Accepted Manuscript

Polyphasic taxonomy of Aspergillus section Aspergillus (formerly Eurotium), and its occurrence in indoor environments and food

A.J. Chen, V. Hubka, J.C. Frisvad, C.M. Visagie, J. Houbraken, M. Meijer, J. Varga, R. Demirel, Ž. Jurjević, A. Kubátová, F. Sklenář, Y.G. Zhou, R.A. Samson

PII: \quad S0166-0616(17)30026-X
DOI: \quad 10.1016/j.simyco.2017.07.001
Reference: SIMYCO 53

To appear in: Studies in Mycology

Received Date: 0166-0616 0166-0616
Revised Date: 0166-0616 0166-0616
Accepted Date: 0166-0616 0166-0616

Please cite this article as: Chen AJ, Hubka V, Frisvad JC, Visagie CM, Houbraken J, Meijer M, Varga J, Demirel R, Jurjević Ž, Kubátová A, Sklenář F, Zhou YG, Samson RA, Polyphasic taxonomy of Aspergillus section Aspergillus (formerly Eurotium), and its occurrence in indoor environments and food, Studies in Mycology (2017), doi: 10.1016/j.simyco.2017.07.001.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Polyphasic taxonomy of Aspergillus section Aspergillus (formerly Eurotium), and its occurrence in indoor environments and food

A.J. Chen ${ }^{1,2^{*}}$, V. Hubka ${ }^{3,4}$, J.C. Frisvad ${ }^{5}$, C.M. Visagie ${ }^{6,7}$, J. Houbraken ${ }^{2}$, M. Meijer ${ }^{2}$, J. Varga ${ }^{8}$, R. Demirel ${ }^{9}$, Ž. Jurjevicic ${ }^{10}$, A. Kubátováa ${ }^{3}$, F. Sklenár ${ }^{3,4}$, Y.G. Zhou ${ }^{11}$, R.A. Samson ${ }^{2+}$
${ }^{1}$ Institute of Medicinal Plant Development, Chinese Academy of medical Sciences and Peking Union Medical College, Beijing 100193, P.R. China; ${ }^{2}$ Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; ${ }^{3}$ Department of Botany, Faculty of Science, Charles University, Benátská 2, 12801 Prague 2, Czech Republic; ${ }^{4}$ Institute of Microbiology, Academy of Sciences of the Czech Republic, Víden̆ská 1083, 14220 Prague 4, Czech Republic; ${ }^{5}$ Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark; ${ }^{6}$ Department of Biology, University of Ottawa, 30 Marie-Curie, Ottawa, ON, Canada, K1N 6N5; ${ }^{7}$ Biodiversity (Mycology), Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, Canada, K1A 0C6; ${ }^{8}$ Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary; ${ }^{9}$ Department of Biology, Faculty of Science, University of Anadolu, 26470 , Eskişehir, Turkey; ${ }^{10}$ EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, New Jersey 08077, USA; ${ }^{11}$ China General Microbiological Culture Collection Centre, Institute of Microbiology, Chinese Academy of Sciences, Beichen West Road, Chaoyang District, Beijing 100101, P.R. China

*Correspondence: A.J. Chen, amanda_j_chen@163.com; R.A. Samson, r.samson@westerdijkinstitute.nl.
Abstract: Aspergillus section Aspergillus (formerly the genus Eurotium) includes xerophilic species with uniseriate conidiophores, globose to subglobose vesicles, green conidia and yellow, thin walled eurotium-like ascomata with hyaline, lenticular ascospores. In the present study, a polyphasic approach using morphological characters, extrolites, physiological characters and phylogeny was applied to investigate the taxonomy of this section. Over 500 strains from various culture collections and new isolates obtained from indoor environments and a wide range of substrates all over the world were identified using calmodulin gene sequencing. Of these, 163 isolates were subjected to molecular phylogenetic analyses using sequences of ITS rDNA, partial β-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit ($R P B 2$) genes Colony characteristics were documented on eight cultivation media, growth parameters at three incubation temperatures were recorded and micromorphology was examined using light microscopy as well as scanning electron microscopy to illustrate and characterise each species. Many specific extrolites were extracted and identified from cultures, including echinulins, epiheveadrides, auroglaucins and anthraquinone bisanthrons, and to be consistent in strains of nearly all species. Other extrolites are species-specific, and thus valuable for identification. Several extrolites show antioxidant effects, which may be nutritionally beneficial in food and beverages. Important mycotoxins in the strict sense, such as sterigmatocystin, aflatoxins, ochratoxins, citrinin were not detected despite previous reports on their production in this section. Adopting a polyphasic approach, 31 species are recognised, including nine new species. ITS is highly conserved in this section and does not distinguish species. All species can be differentiated using CaM or RPB2 sequences. For BenA, Aspergillus brumneus and A. niveoglaucus share identical sequences. Ascospores and conidia morphologyw, growth rates at different temperatures are most useful characters for phenotypic species identification.

Key words: Ascomycota, Eurotiales, Aspergillaceae, multi-gene phylogeny, extrolites, Aspergillus proliferans, Eurotium amstelodami.
Taxonomic novelties: Aspergillus aerius A.J. Chen, Frisvad \& Samson, A. aurantiacoflavus Hubka, A.J. Chen, Jurjević \& Samson, A. caperatus A.J. Chen, Frisvad \& Samson, A. endophyticus Hubka, A.J. Chen, \& Samson, A. levisporus Hubka, A.J. Chen, Jurjević \& Samson, A. porosus A.J. Chen, Frisvad \& Samson, A. tamarindosoli A.J. Chen, Frisvad \& Samson, A. teporis AJ. Chen, Frisvad \& Samson, A. zutongqii A.J. Chen, Frisvad \& Samson

INTRODUCTION

Aspergillus subgenus Aspergillus, typified with A. glaucus (L.) Link, was introduced to include Aspergillus species with uniseriate conidiophore heads with hyaline, brownish or greenish stipes, and slightly inflated to subglobose vesicles and green conidia in mass (Gams et al. 1985). The subgenus contains two sections, namely sections Aspergillus (Aspergillus glaucus group Thom \& Raper 1941, 1945, Raper \& Fennell 1965) and Restricti (Aspergillus restrictus group Raper \& Fennell 1965). The main difference of these two sections is that species in sect. Aspergillus readily produce a sexual state in culture (homothallic) and this sexual morph was, in the dual name nomenclature system, classified in the genus Eurotium (Malloch \& Cain 1972, Pitt 1985). While the majority of species in sect. Restricti are asexually reproducing, one exception is A. halophilicus, which produces a eurotium-like sexual state (Christensen et al. 1959, Peterson et al. 2008). Peterson (2008) examined Aspergillus phylogenetically using β-tubulin (BenA), calmodulin (CaM), ID region of rDNA (ITS and partial LSU) and RNA polymerase II second largest subunit ($R P B 2$), and showed that sections Aspergillus and Restricti formed a monophyletic subgenus Aspergillus. The monophyly of both sections was recently confirmed using a larger data set by Sklenár et al. (2017). Houbraken \& Samson (2011) assessed relationships in the Trichocomaceae using a multigene phylogeny (RPB1, RPB2, Tsr 1 and $(c t 8$) and showed that Aspergillus and its sexual states formed a monophyletic clade closely related to Penicillium. This was again confirmed using a 25 -gene phylogeny (Houbraken et al. 2014). Pitt \& Taylor (2014)
on the other hand, re-examined and analysed data from Houbraken and Samson (2011), and claimed that Penicillium could be included in a very broad concept of Aspergillus, which would only be monophyletic if Penicillium was included. This was partly caused by Aspergillus paradoxus, A. malodoratus and A. crystallinus, which were at that time still classified in Aspergillus, but currently in Penicillium. Similarly, Penicillium inflatum was combined in Aspergillus as Aspergillus inflatus (Visagie et al. 2014b; Samson et al. 2014). Furthermore, Pitt and Taylor (2014, 2016) proposed to maintain the genus Eurotium for subgenus Aspergillus and subdivided Aspergillus into several smaller genera based on the corresponding sexual names. Most recently, Kocsubé et al. (2016) brought strong evidence that Aspergillus and Penicillium are monophyletic based on a robust multiple gene phylogenetic analyses and extrolite profiles. These findings rejected the hypothesis of Aspergillus being a paraphyletic genus (Pitt \& Taylor 2014, 2016), and were in agreement with the previous studies of Houbraken \& Samson (2011) and Houbraken et al. (2014).

To avoid instability and nomenclatural confusion, the broad concept of Aspergillus was chosen by a majority of the International Commission of Penicillium and Aspergillus (ICPA) on April 11, 2012. Consequently, Hubka et al. (2013a) transferred all Eurotium taxa to Aspergillus. This treatment is widely accepted. Subsequently five species producing a eurotium-like sexual state, namely A. cumulatus, A. mallochii, A. megasporus, A. osmophilus and A. sloanii were introduced in sect. Aspergillus and Aspergillus names preferred over Eurotium by most authors (Asgari et al. 2014, Kim et al. 2014, Visagie et al. 2014a, 2017). Before sequence data became widely available, the taxonomy of sect. Aspergillus was based on morphological characters. Ascospore pattern, shape and size were considered the most important characters distinguishing species, whereas the conidial apparatus and mycelial pigmentation provide valuable additional information (Thom \& Raper 1941, 1945, Raper \& Fennell 1965). Raper (1957) emphasized that in some strains the sexual state is dominating, while in others it is the asexual state, which has significant influence on the appearance of colonies. Blaser (1975) found that morphology and size of ascospores, surface ornamentation and colour of conidia are dependent on the temperature and water activity of cultivation media and thus reduced some species to synonyms. Samson (1979) compiled the sect. Aspergillus species published since Raper and Fennell's treatment in 1965, and synonymized six species under earlier names. Pitt (1985) reappraised the nomenclature and taxonomy of Eurotium (sect. Aspergillus), and accepted seven species based on the distinct nature of their ascospores. Kozakiewicz (1989) focused on scanning electron microscope (SEM) examinations of conidia and ascospores in her treatment of the group. Based on conidial ornamentionations, four conidial morphotypes were identified, namely aculeate, tuberculate, lobate-reticulate and microtuberculate. Within each group, characters of equatorial crests, furrow and convex wall ornamentation are important diagnostic features. It was shown that some species previously considered conspecific according to light microscopy, e.g. A. cristatus ($=$ Eurotium cristatum) and A. intermedius ($=$ E. intermedium), show distinct conidial ornamentation in SEM and deserve to be recognized as separate species (Kozakiewicz 1989). Hubka et al. (2013a) studied the phylogeny of sect. Aspergillus based on ID region, BenA, CaM and RPB2 sequences, and accepted 17 species based on Genealogical Concordance Phylogenetic Species Recognition (GCPSR) approach.

Members of sect. Aspergillus are generally referred to as osmo-, xero- or halotolerant. They have a world-wide distribution and are common in indoor air, house dust, cereals, food products containing high concentrations of sugar, such as syrups, jams and jellies, salted meat products, semi-dry foods, feeds, leather goods and so on (Blaser 1975, Chelkowski et al. 1987, Raper \& Fennell 1965, Pitt \& Hocking 2009, Samson et al. 2010, Greco et al. 2015). Species in this section are able to initiate growth at minimum moisture levels, thus establishing bridgeheads and facilitating the invasion of slightly less xerophilic molds (Semeniuk et al. 1947, Raper \& Fennell 1965, Kozakiewicz 1989). Some species are involved in food manufacturing. Aspergillus cristatus or "Golden Flower Fungus" is used in the production of Fuzhuan brick tea in China (Wen 1990, Qi \& Sun 1990, Xu et al. 2011); Aspergillus pseudoglaucus (= Eurotium repens) is used as a starter culture in the manufacturing of katsuobushi and fish sauce (Dimici \& Wada 1994, Hayakawa et al. 1993); A. pseudoglaucus, A. chevalieri and A. montevidensis are frequently isolated from meju (dried fermented soybeans); two newly described species A. cibarius and A. cumulatus are also isolated from meju or meju fermentation related environment (Hong et al. 2011, 2012, Kim et al. 2014). Aspergillus chevalieri, A. cristatus, A. glaucus, A. montevidensis, A. proliferans, A. pseudoglaucus and A. ruber have been reported from feedstuffs very often (Pitt \& Hocking 2009, Samson et al. 2010, Greco et al. 2015). These species have also been reported from other habitats and substrates. Aspergillus cristatus, A. glaucus, A. pseudoglaucus and A. ruber were listed as marine-derived (Du et al. 2007, 2008, 2012, 2014, Gomes et al. 2012, Li et al. 2004a, b, 2006, 2008a, b, 2009, 2010, Meng et al. 2015, Smetanina et al. 2007, Sun et al. 2013, Tang et al. 2014, Tao et al. 2009, Wang et al. 2006, 2007c, Yan et al. 2012) and A. brunneus, A. chevalieri, A. cristatus, A. glaucus, A. intermedius, A. montevidensis, A. niveoglaucus, A. pseudoglaucus, A. ruber and A. xerophilus have been reported from soil (Guarro et al. 2012). However, sea-water and soil are matrices rather than habitats, usually of high water activity, where
these fungi cannot grow or compete with other fungi. Species in sect. Aspergillus are not considered as important pathogens, although A. glaucus, A. chevalieri and A. montevidensis (= Eurotium amstelodami) have been reported from cases of superficial infections and sporadic invasive infections (de Hoog et al. 2000, Reboux et al. 2001, Roussel et al. 2004, Summerbell et al. 2005, Hubka et al. 2012).

Species of sect. Aspergillus produce many extrolites such as flavoglaucin, auroglaucin, isotetrahydorauroglaucin, neoechinulins A and B, echinulin, preechinulin, neochinulin E, epiheveadride and questin (Slack et al. 2009, Greco et al. 2015). Production of the potentially toxic echinulin has been reported from various strains of A. montevidensis ($=$ E. amstelodami) (Allen 1972, Gatti \& Fuganti 1979) and A. pseudoglaucus (= E. repens) (Smetanina et al. 2007). Other so-called toxins such as flavoglaucin and auroglaucin co-occur in various taxa of sect. Aspergillus, along with isotetrahydroauroglaucin in some A. montevidensis ($=$ E. amstelodami) and A. ruber ($=$ E. rubrum) strains (Slack et al. 2009). Interestingly, none of the compounds produced by these fungi have been classified as real mycotoxins, as the definition of the word mycotoxin is secondary metabolites (or extrolites) produced by filamentous fungi that are toxic to human beings and other vertebrates when introduced in small amounts via a natural route (orally, through pulmonary tract or skin) (Bennett \& Klich 2003). On the other hand, the small molecule extrolites, such as dihydroauroglaucin (DAG), tetrahydroauroglaucin (TAG), anthraquinone derivatives, etc. produced by sect. Aspergillus species are antioxidant, and may even be beneficial to health (Ishikawa et al. 1985, Li et al. 2004a, 2009, Miyake et al. 2009, Meng et al. 2016). Reports of sect. Aspergillus species producing true mycotoxins such as aflatoxins, ochratoxin A and sterigmatocystin were proved to be incorrect (Frisvad et al. 2007).

The aim of this study is to provide a taxonomic revision of sect. Aspergillus using a polyphasic approach. Phylogenetic relationships between sect. Aspergillus members were investigated using a combined data set (BenA, $C a M$ and $R P B 2$ sequences), and comparison of single-gene phylogenies was executed to determine tentative species boundaries based on genealogical concordance principle. Furthermore, phenotypic features including macro- and micro-morphology, ecophysiology and extrolite profiles are included in the polyphasic approach. Finally, the details on the identification of world-wide indoor environment strains have been included here.

MATERIAL AND METHODS

Fungal strains

Strains used in this study were obtained from: 1) CBS, Culture Collection of the Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands; 2) CGMCC, China General Microbiological Culture Collection Centre, Beijing, China; 3) NRRL, Agricultural Research Service Culture Collection, Peoria, Illinois, USA; 4) KACC, Korean Agricultural Culture Collection, Wanju, South Korea; 5) CCF, Culture Collection of Fungi, Prague, Czech Republic; 6) CCM (F-), Czech Collection of Microorganisms, Brno, Czech Republic, 7) IBT, the culture collection of Department of Biotechnology and Biomedicine, Technical University of Denmark, and 8) DAOMC, Canadian Collection of Fungal Cultures, at the Ottawa Research and Development Centre - Agriculture and Agri-Food, Ottawa, Canada, 9) BCCM/IHEM, Belgian Coordinated Collections of Microorganisms. Strains deposited in the working collection of the Applied and Industrial Mycology department (DTO) housed at the Westerdijk Fungal Biodiversity Institute, were also included in this study (Table 1).

For newly isolated strains from the indoor environments, different isolation techniques were used. House dust samples were collected as described in Amend et al. (2010) and isolated using a modified dilution-to-extinction method (Visagie et al. 2014a). Air samples were collected approximately 1 m above the ground with a viable impaction sampler (MAS 100 Merck) (Peterson \& Jurjević 2013). Indoor surfaces (walls, ceilings) were sampled with the swab (Greiner Bio-One, Alphen aan de Rijn, the Netherlands). For air and swab sampling, standard microbiological techniques were used for isolation. Malt extract agar (MEA) with chloramphenicol and Dichloran 18% glycerol agar (DG18) were used as isolation media.

DNA extraction, PCR amplification and sequencing

Strains were grown for 1 wk on M40Y prior to DNA extraction. DNA was extracted using the Ultraclean ${ }^{\mathrm{TM}}$ Microbial DNA isolation Kit (MoBio, Solana Beach, U.S.A.) or the ArchivePure DNA yeast and Gram2+ kit (5 PRIME Inc., Gaithersburg, MD) according to manufacturer instructions updated by Hubka et al. (2015). Target loci, i.e. ITS, BenA, CaM and RPB2, were amplified using primer combination listed in Table 2. PCR product
purification followed the protocol described by Réblová et al. (2016). Automated sequencing was performed at the Macrogen Sequencing Service (Amsterdam, the Netherlands) using same primers used in PCR.

Phylogenetic analysis

Sequences were inspected and assembled in BioEdit v.7.1.8 (http://www.mbio.ncsu.edu/bioedit/ bioedit.html). Sequence alignments were performed using the FFT-NSi strategy implemented in MAFFT v. 7 (Katoh \& Standley 2013). Alignment characteristics are listed in Table 3. Maximum likelihood (ML) trees were constructed with IQTREE v. 1.4.0 (Nguyen et al. 2015). Optimal partitioning scheme and substitution models were selected using PartitionFinder v1.1.0 (Lanfear et al. 2012) with setting allowing introns, exons and codon positions to be independent datasets. The Bayesian information criterion was used to determine the model that best fits the data. Proposed partitioning schemes and substitution models for each dataset are listed in Table 4. Support values at branches were obtained from 1000 bootstrap replicates. The trees were rooted with Hamigera avellanea NRRL 1938. MrBayes 3.2.2 (Ronquist et al. 2012) was used to calculate Bayesian posterior probabilities (PP). Optimal partitioning scheme and substitution models were selected using PartitionFinder v1.1.0 as described above. The analyses ran for 10^{7} generations, two parallel runs with four chains each were used, every 1000 th tree was retained, and the first 25% of trees were discarded as burn-in. All alignments are available from the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad. 7 hn 1 j .

Morphological analysis

Macroscopic characters were studied on agar media Czapek yeast autolysate agar (CYA), CYA with 20\% sucrose agar (CY20S), CYA supplemented with $5 \% \mathrm{NaCl}$ (CYAS), Malt extract agar (MEA; Oxoid), MEA with 40% sucrose agar (M40Y), MEA with 60% sucrose agar (M60Y), MEA supplemented with $10 \% \mathrm{NaCl}$ (MEA10S) and Dichloran 18% glycerol agar (DG18). Trace elements ($0.1 \mathrm{~g} \mathrm{ZnSO} 4 \cdot 7 \mathrm{H}_{2} \mathrm{O}$ and $0.5 \mathrm{~g} \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ in 100 ml distilled water) were added to all media to obtain stable pigment production and consistent conidial colours (Smith 1949, Samson et al. 2014). Isolates were inoculated at three points on 90 mm plates and incubated for 7 d at $25{ }^{\circ} \mathrm{C}$ in darkness. In addition, CY20S and M60Y plates were incubated at $30{ }^{\circ} \mathrm{C}$ and $37{ }^{\circ} \mathrm{C}$, respectively. After 7 d of incubation, colony diameters were recorded. Colony texture, degree of sporulation, obverse and reverse colony colours, production of soluble pigments, exudates and ascomata were determined. Colour codes used in description refer to Rayner (1970).

Light microscope preparations were made from 1 wk old colonies grown on M40Y. Ascomata, asci and ascospores were observed after 2 or 4 wks . Lactic acid (60%) was used as mounting fluid. Ethanol (96%) was used to remove excess conidia and prevent air bubbles. A Zeiss Stereo Discovery V20 dissecting microscope and Zeiss AX10 Imager A2 light microscope both equipped with Nikon DS-Ri2 cameras and NIS-Elements D v 4.50 software were used to capture digital images.

Cryo Scanning Electron Microscopy (cryo-SEM) observations of ascospores were prepared based on Chen et al. (2016), alternatively, an osmium tetroxide method was used for fixation as described by Hubka et al. (2013b). To prevent conidia collapsing, agar blocks containing conidial structures were snap-frozen and observed as described in Visagie et al. (2013).

Extrolite analysis

Strains were incubated on DG18, CY20S and YES for 7 days at $25^{\circ} \mathrm{C}$ in darkness. Two agar plugs (diameter 6 mm) were subsequently cut out from each medium and placed in an Eppendorf plastic vial and extracted with ethyl acetate / isopropanol ($75: 25, \mathrm{vol} / \mathrm{vol}$) with 1% formic acid. After ultrasonication for 50 minutes the extraction liquid was transferred to another Eppendorf vial and the organic solvents evaporated. The chemical content was redissolved in $400 \mu 1$ methanol and centrifuged at $13,400 \mathrm{rpm}$ for 3 min . One $\mu \mathrm{l}$ liquid was injected into a HPLCDAD with an additional fluorescence detector as described by Nielsen et al. (2011). For fluorescence detection, the excitation wavelength was 230 nm and the emission wavelengths were 333 nm and 450 nm . This allowed for sensitive detection of ochratoxins, aflatoxins, citrinin and indol alkaloids. Alkylphenone retention indices were calculated according to Frisvad \& Thrane (1987, 1993).

RESULTS AND DISCUSSION

Phylogeny

The phylogenetic relationships between 163 sect. Aspergillus strains were studied using concatenated sequence data of three loci: BenA, CaM and RPB2. In the 50% majority consensus ML tree shown in Fig. 1, members of sect. Aspergillus are resolved in three major clades (named here the A. ruber, A. glabrum and A. chevalieri clades) and several, mostly basal, lineages containing one or two species. The Bayesian consensus tree was nearly identical to ML and therefore Bayesian posterior probabilities (PP) are shown on the ML tree nodes.

The A. ruber clade contains A. appendiculatus, A. cumulatus, A. mallochii, A. pseudoglaucus, A. ruber, A. sloanii, A. tonophilus, and a new species A. zutongqii, with four strains originating from China (CBS 141773, CGMCC 3.03961, CGMCC 3.03980, CGMCC 3.06103) forming a sister clade to A. ruber. Its placement as sister to A. ruber is further supported by the single-gene trees (Figs 2-4). Aspergillus fimicola (ex type: CBS 101747), Aspergillus glaber (ex type: CBS 379.75) and A. reptans (ex type: NRRL 13) resolve in the A. pseudoglaucus lineage; A. tuberculatus (ex type: CBS 101748) and A. athecius (ex type: NRRL 5000) in the A. ruber lineage; and A. aridicola (ex type: CBS 101746) in the A. appendiculatus lineage. Very similar topologies of the A ruber clade was produced by phylogenetic analyses based on BenA (86% BS / 0.97 PP; Fig. 2) and RPB2 (96% BS / 0.79 PP; Fig. 4), while these topologies were not supported by CaM-based phylogeny (Fig. 3). All eight lineages within the clade were strongly supported in the combined phylogenetic analyses as well as single-gene analyses ($\mathrm{BS} \geq 90 \%, \mathrm{PP} \geq$ 0.98). The exception is in the BenA phylogeny where nodes bearing A. mallochii and A. appendiculatus had limited support (79% BS / 0.92 PP and 76% BS / 0.88 PP, respectively; Fig. 2).

The A. glaucus clade contains A. brunneus, A. glaucus, A. megasporus, A. niveoglaucus, A. neocarnoyi, A. proliferans and three new species (Fig. 1). Three isolates originating from the USA (CBS 141930, CCF 5391 and CCF 5394) formed a well-supported clade (94% BS / 1.00 PP) closely related to A. glaucus and A. proliferans (Fig. 1); this clade showed moderate to high support in BenA and RPB2 phylogenies (Figs 2, 4), but weak support in the CaM tree (Fig. 3). The clade is introduced as a new species, A. aurantiacoflavus, in the taxonomy section. All three species (A. glaucus, A. proliferans and A. aurantiacoflavus) have fixed single-nucleotide polymorphisms at BenA, CaM and RPB2 loci that guarantee their reliable discrimination from each other (positions in particular alignments available in Dryad Digital Repository - BenA: positions 53, 138, 219 and 297; CaM: positions 2, 131, 460, 600; RPB2: positions 211, 279, 666). CBS 141771 and CBS 141767 formed distinct single-isolate lineages nested in the A. glaucus clade but with unresolved position. They are distantly related to each other and remaining taxa in the clade based on CaM and RPB2 data, and are proposed below as new species A. aerius and A. levisporus. In the BenA phylogeny, these two species are resolved on a weakly supported branch with A. proliferans, A. glaucus, A. aurantiacoflavus and A. megasporus (Fig. 2), but their sequences contain numerous substitutions sufficient for reliable identification. Aspergillus medius (ex type: NRRL 124) belongs in the A. brunneus lineage, A. parviverruculosus (ex type: CBS 101750) in the A. niveoglaucus lineage, and A. manginii (ex type: NRRL 117) and A. umbrosus (ex type: NRRL 120) in the A. glaucus lineage. The A. proliferans lineage includes a strictly anamorphic ex-type strain NRRL 1908 and numerous isolates producing eurotium-like sexual state. Tree topologies of the A. glaucus clade in the CaM, RPB2 and combined trees are nearly identical (Figs 1, 3, 4). In contrast, the BenA locus has only limited discriminatory power in this clade and many species were collapsed in a polytomy (Fig. 2). But still BenA sequences are sufficient for identification of all species except A. brunneus and A. niveoglaucus. Species represented by at least two strains usually gained high or moderate support in ML and BI analyses based on combined data, or CaM and RPB2 genes (Figs 1, 3, 4) except A. aurantiacoflavus, A. glaucus and A. proliferans that were weakly supported in single-gene phylogenies. However, recognition of these species is supported by phenotype, especially by morphology of ascospores (see below). On the other hand, additional strongly supported clades delimited by same analyses (Figs 1, 3, 4) within A. glaucus, A. niveoglaucus and A. proliferans lineages, had no or very limited phenotypic support, which is the reason why we decided for broader species concept rather than for splitting these species.

The A. chevalieri clade includes A. chevalieri, A. costiformis, A. cristatus, A. intermedius, A. montevidensis and two new species A. caperatus and A. porosus. Aspergillus caperatus is represented by CBS 141774 from South Africa. Aspergillus porosus is represented by five strains originating from Turkey and Israel (CBS 141770, CBS 375.75 , DTO $308-\mathrm{D} 1$, DTO $262-\mathrm{D} 2$, DTO $262-\mathrm{D} 4$), they formed a clade with full support that is related to A. caperatus, A. intermedius and A. montevidensis (Fig. 1). The topology of this subclade is identical in single-gene phylogenies and all lineages are strongly supported (Figs 2-4). The rest three species in the A. chevalieri clade cluster together and form another strongly supported subclade (Fig. 1) with highly congruent topology shown in single-gene phylogenies (Figs 2-4). Aspergillus spiculosus (ex type: CBS 377.75) is included in the A. intermedius
lineage; A. hollandicus (ex type: CBS 518.65), A. heterocaryoticus (ex type: CBS 410.65) and A. vitis (ex type: CBS 651.74) in the A. montevidensis lineage.

The remaining taxa belonging to sect. Aspergillus were distantly related to species from these three main clades and formed remote lineages with not fully resolved or basal position in the trees. Aspergillus cibarius and strain CBS 141766 (described below as A. endophyticus) were resolved in a basal position adjacent to A. ruber and A. glaucus clades (Fig. 1); their position varies between single-gene trees (Figs 2-4). Aspergillus xerophilus and closely related A. osmophilus form A. xerophilus clade, A. leucocarpus, A. tamarindosoli and A. teporis formed basal lineages distantly related to core species of sect. Aspergillus (Figs 1-4).

ITS sequences do not contain sufficient variation for distinguishing among sect. Aspergillus species (Fig. 5), and therefore this locus was excluded from the combined phylogenetic analysis. Only five species had unique ITS sequences (A. tamarindosoli, A. xerophilus, A. osmophiluc, A. leucocarpus and A. teporis; Fig. 5); identical sequence is shared for species from the A. chevalieri clade ($\mathrm{n}=7$); A. appendiculatus and A. mallochii; and A. ruber and A. zutongqii. All remaining species ($\mathrm{n}=15$) are indistinguishable by ITS sequences. Intraspecific singlenucleotide polymorphisms were observed in sequences of A. proliferans, A. tonophilus, A. intermedius, A. costiformis and A. chevalieri.

Peterson (2008) accepted 15 species in sect. Aspergillus based on congruence analysis of BenA, CaM, ID and RPB2. Fourteen sexual species were placed under the Eurotium name, the only anamorphic species A. proliferans formed a monophylic group with two ascomata producing strains identified as "Eurotium rubrum" and "E. mangini" (NRRL 71 and NRRL 114). The phylogenetic identity of anamorphic ex-type strain NRRL 1908 and other ascosporic strains was additionally supported by Hubka et al. (2012) and Asgari et al. (2014). Hubka et al. (2013a) applied the GCPSR in sect. Aspergillus based on the same four loci and adopted Aspergillus names for Eurotium species. In their study, 17 species were accepted, all of which can be distinguished by $C a M$ or $R P B 2$ loci, and the concept of A. proliferans was extended by a description of its sexual state (Hubka et al. 2013a). In this study, 31 well-supported phylogenetic lineages representing species are recognized. This conclusion is based on phylogenetic analysis of concatenated and partitioned sequence data, comparison of topologies of single-gene phylogenetic trees and reflection of phenotypic data (see below). All species can be distinguished by CaM or $R P B 2$ sequences, while $B e n A$ can be used to identify 29 species, with A. brunneus and A. niveoglaucus sharing identical BenA sequences.

Morphology and physiology

Members of sect. Aspergillus are generally characterised by yellow eurotium-like cleistothecia (the only exception is A. leucocarpus, which produces white cleistothecia), lenticular, hyaline ascospores, uniseriate conidiophore heads and globose, subglobose or ellipsoidal conidia. In the past, colony appearance, ascospore and conidial morphology were emphasized to differentiate species in this section (Thom \& Raper 1941, 1945, Raper \& Fennell 1965, Blaser 1975, Kozakiewicz 1989, Sun \& Qi 1994, Guarro et al. 2012). This led to many species recognized which do not necessarily correspond to species based on recent phylogenetic data.

Macromorphology

The colony appearance is highly variable within a species. The ratio of asexual and sexual structures can greatly influence the colony appearance (Thom \& Raper 1941, 1945, Raper, 1957, Raper \& Fennell 1965). Some strains of A. brunneus, A. sloanii and A. proliferans do not produce sexual structures. On the contrary, anamorphic structures are absent in some strains of A. costiformis and A. cristatus. Hubka et al. (2013a) reported that the anamorph of these species can be induced by decreasing the water activity of the medium and simultaneously raising the incubation temperature. Red-pigmented mycelium was used to distinguish A. ruber from other related species (Raper \& Fennell 1965, Pitt 1985, Klich 2002), but can also occur after two weeks in some isolates of A. brunneus, A. cibarius A. glaucus, A. niveoglaucus, A. proliferans and A. zutongqii (Figs 13-17). Therefore, it can not be used as a distinguishing character for these species (Hubka et al. 2013a). White conidial heads were used for distinguishing A. niveoglaucus and A. glaucus (Thom \& Raper 1941, 1945, Raper \& Fennell 1965), however, green spored A. niveoglaucus strains were reported by Hubka et al. (2013a) and are also confirmed in this study. Other examples include A. montevidensis CBS 410.65 (ex-type of A. heterocaryoticus) and A. ruber CBS 464.65 (ex-type of A. athecius) which produce white or vinaceous buff conidial head, respectively (Fig. 12). Based on these examples, the conidial head colour should not be used as a single distinguishing character either.

Physiology

Growth rates at higher temperatures show certain correlation with phylogenetic topologies, most species in the A. chevalieri clade (except A. costiformis and A. caperatus) grow on CY20S at $37^{\circ} \mathrm{C}$, while all species in the A. ruber and A. glaucus clades do not grow under this condition. Growth profiles on M60Y at $37^{\circ} \mathrm{C}$ show a similar pattern
with CY20S $37^{\circ} \mathrm{C}$. The only difference is that several species from the A. chevalieri and A. ruber clades including A. caperatus, A. costiformis, A. pseudoglaucus, A. ruber, A. tonophilus and A. zutongqii grow on M60Y at $37^{\circ} \mathrm{C}$, but show no growth on CY20S at $37{ }^{\circ} \mathrm{C}$ (Table 5). The growth ability on CY20S and M60Y at $37{ }^{\circ} \mathrm{C}$ together with the size and surface morphology of ascospores were found to correlate mostly with the phylogenetic species concept in this section (Hubka et al. 2013a). This conclusion is confirmed in this study using a world-wide section Aspergillus strains, and we found the growth ability on CY20S and M60Y at $37{ }^{\circ} \mathrm{C}$ a reliable feature for distinguishing morphologically similar species. For example, A. proliferans and A. ruber share similar smooth or slightly rough, furrowed ascospores and tuberculate conidia, among them A. proliferans can not grow on M60Y at $37^{\circ} \mathrm{C}$, while A. ruber grows well on M 60 Y at $37^{\circ} \mathrm{C}$. The growth ability on media with high water activity (CYA, MEA) is also useful diagnostic features for certain species. Most species in sect. Aspergillus grow restrictedly on these two media, some species like A. appendiculatus, A. neocarnoyi, A. osmophilus, A. tonophilus and A. xerophilus show more xerophilic abilities compare to others and do not grow on CYA and MEA at all.

Micromorphology

Compared to colony appearance, micro-morphological characters within a species are relatively stable and informative (Table 6). The size and ornamentation of ascospores are generally the most informative phenotypic characters for species recognition (Figs 6-8). Large ascospores (spore bodies average $>6.5 \mu \mathrm{~m}$) are produced by A. aerius, A. brunneus, A. costiformis, A. glaucus, A. neocarnoyi, A. niveoglaucus, A. osmophilus and A. zutongqii; small ascospores (spore bodies $<5 \mu \mathrm{~m}$) are produced by A. caperatus, A. intermedius, A. levisporus and A. tamarindosoli, while remaining species produce intermediate ascospores. Convex sides of ascospores can be smooth, verruculose or rugulose, and these ornamentations are generally stable with only minor intraspecific variability. However, in some rare cases, the ascospore morphology differs within a species. For example, most A. ruber strains produce smooth ascospores with minute rough ornamentations along equatorial ridges, but CBS 101748, previously described as A. tuberculatus (Sun \& Qi 1994), has tuberculate ascospores (Fig. 8). Variations were also found in A. montevidensis, strain CCF 4248 has similar ascospores with A. tuberculatus, but shows identical sequences, growth parameters and colony phynotype with A. montevidensis (Hubka et al. 2013a), and another atypical strain CCF 4070 has smooth or slightly rough ascospores. It is noteworthy that ascospore ornamentation is related to the stage of development, and fine structures and ornamentation can be overlooked when observed using a light microscope (Blaser 1975, Kozakiewicz 1989, Guarro et al. 2012, Hubka et al. 2013a). In addition, some species are morphologically slightly different even when observed under SEM, and therefore careful comparison with experience is needed for morphological identification. Aspergillus parviverruculosus was introduced based on CGMCC 3.04665 producing verruculose ascospores (Kong \& Qi, 1995), Hubka et al. (2013a) considered it synonymous with A. niveoglaucus based on phylogenetic analysis and they observed appendaged ascospores. We confirmed the appendages in immature ascospores of the ex-type of A. parviverruculosus (CGMCC 3.04665). Filiform appendages were also observed in immature ascospores of A. appendiculatus (Kozakiewicz 1989, Hubka et al. 2013a) and these appendages can merge with ascospore body and form petaliform crests. Appendaged ascospores are also presented in A. filifer and A. qinqixianii in Aspergillus subgenus Nidulantes; however, these appendages are consistently presented in mature ascospores (Horie et al. 2000, Zalar et al. 2008, Chen et al. 2016).

The diameter and shape of conidia are highly variable within species and generally not useful for species differentiation. However, conidial ornamentation is useful for differentiating phylogenetically related species or species with similar ascospore morphology (Figs 9-11). For example, A. intermedius is phylogenetically related to A. montevidensis. Both produce verruculose ascospores with $0.5 \mu \mathrm{~m}$ crests, however, the microtuberculate conidia of A. intermedius can easily distinguish it from A. montevidensis. Most species produce consistent conidial ornamentations, except in A. pseudoglaucus where most strains produce tuberculate conidia, but CBS 379.75, previously described as A. glaber (Blaser 1975), produces microtuberculate conidia. Kozakiewicz (1989) assigned the conidial ornamentation into four categories, ranging from microtuberculate, aculeate, tuberculate to lobatereticulate. Based on our observations, aculeate and tuberculate ornamentations may occur in same species, and can be affected by the fixation methods or age of conidia. We therefore, combined these two types of ornamentation within the tuberculate category. The three categories of conidial ornamentation described here include microtuberculate, tuberculate or lobate-reticulate.

Extrolites

Species in sect. Aspergillus produce some main biosynthetic families of secondary metabolites. All species of sect. Aspergillus produce echinulins and derived isoechinulins and neoechinulins. Aspergillus sloanii is the only species that does not convert echinulins to isoechinulins and neoechinulins (Tables 7, 8). Furthermore, the echinulin related
molecules arestrictin A \& B and cristatin A are produced by A. restrictus and A. penicillioides in sect. Restricti (Itabashi et al. 2006). Certain polyketides are also commonly detected in sect. Aspergillus, including octaketide anthraquinones, such as emodin and physcion. Other compounds commonly detected include anthraquinones, and the related asperflavin. They are absent from A. montevidensis, which explain the bright yellow colour of its ascomata. Species that have orange-red or red mycelium covering the ascomata, such as A. ruber, produce additional red anthraquinones, including erythroglaucin and catenarin. Emodin and physcion and their bisanthrons are found to be common. These compounds were detected in the closely related species in sect. Cremei, for example in A. wentii (Wells et al. 1975, Assante et al. 1980, Rabie et al. 1986). Also, A. stromatioides in sect. Cremei produces emodin and ω-hydroxyemodin, which is shared with sect. Aspergillus (González-Andrade et al. 2013). Another octaketide, sulochrin is only recovered from A. xerophilus. Sulochrin and similar compounds, i.e., 3-O-methylsulochrin and 3-O-demethylsulochrin have also been recovered from A. wentii and A. europaeus in sect. Cremei (Rabie et al. 1986, Hubka et al. 2016). The octaketide asperentin was reported first from A. flavus (Grove 1972a), but the fungus was misidentified and was actually A. pseudoglaucus. Aspergillus brunneus and A. neocarnoyi can also produce asperentins.

Nearly all species in sect. Aspergillus produce auroglaucins (Table 8). These heptaketides contribute to the yellow colour of the ascomata in this group. Aspergillus leucocarpus does not produce auroglaucins, partly explaining its cream to white coloured ascomata. Aspergillus teporis also does not produce auroglaucins, and this species produces less bright creamish yellow ascomata, albeit not creamish white. Aspergillus xerophilus produces a small amount of dihydroauroglaucin, but not auroglaucin, flavoglaucin and tetrahydroauroglaucin. The hexaketide siderin is recovered from one strain of A. niveoglaucus, but this kind of compound related to orlandin and kotanins is more commonly produced in sections Nigri and Clavati (Nielsen et al. 2009, Varga et al. 2007). Aspergillus pseudoglaucus is an efficient producer of the meroterpenoid mycophenolic acid and was already reported to produce the tetraketide precursor 5,7-dihydroxy-4-methylphthalide by Grove (1972), albeit misidentified as a strain of A. flavus. Mycophenolic acid and its precursors have also been reported from sect. Aspergillus (as Eurotium spp.) by Burkin \& Kononenko (2010), Gao et al. $(2011,2012)$ and Séguin et al. (2014). Epiheveadrides are detected in many species (Table 8). These nonadrides are biosynthesized from a polyketide and components from the citric acid cycle (Williams et al. 2016). They are unique to this group of Aspergilli.

Even though some extrolites from sect. Aspergillus have been claimed to be toxic (Blaser et al. 1980, Bachman et al. 1979, 1982), these metabolites do not follow the definition of a mycotoxin. However, in higher amounts echinulins may be toxic when ingested as feed. The toxicity of echinulins and other secondary metabolites from Aspergillus sect. Aspergillus may need a re-evaluation as potential mycotoxins. The possible human toxicity of these compounds also needs to be re-evaluated. The real mycotoxins aflatoxin, sterigmatocystin, gliotoxin, citrinin, ochratoxin A could not be recovered from any of the species in sect. Aspergillus (Tables 7, 8). In fact, the species in this group may contribute to the healthiness of fermented products such as golden tea and katsuobushi via their strong antioxidant properties of their extrolites (Ishikawa et al. 1985, Li et al. 2004a, Miyake et al. 2009, Li et al. 2009, Meng et al. 2016).

