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ORIGINAL ARTICLE

Complete plastome phylogeny and an update on cox1 intron
evolution of Hyoscyameae (Solanaceae)

C. L. Gandini1 & V. N. Ibañez1 & M. K. Zubko3
& M. V. Sanchez-Puerta1,2

Abstract

Within the family Solanaceae, the tribe Hyoscyameae comprises eight genera distributed across Eurasia. Despite a few attempts
to understand the relationships within this tribe, the affiliations among most genera remain unresolved. Recently, complete
chloroplast genomes from several species of Hyoscyameae were published, enabling phylogenomic inferences. We sequenced
the plastome of Scopolia carniolica, the second species of the genus to be reported. Genomic comparisons across the tribe
revealed identical gene content and small differences in genome length. Phylogenetic analyses confirmed that Atropa is an
early-diverging lineage sister to the rest of the tribe, resolved as two clades. One includes well-supported relationships between
Przewalskia, Physochlaina, and Scopolia, and these three genera are sister to Atropanthe. This clade is sister to a second clade
composed of Hyoscyamus and Anisodus. The strongly supported phylogenetic affiliations of Atropanthe, Anisodus, and
Hyoscyamus represent the major advancements as previous studies were not able to resolve these relationships. Interestingly,
the genus Scopolia is paraphyletic in respect to Physochlaina, based on ITS2 sequences. Finally, the evolution of the mitochon-
drial cox1 intron is reinterpreted. Two independent horizontal acquisitions are inferred, one in the ancestor of Przewalskia,
Physochlaina, and S. japonica and another in Hyoscyamus, with no intron losses.

Keywords cpDNA . cox1 intron . Evolution .Hyoscyamus . Phylogenomics . Scopolia

Introduction

The tribe Hyoscyameae belongs to the family Solanaceae and
includes eight genera distributed exclusively in Eurasia:
Archihyoscyamus , Anisodus , Atropa , Atropanthe ,
Hyoscyamus, Physochlaina, Przewalskia, and Scopolia
(Hoare & Knapp, 1997; Lu, 1997; Olmstead et al., 1999;
Yuan et al., 2006). Two diversity centers can be identified in

this tribe: the Mediterranean-Turanian region, where Atropa
and Archihyoscyamus grow, and the Tibetan Plateau, where
Przewalskia, Anisodus, and Atropanthe can be found (Tu
et al., 2010). The genus Hyoscyamus has a wider distribution,
with species growing in the Mediterranean Basin or Asia.
Physochlaina spp. are found in Asia, and species of
Scopolia are distributed disjointly in eastern Asia and south-
eastern Europe (Tu et al., 2010). The main characteristic of
this group is the presence of tropane alkaloids that were wide-
ly used by old civilizations and are still used today (Fatur,
2020; Hoare & Knapp, 1997; Ullrich et al., 2016; Xiao &
He, 1983). Many of these substances are pharmaceutical prod-
ucts (Grynkiewicz&Gadzikowska, 2008). The anatomy, seed
and pollen morphology, cytology, floral organogenesis, and
embryology of members of the tribe Hyoscyameae have been
studied (D'Arcy & Zhi-yun, 1992; Hoare & Knapp, 1997;
Jang et al., 2011; Kaya et al., 2016; Lu, 1997; Tu et al.,
2005; Yang, Zhang, Anming, et al., 2002a; Yang, Zhang,
Lu, et al., 2002b; Zhang et al., 1994; Zhang et al., 2005).
However, these features were not sufficient to identify the
species belonging to this tribe and distinguish among genera
and species. Molecular systematics of the tribe Hyoscyameae
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found strong support for the monophyly of the group, but not
all relationships within the tribe were resolved with strong
bootstrap support (Ghahremaninejad & Riahi, 2021;
Olmstead et al., 1999; Sanchez-Puerta & Abbona, 2014;
Särkinen et al., 2013; Tu et al., 2010). A study based on the
gene “waxy” revealed the hybrid history of the polyploid
Atropa belladonna and showed that it is sister to the rest of
the tribe (Yuan et al., 2006). Recently, short reports described
the complete chloroplast genomes (cpDNAs) of several mem-
bers of the tribe Hyoscyameae (Jiang et al., 2019; Park & Lee,
2016; Tian et al., 2020; Tong et al., 2019; Zhang et al., 2017;
Zhang & Chi, 2019) opening the possibility of a
phylogenomic approach to understanding the relationships
within the Hyoscyameae. A few of these studies included
preliminary trees based on a subset of the taxa available, sug-
gesting that chloroplast genome comparisons promise to re-
solve relationships among genera of the tribe (Jiang et al.,
2019; Tian et al., 2020; Tong et al., 2019; Zhang & Chi,
2019). Up-to-date, complete chloroplast genomes of at least
one species of each genus of the tribe Hyoscyameae (except
for Archihyoscyamus) have been published: Atropa
belladonna L. (Schmitz-Linneweber et al., 2002), Anisodus
acutangulus C. Y. Wu & C. Chen (Tian et al., 2020),
Anisodus tanguticus (Maxim.) Pascher (Zhang & Chi,
2019), Atropanthe sinensis (Hemsl.) Pascher (Jiang et al.,
2019), Hyoscyamus niger L. (Sanchez-Puerta & Abbona,
2014), Physochlaina orientalis (Bieb.) G. Don (Gandini
et al., 2019), Physochlaina physaloides (L.) G. Don (Tong
et al., 2019), Przewalskia tangutica Maxim. (Zhang et al.,
2017), and Scopolia parviflora (Dunn) Nakai (Park & Lee,
2016). In addition, a single nuclear marker, the internal tran-
scribed spacer 2 (ITS2), has been reported for several species
and genera of the tribe. Phylogenies based on this marker
denote its usefulness to distinguish among species of
Hyoscyameae (Chen et al., 2017; Hajrasouliha et al., 2014;
Kim et al., 2003; Liu et al., 2017; Meiklejohn et al., 2019;
Miller, 2002), but a comprehensive study of the phylogeny
based on this nuclear marker is still missing.

