

ESTRUTURAS DE CONTENÇÃO

EMPUXOS DE TERRA

CONTEÚDO

1.	Emp	uxos	de Terra	.2
	1.1.	Defi	nição de Empuxo	.2
	1.1.1	•	Empuxo no Repouso	.2
	1.1.2	2.	Empuxo passivo x empuxo ativo	.5
	1.2.	Estad	dos de Equilíbrio Plástico	.6
	1.2.1	•	Estados de Equilíbrio Plástico Localizados	.9
	1.2.2	2.	Condições de Deformação	.9
	1.2.3	3.	Mobilização dos estados ativo e passivo	12
2.	Teor	ia de	Rankine (1987)	13
	2.1.	Hipó	iteses e Formulação Geral	13
	2.2.	Maci	iço com superfície horizontal	15
	2.3.	Emp	uxo total	17
	2.3.1	•	Solo Não coesivo	17
	2.3.2	2.	Solos coesivos	18
	2.4.	Caso	os com sobrecarga uniforme (c=0)	21
	2.5.	Maci	iços estratificados	22
	2.6.	Maci	iços com nível freático	24
	2.7.	Maci	iços com superfície inclinada	26
	2.7.1	•	Face do muro inclinada	30
3.	Teor	ia de	Coulomb (1776)	31
	3.1.	Influ	encia do Atrito Solo-Muro	31
	3.2.	Hipó	teses e Formulação Geral	34
	3.2.1	•	Estado de Equilíbrio Limite	35
	3.3.	Emp	uxo Ativo	36
	3.3.1	•	Solo coesivo	39
	3.3.2	2.	Presença de água	41
	3.3.3	8.	Resumo	45
	3.3.4	ŀ.	Sobrecarga	46
	3.4.	Emp	uxo passivo	52
	3.5.	Méto	odo de Culmann	53
	3.5.1	•	Método de Culmann – empuxo ativo (c=0)	53
	3.5.2	2.	Método de Culmann – empuxo passivo (c=0; $\delta < \frac{\phi}{3}$)	55
	3.5.3	3.	Ponto de aplicação em superfícies irregulares	56
	3.6.	Méte	odo do circulo de atrito	57
	3.0	6.1.1.	solo não coesivo (c=0)	58
	3.	6.1.2.	Solo coesivo ($c \neq 0$)	59

1. EMPUXOS DE TERRA

1.1. Definição de Empuxo

Entende-se por empuxo de terra a ação horizontal produzida por um maciço de solo sobre as obras com ele em contato.

A determinação do valor do empuxo de terra é fundamental para a análise e o projeto de obras como muros de arrimo, cortinas de estacas-prancha, construção de subsolos, encontro de pontes, etc. O valor do empuxo de terra, assim como a distribuição de tensões ao longo do elemento de contenção, depende da interação solo-elemento estrutural durante todas as fases da obra. O empuxo atuando sobre o elemento estrutural provoca deslocamentos horizontais que, por sua vez, alteram o valor e a distribuição do empuxo, ao longo das fases construtivas da obra.

1.1.1. Empuxo no Repouso

O empuxo no repouso é definido pelas tensões horizontais, calculadas para condição de repouso. Neste caso para a condição de semi-espaço infinito horizontal, o empuxo é produto do coeficiente de empuxo lateral no repouso (ko) e da tensão efetiva vertical, acrescido da parcela da poropressão.

$$k_o = \frac{\sigma'_h}{\sigma'_v}$$

$$\sigma_h = \underbrace{k_o \sigma'_v}_{\sigma'_h} + u$$

onde: σ'_{h} = tensão principal horizontal efetiva;

 σ'_{v} = tensão principal vertical efetiva.

 k_o = coeficiente de empuxo no repouso

u = poropressão

O valor de k_o depende de vários parâmetros geotécnicos do solo, dentre os quais pode-se citar: ângulo de atrito, índice de vazios, razão de pré-adensamento, etc.). A determinação do coeficiente de empuxo no repouso pode ser feita a partir ensaios de laboratório e ensaios de campo, teoria da elasticidade ou correlações empíricas

A determinação experimental pode ser feita através das seguintes técnicas de ensaio:

i) ensaio com controle de tensões, tal que $\varepsilon_h=0$. Este ensaio pode ser feito medindo-se as deformações axial e volumétrica e alterando as tensões tal que $\varepsilon_{axial}=\varepsilon_{vol}$. Alternativamente pode-

se medir as deformações horizontais da amostra através de instrumentação e, conseqüentemente, corrigir as tensões;

ii) ensaios de campo (pressiometro, ensaio de fratura hidráulica)

iii) instrumentação de campo (células de pressão)

Ensaios triaxiais (mantendo-se ϵ_h =0), realizados por Bishop, em areias uniformes (n = 40%) mostraram que (Figura 1)

- i) ko constante no 1º carregamento \Rightarrow em solos normalmente adensados ko é constante
- ii) no descarregamento ko é variavel podendo atingir valores superiores a 1 ⇒ em solos pre-adensados não há como estimar ko ⇒ se OCR varia ao logo do perfil Ko também varia

Figura 1. Variação de ko

No entanto, a determinação experimental de k_o torna-se difícil principalmente por dois fatores: alteração do estado inicial de tensões e amolgamento, provocados pela introdução do sistema de medidas. Estes dois fatores também influenciam o comportamento de amostras utilizadas em ensaios de laboratório.

Ass proposições empíricas (Tabela 1) valem para solos sedimentares. Solos residuais e solos que sofreram transformações pedológicas posteriores, apresentam tensões horizontais que dependem das tensões internas da rocha ou do processo de evolução sofrido. Nestes solos o valor de k_0 é muito difícil de ser obtido.

Autor	Equação	Observações
Teoria da elasticidade	$K_o = \frac{\sigma'_x}{\sigma'_z} = \frac{\nu'}{(1 - \nu')}$	$\begin{split} \epsilon_x &= \epsilon_y = 0 \\ \text{Anderson Borghetti Soares} &= \text{coeficiente de} \\ \text{Poisson} \\ \text{TE: } 0,25 \leq \nu' \leq 0,45 \Rightarrow 0,33 \leq k_o \leq 0,82 \end{split}$
Jaky (1944) ¹	$K_{o} = \left(1 + \frac{2}{3} \operatorname{sen} \phi'\right) \left(\frac{1 - \operatorname{sen} \phi'}{1 + \operatorname{sen} \phi'}\right)$ forma simplificada: $K_{o} = 1 - \operatorname{sen} \phi'$	Areias Argilas normalmente adensadas Bishop (1958) ² ∳'= ângulo de atrito efetivo
Brooker e Ireland (1965) ³	$K_0 = 0.95 - sen\phi'$	Argilas normalmente adensadas ∳'= ângulo de atrito efetivo
Apud França (1976) ⁴	$K_{o} = \frac{1 - \sin^{2} \phi'}{1 + 2 \sin^{2} \phi'}$ $K_{o} = tg^{2} \left(45^{\circ} - \frac{\phi'}{3}\right)$	∳'= ângulo de atrito efetivo
Apud Ferreira (1982) ⁵	$K_0 = 0.19 + 0.11e$ $K_0 = 0.04 + 0.75e$	e = índice de vazios
Alpan (1967) ⁶	$K_{o} = 0.19 + 0.233 \log I_{p}$	$I_p =$ índice de plasticidade
Massarsch (1979)	$K_{o} = 0,44 + 0,42 \frac{I_{p}}{100}$	$I_p = $ índice de plasticidade
extensão da fórmula de Jaky	$\begin{split} \mathbf{K}_{\mathrm{o}} &= (1 - \operatorname{sen} \phi') (\operatorname{OCR})^{\operatorname{sen} \phi'} \\ & \text{forma simplificada:} \\ & \mathbf{K}_{\mathrm{o}} &= 0,5 (\operatorname{OCR})^{0,5} \end{split}$	Argilas pré-adensadas OCR = razão de pré-adensamento
Alpan (1967)	$K_{o}(OC) = K_{o}(NC).OCR^{\eta}$	Argilas pré-adensadas K_o (OC) = K_o do material pré-adensado; K_o (NC) = K_o do material normalmente adensado; η = constante, em regra entre 0,4 e 0,5

Tabela 1. Correlações empíricas para estimativa de ko

¹ Jaky, J. (1944) "*The Coefficient of Earth Pressure at Rest*". Journal of Society of Hungarian Architects and Engineers, Budapest, Hungary, pp. 355-358

² Bishop, A W. (1958) "Test Requeriments for Measuring the Coeficiente of Earth Pressure at Rest". In Proceedings of the Conference on Earth Pressure Problems. Brussels, Belgium, vol.1, pp 2-14.

³ Brooker, E.W. e Ireland, H.^o (1965) "*Earth Pressures at Rest Related to Stress History*". Canadian Geotechnical Journal, vol.2, n^o 1, pp 1-15.

⁴ França, H. (1976) "Determinação dos Coeficientes de Permeabilidade e Empuxo no Repouso em Argila Mole da Baixada Fluminense". Dissertação de Mestrado. PUC-Rio.

⁵ Ferreira, H.N. (1982) "Acerca do Coeficiente de Impulso no Repouso". Geotecnia, nº 35, pp 41-106.

⁶ Alpan, I. (1967) "The Empirical Evaluation of The Coefficient Ko and Kor". Soil and Foundation, Jap. Soc. Soil Mech. Found. Eng., vol.7, n° 1, pp 31-40.

