
0nmo 17	
0001 Chith	
	ons
00040345	
	00 ES EB
00188	
	0064
\%1\%	
	men O4F
DOMF MR2	
mat 10	
onf CbF7	
00Fs 04F	
6nF7 18	
	OFS 70
OOFG CFF	
mes 10 OMF. OAF?	
GFF RO?	

249	.fe FINTS
F0 SkIPRE:	
751	MOV A, QRO : TERFMFNT FRIM THE 8 HISH EITS ANO PIT THE NEW VAIIF
29	TEC A : IN IMATON 254
258	
254	MOY ERO, A
75	MP FINIS
766 InHEST:	
257	MTV GRO, \#1 : THEN KEFP IT THIS WAY By PITTINT A GMF UAIE IN HITH
758	INE GO: NEI AY REGTGTERS
259	
26	IMP FINTS
76: Drame	MTV RO. \#2 ${ }^{\text {PH }}$
262	WTV A, GRO : MWREMENT THE O ITW BITS IN IMCATITN $24 H$
26	TIC MRO
224	
265	
26	: 8 HIAN EITS
$7 \% 7$. MP CTHIS
268 MREFTM:	
769	
270	
271	INC MPO : BIT MEAY RESTSTER
772	. MP FINTS
27 HIGHES	
774	

lme no!	LTME	Smgis statement
017 Fag 4	330	MOV $50,{ }_{2} 4 \mathrm{H}$
0170	231	
013149	22	MIV RI.A : TNTM R1
01518	32	INS PO
01850	334	MNU A, RRO : PIT THF 3 HTGH RITS OF THE IFIAY TN LITATICN ZEH
0134 A	35	MNV R2, A ; TNTO 27
01358829	367	6019 $80, \pm 29+$
01378011	338	MOV ERO, \#IIH : INITIALITE TO START OF 4 PYASE CVILE
	339	
01398804	340	
	341	: OF THE INTEROIPT ThAT MINTS FIR 4 PhGES
	342	: IN R3
	343	
013898	344	RETR
	34.5	
0196080	346 reget:	NOU A, HROH ; TIRN OFF THF TRANSISTMES, ENAPE THE INPUT SUTTCH
017839	347	
013 3ab	348	GITL PT,A : MIGARE THF MAIN FRITRAM İ EXPANTER
01402440	349 HFREI:	WNTO HFRFI
01423847	SO HERE?	ITO HFRE2 : WAIT FOR TO TG PE PRESSED
01448800	351	MIV $8 \mathrm{OL}, \mathrm{\#} \mathrm{OOH}$
0146	35%	MOVI A.P7
014747	28	SUAP A
0149 AैA	354	MON RT, A
014905	3 E	mMOL A.pb
O14A 4A	36	(fFI A, F ?
014 AO	367	
0140 18	26	INC RO
01400	39	movi A.Ps
914F 47	340	SUAP A
OIF AA	36	Nm0 R2, A
0150 or	362	movn A.P4
015140	313	OfT A, R2
0159	264	
0 O 46 E	365 HERE:	WT1 HERES
01556	34.4 PREA:	IT) MERFA ; WAIT FGM TI TO PE PRESSED
015718	367]as: PO)
atse of	369	MVID A,p7
015947	349	3WAP A
OfSA A	370	M(N) R2, A
015 Sa	371	mVM A, P6
0159. 40	372	M A, F_{2}
0150	373	
015 F 12	374	INC RO
015 F	375	MOVM A.PS
0 06n 47	376	SUAP A
04.18 A	877	MOW R2,A
01620	378	MW] A.P4

016948	879	Ind. A,R\%
011.480	00	
0165745	381 HFEFS:	WNO HFRES
016724.7	WO HERES:	ITO HEPEG: WAIT FOR TO TO PF PRESEFT
$016 \% 10$	38	INS RO
0) 640 dm	34	movi A,ps

variant g mithing telay

Im nol	LINE	STIRCE STATFMENT
014847	385	gUAP A
0the as	384	MN F ? A
0 tan of	387	MIVD A.pi
Oter 48	88	तrit A, R?
Oter 17	389	INC. A : AOM 1 TO THF Q ION TNPIT BITS GO THAT AN THPITT O YTEIDS : THE SMALEST TME IELAY
0170 A0	391	 ; 24H
017118	898	TME Fo
01778	294	mWh A.? 7
017247	305	SLIAP A
0174 AA	396	miv ${ }^{\text {a } 2, ~ A ~}$
0175	897	WVII A, Ph
$01764{ }^{4}$	88	IRI A, 27
017717	399	INE A : ADM 1 TO THE B HIGY IMFUT FITS SE THAT AN INPIT O VIELGS ; THE SMALEST TME MELAY
0178 A0	$\begin{aligned} & 401 \\ & 102 \end{aligned}$	
01794679	403 HFRE7:	, NTI HERE7
0178.678	404 HERES:	IT1 HFRES ; WATT FIT T1 TIT SE PRESGTI
017918	405	INC RO
OfTe on	40%	MYU A, PS
017 F 47	407	GUAP A
0180 AA	408	MOV R2, A
018 ta	409	MOII $A, \mathrm{~F}_{4}$
01824	410	ORI A,R? : FIIT THF 8 IOM RTTS UF THE UGSIRET TTMF WTERVA FTR
0183 an	411	
0194	412	INS P0)
0165 of	413	MVD A,P7
018647	414	SWAP A
01974	415	Mov R2, A
0180 or	416	movi $A, P s$
016944	417	ORI A,R2 ; PIT THE 3 HIGH STTS IF THE ITSTRED TIME INTEPVAL FOR
O184 40	410	MTV ario, A 4 Courcilive bhacs ln 274
O188 2698	419 HFPEF:	, NTO HERE9
O180 3KC0	420 HFREIO:	ITO MFRE10 ; WAIT FIR TO TO SE PRESSEI
018 F 18	471	TM ${ }^{\text {mo }}$
0170 of	422	M10n A,p7
019147	478	Stiap A
0192 A	424	MOV R2, A
01980	425	MOUD A,F6: FIT THE NMMER OF FHASES THAT ARE TO FIAPSE EETMEFN
0194 44	42	
0178	427	
	428	
0196940	479	MOU A, \#AOH : ITSARLE THE INPIT SWITCH IO EXFANTIER
019839	43	
$0100 \% 0$	431	MIV A, \#OCH ; MISAELE THE 2 MAXIMM TAC LATCHE
01983	432	WTO PE, : ANT EVATE THE 2 FIED DAC LATMGS
0157	485	CRA A MSARE E THE 2 MTNMM
01972	434	
0178080	43	MOV $80,470 \mathrm{H}$
0140 FO	484	
01913	437	Mivil fone : Git to the fiflin mar:
01424	438	
01483	439	MVIT P7,A : OIT TO THE FIEID IAC:

