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ABSTRA CT

Multi-scale surface interaction methods have been studied to achieve optimal locomotion over

surface features of differing length scales. It has been shown that anisotropy is a convenient way of

transferring an undirected force to a preferred direction or movement. In this thesis, the fundamentals of

friction were studied to achieve a better understanding of how to design multi-scaled robotic feet that use

anisotropy for terrestrial locomotion. Static and kinetic friction coefficients were found for novel test

geometries under varying load conditions. The test geometries were manufactured with materials of

variable durometer and were tested using unconventional rheometry methodology. Test results were then

compared to standard friction laws. As predicted, the effects of contact area were shown to have an effect

on the friction forces experienced by the softer materials. The contact area effects were then modeled as

Hertzian contacts for a given material.
Verification of the area dependencies for the materials with adhesive effects was performed for the

samples used in the friction tests. The samples were subjected to varying compressive force and images of

the corresponding contact areas were obtained using an inverted microscope. The microscope images were

then processed using MATLAB's image processing toolbox to find the actual contact area for the samples.

The contact area results were shown to be in accordance with Herztian contact principles.

The effects of varying surface roughness were also studied for a given anisotropic arrangement of

bristles. The array of bristles was used to provide propulsion to a controllable robot called BristleBot. The

untethered nature of the robot allowed for unhindered velocity and force measurements that were used to

analyze the effects of surface roughness. The force input for the robot was provided by two vibration

motors that created an excitation which was then translated to horizontal movement by the anisotropic

formation of the bristles. It was found that the BristleBot was able to achieve optimal locomotion when

roughness conditions were minimized. Results of the anisotropic friction and adhesion tests were used to

improve footpad development for soft robotic platforms.

Thesis Supervisor: Anette E. Hosoi

Title: Professor of Mechanical Engineering
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CHAPTER

1
INTRODUCTION

Contact mechanics take part in every aspect of the world around us. The way

objects interact with one another influences everything from material properties to

dynamic associations. Without contact mechanics, simple actions such as walking or

picking up a pencil would be impossible. It's easy to see why studying contact mechanics

is helpful in developing mobile robots; however, how should one choose the best type of

contact for a specific application? To answer this question, the fundamentals behind the

different types of contact must be studied.

Nature has been perfecting contact mechanics for millions of animals in

environments all over the world. Throughout history, researchers have been attempting

to mimic the different aspects of evolutionary locomotion. With each of these attempts,

developers must decide on the types of interactions between their device and various

surfaces. Surface-surface interactions for robotic locomotion can range from sub-micron-

scale to macro-scale. Macro-scale interface interactions can usually be defined by

fundamentals in mechanics while achieving sub-micron scale interactions usually involves

molecular forces as the primary foundation for contact effects. Combinations of surface

interaction mechanisms are typical in most biological systems that are successful in a

variety of terrain types. These mechanisms are often combined in parallel or series to

achieve adaptability over a wide range of surface types. One example of combined



surface interactions in nature can be seen in grasshoppers. Their legs allow then to walk

and jump on large scale surface profiles while sticky pads on their feet allow for successful

locomotion on surfaces that are inclined with varying roughness.

Within the topic of contact mechanics, coulomb friction is one of the primary

principles. Typical examples from physics include boxes sliding down slopes or racecars

going around turns, with the force of friction in each case determined by a material-based

coefficient of friction and the applied normal force. While coefficients of friction in

conjunction with normal force measurements can be helpful for predicting frictional forces,

they do not tell you how or why the surfaces are interacting in such a manner. A closer

look at the surface interface shows us that the frictional forces are determined by the

mode in which the contact surfaces interact and to what degree the contact is made.

Dispersive adhesion is one type of contact that involves the interaction of two materials

through van der Waals forces. Adhesion can also take other forms such as mechanical

adhesion (filling pores), chemical adhesion (atomic bonding), and electrostatic adhesion

(electrical charge attraction) [1].

The role of contact interactions in mechanical devices can determine the

effectiveness and efficiency of the overall design. The future of mechanical design looks

towards the development of autonomous robots that interact with their surroundings in a

natural and unobstructed manner. Robotic locomotion will play a critical role in

minimizing human risk factors by substituting specialized robotic deployment into

environments that are dangerous or inaccessible to humans. Current field robots

underperform in field tests and typically last only 6-20 hours without incident according

to a meta-study by Carlson and Murphy [2]. Unreliability is often caused by variable

environments that have boundaries that are not in-line with a robot's operating range. As

the world becomes more and more industrialized, the need for efficient machines and



actuators will proliferate the requirement for well-designed surface interactions and

specialized contact designs.

1.1 Approach: Multi-scale Surface Interaction

Although there have been many developments in the field of robotic locomotion,

there has been a lack of focus on the critical surface interactions that take place between

the machines and their environments. Many robots have focused on different gaits of

movement, attempting to mimic similar movements made by animals. The major two

divisions of terrestrial transportation for animals fall into the categories of legged and

limbless locomotion. While legged locomotion can provide tremendous landscape

adaptability for a given length scale, its overall complexity requires greater development

and effort to pursue. Limbless locomotion allows for superior stability, traction methods,

and improved redundancy. Without protruding appendages, limbless robots also have

improved sealing methods. Snake-like locomotion lends itself to improved functions in

exploration, hazardous environments, inspection, and medical interventions. Limbless

locomotion can be broken down into multiple modes that include two-anchor movement,

rolling methods, and pedal locomotory waves. Other forms for limbless locomotion

employed by highly successful snakes include lateral undulation, side-winding, and

rectilinear locomotion.

The purpose of this thesis is to investigate and encourage development of multi-

scale robotic surface interactions. Specifically, the proposed solution employs limbless

motion methods incorporated with specialized material selection to improve multi-material

contact success. In a world of miniaturized electronics and applications, a demand for

smaller robots and propulsion methods has been on the rise. Traditional rotary and wheel-

based movement methods do not meet the physical demand of such small-scale endeavors



due to motor, friction, and contact constraints. There have been many robots that have

successfully achieved limbless locomotion such as Carnegie Mellon's serpentine based

robot [3]; however, these robots require modifications to achieve optimal locomotion over

a given surface.

Figure 1: Snake robot with additional skins to match a variety of surface treatments. Image
reproduced from [3].

