EE233 HW1 Solution

Oct. 3rd

Due Date: Oct. 10th

Problems from the textbook: P.9.49, P.9.59, and P.9.60

1. At $t=-2 m s$, a sinusoidal voltage is known to be zero and going positive. The voltage is next zero is $t=8 \mathrm{~ms}$. It is also known that the voltage is 80.9 V at $t=0 \mathrm{~ms}$.
a) What is the frequency of voltage v in hertz?

$$
\begin{aligned}
& \frac{T}{2}=8+2=10 \mathrm{~ms} ; \quad T=20 \mathrm{~ms} \\
& f=\frac{1}{T}=\frac{1}{20 \times 10^{-3}}=50 \mathrm{~Hz}
\end{aligned}
$$

b) What is the expression for v ?

$$
\begin{aligned}
& v=V_{m} \sin (\omega t+\theta) \\
& \omega=2 \pi f=100 \pi \mathrm{rad} / \mathrm{s} \\
& 100 \pi\left(-2 \times 10^{-3}\right)+\theta=0 ; \quad \therefore \theta=\frac{\pi}{5} \mathrm{rad}=36^{\circ} \\
& v=V_{m} \sin \left[100 \pi t+36^{\circ}\right] \\
& 80.9=V_{m} \sin 36^{\circ} ; \quad V_{m}=137.64 \mathrm{~V} \\
& v=137.64 \sin \left[100 \pi t+36^{\circ}\right]=137.64 \cos \left[100 \pi t-54^{\circ}\right] \mathrm{V}
\end{aligned}
$$

2. A 10Ω resistor and $5 \mu F$ capacitor are connected in parallel. This parallel combination is also in parallel with the series combination of 8Ω resistor and a 300 μH inductor. These three parallel branches are driven by a sinusoidal current source whose current is $922 \cos \left(20000 t+30^{\circ}\right) A$.
a) Draw frequency-domain equivalent circuit.

$$
j \omega L=j\left(2 \times 10^{4}\right)\left(300 \times 10^{-6}\right)=j 6 \Omega
$$

$$
\frac{1}{j \omega C}=-j \frac{1}{\left(2 \times 10^{4}\right)\left(5 \times 10^{-6}\right)}=-j 10 \Omega ; \quad \mathbf{I}_{g}=922 / 30^{\circ} \mathrm{A}
$$

b) Reference the voltage across the current source as a rise in the direction of the current, and find the phasor voltage.

$$
\begin{aligned}
\mathrm{V}_{o} & =922 / 30^{\circ} Z_{e} \\
Z_{e} & =\frac{1}{Y_{e}} ; \quad Y_{e}=\frac{1}{10}+j \frac{1}{10}+\frac{1}{8+j 6} \\
Y_{e} & =0.18+j 0.04 \mathrm{~S} \\
Z_{e} & =\frac{1}{0.18+j 0.04}=5.42 \angle-12.53^{\circ} \Omega \\
\mathrm{V}_{o} & =\left(922 / 30^{\circ}\right)\left(5.42 \angle-12.53^{\circ}\right)=5000.25 / 17.47^{\circ} \mathrm{V}
\end{aligned}
$$

c) Find the steady-state expression for $v(t)$.

$$
v_{o}=5000.25 \cos \left(2 \times 10^{4} t+17.47^{\circ}\right) \mathrm{V}
$$

3. Find the impedance $Z_{a b}$ in the circuit seen in below. Express $Z_{a b}$ in both polar and rectangular form.

$$
\begin{aligned}
Z_{\mathrm{ab}} & =1-j 8+(2+j 4) \|(10-j 20)+(40 \| j 20) \\
& =1-j 8+3+j 4+8+j 16=12+j 12 \Omega=16.97 / 45^{\circ} \Omega
\end{aligned}
$$

Figure Problem 3

For circuit analysis:

4. Solve:
a) The frequency of the source voltage in the circuit below is adjusted until i_{g} is in phase with v_{g}. What is value of ω in radian per second?

$$
\begin{aligned}
Z_{g} & =500-j \frac{10^{6}}{\omega}+\frac{10^{3}(j 0.5 \omega)}{10^{3}+j 0.5 \omega} \\
& =500-j \frac{10^{6}}{\omega}+\frac{500 j \omega(1000-j 0.5 \omega)}{10^{6}+0.25 \omega^{2}} \\
& =500-j \frac{10^{6}}{\omega}+\frac{250 \omega^{2}}{10^{6}+0.25 \omega^{2}}+j \frac{5 \times 10^{5} \omega}{10^{6}+0.25 \omega^{2}}
\end{aligned}
$$

For i_{g} to be in phase with v_{g}, Z_{g} have to be purely real
\therefore If Z_{g} is purely real, $\frac{10^{6}}{\omega}=\frac{5 \times 10^{5} \omega}{10^{6}+0.25 \omega^{2}}$
b) If $v_{g}=20 \cos (w t)[V]$ where ω is the frequency found in part a, what is the steady-state expression for v_{o} ?