Occurrence of Aspergillus section Aspergillus species in indoor environment

Isolations from indoor environments including air, air treatment systems, dust resulted in 96 Aspergillus sect. Aspergillus strains originating from fifteen countries including Belgium, Canada, Czech Republic, France, Germany, Hungary, Mexico, Puerto Rico, South Africa, Thailand, the Netherlands, Trinidad \& Tobago, Turkey, UK and USA. Strains were identified using CaM sequences, with respective GenBank numbers shown in Table 9. Fourty-three (45\%) strains were identified as A. pseudoglaucus, 20 (21\%) as A. montevidensis, and 12 (13\%) as A. chevalieri. The remaining strains were identified as A. appendiculatus, A. cibarius, A. glaucus, A. intermedius, A. leucocarpus, A. niveoglaucus, A. proliferans, A. ruber and a new species A. aerius.

Members of sect. Aspergillus are able to grow on all types of organic materials at low moisture levels, therefore this group of fungi is frequently reported from the indoor environment (Samson et al. 2010, Šimonovičová et al. 2015, Thrasher 2016, Visagie et al. 2014a, Visagie et al. 2017). Since their wide distribution and environmental adaptation, sect. Aspergillus species were used as biosensor fungi to assess indoor climate and predict hidden moisture damage in homes (Abe et al. 1996, Baudisch et al. 2009). Samson (2010) listed four common sect. Aspergillus species in indoor environment including A. montevidensis $(=E$. amstelodami), A. chevalieri $(=E$. chevalieri), A. ruber (= E. rubrum) and A. glaucus (= E. herbariorum). Visagie et al. (2014a) reported six species including A. ruber, A. proliferans, A. montevidensis, A. pseudoglaucus, A. sloanii and A. chevalieri from house dust samples, and more recently, Visagie et al. (2017) reported another nine species from Canadian and Hawaiian dust.

In the current study A. pseudoglaucus, A. montevidensis and A. chevalieri represented 78% of all isolates. Phenotypically, these indoor species are very similar. Aspergillus pseudoglaucus is similar to A. proliferans and A. ruber, while A. montevidensis and A. chevalieri only bear small differences in ascospore ornamentation, and can be confused with others in the A. chevalieri clade (such as A. intermedius and A. caperatus). Thus molecular identification especially CaM instead of ITS is recommended for accurate identification. Eurotium amstelodami and E. repens are two of the most encountered names in indoor sect. Aspergillus species (Samson et al. 2010, Šimonovičová et al. 2015, Thrasher 2016). The names A. montevidensis ($=$ E. amstelodami) and A. pseudoglaucus (= E. repens), respectively, were chosen based on priority and new nomenclature rules (McNeil et al. 2012, Hubka et al. 2013a). To keep the consistent species concepts which facilitate comparable research, this treatment is followed in this study.

Key to the most common section Aspergillus species from the indoor environments

1a) Ascospores with high crests $(0.5-1 \mu \mathrm{~m})$2
1b) Ascospores with low crests $(<0.5 \mu \mathrm{~m})$ or crests lacking... 4
2a) Ascospores with smooth or faintly roughened convex surface..................................... 3
2b) Ascospores with rugulose convex surface A. montevidensis

6a) Ascospores with furrow present or pronounced... 7
6b) Ascospores with furrow absent or showing as a traceA. pseudoglaucus
7a) Grows well on M60Y at $37^{\circ} \mathrm{C}$ A. ruber
7b) Does not grow on M60Y at $37^{\circ} \mathrm{C}$
A. proliferans

TAXONOMY

Aspergillus section Aspergillus

Synonyms: Eurotium Link, Mag. Ges. Naturf. Freunde Berlin 3: 31, t. 2:44. 1809.
Pyrobolus Kuntze, Revis. Gen. Pl. 2: 868. 1891. fide Kuntze 1891, Dict. Fungi 10th ed.
Edyuillia Subram., Curr. Sci. 41: 756. 1972, fide Samson 1979.
Gymnoeurotium Malloch \& Cain, Canad. J. Bot. 50: 2619. 1972, fide Samson 1979, Benny \& Kimbrough 1980.
Conidiophores with smooth stipes, hyaline or light brown. Vesicles globose to subglobose, uniseriate, fertile over two thirds to entire surface. Phialides flask-shaped. Conidia globose, subglobose to ellipsoidal, microtuberculate, tuberculate to lobate-reticulate. Ascomata eurotium-like, cleistothecial, superficial, yellow or rarely white to cream yellow, globose to subglobose. Asci 8 -spored, globose to subglobose. Ascospores one-celled, hyaline, lenticular, in surface view globose to subglobose, generally showing an equatorial furrow with or without crests, spore bodies smooth or with different degree of rough ornamentation. Xerophilic and osmophilic, growing optimally on substrates containing high concentrations of sugar or salt.

Typus: Aspergillus glaucus (L.) Link, Mag. Ges. Naturf. Freunde Berlin 3: 16. 1809.
Notes: The genera Pyrobolus was considered as synonym of Eurotium (Kuntze 1891). The genera Edyuillia and Gymnoeurotium were both based on Aspergillus athecius Raper \& Fennell, Samson (1979) suspected the type
culture (CBS 464.65) of A. athecius had lost its ability to produce ascomata and represented an atypical form of Eurotium, thus regarded these two genera as synonymous with Eurotium. This was further proved by phylogenetic analyses of Hubka et al. (2013a), where A. athecius was synonymized with A. ruber.

Clade classification in section Aspergillus

Aspergillus ruber clade

Most members of this clade produce non-crested ascospores or ascospores with reduced crests, the only exception is A. cumulatus, which produces irregular, low $(<0.5 \mu \mathrm{~m})$ crests. All species in this clade cannot grow on CY20S at $37^{\circ} \mathrm{C}$, four species (A. appendiculatus, A. cumulates, A. mallochii, A. sloanii) cannot grow on M60Y at $37^{\circ} \mathrm{C}$. Most species except A. appendiculatus can grow on CY 20 S at $25^{\circ} \mathrm{C}$, all species grow rapidly on M 60 Y at $25^{\circ} \mathrm{C}$.

Accepted species:

Aspergillus appendiculatus Blaser 1975, Sydowia 28: 38. [MB309209].
Aspergillus cumulatus D.H. Kim \& S.B. Hong, J. Microbiol. Biotechnol. 24: 335. 2014. [MB807118].
Aspergillus mallochii Visagie, Yilmaz \& Seifert, MycoKeys 19: 16. 2017. [MB819025].
Aspergillus pseudoglaucus Blochwitz, Ann. Mycol. 27: 207. 1929. [MB275429].
Aspergillus ruber (Jos. König et al.) Thom \& Church, Aspergillus: 112. 1926. [MB490579].
Aspergillus sloanii Visagie, Hirooka \& Samson, Stud. Mycol. 78: 108. 2014. [MB809194].
Aspergillus tonophilus Ohtsuki, Bot. Mag. (Tokyo) 75: 438. 1962. [MB326663].
Aspergillus zutongqii A.J. Chen, Frisvad \& Samson, this study [MB818739].
Aspergillus glaucus clade
Members of this clade produce non-crested ascospores or ascospores with low crests ($<0.5 \mu \mathrm{~m}$) or irregular crests measuring $0.5-1 \mu \mathrm{~m}$. All species in this clade cannot grow on CY20S and M60Y at $37{ }^{\circ} \mathrm{C}$. Most species grow moderately on CY20S and grow rapidly on M60Y at $25^{\circ} \mathrm{C}$, except A. neocarnoyi grows restrictedly on CY20S at $25^{\circ} \mathrm{C}$ (3-5 mm after 7 d).

Accepted species:
Aspergillus aerius A.J. Chen, Frisvad \& Samson, this study [MB 818731].
Aspergillus aurantiacoflavus Hubka, A.J. Chen, Jurjevic \& Samson, this study [MB818732].
Aspergillus brunneus Delacr., Bull. Soc. Mycol. France 9: 185. 1893. [MB204832].
Aspergillus glaucus (L.) Link, Mag. Ges. Naturf. Freunde Berlin 3: 16. 1809. [MB161735].
Aspergillus levisporus Hubka, A.J. Chen, Jurjevic \& Samson, this study [MB 818735].
Aspergillus megasporus, Visagie, Yilmaz \& Seifert, MycoKeys 19: 17. 2017. [MB819028].
Aspergillus niveoglaucus Thom \& Raper, U.S.D.A. Misc. Pub. 426: 35. 1941. [MB120985].
Aspergillus neocarnoyi Kozak., Mycol. Pap. 161: 63. 1989. [MB127756].
Aspergillus proliferans G. Sm., Trans. Brit. Mycol. Soc. 26: 26. 1943. [MB284312].
Aspergillus chevalieri clade
Members of this clade produce ascospores with high crests $(\geq 0.5 \mu \mathrm{~m})$. All species in this clade can grow on M60Y at $37{ }^{\circ} \mathrm{C}$. Most species except A. caperatus and A. costiformis can grow on CY20S at $37{ }^{\circ} \mathrm{C}$. All species grow rapidly on CY 20 S and M 60 Y at $25^{\circ} \mathrm{C}$.

Accepted species:
Aspergillus caperatus A.J. Chen, Frisvad \& Samson, this study [MB 818733].
Aspergillus chevalieri (L. Mangin) Thom \& Church, The Aspergilli: 111. 1926. [MB292839].
Aspergillus costiformis H.Z. Kong \& Z.T. Qi, Acta Mycol. Sin. 14: 10. 1995. [MB363444].
Aspergillus cristatus Raper \& Fennell, Gen. Aspergillus: 169. 1965. [MB326622].
Aspergillus intermedius Blaser, Sydowia 28: 41. 1975. [MB309226].
Aspergillus montevidensis Talice \& Mackinnon, Compt. Rend. Soc. Biol. Fr. 108: 1007. 1931. [MB309231].
Aspergillus porosus A.J. Chen, Frisvad \& Samson, this study [MB 818736].
Aspergillus xerophilus clade

Members of this clade produce ascospores with low crests $(\leq 0.5 \mu \mathrm{~m})$, cannot grow on CYA, MEA, CY20S, while grow rapidly on M60Y. Aspergillus osmophilus grows rapidly on M60Y at $37{ }^{\circ} \mathrm{C}$, while A. xerophilus does not grow under this condition.

Accepted species:
Aspergillus osmophilus Asgari \& Zare, Mycoscience 55: 58. 2013. [MB803278].
Aspergillus xerophilus Samson \& Mouch., Antonie van Leeuwenhoek 41: 348. 1975. [MB309251].
Other species:
Aspergillus cibarius S.B. Hong \& Samson, J. Microbiol. 50: 713. 2012. [MB800861].
Aspergillus endophyticus Hubka, A.J. Chen, \& Samson, this study [MB818734].
Aspergillus leucocarpus Hadlok \& Stolk, Antonie van Leeuwenhoek 35: 9. 1969. [MB326642].
Aspergillus tamarindosoli A.J. Chen, Frisvad \& Samson, this study [MB 818737].
Aspergillus teporis A.J. Chen, Frisvad \& Samson, this study [MB818738].

SPECIES DESCRIPTIONS

Aspergillus aerius A.J. Chen, Frisvad \& Samson, sp. nov. MycoBank MB818731. Fig. 18.
Etymology: Name refers to its origin, isolated from air treatment system.
Diagnosis: Large ($6.5-8 \times 4.5-6 \mu \mathrm{~m}$), smooth ascospores with roughness along equatorial ridges, tuberculate conidia measuring (5-)10-13 $\times 6-10 \mu \mathrm{~m}$.

Typus: The Netherlands, air treatment system in production plant, 2013, isolated by J. Houbraken (holotype CBS H-22823, culture ex-type: CBS $141771=$ DTO 241-G7 $=$ IBT 34446).

ITS barcode: LT670916. (Alternative markers: BenA $=\mathrm{LT670990}$; $C a M=\mathrm{LT} 70991 ; ~ R P B 2=\mathrm{LT} 670992$).
Colony diam, 7 d (mm): CYA 10-12; MEA 7-10; CY20S 17-20; CY20S $30{ }^{\circ} \mathrm{C} 14-15$; CY20S $37{ }^{\circ} \mathrm{C}$ No growth; M40Y 65-66; M60Y >75; M60Y $30^{\circ} \mathrm{C}>75$; M60Y $37{ }^{\circ} \mathrm{C}$ No growth; CYAS $35-36$; DG18 40-44; MEA10S 6365.

Colony characters: CY20S $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium pale luteous (11) to sulphur yellow (15); texture floccose; sporulation sparse; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse pale luteous (11). M40Y $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15) to orange (7); texture floccose; sporulation moderately dense; conidia en masse pale green (19); soluble pigments absent; exudates absent; reverse ochreous (44). M60Y $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15) to orange (7); texture floccose; sporulation moderately dense; conidia en masse pale green (19); soluble pigments absent; exudates absent; reverse ochreous (44). CYAS $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation dense; conidia en masse pale green (19); soluble pigments absent; exudates absent; reverse buff (45). DG18 $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation moderately dense; conidia en masse pale green (19); soluble pigments absent; exudates absent; reverse amber (47). MEA10S $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; mycelium sulphur yellow (15); margins entire; texture floccose; sporulation moderately dense; conidia en masse pale green (19); soluble pigments absent; exudates absent; reverse ochreous (44).

Micromorphology: Ascomata eurotium-like, cleistothecial, superficial, yellow, globose to subglobose, 190-275 $\mu \mathrm{m}$. Asci 8 spored, globose to subglobose. Ascospores hyaline, in surface view globose to subglobose, spore bodies smooth, $6.5-8 \times 4.5-6 \mu \mathrm{~m}$, rough along equatorial ridges, in side view lenticular, furrow present, crests absent. Conidiophores with smooth stipes, hyaline or light brown, $500-1000 \times 7-15.5 \mu \mathrm{~m}$. Vesicles globose to subglobose, $26-41 \mu \mathrm{~m}$ wide, fertile over two thirds to entire surface. Phialides flask-shaped, $7.5-12.5 \times 5-8 \mu \mathrm{~m}$. Conidia globose, subglobose to ellipsoidal, tuberculate, (5-) $10-13 \times 6-10 \mu \mathrm{~m}$.

Distinguishing characters: The large ascospores of A. aerius resemble those of A. brunneus, but A. brunneus produces larger conidia, that are infrequently ellipsoidal ($8-15 \times 8-13 \mu \mathrm{~m}$).

Aspergillus appendiculatus Blaser 1975, Sydowia 28: 38. MycoBank MB309209. Fig. 19.
Synonyms: Eurotium appendiculatum Blaser, Sydowia 28: 38. 1975.
Aspergillus aridicola H.Z. Kong \& Z.T. Qi, Acta Mycol. Sin. 14: 88. 1995.
Eurotium aridicola H.Z. Kong \& Z.T. Qi, Acta Mycol. Sin. 14: 88. 1995.
Typus: ZT 8286, holotype. Culture ex-type: CBS $374.75=$ IMI $278374=$ FRR $2793=$ JCM $1566=$ PIL $588=$ IBT 34507.

ITS barcode: HE615132. (Alternative markers: BenA = HE801333; $C a M=$ HE801318; RPB2 $=$ HE801307).
Colony diam, $7 \mathrm{~d}(\mathrm{~mm})$: CYA No growth; MEA No growth; CY20S No growth; CY20S $30^{\circ} \mathrm{C}$ No growth; CY20S $37{ }^{\circ} \mathrm{C}$ No growth; M40Y 50-52; M60Y 50-59; M60Y $30{ }^{\circ} \mathrm{C} 44-49$; M60Y $37{ }^{\circ} \mathrm{C}$ No growth; CYAS 19-20; DG18 35-38; MEA10S 26-28.

Colony characters: M40Y $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium white and sulphur yellow (15); texture floccose; sporulation moderately dense; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse ochreous (44). M60Y $25^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, plane; margins entire; mycelium white and sulphur yellow (15); texture floccose; sporulation moderately dense; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse ochreous (44). CYAS $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium white; texture floccose; sporulation moderately dense; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse light citrine green (67). DG18 $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium white and sulphur yellow (15); texture floccose; sporulation moderately dense; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse sulphur yellow (15) in the centre, citrine green (67) in the edge. MEA10S $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; mycelium white; margins entire; texture floccose; sporulation moderately dense; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse sulphur yellow (15).

Micromorphology: Ascomata eurotium-like, cleistothecial, superficial, yellow, globose to subglobose, 100-225 $\mu \mathrm{m}$. Asci 8 spored, globose to subglobose. Ascospores hyaline, in surface view globose to subglobose, spore bodies slightly rough, $5-7.5 \times 4-5.5 \mu \mathrm{~m}$, in side view lenticular, furrow absent or showing as a trace, crests with filiform appendages or petaliform, petals $1-1.5 \mathrm{um}$ wide at highest parts. Conidiophores with smooth stipes, hyaline or light brown, $800-2000 \times 7-12(-14.5) \mu \mathrm{m}$. Vesicles globose to subglobose, $30-64 \mu \mathrm{~m}$ wide, fertile over two thirds to entire surface. Phialides flask-shaped, $8-16 \times 4.5-7.5 \mu \mathrm{~m}$. Conidia globose, subglobose to ellipsoidal, tuberculate, $5-10(-12) \times 5-7(-8.5) \mu \mathrm{m}$.

Distinguishing characters: Aspergillus appendiculatus is typically characterized by petaliform crests on ascospores. Similar ascospores are also produced by A. mallochii, which are smaller in size ($4-6 \times 3-5 \mu \mathrm{~m}$).

Additional materials examined: Canada, House dust, 2015, isolated by C.M. Visagie, DTO 357-A3 = KAS 7579. China, Tibet, sheep dung, isolated by H.Z. Kong \& Z.T. Qi, CBS 101746 = CGMCC 3.04673 (AS 3.4673).

Aspergillus aurantiacoflavus Hubka, A.J. Chen, Jurjević \& Samson, sp. nov. MycoBank MB818732. Fig. 20.
Etymology: Name refers to its orange and yellow colony, aurantiacus = orange, flavus $=$ yellow.
Diagnosis: Orange and yellow colony, verruculose ascospores measuring $4-5.5 \times 3-5 \mu \mathrm{~m}$.
Typus: USA, CA, San Diego, baby carrier backpack, 2015, isolated by Z̆. Jurjevič (holotype CBS H-22827, culture ex-type: CBS $141930=$ EMSL No. $2903=$ CCF $5393=$ DTO 355-I1 $=$ IBT 34485).

ITS barcode: LT670917. (Alternative markers: BenA = LT670993; CaM $=\mathrm{LT} 670994 ;$ RPB2 $=\mathrm{LT} 670995$).

Colony diam, 7 d (mm): CYA 2-3; MEA 2-3; CY20S 23-25; CY20S $30^{\circ} \mathrm{C}$ No growth; CY20S $37^{\circ} \mathrm{C}$ No growth; M40Y 65-70; M60Y 70->75; M60Y $30^{\circ} \mathrm{C}>75$; M60Y $37{ }^{\circ} \mathrm{C}$ No growth; CYAS $38-40$; DG18 44-45; MEA10S 44-45.

Colony characters: CY20S $25^{\circ} \mathrm{C}, 7$ d: Colonies low to moderately deep, plane; margins entire; mycelium sulphur yellow (15) and orange (7); texture floccose; sporulation absent to sparse; conidia en masse pale green (19); soluble pigments absent; exudates absent; reverse pale luteous (11) or buff (45). M40Y $25^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15) and orange (7); texture floccose; sporulation sparse; conidia en masse pale green (19) to greyish green (50); soluble pigments absent; exudates absent; reverse ochreous (44) or orange (7) at centre, ochreous (44) at edge. M60Y $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15) and orange (7); texture floccose; sporulation sparse to moderately dense; conidia en masse pale green (19) to greyish green (50); soluble pigments absent; exudates absent; reverse ochreous (44). CYAS $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15) and orange (7); texture floccose; sporulation absent to moderately dense; conidia en masse pale green (19) to greyish green (50); soluble pigments absent; exudates absent; reverse ochreous (44) or orange (7) at centre, ochreous (44) at edge. DG18 $25{ }^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15) and orange (7); texture floccose; sporulation sparse to moderately dense; conidia en masse pale green (19) to greyish green (50); soluble pigments absent; exudates absent; reverse ochreous (44) or orange (7) at centre, ochreous (44) at edge. MEA10S $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; mycelium sulphur yellow (15) and orange (7); margins entire; texture floccose; sporulation absent to moderately dense; conidia en masse pale green (19) to greyish green (50); soluble pigments absent; exudates absent; reverse ochreous (44) or orange (7) at centre, ochreous (44) at edge.

Micromorphology: Ascomata eurotium-like, cleistothecial, superficial, yellow, globose to subglobose, 110-250 $\mu \mathrm{m}$. Asci 8 spored, globose to subglobose. Ascospores hyaline, in surface view globose to subglobose, spore bodies verruculose, $4-5.5 \times 3-5 \mu \mathrm{~m}$, in side view lenticular, furrow present, crests irregular, $<0.5 \mu \mathrm{~m}$. Conidiophores with smooth stipes, hyaline or light brown, $250-800 \times 7.5-12 \mu \mathrm{~m}$. Vesicles globose to subglobose, $30-45 \mu \mathrm{~m}$ wide, fertile over two thirds to entire surface. Phialides flask-shaped, 6-11 $\times 3.5-6.5 \mu \mathrm{~m}$. Conidia globose to subglobose, tuberculate, $5-9 \times 4-7 \mu \mathrm{~m}$.

Distinguishing characters: Phylogenetically A. aurantiacoflavus is closely related to A. proliferans and A. glaucus, but A. proliferans produces non-crested ascospores; A. glaucus produces larger ascospores ($5.5-7.5 \times 3.5-6 \mu \mathrm{~m}$).

Additional materials examined: USA, IL, Chicago, rubber toy import from China, 2015, isolated by Z̄. Jurjeviê, CCF $5562=$ EMSL No. 2690 , CCF 5563 = EMSL No. 2691, CCF 5564 = EMSL No. 2692, EMSL No. 2693 = CCF 5391 = DTO 355-H7, CCF 5565 = EMSL No. 2694. USA, New Jersey, Cherry Hill, cake spread, 2015, isolated by Z̆. Jurjevič, EMSL No. $3024=$ CCF 5394 = DTO 355-H9.

Aspergillus brunneus Delacr., Bull. Soc. Mycol. France 9: 185. 1893. MycoBank MB204832. Fig. 21. Synonyms: Eurotium echinulatum Delacr., Bull. Soc. Mycol. France 9: 266. 1893.
Aspergillus echinulatus (Delacr.) Thom \& Church, The Aspergilli: 107. 1926.
Aspergillus medius R. Meissn., Bot. Z.: 356. 1897.
Eurotium medium R. Meissn., Bot. Z.: 356. 1897.
Eurotium verruculosum Vuill. Bull. Soc. Mycol. France 34: 83. 1918.
Typus: IMI 211378, neotype (Blaser 1975). Culture ex-type: CBS $112.26=$ CBS $524.65=$ IBT $5341=$ NRRL $131=$ NRRL $134=$ ATCC $1021=$ IFO $5862=$ IMI $211378=$ QM $7406=$ Thom $4481=$ Thom $5633.4=$ WB 131.

ITS barcode: EF652060. (Alternative markers: BenA = EF651907; CaM $=\mathrm{EF} 651998 ; R P B 2=\mathrm{EF} 651939$).
Colony diam, 7 d (mm): CYA 11-12; MEA 3-5; CY20S $30-34$; CY20S $30{ }^{\circ} \mathrm{C}$ No growth; CY20S $37{ }^{\circ} \mathrm{C}$ No growth; M40Y 65-72; M60Y >75; M60Y $30^{\circ} \mathrm{C}$ 60-65; M60Y $37^{\circ} \mathrm{C}$ No growth; CYAS 26-27; DG1860-61; MEA10S 4852.

Colony characters: CY20S $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation sparse; conidia en masse pale green (19); soluble pigments absent; exudates absent; reverse fulvous (43). M40Y $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium orange (7), later turn into bay (6); texture floccose; sporulation dense; conidia en masse dark green (21); soluble pigments
absent; exudates absent; reverse ochreous (44). M60Y $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium orange (7); texture floccose; sporulation dense; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse ochreous (44). CYAS $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium orange (7); texture floccose; sporulation dense; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse ochreous (44). DG18 $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium orange (7); texture floccose; sporulation dense; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse fulvous (43). MEA10S $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; mycelium orange (7); margins entire; texture floccose; sporulation dense; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse fulvous (43).

Micromorphology: Ascomata eurotium-like, cleistothecial, superficial, yellow, globose to subglobose, 110-240 $\mu \mathrm{m}$. Asci 8 spored, globose to subglobose. Ascospores hyaline, in surface view globose to subglobose, spore bodies rough along equatorial ridges, $7-10 \times 6-8 \mu \mathrm{~m}$, in side view lenticular, furrow present, crests irregular, $<0.5 \mu \mathrm{~m}$. Conidiophores with smooth stipes, hyaline or light brown, $700-1200 \times 7-18 \mu \mathrm{~m}$. Vesicles globose to subglobose, $32-58 \mu \mathrm{~m}$ wide, fertile over two thirds to entire surface. Phialides flask-shaped, $10-18.5 \times 7-12.5 \mu \mathrm{~m}$. Conidia globose to subglobose, tuberculate, $8-15 \times 8-13 \mu \mathrm{~m}$.

Distinguishing characters: Aspergillus brunneus is close to A. neocarnoyi and A. osmophilus in ascospore size and ornamentation, but the latter two are more xerophilic, and show no growth on MEA and CYA. In addition, A. brunneus grows faster on CY20S.

Additional materials examined: Canada, house dust, 2015, isolated by C.M. Visagie, DTO 357-A1 = KAS7575. Canada, Manitoba, unknown source, isolated by M. Desjardins, DTO 197-B3 = CBS 117328. Unknown source, isolated by G. Smith, NRRL $133=$ CCF 5586. Unknown source, isolated by W. McRae, NRRL $124=$ CBS $113.27=$ CCF 5585.

Aspergillus caperatus A.J. Chen, Frisvad \& Samson, sp. nov. MycoBank MB818733. Fig. 22.
Etymology: Name refers to the wrinkled ornamentation on conidia.
Diagnosis: Verruculose to rugulose ascospores with crests measuring $0.5-1 \mu \mathrm{~m}$, lobate-reticulate conidia, no growth on CY20S at $37^{\circ} \mathrm{C}$.

Typus: South Africa, Robben Island, soil, 2015, collected by P. Crous, isolated by M. Meijer (holotype CBS H22825, culture ex-type: CBS $141774=$ DTO 337-E6 $=$ IBT 34451).

ITS barcode: LT670922. (Alternative markers: BenA $=\mathrm{LT671008} ; \mathrm{CaM}=\mathrm{LT} 671009 ;$ RPB2 $=\mathrm{LT} 671010$).
Colony diam, 7 d (mm): CYA 19-20; MEA 14-15; CY20S 55-56; CY20S $30^{\circ} \mathrm{C} 52-53$; CY20S $37^{\circ} \mathrm{C}$ No growth; $\mathrm{M} 40 \mathrm{Y}>75$; M60Y >75; M60Y $30^{\circ} \mathrm{C}>75$; M60Y $37{ }^{\circ} \mathrm{C}>75$; CYAS 41-44; DG18 49-50; MEA10S 58-63.

Colony characters: CY20S $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, slightly sulcate; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation sparse; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse luteous (12) to sulphur yellow (15). M40Y $25^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, slightly sulcate; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation sparse; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse luteous (12). M60Y $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, slightly sulcate; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation sparse; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse luteous (12). CYAS $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation sparse; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse sulphur yellow (15). DG18 $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation sparse; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse sulphur yellow (15). MEA10S $25{ }^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, plane; mycelium sulphur yellow (15); margins entire; texture floccose; sporulation sparse; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse luteous (12).

Micromorphology. Ascomata eurotium-like, cleistothecial, superficial, yellow, globose to subglobose, 130-220 $\mu \mathrm{m}$. Asci 8 spored, globose to subglobose. Ascospores hyaline, in surface view globose to subglobose, spore bodies
verruculose to rugulose, $3.5-4.5 \times 2.5-4 \mu \mathrm{~m}$, in side view lenticular, furrow pronounced, crests $0.5-1 \mu \mathrm{~m}$. Conidiophores with smooth stipes, hyaline or light brown, $250-500 \times 6.5-9(-12) \mu \mathrm{m}$. Vesicles globose to subglobose, $26-45 \mu \mathrm{~m}$ wide, fertile over two thirds to entire surface. Phialides flask-shaped, $7.5-12 \times 4-7.5 \mu \mathrm{~m}$. Conidia globose to subglobose, lobate-reticulate, 3.5-5.5 $\times 3.5-4.5 \mu \mathrm{~m}$.

Distinguishing characters: Phylogenetically A. caperatus is closely related to A. montevidensis, A. intermedius and A. porosus, but A. montevidensis produces larger ascospores ($4-6 \times 3-4.5 \mu \mathrm{~m}$), A. intermedius produces microtuberculate conidia and A. porosus is characterised by pitted ascospores. In addition, A. caperatus does not grow on CY20S at $37^{\circ} \mathrm{C}$ compared to other three species.

Aspergillus chevalieri (L. Mangin) Thom \& Church, The Aspergilli: 111. 1926. MycoBank MB292839. Fig. 23.
Synonyms: Eurotium chevalieri L. Mangin, Ann. Sci. Nat., Bot.: 361. 1909.
Aspergillus chevalieri var. multiascosporus Nakaz. et al., J. Agr. Chem. Soc. Japan 10: 135-192. 1934.
Aspergillus allocotus Bat. \& H. Maia, Anais Soc. Biol. Pernambuco 15: 181. 1957.
Aspergillus equitis Samson \& W. Gams, Advances in Penicillium and Aspergillus Systematics: 36. 1985.
Typus: IMI 211382, neotype (Samson \& Gams 1985). Culture ex-type: CBS $522.65=$ NRRL $78=$ ATCC $16443=$ IMI $211382=$ NRRL A-7803 $=$ Thom $4125.3=$ WB $78=$ IBT 5680.

ITS barcode: EF652068. (Alternative markers: BenA = EF651911; CaM $=\mathrm{EF} 652002 ;$ RPB2 $=\mathrm{EF} 651954$).

Colony diam, 7 d (mm): CYA 17-25; MEA 17-27; CY20S 23-67; CY20S $30^{\circ} \mathrm{C} 23-60$; CY20S $37{ }^{\circ} \mathrm{C} 3-33$; M40Y $50->75$; M60Y $60->75$; M60Y $30^{\circ} \mathrm{C} 55->75$; M60Y $37{ }^{\circ} \mathrm{C}>75$; CYAS 23-55; DG18 27-45; MEA10S 40-52.

Colony characters: CY20S $25{ }^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, slightly sulcate; margins entire; mycelium straw (46) to sulphur yellow (15) to orange (7); texture velvety; sporulation sparse to moderately dense; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse ochreous (44) or fulvous (43) fading into sulphur yellow (15). M40Y $25{ }^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, slightly sulcate; margins entire; mycelium sulphur yellow (15) and white or orange (7); texture floccose; sporulation sparse to moderately dense; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse fulvous (43) or luteous (12) or ochreous (44). M60Y $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, slightly sulcate; margins entire; mycelium sulphur yellow (15) and white or orange (7); texture floccose; sporulation sparse to moderately dense; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse luteous (12) to ochreous (44). CYAS $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15) or white or grey olivaceous (107) or orange (7); texture floccose; sporulation sparse to moderately dense; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse luteous (12) to ochreous (44) fading into sulphur yellow (15) or luteous (12). DG18 $25^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, plane or slightly sulcate; margins entire; mycelium sulphur yellow (15) and white or orange (7); texture floccose; sporulation sparse to moderately dense; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse luteous (12) or ochreous (44) fading into sulphur yellow (15) or rust (39). MEA10S $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; mycelium sulphur yellow (15) and white or orange (7); margins entire; texture floccose; sporulation sparse to moderately dense; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse luteous (12) or ochreous (44) or fulvous (43).

Micromorphology: Ascomata eurotium-like, cleistothecial, superficial, yellow, globose to subglobose, $100-250 \mu \mathrm{~m}$. Asci 8 spored, globose to subglobose. Ascospores hyaline, in surface view globose to subglobose, spore bodies smooth to slightly verruculose, $3.5-5.5 \times 3-4 \mu \mathrm{~m}$, in side view lenticular, furrow present, crests $0.5-1 \mu \mathrm{~m}$. Conidiophores with smooth stipes, hyaline or light brown, $200-1000 \times 6-12 \mu \mathrm{~m}$. Vesicles globose to subglobose, $23-47 \mu \mathrm{~m}$ wide, fertile over two thirds to entire surface. Phialides flask-shaped, 5.5-7.5(-10) $\times 3-5 \mu \mathrm{~m}$. Conidia globose, subglobose to ellipsoidal, tuberculate to lobate-reticulate, $3-4(-6) \times 2.5-3.5(-5) \mu \mathrm{m}$.

Distinguishing characters: Phylogenetically A. chevalieri is closely related to A. cristatus and A. costiformis, but A. cristatus produces verruculose to rugulose ascospores, while A. costiformis produces large rugulose ascospores (5.5$7 \times 5-6.5 \mu \mathrm{~m}$). Morphologically, A. chevalieri is close to A. intermedius and A. caperatus in ascospore size and ornamentation, but A. intermedius produces microtuberculate conidia, A. caperatus produces maily globose and averagely larger conidia ($3.5-5.5 \times 3.5-4.5 \mu \mathrm{~m}$).

Additional materials examined: Brazil, corn kernels, 2008, isolated by J. Houbraken, DTO 061-A2. China, Guizhou, liquor starter, CGMCC 3.06736, CGMCC 3.06722. China, unknown source, CGMCC 3.01302, CGMCC 3.01303, CGMCC 3.12591, CGMCC 3.01299, CGMCC 3.01301. China, Beijing, unknown source, CGMCC 3.06135, CGMCC 3.06136. China, Yunnan, moldy weeds, CGMCC 3.06491. China, Yunnan, moldy bamboo, CGMCC 3.06490. China, Ningxia, soil, CGMCC 3.06133. China, Yunnan, soil under corn, CGMCC 3.06487. China, Yunnan, soil, CGMCC 3.06489. China, Guizhou, liquor starter, CGMCC 3.06753. China, Beijing, soil, CGMCC 3.06134. China, Beijing, feed, CGMCC 3.07889. China, Tibet, soil, 2001, CGMCC 3.06132 = DTO 348-G5. China, Yunnan, moldy peel, 2001, CGMCC $3.06492=$ DTO 348 H3. Czech Republic, Brno, rice, 1999, isolated by V. Ostrý, CCF 3291 = DTO 355-B6. Czech Republic, Prague, semolina, 1979, isolated by V. Muzikár, CCF 1676 = DTO 355-B7. Czech Republic, semolina, CCF 1663. Czech Republic, Brno, seeds of Carum carvi, 2000, isolated by V. Ostrý, CCF 3211. India, keratitis, CBS 123900. Japan, unknown source, isolated by R. Nakazawa, CBS $113.34=$ NRRL $88=$ WB $88=$ DTO 196-H7 (Isotype of Aspergillus chevalieri var. multiascosporus). Madagascar, soil, 2008, isolated by J. Houbraken, CBS $141769=$ DTO 088-D7. Madagascar, soil, 2008, isolated by J. Houbraken, DTO 092-D3. Portugal, unknown source, CBS 126335. South Korea, soybeans, 2012, isolated by D.H. Kim, CCF 4788 = KACC 47145 = DTO 355 -B8. Thailand, Hua Hin, soil under tamarind, 2007, isolated by R.A. Samson \& J. Houbraken, DTO 054-A9. The Netherlands, Quail bedding, 2014, isolated by M. Meijer, DTO 316-G5. The Netherlands, milk powder, 2016, isolated by J. Houbraken, DTO 346-C5. The Netherlands, animal feed kernels, 2016, isolated by J. Houbraken, DTO 346-B8. The Netherlands, garlic butter, isolated by J. Houbraken, DTO 239-H5. The Netherlands, animal feed kernels, 2016, isolated by J. Houbraken, DTO 346-B7. USA, Indiana, Indianapolis, unknown source, isolated by Dr. Adams, NRRL 79. USA, culture contamination, isolated by D.I. Fennell, NRRL 4755. USA, CA, child carrier, 2015, isolated by Ž. Jurjević, EMSL No. 2739, EMSL No. 2768. USA, AZ, Tempe, office chair, 2015, isolated by \check{Z}. Jurjević, EMSL No. 2931. Unknown source, isolated by S. Suhendriani, DTO 238-E3.

Notes: Raper \& Fennell (1965) indicated that Aspergillus chevalieri var. multiascosporus showed definitely identical colony character of A. chevalieri, and included it with A. chevalieri. Hubka et al. (2013a) synonymized A. chevalieri var. multiascosporus with A. chevalieri and our morphological observation and molecular data (CaM) supported this treatment. Aspergillus allocotus was considered a synonym based on type culture WB 4909 (Raper \& Fennell 1965), which was followed by Kozakiewicz (1989) and Hubka et al. (2013a). Aspergillus equitis was proposed as epithet for the anamorph of Eurotium chevalieri (Samson \& Gams 1985). It was synonymized with A. chevalieri by Hubka et al. (2013a).

Aspergillus cibarius S.B. Hong \& Samson, J. Microbiol. 50: 713. 2012. MycoBank MB800861. Fig. 24.
Typus: KACC 46346, holotype. Culture ex-type: KACC $46346=$ DTO 197-D3 $=$ IBT 32307.
ITS barcode: JQ918177. (Alternative markers: BenA $=\mathrm{JQ918180} ; C a M=\mathrm{JQ918183;} \mathrm{RPB2}=\mathrm{JQ918186}$).
Colony diam, 7 d (mm): CYA 16-18; MEA 2-10; CY20S 18-32; CY20S $30^{\circ} \mathrm{C} 2-5$; CY20S $37{ }^{\circ} \mathrm{C}$ No growth; M40Y 65-75; M60Y 65->75; M60Y $30{ }^{\circ} \mathrm{C} 60->75$; M60Y $37{ }^{\circ} \mathrm{C} 0-9$; CYAS 31-42; DG18 40-43; MEA10S 4350.

Colony characters: CY20S $25^{\circ} \mathrm{C}, 7$ d: Colonies low to moderately deep, plane; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation absent; soluble pigments absent; exudates absent; reverse straw (46). M40Y $25{ }^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, plane; margins entire; mycelium orange (7) at centre, sulphur yellow (15) at edge, later turn to rust (39); texture floccose; sporulation moderately dense; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse ochreous (44). M60Y $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation absent or moderately dense; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse ochreous (44). CYAS $25^{\circ} \mathrm{C}$, 7 d: Colonies moderately deep, plane; margins entire; mycelium orange (7) at centre, sulphur yellow (15) at edge; texture floccose; sporulation absent or sparse; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse straw (46). DG18 $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium orange (7) at centre, sulphur yellow (15) at edge; texture floccose; sporulation absent or sparse; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse straw (46). MEA10S $25^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, plane; mycelium orange (7) at centre, sulphur yellow (15) at edge; margins entire; texture floccose; sporulation absent or sparse; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse straw (46).

Micromorphology: Ascomata eurotium-like, cleistothecial, superficial, yellow, globose to subglobose, 100-200 $\mu \mathrm{m}$. Asci 8 spored, globose to subglobose. Ascospores hyaline, in surface view globose to subglobose, spore bodies rough along equatorial ridges, $4-5.5 \times 3-5 \mu \mathrm{~m}$, in side view lenticular, furrow present, crests irregular, $<0.5 \mu \mathrm{~m}$. Conidiophores with smooth stipes, hyaline or light brown, $500-700 \times 8-14 \mu \mathrm{~m}$. Vesicles globose to subglobose, $32-$
$58 \mu \mathrm{~m}$ wide, fertile over two thirds to entire surface. Phialides flask-shaped, $6-11 \times 3-5.5 \mu \mathrm{~m}$. Conidia subglobose to ellipsoidal, tuberculate, $4-7 \times 3.5-5.5 \mu \mathrm{~m}$.

Distinguishing characters: Phylogenetically A. cibarius is distinct from other taxa in sect. Aspergillus, located at a basal position adjacent to the A. ruber and A. glaucus clades. Morphologically, the size, ornamentation and irregular crests of ascospores of A. cibarius resemble those of A. aurantiacoflavus, A. cumulates, A. niveoglaucus and A. xerophilus, but A. aurantiacoflavus produces orange and yellow colony and grows slower on CYA and MEA, A. cumulatus produces globose conidia, A. niveoglaucus does not grow on CY20S at $30^{\circ} \mathrm{C}$, A. xerophilus is more xerophilic and does not grow on CYA and MEA.

[^0]Aspergillus costiformis H.Z. Kong \& Z.T. Qi, Acta Mycol. Sin. 14: 10. 1995. MycoBank MB363444. Fig. 25. Synonyms: Eurotium costiforme H.Z. Kong \& Z.T. Qi, Acta Mycol. Sin. 14: 10. 1995.

Typus: HMAS 62766, holotype. Culture ex-type: CBS $101749=$ CGMCC $3.04664=$ DTO 348 -D8 $=$ IBT $34456=$ IBT 33662.

ITS barcode: HE615136. (Alternative markers: BenA = HE801338; CaM = HE801320; RPB2 = HE801309).
Colony diam, 7 d (mm): CYA 9-10; MEA 13-18; CY20S 40-41; CY20S $30{ }^{\circ} \mathrm{C} 35-42$; CY20S $37{ }^{\circ} \mathrm{C}$ No growth; M40Y 60-61; M60Y 47-54; M60Y $30^{\circ} \mathrm{C}$ 60-70; M60Y $37^{\circ} \mathrm{C} 70->75$; CYAS 9-11; DG18 36-38; MEA10S $24-$ 25.