1.1.2. Empuxo passivo x empuxo ativo

Nos problemas de fundações, a interação das estruturas com o solo implica a transmissão de forças predominantemente verticais. Contudo, são também inúmeros os casos em que as estruturas interagem com o solo através de forças horizontais, denominadas empuxo de terra. Neste último caso, as interações dividem-se em duas categorias.

A primeira categoria verifica-se quando determinada estrutura é construída para suportar um maciço de solo. Neste caso, as forças que o solo exerce sobre as estruturas são **de natureza ativa**. O **solo "empurra' a estrutura**, que reage, tendendo a afastar-se do maciço. Na Figura 2 estão apresentadas diversas obras deste tipo.

Na segunda categoria, ao contrário, é a **estrutura que é empurrada contra o solo**. A força exercida pela estrutura sobre o solo é de **natureza passiva**. Um caso típico deste tipo de interação solo-estrutura é o de fundações que transmitem ao maciço forças de elevada componente horizontal, como é o caso de pontes em arco (Figura 3).

Em determinadas obras, a interação solo-estrutura pode englobar simultaneamente as duas categorias referidas. É o caso da Figura 4, onde se representa um muro-cais ancorado. As pressões do solo suportado imediatamente atrás da cortina são equilibradas pela força F_t de um tirante de aço amarrado em um ponto perto do topo da cortina e pelas pressões do solo em frente à cortina. O esforço de tração no tirante tende a deslocar a placa para a esquerda, isto é, empurra a placa contra o solo, mobilizando pressões de natureza passiva de um lado e pressões de natureza ativa no lado oposto.

O cômputo da resultante e da distribuição das pressões, quer as de natureza ativa, quer as de natureza passiva, que o solo exerce sobre a estrutura, assim como do estado de deformação associado, é quase sempre muito difícil. Contudo, a avaliação do valor mínimo (caso ativo) ou máximo (caso passivo) é um problema que é usualmente ser resolvido por das teorias de estado limite.

(a) Muros de gravidade (b) Muro de proteção contra a erosão superficial

Figura 3. Exemplos de obra em que os empuxos são de natureza passiva

Figura 4. Muro-cais ancorado – caso em que se desenvolvem pressões ativas e passivas.

1.2. Estados de Equilíbrio Plástico

Diz se que a massa de solo esta sob equilíbrio plástico quando todos os pontos estão em situação de ruptura

Seja uma massa semi-infinita de solo seco, não coesivo, mostrada na Figura 5. O elemento está sob condição geostática. e as tensões atuantes em uma parede vertical, imaginaria será calculada com base em:

$$\sigma'_{ho} = k_o . \sigma'_{vo} = k_o . \gamma . z$$

onde: σ'_{ho} = tensão efetiva horizontal inicial;

 σ'_{vo} = tensão efetiva vertical inicial;

k_o = coeficiente de empuxo no repouso;

 γ = peso específico do solo;

z = profundidade do ponto considerado

Como não existem tensões cisalhantes, os planos vertical e horizontal são planos principais. Supondo que haja um deslocamento do diafragma, haverá uma redução da tensão horizontal (σ_h), sem que a tensão vertical sofra qualquer variação. Se o deslocamento do diafragma prosseguir, a tensão horizontal até que ocorra a condição de ruptura. Neste caso, dizse que a região esta em equilíbrio plástico e σ_h atingirá seu limite inferior (condição ativa).

Figura 5. Estado de equilíbrio plástico

Caso o diafragma se desloque em direção oposta a tensão horizontal ira aumentar até atingir seu valor máximo na ruptura (condição passiva). Neste caso haverá rotação de tensões principais ; isto é :

 $\sigma_h = \sigma_1$

 $\sigma_v = \sigma_3$

A Figura 6 mostra os estados limites em termos de círculos de Mohr e a Figura 7 apresenta as trajetórias de tensões efetivas correspondentes à mobilização dos estados limites ativo e passivo.

- estado limite ativo: mantendo-se a tensão efetiva vertical constante e diminuindose progressivamente a tensão efetiva horizontal ;
- ✓ estado limite passivo: mantendo-se a tensão efetiva vertical constante e aumentando-se progressivamente a tensão efetiva horizontal.

Figura 6. Círculos de Mohr representativos dos estados limites e de repouso

1.2.1. Estados de Equilíbrio Plástico Localizados

No desenvolvimento apresentado anteriormente, a massa de solo foi considerada semiinfinita. O movimento do diafragma gerava um estado de equilíbrio plástico que em toda a massa de solo. Este quadro não acontece na pratica, a menos que seja originado por forças tectônicas.

No caso de muros, os movimentos são localizados e só produzem mudanças nas vizinhanças da estrutura. A região afetada será função do tipo de movimento e das condições de contorno do problema. No caso de muro liso e solo seco, a superfície de ruptura atende aquelas mostradas na Figura 6 (Figura 8).

Figura 8. Estados plásticos ao longo da parede

1.2.2. Condições de Deformação

Resultados experimentais mostraram que os estados de equilíbrio plástico se desenvolvem quando o deslocamento do muro é uniforme ou quando há rotação pela base (Figura 9).

Por outro lado, se a rotação for pelo topo haverá possibilidade de formação de uma superfície não planar, sem que toda região atinja equilíbrio plástico.

Figura 9. Condições de deformação compatíveis com estados plásticos

O tipo de deslocamento afeta a forma da superfície de plastificação e conseqüentemente interfere na distribuição de tensões. A mostra os diagramas de empuxo para o caso de solos não coesivos, para diferentes condições de deslocamento. Observa-se que sempre que a superfície for plana a distribuição também é linear. Para outros casos a distribuição de empuxos passa a ter a forma parabólica.

(a) deslocamento

(c) rotação pelo topo

Figura 11. Distribuição de empuxos

1.2.3. Mobilização dos estados ativo e passivo

Resultados experimentais indicaram que as deformações associadas à trajetória ativa são significativamente menores que as observadas em trajetórias passivas. A Figura 12 mostra resultados de ensaios aonde observa-se que:

- ✓ estado limite ativo ⇒ são necessárias deformações muito pequenas, da ordem de 0,5%
- ✓ deformações horizontais da ordem de 0,5% são necessárias para mobilizar metade da resistência passiva;
- ✓ estado limite passivo \Rightarrow são necessárias deformações da ordem de 2%r

Figura 12. Ensaios triaxiais em uma areia compacta sob trajetórias de tensões do tipo ativo e passivo (Lambe e Whitman, 1969)

Resultados deste tipo são característicos de solos granulares compactos. Em solos fofos, as deformações correspondentes à mobilização da resistência ao cisalhamento são ainda mais elevadas.

De certa forma, as deformações necessárias para mobilizar o estado ativo são menores do que as necessárias para mobilizar o estado passivo. No estado ativo, o solo sofre uma solicitação de tração. No estado passivo, ocorre a compressão do solo. Os solos possuem resistência à

compressão, mas não suportam esforços de tração. Sendo assim, basta um pequeno alívio de tensões horizontais para que ocorra a ruptura do solo por tração.

É importante observar, portanto, que para atingir os estados limites ativo e passivo é necessário haver deslocamento da estrutura. A Tabela 2 apresenta as deformações mínimas necessárias para a mobilização dos estados plásticos.

Tabela 2. Deformações mínimas para mobilização dos estados plásticos

SOLO	ESTADO	MOVIMENTO (Figura 13)	δ/Η (%)
	Ativo	Translação	01005
	Allvo	Rotação do pé	0,1 a 0,5
Areia	Passivo	Translação	5,0
	Fassivo	Rotação do pé	> 10
Argila	Argila Transl		0.4
media	Allvo	Rotação do pé	0,4
Argila	Ativo	Translação	1 a 2
rija	Allvo	Rotação do pé	2 a 5
	<u></u>		

(a) translação

(b) rotação do pé

Figura 13. Tipo de movimento

2. TEORIA DE RANKINE (1987)

2.1. Hipóteses e Formulação Geral

De acordo com a teoria de Rankine, o deslocamento de uma parede irá desenvolver estados limites, plásticos. No momento da ruptura surgem **infinitos planos de ruptura e** ocorre a plastificação de todo o maciço;

Em resumo, o método de Rankine (1857) considera o solo em estado de equilíbrio plástico e baseia-se nas seguintes hipóteses:

- ✓ Solo isotrópico;
- ✓ Solo homogêneo;
- ✓ Superfície do terreno plana;
- ✓ A ruptura ocorre em todos os pontos do maciço simultaneamente;

- ✓ A ruptura ocorre sob o estado plano de deformação;
- ✓ Muro perfeitamente liso (atrito solo-muro: $\delta = 0$) ⇒ os empuxos de terra atuam paralelamente à superfície do terreno
- ✓ A parede da estrutura em contato com o solo é vertical

No caso do afastamento da parede, haverá um decréscimo de σ_h , sem alteração de σ_v ; as tensões verticais e horizontais continuarão sendo as tensões principais, máxima e mínima, respectivamente. Este processo tem um limite (Figura 6), que corresponde à situação para a qual o maciço entra em equilíbrio plástico e, por maiores que sejam os deslocamentos da parede, não é possível reduzir mais o valor da tensão principal menor (σ'_{ha}). Neste caso, o solo terá atingido a **condição ativa** de equilíbrio plástico. Nesta condição, a razão entre a tensão efetiva horizontal e a tensão efetiva vertical é definida pelo **coeficiente de empuxo ativo, k**_a, ou seja:

Com o deslocamento da parede de encontro ao maciço, se observará um acréscimo de σ_h , sem alteração de σ_v . O ponto B se deslocará para a direita, mantendo-se fixo o ponto A (Figura 6). Em determinado instante, a tensão horizontal se igualará à tensão vertical, instalando-se no maciço um estado de tensões hidrostático ou isotrópico. Nos estágios seguintes, a tensão principal maior passa a ser horizontal, ou seja, ocorre uma rotação das tensões principais. Com a continuidade do movimento, a tensão σ_h aumentará até que a razão σ_h/σ_v atinja o limite superior e, consequentemente, a ruptura. Neste caso, o solo terá atingido a **condição passiva** de equilíbrio plástico. Nesta condição, a razão entre a tensão efetiva horizontal e a tensão efetiva vertical é definida pelo **coeficiente de empuxo passivo, k**_p, ou seja:

A Figura 6 permite ainda determinar **as direções das superfícies de ruptura** nos estados de equilíbrio limite ativo e passivo, ou seja, as direções dos planos onde a resistência ao cisalhamento do solo é integralmente mobilizada. Em ambos os casos, as superfícies de ruptura fazem um ângulo de (**45º-** ϕ '/**2**) com a direção da tensão principal máxima (que no caso ativo é a tensão vertical e no caso passivo é a tensão horizontal).

