SARCalnet for SAR calibration

Bruce Chapman¹, Dirk Geudtner², Nuno Miranda²

¹ Jet Propulsion Laboratory, California Institute of Technology ² European Space Agency

VH-RODA Workshop 2021 | 20-23 April 2021 | Slide 1

eesa

Introduction

- SAR instruments need external calibration targets in order to calibrate imagery and for long term monitoring of image calibration stability
- Currently, most missions design their own external targets, typically a combination of natural and artificial calibration targets
- Like Radcalnet, there is a desire to have an established network of calibration sites that would facilitate collaboration between sensors by using the same calibration references.
- There are three types of external calibration targets used by SAR
 - Natural targets
 - Artificial passive targets
 - Artificial active targets

line

C

0

2021

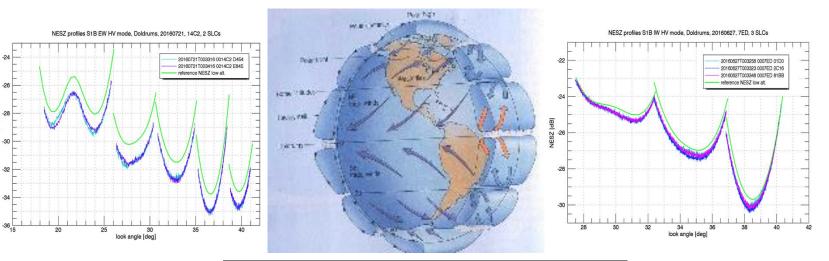
VH-RODA

Т

Types of image calibration

- Radiometric calibration (both natural and artificial targets)
 - Corner reflectors have known brightness
 - Over large radar-bright uniform areas, the antenna pattern can be validated
- Polarimetric (both natural and artificial targets)
 - Phase difference between HH and VV over CRs is well known
 - Channel imbalance between polarimetric channels
 - "cross talk" corrections
- Geometric (artificial targets)
 - over artificial targets of known position
- Interferometric (ideally artificial targets)
 - Measure phase stability
- Instrument parameters and performance (natural and artificial targets)
 - Impulse response (resolution, ambiguities)
 - Range delays
 - Digital beam forming
 - Pointing
 - Noise level

Natural targets


- Typically large, uniform SAR backscatter areas are needed
 - Spanning image swath (up to 250 km)
 - Amazon, Dome C in Antarctica, water bodies, ...
 - The uniformity of the area may depend on the frequency band and the polarization
- Sites such as these can be used to monitor SAR image calibration over time
 - The SAR backscatter at these sites may naturally vary with frequency band and polarization
 - Seasonality may need to be considered
- Shapefiles to delineate each natural target area

Natural targets

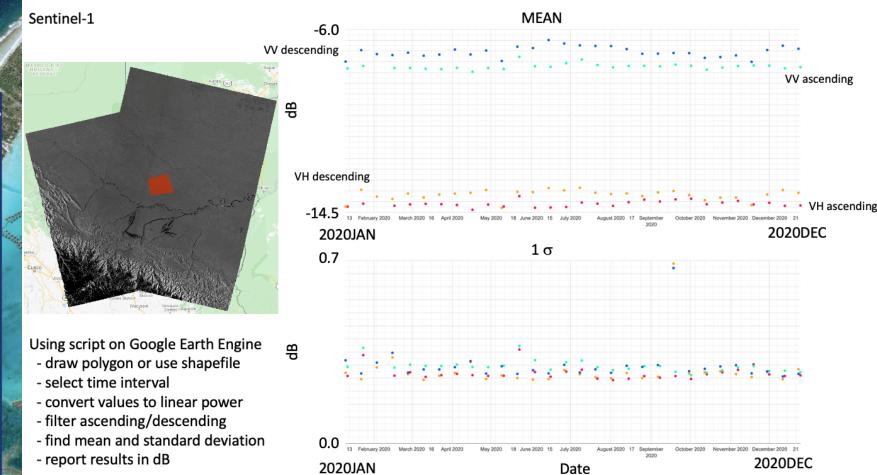
- Could consider including science targets where measurements are regularly made (i.e. soil moisture) that impact the SAR backscatter.
- Could consider including calibration sites used by other sensors (Radcalnet, etc).
- The time history of SAR backscatter measured at different frequency bands and polarizations by different instruments at SARCalnet sites could be hosted on CEOS WGCV SAR webpage
- In providing data from these sites
 - Algorithms for analysis also need to be provided.
 - The imagery should be made freely available if possible in conjunction with reporting results.

