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This thesis investigates the use of stereo vision for the application of view syn-
thesis. View synthesis — the problem of creating images of a scene as it would
appear from novel viewpoints — has traditionally been approached using methods
from computer graphics. These methods, however, suffer from low rendering speed,
limited achievable realism, and, most severely, their dependence on a global scene
model, which typically needs to be constructed manually.

In this thesis, we present a new approach to view synthesis that avoids the above
problems by synthesizing new views from existing images of a scene. Using an
image-based representation of scene geometry computed by stereo vision methods,
a global model can be avoided, and realistic new views can be synthesized quickly
using image warping.

The new application of stereo for view synthesis makes it necessary to re-evaluate
the requirements on stereo algorithms. We compare view synthesis to several tra-
ditional applications of stereo, and conclude that stereo vision is better suited for
view synthesis than for applications requiring explicit 3D reconstruction. We also
discuss ways of dealing with partially occluded regions of unknown depth and with
completely occluded regions of unknown texture, and present experiments demon-
strating that it is possible to efficiently synthesize realistic new views even from
inaccurate and incomplete depth information.

This thesis also contributes several novel stereo algorithms that are motivated
by the specific requirements imposed by view synthesis. We introduce a new ev-
idence measure based on intensity gradients for establishing correspondences be-

tween images. This measure combines the notions of similarity and confidence, and



allows stable matching and easy assigning of canonical depth interpretations in im-
age regions of insufficient information. We also present new diffusion-based stereo
algorithms that are motivated by the need to correctly recover object boundaries.
In particular, we develop a novel Bayesian estimation technique that significantly
outperforms area-based algorithms using fixed-sized windows. We provide experi-

mental results for all algorithms on both synthetic and real images.
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Chapter 1
Introduction

View synthests is the problem of generating images of a scene as it would appear
from certain viewpoints. Stereo vision is the problem of inferring scene structure
from two images taken from slightly different viewpoints. In many ways these are
complementary problems: the former derives images from a scene description, while
the latter derives a scene description from images.

Although closely related, the two problems have traditionally been studied by
two different research communities. View synthesis is considered a computer graph-
ics problem, while stereo vision is a problem in computer vision. In general, the
field of computer graphics is concerned with creating two-dimensional images from
three-dimensional scene models, while computer vision is concerned with extracting
information about the three-dimensional world from two-dimensional images.

Both view synthesis and stereo vision are hard problems. The basic limitation
of images created by computer graphics methods is the degree of realism that can
be achieved. In stereo vision, on the other hand, the computed scene structure is
inherently uncertain and noisy, and has only limited accuracy.

In this thesis we combine the two problems by using stereo vision to synthe-
size new views. Surprisingly, we will see that both problems become easier when
considered in combination than they are in isolation. The key insight is that the
difficulties of either problem are intimately related to the dependence on a global
scene model. By synthesizing new views from stereo data directly, using an image-

based representation of scene structure, an explicit model of scene geometry can



be avoided. In other words, we propose deriving new images from existing images
without ever recovering a complete scene description.

Image-based scene representations have received much recent interest, and, in
the last year or two, several other methods for synthesizing new views from existing
images have also been proposed.! This thesis makes several new contributions to
this emerging field.

First, we present a purely two-dimensional way of phrasing view synthesis as
local image warping, making use of a special rectification step. This enables the
efficient generation of exact views under the full perspective model, while in many
other approaches only an approximation of the new view is achieved.

Second, we propose possible ways of dealing with insufficient information in the
images (mainly due to occlusion), which can make the accurate prediction of new
views impossible. While other authors have proposed adding more cameras and
using more images (which is not always possible and creates other problems), we
investigate what can be done in the basic case where only two images are available
as input.

Third, we critically examine the assumptions underlying traditional approaches
to view synthesis and stereo vision, and we re-evaluate the requirements on stereo
vision in light of the application of view synthesis.

Finally, we present two new stereo methods that are motivated by these new

requirements.

1.1 The problem

The basic problem considered in this thesis is the following: “Given a number of
images of a scene, can we predict the appearance of the scene from a new viewpoint?”
For example, consider the two images in Figure 1.1, showing a man and two children
playing in a courtyard. These two images were taken simultaneously by two cameras

from two slightly different viewpoints. The top image was taken from a viewpoint

!This includes the work by Laveau and Faugeras [1994], Fuchs et al. [1994],
McMillan and Bishop [1995b], Kanade et al. [1995], and Seitz and Dyer [1995;
1996a]. This and other related work is discussed in detail in Chapter 2.



Figure 1.1: The kids image pair. The figure shows two images taken simultaneously

by two cameras from slightly different viewpoints.



Figure 1.2: A synthetic center view from a new viewpoint lying halfway in between
the two views from Figure 1.1. This view has been synthesized only from the two

existing views, without any additional knowledge about the scene geometry.

on the left; the bottom image was taken from a viewpoint on the right. Given
these images, can we predict the view from a new viewpoint? Can we create a
synthetic view corresponding to, say, a viewpoint lying above the original left view,
or one lying halfway in between the original two views? The answer is yes —
although with certain limitations. How this can be achieved is the topic of a large
part of this thesis. For now, to prove the point, Figure 1.2 shows a synthetic view
corresponding to the center viewpoint. Before discussing how new views can be

synthesized, however, we will briefly motivate why this is an important problem.

1.1.1 Applications

The problem of synthesizing new views from existing images is motivated by appli-

cations in tele-reality.? The concept of tele-reality is similar to that of virtual reality.

2The term tele-reality was coined by Szeliski [1994].



In virtual reality, the idea is to convey the impression of a different reality to an
observer, who can actively explore a (virtual) environment. This can be achieved
with a head-mounted display that displays new views of a scene in accordance with
the head movements of the user, thereby providing the illusion of immersion in
the scene. In contrast with virtual reality, tele-reality communicates real, existing
scenes (which can be remote either in space or time), while virtual reality typically
refers to synthetic, nonexistent environments (e.g., video games and simulation).

The emphasis in tele-reality is on realism: the synthetic views should resemble
as closely as possible the real views of the existing scene. Such realism is not easily
achieved with existing techniques from computer graphics, which are often restricted
to simple environments composed from geometric primitives such as polyhedra or
cylinders. It is possible to achieve higher realism by using texture-mapping, i.e.,
projecting pieces of real images onto the geometric model. The approach proposed
in this thesis goes yet a step further, by constructing the synthetic views solely from
the set of existing views without requiring any scene model.

Tele-reality, i.e., virtual presence in real scenes, has many applications. Some ap-
plications require real-time presence at remote sites, for example, teleconferencing,
remote instruction, and remote medical diagnosis and surgery. Other applications
require virtual presence in previously “recorded” environments, for purposes ranging
from training in the use of expensive equipment (e.g., flight simulation) to remote
shopping (e.g., purchase of a new house in a different country) to entertainment.

Fast methods for view synthesis are essential for tele-reality applications. These
will become increasingly important in the next few decades, following the shift
from passive consumption of information (such as from conventional television) to
more interactive media. Besides the full immersion into a virtual environment via
a head-mounted display, simpler forms of active exploration are also possible. This
might include, for example, “low-cost virtual reality” capability on home TV sets
equipped with a tracker that senses the position of the viewer’s head. (To facilitate
this task, the viewer could wear a small infrared transmitter.) Depending on the
viewer’s position, new views can then be synthesized to simulate a three-dimensional
impression. This has been termed “fish-tank VR”, as the virtual world is observed

through the “window” of the screen in much the same way as one observes the fish



in an aquarium.

1.1.2 The computer graphics approach

The synthesis of new views, in particular for virtual reality applications, has tra-
ditionally been a topic of the computer graphics community. Computer graphics
is concerned with creating synthetic images from a 3D scene model by simulating
the physics of light. Besides an explicit model of the scene geometry (e.g., a CAD
model), this also requires models of illumination and surface reflectance properties.
Given these models, synthetic images can then be rendered by tracing single rays
of light (ray tracing), or by estimating the illumination distribution of all surface
patches in parallel (radiosity). This process is computationally very expensive, and,
depending on the complexity of the scene, might take minutes or even hours for a
single image, even when specialized hardware is employed.

For images of man-made objects, such as the interiors of buildings, the achieved
realism 1s often quite impressive. The synthetic nature of images of people and of
outdoor scenes, however, is usually obvious. Since the rendering time depends on
scene complexity, this “synthetic look” is even worse for images generated by the
relatively simple models and methods necessary to achieve real-time performance.
As mentioned above, a partial remedy is texture-mapping, i.e., projecting real images
onto the model surfaces. By “painting” parts of synthetic images with real textures,
realism can be improved to some extent (which demonstrates the importance of real
images for synthesizing realistic views).

Even if we gloss over the problems of low rendering speed and limited realism,
the central problem with the computer graphics approach is its dependence on a
global scene model. Acquiring such a model is non-trivial: how can one achieve
accurate measurements of all the 3D coordinates in the scene? Yet another problem
is that modeling techniques need to be updated whenever a new type of object or
surface is encountered.

