9. CUMBERLAND PLATEAU PLANNING REGION LOCAL ACTION PLAN SUMMARY

WILDLIFE ACTION PLAN AND LOCAL SUMMARIES OVERVIEW

Wildlife Action Plan

Virginia is fortunate to contain a wide variety of natural resources and landscapes that provide Virginians with a range of benefits, services, and economic opportunities. Natural resource conservation in Virginia, as in most states, is implemented by government agencies, non-governmental organizations, private institutions, academic institutions, and private citizens. These groups work to enhance the quality of life within the Commonwealth by conserving Virginia's air, land, water, and wildlife. Adequate funding and human capital needed to manage and conserve these valuable resources are not always available. In 2005, Virginia's conservation community first came together to maximize the benefits of their actions and created the state's first Wildlife Action Plan (Action Plan). It was written to prioritize and focus conservation efforts to prevent species from declining to the point where they become threatened or endangered (DGIF 2005). The 2015 Action Plan is an update of the original Plan. The Action Plan must address eight specific elements mandated by Congress. They are:

- 1. Information on the distribution and abundance of species of wildlife, including low and declining populations as the state fish and wildlife agency deems appropriate, that are indicative of the diversity and health of the state's wildlife; and
- 2. Descriptions of locations and relative condition of key habitats and community types essential to conservation of species identified in (1); and
- 3. Descriptions of problems which may adversely affect species identified in (1) or their habitats, and priority research and survey efforts needed to identify factors which may assist in restoration and improved conservation of these species and habitats; and
- 4. Descriptions of conservation actions determined to be necessary to conserve the identified species and habitats and priorities for implementing such actions; and
- 5. Proposed plans for monitoring species identified in (1) and their habitats, for monitoring the effectiveness of the conservation actions proposed in (4), and for adapting these conservation actions to respond appropriately to new information or changing conditions; and
- 6. Descriptions of procedures to review the Plan-Strategy at intervals not to exceed ten years; and
- 7. Plans for coordinating, to the extent feasible, the development, implementation, review, and revision of the Plan-Strategy with federal, state, and local agencies and Indian tribes that manage significant land and water areas within the state or

administer programs that significantly affect the conservation of identified species and habitats.

8. Congress has affirmed through the Wildlife Conservation and Restoration Program (WCRP) and State Wildlife Grants (SWG), that broad public participation is an essential element of developing and implementing these Plans-Strategies, the projects that are carried out while these Plans-Strategies are developed, and the Species in Greatest Need of Conservation (SGCN) that Congress has indicated such programs and projects are intended to emphasize.

Each species included in the 2015 Action Plan (Species of Greatest Conservation Need or SGCN) has been evaluated and prioritized based upon two criteria: degree of imperilment and management opportunity.

To describe imperilment, SGCN are grouped into one of four Tiers: Critical (Tier I), Very High (Tier III), and Moderate (Tier IV).

Tier I - Critical Conservation Need. Species face an extremely high risk of extinction or extirpation. Populations of these species are at critically low levels, face immediate threat(s), and/ or occur within an extremely limited range. Intense and immediate management action is needed.

Tier II - Very High Conservation Need. Species have a high risk of extinction or extirpation. Populations of these species are at very low levels, face real threat(s), and/or occur within a very limited distribution. Immediate management is needed for stabilization and recovery.

Tier III - High Conservation Need. Extinction or extirpation is possible. Populations of these species are in decline, have declined to low levels, and/ or are restricted in range. Management action is needed to stabilize or increase populations.

Tier IV - Moderate Conservation Need. The species may be rare in parts of its range, particularly on the periphery. Populations of these species have demonstrated a declining trend or a declining trend is suspected which, if continued, is likely to qualify this species for a higher tier in the foreseeable future. Long-term planning is necessary to stabilize or increase populations.

While degree of imperilment is an important consideration, it is often insufficient to prioritize the use of limited human and financial resources. In order to identify and triage conservation opportunities, development of the updated Action Plan (2015) included assigning a Conservation Opportunity Ranking to each species identified within the Plan. Rankings were assigned with input from taxa or species experts (biologists) and other members of Virginia's conservation community. They also are based on conservation or management actions and research needs identified for the species within the 2005 Action Plan. In addition, a literature review was conducted to garner any new information available since the first version of the Action Plan. The three Conservation Opportunity Rankings are described as follows:

A – Managers have identified "on the ground" species or habitat management strategies expected to benefit the species; at least some of which can be implemented with existing resources and are expected to have a reasonable chance of improving the species' conservation status.

B – Managers have only identified research needs for the species or managers have only identified "on the ground" conservation actions that cannot be implemented due to lack of personnel, funding, or other circumstance.

C – Managers have failed to identify "on the ground" actions or research needs that could benefit this species or its habitat or all identified conservation opportunities for a species have been exhausted.

Over 880 SGCN are listed in the 2015 Action Plan and found in varying densities across the state (Figure 1). Of the Plan's SGCN, 23.4 percent are classified as Conservation Opportunity Ranking A; 7.1 percent are classified Conservation Opportunity Ranking B; and 69.5 percent are classified as Conservation Opportunity Ranking C. Additionally, of the 883 SGCN:

- Approximately 25% of the SGCN are already listed as threatened or endangered under the Federal or Virginia Endangered Species Act,
- Approximately 60% are aquatic,
- Approximately 70% are invertebrates, and
- All are impacted by the loss or degradation of their habitats.

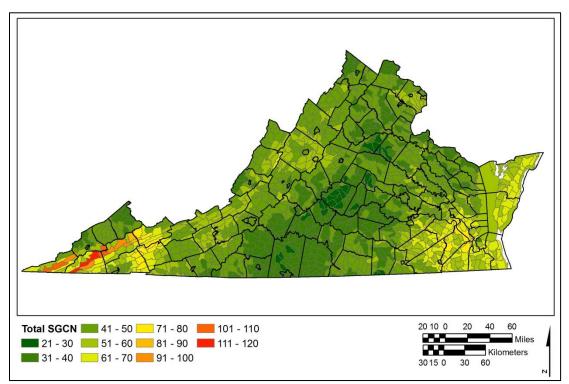


Figure 1. State Distribution of Species of Greatest Conservation Need by HUC12 Watersheds.

Wildlife Action Plan Implementation

Since its creation, the Wildlife Action Plan has helped Virginia acquire over \$17 million in new conservation funding through the State Wildlife Grants Program. These resources have been used to implement significant research, advance species recovery efforts via captive propagation, and restore and conserve important wildlife habitats. Despite these successes, many conservation practitioners feel the original Wildlife Action Plan never reached its full potential. One common concern is that it failed to focus at the habitat level where the needs of many species could be addressed at once. Further, many partners indicated the original Action Plan did not provide sufficient details to help prioritize conservation needs and opportunities at a local scale, where many land use decisions are made, and conservation efforts are implemented. Lacking these local insights, it was often difficult for agencies, municipalities, organizations, academic institutions, and landowners to identify and focus on the highest priority wildlife conservation opportunities for their geographic area. To address this concern and make the Action Plan more user-friendly and relevant at a finer scale, this version (2015) of the Action Plan was developed to include locally-based summaries. These summaries identify species that are local priorities, habitats required to conserve those species, regional threats impacting species and habitats, and priority conservation actions that can be taken to address those threats. The goal of these summaries is to facilitate and benefit the work of local governments, conservation groups, landowners, and other members of the conservation community who wish to support wildlife conservation within their regions.

Local Action Plan Summaries

In creating the updated Action Plan, the Virginia Department of Game and Inland Fisheries (DGIF) adopted a model developed by the Virginia Department of Conservation and Recreation (DCR) for the Virginia Outdoors Plan. The Virginia Outdoors Plan describes recreational resource issues for 21 multi-county Recreational Planning Regions. Each Recreational Planning Region is roughly analogous to one of Virginia's 21 local Planning District Commissions (PDC). The PDCs are voluntary associations of local governments intended to foster intergovernmental cooperation by bringing together local officials, agency staff, the public, and partners to discuss common needs and develop solutions to regional issues. With its focus on local-scale actions, the Virginia Outdoors Plan has become an important tool for identifying and addressing local recreational issues. This DCR model was adapted and used in this Action Plan to address wildlife and habitat issues for the benefit of planning region residents. More broadly, the new Action Plan's Local Action Plan Summaries will create a framework that Virginia's diverse conservation community can use to identify issues and locations of mutual conservation interest, enhance collaborative opportunities, develop new conservation resources, and craft "win-win" situations that can be beneficial for both the people and wildlife of Virginia.

CUMBERLAND PLATEAU PLANNING REGION SUMMARY OVERVIEW

The Cumberland Plateau Planning Region consists of 1,173,394 acres (1,833 square miles) and includes the counties of Buchanan, Dickenson, Russell, and Tazewell and towns of Richlands, Tazewell, and Bluefield. The human population in this planning region is estimated to be almost 110,000 people. Populations in these counties have been decreasing and are projected to continue to decrease by 2020 (U.S. Census Bureau 2015; DCR 2013).

Less developed and more rural areas often provide a diversity of valuable wildlife habitats, which can be degraded or lost as human populations grow or energy and other extractive uses expand. This planning region contains a range of SGCN, including 9 SGCN that have 100 percent of their distribution within this planning region. They are Hubricht's cave beetle, Clinch dace, Beartown perlodid stonefly, brown supercoil, cave lumbriculid worm, Big Cedar Creek millipede, suckermouth minnow, Bluestone sculpin, and an unnamed millipede. The planning region also includes a variety of habitats such as mixed hardwood and conifer forests, young forests, retired agricultural land, karst, non-tidal wetlands, and warm and cold water streams and riparian habitats (Figure 2).

In developing conservation actions for habitats and priority species within this planning region, a number of factors must be considered to determine how limited resources can be allocated to best effect. A project's likely impact and probability of success, the effectiveness of historic and ongoing conservation actions, as well as logistical, economic, and political factors will all influence the selection and prioritization of conservation actions. Virginia's Wildlife Action Plan advocates a proactive approach that focuses conservation resources to manage species before they become critically imperiled and to implement projects that can simultaneously benefit multiple species and human communities. These factors were considered during development of the conservation actions included in the following sections as well as in analyzing the existing threats facing SGCN and their habitats. Threats and conservation actions are organized based on the habitat types found within this planning region upon which priority SGCN depend.

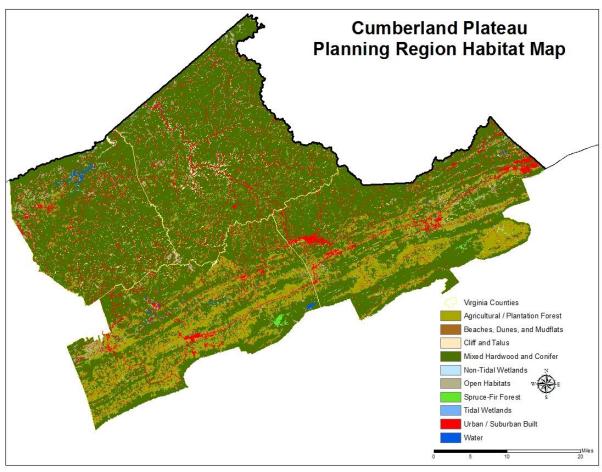


Figure 2. Cumberland Plateau Planning Region Habitats (Anderson et al. 2013).

Priority Species of Greatest Conservation Need

Of Virginia's 883 SGCN, 165 are believed to either occur, or have recently occurred, within the Cumberland Plateau Planning Region (Appendix A). Of these 166 species, 151 SGCN, are dependent upon habitats provided within the Cumberland Plateau Planning Region (Table 2). These species constitute the priority SGCN for the region. A summary of SGCN Tier and Conservation Opportunity Rankings is provided in Table 1, while Figure 3 demonstrates the density of the 150 priority species within this region.

Priority SGCNs within this Local Summary include species for which this planning region comprises a significant portion of its range in Virginia. To determine species priority, the authors implemented a 10 percent rule to identify locally important species. Under the 10 percent rule, an SGCN is included in a Local Summary if the planning region provides at least 10 percent of that species' range in Virginia. However, there are several other instances that warrant inclusion on a planning region's priority SGCN list. First, several SGCN occur statewide but in low numbers in each planning region and will never reach the 10 percent threshold in any single planning region. Species that fall in this category were manually added to priority SGCN lists where appropriate. Some species only occur in three or fewer planning regions. These SGCN are also included on priority lists for the planning regions in which they are found due to their rarity in

the state and the importance of those few planning regions to their survival. For migrant species that may only be in Virginia for a matter of days, these migratory habitats are considered critical for their long-term conservation. When these circumstances were identified, specific migratory species were manually added to local SGCN lists as well. Finally, where a species may have a particularly strong population in a relatively small portion of a planning region, the population may be determined to be significant enough to warrant inclusion on the local SGCN list. Again, when these circumstances were identified, species were manually added to the local priority SGCN list.

Table 1. Tier and Conservation Opportunity Ranking Distribution among Priority SGCN.

Tier and Conservation Opportunity Rank	Number of SGCN
la	23
Ib	8
Ic	7
lla	9
IIb	3
IIc	20
IIIa	10
IIIb	5
IIIc	15
IVa	17
IVb	9
IVc	25

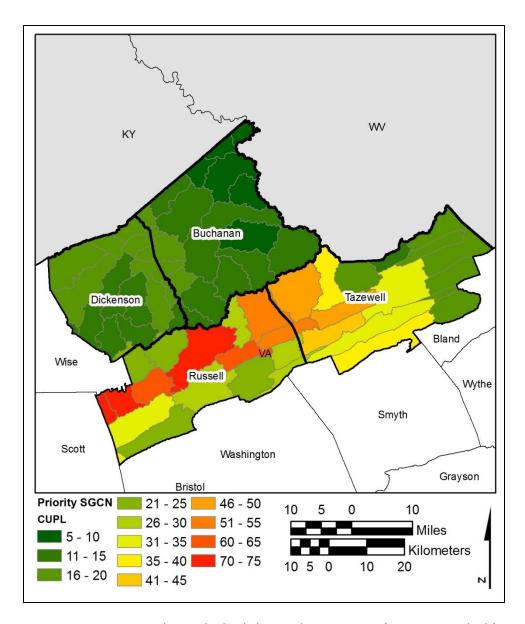


Figure 3. Priority SGCN Density in the Cumberland Plateau Planning Region (HUC12 Watersheds).

