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Abstract
The colonization dynamics and life histories of pioneer species are vital components in
understanding the early succession of nascent hydrothermal vents. The reproductive
ecology of pioneer species at deep-sea hydrothermal vents may provide insight into their
dispersal, population connectivity, and ability to colonize after disturbance. An
opportunity to study the reproductive traits of two pioneer gastropod species, Ctenopelta
porfera and Lepetodrilus tevnianus, presented itself in 2006 after an eruption on the East
Pacific Rise (EPR) eliminated vent communities near 9*50'N. Standard histological
techniques were used to determine whether reproductive characteristics, such as timing of
gamete release, fecundity, or time to maturation, differed from other vent gastropods in
ways that might explain arrival of these two species as early colonizers. Both species
exhibited two-component oocyte size frequency distributions that indicated they were
quasi-continuous reproducers with high fecundity. In C. porifera, the oocyte size
distributions differed slightly between two collection dates, suggesting that
environmental cues may introduce some variability in gamete release. In samples
collected within one year of the estimated eruption date, individuals in populations of
both C. porfera and L. tevnianus were reproductively mature. The smallest reproducing
C. porifera were 4.2 mm (males) and 5.4 mm (females) in shell length, whereas
reproductive L. tevnianus were smaller (2.3 and 2.4 mm in males and females
respectively). Most Cporifera in the population were large (> 6.0 mm) compared to their
settlement size and reproductively mature. In contrast, most L tevnianus were small (<
1.0 mm) and immature. Reproductive traits of the two species are consistent with
opportunistic colonization, but are also similar to those of other Lepetodrilus species and
peltospirids at vents, and do not explain why these particular two species were the
dominant pioneers. It is likely that their larvae were in high supply immediately after the
eruption due to oceanographic transport processes from remote source populations.

Thesis Supervisor: Lauren Mullineaux
Title: Senior Scientist of Biological Oceanography
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Introduction

Hydrothermal vent organisms are distinctive in their ability to persist in extremely

unstable environments with strong chemical gradients. High concentrations of sulfides,

iron, and trace metals (Co, Cu, Pb, Zn) occur in vent fluids (reviewed in Von Damm

1990). Endemic vent species populate regions of the deep sea associated with tectonic

and volcanic activity that cause chemical-rich fluids up to 4030 C to exit the seafloor

(reviewed in Van Dover 2000). Vent fluids mix with the cooler ambient seawater creating

environments highly variable in temperature and chemical composition (e.g., Johnson et

al. 1986). The base of the food chain consists of chemoautotrophic microbes capable of

using energy from reduced chemicals in the vent fluids to fix carbon (reviewed in Karl

1995). In addition to being chemically dynamic environments, vents are distributed

discontinuously along mid-ocean ridges as dictated by underlying magma chamber and

tectonic plate activity (reviewed in Fornari and Embley 1995). Vent species are bound to

these patches of habitat separated by 10-1 00s of km along mid-ocean ridges (Tunnicliffe

1992; Chevaldonne et al. 1997). Thus the populations are fragmented, and the dynamics

and persistence of the metapopulations depend on population connectivity as mediated by

larval dispersal and recruitment (e.g., Neubert et al. 2006).

At fast-spreading ridges, such as the East Pacific Rise, eruptions occur on time

scale of less than 100 years (MacDonald et al. 1980; Haymon et al. 1993). Geophysical

models of fluid circulation beneath the basaltic crust reveal unsteady vent fluid

convection (Watremez and Kervevan 1990), creating highly variable, transient habitats.

Volcanic eruptions or tectonic quakes can obliterate entire communities and provide new

substrata for colonization. Following such an event, the new basalt substratum may



continue to change morphologically (Haymon et al. 1991) and vent fluids may vary in

flux and chemical composition (Von Damm 1995; Butterfield et al. 1997) with associated

increases or decreases in primary production (reviewed in Karl 1995). These eruptions

are important disturbances that affect initial colonization patterns (reviewed in

Tunnicliffe 1992), and genetic exchange (reviewed in Jollivet 1996) between vent sites.

The processes that influence how hydrothermal vent invertebrate populations are

connected are still poorly understood. Since vent populations are physically fragmented,

hydrodynamic transport (e.g., Chevaldonnd et al. 1997; Kim and Mullineaux 1998;

Mullineaux et al. 2003; Adams and Mullineaux 2008), larval lifespan (Marsh et al. 2001)

and distribution within the water column (Mullineaux et al. 2005) are all thought to be

important in long-range dispersal and on-site retention. Thus, vent inhabitants can be

considered as being part of greater metapopulations (Vrijenhoek 1997; Jollivet et al.

1999; Neubert et al. 2006). A first step in understanding the complex patterns of

connectivity within a metapopulation is to estimate the dispersal capabilities of the

species (reviewed in Levin 2006). In the context of a nascent vent, the dispersal

capabilities of pioneer species (those that colonize the site first) are of particular interest

in understanding early successional processes and community structure. Because adult

reproductive morphology can be used to infer details of a species' life history

(Eckelbarger 1994), analyses of fecundity and spawning periodicity have increased our

knowledge of the life histories of several prominent vent species (e.g., McHugh and

Tunnicliffe 1994; Pendlebury 2005; Tyler et al. 2008). Therefore, studying reproductive

characteristics of these pioneer species may provide insight into their dispersal,

connectivity, and colonization dynamics.



The ephemeral nature of hydrothermal vents would be expected to favor species

that have r-type life history strategies including fast growth, early reproduction, and

wide-spread larval dispersal (Van Dover et al. 1985; Young 2003). While most vent

species reproduce continuously, reproductive strategies include a wide range of

fertilization techniques, parental investment and larval feeding (Tyler and Young 1999;

Young 2003). For instance vetigastropods (includes the genus Lepetodrilus) typically

have a non-feeding planktotrophic larval stage. However, some vetigastropods brood

their larvae within the pallial cavity and give birth to a crawling state (Bouchet and

Wardn 1994).