An earlier evolutionary study of the tribe Hyoscyameae
identified a highly mobile intron in the mitochondrial gene
cox1 (cytochrome oxidase subunit 1) of 14 species of the tribe
and two other lineages of the family Solanaceae
(Sanchez-Puerta et al., 2011). The number of independent
intron acquisitions through horizontal gene transfer (HGT)
events could not be determined given the unresolved phylo-
genetic relationships within the tribe Hyoscyameae
(Sanchez-Puerta & Abbona, 2014; Sanchez-Puerta et al.,
2011).

In the present study, we assembled the complete chloro-
plast genome sequence of Scopolia carniolica Jacq., the sec-
ond species of the genus to be reported, and performed geno-
mic comparisons and phylogenetic inferences of the tribe
Hyoscyameae. The goals of this study were (1) to examine

the phylogenetic relationships of the Hyoscyameae based on
full-length chloroplast genome alignments and nuclear ITS2
sequences, (2) to identify highly variable intergenic regions
that could be used as a source for future phylogenetic analyses
of species within the tribe, and (3) to re-evaluate the evolution
of the cox1 intron within the Hyoscyameae.

Materials and methods

Plant material, DNA extraction, and sequencing

Plants of Scopolia carniolica from southeastern Europe were
obtained from the Plantsman’s Preference (Norfolk, England,
https://www.plantpref.co.uk/). Total genomic DNA was
extracted from fresh leaf tissue following Dellaporta et al.
(1983) and sequenced at BGI Group (formerly Beijing
Genomics Institute) using the Illumina HiSeq 4000 sequenc-
ing platform. A total of ~94.9 M clean paired-end reads,
150 bp in length, were generated from a 250 bp insert library.

Genome assembly

Genomic reads were assembled de novo using Velvet v1.2.10
with a k-mer value of 131 and ABySS v4.2.1 and
SOAPdenovo v2.04 with a k-mer value of 127. Contigs were
considered plastidial if they had BLAST hits against a data-
base of chloroplast genomes from Solanaceae at the NCBI
GenBank repository. Selected plastid contigs from the three
assemblies were combined based on overlapping sequences to
eliminate redundancy using the Geneious assembler v.11.1.5
(Kearse et al., 2012) with custom parameters (minimum over-
lap 300 bp, minimum overlap identity 100%). The five plastid
contigs, ranging from 1151 to 92,284 bp, were extended indi-
vidually to reveal possible repeats at contig ends using
SSAKE v3.8.5. Finally, contigs were manually joined and
curated using Consed v.29.0 (Gordon et al., 1998), reaching
a final assembly of a circular molecule of 156,316 bp.

