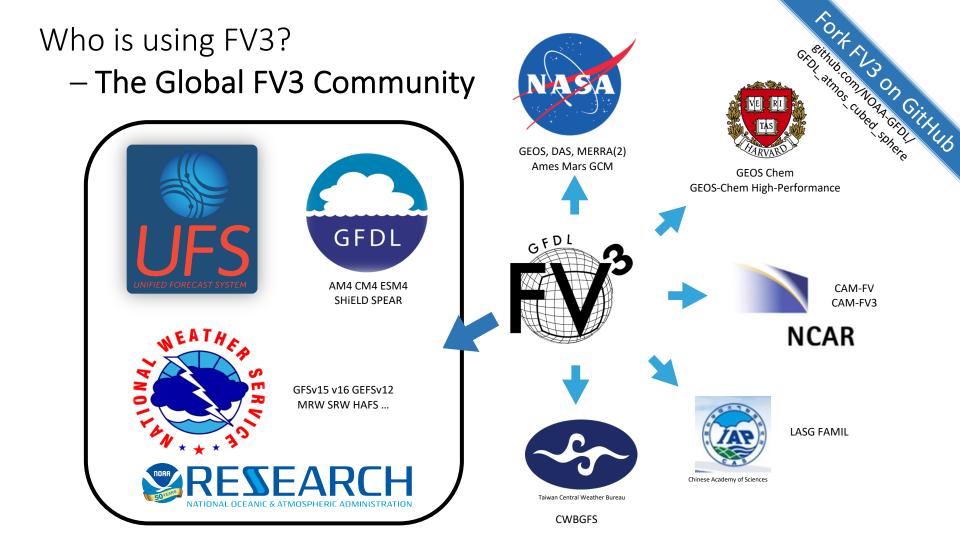
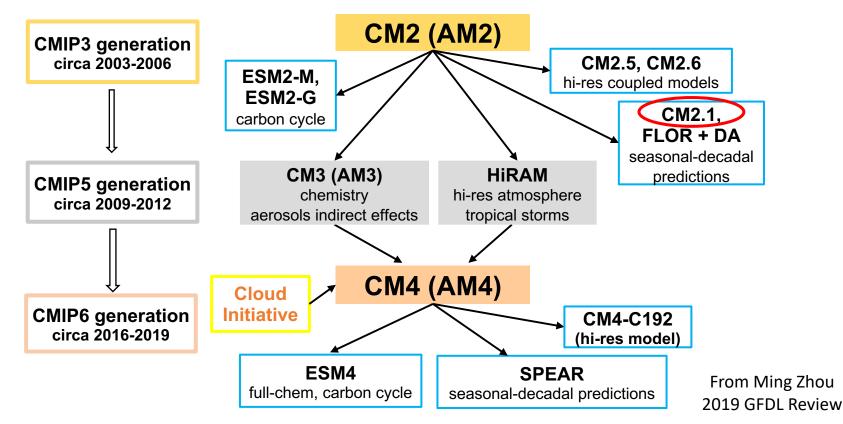
The GFDL FV3 Dynamical Core Configuration and Applications

Jan-Huey Chen, Linjiong Zhou, Lucas Harris, and Xi Chen for the GFDL FV3 Team

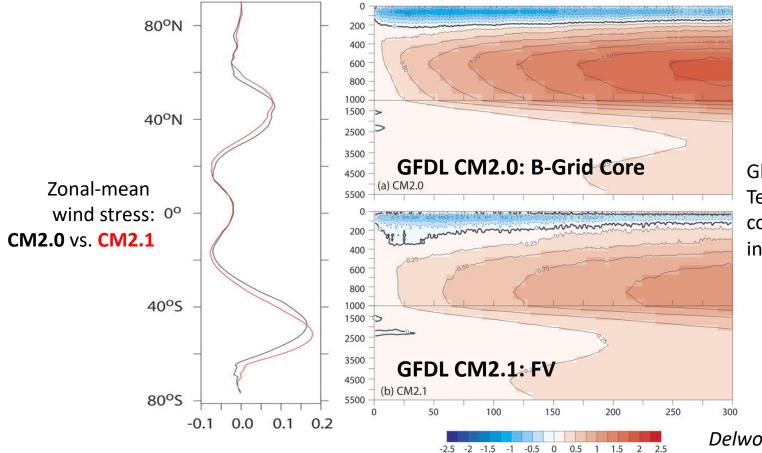


UFS MRW Application Training

5 November 2020


Outline:

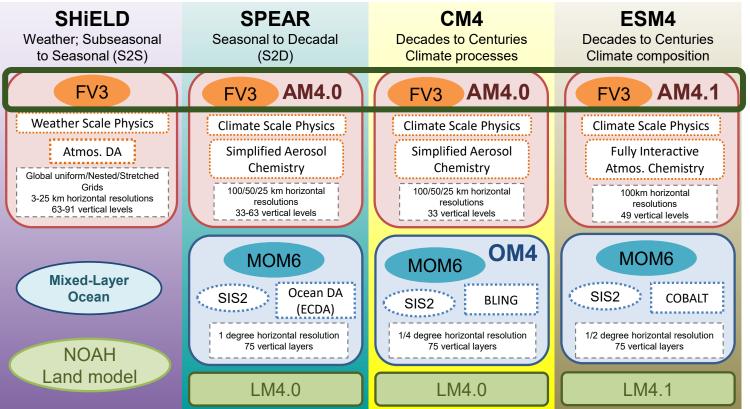
- Who is using FV3?
 - The global FV3 community
- FV3 at GFDL
 - History of climate modeling
 - The unified modeling suite
- Modern NWP
 - Seamless weather-climate prediction/projection
- Special focuses:
 - Hurricanes, severe weather, MJO, diurnal cycle...
- Global cloud-resolving modeling



FV3 at GFDL

Recent history of GFDL Global Climate Models

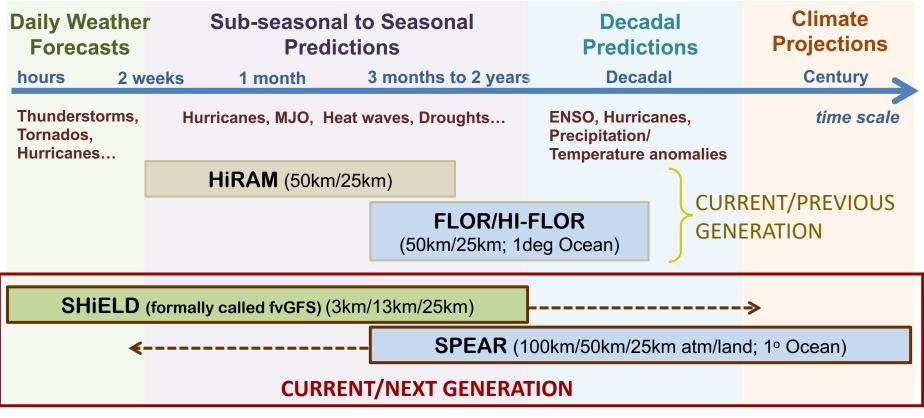
From CM2.0 to CM2.1 -- The importance of vorticity