An opportunity to study primary succession and life-histories of pioneer species

presented itself in 2006 after an eruption occurred on the East Pacific Rise (EPR) near

9*50'N. Seismic data and camera footage indicated that newly released lava from the

eruption wiped out previously existing communities and created new hydrothermal vents

and substrata for colonization (Tolstoy et al. 2006; Cowen et al. 2007; Soule et al. 2007).

Response cruises mobilized shortly after the event (Von Damm et al. 2006) and allowed

biologists to study the early stages of faunal colonization. Although camera-based

observations conducted after a prior (1991) eruption at this site documented successional

patterns in the large, structure-forming species (Shank et al. 1998), this new eruption

provided an opportunity to study a diverse group of species including those too small to

observe in images.

Within 10 months of the eruption, colonization experiments (Mullineaux et al.

2010) revealed the appearance of the gastropod Ctenopeltaporifera (Fig. la). This

species is found at 13*N on the EPR (Waren and Bouchet 1993) but had not been



observed in the benthos near 9*50'N (or anywhere else in the world's oceans). Another

notable change was the prominence of the gastropod Lepetodrilus tevnianus (Fig. Ib) that

had been much less abundant than congeners L. ovalis, L. pustulosus, L. cristatus, and L.

elevatus prior to the eruption (McLean 1993). L. tevnianus typically is associated with the

tubeworm Tevniajerichonana and was first found at 11 N (McLean 1993) on the EPR

although its range is now known to span from 110 N to 23* S (Johnson et al. 2008). The

appearance of these two pioneer species, C. porifera and L. tevnianus, raises the question

of how their life histories might facilitate early arrival after disturbance. Although general

morphology of both species has been described in detail (C. porifera by Wardn and

Bouchet 1993; L. tevnianus by McLean 1993), no internal examinations or specific

histological studies have been conducted on either. Ecological and reproductive studies

have been conducted on the other species of Lepetodrilus on the EPR (Lepetodrilus

ovalis, L elevatus, L. pustulosus, L. cristatus), the Mid-Atlantic Ridge (L. atlanticus), the

Guaymas Basin (L. guaymasensis: Fretter 1988; McLean 1988; Pendlebury 2005), and

the Juan de Fuca Ridge (L. fucensis: Fretter 1988; McLean 1988; Kelly and Metaxas

2007). On the EPR, L. elevatus had been the dominant gastropod species in established

communities since the 1991 eruption (Shank et al. 1998; Van Dover 2000; Mullineaux et

al. 2003), with other Lepetodrilus species (L. ovalis, L. pustulosus, L. cristatus) found in

lower densities.

The main objective of this study was to utilize standard histological techniques to

characterize the reproductive morphology of the pioneer gastropods C. porifera and L.

tevnianus in order to determine whether they had higher fecundity, smaller oocyte size, or

more variable reproductive timing than other related gastropod species inhabiting



established vents in this region. We investigated the size at first reproduction to estimate

how quickly new colonists could attain the ability to contribute progeny to the local

community. We also quantified population structure (size distribution of colonists),

which, in combination with minimum size of reproduction, provides an estimate of the

proportion of the population that is reproductive and potentially contributing to local

population growth. The broader goal of this approach is to gain insight into the processes

influencing initial colonization at hydrothermal vents.



Methods

Field sampling and initial analyses

Colonization surfaces were placed at P-vent (90 50.28' N, 1040 17.47' W) on the East

Pacific Rise during post-eruption cruises aboard the R VAtlantis in October 2006 (9

months after estimated eruption date) and December 2006 (11 months after eruption).

The first set was recovered in December 2006 after a 1.5-month deployment and the

second set in November 2007 after 11 months. The colonization surfaces (sandwiches)

were comprised of six Lexan plates, each 10 x 10 x 0.6 cm, separated by 0.9 cm

cylindrical spacers. The surfaces were roughened by 50-grit sandpaper, pitted with a

metal press and banded with 0.1 cm-deep grooves made with a wood saw. The plates and

spacers were held together with cable ties to form a six-layered sandwich with a

polypropylene braided line as a handle (Fig. 2). Sandwiches were deployed and recovered

from individual collection compartments on the submersible Alvin similarly to the blocks

described in Mullineaux et al. (2000). Once aboard R VAtlantis, sandwiches were

immediately transferred to buckets of 20 C seawater in the cold room for initial

observations. Afterwards, the colonization surfaces and any attached colonists, as well as

all detached individuals within the initial collection chamber that were retained in a 63

pm sieve, were processed as described below. Samples from the first recovery cruise

(December 2006) were used to assess the size structure and reproductive status of C.

porifera and L. tevnianus populations roughly one year after the 2006 eruption, and to

describe reproductive morphology, oocyte size and fecundity (defined as total number of

vitellogenic oocytes) in these species. Samples from the subsequent cruise (November

2007) were used to compare reproductive status of those populations a year later.



Recovery of colonization substrates

During the first sandwich recovery cruise (December 2006), three sandwiches each were

recovered and analyzed from hot (18 - 300 C) and cool (2 - 4 C) environments at P-

vent. The colonization surfaces and all attached and detached (> 63 pim) individuals were

preserved in 80% ethanol for transport ashore. In the lab, the individual plates were

separated, and lengths of all organisms were measured. Size was determined for C.

porifera by measuring overall shell length (SL) on the dorsal side from the protoconch to

the opposite lip of the shell. For L. tevnianus, the protoconch is not at the edge of the

shell (Fig. 2b), so the maximum length across the dorsal side of the shell was used as

shell length. Individuals were counted, identified to lowest taxonomic group possible, and

stored in 95% ethanol in the laboratory. All C. porifera found were used for reproductive

analysis, as well as all L. tevnianus > 2.0 mm in shell length. Small (< 2.0 mm SL) L.

tevnianus were excluded from reproductive analyses because they were difficult to

section, but were retained for analyses of population structure. Numbers of specimens

used in each reproductive analysis, and selection criteria, are listed in Table 1.