The mitochondrial gene cox1 from S. carniolica was
extracted from the Velvet assembly using all genomic
reads and deposited in GenBank (accession number
MW079308). Also, S. carniolica , H. niger, and
P. orientalis nuclear internal transcribed spacer (ITS)
sequences were assembled de novo with Velvet
v1.2.10 assembler using a subset of the Illumina reads.
The subset was generated by mapping each species read
data (this study, SRX647921, and SRX5830318, respec-
tively) over a custom ITS database using Bowtie2 local
alignment with standard presets (Langmead & Salzberg,
2012). The three ITS sequences were deposited in
GenBank (accession numbers MW079311, MW079309,
and MW079310, respectively).

https://www.plantpref.co.uk/


Genome annotation

The cpDNA of S. carniolica was annotated using Geneious
R11 by transferring the annotations from the P. orientalis
plastome (GenBank accession NC_044154.1). Annotations
were manually curated (start and stop codons and exon/
intron boundaries) by inspection of gene alignments. The
S. carniolica cpDNA was deposited in GenBank under the
accession number MT937171. The chloroplast genome map
was plotted using OGDRAW.

Genome comparisons and phylogenetic analysis

The complete cpDNA of S. carniolica was compared to nine
other Hyoscyameae genomes available at GenBank: Anisodus
acutangulus, Anisodus tanguticus, Atropa belladonna,
Atropanthe sinensis, Hyoscyamus niger, Physochlaina
orientalis, Physochlaina physaloides, Przewalskia tangutica,
and Scopolia parviflora. Pairwise comparisons and
whole-genome identity between S. carniolica and the nine
Hyoscyameae cpDNAs were performed with the mVISTA
program (Frazer et al., 2004) in Shuffle-LAGAN and with a
custom python script.

To accurately compare the IR junction regions between
S. carniolica cpDNA and nine other Hyoscyameae species,
we first re-annotated all the analyzed species as most genomes
had missing annotations (Suppl. Data 1). In general, the LSC
and SSC regions were not annotated, and the fragmented
genes at the SSC-IRb and IRa-LSC junctions were mislabeled
or missing. The newly annotated genomes were visually
inspected using Geneious R11 (Kearse et al., 2012), and IR
junctions were illustrated using Adobe Illustrator 2019.

To examine the evolutionary relationships among seven of
the eight genera that compose the tribe Hyoscyameae, phylo-
genetic analyses based on the complete plastome sequences
were performed. Lycium chinense, Nicotiana tabacum, and
Solanum tuberosum were used as outgroups. Plastome se-
quences were aligned using MAFFT v. 1.3.7 (Katoh &
Standley, 2013). The last inverted repeat region was removed
to avoid sequence overrepresentation giving a total alignment
length of 134,327 positions (Suppl. Data 2). Two short inver-
sions were identified by inspecting the alignment and were
removed from the alignment prior to the phylogenetic analy-
ses. One inversion (trnC-psbM) had been described before
(Sanchez-Puerta & Abbona, 2014). The other inversion
(rps16-trnK) was examined here in detail. BLAST searches
permitted inspecting the occurrence of the latter inversion in
other plastomes. Mfold (Zuker, 2003) with default parameters
was used to examine the secondary structure of the inversion
and flanking sequences.

Maximum likelihood analyses were performed with
RAxML v.8.0.0 (Stamatakis, 2014) with 1000 rapid
bootstrapping replicates. Plastid and nuclear ITS sequences

were analyzed independently. The best-fitting nucleotide sub-
stitution models (GTR+I+G and HKY85, respectively) were
estimated by MODELTEST version 3.7 using the Akaike in-
formation criterion (Posada & Crandall, 1998). Besides,
Maximum parsimony analyses were done using PAUP*
(Swofford, 2002) with 1000 bootstrap replicates.

