Multi-linear Algebra Notes for 18.101

1 Linear algebra

To read these notes you will need some background in linear algebra. In particular you'll need to be familiar with the material in § 1-2 of Munkres and § 1 of Spivak. In this section we will discuss a couple of items which are frequently, but not always, covered in linear algebra courses, but which we'll need for our "crash course" in multilinear algebra in § 2-6.

The quotient spaces of a vector space

Let V be a vector space and W a vector subspace of V. A W-coset is a set of the form

$$
v+W=\{v+w, w \in W\}
$$

It is easy to check that if $v_{1}-v_{2} \in W$, the cosets, $v_{1}+W$ and $v_{2}+W$, coincide while if $v_{1}-v_{2} \notin W$, they are disjoint. Thus the W-cosets decompose V into a disjoint collection of subsets of V. We will denote this collection of sets by V / W.

One defines a vector addition operation on V / W by defining the sum of two cosets, $v_{1}+W$ and $v_{2}+W$ to be the coset

$$
\begin{equation*}
v_{1}+v_{2}+W \tag{1.1}
\end{equation*}
$$

and one defines a scalar multiplication operation by defining the scalar multiple of $v+W$ by λ to be the coset

$$
\begin{equation*}
\lambda v+W \tag{1.2}
\end{equation*}
$$

It is easy to see that these operations are well defined. For instance, suppose $v_{1}+W=$ $v_{1}^{\prime}+W$ and $v_{2}+W=v_{2}^{\prime}+W$. Then $v_{1}-v_{1}^{\prime}$ and $v_{2}-v_{2}^{\prime}$ are in W; so $\left(v_{1}+v_{2}\right)-\left(v_{1}^{\prime}+v_{2}^{\prime}\right)$ is in W and hence $v_{1}+v_{2}+W=v_{1}^{\prime}+v_{2}^{\prime}+W$.

These operations make V / W into a vector space, and one calls this space the quotient space of V by W.

We define a mapping

$$
\begin{equation*}
\pi: V \rightarrow V / W \tag{1.3}
\end{equation*}
$$

by setting $\pi(v)=v+W$. It's clear from (1.1) and (1.2) that π is a linear mapping. Moreover, for every coset, $v+W, \pi(v)=v+W$; so the mapping, π, is onto. Also
note that the zero vector in the vector space, V / W, is the zero coset, $0+W=W$. Hence v is in the kernel of π if $v+W=W$, i.e., $v \in W$. In other words the kernel of π is W.

In the definition above, V and W don't have to be finite dimensional, but if they are, then one can show

$$
\begin{equation*}
\operatorname{dim} V / W=\operatorname{dim} V-\operatorname{dim} W \tag{1.4}
\end{equation*}
$$

(A proof of this is sketched in exercises 1-3.)

The dual space of a vector space

We'll denote by V^{*} the set of all linear functions, $\ell: V \rightarrow \mathbb{R}$. If ℓ_{1} and ℓ_{2} are linear functions, their sum, $\ell_{1}+\ell_{2}$, is linear, and if ℓ is a linear function and λ is a real number, the function, $\lambda \ell$, is linear. Hence V^{*} is a vector space. One calls this space the dual space of V.

Suppose V is n-dimensional, and let e_{1}, \ldots, e_{n} be a basis of V. Then every vector, $v \in V$, can be written uniquely as a sum

$$
v=c_{1} v_{1}+\cdots+c_{n} v_{n} \quad c_{i} \in \mathbb{R}
$$

Let

$$
\begin{equation*}
e_{i}^{*}(v)=c_{i} . \tag{1.5}
\end{equation*}
$$

If $v=c_{1} e_{1}+\cdots+c_{n} e_{n}$ and $v^{\prime}=c_{1}^{\prime} e_{1}+\cdots+c_{n}^{\prime} e_{n}$ then $v+v^{\prime}=\left(c_{1}+c_{1}^{\prime}\right) e_{1}+\cdots+\left(c_{n}+c_{n}^{\prime}\right) e_{n}$, so

$$
e_{i}^{*}\left(v+v^{\prime}\right)=c_{i}+c_{i}^{\prime}=e_{i}^{*}(v)+e_{i}^{*}\left(v^{\prime}\right) .
$$

This shows that $e_{i}^{*}(v)$ is a linear function of v and hence $e_{i}^{*} \in V^{*}$.
Claim: $e_{i}^{*}(v)$ is a linear function of v and hence $e_{i}^{*} \in V^{*}$.
Proof. First of all note that by (1.5)

$$
e_{i}^{*}\left(e_{j}\right)= \begin{cases}1, & i=j \tag{1.6}\\ 0, & i \neq j\end{cases}
$$

If $\ell \in V^{*}$ let $\lambda_{i}=\ell\left(e_{i}\right)$ and let $\ell^{\prime}=\sum \lambda_{i} e_{i}^{*}$. Then by (1.6)

$$
\begin{equation*}
\ell^{\prime}\left(e_{j}\right)=\sum \lambda_{i} e_{i}^{*}\left(e_{j}\right)=\lambda_{j}=\ell\left(e_{j}\right), \tag{1.7}
\end{equation*}
$$

i.e., ℓ and ℓ^{\prime} take identical values on the basis vectors, e_{j}. Hence $\ell=\ell^{\prime}$.