Table 2. Priority Species of Greatest Conservation Need Distribution within the Cumberland Plateau Planning Region.

Таха	Conservation Status	Tier	Opportunity Ranking	Common Name	Scientific Name	Habitat
Amphibian		IV	С	Blue Ridge dusky salamander	Desmognathus orestes	High elevation seeps, streams, wet rock faces, and riparian forests
Amphibian		IV	С	Cumberland Plateau salamander	Plethodon kentucki	Mature hardwood forests in the vicinity of rocky outcrops
Amphibian	сс	I	a	Eastern hellbender	Cryptobranchus alleganiensis alleganiensis	Clean streams and rivers with rocky substrates
Amphibian		II	b	Green salamander	Aneides aeneus	Damp, but not wet, crevices in shaded rock outcrops and ledges in forested areas
Amphibian		П	С	Mountain chorus frog	Pseudacris brachyphona	Forested areas up to 3500 feet that contain suitable breeding sites
Amphibian		II	С	Southern zigzag salamander	Plethodon ventralis	Hardwood forests in the vicinity of rocky outcrops
Bird		III	a	Barn owl	Tyto alba	Fields of dense grass. Open and partly open country (grassland, marsh, lightly grazed pasture, hayfields) in a wide variety of situations, often around human habitation.
Bird		Ili	b	Belted kingfisher	Megaceryle alcyon	Primarily along water, both freshwater and marine, including lakes, streams, wooded creeks and rivers, seacoasts, bays, estuaries, and mangroves. Perches in trees, on over hanging branches, posts and utility wires.
Bird		IV	а	Black-and-white warbler	Mniotilta varia	Habitat generalist with broad habitat tolerances.
Bird		II	b	Black-billed cuckoo	Coccyzus erythropthalmus	Forest edge and open woodland, both deciduous and coniferous, with dense deciduous thickets.
Bird		IV	a	Brown thrasher	Toxostoma rufum	Thickets and bushy areas in deciduous forest clearings and forest edge, shrubby areas and gardens; in migration and winter also in scrub.
Bird		IV	b	Canada warbler	Cardellina canadensis	Breeding habitat includes moist thickets of woodland undergrowth (especially aspen-poplar), bogs, tall shrubbery along streams or near swamps, and deciduous second growth.
Bird		II	a	Cerulean warbler	Setophaga cerulea	A structurally mature hardwood forest in a mesic or wetter situation, with a closed canopy
Bird		IV	b	Chimney swift	Chaetura pelagica	Inhabits rural and urban environments having both an abundance of flying arthropods and suitable roosting/nesting sites.

Bird		IV	a	Eastern kingbird	Tyrannus tyrannus	Forest edge, open situations with scattered trees and shrubs, cultivated lands with bushes and fencerows, and parks; in winter more closely associated with forest clearings and borders.
Bird		IV	a	Eastern meadowlark	Sturnella magna	Grasslands, savanna, open fields, pastures, cultivated lands, sometimes marshes.
Bird		IV	a	Eastern towhee	Pipilo erythrophthalmus	Inhabits forest and swamp edges, regenerating clearcuts, open- canopied forests, particularly those with a well-developed understory, reclaimed strip mines, mid-late successional fields, riparian thickets, overgrown fencerows, shrub/small-tree thickets, and other brushy habitats.
Bird		III	a	Eastern whip-poor-will	Antrostomus vociferus	Forest and open woodland, from lowland moist and deciduous forest to montane forest and pine-oak association.
Bird		IV	b	Eastern wood-pewee	Contopus virens	Inhabits a wide variety of wooded upland and lowland habitats including deciduous, coniferous, or mixed forests.
Bird		IV	a	Field sparrow	Spizella pusilla	Old fields, brushy hillsides, overgrown pastures, thorn scrub, deciduous forest edge, sparse second growth, fencerows.
Bird		I	a	Golden-winged warbler	Vermivora chrysoptera	Open shrubby habitat (ex. old fields and pastures) at mid to high elevations within broader forested matrix west of the Blue Ridge Mountains
Bird		IV	a	Grasshopper sparrow	Ammodramus savannarum	Grassland obligate
Bird		IV	a	Gray catbird	Dumetella carolinensis	Thickets, dense brushy and shrubby areas, undergrowth of forest edge, hedgerows, and gardens, dense second growth.
Bird		IV	b	Green heron	Butorides virescens	Swamps, mangroves, marshes, and margins of ponds, rivers, lakes, and lagoons.
Bird		III	a	Kentucky warbler	Geothlypis formosa	Humid deciduous forest, dense second growth, swamps.
Bird	ST	1	а	Loggerhead shrike	Lanius ludovicianus	Grasslands, orchards and open areas with scattered trees
Bird		IV	b	Northern Flicker	Colaptes auratus	Open forest, both deciduous and coniferous, open woodland, open situations with scattered trees and snags, riparian woodland, pine-oak association, parks.
Bird	ST	1	a	Peregrine falcon	Falco peregrinus	Human structures in the east and cliff sites in the west
Bird		III	С	Red crossbill	Loxia curvirostra	Spruce-fir or hemlock forests above 4000 feet
Bird		III	a	Ruffed grouse	Bonasa umbellus	Dense forest with some deciduous trees, in both wet and relatively dry situations from boreal forest (especially early seral stages dominated by aspen) and northern hardwood ecotone to eastern deciduous forest and oak-savanna woodland (AOU 1983).
Bird		II	b	Swainson's warbler	Limnothlypis swainsonii	Forested moist lower slopes with a rhododendron shrub layer
Bird		IV	b	Wood thrush	Hylocichla mustelina	Deciduous or mixed forests with a dense tree canopy and a fairly well-developed deciduous understory, especially where moist.

Bird		III	a	Yellow-billed cuckoo	Coccyzus americanus	Open woodland (especially where undergrowth is thick), parks, deciduous riparian woodland.
Bird		IV	а	Yellow-breasted chat	Icteria virens	Second growth, shrubby old pastures, thickets, bushy areas, scrub, woodland undergrowth, and fence rows, including low wet places near streams, pond edges, or swamps; thickets with few tall trees; early successional stages of forest regeneration; commonly in sites close to human habitation.
Crustacean	FSSE	I	С	Big Sandy Crayfish	Cambarus veteranus	Warm streams with fast flows and bedrock, cobble, boulder, and sand substrates
Crustacean		III	С	Reticulate crayfish	Oroconectes erichsonianus	Streams with rocky substrates
Fish	FS	I	b	Ashy darter	Etheostoma cinereum	Clear cool or warm streams with moderate gradient with rubble and boulder substrates
Fish		IV	С	Black sculpin	Cottus baileyi	Cold creeks and streams with moderate to high gradient and clean gravel and boulder substrates
Fish		IV	С	Blotched chub	Erimystax insignis	Clean, cool to warm, streams and rivers with moderate gradient and clean gravel and rubble substrates
Fish	FS	II	а	Blotchside logperch	Percina burtoni	Clear warm moderate gradient rivers with gravel or rubble substrates
Fish		IV	С	Bluebreast darter	Etheostoma camurum	Clear warm streams and rivers with moderate gradient with silt free gravel, rubble, or boulder substrates
Fish	FS	III	С	Bluestone sculpin	Cottus sp. 1	Cool or cold limestone spring runs with strong flows and gravel or rubble substrates and aquatic vegetation
Fish		IV	С	Brook silverside	Labidesthes sicculus	Clear cool or warm lakes and large rivers and can tolerate various substrates and various amounts of aquatic vegetation
Fish		IV	a	Brook trout	Salvelinus fontinalis	Clear, cool, well-oxygenated creeks, small to medium rivers, and lakes
Fish	cc	1	b	Candy darter	Etheostoma osburni	Clear creeks and streams with rocky substrates
Fish		III	С	Channel darter	Percina copelandi	Warm rivers with moderate to swift flows and gravel and rubble substrate
Fish	FS	I	a	Clinch dace	Chrosomus sp. cf. saylori	Small high elevation streams with gravel substrates and forested watersheds
Fish	FS	III	С	Clinch sculpin	Cottus sp. 4	Cold clear spring runs to rivers with moderate to high gradients and unsilted gravel, rubble, and boulder substrates
Fish		III	С	Common mudpuppy	Necturus maculosus maculosus	Permanent lakes, ponds, impoundments, streams, and rivers with suitable hiding cover
Fish		IV	С	Dusky darter	Percina sciera	Warm streams and rivers with low gradients and unsilted gravel substrates
Fish	FESE	I	а	Duskytail darter	Etheostoma percnurum	Clear, warm, moderate gradient intermontane streams and rivers with clean gravel, rubble, or boulder substrates

Fish	ST	IV	С	Emerald shiner	Notropis atherinoides	Clear large streams and rivers with low gradient.
Fish		III	С	Freshwater drum	Aplodinotus grunniens	Warm turbid water in lakes, reservoirs, and pools in low gradient rivers over mud substrate
Fish	FS	III	С	Holston sculpin	Cottus sp. 5	Clear streams with moderate to high gradient and clean gravel, rubble, or boulder substrates
Fish		IV	С	Logperch	Percina caprodes	Warm, moderate gradient, streams and rivers with gravel and rubble substrates
Fish		III	С	Mirror shiner	Notropis spectrunculus	Clear warm moderate gradient rivers with gravel or rubble substrates
Fish		III	С	Mountain brook lamprey	Ichthyomyzon greeleyi	Cool creeks or streams with moderate flow and clean substrates with access to pool sediments and muddy banks for ammocoetes
Fish		IV	С	Mountain madtom	Noturus eleutherus	Clear, warm streams and rivers with gravel and rubble substrates and vegetated riffles
Fish		IV	С	Mountain shiner	Lythrurus lirus	Typically in clear, flowing, riffle-pool type creeks and small rivers with moderate gradients and bottom materials ranging from sand-gravel to rubble-boulder
Fish		IV	С	Northern studfish	Fundulus catenatus	Cutoff pools, backwaters, and sluggish margins of clear, warm, moderate gradient creeks, streams and rivers with a variety of substrates
Fish		IV	С	Ohio lamprey	Ichthyomyzon bdellium	Large warm rivers with clean gravel and rubble substrates and access to low gradient areas with soft substrates and detrital material for ammocoetes
Fish	ST	IV	С	Paddlefish	Polyodon spathula	Warm medium to large rivers with very low flows
Fish		II	С	Popeye shiner	Notropis ariommus	Clear warm moderate gradient rivers with gravel or rubble substrates
Fish		III	b	River redhorse	Moxostoma carinatum	Clean streams and rivers with unsilted gravel, rubble, and boulder substrates
Fish		IV	С	Sand shiner	Notropis stramineus	Warm streams with low to moderate gradient and clean sand and gravel substrates
Fish		III	b	Sauger	Sander canadensis	Cool large streams, rivers, and lakes with a combination of deep swift runs and backwaters
Fish		IV	С	Sharpnose darter	Percina oxyrhynchus	Moderate gradient streams and rivers with unsilted gravel, rubble, and boulder substrates
Fish	FTST	I	С	Slender chub	Erimystax cahni	Clear, open, and swift streams and rivers with unsilted gravel substrates
Fish		IV	С	Speckled darter	Etheostoma stigmaeum	Aquatic
Fish	FTST	I	b	Spotfin chub	Erimonax monachus	Clean medium sized streams and rivers with clean gravel and cobble substrate

				6. 1 1 1:	0 : " !: !:	
Fish	ST	III	С	Steelcolor shiner	Cyprinella whipplei	Warm low to moderate gradient streams and rivers over a variety of substrates
Fish		IV	С	Stonecat	Noturus flavus	Warm streams and rivers with moderate to low gradient with rocky substrates
Fish		IV	С	Suckermouth minnow	Phenacobius mirabilis	Warm, clear to turbid streams and rivers with moderate gradient with sand and gravel substrate
Fish		IV	b	Swannanoa darter	Etheostoma swannanoa	Cool clear streams with moderate to high gradient with clean gravel, rubble, and boulder substrates
Fish		IV	С	Tangerine darter	Percina aurantiaca	Clean, cool and warm streams and rivers with moderate gradient and a variety of substrates
Fish	SE	I	b	Tennessee dace	Chrosomus tennesseensis	Clean creeks with rock, gravel, or silt substrates and stable banks
Fish	SE	I	a	Variegate darter	Etheostoma variatum	Warm to cool water streams with clean gravel, rubble, or boulder substrates
Fish		III	С	Wounded darter	Etheostoma vulneratum	Warm moderate gradient streams and rivers with clean gravel and rubble substrate
Fish	FTST	I	a	Yellowfin madtom	Noturus flavipinnis	Warm, clear streams and rivers with moderate gradient and variety of cover types
FW Mollusk	FESE	I	a	Appalachian monkeyface	Quadrula sparsa	River headwaters with fast flow and various substrates
FW Mollusk	FESE	I	a	Birdwing pearlymussel	Lemiox rimosus	Aquatic
FW Mollusk	ST	III	а	Black sandshell	Ligumia recta	Medium to large rivers with strong currents and sand, gravel, and cobble substrates
FW Mollusk		Ш	С	Brown walker	Pomatiopsis cincinnatiensis	Amphibious - vegetated banks of streams, creeks, and rivers
FW Mollusk	FESE	I	b	Cracking pearlymussel	Hemistena lata	Medium sized rivers with moderate current and mud, sand, and fine gravel substrates
FW Mollusk		IV	a	Creeper	Strophitus undulatus	It is usually found in streams and rivers in a range of flow conditions (rarely in high-gradient streams of mountainous regions) but can tolerate lakes and ponds, particularly in outlets.
FW Mollusk	FESE	1	a	Cumberland bean	Villosa trabalis	Clear, warm streams and small rivers with moderate to swift currents and unsilted sand, gravel, and rubble substrates
FW Mollusk		IV	a	Cumberland moccasinshell	Medionidus conradicus	Small headwater streams with sand and gravel substrates and extends well into medium sized rivers
FW Mollusk	FESE	1	a	Cumberland monkeyface	Quadrula intermedia	Small to medium sized streams with fast current and silt-free sand, gravel, and rubble substrates
FW Mollusk	FESE	I	a	Cumberlandian combshell	Epioblasma brevidens	Large creeks to large rivers with gravel, cobble, and boulder substrates