In many cases, scene models are constructed manually,® although considerable

3The modeling for the computer-animated movie “Toy Story” took over 10
person-years |[Lasseter and Daly, 1995].



effort has been directed towards automating the process. For man-made scenes
or objects, this is often referred to as “reverse engineering”. It involves taking
measurements with passive methods such as cameras (which is the subject of much
work in computer vision and photogrammetry), or active methods such as laser-
range finders. For some objects, such as trees or waterfalls, however, it can be

infeasible or even impossible to construct an explicit model.

1.1.3 Avoiding the model

The discussion above illustrates that the traditional computer graphics approach has
several shortcomings. Ideally, for tele-reality applications, a view synthesis method
should be fast (independent of scene geometry), yield high realism, and should avoid
the problems associated with acquiring global models. This motivates the approach
taken in this thesis. The key idea is to use a set of images to represent a scene or
an object. Between pairs of images, correspondence maps can be computed with
stereo vision techniques. Such correspondence maps give direct information about
the relative depth of the visible scene points. Thus, each map constitutes an image-
based representation of scene geometry; its information can be used to warp the
existing images into new images corresponding to new viewpoints. Warping refers
to a (not necessarily continuous) transformation of image coordinates, i.e., each
image point (or pizel) is mapped to a new position. Figure 1.3 illustrates this idea.

Synthesizing new views from a single stereo pair is the basic building block of
a larger framework for view synthesis, in which a scene is represented by a graph

consisting of images and correspondence maps.*

The vertices in this graph are
views from physical locations in the scene, while the edges in the graph are the
correspondence maps between adjacent views. This approach has the advantage that
a global model is not necessary, as new views can be synthesized from two nearby
reference images and their correspondence map. Also, warping can be performed
much faster than image rendering, and the warping time is largely independent

of scene complexity. An additional advantage of using only a small number of

4Similar representations have been proposed previously [Chen and Williams,

1993; Laveau and Faugeras, 1994; Fuchs et al., 1994].
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Figure 1.3: View synthesis using stereo and warping. Two real cameras (shown in

gray) observe a scene. Their images together with a depth map computed by stereo

vision techniques constitute an image-based scene representation, from which a new

view corresponding to a hypothetical camera (shown in black) can be synthesized

by itmage warping.



local images to synthesize new views is that we only need to know the relative
configurations between adjacent views, which do not need to be globally consistent.
For example, images could be acquired with a hand-held camera and be labeled
with rough global coordinates.

A disadvantage of the approach is that stereo provides only limited information
about the scene, in particular due to occlusion. A view synthesis method based
on stereo must be able to deal with previously invisible scene points, and also with
partially occluded points, i.e., with points that are only visible in one reference view,
and whose depth is unknown. Missing information due to occlusion can make it
impossible to synthesize the correct view, but, using heuristics, it is often possible
to synthesize a plausible view that looks convincing to an observer. To avoid visual
artifacts, the sampling of reference images needs to be reasonably dense, so that
only small changes in viewpoint are required.’

Another problem is that stereo suffers from certain well-known problems: it
only yields limited depth resolution, and the matching process is prone to errors, in
particular in the presence of repetitive patterns and uniform regions. It turns out,
however, that many of these traditional shortcomings of stereo have less significance
in view synthesis. The reason is that the output of stereo is not used to create an
explicit 3D scene model, but only to predict the local image changes between the
existing reference views and the new synthetic views. For example, the geometry
of a uniform image region can not be recovered, but a new view can usually be
predicted. Thus, by avoiding a global model, both stereo vision and view synthesis

become easier. This makes view synthesis an interesting new application for stereo.

1.2 A review of stereo vision

For readers not familiar with computer vision, we now give a brief review of stereo.
A more detailed discussion can be found in the books by Nalwa [1993] and by
Faugeras [1993]. In Section 1.3 we conclude the introduction by outlining the key

contributions and the structure of the remainder of this thesis.

’A denser sampling, while requiring that more views be stored, also allows a
higher degree of compression [Levoy and Hanrahan, 1996].
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Figure 1.4: The pinhole camera model. A 2D image of a 3D object is formed
by perspective projection: each ray of light passes through a common center of

projection (or focal point) and intersects the image plane at a unique position.

1.2.1 Camera model and image formation

Throughout this thesis, we use perspective projection as our geometric model of
image formation: an image is formed by projecting each scene point along a straight
line through the center of projection (or focal point) onto an image plane. This is
commonly referred to as the pinhole camera model (see Figure 1.4): light originating
from the scene passes through a pinhole in the front of an opaque box onto a
transparent surface at the rear of the box, where it creates a reversed image of
the scene. The pinhole camera is a powerful model that resembles very closely
the operation of real cameras. The only principal differences are that real cameras
have a lens instead of a simple hole, and the imaging surface is an array of sensors.
Geometric distortions introduced by the lens are not accounted for by the pinhole
model, but can be corrected by an initial image transform. Also not modeled are
blurring due to limited depth of field and lens aberrations.

Mathematically, perspective projection is most easily described using homoge-

neous coordinates (also called projective coordinates). In homogeneous coordinates,
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each point is extended by a dummy coordinate w # 0 that maps the point to
a line through the origin in a space whose dimension is one higher than that of
the original space. For example, a two-dimensional (image) point (z,y) is repre-
sented by the set of vectors [wz wy w]?, w # 0 in homogeneous coordinates;
a three-dimensional (scene) point (X,Y,7) is represented by the set of vectors
[wX wY wZ w]T, w # 0.5 Although homogeneous coordinates are redundant,
they are very useful as they allow us to express otherwise non-linear transforma-
tions linearly. In particular, the perspective projection of a 3D scene point onto a 2D
image plane can be written with the following linear equation using homogeneous

coordinates:

(1.1)

— N =

In this equation, (X,Y, Z) are the coordinates of a scene point (in an arbitrary 3D
coordinate system), and (z,y) = (u/w,v/w) are the coordinates of its projection (in
an arbitrary 2D image coordinate system). The projection matriz P is a 3 x4 matrix
defined up to a scalar factor that captures both the extrinsic and intrinsic camera
parameters. The extrinsic parameters specify the position and orientation of the
camera with respect to the scene coordinate system, while the intrinsic parameters
specify the focal length, the aspect ratio, and the position of the origin of the image
coordinate system. (If the camera is moved to a new position, only the extrinsic
parameters change.) If all parameters (and thus also P) are known, we speak of
a calibrated camera. Camera calibration can be achieved by observing a special
calibration object, whose dimensions and position are known.

To transform the optical, analog image into an electrical, digital one, the con-
tinuous intensity distribution on the image plane is both sampled spatially on a

rectangular grid, and quantized into integer values. This yields the typical rep-

We use uppercase and lowercase letters for scene and image quantities, respec-
tively. Matrices and vector quantities (including points and lines) are typeset in

boldface.
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resentation of an image as a 2D array of discrete intensity values, usually called
pizels (short for picture element). See Figure 1.5 for an example. Color images
can be encoded by three such intensity images, each representing one of three color
components (usually red, green, and blue). In this case, each pixel is a triplet of

integers.

1.2.2 Stereo geometry

Stereo vision (or stereopsis) is the process of estimating the depth of scene points
from their change in position between two images. This is done effortlessly by the
human visual system, which translates the differences between the views from the
two eyes into a three-dimensional impression of the scene. Figure 1.6 illustrates how
the disparity, or change of image location, of a point is related to its depth for two
identical parallel cameras. The figure shows a scene point P and its two images
pr and pg in the left and right images, respectively. Let us denote the focal length
(i.e., the distance of the focal point to the image plane) by f and the baseline (i.e.,
the distance between the two cameras) by b. Then, given that the scene point P
has distance Z and lateral offset X (with respect to the left camera), and given
further that P’s images p;, and pgr have coordinates z; and zpg, we can conclude

from consideration of similar triangles that

zr, X rp X +5b
7 = and 7 =
The disparity d, i.e., the change in image location is
fb
A
Note that the disparity of a point is proportional to focal length and baseline, and

d:.’ER—{I}L: (12)

inversely proportional to its depth. Since focal length and baseline are constant
over the entire image, the disparity map provides a direct (but inverse) encoding of
scene depth. The following simple experiment illustrates this inverse relationship
between disparity and depth: hold up one finger and blink between the left and
right eyes while fixing the gaze on a distant object. The closer the finger is held to
the eyes (i.e., the smaller the depth), the further the image of the finger jumps (i.e.,
the higher the disparity).
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Figure 1.5: An image is represented on a computer by a rectangular array of pizels.

Each pixel is an integer value representing the intensity at that point.
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Ty TR

Figure 1.6: Stereo geometry. The figure shows a top-down view of two identical
parallel cameras with focal length f and at distance b to each other. The disparity
of a scene point P of depth 7 is d = xgp — z1, = fb/Z.



15

1.2.3 The correspondence problem

How do we know that pr and pgr correspond, that is, that they are really the
projections of the same scene point P? Solving this correspondence problem, i.e.,
finding for each point in one image the matching point in the other image, is the
hard part of stereo. Difficulties include matching ambiguities due to repetitive
patterns and locally uniform intensities, as well as uncertain intensity values due
to noise introduced by the imaging process. Also, we are implicitly assuming that
corresponding points have the same intensity in both images. In technical terms,
this 1s equivalent to assuming that the scene is composed of Lambertian surfaces,
i.e., perfectly matte surfaces whose brightness depends only on the angle of incident
light (which remains constant for two images taken simultaneously) and not on
the angle of observation. Obviously, this need not be true, and specularities or
reflections typically present problems for stereo algorithms (as do semi-transparent
surfaces). Even when the Lambertian assumption holds, matching points can have
different intensities if the cameras differ in bias or gain (i.e., constant additive or
multiplicative intensity factors), or due to vignetting (i.e., an uneven brightness
distribution in the image, yielding darker corners).