17m. nem	LINF	ghice statcmpnt
0194203	440	
010630	441	MOVI PG:A : AIT FMASE THE 2 MAXIMMM [AC I ATTHES
014719	442	INO Po
O1AS FO	443	MIN A. PRO : MOME THE 4 LDE BITS IN LOCATION 21H
0149 \%	444	
01 AैA 47	44.1	
01a F	446	MTOU P7,A ; तIT TO THE MAXIMM VAUSE TMC
0 mar 97	447	CRA
019 n 30	449	MTVM PEA ; ITSAPE THE 2 MAXMM MAC. ATCHES
018 2\%m:	449	mov A, WOH
Otme 3	450	MOUT P4,A ; FNAEIE THE 2 MINTMM ILAC: LATCHES
018119	4.1	INS RO
0187 FO	4.7	MU A, ARO ; WINF THE 4 LOW HITS IN LMCATTO 224
01938	45	
018447	454	
0185	455	WIUM P7,A ; DIT T0 TFF MTNIMM VALIE BAT,
0186893	45.6	MOV A, HOSH ; DISABLE THE 2 MINTMM IAC. 1 ATCHES
0 ma 3	457	
016	45	INC FO
015 FO	459	MN A, RRO ; MNE THE 4 Ind bits in limaticn $23 H$
0188	46	WOU Ph. A : DUT TO THE EOTTM DAC.
0150 47	46	SWAP A : MNE THE 4 HISH RITS IN !IIGTION $23 H$
0 ¢0\% 3	462	MIVI P7,A : TIIT TO THE BITTMM DAC.
Ofne 77	468	ORA
OtPF $\%$	4.4	
	465	
0tm mm	2f.	MON A, HORH
\cdots	47	OITL Pl, A : IISARIE THE LETIDAT, © EXPANBFR
A\% 7	463	Cf A a
01643	469	
016 4hrs	470 HEREIL:	NTI HERE! 1
01075	471 HER12:	JT1 HFRE12 : WAIT FDR T1 TO BE FRESGFI PFFIME STARTING THF WOTOR
01198	$47 ?$	MOU R4, $4-10$: Allcu inly to ATTEMPTS TO START THE WITOR
010 n ngt	473 RESTRT:	NOU $\mathrm{RO}, \mathrm{W2OH}$
$0167801:$	474	MOU QHO,\#11H : INITIALITF TO START TF 4 PHASE EVILE
Ofer per	475	
01 nt Fo	476 477	 : IN THE ACCMMILATIR
0102948	479	W7. LatTSP
01144 FPGA	479	
	480	: OF THF INTERILIT THAT MENTS FGR 4 Hhacs
	481	: IN 83
$810624 m$	48%	MP DNAAFD
019 PROG	$\frac{484}{434} \text { HATSF: }$; intraript ammes in 8
017 AP P8	45	
OTCC. AO	496	
0177004	498 TMWRTI:	Miv A, \#04H
017 F	499	MTVI Ph. A : GIFCT GENSE THTERRIPT
गfo \#14	490	
Ot 29 PE	479 MREST:	WOU A.\#-10 : START TEIAVET FTR 10 (WITS
OFP 4 HE	493	CAL LAITTM
	494	

	LIME	gIRTP STATEMFNT
01868910	495	
	496	
OTES 4400	497	IMP FIN :
0200	4%	TiRC 200 H
02000 F	499 Fin:	MINT A,PG : HECK FIEIT CISRENT IEVEL
070 49	500	MV81, 4
0\%\% if	501	MUN A,FS : CHETRM UITH A CELAVED CHECK
02035	502	A¢ㅐ. A, 21
6704 1208	5	TRO MSEN
02064400	504	IMP FTN
020 cos	F0E MEN:	
0709170	507	
07087713	508 coant	
0201485	509	, MP GIO : SRESEI RS MEANTNI PISITION 0
070F 321F	510 9080:	
07114419	511	MP SB0 : SFNSEI IA MEANING PISITION
	513	
0213 8001	514 SAO:	\% 10.87 .4014
0215 P607	5.5	YRN RS, 4024
02174429	514	, MP St
$0798 \mathrm{PFO2}$	517 6R0:	MUV R7, \#02
0217 RE04	510	MTV $86, * 044$
02111478	519	IMP 9
02159804	57080	M01 07,4044
027 Proa	54	
07784479	62	MP Si
0729800	50, ¢n\%	
02078001	524	MC/ 25.4014
	5	: STAIF
	527	
0098884	58 Sl	MTV RO, \#pat
O2R F0	59	
07\% ${ }^{\text {a }}$	80	
07719	531	TME: P0
Onf Fo	52	
ORF Af	5	MOU R2, : \MTM R?
020 FF	5	MTV A.RG
021 \%	50\%	
OR2 FF	537	mov $\mathrm{A} . \mathrm{B7}$
0724850	58	ORE A, \#0504
02 sc 39	50	
078679 F	540	
673 77	547	18A
0906	548	Miv T, A
फीA	544	StRT T : GTART THE TMER FOMY 0
mat mes	5.4	
O2m A0	54	Weventa : THE FRET GUF
O6F	5.47 .4 .42	
	549	

$0249 \mathrm{rtgF}$	585	ThM 75. hing 1
	56	MP NSTRT
	567	
024: 27.58		ITO chanfl
O74F 16.5	59	ITF MGET?
0750 4445.	5.40	MP Mrkl?
met 296	561 MRREP:	
025410	59	
02 EE En4T:	5	
0.674473	564	, MP MSTR
	5	
0759 7R08	Fing CHANFI:	
	547	; IR THE INTERHTPT RUITIME THAT CHANTES TE
	58	: IESIRFD SFCET IN P3
	569	
O25\% 448	570 WHRKL3:	WTI WTRK1 4
02 So 1/4t	571	ITF MEET3
OFF 4458	577	MP WIFRL3
0741808	573 MIFFTS	MON RO. H SH ;
026210	574	
10648	575	[GNZ F5, Whill ${ }^{\text {a }}$
02664473	576	. MP MSTRT
	577	
02685600	578 WPRO14:	IT1 CHANT2
O2ma 16em	579	ITF MOFET4
0265. 4468	580	IMP Whol 4
OLF Peg	581 MTRET4:	MON FO. 3 SH : INGREMENT TME 3 HIGH RITS OF AGTIA TIME IN
027010	589	
0271 Fnes	58	InA2 R5, What 4
077815	5.34 NETRT:	IIS I
02748	585	gTip TCat
0775780	586	mov A. HONOH
02778	587	GITL P1, A: TIFN IFF THE TRANGISTMR
0778	58	Inc 84 : If 10 thtals arg ip tifin stop till it is presety amam
$0 \% 70 \mathrm{Fr}$.	589	MM A.EA
077067 F	590	.17 17 NERTO
1775: 24CR	59	, MP RESTRT
0775	592 SUERTO:	MP HEREIt
	593	
ORGO FPOR		 : OF THF THTEROTET ROUTTUE THAT Manger THE
	5 5%	 : fichrei gefil in 5
02824	597	. MP WRQ1
	58	
	599	FAII