During the second sandwich recovery cruise (November 2007), five sandwiches

were recovered from the hot environment at P-vent using the same DSVAlvin protocol

used in December 2006. Once inside the cold room, individual L. tevnianus adults greater

than 2.0 mm were haphazardly selected off the plates (Table 1). All specimens of C.

porifera found on the plates (16 specimens; Table 1) were used in reproductive analyses.

Because so few individuals were found at P-vent, sandwiches from V-vent (90 47.23' N,

1040 16.95' W), a vent approximately 4.8 kilometers away, were used to supplement the



numbers (28 specimens; Table 1). For both species, all samples picked in the cold room

were initially preserved for 4 days in 7% formalin and then transferred to 70 % ethanol

for transport back to the laboratory.

Reproductive morphology and analyses

All specimens examined for reproductive morphology (107 specimens; Table 1)

were removed from their shells with forceps. Specimens were seriilly dehydrated using

graded ethanol, cleared with xylene and embedded in molten histology paraffin wax

using standard molds. Samples from December 2006 that initially had been preserved in

80% ethanol were transferred to formalin for four to five days prior to standard histology

fixation steps. We refer to this as the "reverse" method of initial fixation of the sample,

and it produced whole, undistorted sections with internal organs approximately the same

size as in the 2007 samples (no apparent shrinkage) for reproductive analyses. Using

standard haematoxylin and eosin procedures (reviewed in Kiernan 2008), paraffin blocks

were cut transversely at 5 pm thickness on a rotary microtome and stained. Assembling

the serial sections for each individual and viewing them in sequence determined the

general three-dimensional shape and location of the gonads.

From the December 2006 cruise our selection of male and female C. porifera

specimens (22 individuals; Table 1) purposely spanned the SL size range of 5.0 - 10.0

mm for analyses of gonad morphology, oocyte size frequency and fecundity. Those with

SL< 5.0 mm were selected for size at first reproduction analysis but were not used for

oocyte size frequency and fecundity analyses. From the November 2007 cruise we used

all individuals recovered from P-vent for the analyses listed above and an additional 14



selected individuals (spanning the same SL size range of those selected at P-vent, 5.0 -

10.0 mm) from V-vent for fecundity analysis and male morphology only (Table 1). For

L. tevnianus, males and females from each cruise were selected for analyses of gonad

morphology, oocyte size and fecundity. Individuals ranging from 2.0 - 7.0 mm were used

to examine size-specific reproduction (Table 1). Female and male gonad morphologies

and fecundities were determined using a Zeiss Axiovert 200M microscope, and an

AxioCam MRc5 camera, using Zeiss Axiovision version 4.4 Software.

Size at first reproduction

All specimens initially collected for reproductive morphology analysis were examined for

sex, but cross-sectioning of the smaller specimens was used to assess the minimum size

of reproductive maturity of each species. For C. porifera, all four individuals < 5.0 mm

from December 2006 were used (none within this size range were recovered in

November 2007), whereas for L. tevnianus, individuals in the 2.0 - 3.0 mm SL range

were selected from the December 2006 samples (10 specimens; Table 1). All specimens

used for size at first reproduction were serially cross-sectioned from the dorsal-side down

through the foot of the animal. For L. tevnianus individuals < 3.0 mm, it was nearly

impossible to differentiate between sexes based on exterior morphology due to their small

size. Thus, both sex and reproductive maturity were determined through cross-sectioning.

Estimating size at first reproduction was of particular interest for the specimens collected

in 2006 because it was used, in combination with shell size-frequency data, to estimate

the proportion of the population that was reproductive within a year of the eruption.



Oocyte size-frequency analysis

Individual females were selected based on being large (> 7.0 mm, C. porifera; > 3.5 mm,

L. tevnianus) and therefore reproductively mature for analyses of oocyte size (Table 1).

The gonads were observed in three transverse sections spaced roughly 100 stm apart.

Both pre-vitellogenic and vitellogenic oocytes were measured. Oocyte size frequencies

per selected individual were calculated prior to averaging total size frequency of ranges

of oocytes of selected gastropods for these analyses. Images were captured with an

AxioCam MRc5 camera using Zeiss Axiovision version 4.4 Software. The feret

diameters (diameter of the oocyte if it were a perfect circle) (as in Pendlebury 2005;

Kelly and Metaxas 2007) of all oocytes with visible nuclei were calculated using ImageJ

software (v. 1.39, National Institute of Health, Bethesda, Maryland, USA). A standard

Pearson's Chi-Squared test using JMP (v. 1.5.2) was conducted on oocyte frequency data

for from all specimens of each species to test for synchrony within populations. If the

Chi-Squared test demonstrated that the populations were synchronous, then the oocyte

size data were pooled across individuals for subsequent analyses.

In order to determine whether different cohorts could be distinguished in the size

distributions, an Expectation-Maximization (EM) algorithm (McLachlan 1987;

McLachlan and Peel 2000) was used to conduct a mixture model analysis on the data to

test for two normal distributions of oocyte size. As an initial step, for both C. porifera

and L. tevnianus and both sampling years, we tested the null hypothesis that log oocyte

size follows a single normal distribution against the alternative hypothesis that it follows

a mixture of two normal distributions with the same variance. We then proceeded to test

for both species the null hypothesis that the parameters of the two-component normal



mixture distribution were the same in both years (for each species) against the alternative

hypothesis that they differed (details in Appendix A).