Yet another problem are partially occluded points (i.e., points visible from only
one camera) that can not be matched. Correctly identifying and dealing with par-
tially occluded points is especially important in the context of view synthesis, and
will be discussed in detail in Chapter 4. Excluding occlusion from our discussion
for now, the main reason that establishing correspondences is difficult is that the
amount of information available at a single pixel (i.e., its intensity, which is typi-
cally corrupted by noise) is usually not enough for finding an unambiguous match.
Since matching of single pixels is an unstable process, it is necessary to consider
small local neighborhoods around each pixel to reduce the ambiguity. Even so, often
only image locations with a large amount of information, such as intensity edges or
corners, can be matched unambiguously.

There are two common approaches to this dilemma. The first approach is to
deal only with points that can be matched unambiguously. This is the idea behind

feature-based stereo algorithms, which first extract points of high local information
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(e.g., using an edge detector), and then restrict the correspondence search to those
pre-selected features. This has the obvious drawback of yielding only a sparse dis-
parity map, and disparity estimates for non-feature points have to be interpolated.

A different possibility is to consider larger image regions (or areas) that contain
enough information to yield unambiguous matches. This second approach is usu-
ally called area-based stereo-matching, and has the advantage of yielding a dense
disparity map. It relies on the assumption, however, that most points in the area
under consideration have the same disparity, which is not necessarily the case. Still,
as the application of view synthesis requires a disparity estimate at every pixel,
the focus of this thesis is on area-based stereo methods. We present several new
area-based approaches in Chapters 5 and 6. These have been motivated by short-
comings of previous methods, and also by the particular requirements imposed by

the application of view synthesis.

1.2.4 The epipolar constraint

So far we have discussed how matching image locations can be found. We now turn
to the question of where to look for potential matches. This problem is illustrated
in Figure 1.7: Suppose we have two cameras, specified by their focal points Cj,
and Cp and their image planes L and R. Given that we observe the image py,
of a scene point in the left image, where do we search in the right image for its
corresponding point pr? It turns out that instead of having to search the entire
image, we can restrict the search to a single line, the epipolar line er corresponding
to pr. This reduces the search from 2D to 1D, which is an enormous help in
establishing correspondences.

To see why the corresponding point pr must lie on a line, observe that any scene
point P projecting to py has to lie on the projection ray defined by py, i.e., the
line through Cy, and py. Thus, pr must lie on the image of this ray in the right
camera, which is the epipolar line e defined by pr. In other words, the epipolar
line eg is the image (in the right camera) of all possible locations of a scene point P
that would project to pr, in the left camera. This is illustrated in Figure 1.8. Note
that, geometrically, er 1s the intersection of the plane defined by pr, Cr, and Cg
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Figure 1.7: Searching for corresponding points. Given two cameras (Cp, L) and

(Cr, R) and an observed point pz,, where do we search for the corresponding point

Pr?
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with the right image plane R.

The epipolar geometry, i.e., the relationship between points in one image and
their corresponding epipolar lines in the other, can easily be computed if the config-
urations of both cameras (the positions of focal points Cy, and Cpr and image planes
L and R) are known (in some global coordinate system). This is called a fully cal-
ibrated stereo setup, and the 3D coordinates of a scene point P can be computed
from the coordinates of its two images pr, and pg.

To establish correspondences between the two images, however, it is sufficient
to know only the epipolar geometry, which can be characterized concisely with the
fundamental matriz F, a 3 X 3 matrix defined up to a scalar factor. This matrix F
relates a point p (in homogeneous coordinates) in one image with its corresponding

epipolar line e in the other image via the equation

Fp =e. (1.3)

T in homogeneous coordinates describes the point

Recall that a point p = [u v w]
(z,y) = (u/w,v/w). We define a line e = [a b c]T in homogeneous coordinates to
describe the line with the equation ax + by + ¢ = 0. This notation captures the
duality between points and lines in the plane in a simple and elegant way: the line g
defined by two points p and q is simply their cross-product g = p x q; analogously,
the point p defined by the intersection of two lines g and h is p = g x h. Note that

“=" to denote

in equations involving homogeneous vectors, we use the equal sign
equality up to a scalar factor.

The fundamental matrix can be computed from the two images directly, by
establishing a small number of point-to-point correspondences [Luong and Faugeras,
1996]. If we know only the epipolar geometry (i.e., the fundamental matrix), but

not the explicit camera configurations, we speak of a weakly calibrated setup.

1.2.5 A simple stereo geometry

A particularly simple epipolar geometry results from two identical, parallel cameras
whose image planes coincide and whose z-axes are parallel to the baseline (the

line connecting their focal points). In this case, corresponding epipolar lines are
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Figure 1.8: The epipolar constraint. The point corresponding to py must lie on

p1’s epipolar line eg, the image of the projection ray defined by py,.
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horizontal and have the same y-coordinate (i.e., they are corresponding scanlines).
In fact, this is the situation that was depicted in Figure 1.6.

The stereo matching problem is much easier in this simple geometry, because
matching points must have identical y-coordinates (and the explicit computation of
epipolar lines is not required). Furthermore, rectangular image regions (or regions
of any shape) can be compared directly, whereas in the general case (for example,
with verging cameras), a rectangular region in one image can correspond to any
quadrilateral in the other image.

For these reasons, most stereo algorithms assume the simple stereo geometry of
parallel identical cameras with coinciding image planes. The fundamental matrix

describing this scenario (up to a scalar multiplier) is

0 0 0
Foimple =0 0 1. (1.4)
0 -1 0

(One can easily verify that this matrix maps a point [wp, wp, w]? to the line
[0 w —wp,]T, i.e., the line with the equation y = p,.)

Note that our definitions of depth and disparity as well as the inverse relationship
between them only apply in this simple geometry. In particular, the depth of a
(scene) point is its distance to the plane through the two camera centers parallel to
the (common) image plane, and the disparity of a point is its difference in image
coordinates (using two identical image coordinate systems offset in z-direction by a
baseline of length b).

In the general case with different, non-parallel cameras, there is no longer a
single obvious direction with respect to which depth can be defined. It is also
more difficult to define disparity given two independent image coordinate systems
in general position to each other.

Instead of trying to extend our definitions to the general case, we go a different
way: we only consider the simple geometry. Obviously, one way of achieving the
simple camera geometry is to mount and carefully adjust two cameras in such a way

that they are perfectly parallel. However, even for two cameras in general position,

the simple geometry can be achieved by rectification.
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Figure 1.9: Rectification. The simple stereo geometry can be derived from a general

configuration by reprojecting the two images onto a plane parallel to the baseline.

1.2.6 Rectification

Rectification is the process of reprojecting the two images onto a common image
plane that is parallel to the baseline. This is illustrated in Figure 1.9. Note that no
knowledge of scene geometry is required in order to reproject an image, since the
focal point and all projection rays remain stationary; only the image plane changes
position. Mathematically, any such reprojection onto a new plane can be described
by a 3 x 3 projection matrix (or homography) H, again defined up to a scalar factor.
This matrix constitutes a coordinate transform (in homogeneous coordinates) from

the original image to the reprojected image:

U U
| =H|v|. (1.5)
w' w

Thus, rectification of a stereo pair can be achieved by applying two appropriate ho-
mographies Hy, and Hpg to the two images. In a calibrated setup, H;, and Hg can

easily be derived from the known position and orientation of the two cameras. Rec-
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tification is also possible in a weakly calibrated setup, i.e., if only the fundamental
matrix F is known [Robert et al., 1995; Seitz and Dyer, 1996a).

Note that the only requirement for the new common image plane is that it must
be parallel to the baseline. This leaves two free parameters: its distance and its
orientation (i.e., angle of rotation). The distance is less interesting, since it only
amounts to globally scaling the coordinates, while the rotation angle affects the
distortion of the rectified images. This parameter plays an important role in the
view synthesis procedure presented in Chapter 3. For traditional stereo applications
it 1s often chosen so as to minimize some measure of overall image distortion.

Finally, explicit rectification requires the re-sampling of the images, usually using
backward mapping. For each pixel (z',y’) in the rectified image, the corresponding
image position (z,y) in the original image is computed using H™'. Since these
coordinates are real-valued, an intensity value must be interpolated from the four
nearest pixels (at integer-valued coordinates). Bi-linear interpolation is the simplest
choice, but more complicated methods such as cubic spline interpolation are also

possible. More information on image transforms can be found in the book by

Wolberg [1990].

1.2.7 Example: SSD

We finish our brief review of stereo with an example: the classic sum-of-squared
differences (SSD) algorithm. This is a very simple example of an area-based stereo
algorithm. Assuming rectified images, the best match for a point in one image is
found by comparing a square window centered at this point against windows of
equal size centered at points that lie on the corresponding scanline in the other
image. The sum of the squared intensity differences across the window is used as
a measure of dissimilarity. The location that minimizes this measure is selected as
the best match, and the disparity, i.e., the horizontal offset between the matching
locations, is stored. Figure 1.10 shows pseudocode for the SSD algorithm.