Its Sympic Barke 047 TE TME 00MF HERE? 0149

AGRMS Y CMMETE, M ERRMS
 vartaer suttheni liay

Hinfe	MFF	1 OHFST	006	MEFTM	OEF	MEET	0245	Whet?	OE\%	Mref	1	Mmet4	02er	FAFS	Ote
wry	070	UETPT	0272	Gutary	01 m	TVFition	078	Pret	61m	ESTET	016	कmi	H0¢	Wh:	hor
91	के	S00	071	\%m	017	m	617	Sा\%	O2e	Fple 1	क16	StuF	0945	smers	Off
WTPTE	तथt	WIPTM	00 c -	STATET	0075	Svert	mon	Tintin	0607	TMite	का4	WATt	कnc	Whith	0108
WATTF	6010	WHITTM	Ome	WATSE!	$06{ }^{\circ}$	mink:	W\%	WhET2	0	mfk	П¢	mat 4	06	WT*	की

9me

	LINE	CURTE STATEMEMT
	1	; PRMGRAM TO RIN THE Whtor at a fixen greil
	7	
	3	
	4	: DETERMIME EV The maximim valle fen in on the gata impit ghitars.
	5	; A RESTART WIL A SO GIEIEST FIELI CIMFENT TO THF GQE REGHATIGL,
	6	
	7	
	8	
	9	; THE THE INTERUAL FDR 4 mucrintive phase at the gesimpi fixen
	10	
	11	
	12	
	13	
	14	; IS IMREASED, IF THE RESLT IS NGATIVE, THE THE MTIM SFEI
	15	; IS TGO FAST ANM THE GHFENT ICVEL IS TFCREASEI, ALSI FED TM
	16	
	17	
	19	
	19	; MF THE NEXT PHASE UTLL EE TRTGERED EY TEFO TROQSIMES DF THE
	20	
	21	; TO STM THE WITOR:
	72	(1.1 ON P73 TO P60 INIICAIE THE MAXIMM CIRRENT LEVE WITH P73
	73	
	24	
	25	
	26	; PRESE TO.
	27	
	38	; AG THE MS ANO Pat ds The LS.
	29	; PRESS T1.
	30	; 3.) PRESS TO TO RUM ThF MTTOR.
	31	
6000	2	0 g 0
	35 cyergi	S SGTFM RESET
0060 040\%	34	MP REMT
	35	
0003	36	0 RIj 3
	37 EXTTHT:	; EXTERNAI TNTFFRIIPT
0008 FB	8	
0604 F 3	39	JMPP GA : IS STMREI AT THE AMIRES IN R3
	40	
0007	41	Ofi 7
	4) TTMINT:	: TMER Titerniet
000785	43	DTS TCNT!
06083	44	PETS
	4.5	
000980	4h matal:	IR LIN SRVEI
Wha A0	47 [istag:	D日 in teque
	88	
	49	
0008 200	50 FESET	
000037	5	
60\% 34	5	
nom 740 F	Sf HEREI:	
0011861	54 HESE?	. ITO HFRE? : WATT FOR TO TO RE PRESEEI

lom. 0 OL	LTME	ghinde statement
0013 P900	55	MIV mo. $\mathrm{H} \% \mathrm{OH}$
00158930	54	$\mathrm{MOU} \mathrm{Fl}, 4 \mathrm{HOH}$
0017 of	57	Mm0 A,p7
001847	58	gWAP A
0019 AA	59	MOV R2, 4
001 A Of	60	MOW A, PG
001844	61	Ind A, 22
Ontc A0	62	
0011 A	43	
OIF 97	4	CRR : MUVIIE THE MAXIMM VAIILE RY?
601F 67	65	RRIS A: TO ORTAIN TAF MINIMM YALDE
107018	46	Im mo^{2}
00219	47	INC 21
0022 A	68	
0023 Al	69	
007400	70	MOUD A, PS
00847	71	SWAP A
00\% 4 A	72	MIOU R\%, A
0077	73	mun A,Pb
6029 4A	74	(ext A, 2
0098	75	
10024 40	76	
(0) 462 F	77 HFRFS:	MT1 HEPE3
602n 600	78 HERE4:	IT HEFE4 : WATT FIR TI TI AE PGESED
60\% on	79	MOVI A.P5
06047	30	SUAP A
0081 AA	81	MON R2,
0032 of.	82	WUS A, ${ }^{4}$
0023 4A	23	OR A, F
009419	84	
006 At	85	MON BRI, A ImCATION 3R
0060	86	Mre $A, F 7$
003747	87	SuAP A
002 AA	89	MOV R2, A
0039 or	89	MoVD A.Ph
0 mas 46	90	ORL A, 22
mok if	91	
cons A	72	
003230	93 HERE5:	NTO HFRES
60\% 36\%	94 HERES:	
004180	95	
00438824	A6 RESTRT:	MON PO, \#2-4 ; INTTIAIIE TI START OF 4 PHASE CYCTE
00458011	97	MOV RRO. 111 H
$00478 \mathrm{HO} \mathrm{\%}$	98	
0049 R8\%?	100	
004580	101	
O44. AA	102	MOU RT, A
0042840	109	
104539	104	
6050 20F	105	MOV A. HOFH ; FNABLF THE 2 FIELI LIAC IATCHES
00970	106	
06577	107	CRA : DTSAFE THE 2 MINTMM
00943	109	
005 EmO	109	$\mathrm{MON} \mathrm{RO}, \mathrm{H} 2 \mathrm{OH}$

Lne ney	UnF	SOIPTE STATEMENT
m67\% 0	110	
Ame S	111	
005947	112	
OEA 3	112	MOUI P7, A TO THE FIELD AMO MAXIMIE RACS
005877	114	CRA : DTSAFIE THE 2 FIELD
605A 3	115	
065030 C	116	
005 F	117	MOMO P4,A
(0)00 18	110	INT 0
096150	119	MOU A, ERO : MEME THE INITIAL 4 LIN RITS IAT
mote 5	120	MTU Pb, - TO THE MINTMM MAC
00447	171	SWAP A : MIVE THF IMITIA 4 HIGH EITS GIT
0064	122	MOD P7, A TO THE MINTM DIS
0065802	123	
0067	124	
004877	12	CR A : MIVE THE 4 HTGH SITS IUT
0069	126	MIUD P7, A : TM THE PITTM VAIIE IAC
0064 2308	177	MOV A, \#S : WIVE THE 4 LCH BITS CIT
0065 25	128	
00407	124	GIA A PISAEAE THE 2 EOTTOM DAC. LATCHES
nose 3	130	movi P4, 4
MLF 2 CO	131	MON A, WOLOH ; MTSARLE. THE LET/IAC IO EXPCNIER
0077139	138	OIIT P1, A
607227	123	CR A ; ENAEAE THE MAIN PROMFAMM IT EXCANIET
00733	134	MuT1, P2, A
0074246	13	MP MREST
	126	
	137	- SIRROITINES
0076	130 WAITIT:	WOU A, \#-1 ; WAITIT YATSS FOR I TIMER IMIT
07786	139 WAITTM:	WNW T,A : WAITTM WATTS FRR \# OF INITS IF TJME
0079	140 HaIT	STRT T, COLA TO THAT IN A
OM7A 1h7e	141 WAITTF:	ITF WTMR : WAITTP WAITS FOR TIMER FIAE
007t: 047 A	147 \%	JMP HAITTF
mige bis	148 WTMR:	gTip TCNT
017%	144	RFTA
	146	
	147	
000 FF	148 SRPVE:	Mru a 84
0814 TH	149	Of $A, 30 \mathrm{FOH}$
cose 39	150	
कnd 9ft	151	
00\% 77	5	MRA
00076	158	Wiv \bar{T}, A
0008 F	158	STRT T; START TH THER FRM 0
me9 Pbe	56	
¢hR A0	67	
	159	
cose FF	160	
mat AF	1.1	Mu R7.A
009047	10	SUAP A
00914	:43	Th A.84
00\% 77	16.4	Fi. 1