Suppose next that $\sum \lambda_{i} e_{i}^{*}=0$. Then by (1.6), with $\ell^{\prime}=0 ; \lambda_{j}=0$. Hence the e_{j}^{*} 's are linearly independent.

Let V and W be vector spaces and

$$
\begin{equation*}
A: V \rightarrow W \tag{1.8}
\end{equation*}
$$

a linear map. Given $\ell \in W^{*}$ the composition, $\ell \circ A$, of A with the linear map, $\ell: W \rightarrow \mathbb{R}$, is linear, and hence is an element of V^{*}. We will denote this element by $A^{*} \ell$, and we will denote by

$$
A^{*}: W^{*} \rightarrow V^{*}
$$

the map, $\ell \rightarrow A^{*} \ell$. It's clear from the definition that

$$
A^{*}\left(\ell_{1}+\ell_{2}\right)=A^{*} \ell_{1}+A^{*} \ell_{2}
$$

and that

$$
A^{*} \lambda \ell=\lambda A^{*} \ell,
$$

i.e., that A^{*} is linear.

Definition. $\quad A^{*}$ is the transpose of the mapping A.
We will conclude this section by giving a matrix description of A^{*}. Let e_{1}, \ldots, e_{n} be a basis of V and f_{1}, \ldots, f_{m} a basis of W; let $e_{1}^{*}, \ldots, e_{n}^{*}$ and $f_{1}^{*}, \ldots, f_{m}^{*}$ be the dual bases of V^{*} and W^{*}. Suppose A is defined in terms of e_{1}, \ldots, e_{n} and f_{1}, \ldots, f_{m} by the $m \times n$ matrix, $\left[a_{i, j}\right]$, i.e., suppose

$$
A e_{j}=\sum a_{i, j} f_{i}
$$

Claim. A^{*} is defined, in terms of $f_{1}^{*}, \ldots, f_{m}^{*}$ and $e_{1}^{*}, \ldots, e_{n}^{*}$ by the transpose matrix, $\left[a_{j, i}\right]$.

Proof. Let

$$
A^{*} f_{i}^{*}=\sum c_{j, i} e_{j}^{*} .
$$

Then

$$
A^{*} f_{i}^{*}\left(e_{j}\right)=\sum_{k} c_{k, i} e_{k}^{*}\left(e_{j}\right)=c_{j, i}
$$

by (1.5). On the other hand

$$
\begin{aligned}
A^{*} f_{i}^{*}\left(e_{j}\right) & =f_{i}^{*}\left(A e_{j}\right) \\
& =\sum_{k} a_{j, k} f_{i}^{*}\left(f_{k}\right)=a_{j, i},
\end{aligned}
$$

so $a_{j, i}=c_{j, i}$.

Exercises.

1. Let V be an n-dimensional vector space and W a k-dimensional subspace. Show that there exists a basis, e_{1}, \ldots, e_{n} of V with the property that e_{1}, \ldots, e_{k} is a basis of W. Hint: Induction on $n-k$. To start the induction suppose that $n-k=1$. Let e_{1}, \ldots, e_{n-1} be a basis of W and e_{n} any vector in $V-W$.
2. In exercise 1 show that the vector $f_{i}=\pi\left(e_{k+i}\right), i=1, \ldots, n-k$ are a basis of V / W. Conclude that the dimension of V / W is $n-k$.
3. In exercise 1 let U be the linear span of the vectors, $e_{k+i}, i=1, \ldots, n-k$.

Show that the map

$$
\begin{equation*}
U \rightarrow V / W, \quad u \rightarrow \pi(u), \tag{1.9}
\end{equation*}
$$

is a vector space isomorphism, i.e., show that it maps U bijectively onto $V / W .{ }^{1}$
4. Let U, V and W be vertex spaces and let $A: V \rightarrow W$ and $B: U \rightarrow V$ be linear mappings. Show that $(A B)^{*}=B^{*} A^{*}$.

[^0]
[^0]: ${ }^{1}$ This exercise shows that the notion of "quotient space", which can be somewhat daunting when one first encounters it, is in essence no more complicated than the notion of "subspace".