Results and discussion

General organization of Scopolia carniolica
chloroplast genome

The cpDNA of S. carniolica was assembled into a single
circular molecule of 156,316 bp in length. Like most land
plant plastomes, it presents a quadripartite structure (Fig. 1).
The long and small single-copy regions (LSC and SSC) are
86,479 bp and 18,031 bp long, separated by two inverted
repeats (IRa and IRb) of 25,903 bp each. The overall GC
content is 37.6% (IR, 42.9%; LSC, 35.7%; SSC, 31.9%), re-
sembling other Hyoscyameae species (Gandini et al., 2019;
Park & Lee, 2016; Sanchez-Puerta & Abbona, 2014; Zhang &
Chi, 2019). The cpDNA presents 115 unique genes, including
80 protein-coding genes or conserved hypothetical chloroplast
ORFs, four ribosomal RNAs, and 30 transfer RNAs
(Table S1). Fourteen genes have one cis-spliced intron where-
as three have two (clpP, rps12, ycf3). The rps12 gene is
trans-spliced, with one exon in the LSC region and the other
two within the IR. Like in other Solanaceae, the gene infA is a
pseudogene, and truncated copies of the rps19 and ycf1 genes
are located over the IRa-LSC and IRb-SSC junctions, respec-
tively. Seventeen genes and the two first exons of the rps12
gene are included in the IR and, therefore, are duplicated
(Table S1). Four genes present abnormal start codons: ndhD
and psbL start with ACG and rps19 and ycf15 start with GTG.
The non-canonical start codons ACG and GTG have been
previously described in other plant species (Raubeson et al.,
2007). The ACG start codons are likely converted to AUG by
RNA editing (C to U), as shown for other Solanaceae species
(Amiryousefi et al., 2018; Sasaki et al., 2003).

Genome-wide comparisons among the plastomes of
the Hyoscyameae

We compared the plastome of Scopolia carniolica with nine
other complete cpDNAs available at NCBI databases (Fig. 2).
The Hyoscyameae chloroplast genomes are highly conserved,
with identical gene content, gene order, and no variation in the
start and stop codons (Suppl. Data 3). The majority of the
genes show low divergence; the sequence identity is 99.5%
on average for all genes across the tribe (Table S1, Fig. 2). The
small plastid RNA gene (sprA) is the most divergent with
identity of 95%. In addition, the ψrps19 and ψycf1 also
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present lower identities of 96.6% and 93.6%, respectively.
This is expected for pseudogenes with no selection pressure.
Chloroplast genome sizes within the tribe range from
155,570 bp in Przewalskia tangutica (Zhang et al., 2017) to
156,687 bp in Atropa belladonna (Schmitz-Linneweber et al.,
2002). This length variation can be attributed to differences in
non-coding regions, as all genes are almost identical in size,
and to the contraction/expansion of the inverted repeats. The
mean pairwise identity of S. carniolica cpDNA and the rest of
the genera of the tribe is 98% (Fig. 2). Non-coding regions
harbor higher levels of divergence, with a mean identity of

97.4%. The overall identity was much higher (99.5%) be-
tween the two species of Scopolia (Fig. 2).

Expansion and contraction of IR regions within
Hyoscyameae

Contractions and expansions at the IR regions’ borders repre-
sent the main reasons for the size variation of chloroplast
g enomes (K im & Lee , 2004 ) and may re f l e c t
the phylogenetic history. IR lengths vary slightly within
Hyoscyameae, from 25,282 bp in P. tangutica to 25,906 bp
in A. acutangulus. Comparisons of the boundaries among the

Fig. 1 The chloroplast genome of Scopolia carniolica. Large and small
single-copy regions (LSC and SSC, respectively) and inverted repeats
(IR) are indicated. Genes inside and outside the circle indicate clockwise
and counterclockwise transcription directions, respectively. Gene posi-
tions are color-coded according to functional categories of genes. The