To achieve successful contact interactions over a wide variety of surfaces, a wide

variety of contact techniques must be used. The proposed approach to achieve

locomotion over a diverse range of surface structures involves utilizing contact mechanics

principles with differing surface interaction scales. A biomimetic example of such

technique can be seen in Sangbae Kim's Stickybot [4].



Figure 2: StickyBot's foot with multi-scale interaction features. Image reproduced from [4].

At the largest scale of surface interaction, the gecko has highly compliant limbs

that are moved using actuators. At the centimeter scale, the feet are divided into toes

that can conform to surface protrusions and inclusions. The micrometer scale interactions

are handled with setae that are located on the bottom of the toe's. The tips of the setae

are further divided into spatula that can interact with surface geometries at the <500

nanometer scale [4].

To achieve successful locomotion over varying surface forms, a combination of

interaction modes will be used including friction, adhesion, and mechanical interactions.

The shape, size, and mechanical interaction methods used for locomotion determine the

range over which an appendage can be effective for transmitting movement force over a

surface. The hierarchy of physical interactions with features of varying scales will be used

to successfully interact with the relevant length scales of variable surface environments.

The physical constraints for each type of contact interaction method will be matched with

geometry specifications that will provide for the most effective contact methods.



1.2 SQUISHbot: A Soft Robot with Soft Feet

The inspiration for the work presented in this thesis was generated by a DARPA

program initiative geared towards creating "a new class of soft, flexible, meso-scale mobile

objects that can identify and maneuver through openings smaller than their dimensions

and perform various tasks." MIT's project team was based on a project called

SQUISHbot and collaborated with researchers from Boston Dynamics. The project

leaders for MIT consisted of Professor Martin Culpepper, Anette Hosoi, Dr. Karl

Iagnemma, and Professor Gareth McKinley. Boston Dynamic's efforts were led by Robert

Playter, who was co-PI of the project with Anette Hosoi.

Figure 3: SQUISHbot with active-fluid joints. String is attached to the spooler motor.

The DARPA ChemBot program required each team to work towards a unified set

of goals to be met by a "soft" robot. The objectives set for the ChemBot included:

a.) Travel a distance of 5 meters with a velocity of 0.25meters/minute

b.) Achieve a 10-fold reduction in its largest dimension



c.) Traverse through a 1cm opening and reconstitute its original shape in 15

seconds [5].

Figure 4 shows SQUISHbot traversing through a 1.7cm hole using its prismatic joint and

anisotropic footpads.

Figure 4: SQUISHbot traversing through hole using its prismatic joint & anisotropic footpads.

Additional capabilities for each robot such as carrying additional payloads were

considered to be advantageous [5]. At the time this thesis was written, MIT's

SQUISHbot team had achieved:

1. Crawling through a 1.75cm hole

2. Crawling at 17.5 mm/sec

3. Turning while crawling

4. Crawling on various surfaces including slate, concrete, fiberglass, rubber, and

aluminum.

5. Climbing a 16 degree incline.



Throughout the SQUISHbot's design and manufacturing process, it was well known that

the robot's surface interactions would be crucial in achieving many of the required tasks.

To maintain a compact profile, a prismatic joint comprised of a 3D printed "designer"

foam was used in force translation.

Flexible material allowing for
compression and spring return

Figure 5: Prismatic joint for inchworm gait.

The actuation created by a spooler motor was combined with an anisotropic foot design.

A stiff, slippery material was used on one side of the foot pad while on the other side a

flexible, high-friction material was used. The foot pad had a connection neck that allowed

the pad to rotate depending on the direction of the actuation. A 3:1 friction coefficient

ratio was achieved with the footpad. The materials and mechanical action used in the

foot pads will be further described in this thesis. The robot also employed active fluids

which were utilized in turning and payload-carrying operations. Solder-locking joints were

used to create a directional preference in the robot which could be activated by simply

heating the joints with heated wires.

-0



1.3 Specialized Contact Mechanics in Robotics

With project SQUISHbot as the driving force for development of new robotic

locomotion methods, anisotropic friction and material specialization were selected as a

focal point of robot-surface interactions. SQUISHbot utilized low-profile foot pads that

combined a mechanical ratcheting action with a multi-material geometry that contacted

the traversed the surface in a manner that was dependent on the direction of the robot's

movement. The differences in the coefficient of friction between the two materials on the

footpads were used to induce a change in the frictional forces experienced by the robot,

thus creating unidirectional motion. The foot pads were fabricated using the 3D printing

methods described in section 3.1.

There were many benefits to utilizing the 3D printer for the foot fabrication

process. The Objet printer allowed for multi-material printing methods that incorporated

materials with differing coefficients of friction into the models. To obtain fine normal

force and frictional force measurements, a rheometer was used unconventionally by

attaching the 3D printed foot pads to the rheometer measurement fixtures. The

rheometer allowed us to obtain normal and tangential force measurements and also

allowed us to apply constant forces over the testing area. The rapid prototyping methods

also allowed for feet to be printed in an easy-to-test manner that was suitable for analysis

in the rheometer. Since the rheometer used circular plates, the footpads were printed in a

circular pattern that could be fitted to a flat geometry. The frictional forces experienced

by the footpads in the circular pattern moving in a circular path translated to the same

frictional forces that would be experienced for a linear path for a given applied normal

force. The rheometer allowed for variation in applied normal forces while moving the

samples at a given velocity. The low-profile (<1cm) requirement for the footpads was

met by the 3D printer's ability to print scaled-geometries that were created in



SolidWorks. The printer's versatile material selection also allowed us to make changes in

the flexibility at the rotational "neck" of the pads by selecting materials with different

elastic modulus values. Figure 6 shows an example of the atisotropic footpads used on

SQUISHbot.

Figure 6: Actual anisotropic footpads used on the SQUISHbot robot.

For future robotic applications, the anisotropic properties and multi-material and

directionally dependent geometries may be tuned for specific environments. Vibrational

inputs have been shown to be a successful method of exciting directionally dependent

geometries. For ciliary motion, vibrations that travel along thin, flexible beams can

create directionally dependent forces that are based on the beam properties. These

beams, which are sometimes called bristles, are used to translate the vibrational motion

into propulsion by interacting with surface geometries. As the vibrations cause the

bristles or traveling body to bounce up and down, bristles situated with a directional

preference create an anisotropy that results in a net driving force for forward motion.