Figure Problem 4

When $\omega=2000 \mathrm{rad} / \mathrm{s}$

$$
\begin{aligned}
& Z_{g}=500-j 500+(j 1000 \| 1000)=1000 \Omega \\
& \therefore \quad \mathbf{I}_{g}=\frac{20 / 0^{\circ}}{1000}=20 / \underline{0^{\circ}} \mathrm{mA} \\
& \mathbf{V}_{o}=\mathbf{V}_{g}-\mathbf{I}_{g} Z_{1} \\
& Z_{1}=500-j 500 \Omega \\
& \mathbf{V}_{o}=20 / \underline{0^{\circ}}-\left(0.02 / \underline{0^{\circ}}\right)(500-j 500)=10+j 10=14.14 / 45^{\circ} \mathrm{V} \\
& v_{o}=14.14 \cos \left(2000 t+45^{\circ}\right) \mathrm{V}
\end{aligned}
$$

Problem 9.49

Open circuit voltage:

$\frac{\mathbf{V}_{1}-250}{20+j 10}-0.03 \mathbf{V}_{o}+\frac{\mathbf{V}_{1}}{50-j 100}=0$
$\therefore \quad \mathbf{V}_{o}=\frac{-j 100}{50-j 100} \mathbf{V}_{1}$
$\frac{\mathbf{V}_{1}}{20+j 10}+\frac{j 3 \mathbf{V}_{1}}{50-j 100}+\frac{\mathbf{V}_{1}}{50-j 100}=\frac{250}{20+j 10}$
$\mathbf{V}_{1}=500-j 250 \mathrm{~V} ; \quad \mathbf{V}_{o}=300-j 400 \mathrm{~V}=\mathbf{V}_{\mathrm{Th}}$
Short circuit current:

$Z_{\mathrm{Th}}=\frac{\mathbf{V}_{\mathrm{Th}}}{\mathbf{I}_{\mathrm{sc}}}=\frac{300-j 400}{3.5-j 0.5}=100-j 100 \Omega$
The Thévenin equivalent circuit:

Problem 9.59

$$
\begin{aligned}
& \frac{\mathbf{V}_{o}}{50}+\frac{\mathbf{V}_{o}}{-j 25}+20 \mathbf{I}_{o}=0 \\
& (2+j 4) \mathbf{V}_{o}=-2000 \mathbf{I}_{o} \\
& \mathbf{V}_{o}=(-200+j 400) \mathbf{I}_{o} \\
& \mathbf{I}_{o}=\frac{\mathbf{V}_{1}-\left(\mathbf{V}_{o} / 10\right)}{j 25}
\end{aligned}
$$

$$
\therefore \quad \mathbf{V}_{1}=(-20+j 65) \mathbf{I}_{o}
$$

$$
0.006+j 0.013=\frac{\mathbf{V}_{1}}{50}+\mathbf{I}_{o}=(-0.4+j 1.3) \mathbf{I}_{o}+\mathbf{I}_{o}=(0.6+j 1.3) \mathbf{I}_{o}
$$

$$
\therefore \quad \mathbf{I}_{o}=\frac{0.6+j 1.3\left(10 \times 10^{-3}\right)}{(0.6+j 1.3)}=10 / 0^{\circ} \mathrm{mA}
$$

$$
\mathbf{V}_{o}=(-200+j 400) \mathbf{I}_{o}=-2+j 4=4.47 / \underline{116.57^{\circ}} \mathrm{V}
$$

Problem 9.60

$$
\begin{aligned}
& (12-j 12) \mathbf{I}_{\mathrm{a}}-12 \mathbf{I}_{g}-5(-j 8)=0 \quad\left(\text { Loop }_{\mathrm{a}}\right) \\
& -12 \mathbf{I}_{\mathrm{a}}+(12+j 4) \mathbf{I}_{g}+j 20-5(j 4)=0\left(\text { Loop }_{\mathrm{g}}\right)
\end{aligned}
$$

Solving,

$$
\mathbf{I}_{g}=4-j 2=4.47 \angle-26.57^{\circ} \mathrm{A}
$$