GC content across the cpDNA is shown in the internal circle, and the
50% GC content is depicted with a thin line. Genes with introns are in
boldface. The photograph shows the individual of S. carniolica studied
here (courtesy of Tim Fuller)



four chloroplast regions (LSC, IRb, SSC, IRa) between the
tribe Hyoscyameae and N. tabacum show that all species,
except P. tangutica, exhibit a larger IR region as reported
for other Solanoideae (Amiryousefi et al., 2018) (Figure S1).
The larger IR includes 59 to 75 bp of the rps19 gene creating a

truncated ψrps19 copy at the IRa-LSC junction. In contrast,
the IR region inP. tanguticawas slightly shorter to expand the
LSC region over the rpl2 gene creating instead a truncated
ψrpl2 at the IRa-LSC junction. On the other end of the
inverted repeat, and in agreement with most angiosperm

Fig. 2 Similarity plot comparing Scopolia carniolica chloroplast genome
to other members of the tribe Hyoscyameae. The Y-axis represents the
sequence identity (within the range 70–100%) from pairwise compari-
sons between the chloroplast genomes of Scopolia carniolica and other
species of the tribe using the VISTA program. Coding and non-coding
regions are in green and gray colors, respectively. The percent identities

across the whole genome, including all coding and all non-coding regions
of S. carniolica, and each species of the tribe are shown below species’
names. Purple and orange bars indicate previously reported variable and
more conserved plastid regions, respectively. Novel variable regions de-
scribed in this study are in blue



chloroplasts, a complete copy of the ycf1 gene spans over the
SSC-IRa junction duplicating the 5’end at the IRb-SSC junc-
tion. In nine of the ten Hyoscyameae analyzed species, the IR
also spanned over a greater region (~450 bp) of the ycf1 gene
creating a larger ψycf1 than N. tabacum and other
Solanoideae. In contrast, a contraction in the P. tangutica
plastome resulted in a shorter ψycf1. No obvious differences
in the length of the IR have been observed between species of
the same genus (Fig. 2). Nonetheless, a study of the IRa-LSC
region in 13 Nicotiana species showed that the IR region
suffered contractions and expansions during the evolution of
the genus but found IR to be identical in four cultivars of
Nicotiana tabacum (Goulding et al., 1996).

Short inversions in the plastomes of Hyoscyameae

Small inversions are common among chloroplast genomes
(Kelchner & Wendel, 1996; Kim & Lee, 2005). In general,
they are located downstream the 3’ends of genes, they present
inverted repeat sequences at their ends, and they form
stem-loop hairpin structures that are thought to stabilize the
corresponding mRNA (Kim & Lee, 2005). A previously de-
scribed 10-nt inversion in the trnC-psbM spacer
(Sanchez-Puerta & Abbona, 2014) was observed in the two
species of Anisodus and in P. tangutica. During alignment
screening, we also detected a 46-nt polymorphic stretch in
the Scopolia carniolica cpDNA, which was the result of an
inversion in the trnK-rps16 intergenic region (Figure S2). This
inversion is not present in Scopolia parviflora. By analyzing
the surrounding sequence with Mfold (Zuker, 2003), we de-
tected a stem-loop hairpin structure with identical inverted
repeats of 15 bp flanking the inversion and relatively high free
energy (Figure S2). This inversion is located within the plastid
spacer rps16-trnK, 27 bp downstream the 3’end of the rps16
gene. A BLASTn search in the nucleotide NCBI databases
revealed that this inversion is also present in other
Solanaceae, such as Markea huilensis, M. lopezii, M. epifita,
Trianaea neovisae, and T. speciosa from the tribe Juanulloeae
(Figure S2). A study of the phylogeny of the Juanulloeae
using this molecular marker recognized this homoplasious
inversion and excluded it from the data set (Orejuela et al.,
2017). The absence of this inversion in all other Hyoscyameae
species and the variable presence in species of Markea and
Trianaea indicate that this short inversion can be generated
within a short time by intramolecular recombination between
the inverted flanking sequences, as reported for other inver-
sions in plant chloroplast genomes (Kim & Lee, 2005).