Note that the algorithm in the figure does not handle the image boundaries:
it is assumed that the images extend sufficiently beyond the area over which the

disparity map is computed. A real implementation needs to make sure that the
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SSD

Input: two intensity images ImL [z, y], ImR[z, y]
Qutput:  disparity map Displz, y] w.r.t. the left image

Parameters:  disparity range  dmin..dmax

window size wsize

for x := xmin to xmax do
for y := ymin to ymax do
best_ssd := MAXINT,;
for 4 := dmin to dmax do
ssd := 0;
for xx := x—wsize/2 to x+wsize/2 do
for yy := y—wsize/2 to y+wsize/2 do
diff := ImL[xx, yy] — ImR[xx+d, yyl;
ssd := ssd + diffxdiff
end for yy
end for xx;
if (ssd > best_ssd) then

best_ssd := ssd;

best d :=d
end if
end for 4;
Displx, y] := best.d
end for y
end for x

Figure 1.10: Pseudocode for the SSD algorithm.
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window does not extend beyond the image boundaries. Also, assuming a window
size of w x w, the running time of the algorithm can be improved by a factor of w?,
by accumulating the squared differences by convolution with two one-dimensional
box filters.

Figure 1.11 shows disparity maps computed by the SSD algorithm. The top
half of the figure shows the stereo pair used as input. These are images 18 and 24
from the Stanford tree sequence (provided by Harlyn Baker and Bob Bolles at SRI),
which was taken by a single camera mounted on a horizontal motion stage (yielding
the simple stereo geometry). The bottom half shows two disparity maps using two
different window sizes: 3 x 3 (left) and 7 x 7 (right). The disparities are displayed
using a gray-level encoding. Close points (large disparities) are shown light; far
points (small disparities) are shown dark.

The figure illustrates the basic trade-off involved in selecting the best window
size, which is a problem for all window-based techniques. A small window results
in many wrong matches due to ambiguities and noise, but preserves object shapes
in relatively fine detail. A large window cuts down on the wrong matches, but also
starts to blur the object boundaries. This problem of selecting the best window size

is the motivation behind the diffusion-based stereo techniques in Chapter 6.

1.3 Contributions and outline of the thesis

In this thesis, we show that stereo vision is well-suited for the application of view
synthesis, and demonstrate that it is possible to efficiently synthesize realistic new
views from existing images using stereo data. The main contributions with respect

to view synthesis are:
e a purely two-dimensional way of formalizing view synthesis under the full

perspective model as rectification, linear warping, and derectification;

e possible ways of dealing with regions of unknown geometry due to partial

occlusion and regions of unknown intensities due to total occlusion;

e a re-evaluation of the requirements on stereo algorithms in light of the new

application of view synthesis.
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Left image Right image

Disparities

SSD, 7x7

close

Figure 1.11: Disparity maps computed by the SSD algorithm. The image pair is
shown at the top; two disparity maps computed with different window sizes are
shown at the bottom. Disparities are encoded with gray-levels: dark represents far,

light represents close.
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Additional contributions of this thesis are several novel stereo algorithms that are

motivated by the requirements imposed by view synthesis, including:

e a new gradient-based stereo method combining the notions of similarity and
confidence, offering an easy way of dealing with image regions of uniform

intensity;

e several new diffusion-based stereo algorithms motivated by the problem of
boundary blurring, including a Bayesian estimation technique that signifi-

cantly outperforms traditional window-based techniques such as SSD.

After a review of related work in Chapter 2, the main focus of this thesis is
on two topics: view synthesis (Chapters 3 and 4), and actual stereo algorithms
(Chapters 5 and 6).

In Chapter 3 we present the algorithm used to synthesize new views from a
stereo pair. Chapter 4 contains an evaluation of stereo in light of the requirements
imposed by the application of view synthesis, including possible ways of dealing with
occlusion. Chapter 5 introduces a new stereo method based on comparing image
gradients. In Chapter 6 we explore different stereo algorithms based on diffusion,
including an algorithm derived from a Bayesian model of stereo matching. We
conclude in Chapter 7 with a summary and a discussion of possible directions for

future work.

1.4 Prior publications

Much of the material in this thesis is based on work that has been published pre-
viously. The view synthesis method in Chapter 3 and some of the material in
Chapter 4 was first presented in [Scharstein, 1996]. The stereo method in Chap-
ter 5 is an extension of work described in [Scharstein, 1994a; Scharstein, 1994b].
Finally, the material presented in Chapter 6 is based on joint work with Richard
Szeliski [Scharstein and Szeliski, 1996a; Scharstein and Szeliski, 1996b).



Chapter 2

Related Work

The purpose of this chapter is to provide a compact overview of previous work
relating to the topics presented in this thesis. We first discuss previous work related
to the topic of view synthesis from real images. Then we give a broader overview
of related work in stereo vision. The chapter concludes by providing a list of books

on computer vision and related areas.

2.1 View synthesis

View synthesis from real images is a topic that has received much recent interest.
Creating new views without a scene model is also an emerging field in the computer
graphics community, where it is called image-based rendering.

We distinguish between three different approaches to the view synthesis problem.
The first approach — the one taken in this thesis — is to synthesize new views from
few reference images using stereo vision techniques. The aim of methods following
this approach is to construct correct synthetic views for a wide range of viewpoints
(in the vicinity of the original views). Besides discussing the existing approaches in
this category, we also outline their differences to our method.

The second approach is called view interpolation. The idea is to synthesize
only those views lying on the straight line connecting two reference views. Many

view interpolation methods do not solve the exact reconstruction problem (under

27



28

perspective projection), but only approzimate the intermediate view. Furthermore,
depth discontinuities and occlusion are often not considered by these methods.

The third approach is to utilize the information from many images, typically
an image sequence taken with a video camera. Example applications include con-
structing a layered representation of scene structure, or combining all images into
a single 3D-corrected mosaic.

We consider each approach in turn.

2.1.1 View synthesis based on stereo

One of the first applications for view synthesis from stereo was proposed by Ott,
Lewis, and Cox [Ott et al., 1993], who consider the problem of creating “virtual
eye contact” for teleconferencing. Given two cameras that are mounted on either
side of a teleconferencing monitor, a virtual center view is created from the two
off-center images using a dynamic-programming stereo method [Cox et al., 1992a).
The rectification and disparity interpolation steps in their method are a special
case of the method presented in this thesis. Instead of estimating the disparities at
partially-occluded points, however, the authors ignore holes in the disparity map,
and holes in the synthesized view are filled using intensity interpolation, without
regard to occlusion boundaries (which can have the effect of smearing foreground
and background).

Laveau and Faugeras [1994] describe a method for constructing a new view di-
rectly from weakly calibrated images. A new viewing configuration is specified by
manually selecting four points in each of the existing images. These points corre-
spond to the images of the focal point and of three points defining the retinal plane
of the virtual camera. Assuming a given disparity map, the authors then present
two ways of constructing the new view using either forward or backward remap-
ping of pixels. The main contribution of the paper is the theoretical demonstration
that a new view can be synthesized without any reconstruction in three dimensions.
For real applications, however, specifying the new view by selecting four pairs of
corresponding points is impractical.

McMillan and Bishop [1995b] synthesize new views from two cylindrical pan-
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oramic views created by mosaicing (see also [McMillan, 1995a]). They characterize
image-based rendering as “reconstructing a continuous representation of the plenop-
tic function from a set of discrete samples of that function.”! Disparity maps are
computed between adjacent cylindrical panoramas using a cylindrical variant of the
epipolar constraint, and new views are synthesized by warping (forward-mapping)
the existing panoramas based on the disparities. The method does not deal with
partially occluded points, and holes in the new view are simply filled by inter-
polation. In other work [McMillan and Bishop, 1995a], the authors describe an
implementation of (almost) real-time viewpoint generation in a head-mounted dis-
play using image warping based on a generalized depth map (which is assumed to be
given). The authors also present a simple algorithm for visibility resolution based
on forward mapping (given parallel viewing planes), which we employ in the view
synthesis method described in Chapter 3.

Fuchs et al. [1994] describe the concept of teleconferencing using “a sea of cam-
eras,” in which a user wearing a head-mounted display observes synthetic views of a
scene that are generated in real time corresponding to the motion of the user. The
authors describe a prototype system based on multiple-baseline stereo [Okutomi
and Kanade, 1993]. Images are mapped onto the polygonally-meshed depth map
and re-rendered using standard computer graphics techniques.

Kanade et al. [1995] describe a similar system for “virtualized reality,” also based
on re-rendering real images that have been mapped onto polygonal meshes. The
meshes are computed from hand-edited depth maps acquired by multiple-baseline
stereo. Both Fuchs et al. and Kanade et al. describe the vision of a complete tele-
reality scenario using a large number of reference views, and give preliminary results
to show the feasibility of the proposed framework. Using a real-time stereo machine
[Kanade et al., 1996], another proposed application is Z keying: merging the real
image with a virtual (computer graphics) image. The two images are combined,
and visibility is resolved by comparing their depths in real time.

The five approaches discussed above, together with the method by Seitz and Dyer
[1995; 1996a] (discussed in the next section), are the approaches that are most closely

'The plenoptic function [Adelson and Bergen, 1991] describes the (visual) infor-
mation available to an observer at any possible viewpoint.