FW Mollusk	SE	III	b	Deertoe	Truncilla truncata	This species is a generalized in terms of substrate preference, usually occurring in fine gravel mixed with sand and mud. It is also considered a generalist in terms of the size of rivers it inhabits. It is more common in medium-sized rivers but may become numerous in large rivers, where it can live at depths of 12 to 18 feet. It will also establish viable populations in lakes lacking current
FW Mollusk	FESE	I	а	Dromedary pearlymussel	Dromus dromas	Clean fast moving water with firm, unsilted, sand and gravel substrates
FW Mollusk	SE	III	а	Elephant ear	Elliptio crassidens	Large creeks to rivers with moderate to swift currents and mud, sand, or rocky substrates
FW Mollusk		II	С	Elktoe	Alasmidonta marginata	Small shallow rivers with moderately fast current and sand and gravel substrates
FW Mollusk	FESE	I	a	Fanshell	Cyprogenia stegaria	Mixed substrates of gravel, sand and cobble
FW Mollusk	FESE	I	а	Fine-rayed pigtoe	Fusconaia cuneolus	Clear high gradient streams in unsilted gravel and cobble substrates
FW Mollusk	FC	II	а	Fluted kidneyshell	Ptychobranchus subtentum	Small to medium rivers with swift current and sand, gravel, or cobble substrates
FW Mollusk	ST	IV	b	Fragile papershell	Leptodea fragilis	This species is tolerant of a variety of aquatic habitats and can be found in small streams in strong current with coarse gravel and sand substrates but also rivers or river-lakes possessing slow current and a firm substrate composed of sand and mud. It can occur at depths of up to 15 or 20 feet but reaches greatest population density at normal water levels of three feet or less in areas such as shallow embayments
FW Mollusk		I	а	Golden riffleshell	Epioblasma florentina aureola	Aquatic
FW Mollusk	FESE	I	С	Little-winged pearlymussel	Pegias fabula	High gradient headwater streams
FW Mollusk		III	а	Longsolid	Fusconaia subrotunda	Medium to large rivers with strong currents and sand and gravel substrates
FW Mollusk		IV	а	Mountain creekshell mussel	Villosa vanuxemensis vanuxemensis	Very clean small headwaters creeks and streams with sand and gravel substrates and associated with <i>Justicia</i> beds
FW Mollusk	FESE	I	а	Oyster mussel	Epioblasma capsaeformis	Warm creeks and rivers with moderate to swift current and sand, gravel, and boulder substrates

FW Mollusk	ST	IV	b	Pimple back	Quadrula pustulosa pustulosa	This species has generalized habitat preferences and can maintain abundant and viable populations in shallow to deep sections of large reservoirs as well as in small to medium-sized free-flowing rivers. It is usually found in a substrate consisting of coarse gravel, sand, and silt.
FW Mollusk		III	b	Pink heelsplitter	Potamilus alatus	On a variety of substrates in slow to swiftly flowing wate
FW Mollusk		IV	а	Pocketbook mussel	Lampsilis ovata	Either flowing or standing water with gravel, sand, silt, or mud substrates
FW Mollusk	FESE	I	а	Purple bean	Villosa perpurpurea	Headwaters, creeks, and rivers and can tolerate a variety of currents and substrates
FW Mollusk	FSSE	II	С	Purple liliput	Toxolasma lividus	Small to medium sized streams in well packed sand or gravel substrates
FW Mollusk	FSSE	II	а	Pyramid pigtoe	Pleurobema rubrum	Medium and large rivers with flow and stable mud or mud/sand substrates
FW Mollusk	FESE	I	a	Rough rabbitsfoot	Quadrula cylindrica strigillata	Warm medium to large rivers with swift currents and silt, sand, gravel, or cobble substrates
FW Mollusk	FPST	II	a	Sheepnose	Plethobasus cyphyus	Warm large rivers and reservoirs with gravel and cobble substrates
FW Mollusk	FESE	I	а	Shiny pigtoe	Fusconaia cor	Moderate to swift current with stable sand, gravel, or cobble substrates
FW Mollusk	FCST	II	а	Slabside pearlymussel	Lexingtonia dolabelloides	Large creeks to moderate rivers with moderate flow and gravel and sand substrates
FW Mollusk	SE	I	b	Slippershell mussel	Alasmidonta viridis	Headwater creeks and small streams with constant flow and mud, sand, or gravel substrates and aquatic vegetation
FW Mollusk	FPSE	I	а	Snuffbox	Epioblasma triquetra	Small to medium sized creeks with swift current and sand, gravel, and cobble substrates
FW Mollusk	FPSE	I	b	Spectaclecase	Cumberlandia monodonta	Under slab rocks or in crevices beneath bedrock shelves
FW Mollusk	FSST	III	а	Spiny riversnail	Io fluvialis	Large rocks and bedrock outcrops in well-oxygenated shallow water with fast current
FW Mollusk		III	а	Tennessee clubshell	Pleurobema oviforme	Creeks and small rivers with moderate flow and sand/gravel substrates
FW Mollusk	SE	II	а	Tennessee heelsplitter	Lasmigona holstonia	Small headwater streams with sand or mud substrates
FW Mollusk	FS	II	а	Tennessee pigtoe	Fusconaia barnesiana	Headwater streams to rivers with moderate to high flow and unsilted gravel/ sand rubble, or boulder substrates

FW Mollusk		IV	С	Three-ridge valvata	Valvata tricarinata	Unknown habitat needs in Virginia but in other parts of the country this species is associated with aquatic vegetation
Insect	FS	I	а	Big stripetail stonefly	Isoperla major	Unknown but stoneflies generally occur in fast flowing water with rocky substrates
Insect	FS	II	С	Burkes Garden cave beetle	Pseudanophthalmus hortulanus	Caves with clean abundant water flowing through the system
Insect	FS	II	С	Cherokee clubtail	Gomphus consanguis	Small shady spring fed streams with mud bottoms
Insect		II	С	Green-faced clubtail	Gomphus viridifrons	Large rivers with rocks and moderate current
Insect	FS	II	С	Hubricht's cave beetle	Pseudanophthalmus hubrichti	Caves with clean abundant water flowing through the system
Insect	FS	II	С	Lobed roachfly	Tallaperla lobata	Unknown but stoneflies generally occur in fast flowing water with rocky substrates
Insect	FS	II	С	Maiden Spring cave beetle	Pseudanophthalmus virginicus	Caves with clean abundant water flowing through the system
Insect	FS	II	С	Persius duskywing	Erynnis persius persius	Pine barrens/ oak savanna and other open sunny habitats
Insect	FS	II	С	Saint Paul cave beetle	Pseudanophthalmus sanctipauli	Caves with clean abundant water flowing through the system
Insect	FS	II	С	Silken cave beetle	Pseudanophthalmus sericus	Caves with clean abundant water flowing through the system
Insect	FS	II	С	Vicariant cave beetle	Pseudanophthalmus vicarius	Caves with clean abundant water flowing through the system
Mammal		IV	С	Allegheny woodrat	Neotoma magister	Blue Ridge to the west - cliffs dry rocky slopes, talus, and exposed ridges
Mammal		IV	С	Appalachian cottontail	Sylvilagus obscurus	High elevation forested areas west of the Shenandoah river
Mammal		ı	С	Eastern small-footed myotis	Myotis leibii	Hibernation occurs in solution and fissure caves and mine tunnels (including coal, iron, copper, and talc mines). Situations near the entrance where the air is relatively cold and dry seem to be preferred (Barbour and Davis 1969), though sometimes deeper locations are used (Schwartz and Schwartz 1981). Roost sites often are deep in crevices, or under rocks on the cave floor. Forages over ponds and streams.
Mammal		IV	С	Eastern spotted skunk	Spilogale putorius putorius	Blue Ridge to the west - rock piles, rock slides and cliffs surrounded by forests
Mammal	FESE	I	b	Indiana bat	Myotis sodalis	West of Shenandoah River - winter site specific caves, summer forested areas containing trees with scaly or shaggy bark as well as dead trees
Mammal		IV	С	Long-tailed shrew	Sorex dispar dispar	West of Shenandoah talus slopes, rock slides and cliffs surrounded by forests

Mammal	FESE	II	a	Virginia big-eared bat	Corynorhinus townsendii virginianus	Caves typically in limestone karst regions dominated by mature hardwood forests of hickory, beech, maple, and hemlock. Prefers cool, well-ventilated caves for hibernation; roost sites are often near cave entrances or in places where there is considerable air movement.
Other Aquatic Invertebrate	FS	I	С	A cave lumbriculid worm	Stylodrilus beattiei	Caves with clean abundant water flowing though the system
Other Aquatic Invertebrate	FS	II	С	A cave lumbriculid worm	Spelaedrilus multiporus	Caves with clean abundant water flowing through the system
Other Aquatic Invertebrate	FS	I	С	Chandler's planarian	Sphalloplana chandleri	Caves with clean abundant water flowing through the system
Other Terrestrial Invertebrate	FS	II	С	A cave pseudoscorpion	Kleptochthonius regulus	Caves with clean abundant water flowing through the system
Other Terrestrial Invertebrate	FS	II	С	A millipede	Pseudotremia armesi	Caves with clean abundant water flowing through the system
Other Terrestrial Invertebrate		II	С	A millipede	PSEUDOTREMIA TUBERCULATA	No habitats have been identified for this species
Other Terrestrial Invertebrate	FS	II	С	Big Cedar Creek millipede	Brachoria falcifera	No habitats have been identified for this species
Other Terrestrial Invertebrate	FSST	I	С	Brown supercoil	Paravitrea septadens	Deep moist leaf litter on wooded hillsides at the base of hills and ravines
Reptile		III	С	Cumberland slider	Trachemys scripta troostii	A variety of freshwater habitats including rivers, ponds, lakes, and roadside ditches
Reptile		III	С	Eastern black kingsnake	Lampropeltis getula nigra	This species is known to utilize various habitats, including dry rocky hills, open woods, dry prairies, stream valleys, and many other habitats
Reptile		IV	а	Northern map turtle	Graptemys geographica	Clear flowing water with gravel substrates
Reptile		IV	а	Spiny softshell	Apalone spinifera spinifera	Clean clear rivers with flowing water and sand substrates
Reptile		IV	а	Stripe-necked musk turtle	Sternotherus minor peltifer	Warm streams with fast flows and rock and cobble substrates

^{**} Federal Endangered (FE), State Endangered (SE), Federal Threatened (FT), State Threatened (ST), Federal Species of Concern (FS), Federal Candidate (FC), Federal Proposed (FP), and Species of Collection Concern (CC).

CONSERVED LANDS IN THE CUMBERLAND PLATEAU PLANNING REGION

Recognizing the importance of the local habitats to resident and migratory wildlife, state, federal, and private entities have made significant investments to conserve lands within this planning region. Conservation mechanisms range from conservation easements to national forest to state parks and state wildlife management areas. Significant conservation assets, in terms of size, include:

- Jefferson National Forest,
- Clinch Mountain Wildlife Management Area,
- Breaks Interstate Park,
- Pinnacle State Natural Area Preserve,
- Cleveland Barrens State Natural Area Preserve, and
- Flannagan Reservoir.

These properties contain a diversity of open water, forest, agricultural, and wetland habitats (Figure 4). They have been conserved to provide a range of conservation, recreational, and economic benefits such as habitat protection and restoration, ecotourism, and fishing and hunting opportunities.

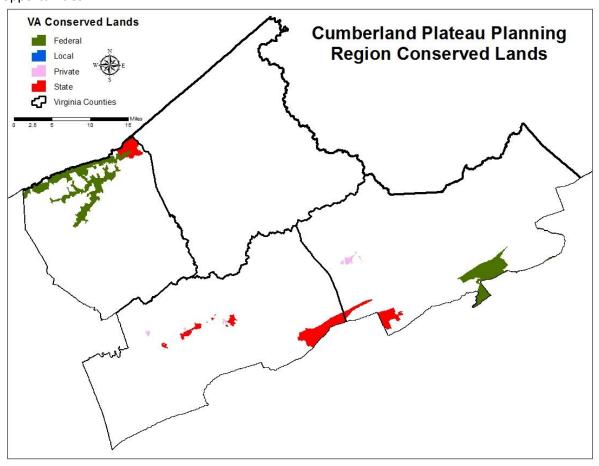


Figure 4. Conservation Lands in the Cumberland Plateau Planning Region (DCR, Natural Heritage 2014).

These properties serve as an important component of wildlife conservation efforts on within the Cumberland Plateau Planning Region. Healthy and important habitats have been conserved within their boundaries; however, working to conserve other lands could be beneficial for many SGCN and habitats within the region. Additionally, although there may be concern over the economic and social impacts of putting lands into conservation, many of these areas provide recreation and ecotourism benefits (DCR 2013; Carver and Caudill 2013). Through these mechanisms local economies could be bolstered; however, insufficient data exist to fully describe the benefits and drawbacks of lands held in conservation within the planning region. To balance these interests, especially as conditions change, it will be critical for the conservation community to actively engage with local governments and stakeholders to ensure that conservation spending is beneficial for both wildlife and localities.

Climate Change Impacts in the Cumberland Plateau Planning Region

Changes in temperature and precipitation will likely negatively affect habitats and SCGN in the Cumberland Plateau Planning Region. Based on scientific reports and research, it is clear that temperatures in the state will get warmer. The National Climate Assessment (NCA) is a national climate assessment that provides state level information. The NCA indicates Virginia's average temperature could increase by as much as 7°F by 2100 (Melilo et al. 2014). Earlier models used for Virginia's 2008 Climate Action Plan project that average temperatures may increase by 3.1°C (5.6°F) by the end of the century in Virginia (Governor's Commission on Climate Change 2008).

Temperature changes are likely to be even greater in the Appalachians than at lower elevations due to a range of factors such as snow albedo, water vapor changes and latent heat release, aerosols, among others (Staudinger et al. 2015). Projections also indicate a likely increase in summer high temperatures and longer growing seasons (Staudinger et al. 2015). These changes could affect depth of snow pack and earlier snow melt.