Colony characters: CY20S $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15); texture velvety; sporulation absent; soluble pigments absent; exudates absent; reverse sulphur yellow (15). M40Y $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15); texture velvety; sporulation absent; soluble pigments absent; exudates absent; reverse luteous (12). M60Y $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15); texture velvety; sporulation absent; soluble pigments absent; exudates absent; reverse luteous (12). CYAS $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium straw (46) and white; texture velvety; sporulation absent; soluble pigments absent; exudates absent; reverse straw (46). DG18 $25^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15); texture velvety; sporulation absent; soluble pigments absent; exudates absent; reverse straw (46). MEA10S $25{ }^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, plane; mycelium sulphur yellow (15); margins entire; texture velvety; sporulation sparse; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse straw (46).

Micromorphology: Ascomata eurotium-like, cleistothecial, superficial, yellow, globose to subglobose, 100-255 $\mu \mathrm{m}$. Asci 8 spored, globose to subglobose. Ascospores hyaline, in surface view globose to subglobose, spore bodies rugulose, $5.5-7 \times 5-6.5 \mu \mathrm{~m}$, in side view lenticular, furrow pronounced, crests $0.5 \mu \mathrm{~m}$. Conidiophores with smooth stipes, hyaline or light brown, $500-800 \times 7-13 \mu \mathrm{~m}$. Vesicles globose to subglobose, $20-45(-60) \mu \mathrm{m}$ wide, fertile over two thirds to entire surface. Phialides flask-shaped, $6-9.5 \times 3-4.5(-5.5) \mu \mathrm{m}$. Conidia globose to subglobose, microtuberculate, 4-5.5(-6.5) $\times 3-4.5(-5.5) \mu \mathrm{m}$.

Distinguishing characters: Aspergillus costiformis is characterised by large, rugulose ascospores and microtuberculate conidia. Aspergillus neocarnoyi also produces large, verruculose to rugulose ascospores, but differs in larger, tuberculate conidia measuring 8-15.5 $\times 6-10 \mu \mathrm{~m}$.

Additional materials examined China, Hebei, moldy box, 2001, CGMCC $3.06520=$ DTO 348-I5. Czech Republic, Prague, toenail of 5-year old boy, 2010, isolated by P. Lysková, CCF $4097=$ NRRL 62483 = DTO 354-I3. The Netherlands, cellophane, 2015, isolated by J. Houbraken, DTO 326-B4

Aspergillus cristatus Raper \& Fennell, Gen. Aspergillus: 169. 1965. MycoBank MB326622. Fig. 26.
Synonyms: Eurotium cristatum (Raper \& Fennell) Malloch \& Cain, Canad. J. Bot. 50: 64. 1972.
Aspergillus cristatellus Kozak., Mycol. Pap. 161: 81. 1989.
Typus: IMI 172280, holotype. Culture ex-type: CBS $123.53=$ NRRL $4222=$ ATCC $16468=$ BCRC $33090=$ FRR $1167=$ IBT $5355=$ IHEM $5619=$ IMI $172280=$ JCM $1569=$ MUCL $15644=$ NRRL $4222=$ WB 4222.

ITS barcode: EF652078. (Alternative markers: BenA = EF651914; CaM = EF652001; RPB2 $=$ EF651957).
Colony diam, $7 \mathrm{~d}(\mathrm{~mm})$: CYA 20-32; MEA 18-36; CY20S 57-75; CY20S $30^{\circ} \mathrm{C} 55-70$; CY20S $37^{\circ} \mathrm{C} 42-51$; M40Y >75; M60Y >75; M60Y $30^{\circ} \mathrm{C}>75$; M60Y $37{ }^{\circ} \mathrm{C}>75$; CYAS 35-56; DG18 38-53; MEA10S 43-70.

Colony characters: CY20S $25^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, slightly sulcate; margins entire; mycelium sulphur yellow (15) or orange (7); texture velvety to floccose; sporulation absent to dense; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse straw (46) or sulphur yellow (15) or fulvous (43). M40Y $25{ }^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, slightly sulcate or plane; margins entire; mycelium sulphur yellow (15); texture velvety to floccose; sporulation absent to dense; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse luteous (12). M60Y $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation sparse to moderately dense; conidia en masse grayish green (50) to dark green (21); soluble pigments absent; exudates absent; reverse luteous (12). CYAS $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation absent to moderately dense; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse ochreous (44) fading into straw (46) or sulphur yellow (15). DG $1825^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, slightly sulcate or plane; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation absent to moderately dense; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse straw (46), ochreous (44) or sulphur yellow (15). MEA10S $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane or slightly sulcate; mycelium sulphur yellow (15); margins entire; texture floccose; sporulation moderately dense; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse luteous (12).

Micromorphology: Ascomata eurotium-like, cleistothecial, superficial, yellow, globose to subglobose, $100-200 \mu \mathrm{~m}$. Asci 8 spored, globose to subglobose. Ascospores hyaline, in surface view globose to subglobose, spore bodies verruculose to rugulose, 4.5-6 $\times 4-6 \mu \mathrm{~m}$, in side view lenticular, furrow present, crests $1.2-1.5 \mu \mathrm{~m}$. Conidiophores with smooth stipes, hyaline or light brown, 300-500 $\times(6-) 8-12 \mu \mathrm{~m}$. Vesicles globose to subglobose, (26-)35-51 $\mu \mathrm{m}$ wide, fertile over two thirds to entire surface. Phialides flask-shaped, $5.5-9 \times 3.5-6 \mu \mathrm{~m}$. Conidia globose, subglobose to ellipsoidal, tuberculate, 4-6.5 $\times 3.5-5 \mu \mathrm{~m}$.

Distinguishing characters: Phylogenetically A. cristatus is closely related to A. chevalieri and A. costiformis, but A. chevalieri produces smooth to slightly verruculose ascospores, and A. costiformis produces larger ascospores and microtuberculate conidia.

Additional materials examined: China, unknown source, CGMCC 3.02167, CGMCC 3.03972, CGMCC 3.06140, CGMCC 3.06141, CGMCC 3.00449, CGMCC 3.06139, CGMCC 3.00448, CGMCC 3.00463. China, Hubei, tea, CGMCC 3.07927. China, Zhejiang, tea, CGMCC 3.07934. China, Beijing, unknown source, CGMCC 3.06131. China, Yuannan, tea, CGMCC 3.07925, CGMCC 3.07926. China, Sichuan, tea, CGMCC 3.07924. China, Yunnan, Pu'er tea, CGMCC 3.15365. China, Hunan, tea, CGMCC 3.07928. China, Hunan, Fuzhuan brick tea, CGMCC 3.06086, CGMCC 3.06088, CGMCC 3.06087, CGMCC 3.06089, CGMCC 3.07930. China, Chongqing, tea, CGMCC 3.07929. China, Guangxi, tea, CGMCC 3.06083 China, Liaoning, unknown source, CGMCC 3.06085 . China, Hubei, soil, CGMCC 3.06082 . China, Hunan, tea, CGMCC 3.06084. China, Hunan, tea block, 2013, isolated by Q.L. Pan \& L. Wang, CCF $4701=$ DTO 355-B1. China, Guangxi, tea block, 2013, isolated by Q.L. Pan \& L. Wang, CCF 4702 = DTO 355-B2. China, Hubei, soil, 2001, CGMCC 3.06081 = DTO 348-E9. Zaire, Kinshasa, soil, 1984, IHEM 2423 = DTO 355-B3.

Aspergillus cumulatus D.H. Kim \& S.B. Hong, J. Microbiol. Biotechnol. 24: 335. 2014. MycoBank MB807118. Fig. 27.

Typus: KACC 47316, holotype. Culture ex-type: KACC $47316=$ DTO 303-D9 $=$ IBT $34470=$ IBT 33670.

ITS barcode: KF928303. (Alternative markers: $B e n A=\mathrm{KF928297} ; \mathrm{CaM}=\mathrm{KF928300} ; R P B 2=\mathrm{KF928294}$).
Colony diam, 7 d (mm): CYA 7-10; MEA 4-5; CY20S 28-35; CY20S $30{ }^{\circ} \mathrm{C} 9-17$; CY20S $37{ }^{\circ} \mathrm{C}$ No growth; M40Y 70-75; M60Y >75; M60Y $30^{\circ} \mathrm{C} 62-70$; M60Y $37^{\circ} \mathrm{C}$ No growth; CYAS 33-42; DG18 35-47; MEA10S 6568.

Colony characters: CY20S $25{ }^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, plane to sulcate; margins irregular; mycelium sulphur yellow (15); texture floccose; sporulation moderately dense; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse olivaceous buff (89) at centre fading into sulphur yellow (15). M40Y $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins irregular; mycelium sulphur yellow (15) and orange (7); texture floccose; sporulation moderately dense; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse luteous (12). M60Y $25{ }^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, plane; margins irregular; mycelium sulphur yellow (15) and orange (7); texture floccose; sporulation moderately dense; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse luteous (12). CYAS $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins irregular; mycelium sulphur yellow (15) and orange (7); texture floccose; sporulation moderately dense; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse luteous (12). DG18 $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins irregular; mycelium sulphur yellow (15) and orange (7); texture floccose; sporulation moderately dense; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse buff (45) or sulphur yellow (15). MEA10S $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; mycelium sulphur yellow (15) and orange (7); margins irregular; texture floccose; sporulation moderately dense; conidia en masse dark green (21) or yellow-green (71); soluble pigments absent; exudates absent; reverse luteous (12).

Micromorphology: Ascomata eurotium-like, cleistothecial, superficial, yellow, globose to subglobose, 100-200 $\mu \mathrm{m}$. Asci 8 spored, globose to subglobose. Ascospores hyaline, in surface view globose to subglobose, spore bodies slightly rough, $4-6 \times 3.5-5 \mu \mathrm{~m}$, in side view lenticular, furrow pronounced, crests irregular, $<0.5 \mu \mathrm{~m}$. Conidiophores with smooth stipes, hyaline or light brown, $500-1300 \times 7-15 \mu \mathrm{~m}$. Vesicles globose to subglobose, $32-57 \mu \mathrm{~m}$ wide, fertile over two thirds to entire surface. Phialides flask-shaped, $7-12 \times 4.5-7.5 \mu \mathrm{~m}$. Conidia globose, tuberculate, 5-8 $\times 4-7.5 \mu \mathrm{~m}$.

Distinguishing characters: Phylogenetically A. cumulatus belongs to the A. ruber clade. The ascospores of A. cumulatus are unique by having irregular crests, while remaining species produce non-crested ascospores or ascospores with petaliform crests (A. appendiculatus and A. mallochii). Morphologically A. cumulatus resembles A. cibarius and A. megasporus in ascospore size and ornamentation, but A. cibarius produces subglobose to ellipsoidal conidia, A. megasporus produces larger conidia and does not grow on CY20S at $30^{\circ} \mathrm{C}$.

Additional materials examined: South Korea, air of a meju fermentation room, KACC 47513 = DTO 303-D8, KACC 47514. USA, New York, Bronx, bedroom ceiling, 2015, Ž. Jurjevič, EMSL No. 2827 = CCF $5376=$ DTO 355-G9.

Aspergillus endophyticus Hubka, A.J. Chen, \& Samson, sp. nov. MycoBank MB818734. Fig. 28.
Etymology: Name refers to its origin, isolated as endophyte of Acer pseudoplatanus.
Diagnosis: Verruculose to rugulose ascospores measuring 4-5.5 $\times 3-4.5 \mu \mathrm{~m}$ (crests $0.5-1 \mu \mathrm{~m}$), tuberculate conidia measuring 5.5-8 $\times 4.5-6 \mu \mathrm{~m}$.

Typus: Czech Republic. Prague, Stromovka park, endophyte of Acer pseudoplatanus, 2013, isolated by I. Kelnarová (holotype CBS H-22819, culture ex-type: CBS $141766=$ DTO 354-I2 $=$ EU12D $=$ CCF $5345=$ IBT 34511).

ITS barcode: LT670941. (Alternative markers: BenA $=\mathrm{LT} 671067 ; C a M=\mathrm{LT} 671068 ; ~ R P B 2=\mathrm{LT} 671069$).
Colony diam, 7 d (mm): CYA 10-12; MEA 10-12; CY20S 24-26; CY20S $30^{\circ} \mathrm{C}$ No growth; CY20S $37{ }^{\circ} \mathrm{C}$ No growth; M40Y 70-75; M60Y >75; M60Y $30^{\circ} \mathrm{C}>75$; M60Y $37{ }^{\circ} \mathrm{C}$ 15-17; CYAS 30-35; DG18 35-40; MEA10S 25-35.

Colony characters: CY20S $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies low, plane; margins irregular; mycelium white to straw (46); texture floccose; sporulation sparse; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse straw (46). M40Y $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium orange (7) and sulphur yellow (15); texture floccose; sporulation moderately dense; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse luteous (12). M60Y $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation moderately dense; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse luteous (12). CYAS $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation moderately dense; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse primrose (66). DG18 $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation moderately dense; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse primrose (66). MEA10S $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; mycelium sulphur yellow (15); margins entire; texture floccose; sporulation dense; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse luteous (12).

Micromorphology: Ascomata eurotium-like, cleistothecial, superficial, yellow, globose to subglobose, $120-200 \mu \mathrm{~m}$. Asci 8 spored, globose to subglobose. Ascospores hyaline, in surface view globose to subglobose, spore bodies verruculose to rugulose, $4-5.5 \times 3-4.5 \mu \mathrm{~m}$, in side view lenticular, furrow pronounced, crests $0.5-1 \mu \mathrm{~m}$. Conidiophores with smooth stipes, hyaline or light brown, $350-800 \times 9.5-14 \mu \mathrm{~m}$. Vesicles globose to subglobose, $32-52 \mu \mathrm{~m}$ wide, fertile over two thirds to entire surface. Phialides flask-shaped, $6-10 \times 3.5-5.5 \mu \mathrm{~m}$. Conidia globose to subglobose, tuberculate to lobate-reticulate, $5.5-8 \times 4.5-6 \mu \mathrm{~m}$.

Distinguishing characters: The phylogenetic position of A. endophyticus is not fully resolved, but it has affinity to the A. ruber and A. glaucus clades (Fig. 1). It does not grow at $30^{\circ} \mathrm{C}$ and $37^{\circ} \mathrm{C}$ on CY20S similarly to the majority of species from these clades, and it grows at $37{ }^{\circ} \mathrm{C}$ on M60Y similarly to A. pseudoglaucus, A. ruber, A. tonophilus and A. zutongqii (Table 5). Morphologically it resembles A. caperatus in ascospore morphology, but A. caperatus produces smaller conidia measuring 3.5-5.5 $\times 3.5-4.5 \mu \mathrm{~m}$.

Aspergillus glaucus (L.) Link, Mag. Ges. Naturf. Freunde Berlin 3: 16. 1809. MycoBank MB161735. Fig. 29.
Synonyms: Mucor glaucus L., Species Plantarum: 1186. 1753.
Monilia glauca (L.) Pers., Synopsis methodica fungorum: 691. 1801.
Eurotium herbariorum (Weber ex F.H. Wigg.) Link, Magazin der Gesellschaft Naturforschenden Freunde Berlin 3(1): 31. 1809.
Aspergillus herbariorum (F.H. Wigg.) E. Fisch. 1897.
Eurotium herbariorum var. minor L. Mangin, Annls Sci. Nat. Bot., Ser. 9: 365. 1909.
Aspergillus minor (L. Mangin) Thom \& Raper, Department of Agriculture Miscellaneous Publications 426: 27. 1941.
Aspergillus mangini Thom \& Raper, A manual of the Aspergilli: 127. 1945.
Eurotium minus (L. Mangin) Subram., Curr. Sci. 41: 760. 1972.
Aspergillus umbrosus Bainier \& Sartory, Bull. Soc. Mycol. France 28 (3): 267. 1912.
Eurotium umbrosum (Bainier \& Sartory) Malloch \& Cain, Canad. J. Bot. 50 (1): 64. 1972.
Eurotium testaceocolorans Novobr., Novosti Sist. Nizsh. Rast. 9: 173. 1972.
Aspergillus testaceocolorans Novobr., Novosti Sist. Nizsh. Rast. 9: 173. 1972.
Typus: IMI 211383, neotype (Pitt \& Samson 2000). Culture ex-type: CBS 516.65 = NRRL $116=$ ATCC $16469=$ DTO $197-\mathrm{A} 1=$ IBT $32295=$ IMI $211383=$ LCP $64.1859=$ Thom 5629.C $=$ WB 116.

ITS barcode: EF652052. (Alternative markers: BenA = EF651887; CaM $=\mathrm{EF} 651989 ;$ RPB2 $=\mathrm{EF} 651934$).
Colony diam, 7 d (mm): CYA 0-8; MEA 0-6; CY20S 25-30; CY20S $30^{\circ} \mathrm{C}$ No growth; CY20S $37^{\circ} \mathrm{C}$ No growth; M40Y >75; M60Y >75; M60Y $30^{\circ} \mathrm{C}>75$; M60Y $37{ }^{\circ} \mathrm{C}$ No growth; CYAS 41-49; DG18 48-60; MEA10S 60-66.

Colony characters: CY20S $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium straw (46) or sulphur yellow (15) or orange (7); texture floccose; sporulation sparse; conidia en masse pale green (19); soluble pigments absent; exudates absent; reverse sulphur yellow (15) or luteous (12). M40Y $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium straw (46) or sulphur yellow (15) or orange (7); texture floccose;
sporulation moderately dense; conidia en masse yellow-green (71) to greyish green (50); soluble pigments absent; exudates absent; reverse luteous (12). M60Y $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium straw (46) or sulphur yellow (15) or orange (7); texture floccose; sporulation sparse to moderately dense; conidia en masse pale green (19) to yellow-green(71); soluble pigments absent; exudates absent; reverse luteous (12). CYAS $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium straw (46) or sulphur yellow (15) or orange (7); texture floccose; sporulation moderately dense; conidia en masse yellow-green (71); soluble pigments absent; exudates absent; reverse straw (46). DG $1825^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15) or orange (7); texture floccose; sporulation sparse to moderately dense; conidia en masse pale green (19); soluble pigments absent; exudates absent; reverse straw (46). MEA10S $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; mycelium sulphur yellow (15) and white; margins entire; texture floccose; sporulation moderately dense; conidia en masse pale green (19); soluble pigments absent; exudates absent; reverse luteous (12) or ochreous (44).

Micromorphology: Ascomata eurotium-like, cleistothecial, superficial, yellow, globose to subglobose, 120-250 $\mu \mathrm{m}$. Asci 8 spored, globose to subglobose. Ascospores hyaline, in surface view globose to subglobose, spore bodies smooth, $5.5-7.5 \times 3.5-6 \mu \mathrm{~m}$, minute rough along equatorial ridges, in side view lenticular, furrow pronounced, crests irregular, $0.5-1 \mu \mathrm{~m}$. Conidiophores with smooth stipes, hyaline or light brown, $150-500 \times 10-21(-30) \mu \mathrm{m}$. Vesicles globose to subglobose, $30-60 \mu \mathrm{~m}$ wide, fertile over two thirds to entire surface. Phialides flask-shaped, (8) $12-20 \times(4-) 5-8.5 \mu \mathrm{~m}$. Conidia globose, subglobose to ellipsoidal, tuberculate, $6-12.5 \times 5.5-9 \mu \mathrm{~m}$.

Distinguishing characters: Phylogenetically A. glaucus is most closely related to A. proliferans, A. aurantiacoflavus and A. niveoglaucus, but A. proliferans produces smaller ($4-6 \times 3-5 \mu \mathrm{~m}$), non-crested ascospores, ascospores of A. aurantiacoflavus are also smaller ($4-5.5 \times 3-5 \mu \mathrm{~m}$) and its colonies are orange-yellow. Aspergillus niveoglaucus is close to A. glaucus morphologically, but the convex surface is roughened makedly in A. niveoglaucus.

Notes: Pitt (1985) synonymized Eurotium herbariorum var. minor and A. umbrosus with A. glaucus, and invalidated the later homonym of E. herbariorum var. minor ie: A. minor (L. Mangin) Thom \& Raper and A. mangini Thom \& Raper. These treatments were further supported by phylogenetic analyses by Hubka et al. (2013a) and our study. Aspergillus testaceocolorans was synonymised with A. glaucus by Samson (1979), Kozakiewicz (1989) agreed with this treatment on the basis of SEM examination, however, mistakenly synonymised A. testaceocolorans with A. pseudoglaucus (= Eurotium repens). The ex-type culture (CBS 758.74) of A. testaceocolorans is contaminated by an A. appendiculatus strain, and the position of this species could not be verified in this study.

Additional matertals examined: China, unknown source, CGMCC 3.01313. China, Beijing, unknown source, CGMCC 3.06100. China, Shanxi, unknown source, CGMCC 3.06099. Puerto Rico, Bayamon, office, air, 2014, isolated by Z. Jurjevič, EMSL No. $2529=$ CCF $5381=$ DTO 355H1. USA, Washington DC, unpainted board (K.B. Raper's basement), 1938, isolated by K.B. Raper, NRRL $117=$ DTO 355-B4 = CCF 5582. USA, coffee beans, 1925 , isolated by F.A. McCormick, NRRL $120=117.46=$ CBS $532.65=$ CCF 5583 . USA, New York, Ulster Park, bedroom, settle plates, 2015, isolated by Z̆. Jurjevič, EMSL No. $3317=$ CCF $5382=$ DTO $355-\mathrm{H} 2$. Unknown source, NRRL $121=$ DTO $355-\mathrm{B5}=$ CCF 5584.

Aspergillus intermedius Blaser, Sydowia 28: 41. 1975. MycoBank MB309226. Fig. 30.
Synonyms: Eurotium intermedium Blaser, Sydowia 28: 44. 1975.
Aspergillus spiculosus Blaser, Sydowia 28: 42. 1975.
Eurotium spiculosum Blaser, Sydowia 28: 42. 1975.
Typus: IMI 89278, neotype (Kozakiewicz 1989). Culture ex-type: CBS $523.65=$ NRRL $82=$ ATCC $16444=$ DSM $2830=$ IBT $5677=$ IMI $089278 \mathrm{ii}=$ IMI $89278=$ LSHBBB $107=$ LSHTM $107=$ QM $7403=$ Thom $5612.107=$ WB 82.

ITS barcode: EF652074. (Alternative markers: BenA = EF651892; CaM $=\mathrm{EF} 652012 ;$ RPB2 $=\mathrm{EF} 651958$).
Colony diam, 7 d (mm): CYA 18-22; MEA 20-22; CY20S 47-55; CY20S $30^{\circ} \mathrm{C} 45-55$; CY20S $37{ }^{\circ} \mathrm{C} 27-36$; M40Y $72 \rightarrow 75$; M60Y 65->75; M60Y $30{ }^{\circ} \mathrm{C} 65-75$; M60Y $37{ }^{\circ} \mathrm{C} 70->75$; CYAS 29-34; DG18 39-45; MEA10S 43-54.

Colony characters: CY20S $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, sulcate; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation moderately dense or absent; conidia en masse dark green (21); soluble pigments
absent; exudates absent; reverse luteous (12) to sulphur yellow (15). M40Y $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, slightly sulcate; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation moderately dense or absent; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse luteous (12). M60Y $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, slightly sulcate; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation moderately dense or absent; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse luteous (12). CYAS $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, slightly sulcate; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation moderately dense or absent; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse ochreous (44) at centre, luteous (12) to sulphur yellow (15) at edge. DG18 $25^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, slightly sulcate; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation moderately dense or absent; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse ochreous (44) to luteous (12) to sulphur yellow (15). MEA10S $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, slightly sulcate; mycelium sulphur yellow (15); margins entire; texture floccose; sporulation moderately dense or absent; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse ochreous (44) to luteous (12).

Micromorphology: Ascomata eurotium-like, cleistothecial, superficial, yellow, globose to subglobose, $100-250 \mu \mathrm{~m}$. Asci 8 spored, globose to subglobose. Ascospores hyaline, in surface view globose to subglobose, spore bodies verruculose to rugulose, 3.5-5 $\times 3-4.5 \mu \mathrm{~m}$, in side view lenticular, furrow present, crests $0.5 \mu \mathrm{~m}$. Conidiophores with smooth stipes, hyaline or light brown, $250-600 \times 7.5-13 \mu \mathrm{~m}$. Vesicles globose to subglobose, (26-)40-60 $\mu \mathrm{m}$ wide, fertile over two thirds to entire surface. Phialides flask-shaped, $5.5-7.5(-9) \times 3-5.5 \mu \mathrm{~m}$. Conidia globose to subglobose, microtuberculate, 3-4(-6) $\times 3-4.5 \mu \mathrm{~m}$.

Distinguishing characters: Phylogenetically and morphologically A. intermedius resembles A. montevidensis, A. porosus and A. caperatus, but can be distinguished by smooth conidia (microtuberculate under SEM) instead of roughened conidia (lobate-reticulate under SEM) in the other species.

Additional materials examined. China, unknown source, 1969, CGMCC $3.03968=$ DTO 348-D6. China, unknown source, CGMCC 3.06138 . China, Beijing, unknown source, CGMCC 3.01300. China, industrial material, 1955, isolated by V. Zánová, CCF $127=$ DTO 354-I5. Croatia, unknown source, isolated by V. Johanides, CBS 108.55. Czech Republic, unknown source, 1956, CGMCC $3.00664=$ DTO 348-C1. Czech Republic, Prague, sputum of 55 -year-old woman, 2013, isolated by P. Lysková, CCF $4681=$ DTO 354 -I6. Czech Republic, Prague, air sampler, surgical operating room, 2014, isolated by V. Chrenková, CCF $5377=$ DTO $355-G 5$. Spain, Badajoz, soil, isolated by P. Blaser, CBS 377.75 The Netherlands, fruit jam, 2014, isolated by T.van Doorn, DTO 345-H5. USA, IL, Peoria, soy protein, isolated by AJ. Moyer, NRRL 25823 Unknown source, NRRL 84. Unknown country, butter, NRRL $4817=$ DTO 355-B9 = IFO $5322=\mathrm{IMI} 313754=\mathrm{JCM} 23051=$ CCF 5608 .

Aspergillus leucocarpus Hadlok \& Stolk, Antonie van Leeuwenhoek 35: 9. 1969. MycoBank MB326642. Fig. 31. Synonyms: Eurotium leucocarpum Hadlok \& Stolk, Antonie van Leeuwenhoek 35: 9. 1969.

Typus: CBS 353.68, holotype. Culture ex-type: CBS $353.68=$ IBT $5350=$ IMI $278375=$ NRRL $3497=$ PIL $620=$ QM $9365=$ QM 9707.

ITS barcode: EF652087. (Alternative markers: BenA = EF651925; CaM = EF652023; RPB2 = EF651972).
Colony diam, 7 d (mm): CYA 24-31; MEA 21-31; CY20S 68-70; CY20S $30^{\circ} \mathrm{C} 42-70$; CY20S $37^{\circ} \mathrm{C}$ No growth; $\mathrm{M} 40 \mathrm{Y}>75$; M60Y >75; M60Y $30^{\circ} \mathrm{C}>75$; M60Y $37{ }^{\circ} \mathrm{C}$ 35-58; CYAS 32-40; DG18 43-52; MEA10S 47-50.

Colony characters: CY20S $25^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, plane; margins entire; mycelium straw (46) and white; texture velvety to floccose; sporulation sparse; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse straw (46). M40Y $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium straw (46) and white; texture floccose; sporulation sparse; conidia en masse dark green (21) to greenish olivaceous (90); soluble pigments absent; exudates absent; reverse luteous (12). M60Y $25^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, plane; margins entire; mycelium straw (46) and white; texture floccose; sporulation sparse; conidia en masse dark green (21) to greenish olivaceous (90); soluble pigments absent; exudates absent; reverse luteous (12). CYAS $25^{\circ} \mathrm{C}$, 7 d: Colonies moderately deep, plane; margins entire; mycelium straw (46) and white; texture floccose; sporulation sparse; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse straw (46). DG18 $25^{\circ} \mathrm{C}$, 7 d: Colonies moderately deep, plane; margins entire; mycelium straw (46) and white; texture floccose; sporulation sparse; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse straw (46). MEA10S
$25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; mycelium straw (46) and white; margins entire; texture floccose; sporulation sparse; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse luteous (12).

Micromorphology Ascomata eurotium-like, cleistothecial, superficial, white, globose to subglobose, $80-140 \mu \mathrm{~m}$. Asci 8 spored, globose to subglobose. Ascospores hyaline, in surface view globose to subglobose, spore bodies verruculose, $4.5-5.5 \times 3.5-5 \mu \mathrm{~m}$, in side view lenticular, furrow present, crests $0.8-1.5 \mu \mathrm{~m}$. Conidiophores with smooth stipes, hyaline or light brown, $800-1400 \times 7.5-12 \mu \mathrm{~m}$. Vesicles globose to subglobose, $35-60 \mu \mathrm{~m}$ wide, fertile over two thirds to entire surface. Phialides flask-shaped, $8-11.5 \times 3.5-6.5 \mu \mathrm{~m}$. Conidia globose to subglobose, tuberculate, $5.5-9 \times 5-8 \mu \mathrm{~m}$.

Distinguishing characters: The white ascomata are consistently produced in all available A. leucocarpus strains, which can easily distinguish it from other sect. Aspergillus species.

Additional materials examined Canada, house dust, 2015, isolated by C.M. Visagie, DTO 357-A2 $=$ KAS7576. Madagascar, vanilla sticks, 2012, isolated by J. Houbraken, DTO 174-I5.

Aspergillus Ievisporus Hubka, A.J. Chen, Jurjević \& Samson, sp. nov. MycoBank MB818735. Fig. 32.
Etymology: Name refers to its smooth ascospores.
Diagnosis: Smooth ascospores measuring 3-4.5 $\times 2.5-4 \mu \mathrm{~m}$.
Typus: USA, MO, Saint Louis, bedroom, wood base, 2015, isolated by Ž. Jurjevič (holotype: CBS H-22820, culture ex-type: CBS $141767=$ DTO $355-G 4=$ EMSL No. $3211=$ CCF $5378=$ IBT 34512).

ITS barcode: LT670950. (Alternative markers: BenA $=\mathrm{LT} 671094 ;$ CaM $=\mathrm{LT} 671095 ; R P B 2=\mathrm{LT} 671096$).
Colony diam, 7 d (mm): CYA 13-17; MEA 8-10; CY20S 19-20; CY20S $30{ }^{\circ} \mathrm{C} 18-20$; CY20S $37{ }^{\circ} \mathrm{C}$ No growth; M40Y 60-65; M60Y 65-67; M60Y $30^{\circ} \mathrm{C} 70-75$; M60Y $37{ }^{\circ} \mathrm{C}$ No growth; CYAS 35-37; DG18 35-36; MEA10S 40-41.

Colony characters: CY20S $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins irregular; mycelium sulphur yellow (15); texture floccose; sporulation dense; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse greenish olivaceous (90) at centre, sulphur yellow (15) at edge. M40Y $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins irregular; mycelium white; texture floccose; sporulation dense; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse ochreous (44). M60Y $25{ }^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, plane; margins slightly irregular; mycelium white; texture floccose; sporulation dense; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse ochreous (44). CYAS $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium white; texture floccose; sporulation dense; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse greenish olivaceous (90) at centre, fading into olivaceous buff (89). DG18 $25{ }^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, plane; margins entire; mycelium white and sulphur yellow (15); texture floccose; sporulation moderately dense; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse sulphur yellow (15) at centre, fading into yellow-green (71). MEA10S $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; mycelium white; margins entire; texture floccose; sporulation moderately dense; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse fulvous (43) at centre, ochreous (44) at edge.

Micromorphology: Ascomata eurotium-like, cleistothecial, superficial, yellow, globose to subglobose, $70-130 \mu \mathrm{~m}$. Asci 8 spored, globose to subglobose. Ascospores hyaline, in surface view globose to subglobose, spore bodies smooth, $3-4.5 \times 2.5-4 \mu \mathrm{~m}$, in side view lenticular, furrow present, crests absent. Conidiophores with smooth stipes, hyaline or light brown, $400-600 \times 10-14 \mu \mathrm{~m}$. Vesicles globose to subglobose, $30-44 \mu \mathrm{~m}$ wide, fertile over two thirds to entire surface. Phialides flask-shaped, 6-8.5 $\times 3.5-6 \mu \mathrm{~m}$. Conidia globose, tuberculate to lobate-reticulate, $3.5-4.5 \times 2.5-4 \mu \mathrm{~m}$.

Distinguishing characters: The non-crested, smooth ascospores of A.levisporus resemble those of A. proliferans, A. pseudoglaucus, A. ruber and A. sloanii, but the latters all produce larger ascospores, $4-6 \times 3-5 \mu \mathrm{~m}$ in A. proliferans, $4-6.5 \times 3-4.5 \mu \mathrm{~m}$ in A. pseudoglaucus, $4-6 \times 3.5-5 \mu \mathrm{~m}$ in A. ruber and $4-6 \times 3-4.5 \mu \mathrm{~m}$ in A. sloanii, respectively.

Aspergillus mallochii Visagie, Yilmaz \& Seifert, MycoKeys 19: 16. 2017. MycoBank MB819025. Fig. 33.
Typus: DAOM 740296, holotype. Culture ex-type: CBS $141928=$ DTO $357-\mathrm{A} 5=$ KAS7618 $=$ DAOMC 146054.
ITS barcode: KX450907. (Alternative markers: BenA $=\mathrm{KX450889}$; $C a M=\mathrm{KX} 450902 ;$ RPB2 $=\mathrm{KX} 450894$).
Colony diam, 7 d (mm): CYA 7-8; MEA 2-3; CY20S $11-12$; CY20S $30^{\circ} \mathrm{C}$ No growth; CY20S $37^{\circ} \mathrm{C}$ No growth; M40Y 53-55; M60Y 64-70; M60Y $30{ }^{\circ} \mathrm{C} 42-47$; M60Y $37{ }^{\circ} \mathrm{C}$ No growth; CYAS 29-30; DG18 35-38; MEA10S 33-35.

Colony characters: CY20S $25^{\circ} \mathrm{C}, 7$ d: Colonies low, plane; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation sparse; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse sulphur yellow (15). M $40 \mathrm{Y} 25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15), later turn into vinaceous (57) to orange (7); texture floccose; sporulation absent; soluble pigments absent; exudates absent; reverse ochreous (44). M60Y $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation sparse; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse ochreous (44). CYAS $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation sparse; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse straw (46). DG18 $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation sparse; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse straw (46). MEA10S $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; mycelium sulphur yellow (15); margins entire; texture floccose; sporulation sparse; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse ochreous (44).

Micromorphology: Ascomata eurotium-like, cleistothecial, superficial, yellow, globose to subglobose, $130-220 \mu \mathrm{~m}$. Asci 8 spored, globose to subglobose. Ascospores hyaline, in surface view globose to subglobose, spore bodies smooth, minute rough along equatorial ridges, $4-6 \times 3-5 \mu \mathrm{~m}$, in side view lenticular, furrow absent or showing as a trace, crests petaliform, 1-2 $\mu \mathrm{m}$ at high part. Conidiophores with smooth stipes, hyaline or light brown, 600-1500 \times $6-9.5(-12) \mu \mathrm{m}$. Vesicles globose to subglobose, $27-43 \mu \mathrm{~m}$ wide, fertile over two thirds to entire surface. Phialides flask-shaped, $6.5-9 \times 3-5 \mu \mathrm{~m}$. Conidia subglobose to ellipsoidal, tuberculate, 4.5-7 $\times 4-5.5 \mu \mathrm{~m}$.

Distinguishing characters: Phylogenetically and morphologically A. mallochii is close to A. appendiculatus, but A. appendiculatus produces larger ascospores ($5-7.5 \times 4-5.5 \mu \mathrm{~m}$) and does not grow on MEA and CYA at $25^{\circ} \mathrm{C}$.

Additional materials examined The Netherlands, chocolat miroir, 2015, CBS $141776=$ DTO 343-G3.
Aspergillus megasporus, Visagie, Yilmaz \& Seifert, MycoKeys 19: 17. 2017. MycoBank MB819028. Fig. 34.
Typus: DAOM 741781, holotype. Culture ex-type: CBS $141929=$ DTO $356-\mathrm{H} 7=$ KAS $6176=$ DAOMC 250799.
ITS barcode: KX450910. (Alternative markers: BenA $=\mathrm{KX450892}$; CaM $=\mathrm{KX450905;} \mathrm{RPB2}=\mathrm{KX450897}$).
Colony diam, $7 \mathrm{~d}(\mathrm{~mm})$: CYA 10-11; MEA 4-6; CY20S 38-40; CY20S $30^{\circ} \mathrm{C}$ No growth; CY20S $37^{\circ} \mathrm{C}$ No growth; M40Y 55-60; M60Y 70-75; M60Y $30{ }^{\circ} \mathrm{C}$ 61-64; M60Y $37{ }^{\circ} \mathrm{C}$ No growth; CYAS 23-24; DG18 38-40; MEA10S 50-52.

Colony characters: CY20S $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies low, plane; margins entire; mycelium straw (46) to sulphur yellow (15); texture floccose; sporulation sparse; conidia en masse pale green (19); soluble pigments absent; exudates absent; reverse ochreous (44). M40Y $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium white; texture floccose; sporulation dense; conidia en masse greyish green (50) to dark green (21); soluble pigments absent; exudates absent; reverse luteous (12). M60Y $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium white; texture floccose; sporulation dense; conidia en masse greyish green (50); soluble pigments absent; exudates
absent; reverse luteous (12). CYAS $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies deep, plane; margins entire; mycelium white; texture floccose; sporulation moderately dense; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse straw (46). DG18 $25^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, plane; margins entire; mycelium white; texture floccose; sporulation moderately dense; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse luteous (12) at centre, fading into yellow-green (71). MEA10S $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; mycelium sulphur yellow (15) and white; margins entire; texture floccose; sporulation moderately dense; conidia en masse pale green (19); soluble pigments absent; exudates absent; reverse ochreous (44).

Micromorphology: Ascomata eurotium-like, cleistothecial, superficial, yellow, globose to subglobose, 110-300 $\mu \mathrm{m}$. Asci 8 spored, globose to subglobose. Ascospores hyaline, in surface view globose to subglobose, spore bodies smooth, rough along equatorial ridges, $4-6.5 \times 3.5-5.5 \mu \mathrm{~m}$, in side view lenticular, furrow present, crests absent or indefinite. Conidiophores with smooth stipes, hyaline or light brown, 1000-1500 $\times 6.5-12(-21.5) \mu \mathrm{m}$. Vesicles globose to subglobose, $30-54 \mu \mathrm{~m}$ wide, fertile over two thirds to entire surface. Phialides flask-shaped, $7.5-14 \times 4-$ $7.5 \mu \mathrm{~m}$. Conidia subglobose to ellipsoidal, tuberculate, $7-14 \times 5-8.5 \mu \mathrm{~m}$.

Distinguishing characters: Aspergillus megasporus belongs to A. glaucus clade (Fig. 1). Its ascospore dimensions are similar to those of A. aurantiacoflavus, A. glaucus, A. niveoglaucus and A. proliferans. However, A. aurantiacoflavus, A. glaucus and A. niveoglaucus have low, irregular crests in contrast to non-crested ascospores in A. megasporus and A. proliferans. Aspergillus proliferans can be differentiated by smaller conidia.

Additional materials examined: Canada. New Brunswick, Little Lepreau, house dust, 2015, isolated by C.M. Visagie, DTO 356-H1 = KAS5973 $=$ DAOMC 250800. The Netherlands, Dutch chocolate butter, 2007, isolated by M. Meijer, CBS $141772=$ DTO 048-I3.

Aspergillus montevidensis Talice \& Mackinnon, Compt. Rend. Soc. Biol. Fr. 108: 1007. 1931. MycoBank MB309231. Fig. 35.
Synonyms: Eurotium montevidense (Talice \& J.A. Mackinnon) Malloch \& Cain, Canad. J. Bot. 50 (1): 64. 1972.
Eurotium amstelodami var. montevidense (Talice \& J.A. Mackinnon) Kozak., Mycol. Pap. 161: 86. 1989.
Aspergillus vitis var. montevidensis Kozak., Mycol. Pap. 161: 86. 1989.
Aspergillus heterocaryoticus C.M. Chr., L.C. López \& C.R. Benj., Mycologia 57 (4): 535. 1965.
Eurotium heterocaryoticum C.M. Chr., L.C. López \& C.R. Benj., Mycologia 57 (4): 536. 1965.
Aspergillus vitis Novobr., Novosti Sist. Nizsh. Rast. 9: 175. 1972.
Eurotium vitis Novobr., Novosti Sist. Nizsh. Rast. 9: 175. 1972.
Aspergillus hollandicus Samson \& W. Gams, Advances in Penicillium and Aspergillus Systematics: 33. 1985.
Typus: BPI 884202, holotype. Culture ex-type: CBS $491.65=$ NRRL $108=$ ATCC $10077=$ IBT $5685=$ IHEM 3337 $=$ IMI $172290=$ NRRL $109=$ QM $7423=$ Thom $5290=$ Thom $5633.24=$ WB 108.

ITS barcode: EF652077. (Alternative markers: BenA = EF651898; CaM $=\mathrm{EF} 652020 ;$ RPB2 $=\mathrm{EF} 651964$).
Colony diam, 7 d (mm): CYA 19-24; MEA 18-23; CY20S 45-61; CY20S $30^{\circ} \mathrm{C} 25-50$; CY20S $37{ }^{\circ} \mathrm{C} 28-30$; M40Y 60->75; M60Y 60 $\rightarrow 75$; M60Y $30{ }^{\circ} \mathrm{C} 60 \rightarrow 75$; M60Y $37^{\circ} \mathrm{C}>75$; CYAS 20-47; DG18 38-60; MEA10S 5365.