 parfe

Ame Mel	17ME	minte statement
0093 cop	165	AN A , HOFH
095 Ac	167	W017 Fb, A
1006 3F	168	WOUP P7, A : ENAELE WEXT FHASE TO TMPIT TO THPERRIPT
G977 PCF	169	

6099 CA	172	Ifer F_{2}
no9a FA	178	MOU $A, 82$
609R 7695	174	Wh7 FINIS
OOTM PROA	175	 : THE INTERHT THAT MADTS FIR 4 Phers m a 3
009F90	177 FINIS: 178	geta
OLAO 65	179 GERUR: 160	STMP TONT ; GTGP THE TIMFR CIMNT
(0at FE	181	MON A,R4
0042430	180	ORT. A, 40 EOH
004437	188	
OnAE SOMF	184	
	195	
004747	184	MOU A, T - PIt THE TIMER CItent in on
ghas AA	187	MON R2,A ; FUIT TME TIMER CIINT IN R2
004777	188	MR A
MAA 6	169	MNU T, A
mag 55	190	STRT T : START PHE TMMER FROM 0
OOmP [804	191	
MAE PE	193	MOV A.R6 ; IPRATE PHASE RESTSTERS R7,R6
00AF AF	194	MOU 87, A
MED 47	195	SUAP A
00 OL 45	196	TRI. A.76
	197	R. A
000350	198	ANL A, H OFH
mars AF	199	MTV RS,A
00nt 3	201	MOVO P7, A : EMABLF MEXT PHASE TO IGPIT TO TNTEREIPT
	202	
OOR7 ROFF	203	MW R4, \#-10 ; IF AN IWDEREFED DIgIge allot 10 RESTART ATTEMPTS
0059 8874	704	MOV 80, ${ }^{\text {\% }}$ /4H
mpro	306	M10 A.erio
0ubs. F 7	207	Fi A
OMRT 40	208	
oobe mm	209	
000808	210	IBI GTRTCT : MIST GTARTING A CVCLE
60? Fe 34	211	
	212	
gma ca	213	Miv A.R?
00560	214	
कort 40	215	MV Bro, A
coct Fere	717	MC IATERI
018718	717	[10) 80
OMCA 10	218	
m\% 93	$2171.4 T E R 1:$	RETA

	l. WF	SgRES STATEMENT
mot meat	220 STRTET:	MOV R0, \#34H
Whr FA	221	MOV $A, R 2$; PIT THE LTM P MITS If
mot 40	72	MOV MRO.A ; ACTHAL TTME IN 3H
tomo 9	72	RETR
mond best	724 MRCH:	Mav RO. H, SH
0003 FA	825	
00046	22	AIM A, RRO : ACTHA TIME IN THE ACCHUN ATOR
00055	727	Mr ExTPIN
007718	79	IWC Fio ; IPTATE THE 3 HITH BITS OF ACTUAL TTME IN 2 H
000980	229	IN: mag_{0}
0019 P69?	230 S1PIM:	MOV PO, \#S2H
00837	231	CPI A
omat 60	23	ADO A. QRO
0000 37	733	CPA
gotr AA	234	: UESTRED TIW IN R2
conf pegs	78	MOU RO, \#354

OEI FO	297	
OM2 8000	288	
	379	\% STH FOR THE NEXT RYCLE
004483	240	muy ro.
OOFE 37	24	CFI. ${ }^{\text {a }}$
00570	242	AMC A, ARO
OUES 37	243	
00\% 2400	244	JMP NPADE
0100	245	TRG 100 H
0100 F23F	$\begin{aligned} & 746 \text { NParge: } \\ & 247 \\ & 243 \end{aligned}$; ACTMAL SPETM IS GREATER THAN DFIRED SPEET : DFCREASE THF CIIRRENT
0102 960E	249	
0104 FA	250	101 A. 2 ?
010596 F	251	.NT CIRINS
6107 [182	252	
0109%	258	
0104 AA	76	MON R2.A
O107 R809	$\begin{aligned} & 75 \\ & 256 \end{aligned}$: Amper IM 83
010972	25	
010 3060	258 ORTAN:	
0110997 F	259	ANI P1, \#7FH : GMABIE THF IFI/TESC IO FXGMUIER
011227	$26)$	
01500	2hl	movi fes.a
0114700	262	
0146	26	Mun PGA : And Emate the mintim dac lartes
0147 Pa 9	264	Wiv $\mathrm{Fl},+\mathrm{WOH}$
01910	765	
D14 Fo	26	miv a, mio
0118980	27	. W7 W NTHI
0110 mbF	763	
014 Fi	769	
017097	270 NITHI:	CR C : IIUTHE THE MAXIMM vAISE BY$?$
012167	271	
017219	772	Wich
0123 A0	778	
$0 \% 43$	274	

109\% 0 nel	HME	GMRCE STATETMT
012547	275	gWAP A
012. 3	276	MIUD P7, A MINE THE 4 IPRATFD HIEH BITS DIT TO THE MININM IAC.
012787	277	
0187	278	MIVD PA, A
01270	279	
01283	79	MOD P5, A
0120	281	MOV RO, \#POH
OfP F0	282	MN A, RRO : MOLE THE IFIATEI 4 LIU RITS OIT
019	737	Moun Ph, A; TIT THE MAXTMIM EAS
013047	\%4	GUAP A M MUE THE IPMATEI 4 HTGIH RITS GIT
01713	285	MIVI P7.a ; TO The Maximm nar.
015277	286	CR A ; disable the ? MAXINM TAC IATCHES
013380	297	MIVD PS,A
01348980	72	TPA P1, HSOH : MISARE THE LED/MAC. IO EXPANTER
01348975	789	
0138882	290	WIN RO, \#2,
0t3A F0	991	MOV A. ©RO : MEXT 4 PHAGE SOATT INTOR2
O1P AA	292	MU R2,A
	298	: AMDRESS IN TO
01589	99	RETR
0138800	996 ORTMCR	IRL P2, HONH : MISAELF THE MAIN PROGRAM IO EXFAUMER
0141797 F	297	AH P1, \#FFH ; ENAELE THE LETMIAC TO EXPANTEF
014377	298	CA A ; DISAFIE THE FIEID AND MAXIMMM MAC Lathes
014435	297	min Pr.a
0145700 C	800	MOU A, HOCH : DISARE THE BMTTM DACC LATCHES
014738	301	WMD P4.A ; AND ENABIE THE MINIMM RAT, LATCHES