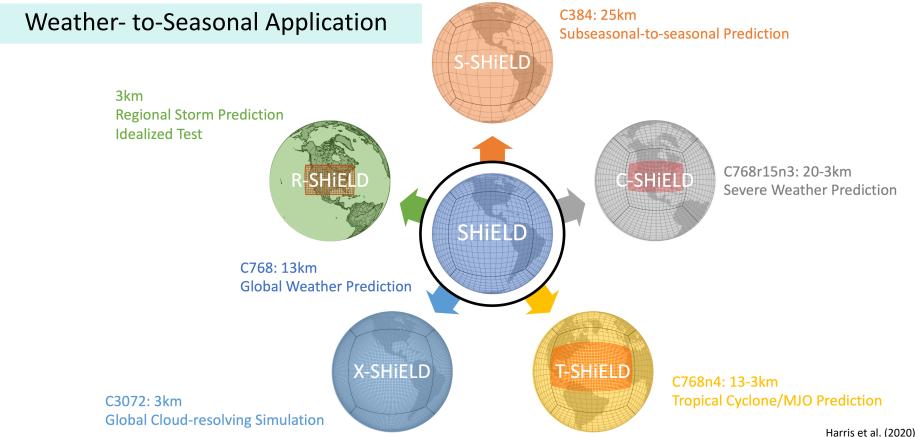


Global-mean Ocean Temp diff. (K) in control-climate integrations

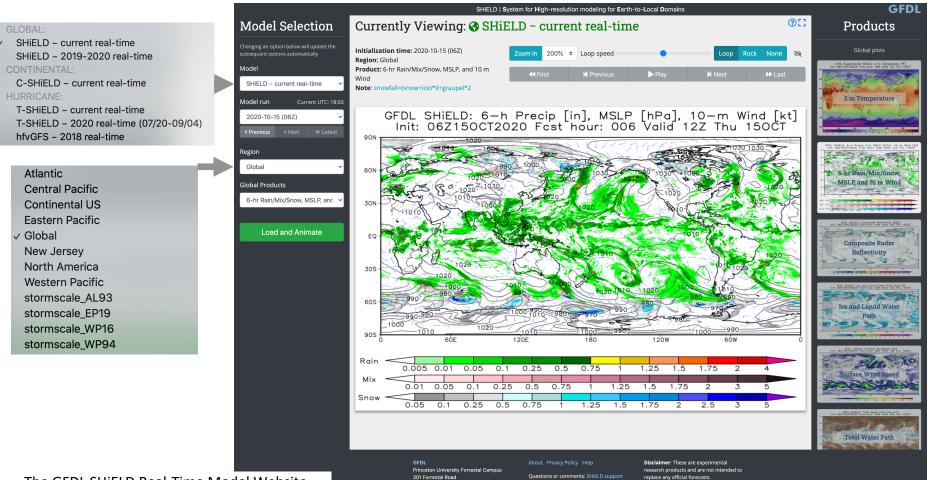
Delworth et al. 2006 JClim

FV3 at GFDL


The GFDL Fourth-Generation Unified Modeling Suite

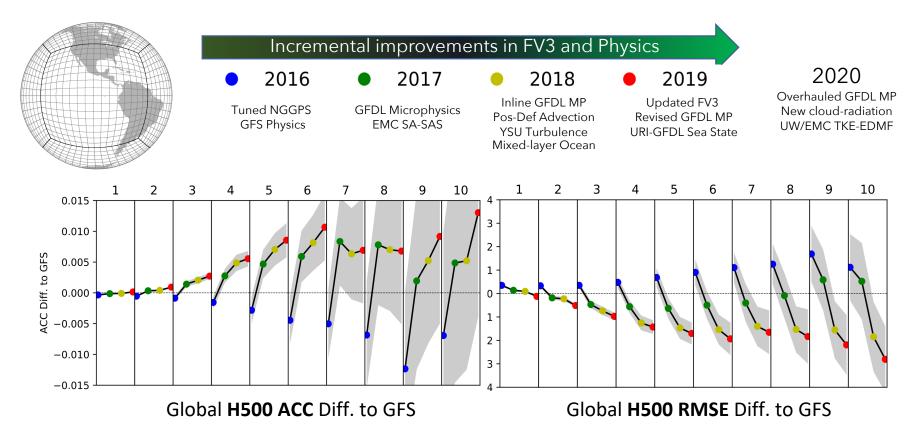

All models use the Flexible Modeling System (FMS) framework and are part of the Unified Forecast System