Colony characters: CY20S $25^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, sulcate; margins entire; mycelium sulphur yellow (15) and white; texture velvety to floccose; sporulation sparse to moderately dense; conidia en masse greyish green (50) or white; soluble pigments absent; exudates absent; reverse greenish olivaceous (90) or sulphur yellow (15). M40Y $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, slightly sulcate or plane; margins entire; mycelium sulphur yellow (15) and white; texture velvety to floccose; sporulation sparse to moderately dense; conidia en masse greyish green (50) or white; soluble pigments absent; exudates absent; reverse ochreous (44) or luteous (12). M60Y $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15) and white; texture velvety or floccose; sporulation sparse to moderately dense; conidia en masse greyish green (50) or white; soluble pigments absent; exudates absent; reverse ochreous (44) or luteous (12). CYAS $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane or sulcate; margins slightly irregular; mycelium white and sulphur yellow (15); texture floccose; sporulation sparse to moderately dense; conidia en masse greyish green (50) or glaucous (73) or white; soluble pigments absent; exudates absent; reverse greenish olivaceous (90) to salmon (41). DG18 $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane
to slightly sulcate; margins entire; mycelium sulphur yellow (15) and white; texture velvety to floccose; sporulation moderately dense to dense; conidia en masse greyish green (50) or white; soluble pigments absent; exudates absent; reverse greenish olivaceous (90) to sulphur yellow (15). MEA10S $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; mycelium sulphur yellow (15) and white; margins entire; texture velvety to floccose; sporulation moderately dense or absent; conidia en masse greyish green (50) or white; soluble pigments absent; exudates absent; reverse luteous (12) to ochreous (44).

Micromorphology: Ascomata eurotium-like, cleistothecial, superficial, yellow, globose to subglobose, $80-250 \mu \mathrm{~m}$. Asci 8 spored, globose to subglobose. Ascospores hyaline, in surface view globose to subglobose, spore bodies in most strains rugulose; smooth or slightly rough in atypical strain CCF 4070, tuberculate in atypical strain CCF 4248, $4-6 \times 3-4.5 \mu \mathrm{~m}$, in side view lenticular, furrow pronounced, crests $0.5 \mu \mathrm{~m}$. Conidiophores with smooth stipes, hyaline or light brown, $250-500 \times 6-13.5 \mu \mathrm{~m}$. Vesicles globose to subglobose, $25-35(-50) \mu \mathrm{m}$ wide, fertile over two thirds to entire surface. Phialides flask-shaped, 5-8.5 (-11) $\times 3-6 \mu \mathrm{~m}$. Conidia globose, subglobose to ellipsoidal, lobate-reticulate, 4-6.5 $\times 3.5-5 \mu \mathrm{~m}$.

Distinguishing characters: Morphologically and phylogenetically A. montevidensis is close to A. intermedius, but A. intermedius produces microtuberculate conidia.

Notes: The recent species concept of A. amstelodami sensu (Thom \& Raper 1941, Raper \& Fennell 1965, Blaser 1975) is different from the original description (Mangin 1909). Pitt (1985) speculated that the original strain had been replaced by the species described in Thom \& Raper (1941), and recommended A. montevidensis as a substitute name for A. amstelodami. Hubka et al. (2013a) agreed and considered the description of A. montevidensis (Talice \& Mackinnon 1931) the first valid description of the species consistent with E. amstelodami sensu Thom \& Raper (1941). Aspergillus hollandicus and A. vitis were proposed for the anamorphic name of E. amstelodami Mangin (Samson \& Gams 1985, Kozakiewicz 1989). Aspergillus heterocaryoticus was considered to be conspecific with E. amstelodami (Blaser 1975, Samson 1979). These three species were synonymized with A. montevidensis (Hubka et al. 2013a).

Additional materials examined: China, mite, 1969, CGMCC 3.03888 = DTO 348-D3. China, Ningxia, unknown source, CGMCC 3.06069, CGMCC 3.06072. China, unknown source, CGMCC 3.00462, CGMCC 3.01307, CGMCC 3.00771, CGMCC 3.01306, CGMCC 3.01309, CGMCC 3.04462, CGMCC 3.06064, CGMCC 3.03967, CGMCC 3.04059, CGMCC 3.01304, CGMCC 3.01308 . China, Hebei, unknown source, CGMCC 3.06074. China, Neimenggu, unknown source, CGMCC 3.06071, CGMCC 3.06077, CGMCC 3.06078, CGMCC 3.06073. China, Hebei, soil, CGMCC 3.06511. China, Henan, corn, CGMCC 3.06065. China, Ningxia, soil, CGMCC 3.06066. China, Hebei, moldy agaric, CGMCC 3.06513. China, Yunnan, moldy bean curd, CGMCC 3.06517. China, Hebei, straw, CGMCC 3.06512. China, moldy sugarcane, CGMCC 3.07157. China, Hebei, moldy pine seeds, CGMCC 3.06514. China, Xinjiang, soil, CGMCC 3.11413. China, Beijing, unknown source, CGMCC 3.06063 , CGMCC 3.06075 , CGMCC 3.06076. China, Hainan, soil, CGMCC 3.06061. China, Guizhou, soil, CGMCC 3.06068. China, Ningxia, soil, CGMCC 3.06070. China, Jiangsu, fabric, CGMCC 3.07178. China, Xinjiang, soil, CGMCC 3.11525, CGMCC 3.11410. China, Hebei, soil, CGMCC 3.06510. China, Hebei, moldy bark, CGMCC 3.06516. China, Yunnan, moldy bamboo, CGMCC 3.06518. China, Hunan, soil, CGMCC 3.06067. China, Hebei, moldy leaves, CGMCC 3.06515. China, industrial material, 1955, isolated by V. Zánová, CCF 726. Czech Republic, feed, CCF 1952. Czech Republic, Prague, neck skin of 78 -year-old woman, 2008, isolated by M. Skořepová, CCF 3998. Czech Republic, heel skin of 32 -year-old man, Prague, 2007, isolated by M. Skořepová, CCF 4069. Czech Republic, fingernail of 32 -year-old woman, Prague, 2007, isolated by M. Skorepová, CCF 4070. Czech Republic, Prague, thigh and neck skin of 42 -year-old woman, 2010, isolated by P. Lysková, CCF 4071. Czech Republic, Skrbeñ, window sill, 1997, isolated by A. Kubátová, CCF 4248. Czech Republic, Ceské Budějovice, sputum of 11-year-old girl, 2010, isolated by N. Mallátová, CCF 4258. Czech Republic, Prague, bronchoalveolar lavage of 40-year-old man, isolated by P. Lysková, CCF 4370. Czech Republic, Prague, external auditory canal of 66 -year-old man, isolated by P. Lysková, CCF 4371. Czech Republic, Prague, bronchoalveolar lavage fluid of 60 -year-old male, 2015, isolated by P. Lyskova, PL 378/15. Czech Republic, Prague, air sampler - intensive care unit room (hematooncology), 2013, isolated by V. Chrenková, MY1832. Czech Republic, Prague, air sampler pediatric hematooncology unit, 2013, isolated by V. Chrenková, MY2467. Czech Republic, Prague, lungs of 43-year-old woman after lung transplantation, 2014, isolated by V. Chrenková, MY4449. Czech Republic, Prague, fingernail of 37 -year-old man, 2007, isolated by M. Skořepová, SK237. Czech Republic, Prague, pigeon dropping, 1991, isolated by K. Prášil and R. Kolínská, CCF 2723. Czech Republic, Prague, white Arabic bread (pita), 1999, isolated by A. Kubátová, CCF 3750. Czech Republic, Veleliby near Nymburk, seeds of Papaver somniferum, 1999, isolated by J. Hubert, CCF 3135. Denmark, straw, 2012, isolated by J. Houbraken, DTO 212-D3. Germany, bakery, 2010, isolated by T. Hoogenhuijzen, DTO 121-G7. Hungary, table, 2009, isolated by van Mil, DTO 101-F5. Hungary, indoor air, 2014, isolated by M. Meijer, DTO 147-I4. Kazakhstan, Alma-Ata, ex grapes, 1968, isolated by L.A. Beljakova, CBS $651.74=$ ATCC $24717=$ IMI $174724=$ VKM F-1760. Mexico, Oryza sativa kernel, 1963, isolated by C.R. Benjamin, NRRL A-13891 = CBS 410.65. Spain, Cantabria, Altamira Cave, cave sediment, 2008, isolated by A. Nováková, S14. Suriname, plywood, isolated by M.B. Schol-Schwarz, CBS $111.52=$ DTO 351-C9. The Netherlands, cake, 2015, isolated by M. Meijer, DTO 334-A3. The Netherlands, corn kernels (imported), 2014, isolated by J. Houbraken, DTO 300-E3. The Netherlands, sesame seed (imported), 2013, isolated by J. Houbraken, DTO 253-H7. USA, unknown source, ~1910, NRRL $90=$ CBS 518.65. USA, Missouri, Columbia, candied grapefruit rind, isolated by D.I. Fennell, NRRL 4716. USA, IL, Peoria, refrigerated bread dough, isolated by R. Graves, NRRL 25850 . USA, IL, Chicago, nasal swab, NRRL 35697. USA, PA, Mahanoy City, bedroom, settle plates, 2015, isolated by Z. Jurjevič, EMSL No. 2934 = CCF 5379 = DTO 355-H3. USA, Delaware, green house, air, 2011, isolated by Z̈. Jurjević, EMSL No. 1589. USA,

FL, Loxahatchee, Home, Kitchen cabinet, 2013, isolated by Ž. Jurjević, EMSL No. 2187. USA, IL, Chicago, bathroom, settle plates, 2015, isolated by Z̆. Jurjević, EMSL No. 2790. Unknown source, NRRL 89.

Aspergillus neocarnoyi Kozak., Mycol. Pap. 161: 63. 1989. MycoBank MB127756. Fig. 36.
Synonyms: Aspergillus carnoyi (Biourge) Thom \& Raper, Misc. Publ. U.S. Dept. Agric.: 34. 1941, nom. inval. [Art. 39.1 McNeil et al.]

Eurotium carnoyi Malloch \& Cain, Canad. J. Bot. 50 (1): 63. 1972.
Typus: IMI 172279, holotype. Culture ex-type: CBS $471.65=$ NRRL $126=$ ATCC $16924=$ IBT $6016=$ IMI 172279 $=$ LSHTM A32 $=$ QM $7402=$ Thom 5612.A32 $=$ WB $126=$ DTO 196-H6.

ITS barcode: EF652057. (Alternative markers: BenA = EF651903; CaM = EF651985; RPB2 = EF651942).
Colony diam, $7 \mathrm{~d}(\mathrm{~mm})$: CYA No growth; MEA No growth; CY20S 3-5; CY20S $30^{\circ} \mathrm{C}$ No growth; CY20S $37{ }^{\circ} \mathrm{C}$ No growth; M40Y 20-25; M60Y 53-65; M60Y $30{ }^{\circ} \mathrm{C} 15-18$; M60Y $37{ }^{\circ} \mathrm{C}$ No growth; CYAS $18-20$; DG18 32-42; MEA10S 35-38.

Colony characters: CY20S $25^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, plane; margins entire; mycelium straw (46) and white; texture floccose; sporulation absent; soluble pigments absent; exudates absent; reverse straw (46). M40Y $25^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, plane; margins entire; mycelium orange (7) at centre, white at edge; texture floccose; sporulation sparse; conidia en masse green (20); soluble pigments absent; exudates absent; reverse luteous (12) fading into saffron (10). M60Y $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium white; texture floccose; sporulation moderately dense; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse ochreous (44). CYAS $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium orange (7) at centre, white at edge; texture floccose; sporulation moderately dense; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse ochreous (44) fading into straw (46). DG18 $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium fulvous (43) at centre, white at edge; texture floccose; sporulation sparse; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse luteous (12) fading into straw (46). MEA10S $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; mycelium saffron (10) at centre, white at edge; margins entire; texture floccose; sporulation moderately dense; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse rust (39) at centre, fading into saffron (10).

Micromorphology: Ascomata eurotium-like, cleistothecial, superficial, yellow, globose to subglobose, $120-230 \mu \mathrm{~m}$. Asci 8 spored, globose to subglobose. Ascospores hyaline, in surface view globose to subglobose, spore bodies verruculose to rugulose, $6.5-9 \times 4.5-7 \mu \mathrm{~m}$, in side view lenticular, furrow present, crests absent or indefinite. Conidiophores with smooth stipes, hyaline or light brown, $1000-2000 \times(9-) 12-23 \mu \mathrm{~m}$. Vesicles globose to subglobose, (32-) $50-92 \mu \mathrm{~m}$ wide, fertile over two thirds to entire surface. Phialides flask-shaped, $12-21 \times 6-9 \mu \mathrm{~m}$. Conidia ellipsoidal, tuberculate, $8-15.5 \times 6-10 \mu \mathrm{~m}$.

Distinguishing characters: Phylogenetically A. neocarnoyi is closely related to A. brunneus and A. niveoglaucus, but A. brunneus produces mainly globose conidia, while A. niveoglaucus produces smaller ascospores. The large ascospores of A. neocarnoyi also resemble those of A. osmophilus, but A. osmophilus produces smaller conidia and ascospores with thick crests.

Additional materials examined: Slovenia, Ljubljana, Slovene Ethnographic museum, air at the sampling of shaman statue originating from Mali, 2016, isolated by P. Zalar, EXF-10029 = DTO 357-E2.

Aspergillus niveoglaucus Thom \& Raper, U.S.D.A. Misc. Pub. 426: 35. 1941. MycoBank MB120985. Fig. 37.
Synonyms: Eurotium niveoglaucum (Thom \& Raper) Malloch \& Cain, Canad. J. Bot. 50 (1): 64. 1972.
Aspergillus glauconiveus Samson \& W. Gams, Advances in Penicillium and Aspergillus Systematics: 45. 1985.
Aspergillus parviverruculosus H.Z. Kong \& Z.T. Qi, Acta Mycol. Sin. 14(1): 12. 1995.
Eurotium parviverruculosum H.Z. Kong \& Z.T. Qi, Acta Mycol. Sin. 14(1): 12. 1995.
Typus: IMI 32050ii, neotype (Samson \& Gams 1985). Culture ex-type: CBS $114.27=$ CBS $517.65=$ NRRL $127=$ ATCC $10075=$ BCRC $33096=$ CGMCC $3.4374=$ FRR $927=$ IBT $5356=$ IMI $32050=$ JCM $1578=$ LSHBA $16=$ NRRL $129=$ NRRL $130=$ QM $1977=$ Thom 5612.A16 $=$ Thom $5633=$ Thom $5633.7=$ Thom $7053.2=$ UAMH $6591=$ WB $127=$ WB 130. 45.

Colony characters: CY20S $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium straw (46) or white; texture floccose; sporulation sparse; conidia en masse white or pale green (19); soluble pigments absent; exudates absent; reverse straw (46). M40Y $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium rosy buff (61) or straw (46) or white; texture floccose; sporulation sparse; conidia en masse pale green (19) or white; soluble pigments absent; exudates absent; reverse apricot (42). M60Y $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium straw (46) or white; texture floccose; sporulation sparse; conidia en masse white or pale green (19); soluble pigments absent; exudates absent; reverse luteous (12). CYAS $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium straw (46) or white; texture floccose; sporulation moderately dense; conidia en masse white or pale green (19); soluble pigments absent; exudates absent; reverse straw (46). DG18 $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium straw (46) or white; texture floccose; sporulation moderately dense; conidia en masse white or pale green (19); soluble pigments absent; exudates absent; reverse straw (46). MEA10S $25^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, plane; mycelium straw (46) or white; margins entire; texture floccose; sporulation moderately dense; conidia en masse white or pale green (19); soluble pigments absent; exudates absent; reverse luteous (12).

Micromorphology: Ascomata eurotium-like, cleistothecial, superficial, yellow, globose to subglobose, $90-240 \mu \mathrm{~m}$. Asci 8 spored, globose to subglobose. Ascospores hyaline, in surface view globose to subglobose, spore bodies rough along equatorial ridges or verruculose to rugulose, (4.5-) $5.5-7.5 \times(3-) 5-6 \mu \mathrm{~m}$, in side view lenticular, furrow present, crests irregular, $<0.5 \mu \mathrm{~m}$. Conidiophores with smooth stipes, hyaline or light brown, $1000-1500 \times(7.5)-$ $10-23 \mu \mathrm{~m}$. Vesicles globose to subglobose, (31-) $55-85 \mu \mathrm{~m}$ wide, fertile over two thirds to entire surface. Phialides flask-shaped, $8-14(-20) \times 4-7(-11) \mu \mathrm{m}$. Conidia subglobose to ellipsoidal, tuberculate, $(6-) 8-13.5 \times 4-9 \mu \mathrm{~m}$.
Distinguishing characters: Phylogenetically A. niveoglaucus is closely related to A. brunneus and A. neocarnoyi, but these two species produce larger ascospores, $7-10 \times 6-8 \mu \mathrm{~m}$ in A. brunneus and $6.5-9 \times 4.5-7 \mu \mathrm{~m}$ in A. neocarnoyi. Morphologically, it resembles A. glaucus in ascospore size and ornamentation, but the convex surface is less roughened in ascospores of A. glaucus.

Additional materials examined: Belgium. Namur, indoor air, 1983, IHEM 1811 = DTO 355-C3. Brazil, corn kernels, 2008, isolated by J. Houbraken, DTO 060-I3. Canada, Manitoba, Barley feed, isolated by M. Desjardins, CBS 117311. China, Hebei, soil, CBS $101750=$ CGMCC 3.04665 (AS 3.4665) = DTO 197-B4. China, Guangdong, cashew Kernel, 2001, CGMCC 3.06092 = DTO 348-F3. China, Yunnan, moldy corn leaves, CGMCC 3.06496. China, Neimenggu, soil, CGMCC 3.07854. China, Guizhou, unknown source, CGMCC 3.06102. China, unknown source, CGMCC 3.01312, CGMCC 3.01294. Czech Republic, garlic, isolated by L. Marvanová, CCM F-530=CCF 4038. Czech Republic, Prague, cereals, 1993, isolated by A. Kubátová, CCF 4388. South Korea, soybeans, 2012, isolated by D.H. Kim, CCF $4787=$ KACC $47144=$ DTO 355-C4, CCF $4790=$ KACC 47147 - DTO 355-C5. Spain, Andalusia, Málaga, Cueva del Tesoro, cave sediment from the cave wall, 2010, A. Nováková, CCF 4191 = DTO 355-C1. The Netherlands, apricot paste, 2014, isolated by M. Meijer, DTO 308-B9. The Netherlands, animal feed kernels, 2016, isolated by J. Dijksterhuis, DTO 346-B4. The Netherlands, spoiled starch, isolated by J. Houbraken, DTO 193-B6. USA, Montana, Great Falls, air of bathroom, 2013, isolated by Ž. Jurjevič, EMSL No. $2211=$ CCF $5380=$ DTO 355-H8. Unknown source, isolated by G. Smith, NRRL 128, NRRL 136, NRRL 137.

Aspergillus osmophilus Asgari \& Zare, Mycoscience 55: 58. 2013. MycoBank MB803278. Fig. 38.
Typus: IRAN 16110 F, holotype. Culture ex-type: CBS $134258=$ IRAN 2090C $=$ DTO 354-C1.
ITS barcode: KC473921. (Alternative markers: BenA = LT671127; CaM $=\mathrm{LT} 671128 ; ~ R P B 2=\mathrm{LT} 671129$).
Colony diam, $7 \mathrm{~d}(\mathrm{~mm})$: CYA No growth; MEA No growth; CY20S No growth; CY20S $30^{\circ} \mathrm{C} 2-3$; CY20S $37{ }^{\circ} \mathrm{C}$ No growth; M40Y 30-41; M60Y >75; M60Y $30^{\circ} \mathrm{C}>75$; M60Y $37{ }^{\circ} \mathrm{C} 63-65$; CYAS 6-7; DG18 43-45; MEA10S 54-60.

Colony characters: M40Y $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, slightly sulcate; margins entire; mycelium salmon (41); texture floccose; sporulation sparse; conidia en masse pale green (19); soluble pigments absent; exudates light yellow droplets; reverse fulvous (43). M60Y $25^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, plane; margins entire; mycelium
primrose (66); texture floccose; sporulation sparse; conidia en masse pale green (19); soluble pigments absent; exudates light yellow droplets; reverse ochreous (44). CYAS $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium primrose (66); texture floccose; sporulation absent; soluble pigments light brown; exudates absent; reverse orange (7) at centre, saffron (10) at edge. DG18 $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins irregular; mycelium salmon (41); texture floccose; sporulation sparse; conidia en masse pale green (19); soluble pigments absent; exudates light yellow droplets; reverse fulvous (43). MEA10S $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; mycelium primrose (66); margins entire; texture floccose; sporulation absent; soluble pigments absent; exudates absent; reverse ochreous (44).

Micromorphology: Ascomata eurotium-like, cleistothecial, superficial, yellow, globose to subglobose, $100-350 \mu \mathrm{~m}$. Asci 8 spored, globose to subglobose. Ascospores hyaline, in surface view globose to subglobose, spore bodies verruculose, $7-9 \times 6-7.5 \mu \mathrm{~m}$, in side view lenticular, furrow pronounced, crests $0.5 \mu \mathrm{~m}$. Conidiophores with smooth stipes, hyaline or light brown, $300-1000 \times 7.5-12 \mu \mathrm{~m}$. Vesicles globose to subglobose, $28-46 \mu \mathrm{~m}$ wide, fertile over two thirds to entire surface. Phialides flask-shaped, $9-12 \times 4.5-7 \mu \mathrm{~m}$. Conidia subglobose to ellipsoidal, microtuberculate to tuberculate, $6-8.5 \times 5.5-7.5 \mu \mathrm{~m}$.

Distinguishing characters: Phylogenetically A. osmophilus is closely related to A. xerophilus, but A. xerophilus produces smaller ascospores ($4.5-6.5 \times 3.5-5 \mu \mathrm{~m}$) and does not grow on M60Y at $37{ }^{\circ} \mathrm{C}$. The large ascospores of A. osmophilus resemble those of A. brunneus and A. neocarnoyi, but A. brunneus can grow on CYA and MEA, A. neocarnoyi produces larger conidia measuring 8-15.5 $\times 6-10 \mu \mathrm{~m}$.

Aspergillus porosus A.J. Chen, Frisvad \& Samson, sp. nov. MycoBank MB818736. Fig. 39.
Etymology: Name refers to small holes on the ascospores.
Diagnosis: Small, pitted ascospores (3.5-5.5 $\times 3-4.5 \mu \mathrm{~m}$), lobate-reticulate conidia ($3.5-5.5 \times 2.5-4.5 \mu \mathrm{~m}$).
Typus: Turkey, soil, 2013, isolated by Canan Unal (holotype: CBS H-22822, culture ex-type: CBS $141770=$ DTO 262-D7 = IBT 34443).

ITS barcode: LT670961. (Alternative markers: BenA $=\mathrm{LT671130}$; $C a M=\mathrm{LT} 671131 ; ~ R P B 2=\mathrm{LT} 671132$).
Colony diam, 7 d (mm): CYA 21-23; MEA 18-19; CY20S 58-60; CY20S $30{ }^{\circ} \mathrm{C} 37-58$; CY20S $37{ }^{\circ} \mathrm{C} 31-33$; M40Y >75; M60Y >75; M60Y $30^{\circ} \mathrm{C}>75$; M60Y $37{ }^{\circ} \mathrm{C}>75$; CYAS 35-41; DG18 45-50; MEA10S 62-63.

Colony characters: CY20S $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, sulcate; margins entire; mycelium sulphur yellow (15); texture velvety; sporulation moderately dense or absent; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse luteous (12) to ochreous (44). M40Y $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, slightly sulcate; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation sparse; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse luteous (12). M60Y $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, slightly sulcate; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation sparse; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse luteous (12). CYAS $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, slightly sulcate; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation absent to sparse; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse ochreous (44) fading into sulphur yellow (15). DG18 $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation sparse to moderately dense; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse luteous (12) to sulphur yellow (15). MEA10S $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; mycelium sulphur yellow (15); margins entire; texture floccose; sporulation sparse to moderately dense; conidia en masse dark green (21); soluble pigments absent; exudates absent; reverse luteous (12) to ochreous (44).

Micromorphology: Ascomata eurotium-like, cleistothecial, superficial, yellow, globose to subglobose, 80-230 $\mu \mathrm{m}$. Asci 8 spored, globose to subglobose. Ascospores hyaline, in surface view globose to subglobose, spore bodies rugulose, pitted, $3.5-5.5 \times 3-4.5 \mu \mathrm{~m}$, in side view lenticular, furrow pronounced, crests $0.5 \mu \mathrm{~m}$. Conidiophores with smooth stipes, hyaline or light brown, $250-600 \times 5-12.5 \mu \mathrm{~m}$. Vesicles globose to subglobose, $24-58 \mu \mathrm{~m}$ wide,
fertile over two thirds to entire surface. Phialides flask-shaped, $5-10 \times 2.5-5 \mu \mathrm{~m}$. Conidia globose to subglobose, lobate-reticulate, $3.5-5.5 \times 2.5-4.5 \mu \mathrm{~m}$.

Distinguishing characters: Under SEM, the entire surface of ascospores of A. porosus is pitted, in contrast most sect. Aspergillus species have holes along equatorial ridges. Phylogenetically A. porosus is related to A. caperatus, A. intermedius and A. montevidensis, but A. intermedius can be distinguished by smooth conidia (microtuberculate under SEM), A. caperatus does not grow on CY20S at $37^{\circ} \mathrm{C}$, and A. montevidensis produces slightly larger conidia (4-6.5 $\times 3.5-5 \mu \mathrm{~m})$.

Additional materials examined: Israel, Arachis hypogaea fruit, isolated by P. Blaser, CBS $375.75=$ DTO 197-C4. South Africa, Robben Island, soil, 2015, isolated by M. Meijer, DTO 338-A7. Turkey, soil, 2014, isolated by R. Demirel, DTO 308-D1. Turkey, soil, 2013, isolated by A. Yoltas, DTO 262-D4, DTO 262-D2.

Aspergillus proliferans G. Sm., Trans. Brit. Mycol. Soc. 26: 26. 1943. MycoBank MB284312. Figs 40, 41. Synonyms: Aspergillus acutus Blaser, Sydowia 28: 33. 1975. Eurotium acutum Blaser, Sydowia 28: 33. 1975.

Typus: IMI 016105iii, lectotype (Samson \& Gams 1985). Culture ex-type: CBS $121.45=$ NRRL $1908=$ IBT $6213=$ IMI 016105ii $=$ IMI $016105 \mathrm{iii}=$ IMI $016105=$ LSHB BB. $82=$ MUCL $15625=$ NCTC $6546=$ QM $7462=$ UC 4303 $=$ WB 1908 .

ITS barcode: EF652064. (Alternative markers: BenA = EF651891; CaM $=\mathrm{EF} 651988 ;$ RPB2 $=\mathrm{EF} 651941$).
Colony diam, 7 d (mm): CYA 5-20; MEA 5-20; CY20S 10-26; CY20S $30^{\circ} \mathrm{C} 0-20$; CY20S $37^{\circ} \mathrm{C}$ No growth; M40Y 48-70; M60Y 48->75; M60Y $30{ }^{\circ} \mathrm{C} 44->75$; M60Y $37{ }^{\circ} \mathrm{C}$ No growth; CYAS 11-55; DG18 25-44; MEA10S 18-50.

Colony characters: CY20S $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies low to moderately deep, plane; margins entire; mycelium white or sulphur yellow (15) or orange (7); texture floccose; sporulation absent to sparse; conidia en masse pale green (19); soluble pigments absent; exudates absent; reverse luteous (12). M40Y $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium white and sulphur yellow (15); texture floccose; sporulation sparse; conidia en masse pale green (19); soluble pigments absent; exudates absent; reverse luteous (12) or orange (7). M60Y $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium white and sulphur yellow (15); texture floccose; sporulation sparse to moderately dense; conidia en masse pale green (19); soluble pigments absent; exudates absent; reverse luteous (12). CYAS $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium white; texture floccose; sporulation absent to moderately dense; conidia en masse pale green (19); soluble pigments absent; exudates absent; reverse primrose (66) to luteous (12). DG18 $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium white and sulphur yellow (15) or orange (7); texture floccose; sporulation sparse to moderately dense; conidia en masse pale green (19); soluble pigments absent; exudates absent; reverse primrose (66) or luteous (12). MEA10S $25^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, plane; mycelium white or sulphur yellow (15) or orange (7); margins entire; texture floccose; sporulation absent to moderately dense; conidia en masse pale green (19); soluble pigments absent; exudates absent; reverse primrose (66) or luteous (12).

Micromorphology: Ascomata eurotium-like, cleistothecial, superficial, yellow, globose to subglobose, 100-240 $\mu \mathrm{m}$. Asci 8 spored, globose to subglobose. Ascospores hyaline, in surface view globose to subglobose, spore bodies smooth or slightly verruculose or rough along equatorial ridges, $4-6 \times 3-5 \mu \mathrm{~m}$, in side view lenticular, furrow present or pronounced, crests absent. Conidiophores with smooth stipes, hyaline or light brown, 250-1000 $\times 8-16.5$ $\mu \mathrm{m}$. Vesicles globose to subglobose, $20-50 \mu \mathrm{~m}$ wide, fertile over two thirds to entire surface. Phialides flask-shaped, $6-12 \times 3-5.5 \mu \mathrm{~m}$. Conidia globose, subglobose to ellipsoidal, tuberculate, 5-7.5(-10) $\times 4-6(-7) \mu \mathrm{m}$. In culture ex type (CBS 121.45) ascomata are absent, irregular proliferating conidiophores and phialides are produced, conidia measuring 9-17.5 $\times 7-13 \mu \mathrm{~m}$.

Distinguishing characters: Phylogenetically A. proliferans is closely related to A. glaucus and A. aurantiacoflavus, but A. glaucus produces larger ascospores ($5.5-7.5 \times 3.5-6 \mu \mathrm{~m}$) with irregular crests, A. aurantiacoflavus produces verruculose ascospores and has orange and yellow colony. The non-crested ascospores of A. proliferans resemble
those of A. pseudoglaucus and A. ruber, but the latter two species grow well on M60Y at $37^{\circ} \mathrm{C}$, while A. proliferans does not grow under the same conditions.

Notes: Aspergillus proliferans was introduced as the only anamorphic species in Aspergillus sect. Aspergillus by Thom \& Raper (1945) and they observed the presence of cleistothecial initials (Fig. 40) which indicated some deficiency in the sexual cycle. The sexual strains were connected to this species by molecular data (Hubka et al. 2013a, Asgari et al. 2014), and are also confirmed by this study.

Additional materials examined: China, Tibet, Yak dung, CGMCC 3.04666. China, unknown source, CGMCC 3.04667, CGMCC 3.03971. China, Tibet, donkey dung, CGMCC 3.04668. China, Tibet, soil, CGMCC 3.04671. China, Hebei, soil, CGMCC 3.06523. China, Xinjiang, soil, CGMCC 3.10130. China, Yunnan, soil, CGMCC 3.06095. China, Yunnan, moldy wood, CGMCC 3.06495. China, Hebei, corn, CGMCC 3.04670. China, Hebei, unknown source, CGMCC 3.06097 . Czech Republic, Prague, palm skin, 28 -year-old woman, 2008, isolated by M. Skorepová, CCF $4096=$ NRRL 62482 = DTO 355-C8. Czech Republic, Prague, toenail of 64 -year-old man, 2010, isolated by P. Lysková, CCF $4115=$ NRRL 62497 = DTO 355-C9. Czech Republic, Prague, toenail of 48 -year-old man, 2011, isolated by P. Lysková, CCF $4146=$ NRRL 62494 = DTO 355-D1. Czech Republic, Opava, stuffed bird, 2010, isolated by M. Polásek, CCF 4232. Czech Republic, Prague, toenail of 66-year-old man, 2012, isolated by P. Lysková, CCF 4263. South Korea, soybeans, CCF $4789=$ KACC $47146=$ DTO 355-D3. Spain, Andalusia, Aracena, Gruta de la Maravillas, cave sediment, 2010, isolated by A. Nováková, CCF $4192=$ DTO 355-C6. The Netherlands, egg waffles, 2014, isolated by M. Meijer, DTO 322-A2. USA, Massachusetts, unknown source, NRRL 114 = DTO 355-C7 = CCF 5579. USA, Louisiana, library, inside the book, 2012, isolated by Ż. Jurjević, EMSL No. 1814. USA, Maryland, leafhoppers, isolated by V.K. Charles, NRRL 71 = DTO 355-D2 $=$ CCF 5578. USA, Pennsylvania, Yardley, air of living room, isolated by Z̆. Jurjevič, EMSL No. $2207=$ CCF $5395=$ DTO 355-H5. USA, New York, Troy, basement, settle plates, 2015, isolated by Ž. Jurjevič, EMSL No. $2791=$ CCF $5392=$ DTO 355-H6.

Aspergillus pseudoglaucus Blochwitz, Ann. Mycol. 27: 207. 1929. MycoBank MB275429. Fig. 42.
Synonyms: Eurotium pseudoglaucum Malloch \& Cain, Canad. J. Bot. 50: 64. 1972.
Aspergillus glaucoaffinis Samson \& W. Gams, Advances in Penicillium and Aspergillus Systematics: 47. 1985.
Eurotium repens var. pseudoglaucum (Blochwitz) Kozak., Mycol. Pap. 161: 76. 1989.
Eurotium repens de Bary, Hedwigia: 52. 1870.
Aspergillus reptans Samson \& W. Gams, Advances in Penicillium and Aspergillus Systematics: 48. 1985.
Aspergillus glaber Blaser, Sydowia 28: 35. 1975.
Eurotium glabrum Blaser, Sydowia 28: 35. 1975.
Aspergillus fimicola H.Z. Kong \& Z.T. Qi, Acta Mycol. Sin. 14(2): 86. 1995.
Eurotium fimicola H.Z. Kong \& Z.T. Qi, Acta Mycol. Sin. 14(2): 86. 1995.
Typus: IMI 016122ii, lectotype (Samson \& Gams 1985). Culture ex-type: CBS $123.28=$ NRRL $40=$ ATCC 10066 $=$ IBT $5353=$ IMI $016122=$ IMI $016122 \mathrm{ii}=$ LSHBA $19=$ MUCL $15624=$ QM $7463=$ Tom $5343=$ WB 40.

ITS barcode: EF652050. (Alternative markers: BenA = EF651917; CaM = EF652007; RPB2 = EF651952).
Colony diam, 7 d (mm): CYA 20-35; MEA 19-26; CY20S 38-60; CY20S $30^{\circ} \mathrm{C} 36-53$; CY20S $37^{\circ} \mathrm{C}$ No growth; M40Y 65->75; M60Y $35 \rightarrow 75$; M60Y $30{ }^{\circ} \mathrm{C} 53 \rightarrow 75$; M60Y $37{ }^{\circ} \mathrm{C} 35->75$; CYAS 60-72; DG18 52->75; MEA10S 50-65.

Colony characters: CY20S $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15) or orange (7) and white; texture floccose; sporulation sparse to moderately dense; conidia en masse pale green (19) to yellow-green (71); soluble pigments absent; exudates absent; reverse straw (46), greenish olivaceous (90) or luteous (12). M40Y $25^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15) or orange (7); texture floccose; sporulation sparse to moderately dense; conidia en masse pale green (19); soluble pigments absent; exudates absent; reverse luteous (12) or fulvous (43). M60Y $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation sparse to moderately dense; conidia en masse pale green (19); soluble pigments absent; exudates absent; reverse luteous (12). CYAS $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium white or sulphur yellow (15); texture floccose; sporulation moderately dense; conidia en masse greenish olivaceous (90); soluble pigments absent; exudates absent; reverse grey olivaceous (107) at centre, fading into light grey olivaceous (107). DG18 $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium white and sulphur yellow (15) or orange (7); texture floccose; sporulation sparse or moderately dense; conidia en masse pale green (19) to dark greenish olivaceous (90); soluble pigments absent; exudates absent; reverse sulphur yellow (15) or ochreous (44). MEA10S $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; mycelium white or sulphur yellow (15) or orange (7); margins entire; texture floccose; sporulation sparse or moderately dense; conidia en masse pale green (19) to dark greenish olivaceous (90); soluble pigments absent; exudates absent; reverse ochreous (44).

Micromorphology: Ascomata eurotium-like, cleistothecial, superficial, yellow, globose to subglobose, $75-200 \mu \mathrm{~m}$. Asci 8 spored, globose to subglobose. Ascospores hyaline, in surface view globose to subglobose, spore bodies smooth or slightly rough, $4-6.5 \times 3-4.5 \mu \mathrm{~m}$, in side view lenticular, furrow absent or showing as a trace, crests absent. Conidiophores with smooth stipes, hyaline or light brown, $500-1000 \times(7-) 11-22 \mu \mathrm{~m}$. Vesicles globose to subglobose, (26-) $37-65 \mu \mathrm{~m}$ wide (degenerated smaller vesicles measuring $11-21 \mu \mathrm{~m}$ were observed in ex-type CBS 123.28), fertile over two thirds to entire surface. Phialides flask-shaped, $6-11 \times 4-6.5 \mu \mathrm{~m}$. Conidia globose to subglobose, in most strains tuberculate; microtuberculate in atypical strain CBS 379.75, (3.5)-6-9×(3-)5.5-7.5 $\mu \mathrm{m}$.

Distinguishing characters: Morphologically A. pseudoglaucus resembles A. proliferans and A. ruber in ascospore size and ornamentation, however the ascospores of A. pseudoglaucus do not have or have indefinite furrow, while A. proliferans and A, ruber have more pronounced furrow on ascospores. The growth profile characters on M60Y at $37{ }^{\circ} \mathrm{C}$ can be used to distinguish A. pseudoglaucus and A. proliferans, the latter species can not grow under this condition (Table 5). Aspergillus pseudoglaucus belongs to the A. ruber clade (Fig. 1). Other species in the A. ruber clade such as A. cumulatus, A. appendiculatus and A. mallochii can be differentiated by presence of crests, while A. tonophilus and A. sloanii do not grow on MEA and CYA at $25^{\circ} \mathrm{C}$ and A. zutongqii has larger ascospores measuring $6-7.5 \times 4.5-6 \mu \mathrm{~m}$.

Notes: Aspergillus repens (de Bary) Fischer is a later homonym of Aspergillus repens (Corda) Sacc. 1882 pertaining to a different species, and A. pseudoglaucus is considered the correct name for Eurotium repens (Hubka et al. 2013a), we concur with this.

Additional materials examined: Canada, Quebec, cake, collected by A. Lafond, CBS $117314=$ CCFC $008006=$ DAOM 221134. China, Tibet, animal dung, CBS 101747 = CGMCC 3.04674 (AS 3.4674). China, tea, 1952, CGMCC $3.00460=$ DTO 348-B9. China, Xinjiang, nest, CGMCC 3.06123. China, unknown source, CGMCC 3.01292, CGMCC 3.00452, CGMCC 3.00107, CGMCC 3.00472, CGMCC 3.03976 , CGMCC 3.00456, CGMCC 3.01231, CGMCC 3.01070, CGMCC 3.03959, CGMCC 3.04063, CGMCC 3.00455, CGMCC 3.00461, CGMCC 3.00666, CGMCC 3.03565, CGMCC 3.03978, CGMCC 3.00133, CGMCC 3.01293. China, Sichuan, soil, CGMCC 3.06120. China, Hebei, unknown source, CGMCC 3.06112. China, Guangxi, earthworm faeces, CGMCC 3.06111. China, Yunnan, unknown source, CGMCC 3.06121. China, Zhejiang, soil, CGMCC 3.06110. China, Shandong, unknown source, CGMCC 3.06101. China, Yunnan, dry locust, CGMCC 3.06488. China, Yunnan, moldy noodles, CGMCC 3.06508. China, Shanxi, soil, CGMCC 3.06107. China, Heilongjiang, soil, CGMCC 3.06094. China, Fujiang, leaf, CGMCC 3.06105. China, Ningxia, soil, CGMCC 3.06079. China, Tibet, soil, CGMCC 3.06119. China, Neimenggu, unknown source, CGMCC 3.06117. China, Hebei, moldy mushroom, CGMCC 3.06505. China, Hebei, dung, CGMCC 3.06500. China, Yunnan, moldy herbs, CGMCC 3.06509. China, Guangdong, soil, CGMCC 3.06093. China, Hainan, coccid, CGMCC 3.06106. China, Hebei, soil, CGMCC 3.06502. China, Hebei, straw, CGMCC 3.06504. China, Beijing, unknown source, CGMCC 3.06115, CGMCC 3.06113, CGMCC 3.06114. China, Beijing, herbs, CGMCC 3.06080. Czech Republic, Prague, 2002, isolated by A. Kubátová, CCF 3283. Czech Republic, Prague, back skin of 39 -year-old woman, 2008, isolated by M. Skořepová, CCF 4011. Czech Republic, Řičany, trunk skin of 39 -year-old woman, isolated by P. Lysková and Z. Kolací, CCF 4072. Czech Republic, Prague, toenail of 57 -year-old woman, isolated by P. Lysková and L. Jelínková, CCF 4372. Czech Republic, Prague, fingernail of 37 -year-old man, 2011, isolated by P. Lysková and H.A. Macková, CCF 4373. Czech Republic, Prague, toenail of 31 -year-old woman, 2007, isolated by M. Skořepová, CCF 4374. Czech Republic, near Mladeć Caves, outdoor air, 2012, isolated by A. Nováková, S86. France, Prunus domestica, isolated by da Fonseca, NRRL 13 = CBS 529.65. France, unknown source, isolated by A. Sartory, CBS 114.30. Hungary, indoor air, 2010, DTO 147-G3. Indonesia, Bali, tea, DTO 055-B3. Indonesia, Melastome, isolated by J. Houbraken, DTO 164-E5. Japan, Tokyo, unknown source, isolated by T. Ohtsuki, NRRL 25865. Nepal, Himalaya, soil, 1972, isolated by V. Janeč́ková, CCF 1454. Portugal, unknown source, CBS 126221. Romania, Movile cave, Lake Room, Trachelipus troglobius faeces, 2011, isolated by A. Nováková, CCF 4950. Slovakia, Silická ladnica Cave, Archeological Dome, cave sediment, 2012, isolated by A. Nováková, S75. Spain, Madrid, chocolate, isolated by J. Varga, DTO 043-D3. Switzerland, Zuoz, Vaccinium myrtillus leaf, isolated by P. Blaser, CBS 379.75 Turkey, keratitis patient, isolated by M. Ilkit, DTO 244-D2. USA, wrist skin, NRRL 17. USA, Pennsylvania, floor swab, 2012, isolated by \bar{Z}. Jurjeviĉ, EMSL No. $1780=$ CCF $5388=$ DTO 355-I2. USA, Florida, Melbourne, vent, settle plates, 2015, isolated by Ž. Jurjevič, EMSL No. $2779=$ CCF $5389=$ DTO 355-I3. USA, New York, Endicott, office, settle plates, 2015, isolated by Ž. Jurjevič, EMSL No. $2809=$ CCF 5386. USA, New Jersey, Piscataway, air, basement, 2014, isolated by Ž. Jurjevič, EMSL No. 2474 = CCF 5387 = DTO 355-I4. USA, Missouri, St. Louis, cheddar cheese, 2015, isolated by Z̆. Jurjevič, EMSL No. 2853 = CCF 5390 = DTO 355-I5. The Netherlands, parmezan cheese, isolated by J. Houbraken, CBS 108961 = DTO 351-D2. USA, NY, Elmsford, swab, wallet drawer, 2014, isolated by Ž. Jurjević, EMSL No. 2643. USA, IL, Chicago, rubber toy import from China, 2015, isolated by Z. Jurjević, EMSL No. 2695. USA, NY, Orangeburg, plastic bottle, 2015, isolated by Z̆. Jurjevic, EMSL No. 2789. USA, NY, Hempstead, living room, rug, 2013, isolated by Z̆. Jurjević, EMSL No. 2190. USA, KY, Bowling Green, living room, air, 2015, isolated by Ž. Jurjević, EMSL No. 2862. Unknown country, milk powder, DTO 278-D5; quail egg, DTO 315-E8, DTO 315-E7; dolphin bones, 2010, isolated by T. Hoogenhuijzen, DTO 128-E8; gingerbread, DTO 235-B3.