2.2. Maciço com superfície horizontal

Para o caso de maciço com superfície horizontal, as tensões na ruptura são calculadas (Figura 14) por:

$$\tau = \frac{\sigma_1 - \sigma_3}{2} \cos \phi'$$
$$\sigma = \frac{\sigma_1 + \sigma_3}{2} - \frac{\sigma_1 - \sigma_3}{2} \operatorname{sen} \phi'$$

Substituindo em $\tau = c' + \sigma' \tan \phi'$, chega-se a

$$\frac{\sigma_1 - \sigma_3}{2}\cos\phi' = c' + \left(\frac{\sigma_1 + \sigma_3}{2} - \frac{\sigma_1 - \sigma_3}{2}\sin\phi'\right) \cdot \frac{\sin\phi'}{\cos\phi'}$$
$$\frac{\sigma_1 - \sigma_3}{2}\cos\phi' = c' + \left(\frac{\sigma_1 + \sigma_3}{2} - \frac{\sigma_1 - \sigma_3}{2}\sin\phi'\right) \cdot \tan\phi'$$

Dividindo por $\cos \phi$ ':

$$\frac{\sigma_1 - \sigma_3}{2} = c' \cdot \cos\phi' + \left(\frac{\sigma_1 + \sigma_3}{2}\right) \operatorname{sen}\phi'$$

$$\frac{\sigma_1}{2} (1 - \operatorname{sen}\phi') = c \cdot \cos\phi' + \frac{\sigma_3}{2} (1 + \operatorname{sen}\phi') \quad \Rightarrow \quad \sigma_3 = -\frac{2 \cdot c' \cdot \cos\phi'}{1 + \operatorname{sen}\phi'} + \sigma_1 \frac{(1 - \operatorname{sen}\phi')}{(1 + \operatorname{sen}\phi')}$$

Assumindo $\sigma'_v = \sigma_1$ e $\sigma'_h = \sigma_3 \Rightarrow$ caso ativo:

$$\sigma_{hativo} = \sigma_{v} \underbrace{\left(\frac{1 - sen\phi}{1 + sen\phi}\right)}_{Ka} - 2c \underbrace{\sqrt{\left(\frac{1 - sen\phi}{1 + sen\phi}\right)}}_{Kac} \Rightarrow \sigma'_{h} = \sigma'_{v} \cdot k_{a} - 2c' \sqrt{k_{a}}$$

Assumindo $\sigma'_v = \sigma_3$ e $\sigma'_h = \sigma_1 \Rightarrow$ caso passivo:

$$\sigma_{hpassivo} = \sigma_{v} \underbrace{\left(\frac{1 + sen\phi}{1 - sen\phi}\right)}_{Kp} + 2c \underbrace{\sqrt{\left(\frac{1 + sen\phi}{1 - sen\phi}\right)}}_{Kpc} \Rightarrow \sigma'_{h} = \sigma'_{v} \cdot k_{p} + 2c' \sqrt{k_{p}}$$

Figura 14. Circulo de Mohr para solo coesivo

A Tabela 3 resume as equações associadas à Teoria de Rankine

Tabela 3. Eo	quações da	Teoria	de	Rankine
--------------	------------	--------	----	---------

Caso	Equaçõ	es	Planos
Ativo	$\sigma_{h'ativo} = \sigma'_{V}K_{a} - 2c'K_{ac}$	$k_a = \frac{1 - sen\phi'}{1 + sen\phi'} = \tan^2\left(45^\circ - \frac{\phi'}{2}\right)$ $K_{ac} - \sqrt{K_a}$	$\theta = 45^{0} + \frac{\phi}{2}$
Passivo	$\sigma_{h'passivo} = \sigma'_v K_p + 2c' K_{pc}$	$k_{p} = \frac{1 + sen\phi'}{1 - sen\phi'} = \tan^{2}\left(45^{\circ} + \frac{\phi'}{2}\right)$ $K_{pc} = \sqrt{K_{p}}$	$\theta = 45^{\circ} - \frac{\phi}{2}$

Na Tabela 4 indicam-se valores de $k_a e k_p$ para diferentes valores de ângulo de atrito. ($k_p = 1/k_a$). Observa-se que quanto maior o ângulo de atrito, maior o valor de $k_p e$ menor o valor de k_a

Verifica-se também que se $\phi=0$, os coeficientes de empuxo são iguais a 1 e a equação reduz-se a :

 $\sigma_{hativo} = \sigma_v - 2s_u$ e $\sigma_{passivo} = \sigma_v + 2s_u$

onde S_u é a resistência não drenada

Tabela 4. Valores de $k_a e k_p$

φ'	ka	k _p
0	1,00	1,00
30	0,33	3,00
45	0,17	5,83
60	0,07	13,90

2.3. Empuxo total

2.3.1. Solo Não coesivo

O Empuxo total é calculado a partir da integral da distribuição de tensões horizontais

$$E = \int_{0}^{z} \sigma_{h} dz$$

No caso mais simples, considerando um solo homogêneo, seco, com c=0, valor do empuxo ativo total E_a é igual a área do triângulo ABD (Figura 15) e pode ser obtido pela expressão:

$$\mathsf{E}_{\mathsf{a}} = \int_{\mathsf{o}}^{\mathsf{h}} \mathsf{k}_{\mathsf{a}}.\gamma.z.\mathsf{d}z = \frac{\gamma \mathsf{h}^2.\mathsf{k}_{\mathsf{a}}}{2}$$

Figura 15. Distribuição de Empuxos (c=0)

Admitindo-se agora, que a parede se desloque contra o terrapleno (Figura 15b). Para que se produza o deslizamento, o empuxo deverá ser maior do que o peso do terrapleno. Assim, a tensão principal maior será horizontal. Neste caso, valor do empuxo ativo E_p é igual a área do triângulo ABD e pode ser obtido pela expressão:

$$\mathsf{E}_{\mathsf{p}} = \int_{\mathsf{o}}^{\mathsf{h}} \mathsf{k}_{\mathsf{p}}.\gamma.z.\mathsf{d}z = \frac{\gamma \mathsf{h}^2.\mathsf{k}_{\mathsf{p}}}{2} \tag{16}$$

Em ambos os casos, o ponto de aplicação do empuxo, caso o maciço seja homogêneo estará a uma profundidade de 2/3h.

2.3.2. Solos coesivos

No caso de solos coesivos, as tensões horizontais ($\sigma'_{ha} e \sigma'_{hp}$) representativas do estados ativo e passivo, podem ser obtida a partir das expressões:

$$\sigma_{h_{ativo}} = \sigma_v K_a - 2cK_{ac}$$
$$\sigma_{h_{passivo}} = \sigma_v K_p + 2cK_{pc}$$

No caso ativo, a distribuição de empuxos se anula a uma determinada profundidade Z_o , As tensões horizontais sendo acima dessa profundidade são negativas, conforme mostra a Figura 16. Como o solo não resiste a tensões trativas, surgem trincas nesta região.

$$\begin{split} \sigma_{hativo} &= 0 \Rightarrow \sigma_{v} K_{a} - 2c K_{ac} = 0 \\ \gamma z_{o} K_{a} &= 2c \sqrt{K_{a}} \Rightarrow z_{o} = \frac{2c}{\gamma \sqrt{K_{a}}} \end{split}$$

Figura 16. Distribuição de empuxos ativos (c≠0)

O empuxo ativo total é dado, portanto, por:

$$E_{a} = \int_{o}^{h} (k_{a}.\sigma_{v} - 2cK_{ac}) dz = \int_{o}^{h} (k_{a}.\gamma h - 2cK_{ac}) dz = \frac{\gamma h^{2}K_{a}}{2} - 2chK_{ac}$$

Pelo fato da região superficial apresentar tensões negativas ($Z < Z_o$), haverá uma profundidade em que a resultante de empuxo ativo será nula. Até esta profundidade (h_c) a escavação vertical é estável.

$$E_{a} = \frac{\gamma h_{c}^{2} K_{a}}{2} - 2 c h_{c} K_{ac} = 0$$
$$h_{c} = \frac{4c \sqrt{K_{a}}}{\gamma K_{a}} = \frac{4c}{\gamma \sqrt{K_{a}}}$$

A região de tração não deve ser considerada em projeto, reduzindo a tensão horizontal. Ao contrario, deve-se assumir que a sua existência pode acarretar num possível preenchimento por água de infiltração. Neste caso a presença da água gera um acréscimo de tensão horizontal igual a $\gamma_w Z_o$. Recomenda-se nestes casos, considerar no mínimo um diagrama aproximado,conforme mostrado na Figura 16.