Increased temperatures may lead to heat stress for species and affect water temperature, temperature regime timing, and associated behaviors as well as potentially resulting in changes to food availability (Boicourt and Johnson 2011; Kane 2013). Temperature increases may also be problematic for species at the edge of their ranges. For example, if species are at the more southern end of their range, they may not survive significant increases in temperature that are greater than they can withstand (Pyke et al. 2008). Warmer temperatures may also result in warmer waters, which could favor parasites and other pests in aquatic environments (Pyke et al. 2008; Najjar et al. 2010; Kane 2013). Additionally, if temperatures and precipitation change such that season length is altered, fish and other species reproductive cycles and other phenological processes may be affected. Ecological conditions may also be altered, including food supplies and sympatric animal behaviors (e.g., fish migrations and nest building).

CONSERVATION THREATS AND ACTIONS FOR WILDLIFE AND HABITAT IN THE CUMBERLAND PLATEAU PLANNING REGION

The following sections on threats, conservation actions, and conservation priorities are subdivided based on habitat type. Key habitat conservation strategies, actions, threats, and other impacts are summarized in Table 3. In many cases, actions taken to protect or enhance habitat will positively affect many Cumberland Plateau Planning Region priority SGCN and other species. Many of these activities are also expected to benefit landowners and communities.

Table 3. Summary of Conservation Strategies and Actions for the Cumberland Plateau Planning Region.

Conservation	nmary of Conservation Strategies and Conservation Action	Threats	Economic/ Human	Priority
Strategy		Addressed	Benefits	Areas
Protect karst habitats	1) Maintain vegetative cover within watersheds where subterranean species occur; 2) Establish vegetative buffers around springs and sinkholes; 3) Minimize nutrients and sediments flowing into the system; 4) Establish parks, greenways, or other conserved lands above karst systems; 5) Develop water conservation and use strategies to help minimize groundwater depletion; and 6) Better control fecal matter and sewage.	Increasing industrial and residential water consumption, sedimentation and pollutants; protection of cave entrances	Drinking water quality; sustainability of private landowner wells and residential water supply	Areas underlain by karst geology
Maintain and restore wetland habitats	1) Work with appropriate entities on wetlands permitting process to ensure adequate mitigation and restoration procedures are in place; 2) Establish or enhance vegetative buffer areas inland of existing wetlands; 3) Utilize relevant data (e.g., Virginia Department of Conservation and Recreation's wetlands catalog) to identify priority areas for conservation, acquisition, and restoration; and 4) Control invasive species.	Water quality degradation, habitat/ land use conversion, non- native and exotic invasive species	Flood control; filtration services; erosion and sediment control; supports recreational and commercial fisheries; ecotourism/ wildlife watching and fishing/ hunting opportunities	Watershed with priority wetlands
Enhance, maintain, and restore aquatic and riparian habitats	1) Establish vegetated and/ or forested buffers along streams and sinkholes; 2) Reforest erodible pastures; 3) Exclude livestock from streams and areas around sinkholes; 4) Improve pasture and loafing lot management to prevent tainted runoff; 5) Implement conservation tillage; 6) Establish storage facilities for animal waste and runoff retention ponds; 7) Prevent erosion after timber harvests; 8) Repair or replace failing septic systems and "straight pipes;" 9) Establish rain gardens; 10) Sweep streets; 11) Stabilize dirt roads; 12) Reclaim abandoned mine lands; 13) Work to prevent pet waste from entering the watershed; 14) Continue to identify impaired waters within the planning region; 15) Monitor and address invasive species impacts; and 16) Adopt land use practices or policies through zoning or other means to help improve the health of aquatic systems.	Sedimentation, contaminants loading, water chemistry alteration, temperature regime alteration, stream nutrient dynamics alteration, land use changes, water withdrawals, climate change, invasive species	Address TMDL concerns by reducing amounts of sediment, nutrients, pesticides, and other pollutants that enter water ways; sustain sport fisheries and recreation opportunities; contribute to clean water supply	Big Cedar Creek, Clinch River, Dumps Creek, Indian Creek, Lewis Creek, Little River, Loops Creek, Swords Creek, Thompson Creek, Weaver Creek, Big Moccasin Creek, Laurel Creek, Tumbling Creek, Bluestone River, Guest River, Knox Creek, Pawpaw Creek, Lewis Creek, Upper Clinch River

Maintain and restore forest habitat	1) Protect land through acquisition, easement, incentives, or other mechanisms; 2) Implement vegetative buffers around extractive practices and development; 3) Work with state and federal agencies to ensure implementation of appropriate best management practices; 4) Maintain forest health to help ensure forest viability; and 5) Monitor and control invasive species. 6) Work to create areas of young forest on public lands.	Land use change and conversion, invasive species, climate change	Flood control; water quality; ecotourism/ wildlife viewing/other outdoor recreation	Forest patches adjacent to already protected parcels
Maintain and restore open habitats	1) Restore native grasses, shrubs, and forbs; 2) Maintain existing open habitats with periodic disturbance (e.g., prescribed burning, mowing, disking, etc.); and 3) Conserve, via acquisition, easement, collaboration, or agreement, patches from 20 acres to 100 or more acres.	Land use changes, invasive species	Conservation of native pollinators; erosion control; sequestration of nutrients, pesticides, and other pollutants before they enter rivers or karst systems	Areas supporting SGCN that are not already protected

Protect Karst Habitats

The Cumberland Plateau Planning Region contains cave/ karst habitats that are relatively unique in Virginia. These features are created by complex interactions of water, bedrock, vegetation, and soils. Karst areas contain sinkholes, sinking and losing streams, caves, and large flow springs (DCR website 2014). Because cave entrances and karst habitats are sensitive systems, exact locations of karst habitats are not provided in this Action Plan; however, general areas that contain karst features are provided in Figure 5. Karst systems provide important habitats for Hubricht's Cave Beetle and Burke's Garden Cave Beetle. Others species such as the Virginia big-eared and Indiana bats depend on karst habitat and are endangered throughout their range. Caves in the Cumberland Plateau Planning Region provide crucial winter habitat for some bat species.

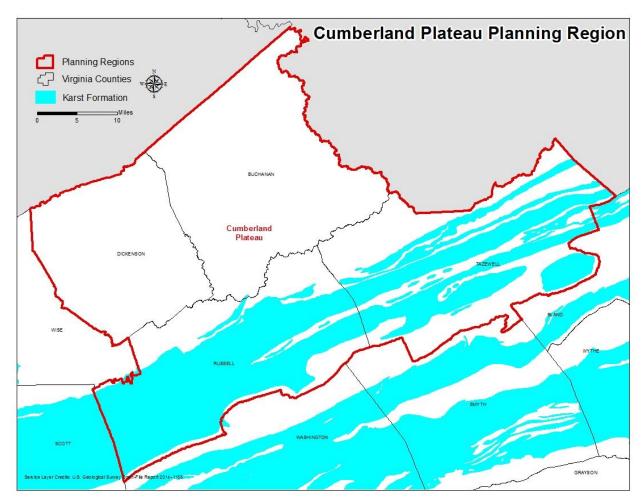


Figure 5. Karst Areas in the Cumberland Plateau Planning Region (Weary and Doctor 2014).

Threats

Threats are primarily water-related for karst systems.

1. <u>Water Quality Degradation</u>: Water is the most critical element influencing the health of a karst system. The quality of water entering, and flowing through, Virginia's karst systems is affected

by a variety of issues. Nutrient pollution, especially from nitrogen and phosphorus, is a significant cause of water degradation as well as bacteria, fertilizer, and pesticides (DCR 2008). Nutrients often enter aquatic systems from lands without adequate best management practices (BMP), storm water runoff controls, or adequate waste treatment practices. Water quality degradation of karst systems also often occurs when sinkholes are used as disposal sites. Development and resulting pollutant-laden runoff also negatively affect water quality (DCR 2008).

- Altered Hydrology: Development, which also likely plays a role in degraded water quality in the
 areas where karst occurs, can also result in altered hydrology which can affect water quantity
 and flows. The amount of water flowing through a karst system is important. Withdrawals for
 human use have the potential to degrade subterranean habitats and change surface
 topography.
- Climate Change: Changes to precipitation regimes that may cause more intense storm events
 could exacerbate already existing water quality problems. Higher amounts of precipitation in a
 short time frame could dramatically affect storm water runoff and nutrient run off from
 impervious surfaces.

Conservation Management Actions

The most efficient and cost effective means of conserving the integrity of karst and cave habitats is to focus on preserving the quality and quantity of water flowing into these systems. To improve water quality, important management actions include: minimizing use of fertilizers and pesticides near karst sites, minimizing runoff and other pollutants around the areas, preventing disposal of residential or agricultural waste near these sites, and ensuring vegetative buffer areas where there are extractive or other intensive land uses (Veni et al. 2001). It is also important to prevent sewage from community or municipal sewer systems from contaminating ecologically sensitive groundwater systems in karst areas (B. Beaty, The Nature Conservancy, personal communication, 2015). Vegetative buffers around sinkholes and entrances work to maintain the quality of water flowing into karst systems and provide vegetative cover in areas underlain by karst geology. However, it is important to note that it can be difficult to identify surface areas above the subterranean system well enough to install appropriate buffer areas.

Working with residents and municipalities to develop water conservation strategies will be important to control water withdrawals in the area (Veni et al. 2001). Adopting land use practices or policies through zoning or other guidelines focused on karst systems may also help protect and improve the health of karst systems in sensitive areas. Establishing protected areas around these karst systems may also be valuable. Additionally, local government policies or ordinances could include overlay districts, karst feature buffers, geotechnical surveys when in area that could contain karst systems, and/ or performance standards for development (Belo 2003).

Climate-Smart Management Actions

Karst systems are vulnerable to stressors such as poor water quality and changes to water flow that may be exacerbated by climate change. When considering planting vegetative buffers, managers will need to understand how conditions may change in the area and work with appropriate vegetation. For example,

if stream flow is expected to become flashier due to increased precipitation, or more frequent flooding is projected to occur, tree and shrub species that can tolerate flood conditions and inundation should be included in the selected plant species. Vegetation species that are better able to withstand these conditions may be better suited to help mitigate the impacts of flooding and increased runoff. Minimizing impervious surface (see following section) will be even more important under climate change as with increased storm intensity will result in more stormwater runoff.

Maintain and Restore Wetland Habitats

A very small percentage of the Cumberland Plateau Planning Region is wetland habitat. The planning region has approximately 1,770 acres of non-tidal wetlands (0.15 percent of the region) (Anderson et al. 2013). In addition to providing habitat for a diversity of aquatic and terrestrial species, wetlands help maintain water quality and quantity within a watershed and provide recreational opportunities for hunters, anglers, and wildlife watchers. These wetlands provide valuable habitats for the Virginia rail.

Threats

The health and quality of non-tidal wetlands are affected by a variety of issues, both natural and anthropogenic. As the quality of a wetland degrades, so does the value of that wetland to Virginia's wildlife.

- 1. Water Quality: Wetlands help filter nutrients and other pollutants from watersheds, but they are also sensitive to activities that impair water quality and overload the system (Hemond and Benoit 1986). When BMPs are not implemented upstream, runoff laden with nutrients, sediment, and other pollutants enter the system in concentrations that hinder the wetland's filtering capacity. Storm water runoff from urban and developed areas also contributes to water quality issues that degrade wetlands (Hemond and Benoit 1986). Nutrient pollution and sedimentation are important issues for non-tidal wetlands throughout the planning region.
- 2. <u>Land Use Changes</u>: One of the most significant threats to these non-tidal wetlands is conversion to other uses that results in a loss of wetland integrity and function. As more areas are developed for additional human uses, wetland areas will likely be lost.
- 3. <u>Invasive Species</u>: Invasive species often degrade quality of wetland habitat through damage or loss to wetland vegetation. Examples of invasive species affecting these non-tidal wetlands include Japanese stilt grass and exotic invertebrates.
- 4. <u>Climate Change</u>: As precipitation regimes change and temperatures likely increase, water availability may change, such as in summer months where droughts may become more frequent and water availability may decrease.

Conservation Management Actions

A number of actions can be taken to address threats affecting wetlands in the Cumberland Plateau Planning Region. To address development and fill impacts, the federal government and the Commonwealth of Virginia has established an extensive wetlands permitting process to help landowners

and developers avoid impacts to wetlands while pursuing their management objectives. The U.S. Army Corps of Engineers has authority to issue permits for impacts to non-tidal wetlands through the federal Clean Water Act, while DEQ has authority under Virginia's State Water Control Law. Permits are issued through a Joint Permit Application Process that can be initiated with DEQ (DEQ 2011). Mitigation to compensate for wetland loss is often required under these permits. However, wetlands restoration to reestablish or rebuild former wetland areas or restore functions to a degraded wetland also are voluntary conservation actions agencies and conservation partners can implement outside of required wetlands mitigation and are an important component to protecting wetlands (DEQ 2011). These types of conservation actions also help provide migration corridors for migratory birds that depend on wetlands for nesting, roosting, and foraging. Various programs implemented by the Natural Resources Conservation Service (NRCS) and other partners also provide guidance related to conserving wetlands, establishing oyster reefs, and implementing other actions.

Establishing or protecting vegetative buffers upland of wetlands is important to protect health of the existing wetlands as well as to provide a potential migration route as conditions change (Kane 2011). Protection of additional wetland areas through acquisition, easement, or agreement would allow for further conservation of this important habitat and associated SGCN. Working to limit invasive plants and animals and predators that might degrade the quality of these habitats will be important conservation actions.

Priority areas for wetlands protection and restoration within the Cumberland Plateau Planning Region include those wetlands that would allow for large wetland complexes to be protected, ensuring larger habitat patches remain available for wildlife. Areas identified by conservation partners, such as the Virginia Department of Conservation and Recreation (DCR), as outstanding opportunities for conservation should also be considered priorities for protection and conservation. An initial review of the Virginia Wetlands Catalog identifies priority wetlands for conservation and restoration (Weber and Bulluck 2014). Designation of these areas was based on several factors, including existing plant and animal diversity, presence of significant natural communities, presence of natural lands providing ecosystem services, presence of corridors and stream buffers, proximity to conserved lands, inclusion within or downstream of healthy watersheds, and location of drinking water sources (Figure 6) (Weber and Bulluck 2014). DCR also designates potential restoration sites, identified based on similar factors as conservation areas, but also including consideration of inclusion within degraded watersheds, proximity to impaired waters, location of existing wetland mitigation banks, presence of prior converted and farmed wetlands, and inclusion of stream reaches with lower aquatic biodiversity (Figure 7) (Weber and Bulluck 2014). The highest priorities for conservation and restoration exist in Russell County adjacent to already protected areas. Similar opportunities appear to be available in Tazwell County.