Aspergillus ruber (Jos. König et al.) Thom \& Church, Aspergillus: 112. 1926. MycoBank MB490579. Fig. 43. Synomyms: Eurotium rubrum J. König, Spieck. \& W. Bremer, Z. Untersuch. Nahr. u. Genussm. 4: 726. 1901. Aspergillus rubrobrunneus Samson \& W. Gams, Advances in Penicillium and Aspergillus Systematics: 49. 1985. Aspergillus athecius Raper \& Fennell, The Genus Aspergillus: 183. 1965.
Gymnoeurotium athecium (Raper \& Fennell) Malloch \& Cain, Canad. J. Bot. 50 (12): 2619. 1972.
Edyuillia athecia (Raper \& Fennell) Subram., Curr. Sci. 41: 756. 1972.

Eurotium athecium (Raper \& Fennell) Arx, The genera of fungi sporulating in pure culture: 91. 1974.
Aspergillus atheciellus Samson \& W. Gams, Advances in Penicillium and Aspergillus Systematics: 34. 1985.
Aspergillus tuberculatus Z.T. Qi \& Z.M. Sun, Acta Mycol. Sin. 13: 86. 1994.
Eurotium tuberculatum Z.T. Qi \& Z.M., Acta Mycol. Sin. 13: 86. 1994.
Typus: CBS 530.65, neotype (Samson \& Gams 1985). Culture ex-type: CBS $530.65=$ NRRL $52=$ ATCC $16441=$ IBT $5453=$ IMI $211380=$ JCM $22942=$ QM $1973=$ Thom $5599 B=$ WB 52.

ITS barcode: EF652066. (Alternative markers: BenA = EF651920; CaM = EF652009; RPB2 = EF651947).
Colony diam, 7 d (mm): CYA 21-22; MEA 15-16; CY20S 51-52; CY20S $30^{\circ} \mathrm{C} 18-30$; CY20S $37^{\circ} \mathrm{C}$ No growth; M40Y >75; M60Y >75; M60Y $30^{\circ} \mathrm{C}>75$; M60Y $37{ }^{\circ} \mathrm{C}>75$; CYAS 65-66; DG18 >75; MEA10S 65-67.

Colony characters: CY20S $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation moderately dense; conidia en masse green (20) or vinaceous buff (86); soluble pigments absent; exudates absent; reverse sulphur yellow (15) at centre, pale green (20) at edge. M40Y $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15) later turning orange (7); texture floccose; sporulation moderately dense; conidia en masse green (20) or vinaceous buff (86); soluble pigments absent; exudates absent; reverse ochreous (44). M60Y $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies deep, plane; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation sparse; conidia en masse greyish green (50) or vinaceous buff (86); soluble pigments absent; exudates absent; reverse ochreous (44). CYAS $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies deep, plane; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation dense; conidia en masse greyish green (50) or vinaceous buff (86); soluble pigments absent; exudates absent; reverse buff (45). DG18 $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies deep, plane; margins entire; mycelium white and sulphur yellow (15); texture floccose; sporulation moderately dense; conidia en masse greyish green (50) or vinaceous buff (86); soluble pigments absent; exudates absent; reverse amber (47). MEA10S $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies deep, plane; mycelium white and sulphur yellow (15); margins entire; texture floccose; sporulation moderately dense; conidia en masse greyish green (50) or vinaceous buff (86); soluble pigments absent; exudates absent; reverse ochreous (44).

Micromorphology: Ascomata eurotium-like, cleistothecial, superficial, yellow, globose to subglobose, 50-175 $\mu \mathrm{m}$. Asci 8 spored, globose to subglobose. Ascospores hyaline, in surface view globose to subglobose, spore bodies in most strains smooth or minute rough along equatorial ridges, tuberculate in atypical strain CBS 101748, 4-6 $\times 3.5-5$ $\mu \mathrm{m}$, in side view lenticular, furrow present or pronounced, crests absent. Conidiophores with smooth stipes, hyaline or light brown, $500-750 \times 7-13.5 \mu \mathrm{~m}$. Vesicles globose to subglobose, $25-48 \mu \mathrm{~m}$ wide, fertile over two thirds to entire surface. Phialides flask-shaped, $7-9(-12) \times 3.5-6 \mu \mathrm{~m}$. Conidia subglobose to ellipsoidal, tuberculate, (4.5-)7-$9(-12) \times 4-6(-8) \mu \mathrm{m}$.

Distinguishing characters: Phylogenetically, Aspergillus ruber is closely related to A. zutongqii, but A. zutongqii produces larger ascospores measuring 6-7.5 $\times 4.5-6 \mu \mathrm{~m}$. Morphologically, A. ruber resembles A. proliferans in ascospore and conidia morphology, but A. proliferans cannot grow on M60Y at $37^{\circ} \mathrm{C}$.

Additional materials examined: Argentina, Buenos Aires Prov., San Martin, honey sample, 2007, isolated by M.C. Hostench, CBS 123575. Brazil, Corn kernels, 2008, isolated by J. Houbraken, DTO 060-I9. Canada, British Columbia, hay, collected by V. Chang, CBS 117310. China, Shanxi, soil, CBS $101748=$ CGMCC 3.04632 (AS 3.4632). China, tea, 1952, CGMCC $3.00457=$ DTO 348-B6. China, tea, CGMCC 3.00458. China, unknown source CGMCC3.02577, CGMCC 3.02573, CGMCC 3.00459, CGMCC 3.03957, CGMCC 3.01296, CGMCC 3.00401, CGMCC 3.01298, CGMCC 3.01297 , CGMCC 3.01069 , CGMCC 3.00439 , CGMCC 3.00388 , CGMCC 3.04318 , CGMCC 3.04315, CGMCC 3.04061, CGMCC 3.00298, CGMCC 3. 01295. China, Beijing, medicinal herb, CGMCC 3.06125. China, Beijing, beverage, CGMCC 3.09054 . China, Beijing, unknown source, CGMCC 3.06130, CGMCC 3.06127, CGMCC 3.06129. China, Shanxi, Wugong, soil, CGMCC 3.06137. China, Henan, unknown source, CGMCC 3.06124. China, pig hair, CGMCC 3.03551. China, Hebei, soil, CGMCC 3.06497. China, Hainan, resin, CGMCC 3.06118. China, Xinjiang, nest, CGMCC 3.06122. China, Hunan, unknown source, CGMCC 3.06098. China, Hebei, straw, CGMCC 3.06499. China, Shanxi, Wugong, soil, CGMCC 3.04632. China, Pu'er tea, isolated by J. Houbraken, DTO 257-G7. Czech Republic, Nymburk, malt dust, 1993, isolated by A. Kubátová, CCF 2920. Czech Republic, Prague, toenail of 60 -year-old woman, 2011, isolated by P. Lysková, CCF 4377. Czech Republic, Prague, Coptish textile (Museum of Decorative Arts), 1999, A. Kubátová, CCF 3464. Czech Republic, white pepper, isolated by L. Marvanová, CCM F-438. Czech Republic, Prague, toenail of 32 -year-old man, 2010, isolated by P. Lysková, CCF 4104. Germany, archive, 2009, isolated by J. Houbraken, DTO 088 -E3. Indonesia, peanuts, 2008, isolated by J. Houbraken, DTO 062-I5, DTO 062-I9, DTO 063-A2. Indonesia, Geography Library (stacks), 2012, isolated by Rahmawati, from air in Yogyakarta, DTO 238-C4. Thailand, coffee beans, 2006, isolated by P. Noonim, DTO 287-A1, DTO 287-A2, DTO 289-A6, DTO 286-E5. UK, coffee beans, 1965, isolated by E. Yuill, NRRL $5000=$ CBS 464.65. Zaire, leaf, isolated by J. Houbraken, DTO 257-F8. Unknown source, isolated by G. Pollacci, CBS 110.31.

Unknown country, tobacco, isolated by M. Meijer, DTO 220-A9. Unknown source, isolated by G. Smith, NRRL 76. Unknown source, 1918, isolated by O. Goethals, CBS $104.18=$ DTO 351-C4 .

Aspergillus sloanii Visagie, Hirooka \& Samson, Stud. Mycol. 78: 108. 2014. MycoBank MB809194. Fig. 44.
Typus: CBS H-21811, holotype. Culture ex-type: CBS $138177=$ DTO 245-A1 $=$ IBT 34509.
ITS barcode: KJ775540. (Alternative markers: BenA $=\mathrm{KJ} 775074 ; C a M=\mathrm{KJ775309} ;$ RPB2 $=\mathrm{KX} 463365$).
Colony diam, 7 d (mm): CYA 2-4; MEA No growth; CY20S 9-15; CY20S $30^{\circ} \mathrm{C}$ No growth; CY20S $37{ }^{\circ} \mathrm{C}$ No growth; M40Y 46-67; M60Y 55->75; M60Y $30^{\circ} \mathrm{C} 47-61$; M60Y $37{ }^{\circ} \mathrm{C}$ No growth; CYAS $17-27$; DG18 28-55; MEA10S 40-55.

Colony characters: CY20S $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies low, plane; margins entire; mycelium white and straw (46); texture floccose; sporulation sparse; conidia en masse pale green (19); soluble pigments absent; exudates absent; reverse white. M40Y $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15) and white; texture floccose; sporulation moderately dense; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse luteous (12). M60Y $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15) and white; texture floccose; sporulation sparse; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse luteous (12). CYAS $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15) and white; texture floccose; sporulation moderately dense; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse luteous (12). DG18 $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15) and white; texture floccose; sporulation sparse; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse sulphur yellow (15). MEA10S $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; mycelium sulphur yellow (15) and white; margins entire; texture floccose; sporulation moderately dense; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse luteous (12).

Micromorphology: Ascomata eurotium-like, cleistothecial, superficial, yellow, globose to subglobose, 60-205 $\mu \mathrm{m}$. Asci 8 spored, globose to subglobose. Ascospores hyaline, in surface view globose to subglobose, spore bodies smooth, minute rough along equatorial ridges, 4-6 $\times 3-4.5 \mu \mathrm{~m}$, in side view lenticular, furrow present, crests absent. Conidiophores with smooth stipes, hyaline or light brown, $160-900 \times 7.5-16 \mu \mathrm{~m}$. Vesicles globose to subglobose, (10-)34-53 $\mu \mathrm{m}$ wide, fertile over two thirds to entire surface. Phialides flask-shaped, (7.5-)9-13.5(-18) $\times(5-) 7-9.5$ $\mu \mathrm{m}$. Conidia globose, tuberculate, 5.5-9.5 $\times 5.5-9 \mu \mathrm{~m}$.

Distinguishing characters: Aspergillus sloanii resembles A. ruber, A. proliferans and A. pseudoglaucus in ascospore morphology, A. sloanii does not grow or grows very restrictedly on CYA and MEA. Good growth occurs at M40Y and M60Y.

Additional materials examined: UK, Middlesex, house dust, 2010, isolated by E. Whitfield \& K. Mwange, CBS $138176=$ DTO 244-I8 = CCF 4926, CBS $138231=$ DTO 245-A6, CBS $138178=$ DTO 245-A8, CBS $138179=$ DTO 245-A9

Aspergillus tamarindosoli A.J. Chen, Frisvad \& Samson, sp. nov. MycoBank MB818737. Fig. 45.
Etymology: Name refers to its origin, isolated from soil under tamarind.
Diagnosis: Verruculose ascospores with $0.5-1 \mu \mathrm{~m}$ crests, wide vesicles measuring $40-72 \mu \mathrm{~m}$, lobate-reticulate conidia measuring $4-7 \times 3-4.5 \mu \mathrm{~m}$.

Typus: Thailand, Hua Hin, soil under tamarind, 2007, isolated by R. Samson \& J. Houbraken (holotype CBS H22826, culture ex-type: CBS $141775=$ DTO 054-A8 $=$ IBT 34432).

ITS barcode: LT670981. (Alternative markers: BenA $=\mathrm{LT} 671191 ;$ CaM $=\mathrm{LT} 671192 ;$ RPB2 $=\mathrm{LT} 671193$).
Colony diam, 7 d (mm): CYA 16-17; MEA 13-15; CY20S 40-43; CY20S $30^{\circ} \mathrm{C} 14-16$; CY20S $37^{\circ} \mathrm{C}$ No growth; M40Y >75; M60Y >75; M60Y $30{ }^{\circ} \mathrm{C}>75$; M60Y $37{ }^{\circ} \mathrm{C} 40-45$; CYAS 40-42; DG18 35-36; MEA10S 46-48.

Colony characters: CY20S $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, slightly sulcate; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation moderately dense; conidia en masse pale green (19) to greyish green (50); soluble pigments absent; exudates absent; reverse sulphur yellow (15). M40Y $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, slightly sulcate; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation moderately dense; conidia en masse pale green (19) to greyish green (50); soluble pigments absent; exudates absent; reverse luteous (12). M60Y $25^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation moderately dense; conidia en masse pale green (19) to greyish green (50); soluble pigments absent; exudates absent; reverse luteous (12). CYAS $25^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation moderately dense; conidia en masse pale green (19) to greyish green (50); soluble pigments absent; exudates absent; reverse primrose (66). DG18 $25{ }^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation moderately dense; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse ochreous (44) at centre, fading into yellow-green (71). MEA10S $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; mycelium white; margins entire; texture floccose; sporulation dense; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse ochreous (44).

Micromorphology: Ascomata eurotium-like, cleistothecial, superficial, yellow, globose to subglobose, 130-240 $\mu \mathrm{m}$. Asci 8 spored, globose to subglobose. Ascospores hyaline, in surface view globose to subglobose, spore bodies verruculose, $3.5-5 \times 3-4 \mu \mathrm{~m}$, in side view lenticular, furrow present, crests irregular, $0.5-1.5 \mu \mathrm{~m}$. Conidiophores with smooth stipes, hyaline or light brown, $700-1000 \times 10-15 \mu \mathrm{~m}$. Vesicles globose to subglobose, $40-72 \mu \mathrm{~m}$ wide, fertile over two thirds to entire surface. Phialides flask-shaped, $6.5-12 \times 4-5.5 \mu \mathrm{~m}$. Conidia subglobose to ellipsoidal, lobate-reticulate, $4-7 \times 3-4.5 \mu \mathrm{~m}$.

Distinguishing characters: Aspergillus tamarindosoli resembles A. chevalieri in ascospore morphology, but A. chevalieri produces smaller conidia measuring $3-4(-6) \times 2.5-3.5(-5) \mu \mathrm{m}$ and narrower vesicles measuring 23-47 $\mu \mathrm{m}$.

Aspergillus teporis A.J. Chen, Frisvad \& Samson, sp. nov. MycoBank MB818738. Fig. 46.
Etymology: Name refers to its origin, isolated from heat treated corn kernels.
Diagnosis: Protuberance presented on ascospore convex and furrow.
Typus: The Netherlands, heat treated corn kernels, 2008, isolated by M. Meijer (holotype CBS H-22821, culture ex-type: CBS $141768=$ DTO 058-E5 $=$ IBT 34513).

ITS barcode: LT670982. (Alternative markers: BenA $=\mathrm{LT671194}$; $\mathrm{CaM}=\mathrm{LT} 671195 ;$ RPB2 $=\mathrm{LT} 671196$).
Colony diam, 7 d (mm): CYA 19-20; MEA 16-18; CY20S 46-47; CY20S $30{ }^{\circ} \mathrm{C} 48-50$; CY20S $37{ }^{\circ} \mathrm{C} 49-50$; M40Y 53-56; M60Y 50-54; M60Y $30{ }^{\circ} \mathrm{C} 55-63$; M60Y $37{ }^{\circ} \mathrm{C}>75$; CYAS 28-29; DG18 30-37; MEA10S 35-40.

Colony characters: CY20S $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium straw (46); texture floccose; sporulation sparse; conidia en masse pale green (19) to greyish green (50); soluble pigments absent; exudates absent; reverse straw (46). M40Y $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium straw (46); texture floccose; sporulation sparse; conidia en masse greyish green (50) to dark green (21); soluble pigments absent; exudates absent; reverse luteous (12). M60Y $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium straw (46) and white; texture floccose; sporulation sparse; conidia en masse greyish green (50) to dark green (21); soluble pigments absent; exudates absent; reverse luteous (12). CYAS $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium straw (46) and white; texture floccose; sporulation sparse; conidia en masse pale green (19); soluble pigments absent; exudates absent; reverse straw (46). DG18 $25^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, plane; margins entire; mycelium straw (46); texture floccose; sporulation sparse; conidia en masse greyish green (50) to dark green (21); soluble pigments absent; exudates absent; reverse straw (46). MEA10S $25^{\circ} \mathrm{C}$, 7 d: Colonies moderately deep, plane; mycelium straw (46); margins entire; texture floccose; sporulation sparse;
conidia en masse greyish green (50) to dark green (21); soluble pigments absent; exudates absent; reverse luteous (12).

Micromorphology: Ascomata eurotium-like, cleistothecial, superficial, cream yellow, globose to subglobose, 120$180 \mu \mathrm{~m}$. Asci 8 spored, globose to subglobose. Ascospores hyaline, in surface view globose to subglobose, spore bodies slightly verruculose, $5-6.5 \times 4-5.5 \mu \mathrm{~m}$, in side view lenticular, furrow pronounced, with scattered protuberance, crests $0.5 \mu \mathrm{~m}$. Conidiophores with smooth stipes, hyaline or light brown, 800-1200 $\times 8-19 \mu \mathrm{~m}$. Vesicles globose to subglobose, $33-53 \mu \mathrm{~m}$ wide, fertile over two thirds to entire surface. Phialides flask-shaped, $7-$ $12 \times 3.5-5 \mu \mathrm{~m}$. Conidia globose, subglobose to ellipsoidal, lobate-reticulate, 3.5-6 $\times 3-4.5 \mu \mathrm{~m}$.

Distinguishing characters: Aspergillus teporis is a representative of the basal clades of sect. Aspergillus. It is closely related to A. leucocarpus, which produces white ascomata and larger conidia ($5.5-9 \times 5-8 \mu \mathrm{~m}$). Under the SEM, the protuberance present on the ascospore convex and furrow can distinguish A. teporis from other taxa in this section.

Aspergillus tonophilus Ohtsuki, Bot. Mag. (Tokyo) 75: 438. 1962. MycoBank MB326663. Fig. 47.
Synonyms: Eurotium tonophilum Ohtsuki, Bot. Mag. (Tokyo) 75: 438. 1962.
Typus: IMI 108299, neotype (Samson \& Gams 1985). Culture ex-type: CBS $405.65=$ NRRL $5124=$ ATCC $16440=$ ATCC36504 $=$ IBT $21230=$ IMI $108299=$ QM $8599=$ WB 5124.

ITS barcode: EF652081. (Alternative markers: BenA = EF651919; CaM $=\mathrm{EF} 652000 ;$ RPB2 $=\mathrm{EF} 651969$).
Colony diam, 7 d (mm): CYA No growth; MEA No growth; CY20S 24-25; CY20S $30^{\circ} \mathrm{C}$ No growth; CY20S $37{ }^{\circ} \mathrm{C}$ No growth; M40Y >75; M60Y >75; M60Y $30{ }^{\circ} \mathrm{C}>75$; M60Y $37{ }^{\circ} \mathrm{C} 8-9$; CYAS 49-53; DG18 56-58; MEA10S 56-58.

Colony characters: CY20S $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies low, plane; margins entire; mycelium sulphur yellow (15) and white; texture floccose; sporulation absent; soluble pigments absent; exudates absent; reverse white. M $40 \mathrm{Y} 25^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation sparse; conidia en masse pale green (19); soluble pigments absent; exudates absent; reverse luteous (12). M60Y $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation sparse; conidia en masse pale green (19); soluble pigments absent; exudates absent; reverse luteous (12). CYAS $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation moderately dense; conidia en masse pale green (19); soluble pigments absent; exudates absent; reverse luteous (12) fading to sulphur yellow (15). DG18 $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15); texture floccose; sporulation moderately dense; conidia en masse pale green (19); soluble pigments absent; exudates absent; reverse sulphur yellow (15). MEA10S $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; mycelium sulphur yellow (15); margins entire; texture floccose; sporulation absent; soluble pigments absent; exudates absent; reverse luteous (12).

Micromorphology: Ascomata eurotium-like, cleistothecial, superficial, yellow, globose to subglobose, 100-235 $\mu \mathrm{m}$. Asci 8 spored, globose to subglobose. Ascospores hyaline, in surface view globose to subglobose, spore bodies verruculose, 4-6 $\times 3-4.5 \mu \mathrm{~m}$, in side view lenticular, furrow present, crests absent. Conidiophores with smooth stipes, hyaline or light brown, $120-500 \times 7-12.5 \mu \mathrm{~m}$. Vesicles globose to subglobose, $25-44 \mu \mathrm{~m}$ wide (degenerated, smaller vesicles measuring $8-16 \mu \mathrm{~m}$ were observed in ex-type CBS 405.65), fertile over two thirds to entire surface. Phialides flask-shaped, $6-11 \times 3-5 \mu \mathrm{~m}$. Conidia globose to subglobose, tuberculate to lobate-reticulate, $5-7.5 \times 3.5-$ $6 \mu \mathrm{~m}$.

Distinguishing characters: Aspergillus tonophilus is a member of A. ruber clade (Fig. 1). The colonies of A. tonophilus remain brightly yellow even after two weeks of cultivation in contrast to other species from the A. ruber clade. The ascospores of A. tonophilus resemble those of A. aurantiacoflavus, however, A. aurantiacoflavus produces orange and yellow colonies and slightly larger conidia measuring 5-9×4-7 $\mu \mathrm{m}$.

Aspergillus xerophilus Samson \& Mouch., Antonie van Leeuwenhoek 41: 348. 1975. MycoBank MB309251. Fig. 48.

Synonyms: Eurotium xerophilum Samson \& Mouch, Antonie van Leeuwenhoek 41: 348. 1975.
Typus: CBS 938.73, holotype. Culture ex-type: CBS $938.73=$ NRRL $6131=$ IBT $5429=\operatorname{IBT} 5489=\operatorname{IBT} 34503=$ DTO 083-A2.

ITS barcode: EF652085. (Alternative markers: BenA = EF651923; CaM = EF651983; RPB2 = EF651970).
Colony diam, 7 d (mm): CYA No growth; MEA No growth; CY20S No growth; CY20S $30{ }^{\circ} \mathrm{C}$ No growth; CY20S $37{ }^{\circ} \mathrm{C}$ No growth; M40Y 60-62; M60Y >75; M60Y $30{ }^{\circ} \mathrm{C} 65->75$; M60Y $37{ }^{\circ} \mathrm{C}$ No growth; CYAS No growth; DG18 39-55; MEA10S 67 $\rightarrow 75$.

Colony characters: M40Y $25^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15) and olivaceous buff (89) at centre; texture floccose; sporulation sparse; soluble pigments absent; exudates absent; reverse luteous (12). M60Y $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15) and olivaceous buff (89) at centre; texture floccose; sporulation absent; soluble pigments absent; exudates absent; reverse luteous (12). DG18 $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium straw (46) and white; texture floccose; sporulation absent; soluble pigments absent; exudates absent; reverse luteous (12). MEA10S $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; mycelium straw (46) and white; margins entire; texture floccose; sporulation absent; soluble pigments absent; exudates absent; reverse ochreous (44).

Micromorphology: Ascomata eurotium-like, cleistothecial, superficial, yellow, globose to subglobose, 165-330 $\mu \mathrm{m}$. Asci 8 spored, globose to subglobose. Ascospores hyaline, in surface view globose to subglobose, spore bodies verruculose, 4.5-6.5 $\times 3.5-5 \mu \mathrm{~m}$, in side view lenticular, furrow present, crests irregular, $<0.5 \mu \mathrm{~m}$. Conidiophores with smooth stipes, hyaline or light brown, $50-200 \times 6.5-9.5-(12) \mu \mathrm{m}$. Vesicles globose to subglobose, 40-66 $\mu \mathrm{m}$ wide, fertile over two thirds to entire surface. Phialides flask-shaped, $6-9 \times 3.5-6 \mu \mathrm{~m}$. Conidia globose to subglobose, microtuberculate, $3.5-5.5 \times 3-4.5 \mu \mathrm{~m}$.

Distinguishing characters: Phylogenetically A. xerophilus is closely related to A. osmophilus, but A. osmophilus produces larger ascospores ($7-9 \times 6-7.5 \mu \mathrm{~m}$) and grows on M60Y at $37{ }^{\circ} \mathrm{C}$. Morphologically A. xerophilus resembles A. endophyticus in ascospore ornamentation, but the ascospores of A. endophyticus have longer crests ($0.5-1 \mu \mathrm{~m}$).

Additional materials examined: Egypt, Western desert, desert soil, isolated by J. Mouchacca, NRRL $6132=$ CBS 755.74 .
Aspergillus zutongqii A.J. Chen, Frisvad \& Samson, sp. nov. MycoBank MB818739. Fig. 49.
Etymology: Named in honor of Chinese mycologist Zutong Qi, who wrote first Aspergillus monograph in China, and contributed his whole career to Aspergillus taxonomy in China.

Diagnosis: Large, verruculose, non-crested ascospores measuring 6-7.5 $\times 4.5-6 \mu \mathrm{~m}$.
Typus: China, Beijing, peanut shell, 2008, isolated by L. Wang (holotype CBS H-22824, culture ex-type: CBS $141773=$ CGMCC $3.13917=$ DTO 349-E1 $=$ IBT 34450).

ITS barcode: LT670986. (Alternative markers: BenA $=\mathrm{LT} 671206 ; C a M=\mathrm{LT} 671207 ; ~ R P B 2=\mathrm{LT} 671208)$.
Colony diam, 7 d (mm): CYA 14-15; MEA 7-17; CY20S 33-38; CY20S $30{ }^{\circ} \mathrm{C} 13-20$; CY20S $37{ }^{\circ} \mathrm{C}$ No growth; $\mathrm{M} 40 \mathrm{Y}>75$; M60Y >75; M60Y $30^{\circ} \mathrm{C}>75$; M60Y $37{ }^{\circ} \mathrm{C}$ 10-30; CYAS 32-50; DG18 42-50; MEA10S 56-60.

Colony characters: CY20S $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies low to moderately deep, plane; margins entire; mycelium sulphur yellow (15) or ochreous (44); texture floccose; sporulation absent or sparse, conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse ochreous (44). M40Y $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15) and orange (7); texture floccose; sporulation sparse to moderately
dense; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse ochreous (44) to orange (7). M60Y $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15) and orange (7); texture floccose; sporulation sparse to moderately dense; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse ochreous (44) to orange (7). CYAS $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15) and orange (7); texture floccose; sporulation sparse to moderately dense; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse ochreous (44) to umber (9). DG18 $25^{\circ} \mathrm{C}, 7$ d: Colonies moderately deep, plane; margins entire; mycelium sulphur yellow (15) and orange (7); texture floccose; sporulation sparse to moderately dense; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse ochreous (44) to orange (7). MEA10S $25{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}$: Colonies moderately deep, plane; mycelium sulphur yellow (15); margins entire; texture floccose; sporulation sparse to moderately dense; conidia en masse greyish green (50); soluble pigments absent; exudates absent; reverse ochreous (44) to orange (7).

Micromorphology: Ascomata eurotium-like, cleistothecial, superficial, yellow, globose to subglobose, 110-220 $\mu \mathrm{m}$. Asci 8 spored, globose to subglobose. Ascospores hyaline, in surface view globose to subglobose, spore bodies verruculose, $6-7.5 \times 4.5-6 \mu \mathrm{~m}$, in side view lenticular, furrow pronounced, crests absent. Conidiophores with smooth stipes, hyaline or light brown, $150-500 \times 7.5-13 \mu \mathrm{~m}$. Vesicles globose to subglobose, 25-40 $\mu \mathrm{m}$ wide, fertile over two thirds to entire surface. Phialides flask-shaped, 8-12 $\times 4-6.5 \mu \mathrm{~m}$. Conidia subglobose to ellipsoidal, tuberculate, $5.5-10 \times 4-7 \mu \mathrm{~m}$.

Distinguishing characters: Phylogenetically and morphologically, Aspergillus zutongqii is close to A. ruber, but A. ruber produces smaller ascospores ($4-6 \times 3.5-5 \mu \mathrm{~m}$).

Additional materials examined: China, Ningxia, 2001, CGMCC 3.06103 = DTO 348-F7. China, 1969, isolated by Z.T. Qi, CGMCC $3.03980=$ DTO 348-D7. China, ocular lens, 1969, isolated by Z.T. Qi, CGMCC $3.03961=$ DTO 348-D5.

Notes

Aspergillus taklimakanensis Abliz \& Y. Horie, Mycoscience 42: 289. 2001. MycoBank MB474683
Synomyms: Eurotium taklimakanense Abliz \& Y. Horie, Mycoscience 42: 289. 2001.
This species was accepted by Guarro et al. (2012), but was treated as invalid by Hubka et al. (2013a), because the holotype CBM-FA-876 includes different species (probably A. cristatus), and is in conflict with the protologue. No living culture or herbarium material corresponding with the protologue is extant.

ACKNOWLEDGEMENTS

This project was supported by the Alfred P. Sloan Foundation Program on the Microbiology of the Built Environment (grant number G-201414529), by the Hungarian Research Fund (OTKA K115690), by the project of the Charles University Grant Agency (GAUK 1434217) and the project BIOCEV (CZ.1.05/1.1.00/02.0109) provided by the Ministry of Education, Youth and Sports of CR and ERDF, by National Natural Science Foundation of China No. 81473345 . We thank Miroslav Kolařík for his support and advice, Milada Chudičková for her invaluable assistance in the laboratory, CCF collection staff (Ivana Kelnarová, Adéla Kovařič̌ková) for deposition and lyophilization of the cultures, Miroslav Hyliš for assistance with scanning electron microscopy. We thank Bingda Sun, Lei Wang, Seung-Beom Hong, Ivana Kelnarová, Ondfiej Koukol, Alena Nováková, Pavlína Lysková, Magdalena Skor̃epová, Vanda Chrenková, Nad’a Mallátová and Polona Zalar for providing some interesting cultures.

REFERENCES

Abe K, Nagao Y, Nakada T, et al. (1996). Assessment of indoor climate in an apartment by use of a fungal index. Applied and Environmental Microbiology 62: 959-963.
Ahmed AM, Ismail SA, Abd-El-Rahman HA (2005). Quantitative, qualitative and toxigenic evaluations of xerophilic mold in traditional Egyptian salted fish, molouha. Journal of Food Safety 25: 9-18.
A1-Julaifi MZ (2003). Ochratoxin A production by Eurotium amstelodami and Eurotium spp. isolated from locally grown barley in Saudi Arabia. Kuwait Journal of Science and Engineering 30: 59-66.
Allen CM Jr (1972). Isoprene-containing metabolites of Aspergillus amstelodami. Canadian Journal of Microbiology 18: 1275-1282.

Almeida AP, Dethoup T, Singburaudom N, et al (2010). The in vitro anticancer activity of the crude extract of the sponge-associated fungus Eurotium cristatum and its secondary metabolites. Journal of Natural Pharmaceuticals 1: 25-29.
Amend AS, Seifert KA, Samson R, et al. (2010). Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. PNAS 107: 13748-13753.
Anke H, Kolthoum I, Laatsch H (1980a). Metabolic products of microorganisms. 192. The anthraquinones of the Aspergillus glaucus group. II. Biological activity. Archives of Microbiology 126: 231-236.
Anke H, Kolthoum I, Zahner H, et al. (1980b). Metabolic products of microorganisms. 185. The anthraquinones of the Aspergillus glaucus group. I. Occurrence, isolation, identification and antimicrobial activity. Archives of Microbiology 126: 223-230.
Anke H, Zäher H, Koenig W (1978). Metabolic products of microorganisms. 170. On the antibiotic activity of cladosporin. Archives of Microbiology 116: 253-257.
Anslow WK, Raistrick H (1940). Studies in the biochemistry of microorganisms. 67. The molecular constitutions of catenarin and erythroglaucin, metabolic products respectively of Helminthosporium catenarium Drechsler and of species in the Aspergillus glaucus series. Biochemical Journal 34: 1124-1133.
Arai K, Aoki Y, Yamamoto Y (1989). Asperinines A and B, dimeric tetrahydroanthracene derivatives from Aspergillus ruber. Chemical and Pharmaceutical Bulletin 37: 621-625.
Asgari B, Zare R, Zamanizadeh HR, et al. (2014). Aspergillus osmophilus sp. nov., and a new teleomorph for A. proliferans. Mycoscience 55: 53-62.
Ashley JN, Raistrick H, Richards T (1939). Studies in the biochemistry of microorganisms. LXII. The crystalline colouring matters of species in the Aspergillus glaucus series. Biochemical Journal 33: 1291-1303.
Assante G, Camarda L, Nasini G (1980). Secondary mould metabolites. IX. Structure of a new bianthrone and three new secoanthraquinones from Aspergillus wentil Wehmer. Gazzetta chimica Itallana 110: 629-631.
Bachmann M, Blaser P, Lūthy J, et al. (1982). Toxicity and mutagenicity of anthraquinones from Aspergillus chevalieri. Journal of Environmental Pathology, Toxicology and Oncology 11: 113-116.
Bachmann M, Lüthy J, Schlatter C (1979). Toxicity and mutagenicity of molds of the Aspergillus glaucus group. Identification of physcion and three related anthraquinones as main toxic constituents from Aspergillus chevalieri. Journal of Agricultural and Food Chemistry 27: 1342-1347.
Barbetta M, Casnati G, Pochini A, et al. (1969). Neoechinuline: a new indole metabolite from Aspergillus amstelodami. Tetrahedron Leiters $\mathbf{1 0}$: 4457-4460.
Baudisch C, Assadian O, Kramer A (2009). Concentration of the genera Aspergillus, Eurotium and Penicillium in $63-\mu \mathrm{m}$ house dust fraction as a method to predict hidden moisture damage in homes. BMC Public Health 9: 247.
Bennett JW, Klich M (2003). Mycotoxins. Clinical Microbiology Reviews 16: 497-516.
Birch AJ (1958). The origin of the C5-unit in auroglaucin. Chemistry and Industry 1958: 1321.
Blaser P (1975). Taxonomische und physiologische Untersuchungen uber die Gattung Eurotium Link ex Fries. Sydowia 28:1-49.
Blaser P, Ramstein H, Schmidt-Lorenz W, et al. (1980). Toxicităt und Mutagenităt der xerophilen Schimmelpilze der Gattung Eurotium (Aspergillus glaucus gruppe). Lebensmittel-Wissenschaft \& Technologie 14: 66-71.
Büchi G, Klaubert DH, Shank RC, et al. (1971). Structure and synthesis of kotanin and desmethylkotanin, metabolites of Aspergillus glaucus. Journal of Organic Chemistry 36: 1143-1147.
Burkin AA, Kononenko GP (2010). Producers of mycophenolic acid in ensiled and grain feeds. Applied Biochemistry and Microbiology 46: 592-598.
Cardillo R, Fuganti C, Gatti G, et al. (1974). Molecular structure of cryptoechinuline A, a new metabolite of Aspergillus amstelodami, isolated during investigation of echinuline biosynthesis. Tetrahedron Letters 15: 3163-3166.
Cardillo R, Fuganti C, Ghiringhelli D, et al (1975). Stereochemical course of the α, β-desaturation of L-tryptophan in the biosynthesis of cryptoechinuline A in Aspergillus amstelodami. Journal of the Chemical Society, Chemical Communications 1975: 778-779.
Cattel L, Grove JF, Shaw D (1973). New metabolic products of Aspergillus flavus. Part III. Biosynthesis of asperentin. Journal of the Chemical Society, Perkin Transactions 11973: 2626-2629.
Chelkowski J, Samson RA, Wiewiórowska M, et al. (1987). Ochratoxin A formation by isolated strains of the conidial state of Aspergillus glaucus Link ex Grey (= Eurotium herbariorum Wiggers Link ex Gray) from cereal grains. Nahrung 31: 267-269.
Chen GD, Bao YR, HuangYF, et al. (2014). Three pairs of variecolortide enantiomers from Eurotium sp. with caspase-3 inhibitory activity. Fitoterapia 92: 252-259.
Chen AJ, Frisvad JC, Sun BD, et al. (2016). Aspergillus section Nidulantes (formerly Emericella): Polyphasic taxonomy, chemistry and biology. Studies in Mycology 84: 1-118.
Christensen CM, Papavizas GC, Benjamin CR (1959). A new halophilic species of Eurotium. Mycologia 51: 636-640.
Cochrane RVK, Sanichar R, Lambkin GR, et al. (2016). Production of new cladosporin analogues by reconstitution of the polyketide synthases responsible for the biosynthesis of this antimalarial agent. Angewandte Chemie International Edition 55: 664-668.
Coveney RD, Peck HM, Townsend RJ (1966). Recent advances in mycotoxicosis. Society of Chemical Industry (London) 23: 31-43.
Cox RE, Chexal KK, Holker JSE (1976). The biosynthesis of fungal metabolites. Part VIII. Identification of N-benzoyl-L-phenylalanyl-Lphenylalaniol acetate, a metabolite of Aspergillus glaucus. Journal of the Chemical Soctety, Perkin Transactions 11976: 578-580.
de Hoog GS, Gerrits van den Ende AH (1998). Molecular diagnostics of clinical strains of filamentous Basidiomycetes. Mycoses 41: 183-189.
de Hoog GS, Guarro G, Gené J, et al. (2000). Atlas of clinical fungi, $2^{\text {nd }}$ ed. Centraalbureau voor Schimmelcultures (CBS), Utrecht, the Netherlands.
Dimici L, Wada S (1994). Lipid changes in bonito meat in the katsuobushi processing and quality assessment of the commercial product based on lipid composition. Journal of Japan Oil Chemists' Society 43: 470-478.
Dossena A, Marchelli R, Pochini A (1974). New metabolites of Aspergillus amstelodami related to the biogenesis of neoechinulin. Journal of the Chemical Society, Chemical Communications 1974: 771-772.
Du FY, Li XM, Li CS, et al. (2012). Cristatumin A-D, new indole alkaloids from the marine-derived endophytic fungus Eurotium cristatum EN- 220. Bioorganic and Medicinal Chemistry Letters 22: 4650-4653.
Du FY, Li XM, Song JY, et al. (2014). Anthraquinone derivatives and an orsellinic acid ester from the marine alga-derived endophytic fungus Eurotium cristatum EN-220. Helvetica Chimica Acta 97: 973-978.
Du L, Ai J, Li D, et al. (2011). Aspergiolides C and D: spirocyclic aromatic polyketides with potent protein kinase c-Met inhibitory effects. Chemistry - A European Journal 17: 1319-1326.

Du L, Zhu T, Fang Y, et al. (2007). Aspergiolide A, a novel anthraquinone derivative with naphtho[1,2,3-de]chromene-2,7-dione skeleton isolated from a marine-derived fungus Aspergillus glaucus. Tetrahedron 63: 1085-1088.

Du L, Zhu TJ, Liu HB, et al 2008. Cytotoxic polyketides from a marine-derived fungus Aspergillus glaucus. Journal of Natural Products 71: 18371842.