30

related to the method presented in this thesis. In contrast to our method, however,
most of these approaches do not deal with problems related to depth discontinuities
and occlusion (although several methods address some of the issues). Also, except
for in the work by Seitz and Dyer, the importance of the changed requirements
on stereo algorithms is not recognized. Most of the existing approaches ignore
partially occluded points; some, e.g., [Fuchs et al., 1994], try to avoid them by
using more than two views. Some approaches fill the holes caused by previously
invisible scene points, but this is usually done using simple interpolation without
regard to occlusion boundaries (Kanade et al. [1995] fill holes using information
from other views, but rely on hand-edited depth maps). We propose better ways of
dealing with both partial and total occlusion in Chapters 3 and 4.

In the remainder of this section we describe approaches that explicitly recover
3D scene structure by integrating stereo data from many image pairs. These meth-
ods can be considered hybrid image- and model-based approaches, and they typi-
cally suffer from the problems associated with deriving geometric information using
stereo.

Koch [1995] has implemented a system that builds texture-mapped 3D surface
models using stereo, segmentation, and interpolation. New views can be synthesized
by computer graphics methods.

Kang and Szeliski [1996] present a system to recover 3D scene structure from
a sequence of images spanning a 360° field of view. Similar to the approach by
McMillan and Bishop [1995b], they first create cylindrical panoramas from image
streams taken with cameras rotating about a vertical axis. The 3D scene structure
is then recovered from several such cylindrical panoramas using a structure-from-
motion algorithm and multiple-baseline stereo. Using texture mapping, new views
of the recovered scene can be generated with standard computer graphics methods.

Debevec et al. [1996] describe a hybrid geometry- and image-based approach for
modeling and rendering existing architectural scenes from a sparse set of images.
A geometric model is first constructed manually by a human operator using a pho-
togrammetric modeling system. A model-based stereo algorithm then computes the
deviation of the real scene from the model. Using the model, the images can be

reprojected, which enables the stereo matcher to process widely-spaced image pairs.
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This has the advantage that a scene can be modeled from only few reference images.

The obvious drawback of the method is that it requires human assistance.

2.1.2 View interpolation

In contrast to view synthesis methods, which can handle arbitrary new viewpoints,
view interpolation methods (also called image interpolation methods) require the
new viewpoint to lie on the straight line connecting two reference views. While this
may seem restrictive, it is sufficient for applications in which the new viewpoint
follows a fixed (piece-wise straight) trajectory. Given many images of a scene, it is
also possible to generate arbitrary new views by using a sequence of interpolation
steps. For example, the view from a point in the interior of a triangle defined
by three reference views can be generated with two interpolation steps. Similarly,
generating a new view in the interior of a tetrahedron defined by four reference
views requires three interpolation steps.

Chen and Williams [1993] introduced image interpolation in the context of effi-
cient image rendering in computer graphics. They assume that the depth of points
is known from an available 3D scene model, and focus on ways to improve ren-
dering speed. Although their framework extends to real images, they only present
experiments using synthetic images. They discuss a simple way of filling holes in
the synthesized views without giving special treatment to depth boundaries. Chen
and Williams also note that linear image interpolation only produces the correct
perspective view if the baseline is parallel to the image planes. For general viewing
configurations, image interpolation thus only results in an approximation of the
intermediate view.

Katayama et al. [1995] describe view generation based on the interpolation of
epipolar-plane images. Epipolar-plane image analysis [Bolles et al., 1987] uses mul-
tiple images taken along a common baseline (as in multiple-baseline stereo) and
computes disparities by fitting lines in z-d space. The paper describes a way of
synthesizing new views along the baseline by interpolating the detected lines. The
authors also discuss how new views corresponding to a forward motion of the camera

can be synthesized. The vertical pixel motion, however, is only approximated.
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Werner et al. [1995] use view interpolation to generate new views of an object
on a turntable. Matching points between reference views are established using the
stereo method by Cox et al. [1992a], and new intermediate views are synthesized
by interpolating the motion field. Partially occluded points can not be tolerated,
and the method is restricted to purely intermediate views. The authors have also
investigated how a small set of reference views can be selected from a larger initial
set of images so as to minimize the error for interpolated views [Hlavac et al., 1996).
They propose an optimization procedure based on the number of occluded pixels
detected by the stereo algorithm.

Seitz and Dyer [1995], under an affine projection model, derive criteria under
which image interpolation yields the correct synthetic view. They show that a
particular range of views can be synthesized correctly if the reference images are
first rectified. They also show that the view synthesis problem is theoretically well-
posed under the additional assumption of monotonicity (which basically excludes
occlusion). They propose a view interpolation algorithm that matches and shifts
uniform patches of intensity as a whole. In subsequent work [Seitz and Dyer, 1996a),
they extend the method to perspective projection, and also to more than two images
(using a sequence of interpolation operations). They also propose a method called
view morphing that combines (geometric) image interpolation and (user specified)
image morphing [Seitz and Dyer, 1996b].

The view synthesis method proposed by Seitz and Dyer consists of three steps:
rectification, linear disparity interpolation, and derectification. This is conceptually
very similar to our view synthesis algorithm, which was developed independently,
and which is presented in the next chapter. The main difference between the two
approaches is that Seitz and Dyer only consider purely intermediate views, while
our method allows arbitrary new viewpoints. Furthermore, they employ a different
model of stereo matching that relies on monotonicity, while our method imposes
fewer constraints. This is discussed in more detail in Chapter 4.

Two recent approaches in the computer graphics community, the “lumigraph”
[Gortler et al., 1996] and “light field rendering” [Levoy and Hanrahan, 1996], phrase
view synthesis as sampling and reconstructing the plenoptic function. As opposed

to McMillan and Bishop [1995b], who introduced the concept of plenoptic modeling,
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both approaches construct an explicit 4D data structure containing a subset of the
plenoptic function that captures the complete flow of light in a bounded region of
space. This data structure contains the intensity (and color) for all lines of sight
intersecting a closed volume (e.g., a cube) around an object. New views of this
object can be synthesized by reconstructing the light rays passing through the new
(virtual) camera center from a set of discrete samples. Both the lumigraph and the
light field are constructed from a large number of images (with known parameters)
of the object. The approaches rely solely on resampling the visual information,
without the need for establishing correspondences. Thus, they can be characterized
as interpolation methods. Since a discontinuous function can not be reconstructed
from sparse samples, depth discontinuities and occlusion can yield artifacts in the
synthesized views.

View synthesis and interpolation have also been used in the context of recog-
nition. Ullman and Basri [1991] show that, under orthographic projection, a new
view can be expressed as a linear combination of other views. This property is used
in a recognition system to test whether a viewed object is a linear combination of
views of different models. Beymer et al. [Beymer et al., 1993; Beymer and Poggio,
1995] describe learning networks that can analyze pose and expression parameters
of facial views. New views corresponding to novel parameter settings can then be

synthesized and used to recognize other faces.

2.1.3 Mosaics and layered representations

Multiple (overlapping) images of the same scene can be combined into a single
larger image, a so-called mosaic. Before the images can be combined, it is necessary
to apply transforms to the original images that bring the overlapping parts into
alignment. Finding such a transform is referred to as image registration. Brown
[1992] gives a survey of image registration techniques; see also [Kuglin and Hines,
1975; Tian and Huhns, 1986]. Image registration is also a central problem in the
field of photogrammetry [Moffitt and Mikhail, 1980; Slama, 1980; Wolf, 1983].
The difficulty of registering two images depends on the number of parameters

that need to be estimated. If two images are taken from the same viewpoint
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(i.e., only under different rotation and zoom), they are related by a single pro-
jective transform, which depends on at most 8 parameters. (The same is true if
a planar scene is observed from different viewpoints.) A global optimization (e.g.,
Levenberg-Marquardt minimization [Press et al., 1992]) can be used to compute
these parameters such that the residual between the registered images is mini-
mized. Since the number of parameters to be estimated (i.e., 8) is much smaller
than the number of input variables (i.e., the number of pixels), panoramic mosaics
from a single viewpoint can be constructed robustly [Szeliski, 1994; Szeliski, 1996;
McMillan and Bishop, 1995b; Kang and Szeliski, 1996]. This is also the basic idea
behind Apple’s QuickTime VR [Chen, 1995]. Note that no knowledge of the scene
geometry is required to register different images taken from the same viewpoint.

It is also possible to create mosaics from video sequences. Such wideo stills
can be used to represent the information contained in a whole sequence of images
in a single frame [Teodosio and Bender, 1993; Mann and Picard, 1994]. Other
applications of mosaicing include image stabilization [Burt and Anandan, 1994;
Hansen et al., 1994], improving image resolution [Irani and Peleg, 1991], and image
compression and video enhancement [Irani et al., 1995].

The problem of registering two views is much harder if a (non-planar) scene is
observed from two different viewpoints. The number of parameters to be estimated
is now of the same order as the number of input variables: besides the 8 parameters
specifying the relative camera configurations, it is necessary to estimate the depth
at every pixel. To be able to solve this underconstrained problem, either additional
constraints need to be imposed, or the number of input variables needs to be in-
creased by utilizing many images.? Szeliski and Coughlan [1994] reduce the number
of parameters to be estimated by representing the depth map using a tensor-product
spline, and only estimate the depth of the spline control vertices.