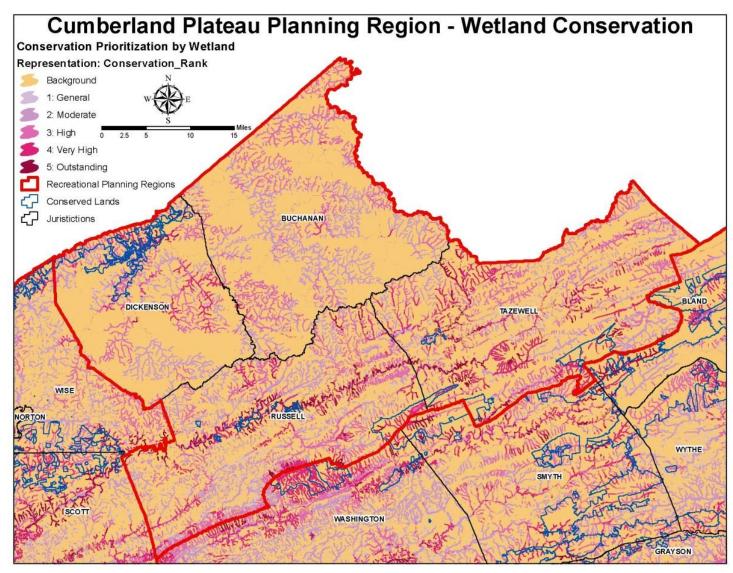


Figure 6. Wetland Conservation Priority Areas in Cumberland Plateau Planning Region (Weber and Bulluck 2014).

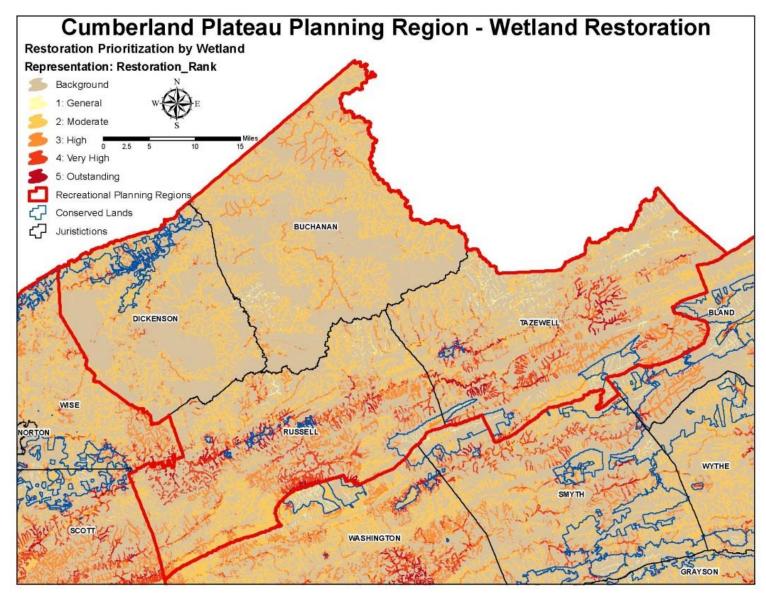


Figure 7. Wetland Restoration Priority Areas in Cumberland Plateau Planning Region (Weber and Bulluck 2014).

Climate-Smart Management Actions

Additional wetlands climate-related conservation actions include: restoring and enhancing vegetation within the wetlands to support changing conditions (e.g., using vegetation species that can withstand a broader array of conditions such as more frequent inundation) and by targeted restoration or acquisition in areas where impacts from climate change may be mitigated.

Enhance, Maintain, and Restore Aquatic and Riparian Habitats

Aquatic systems in the Cumberland Plateau Planning Region include cold and warm freshwater rivers, streams, and creeks. Much of the planning region is in the Clinch River watershed. Approximately 3,790 acres (0.32 percent) of the planning region is considered aquatic (Anderson et al. 2013). These systems provide important habitat for numerous species of wildlife, fish, and invertebrates. Priority SGCN that depend on these habitats include many mussels, snails, crayfish, and fish species. Example species within the planning region include the Clinch dace, brook trout, suckermouth minnow, Bluestone sculpin, Beartown perlodid stonefly, variegate darter, Big Sandy crayfish, sand shiner, and Clinch sculpin.

Threats

Aquatic and riparian habitats within the Cumberland Plateau Planning Region face multiple threats from water quality related issues to invasive species.

- 1. Water Quality Degradation: Pollution is the most significant threat to aquatic species and riparian habitats within the Cumberland Plateau Planning Region. Polluting materials include fertilizers, eroded sediment, and human and animal waste flowing into the region's creeks and rivers from storm water runoff, failing septic systems, and agricultural practices that do not conform to standard best management practices (DEQ 2014). In many cases, watersheds have insufficient riparian buffers and vegetative areas to stop these materials from flowing into the creek or stream (ACJV 2005). Once present in aquatic systems, these materials may concentrate in sediment and bottom-dwelling organisms where they can result in reduced levels of dissolved oxygen and altered pH levels (Chesapeake Bay Foundation 2014). In addition to the impacts on aquatic life, many of these substances pose a risk to human health and local economies (Chesapeake Bay Foundation 2014).
- 2. Impervious Surface: Impervious surfaces (i.e., land covers that do not permit water to permeate the ground) give a useful measure of the environmental condition of an area. In a developed watershed there is often significant impervious surface cover; thus, a greater amount of surface water, often laden with pollutants, arrives into a stream at a faster rate than in less developed watersheds, increasing the likelihood of more frequent and severe flooding. Substantial amounts of impervious surface area can also lead to degradation of water quality, changes in hydrology, habitat structure, and aquatic biodiversity. Additionally, impervious surfaces often run along areas that directly interact with the stream or river through flooding, geomorphology, or material inputs. Cumberland Plateau has no areas with a high percentage of impervious surface cover; however, it still has some impervious surface cover (Figure 8).

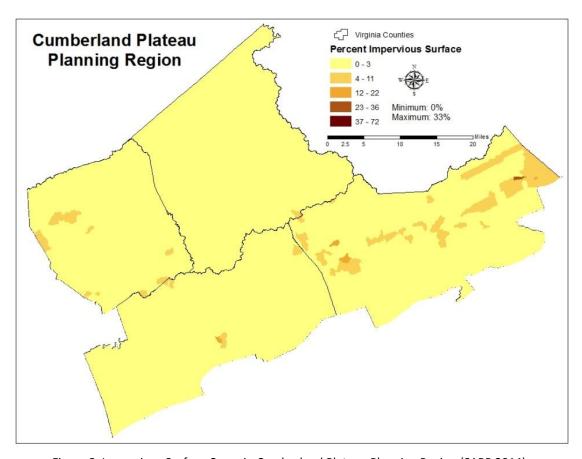


Figure 8. Impervious Surface Cover in Cumberland Plateau Planning Region (SARP 2014).

- 3. <u>Catastrophic Spills</u>: Catastrophic spills from industrial sites or road crossings can result in extensive loss of species and habitat in a short time period.
- 4. <u>Habitat Conversion and Alteration</u>: Rivers are fragmented by dams, culverts, and other impediments that limit the connectivity of these aquatic habitats. This fragmentation can prevent aquatic species from accessing important aquatic habitats crucial to various life stages. Channelization and shoreline alteration and extractive land use practices can alter aquatic habitats in terms of changes to hydrology, chemistry, and water temperature. These practices may also directly alter habitats through loss of vegetative riparian cover, filling of streams, or hardening of stream banks.
- 5. <u>Invasive Species</u>: Invasive species such as white perch threaten western warm water streams and rivers. Invasive species are less of a direct threat to fish within cold water systems, but invasive species cause significant impacts to the forests surrounding these systems. Defoliation by the emerald ash borer, gypsy moth, hemlock woody adelgid, and southern pine beetle can alter river and stream hydrology and temperature, especially important to cold water streams.
- 6. <u>Stream pH</u>: Fish species are sensitive to water pH, and pH can play a role in species richness. Waters flowing through the non-karst areas in this planning region have experienced acid deposition over decades, making the waters more acidic and potentially harming or extirpating

- aquatic species such as brook trout (Webb 2014). Streams may also become more alkaline due to mine runoff and underground mine pumping, which can also alter stream habitat.
- 7. <u>Climate Change</u>: Climate change will also affect both warm and cold water streams. Changes to precipitation regimes and air temperatures will result in changes to flow patterns, erosion rates, and water temperatures.

Conservation Management Actions

Water Quality Improvement Plans have been developed by the Virginia Department of Environmental Quality (DEQ) and various partners. Watersheds within the planning region that have Water Quality Improvement Plans include: Big Cedar Creek, Clinch River, Dumps Creek, Indian Creek, Lewis Creek, Little River, Loops Creek, Swords Creek, Thompson Creek, and Weaver Creek (MapTech 2013a); Big Moccasin Creek, Laurel Creek, and Tumbling Creek (MapTech 2013b); Bluestone River (MapTech and New River-Highlands 2008a); Dumps Creek (MapTech and New River-Highlands 2008b); Guest River (Lonesome Pine Soil and Water Conservation District 2014); Knox Creek and PawPaw Creek (MapTech and New River-Highlands 2007); Lewis Creek (Blue Ridge Environmental Solutions 2010); and Upper Clinch River (Engineering Concepts 2007) (Figure 9).

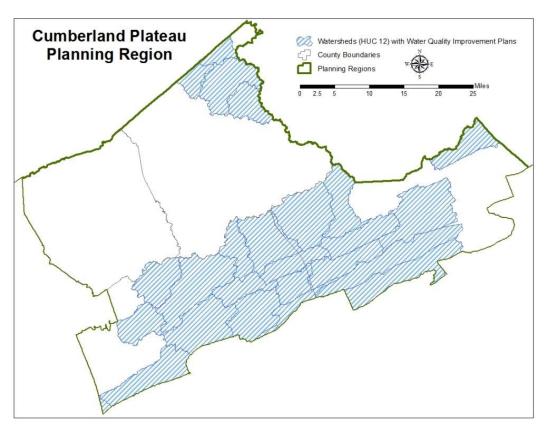


Figure 9. Watersheds with Water Quality Improvement Plans.

Each of these watersheds is designated as being impaired, and the primary actions needed to improve water quality within these watersheds include:

- Establishing vegetated and/ or forested buffers along streams and sinkholes;
- Reforesting erodible pastures;
- Excluding livestock from streams and areas around sinkholes;
- Improving pasture and loafing lot management to prevent tainted runoff;
- Implementing conservation tillage;
- Establishing storage facilities for animal waste and runoff retention ponds;
- Preventing erosion after timber harvests;
- Repairing or replacing failing septic systems and "straight pipes" that deposit human waste into streams;
- Establishing rain gardens;
- Sweeping streets;
- Stabilizing dirt roads;
- Reclamation of abandoned mine lands; and
- Working to prevent pet waste from entering the watershed.

Members of Virginia's conservation community may consider working in other watersheds of local significance that may not have a Water Quality Improvement Plan. The Virginia Watershed Integrity Model identifies high value watersheds within the planning region for conservation based on their proximity to headwater streams, drinking water source protection, and biological integrity indices (Ciminelli and Scrivani 2007). These areas provide a starting point for identifying additional areas to focus conservation efforts (Figure 10).

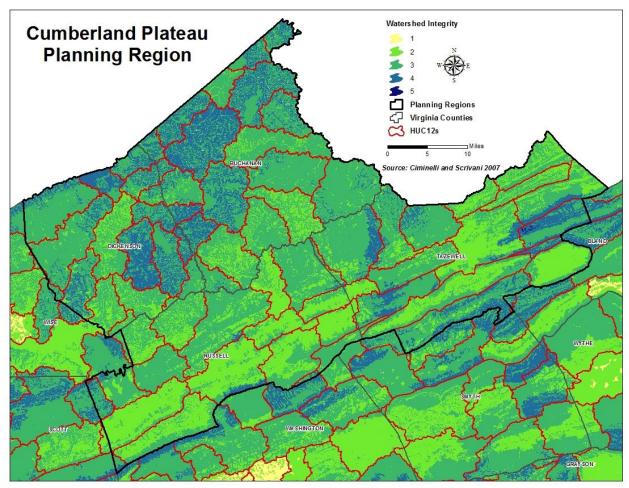


Figure 10. Watershed Integrity Model for Cumberland Plateau Planning Region (Ciminelli and Scrivani 2007).

Several conservation actions common to most water quality and instream habitat enhancement plans can be implemented with little chance of ill consequence to wildlife or human communities downstream in these areas. Some of the most beneficial actions would include:

- Working with landowners to exclude livestock from streams;
- Restoring or enhancing vegetated riparian buffers; and
- Working to enhance the health of upland forests and grassland habitats.

Additionally, many agencies help landowners in the Cumberland Plateau Planning Region establish vegetative buffers along waterways flowing through their properties. The Virginia Department of Forestry (DOF), Virginia Department of Agriculture and Consumer Services (VDACS), and DCR have established BMPs for various land uses which, if implemented serve to minimize land use impacts upon adjacent and downstream waters. In addition, landowners are encouraged to work with DOF through the Forest Stewardship Program to utilize timber production BMPs, such as implementation of buffers and careful planning of roads and stream crossings, and agricultural producers are encouraged to work with VDACS and the local Soil and Water Conservation Districts to control erosion and limit runoff through the various available programs (DOF 2014; DCR 2014). NRCS provides landowners with other opportunities, including the Environmental Quality Incentives Program.

Additional actions to improve aquatic systems in the Cumberland Plateau Planning Region include: restoring aquatic connections (i.e., removing culverts, dams, etc.), monitoring and addressing invasive species impacts, and working with the planning region to adopt use practices or policies through zoning or other guidelines (e.g., impervious surface limits) to help improve the health of aquatic systems within and downstream of regions that have significant impervious surface areas. Additionally, land acquisitions or easements that will help protect the land surrounding creeks should also be considered.