Exemplo. Desenhe o diagrama para a parede de 6,5m de altura. Parâmetros do solo : $\phi = 10^{\circ}$, c = 10,5kPa e $\gamma = 17,52$ kN/m³.

$$k_{a} = \frac{1 - \operatorname{sen}\phi'}{1 + \operatorname{sen}\phi'} = \tan^{2}\left(45^{\circ} - \frac{\phi'}{2}\right) = 0,704$$

$$K_{ac} - \sqrt{K_{a}} = 0,84$$
Para Z=0
$$\sigma_{hativo} = -2cK_{ac} = -17,64kPa$$
Para Z=Z_o

$$z_{o} = \frac{2c}{\gamma\sqrt{K_{a}}} = 1,43m$$
Para Z=6,5m

 $\sigma_{hativo} = \gamma h K_a - 2 c K_{ac} = 62,53 k Pa$

Desprezando a zona de tração: $E_a = \frac{62,53 \times 5,07}{2} = 158,52 \text{kN/m}$ $\overline{y} = \frac{5,07}{3} = 1,69 \text{m}$

Usando o diagrama aproximado $E_a = \frac{62,53 \times 6,5}{2} = 203,22kN / m$ $\overline{y} = \frac{6,5}{3} = 2,17m$

Considerando a saturação da trinca

$$\mathsf{E}_{\mathsf{a}} = \frac{62,53 \times 5,07}{2} + \frac{9,81 \times 1,43^2}{2} = 168,55 \text{kN/m}$$

Momento com relacao a base = $158,52 \times 1,69 + 10,03 \left(5,07 + \frac{1,43}{3} \right) = 323,52 \text{kN/m}$

$$\overline{y} = \frac{323,52}{168,55} = 1,92m$$

Neste exemplo, a solução com saturação da trinca apresenta valores intermediários e a solução com o diagrama aproximado é a mais conservativa.

No caso passivo, a distribuição de empuxos está apresentada na Figura 17 e o empuxo é obtido a partir da expressão:

Figura 17. Distribuição de empuxos passivos (c≠0)

Convém ressaltar que as expressões de empuxo são validas para solo homogeneo e que o empuxo total é calculado por metro linear.

2.4. Casos com sobrecarga uniforme (c=0)

Se existe uma sobrecarga uniformemente distribuída, q, aplicada na superfície do terreno (Figura 18), a tensão vertical em qualquer ponto do maciço aumenta naturalmente de igual valor. Assim:

 $\sigma'(z) = \gamma . z + q$

Caso o maciço se encontre em equilíbrio limite, a tensão horizontal (ativa ou passiva) sobre a parede a uma profundidade z passa a ser:

 $\sigma'_{h}(z) = K. \sigma'_{v}(z) = K.\gamma.z + K.q$

Conclui-se então, que a existência de uma sobrecarga uniformemente distribuída na superfície do terreno implica, em uma situação de equilíbrio limite de Rankine, a existência de um diagrama retangular de pressões. A tensão horizontal será definida pelo produto da sobrecarga aplicada pelo coeficiente de empuxo correspondente ao estado de equilíbrio limite em questão.

O efeito da sobrecarga pode ser também considerado como uma altura equivalente de aterro (ho):

$$h_o = \frac{q}{\gamma}$$

onde: γ é o peso específico do solo. Neste caso, a tensão horizontal a uma profundidade z, será dada por:

Figura 18. Aplicação do Método de Rankine a casos com sobrecarga uniforme

2.5. Maciços estratificados

Considere o maciço estratificado apresentado na Figura 19. Cada estrato apresenta um valor de peso específico (γ) e ângulo de atrito (ϕ '), consequentemente, cada estrato apresenta um valor de coeficiente de empuxo (K) distinto.

A tensão horizontal no ponto imediatamente acima da superfície de separação dos estratos é calculada por $K_{1.\gamma_1}$. h_1 . No cálculo das tensões para as profundidades correspondentes ao estrato 2, o estrato 1 pode ser considerado como uma sobrecarga uniformemente distribuída de valor γ_1 . h_1 , dando origem a um diagrama retangular de valor $K_{2.\gamma_1}$. h_1 . Este diagrama soma-se ao das tensões associadas ao estrato 2, que, a uma profundidade h_2 valem $K_{2.\gamma_2}$. h_2 .

Ressalta-se que, pelo fato de K_1 e K_2 serem diferentes, o diagrama resultante apresenta uma descontinuidade à profundidade de separação dos estratos. Neste caso, o ponto de aplicação do empuxo deve ser calculado a partir do equilíbrio das forças resultantes de cada um dos diagramas.

Exercício:

Plotar as distribuições de tensão horizontal, correspondentes as condições ativa e passiva e calcular os empuxos totais.

Faculdade de Engenharia Departamento de Estruturas e Fundações

Solo	$k_a = \tan^2\left(45 - \frac{\phi}{2}\right)$	$k_{p} = \tan^{2}\left(45 + \frac{\phi}{2}\right)$	
Areia ($\phi = 30^{\circ}$)	0,33	3	I
Argila	0,29	3,39	1
Areia ($\phi = 40^{\circ}$)	0,21	4,59	1

Profundidade – 4m (considerando apenas o solo 1) $\sigma_v = 17,5x4 = 70kN/m^2$ $\sigma_{hal} = 70x0,33 = 23,1kN/m^2$; $\sigma_{pal} = 70x3 = 210kN/m^2$

Profundidade – 4m (solo 2) $\sigma_v = 17,5x4 = 70kN / m^2$ $\sigma_{ha} = 20,3 - 4\sqrt{0,29} = 18,14kN / m^2$; $\sigma_{pa} = 237,3 + 4\sqrt{3,39} = 244,67kN / m^2$

 $\begin{aligned} & \textit{Profundidade} - 7m \\ & \sigma_v = 17,5x4 + 16x3 = 118kN / m^2 \\ & \sigma_{ha1} = (70 + 48)x0,29 - 2x2\sqrt{0,29} = 32,06kN / m^2 \quad ; \sigma_{pa1} = 237,3 + 2x2\sqrt{3,39} + 48x3,39 = 407,30kN / m^2 \\ & \sigma_{ha2} = (70 + 48)x0,21 = 24,78kN / m^2 \quad ; \sigma_{pa2} = (70 + 48)x4,59 = 541,62kN / m^2 \end{aligned}$

Profundidade – 17m $\sigma_{ha} = (70 + 48 + 20,5x10)x0,21 = 67,83kN / m^2$; $\sigma_{pa} = (70 + 48 + 20,5x10)x4,59 = 1482,57kN / m^2$

Calculo do Empuxo total – condição ativa $E_{a} = \frac{23,1x4}{2} + 18,14x3 + \frac{(32,06-18,14)x3}{2} + 24,78x10 + \frac{(67,83-24,78)x10}{2} = 584,55$

Momento em relação a base M = 46,2x14,3 + 54,42x11,5 + 20,88x11 + 247,8x5 + 215,25x3,33 = 2.356,85

Ponto de aplicação do empuxo ativo $y = \frac{2356,85}{584,55} = 4,03m$

Calculo do Empuxo total – condição ativa

 $E_p = \frac{210x4}{2} + 244,67x3 + \frac{(407,3 - 244,67)x3}{2} + 541,62x10 + \frac{(1482,54 - 541,62)x10}{2} = 11.518,75kN \ / \ m$

Momento em relação a base

M = 420x14,3 + 734,01x11,5 + 243,94x11 + 5.416,2x5 + 4.704,6x3,33 = 59.877,77kN / m

Ponto de aplicação do empuxo passivo $\frac{1}{y} = \frac{59.877,77}{11.518,75} = 5,19 \text{ m}$

2.6. Maciços com nível freático

No caso de existência de um nível freático, o problema pode ser resolvido como se houvessem dois estratos, um acima do nível freático, de peso específico γ , e outro abaixo do nível freático, de peso específico γ_{sub} .

A Figura 20 esquematiza o processo de cálculo. O diagrama (1) é referente ao solo acima do nível freático. A tensão horizontal cresce com a profundidade até a altura do nível d'água. A partir daí, o diagrama permanece constante, já que o estrato superior pode ser considerado como uma sobrecarga uniformemente distribuída de valor γ (h-h_w). O diagrama (2) refere-se ao solo abaixo do nível freático. O diagrama (3) é o das pressões hidrostáticas.

Ressalta-se que, uma vez que se trata do mesmo solo, o diagrama resultante apresenta uma quebra no nível freático, mas não uma descontinuidade.

