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Multi-linear Algebra

Notes for 18.101


1 Linear algebra 

To read these notes you will need some background in linear algebra. In particular 
you’ll need to be familiar with the material in § 1–2 of Munkres and § 1 of Spivak. 
In this section we will discuss a couple of items which are frequently, but not always, 
covered in linear algebra courses, but which we’ll need for our “crash course” in 
multilinear algebra in § 2–6. 

The quotient spaces of a vector space 

Let V be a vector space and W a vector subspace of V . A W -coset is a set of the 
form 

v + W = {v + w , w ≤ W} . 

It is easy to check that if v1 − v2 ≤ W , the cosets, v1 + W and v2 + W , coincide while 
if v1 − v2 ⇔≤ W , they are disjoint. Thus the W -cosets decompose V into a disjoint 
collection of subsets of V . We will denote this collection of sets by V/W . 

v
One defines a vector addition operation on V/W by defining the sum of two cosets, 

1 + W and v2 + W to be the coset 

(1.1) v1 + v2 + W 

and one defines a scalar multiplication operation by defining the scalar multiple of 
v + W by � to be the coset 

(1.2) �v + W . 

It is easy to see that these operations are well defined. For instance, suppose v1 +W = 
� W+ .2 

� W and W+ +v = v21 
� 
1 and v2 − v� 2 are in W ; so (v1 + v2) − (v � )2

� + v1Then v1 − v
� W+ .2 

� + v1is in W and hence v1 + v2 + W = v
These operations make V/W into a vector space, and one calls this space the 

quotient space of V by W . 
We define a mapping 

(1.3) λ : V � V/W 

by setting λ(v) = v + W . It’s clear from (1.1) and (1.2) that λ is a linear mapping. 
Moreover, for every coset, v + W , λ(v) = v + W ; so the mapping, λ, is onto. Also 
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note that the zero vector in the vector space, V/W , is the zero coset, 0 + W = W . 
Hence v is in the kernel of λ if v + W = W , i.e., v ≤ W . In other words the kernel of 
λ is W . 

In the definition above, V and W don’t have to be finite dimensional, but if they 
are, then one can show 

(1.4) dim V/W = dim V − dim W . 

(A proof of this is sketched in exercises 1–3.) 

The dual space of a vector space 

We’ll denote by V � the set of all linear functions, π : V � R. If π1 and π2 are linear 
functions, their sum, π1 + π2, is linear, and if π is a linear function and � is a real 
number, the function, �π, is linear. Hence V � is a vector space. One calls this space 
the dual space of V . 

Suppose V is n-dimensional, and let e1, . . . , en be a basis of V . Then every vector, 
v ≤ V , can be written uniquely as a sum 

v = c1v1 + · · · + cnvn ci ≤ R . 

Let 

�( ) = v c .ii(1.5) e


� +e · 11 ·
 � = (c1+c� ) +e · 11 +cn)eIf v = c1e1 +· · ·+c e and v then v+v ·+(c·+c= c e · n,n n n nn 

so 
�( +v vi ) = ci + c = ei 

�(vi 
�( ) + v ei ) .
e


� 
i 

�( ) is a linear function of and hence v v ei ≤ V �This shows that e . 

� 
i 

�( ) is a linear function of and hence v v ei ≤ V �Claim: e . 

Proof. First of all note that by (1.5) 

1 , i = j 
0 , i ⇔= j 

. �( ) = eji(1.6) e 

If π ≤ V � let �i = π(ei) and let π� = �ie
� .i Then by (1.6) 

(1.7) π�(ej ) = �ie 
�( ) = �ej ji = π(ej ) , 

i.e., π and π� take identical values on the basis vectors, ej . Hence π = π� . 
� 
i = 0. Then by (1.6), with π� = 0; �j = 0. Hence the e� 

jSuppose next that �ie ’s 
are linearly independent. 
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Let V and W be vector spaces and 

A

(1.8) A : V � W 

a linear map. Given π ≤ W � the composition, π ≥ A, of A with the linear map, 
π : W � R, is linear, and hence is an element of V � . We will denote this element by 
A�π, and we will denote by 

� : W � � V � 

the map, π � A�π. It’s clear from the definition that 

A�(π1 + π2) = A�π1 + A�π2 

and that 
A��π = �A�π , 

i.e., that A� is linear. 

Definition.	 A� is the transpose of the mapping A. 
We will conclude this section by giving a matrix description of A� . Let e1, . . . , en 

be a basis of V and f1, . . . , fm a basis of W ; let e1, . . . , e
� and f1 

�, . . . , f � be the dual n m 

bases of V � and W � . Suppose A is defined in terms of e1, . . . , en and f1, . . . , fm by 
the m× n matrix, [ai,j ], i.e., suppose 

Aej = ai,j fi . 

Claim. A� is defined, in terms of f1 
�, . . . , f � and e1, . . . , e

� by the transpose matrix, m n 

[aj,i]. 

Proof. Let 
A�f � = cj,iej .i 

Then 
A�fi 

�(ej ) = ck,iek (ej ) = cj,i 
k 

by (1.5). On the other hand 

A�fi 
�(ej ) = fi 

�(Aej ) 

= aj,kfi 
�(fk ) = aj,i , 

k 

so aj,i = cj,i. 
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Exercises. 

1. Let V be an n-dimensional vector space and W a k-dimensional subspace. Show 
that there exists a basis, e1, . . . , en of V with the property that e1, . . . , ek is a 
basis of W . Hint: Induction on n − k. To start the induction suppose that 
n− k = 1. Let e1, . . . , en−1 be a basis of W and en any vector in V − W . 

2. In exercise 1 show that the vector fi = λ(ek+i), i = 1, . . . , n− k are a basis of 
V/W . Conclude that the dimension of V/W is n− k. 

3. In exercise 1 let U be the linear span of the vectors, ek+i, i = 1, . . . , n− k. 

Show that the map 

(1.9) U � V/W , u � λ(u) , 

is a vector space isomorphism, i.e., show that it maps U bijectively onto V/W . 1 

4. Let U , V and W be vertex spaces and let A : V � W and B : U � V be linear 
mappings. Show that (AB)� = B�A� . 

1This exercise shows that the notion of “quotient space”, which can be somewhat daunting when 
one first encounters it, is in essence no more complicated than the notion of “subspace”. 
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