$0149 \mathrm{ES90}$	307	MOU R0, NOOH
$0148 \% 0$	302	Mal A, QRO
014807	304	IES A
O14C. A0	305	
014977	304	
OHF 67	307	
	309	[ne Ro
0150	309	
01513	310	
01547	$31!$	SWAP A : MINE THF IPDATED 4 HITH BITS
0158	317	
015477	31.4	CR A P DISARE THE 2 MTNTMM IAS LATCHES
0156	314	MOVI P4,A
0156, 230	315	
0156	36	MOTD P5.a
0150 cmo	27	MIV FO, 3 FOH
0158 CO	319	
Offer	319	
015047	\$0	GLAP A : MIVE THE IROATET 4 HIDH BITS
0159	\%i	
0157	37	
014080	22	mun ${ }^{\text {cei,A }}$
01618000	Sn	
01687475	35	
0165802	24	
0167 FO	377	
0168 AA	38	mu $22, A$
0169 NmO	36%	

01787804	367 61:	MN A, \#04 - SEl FCT SEME INTFRFIPT
0190 S	36	MOTI Ph, A
O19F 65	369	MON A. B ¢
OfOF S	370	MOUT P7,A : ENALIF NYXT FHASE TO INPIT TO TNTERTIPT
0140 FF	371	MOU 4,87
Otal 43 F	377	TRI $\mathrm{A}, \mathrm{\# OFOH}$
01438	37\%	
0144 997F	374	
01 A 27	376	ARA
01476	377	MNT T.A
01488835	378	
0140 an	37	MOU ent,
OAR EE	30	STRT T : START THF TMER FRTM 0
0tact mot	30	
O1AE O5	8	EN 1 : EAAFE THF EXTERMG INTPRRIPT

GAETANT GPFFI VTA VARYINT CIIRRENT

lne mb^{1}	ITAE	Smage statemput
01951685	3 se unflil:	ITT MIRFT]
$017124 a F$	206	MP wikt
018085	387 MTRETI:	MOU RO, \#35H
ORE 10	398	: 354
OtFe FIAF	370	[uN7 R5, MTMEL1
108)	391	MS 1
0196	372	STIP TCNT
018 C 7340	39	
01 Pr S 39	94	OITL PI, A : AND FNAELF THE IEMTIAC II EXPANER
01808460	\%5	
OPF P80	396	
OIC: F0	397	MIV A, aro : POH
0198930	398	
0164	399	
01518	400	
01 CL F0	401	M M A, QR0 : 214%
017719	402	
0168 At	40	MN R9, A ; VAlIF
016	404	
OICA P	405	擜 A, 84
0168 chs	406	Il AgAIN
01 m 0443	407	-MP RESTRT
0 CL 0430	4OB ATAIN: 409	MP HERES
	$4!0$	FNI

[^1]

(00) 08)	1/me	GMITE STATEMFNT
001718	5	TMS 80
0018 or	5	MUO A,pb : MIVE THE 4 ICA BITS TF THE
(019 A 0	57	
OTA 19	58	TMC P0
0018 m	5	MOUT A.PS: MOE THE 4 HITA SITS OF THE FTRET
001540	60	
001518	6	TNC RO
Ont of:	6	MOV A,F4 ; MONF THF 4 LOW FITS IF THE FIRST
601F A0	63	
00\% 46\%	64 HERES:	. NT1 HERES
0022562	65 HERE4:	ITI HERE4 ; UATT FIR TI TO WE PRESET
00718	64	[15C 50
0075 if	67	WOV A.P7 ; MOVC THE 4 HICH RITS OF THE FIAST
(0)2 A	68	
007718	69	INC FO
OOT Of	70	MSN A.PG : MOE THE 4 LIU BITS SF THE FIRST
100940	71	
607 18	72	IMC R0
(0)7 07	73	MOVI A.PS ; MOVE THE 4 HIGH PITS IF THE FIRGT
60\% A0	74	
(and 12	75	TM, RO
का\% 0\%	76	MONT A, P4 ; MNQ THE 4 LOW BITS OF THE FIRST
00 Fa	77	
0030760	73 HERFE:	INTO HERE5
10323632	79 HERES:	
00.34 OF	80	MOUD A.P7
00354	31	SUAP A
0026 AA	22	mu R2, A
6037 of	32	MOD A, Pb
0934	84	Qfi. A.F2
09048	65	 ; TIMF DMRATUN IS TAKS IM RO
0034 4/38	37 HFPE\%	WTI HFPFP
003n 5h	88 MEario:	ITt HFREIO ; WAIT FGR II BEFIMF THE MOTOR STARTS
008730	69	
004039	90	MIT PLA ; AND FMARS THF IEM/EAC IO EXPAATICR
0041780	91	MOU A HOCH ; IISAPAE THF 2 MAXTMM IAC latches
004530	9	WND P5, A AND RAME THE 2 FIFI DAC LATGES
604477	93	ORA : MEARE THF ? MINTMU
00453	94	WMD P4,A : ANT 2 BOTTMM IAC. IATEHES
0046 F620	95	MOU RO, H 20 H
0048 FO	$\%$	HiN A, eRO ; MUYP THE 4 HIM 3 ITS
6049 5	97	MWU P7, A HIT TO THE FIEID TAC
004418	78	Tis 80
moth F0	99	
moar st	100	
notht 7308	10.	MOV A, \#OSH ; MiSAAE THE 2 FIEIT IAT: 1 ATCHFS
004F37	102	
0.060	103	TM: Fo
00518	104	MIV A, ARO ; MRE THE FIRET 4 HIGH BITS
mf 3	105	
0.68	106	IWS 80
mes Fo	107	
0 ms 2 r	108	
$60^{6} 67$	109	