Phylogenetic relationships within the Hyoscyameae
based on complete plastomes

We examined the phylogenetic relationships among seven of
the eight genera that compose the tribe based on complete

chloroplast genome alignments. Three other Solanaceae spe-
cies, Lycium chinense, Nicotiana tabacum, and Solanum
tuberosum were included as outgroups. The identified short
inversions in the cpDNA disrupted the site-wise homology
and were excluded from the alignment before phylogenetic
inference. The maximum likelihood (ML) and maximum par-
simony (MP) phylogenetic analyses found a highly resolved
tree in which all branches showed high bootstrap support
values (Fig. 3A). S. carniolica is closely related to
S. parviflora and to a clade formed by the two species of
Physochlaina and Przewalskia tangutica. This relationship
is supported by seed characters, plastid markers, and a nuclear
gene (Olmstead et al., 2008; Sanchez-Puerta &Abbona, 2014;
Tu et al., 2010; Zhang et al., 2005), and it differs slightly from
trees based on complete cpDNAs of fewer taxa (Tian et al.,
2020; Tong et al., 2019). This clade is placed as a sister group
to Atropanthe sinensis with strong support (97–100%). The
second clade included Anisodus tanguticus and Anisodus
acutangulus as sister to Hyoscyamus niger (Fig. 3A). The
strongly supported phylogenetic affiliations of Atropanthe,
Anisodus, and Hyoscyamus represent the major contributions
of this work as previous studies based on less than ten plastid
markers (Olmstead et al., 2008; Sanchez-Puerta & Abbona,
2014; Tu et al., 2010; Zhang et al., 2005) or a nuclear gene
(Yuan et al., 2006) were not able to resolve these relation-
ships. Finally, Atropa belladonna is sister to the rest of the
tribe, as clearly demonstrated analyzing a retrotransposon
inserted in the waxy gene (Yuan et al., 2006).

Plastid markers at the species level in Hyoscyameae

Despite a much clearer picture of the relationships within the
tribe Hyoscyameae, the number and delimitation of species
within the multispecific genera of the tribe and their phyloge-
netic relationships remain poorly understood given very lim-
ited molecular data from species of the tribe. Here, we exam-
ined variable plastid regions as potential molecular markers
for the identification and distinguishing species of
Hyoscyameae. Within the tribe, the most variable regions
larger than 100 bp include trnH-psbA, trnK-rps16,
rps16-trnQ, trnC-psbM, trnE-trnT, ycf3-rps4, petA-psbJ,
petD-rpoA, ψinfA-rps8, ndhF-rpl32, sprA-trnL, and
ndhE-ndhG (Fig. 2, Table 1). No variable loci were located
within the IR regions consistent with the reduced rate of syn-
onymous substitutions that characterize these regions (Mower
& Vickrey, 2018; Zhu et al., 2015). Some of the variable
regions, along with other more conserved ones, have been
previously used for taxonomic purposes in the family
Solanaceae, particularly for the tribe Hyoscyameae (Table 1,
Fig. 2). However, phylogenetic trees of the Hyoscyameae
based on those markers were not fully resolved. In particular,
the phylogenetic affiliations of Atropanthe, Anisodus, and
Hyoscyamus were not strongly supported (Olmstead et al.,



2008; Sanchez-Puerta & Abbona, 2014; Tu et al., 2010), and
the monophyly of the genus Scopolia was questioned
(Olmstead et al., 2008). We compared variable regions’ iden-
tity between species of the same genus to evaluate their po-
tential value as taxonomic tools at the species level (Table 1).
The number of polymorphisms between the same genus spe-
cies was very low indicating that these regions are not suffi-
ciently informative to assess phylogenetic relationships
among species within the tribe Hyoscyameae. Even when
the whole cpDNA is considered, a total of 201 polymorphic
sites on average differentiate species of the same genus
(Table 1). We conclude that only full-length chloroplast ge-
nomes may be useful for phylogenetic inference at the species
level. Alternatively, a more promising approach would be
developing nuclear molecular markers, which are more vari-
able and thus may be more informative for species of the tribe
Hyoscyameae.