The second approach, increasing the number of input variables by utilizing a
whole image sequence, has recently been taken by several authors. The key idea is
to represent the depth of the scene in a way that is independent of the viewpoint.

Kumar et al. [Kumar, 1994; Kumar et al., 1994; Kumar et al., 1995] use a global

Stereo algorithms take the former approach by imposing smoothness or ordering
constraints.
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optimization to recover the parameters of a virtual reference plane and the parallax
field describing the residual parallax with respect to this plane. This has also been
termed estimating projective depth [Shashua, 1993; Shashua and Navab, 1994]. The
method is an extension to the direct estimation framework introduced by Hanna
[1991] and by Bergen et al. [1992]. Once the parameters have been estimated,
new views can be synthesized from this representation, and multiple views can be
combined into a 3D-corrected mosaic.

A similar approach has been taken by Sawhney et al. [Sawhney, 1994b; Sawhney,
1994a; Sawhney et al., 1995]. As in Kumar’s work, the parameters of a reference
plane and of a parallax field are directly estimated. By using robust estimators,
motion outliers (corresponding to independently moving objects) can be tolerated
and detected.

Yet another approach is to decompose the scene into components with differ-
ent motions. Adelson [1995] describes how such a layered representation of video
sequences can be computed using the motion segmentation method by Wang and
Adelson [1993]. Starting with an image sequence, the scene is divided into lay-
ers containing independent motions that can be described by affine motion models.
The idea is similar to the work by Sawhney and Ayer on dominant motion detection
[Sawhney et al., 1995] and on layered representations of video [Ayer and Sawhney,
1995]. Using a whole image sequence as input has the advantage that deciding
which pixel belongs to which layer is relatively robust, yielding sharp object bound-
aries. The disadvantage is that these methods only work well for scenes that can

be decomposed into few layers, each of which has a globally consistent motion.

2.2 Stereo

Stereo vision — inferring scene geometry from two or more images taken simulta-
neously from slightly different viewpoints — is the other central topic of this thesis.
Stereo vision is one of the earliest and most thoroughly investigated topics in the
computer vision community, and an exhaustive discussion of related work in stereo
vision is well beyond the scope of this thesis. For general (though slightly dated)
surveys of the stereo literature, see Dhond and Aggarwal [1989], and Barnard and
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Fischler [1982].

In the rest of this section we will discuss stereo methods that are relevant to
the methods presented in this thesis in the context of view synthesis. We start by
outlining a framework for stereo, in order to better categorize the existing related

work.

2.2.1 A framework for stereo

All stereo methods must address the correspondence problem, that is, the problem of
finding matching points in two images of the same scene. Two image points match if
they result from the projection of the same point in the scene. The desired output
of a stereo correspondence algorithm is a disparity map, specifying the relative
displacement of matching points between images.

The stereo correspondence problem is inherently underconstrained and further
complicated by the fact that the images typically contain noise. Traditional ap-
proaches thus either recover only a subset of matches, or make additional assump-
tions. Fealure-based approaches, belonging to the former category, only match
points with a certain amount of local information (such as intensity edges). Area-
based approaches match small image patches as a whole, relying on the assumption
that nearby points usually have similar displacements. The disadvantage of feature-
based methods is that they only yield sparse disparity maps, and that disparities at
locations between features need to be estimated by interpolation. The disadvantage
of area-based methods is that the computed disparity map is more likely to contain
errors, in particular near depth discontinuities (where not all nearby points have the
same displacement). Since the application of view synthesis requires dense depth
maps, however, we will focus on area-based approaches, which compute disparity
estimates at every pixel.

A typical area-based stereo matching algorithm proceeds in the following way:
An optional preprocessing step (e.g., band-filtering) can be used to accommodate
global intensity changes, or to extract dense feature vectors. Then, for each location
in one image, the displacement is found that aligns this location with the best

matching location in the other image. The quality of a match is measured by
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comparing windows centered at the two locations, for example, using the sum of
squared intensity differences (SSD).
A more general, displacement-oriented, way of characterizing area-based algo-

rithms is the following:
1. Preprocess images (optional)

2. For each disparity under consideration, compute a per-pixel matching cost

(e.g., squared intensity difference)
3. Aggregate support spatially (e.g., by summing over a window, or by diffusion)
4. Across all disparities, find the best match based on the aggregated support
5. Compute a sub-pixel disparity estimate (optional)

We now discuss the related work using this characterization of the different

processing stages of area-based algorithms.

2.2.2 Preprocessing

The reason that a preprocessing step is often necessary is that images contain high-
frequency noise introduced by the imaging process, and low-frequency variations
due to different camera characteristics, such as differences in bias and gain, and
vignetting (uneven intensity distributions). These undesirable frequency compo-
nents can be filtered out using low-pass and band-pass image transforms [O’Gorman
and Sanderson, 1987]. Such filtering operations are image processing tasks [Pratt,
1992]. (Generally, in image processing the focus is on transforming images, while
in computer vision the focus is on extracting information from images.) Other ex-
amples for preprocessing include the computation of binary features such as edges
[Canny, 1986] or the sign of the Laplacian [Nishihara, 1984], the computation of
high-dimensional feature vectors [Jones and Malik, 1992a], and the rank and census

transforms [Zabih, 1994; Zabih and Woodfill, 1994].
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2.2.3 Matching cost

At the base of any matching algorithm is a matching cost that measures the
(dis-)similarity of a pair of locations, one in each image. Matching costs can be
defined locally (at the pixel level), or over a certain area of support. Examples of
local costs are absolute intensity differences [Kanade, 1994; Kanade et al., 1996),
squared intensity differences [Hannah, 1974; Anandan, 1989; Matthies et al., 1989;
Simoncelli et al., 1991], filter-bank responses [Marr and Poggio, 1979; Kass, 1988;
Jenkin et al., 1991; Jones and Malik, 1992a], and measures based on gradients [Seitz,
1989] (see also Chapter 5). Binary matching “costs” (i.e., match / no match) are
also possible [Marr and Poggio, 1976], based on binary features such as edges [Baker,
1980; Grimson, 1985; Canny, 1986] or the sign of the Laplacian [Nishihara, 1984].
Matching costs that are defined over a certain area of support include correlation
[Ryan et al., 1980] and non-parametric measures [Zabih and Woodfill, 1994]. These
can be viewed as a combination of the matching cost and aggregation stages.

Assuming only Gaussian noise, using intensity differences as a cost to minimize
is optimal [Anandan, 1989; Matthies et al., 1989; Simoncelli et al., 1991]. As men-
tioned in the previous section, however, this assumption is easily violated: two
cameras can differ in bias and gain, and intensities can depend on the position in
the image due to vignetting. Gradient-based costs (see Chapter 5) are less sensitive
to these problems. Non-parametric measures as used by Zabih and Woodfill [1994]
are a different way of addressing these problems. Another possibility is using meth-
ods from robust statistics [Black and Anandan, 1993; Black and Rangarajan, 1994;
Black and Rangarajan, 1996].

2.2.4 Evidence aggregation

Aggregating support is necessary for stable matching. A support region can be ei-
ther two-dimensional at a fixed disparity (favoring fronto-parallel surfaces), or three-
dimensional in z-y-d space (supporting slanted surfaces). Two-dimensional evidence
aggregation has been implemented using square windows or Gaussian convolution
(traditional), multiple windows anchored at different points [Intille and Bobick,
1994], and windows with adaptive sizes [Arnold, 1983; Okutomi and Kanade, 1992;
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Kanade and Okutomi, 1994]. Three-dimensional support functions that have been
proposed include limited disparity difference [Grimson, 1985], limited disparity gra-
dient [Pollard et al., 1985], and Prazdny’s coherence principle [Prazdny, 1985, which
can be implemented using two diffusion processes [Szeliski and Hinton, 1985].

As mentioned above, measures defined over a fixed support region, such as corre-
lation and rank statistics, combine the cost and aggregation steps into one. Measures

that can be accumulated in a separate step have the following advantages:

e efficiency: the measure can be aggregated with a single convolution (or box-
filter) operation [Kanade, 1994];

e parallelizability: the aggregation step can be implemented by local iterative
diffusion, making the algorithm suited for highly parallel architectures [Szeliski
and Hinton, 1985];

e adaptability: the measure can be aggregated over locally different support
regions using either adjustably-sized windows [Kanade and Okutomi, 1994] or

a non-uniform diffusion process (see Chapter 6).

Instead of collecting support for all different disparities, it might also be desirable
to only find points at the depth of fixation (the so-called horopter), for example in
the context of active vision. This is similar to Marr’s model of the human stereo
system involving a set of disparity pools [Marr, 1982]. Coombs and Brown [1993]
describe an active stereo vision system that finds such points by means of a feature-
based zero-disparity filter (see also Coombs et al. [1992]). Olson and Lockwood
[1992] describe a different way of disparity filtering using a multi-scale correlation

method to extract points at zero disparity.