Modern NWP

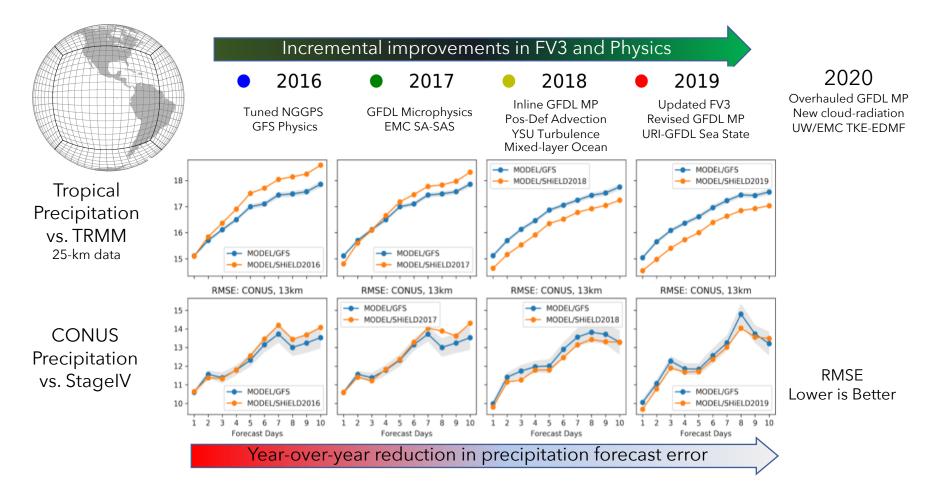

GFDL seamless prediction/projection modeling system

SHIELD system for High-Resolution Prediction on Earth-to-Local Domains

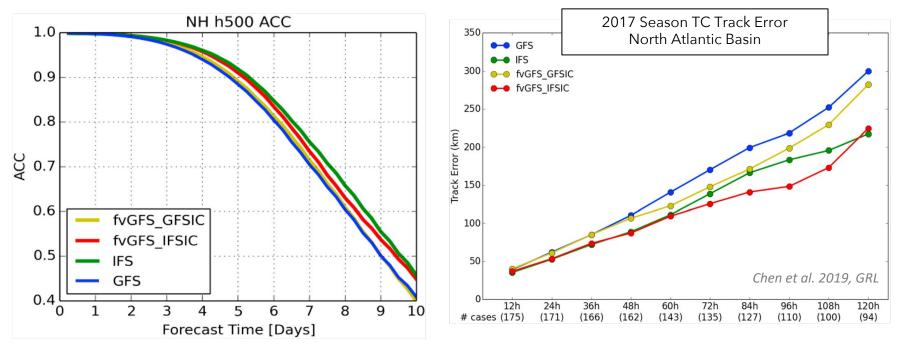
Courtesy of Linjiong Zhou, Kun Gao, Kai-Yuan Cheng


201 Forrestal Road Princeton, NJ 08540-6649

Phone: (609) 452-6500 Fax: (609) 987-5063 Website issues: Webmaster Security issues: Security officers


Office of Oceanic & Atmospheric Research

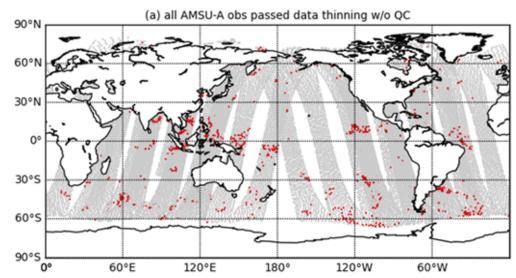
The GFDL SHIELD Real-Time Model Website <u>https://shield.gfdl.noaa.gov/new</u> Operator: Matt Morin


13-km SHiELD Evolution

13-km SHiELD Evolution

The importance of initial conditions

SHiELD C768 (13km)


Ongoing Collaborations with ECMWF: **DIMOSIC** Project (**DI**fferent **MO**dels - **S**ame Initial **C**onditions) based on

- Chen et al. 2019, GRL
- Magnusson et al. 2019, QJ

Data Assimilation in SHiELD

DA in FV3-based GFSv15 prototype

Benefited form the use of the GFDL microphysics scheme, the all-sky radiance assimilation framework was expanded to include **precipitating hydrometeors**.