Figura 20. Aplicação do Método de Rankine a maciços com nível freático

Exemplo. As condições de solo adjacente a uma cortina estão dadas na figura abaixo. Plote as distribuições de empuxo ativo e passivo.

areia

$$k_{a} = \frac{1 - \operatorname{sen}\phi'}{1 + \operatorname{sen}\phi'} = \tan^{2}\left(45^{\circ} - \frac{\phi'}{2}\right) = 0,24$$

Kp = 1/k_a = 4,17

argila

$$k_{a} = \frac{1 - \text{sen}\phi'}{1 + \text{sen}\phi'} = \tan^{2}\left(45^{\circ} - \frac{\phi'}{2}\right) = 0,36$$

Kp = 1/k_a = 2,78

$$\begin{split} \sigma_{hativo} &= \sigma_v' K_a - 2c'' \sqrt{K_a} + q K_a + u \\ \sigma_{hpassivo} &= \sigma_v' K_p + 2c'' \sqrt{K_p} + q K_p + u \end{split}$$

Ponto	σ΄ν	k _a σ´v	$k_{ m p}\sigma'_{ m v}$	2c√k _a	$2c\sqrt{k_p}$	k _a q	и	σ_h
1	0	0	-	-	-	12		12
2 - 5	18x6=108	25,92	-	-	-	12		37,92

Faculdade de Engenharia Departamento de Estruturas e Fundações

2 - 5	108	38,88	-	12	-	18		44,9
3-6	108+10x3=138	49,68	-	12	-	18	30	85,7
4	0	-	0	-	-	-	-	0
5-2	1,5x18=27	-	112,59	-	-	-	-	112,6
5-2	27	-	75,06	-	33,35	-	-	108,4
6-3	27+10x3=57	-	158,46	-	33,35	-	30	221,8

2.7. Maciços com superfície inclinada

Considere um maciço não coesivo com uma superfície inclinada de um ângulo β em relação à horizontal. Considerando um elemento a uma determinada profundidade (z), com os lados verticais e topo e base inclinados de β , assume-se que a tensão vertical e os empuxos ativo e passivo atuam também a uma inclinação β , conforme mostra a Figura 21. Como estas tensões não são normais aos seus próprios planos elas **não são tensões principais**

Figura 21. Aplicação do Método de Rankine para maciços com superfície inclinada⁷

⁷ Craig, RF(1974). Soil Mechanics . Van Nostrand Reinhold Co, Ltd

Na condição ativa, a tensão vertical a uma profundidade Z, em um plano de inclinação β com a horizontal é dada por

 $\sigma_z = \gamma z \cos \beta$

e está representada graficamente pela distancia AO (Figura 21b). Se a condição de movimentação do solo mobiliza o equilíbrio plástico, haverá um circulo de Mohr passando pelo ponto A e tangenciando a envoltória de ruptura. Passando pelo ponto A uma reta inclinada de β , encontra-se o Pólo coincidente com o ponto B'; assim, passando uma vertical por B`, encontra-se o ponto B que corresponde a tensão P_a. Com isso, a pressão ativa é representada por OB

$$Ka = \frac{p_a}{\sigma_z} = \frac{\overline{OB}}{\overline{OA}} = \frac{\overline{O'B}}{\overline{OA}} = \frac{\overline{OD} - \overline{AD}}{\overline{OD} + \overline{AD}}$$

mas

$$OD = OC \cos \beta$$

$$AC = \sqrt{OC^2 sen^2 \phi - OC^2 sen^2 \beta}$$

Então

$$\mathsf{K}_{\mathsf{a}} = \frac{\cos\beta - \sqrt{\cos^2\beta - \cos^2\phi}}{\cos\beta + \sqrt{\cos^2\beta - \cos^2\phi}}$$

O empuxo ativo atuando paralelamente a inclinação da superfície do talude é dado por:

$$\overline{OB} = P_a = K_a \gamma.z. \cos\beta = \gamma.z. \cos\beta. \frac{\cos\beta - \sqrt{\cos^2\beta - \cos^2\phi}}{\cos\beta + \sqrt{\cos^2\beta - \cos^2\phi}}$$

e a resultante será aplicada no terço inferior da altura, paralelamente à superfície do terreno e terá como módulo:

$$\mathsf{E}_{a} = \int_{0}^{\mathsf{H}} \mathsf{P}_{a} . dz = \frac{1}{2} . \gamma \mathsf{H}^{2} . \cos\beta . \frac{\cos\beta - \sqrt{\cos^{2}\beta - \cos^{2}\phi}}{\cos\beta + \sqrt{\cos^{2}\beta - \cos^{2}\phi}}$$

Na condição passiva, a tensão vertical é representada pela distancia OB'(Figura 21b). OP circulo de Mohr representando o estado de tensões induzido pela compressão lateral do solo deve passar pelo ponto B'. O empuxo passivo é representado pela linha AO'. Analogamente

$$K_{p} = \frac{\cos\beta + \sqrt{\cos^{2}\beta - \cos^{2}\phi}}{\cos\beta - \sqrt{\cos^{2}\beta - \cos^{2}\phi}}$$

е

$$\mathsf{E}_{\mathsf{p}} = \frac{1}{2} \cdot \gamma \mathsf{H}^{2} \cdot \cos\beta \cdot \frac{\cos\beta + \sqrt{\cos^{2}\beta - \cos^{2}\phi}}{\cos\beta - \sqrt{\cos^{2}\beta - \cos^{2}\phi}}$$

Para solos coesivos, a solução não pode ser expressa analiticamente.

A Figura 22 resume os procedimentos do método de Rankine para cálculo do empuxo ativo do solo sobre o muro.

Figura 22. Método de Rankine: cálculo do empuxo ativo para retroaterro inclinado

Exercício

Para um muro com paramento vertical e retroterra inclinada de 14,5°. Pede-se, para um ponto situado a 2,8m de profundidade. Considere como parâmetros do solo γ =18kN/m³, c=0 e ϕ =35°.

- i) desenhar os círculos ativo e passivo
- ii) determinar os planos de ruptura para as condições ativa e passiva
- iii) determinar a direção dos planos principais

Condição ativa

 $\sigma_3 = 14,48$ atua num plano a 63° com o plano horizontal.

 $\sigma_1 = 53,42$ atua num plano a 153° com o plano horizontal

Condição passiva

 $\sigma_3 = 47,53$ atua num plano a 70° com o plano vertical.

 σ_1 = 175,36 atua num plano a 20° com o plano vertical

2.7.1. Face do muro inclinada

As equações apresentadas nos itens anteriores são válidas para situações em que o empuxo atua em superfícies verticais; isto é, estruturas de contenção com face interna vertical. Caso esta face não seja vertical os valores do coeficiente de empuxo ativo são alterados. A Tabela 5 mostra os valores de coeficiente de empuxo para varias situações.

ω=		-30°	-12°	±0*	+12*	+30°
		ATRAINANT	יזוגעזוגעזויי		1:4.7	1:1.7
β = + 20*		0,34	0,43	0,50	0.59	1,17
+ 10°		0,30	0,36	0,41	0,48	0,92
± 0°	de K_A	0,26 (0,26)	0,30 (0,30)	0,33 (0,33)	0,38 (0,38)	0,75 (0,85)
-10°	Valores	0,22 (0,22)	0,25 (0,24)	0,27 (0,26)	0,31 (0,30)	0,61 (0,63)
-20°		0,18 (0,18)	0,20 (0,18)	0,21 (0,20)	0,24 (0,22)	0,50 (0,45)
β = +20°		0,50	1,5 (1,0)	2.3 (1,8)	3,1 (2,8)	4,9 (4,6)
+10°	Kp	0,62	i,8 (1,4)	2,5 (2,3)	3,6 (3,4)	6,2 (5,9)
±0°	ores de	0.75 (0,40)	2,1 (1,8)	3,3 (3,1)	4,4 (4,2)	8,8 (7,4)
- 10*	Valo	0,92 (0,52)	2.6 (2,4)	3,8 (3,6)	5,9 (5,7)	16,7 (9,3)
-20"		1,17 (0,67)	3,4 (3,0)	5,3 (4,8)	9,6 (7,2)	45,7 (11,6)
c = 0		ø =30°;		ő =0°		

Tabela 5. Valores de $k_a e k_p$ para muros e retroaterros inclinados⁸ e ϕ =30°.

3. TEORIA DE COULOMB (1776)

3.1. Influencia do Atrito Solo-Muro

A hipótese de não haver atrito entre o solo e o muro, adotada pela teoria de Rankine, raramente ocorre na pratica. Com o deslocamento do muro, a cunha de solo também se desloca, criando tensões cisalhantes entre o solo e o muro.

No caso ativo, o peso da cunha de solo causa empuxo no muro e este será resistido pelo atrito ao longo do contato solo-muro e pela resistência do solo ao longo da superfície de ruptura. Com isso, ocorre uma redução no valor do empuxo se considerada a condição em repouso. No caso passivo, ocorre o processo inverso.

⁸ Tschebotarioff (1974) – Fundações, Estruturas de Arrimo e Obras de Terra

Figura 23. Tensões cisalhantes

Haverá, portanto rotação das tensões principais, que antes atuavam nas direções vertical e horizontal (Figura 23). Adicionalmente, **a superfície de ruptura passa a ser curva**, como mostra a Figura 24. Nesta figura, observa-se que a curvatura é mais acentuada para situação passiva.

Figura 24. Curvatura da superfície de ruptura

Vários autores tentaram estabelecer valores de coeficiente de empuxo (K_P) para que a curvatura da superfície de ruptura pudesse ser incorporada à teoria de Rankine. Caquot e Kerisel (1948) usaram uma superfície na forma espiral logarítmica e apresentaram fatores de correção para $K_{P,}$, mostrados na Tabela abaixo.

