Multi-linear Algebra Notes for 18.101

1 Linear algebra

To read these notes you will need some background in linear algebra. In particular you'll need to be familiar with the material in § 1–2 of Munkres and § 1 of Spivak. In this section we will discuss a couple of items which are frequently, but not always, covered in linear algebra courses, but which we'll need for our "crash course" in multilinear algebra in § 2–6.

The quotient spaces of a vector space

Let V be a vector space and W a vector subspace of V. A W-coset is a set of the form

$$v + W = \{v + w, w \in W\}.$$

It is easy to check that if $v_1 - v_2 \in W$, the cosets, $v_1 + W$ and $v_2 + W$, coincide while if $v_1 - v_2 \notin W$, they are disjoint. Thus the *W*-cosets decompose *V* into a *disjoint* collection of subsets of *V*. We will denote this collection of sets by V/W.

One defines a vector addition operation on V/W by defining the sum of two cosets, $v_1 + W$ and $v_2 + W$ to be the coset

(1.1)
$$v_1 + v_2 + W$$

and one defines a scalar multiplication operation by defining the scalar multiple of v + W by λ to be the coset

(1.2)
$$\lambda v + W.$$

It is easy to see that these operations are well defined. For instance, suppose $v_1 + W = v'_1 + W$ and $v_2 + W = v'_2 + W$. Then $v_1 - v'_1$ and $v_2 - v'_2$ are in W; so $(v_1 + v_2) - (v'_1 + v'_2)$ is in W and hence $v_1 + v_2 + W = v'_1 + v'_2 + W$.

These operations make V/W into a vector space, and one calls this space the *quotient space* of V by W.

We define a mapping

(1.3)
$$\pi: V \to V/W$$

by setting $\pi(v) = v + W$. It's clear from (1.1) and (1.2) that π is a linear mapping. Moreover, for every coset, v + W, $\pi(v) = v + W$; so the mapping, π , is onto. Also note that the zero vector in the vector space, V/W, is the zero coset, 0 + W = W. Hence v is in the kernel of π if v + W = W, i.e., $v \in W$. In other words the kernel of π is W.

In the definition above, V and W don't have to be finite dimensional, but if they are, then one can show

(1.4)
$$\dim V/W = \dim V - \dim W$$

(A proof of this is sketched in exercises 1–3.)

The dual space of a vector space

We'll denote by V^* the set of all linear functions, $\ell: V \to \mathbb{R}$. If ℓ_1 and ℓ_2 are linear functions, their sum, $\ell_1 + \ell_2$, is linear, and if ℓ is a linear function and λ is a real number, the function, $\lambda \ell$, is linear. Hence V^* is a vector space. One calls this space the *dual space* of V.

Suppose V is n-dimensional, and let e_1, \ldots, e_n be a basis of V. Then every vector, $v \in V$, can be written uniquely as a sum

$$v = c_1 v_1 + \dots + c_n v_n$$
 $c_i \in \mathbb{R}$.

Let

$$(1.5) e_i^*(v) = c_i$$

If $v = c_1 e_1 + \dots + c_n e_n$ and $v' = c'_1 e_1 + \dots + c'_n e_n$ then $v + v' = (c_1 + c'_1)e_1 + \dots + (c_n + c'_n)e_n$, so

$$e_i^*(v+v') = c_i + c_i' = e_i^*(v) + e_i^*(v').$$

This shows that $e_i^*(v)$ is a linear function of v and hence $e_i^* \in V^*$.

Claim: $e_i^*(v)$ is a linear function of v and hence $e_i^* \in V^*$.

Proof. First of all note that by (1.5)

(1.6)
$$e_i^*(e_j) = \begin{cases} 1, & i=j\\ 0, & i \neq j \end{cases}$$

If $\ell \in V^*$ let $\lambda_i = \ell(e_i)$ and let $\ell' = \sum \lambda_i e_i^*$. Then by (1.6)

(1.7)
$$\ell'(e_j) = \sum \lambda_i e_i^*(e_j) = \lambda_j = \ell(e_j),$$

i.e., ℓ and ℓ' take identical values on the basis vectors, e_i . Hence $\ell = \ell'$.

Suppose next that $\sum \lambda_i e_i^* = 0$. Then by (1.6), with $\ell' = 0$; $\lambda_j = 0$. Hence the e_j^* 's are linearly independent.

Let V and W be vector spaces and

a linear map. Given $\ell \in W^*$ the composition, $\ell \circ A$, of A with the linear map, $\ell: W \to \mathbb{R}$, is linear, and hence is an element of V^* . We will denote this element by $A^*\ell$, and we will denote by

$$A^*: W^* \to V^*$$

the map, $\ell \to A^* \ell$. It's clear from the definition that

$$A^*(\ell_1 + \ell_2) = A^*\ell_1 + A^*\ell_2$$

and that

$$A^*\lambda\ell = \lambda A^*\ell\,,$$

i.e., that A^* is linear.

Definition. A^* is the transpose of the mapping A.

We will conclude this section by giving a matrix description of A^* . Let e_1, \ldots, e_n be a basis of V and f_1, \ldots, f_m a basis of W; let e_1^*, \ldots, e_n^* and f_1^*, \ldots, f_m^* be the dual bases of V^* and W^* . Suppose A is defined in terms of e_1, \ldots, e_n and f_1, \ldots, f_m by the $m \times n$ matrix, $[a_{i,j}]$, i.e., suppose

$$Ae_j = \sum a_{i,j} f_i$$
.

Claim. A^* is defined, in terms of f_1^*, \ldots, f_m^* and e_1^*, \ldots, e_n^* by the transpose matrix, $[a_{j,i}]$.

Proof. Let

$$A^*f_i^* = \sum c_{j,i}e_j^*.$$

Then

$$A^*f_i^*(e_j) = \sum_k c_{k,i}e_k^*(e_j) = c_{j,i}$$

by (1.5). On the other hand

$$A^* f_i^*(e_j) = f_i^*(Ae_j) = \sum_k a_{j,k} f_i^*(f_k) = a_{j,i},$$

so $a_{j,i} = c_{j,i}$.

2			

Exercises.

- 1. Let V be an n-dimensional vector space and W a k-dimensional subspace. Show that there exists a basis, e_1, \ldots, e_n of V with the property that e_1, \ldots, e_k is a basis of W. *Hint:* Induction on n - k. To start the induction suppose that n - k = 1. Let e_1, \ldots, e_{n-1} be a basis of W and e_n any vector in V - W.
- 2. In exercise 1 show that the vector $f_i = \pi(e_{k+i}), i = 1, ..., n k$ are a basis of V/W. Conclude that the dimension of V/W is n k.
- 3. In exercise 1 let U be the linear span of the vectors, e_{k+i} , i = 1, ..., n k. Show that the map

(1.9)
$$U \to V/W, \quad u \to \pi(u),$$

is a vector space isomorphism, i.e., show that it maps U bijectively onto V/W.¹

4. Let U, V and W be vertex spaces and let $A: V \to W$ and $B: U \to V$ be linear mappings. Show that $(AB)^* = B^*A^*$.

¹This exercise shows that the notion of "quotient space", which can be somewhat daunting when one first encounters it, is in essence no more complicated than the notion of "subspace".