El-Kady I, El-Maraghy S, Zohri AN (1994). Mycotoxin producing potential of some isolates of Aspergillus flavus and Eurotium groups from meat products. Microbiological Research 149: 297-307.
Ellestad GA, Kunstmann MP, Mirando P, et al. (1972). Structures of fungal diterpene antibiotics LL-S491 β and $-\gamma$. Journal of the American Chemical Society 94: 6206-6208.
Ellestad GA, Mirando P, Kuntsmann MP (1973). Structure of the metabolite LL-S490 β from an unidentified Aspergillus species. Journal of Organtc Chemistry 38: 4204-4205.
Engstrom GW, Stenkamp RE, McDorman DJ, et al. (1982). Spectral identification, X-ray structure determination, and iron-chelating capability of erythroglaucin, a red pigment from Aspergillus ruber. Journal of Agricultural and Food Chemistry 30: 304-307.
Fraga ME, Curvello F, Gatti MJ, et al. (2007). Potential aflatoxin and ochratoxin A production by Aspergillus species in poultry feed processing. Veterinary Research Communications 31: 343-353.
Fraga ME, Direito GM, Gatti MJ, et al. (2008). Revaluation of aflatoxin production by Aspergillus candidus and Eurotium chevalieri isolated from poultry feed in Brazil. Revista Brasileira de Medicina Veterinaria 30: 86-90.
Frisvad JC, Larsen TO (2016). Extrolites of Aspergillus fumigatus and other pathogenic species in Aspergillus section Fumigati. Frontiers in Microbiology 6: 1485 . doi: $10.3389 /$ fmicb. 2015.01485
Frisvad JC, Thrane U (1987). Standardized High-Performance Liquid Chromatography of 182 mycotoxins and other fungal metabolites based on alkylphenone indices and UV-VIS spectra (diode-array detection). Journal of Chromatography 404: 195-214.
Frisvad JC, Thrane U (1993). Liquid column chromatography of mycotoxins. In: Chromatography of mycotoxins: techniques and applications (Betina V, ed). Journal of Chromatography Library 54. Elsevier, Amsterdam: 253-372.
Frisvad JC, Thrane U, Samson RA (2007). Mycotoxin producers. In: Food mycology. A multifaceted approach to fungi and food. (Dijksterhuis J, Samson RA, eds). Boca Raton, Florida: CRC Press: 135-159.
Fujimoto H, Fujimaki T, Okuyama E, et al. (1999). Immunomodulatory constituents from an ascomycete, Microascus tardifaciens. Chemical and Pharmaceutical Bulletin 47: 1426-1432.
Gams W, Christensen M, Onions AHS, et al. (1985). Infrageneric taxa of Aspergillus. In: Advances in Penicillium and Aspergillus sysiematics. (Samson RA, Pitt JI, eds). NATO ASI Series. Ser. A.: Life Sciences Vol. 102. Plenum Press, New York: 55-62.
Gao H, Liu W, Zhu T, et al. (2012b). Diketopiperazine alkaloids from a mangrove rhizosphere soil derived fungus Aspergillus effuses H1-1. Organic and Biomolecular Chemistry 10: 9501-9506.
Gao H, Zhu T, Li D, et al. (2013). Prenylated indole diketopiparazine alkaloids from a mangrove rhizosphere soil derived fungus Aspergillus effuses H1-1. Archives of Pharmacal Research 36: 952-956.
Gao J, León F, Radwan MM, et al. (2011). Benzyl derivatives with in vitro binding affinity for human opioid and cannabinoid receptors from the fungus Eurotium repens. Journal of Natural Products 74: 1636-1639.
Gao J, Radwan MM, León F, et al. (2012a). Antimicrobial and antiprotozoal activities of secondary metabolites from the fungus Eurotium repens. Medicinal Chemistry Research 21: 3080-3086.
Gatti G, Cardillo R, Fuganti C (1978). Molecular structure of cryptoechinuline G, and isoprenylated dehydrotryptophan metabolite isolated from Aspergillus ruber. Tetrahedron Letters 19: 2605-2606.
Gatti G, Cardillo R, Fuganti C, et al. (1976). Structure determination of two extractives from Aspergillus amstelodami by nuclear magnetic resonance spectroscopy. Journal of the Chemical Society, Chemical Communications 1976: 435-436.
Gatti G, Fuganti C (1979). NMR spectra of echinulin and related compounds. Journal of Chemical Research 11: 366-367.
Glass NL, Donaldson GC (1995). Development of premier sets designed for use with the PCR to amplify conserved genes from filamentous Ascomycetes. Applied and Environmental Microbiology 61: 1323-1330.
Gomes NM, Dethoup T, Singburaudom N, et al. (2012). Eurocristatine, a new diketopiperazizne dimer from the marine sponge-associated fungus Eurotium cristatum. Phytochemistry Letters 5: 717-720.
González-Andrade M, Del Valle P, Macias-Rubalcava ML, et al. (2013). Calmodulin inhibitors from Aspergillus stromatioides. Chemistry \& Biodiversity 10: 328-336.
Gould BS, Raistrick H. 1934. Studies in the biochemistry of microorganisms. XL. The crystalline pigments of species in the Aspergillus glaucus series. Biochemical Journa1 28: 1640-1656.
Greco M, Kemppainen M, Pose G, et al. (2015). Taxonomic characterization and secondary metabolite profiling of Aspergillus section Aspergillus contaminating feeds and feedstuffs. Toxins 7: 3512-3537.
Grove JF (1972a). New metabolic products of Aspergillus flavus. Part.II. Asperflavin, anhydroasperflavin, and 5,7-dihydroxy-4-methylphthalide. Journal of the Chemical Society, Perkin Transactions 11972: 2406-2411.
Grove JF (1972b). New metabolic products of Aspergillus flavus. I. Asperentin, its methyl ethers, and 5'-hydroxyasperentin. Journal of the Chemical Society, Perkin Transactions 11972: 2400-2406.
Grove JF (1973). New metabolic products of Aspergillus flavus. IV. 4'-hydroxyasperentin and 5^{\prime}-hydroxyasperentin-8-methyl ether. Journal of the Chemical Society, Perkin Transactions 11973: 2704-2706.
Guarro J, Gené J, Stchigel AM, et al. (2012). Atlas of soil ascomycetes. CBS Biodiversity Series 10. CBS-KNAW Fungal Biodiversity Centre, Utrecht, the Netherlands.
Hamasaki T, Fukunaga M, Kimura Y, et al. (1980). Isolation and structures of two new metabolites from Aspergillus ruber. Agricultural and Biological Chemistry 44: 1685-1687.
Hamasaki T, Kimura Y, Hatsuda Y, et al. (1981). Structure of a new metabolite, dihydroauroglaucin, produced by Aspergillus chevalieri. Agricultural and Biological Chemistry 45: 313-314.
Hamasaki T, Nagayama K, Hatsuda Y (1976a). A new metabolite, L-alanyl-L-tryptophan anhydride from Aspergillus chevalieri. Agricultural and Biological Chemisiry 40: 2487.
Hamasaki T, Nagayama K, Hatsuda Y (1976b). Structure of a new metabolite from Aspergillus chevalieri. Agricultural and Biological Chemistry 40 : 203-205.
Hayakawa K, Ueno Y, Nakanishi S, et al. (1993). Production of fish sauce from fish meal treated with koji-mould. Seibutsu Kogaku Kaishi 71: 245251.

Hong SB, Go SJ, Shin HD, et al (2005). Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia 97: 1316-1329.
Hong SB, Kim DH, Lee M, et al. (2011). Taxonomy of Eurotium species isolated from Meju. The Journal of Microbiology 49: 669-674.

Hong SB, Lee M, Kim DH, et al (2012). Aspergillus cibarius sp. nov. from traditional meju in Korea. The Journal of Microbiology 50: 712-714.
Horie Y, Abliz P, Hui Y, et al. (2000). Emericella qinqixianil, a new species from desert soil in China. Mycoscience 41: 183-187.
Houbraken J, de Vries RP, Samson RA (2014). Modern taxonomy of biotechnologically important Aspergillus and Penicillium species. Advances in Applied Microbiology 86: 199-249.
Houbraken J, Samson RA (2011). Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Studies in Mycology 70: 1-51
Hubka V, Kolarík (2012). β-tubulin paralogue tubC is frequently misidentified as the benA gene in Aspergillus section Nigri taxonomy: primer specificity testing and taxonomic consequences. Persoonta 29: 1-10.
Hubka V, Kolaříl M, Kubátová A, et al. (2013a). Taxonomical revision of Eurotium and transfer of species to Aspergillus. Mycologia 105: 912-937.
Hubka V, Kubatova A, Mallatova N, et al. (2012). Rare and new etiological agents revealed among 178 clinical Aspergillus strains obtained from Czech patients and characterised by molecular sequencing. Medical Mycology 50: 601-610.
Hubka V, Nováková A, Kolařik M, et al. (2015). Revision of Aspergillus section Flavipedes: seven new species and proposal of section Jani sect. nov. Mycologia 107: 169-208.
Hubka V, Nováková A, Samson RA, et al. (2016). Aspergillus europaeus sp. nov., a widely distributed soil-borne species related to A. wentii (section Cremei). Plant Systematics and Evolution 302: 641-650.
Hubka V, Peterson SW, Frisvad JC, et al. (2013b). Aspergillus waksmanii sp. nov. and Aspergillus marvanovae sp. nov., two closely related species in section Fumtgati. International Journal of Systematic Evolutionary Microbiology 63: 783-789.
Inoue S, Hashizume K, Takamatsu N, et al. (1977c). Synthetic studies on echinulin and related products. IV. Isolation, structure and synthesis of flavoglaucin-auroglaucin type natural products isolated from Aspergillus amstelodami. Yakugaku Zasshi 97: 569-575.
Inoue S, Murata J, Takamatsu N, et al. (1977a). Synthetic studies on echinulin and related products. V. Isolation, structure and synthesis of echinulinneoechinulin type alkaloids isolated from Aspergillus amstelodami. Yakugaku Zasshi 97: 576-581.
Inoue S, Takamatsu N, Hashizume K, et al. (1977b). Synthetic studies on echinulin and related natural products. VI. Structure and synthesis of aurechinulin. Yakugaku Zasshi 97: 582-585.
Ishikawa Y, Morimoto K, Hamasaki T (1984). Flavoglaucin, a metabolite of Eurotium chevalieri, its antioxidation and synergism with tocopherol. Journal of the American Oil Chemists' Society 61: 1864-1868.
Ishikawa Y, Morimoto K, Hamasaki T (1985). Metabolites of Eurotium species, their antioxidative properties and synergism with tocopherol. Journal of Food Sclence 50: 1742-1744.
Itabashi T, Matsuishi N, Hosoe T, et al. (2006). Two new dioxopiperazine derivatives, arestricticin A and B, isolated from Aspergillus restrictus and Aspergillus penicillioides. Chemical and Pharmaceutical Bulletin 54: 1639-1641.
Jayraman P, Kalyanasundaram I (1990). Natural occurrence of toxigenic fungi and mycotoxin in rice bran. Mycopathologia 110: 81-85.
Jurjević Ž, Kubátová A, Kolařik M, et al. (2015). Taxonomy of Aspergillus section Petersoniti sect. nov. encompassing indoor and soil-borne species with predominant tropical distribution. Plant Systematics and Evolution 301: 2441-2462.
Karo M, Hadlok R (1982). Investigations on sterigmatocystin production by fungi of the genus Eurotium. In: International IUPAC Symposium on Mycotoxins and Phycotoxins (Krogh P, ed). Technical University of Vienna, Vienna, Austria: 178-181
Katoh K, Standley DM (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772-780.
Kim DH, Kim SH, Kwon SW, et al. (2014). Aspergillus cumulatus sp. nov. from rice straw and air for meju fermentation. Journal of Microbiology and Biotechnology 24: 334-336.
Kimura Y, Shimomura N, Tanigawa F, et al. (2012). Plant growth activities of aspyran, asperentin, and its analogues produced by the fungus Aspergillus sp. Zeitschrift für Naturforschung C67: 587-593.
Klich MA (2002). Identiffcation of common Aspergillus species. Utrecht, the Netherlands: Centraalbureau voor Schimmelcultures.
Kocsubé S, Perrone G, Magistà D, et al. (2016). Aspergillus is monophyletic: evidence from multiple gene phylogenies and extrolites profiles. Studies in Mycology 85: 199-213.
Kozakiewicz Z (1989). Aspergillus species on stored products. Mycological Papers 161: 1-188
Kozlovsky AG, Zhelifonova VP, Antipova TY, et al. (2014). Exo-metabolites of mycelial fungi isolated in production premises of cheese-making and meat-processing plants. Food Additives and Contaminants Part A 31: 300-306.
Kulik MM, Holaday CE (1966). Aflatoxin: a metabolic product of several fungi. Mycopathologia et Mycologia Applicata 30: 137-140.
Kuntze O (1891). Revisio Generum Plantarum 2: 375-1011. Germany, Leipzig, Arthur Felix.
Kuttruff CA, Zipse H, Trauner D (2011). Concise total synthesis of variecolortide A and B through an unusual hetero-Diels-Alder reaction. Angewandte Chemie International Edition 50: 1402-1405.
Laatsch H, Anke H (1982). Stoffwechselprodukte von Microorganismen, 214. Viocristin, isoviocristin und hydroxyviocristin. struktur und synthese naturlich vorkommenden 1,4-anthraquinone. Liebigs Annalen der Chemie 1982: 2189-2215.
Lanfear R, Calcott B, Ho SYW, et al. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29: 1695-1701
Leitao J, LeBars J, Bailly JR (1989). Production of aflatoxin B1 production by Aspergillus ruber Thom and Church. Mycopathologia 108: 135-138.
Li DL, Li XM, Li TG, et al. (2008a). Benzaldehyde derivatives from Eurotium rubrum, an endophytic fungus derived from the mangrove plant Hibiscus tiliaceus. Chemical and Pharmaceutical Bulletin 56: 1282-1285.
Li DL, Li XM, Li TG, et al. (2008b). Dioxopiperazine alkaloids produced by the marine mangrove derived endophytic fungus Eurotium rubrum. Helvetica Chimica Acta 91: 1888-1892.
Li DL, Li XM, Proksch P, et al. (2010). 7-O-methylvariecolortide A, a new spirocyclic diketopiperazine alkaloid from a marine mangrove derived endophytic fungus, Eurotium rubrum. Natural Product Communications 5: 1583-1586.
Li DL, Li XM, Wang BG (2009). Natural anthraquinone derivatives from a marine mangrove plant-derived endophytic fungus Eurotium rubrum: structural elucidation and PPPH radical scavenging activity. Journal of Microbiology and Biotechnology 19: 675-680.
Li Y, Li X, Kang JS, et al. (2004a). New radical scavenging and ultraviolet-A protecting prenylated dioxopiperazine alkaloid related to isoechinulin A from a marine isolate of the fungus Aspergillus. The Journal of Antibiotics 57: 337-340.
Li Y, Li X, Kim SK, et al. (2004b). Golmaneone, a new diketopiperazine alkaloid from the marine-derived fungus Aspergillus sp. Chemical and Pharmaceutical Bulletin 52: 375-376.
Li Y, Li X, Lee U, et al. (2006). A new radical scavenging anthracene glycoside, asperflavin ribofuranoside, and polyketides from a marine isolate of fungus Microsporum. Chemical and Pharmaceutical Bulletin 54: 882-883.

Liu YJ, Whelen S, Hall BD (1999). Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology and Evolution 16: 1799-1808.
Malloch D, Cain RF (1972). The Trichocomataceae: ascomycetes with Aspergillus, Paecilomyces and Penicillium imperfect states. Canadian Journal of Botany 50: 2613-2628.
Mangin ML (1909). What is Aspergillus glaucus? Critical and experimental study of the form grouped under this name. Annales des Sciences Naturelles. Botanique 10: 303-371.
Marchelli R, Dossena A, Casnati G (1975). Biosynthesis of neoechinulin by Aspergillus amstelodami from cyclo-L-[U- $\left.{ }^{14} \mathrm{C}\right]$ alanyl-L-[5,7${ }^{3} \mathrm{H}_{2}$]tryptophyl. Journal of the Chemical Society, Chemical Communications 1975: 779-780.
Marchelli R, Dossena A, Pochini A, et al. (1977). The structures of five new didehydropeptides related to neoechinulin, isolated from Aspergillus amstelodami. Journal of the Chemical Society, Perkin Transactions 11977: 713-717.
Masclaux F, Guêho E, de Hoog GS, et al. (1995). Phylogenetic relationships of human-pathogenic Cladosporium (Xylohypha) species inferred from partial LS rRNA sequences. Medical Mycology 33: 327-338.
McNeill J, Barrie FR, Buck WR, et al. (2012). International code of nomenclature for algae, fungi, and plants (Melbourne Code) adopted by the Eighteenth International Botanical Congress, Melbourne, Australia, July 2011. Regnum Vegetabile 154, Koeltz Scientific Books, Königstein.
Meng LH, Du FY, Li XM, et al. (2015). Rubrumazine A-C, indolediketopiperazines of the isoechinulin class from Eurotium rubrum MA-150, a fungus obtained from marine mangrove-derived rhizospheric soil. Journal of Natural Products 78: 909-913.
Meng LH, Mándi A, Li XM, et al. (2016). Isolation, stereochemical study, and antioxidant activity of benzofuranone derivatives from a mangrovederived fungus Eurotium rubrum MA-150. Chirality 28: 581-584.
Micheluz A, Sulyok M, Manente S, et al. (2016). Fungal secondary metabolite analysis applied to cultural heritage: the case of a contaminated library in Venice. World Mycotoxin Journal 9: 397-407.
Miyake Y, Ito C, Itoigawa M, et al. (2009). Antioxidants produced by Eurotium herbariorum of filamentous fungi used for the manufacture of karebushi, dried bonito (katsuobushi). Bioscience Biotechnology and Biochemistry 73: 1323-1327.
Miyake Y, Ito C, Kimura T, et al. (2014). Isolation of aromatic compounds produced by Eurotium herbariorum NU-2 from Karebushi, a katsuobushi, and their DPPH-radical scavenging activities. Food Science and Technology Research 20: 139-146.
Miyake Y, Ito C, Tokuda H, et al. (2010a). Evaluation of flavoglaucin, its derivatives and pyranonigrin produced by molds used in fermented foods for inhibiting tumor promotion. Bioscience Biotechnology and Biochemistry 74: 1120-1122.
Miyake Y, Mochizuki M, Ito C, et al. (2010b). Peroxynitrite scavengers produced by filamentous fungus used in the katsuobushi manufacturing process. Food Science and Technology Research 16: 493-498.
Moubasher AH, El-Kady IA, Shoriet A (1977). Toxigenic aspergilli isolated from different sources in Egypt. Annales de la Nutrition et de IAlimentation 31: 607-615.
Nagasawa H, Isdogai A, Suzuki A, et al. (1976). Structures of isoechinulins A, B and C, new indole metabolites from Aspergillus ruber. Tetrahedron Letters 17: 1601-1604.
Nagasawa H, Usogai A, Ikeda K, et al. (1975). Isolation and structure elucidation of a new indole metabolite from Aspergillus ruber. Agricultural and Biological Chemistry 39: 1901-1902.
Nakashima R, Slater GP (1971). The configuration of echinulin Part III. The absolute configuration of echinulin. Tetrahedron Letters 12: 2649-2650.
Nguyen LT, Schmidt HA, von Haeseler A, et al. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268-274.
Nielsen KF, Mảnsson M, Rank C, et al. (2011). Dereplication of microbial natural products by LC-DAD-TOFMS. Journal of Natural Products 74 : 2338-2348.
Nielsen KF, Mogensen JM, Johansen M, et al. (2009). Review of secondary metabolites and mycotoxins from the Aspergillus niger group. Analytical and Bioanalytical Chemistry 395: 1225-1246.
O' Donnell K, Cigelnik E (1997). Two divergent intragenomic rDNA TTS2 types within a monophyletic lineage of the fungus Fusarium are nonor thologous. Molecular Phylogenetics and Evolution 7: 103-116.
Oeemig JS, Lynggaard C, Knudsen DH, et al. (2012). Eurocin, a new fungal defensin. The Journal of Biological Chemistry 287: 42361-42372.
Peterson SW (2008). Phylogenetic analysis of Aspergillus species using DNA sequences from four loci. Mycologia 100: 205-226.
Peterson SW, Jurjević \bar{Z} (2013). Talaromyces columbinus sp. nov., and genealogical concordance analysis in Talaromyces clade 2a. Plos One 8(10): e78084.
Pitt JI (1985). Nomenclatorial and taxonomic problems in the genus Eurotium. In: Advances in Penicillium and Aspergillus systematics (Samson RA, Pitt JI, eds.) NATO ASI Series. Ser. A.: Life Sciences Vol. 102. Plenum Press, New York: 383-396.
Pitt JI, Hocking AD (2009). Aspergillus and related teleomorphs. In: Fungi and food spoilage (Pitt J, Hocking AD, eds). London, Springer: 275-337.
Pitt JI, Taylor JW (2014). Aspergillus, its sexual states, and the new International Code of Nomenclature. Mycologia 105: 1051-1062.
Pitt JI, Taylor JW (2016). (2441) Proposal to conserve the name Aspergillus (Fungi: Eurotiales: Trichocomaceae) with a conserved type to maintain the name Eurotium. Taxon 65: 631-632.
Podojil M, Sedmera P, Vokoun J, et al. (1979). Eurotium (Aspergillus) repens metabolites and their biological activity. Folia Microbiologica 23: 438-443.
Qi ZT, Sun CM (1990). Identification of predominant species in brick tea. Acta Mycologica Sinica 9: 176-179.
Quilico A, Cardini C (1950). The diffusion of echinulin in molds of the group Aspergillus glaucus. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica E Applicazioni 9: 220-228.
Quilico A, Panazzi L (1943). Chemische Untersuchungen uber Aspergillus echinulatus. I. Mitteilung. Chemische Berichte 76: 348-358.
Quilico A, Panizzi L, Mugnaini E (1949). Structure of flavoglaucin and auroglaucin. Nature 164: 26-27.
Rabie CJ, Steyn PS, van Heerden FR (1986). The isolation and identification of some toxic constituents of Aspergillus wentii Wehmer. Mycotoxin Research 2: 19-24.
Rank C, Nielsen KF, Larsen TO, et al. (2011). Distribution of sterigmatocystin in filamentous fungi. Fungal Biology 115: 406-420.
Raper KB, Fennell DI (1965). The genus Aspergillus. Williams \& Wilkins, Baltimore, MD.
Raper KB (1957). Nomenclature in Aspergillus and Penicillium. Mycologia 49: 644-662.
Rayner RW (1970). A mycological colour chart. CMI and British Mycological Society. Kew, Surrey, England.
Réblová M, Hubka V, Thureborn O, et al. (2016). From the tunnels into the treetops: new lineages of black yeasts from biofilm in the Stockholm metro system and their relatives among ant-associated fungi in the Chaetothyriales. PloS One 11(10): e0163396

Reboux G, Piarroux R, Mauny F, et al. (2001). Role of molds in farmer's lung disease in eastern France. American Journal of Respiratory and Critical Care Medicine 163: 1534-1539.
Ronquist F, Teslenko M, van der Mark P, et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539-542.
Roussel S, Reboux G, Dalphin, K. et al. (2004). Microbiological evolution of hay and relapse in patients with farmer's lung. Occupational and Environmental Medicine 61: e3
Samson RA (1979). A compilation of the Aspergillus described since 1965. Studies in Mycology 18: 1-38.
Samson RA, Houbraken J, Frisvad JC, et al. (2010). Food and indoor fungi. CBS-KNAW Fungal Biodiversity Centre, Utrecht.
Samson RA, Hubka V, Varga J, et al. (2017). Single nomenclature of Aspergillus is based on the monophyly of the genus. Taxon submitted
Samson RA, Visagie CM, Houbraken J, et al. (2014). Phylogeny, identification and nomenclature of the genus Aspergillus. Studies in Mycology 78 : 141-173.
Schroeder HW, Kelton WH (1975). Production of sterigmatocystin by some species of the genus Aspergillus and its toxicity to chicken embryos. Applied and Environmental Microbiology 30: 589-591.
Séguin V, Gente S, Heutte N, et al. (2014). First report of mycophenolic acid production by Eurotium repens isolated from agricultural and indoor environments. World Mycotoxin Journal 7: 321-328.
Semeniuk G, Nagel CM, Gilman JC (1947). Observation on mold development and on deterioration in stored yellow dent shelled corn. Agricultural experiment station. Iowa State College of Agriculture. Research Bulletin 349: 253-284.
\bar{S} imonovičová A, Kraková L, Pangallo D (2015). Fungi on mummified human remains and in the indoor air in the Kuffner family crypt in Sládkovičovo (Slovakia). International Biodeterioration \& Biodegradation 99: 157-164
Sklenár F, Jurjević Ž, Zalar P, et al. (2017). Phylogeny of osmophillic aspergilli (subgenus Aspergillus) and taxonomic revision of section Restricti. Studies in Mycology.
Slack GJ, Puniani E, Frisvad JC, et al. (2009). Secondary metabolites from Eurotium species, Aspergillus calidoustus and A. insuetus common in Canadian homes with a review of their chemistry and biological activities. Mycological Research 113: 480-490.
Smetanina OF, Kalinovskii AI, Khudyakova YV, et al. (2007). Metabolites from the marine fungus Eurotium repens. Chemistry of Natural Compounds 43: 395-398.
Smith G (1949). The effect of adding trace elements to Czapek-Dox medium. Transactions of the Brittsh Mycological Society 32: 280-283.
Soboleva NA, Kurmanov IA (1984). Biosynthesis of sterigmatocystin. Veterinarya (Moscow) 1: 65-66.
Stipanovic RD, Schroeder HW (1976). Preechinulin, a metabolite of Aspergillus chevalieri. Transactions of the British Mycological Society 66: 178 179.

Stipanovics RD, Schroeder HW, Hein H (1976). Identification of D-valyl-L-tryptophan anhydride from Aspergillus chevalieri. Lloydia Journal of Natural Products 39: 158-159.
Summerbell RC, Cooper E, Bun U, et al. (2005). Onychomycosis: a critical study of techniques and criteria for confirming the etiologic significance of nondermatophytes. Medical Mycology 43: 39-59.
Sun SW, Ji CZ, Gu QQ, et al. (2013). Three new polyketides from marine-derived fungus Aspergillus glaucus HB1-19. Journal of Astan Natural Products Research 15: 956-961.
Sun X, Zhou X, Cai M, et al. (2009). Identified biosynthetic pathway of aspergiolide A and a novel strategy to increase its production in a marinederived fungus Aspergillus glaucus by feeding of biosynthetic precursors and inhibitors simultaneously. Bioresource Technology 100: 4244-4251.
Sun ZM, Qi ZT (1994). New taxa and a new record of Aspergillus and Eurotium. Acta Mycologica Sinica 13: 81-87.
Szebiotko K, Chelkowski J, Dopierala B, et al. (1981). Mycotoxins in cereal grains Part I. Ochratoxin, citrinin, sterigmatocystin, penicillic acid and toxigenic fungi in cereal grain. Nahrung 25: 415-421.
Talice RV, Mackinnon JE (1931). Aspergillus (Eurotium) montevidensis, n. sp. isolé d'un cas d'otomycose chez l'homme. Comptes rendus des seaances de la Societte de biologie et de ses filiales Sociéte de biologie (France) 108: 1007-1009.
Tang Q, Guo K, Li XY, et al. (2014). Three new asperentin derivatives from the algicolous fungus Aspergillus sp. F00785. Marine Drugs 12: 59936002.

Tao K, Du L, Sun X, et al. (2009). Biosynthesis of aspergiolide A, a novel antitumor compound by a marine-derived fungus Aspergillus glaucus via the polyketide pathway. Tetrahedron Letters 50: 1082-1085.
Thom C, Raper KB (1941). The Aspergillus glaucus group. U.S. Department of Agriculture Miscellaneous Publications 426: 1-46.
Thom C, Raper KB (1945). A manual of the Aspergilli. Williams \& Wilkins, Maryland, MD.
Thrasher JD (2016). Fungi, bacteria, nano-particulates, mycotoxins and human health in water damaged indoor environments. Journal of Community and Public Health Nursing 2: 115.
Varga J, Due M, Frisvad JC, et al. (2007). Taxonomic revision of Aspergillus section Clavati based on molecular, morphological and physiological data. Studies in Mycology 59: 89-106.
Varga J, Frisvad JC, Samson RA (2009). A reappraisal of fungi producing aflatoxins. World Mycotoxin Journal 2: 263-277.
Visagie CM, Hirooka Y, Tanney JB, et al. (2014a). Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world. Studies in Mycology 78: 63-139.
Visagie CM, Houbraken J, Frisvad JC, et al. (2014b) Identification and nomenclature of the genus Penicillium. Studies in Mycology 78: 343-371.
Visagie CM, Houbraken J, Rodriques C, et al. (2013). Five new Penicillium species in section Sclerotiora: a tribute to the Dutch Royal family. Persoonta 31: 42-62.
Visagie CM, Yilmaz N, Renaud JB, et al. (2017). A survey of xerophilic Aspergillus from indoor environment, including descriptions of two new section Aspergillus species producing eurotium-like sexual states. MycoKeys 19: 1-30.
Wang WL, Liu PP, Zhang YP, et al. (2009). 2-hydroxydiplopterol, a new cytotoxic pentacyclic triterpenoid from the halotolerant fungus Aspergillus variecolor B-17. Archives of Pharmacal Research 32: 1211-1214.
Wang WL, Lu ZY, Tao HW, et al. (2007a). Isoechinulin-type alkaloids, variecolorin A-L, from halotolerant Aspergillus varlecolor. Journal of Natural Products 70: 1558-1564.
Wang WL, Sun W, Gu QQ, et al. (2008). 1,6-dihydroxy-3-hydroxtmethyl-8-methoxyanthracene-9,10-dione monohydrate. Acta Crystallographica Section E64: 0332.
Wang WL, Zhu TJ, Tao HW, et al. (2007b). Three novel, structurally unique spirocyclic alkaloids from the halotolerant B-17 fungal strain of Aspergillus variecolor. Chemistry \& Biodiversity 4: 2913-2919.

Wang WL, Zhu TJ, Tao, HW, et al. (2007c). Two new cytotoxic quinone type compounds from the halotolerant fungus Aspergillus variecolor. The Journal of Antibiotics 60: 603-607.
Wang WS, Li XM, Teuscher F, et al. (2006). Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphonia urceolata. Journal of Natural Products 69: 1622-1625.
Wang XN, Radwan MM, Tarawneh AH, et al. (2013). Antifungal activity against plant pathogens as metabolites from the endophytic fungus Cladosporium cladosporioides. Journal of Agricultural and Food Chemistry 61: 4551-4555.
Wells JM, Cole RJ, Kirksey JW (1975). Emodin, a toxic metabolite of Aspergillus wentil isolated from weevil-damaged chestnuts. Applied Microbiology 30: 26-28.
Wen QY (1990). Identification of the main species in Fuzhuan Brick Tea. China Tea 6: 2-3.
White TJ, Bruns T, Lee S, et al. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and appllcations (Innis MA, Gelfand DH, Shinsky TJ, White TJ, eds). Academic Press Inc., New York: 315-322
Wilkinson S, Spilsbury JF (1965). Gliotoxin from Aspergillus chevalieri (Mangin) Thom et Church. Nature 206: 619.
Williams K, Szwalbe AJ, Mulholland NP, et al. (2016). Heterologous production of fungal maleidrides reveals the cryptic cyclization involved in their biosynthesis. Angewandte Chemie International Edition 55: 6784-6788.
Wu MD, Cheng MJ, Hsieh SY, et al. (2013). Chemical constituents of the fungus Eurotium chevalieri BCRC 07F0022. Chemistry of Natural Compounds 49: 1175-1176.
Xu A, Wang Y, Wen J, et al. (2011). Fungal community associated with fermentation and storage of Fuzhuan brick-tea. International Journal of Food Microbiology 146: 14-22.
Yan HJ, Li XM, Li CS, et al. (2012). Alkaloid and anthraquinone derivatives produced by the marine-derived endophytic fungus Eurotium rubrum. Helvetica Chimica Acta 95: 163-167.
Zalar P, Frisvad JC, Gunde-Cimerman N, et al. (2008). Four new species of Emericella from the Mediterranean region of Europe. Mycologia 100: 779-795.
Zhou LN, Zhu TJ, Cai SX, et al. (2010). Three new indole-containing diketopiperazine alkaloids from a deep-ocean sediment derived fungus Penicillium griseofulvum. Helvetica Chimica Acta 93: 1758-1762.
Zou X, Li Y, Zhang X, Li Q, et al. (2014). A new prenylated indole diketopiperazine alkaloid from Eurotium cristatum. Molecules 19: 17839-17847.

Fig. 1. A 50% majority rule Maximum likelihood consensus tree based on combined dataset of BenA, CaM and RPB2 sequences showing the relationship of species within Aspergillus sect. Aspergillus. Dataset contained 164 taxa, other alignment characteristics, partitioning scheme and nucleotide substitution models are listed in Tables 3-4. Maximum likelihood bootstrap proportion (bs) and Bayesian posterior probability (pp) are appended to nodes; only bs $\geq 70 \%$ and $\mathrm{pp} \geq 95 \%$ are shown, lower supports are indicated with a hyphen, whereas asterisks indicate full support (100% bs or 1.00 pp); ex-type strains are designated by a superscript T. The tree is rooted with Hamigera avellanea NRRL 1938 ${ }^{\mathrm{T}}$.

Fig. 2. A 50% majority rule Maximum likelihood consensus tree based on partial β-tubulin (BenA) sequences showing the relationship of species within Aspergillus sect. Aspergillus. Maximum likelihood bootstrap proportion (bs) and Bayesian posterior probability (pp) are appended to nodes; only bs $\geq 70 \%$ and $\mathrm{pp} \geq 95 \%$ are shown, lower supports are indicated with a hyphen, whereas asterisks indicate full support (100% bs or 1.00 pp); ex-type strains are designated by a superscript T. The tree is rooted with Hamigera avellanea NRRL 1938^{T}.

Fig. 3. A 50% majority rule Maximum likelihood consensus tree based on partial calmodulin (CaM) sequences showing the relationship of species within Aspergillus sect. Aspergillus. Maximum likelihood bootstrap proportion (bs) and Bayesian posterior probability (pp) are appended to nodes; only bs $\geq 70 \%$ and $\mathrm{pp} \geq 95 \%$ are shown, lower supports are indicated with a hyphen, whereas asterisks indicate full support (100% bs or 1.00 pp); ex-type strains are designated by a superscript T. The tree is rooted with Hamigera avellanea NRRL $1938{ }^{\mathrm{T}}$.

Fig. 4. A 50% majority rule Maximum likelihood consensus tree based on partial RNA polymerase II second largest subunit ($R P B 2$) sequences showing the relationship of species within Aspergillus sect. Aspergillus. Maximum likelihood bootstrap proportion (bs) and Bayesian posterior probability (pp) are appended to nodes; only bs $\geq 70 \%$ and $\mathrm{pp} \geq 95 \%$ are shown, lower supports are indicated with a hyphen, whereas asterisks indicate full support (100% bs or 1.00 pp); ex-type strains are designated by a superscript T. The tree is rooted with Hamigera avellanea NRRL 1938^{T}

Fig. 5. A 50% majority rule Maximum likelihood consensus tree based on ITS sequences. Maximum likelihood bootstrap proportion (bs) and Bayesian posterior probability (pp) are appended to nodes; only $\mathrm{bs} \geq 70 \%$ and $\mathrm{pp} \geq 95 \%$ are shown, lower supports are indicated with a hyphen, whereas asterisks indicate full support (100% bs or 1.00 pp); ex-type strains are designated by a superscript T. The tree is rooted with Hamigera avellanea NRRL $1938{ }^{\mathrm{T}}$.

Fig. 6. Formation of ascomata and range of ascospore phenotypes. A-D. Initials and ascomata. E, F. Aspergillus aerius $C B S 141771^{\mathrm{T}}$. G, H. A. appendiculatus CBS 374.75^{T}. I, J. A. aurantiacoflavus CBS 141930^{T}. K, L. A. brunneus CBS 112.26^{T}. M, N. A. caperatus CBS $141774^{\text {T }}$. O, P. A. chevalieri CBS $522.65^{\text {T }}$. Q, R. A. cibarius KACC $46346^{\text {T }}$. S, T. A. costiformis CBS 101749^{T}. U, V. A. cristatus CBS 123.53^{T}. W, X. A. cumulatus KACC 47316^{T}. Scale bars: D $=20 \mu \mathrm{~m}$, applies to $\mathrm{A}-\mathrm{C} ; \mathrm{W}=10 \mu \mathrm{~m}$, applies to $\mathrm{E}, \mathrm{G}, \mathrm{I}, \mathrm{K}, \mathrm{M}, \mathrm{O}, \mathrm{Q}, \mathrm{S}, \mathrm{U} ; \mathrm{X}=2 \mu \mathrm{~m}$, applies to $\mathrm{F}, \mathrm{H}, \mathrm{J}, \mathrm{L}, \mathrm{N}, \mathrm{P}, \mathrm{R}, \mathrm{T}, \mathrm{V}$.

Fig. 7. Range of ascospore phenotypes. A, B. Aspergillus endophyticus CBS 141766^{T}. C, D. A. glaucus CBS $516.6 \mathrm{~T}^{\mathrm{T}}$. E, F. A. intermedius CBS 523.65^{T}. G, H. A. leucocarpus CBS 353.68^{T}. I, J. A. levisporus CBS 141767^{T}. K, L. A. mallochii CBS 141928^{T}. M, N. A. megasporus CBS
141929^{T}. O, P. A. montevidensis CBS $491.65^{\mathrm{T}} . \mathbf{Q}$, R. A. neocarnoyi CBS 471.65^{T}. S, T. A. niveoglaucus CBS 114.27^{T}. U, V. A. osmophilus CBS 134258^{T}. W, X. A. porosus CBS 141770^{T}. Scale bars: $W=10 \mu \mathrm{~m}$, applies to A, C, E, G, I, K, M, O, Q, S, U; X $=2 \mu \mathrm{~m}$, applies to B, D, F, H, J, L, N, P, R, T, V.

Fig. 8. Range of ascospore phenotypes. A, B. Aspergillus proliferans DTO 322-A2. C, D. A. pseudoglaucus CBS 101747 (ex-type of A. fimicola). E, F. A. ruber CBS 530.65^{T}. G, H. A. ruber CBS 101748 (ex-type of A. tuberculatus). I, J. A. sloanii CBS $138177^{\text {T }}$. K, L. A. tamarindosoli CBS 141775^{T}. M, N. A. teporis CBS 141768^{T}. O, P. A. tonophilus KACC 47150. Q, R. A. xerophilus CBS 938.73^{T}. S, T. A. zutongqii CBS 141773^{T}. Scale bars: $\mathrm{S}=10 \mu \mathrm{~m}$, applies to A, C, E, G, I, K, M, O, Q; T = $2 \mu \mathrm{~m}$, applies to B, D, F, H, J, L, N, P, R.

Fig. 9. Range of conidia phenotypes. A, B. Aspergillus aerius CBS $141771^{\text {T }}$. C, D. A. appendiculatus CBS 374.75^{T}. E, F. A. aurantiacoflavus CBS 141930^{T}. G, H. A. brunneus CBS 112.26^{T}. I, J. A. caperatus CBS 141774^{T}. K, L. A. chevalieri CBS 522.65^{T}. M, N. A. cibarius KACC 46346^{T}. O, P. A. costiformis CBS 101749^{T}. Q, R. A. cristatus CBS 123.53^{T}. S, T. A. cumulatus KACC 47316^{T}. U, V. A. endophyticus CBS 141766^{T}. W, X. A. glaucus CBS 516.65^{T}. Scale bars: $W=10 \mu \mathrm{~m}$, applies to $\mathrm{A}, \mathrm{C}, \mathrm{E}, \mathrm{G}, \mathrm{I}, \mathrm{K}, \mathrm{M}, \mathrm{O}, \mathrm{Q}, \mathrm{S}, \mathrm{U} ; \mathrm{X}=2 \mu \mathrm{~m}$, applies to B, D, F, H, J, L, N, P, R, T, V.

Fig. 10. Range of conidia phenotypes. A, B. Aspergillus intermedius CBS $523.65^{\text {T }}$. C, D. A. leucocarpus CBS 353.68^{T}. E, F. A. levisporus CBS 141767^{T}. G, H. A. mallochii CBS 141928^{T}. I, J. A. megasporus CBS 141929^{T}. K, L. A. montevidensis CBS 491.65^{T}. M, N. A. neocarnoyi CBS 471.65^{T}. O, P. A. niveoglaucus CBS 114.27^{T}. Q, R. A. osmophilus CBS 134258^{T}. S, T. A. porosus CBS 141770^{T}. U, V. A. pseudoglaucus CBS 101747 (ex-type of A. fimicola). W, X. A. pseudoglaucus CBS 379.75 (ex-type of A. glaber). Scale bars: $\mathrm{W}=10 \mu \mathrm{~m}$, applies to $\mathrm{A}, \mathrm{C}, \mathrm{E}, \mathrm{G}$, I, K, M, O, Q, S, U; X = $2 \mu \mathrm{~m}$, applies to B, D, F, H, J, L, N, P, R, T, V.

Fig. 11. Range of conidia phenotypes. A, B. Aspergillus proliferans DTO 322-A2. C, D. A. ruber CBS 530.65^{T}. E, F. A. sloanii CBS 138177^{T}. G, H. A. tamarindosoli CBS 141775^{T}. I, J. A. teporis CBS 141768^{T}. K, L. A. tonophilus KACC $47150 . \mathbf{M}, \mathbf{N}$. A. xerophilus CBS 938.73^{T}. O, P. A. zutongqii CBS $141773^{\text {T }}$. Scale bars: $\mathrm{O}=10 \mu \mathrm{~m}$, applies to A, C, E, G, I, K, M; P $=2 \mu \mathrm{~m}$, applies to B, D, F, H, J, L, N.