do 0 online VH-RODA 2021 Т

Sentinel-1 Noise Equivalent Sigma Zero (NESZ) Measured over the doldrums

SAR modes	Measured NESZ [dB]	
IW	-27.8	
EW	-32.2	
SM	-25.3	

Incidence Angle effects: Ascending vs Descending orbits


eesa

O

online

VH-RODA 2021

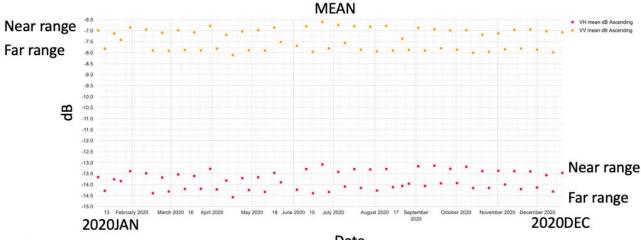
T

VH-RODA Workshop 2021 | 20-23 April 2021 | Slide 7

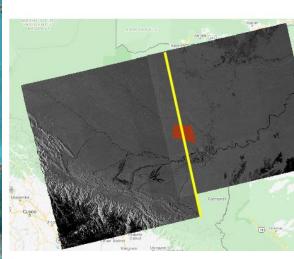
Incidence Angle effect: near/far range overlap

Sentinel-1

eesa.

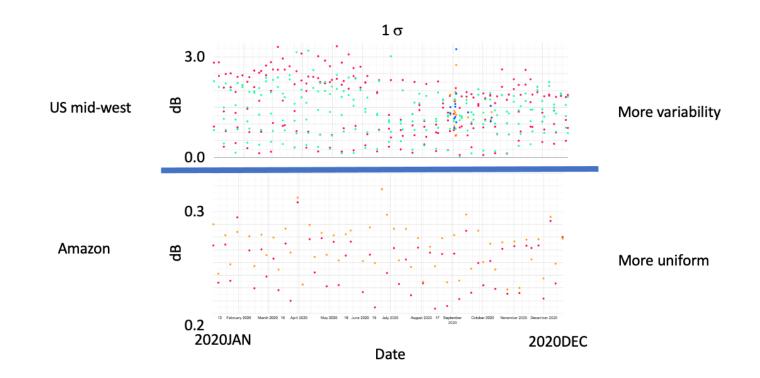

do

0


online

VH-RODA 2021

T


Date

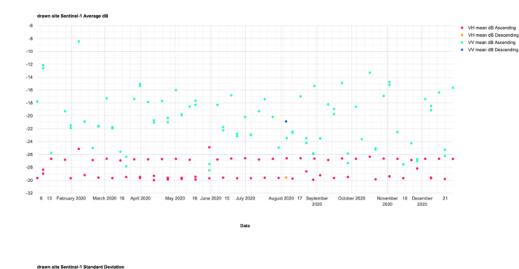
eesa do WOL online VH-RODA 2021

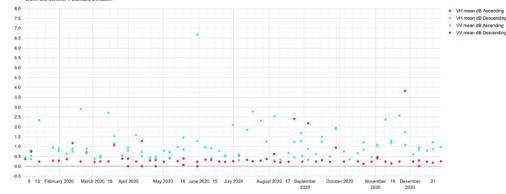
T

Sentinel-1 scene variability

shop

WOL


online

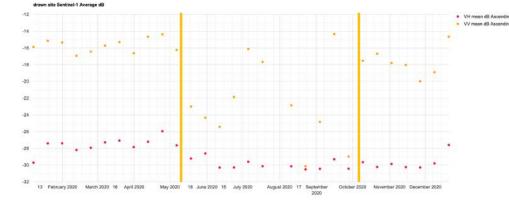

VH-RODA 2021

T

Over Water

Date

Variability less


workshop

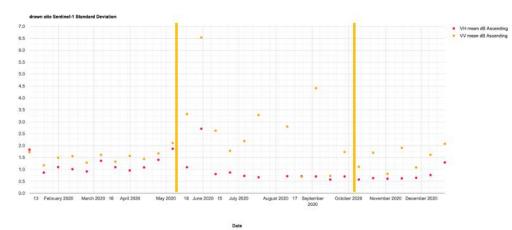
online

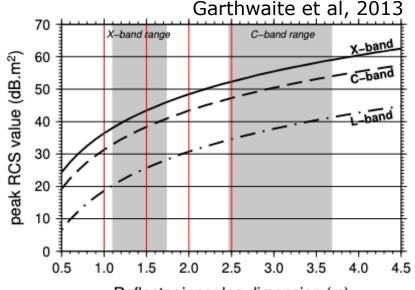
VH-RODA 2021

T

Seasonal dependence

Frozen


.