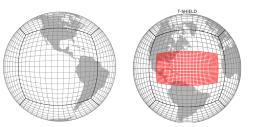
Locations of AMSU-A **observations that meet the precipitation screening criterion in deep-convection (high-impact) areas** are rejected in the original all sky framework but are kept in the new all-sky framework

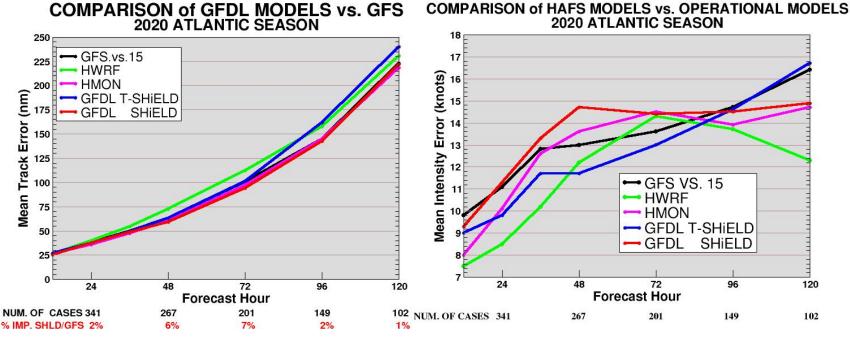
SHiELD v2020 Push our flagship to **8.5 km** resolution (C1152)

Major changes:

- 2020 version of FV3
- 2020 version of GFDL MP
- YSU PBL -> TKE-EDMF PBL
- GFSv14 ICs -> GFSv15 ICs

Other changes:

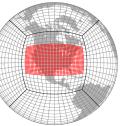

• Horizontal resolution: 13km -> 8.5km


- •Latest version of fix_am
- Mountain block intensity
- 2020 version of FMS

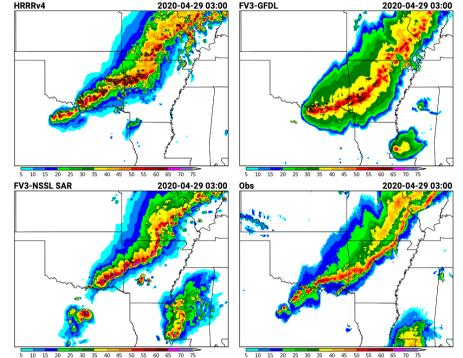
	127 ACC_G												127 RMSE_G										127 BIAS_G								
	h200											•										•									4
	h250 h500	-	-	-	-		-	-			-		-	-	-		-	-				-	-	-	-		-	-			-
	h700		-	-	÷	÷	÷	÷	-	-	-		-	÷	-	÷	÷	÷	÷	-	-		-	÷	÷	÷	-	÷			_
	h850	-	-	-	-	-	-	-	-	-	-		-	-	÷	÷	-	-	-	-	-		-	÷	÷	÷	÷	-			_
	t200												-	÷	÷	÷	-	÷	÷	-			÷	÷	÷	÷	÷	÷			_
	t250											-	-	_	-	-	-	-	-	-	-	-	_	_	_	-	_	_			7
Forecast validation scorecard	t500																														
	t700																														1
	t850																														
	u200																														
	u250																														
	u500																												_		_
	u700											•										•									_
	u850																														-
	v200											•										•					-				4
	v250 v500	_	_	_	_	_	_	_	_	_	_	-	_	_		_	_	_	_	_	_	_	_	_	_	_		_			_
	v500 v700		-	-	-		-						÷	-	÷	÷	-	÷	-	-	-		÷	-	-	÷	-	-		-	_
	v850		-	-	-	-	-	-	-	-	-		-	-	-	÷	÷	÷	÷	÷	-	-	-	÷	-	÷	÷	-	_		_
	q200	-	-	-	-	-	-	-	-	-	-		-	-	÷	÷	÷	÷	÷	-	÷	-	-	÷	-	÷	-	÷			_
	q250											-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		4
	q500															-								-							
	q700																														-
	q850																														
	t2m																														
	tsfc																														
	u10m																														
	v10m																														1
ب	hcc																														_
SE	mcc																														_
8	lcc															_		-	_		-		-	-	_	-	_	-			_
ē	tcc sshf												_	_	-	-	-	-	-	-	-		-	-	-	-	-	-			-
Ē	slhf												-	_	-	-	-	÷	-	-	-		÷	÷	-	÷	-	÷	_		_
Ö	prec												÷	-	-	-	÷	÷	÷	÷	÷	-	÷	÷	÷	÷	÷	-			_
	prec												-	-	-	-	-	-	÷	-	-		÷	÷	÷	÷	-	÷	_		_
	fsds												-	-	-	-	-	-	-	-	-		-	-	-	-	-	-			_
	fsns												-	-	÷	÷	-	÷	÷	-	÷		-	-	-	÷	-	-			-
	flds												-	-	÷	÷	-	÷	÷	-	-		-	-	-	-	-	-			_
	flns												-	-	-	-	-	-	-				-	-	-	-	-	-			-
	fsdt																														-
	fsnt																														1
	fInt											•																			1
		Reference: SHiELD 2019 Case: SHiELD 2020																						 better (95%) worse (95%) 							