Depending on the application at hand, the bristles can be tuned to meet the needs of

varying surface geometries, through varying bristle length, thickness, and material

selection. Bristle geometries can also be modified further with bristle-tip modification to

M



insure that the interacting surface-bristle materials achieve the optimal locomotion result.

There have been a few projects that have employed ciliary motion as a core method in

creating a driving force. One example for ciliary movement can be seen with linear

actuators developed by Okinawa National College of Technology, which utilized bristles

on either side of an actuated beam. As the forces translated from the bristles to the

center beam with directional preference, this caused the beam to move in a chosen

direction. Ciliary motion has also been used in snake robots developed for the "Special

Project for Earthquake Disaster Mitigation in Urban Areas", which utilized bristles

around the entire surface of the robot to provide continuous force translation regardless of

the robot's rotated-plane state [6].

Figure 7: Active flexible cable driven by ciliary vibration mechanism. Image reproduced from [6].



CHAPTER

2
CONTACT MECHANICS FOR

ANISOTROPY

Successful force transmission between the robot and its contact surfaces is a critical

function needed to achieve multi-scale terrestrial locomotion. Anisotropic mechanisms

can be used to convert undirected force inputs into focused desired output. Desired

outputs can be manipulated through material and mechanical design selection optimized

for specific conditions. In this chapter, the fundamentals of friction and adhesion

mechanics are studied to insure optimal anisotropic feet functionality.

2.1 Coulomb Friction

As previously mentioned, friction plays a major role in all forms of terrestrial

movement. Without friction, there would be no traction between interacting objects,

hindering any attempt of lateral movement. Depending on the scale of the interfacial

interaction, the effects and physics behind friction can vary greatly. Typically, the basic

properties of friction can be broken down into three laws: Amontons' 1st law, Amontons'

2 nd law, and coulomb's law of friction. The fundamental concepts behind the Amonton's

first and second law are that the force of friction is directly proportional to the applied

load:



Fn = pLN (1)

The force of friction is independent of the apparent area of contact, respectively [7]. Here,

F, is the experienced frictional force, p is the coefficient of friction, and N is the applied.

Equation (1) states that there is a coefficient of friction that directly relates the

experienced frictional force to the applied normal force, regardless contact area. The

reasoning behind this phenomenon is that the area of real atomic contact between two

surfaces is usually proportional to the load. It should also be noted that the coefficient of

friction is typically independent of velocity, except under circumstances where the sliding

velocity is very low and thermal activation energies come into play [8].

2.1.1 Static vs. Kinetic Friction

With most material interactions there are two values given for the coefficient of

friction: static and kinetic coefficients of friction. The static coefficient of friction is

related to the amount of tangential force applied to a stationary object with a surface in

contact with another stationary surface. As more and more force is applied to the object,

eventually it breaks free and experiences sliding motion. Once the object is sliding, a

force is still required to keep the object sliding. This force required for sliding is related

to the kinetic coefficient of friction. Typically, the static coefficient of friction has a

higher value than the kinetic coefficient of friction. Figure 8 shows the different

coefficient regimes [9]:



Static Regin Kinetic Regin

Resistive |]||
Frictional
Force

Applied force

Figure 8: Different coefficient regiemes for varing frictional forces given an applied load. Image

reproduced from [9].

It should be noted that there is a transition between static and kinetic friction where

stick-slip motion may occur. The amount of time that an object remains in the stick-slip

regime is dependent on the velocity of the object. During the stick-slip regime, there are

often spikes in the coefficient of friction associated with a transition between static and

kinetic friction. Stick-slip is often the cause of material "chattering" and can be harmful

to precision devices such as bearings.

2.1.2 Area Independence

While it may seem counterintuitive, frictional forces between solid bodies are

considered area independent. The reasoning behind this is that as the contact area

increases, the pressure between the two surfaces for a given force is decreased. The

increased frictional effects of a larger contact area are counteracted by the reduction of

pressure. Since pressure is defined as a force divided by the area of contact, the resulting



frictional forces are dependent only on the frictional coefficient and the applied normal

force.

Figure 9: A scale pulling a plank demonstrates that frictional force is approximately contact area

independent. Image reproduced from [10].

It should be noted that it is not well understood why the force of friction resulting

from nano or micro-scale asperity contacts depends on the applied normal force. Such

contact scales require in-depth comprehension of the complex frictional behavior between

the fundamental mechanisms underlying the atomic interactions [11].

2.1.3 Material Flipping

For the SQUISHbot project, differences in material coefficients were exploited for

the robot's 3D printed feet. The two different types of materials used on the footpads

had very different coefficients of frictions. Anisotropic behavior was achieved through

flexible "stalks" that allowed the robot to experience low friction conditions while moving

forward and high friction conditions when the spooler motor recoils. The design had two

main features, a low-durometer polymeric material and a "finger nail" like structure that



was a hard polymeric material. As illustrated in Figure 10, switching the surface of the

"toe" in contact with the traversing surface from a hard to soft allows for a transition of

motion from sliding to sticking.

Direction of Movement Direction of Movement

Slides Easily

Low Coefficient of Friction
(Hard Material)

Does Not Slide

High Coefficient of Friction
(Soft Material)

Figure 10: Illustration of material flipping mechanism used to create anisotropic feet for

SQUISHbot.

Figure 11 shows the actual foot pad design used on SQUISHbot. The soft material was

made of TangoPlus while the hard material was made of TangoWhite (material properties

can be seen in section 3.1).

Stiff, slippery material

Flexible, high
friction material

Figure 11: (L): Photo footpads used on SQUISHbot (R): Breakdown of 3D model for a single

pad.

/
Hard Soft



2.2 Adhesion

In general, soft solids have greater friction than hard solids when in contact with

the same surface. Soft substrates, such as rubber, have surfaces that are compliant to

inclusions and protrusions which allows for a larger area of contact. Adhesion is typically

used to describe the attraction between two dissimilar materials while cohesion is the term

used for similar material species. It should be noted that the increased friction for softer

materials is not a product of jamming interactions but rather the van der Waals forces

between the molecules that make up the surfaces. This has been demonstrated in

experiments by Chaudhury and Whitesides, where the effects of adhesion on vertically

lifted hemispherical contacts have been studied [12]. Surface energy can be used to relate

a material's adhesive properties, which fall in a variety of categories ranging from

chemical, dispersive, and diffusive adhesion, to its surface area. The work per surface area

required to separate two adhered materials is dependent on the work to break each bond.