Climate-Smart Management Actions

When planting, restoring, or maintaining riparian buffers, managers should consider how conditions may change in the area and work with appropriate vegetation. For example, if stream flow is expected to become erratic due to increased precipitation or more frequent flooding as is projected to occur, native tree and shrub species that can tolerate flood conditions and inundation should be included in the selected plant species. Utilizing native species that may provide better erosion control (broader, deeper roots) than other species should be encouraged. Techniques and tools may be needed (e.g., fencing, biomats, etc.) to ensure success. Additionally, stream temperatures will likely increase and hydrologic regimes may shift, it will be important to focus on maintaining and/ or improving stream connectivity to ensure aquatic organism can move to preferred habitats as these conditions change. Minimizing impervious surface will be even more important under climate change as increased storm intensity will likely result in increased levels of stormwater runoff. Improving stormwater control methods, to ensure they account for predicted changes in precipitation and flow, could help minimize the future impacts of storm water under climate change (Kane 2013).

Conserve and Manage Forest Habitats

Mixed hardwood and conifer forests make up almost 75 percent of the Cumberland Plateau Planning Region and are important for a broad range of species (Table 4). Within this forest type, young forests make up a specific age class of forest, loosely defined as referring to areas dominated by woody seedlings and saplings (Oehler et al. 2006). Previously, young forests may have been referred to as an early successional habitat for eastern portions of North America. Spruce-fir forests make up a small percentage of the forest types within this planning region, while the majority of the forested lands are made up of mixed hardwoods and conifers. Mixed hardwood and conifer and spruce fir forests help protect water resources within the region and provide habitat for species such as the mountain chorus frog, Cumberland Plateau salamander, Indiana Bat, yellow-bellied sapsucker, and a variety of other species.

Table 4. Forest Acreage Totals in Cumberland Plateau Planning Region (Anderson et al. 2013).

Forest Type	Acreage	Percent of Planning Region
Spruce Fir	1,763.40	0.15%
Mixed Hardwood and Conifer	823,092.47	70.16%

Threats

Forests within this planning region face a range of threats.

- 1. <u>Land Use Changes and Conversion</u>: The largest threat to spruce fir and mixed hardwood and conifer forests within the Cumberland Plateau Planning Region is fragmentation, mainly due to expanding residential and commercial development and resulting roads. In many cases, the losses can be complete and have profound impacts on local wildlife species composition, water quality, and outdoor recreational opportunities. If established BMPs are followed, then impacts to waterways and adjoining properties can be prevented or mitigated such as through implementation of vegetative buffer areas (see below). Energy development (wind energy and the potential for natural gas) could also degrade habitat and affect species composition and water quality.
- 2. <u>Acid Rain</u>: Although acid rain is less prevalent today than it once was, residual effects to the water and soil still remain and can affect forest health.
- 3. <u>Invasive Species</u>: Invasive plant species and pests are also a significant problem in this region. The hemlock wooly adelgid are harmful to conifer species like spruce and hemlock while the gypsy moth can have significant impacts on oaks during outbreak years (DOF 2014).
- 4. <u>Lack of Young Forest Conditions</u>: During recent decades, managers of federal and state-owned forests have managed properties for mature forest conditions. While mature forests provide habitat for a variety of species, the lack of young forest conditions in the western parts of Virginia have curtailed distribution of many species that rely upon open habitats. Forests with balanced age classes are critical for the health of the forest and the survival of forest dependent wildlife species.
- 5. <u>Climate Change</u>: More intense storm events, higher temperatures, and the potential for droughts may exacerbate existing stressors as well as damage intact forests and result in more forest fires and an increase in incidence of pests.

Conservation Management Actions

Actions for conserving mixed hardwood and conifer forests (the majority of the spruce fir forests in the planning region are already under some form of conservation) in the Cumberland Plateau Planning Region may include working to conserve, either through acquisition, easement, cooperative management, or incentives, intact forest patches capable of supporting a variety of Action Plan species. Land protection will help reduce conversion of forests to development.

Working with landowners to ensure BMPs such as vegetative buffers are in place around agricultural operations or timber harvest areas will help prevent erosion and run off of sediments and nutrients into adjacent streams. Research demonstrates that vegetative riparian buffers can filter significant amounts of nutrient run off from timber operations and agricultural fields (DOF 2014). Some BMPs recommend a 50 foot buffer and allow some timber harvest within the buffers, while other BMPs encourage a 100 foot buffer with no harvest (DOF 2014; A. Ewing, Virginia Department of Game and Inland Fisheries, personal communication, 2015). BMPs also recommend building roads on areas with minimum slope and minimizing or avoiding stream crossings (DOF 2014). The *Middle Clinch River Watershed Implementation*

Plan developed by DEQ and stakeholders specifically highlights reforesting areas around eroding crop lands and pastures within the Big Cedar Creek, Clinch River, Dumps Creek, Indian Creek, Lewis Creek, Little River, Loops Creek, Swords Creek, Thompson Creek, and Weaver Creek watersheds to help decrease sediment run off as well as provide wildlife habitat (MapTech 2013a). Similar actions are recommended for the Upper Clinch River as well (Engineering Concepts 2007).

Several agencies, including DGIF, the NRCS, DOF, and the USFS advocate that efforts be expanded to create young forest habitats on public lands. Managing forests via silvicultural practices and/or through the use of fire are the most economical options to create these desired conditions.

Working to maintain forest health (balance age classes and diversity of tree species) is also integral to ensuring forest habitat is available to be conserved and protected. DOF makes several key recommendations that relate to habitat health, including but not limited to using species within their native ranges, if feasible using a mix of tree species to help minimize susceptibility to pests, preventing unnecessary site disturbance, and protecting unusual (rare) forest habitats (DOF 2014). In terms of invasive species and pests, monitoring and control will be important to prevent its spread. Some of these forest habitats should be managed with thinning and prescribed burns to minimize outbreaks (Brooks and Lusk 2008; DOF 2014).

Climate-Smart Management Actions

To best manage forests in the Cumberland Plateau Planning Region as the climate changes, it will be imperative to understand how climate may affect potential future composition of forests in Virginia and how that may affect SCGN. Conservation and management efforts may need to focus on trees that can better withstand increased temperatures and drought, among other impacts. Providing forest habitat at elevation gradients for species migration also will be an important factor for enhancing resilience to climate change. Managers may wish to consult the U.S. Forest Service's tree atlas when planning management and conservation of these forests. Additionally, harvest guidelines may need to be revised, depending on projections for future tree composition. Invasive species monitoring and prevention will also become even more important to include in forest management as climate change may favor some tree pests, diseases, and invasive species.

In terms of considering how to best manage for birds, mammals, and other species that depend on these forests, managers will want to try to provide refugia for SGCN as habitat is lost as well as establishing corridors both north/ south and east/west between protected areas to assist with species movements as conditions change (King and Finch 2013). Some SGCN will not be able to migrate without contiguous forests, so some species may still be lost, but implementing conservation management actions and developing corridors can help provide can them the best chance at continued existence. It will also be important to work to maintain species diversity and continue to reduce existing stressors that will likely exacerbate impacts from climate change (McKelvey et al. 2013).

Maintain and Restore Open Habitats

Open habitats represent an assortment of habitat types that are botanically characterized by grasses, forbs, and shrubs. Trees may be present but they tend to be widely spaced and crowns do not form a canopy. DGIF biologists and partners have indicated several varieties of open habitats are important for

Action Plan species. Open habitats are often comprised of post- agricultural lands, glades, and barrens and make up approximately 39,335 acres (3.35 percent) of the planning region (Anderson et al. 2013). These habitats are becoming rare in Virginia as agriculture and timber harvest practices change; however, they are important to a range of species that depend on these areas for nesting, feeding, protection, etc. These areas provide habitat for the golden winged warbler.

Threats

Changing land use patterns has played a large role in the loss of open habitats as has alteration to natural disturbance regimes.

- Land Use Changes: Dozens of open and young forest species have been affected by changing land use and agricultural practices that resulted in either degraded or destroyed open habitats. The most serious threats to remaining open habitats within the planning region involve either development (where habitats are converted for human use) or natural succession (where trees are allowed to dominate and the site eventually becomes forest).
- 2. <u>Invasive Species</u>: Invasive species are also problematic, especially tree of heaven, Japanese stilt grass, garlic mustard, and privet. These species can out-compete native open habitat species and take over the landscape. Some species such as tree of heaven can change the landscape from an open habitat to a more closed habitat relatively quickly due to its ability to spread and colonize areas rapidly (VISWG 2012). Japanese stilt grass also grows quickly and in mats that can crowd out native grasses. It also alters soil pH inhibiting growth of other native plants (VISWG 2012).

Conservation Management Actions

Specific management practices could include the removal of non-native grasses, encouraging the growth of native warm-season grasses, shrubs and forbs, and periodic disturbance (e.g., burning, mowing, disking, etc.) to maintain the early successional communities and prevent the growth of forest trees (DGIF website 2014). Opportunities also exist with forest managers. Silviculture creates young forest conditions that can be managed to provide open habitat opportunities for the first 10 to 15 years after harvest (WMI 2014). Additional actions include working to protect open land patches at a minimum of 20 acres (Wolter et al. 2006). Focus also should be placed on protecting circular or square patches rather than rectangular areas to minimize edge effect (Wolter et al. 2006). NRCS provides landowners with opportunities to improve or restore open habitats via programs like the Conservation Reserve Program and the Environmental Quality Incentives Program.

Climate-Smart Management Actions

Changes in temperature and precipitation regimes could negatively affect open lands as temperatures increase and summers become drier and more drought prone. However, research demonstrates that many species that make up open habitats are already relatively drought tolerant, meaning that open lands may not be as affected by climate change as other habitats if they can maintain their diverse composition of vegetation species (Craine et al. 2012). It is important to note that if there is extended

severe drought, open lands may succumb over time (Craine et al. 2012). To maintain diversity and help build resiliency in open lands within this planning region, it will be important to implement the management options above, especially focusing on removing non-native species and ensuring a diverse mix of vegetation species. Additionally, working to protect and preserve larger tracts of open habitats will help provide refugia for the species that depend on this habitat.

EFFECTIVENESS MEASURES EXAMPLES

As discussed within the Action Plan's Introduction (see Measuring the Effectiveness of Conservation Actions), it is increasingly important for the conservation community to demonstrate the effectiveness of conservation actions. Elected officials, budget authorities, private donors, and members of the public want to know that their investments in wildlife conservation are having the desired effects. During 2011, the Association of Fish and Wildlife Agencies developed and tested a series of effectiveness measures meant to support the Wildlife Action Plan implementation and the State Wildlife Grants program (AFWA 2011).

Virginia's 2015 Wildlife Action Plan describes a diversity of conservation actions that should help keep species from becoming endangered. The majority of these involve habitat protection, habitat restoration, controlling invasive species, or implementing efforts to keep pollutants from flowing into Virginia's waterways. Important data that can demonstrate the effectiveness of these conservation actions can include the following:

Conservation Action	Indicators of Effectiveness
Creation of Vegetative/ Forest Buffers along Streams or Wetlands	 Before/ after photos of project site; Photos documenting changes as vegetation matures over multiple years; Before/ after measurements of sedimentation immediately downstream of site; and Changes in the number and diversity of species utilizing the site.
Control of Invasive Plants	 Before/ after photos of project site; Photos documenting changes as restored vegetation matures over multiple years; and Before/ after comparison of the number and diversity of species utilizing the site.
Remove Cattle from Streams	 Before/ after photos of project site; Photos of alternative watering systems (if appropriate) Photos documenting changes in shoreline as restored vegetation matures over multiple years; Before/ after comparison of sediment and water chemistry immediately downstream of site; and Before/ after comparison of the number and diversity of species utilizing the site.
Creating or Improving Open Habitats	 Before/after photos of project site; Photos documenting changes to the site as the vegetation matures; and

 Before/ after comparison of the number and diversity of species utilizing the site.

CONCLUSION

The development of the Virginia Wildlife Action Plan presented a unique opportunity for the Commonwealth—an opportunity not only to assess the condition and status of the state's wildlife and habitat resources, but to provide a shared vision and purpose in the management and conservation of this "common wealth." The true value of this initiative is this recognition of common interests and the enhancement of existing and fostering of new partnerships to address issues of mutual concern. The Action Plan's long-term success will depend on the implementation of the recommended actions by partners across the state and the effectiveness with which conservation partners collectively manage these natural resources.

This Local Action Plan Summary aims to prioritize species, habitats, and conservation actions within this planning region, so that partners working within this region can use limited resources to greatest effect. However, Virginia faces serious issues. Not addressing these problems would risk more species becoming threatened or endangered, the quality of our land and water would decline, and Virginians could lose important pieces of our natural heritage that contribute to our quality of life. However, there are significant conservation opportunities to benefit wildlife and people in the planning region. Our problems are not insurmountable, and most can be addressed with proven conservation management techniques.

Working to maintain and protect existing high quality habitat will be a priority before restoration; however, restoration is still an important action and necessary in many cases. Within the Cumberland Plateau Planning Region, priority conservation opportunities include:

- Protecting karst habitats.
- Protecting the quantity and quality of water.
- Maintaining existing vegetated wetlands and restoring vegetated wetland habitats where possible.
- Maintain and conserve patches of spruce fir and mixed hardwood conifer forests.
- Enhance and protect open habitats.

REFERENCES

Anderson, M.G., M. Clark, C.E. Ferree, A. Jospe, A. Olivero Sheldon, and K.J. Weaver. 2013. Northeast Habitat Guides: A companion to the terrestrial and aquatic habitat maps. The Nature Conservancy, Eastern Conservation Science, Eastern Regional Office. Boston, MA. Available at http://easterndivision.s3.amazonaws.com/NortheastHabitatGuides.pdf.

Association of Fish and Wildlife Agencies (AFWA). 2011. Measuring the Effectiveness of State Wildlife Grants: Final Report. Washington, D.C. 40 p. Available at http://www.fishwildlife.org/files/Effectiveness-Measures-Report_2011.pdf.

Atlantic Coast Joint Venture (ACJV). 2005. North American Waterfowl Management Plan: Atlantic Coast Joint Venture Waterfowl Implementation Plan Revision. Available at http://www.acjv.org/wip/acjv_wip_main.pdf.