Fecundity

The total number of vitellogenic oocytes in each individual was used as the measure of

fecundity in this study. Ten females of each species from each cruise were used in the

analysis (Table 1). For C. porifera samples from November 2007, only six females were

available for fecundity analysis from P-vent so the data were supplemented with four

specimens from V-vent. Females of each species were selected to span the available size

range in shell length (Table 1). For L. tevnianus the range was 3.0 - 7.0 mm (as those

under 3.0 mm had lower quality sections) and for C. porifera it was 6.0 - 10.0 mm. A

two-step process was used to calculate fecundity, as in Pendlebury (2005). For each

species, in the first step, three specimens were serially sectioned to find vitellogenic

oocytes with visible nuclei (i.e. germinal vesicles), which were used to determine average

vitellogenic oocyte diameter. This average diameter was then used as the spacing for

cross-sectioning of the remaining specimens. Average vitellogenic oocyte size was ~150

pm for C porifera and -100 pm for L. tevnianus. The full gonad volume was sectioned

for each specimen and oocytes found in each section were totaled. For both C. porifera

and L. tevnianus, we used a regression model assuming a negative-binomial distribution

to test for statistically significant differences of fecundity between years (details in

Appendix B).



Population structure

Size (SL) frequency data were compiled from all C. porifera and L. tevnianus individuals

found at P-vent in December 2006 samples. Species-level identification of C. porifera

was definitive for specimens of all sizes, but identification of L. tevnianus was definitive

only for specimens > 2.0 mm. Smaller individuals could be distinguished as Lepetodrilus

sp., and we assume that they were L. tevnianus because no other species of that genus

were found in the 2006 samples (this assumption is revisited in the Discussion section).

In November 2007 samples, all C. porifera individuals found at P-vent and at V-vent

were pooled for size frequency analyses because no significant difference in mean size

was detected between the sites (two-sample t-test, t-Ratio = -1.73, dF = 14, P < 0.11; JMP

v. 1.5.2). A two-sample t-test was also conducted to compare C. porifera size between

years. Size distributions of L. tevnianus from the December 2007 collections were not

analyzed because only a subset of these individuals was measured.



Results

Reproductive morphology and gametogenesis

Serial sections revealed that C. porifera is gonochoristic (for the detailed description and

images of reproductive morphology, see Appendix C) and all analyzed individuals with

the exception of one male (2.5 mm SL) had mature spermatozoa (males) or oocytes

(females). The smallest male with mature testis had a shell length of 4.2 mm and the

smallest female with mature oocytes had a length of 5.4 mm (previously recorded as 4.8

mm and 5.9 mm, respectively, by Wardn and Bouchet, 1993). Therefore the size at first

reproduction was determined to be between 2.5 and 4.2 mm for males and less than 5.4

mm for females. Cross-sectioning of the sole immature male revealed tissue similar in

appearance to that of the digestive gland (Appendix C) in the regions where the gonads

would be in a reproductively mature adult.

All oocytes were tightly packed into the ovary. Oogonia developed in the

epithelium of the ovary (Appendix C) and grew to 20-30 tm in diameter, when they

developed into pre-vitellogenic oocytes as distinguished by their visible nuclei and dark

purple staining. Vitellogenesis generally began when oocytes are 60-70 [tm. In most

samples, vitellogenic oocytes typically reached a maximum size of 230-250 Rm (a few of

the oocytes were > 300 pim, probably due to distortion).

Cross-sectioning revealed that L. tevnianus also is gonochoristic (Appendix C),

and all adults with shells larger than 2.4 mm had mature spermatozoa (males) and ovary

(females). Of the male specimens selected for first size at reproduction studies (2.2 to 2.4

mm), only those 2.3 mm or larger were reproductively mature. Of the female specimens

(2.2 to 2.6 mm), only those 2.4 mm and larger were mature. In immature individuals,



gonads were difficult to distinguish from the digestive gland (Appendix C). Light

histological sections of L. tevnianus stained with haematoxylin and eosin (Appendix C)

illustrate that the ovary occupies a large volume of the gastropod (approximately one-

third) and that oocytes are tightly packed throughout the ovary. Oogonia develop in the

germinal epithelium of the ovary and grow until they are about 20 [tm when they develop

into pre-vitellogenic oocytes (Appendix C). These oocytes begin to develop into mature

vitellogenic oocytes (characterized by acidophilic granular cytoplasm) between 50-60

[tm, generally reaching a maximum of 130-150 [tm (although a few rare oocytes, two of

1497 measured, reached 210 gm). The general shape of the gonads in males, and the

location relative to the stomach, digestive gland and foot, were similar to those of the

ovary in females (Appendix C).

Oocyte size-frequency

Oocyte size distributions did not vary significantly among individuals for either C.

porifera (x2 = 550, dF = 25, P > 0.24) or L. tevnianus (x2 = 255, dF = 17, P > 0.24). Size

distributions pooled over multiple individuals of C. porifera (Fig. 3a, b) and L. tevnianus

(Fig. 3c, d) appeared to have more than a single normally distributed size component.

The mixture model analysis demonstrated evidence of two size components in the oocyte

size frequency data for both species (Table 2), possibly reflecting two different cohorts of

oocytes. The null hypothesis that log oocyte size follows a single normal distribution

was rejected in all cases except for L. tevnianus from November 2007 (details in

Appendix A). We therefore assumed conservatively that in all cases the distribution of

log size follows a two-component normal mixture. This is a conservative assumption in



the sense that if it is incorrect, it will not affect the validity of the test. For both species

the null hypothesis that the parameters of the two-component normal mixture distribution

were the same in both years was tested against the alternative hypothesis of difference

between years. The results of fitting the model under the second null hypothesis are given

in Table 3 (detailed results in Appendix A). After running the EM algorithm, the second

null hypothesis was rejected for both species (P = 0.002 for C. porifera and P = 0.03 for

L. tevnianus). It is important to note, however, that the test is quite powerful for these

sample sizes, and even small differences between the parameters may lead to the

rejection of the null hypothesis that they are the same in both years.