2.2.5 Disparity selection

The easiest way to choose the best disparity is to select at each pixel the mini-
mum aggregated cost across all disparities under consideration (“winner-take-all”).
A problem with this is that uniqueness of matches is only enforced for one image
(the reference image), while points in the other image might get matched to mul-

tiple points. Cooperative algorithms employing symmetric uniqueness constraints
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are one attempt to solve this problem [Marr and Poggio, 1976]. Using dynamic-
programming techniques is another way of selecting unique and consistent dis-
parities [Arnold, 1983; Ohta and Kanade, 1985; Belhumeur and Mumford, 1992;
Cox et al., 1992a; Cox et al., 1992b; Geiger et al., 1992; Cox, 1994; Intille and
Bobick, 1994]. Dynamic-programming approaches to stereo work by computing the
minimizing path through the matrix of all pairwise matching costs between two cor-
responding scanlines. Partial occlusion is handled explicitly by assigning a group of
pixels in one image to a single pixel in the other image (see Figure 2.1 for an exam-
ple). Problems with dynamic-programming stereo include the selection of the right
cost for occluded pixels and the difficulty of enforcing inter-scanline consistency. In
addition, dynamic-programming stereo requires the strict enforcement of the mono-
tonicity or ordering constraints [Yuille and Poggio, 1984]. This constraint requires
that the relative ordering of pixels on the scanline remains the same between the
two views, which is usually not the case in real scenes containing narrow occluding

objects.

2.2.6 Sub-pixel disparity computation

Sub-pixel disparity estimates can be computed in a variety of ways, including by
iterative gradient descent, or by fitting a curve to the matching costs at the discrete
disparity levels [Lucas and Kanade, 1981; Tian and Huhns, 1986; Matthies et al.,
1989; Kanade and Okutomi, 1994]. This provides an easy way to increase the
resolution of a stereo algorithm with little additional computation. However, to

work well, the intensities being matched must vary smoothly.

2.2.7 Diffusion-based techniques

In Chapter 6 we introduce several diffusion-based stereo algorithms. Diffusion
refers to an aggregating (or averaging) operation that is implemented by repeat-
edly adding to each pixel the (weighted) values of its neighboring pixels. Non-linear
and anisotropic diffusion has been proposed for a variety of early vision tasks, in-
cluding edge detection [Perona and Malik, 1990; Nordstrom, 1990]. Proesmans et

al. [1994] detect discontinuities in optical flow by comparing forward and back-
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Figure 2.1: Stereo matching using dynamic programming. For each pair of corre-
sponding scanlines, a minimizing path through the matrix of all pairwise matching
costs is selected. Lowercase letters (a—k) symbolize the intensities along each scan-
line. Uppercase letters represent the selected path through the matrix. Matches
are indicated by M, while partially occluded points (which have a fixed cost) are
indicated by L and R, corresponding to points only visible in the left and right
image, respectively. Usually, only a limited disparity range is considered, which is

0—4 in the figure (indicated by the squares that are not shaded).



42

ward flow estimates and then using a diffusion process to smooth the discontinuity
maps. (Similar ideas of comparing left-to-right and right-to-left estimates in stereo
have also been used by Fua [1993] and others.) Proesman et al. and Fua also use
an anisotropic diffusion process (mediated by intensity gradients) to smooth out
the flow or disparity estimates. Shah [1993] has also used non-linear diffusion in

conjunction with a gradient descent algorithm for stereo matching.

2.2.8 Other techniques

Other stereo techniques include hybrid and iterative techniques, such as stochastic
search [Marroquin et al., 1987; Barnard, 1989] and joint matching and surface re-
construction [Hoff and Ahuja, 1989; Olsen, 1990; Stewart et al., 1996]. Jones and
Malik [1992b] propose the recovery of surface orientation from the difference in local
texture distortion directly, instead of estimating surface orientation from the dispar-
ity map (see also Robert and Hébert [1994]). Hierarchical (coarse-to-fine) matching
is another important technique that allows for a larger range of disparities to be
matched without excessive search [Quam, 1984; Witkin et al., 1987]. An implemen-
tation of a hybrid method utilizing both area-based and feature-based approaches
(and yielding quite good results) is described by Cochran and Medioni [1992].

More than two images are used in multiframe stereo to increase stability of the
algorithm [Bolles et al., 1987; Matthies et al., 1989; Kang et al., 1995]. A special case
is mulliple-baseline stereo, where all images have identical epipolar lines [Okutomi
and Kanade, 1993]. In this case, the similarity measures between the reference
image and all other images can be combined by summation into a single measure
before the aggregation step.

Finally, occlusion is an important issue. Many approaches ignore the effects of
occlusion; others try to minimize them by using a cyclopean disparity representation
[Barnard, 1989], or try to recover occluded regions after the matching by cross-
checking [Cochran and Medioni, 1992; Fua, 1993]. Several authors have developed
methods for dealing with occlusion explicitly, using Bayesian models and dynamic
programming [Belhumeur and Mumford, 1992; Cox et al., 1992a; Cox, 1994; Geiger
et al., 1992; Intille and Bobick, 1994].
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2.3 Computer vision books

A number of good books on computer vision are available for readers who wish to
learn more about the field.

A Guided Tour of Computer Vision by Nalwa [1993] is an excellent introduction
to computer vision. Three-Dimensional Computer Vision: A Geometric Viewpoint
by Faugeras [1993] provides an in-depth coverage of the use of projective geometry
in computer vision. Both books have the advantage of being fairly recent. The book
chapter “Computer Vision” by Huttenlocher in the Handbook of Computer Science
and Engineering provides a compact overview of the state of the art in the field
[Huttenlocher, 1997].

(lassic texts in computer vision include Robot Vision by Horn [1986], Vision
by Marr [1982], and Computer Vision by Ballard and Brown [1982]. Readings in
Computer Vision, a collection of important papers in computer vision, has been
published by Fischler and Firschein [1987].

A treatment of Bayesian techniques in computer vision can be found in Bayesian
Modeling of Uncertainty in Low-Level Vision by Szeliski [1989]. Digital Image
Warping by Wolberg [1990] provides a good overview of techniques related to image
synthesis. Computer Graphics: Principles and Practice by Foley et al. [1990] is the
classic text in computer graphics. Finally, Foundations of Vision by Wandell [1995]

is a nice recent introduction to the human visual system.



Chapter 3
View Synthesis

We are now ready to discuss our proposed method for view synthesis. In this chapter
we assume that the stereo problem is solved, and that precomputed disparity maps
are available for our experiments. In the next chapter we evaluate what is required
from a stereo algorithm whose output is to be used for view synthesis. Actual stereo
algorithms used for the results presented in this chapter will then be discussed in
Chapters 5 and 6.

The proposed application of view synthesis using stereo data has the goal of
generating realistic new views with minimal visual artifacts. This restricts the new
viewpoints to be reasonably close to the existing reference views. Even so, we will
have to deal explicitly with regions of unknown geometry or texture, since “black
holes” in the new views can not be tolerated. To support real-time applications
such as tele-reality, new views need to be synthesized efficiently.

Our new method for view synthesis addresses these issues by warping the exist-
ing images based on local depth information. The method is based on three-view
rectification, a special rectification step that both aids in stereo matching and al-
lows an easy formulation of fast exact view synthesis. The method also incorporates
ways of dealing with partially occluded regions of unknown depth and with com-
pletely occluded regions of unknown texture, which are issues not addressed in most
previous approaches.

In Section 3.1 we introduce the three-view rectification step, and derive the

linear warping equation. Section 3.2 describes in detail the various steps of the
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view synthesis algorithm, which include rectifying the original images, warping the
rectified images into the new view, adjusting the intensities and combining the
warped images, filling holes, and derectifying the combined image into the final view.
In Section 3.3 we present experiments demonstrating the viability of our method.
In Section 3.4 we outline how our method for view synthesis from two reference
images can be used in the larger framework of image-based scene representations.

We summarize the chapter in Section 3.5.

3.1 Geometry

In this section we develop the geometric foundations that will allow us to synthesize
a new, virtual view from two existing reference views. Let [; and [ denote the
existing images (left and right respectively), and let I3 denote the new image to
be synthesized. We develop coordinate transforms that enable us to formulate
view synthesis as linear disparity interpolation, allowing fast generation of new
views by a local warping algorithm. Note that we solve the exact view synthesis
problem as opposed to other work in which the term “view interpolation” refers to
an approximation of the correct synthetic view.

We assume that the geometry of the two existing views is known, either by
explicit calibration or by self-calibration [Deriche et al., 1994], and that the desired
configuration of the third (virtual) camera is specified relative to the existing two.

In the case of “pure” weak calibration, i.e., where we only know the fundamental
matrix F relating the epipolar geometries, specifying the new viewpoint presents a
problem [Laveau and Faugeras, 1994]. We therefore assume that we have at least a

rough estimate of the full (external) calibration (see also Section 3.4).