Due to the related bond energies, adhesive hysteresis is often a characteristic displayed as

a result of time-dependent bond formations and restructuring [13]. Adhesive properties

are typically used when it is desired to "stick" one object to another, as in the case with

tape or stickers but can also be used for force transmission between two objects.

2.2.1 Area Dependence and Theories

At smaller scales, the effects of surface area become more important. As

mentioned before, attractive van der Waals forces can create a temporary bond between

molecules of two surfaces in contact. Soft materials such as rubber or PDMS increase the

effects of the surface interactions. Depending on the mode of contact, equations have

been developed to calculate the contact area of a hemisphere given an applied force. The



effective contact modulus can be calculated using the elastic modulus and Poisson's ratio

of each surface material [14].

1 1-v 1
2  1-v 2

2
-- + (2)

Ec El E2

Where vi and vi are Poisson's ratio for each material, E1 and E 2 are the elastic modulus

for each material, and Ec is the overall effect contact modulus. The effective radius for

the two materials used in the Hertzian contact and JKR equations can be calculated as

follows [15]:

1 1 1
-= -+-(3)

Rc R1  R2

Where R1 is the radius of the tested hemispherical samples described in section 3.1, R2 is

the surface to which the hemispheres were applied, and Rc is the effective radius. For the

flat base surface, R2 was said to have an infinitely large radius, therefore 1/R 2 = 0.

P, 5

2c 2c

Figure 12: Hemispherical sample layout.

Using the Hertzian contact rule, the radius of contact (c) can then be calculated using the

applied normal force, the effective radius of curvature, and the effective elastic modulus

[15].
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c=(3NRci 
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c E =3 (4)

Where N is the applied normal force. When the adhesion comes into play, the attractive

forces (contact energy) give way to the expression derived by Johnson, Kendall, and

Roberts [16]. Their equation takes into account the effects of the energy release rate (G)

between the two substrates:

c3 = N + 31rGRe + (6nGRcN + (3SrGRe) 2)1/2 ) (5)4Ec

Where G is defined as the energy release rate. The highlighted region represents the

supplementary effects of adhesion in addition to the Hertzian contact.

2.2.1.1 Tests by Others

With many biological locomotion methods dependent on adhesion for tangential

loading and force transmission, studies have been done to better capture the effects of

dissipation in such contact methods. Stickiness is a concept that has eluded scientists for

many years, often because of the many mechanical nuances that occur between the

interacting substances. Heterogeneities in a material are often be thought of as

performance weak spots; however the dissipative mechanisms in the substance can give

rise to extra adhesive energy in the bulk or at the interface. This can be seen in the

nonlinear traction curves as measured by Gent and his coworkers working with adhesive

joints [17].



Figure 13: Cavitation in thin films subjected to normal pulling off. Image reproduced from [17].

Waters and Guduru performed experiments on polydimethylsiloxane (PDMS)

samples and took measurements of contact area during mixed normal/tangential loading

conditions. They found that the strong dependence of the work of adhesion upon mode

mixity can be captured effectively by a phenomenological model in the regime where the

contact area stayed circular and the slip was negligible. They also noted rate effects that

were described by a power-law dependence upon the crack front velocity [18].
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Figure 14: Water's experimental data for tangential force vs. time at various constant normal

loads. Image reproduced from [18].

Chaudhury and Whitesides also looked at the direct measurement of interfacial

interactions between semispherical lenses of PDMS [12]. Both groups found a strong

correlation between the JKR theory and their deformation results. Figure 15 shows the

setup used in Chaudhury's compression tests and a corresponding test image.
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Setup description for Chaudhury's compression tests (Right) Image of PDMS

compression. Image reproduced from [12].

For tangential loading, the bonds formed by adhesion also have an effect on the

experienced frictional force. The tangential stress that can be withstood by these bonds is

known as the adhesive shear strength (S) and relates frictional force to the area of contact

(A) [21]:

F. = SA (6)

This equation largely applies to rubbery materials, where their high compliance

allows them to have a large contact area with an opposing surface. Forearm skin is one

example that was shown to exhibit a similar relation. Experiments performed by Koudine

and Barquins showed that the coefficient of friction for the forearm skin was related to

factors that included Hertzian contact and elastic modulus dependence [22].



2.3 Multi-scale Terrestrial Methods

The scale of surface-body interactions plays a major role in determining the

effectiveness of rectilinear motion. For robots that are required to transverse varying

surfaces and environments, the issue of dealing with multi-scale contact physics must be

addressed. At the smallest length scales, attractive van der Waals forces can play a major

role in the interaction between two surfaces. The magnitude of the attractive force is

determined by the area of contact between the two surfaces. As the surface roughness

length scales increase, significance of the van der Waals attraction decreases and the effect

of mechanical interactions becomes more prominent. Depending on the direction of

motion, fibers laid with a directional preference to produce anisotropy can exhibit

differing resistive effects. This is because the buckling parameters change for the fibers as

a function of load direction, thus changing the force required for the fibers to move from

one surface inclusion to the next. By changing the length and diameters of the fibers, the

buckling effects can also be modified to fit a specific terrain scale. Combining the effects

of adhesion and mechanical buckling parameters allows for the possibility of a wide

variety of terrain scales to be traversed. Once the scale of surface geometries is larger

than the characteristic scale of microstructural arrays, macro structures must be employed

to make optimal contact with the surface profile. Large-scale surface interactions are

usually on a similar order of magnitude as the traversing body.

2.3.1 Examples in Nature and Science

Most animals display some degree of multi-scale adaptation for mobility. Humans,

for example have arms and legs on the largest scale of surface interactions, fingers and

toes on the next scale, and finally skin and hairs on the smallest interaction scale. House



cats also utilize a number of physical mechanisms for increased mobility. The cats have

feet that include deformable footpads for traveling on level ground. For sloped or rough

terrains, the cats can also deploy claws with a variety of orientations. The footprint of a

lizard toe with a smooth substrate can be shown to have many scales of contact. As seen

in Figure 1, the longest length scale is -10 mm2 between the lizard toe and the substrate.