A Tabela 7 mostra valores de δ para diferentes materiais

				δ/-	ф.			
$\mathbf{\Phi}'$	-0.7	-0.6	-0.5	-0.4	-0.3	-0.2	-0.1	0.0
 15	0.96	0.93	0.91	0.88	0.85	0.83	0.80	0.78
20	0.94	0.90	0.86	0.82	0.79	0.75	0.72	0.68
25	0.91	0.86	0.81	0.76	0.71	0.67	0.62	0.57
30	0.88	0.81	0.75	0.69	0.63	0.57	0.52	0.47
35	0.84	0.75	0.67	0.60	0.54	0.48	0.42	0.36
40	0.78	0.68	0.59	0.51	0.44	0.38	0.32	0.26

		_				
Tobolo 6 I	Entoroc do	Corrook	in dr	k noro	rorootorro	horizontal
		CONTROP	10 08	NDUALA	reioaleno	1017011a

Tabela 7. Valores de atrito solo muro (δ) para diferentes materiais

Interface materials	Friction angle, δ , degrees†
Mass concrete or masonry on the following:	
Clean sound rock	35
Clean gravel, gravel-sand mixtures, coarse sand	29-31
Clean fine to medium sand, silty medium to coarse sand, silty or clayey gravel	24-29
Clean fine sand, silty or clayey fine to medium sand	19-24
Fine sandy silt, nonplastic silt	17-19
Very stiff and hard residual or preconsolidated clay	22-26
Medium stiff and stiff clay and silty clay	17-19
Smel sheet piles against:	
Clean gravel, gravel-sand mixture, well-graded rock fill with spalls	22
Clean sand, silty sand-gravel mixture, single-size hard- rock fill	17
Silty sand, gravel or sand mixed with silt or clay	14
Fine sandy silt, nonplastic silt	11
Formed concrete or concrete sheetpiling against:	1
Clean gravel, gravel-sand mixtures, well-graded rock fill with spalls	22-26
Clean sand, silty sand-gravel mixture, single size hard rock fill	17–22
Silty sand, gravel or sand mixed with silt or clay	17
Fine sandy silt, nonplastic silt	14
arious structural materials:	
Masonry on masonry, igneous and metamorphic rocks:	
Dressed soft rock on dressed soft rock	35
Dressed hard rock on dressed soft rock	33
Dressed hard rock on dressed hard rock	29
Masonry on wood (cross grain)	26
Steel on steel at sheet-pile interlocks	17
Wood on soil	14-16‡

* Based in part on NAFAC (1971).

† Single values $\pm 2^{\circ}$. Alternate for concrete on soil is $\delta = \phi$.

‡ May be higher in dense sand or if sand penetrates wood.

Maiores detalhes sobre a influencia do atrito solo-muro nos empuxos na forma da superfície de ruptura e nos valores de empuxo podem ser encontrados em Tchebotarioff (1978)⁹.

3.2. Hipóteses e Formulação Geral

A **Teoria de Coulomb** (1776) de empuxo de terra baseia-se na teoria de equilíbrio limite; isto é, na existência de uma superfície de ruptura, e, ao contrario da teoria de Rankine, admite a existência de atrito solo muro, denominado δ

Em resumo são consideradas as seguintes hipóteses:

- ✓ Solo homogêneo e isotrópico;
- ✓ A ruptura ocorre sob o estado plano de deformação.
- ✓ Pode existir atrito solo-muro (δ) ;isto é, em qualquer ponto da parede haverá a mobilização de resistência ao cisalhamento, por unidade de área, dada por p_n×tanδ, onde p_n é a tensão normal atuante na parede. Caso o solo tenha coesão, haverá também uma componente de adesão na parede (c_w) ⇒ τ_w = c_w + σ' tanδ

- ✓ Uma pequena deformação da parede é suficiente para mobilizar estado limite
- ✓ Adota condição de equilíbrio limite:
 - o A resistência ao cisalhamento é mobilizada instantaneamente;
 - o estado plástico desenvolve-se numa cunha (como um bloco rígido)

Para determinar os empuxos de terra pelo método de Coulomb, assume-se inicialmente que a superfície de ruptura é plana. No **caso ativo**, a **curvatura é pequena** e o erro envolvido é

⁹ Tschebotarioff, G.P. (1978)Fundações, estruturas de Arrimo e Obras de Terra, Ed Mc-Ggraw Hill do Brasil

desprezível. No **caso passivo**, entretanto, o erro em se arbitrar superfície plana só é pequeno para **valores de** $\delta < \phi/3$.

O método de Coulomb envolve a consideração da estabilidade de cunha de solo adjacente à parede que tende a destacar-se da massa de solo restante. Esta consideração é feita somente a partir do equilíbrio das forças atuantes na cunha de solo. Com isso verifica-se que o método **não é exato pois não considera equilíbrio de momentos.**

A superfície que define a cunha de empuxo é, em princípio, desconhecida. Desta forma, é necessário determinar, por tentativas, qual a superfície que corresponde ao valor limite do empuxo.

No caso da inexistência de atrito solo-muro, o método de Coulomb fornece resultado idêntico a teoria de Rankine, para o caso de parede vertical e superfície do terrapleno horizontal.

3.2.1. Estado de Equilíbrio Limite

A solução de um problema de previsão do empuxo de terra e de deformação deve considerar as condições iniciais de tensões, a relação tensão-deformação do solo e as condições de contorno que descrevem a interação solo-estrutura. A solução deste problema é extremamente complexa, sendo utilizados, na prática, métodos simplificados.

Equilíbrio limite é um método que visa determinar o grau de estabilidade a partir das seguintes premissas:

i) postula-se um mecanismo de ruptura:	
ii) o equilíbrio é calculado pelas	$\Sigma F_{\mathbf{x}} = 0; \ \Sigma F_{\mathbf{y}} = 0; \ \Sigma M = 0$
equações da estática	2 x 2 y 2 2
 iii) o material é considerado rígido plástico e não se tem informação sobre os deslocamentos: 	σ
 iv) o coeficiente de segurança é admitido constante em toda a superfície 	\Rightarrow não é considerada possibilidade de ruptura progressiva

3.3. Empuxo Ativo

A Figura 26 e Figura 26 esquematizam a aplicação do método de Coulomb para a determinação do empuxo ativo de um maciço de ângulo de atrito ϕ ' e coesão nula, atuando sobre a parede AB, sendo δ o ângulo de atrito solo-paramento. Na cunha de solo ABC, atuam 3 forças: W, P e R.

Figura 25. Método de Coulomb, caso ativo, c=0

Figura 26. Método de Coulomb, caso ativo, c=0 - superfície critica

A força W engloba o peso do solo e de eventuais sobrecargas no terreno e pode ser estimada a partir de (Figura 27)

$$Area = \frac{1}{2} (\overline{B}\overline{D}) (\overline{A}\overline{E})$$

$$(\overline{A}\overline{E}) = (\overline{A}\overline{B}) \frac{sen(\alpha + \beta)}{sen(\theta - \beta)}$$

$$(\overline{B}\overline{D}) = (\overline{A}\overline{B}) sen(\alpha + \theta)$$

$$(\overline{A}\overline{B}) = \frac{H}{sen\alpha}$$

$$\Rightarrow W = \frac{\gamma H^2}{2 sen^2 \alpha} \left[sen(\alpha + \theta) \frac{sen(\alpha + \beta)}{sen(\theta - \beta)} \right]$$

FEUERJ

≼pgeciv≽

Figura 27. Calculo do peso da cunha¹⁰

A direção e o sentido das forças P e R são conhecidos, mas desconhece-se suas magnitudes. A resultante atuante na superfície potencial de deslizamento apresenta inclinação ϕ e a resultante de empuxo ativo inclina-se do ângulo δ . Sendo assim, a partir de um simples polígono de forças pode-se determinar o valor da força P que o paramento tem que exercer para evitar o escorregamento da cunha ABC. O empuxo deve ser calculado para diferentes inclinações BC, até que se determine o máximo valor de E_a.

Aplicando a lei de senos no polígono Figura 26, tem-se:

$$\frac{\mathsf{P}_{a}}{\mathsf{sen}(\theta-\phi)} = \frac{\mathsf{W}}{\mathsf{sen}(180-\alpha-\theta+\phi+\delta)} \Rightarrow \mathsf{P}_{a} = \frac{\mathsf{W}\times\mathsf{sen}(\theta-\phi)}{\mathsf{sen}(180-\alpha-\theta+\phi+\delta)}$$
$$\mathsf{P}_{a} = \frac{\gamma\,\mathsf{H}^{2}}{2\,\mathsf{sen}^{2}\alpha} \bigg[\mathsf{sen}(\alpha+\theta)\frac{\mathsf{sen}(\alpha+\beta)}{\mathsf{sen}(\theta-\beta)}\bigg] \frac{\mathsf{sen}(\theta-\phi)}{\mathsf{sen}(180-\alpha-\theta+\phi+\delta)}$$

Derivando a equação acima

$$\frac{dP_a}{d\theta} = 0$$

chega-se a

$$\mathsf{E}_{\mathsf{a}} = \frac{1}{2} \gamma \mathsf{H}^2 \mathsf{k}_{\mathsf{a}} \Leftrightarrow \mathsf{k}_{\mathsf{a}} = \frac{\mathsf{sen}^2(\alpha + \phi)}{\mathsf{sen}^2 \alpha \cdot \mathsf{sen}(\alpha - \delta) \left[1 + \sqrt{\frac{\mathsf{sen}(\phi + \delta) \, \mathsf{sen}(\phi - \beta)}{\mathsf{sen}(\alpha - \delta) \, \mathsf{sen}(\alpha + \beta)}} \right]^2}$$

Se $\beta=\delta=0$ e $\alpha=90^{\circ}$, a equação simplifica-se e iguala-se a de Rankine:

¹⁰ Bowles (1977) Foundation Analysis and Design, McGraw Hill

$$P_{a} = \frac{\gamma H^{2}(1-sen\phi)}{2(1+sen\phi)} = \frac{\gamma H^{2}}{2} tan^{2} \left(45 - \frac{\phi}{2}\right)$$

3.3.1. Solo coesivo

A teoria de Coulomb pode ser estendida para solos coesivos, introduzindo a parcela de adesão c_w . Assume-se que trincas de tração possam se desenvolver até uma profundidade Z_o , a qual é estimada de acordo com a teoria de Rankine

$$z_o = \frac{2c}{\gamma \sqrt{K_a}}$$

e as superfícies potenciais de ruptura se desenvolvem conforme mostra a Figura 28. As forças atuantes na cunha ABCD são:

i) peso da cunha W

ii) reação entre a parede e o solo (P) , com inclinação δ

iii) força devido a componente de adesão: $C_w = c_w \times EB$

iv) reação R no plano potencial de deslizamento, atuando a um ângulo ϕ

v) forca no plano potencial de deslizamento devido a parcela de coesão $C = c \times BC$

As direções de todas as componentes são conhecidas, assim como as magnitudes de W, C_w e C. Com o traçado do polígono de forças, determina-se o valor de P.