Hurricane forecasts

SHiELD C768 (13km) and T-SHiELD (3-km two-way nest)



Results as of 26 October 2020.


Courtesy Kun Gao & Morris Bender

Severe Storm Forecasts

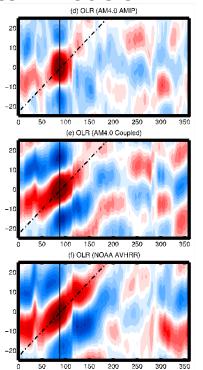
C-SHiELD (3 km)

- 3-km CONUS nest for severe weather prediction out to 5 days
- Leverages advances from other SHiELD configurations
 - Revised diffusion and shallow convection, updated GFDL microphysics and PBL
- Submitted to 2020 Spring Forecasting Experiment at the NOAA Hazardous Weather Testbed in Norman, OK
 - Received high marks for pre-storm environment and cold pools
 - FV3-NSSL (diff. MP, PBL, LSM) does very well with storm structure every year

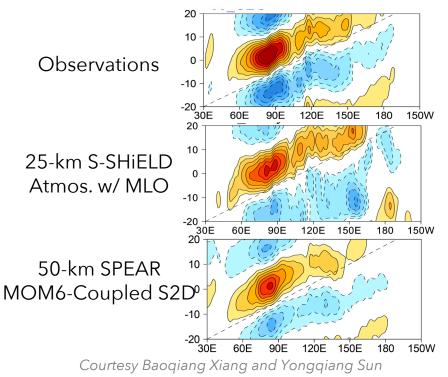
From NOAA Hazardous weather testbed: https://hwt.nssl.noaa.gov/

Madden-Julian Oscillation

Seamlessness in the GFDL Modeling Suite

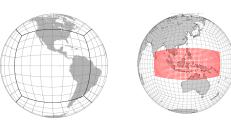

CMIP Earth-System Models

100-km AM4 Atmosphere (C96 FV3 + GFDL Climate Physics) + 25-km MOM6 + LM4


CM4 Coupled Climate Model

Even at 100-km good MJO propagation is found...if coupled to an ocean

Zhao et al. 2018a,b



S2S & S2D Prediction Models

Madden-Julian Oscillation

S-SHiELD (25km) and T-SHiELD (4-km two-way nest)