The lizard skin then has long fibers or hair known as setae which then have smaller fibers

on top of then. The larger hairs have a length of -200 im and a radius -3 im while the

1000's of smaller hairs on each long fiber has a length of -20 im and a radius of -. 1 im

[23].

Toe contact area
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Figure 16: The many scales of contact between a lizard toe and a smooth substrate. Image

reproduced from [23].

Spiders and other insects also exhibit varying ranges of contact scales and have

been used as a basis for bio-imitation robots. One example can be seen in Sameoto and

Menon's multi-scale compliant foot designs for use with a spider-inspired climbing robot

[24]. The robot employed macro, micro, and nano-structural design for the robot legs and



feet to achieve a greater range of mobility for space applications. Integration of multiple

types of contact methods improves the odds of successful contact over a greater variety of

surface types.

Figure 17: Sketch of integrated concept.

Advancements in fabrication techniques have made it easier to produce multi-

scaled features composed of multiple materials. Spinybot is a robotic example employing

multiple modes of traction methods, much like the house cat. The spines used on the

robot were primarily a function of the surfaces to be climbed, and not of the robot size.

Because of this, heavier robots using a similar spine structure would require more spines

per foot [25]. Figure 18 shows various microstructures that have been fabricated in

attempts at bio-imitation to achieve adhesion, traction, and climbing.



Capillary adhesion (leaf beetle)

Spinybot and RiSE
(insects)

Figure 18: Various microstructures that enable adhesion, traction and climbing.



CHAPTER

3
COULOMB FRICTION TESTING

Testing procedures were used to verify fundamental friction principles for a variety

of rapid prototyped materials and structures. Force input and output readings for the

samples were obtained through unconvential used of rheometry devices in order to achieve

accurate data. The fundamental contact mechanics described in chapter two were

compared to measured data. Proof-of-concept tests were conducted with the tested

materials to prove the viability of the anisotropic contact designs.

3.1 Materials

Rheometer tests were performed to find the material properties of the 3D printed

materials as well as to observe the effects of the sample shape on friction results. The

rheometer used in the tests was a Texas Instruments AR-G2. The standard 'AR

Instrument Control' panel was used for device input through a Dell Optiplex GX270. A

standard 40 mm diameter flat aluminum geometry was used with the printed samples so

that the applied forces would be evenly distributed. Prior to the tests, the rheometer was

calibrated for geometry and instrument inertial changes. Rotational mapping was also

performed to achieve better accuracy for low torque ranges. The base plate for the

rheometer was coated with a standard chromium material and was wiped clean prior to

use with ethanol and Kimwipes. The heater coils or peltier plate were not used during



throughout the tests. The rheometer height was zeroed prior to loading the samples onto

the geometry due to the compressibility of the samples. Normal forces applied to the

samples were maintained through the automatic calibration system in the rheometry

software. Due to the auto-regulation of the applied normal forces by the rheometer,

screen shots of the instrument status screen were used to obtain real-time normal force

measurements experienced by the samples, regardless of the set normal force input.

Table 1 shows some of the rheometer specifications:

Table 1: TI AR-G2 Specifications

Machine Property Value Units

Maximum Torque 200 mN.m

Torque Resolution 0.1 nN.m

Angular Velocity Range 0-300 rad/s

Displacement Resolution 25 nrad

Axial Force Range 0.005-30 N

To create the 3D printed samples, SolidWorks 2009 was used. The sample assembly files

were created in the standard part file format and then converted to two STL files, each of

which represented all of the features of one material. By saving all features of the same

material as one part, it simplified the STL loading and configuration process for the Objet

printer interface. Material printing properties were limited to the technical specifications

of the Connex500 3D printer. Table 2 shows the technical specification for the 3D printer

in the X, Y, and Z build resolutions along with the printers build layer and accuracy

rates.



Table 2: Connex500 Technical Specifications

Layer Thickness (Z-axis) Value Units

Horizontal build layer size 16 microns

Build Resolution

X-axis 600 dpi
Y-axis 600 dpi
Z-axis 1600 dpi

Accuracy

(Dependent on orientation/size) 0.004 - 0.01 inch

The Objet printer is capable of printing a variety of materials. Table 3 shows the general

material properties for the three main types of materials used in the tests. FullCure720

and VeroWhite were used for their high elastic modulus and support capabilities while the

TangoPlus was used for softer and "stickier" elements.



Table 3: Connex500 Material Properties and

Specificaitons

Property ASTM1  Value Units

FullCure720

Tensile Strength D-638-03 60 Mpa

Modulus of Elasticity D-638-04 2870 MPa

Elongation at Break D-790-03 20 %

VeroWhite - FullCure830

Tensile Strength D-638-03 50 Mpa

Modulus of Elasticity D-638-04 2495 MPa

Elongation at Break D-790-03 20 %

TangoPlus - FullCure930

Tensile Strength at Break D-412 1.5 Mpa

Modulus of Elasticity (E = 0.20) D-413 0.1 MPa

Modulus of Elasticity (c = 0.30) D-414 0.2 MPa

Modulus of Elasticity (E = 0.50) D-415 0.3 Mpa

Elongation at Break D-412 218 %

Tensile Tear Resistance D-624 3 Kg/cm

The 3D printed samples consisted of a 40mm flat disk with 10 hemispheres equally spaced

13.5mm from the center. The hemispheres had a diameter of 2mm. To give the samples

support, a 1mm layer of FullCure720 was used as a base upon which the hemisphere layer

was applied. The hemisphere layer consisted of a 1mm base made of Tangoplus or

Fullcure720, depending on the test. A hemispherical shape was chosen for the samples

because hemispheres were a common geometry in past friction-based experiments and also

simplified Hertzian contact analysis for the adhesion tests described in section 4. Double-

sided 3M adhesive was applied evenly to the back of each sample and any excess adhesive

1ASTM = Standard of American Society for Testing and Materials



was trimmed. Each sample was centered on the plate so that even torques could be

applied and measured. The rheometer peltier plate was used as the contact surface. The

peltier plate was made of hardened chrome with a smooth finish.