Belo, B. 2003. Natural Hazard Mitigation Planning For Karst Terrains in Virginia. Virginia Polytechnic Institute and State University. Available at http://scholar.lib.vt.edu/theses/available/etd-05222003-230312/unrestricted/etd.pdf.

Blue Ridge Environmental Solutions. 2010. Lewis Creek Sediment Total Maximum Daily Load Implementation Plan. Available at

http://www.deq.virginia.gov/Portals/0/DEQ/Water/TMDL/ImplementationPlans/lewisip.pdf.

Boicourt, K. and Z. Johnson (eds.). 2010. Comprehensive Strategy for Reducing Maryland's Vulnerability to Climate Change, Phase II: Building Societal, Economic, and Ecological Resilience. Report of the Maryland Commission on Climate Change, Adaptation and Response and Scientific and Technical Working Groups. University of Maryland Center for Environmental Science, Cambridge, Maryland and Maryland Department of Natural Resources, Annapolis, Maryland. Available at http://www.dnr.state.md.us/climatechange/climatechange_phase2_adaptation_strategy.pdf.

Brooks, M. and M. Lusk. 2008. Fire Management and Invasive Plants: a Handbook. United States Fish and Wildlife Service, Arlington Virginia, 27 pp. Available at http://www.fws.gov/invasives/pdfs/USFWS_FireMgtAndInvasivesPlants_A_Handbook.pdf.

Carver, E. and J. Caudill. 2013. Banking on Nature: The Economic Benefits to Local Communities of National Wildlife Refuge Visitation. U.S. Fish and Wildlife Service.

Chesapeake Bay Foundation. 2014. State of the Bay Report. Annapolis, MD. Available at http://www.cbf.org/document.doc?id=2289.

Ciminelli, J. and J. Scrivani. 2007. Virginia Conservation Lands Needs Assessment Virginia Watershed Integrity Model. Virginia Department of Conservation and Recreation, Natural Heritage Program. Available at http://www.dcr.virginia.gov/natural_heritage/documents/WatershedIntegrityModel.pdf.

Craine, J.M., T.W. Ocheltree, J. B. Nippert, E.G. Towne, A.M. Skibbe, S.W. Kembel, and J.E. Fargione. 2013. Global diversity of drought tolerance and grassland climate-change resilience. Nature Climate Change: 3. 63–67.

Engineering Concepts. 2007. Upper Clinch River Sediment Total Maximum Daily Load Implementation Plan. Available at

http://www.deq.virginia.gov/Portals/0/DEQ/Water/TMDL/ImplementationPlans/clinchip.pdf.

Glick, P., J. Clough, and B. Nunley. 2008. Sea-Level Rise and Coastal Habitats in the Chesapeake Bay Region: Technical Report. National Wildlife Federation. Available at http://www.nwf.org/pdf/Reports/SeaLevelRiseandCoastalHabitats_ChesapeakeRegion.pdf.

Governor's Commission on Climate Change. 2008. A Final Report: Climate Action Plan. Available at http://www.sealevelrisevirginia.net/main_CCC_files/.

Hemond, H. F. and J. Benoit. 1986. Cumulative Impacts on Water Quality Functions of Wetlands. Environmental Management Vol. 12. No. 5, pp. 639-653.

Kane, A. 2013. Managing Coastal Watersheds to Address Climate Change: Vulnerability Assessment and Adaptation Options for the Middle Patuxent Subwatershed of the Chesapeake Bay. National Wildlife Federation. Available at http://www.nwf.org/pdf/Climate-Smart-

Conservation/Middle % 20 Patux ent % 20 Subwatershed % 20 Vulnerability % 20 Assessment % 20 and % 20 Adaptation % 20 Patux ent % 20 Patux

King, D. and D. Finch. 2013. The Effects of Climate Change on Terrestrial Birds of North America. (June, 2013). U.S. Department of Agriculture, Forest Service, Climate Change Resource Center. Available at http://www.fs.usda.gov/ccrc/topics/wildlife/birds.

Lonesome Pine Soil and Water Conservation District. 2014. Guest River Total Maximum Daily Load Implementation Plan, Revised. Available at

http://www.deq.virginia.gov/Portals/0/DEQ/Water/TMDL/ImplementationPlans/guestip.pdf.

McKelvey, K., R. Perry, and L. Mills. 2013. The Effects of Climate Change on Mammals. U.S. Department of Agriculture, Forest Service, Climate Change Resource Center. Available at http://www.fs.fed.us/ccrc/topics/wildlife/mammals/index.shtml.

MapTech, Inc. 2013a. Middle Clinch River Watershed Implementation Plan. Virginia Department of Environmental Quality. Available at

http://www.deq.virginia.gov/Portals/0/DEQ/Water/TMDL/ImplementationPlans/Middle_Clinch_River_I P.pdf.

MapTech, Inc. 2013b. North Fork Holston River Watershed Implementation Plan. Virginia Department of Environmental Quality. Available at

http://www.deq.virginia.gov/portals/0/deq/water/tmdl/implementationplans/nfholstonip.pdf.

MapTech, Inc. and New River-Highlands RC&D (MapTech and New River-Highlands). 2007. A Total Maximum Daily Load Implementation Plan for Knox Creek and Pawpaw Creek. Available at http://www.deq.virginia.gov/Portals/0/DEQ/Water/TMDL/ImplementationPlans/knoxpawip.pdf.

MapTech, Inc. and New River-Highlands RC&D (MapTech and New River-Highlands). 2008a. Bluestone River TMDL Implementation Plan Summary. Virginia Department of Conservation and Recreation. Available at

http://www.deq.virginia.gov/Portals/0/DEQ/Water/TMDL/ImplementationPlans/bluestip.pdf.

MapTech, Inc. and New River-Highlands RC&D (MapTech and New River-Highlands). 2008b. Dumps Creek Implementation Plan Summary. Available at http://www.deq.virginia.gov/Portals/0/DEQ/Water/TMDL/ImplementationPlans/dumpsip.pdf.

Melillo, J., T. Richmond, and G. Yohe (eds.). 2014. Climate Change Impacts in the United States: The Third National Climate Assessment. U.S. Global Change Research Program.

Najjar, R., C. Pyke, M.B. Adams, D Breitburg, C. Hershner, M. Kemp, R. Howarth, M. Mulholland, M. Paolisso, D. Secor, K. Sellner, D. Wardrop, and R. Wood. 2010. Potential climate-change impacts on the Chesapeake Bay. Estuarine, Coastal and Shelf Science 86: 1–20.

Oehler, J.D., D.F. Covell, S. Capel, and B. Long. 2006. Managing Grasslands, Shrublands, and Young Forest Habitats for Wildlife: A Guide for the Northeast. The Northeast Upland Habitat Technical Committee & Massachusetts Division of Fisheries & 9 of 9 Wildlife. 148pp. Available at http://www.wildlife.state.nh.us/Wildlife/Northeast_Hab_Mgt_Guide.htm.

Pyke, C., R. Najjar, M.B. Adams, D. Breitburg, M. Kemp, C. Hershner, R. Howarth, M. Mulholland, M. Paolisso, D. Secor, K. Sellner, D. Wardrop, and R. Wood. 2008. Climate Change and the Chesapeake Bay: State-of-the-Science Review and Recommendations. A Report from the Chesapeake Bay Program Science and Technical Advisory Committee. Annapolis, MD.

Southeast Aquatic Resources Partnership (SARP). 2014. Risk of Flow Alteration from Impervious Surface in Local Catchments of the SARP Region. This dataset was produced for the Southern Instream Flow Network with funding from the Gulf Coast Prairie and South Atlantic Landscape Conservation Cooperatives. Available at http://databasin.org/datasets/f49cb20b542b4e98b07cb98d1423f1fa.

Staudinger, M., T. L. Morelli, and A. M. Bryan. (eds.). 2015. Integrating Climate Change into Northeast and Midwest State Wildlife Action Plans. DOI Northeast Climate Science Center Report, Amherst, MA.

U.S. Census Bureau: State and County QuickFacts. Data derived from Population Estimates, American Community Survey, Census of Population and Housing, State and County Housing Unit Estimates, County Business Patterns, Nonemployer Statistics, Economic Census, Survey of Business Owners, Building Permits. Available at http://quickfacts.census.gov/qfd/states/51000.html. (Accessed 15 March 2015).

Veni, G., H. DuChene, N. Crawford, C. Groves, G. Huppert, E. Kastning, R. Olson, and B. Wheeler. 2001. Living with Karst: A Fragile Foundation. American Geological Institute. Available at http://www.americangeosciences.org/sites/default/files/karst.pdf.

Virginia Department of Conservation and Recreation (DCR). 2008. Natural Heritage Resources Fact Sheet Karst Resources of the Shenandoah and Potomac River Basins. Available at http://www.dcr.virginia.gov/natural_heritage/documents/Shenandoah_Potomac2008.pdf.

Virginia Department of Conservation and Recreation (DCR). 2013. Virginia Outdoors Plan. Available at http://www.dcr.virginia.gov/recreational planning/vop.shtml.

Virginia Department of Conservation and Recreation (DCR). 2014. Program Year 2015 Virginia Agricultural Cost Share Program (VACS) BMP Manual. Virginia Soil and Water Conservation Board, Virginia Department of Conservation and Recreation. Available at http://dswcapps.dcr.virginia.gov/htdocs/agbmpman/csmanual.pdf

Virginia Department of Conservation and Recreation, Natural Heritage (DCR, Natural Heritage). 2014. Virginia Conservation Lands Database website. Available at http://www.dcr.virginia.gov/land_conservation/tools02a.shtml.

Virginia Department of Conservation and Recreation (DCR). 2015. Virginia Natural Heritage Karst Program Cave and Karst Protection website. Available at http://www.dcr.virginia.gov/natural_heritage/karsthome.shtml. Accessed 17 Marsh 2015.

Virginia Department of Environmental Quality (DEQ). 2011. Comprehensive Wetland Program Plan Commonwealth of Virginia. Submitted to U.S. Environmental Protection Agency. Available at http://water.epa.gov/type/wetlands/upload/virginia_wpp.pdf

Virginia Department of Environmental Quality (DEQ). 2014. Virginia Water Quality Assessment 305(b)/303(d) Integrated Report 2014 to Congress and the EPA Administrator for the Period January 1, 2007 to December 31, 2012. Available at

http://www.deq.virginia.gov/Programs/Water/WaterQualityInformationTMDLs/WaterQualityAssessments/2014305(b)303(d)IntegratedReport.aspx.

Virginia Department of Forestry (DOF). 2014. Virginia Forest Stewardship Plan Appendix. Available at http://www.dof.virginia.gov/manage/stewardship/introduction.htm.

Virginia Department of Game and Inland Fisheries (DGIF). 2005. Virginia Comprehensive Wildlife Conservation Strategy. Available at http://www.bewildvirginia.org.

Virginia Department of Game and Inland Fisheries (DGIF). 2015. Open Land Habitat Management website. Available at http://www.dgif.virginia.gov/quail/open-land-habitat-management.asp (Accessed 11 March 2015).

Virginia Invasive Species Working Group (VISWG). 2012. Twelve Invasive Species of High Concern in Virginia. Virginia Department of Conservation and Recreation. Available at http://www.dcr.virginia.gov/natural_heritage/vaisc/documents/VISWG-Invasives-Brochure.pdf.

Weary, D.J., and Doctor, D.H., 2014, Karst in the United States: A digital map compilation and database: U.S. Geological Survey Open-File Report 2014–1156. Available at http://pubs.usgs.gov/of/2014/1156/.

Webb, R. 2014. The Shenandoah Watershed Study & The Virginia Trout Stream Sensitivity Study. University of Virginia. Available at http://people.virginia.edu/~swas/POST/assets/docs/SWAS VTSSS 20140105.pdf.

Weber, J. T. and J. F. Bulluck 2014. Virginia Wetlands Catalog: An Inventory of Wetlands and Potential Wetlands with Prioritization Summaries for Conservation and Restoration Purposes by Parcel, Subwatershed, and Wetland Boundaries. Natural Heritage Technical Report 14-4. Virginia Department of Conservation and Recreation, Division of Natural Heritage. Richmond, Virginia 49 pp.

Weldon Cooper Center for Public Service (Weldon Cooper Center). 2012. Virginia Population Projections webpage. Demographic Research Group. University of Virginia. Available at http://www.coopercenter.org/demographics/virginia-population-projections. Accessed 11 March 2015.

Wildlife Management Institute (WMI). 2014. The Young Forest Project, Helping Wildlife Through Stewardship and Science. Wildlife Management Institute. 58 p.

Wolter, F., S. Capel, D. Pashley, and S. Heath. 2008. Managing Land in the Piedmont of Virginia for the Benefit of Birds and Other Wildlife. American Bird Conservancy. Available at http://www.abcbirds.org/newsandreports/special_reports/PiedmontEnviroCouncil.pdf.

APPENDIX A. COMPLETE LIST OF SPECIES OF GREATEST CONSERVATION NEED IN CUMBERLAND PLATEAU PLANNING REGION

Complete SGCN list for the Cumberland Plateau Planning Region (SGCN=165). Table includes federal and state statuses, Wildlife Action Plan Tier, and Conservation Opportunity Rankings. Species are listed in alphabetical order by taxa.