Fig. 12. Diversity of macromphology (colonies on M40Y, $25^{\circ} \mathrm{C}, 7 \mathrm{~d}$) within Aspergillus sect. Aspergillus species. A-E. A. montevidensis. From left to right: CBS 491.65 ${ }^{\mathrm{T}}$, CBS 651.74 (extype of A. vitis), CBS 410.65, CBS 518.65 (ex-type of A. hollandicus), CBS 111.52. F-J. A. proliferans. From left to right: CBS 121.45^{T}, DTO 322-A2, CCF 4096, CCF 5395, CCF 5392. K-O. A. pseudoglaucus. From left to right: CBS $123.28^{\text {T }}$, CBS 101747 (ex-type of A. fimicola), CBS 379.75 (ex-type of A. glaber), DTO 147-G3, CGMCC 3.00460. P-T. A. ruber. From left to right: CBS 530.65^{1}, DTO 238-C4, CBS 101748 (ex-type of A. tuberculatus), CBS 104.18, CBS 464.65 (ex-type of A. athecius).

Fig. 13. Growth comparison of Aspergillus sect. Aspergillus species on M40Y for 7d and 14d at $25^{\circ} \mathrm{C}$.

Fig. 14. Growth comparison of Aspergillus sect. Aspergillus species on M40Y for 7d and 14d at $25^{\circ} \mathrm{C}$.

Fig. 15. Growth comparison of Aspergillus sect. Aspergillus species on M40Y for 7d and 14d at $25^{\circ} \mathrm{C}$.

Fig. 16. Growth comparison of Aspergillus sect. Aspergillus species on M40Y for 7d and 14d at $25^{\circ} \mathrm{C}$.

Fig. 17. Growth comparison of Aspergillus sect. Aspergillus species on M40Y for 7d and 14d at $25^{\circ} \mathrm{C}$.

Fig. 18. Aspergillus aerius CBS 141771^{T}. A. Colonies after 7 d at $25^{\circ} \mathrm{C}$: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C $=20 \mu \mathrm{~m} ; \mathrm{D}=250 \mu \mathrm{~m} ; \mathrm{E}-\mathrm{G}=10 \mu \mathrm{~m} ; \mathrm{H}, \mathrm{I}=2 \mu \mathrm{~m}$.

Fig. 19. Aspergillus appendiculatus $\mathrm{CBS} 374.75^{\mathrm{T}}$. A. Colonies after 7 d at $25^{\circ} \mathrm{C}$: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, $\mathrm{C}=20 \mu \mathrm{~m} ; \mathrm{D}=250 \mu \mathrm{~m} ; \mathrm{E}-\mathrm{G}=10 \mu \mathrm{~m} ; \mathrm{H}, \mathrm{I}=2 \mu \mathrm{~m}$.

Fig. 20. Aspergillus aurantiacoflavus CBS 141930^{T}. A. Colonies after 7 d at $25^{\circ} \mathrm{C}$: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, $\mathrm{C}=20 \mu \mathrm{~m} ; \mathrm{D}=250 \mu \mathrm{~m} ; \mathrm{E}-\mathrm{G}=10 \mu \mathrm{~m} ; \mathrm{H}, \mathrm{I}=2 \mu \mathrm{~m}$.
Fig. 21. Aspergillus brunneus CBS 112.26^{T}. A. Colonies after 7 d at $25^{\circ} \mathrm{C}$: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C $=20 \mu \mathrm{~m} ; \mathrm{D}=250 \mu \mathrm{~m} ; \mathrm{E}-\mathrm{G}=10 \mu \mathrm{~m} ; \mathrm{H}, \mathrm{I}=2 \mu \mathrm{~m}$.

Fig. 22. Aspergillus caperatus CBS 141774^{T}. A. Colonies after 7 d at $25^{\circ} \mathrm{C}$: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C $=20 \mu \mathrm{~m} ; \mathrm{D}=250 \mu \mathrm{~m} ; \mathrm{E}-\mathrm{G}=10 \mu \mathrm{~m} ; \mathrm{H}, \mathrm{I}=2 \mu \mathrm{~m}$.
Fig. 23. Aspergillus chevalieri CBS 522.65^{T}. A. Colonies after 7 d at $25^{\circ} \mathrm{C}$: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C $=20 \mu \mathrm{~m} ; \mathrm{D}=250 \mu \mathrm{~m} ; \mathrm{E}-\mathrm{G}=10 \mu \mathrm{~m} ; \mathrm{H}, \mathrm{I}=2 \mu \mathrm{~m}$.
Fig. 24. Aspergillus cibarius KACC 46346^{T}. A. Colonies after 7 d at $25^{\circ} \mathrm{C}$: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C $=20 \mu \mathrm{~m} ; \mathrm{D}=250 \mu \mathrm{~m} ; \mathrm{E}-\mathrm{G}=10 \mu \mathrm{~m} ; \mathrm{H}, \mathrm{I}=2 \mu \mathrm{~m}$.

Fig. 25. Aspergillus costiformis CBS 101749^{T}. A. Colonies after 7 d at $25^{\circ} \mathrm{C}$: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C $=20 \mu \mathrm{~m} ; \mathrm{D}=250 \mu \mathrm{~m} ; \mathrm{E}-\mathrm{G}=10 \mu \mathrm{~m} ; \mathrm{H}, \mathrm{I}=2 \mu \mathrm{~m}$.

Fig. 26. Aspergillus cristatus $\operatorname{CBS} 123.53^{\mathrm{T}}$. A. Colonies after 7 d at $25^{\circ} \mathrm{C}$: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C $=20 \mu \mathrm{~m} ; \mathrm{D}=250 \mu \mathrm{~m} ; \mathrm{E}-\mathrm{G}=10 \mu \mathrm{~m} ; \mathrm{H}, \mathrm{I}=2 \mu \mathrm{~m}$.
Fig. 27. Aspergillus cumulatus KACC 47316^{T}. A. Colonies after 7 d at $25^{\circ} \mathrm{C}$: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C $=20 \mu \mathrm{~m} ; \mathrm{D}=250 \mu \mathrm{~m} ; \mathrm{E}-\mathrm{G}=10 \mu \mathrm{~m} ; \mathrm{H}, \mathrm{I}=2 \mu \mathrm{~m}$.

Fig. 28. Aspergillus endophyticus CBS 141766^{T}. A. Colonies: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C $=20 \mu \mathrm{~m} ; \mathrm{D}=$ $250 \mu \mathrm{~m} ; \mathrm{E}-\mathrm{G}=10 \mu \mathrm{~m} ; \mathrm{H}, \mathrm{I}=2 \mu \mathrm{~m}$.

Fig. 29. Aspergillus glaucus CBS 516.65^{T}. A. Colonies after 7 d at $25^{\circ} \mathrm{C}$: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C $=20 \mu \mathrm{~m} ; \mathrm{D}=250 \mu \mathrm{~m} ; \mathrm{E}-\mathrm{G}=10 \mu \mathrm{~m} ; \mathrm{H}, \mathrm{I}=2 \mu \mathrm{~m}$.
Fig. 30. Aspergillus intermedius $\mathrm{CBS} 523.65^{\mathrm{T}}$. A. Colonies after 7 d at $25^{\circ} \mathrm{C}$: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C $=20 \mu \mathrm{~m} ; \mathrm{D}=250 \mu \mathrm{~m} ; \mathrm{E}-\mathrm{G}=10 \mu \mathrm{~m} ; \mathrm{H}, \mathrm{I}=2 \mu \mathrm{~m}$.

Fig. 31. Aspergillus leucocarpus CBS 353.68^{T}. A. Colonies after 7 d at $25^{\circ} \mathrm{C}$: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, $\mathrm{C}=20 \mu \mathrm{~m} ; \mathrm{D}=250 \mu \mathrm{~m} ; \mathrm{E}-\mathrm{G}=10 \mu \mathrm{~m} ; \mathrm{H}, \mathrm{I}=2 \mu \mathrm{~m}$.

Fig. 32. Aspergillus levisporus CBS 141767^{T}. A. Colonies after 7 d at $25^{\circ} \mathrm{C}$: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C $=20 \mu \mathrm{~m} ; \mathrm{D}=250 \mu \mathrm{~m} ; \mathrm{E}-\mathrm{G}=10 \mu \mathrm{~m} ; \mathrm{H}, \mathrm{I}=2 \mu \mathrm{~m}$.
Fig. 33. Aspergillus mallochii CBS 141928^{T}. A. Colonies after 7 d at $25^{\circ} \mathrm{C}$: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C $=20 \mu \mathrm{~m} ; \mathrm{D}=250 \mu \mathrm{~m} ; \mathrm{E}-\mathrm{G}=10 \mu \mathrm{~m} ; \mathrm{H}, \mathrm{I}=2 \mu \mathrm{~m}$.

Fig. 34. Aspergillus megasporus CBS 141929^{T}. A. Colonies after 7 d at $25^{\circ} \mathrm{C}$: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, $\mathrm{C}=20 \mu \mathrm{~m} ; \mathrm{D}=250 \mu \mathrm{~m} ; \mathrm{E}-\mathrm{G}=10 \mu \mathrm{~m} ; \mathrm{H}, \mathrm{I}=2 \mu \mathrm{~m}$.
Fig. 35. Aspergillus montevidensis CBS 491.65^{T}. A. Colonies after 7 d at $25^{\circ} \mathrm{C}$: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, $\mathrm{C}=20 \mu \mathrm{~m} ; \mathrm{D}=250 \mu \mathrm{~m} ; \mathrm{E}-\mathrm{G}=10 \mu \mathrm{~m} ; \mathrm{H}, \mathrm{I}=2 \mu \mathrm{~m}$.

Fig. 36. Aspergillus neocarnoyi CBS 471.65^{T}. A. Colonies: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C $=20 \mu \mathrm{~m} ; \mathrm{D}=$ $250 \mu \mathrm{~m} ; \mathrm{E}-\mathrm{G}=10 \mu \mathrm{~m} ; \mathrm{H}, \mathrm{I}=2 \mu \mathrm{~m}$.
Fig. 37. Aspergillus niveoglaucus $\mathrm{CBS} 114.27^{\mathrm{T}}$. A. Colonies after 7 d at $25^{\circ} \mathrm{C}$: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, $\mathrm{C}=20 \mu \mathrm{~m} ; \mathrm{D}=250 \mu \mathrm{~m} ; \mathrm{E}-\mathrm{G}=10 \mu \mathrm{~m} ; \mathrm{H}, \mathrm{I}=2 \mu \mathrm{~m}$.

Fig. 38. Aspergillus osmophilus CBS 134258^{T}. A. Colonies after 7 d at $25^{\circ} \mathrm{C}$: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, $\mathrm{C}=20 \mu \mathrm{~m} ; \mathrm{D}=250 \mu \mathrm{~m} ; \mathrm{E}-\mathrm{G}=10 \mu \mathrm{~m} ; \mathrm{H}, \mathrm{I}=2 \mu \mathrm{~m}$.

Fig. 39. Aspergillus porosus CBS 141770^{T}. A. Colonies: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C $=20 \mu \mathrm{~m} ; \mathrm{D}=$ $250 \mu \mathrm{~m} ; \mathrm{E}-\mathrm{G}=10 \mu \mathrm{~m} ; \mathrm{H}, \mathrm{I}=2 \mu \mathrm{~m}$.
Fig. 40. Aspergillus proliferans CBS 121.45^{T}. A. Colonies after 7 d at $25^{\circ} \mathrm{C}$: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, C, F. Conidiophores. D, G. Conidia. E. Ascomata initials. Scale bars: B = $20 \mu \mathrm{~m}$; C-E $=10 \mu \mathrm{~m} ; \mathrm{F}=20 \mu \mathrm{~m} ; \mathrm{G}=2 \mu \mathrm{~m}$.

Fig. 41. Aspergillus proliferans DTO 322-A2. A. Colonies after 7 d at $25^{\circ} \mathrm{C}$: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C $=20 \mu \mathrm{~m} ; \mathrm{D}=250 \mu \mathrm{~m} ; \mathrm{E}-\mathrm{G}=10 \mu \mathrm{~m} ; \mathrm{H}, \mathrm{I}=2 \mu \mathrm{~m}$.

Fig. 42. Aspergillus pseudoglaucus CBS 101747. A. Colonies after 7 d at $25^{\circ} \mathrm{C}$: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, $\mathrm{C}=20 \mu \mathrm{~m} ; \mathrm{D}=250 \mu \mathrm{~m} ; \mathrm{E}-\mathrm{G}=10 \mu \mathrm{~m} ; \mathrm{H}, \mathrm{I}=2 \mu \mathrm{~m}$.
Fig. 43. Aspergillus ruber CBS 530.65^{T}. A. Colonies after 7 d at $25^{\circ} \mathrm{C}$: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C $=20 \mu \mathrm{~m} ; \mathrm{D}=250 \mu \mathrm{~m} ; \mathrm{E}-\mathrm{G}=10 \mu \mathrm{~m} ; \mathrm{H}, \mathrm{I}=2 \mu \mathrm{~m}$.

Fig. 44. Aspergillus sloanii CBS 138177^{T}. A. Colonies after 7 d at $25^{\circ} \mathrm{C}$: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C $=20 \mu \mathrm{~m} ; \mathrm{D}=250 \mu \mathrm{~m} ; \mathrm{E}-\mathrm{G}=10 \mu \mathrm{~m} ; \mathrm{H}, \mathrm{I}=2 \mu \mathrm{~m}$.
Fig. 45. Aspergillus tamarindosoli CBS 141775^{T}. A. Colonies after 7 d at $25^{\circ} \mathrm{C}$: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, $C=20 \mu \mathrm{~m} ; \mathrm{D}=250 \mu \mathrm{~m} ; E-\mathrm{G}=10 \mu \mathrm{~m} ; \mathrm{H}, \mathrm{I}=2 \mu \mathrm{~m}$.

Fig. 46. Aspergillus teporis CBS 141768^{T}. A. Colonies after 7 d at $25^{\circ} \mathrm{C}$: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C $=20 \mu \mathrm{~m} ; \mathrm{D}=250 \mu \mathrm{~m} ; \mathrm{E}-\mathrm{G}=10 \mu \mathrm{~m} ; \mathrm{H}, \mathrm{I}=2 \mu \mathrm{~m}$.

Fig. 47. Aspergillus tonophilus KACC 47150 . A. Colonies after 7 d at $25^{\circ} \mathrm{C}$: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C $=20 \mu \mathrm{~m} ; \mathrm{D}=250 \mu \mathrm{~m} ; \mathrm{E}-\mathrm{G}=10 \mu \mathrm{~m} ; \mathrm{H}, \mathrm{I}=2 \mu \mathrm{~m}$.

Fig. 48. Aspergillus xerophilus $\mathrm{CBS} 938.73^{\mathrm{T}}$. A. Colonies after 7 d at $25^{\circ} \mathrm{C}$: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C $=20 \mu \mathrm{~m} ; \mathrm{D}=250 \mu \mathrm{~m} ; \mathrm{E}-\mathrm{G}=10 \mu \mathrm{~m} ; \mathrm{H}, \mathrm{I}=2 \mu \mathrm{~m}$.

Fig. 49. Aspergillus zutongqii CBS 141773^{T}. A. Colonies after 7 d at $25^{\circ} \mathrm{C}$: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C $=20 \mu \mathrm{~m} ; \mathrm{D}=250 \mu \mathrm{~m} ; \mathrm{E}-\mathrm{G}=10 \mu \mathrm{~m} ; \mathrm{H}, \mathrm{I}=2 \mu \mathrm{~m}$.

BenA, ML, 1000 bs 50% majority consensus

BenA, ML, 1000 bs 50% majority consensus

A. aurantiacoflavus sp. nov.
A. proliferans
A. megasporus
A. aerius $s p$. nov. A. levisporus sp. nov.
A. niveoglaucus CGMCC 3.06092
A. niveoglaucus KACC 47144
A. brunneus
A. niveoglaucus KACC 47147
A. niveoglaucus CCM F-530
A. niveoglaucus IHEM 1811
A. niveoglaucus NRRL 127^{T}
A. niveoglaucus NRRL 128
A. niveoglaucus CCF 5380

89/.99 A. niveoglaucus NRRL 137
$89 / .99$
A. niveoglaucus NRRL 136
A. niveoglaucus CGMCC 3.04665
A. brunneus NRRL 133
A. brunneus CBS 117328
A. brunneus NRRL 124
A. brunneus NRRL $131^{\text {T }}$
A. brunneus DTO 357-A1
A. niveoglaucus CCF 4191

CGMCC 3.06498
CGMCC 3.00450
A. niveoglaucus

CCF 4098
CCF 5383
KACC 46346^{T}
KACC 49766
CCF 5385
CCF 4264
CCF 4235
CCF 5384
EXF 10029
NRRL 126^{T}
CBS $141766^{\text {T }}$

NRRL 3497^{T} DTO 174-I5
 A. osmophilus
 A. leucocarpus

 DTO 357-A2 CBS 141768^{T}A. tamarindosoli sp. nov.
A. xerophilus
A. teporis sp. nov.

CaM, ML, 1000 bs 50% majority consensus

CaM, ML, 1000 bs 50% majority consensus

RPB2, ML, 1000 bs
50% majority consensus

RPB2, ML, 1000 bs 50% majority consensus

A. porosus sp . nov.
A. caperatus sp. nov.
A. chevalieri
A. cristatus
A. costiformis
A. tamarindosoli sp. nov.
A. xerophilus
A. osmophilus
A. leucocarpus
A. teporis sp. nov.

Hamigera avellanea NRRL $1938^{\text {T }}$

M40Y	M40Y	M40Y	M40Y
obverse, 7d	reverse, 7d	obverse, 14d	reverse, 14d

A. aerius
A. appendiculatus
A. aurantiacoflavus
A. brunneus

A. chevalieri
A. cibarius

M40Y
obverse, 7

M40Y
reverse, 7d

M40Y obverse, 14d

M40Y reverse, 14d

A. glaucus
A. intermedius
A. leucocarpus

M40Y	M40Y	M40Y	M40Y
obverse, 7d	reverse, 7d	obverse, 14d	reverse, 14d

M40Y
 M40Y
 M40Y

obverse, 7d
reverse, 7d
obverse, 14d

M40Y

reverse, 14d
A. tonophilus
A. xerophilus
A. zutongqii

D

H

0 0

C

y. ${ }^{2}$

C

8

∞

0

0

F

8

Table 1. Section Aspergillus strains used in phylogenetic analyses.

Species	Strain mr. ${ }^{1}$	Source	GenBank accession nr.			
			ITS	BenA	CaM	RPB2
Aspergillus aerius	CBS $141771^{\text {T }}=$ DTO 241-G7 $=$ IBT 34446	The Netherlands, air treatment system in production plant, 2013, J. Houbraken	LT670916	LT670990	LT670991	LT670992
A. appendiculatus	$\begin{aligned} & \text { CBS } 374.75^{\mathrm{T}}=\text { IMI } 278374=\text { FRR } 2793=\text { JCM } 1566 \\ & =\text { IBT } 34507 \end{aligned}$	Switzerland, Stäfa, smoked sausage, 1971, P. Blaser	HE615132	HE801333	HE801318	HE801307
	CBS 101746 = CGMCC 3.04673 (AS 3.4673) (ex-type of A. aridicola)	China, Tibet, sheep dung, H.Z. Kong \& Z.T. Qi	HE615133	HE801334	HE801319	HE801308
A. aurantiacoflavus	$\begin{aligned} & \text { CBS } 141930^{\mathrm{T}}=\text { EMSL No. } 2903=\text { CCF } 5393=\text { DTO } \\ & 355-\mathrm{I} 1=\text { IBT } 34485 \end{aligned}$	USA, California, San Diego, baby carrier backpack, 2015, Ž. Jurjevič	LT670917	LT670993	LT670994	LT670995
	EMSL No. 2693 = CCF 5391 = DTO 355-H7	USA, IL, Chicago, rubber toy imported from China, 2015, Ż. Jurjevič	LT670918	LT670996	LT670997	LT670998
	EMSL No. $3024=$ CCF $5394=$ DTO 355-H9	USA, New Jersey, Cherry Hill, cake spread, 2015, Ž. Jurjevič	LT670919	LT670999	LT671000	LT671001
A. brunneus	$\begin{aligned} & \text { CBS } 112.26^{\mathrm{T}}=\text { CBS } 524.65=\text { IBT } 5341=\text { NRRL } 131 \\ & =\text { NRRL } 134=\text { ATCC } 1021=\text { IFO } 5862=\text { IMI } 211378 \end{aligned}$	USA, California, fruit (Ficus carica), M.B. Church	EF652060	EF651907	EF651998	EF651939
	DTO 357-A1 $=$ KAS7575	Canada, house dust, 2015, C.M Visagie	LT670920	LT671002	LT671003	LT671004
	NRRL 133 = CCF 5586	Unknown source, G. Smith	EF652061	EF651908	EF651999	EF651940
	NRRL $124=$ CBS $113.27=$ CCF 5585 (ex-type of A. medius)	Unknown source, W. McRae	EF652056	EF651904	EF651997	EF651938
	DTO 197-B3 = CBS 117328	Canada, Manitoba, M. Desjardins	LT670921	LT671005	LT671006	LT671007
A. caperatus	CBS $141774{ }^{\text {T }}=$ DTO 337-E6 $=$ IBT 34451	South Africa, Robben Island, soil, 2015, M Meijer	LT670922	LT671008	LT671009	LT671010
A. chevalieri	$\begin{aligned} & \text { CBS } 522.65^{\mathrm{T}}=\text { NRRL } 78=\text { ATCC } 16443=\mathrm{IMI} \\ & 211382=\text { NRRL A- } 7803=\text { Thom } 4125.3=\text { WB } 78= \\ & \text { IBT } 5680 \text { (neotype of } A . \text { equitis) } \end{aligned}$	USA, coffee beans, 1916, C. Thom	EF652068	EF651911	EF652002	EF651954
	NRRL 79	USA, Indiana, Indianapolis, unknown source, Dr. Adams	EF652069	EF651912	EF652003	EF651955
	NRRL 4755	USA, culture contamination, D.I. Fennell	EF652071	EF651913	EF652004	EF651956

CCF $3291=$ DTO 355-B6

CCF $1676=$ DTO $355-$ B7
CCF $4788=\mathrm{KACC} 47145=$ DTO $355-\mathrm{B} 8$
CGMCC $3.06132=$ DTO 348-G5

DTO 238-E3
CBS $141769=$ DTO 088-D7

CGMCC $3.06492=$ DTO 348-H3

DTO 092-D3
$\mathrm{KACC} 46346^{\mathrm{T}}=\mathrm{DTO} 197-\mathrm{D} 3=\mathrm{IBT} 32307=\mathrm{CCF}$ 4783

CCF $4098=$ NRRL $62493=$ DTO 354-I8

CCF $4235=$ NRRL $62492=$ DTO 354-I7
CCF $4264=$ DTO 354-I9
$\mathrm{KACC} 49766=\mathrm{CCF} 4784$
EMSL No. $1652=$ CCF $5385=$ DTO $355-G 6$
EMSL No. $2498=$ CCF $5383=$ DTO $355-G 7$

EMSL No. 2865 = CCF 5384 = DTO 355-G8
CGMCC $3.06498=$ DTO $348-\mathrm{H} 7$
CGMCC $3.00450=$ DTO $348-$ B5
CBS $101749^{\mathrm{T}}=$ CGMCC $3.04664($ AS 3.4664$)=$ DTO China, Hebei, moldy paper-box, 1992, H.Z. 348-D8 $=$ IBT $34456=$ IBT 33662 Kong

Czech Republic, Brno, rice, 1999, V. Ostr'	FR727116	HE578085	HE578099	HE801314
Czech Republic, Prague, semolina, 1979, V. Muzikár̆	LT670923	LT671011	LT671012	LT671013
South Korea, soybeans, 2012, D.H. Kim	LT670924	LT671014	LT671015	LT671016
China, Tibet, soil, 2001	LT670925	LT671017	LT671018	LT671019
Unknown source, S. Suhendriani	LT670926	LT671020	LT671021	LT671022
Madagascar, soil, 2008, J. Houbraken	LT670927	LT671023	LT671024	LT671025
China, Yunnan, moldy peel, 2001	LT670928	LT671026	LT671027	LT671028
Madagascar, soil, 2008, J. Houbraken	LT670929	LT671029	LT671030	LT671031
South Korea, Icheon, meju, 2011, S.B. Hong	JQ918177	JQ918180	JQ918183	JQ918186
Czech Republic, Prague, toenail of 56 -yearold woman, 2010, P. Lysková	FR848828	FR837968	FR837973	FR837979
Czech Republic, Prague, toenail of 63 -yearold man, 2012, P. Lysková	HE801341	HE801330	HE801324	HE801313
Spain, Nerja cave, near Málaga, cave sediment (entrance chambre), 2011, A.	HE974462	HE974436	HE806186	HE974428
The Netherlands, black bean, 2012, M. Meijer	LT670930	LT671032	LT671033	LT671034
USA, Pennsylvania, child's shoes, 2012, Ž. Jurjevič	LT670931	LT671035	LT671036	LT671037
USA, Washington DC, chocolate glazed frosted donut, 2014, Ž. Jurjevič	LT670932	LT671040	LT671041	LT671042
USA, California, Danville, chocolate chip cookies, 2015, Ž. Jurjevič	LT670933	LT671043	LT671044	LT671045
China, Hebei, soil, 2001	LT670934	LT671046	LT671047	LT671048
China, 1952	LT670935	LT671049	LT671050	LT671051
China, Hebei, moldy paper-box, 1992, H.Z. Kong	HE615136	HE801338	HE801320	HE801309

Czech Republic, Prague, toenail of 5-year-

CCF $4097=$ NRRL $62483=$ DTO $354-13$

DTO 326-B4

CGMCC $3.06520=$ DTO 348-I
A. glaucus

CBS $123.53^{\mathrm{T}}=$ NRRL $4222=\mathrm{ATCC} 16468=\mathrm{BCRC}$ $33090=$ FRR $1167=$ IBT $5355=$ IHEM $5619=$ IMI IHEM $2423=$ DTO 355-B3

CCF $4701=$ DTO 355-B1

EMSL No. $2827=$ CCF $5376=$ DTO $355-G 9$

CBS $141766^{\text {T }}=$ DTO $354-\mathrm{I} 2=$ CCF $5345=$ IBT 3451

The Netherlands, cellophane, 2015, J.

Houbraken

China, Hebei, moldy box, 2001
South Africa, unknown, 1953, H.J. Swart

Zaire, Kinshasa, soil, 1984
China, Hunan, tea block, 2013 , O.L. Pan \& L. Wang

China, Guangxi, tea block, 2013, Q.L. Pan \& L. Wang

China, Hubei, soil, 2001
South Korea, Anseong, rice straw used in meju fermentation
South Korea, air of a meju fermentation room
South Korea, air of a meju fermentation room
USA, New York, Bronx, bedroom ceiling 2015, Ž. Jurjevič
Czech Republic, Prague, Stromovka park,
endophyte of Acer pseudoplatanus, 2013, Kelnarová
CBS $516.65^{\mathrm{T}}=$ NRRL $116=$ ATCC $16469=$ DTO 197- USA, Washington DC, unpainted board A $1=$ IBT $32295=$ IMI $211383=$ LCP $64.1859=$ Thom (K.B. Raper's residence), 1938, K.B. Raper NRRL $117=$ DTO $355-$ B4 $=$ CCF 5582 (ex-type of A. USA, Washington DC, unpainted board
(K.B. Raper's basement), 1938, K.B. Raper

EMSL No. $2529=$ CCF $5381=$ DTO $355-$ H1
NRRL $120=117.46=$ CBS $532.65=$ CCF 5583 (extype of A. umbrosus)

NRRL $121=$ DTO 355-B5 = CCF 5584

EMSL No. $3317=$ CCF $5382=$ DTO 355-H2

Puerto Rico, Bayamon, office, air, 2014, Ž. Jurjevič

USA, coffee beans, 1925, F.A. McCormick

Unknown source

USA, New York, Ulster Park, bedroom,
settle plates, 2015, Ž. Jurjevič

FR837960	FR837970	FR837974	FR837978
LT670936	LT671052	LT671053	LT671054
LT670937	LT671055	LT671056	LT671057
EF652078	EF651914	EF652001	EF651957
LT670938	LT671058	LT671059	LT671060
KF923732	KF923737	KF923741	KF923734
KF923733	KF923739	deposited	KF923736
LT670939	LT671061	LT671062	LT671063
KF92830	KF928297	KF928300	KF928294.
KF928304.	KF928298	KF928301	KF928295.
KF928305	KF928299	KF928302	KF928296
LT670940	LT671064	LT671065	LT671066
LT670941	LT671067	LT671068	LT671069
EF652052	EF651887	EF651989	EF651934
EF652053	EF651888	EF651990	EF651935
LT670942	LT671070	LT671071	LT671072
EF652054	EF651889	EF651991	EF651936
EF652055	EF651890	EF651992	EF651937
LT670943	LT671073	LT671074	LT671075

A. intermedius	$\begin{aligned} & \text { CBS } 523.65^{\mathrm{T}}=\text { NRRL } 82=\text { ATCC } 16444=\text { DSM } 2830 \\ & =\text { IBT } 5677=\text { IMI } 089278 \mathrm{ii}=\text { IMI } 89278=\text { LSHBBB } \end{aligned}$	UK, cotton yarn, 1927, G. Smith	EF652074	EF651892	EF652012	EF651958
	NRRL 84	Unknown source	EF652070	EF651893	EF652013	EF651959
	$\begin{aligned} & \text { NRRL } 4817=\text { DTO } 355-\text { B9 } 9 \text { IFO } 5322=\text { IMI } 313754 \\ & =\text { JCM } 23051=\text { CCF } 5608 \end{aligned}$	Unknown country, butter	EF652072	EF651894	EF652014	EF651960
	NRRL 25823	USA, IL, Peoria, soy protein, A.J. Moyer	EF652073	EF651895	EF652015	EF651961
	CBS 377.75 (ex-type of A. spiculosus)	Spain, Badajoz, soil, P. Blaser	HE974459	HE974432	HE974437	HE974425
	CCF $127=$ DTO 354-I5	China, industrial material, 1955, V Zánová	HE578060	HE974431	HE578100	HE974426
	CCF $4681=$ DTO 354-I6	Czech Republic, Prague, sputum of 55 -yearold woman, 2013, P. Lysková	LT670944	LT671076	LT671077	LT671078
	CCF 5377 = DTO 355-G5	Czech Republic, Prague, air sampler, surgical operating room, 2014, V.	LT670945	LT671079	LT671080	LT671081
	CGMCC $3.03968=$ DTO 348-D6	China, unknown source, 1969	LT670946	LT671082	LT671083	LT671084
	CGMCC $3.00664=$ DTO 348-C1	Czech Republic, unknown source, 1956	LT670947	LT671085	LT671086	LT671087
A. leucocarpus	$\begin{aligned} & \text { CBS } 353.68^{\mathrm{T}}=\text { IBT } 5350=\text { IMI } 278375=\text { NRRL } 3497 \\ & =\text { QM } 9365=\text { QM } 9707=\text { CCF } 5590 \end{aligned}$	Germany, Giessen, dried sausage, R. Hadlok	EF652087	EF651925	EF652023	EF651972
	DTO 357-A2 $=$ KAS7576	Canada, house dust, 2015, C.M Visagie	LT670948	LT671088	LT671089	LT671090
	DTO 174-I5	Madagascar, vanilla sticks, 2012, J. Houbraken	LT670949	LT671091	LT671092	LT671093
A. levisporus	$\begin{aligned} & \text { CBS } 141767^{\mathrm{T}}=\text { DTO } 355-\mathrm{G} 4=\text { EMSL No. } 3211= \\ & \text { CCF } 5378=\text { IBT } 34512 \end{aligned}$	USA, Missouri, Saint Louis, bedroom, wood base, 2015, Ž. Jur̈jevič	LT670950	LT671094	LT671095	LT671096
A. mallochii	$\begin{aligned} & \mathrm{CBS} 141928^{\mathrm{T}}=\mathrm{DTO} 357-\mathrm{A} 5=\mathrm{KAS} 7618=\mathrm{DAOMC} \\ & 146054 \end{aligned}$	USA, California, San Mateo, pack rat dung, D. Malloch	KX450907	KX450889	KX450902	KX450894
	CBS $141776=$ DTO 343-G3	The Netherlands, chocolat miroir, 2015	KX450908	KX450890	KX450903	KX450895
A. megasporus	$\begin{aligned} & \text { CBS } 141929^{\mathrm{T}}=\text { DTO } 356-\mathrm{H} 7=\text { KAS } 6176=\text { DAOMC } \\ & 250799 \end{aligned}$	Canada, Nova Scotia, Wolfville, house dust, 2015, C.M. Visagie	KX450910	KX450892	KX450905	KX450897
	CBS 141772 = DTO 048-I3	The Netherlands, Dutch chocolate butter, 2007, M. Meijer	KX450911	KX450893	KX450906	KX450898
	DTO 356-H1 $=$ KAS5973 = DAOMC 250800	Canada, New Brunswick, Little Lepreau, house dust, 2015, C.M Visagie	KX450909	KX450891	KX450904	KX450896

A. montevidensis
A. neocarnoyi

CBS $491.65^{\mathrm{T}}=$ NRRL $108=$ ATCC $10077=$ IBT 5685 Uruguay, Montevideo, tympanic membrane $=$ IHEM $3337=$ IMI $172290=$ NRRL $109=$ QM 7423 of human ear, 1932, R.V. Talice \& J.E. NRRL 89

Unknown source
NRRL $90=$ CBS 518.65 (ex-type of A. hollandicus)
USA, unknown source, ~1910
NRRL 4716

NRRL 25850
NRRL 35697
NRRL A-13891 $=$ CBS 410.65 (ex-type of A.
heterocaryoticus
CBS $651.74=$ ATCC $24717=$ IMI $174724=$ VKM F1760 (ex-type of A. vitis)
CCF 3998

CCF 4069

CCF 4070
CCF 4071

CCF 4248
EMSL No. $2934=$ CCF $5379=$ DTO $355-$ H3
CBS $111.52=$ DTO $351-\mathrm{C} 9$

DTO 147-I4
CGMCC $3.03888=$ DTO $348-$ D3
CBS $471.65^{\mathrm{T}}=$ NRRL $126=$ ATCC $16924=$ IBT 6016
$=$ IMI $172279=$ LSHTM A32 $=$ QM $7402=$ Thom
EXF-10029 = DTO 357-E2

USA, Missouri, Columbia, candied grapefruit rind, D.I. Fennell
USA, IL, Peoria, refrigerated bread dough, R. Graves

USA, IL, Chicago, nasal swab
Mexico, Oryza sativa kernel, 1963, C.R. Benjamin
Kazakhstan, Alma-Ata, ex grapes, 1968, L.A. Beljakova

Czech Republic, Prague, neck skin of 78-year-old woman, 2008, M Skořepová Czech Republic, heel skin of 32-year-old man, Prague, 2007, M. Skořepová
Czech Republic, fingernail of 32-year-old woman, Prague, 2007, M Skořepová Czech Republic, Prague, thigh and neck skin of 42-year-old woman, 2010, P. Lysková Czech Republic, Skrbeň, window sill, 1997, A. Kubátová

USA, PA, Mahanoy City, bedroom, settle plates, 2015, Ž. Jurjevič

Suriname, plywood, M.B. Schol-Schwarz
Hungary, indoor air, 2014, M. Meijer China, mite, 1969

Unknown source, P. Biourge
Slovenia, Ljubljana, Slovene Ethnographic museum, air at the sampling of shaman

EF652077	EF651898	EF652020	EF651964
EF652075	EF651896	EF652016	EF651962
EF652076	EF651897	EF652017	EF651963
EF652079	EF651899	EF652018	EF651965
EF652082	EF651900	EF652021	EF651966
EF652084	EF651902	EF652022	EF651968
EU021619	EU021670	EU021687	EU021659
HE974460	HE974433	HE974441	HE974424
FR727117	HE974434	FR751447	HE974418
FR839679	FR775356	HE974440	HE974419
FR848825	FR775335	FR751442	HE974420
FR839680	HE974435	FR751449	HE974421
HE974461	HE801339	HE974442	HE974422
LT670951	LT671097	LT671098	LT671099
LT670952	LT671100	LT671101	LT671102
LT670953	LT671103	LT671104	LT671105
LT670954	LT671106	LT671107	LT671108
EF652057	EF651903	EF651985	EF651942
LT670955	LT671109	LT671110	LT671111

A. niveoglaucus	$\begin{aligned} & \text { CBS } 114.27^{\mathrm{T}}=\text { CBS } 517.65=\text { NRRL } 127=\text { ATCC } \\ & 10075=\text { BCRC } 33096=\text { CGMCC } 3.04374=\text { FRR } 927 \end{aligned}$	Unknown source, A. Blochwitz	EF652058	EF651905	EF651993	EF651943
	NRRL 128	Unknown source, G. Smith	EF652059	EF651906	EF651994	EF651944
	NRRL 136	Unknown source, G. Smith	EF652062	EF651909	EF651995	EF651945
	NRRL 137	Unknown source	EF652063	EF651910	EF651996	EF651946
	CCF $4191=$ DTO 355-C1	Spain, Andalusia, Málaga, Cueva del Tesoro, cave sediment from the cave wall,	HE801344	HE801332	HE974438	HE974427
	CCM F-530 $=$ CCF 4038	Czech Republic, garlic, L. Marvanová	HE578069	HE578086	HE578092	HE578114
	EMSL No. $2211=$ CCF $5380=$ DTO 355-H8	USA, Montana, Great Falls, air of bathroom, 2013, Ž. Jurjevič	LT670956	LT671112	LT671113	LT671114
	IHEM $1811=$ DTO 355-C3	Belgium, Namur, indoor air, 1983	LT670957	LT671115	LT671116	LT671117
	CBS $101750=$ CGMCC $3.04665($ AS 3.4665$)=$ DTO 197-B4 (ex-type of A. parviverruculosus)	China, Hebei, soil	HE615135	HE801331	HE801323	HE801312
	CCF $4787=$ KACC $47144=$ DTO 355-C4	South Korea, soybeans, 2012, D.H. Kim	LT670958	LT671118	LT671119	LT671120
	CCF $4790=\mathrm{KACC} 47147=$ DTO $355-\mathrm{C} 5$	South Korea, soybeans, 2012, D.H. Kim	LT670959	LT671121	LT671122	LT671123
	CGMCC $3.06092=$ DTO 348-F3	China, Guangdong, cashew Kernel, 2001	LT670960	LT671124	LT671125	LT671126
A. osmophilus	CBS $134258^{\text {T }}=$ IRAN $2090 \mathrm{C}=$ DTO 354-C1	Iran, East Azerbaijan province, Marand, Triticum aestivum leaf, 2006, B. Asgari	KC473921	LT671127	LT671128	LT671129
A. porosus	CBS $141770^{\text {T }}=$ DTO 262-D7 $=$ IBT 34443	Turkey, soil, 2013, A. Yoltas	LT670961	LT671130	LT671131	LT671132
	DTO 308-D1	Turkey, soil, 2014, R. Demirel	LT670962	LT671133	LT671134	LT671135
	CBS $375.75=$ DTO 197-C4	Israel, Arachis hypogaea fruit, P. Blaser	LT670963	LT671136	LT671137	LT671138
	DTO 262-D4	Turkey, soil, 2013, A. Yoltas	LT670964	LT671139	LT671140	LT671141
	DTO 262-D2	Turkey, soil, 2013, A. Yoltas	LT670965	LT671142	LT671143	LT671144
A. proliferans	CBS $121.45^{\mathrm{T}}=$ NRRL $1908=\mathrm{IBT} 6213=\mathrm{IMI}$ $016105 \mathrm{ii}=$ IMI $016105 \mathrm{iii}=$ IMI $16105=$ LSHB BB .82	UK, Manchester, cotton yarn, G. Smith	EF652064	EF651891	EF651988	EF651941

	CBS $138176=$ DTO 244-I8 $=$ CCF 4926	UK, Middlesex, house dust, 2010, E. Whitfield \& K. Mwange	KJ775539	KJ775073	LT671039	KX463364
	CBS $138231=$ DTO 245-A6	UK, Middlesex, house dust, 2010, E. Whitfield \& K. Mwange	KJ775541	KJ775075	KJ775311	KX450899
	CBS $138178=$ DTO 245-A8	UK, Middlesex, house dust, 2010, E. Whitfield \& K. Mwange	KJ775542	KJ775076	KJ775313	KX450900
	CBS 138179 = DTO 245-A9	UK, Middlesex, house dust, 2010, E. Whitfield \& K. Mwange	KJ775543	KJ775077	KJ775314	KX450901
A. tamarindosoli	CBS $141775{ }^{\text {T }}=$ DTO $054-\mathrm{A} 8=\mathrm{IBT} 34432$	Thailand, Hua Hin, soil under tamarind, 2007, R.A. Samson \& J. Houbraken	LT670981	LT671191	LT671192	LT671193
A. teporis	CBS $141768^{\text {T }}=$ DTO 058-E5 $=$ IBT 34513	The Netherlands, heat treated corn kernels, 2008, M. Meijer	LT670982	LT671194	LT671195	LT671196
A. tonophilus	$\begin{aligned} & \text { CBS } 405.65^{\mathrm{T}}=\text { NRRL } 5124=\text { ATCC } 16440=\text { ATCC } \\ & 36504=\text { IBT } 21230=\text { IMI } 108299=\text { QM } 8599=\text { WB } \end{aligned}$	Japan, Tokyo, binocular lens, T Ohtsuki	EF652081	EF651919	EF652000	EF651969
	DTO 356-H6 = KAS6175	Canada, house dust, 2015, C.M Visagie	LT670915	LT671197	LT671198	LT671199
	CCF $4785=$ KACC $45365=$ DTO $355-\mathrm{A} 2$	South Korea, meju, 2012, S.B. Hong	LT670984	LT671200	LT671201	LT671202
	CCF 4786 = KACC $47150=$ DTO 355-A1	South Korea, soybeans, 2012, D.H. Kim	LT670985	LT671203	LT671204	LT671205
A. xerophilus	$\begin{aligned} & \text { CBS } 938.73^{\mathrm{T}}=\text { NRRL } 6131=\text { IBT } 5429=\text { IBT } 5489= \\ & \text { IBT } 34503=\text { DTO } 083-\text { A } 2=\text { CCF } 5593 \end{aligned}$	Egypt, Western desert, desert soil, J. Mouchacca	EF652085	EF651923	EF651983	EF651970
	NRRL $6132=$ CBS 755.74	Egypt, Western desert, desert soil, J. Mouchacca	EF652086	EF651924	EF651984	EF651971
A. zutongqii	CBS $141773^{\mathrm{T}}=\mathrm{CGMCC} 3.13917=$ DTO $349-\mathrm{E} 1=$ IBT 34450	China, Beijing, peanut shell, 2008, L. Wang	LT670986	LT671206	LT671207	LT671208
	CGMCC $3.06103=$ DTO 348-F7	China, Ningxia, 2001	LT670987	LT671209	LT671210	LT671211
	CGMCC $3.03980=$ DTO 348-D7	China, 1969, Z.T. Qi	LT670988	LT671212	LT671213	LT671214
	CGMCC $3.03961=$ DTO 348-D5	China, ocular lens, 1969, Z.T. Qi	LT670989	LT671215	LT671216	LT671217

 BCCM/IHEM, Belgian Coordinated Collections of Microorganisms; DTO, working collection of the Applied and Industrial Mycology department (DTO) housed at the Westerdijk Fungal Biodiversity Institute.