3.2 Tests

There were three tests that were performed to determine fundamental properties

for the materials with a given geometry. The three tests consisted of a kinetic (a.k.a.

sliding) test, a stick-slip test, and a proof-of-concept test. The kinetic and stick-slip tests

were performed with the same hemispherical samples made of the TangoPlus and

VeroWhite materials while the proof-of-concept tests were made with the footpad design

used for the SQUISHbot project, consisting of a composite of TangoPlus and VeroWhite

materials.

3.2.1 Kinetic

Kinetic tests were performed at set rotation speeds ranging from 0.1 to 1 rad/s.

For each test, the normal force applied to the sample was varied from 0.1 to 1 N while the

rotation speed remained constant. Screenshots were used to capture the exact measured

torque for a given normal force.

When loaded in the rheometer and subjected to the kinetic sliding test, the

frictional force experienced by the hemispherical samples was linearly related to the

applied normal force. This coincides with coulomb friction laws, and from the linear fit

slope, the coefficient of kinetic friction can be found for the materials. Under sliding

conditions, the required time to form an adhesive bond between the surface and sample

materials is not achieved and therefore does not contribute to the torque recorded by the

rheometer. Figure 19 shows a 3D printed sample loaded onto the 40 mm aluminum

fixture on the rheometer



Figure 19: 3D printed sample loaded onto 40 nun aluminum geometry on the rheometer and the

AR-G2 rheometer loaded with 3D printed sample on 40mm flat plate geometry.

3.2.2 Stick-Slip

For the static stick/slip tests, a monotonically increasing force was applied to the

samples for a given normal force. Tests were performed under normal forces ranging from

.1 to 1 N. For each test, the samples start off stationary (no angular velocity). A ramp

procedure was applied until the force experienced by the samples transitioned to kinetic

friction, at which point the samples would slip and the rheometer would experience an

"overspin" error. The overspin error was the result of the abrupt change in resistive

torque experienced by the machine, causing the geometery to spin very quickly. The

applied torque ranged from 1000 UNIT to 15,000 UNIT for each sample.



3.2.3 Proof of Concept

In an attempt to find a material that allows SQUISHbot to move in a

unidirectional manner while the prismatic joint is in use, numerous tests have been

performed on different anisotropic feet configurations in the rheometer. The proof of

concept test samples were made using the soft TangoPlus for the sticking side and the

hard VeroWhite for the hard "nail" side. The functionality of the footpad design is

activated by the lateral movement of the robot, which causes the pads to change

direction. Coefficients of friction have been calculated for different feet designs.

Figure 20: Proof of concept samples loaded on the 40 mm plate on the rheometer.



3.3 Results

Figure 21 shows the kinetic friction force plotted against the applied normal force

per sphere for the 3D printed samples made of TangoPlus and FullCure720.
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Figure 21: Kinetic friction vs. normal force per sphere for 3D printed samples with varying

materials.

Figure 22 shows the friction force per sphere vs the applied normal force for the

two types of materials used (TangoPlus and Fullcure720) during the two different tests

(kinetic and stick-slip).
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Figure 22: Friction force per sphere vs. applied normal force.

Figure 23 shows the results from the kinetic and stick-slip tests combined and scaled onto

the same plot.



Scaled Comparison: Coulomb and adhesion interactions
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Figure 23: Results from kinetic and stick-slip tests combined and scaled on the same plot.

Figure 24 shows the kinetic coefficient results from the proof of concept samples

that were used on the rheometer.
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Figure 24: Kinetic coefficient results from proof of concept tests on the rheometer.

Figure 25 shows the kinetic coefficient results from the proof of concept samples

that were used on the rheometer.
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Figure 25: Static coefficient results from proof of concept tests on the rheometer.
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3.4 Summary

When loaded in the rheometer and subjected to the kinetic sliding test, the

frictional force experienced by the hemispherical samples was linearly related to the

applied normal force (see Figure 21). This coincides with coulomb friction laws, and from

the linear fit slope the coefficient of kinetic friction can be found for the materials. Under

sliding conditions, the required time to form an adhesive bond between the surface and

sample materials is not achieved and therefore does not contribute to the torque recorded

by the rheometer.

For the stick-slip tests of the two materials loaded in the rheometer, two very

different results could be seen. The FullCure720 samples experienced a frictional force

that was again linearly related to the applied normal force. For the TangoPlus, however,

the stick-slip tests showed that there was a power law relationship that was between 1

and 2/3. As expected, the softer TangoPlus material experienced higher friction loads in

comparison to the hard FullCure720 for a given applied normal force. An increased

frictional force was experienced during the stick-slip test for the TangoPlus samples in

comparison to the sliding tests. This coincides with the added attractive adhesive bond

between the surface and sample material. The results from Figure 22 were later scaled so

that all plots started at the origin on Figure 23. This allowed for a clear visual

interpretation of the power law relations for each tests. For the kinetic tests, it can be

seen that the samples experienced a frictional force that was linearly related to the

applied normal force, which agrees with Coulomb's friction law. For the stick slip tests,

however, it can be seen that all frictional force was between Coulomb's law and the 2 / 3 rd

power law expected for Hertzian contact contributions. This seems reasonable as adhesive

forces would contribute to the frictional forces experienced prior to the samples

transitioning to the slip regime. Figure 23 shows the combined plots with the applied



scaling. Chapter 4 takes an in-depth look into the area dependence for the TangoPlus

material with respect do varying applied loads.

The proof of concept results clearly indicated that the softer TangoPlus produced a

much higher coefficient of friction in comparison to the hard Fulcure720 material. For

the kinetic proof of concept results, it can be seen that at the higher applied normal forces

the coefficient of friction for the tango plus is greatly reduced. While sliding the material

at the higher loads, the material was unable to remain intact and started to break apart.

The shedding of material is most likely the cause for the reduced friction coefficient. The

stick-slip tests produced higher coefficients of friction in comparison to the kinetic tests,

which shows how the increased time of stationary contact increased the surface

interaction between the materials.



CHAPTER

4
VERIFICATION OF AREA

DEPENDENCIES FOR ADHESIVES

As described in chapter 3, it is necessary to outline the effects of contact area

interactions for soft materials in order to explain the change in scaling for the friction

results. The change in contact area was measured under varying applied loads for the

same samples used in the friction tests. MATLAB image processing was combined with

photos depicting contact area for given applied loads to autonomously find the contact

area. Results were found to be in agreement with the JKR theory described in chapter

two and were also useful in describing the power relations experienced by the samples in

the stick-slip tests outlined in chapter three.