Using the results of the mixture-model analysis, the two components of oocyte

size in C. porifera had means of 81.5 pm and 148.4 [tm for both 2006 and 2007 (log sizes

shown in Table 2). In C. porifera, pre-vitellogenic oocytes (defined as all those <60 [im)

accounted for approximately 12% of all oocytes from December 2006 and approximately

20% from November 2007. The two components of oocyte size in L. tevnianus had

means of 54.6 [tm and 99.5 [tm for 2006 and 54.6 sim and 81.5 [m for 2007. In L.

tevnianus, oocytes in the pre-vitellogenic stage (those < 40 Pm) comprised approximately

5% of oocytes.

Fecundity

Fecundity in both species was relatively high (> 500 vitellogenic oocytes in the largest

females) and increased roughly exponentially with size (Fig. 4). Size-specific fecundity

in L. tevnianus was higher than in C. porifera because it matured at a smaller size, but

fecundity in the largest individuals (509 oocytes in C. porifera and 596 in L. tevnianus)



was similar. The relationship between fecundity and shell length was roughly exponential

for both species (Fig. 4). Regression model analysis revealed no difference between years

in this relationship for C. porifera (F-ratio = 0.13, P = 0.88) but a significant difference

for L. tevnianus (F-ratio = 5.51, P = 0.02) (details in Appendix B).

Population structure

Distributions of shell length for both species were determined from all individuals found

on sandwiches collected in December 2006 (Fig. 5). Sizes of C. porifera in December

2006 ranged from 2.5 - 8.6 mm. All individuals but one (98% of population) were

reproductively mature (Fig. 5b). Sizes of C. porifera found at P-vent in November 2007

ranged from 7.0 - 10.7 mm; sizes at V-vent ranged from 5.9 to 10.7 mm (Fig. 5c). All

individuals in these samples were assumed to be reproductively mature based on the

estimated size at first reproduction for (4.2 mm for males, 5.4 mm for females). The two-

sample t-test revealed no statistical significance in size distribution between samples

from P-vent and V-vent (November 2007) (t-Ratio = -1.73, dF = 14, P < 0.11). However,

there was a statistically significant difference in the size distributions of C. porifera

between 2006 (P-vent only) and 2007 (P-vent and V-vent pooled) (t-Ratio = -5.99, dF =

42, P < 0.001).

Sizes of L. tevnianus (including Lepetodrilus specimens too small to identify to

species, but assumed to be L. tevnianus as no other species of this genus was found

among samples collected in the area) ranged from 0.2 to 7.0 mm (Fig. 5a). Using 2.4 mm

as a conservative estimate of size at first reproduction (males may be reproducing

between 2.3 and 2.4 mm and sexes are difficult to distinguish at these sizes),



approximately 22% of the population was reproductively mature and potentially

contributing to the production of larvae (Fig. 5a).



Discussion

Histological analysis revealed that reproductive traits, such as quasi-continuous

spawning, of both C. porifera and L. tevnianus are similar to related species within their

respective families (Berg 1985, Fretter 1988; Pendlebury 2005; Kelly and Metaxas 2007)

(Table 4). Since we observed no unique reproductive or life-history traits for vent

gastropods in either species, we do not think that their appearance as pioneers in the post-

eruption community at 90 N is due to unusual reproductive adaptations. Reproductive

traits of these species and related Lepetodrilus spp. and peltospirids indicate that they are

all potentially opportunistic vent colonizers.

For both C. porifera and L. tevnianus, vitellogenic oocyte size and oocyte size at

onset of vitellogenesis fell within the range of other EPR species (Table 4), but values

generally were greater than those reported in Pendlebury (2005). Gonad location of C.

porifera was similar to that of R. concentrica. When comparing oocyte sizes between

species, it is important to note that values reported for a particular species vary between

authors. For example, Fretter (1988) and Berg (1985) reported values for R. concentrica

from 130 N and 210 N (EPR) that were considerably larger than those reported from 90 N

by Pendlebury (2005).

The two-component distribution of oocyte sizes from multiple individuals

indicates that gametogenesis is most likely quasi-continuous in both C. porifera and L.

tevnianus. The low variation in oocyte size distribution among individuals suggests that

reproduction was not asynchronous within the populations of either species. Oocyte size

distributions in quasi-continuous spawners are expected to vary slightly over time, as the

mature oocytes are released (reviewed in Eckelbarger and Watling 1995). The slight, but



significant, difference observed between years in oocyte size distributions of both C.

porifera and L. tevnianus may indicate responses to changes in the surrounding micro-

environment, but they are very subtle when compared to the reproductive periodicity

observed in discontinuous spawners that respond to large-scale environmental shifts such

as detritus pulses (reviewed in Tyler et al. 1994). This synchronous, quasi-continuous,

reproduction is consistent with the reproductive cycles of other vent molluscs (reviewed

in Tyler et al. 1994; Tyler and Young 1999; Pendlebury 2005; Kelly and Metaxas 2007;

Tyler et al. 2008).

The present study demonstrates that L. tevnianus matures at a smaller size than C.

porifera and has higher fecundity at any given size. These results are consistent with

Pendlebury's (2005) observed differences between other Lepetodrilus spp. and

peltospirids on the EPR. We do not know whether Lepetodrilus spp. reproduce at an

earlier age than peltospirids because the size-to-age relationships in these species are

unknown. Still, elevated levels of fecundity at small sizes are indicative of pioneer or

weed species (Barrett 1992), leading to an expectation that Lepetodrilus spp., but not

peltospirids, should be pioneer colonists at EPR vents. Observations following the 2006

eruption (Mullineaux et al. 2010) show this not to be the case, as the early colonists

included a peltospirid (C. porifera), but not the full suite of pre-eruption Lepetodrilus

species. The difference between years in the size-fecundity relationship for L. tevnianus

is difficult to interpret, given the low number of individuals sampled.