C640

26 Days

Courtesy Kun Gao

C640n4

39 Days

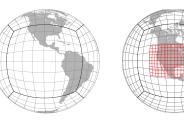
25-km S-SHiELD 1.0 MLO 0.9 0.9 **Correlation Coefficient** No MLO **Correlation Coefficient** 0.8 0.8 19 Days 14 Davs 0.7 0.7 0.6 0.6 28 Days 0.5 0.5 20 Days 0.4 0.4 RMM ACC for DYNAMO RMM ACC for 34 0.3 0.3 (2011 - 12)phase 3 & 4 cases during DYNAMO 0.2[⊥] 0.2L 0 10 12 14 16 18 20 22 24 26 28 30 32 34 36 8 Lead time (day) Harris et al. 2020, JAMES

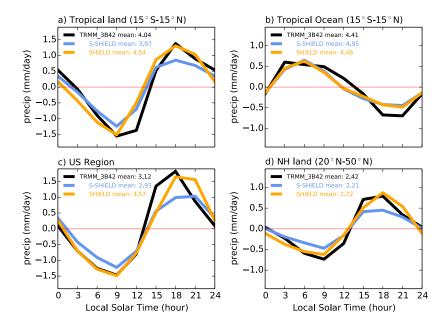
4-km nested T-SHiELD

24 Days

28 Days

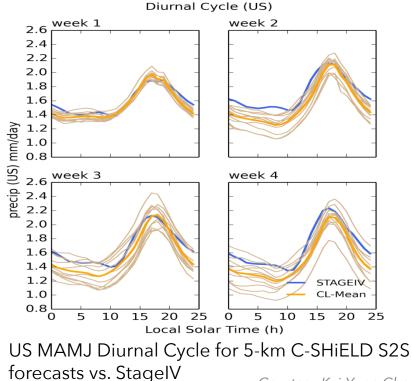
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40




Lead time (day)

Mixed-layer ocean adds 8 days of useful skill

Diurnal Cycle

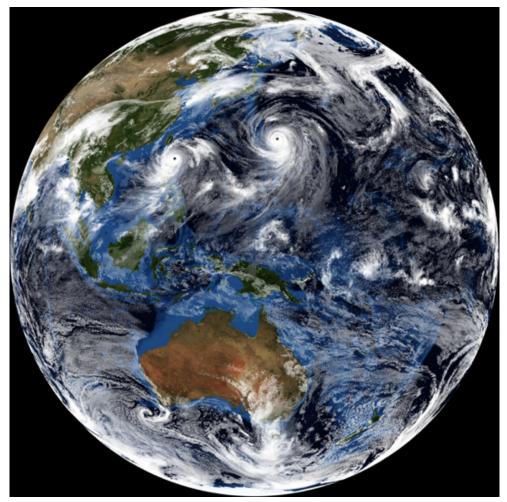

S-SHiELD (25km) and T-SHiELD (5-km two-way nest)

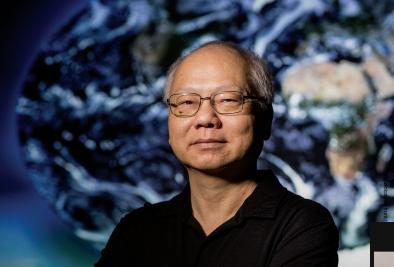
JJA Diurnal Cycle for 25-km S-SHiELD climate sim and 13-km SHiELD forecasts vs. TRMM ➤ Superior to all CMIP5 Models

⁵ Harris et al. 2020, JAMES

Courtesy Kai-Yuan Cheng

Global cloud-resolving modeling


X-SHiELD C3072 (3.25km)


3.25-km GCRM seamlessly integrated with other GFDL models

Partnering with Vulcan, Inc and the University of Washington to build a hybrid ML model to emulate X-SHiELD in a cheap low-resolution model

Courtesy S-J Lin, Xi Chen, and Linjiong Zhou

www.gfdl.noaa.gov/fv3

shield.gfdl.noaa.gov

github.com/NOAA-GFDL/GFDL_atmos_cubed_sphere

THE WEATHER MASTER

How Shian-Jiann Lin's atmospheric grids could unify weather forecasts and climate models

By Paul Voosen

Corrected 28 April 2017. See full text Published by AAAS