4.1 Materials

The samples tested were made of the same TangoPlus used in the friction tests and

were of the same geometries. To create the 3D printed samples, the same method was

used as described in Section 3.1. The samples were imaged under varying applied normal

forces using a Nikon Eclipse TE2000-S inverted microscope. The normal forces were

applied to the center of the samples using a calibration mass set ranging from .2 to 100g.

An MV BlueFox USB 2.0 CMOS camera with a resolution of 1600 x 1200 pixels was used



to image the contact surface of a single hemisphere. All photos were saved in the portable

network graphics format (PNG). MATLAB code was then written to import the photos

to be processed using MATLAB's image processing toolbox. Figure 26 shows a side view

of the sample setup:
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Figure 26: Illustration of the general setup for hemispherical compression tests.

4.2 Compression Test

The code first converted the image of the contact area to black and white using the

im2bw command with a conversion level chosen to match that of the visible contact area.

All objects containing fewer than 5000 pixels were automatically removed using the

bwareaopen command so that only the area of the contacted material would be measured.

Any holes created by abnormalities within the contact area were then filled in with the

imfill command. The contact area of the sphere could then be found by finding the

number of pixels contained within the white space for each image. Figure 27 shows an

example of a compressed sample captured with the BlueFox camera and processed by

MATLAB:



Matlab Image
Processing

Figure 27: Matlab processing of compressed sample - converted to black & white image for area

analysis.

4.3 Results

Figure 28 shows a plot of the contact area vs. the applied mass for the compression

tests. The data was obtained from three different 3D printed samples made during

different print times in the Objet 3D printer's maintenance cycle.
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Figure 28: Plot of Contact Area vs Applied Mass for hemispherical compression tests.



4.4 Summary

The contact area for each sample was plotted against the applied normal force.

Under compression, the area of contact for the hemispheres is in agreement with existing

contact models. At loads above 10g, the contact area for the samples followed a power

law that matched the theoretical Hertzian contact prediction as seen in Figure 28. At

these higher loads, the effects of adhesion are less noticeable. At lower normal loads, the

area of contact appears to remain constant, which coincides with adhesion prediction of

the JKR theory.



CHAPTER

5
BRISTLEBOT TESTING

The effects of varying surface roughness were studied for a given anisotropic

arrangement of bristles. The array of bristles was used to provide propulsion to a

controllable robot called BristleBot. The untethered nature of the robot allowed for

unhindered velocity and force measurements that were used to analyze the effects of

surface roughness. The force input for the robot was provided by two vibration motors

that created an excitation which was then translated to horizontal movement by the

anisotropic formation of the bristles. It was found that the BristleBot was able to achieve

optimal locomotion when roughness conditions were minimized

5.1 Materials

The original BristleBot was a tiny directional vibrobot designed by Evil Mad

Scientist Laboratory. It consisted of a toothbrush head, a watch battery, and a vibration

motor. The BristleBot was intended to be a novelty toy that would move around in

random directions on a table due to the motor vibrations. Figure 29 shows a BristleBot

from EvilMadScientist.com [26].



Figure 29: (Left) Evil Mad Scientist BristleBot and (Right) University of Maryland BristleBot

designs. Images reproduced from '[26] and [27].

An adaptation to this was developed by a senior project at the University of

Maryland, where two vibration motors were attached to the toothbrush head [27]. An RC

board was attached so that the motors could be independently controlled. With the

motors on either side of the bristle head, as one vibration motor moved the bristles some

of the bristles on the head were vibrated more than others, resulting in a directional

movement that could be used to the steer the robot.

The BristleBot design used for this thesis consisted of two toothbrush heads that

are angled towards each other. The toothbrush heads were modified so that all of the

bristles were angled in the same direction to achieve maximum anisotropy. The vibration

motors were attached to the back of each toothbrush head. When one vibration motor

was activated, the corresponding toothbrush head vibrated while the other head remained

stationary, thus causing the BristleBot to move forward and turn. When both vibration

motors were activated, the opposing turning forces were canceled out and the robot

moved in a straight line forward.



Figure 30: Final BristleBot Design used in velocity and surface testing.
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Figure 31: (Left) Sketch illustrating influence of microstructure geometry in simple "bristle"

locomotion, also known as "ciliary vibration." (Right) Two high-speed images showing the bristle

dynamics as the platform locomotes.



5.2 Tests

The goal for the experiments was to better understand how anisotropically

designed materials interact with surfaces of differing roughness. The main reason for

using the BristleBot design was to achieve tetherless and unhindered motion for force and

velocity measurements. The ability to control the direction of the BristleBot was added

to ensure unidirectional motion. Knowing the vibrational motor specifications, power

input, and weight an expected velocity for the BristleBot could be calculated. Surface

roughness distributions were observed to relate the effects of roughness patterns to

velocity performance.

5.2.1 Velocity

High-speed imaging was used to film the surface-bristle interaction as well as to

calculate the velocity of the BristleBot on various surfaces. Two different high-speed

cameras were used:

Table 4: Phantom v5.2 Specifications

Camera Feature Value Units Resolution
Max Frame Rate Used 1200 fps 336 x 96
Mid-Range Frame Rate 600 fps 432 x 192

Low Frame Rate 300 fps 512 x 384
Number of Pixels 6 megapixel

Image Sensor 1/1.8 inch hs CMOS



Table 5: Casio EX-F1 Specifications

Camera Feature Value Units Resolution

Max Frame Rate Used 10362 fps 256 x 256

Low Frame Rate 1000 fps 1152 x 896

Number of Pixels 1 megapixel

Minimum Exposure Time 2 Ps

Sensor ISO 2400 monochrome

Table 6: BristleBot Specifications

Bot Property Value Units

Average Velocity 0.2 m/s

Maximum Velocity 0.3 m/s

Average Bristle Jump Height 0.077 mm

Power Consumption 0.618 W

Total Bot Mass 23.21 g
Motor Balance Mass 1.9 g

Motor Balance Radius 1.7 mm

Estimated values for the expected BristleBot speeds and heights were found through

analysis of the motor input and the physical constraints of how the bot moved. First, the

input force from the vibration motors was calculated using the centripetal force:

Fm(t) =2 * mmotor * 2 rsin(wt) (7)

Where mmotor is the mass of the unbalanced weight on the motor, r is the radius of

rotation for the mass, and co is the angular velocity of the weight. The force input was

then integrated over the time that the bristles were in contact with the traversed surface

per revolution of the unbalanced weight:



Vx = U + 00475s pFmotor(t) 8
Mbot

Where v. is the velocity of the bot, uo is the initial velocity, mbot is the mass

of the bot, and y is the coefficient of friction.