Ins 0.	IINE	Sidre: STATEMENT
0007	110	4ivi P5, A
mse 2 mm	111	
GEA T	112	MOUD P4.A
OOER 10	112	Thic 80
GEs Fo	114	THV A, GRO ; WME THE FIRST 4 HITH BITG
0051	115	MVII P7, ; CUIT TO THE MINTMM VALIE DAC
Gos 10	116	[N : nO]
O0F5 F0	117	MOU A, ARO : MOF THE TIRST 4 LCW BITE
0nto 3	119	
061803	119	MOV A. \#OSH : MICABLE THE 2 MINTMIM DAC IATCHES
0063	120	
004818	171	TWC RO
0065 F0	122	MTN A, QRO : MOVE THE EIRST 4 HIG4 BITS
Ont 3	173	MOVI P7, A ; OHIT TO THE BITTOM VAIIE GAC.
006718	124	[N], RO
006 FO	125	MON A, RRO ; MONF THF FIRST 4 ITSN BITS
006738	126	MOUD Ph, A; ПIIT TO THE BITTOM VALIE IAC.
00647	127	
cosk 35	128	MnUn P4, A
Mas: 2 mo	129	MOV A. HOCOH : DIGADLE THE LED/IAT: TO EXPAMPR
006537	130	CITT P1, A
60/5 77	131	CR A ENAELE THE MATM PROTRAM IO EXPANTFR
0070 3A	1.2	0117 P P, A
6071 OLIF	138	MMP MREST
	125	: SIGROHTNES
0072 grF	136 MaITIT:	
607, 17	137 WAITTM:	WOV T,A : WAITM WATTS FOR \# GF INTTS GF TIWF
067\% 55	133	STRT T ; EOIAM TO THAT TN A
00771678	197 WAITTF:	ITF WTMR ; WATTTE WAITS FOR TIMER FIAG
00790477	140	MPP WAITTF
01078	141 WTMR:	STIP TCNT
0075. 97	149	RET
	144	: FXTERMAL INTFRRIPT ROITHES
6077 FE	145 STPUTC:	Hov A. 26
0077	186	חn. A , whot
000939	147	
0 ent 992	148	
D0as cial	149	
(ban Fin	$15!$	
mose 65	159	STME TNT
moth 169	158	ITF NEXTI : IF A TMER OUEFFITH HAS GOLREET. THEN IWCEMENT THE ; IPPER 9 IIT CRMT
nog 0480	15	IMP MFYT?
(10410	15 NFXTI:	
0008	157	
onic 7	158	
(6) 42	$159 \mathrm{NFYT2:}$	
0ner 90	160	mivx 9r0, ${ }^{\text {a }}$
00487	16	CRA
0906	162	mid T, A
00915	163	GTAT T : START THE TMPR FROM 0
60\% 19	164	Im: 80

09 Fm	46	
$094 \% 0$	164	MOUX aRO. A : IICATION
609 800	167	
0097 FR	169	
(090 AC	149	
609 18	170	TN: Ro
604 F8	171	
OOP ¢ \%a?	$\begin{aligned} & 172 \\ & 172 \end{aligned}$; हecame
mon 19	174	TWC. R1
One F1	175	MTV A.80!
nop chac.	$\begin{aligned} & 176 \\ & 177 \\ & 170 \end{aligned}$; bF TIIFED GCF
90a : B_{4}	17	
	(8)	
OQA FF	181 IPMATE:	MOU A,RL : IPTATE PHAGE FESTETERS S7, R6
0043 AF	19	MO 27, ${ }^{\text {a }}$
hnA 47	186	बWP A
mas 45	184	ORI. A. Q $_{6}$
O0at. 77	185	Fil A
D0A7 530F	169	ANL A, H2FH
OMAS A5	187	NOW RS,A
	189	
OEAA 3	197	
Onap 97	191	FTR
	5	
040. 3 Bl	to taster	
कut 3	94	
Dose 7860	195	MON A, \#foh ; TURN IFF THE PHAGE TRAWGISmR
008179	196	OITI P1.A ; ANT CNAELE THE LEI/GAC IO EXPANDES
COR2 2682	197 HFPEI5:	
00843684	108 HEPEIS:	
mote 8	19	MIUY A,GRO : TME IPFFR IEIS
0 m 7 m	700	MTHM P4, A
mbs 47	201	SWAP A
00873	202	moun Ps,A
608A is	703	TMC 60
00880	204	Mive A, aro
mers ${ }^{\text {at }}$	205	MUIL Ph,A
mbm 47	\%6	swop a
ORE 3 F	707	Mun P7,A
Wer 19	208	T4T 60
(000) 440	209 HFPE 7	WTI HESEI 7
0 m 5m?	210 :reta	IT1 HEREA
omes	211	mux A, aro
mes	212	mant PA, A
mot 47		SuA A
6n7 7	14	
कn土 is	215	THE 80
00980	216	mux A, Aro
0nce	217	wonn Pb, A
0ra 47	719	Su4P A
mat	719	minom 7 7, A

Ior nim	ITMF	grince statement
bonn ta	770	INS, 80
Hex F\%	271	
065 94D	722	. W 7 HERE 15
कnt 19	2%	TNE: RI
0005	24	mil A.En!
note chit	28	.17. \AETS:T
000534	276	ПIIT. P\%, A
note 0487	27	MP HEPE15
nota 280	223	MOU A, \#804

Ond SA	29	OIIT. P2, A
0078 7984	230	MOV R1, \#4.4H
(1m) 0 ap	721	MP HEREIS
	232	
OOM PSE	72 MPEST	MOV A.*-18 ; START [RLAYED FOR 18 Imitc
00\% : 177	234	CALL HAITTM
	735	
6Fs 8910	23	
	37	
0075 Of	23 FON	MOND A.pt ; CHFCK FIELE GRGENT LEVEL
60Fh ${ }^{4}$	299	WW R1, A
Off If	740	WND A.P4: CTAFIRM WITH A MELAYED CHESK
dfig 59	$24!$	ANI. A.R1
ne\% TOET	747	PO MEN
9\%R 3485	243	MP FIN
	244	
MED OC	745.5 MSEN:	
OHE 2400	246	MP NPACF
010	247	[096 100 H
01001206	249 NEACE:	880 SOEF:
01077204	249 S0Ali:	IR3 SAO : SENET CTI MEANTNG POSTTIM A
01042415	250	
0103276	3518 PaC	
01087410	268	MP SRO ; SEWEOL DA MEANING FISITTON B
	\%4	
Dica Erol	255 \%A0:	
O10\% 8 P0\%	\% 6	MN F6, \#0)
O10F 2420	297	. 9 918 51
0110 EFO	288850:	M13 $87,402 \mathrm{H}$
01988 PO	779	$\mathrm{MTV} \mathrm{R} 6,40 \mathrm{HH}$
011147470	\%0	, MP 61
016 SFO	261500	MV $27,404 \mathrm{H}$
ofle BEfa	26	MOU $\mathrm{R} 6, \mathrm{4}, \mathrm{FH}$
O1A $24 \% 0$	26	, MP 31
0110 Pros	26450	me m 7 mag
Oif Bral	265	Mal 86, W0th
	26.	
	267	: STALE
6170 2700	26961	MTV A, \#CAH : SFIECT SENS INTERRIPT
0.22 \%	270	MINI PA, A
0.23 F	271	
0124 AC	772	
0175894	274	

the nel	LIME	gIMfe gTatment
0972110	275	
0179	776	Inf R1: 01 T0 10 T0 11 Tn 0
01248120	277	
0178	778	IWS Fi
01708130	279	Mny ert, 30 H
0178	\$0	TM R1
01808100	\%1	
912 19	22	TM: 81
0638190	78	H0V BP1, 490 H
016517	264	INF Fi
0136 31A0	785	
0190	294	TNT Al
01898180	207	Mive at, What
91819	288	TNCO 81
012 3100	209	MOU R91, 40
01354940	29	MTN 81.40 H
0140 ESO	292	 ; connter to the o pogitton