Se a trinca for preenchida por água, esta parcela deve ser acrescida no polígono de forças.

Figura 28. Método de Coulomb, caso ativo, c>0

Faculdade de Engenharia Departamento de Estruturas e Fundações

3.3.2. Presença de água

 \Rightarrow C'= resultante da parcela de coesão (c') = c'x BC

Faculdade de Engenharia Departamento de Estruturas e Fundações

Prof. Denise M S Gerscovich

No caso de haver saturação completa sem dreno há um problema para no calculo por Coulomb. Considerando que a água vai atuar em ambas superfícies da cunha, o diagrama acaba anulando a influencia da água na montagem do polígono de forcas. Neste caso recomenda-se não considerar a água na superfície em contato com o muro

3.3.3. Resumo

A Figura 29 resume o método de Coulomb para calculo de empuxo ativo.

(c) Gráfico E vs X para as superfícies arbitradas

3.3.4. Sobrecarga

A sobrecarga uniformemente distribuída é incorporada ao peso da cunha.

Caso a sobrecarga seja aplicada em linha, esta só será computada caso a superfície de ruptura se estenda alem da linha. O acréscimo de tensão horizontal será feito com base nas soluções da teoria da elasticidade (Figura 31, Figura 32, Figura 33).

Figura 31. Sobrecarga puntual

Faculdade de Engenharia Departamento de Estruturas e Fundações

Figura 32. Sobrecarga em linha

Figura 33. Sobrecarga em linha corrida

Exercício

Para um muro com paramento vertical (H=8m) e superfície do terreno horizontal (γ =18kN/m³), calcule o empuxo ativo considerando uma carga uniformemente distribuída a 2,5m de distancia do topo do muro. Considere as situações seca e saturada

Exercício

Para um muro com paramento vertical (H=8m) e superfície do terreno horizontal (γ =18kN/m³), calcule o empuxo ativo considerando as seguintes situações:

- a) c=0; φ=30°; δ=0; δ=φ/2 e δ=φ.
- b) $\phi=0^{\circ}$; $s_u=20kPa$; $c_w=0$, $s_u/2 e s_u$, com e sem trinca.
- c) $\phi=25^{\circ}$; c=12kPa; c_w=5kPa, $\delta=0$, sem trinca.
- d) ϕ =30°; δ =0, sobrecarga (100kPa) distribuida em linha , distante 2,5m da crista do muro
- e) idem item d com nível d'água 4m abaixo da superfície do terreno

$\phi=0^{\circ}$; s_u=20kPa; c_w=0, com trinca.

Determinação da profundidade z_0 , assumida para as trincas de tração. Essa estimativa é feita pela teoria de Rankine.

KFEUERJ

$$z_{0} = \frac{2c}{\gamma \sqrt{K_{0}}} = 2,22m$$

Serão analisadas 3 superfícies de ruptura potenciais, determinando a critica como a que apresentar o maior valor para o empuxo ativo.

A tabela abaixo apresenta os resultados para as três superfícies de ruptura consideradas

Distancia	4m	8m	12m
Area ABCD	20,44	40,88	61,32
W	367,92	735,84	1103,76
С	140,582	197,4	263
Ea	280,31	290,59	245,72

Pode-se definir o empuxo ativo igual a 290,59 kN/m, com superfície de ruptura ocorrendo para a segunda hipótese considerada.

 ϕ =30°; δ =0, com nível d'água 4 m abaixo da superfície do terreno.

O empuxo ativo total sobre a estrutura é obtido considerando-se o empuxo do solo e da água separadamente. O empuxo da água é calculado utilizando-se a expressão:

$$E_{aw} = \frac{\gamma_{w} h'^{2}}{2},$$

onde h' representa a profundidade da base de assentamento da estrutura até o nível do lençol freático. Então, neste caso:

$$E_{_{aw}} = \frac{10x4^2}{2} = 80kN/m$$

O empuxo do solo será calculado para três cunhas utilizando o valor do peso especifico sub. O empuxo ativo corresponderá ao valor máximo encontrado entre as cunhas consideradas mais o empuxo referente a água.

terceira superfície

A tabela abaixo resume os resultados para cada cunha considerada.

Distancia	4	8	12
Area ñ submersa	12	24	36
Area submersa	4	8	12
W	248	496	744
Ea	163,72	132,91	52,03
Eaw		80	
Ea total	243,72	212,91	132,03

Nesse caso em análise, pode determinar o empuxo ativo igual a definido na primeira cunha.

3.4. Empuxo passivo

No caso do empuxo passivo, os sentidos dos deslocamentos relativos entre a cunha e o restante do maciço e entre a cunha e o muro são invertidos. Neste caso, as forças E_p e R situamse do outro lado da normal à superfície de deslizamento e da normal à parede, como pode ser observado na Figura 34.

Figura 34. Empuxo Passivo

Na cunha de solo ABC, atuam 3 forças: W, P e R. A força W engloba o peso do solo e de eventuais sobrecargas no terreno e pode ser estimada por:

$$W = \frac{\gamma H^2}{2} \left[sen(\alpha + \theta) \frac{sen(\alpha + \beta)}{sen(\theta - \beta)} \right]$$

Analogamente ao empuxo ativo, aplicando-se a lei de senos no polígono Figura 34, tem-

$$\frac{\mathsf{P}_{\mathsf{p}}}{\mathsf{sen}(\theta+\phi)} = \frac{\mathsf{W}}{\mathsf{sen}(180-\alpha-\theta-\phi-\delta)} \Rightarrow \mathsf{P}_{\mathsf{p}} = \frac{\mathsf{W} \times \mathsf{sen}(\theta+\phi)}{\mathsf{sen}(180-\alpha-\theta-\phi-\delta)}$$
$$\mathsf{P}_{\mathsf{p}} = \frac{\gamma \,\mathsf{H}^{2}}{2} \bigg[\mathsf{sen}(\alpha+\theta) \frac{\mathsf{sen}(\alpha+\beta)}{\mathsf{sen}(\theta-\beta)} \bigg] \frac{\mathsf{sen}(\theta+\phi)}{\mathsf{sen}(180-\alpha-\theta-\phi-\delta)}$$

Derivando a equação acima

$$\frac{dP_p}{d\theta} = 0$$

chega-se a

se:

$$E_{p} = \frac{1}{2}\gamma H^{2}k_{p} \Leftrightarrow k_{p} = \frac{\operatorname{sen}^{2}(\alpha - \phi)}{\operatorname{sen}^{2}\alpha.\operatorname{sen}(\alpha + \delta) \left[1 - \sqrt{\frac{\operatorname{sen}(\phi + \delta)\operatorname{sen}(\phi + \beta)}{\operatorname{sen}(\alpha + \delta)\operatorname{sen}(\alpha + \beta)}}\right]^{2}$$

Se $\beta=\delta=0$ e $\alpha=90^{\circ}$, a equação simplifica-se e iguala-se a de Rankine:

$$P_{p} = \frac{\gamma H^{2}(1 + \operatorname{sen}\phi)}{2(1 - \operatorname{sen}\phi)} = \frac{\gamma H^{2}}{2} \tan^{2} \left(45 + \frac{\phi}{2}\right)$$

Analogamente à condição ativa, se a superfície do terrapleno é horizontal ou apresenta uma inclinação constante e não há sobrecarga, a distribuição de empuxos pode ser considerada triangular.

3.5. Método de Culmann

As soluções de Rankine e de Coulomb impõem que o retroaterro deva ser plano.