Another difference worth noting between the two species is the preponderance of

small (< 4.0 mm) individuals in L. tevnianus but not C. porifera populations, despite a

size at recruitment of< 0.4 mm for both (179 pm in L. tevnianus and 290-325 pm in C.



porifera: Mills et al. 2009; War6n and Bouchet 1993). If some of the smallest (<2.0 mm)

Lepetodrilus individuals are species other than L. tevnianus, then our calculations of the

proportion of the population that are reproductive (22%) would be an underestimate.

The average size of C. porifera individuals was significantly larger in 2007 than

2006 (Fig. 5) and this apparent absence of new recruits in 2007 could be a consequence

of a high juvenile growth rate, a high juvenile mortality rate or discontinuous recruitment.

We think that the last possibility, discontinuous larval recruitment, is most likely because

it is consistent with measures of larval supply of C. porifera after the 2006 eruption.

Their larval numbers were high shortly after the eruption in July 2006, but had declined

substantially by October 2006 (Mullineaux et al. 2010). Thus, at the time of our

collections in December 2006 and November 2007, larvae of C. porifera may not have

been recruiting in large numbers. All individuals from both years were large enough (>

5.4 mm in females and > 4.2 mm in males) to be reproductively mature, with the single

exception of the 2.5 mm male collected in 2006, so the coarse resolution in our estimate

of size at first reproduction did not affect calculations of reproductive maturity at the

population level.

Our results indicate that C. porifera and L. tevnianus are quasi-continuous

reproducers with only slight (but significant) variations in oocyte size distributions

between years. Because these variations were slight, we suspect that variation in larval

supply due to physical processes may have played a role in these species' colonization

after the 2006 EPR eruption. Larval abundance and supply can be temporally variable at

vents due to physical oceanographic transport (Metaxas 2004; Mullineaux et al. 2005;

Adams and Mullineaux 2008), and the pioneer colonists after a major disturbance may



simply represent whatever species are available in the plankton at that time. Variation in

larval supply could be caused by reversals in along-axis currents (e.g., Chevaldonn6 et al.

1997; Marsh et al. 2001; Adams and Mullineaux 2008) or the passage of mesoscale

eddies (e.g., Adams 2007). If this type of oceanographically-driven variation in larval

supply determines the species composition of pioneers, the interaction between early-

arriving species' reproductive characteristics and episodic oceanographic events may be a

principal driver of the successional trajectory in nascent vent communities.
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Figures

Fig. 1 Images of adult Ctenopeltaporifera (a) and Lepetodrilus tevnianus (b). Dotted line

(b) indicates shell length measurement in L. tevnianus .



Fig. 2 Photo of sandwich (10 cm on a side) being deployed by DSVAlvin.



Fig. 3 Frequency of oocyte diameter (pm) for Ctenopelta porifera (a, b) and Lepetodrilus

tevnianus (c, d). Samples from December 2006 (unfilled bars), and November 2007

(filled bars). Values pooled from multiple individuals; shown with standard error. N is

the number of individuals sampled and n is total number of oocytes. Arrows indicate size

of onset of vitellogenesis.
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Fig. 4 Fecundity (number of vitellogenic oocytes) over a range of shell lengths for

Ctenopelta porifera (a) and Lepetodrilus tevnianus (b). Samples from December 2006 (P-

vent, unfilled squares) and November 2007 (P-vent, filled squares; V-vent, filled

triangles). n = 10 individuals from each date. Exponential regressions generated for

December 2006 (dashed lines) and November 2007 (solid lines). Size at first

reproduction represented as a star.
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Fig. 5 Frequency of gastropod size in populations of Lepetodrilus tevnianus in December

2006 (a), Ctenopeltaporifera in December 2006 (b), and C. porifera in November 2007

(c). Individuals from P-vent (unfilled bars) and V-vent (filled bars).

a

e 2a
0.1

0.3

0.2S

01

O.OS

0

L tvnienus

N - 2683

Dec. 2006

0 1 3 4 5 6 1 6 9 10 1L

C. poWI6

Nx 48

Dec. 2006

0 1 i 3 4 to 9 7 0 9 10 1

a POAYW*Nov.2007

021 N= 16 (P-vent)

N = 28 (V-vent)

0S L h
0 1 4 3 4 1 19t0 1:

Shell Length (mm)



Tables

Table 1 Ctenopeltaporifera and Lepetodrilus tevnianus individuals collected in

December 2006 and November 2007 from P-vent and V-vent sites. Total is number

recovered on sandwiches. A subset of individuals used for each analysis (reproductive

morphology RM, size at first reproduction SFR, oocyte size frequency OSF, and

fecundity F) was selected haphazardly from within a size range (Selection criterion).

Shell length analyses (SL) used all individuals (All). Additional criterion for all

reproductive analyses was that sections were whole and undistorted. Sex of selected

individuals was categorized as Male, Female or unknown (Unk).

Date Site Species Total Analysis Selection Number selected
criterion Male Female Unk

2006 P C. porifera 48 RM 5.0-10.0 mm 10 16
SFR < 5.0 mm 2 2
OSF 7.0-9.0 mm - 8

F 6.0-10.0 mm - 10
SL All 10 17 21

P L. tevnianus 2683 RM 3.5-7.0 mm 14 15
SFR < 3.0 mm 5 5
OSF 3.5-7.0 mm - 8

F 3.5-7.0 mm - 10
SL All 17 17 2649

2007 P C. porifera 16 RM 6.0-10.0 mm 4 12
OSF 7.0-9.0 mm - 4

F 6.0-10.0 mm - 6
SL All 4 12 16

V 28 RM 5.0-10.0 mm 7 7
F 6.0-10.0 mm - 4

SL All 7 7 14

P L. tevnianus 91* RM 6.0-10.0 mm 11 11
OSF 3.5-7.0 mm - 5

F 3.5-7.0 mm - 10
* Individuals subsampled haphazardly from total on sandwiches to match SL range (2.0-7.0 mm) from
2006. This subsampling precluded analysis of size frequency distribution (SL) for L. tevnianus from 2007



Table 2 Maximum likelihood (ML) estimates of oocyte diameter parameters from the

EM mixture model analysis for C. porifera and L. tevnianus. Oocyte diameter data (log-

transformed; n = total number of oocytes) pooled among individuals from 2006 and 2007

samples. Estimates are mean [t and variance a2 (log [tm) for the null hypothesis Ho (that

log oocyte diameter follows a single normal distribution), and means i and rt2 (log sm),

standard deviation a (log [tm), and probability n that an observation belongs to the first

component, for the alternative hypothesis H (that log oocyte diameter follows a mixture

of two normal distributions with the same variance). Log L. and log L, are the

maximized log likelihoods under H 1 and Hi, respectively.