Phylogenetic inference based on nuclear ITS
sequences

Sequences from a single nuclear marker (i.e., ITS2)
with broad taxon sampling for meaningful phylogenetic
analyses of the tribe Hyoscyameae are available in pub-
lic databases. Highly variable regions such as ITS can
help to compare species and closely related genera

(Baldwin et al., 1995). We performed phylogenetic anal-
yses based on ITS2 sequences from all genera of the
tribe Hyoscyameae (except for Przewalskia) along with
that of the individual of S. carniolica studied here. The
ITS2 sequence of the individual of S. carniolica under
study is highly similar to that of other individuals of
this species (99.8%) confirming its taxonomic identifi-
cation. Even though the backbone of the ITS2 tree is
poorly resolved in general (Fig. 3B), it recovers all gen-
era as monophyletic, except for Scopolia. The single
species of Archihyoscyamus is sister to the monophylet-
ic genus Hyoscyamus, in agreement with previous stud-
ies that support its segregation based on its unique hab-
itat (Lu, 1997), seed morphology (Zhang et al., 2005),
and recent molecular analysis (Ghahremaninejad &
Riahi, 2021).

The ITS2 sequences from all three samples of
S. japonica cluster with Physochlaina with moderate
bootstrap support (79%) in the ML tree, while those
of S. carniolica, S. parviflora, and S. lutescens form a
monophyletic group sister to the clade formed by
Physochlaina spp. and S. japonica (Fig. 3B). The
paraphyly of the genus Scopolia, specifically due to
the unexpected position of S. japonica, had been previ-
ously noticed based on plastid markers (Olmstead et al.,
2008). However, another study using plastid markers

Fig. 3 Maximum likelihood phylogenetic trees of the tribe
Hyoscyameae. A Tree based on the complete chloroplast genomes. The
last inverted repeat region was removed to avoid sequence
overrepresentation. The alignment length is 134,327 nt. B Tree based
on nuclear ITS2 sequences. The seven individuals of Atropa

belladonna (KX674979, MF096061, MF348980, MG217536,
MK895642, KX166233, AY028147) were identical and are represented
with a triangle to simplify the display of the tree. Numbers above and
below the branches represent support values based on 1000 bootstrap
replicates of ML and MP analyses, respectively



but with different sampled individuals suggested that
Scopolia was monophyletic (Tu et al., 2010). In this
study, we analyzed ITS2 sequences from three individ-
uals of S. japonica generated independently by different
groups (Chen et al., 2017; Kim et al., 2003; Liu et al.,
2017). Unfortunately, no ITS data are available for the
individuals of S. japonica analyzed by Olmstead et al.
(2008) or Tu et al. (2010) to assess the discrepancies.

The number and delimitation of species within the ge-
nus Scopolia remain unclear (http://www.theplantlist.org;
Jang et al., 2011, Festi, 1996). S. carniolica is a type of
species that has a wide distribution across central and
southeast Europe (Festi, 1996). Two species grow in
Korea, S. parviflora and S. lutescens, while S. japonica
is found in Japan. The individuals of S. parviflora and S.
lutescens have been included within the species S.
japonica due to the lack of distinct morphological differ-
ences (Festi, 1996; Jang et al., 2011). However, molecular
comparisons of ITS sequences from these four species
distinguished S. carniolica and S. japonica from the
Korean species, which had identical ITS sequences (Kim
et al., 2003). The lack of diagnostic features and identical
ITS2 sequences indicates that S. parviflora and S.
lutescens are synonyms (Kim et al., 2003). The sample
of S. japonica studied by Tu et al. (2010) was obtained
from South Korea, while the sample analyzed by
Olmstead et al. (2008) comes from a Japanese collection.
The genus Scopolia may be paraphyletic due to the odd
phylogenetic relationships of Japanese samples of S.
japonica observed with plastid (Olmstead et al., 2008)
and ITS2 (Fig. 3B) sequences, while Korean samples are
closely related to S. carniolica. Detailed and comparative
studies based on cytoplasmic and nuclear markers of dif-
ferent samples of Scopolia obtained from Japan, Korea,
and Europe are needed to test this hypothesis further and
to determine the number of species of the genus.