O método de Culmann considera a possibilidade da existência de:

- ✓ irregularidade na superfície solo
- ✓ atrito solo-muro, (coesão e adesão podem ser incorporadas com pequenas modificações)
- ✓ sobrecargas
- ✓ superfície de ruptura plana
- ✓ solo homogêneo e isotrópico com relação ao ângulo de atrito

3.5.1. Método de Culmann – empuxo ativo (c=0)

Para solos com **c=0**, recomenda-se a determinação gráfica, proposta por Culmann, cujo procedimento esta descrito a seguir:

- ⁱ⁾ Traça-se a reta **BF**, conhecida como linha de peso, que faz um ângulo ϕ 'com horizontal; com isso o ângulo entre BF e qualquer superfície de ruptura é (θ - ϕ)
- ii) Traça-se a reta **BG**, conhecida como linha de pressão, que faz um ângulo (α -δ) com a reta BF
- iii) Arbitra-se a 1ª superfície de deslizamento BC1;
- iv) Calcula-se o peso do solo da cunha ABC (e de eventuais sobrecargas);
- Marca-se o ponto *D1* sobre a reta *BG* de modo que a distancia BD1 represente o peso da cunha *ABC1*; em uma escala de forças escolhida arbitrariamente
- vi) O segmento *E1D1*, paralelo a *BG*, representa na escala de forças adotada, a reação que o paramento tem que exercer para evitar o deslizamento da cunha *ABC*1.
- vii) O empuxo ativo será o maior valor calculado. Ea= Pmax.

(c)

Figura 35. Método de Culmann com Sobrecarga em linha

3.5.2. Método de Culmann – empuxo passivo (c=0; $\delta < \frac{\phi}{3}$)

O método de Culmann pode ser estendido para o caso passivo se $\delta < \frac{\phi}{3}$. Neste caso, a curvatura da superfície potencial de ruptura é pequena. A Figura 36 mostra o esquema de aplicação do método de Culmann, . O empuxo passivo corresponde ao menor valor de P.

Figura 36. Método de Culmann para cálculo de Empuxo Passivo $\delta < \phi/3$

3.5.3. Ponto de aplicação em superfícies irregulares

O ponto de aplicação do empuxo: é obtido traçando-se pelo baricentro G₁ da cunha ABC uma paralela ao plano de escorregamento BC até encontrar o paramento interno em G2, que será o ponto de aplicação (Figura 37a). Na existência de sobrecarga o ponto de aplicação muda

Figura 37. Ponto de aplicação do empuxo

É importante observar que a Teoria de Coulomb se propõe a determinar a resultante de empuxo. Assim sendo, sua distribuição assim como seu ponto de aplicação não é determinado diretamente. Entretanto, se a superfície do terrapleno é horizontal ou apresenta uma inclinação constante e não há sobrecarga, a distribuição de empuxos pode ser considerada triangular.

3.6. Método do circulo de atrito

Quando $\delta > \frac{\phi}{3}$ a curvatura da superfície de ruptura deve ser considerada. Caso contrario, o empuxo passivo será sobre-estimado e contra a segurança.

Para o caso de terrapleno horizontal e solo não coesivo, conforme mostra a Figura 38, pode-se estimar a superfície de ruptura como um arco de circulo (BC) (centro O e raio r) e uma linha reta (CE), tangente ao trecho BC. (**método do círculo de atrito** ϕ)

Figura 38. Superfície curva – empuxo passivo (c=0)

Quando a condição passiva é totalmente mobilizada, o solo no interior do triangulo ACE está no estado passivo de Rankine. Conseqüentemente, os ângulos EAC e AEC são $45^{\circ} - \frac{\phi}{2}$. E preciso então satisfazer o equilíbrio de forças da massa ABCD, onde

i) W = peso de ABCD atuando no centróide

ii) Q = força horizontal no plano DC, representa o empuxo de Rankine, atuante a 1/3 de DC e dado por

$$Q = E_p = \frac{\gamma h^2 K_p}{2} + 2ch K_{pc}$$

iii) P = força de reação, atuando num ângulo δ acima da normal e a uma distancia AB/3

iv) R = reação na superfície de ruptura BC. Quando a resistência ao cisalhamento é totalmente mobilizada, assume-se que a reação R atue num ângulo ϕ com a normal. A linha de ação de R é portanto tangente ao circulo de centro O e raio rsen ϕ

Os valores das forças W e Q são conhecidas e a resultante entre elas (S) é determinada graficamente. Com isso fecha-se o polígono de forças com as direções de R e P.

A análise deve ser repetida para várias superfícies para então obter $E_p = P_{min}$

3.6.1.1. solo não coesivo (c=0)

Procedimento

- i) desenhar o muro e a retroterra em escala
- ii) traçar uma reta passando por A e fazendo ângulo $45^{\circ} \frac{\phi}{2}$ com a horizontal
- iii) arbitrar ponto C
- iv) pelo ponto C traçar reta fazendo ângulo $45^{\circ} \frac{\phi}{2}$ até a superfície do terreno (ponto E)
- v) calcular o empuxo passivo na cunha EDC
- vi) determinar o centro do circulo (O) passando por BC: traça-se a mediatriz de BC e traça-se uma perpendicular a reta CE, passando pelo ponto C. A interseção das retas define o ponto O
- vii) calcular W
- viii) prolongar a direção de aplicação da força de empuxo Q até encontrar a força W (ponto M)
- ix) Neste ponto, traçar uma reta paralela a direção da resultante S
- x) Prolongar a linha de ação de P ate encontrar a linha anterior (ponto N)
- xi) Traçar o circulo de raio= rsen \$\phi\$
- xii) A resultante passa pelo ponto N e é tangente ao círculo rsenø
- xiii) Repetir o processo a partir do item iii) até obter o menor valor de P

3.6.1.2. Solo coesivo ($c \neq 0$)

Já no caso de solo coesivo, recomenda-se resolver o problema em 2 parcelas:

✓ **1**^a parcela: solo c=0 e $\gamma \neq 0 \Rightarrow$ realizar procedimento anterior e calcular empuxo E_p^{-1}

FEUERJ

✓ **2ª parcela**: $\gamma = 0$ e c ≠ 0 ⇒ calcular empuxo E_p^2 , de acordo com a Figura 39., considerando E" como

$$\mathsf{E}'' = \frac{\gamma h^2 \mathsf{K}_p}{\underbrace{2}_{=0}} + 2 ch \mathsf{K}_{pc} = 2 ch \mathsf{K}_{pc}$$

uniformemente distribuído na vertical CD

Figura 39. . Superfície curva – empuxo passivo (γ =0 e c \neq 0)

Exercício:

Comparar Coulomb e circulo de atrito para muro com H=5m ϕ =30°, c=10kPa, δ = ϕ /6 e δ =2 ϕ /3, γ =20kN/m³ e c_w=c/2.

δ=2φ/3

Determinação do empuxo pelo método do Coulomb

Determinação do empuxo pelo método do círculo de atrito 1ª parcela – considerando o solo não coesivo

Após traçar as retas partindo de A e E com a inclinação de 30° $(45 - \frac{\phi}{2} = 30^{\circ})$, é realizado o cálculo para o empuxo passivo da cunha EDC, segundo Rankine para solos não coesivos.

$$Q = E_{p} = \frac{\gamma h^{2} K_{p}}{2}, \text{ onde } K_{p} = \frac{\operatorname{sen}^{2} (\alpha - \phi)}{\operatorname{sen}^{2} \alpha \operatorname{sen} (\alpha + \delta) \left[1 - \sqrt{\frac{\operatorname{sen}(\phi + \delta) \operatorname{sen}(\phi + \beta)}{\operatorname{sen}(\alpha + \delta) \operatorname{sen}(\alpha + \beta)}} \right]^{2}$$

Q = 1.144,69

È determinado o centro do círculo e calculado o peso (W) da massa ABCD.

Fazendo o traçado das forças Q e W em escala, é determinada a direção e a magnitude de S= 1.389,08.

Traçar o círculo de raio igual a

Raio = *r* x sen ϕ = 8,9434 x 0,5 = 4,4717 m

Traçar uma tangente ao círculo com ângulo de \Box com a vertical, obtendo assim o ponto de aplicação da força R na superfície de ruptura BC.

R = 878, 12

Fecha-se o polígono de forças com a inclinação de P definida como o ângulo □ com a normal ao muro. Definido o polígono em escala a magnitude de P é 2.154,76

 2^{a} parcela – considerando o solo coesivo Determinação de Q, considerando apenas a coesão. Q = 2 chK_{pc} = 213,98

 $C_w = 5 \times 5 = 25 \text{ kN/m}$ $C = 10 \times 7,5299 = 75,299 \text{ kN/m}$

Checadas as dimensões referentes as magnitudes das forças calculadas acima, de forma gráfica, é possível determinar a magnitude da força P. Então P é 413,91

Empuxo total obtido pelo método do círculo de atrito

A tabela abaixo apresenta os resultados dos cálculo feitos para as duas fases do método do circulo de atrito e o empuxo total definido por esse método.

	Distancia X	15
sivo	Кр	6,105358
	CD	4,33
Soe	Q	1144,687
jo o	Ponto de Q	1,443333
nâ	Area ABCD	39,2
00	W	784,0
s v	Centroide x	3,6731
с	Centroide y	-2,6225
ase	S	1389,08
ш	R	878,12
	P1	2154,76
.' o	Крс	2,470902
Fase 2 solo coesiv	CD	4,33
	Q	213,9801
	Ponto de Q	2,165

С	75,299
C _w	25
P2	413,91
Empuxo total	2568,67

Método de Coulomb x Método do círculo de atrito

Para comparação entre os dois métodos foi considerada a superfície de ruptura atingindo, na superfície, uma distância de 15 m da extremidade do muro.

Empuxo passiv	0
Coulomb	1949,55
Círculo de atrito	2568,67

O método do círculo de atrito apresentou um resultado sobreestimado em relação ao método de Coulomb. Assim o método do círculo de atrito ficou contra a segurança, porém é possível projetar um muro mais esbelto com esse resultado.