1 .00475s 2

vy = Mbot 0o mmotor(A)r(sin(at) + 1)dt (9)

Efficiency calculations for the BristleBot were found using the following equations:

want
cost (10)

lbristlebot
Vavg*mbot

PowerConsumption

Where ri is the total efficiency, and v, is the average bot velocity.

Velocity tests were performed on thirteen different surfaces with varying roughness.

The roughness of the surfaces was measured using Mitutoyo's Surftest SJ-210. To find

the BristleBot's velocity on each different surface, high-speed video of the bot moving in a

straight line was shot at 600 frames per second. The distance traveled over a given

number of frames by the bot was measured in the video and later converted to a

horizontal velocity.

(11)



5.2.2 Trajectory

High-speed video was taken of the BristleBot's body platform while in motion to

find the recoil height of the bot while in motion. The bot's bounce height was calculated

by recording the pixel location of markers drawn on the bot's body in each high-speed

video frame. The change in pixel location for each marker was then converted to a

distance measurement.

Figure 32: Image from high speed video used to monitor "bounce" position for points on

BristleBot body.

5.3 Results

Figure 33 shows a plot of the BristleBot's velocity for varying surfaces with

different roughnesses
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Figure 33: BristleBot Velocity for varying surface roughness interactions.

Figure 34 shows the "bounce" profile for a given point on BristleBot's body over

traveled distance. The black dot furthest to the right in Figure 32 was used

measurements.
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Figure 34: "Bounce" profile for a given point on BristleBot body over a traveled distance.
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5.4 Summary

Interesting results were found from the BristleBot velocity tests. It can be seen

that as the surface roughness was decreased, the performance of the BristleBot's velocity

increased. This seems a bit counterintuitive due to the reasoning that decreased surface

roughness would decrease the frictional contact between the bristles and the surface itself.

It can be speculated that for surfaces with higher roughness, the inclusions in the surface

were actually more of a hindrance to the Bristles and acted as a form of barriers to the

bot's movement, creating resistive friction. We speculate that the logarithmic relation

between the BristleBot's velocity and surface roughness can be related to the Gaussian

distribution of the surface roughness as seen in Figure 35. The probability of the bristles

being able to "jump" out of a given inclusion is dependent on the BristleBot's jump height

and the actual height of the inclusion.



CHAPTER

6
CONCLUSIONS

We have gained a better understanding of the design, fabrication, and mechanical

optimization for multi-scale anisotropic feet though friction, adhesion, and BristleBot

tests. Laws of coulomb friction were proven to hold for the 3D printed samples with high

moduli of elasticity, while the frictional results for the softer samples were related to the

adhesive effects associated with increased contact area. Hertzian contact laws were also

shown to hold true for the 3D printed samples. The compression test results were in

accordance with prior contact theories as described by Johnson, Kendall, and Roberts.

The effects of varying surface terrain have also become better understood for

anisotropically aligned bristles and theories have been made as to how surface roughness

effects force transmission.

6.1 Future Work

There are many opportunities for advancements in the field of multi-scale robotic

development. Combining locomotion methods is one of the best methods of achieving

locomotion over a wide range of surface variants. There have been promising results

involving the use of magnetorheological fluid as a switchable adhesive, which could be

combined with other locomotion methods to allow for vertical and even inverted-body

propulsion methods. Other work has initiated which focuses on varying the properties of



the anisotropically aligned bristles through geometric and material adaptations. Such

adaptations include changes in length, radii, and beam stiffness of the bristles to allow for

improved movement over different surface inclusions. The ability to freely move in

multiple directions through anisotropic material and geometry designs is also being

studied. Omni-directional traversing methods have been shown to greatly increase the

maneuverability of robots



- - -
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APPENDIX

MATLAB CODE FOR

COMPRESSION TESTS

clear
cle

area=zeros(18,2);

for i=1:1:18
filename=['d5bl' num2str(i) '.png'];

%Convert the image to black and white in order to prepare for boundary
%tracing using bwboundaries
I = imread(filename);

%Converts image I to black and white with level of .x conversion
bw = im2bw(I,.59);

% remove all object containing fewer than xxx pixels
bw = bwareaopen(bw,2500);
% fill any holes, so that regionprops can be used to estimate
% the area enclosed by each of the boundaries
bw = imfill(bw,'holes');
subplot(4,5,i)
imshow(bw,'border','tight')

%Outputs pixel area of white space
area(i,1)=i;

area(i,2)=bwarea(bw);

end

x = [0,.1,.3,.7,1,2,2.2,4,7,10,15,20,25,30,40,50,70,90];
y = area(:,2);

z = area(10,2);

xl=[10,90];

y1=[10^(2/3),90^(2/3)];



figure

loglog(x,y)
hold on

loglog(x1,1000*y1)
xlabel('(log) applied mass (g)');
ylabel('(log) contact area (pixels)');
title('Disk 1 Ball 1 Contact Area vs Applied Mass');



B
ADDITIONAL SAMPLE CREATION

In addition to the 3D printed samples, a mold was created that allowed us to

create samples to be made out of additional materials with properties that were different

than those of the 3D printer materials. The mold was an inverse replica of the 3D printed

version. The material used to fill the mold consisted of a soft silicon compound that is

typically used for dental molds. The hard mold shell was created using Objet's

Fullcure720. The silicon samples were fabricated using Zhermack's Elite Double 8 and

made according to the manufacturer's instructions [28]. The material itself is

polysiloxane. It is a very elastic material with a Young's Modulus of 1.2 MPa and a

density of 1.4 g/cm3 .

Figure 36: 3D printed feet combined with anisotropic fibers.



Figure 37: Additional types of anisotropic feet designed for SQUISHbot testing.



C
BLUEFox CALIBRATION

MEASUREMENTS

Figure 38: Microscope image of compression sample with sample focus for calibration length.

Figure 39: Microscope image of compression sample with measuring tape in focus for calibration

length.