0147 FE	294	ATV A, A
01483	29	MUN F7, ; FNGBIE MFXT FHASF TI IUPIT TO INTEFRUPT
0144 F	2%	MOM A, R7
014.5480	297	(Tik A, \#OFOH
0147%	79	
014097 F	299	
014497	301	D9A
$014 \mathrm{R} / 2$	32	MIN T,A
M 48.5	303	STRT T : START THE TMMER FRMO O
0140 mmOg	304	
	305	
014505	306	EN I : FMABLE THE EXTERNAL INTFREIPT
0150	307	ON TRIT ; FHARE THE TMPR INTERIPT
	308	
6t5t 2451	309	. Mp Mokl
	311	FAT:

[^2]The program titled CONSTANT SWITCHING DELAY using only position feedback that allowed independent speed and current level control ran the motor over a speed range going from 17.6 to 1625 RoP.M. Current level control would allow torque adjustment for any constant load. Because this program has the greatest speed stability and range, it would be the program of choice for any known constant load since a lookup table giving time delays for desired speeds can be easily constructed.

However, for a variable load situation, the program titled VARIABLE SWITCHING DELAY using both position and velocity feedback that allowed independent speed and current level control would be the program of choice. Although the speed range only extends from 100 to 1640 R.P.M. and the rate of time delay updating must be properly adjusted for speed stability, velocity feedback is necessary in a varying load situation. Current level control would allow adjustment for the maximum necessary torque.

The program titled CONSTANT SPEED VIA VARYING CURRENT is of little practical use because the speed range is very limited, only extending from 1400 to 1710 R.P.M., and because speed and current level cannot be independently controlled. It does, however, have the advantage of minimizing power dissipation during high speed operation. It would be interesting to see if using 10 or 12 bit DACs rather than 8 bit DACs would significantly extend the present narrow speed range.

A two phase on program could be written although this would limit the upper limit of speed because in a one phase on scheme
speeds of nearly one chop per phase are obtained while in a two phase on scheme the speed must be slow enough to allow sensing windows of zero current for proper waveform detection.

Acceleration and deceleration profiles could be optimized for different supply voltages, current levels, inertial loads, and frictional loads. Since the air gap between the rotor and stator varies from . 003 to .010 inch in the motor used, 1 a more precise motor might be necessary for this undertaking.

The 8 bit timer incremented only every 32 instruction cycles or 43.5 microseconds, thereby limiting the resolution of the phase duration counts. For time resolution less than 43.5 microseconds an external clock can be connected to the $T 1$ input and the counter operated in the event counter mode. Then, ALE divided by 3 or more can serve as this external clock. This would allow a time resolution of 3 instruction cycles or 4.1 microseconds, but a T1 pushbutton input would no longer be possible. Interfacing with an external 16 or more bit timer capable of incrementing with every instruction cycle would be the best solution.

In the future an Intel 8749 H , which is similar to the 8039 but has a $2 \mathrm{~K} \times 8$ EPROM included on a single microcomputer chip, could be used. Since the use of more than 2 K of program memory never proved necessary, a microcomputer system could be constructed without using any address latch or external EPROM.

The use of microprocessors belonging to the Intel MCS-48 family, such as the 8039 or 8749 H , has one major drawback. The MCS-48 family is primarily designed for switching operations and has a rather weak arithmetic capability. Members of the MCS-48
family have addition instructions but no subtraction, multiplication, or division instructions. Implementation of moderately complicated arithmetic algorithms in the time available would require another type of processor with more arithmetic capability, possibly one used as a slave processor to a MCS-48 master processor. A 16 bit processor would eliminate the need for 2 register arithmetic.

The waveform detection scheme has a major drawback; the field coil must be placed in series with the phase coils. This greatly reduces the maximum possible phase current slew rate and hence increases the minimum possible phase chop duration. Thus, faster speeds could be obtained in an optical detection scheme in which the phase coils were not in series with the field coil.

1. Thornton, Richard D., MMicroprocessor Controlled Inductor Motor", Proceedings of IEEE Conference on Variable Speed Drives, September, 1979.
2. Eamsherangkoon, Pipat, "Construction of a Variable Reluctance Machine", M.I.T.B.S.M.E. Thesis, 1979.
3. Wong, William, "A Variable Reluctance Motor with Microprocessor Based Motor Driven, M.I.T.M.S.E.E. Thesis, February, 1980.
4. Maginot, J. and Oliver, W., "Step Motor Drive Circuitry and Open Loop Control", Proceedings: Third Annual Symposium on Incremental Motion Control Systems and Devices, Ed., B.C. Kuo, Orbana, Illinois: Department of Electrical Engineering, Oniversity of Illinois at Urbana-Champaign, 1974, pp. B-1 to B39.
5. Beling, T.E., "Permanent Magnet Step Motors", Theory and Application of Step Motors, Ed., B.C. Kuo, St. Paul, Minnesota: West Publishing Company, 1974, pp. 206-251.
6. Lafreniere, B.C., "Interactive Microprocessor-Controlled Step Motor Acceleration Optimization", Proceedings: Seventh Annual Symposium on Incremental Motion Control Systems and Devices, Ed., B.C. Kuo, Urbana, Illinois: Department of Electrical Engineering, University of Illinois at Urbana-Champaign, 1978, pp. 97-110.
7. Miyamoto, H. and Goeldel, C., MOptimal Control of a VariableReluctance Step Motor by Microprocessor", Proceedings: Eighth Annual Symposium on Incremental Motion Control Systems and Devices, Ed., B.C. Kuo, Urbana, Illinois: Department of Electrical Engineering, University of Illinois at UrbanaChampaign, 1979, pp. 133-140.
8. Kuo, B.C. and Cassat, A., MOn Current-Detection in Variable Reluctance Step Motors", Proceedings: Sixth Annual Symposium on Incremental Motion Control Systems and Devices, Ed., B.C. Kuo, Urbana, Illinois: Department of Electrical Engineering, University of Illinois at Urbana-Champaign, 1977, pp. 205-220.
9. Kuo, B.C., Lin, W.C., and Goerke, U., "Waveform Detection of Permanent-Magnet Step Motors, Part II", Proceedings: Eighth Annual Symposium on Incremental Motion Control Systems and Devices, Ed., B.C. Kuo, Urbana, Illinois: Department of Electrical Engineering, University of Illinois at UrbanaChampaign, 1979, pp. 243-256.
10. Unger, J.D., "Adaptive Step Motor Damping Using Current Feedback", Proceedings: Sixth Annual Symposium on Incremental Motion Control Systems and Devices, Ed., B.C. Kuo, Urbana,