Species Year n a logLo p, p2 a n logLi
C. porifera 2006 721 4.7 0.4 234.3 4.4 5.0 0.30 0.44 242.0

2007 448 4.8 0.4 203.8 4.4 5.0 0.27 0.35 210.3

L. tevnianus 2006 1098 4.3 0.4 470.5 4.0 4.6 0.27 0.49 484.2
2007 399 4.3 0.4 203.1 4.0 4.4 0.30 0.49 203.4

Table 3 Maximum likelihood (ML) estimates of oocyte diameter parameters from the

EM mixture model analysis, fit under the null hypothesis Ho, that the parameters of the

two-component normal mixture distribution were the same in both years for C. porifera

and L. tevnianus. Data transformations and parameters as in Table 2.

Species pI p2 a a logL.
C. porifera 4.4 5.0 0.29 0.39 444.0
L. tevnianus 4.0 4.6 0.27 0.50 682.4



Table 4 Summary of known reproductive traits of hydrothermal vent gastropods

including members of the families Lepetodrilidae (Lepetodrilus atlanticus, L. fucensis, L.

cristatus, L. elevatus, L. ovalis, L. pustulosus, L. tevnianus) and Peltospiridae

(Rhynchopelta concentrica, Ctenopelta porifera). Oocyte diameters listed as maximums

or ranges. EPR East Pacific Rise, MAR Mid-Atlantic Ridge, JdFR Juan de Fuca Ridge,

Exp Explorer Ridge, GR Galapagos Rift.

Species Date Locatio Oocyte Size (Im) Source
n

Onset of Vitellogenic
vitellogenes (Max.)
is

Family
Lepetodrilidae
L. atlanticus

L. fucensis

L. cristatus

L. elevatus

L. ovalis

L. pustulosus

L. tevnianus

Family Peltospiridae
R. concentrica

C. porifera

March-
April 2001
July 2001
July -
Sept. 1984
March
1984
Dec. 2001
April -
May 1979
Dec. 2001

March
1984
Dec. 2001
April -
May 1979
Dec. 2006

Dec. 2001
April -
May 1979
Dec. 2006

MAR

JdFR,
Exp

EPR

EPR

EPR

EPR

EPR

EPR

EPR

35-40

35-45

30-35

30-35

30-35

30-35

35-40

50-60

60-70

92

60-110
100-140

140-150

84
74-95

87

230
84
83-204

130-150 (210)

90 (184)
132-152

230-250 (330)

Pendlebury
(2005)
Kelly and
Metaxas (2007)
Fretter (1988)
Fretter (1988)

Pendlebury
(2005)
Berg (1985)
Pendlebury
(2005)
Fretter (1988)
Pendlebury
(2005)
Berg (1985)

This study

Pendlebury
(2005)
Berg (1985)
This study



Appendix A - Mixture-model analysis of oocyte size

In order to determine whether different cohorts could be distinguished in the size

distributions, an Expectation-Maximization (EM) algorithm (McLachlan 1987;

McLachlan and Peel 2000) was used to conduct a mixture-model analysis on the data to

test for two normal distributions of oocyte size. As an initial step, for both C. porifera

and L. tevnianus and both sampling years, we tested the null hypothesis Ho, that log

oocyte size follows a single normal distribution against the alternative hypothesis H, that

it follows a mixture of two normal distributions with the same variance. The likelihood

ratio (LR) test, which is described in McLachlan and Peel (2000), involves fitting by

maximum likelihood (ML) under both hypotheses and forming the LR statistic

- 2(log L, - log L,) where log L and log L1 are the maximized log likelihoods under H.

and H, respectively. Under H, the model contains two parameters: the mean [t and

variance 02. The ML estimates of these parameters are simply the sample mean and

variance (with divisor n). Under H, the model contains four parameters: the means si

and 2 of the two components, their common variance (32, and the probability X that an

observation belongs to the first component. The ML estimates of these parameters can be

found by the EM algorithm (McLachlan 1987). We then proceeded to test for both

species the null hypothesis H, that the parameters of the two-component normal mixture

distribution were the same in both years (for each species) against the alternative

hypothesis Hi that they differed.

The oocyte size distributions (pooled over multiple individuals) of C. porifera

(Figure 3a, b) and L. tevnianus (Figure 3c, d) appeared to have more than a single

normally distributed size-component. The mixture-model analysis demonstrated evidence



of two size-components in the oocyte size frequency data for both species (Table 2),

possibly reflecting two cohorts of oocytes. For this size range of samples, the likelihood

ratio (LR) statistic under H. has an approximate chi squared distribution with 2 degrees

of freedom (McLachlan 1987). Using this approximation, Ho is rejected (P <0.01) in all

cases except for L. tevnianus samples from November 2007. We therefore assumed

conservatively that in all cases the distribution of log size follows a two-component

normal mixture. This is a conservative assumption in the sense that if it is incorrect, it

will not affect the validity of the test. For both species the null hypothesis Ho, that the

parameters of the two-component normal mixture distribution were the same in both

years, was tested against the alternative hypothesis H. The ML estimates of the

parameters under H1 are given in the Table 2 and the overall log likelihoods - 452.3 for

C. porifera and 687.6 for L. tevnianus - are given by the sum of the log likelihoods in the

appropriate rows. In the case of fitting under Ho, the LR statistic has an approximate chi

squared distribution with 4 degrees of freedom. The results for fitting under H are

shown in Table 3.