VH mean dB Ascendin

Canadian Arctic

Artificial Passive Targets

- These targets are point targets with known brightness
- Can be used to assess both image radiometric calibration, geolocation accuracy, and resolution
- Frequency bands dictates the size and material (longer wavelengths can utilize perforated materials)
- Typically deployed by a mission during their commissioning/calibration period.
- Persistently maintained arrays can be costly
 - Resurvey costs
 - Other maintenance
 - Land rights

Reflector inner leg dimension (m)

Artificial Passive Targets

- Characteristics vary with band
 - Size, mounts, materials
- Typical measurements of the reflector
 - Heading, elevation angle, orthogonality, flatness, accuracy of measurements
- Typically oriented parallel to the SAR path
 - Most targets are oriented for right looking, polar orbits, but not all
 - Depending on target type, the orientation may need to be adjusted
- Might not be permanently deployed

do

70

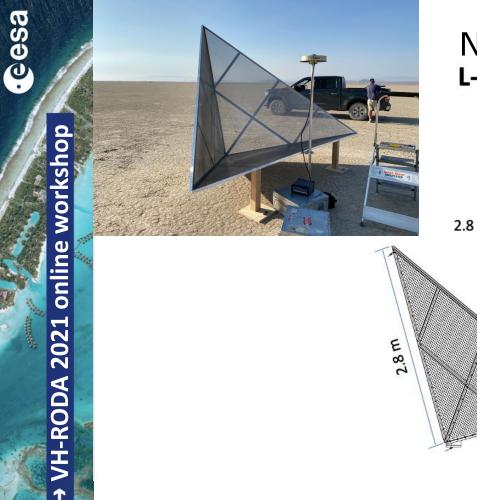
online

VH-RODA 2021

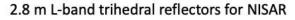
Υ

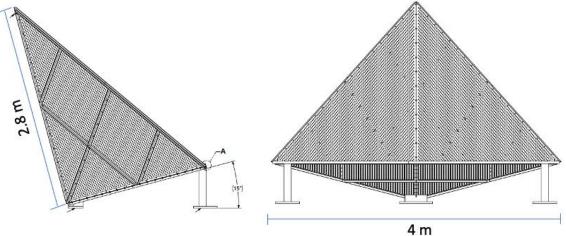
JPL 0.7 m corner reflector on Rosamond Lake Bed for Ka-band

AuScope Australian Geophysical Observing System C/X-band 1.5 m



esa).




(b)

2.8 m DLR reflector in stowed position

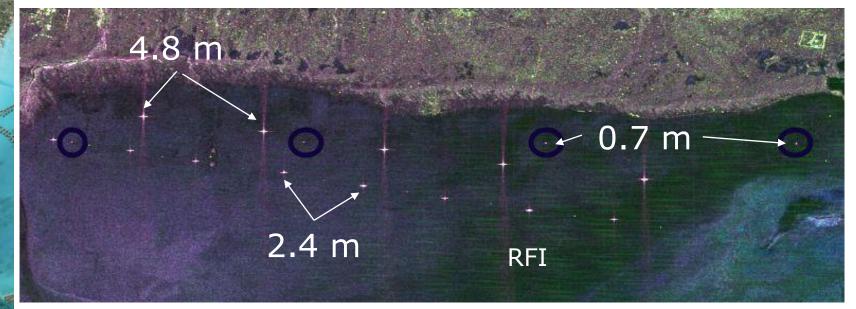
NISAR L-band Trihedral Corner Reflectors

dou

VH-RODA 2021 online wor

T

JPL P-band reflector 4.8 m at Rosamond Dry Lake



do

online

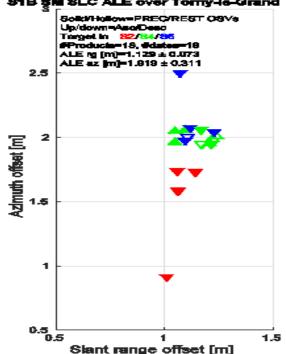
VH-RODA 2021

NASA/JPL Rosamond Corner Reflector Array Southern California

L-band UAVSAR image

0

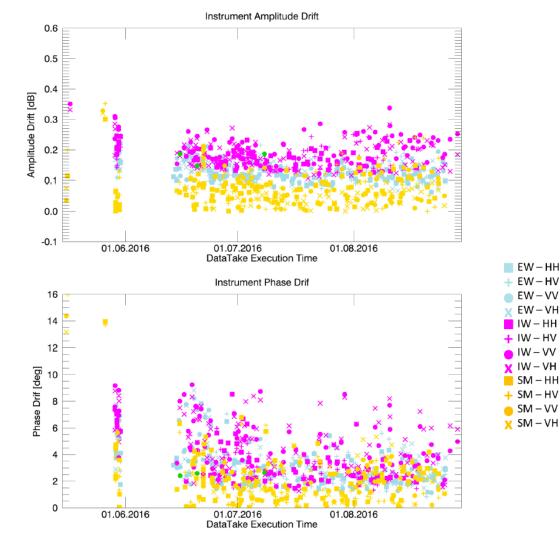
O


0

online

VH-RODA 2021

Υ


Sentinel-1 Geolocation of SAR imagery over Swiss corner reflector site by University of Zurich, RSL