Taxa	Conservation Status	Tier	Opportunity Ranking	Common Name	Scientific Name
Amphibians		IV	С	Blue Ridge dusky salamander	Desmognathus orestes
Amphibians		Ш	а	Common mudpuppy	Necturus maculosus maculosus
Amphibians		IV	С	Cumberland Plateau salamander	Plethodon kentucki
Amphibians	СС	I	a	Eastern hellbender	Cryptobranchus alleganiensis alleganiensis
Amphibians		II	b	Green salamander	Aneides aeneus
Amphibians		IV	a	Jefferson salamander	Ambystoma jeffersonianum
Amphibians		II	a	Mountain chorus frog	Pseudacris brachyphona
Amphibians		II	С	Southern zigzag salamander	Plethodon ventralis
Birds		II	а	American black duck	Anas rubripes
Birds		II	a	American woodcock	Scolopax minor
Birds		III	a	Barn owl	Tyto alba
Bird		III	b	Belted kingfisher	Megaceryle Icyon
Birds		IV	a	Black-and-white warbler	Mniotilta varia
Bird		II	b	Black-billed cuckoo	Coccyzus erythropthalmus
Birds		IV	a	Brown thrasher	Toxostoma rufum
Birds		IV	b	Canada warbler	Wilsonia canadensis
Birds		II	a	Cerulean warbler	Dendroica cerulea
Birds		IV	b	Chimney swift	Chaetura pelagica
Birds		IV	a	Eastern kingbird	Tyrannus tyrannus
Birds		IV	a	Eastern meadowlark	Sturnella magna
Birds		IV	a	Eastern towhee	Pipilo erythrophthalmus
Birds		III	а	Eastern Whip-poor-will	Caprimulgus vociferus
Birds		IV	b	Eastern wood-pewee	Contopus virens
Birds		IV	a	Field sparrow	Spizella pusilla
Birds		I	a	Golden-winged warbler	Vermivora chrysoptera
Birds		IV	a	Grasshopper sparrow	Ammodramus savannarum
Birds		IV	a	Gray catbird	Dumetella carolinensis
Birds		IV	b	Green heron	Butorides virescens
Birds		III	a	Kentucky warbler	Oporornis formosus

Birds	ST	I	а	Loggerhead shrike	Lanius ludovicianus
Birds		III	а	Northern bobwhite	Colinus virginianus
Birds		III	а	Northern harrier	Circus cyaneus
Birds		IV	С	Northern rough-winged swallow	Stelgidopteryx serripennis
Birds	ST	I	а	Peregrine falcon	Falco peregrinus
Bird		III	а	Ruffed grouse	Bonasa umbellus
Birds		IV	b	Rusty blackbird (migrant)	Euphagus carolinus
Birds		II	b	Swainson's warbler	Limnothlypis swainsonii
Birds		IV	b	Wood thrush	Hylocichla mustelina
Birds		III	а	Yellow-billed cuckoo	Coccyzus americanus
Birds		IV	а	Yellow-breasted chat	Icteria virens
Crustaceans	FSSE	I	С	Big Sandy Crayfish	Cambarus veteranus
Crustaceans		III	b	Longclaw crayfish	Cambarus buntingi
Crustaceans		III	С	Reticulate crayfish	ORCONECTES ERICHSONIANUS
Fish		IV	С	American brook lamprey	Lampetra appendix
Fish	FS	I	b	Ashy darter	Etheostoma cinereum
Fish		IV	С	Black sculpin	Cottus baileyi
Fish		IV	С	Blotched chub	Erimystax insignis
Fish	FS	II	а	Blotchside logperch	Percina burtoni
Fish		IV	С	Bluebreast darter	Etheostoma camurum
Fish	FS	III	С	Bluestone sculpin	Cottus sp. 1
Fish		IV	С	Brook silverside	Labidesthes sicculus
Fish		IV	а	Brook trout	Salvelinus fontinalis
Fish	СС	I	b	Candy darter	Etheostoma osburni
Fish		III	С	Channel darter	Percina copelandi
Fish	FS	I	а	Clinch dace	Chrosomus sp. cf. saylori
Fish	FS	III	С	Clinch sculpin	Cottus sp. 4
Fish		IV	С	Dusky darter	Percina sciera
Fish	FESE	I	а	Duskytail darter	Etheostoma percnurum
Fish	ST	IV	С	Emerald shiner	Notropis atherinoides
Fish		III	С	Freshwater drum	Aplodinotus grunniens
Fish	FS	III	С	Holston sculpin	Cottus sp. 5
Fish		IV	С	Logperch	Percina caprodes
Fish		III	С	Mirror shiner	Notropis spectrunculus
Fish		III	С	Mountain brook lamprey	Ichthyomyzon greeleyi
Fish		IV	С	Mountain madtom	Noturus eleutherus
Fish		IV	С	Mountain shiner	Lythrurus lirus

Fish		IV	С	New River shiner	Notropis scabriceps
Fish		IV	С	Northern studfish	Fundulus catenatus
Fish		IV	С	Ohio lamprey	Ichthyomyzon bdellium
Fish	ST	IV	С	Paddlefish	Polyodon spathula
Fish		II	С	Popeye shiner	Notropis ariommus
Fish		III	b	River redhorse	Moxostoma carinatum
Fish		IV	С	Sand shiner	Notropis stramineus
Fish		III	b	Sauger	Sander canadensis
Fish		IV	С	Sharpnose darter	Percina oxyrhynchus
Fish	FTST	I	С	Slender chub	Erimystax cahni
Fish		IV	С	Speckled darter	Etheostoma stigmaeum
Fish	FTST	I	b	Spotfin chub	Erimonax monachus
Fish	ST	III	С	Steelcolor shiner	Cyprinella whipplei
Fish		IV	С	Stonecat	Noturus flavus
Fish		IV	С	Suckermouth minnow	Phenacobius mirabilis
Fish		IV	b	Swannanoa darter	Etheostoma swannanoa
Fish		IV	С	Tangerine darter	Percina aurantiaca
Fish	SE	I	b	Tennessee dace	Chrosomus tennesseensis
Fish	SE	I	a	Variegate darter	Etheostoma variatum
Fish		III	С	Wounded darter	Etheostoma vulneratum
Fish	FTST	I	a	Yellowfin madtom	Noturus flavipinnis
FW Mollusks	FESE	I	а	Appalachian monkeyface	Quadrula sparsa
FW Mollusks	FESE	I	а	Birdwing pearlymussel	Lemiox rimosus
FW Mollusks	ST	III	a	Black sandshell	Ligumia recta
FW Mollusks		III	С	Brown walker	Pomatiopsis cincinnatiensis
FW Mollusks	FESE	I	b	Cracking pearlymussel	Hemistena lata
FW Mollusks		IV	a	Creeper	Strophitus undulatus
FW Mollusks	FESE	I	a	Cumberland bean	Villosa trabalis
FW Mollusks		IV	a	Cumberland moccasinshell	Medionidus conradicus
FW Mollusks	FESE	I	a	Cumberland monkeyface	Quadrula intermedia
FW Mollusks	FESE	I	a	Cumberlandian combshell	Epioblasma brevidens
FW Mollusks	SE	III	b	Deertoe	Truncilla truncata
FW Mollusks	FESE	I	a	Dromedary pearlymussel	Dromus dromas
FW Mollusks	SE	III	a	Elephant ear	Elliptio crassidens
FW Mollusks		II	С	Elktoe	Alasmidonta marginata
FW Mollusks	FESE	I	a	Fanshell	Cyprogenia stegaria
FW Mollusks	FESE	I	а	Fine-rayed pigtoe	Fusconaia cuneolus

FW Mollusks	FC	II	a	Fluted kidneyshell	Ptychobranchus subtentum
				<u> </u>	ŕ
FW Mollusks	ST	IV	b	Fragile papershell	Leptodea fragilis
FW Mollusks	FESE	I	С	Little-winged pearlymussel	Pegias fabula
FW Mollusks		III	a	Longsolid	Fusconaia subrotunda
FW Mollusks		IV	a	Mountain creekshell mussel	Villosa vanuxemensis vanuxemensis
FW Mollusks	FESE	I	a	Oyster mussel	Epioblasma capsaeformis
FW Mollusks	ST	IV	b	Pimple back	Quadrula pustulosa pustulosa
FW Mollusks		IV	а	Pocketbook mussel	Lampsilis ovata
FW Mollusks	FESE	I	a	Purple bean	Villosa perpurpurea
FW Mollusks	FSSE	II	С	Purple liliput	Toxolasma lividus
FW Mollusks	FSSE	II	а	Pyramid pigtoe	Pleurobema rubrum
FW Mollusks	FESE	ļ	a	Rough rabbitsfoot	Quadrula cylindrica strigillata
FW Mollusks		IV	С	Seep mudalia	Leptoxis dilatata
FW Mollusks	FPST	II	а	Sheepnose	Plethobasus cyphyus
FW Mollusks	FESE	I	а	Shiny pigtoe	Fusconaia cor
FW Mollusks	FCST	II	а	Slabside pearlymussel	Lexingtonia dolabelloides
FW Mollusks	SE	I	b	Slippershell mussel	Alasmidonta viridis
FW Mollusks	FPSE	I	а	Snuffbox	Epioblasma triquetra
FW Mollusks	FPSE	I	b	Spectaclecase	Cumberlandia monodonta
FW Mollusks	FSST	III	а	Spiny riversnail	Io fluvialis
FW Mollusks		Ш	а	Tennessee clubshell	Pleurobema oviforme
FW Mollusks	SE	II	а	Tennessee heelsplitter	Lasmigona holstonia
FW Mollusks	FS	II	а	Tennessee pigtoe	Fusconaia barnesiana
FW Mollusks		IV	С	Three-ridge valvata	Valvata tricarinata
Insects	FSST	I	С	Appalachian grizzled skipper	Pyrgus wyandot
Insects	FS	I	а	Big stripetail stonefly	Isoperla major
Insects	FS	II	С	Burkes Garden cave beetle	Pseudanophthalmus hortulanus
Insects	FS	II	С	Cherokee clubtail	Gomphus consanguis
Insects		II	С	Green-faced clubtail	Gomphus viridifrons
Insects	FS	II	С	Hubricht's cave beetle	Pseudanophthalmus hubrichti
Insects	FS	II	С	Lobed roachfly	Tallaperla lobata
Insects	FS	II	С	Maiden Spring cave beetle	Pseudanophthalmus virginicus
Insects	FS	II	С	Persius duskywing	Erynnis persius persius
Insects	FS	I	С	Regal fritillary	Speyeria idalia idalia
Insects	FS	II	С	Saint Paul cave beetle	Pseudanophthalmus sanctipauli
Insects	FS	II	С	Silken cave beetle	Pseudanophthalmus sericus
Insects	FS	II	С	Vicariant cave beetle	Pseudanophthalmus vicarius

Mammals		IV	С	Allegheny woodrat	Neotoma magister
Mammals		IV	С	Appalachian cottontail	Sylvilagus obscurus
Mammals		I	С	Eastern small-footed myotis	Myotis leibii
Mammals		IV	С	Eastern spotted skunk	Spilogale putorius putorius
Mammals	FESE	II	a	Gray bat	Myotis grisescens
Mammals	FESE	I	b	Indiana myotis	Myotis sodalis
Mammals		IV	С	Long-tailed shrew	Sorex dispar dispar
Mammals	FESE	II	а	Virginia big-eared bat	Corynorhinus townsendii virginianus
Other Aquatic Invertebrates	FS	I	С	A cave lumbriculid worm	Stylodrilus beattiei
Other Aquatic Invertebrates	FS	II	С	A cave lumbriculid worm	Spelaedrilus multiporus
Other Terrestrial Invertebrate	FS	II	С	A cave pseudoscorpion	Kleptochthonius regulus
Other Terrestrial Invertebrate	FS	II	С	A millipede	Pseudotremia armesi
Other Terrestrial Invertebrate		II	С	A millipede	PSEUDOTREMIA TUBERCULATA
Other Terrestrial Invertebrate	FS	II	С	Big Cedar Creek millipede	Brachoria falcifera
Other Terrestrial Invertebrate	FSST	I	С	Brown supercoil	Paravitrea septadens
Other Aquatic Invertebrates	FS	I	С	Chandler's planarian	Sphalloplana chandleri
Reptiles		III	С	Cumberland slider	Trachemys scripta troostii
Reptiles		III	С	Eastern black kingsnake	Lampropeltis getula nigra
Reptiles		III	а	Eastern box turtle	Terrapene carolina carolina
Reptiles		IV	С	Eastern hog-nosed snake	Heterodon platirhinos
Reptiles		IV	а	Northern map turtle	Graptemys geographica
Reptiles		IV	а	Queen snake	Regina septemvittata
Reptiles		III	a	Smooth greensnake	Opheodrys vernalis
Reptiles		IV	a	Spiny softshell	Apalone spinifera spinifera
Reptiles		IV	a	Stripe-necked musk turtle	Sternotherus minor peltifer
Reptiles	СС	IV	a	Timber rattlesnake	Crotalus horridus (timber)

APPENDIX B. SGCN SPATIAL ANALYSIS METHODS

Analysis Units

The species data was analyzed within three spatial units for Virginia: county, planning region, and hydrologic unit (HUC12). The source spatial data for these units were provided by Virginia Department of Game and Inland Fisheries (DGIF). The analysis extent was constrained to that of the Virginia counties, so that portions of the planning region and HUC12 units falling outside of the county boundaries were eliminated from the analysis. Each of the 21 planning region units was assigned an alphabetic code (e.g. Accomack-Northampton = "ACNO"). Nottoway County does not fall within the jurisdiction of any Virginia planning region and was not included in any of our analyses.

Species Data

The source data for the species analysis consisted of three datasets, all of which were provided by DGIF: aquatic tier I-II plus species, terrestrial potential and confirmed species, and peer-reviewed HUC12 species. Within these datasets, individual species are identified by Biota of Virginia (BOVA) code.

Methods

Aquatic Species

The aquatic species are represented in the source dataset by linear stream segments, or reaches. For each BOVA code present, the total length was calculated for all assigned reaches within the analysis extent. The dataset was then divided by the three analysis units, and the total BOVA length was summarized again by county, planning region, and HUC12. The BOVA percent of total length was calculated by dividing the species length for the analysis unit by the total species length.

Terrestrial Species

The terrestrial species are represented in the source dataset by area. For each BOVA code present, the total area was calculated within the analysis extent. The dataset was then divided by the three analysis units, and the total BOVA area was summarized again by county, planning region, and HUC12. The BOVA percent of total area was calculated by dividing the species area for the analysis unit by the total species area in Virginia.

Peer-Reviewed HUC12 Species

The peer-reviewed species are represented in the source dataset by 6th order hydrologic units. For each BOVA code present, the total area was calculated within the analysis extent. The dataset was then divided by the county and planning region analysis units, and the total BOVA area was summarized by county, planning region, and HUC12. The BOVA percent of total area was calculated by dividing the species area for the analysis unit by the total species area.

Priority SGCN

For each planning region, priority species were identified as those SGCNs with a total planning region unit area or length \geq 10% of the total SGCN area or length for Virginia. SGCN unit calculations were drawn from only one of the source datasets: if an SGCN was present in both the aquatic dataset and the HUC12 dataset, then the aquatic dataset took preference; and if an SGCN was present in the terrestrial dataset and the HUC12 dataset, then the terrestrial dataset took preference.