The null hypothesis was rejected for both species (P = 0.002 for C. porifera and P

= 0.03 for L. tevnianus). It is worth pointing out that, as a result of the large sample sizes,

this test is quite powerful and even small differences among the parameters may lead to

the rejection of H. It appears in this case that the main difference between years is in the

proportion of the first component of the mixture distribution for C. porifera.



Appendix B - Comparison of fecundity-size relationship between years

For both Ctenopelta porifera and Lepetodrilus tevnianus, we used a regression model

assuming a negative-binomial distribution to test for statistically significant differences of

fecundity between years. Let Yj, be the number of vitellogenic oocytes produced by

individualj (= 1, 2, ... , n) in year t (t = 1, 2) and let xj, be the shell length of this

individual. We assume that Yj, is related to xj, by the regression model:

InY, = Po, + A, xi,+e1 , (1)

where e, is a normal error with mean 0 and variance a 2 . Interest centers on testing the

null hypothesis H that the unknown regression parameters p, and p1, are the same in

both years against the alternative hypothesis H, that they are different.

The F statistic for testing H, against H, is:

F (RSSO - RSSI) / 2 (2
RSS, /(n -4)

(Seber and Lee 2003) where RSS is the residual sum of squares from fitting the model

in (1) by ordinary least squares to the data pooled over the two years and RSS, is the

residual sum of squares from fitting the model to the data for each year separately. Under

HO, F has an F distribution with 2 degrees of freedom in the numerator and n - 4 degrees

of freedom in the denominator. For C. porifera, the estimated regression parameters for

each year separately are:

POI =0.42 A = 0.65

P2 = 0.57 2 = 0.62

and the estimates for the pooled data are:



p, = 0.91 A, = 0.59

The value of F is 0.13 with a P value of 0.88. In this case, the null hypothesis cannot be

rejected. For L. tevnianus, the analogous results are as follows:

p60 = 2.45 pl, =0.61

p602 = 3.25 p 2 = 0.45

,0 = 2.45 fl= 0.60

In this case, the value of F is 5.51 with a P value of 0.02, so that the null hypothesis can

be rejected.



Appendix C - Reproductive morphology

Ctenopelta porifera

The gonads were located in the posterior region of the animals. The ovary occupied

approximately one-fourth of the total body length and was located predominantly on the

right side of the body as viewed dorsally, just posterior to the foot muscle. The stomach

and digestive gland lay to the left of the ovary and extended just over the left foot muscle

(Fig. Ala). Deeper, more ventral sectioning revealed that the ovary extended towards the

gills. At its dorsal-most point, the ovary stretched posteriorly away from the center of the

body into a "tail" shape that was visible macroscopically when the shell had been

removed.

The location of the gonad in males was predominantly on the right side of the

body, posterior to the right foot muscle, like the ovary of the female. However, deeper in

the body, the spermatozoa generally extends further towards the gills than does the ovary.

The testis is composed of multiple elongated seminferous tubules (acini) with

spermatagonia and spermatocytes lining the edges of the tissue walls. The spermatids

cluster in the center of each acinus with their tails staining the center pink (Fig. A2a).

Lepetodrilus tevnianus

Cross-sectioning revealed that L. tevnianus also is gonochoristic. In immature

individuals, gonads were difficult to distinguish from the digestive gland. In more mature

specimens, the gonad was a distinct structure and expanded laterally towards the right

side of the body. The gonad of both females and males was located in the same general



area of the body, dorsal to the musculature of the foot, ventral to the stomach and

digestive glands.

Light histological sections of L. tevnianus stained with haematoxylin and eosin

(Fig. AIc) illustrate that the ovary occupies a large volume of the gastropod

(approximately one-third) and that oocytes are tightly packed throughout the ovary. In

dorsal-most sections, only a small portion was visible at the posterior end of the body.

Deeper sections reveal the ovary was visible on the right side extending into the visceral

mass and mantle cavity, underlying the stomach and digestive glands.

The general shape of the gonads in males, and the location relative to the stomach,

digestive gland and foot, were similar to those of the ovary in females (Fig. A2b). The

testis takes up approximately one third of the body volume and is composed of acini.

Spermatagonia and spermatocytes line the walls of the testicular acini. Due to their high

concentration of nucleic material, spermatagonia, spermatocytes and spermatid nuclei are

stained dark purple in haematoxylin and eosin stains. As the spermatocytes develop, they

move towards the center of the tubule where they divide into spermatids. The mature

sperm collect in the central region (stained pink in Fig. A2b) of the acini for transport out

of the gastropod.



Fig. Al Light histology of adult female gonads in Ctenopeltapornfera (a, b) and

Lepetodrilus tevnianus (c). (a) Section of ovary showing oogonia (00), pre-vitellogenic

oocytes (PV), vitellogenic oocytes (VO), an oocyte nucleus (N), and stomach (S). (b)

Visceral mass including ovary (with pre-vitellogenic (PV) and vitellogenic (VO)

oocytes), foot muscle (FM) and stomach (S). (c)Visceral mass including digestive gland

(DG), stomach (S), foot muscle (FM) and ovary (with an oocyte nucleus (N), oogonia

(00), pre-vitellogenic (PV), vitellogenic (VO) oocytes).

...........



Fig. A2 Light histology of adult male gonads in Ctenopelta porifera (a) and Lepetodrilus

tevnianus (b). (a) Section of visceral mass showing testis (T), digestive gland (DG),

connective tissue (CT), spermatocytes (SPC), and spermatozoa (SPZ). (b) Section of

visceral mass showing testis (T), digestive glad (DG), stomach (S), spermatozoa (SPZ),

and foot muscle (FM).
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