S1B \$M SLC ALE over Tormy-le-Grand

00 WOL online 2021 **VH-RODA** T

Sentinel-1B

Monitoring amplitude and phase stability

Schwerdt et al, 2017

EW-HH EW-HV

EW - VVEW-VH

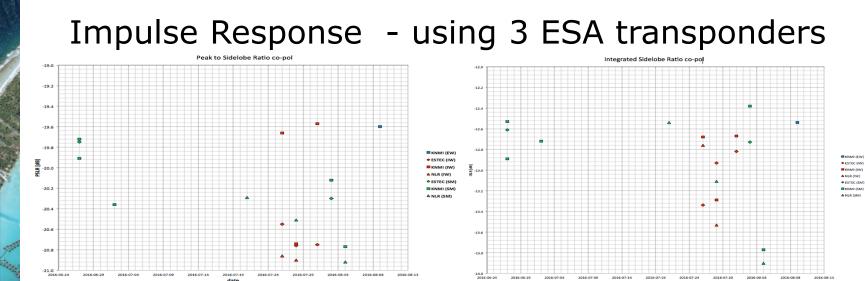
IW – HH

IW – VV

SM – HH

Workshop 2021 | 20-23 April 2021 | Slide 21

esa


Corner Reflectors

 Typically, when a reflector has been deployed and the agency responsible is open to sharing of the reflector for calibration, the size, position, and orientation is provided.

- But in addition what is needed:
 - The measured RCS for each reflector over time by their SAR, and other SARs.
 - Survey accuracy, date of survey, deployment date, any termination date, or gap in deployent.
 - characterize background SAR backscatter over time for the region, such as by their SAR and others.
- If reflectors are deployed N/S, they may be suitable for both right and left looking observations with only minimal loss to RCS.

Artificial Active targets

- Band specific
- Retransmits the received signal
- Can be polarimetric
- Requires power and needs to be powered on for the satellite overpass
- Must be characterized
 - Stability, antenna pattern, gain
- The costs are higher for these devices, and their availability is more limited than for passive devices.

IRF Parameter	SM	IW	EW
Peak to Sidelobe Ratio (PSLR) [dB]	-23.44 ± 0.79	-23.07 ± 0.93	-24.94 ± 2.74
2-D Integrated Sidelobe Ratio (ISLR) [dB]	-15.69 ± 0.52	-15.75 ± 0.38	-17.85 ± 4.64
Spurious Sidelobe Ratio (SSLR) [dB]	-31.94 ± 0.46	-31.40 ± 0.65	-32.85 ± 3.42
Early Azimuth Ambiguity Ratio [dB]	-26.54 ± 4.34	-31.23 ± 1.31	-33.06 ± 3.65
Late Azimuth Ambiguity Ratio [dB]	-27.45 ± 3.54	-29.32 ± 0.63	-32.25 ± 2.28

dou V WOL online VH-RODA 2021 T

eesa

Sentinel-1A Absolute Radiometric Accuracy from DLR C-band transponders

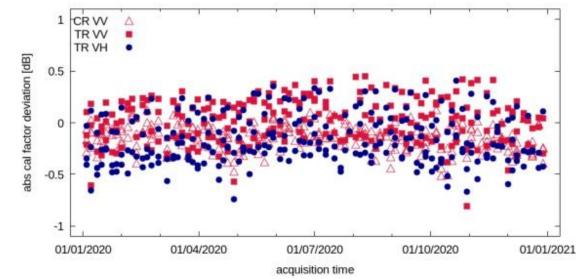


Figure 24: S-1A calibration factor for IW acquisitions in 2020 derived from DLR reference targets; the polarization is depicted by colour: VV in red, VH in blue.

	S-1A IW (VV and VH)	S-1B IW (VV and VH)
Mean value ± standard deviation	-0.10 dB ± 0.21 dB	-0.04 dB ±0.24 dB
Absolute radiometric accuracy (1o)	0.302 dB	0.325 dB

00 0 online VH-RODA 2021 T

eesa

)21 | 20-23 April 2021 | Slide 25

.eesa

ESA Transponder

DLR Transponder

JPL L-band PARC from University of Michigan

Conclusions

- There is a demand for well-defined calibration targets for SAR calibration
 - These targets are used to calibrate the data from these missions
 - Currently, in most cases these targets are defined differently for each SAR mission.
- There are three main category of targets
 - Natural Targets
 - Artificial Passive Targets
 - Artificial Active Targets
- "SARcalnet" is in the early stages of formulation by the CEOS WGCV SAR subgroup.
 - It would be an established network of calibration sites that would facilitate collaboration between sensors by using the same calibration references.

Thank you

This work was partially performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.