Table 2. Primers used in this study for amplification and sequencing.

Locus	Primer	Amplification	Annealing temp (${ }^{\circ} \mathrm{C}$)	Cycles	Orientation	Sequence (from 5'to 3')	References
ITS	V9G (General, Gen.)	Standard	55 (alt. 52)	35	Forward	TTACGTCCCTGCCCTTTGTA	de Hoog \& Gerrits van den Ende (1998)
	LS266 (Gen.)				Reverse	GCATTCCCAAACAACTCGACTC	Masclaux et al. (1995)
	ITS1 (Alternative, Alt.)				Forward	TCCGTAGGTGAACCTGCGG	White et al. (1990)
	ITS4 (Alt.)				Reverse	TCCTCCGCTTATTGATATGC	White et al. (1990)
BenA	Bt2a (Gen.)	Standard	55 (alt. 52)	35	Forward	GGTAACCAAATCGGTGCTGCTITC	Glass \& Donaldson (1995)
	Bt2b (Gen.)				Reverse	ACCCTCAGTGTAGTGACCCTTGGC	Glass \& Donaldson (1995)
	T10 (Alt.)				Forward	ACGATAGGTTCACCTCCAGAC	O'Donnell \& Cigelnik (1997)
	Ben2F (Alt.)				Forward	TCCAGACTGGTCAGTGTGTAA	Hubka \& Kolařík (2012)
CaM	CMD5 (Gen.)	Standard	55 (alt. 52)	35	Forward	CCGAGTACAAGGAGGCCTTC	Hong et al. (2005)
	CMD6 (Gen.)				Reverse	TTTYTGCATCATRAGYTGGAC	Hong et al. (2005)
	CF1L (Alt.)				Forward	GCCGACTCTTTGACYGARGAR	Peterson (2008)
	CF1M (Alt.)				Forward	AGGCCGAYTCTYTGACYGA	Peterson (2008)
	CF4 (Alt.)				Reverse	TTTYTGCATCATRAGYTGGAC	Peterson (2008)
RPB2	fRPB2-5F (Gen.)	Standard	55 (alt. 52 or 50)	35	Forward	GAYGAYMGWGATCAYTTYGG	Liu et al. (1999)
	fRPB2-7CR (Gen.)				Reverse	CCCATRGCTTGYTTRCCCAT	Liu et al. (1999)
	fRPB2ResF100 (Alt.)	Touch-up	44-46-48	5-5-30	Forward	TGAARTAYGCICTTGCYAC	Sklenář et al. (2016)
	fRPB2ResR950 (Alt.)				Reverse	CARTGYGTCCADGTRTGKGC	Sklenář et al. (2016)
	RPB2-F50-CanAre (Alt.)	Touch-down	65-64-63-62-61-60-55	1-1-1-1-1-1-38	Forward	TTGAACATTGGTGTCAAGGC	Jurjević et al. (2015)

Table 3. Overview of alignments characteristics used for phylogenetic analyses (excluding outgrc

	ITS	BenA	CaM	RPB2
Lenght (bp)	538	402	710	969
Variable position	76	164	284	286
Parsimony informative sites	52	149	251	243

up).
BenA + CaM + RPB2
2081
734
643

Dataset	Phylogenetic method	Partitioning scheme (substitution model)
ITS	ML	ITS1 + ITS2 (HKY+G); 5.8 S (JC+I)
	BI	ITS1 + ITS2 (HKY+G); 5.8 S (JC+I)
BenA	ML	introns ($\mathrm{K} 80+\mathrm{G}$); $1^{\text {st }}$ codon positions ($\left.\mathrm{JC}+\mathrm{I}\right)$; $2^{\text {nd }}$ codon positions (JC); $3^{\text {rd }}$ codon positions ($\mathrm{K} 81 \mathrm{uf}+\mathrm{G}$)
	BI	introns ($\mathrm{K} 80+\mathrm{G}$); $1^{\text {st }}$ codon positions ($\left.\mathrm{JC+1}\right)$; $2^{\text {nd }}$ codon positions (J); $3^{\text {rd }}$ codon positions ($\mathrm{HKY}+\mathrm{G}$)
CaM	ML	introns ($\mathrm{KKY}+1+\mathrm{G}$); $1^{\text {st }}$ codon positions ($\mathrm{TrN+1)}$; $2^{\text {nd }}$ codon positions ($\mathrm{F81}$); $3^{\text {rd }}$ codon positions ($\mathrm{TrN+G}$)
	BI	introns ($\mathrm{HKY}+\mathrm{l}+\mathrm{G}$); $1^{\text {st }}$ codon positions (HKY+1); $2^{\text {nd }}$ codon positions (F81); $3^{\text {rd }}$ codon positions (GTR+G)
RPB2	ML	$1^{\text {st }}$ codon positions ($T r N+1+\mathrm{G}$); $2^{\text {nd }}$ codon positions ($\left.\mathrm{JC}+1\right)$; $3^{\text {rd }}$ codon positions (TrNef +G)
	BI	$1^{\text {st }}+2^{\text {nd }}$ codon positions ($\mathrm{K} 80+1+\mathrm{G}$); $3^{\text {rd }}$ codon positions ($\mathrm{HKY}+\mathrm{G}$)
	ML	BenA + CaM introns (K81uf ++ G); $1^{\text {st }}$ codon positions of BenA $+C a M+$ RPB2 (TrN+l+G); $2^{\text {nd }}$ codon positions of BenA + CaM + RPB2 (F81+1); $3^{\text {rd }}$ codon positions of BenA + CaM (GTR +G$)$; $3^{\text {rd }}$ codon positions of RPB2 (TrNef+G)
BenA + CaM + RPB2	BI	BenA + CaM introns (HKY+l+G); $1^{\text {st }}$ codon positions of BenA + CaM + RPB2 ($\left.G T R+1+G\right) ; 2^{\text {na }}$ codon positions of BenA + CaM + RPB2 (F81+I); $3^{\text {rd }}$ codon positions of BenA + CaM (GTR+G); $3^{\text {rd }}$ codon positions of $R P B 2$ ($\mathrm{HKY}+\mathrm{G}$)

Table 5. Temperature growth profiles (mm) of section Aspergillus species.

Species	Teleomorphic characters					Anamorphic characters			
	Ascomata	Spore bodies	Ornamentation of convex surface	Furrow	Crests	Conidiophores	Vesicles	Phialides	Conidia
$\overline{\text { Aspergilus aerius }}$	190-275	6.5-8 $\times 4.5-6$	Smooth, rough along equatorial ridges	Present	Absent Filiform appendages or petaliform, petals $1-1.5$ um at	500-1000 $\times 7-15.5$	26-41	7.5-12.5 + 5-8	Tuberculate, (5-)10-13 $\times 6-10$
A. appendiculatus	100-225	5-7.5 $\times 4-5.5$	Slightly rough	Absent or showing as a trace	high parts	800-2000 $\times 7-12(-14.5)$	30-64	$8-16 \times 4.5-7.5$	Tuberculate, 5-10(-12) $\times 5-7(-8.5)$
A. aurantiacoflavus	110-250	4-5.5 \times 3-5	Verruculose	Present	Irregular, <0.5	$250-800 \times 7.5-12$	30-45	$6-11 \times 3.5-6.5$	Tuberculate, 5-9 $\times 4-7$
A. brumeus	110-240	$7-10 \times 6-8$	Rough along equatorial ridges	Present	Irregular, <0.5	$700-1200 \times 7-18$	32-58	$10-18.5 \times 7-12.5$	Tuberculate, $8-15 \times 8-13$
A. caperatus	130-220	3.5-4.5 $\times 2.5-4$	Verruculose to rugulose	Pronounced	0.5-1	$250-500 \times 6.5-9(-12)$	26-45	7.5-12 $\times 4-7.5$	Lobate-reticulate, $3.5-5.5 \times 3.5-4.5$ Tuberculate to lobate-reticulate
A. chevalieri	100-250	3.5-5.5 \times 3-4	Smooth to slightly verruculose	Present	0.5-1	200-1000 $\times 6-12$	23-47	5.5-7.5(-10) $\times 3-5$, $3-4(-6) \times 2.5-3.5(-5)$
A. cibarius	100-200	4-5.5 \times 3-5	Rough along equatorial ridges	Present	Irregular, <0.5	$500-700 \times 8-14$	32-58	6-11 \times 3-5.5	Tuberculate, 4-7 \times 3.5-5.5
A. costiformis	100-255	$5.5-7 \times 5-6.5$	Rugulose	Pronounced	0.5	$500-800 \times 7-13$	20-45(-60)	$6-9.5 \times 3-4.5(-5.5)$	Microtuberculate, 4-5.5(-6.5) $\times 3-4.5(-5.5)$
A. cristatus	100-200	$4.5-6 \times 4-6$	Verruculose to rugulose	Present	1.2-1.5	$300-500 \times(6-8) 8-12$	(26-35-51	5.5-9 \times 3.5-6	Tuberculate, 4-6.5 \times 3.5-5
A. cumulatus	100-200	$4-6 \times 3.5-5$	Slightly rough	Pronounced	Irregular, <0.5	$500-1300 \times 7-15$	32-57	7-12 \times 4.5-7.5	Tuberculate, 5-8 $\times 4-7.5$ Tuberculate to lobate-reticulate
A. endophyticus	120-200	$4-5.5 \times 3-4.5$	Verruculose to rugulose Smooth, minute rough along equatorial	Pronounced	0.5-1	$350-800 \times 9.5-14$	32-52	6-10 $\times 3.5-5.5$, 5.5-8 \times 4.5-6
A. glaucus	120-250	5.5-7.5 $\times 3.506$	ridges	Pronounced	Irregular, 0.5-1	$150-500 \times 10-21(-30)$	30-60	(8-) $12-20 \times(4-5-8.5$	Tuberculate, 6-12.5 \times 5.5-9
A. intermedius	100-250	3.5-5 \times 3-4.5	Verruculose to rugulose	Present	0.5	$250-600 \times 7.5-13$	(26-)40-60	5.5-7.5(-9) $\times 3-5.5$	Microtuberculate, 3-4(-6) $\times 3-4.5$
A. leucocarpus	80-140	4.5-5.5 \times 3.5-5	Verruculose	Present	0.8-1.5	$800-1400 \times 7.5-12$	35-60	8-11.5 \times 3.5-6.5	Tuberculate, 5.5-9 \times 5-8
A. levisporus	70-130	3-4.5 $\times 2.5-4$	Smooth Smooth, minute rough along equatorial	Present	Absent	400-600 $\times 10-14$	30-44	$6-8.5 \times 3.5-6$	Tuberculate to lobate-reticulate, 3.5-4.5 $\times 2.5-4$
A. mallochii	130-220	$4-6 \times 3-5$	ridges	Absent or showing as a trace	Petaliform, 1-2 at high parts	600-1500 $\times 6-9.5(-12)$	27-43	6.5-9 \times 3-5	Tuberculate, 4.5-7 \times 4-5.5
A. megasporus	110-300	$4-6.5 \times 3.5-5.5$	Smooth, rough along equatorial ridges	Present	Absent or indefinite	1000-1500 $\times 65-12(-21.5)$	30-54	7.5-14×4-7.5	Tuberculate, 7-14 $\times 5-8.5$
A montevidensis	80-250	4-6×3-4.5	Generally rugulose, smooth or slightly rough in atypical strain CCF 4070, tuberculate in	Pronounced		$250-500 \times 6-13.5$	25-35(-50)	$5-85(-11) \times 3-6$	Lobate-reticulate
A. neocarnoyi	120-230	$6.5-9 \times 4.5-7$	Verruculose to rugulose	Present	Absent or indefinite	$1000-2000 \times(9-) 12-23$	(32-50-92	${ }_{12-21 \times 6-9}$	Tuberculate, $8-15.5 \times 6-10$
			Rough along equatorial ridges or verruculose						Tubersare, 8-15.5 $\times 6-10$
A. niveoglaucus	90-240	(4.5-)5.5-7.5 \times (3-)5-6	to rugulose	Present	Irregular, <0.5	1000-1500 \times (7.5-) $10-23$	(31-)55-85	$8-14(-20) \times 4-7(-11)$	Tuberculate, (6-)8-13.5 \times 4-9
A. osmophilus	100-350	7-9 $\times 6-7.5$	Verruculose	Pronounced	0.5	300-1000 $\times 7.5-12$	28-46	9-12 $\times 4.5-7$	Microtuberculate to tuberculate, 6-8.5 $\times 5.5-7.5$ Lobate-reticulate
A. porosus	80-230	3.5-5.5 \times 3-4.5	Rugulose, pitted Smooth or slightly verruculose or rough	Pronounced	0.5	$250-600 \times 5-12.5$	24-58	5-10 $\times 2.5-5$, 3.5-5.5 $\times 2.5-4.5$
A. proliferans	100-240	4-6 $\times 3-5$	along equatorial ridges	Present or pronounced	Absent	$250-1000 \times 8-16.5$	20-50	6-12 $\times 3-5.5$	Tuberculate, 5-7.5(-10) $\times 4-6(-7)$ Tuberculate; microtuberculate in atypical strain CBS
A. pseudoglaucus	75-200	$4-6.5 \times 3-4.5$	Smooth or slightly rough Generally smooth or minute rough along equatorial ridges, tuberculate in atypical strain	Absent or showing as a trace	Absent	$500-1000 \times(7-) 11-22$	(26-)37-65	$6-11 \times 4-6.5$	379.75, (3.5-)6-9 * (3-)5.5-7.5
A. ruber	50-175	4-6 \times 3.5-5	CBS 101748 Smooth, minute rough along equatorial	Present or pronounced	Absent	$500-750 \times 7-13.5$	25-48	$\begin{aligned} & 7-9(-12) \times 3.5-6 \\ & (7.5-) 9-13.5(-18) \times \end{aligned}$	Tuberculate, (4.5-7-9(-12) $\times 4-6(-8)$
A. sloanii	60-205	4-6 \times 3-4.5	ridges	Present	Absent	160-900 $\times 7.5-16$	(10-34-53	(5-)7-9.5	Tuberculate, 5.5-9.5 \times 5.5-9
A. tamarindosoli	130-240	3.5-5 \times 3-4	Verruculose	Present	Irregular, 0.5-1.5	700-1000 $\times 10-15$	40-72	6.5-12 \times 4-5.5	Lobate-reticulate, 4-7 3-4.5
A. teporis	120-180	5-6.5 $\times 4-5.5$	Slightly verruculose	Pronounced	0.5	$800-1200 \times 8-19$	33-53	7-12 $\times 3.5-5$	Lobate-reticulate, 3.5-6 * 3-4.5
A. tonophilus	100-235	4-6 \times 3-4.5	Verruculose	Present	Absent	$120-500 \times 7-12.5$	25-44	$6-11 \times 3$-5	Tuberculate to lobate-reticulate, 5-7.5 \times 3.5-6
A. xerophilus	165-330	4.5-6.5 $\times 3.5-5$	Verruculose	Present	Irregular, <0.5	$50-200 \times 6.5-9.5(-12)$	40-66	$6-9 \times 3.5-6$	Microtuberculate, 3.5-5.5 \times 3-4.5
A. zutongqii	110-220	$6-7.5 \times 4.5-6$	Verruculose	Pronounced	Absent	$150-500 \times 7.5-13$	25-40	$8-12 \times 4-6.5$	Tuberculate, 5.5-10 \times 4-7

Table 7. Extrolites reported from Aspergillus section Aspergillus*.

Biosynthetic family	Compounds	References	Producers
Cyclic dipeptides with a dimethylallyl group	LL-S-490 0 = N-aacetylaszonalenine, rugulosuvine	Ellestad et al. 1973, Micheluz et al. 2016	A. glaucus, A. pseudoglaucus
Deoxybrevianamides**	Deoxybrevianamide E	Micheluz et al. 2016	A. glaucus (\& A penicillioides)
Stachybotryamides**	Stachybotryamide	Micheluz et al. 2016	A. glaucus
Tryprostatins**	Tryprostatin B	Micheluz et al. 2016	A. glaucus
Tenellins**	Tenellin	Micheluz et al. 2016	A. glaucus
Echinulins	Echinulin, dehydroechinulin, didehydroechinulin, preechinulin, L-alanyl-Ltryptophan anhydride, (L-valyl-L-tryptophan anhydride, cryptoechinulin G, neoechinulin, neoechinulin A, neoechinulin B (=E-10), neoechinulin C ($=$ cryotoechinulin $\mathrm{A}=\mathrm{E}-8$), neoechinulin D , neoechinulin E = cryptoechinulin C, dihydroneoechinulin B , isoechinulin A, isoechinulin B , isoechinulin C , dihydroxyisoechinulin A, rubrumazine A , rubrumazine B , rubrumazine C , tardioxopiperazine A, tardioxopiperazine B, dehydrovariecolorin L , variecolorin $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$, F, G, H, I, J, K, L, M, N, O, golmaneone, 12-demethyl-12-oxo-eurotechinulin A, B, alkaloid E-7, cristatumin A, cristatumin B, cristatumin $\mathrm{C}^{* * *}$, cristatumin D, cristatumin $\mathrm{E}^{* * *}$, critatumin F, eurocristatine***	Quilico \& Panazzi 1943, Quilico \& Cardini 1950, Barbetta et al. 1969, Nakashima \& Slater 1971, Allen 1972, Dossena et al. 1974, Cardillo et al. 1974, 1975, Marchelli et al. 1975, Nagasawa et al. 1975, 1976, Hamasaki et al. 1976a, b, Stipanovic \& Schroeder 1976, Stipanovics et al. 1976, Inoue et al. 1977a, Marchelli et al. 1977, Gatti et al. 1978, Podojil et al. 1979, Fujimoto et al. 1999 (fungus was A. pseudoglaucus, misidentified as Microascus tardifaciens), Li et al. 2004a, b, Smetanina et al. 2007, Wang et al. 2007a, b, c, Liet al. 2008a, b, Slack et al. 2009, Almeida et al. 2010, Zhou et al. 2010 (misidentified as a Penicillium griseofulvum); Du et al. 2012, Gao et al. 2011, 2012a; Gomes et al. 2012, Yan et al. 2012, Gao et al. 2013 (misidentified as A. effisus), Wu et al.	A. brunneus, A. chevalieri, A. cristatus, A. glaucus, A. mallochii, A. megasporus, A. montevidensis, A. proliferans, A. pseudoglaucus, A. ruber (Arestricticins A, B, cristatin A and asperglaucide were reported from A. restrictus and A. penicillioides (Itabashi et al. 2006), indicating a strong relationship between species in sections Aspergillus and Restricti.)

		2013, Miyake et al. 2014, Zou et al. 2014, Meng et al. 2015, Micheluz et al. 2016, Visagie et al. 2017	
Quinolone	Quinolactacin A1, Quinolactacin A2, Quinolactacin B	Visagie et al. 2017	A. megasporus
Chimeric echinulins and auroglaucins	Cryptoechinulin B (= aurechinulin), (+) and (-)cryptoechinulin D, 7-Omethylvariecolortide A, variecolortide $\mathrm{A},(+) \&(-)$ variecolortide $B,(+) \&(-)$ variecolortide $\mathrm{C},(+) \&(-)$ 7- isopentenylcryptoechinuline D, dihydrocryptoechinulin D, effusin A	Gatti et al. 1976, Inoue et al. 1977b, Li et al. 2010, Wang et al. 2007b (misidentified as A. variecolor); Kuttruff et al. 2011, Yan et al. 2012, Gao et al. 2012b (misidentified as A. effusus), Gao et al. 2013 (misidentified as A. effusus), Chen et al. 2014	Aspergillus montevidensis, A. ruber
Anthraquinones	Catenarin, emodic acid, emodin (= parietin), erythroglaucin, fallacinol, physcion, questin (= emodin 8-O-methylether), questinol, rubrocristin, variecolorquinone $\mathrm{A},(2 \mathrm{~S})$ -2,3-dihydroxypropyl-1,6,8-trihydroxy-3-methyl-9,10-dioxoanthracene-2carboxylate, 3-O-(α-Dribofuranosyl)questinol, 3-O-(α-D- ribofuranosyl)questin, rubrocristin, viocristin, isoviocristin, hydroxyviocristin, eurorubrin, asperinine A, B, ω-hydroxyemodin-5merthyether, ω hydroxyrubrocristin	Anslow \& Raistrick 1940, Bachmann et al. 1979, 1982, Anke et al. 1980a, b, Fujimoto et al. 1999, Engstrom et al. 1982, Laatsch \& Anke 1982, Arai et al. 1989, Wang et al. 2006 (as Chaetomium globosum), Smetanina et al. 2007, Wang et al. 2007c (fungus misidentified as A. variecolor), Du et al. 2008, Wang et al. 2008, Li et al. 2009, Gomes et al. 2012, Almeida et al. 2010, Yan et al. 2012, Du et al. 2014, Micheluz et al. 2016, Visagie et al. 2017	A. brunneus, A. chevalieri, A. cristatus, A. glaucus, A. intermedius, A. leucocarpus, A. mallochii, A. megasporus, A. neocarnoyi, A. niveoglaucus, A. pseudoglaucus, A. ruber, A. tonophilus (Citreorosein was reported from A. penicillioides by Micheluz et al. 2016)
Asperflavins	Anhydroasperflavin, asperflavin, asperflavin ribofuranoside, isoasperflavin	Grove 1972a (misidentified as A. flavus), Anke et al. 1978, Fujimoto et al. 1999, Li et al. 2006 (misidentified as Microsporum), Smetanina et al. 2007,	A. glaucus, A. pseudoglaucus, A. megasporus

$\left.\begin{array}{|l|l|l|l|}\hline & & \text { Du et al. 2008, 2014 } & \\ \hline \text { Isotorachrysones } & \begin{array}{l}\text { Isotorachrysone, } \\ \text { isotarachrysone 6-O- } \alpha \text {-D- } \\ \text { ribofuranoside, 8-methoxy- } \\ \text { 3-methyl-1-naphthalenol-6- } \\ \text { O-a-D-ribofuranoside, 8- } \\ \text { methoxy-1-naphthalenol-6- } \\ \text { O-a-D-ribofuranoside, (+)- } \\ \text { variecolorquinone A, }\end{array} & \begin{array}{l}\text { Wang } \text { et al. 2007a } \\ \text { (misidentified as } \text { A. } \\ \text { variecolor), Du } \text { e al. } \\ \text { 2008, Sun et al. 2013 }\end{array} & \text { A. glaucus } \\ \hline & \text { Aspergiodiquinone }\end{array}\right]$

		Cladosporium cladosporioides)	
Mycophenolic acids	5,7-dihydroxy-4methylphthalide, 6-farnesyl-5,7-dihydroxy-4methylphthalide , mycophenolic acid	Grove 1972a, b (misidentified as A. flavus), Burkin \& Kononenko 2010, Gao et al. 2011, 2012a, b, Séguin et al. 2014	A. pseudoglaucus, A. ruber (traces of mycophenolic acid), A. montevidensis (traces of mycophenolic acid), A. chevalieri (traces of mycophenolic acid)
Pseurotins**	Pseurotin A \& D	Micheluz et al. 2016	A. glaucus
Orsellinic acid derivatives	Cristatumside A	Du et al. 2014	A. cristatus
Kotanins	Desmethylkotanin, kotanin	Büchi et al. 1971	A. glaucus
Auroglaucins	Auroglaucin, flavoglaucin, dihydroauroglaucin, isodihydroauroglaucin, isotetrahydroauroglaucin (= dihydroflavoglaucin), chaetopyranin, 2-(2',3-epoxy-1',3-heptadienyl)-6-hydroxy-5-(3-methyl-2butenyl)benzaldehyde, tetrahydroauroglaucin, (E)-2-(hept-1-enyl)-3-(hydroxymethyl)-5-(3-methylbut-2-enyl)benzene-1,4-diol, (E)-4-(hept-1-enyl)-7-(3-methylbut-2-enyl)-2,3-dihydrobenzofuran-2,5-diol, eurotirumin, 2-(2',3-epoxy-1'-heptenyl)-6-hydroxy-5-(3''-methyl-2"'butenyl)benaldehyde, (E)-6-hydroxy-7-(3-methyl-2-butenyl)-2-(3-oxobut-1-enyl)chroman-5carbaldehyde, 2-(1',5'-heptadienyl)3,6-dihydroxy-5-(3'' -methyl- 2''butenyl)benzaldehyde, aspergentisyl A, B, aspergin	Gould \& Raistrick 1934, Ashley et al. 1939, Quilico et al. 1949, Birch 1958, Inoue et al. 1977c, Hamasaki et al. 1980, 1981, Ishikawa et al. 1984, 1985, Li et al. 2006, Wang et al. 2006 (as Chaetomium globosum), Li et al. 2008, Miyake et al. 2009, Slack et al. 2009, Almeida et al. 2010, Miyake et al. 2010a, b, Gao et al. 2011, 2012a, b, Gao et al. 2013 (misidentified as A. effusus), Sun et al. 2013, Wu et al. 2013, Miyake et al. 2014, Visagie et al. 2017	A. brunneus, A. glaucus, A. glaucus? (as Microsporum sp.), A. chevalieri, A. cristatus, A glaucus, A. montevidensis, A. mallochii, A. pseudoglaucus, A. ruber
Heveadrides	Epiheveadride, heveadride	Slack et al. 2009	A. glaucus, A. montevidensis, A. ruber
Chaetoviridins	Chaetoviridin A	Micheluz et al. 2016	A. glaucus
Eurocin	Eurocin	Oeemig et al. 2012	A. montevidensis
Diterpene antibiotics	LL-S491 β, LL-S491 γ	Ellestad et al. 1972	A. chevalieri

Asperglaucide	Asperglaucide	Cox et al. 1976	A. glaucus
Hopane type triterpenoids	2-Hydroxydiplopterol	Wang et al. 2009 (misidentified as A variecolor)	Aspergillus section Aspergillus species
Mycotoxin production by Aspergillus section Aspergillus strains checked but not confirmed in this study			
Citrinin (produced by a contaminant?)		Li et al. 2006	A. glaucus? (as Microsporum sp.)
Aflatoxins (not produced) (Blaser et al., 1980, Bachmann et al. 1979, 1982, Varga et al. 2009)		Kulik \& Holaday, 1966, Leitao et al. 1989, Jayraman \& Kalyanasundaram 1990, El-Kady et al. 1994, Ahmed et al. 2005, Fraga et al. 2007, 2008	A. chevalieri, A. intermedius, A. pseudoglaucus, A. ruber
Sterigmatocystin (not produced) (Rank et al. 2011)		Schroeder \& Kelton, 1975, Moubasher et al. 1977, Szebiotko et al. 1981, Karo \& Hadlok, 1982, Soboleva \& Kurmanov, 1984, ElKady et al. 1994, Ahmed et al. 2005	A. chevalieri, A. intermedius, A. montevidensis, A. pseudoglaucus, A. ruber
Xanthocillin X (not produced) (Blaser et al. 1980, Bachmann et al. 1979, 1982)		Coveney et al. 1966	A. glaucus
Gliotoxin (not produced) (Blaser et al. 1980, Bachmann et al. 1979, 1982)		Wilkinson \& Spilsbury 1965, El-Kady et al. 1994	A. chevalieri, A. intermedius, A. pseudoglaucus
Ochratoxin A (not produced) (Blaser et al. 1980, Bachmann et al. 1979,1982)		Chelkowski et al. 1987, El-Kady et al. 1994, Al-Julaifi 2003	A. glaucus, A. montevidensis, A. pseudoglaucus

*Chevalone A-D, aszonapyrone A-B, eurochevalierine and CJ-12662 reported from Eurotium chevalieri were produced by a strain from Aspergillus section Fumigati (see Frisvad \& Larsen 2016)
**These compounds may have been produced by a strain of Aspergillus section Fumigati contaminating A. pseudoglaucus (Eurotium repens), as they have been found co-occurring in Aspergillus fumigatus (see Frisvad \& Larsen 2016), but never in Aspergillus section Aspergillus..
***Diketopiperazine dimers

Table 8. Extrolites found in the different species of Aspergillus section Aspergillus .Tetracyclic means compounds with a UV spectrum typical of BMS-192548 (Shu et al . 1995) or similar UV spectra.

Species	Extrolites
	Auroglaucin, bisanthrons, dihydroauroglaucin, echinulins, erythroglaucin, flavoglaucin, isoechinulins, neoechinulins, physcion, tetracyclic, tetrahydroauroglaucin
Aspergillus aerius	Asperflavin, auroglaucin, bisanthrons, dihydroauroglaucin, echinulins, emodin, erythroglaucin, flavoglaucin, isoechinulins, neoechinulins, physcion, questin, questinol, tetracyclic, tetrahydroauroglaucin, "MYO"
A. appendiculatus	Asperflavin, auroglaucin, bisanthrons, dihydroauroglaucin, echinulins, emodin, epiheveadrides, erythroglaucin, flavoglaucin, isoechinulins, neoechinulins, physcion, questin, questinol, tetracyclic, tetrahydroauroglaucin
A. aurantiacoflavus	Asperflavin, asperentins, auroglaucin, bisanthrons, dihydroauroglaucin, echinulins, 5-farnesyl-5,7-dihydroxy-4-methylphthalide, erythroglaucin, flavoglaucin, isoechinulins, mycophenolic acid, neoechinulins, physcion, questin, tetracyclic, tetrahydroauroglaucin
A. brunneus	Auroglaucin, a bisanthron, dihydroauroglaucin, echinulins, epiheveadrides, flavoglaucin, isoechinulins, neoechinulins, physcion, tetrahydroauroglaucin
A. caperatus	Asperflavin, auroglaucin, bisanthrons, dihydroauroglaucin, echinulins, emodin, epiheveadrides, flavoglaucin, isoechinulins,
neoechinulins, physcion, questin, questinol, tetracyclic, tetrahydroauroglaucin, unique: "MYO"	

Table 9. Identification of indoor section Aspergillus species from fifteen countries

Species	Strain no .	Substrate	Location	CaM GenBank accession nr.
Aspergillus aerius	CBS 141771 = DTO 241-G7	Air treatment system in plant production	The Netherlands	LT670991
A. appendiculatus	DTO 197-F5	Air, bakery	Tilburg, the Netherlands	LT671231
A. chevalieri	DTO 080-H3	Air, house	Stuttgart, Germany	LT671221
	DTO 106-E5	Vultures enclosure (indoor)	Amsterdam, the Netherlands	LT671222
	DTO 124-E8	Air in food related factory	Ospel, the Netherlands	LT671223
	DTO 130-E7	Indoor environment	Thailand	LT671224
	DTO 131-B6	Indoor environment	Thailand	LT671225
	DTO 177-B1	Air, bakery	Heerde, the Netherlands	LT671226
	DTO 177-B3	Air, bakery	Heerde, the Netherlands	LT671227
	DTO 268-B7	Houst dust	Mexico	LT671229
	DTO 266-F8	Houst dust	Thailand	LT671230
	EMSL No. 2223	Air, hospital	Fairfax, VA, USA	LT671218
	EMSL No. 56	Indoor air	California, USA	LT671219
	EMSL No. 2871	Indoor air, basement	Denver, CO, USA	LT671220
A. cibarius	DTO 123-E7	Air, office	Zutphen, the Netherlands	LT671232
	DTO 124-B9	Air in food related factory	Ospel, the Netherlands	LT671233
	DTO 197-F6	Air, bakery	Tilburg, the Netherlands	LT671234
A. glaucus	EMSL No. 2529	Air, office	Puerto Rico	LT671071
	DTO 155-G4	Indoor, paper	The Netherlands	LT671257
	EMSL No. $3317=$ CCF $5382=$ DTO 355-H2	Indoor air, bedroom	NY, USA	LT671074
A. intermedius	MY2636 $=$ CCF $5377=$ DTO 355-G5	Air, surgical operating room	Prague, Czech Republic	LT671080
A. leucocarpus	DTO 357-A2 = KAS 7576	Houst dust	Canada	LT671089
A. montevidensis	DTO 008-H7 = CBS 119376	Indoor environment	Germany	LT671235
	DTO 072-E7	Indoor, archive	Amsterdam, the Netherlands	LT671236
	DTO 108-F4	Indoor environment	France	LT671237
	DTO 123-D7	Air, office	Zutphen, the Netherlands	LT671238
	DTO 126-A3	Swab sample, kitchen cabinet drawer next to	The Netherlands	LT671239
	DTO 146-E3	Indoor environment	Hungary	LT671240
	DTO 146-E4	Indoor environment	Hungary	LT671241
	DTO 146-E6	Indoor environment	Hungary	LT671242
	DTO 147-E4	Indoor environment	Hungary	LT671243
	DTO 177-A8	Air, bakery	Heerde, the Netherlands	LT671244
	DTO 177-A9	Air, bakery	Heerde, the Netherlands	LT671245
	DTO 177-B2	Air, bakery	Heerde, the Netherlands	LT671246
	DTO 177-B6	Air, bakery	Heerde, the Netherlands	LT671247
	DTO 177-B7	Air, bakery	Heerde, the Netherlands	LT671248

	DTO 299-A2
	DTO 180-B6
	DTO 267-H2
	EMSL No. 1589
	EMSL No. 2730
	EMSL No. $2934=$ CCF 5379 = DTO 355-H3
A. niveoglaucus	DTO 177-B4
	IHEM 1811 = DTO 355-C3
	EMSL No. 2211
A. proliferans	DTO 124-C8
	DTO 197-F7
	DTO 197-F8
	DTO 331-D1
	EMSL No. 2207
	EMSL No. $2791=$ CCF $5392=$ DTO 355-H6
A. pseudoglaucus	DTO 011-E9
	DTO 244-I1
	DTO 244-I7
	DTO 039-F5
	DTO 072-E6
	DTO 087-G6
	DTO 106-D1
	DTO 106-E2
	DTO 115-F5
	DTO 117-F9
	DTO 123-D8
	DTO 123-I2
	DTO 124-D3
	DTO 126-A2
	DTO 147-B6
	DTO 147-D1
	DTO 147-H9
	DTO 177-B5
	DTO 241-H5
	EMSL No. 2474 = CCF 5387 = DTO 355-I4
	EMSL No. 2779 = CCF 5389 = DTO 355-I3
	EMSL No. 1022
	EMSL No. 1415
	EMSL No. 1643
	EMSL No. 1918
	EMSL No. 1919

Indoor hospital air	Turkey	LT671249
House dust	South Africa	LT671250
House dust	Thailand	LT671251
Air, green house	Delaware, USA	LT671252
Black HEPA filter	Edwardsville, IL, USA	LT671254
Indoor air, bedroom	Mahanoy City, PA, USA	LT671098
Air, bakery	Heerde, the Netherlands	LT671255
Indoor air	Namur, Belgium	LT671116
Air, bathroom	Great Falls, MT, USA	LT671113
Air in food related factory	Ospel, the Netherlands	LT671256
Air, bakery	Tilburg, the Netherlands	LT671258
Air, bakery	Tilbur, the Netherlands	LT671259
Air, house	Noordwijk, the Netherlands	LT671260
Air of living room	Yardley, PA, USA	LT671149
Indoor air, basement	Troy, NY, USA	LT671152
Indoor air	Loosdrecht, the Netherlands	LT671264
Houst dust	UK	LT671265
Houst dust	UK	LT671266
Indoor environment from mortel (cement)	Düsseldorf, Germany	LT671267
Indoor, archive	Amsterdam, the Netherlands	LT671268
Air in warehouse, Citronas	The Netherlands	LT671269
Eliphants enclosure (indoor)	Amsterdam, the Netherlands	LT671270
Zebra enclosure (indoor)	Amsterdam, the Netherlands	LT671271
Indoor	Hungary	LT671272
Indoor, archive	Giessenlanden, the Netherlands	LT671273
Air, office	Zutphen, the Netherlands	LT671274
Air, factory	Kerkrade, the Netherlands	LT671275
Air in food related factory	Ospel, the Netherlands	LT671276
Swab sample, kitchen cabinet drawer next to The Netherlands	LT671277	
Indoor environment	Hungary	LT671278
Indoor environment	Hungary	LT671279
Indoor environment	Hungary	LT671280
Air, bakery	Heorde, the Netherlands	LT67281
Air treatment system in production plant	Goos, the Netherlands	LT671282
Indoor air, basement	Piscataway, NJ, USA	LT671167
Air in front of air conditioning vent	Melbourne, FL, USA	LT671161
Indoor air of home	New Jersey, USA	LT671283
Indoor air of home	Massachusetts, USA	LT671284
Indoor air of hospital	Alabama, USA	LT671285
Air, living room	New York, NY, USA	LT671286
Air, bedroom	Fort Salonga, NY, USA	LT671287

EMSL No. 1966
EMSL No. 2222
EMSL No. 1245
EMSL No. 1246
EMSL No. 2130 EMSL No. 2472
EMSL No. 2473
EMSL No. 2475
EMSL No. 2832
EMSL No. 2834
EMSL No. 2844
EMSL No. 2845
EMSL No. 2860
EMSL No. 2861
EMSL No. 2930
EMSL No. $1780=$ CCF $5388=$ DTO 355-I2
EMSL No. $2809=$ CCF 5386
DTO 146-E2
DTO 267-H3

Air, hospital
Air, bedroom
Air, home
Air, home
Air, hospital
Air, basement
Air, basement
Air, basement
Carpet dust, Harker Heights Trails
Air, hospital
Swab, bedroom
Swab, bedroom
Air, living room
Air, living room
Air, living room
House dust
Indoor air, office
Indoor environment
House dust

New York, NY, USA
Cinnaminson, NJ, USA LT671289
New Jersey, USA
New Jersey, USA
Trinidad \& Tobago
Piscataway, NJ, USA LT671293
Piscataway, NJ, USA LT671294
Piscataway, NJ, USA LT671295

Chicago, IL, USA
Norman, OK, USA
Norman, OK, USA
Bowling Green, KY, USA
Bowling Green, KY, USA
Big Rapids, RI, USA
Pennsylvania, USA
Endicott, NY, USA
Hungary
Thailand

LT671288
LT671290
LT671291
LT671292

LT671294
LT671295
LT671297
LT671298
LT671299
LT671300
LT671301
LT671302
LT671158
LT671164
LT671261
LT671262

[^0]: Additional materials examined: China, Hebei, soil, 2001, CGMCC $3.06498=$ DTO 348-H7. China, 1952, CGMCC $3.00450=$ DTO $348-$ B5 . China, tea, CGMCC 3.00451. China, Hebei, faeces, CGMCC 3.06501. Czech Republic, Prague, toenail of 56 -year-old woman, 2010, isolated by P. Lysková, CCF 4098 = NRRL 62493 = DTO 354-I8. Czech Republic, Prague, toenail of 63 -year-old man, 2012, isolated by P. Lysková, CCF 4235 = NRRL 62492 = DTO 354-I7. Spain, Nerja cave, near Málaga, cave sediment (entrance chambre), 2011, isolated by A. Nováková, CCF 4264 = DTO 354-I9. The Netherlands, black bean, 2012, isolated by M. Meijer, KACC $49766=$ CCF 4784 . The Netherlands, almond bar, 2014, isolated by T.V. Doorn, DTO 322-A6. The Netherlands, fruit pulp, 2014, isolated by T.V. Doorn, DTO 303-B8. USA, DC, Washington, chocolate glazed frosted donut, 2014, isolated by Z̄Z. Jurjević, EMSL No. 2500. USA, NY, Elmsford, valet drover, swab, 2014, isolated by \bar{Z}. Jurjević, EMSL No. 2644. USA, CA, Danville, chocolate chip cookies, 2015, EMSL No. 2866. USA, DC, Washington, chocolate glazed frosted donut, 2014, isolated by Ž. Jurjević, EMSL No. 2499. USA, Pennsylvania, child's shoes, 2012 isolated by Ž. Jurjevič, EMSL No. $1652=$ CCF 5385 = DTO 355-G6. USA, Washington DC, chocolate glazed frosted donut, 2014, isolated by Z. Jurjevič, EMSL No. $2498=$ CCF $5383=$ DTO 355-G7. USA, California, Danville, chocolate chip cookies, 2015, isolated by Z. Jurjevič, EMSL No. $2865=$ CCF $5384=$ DTO $355-G 8$.