Illinois: Department of Electrical Engineering, University of Illinois at Urbana-Champaign, 1977, pp. 5-18.
11. Tal, Jacob, "Step Motor Control for Maximum Torque ", IEEE Transactions on Automatic Control, April, 1976, pp. 224-227.
12. Kuo, B.C. and Singh, G., "Closed-Loop and Speed Control of Step Motors", Proceedings: Third Annual Symposium on Incremental Motion Control Systems and Devices, Ed., B.C. Kuo, Urbana, Illinois: Department of Electrical Engineering, University of Illinois at Urbana-Champaign, 1974, pp. C-1 to C-32.
13. Tal, Jacob, NTorque Boundaries for Permanent Magnet Step Motors", Proceedings: Fourth Annual Symposium on Incremental Motion Control Systems and Devices, Ed., B.C. Kuo, Urbana, Illinois: Department of Electrical Engineering, University of Illinois at Urbana-Champaign, 1975, pp. M-1 to M-6.
14. Kuo, B.C., "Calculation of Torque-Speed Performance Characteristics of Closed-Loop Control of Permanent-Magnet Step Motors", Proceedings: Fifth Annual Symposium on Incremental Motion Control Systems and Devices, Ed.g B.C. Kuo, Urbana, Illinois: Department of Electrical Engineering, University of Illinois at Urbana-Champaign, 1976, pp. L-1 to L-22.
15. Kuo, B.C., Lin, W.C., and Yen, D. W., MOptimal Torque-Speed Performance Characteristics of Variable-Reluctance Step Motors", Proceedings: Seventh Annual Symposium on Incremental Motion Control Systems and Devices, Ed., B.C. Kuo, Urbana, Illinois: Department of Electrical Engineering at Urbana-Champaign, 1978, pp. 291-306.
16. Kuo, B.C., "Closed-Loop Control of Step Motors", Theory and Application of Step Motors, Ed., B.C. Kuo, St. Paul, Minnesota: West Publishing Company, 1974, pp. 252-272.
17. Frus, J.R. and Kuo, B.C., FClosed-Loop Control of Step Motors without Feedback Encoders", Proceedings: Fifth Annual Symposium on Incremental Motion Control Systems and Devices, Ed., B.C. Kuo, Urbana, Illinois: Department of Electrical Engineering, University of Illinois at Urbana-Champaign, 1976, pp. CC-1 to CC= 11.
18. Yackel, R.A., "Speed Control of Step Motors", Proceedings: First Annual Symposium on Incremental Motion Control Systems and Devices, Ed., B.C. Kuo, Jrbana, Illinois: Department of Electrical Engineering, University of Illinois at UrbanaChampaign, 1972, pp. 373-430.
19. Wells, BoH, Microprocessor Control of Step Motors", Proceedings: Fifth Annual Symposium on Incremental Motion Control Systems and Devices, Ed., BC. Kuo, Urbana, Illinois: Department of Electrical Engineering, University of Illinois at UrbanaChampaign, 1976, pp. S-1 to S-9.
20. Wetter, R., Jufer, M., and Imhof, L., "Performance Improvements of Stepping Motors by Means of a Variable Rate of Phase Super position", Proceedings: Eighth Annual Symposium on Incremental Motion Control Systems and Devices, Ed., B.C. Kuo, Urbana, Illinois: Department of Electrical Engineering, University of Illinois at Urbana-Champaign, 1979, pp. 307-310.
21. Singh, G. and Kuo, B.C., "A Computer Design and Case Study of a Step Motor Printer System", Proceedings: Third Annual Symposium on Incremental Motion Control Systems and Devices, Ed., B.C. Kuo, Urbana, Illinois: Department of Electrical Engineering, University of Illinois at Urbana-Champaign, 1974, pp. D-1 to D21.
22. Pittet, A. and Jufer, M., MClosed-Loop without Encoder of Electromagnetic Step Motors", Proceedings: Seventh Annual Symposium on Incremental Motion Control Systems and Devices, Ed., B.C. Kuo, Urbana, Illinois: Department of Electrical Engineering, University of Illinois at Urbana-Champaign, 1978, pp. 37-44.
23. McKee, K.D., Moad Adaptive Damping of Step Motors by Back EMF Feedbackn, Proceedings: Eighth Annual Symposium on Incremental Motion Control Systems and Devices, Ed., B.C. Kuo, Urbana, Illinois: Department of Electrical Engineering, University of Illinois at Urbana-Champaign, 1979, pp. 213-226.
24. Kuo, B.C. and Lin, W.C., "Waveform Detection of PermanentMagnet Step Motors, Part I", Proceedings: Eighth Annual Symposium on Incremental Motion Control Systems and Devices, Ed., B.C. Kuo, Urbana, Illinois: Department of Electrical Engineering, Oniversity of Illinois at Urbana-Champaign, 1979, pp. 227-241.

CHAPTER 3

1. Maurice, Bruno, "Fast Recovery Diodes" and "Applications of Fast Recovery Diodes", The Power Transistor in its Enyironment, Ed., Jean Marie Peter, Aix-En-Provence, France, THOMSON-CSF, SESCOSEM Semiconductors Division, 1978, pp. 337-389.
2. Rischmueller, Klauss, "Base Drive Circuits of Switching Transistors", The Power Transistor in its Environment, Ed., Jean Marie Peter, Aix-En-Provence, France, THOMSON-CSF, SESCOSEM Semiconductors Division, 1978, p. 108.
3. Peter, Jean Marie, "Switching Aid Networks", The Power Transistor in its Environment, Ed., Jean Marie Peter, Aix-EnProvence, France, THOMSON-CSF, SESCOSEM Semiconductors Division, 1978, pp. 181-205.
4. Skanadore, W.Ro, Methods for Utilizing High-Speed Switching Transistors in High-Energy Switching Environments", Tempe, Arizona, General Semiconductors, Inc., pp. 1-10.
5. Wong, William, "A Variable Reluctance Motor with Microprocessor Based Motor Drivel, M.I.T.M.S.E.E. Thesis,

6. Eamsherangkoon, P1pat, MConstruction of a Variable Reluctance Machinen, M.I.T.B.S.M.E. Thesis, 1979, pp. 14 and 18.
7. Wheeler, Gershon J., The Design of Electronic Equipment: A Manual for Production and Manufacturing, Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 1972, pp. 90 and 164.
8. Peel, M.E., Manager, "Analysis of Wrapping and Rewrapping on Unplated Wire Wrap Posts Exposed to Harsh Environmentsn, U.S.A., Texas Instruments Technical Library.
CHAPTER 4
1. Wells, B.H., "Microprocessor Control of Step Motors", Proceedings: Fifth Annual Symposium on Incremetnal Motion Control
Systems and Devices, Ed., B.C. Kuo, Urbana, Illinois: Department of Electrical Engineering, University of Illinois at UrbanaChampaign, 1976, p. S-6.
CHAPTER 5
1. Eamsherangkoon, Pipat, "Construction of a Variable Reluctance Machine ${ }^{\text {n, M.I.T. B. S.M.E. Thesis, 1979, p. } 23 . ~}$

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort possible to provide you with the best copy available. If you are dissatisfied with this product and find it unusable, please contact Document Services as soon as possible.

Thank you.

Some pages in the original document contain pictures, graphics, or text that is illegible.

[^0]:

[^1]: AGPMFIY TMPIETE, MORRORS

[^2]: AETEMIY MMPIETE, w ERRES