Multiple acquisitions of the cox1 intron within the
tribe Hyoscyameae

The cox1 intron is known as highly mobile among plant
mitochondria, with more than 80 described horizontal
transfers during angiosperm evolution (Cho et al.,
1998; Sanchez-Puerta et al., 2008). A signature se-
quence generally accompanies intron acquisition, termed
co-conversion tract (CCT), which replaces a short re-
gion of the second exon’s 5’ end. Within the family
Solanaceae, three horizontal transfers of the cox1 intron
(in Brunfelsia, Mandragora, and the tribe Hyoscyameae)
were described, while 426 species of Solanaceae that
belong to 70 genera lack this intron (Sanchez-Puerta
et al., 2011). Brunfelsia jamaicensis obtained its cox1
intron in an independent event and from a different

source than the other two intron-containing Solanaceae
lineages. On the other hand, intrafamilial transfers be-
tween Mandragora spp. and the tribe Hyoscyameae ex-
plain highly similar introns in these two unrelated line-
ages of Solanoideae (Sanchez-Puerta et al., 2011).
Within the Hyoscyameae, four genera have the cox1
intron (and the CCT): Hyoscyamus (nine species),
Physochlaina (three species), Przewalskia (one species,
P. tangutica), and Scopolia (one species, S. japonica;
Sanchez-Puerta & Abbona, 2014 made a mistake in
F ig . 3 s t a t ing tha t S . carn io l i ca [ in s t ead of
S. japonica] has the cox1 intron). In contrast, the other
three genera of the tribe (Anisodus, Atropa, and
Atropanthe) lack the intron and the CCT, indicating that
they never had the cox1 intron (Sanchez-Puerta &
Abbona, 2014; Sanchez-Puerta et al., 2011). The partial-
ly resolved phylogeny of the tribe based on 10 plastid
markers leads Sanchez-Puerta and Abbona (2014) to
propose two alternat ive evolut ionary scenarios
explaining the distribution of the cox1 intron (and the
CCT) in Hyoscyameae. One hypothesis suggested a sin-
gle cox1 intron acquisition in the ancestor of a clade
formed by Hyoscyamus, Physochlaina, Przewalskia,
and Scopolia, and the second hypothesis inferred two
independent intron gains: one in Hyoscyamus and a sep-
arate one for the other three genera.

We assembled the cox1 gene of Scopolia carniolica and
found that it lacks the intron and the co-conversion tract
(Suppl. Data 4). This result was somewhat surprising because
S. japonica presents the cox1 intron and the CCT
(Sanchez-Puerta et al., 2011). Noticeably, the sample of
S. japonica with the cox1 intron studied by Sanchez-Puerta
et al. (2011) was closely related to Przewalskia and not to
S. carniolica based on two plastid markers (Olmstead et al.,
2008). Again, it is unfortunate that only fragmentary data are
available and that the cox1 intron status of other species of
Scopolia and in particular of those samples of Scopolia
studied by Tu et al. (2010) is unknown.

According to the plastid (Olmstead et al., 2008) and
ITS2 (Fig. 3B) phylogenies of the Hyoscyameae, the
genus Scopolia may be paraphyletic in respect to
Physochlaina and Przewalskia. Under this evolutionary
scenario of the tribe Hyoscyameae, two intron acquisi-
tions could explain the presence of the cox1 intron in
distinct lineages of the tribe (Fig. 4), as suggested by
Sanchez-Puerta and Abbona (2014). However, the
timing of the cox1 intron gain is different here, as it
is proposed to have taken place in the ancestor of
Physochlaina, Przewalskia, and S. japonica, while all
other species of Scopolia may not present the intron
nor the CCT (Fig. 4). Overall, two and four horizontal
transfer events of the cox1 intron (and no intron losses)
took p lace dur ing the evo lu t ion of the t r ibe

http://www.theplantlist.org


Hyoscyameae and the family Solanaceae, respectively.
Three of them were intrafamilial HGT events and in-
c l ude in t r on t r an s f e r s be tween Mandragora ,
Hyoscyamus , and the ancestor of Physochlaina ,
Przewalskia, and S. japonica. This agrees with the ob-
servation that intrafamilial transfers are frequent in other
angiosperm lineages (Sanchez-Puerta et al., 2008).

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s13127-021-00501-3.
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