3.1.1 Three-view rectification

Using three-view rectification, we achieve a simple geometry allowing the synthesis
of a new view by a linear warping algorithm. The key step is choosing a convenient
global coordinate system. See Figure 3.1 for an illustration of the rectification

Pprocess.
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Figure 3.1: Illustration of the rectification process: existing views (a), synthetic
view (b), and reprojection onto plane Z = 1 (¢). To achieve equal image sizes,

larger actual image areas can be chosen to contain the reprojected images (d).
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We choose our global coordinate system in such a way that all three focal points
C;q, Cs,, Cs lie in the plane Z = 0. In particular, we let the first camera center
define the origin of this coordinate system, and we let the second camera center lie
on the z-axis at unit distance from the origin (i.e., at (1,0,0)). This defines the
position, scale and orientation of the new coordinate system, except for the angle of
rotation around the z-axis. We can choose this rotation such that the plane Z = 0
contains the synthetic camera center. This defines the coordinates of the synthetic
view (X, Ys) in the new coordinate system (the subscripts S indicate the synthetic

view). In summary, the three camera centers have the coordinates

0 1 Xs
Cl — 0 ) CQ — 0 , Cg - YS . (31)
0 0 0

We use homographies (i.e., projective coordinate transforms) H;, (i = 1,2,3), to
project the original images [I; onto the plane Z = 1, the plane at unit distance
from the tri-focal plane 7 = 0 containing the three camera centers. This yields the
rectified images I. The homographies H; are 3 x 3 matrices describing coordinate
transforms in homogeneous image coordinates. That is, a point q; = (u;,v;) in

image I; is projected to q; = (u}/wi, v{/w;), with

B Uy
T =H |y |- (3.2)
/ 1

In the resulting rectified geometry, all three cameras have identical parameters, all
image planes coincide, and all three coordinate systems are oriented the same way.
In order to achieve equal image sizes, the image areas can be expanded to a common
“bounding box” that is large enough to enclose each of the three rectified images.
This is illustrated in Figure 3.1 (d). The reprojection of I; to I] based on H; can
be done using a fast projective image warping algorithm [Wolberg, 1990].

Note that the rectification presented here is an extension of the “two-view” recti-
fication commonly done in traditional stereo vision algorithms. To yield coinciding

epipolar lines, the rectifying plane must be parallel to the baseline, but its orien-
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tation can be arbitrary. We have taken advantage of this fact and have chosen a
plane that is parallel to all three baselines, yielding pairwise coinciding epipolar

lines between all three images.

3.1.2 The linear warping equation

So far we have only rectified the original images and simplified the geometry in
which the new view is to be synthesized. We now derive the linear warping equation
specifying how each pixel needs to be displaced to generate the new view 5. The
final step then consists of simply computing the derectified image I3 from [} using
the inverse transform Hz'.

In images I, I}, I}, a scene point P = (Xp,Yp, Zp) has the coordinates

Xp Xp-1 Xp—Xg
Zp Zp Zp
P1 = ; P2 = , P3 = ) (3-3)
Yp Yp Yp-Ys
Zp Zp Zp

respectively. The positional offsets of point P in the new image I} with respect to

images I and [} are

_Xs _ Xg—1
Z Z
P3s—Pp1 = and ps — p2 = "’ (3-4)
YS YS
T Zp T Zp

Using a stereo algorithm, we get the point’s disparity, i.e., its offset in position

between images I and I}:

diz = [p2 — p1]e = —1/Zp;
and, symmetrically, between images [} and I7:

dy1 = [p1 — P2l = 1/Zp.

(We use the notation [v], to refer to the z-component of a vector v. Note that
the y-component in the above equations is zero due to rectification.) Given the
disparity, we can specify ps, the image coordinates of P in the virtual view, as a
linear combination of its disparity and the position of the virtual camera (Xg, Ys).

This yields the linear warping equation
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X
Ps = Ppi1+di2 Yj ;
[ X — 1
p3 = Pp2—dy i/s . (3.5)

3.1.3 Computing the rectifying homographies

We have yet to explain how to compute the rectifying homographies H;, (¢ = 1,2, 3).
Let O; be the origin, and let R;, S; be the unit vectors of the original image
coordinate system of I;, specified with respect to the new global coordinate system.

That is, a point (u;,v;) in the original image I; has 3D coordinates

P, =uwR;+vS;,+ O;.
Using the fact that Equation (3.3) can be rewritten

pi=P—-C; (3.6)
(where p; is expressed in homogeneous coordinates, while P and C; are not), the
projection of P; in image I is
pi = Pi—-C;
= uR; +vS,+0;, -C;

U;
1

= |Ri |80, -C;

Thus, the rectifying homographies H; are simply composed from the original image

unit vectors R;, S; and the offset between camera center C; to old image origin O;:
H,=|Ri S0, -C; |, (3.8)

For illustration, Figure 3.2 shows the vectors defining the homography Ho.
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H2:

R>|S2 | 02-C

C; = (0,0,0) C, = (1,0,0)

Figure 3.2: The construction of the rectifying homographies. The figure shows the
vectors Oy, Ry, S, defining the original image I, which are used to construct the

rectifying homography Hs.
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3.2 Synthesizing a new view

We assume in this chapter that a stereo algorithm has provided us with dense dis-
parity maps di2(4,7) and da1(4, ) between the rectified images I] and I;.! While
many authors assume that the disparity maps are given, the problem of computing
them is obviously not an easy one. In fact, it will be the topic of much of the re-
mainder of this thesis. In the next chapter, we will discuss the specific requirements
that the application of view synthesis imposes on stereo algorithms, and we will
then present our new stereo algorithms in Chapters 5 and 6.

Given a disparity map di2 or dq1, Equation (3.5) yields a fast way of synthesizing
any new view at (Xs, Ys) based on forward mapping [Wolberg, 1990]. That is, the
existing image is warped into the synthetic view by shifting each pixel by the correct

displacement. There are two issues that need to be dealt with: visibility and holes.

3.2.1 Resolving visibility

A visibility decision needs to be made whenever two different points map to the
same location in the new view. A key advantage of the rectified geometry is that
visibility resolution is easy, since the front-to-back ordering of the scene points is
the same for all three views. In fact, visibility can be resolved automatically by
ordered forward mapping, i.e., by simply mapping the pixels to their new positions
in the correct sequence. The correct mapping sequence depends only on image
coordinates and not on the depth values. This has the effect that closer pixels are
mapped later, thus automatically overwriting pixels further away. For example, for
a new viewpoint with Xg > 0,Ys > 0, the correct order of mapping (for the left
image) is left-to-right and bottom-to-top.

Visibility can still be resolved in this way for more general camera configurations,
as long as the image planes stay parallel. The correct order in this case depends on

the position of the epipole in the new image [McMillan, 1995b].

'Recall that a disparity map is dense if it assigns a disparity to every pixel (i, 7).
We assume that we have disparity estimates even for partially occluded pixels (i.e.,
pixels only visible in one image). How such estimates can be computed will be
discussed in Section 4.6.
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3.2.2 Holes and sampling gaps

Holes in the new view occur if the new viewpoint uncovers previously invisible scene
points. We have to distinguish carefully between sampling gaps due to the forward-
mapping process, and real holes caused by occlusion boundaries in the disparity
map. Sampling gaps occur when the (small) disparity difference between adjacent
pixels is amplified in the remapping process. The same is true for holes, except that
the disparity difference that causes the hole corresponds to a depth discontinuity.
Since depth maps are discrete, distinguishing between the two cases can present
a problem. One possibility is to impose a disparity gradient limit that acts as a
threshold. For example, a gradient limit of 1 would mean that if two neighboring
disparity values differ by an amount d < 1, then they are considered to belong to
the same object (and forward mapping can create a sampling gap which needs to
be filled). If they differ by d > 1, on the other hand, they would be considered to be
separated by an occlusion boundary (and thus forward mapping can create a hole).

Given that we have distinguished between depth discontinuities and small dis-
parity differences, we can counteract sampling gaps by increasing the sampling rate
proportionally to the distance of the new camera to the reference camera. (Recall
from Equation (3.5) that the disparities are multiplied by this distance.) Note that
sampling gaps occur in areas that are viewed less obliquely from the new viewpoint
than from the old one, and are therefore subject to less perspective foreshortening
in the new view. We have to “stretch” the visual surface in these areas in order to
avoid sampling gaps. A different approach is necessary to deal with holes, however,

since we do not want to stretch surfaces across depth discontinuities.

3.2.3 Combining information from both images

Before addressing how holes can be filled explicitly, we will discuss how the size and
number of holes can be reduced by combining the information from both reference
images. Using two symmetric disparity maps dy; and dy;, we can warp each image
11, I separately, yielding two synthetic images I3 ;, I3, for the same new viewpoint.
Although displaying the identical view, these two images can differ in the following

ways:
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1. The global intensities can be different due to different camera characteristics

of the original two cameras;

2. The quality can be different due to the different distortions created by the two

warps;

3. The holes (i.e., locations of previously invisible scene points) are at different

positions.

To compensate for the first two effects, it is useful to blend the intensities of
the two images, possibly weighting the less-distorted image more (i.e., the one that
is closer to the new viewpoint). For example, the weights could be proportional
to the distance between the virtual viewpoint and the (respective other) reference
viewpoint. This is discussed in more detail in Section 3.2.4 below. Similar ap-
proaches to blending images have recently been proposed, termed view-dependent
or depth-corrected texture mapping [Debevec et al., 1996; Gortler et al., 1996].

The third way in which the warped images can differ, namely in the position of
holes, deserves special attention. Given that both synthetic images are based on
the same geometry, how can the holes be at different positions at all? The answer is
that, if the new views are synthesized by remapping only those pixels whose depth
is known (i.e., those that are visible in both images), then the holes will indeed be
at the same positions in both new views. If we want to utilize the total intensity
information available, however, we need to include areas that are only visible in one
image (and whose depth is thus unknown). In Section 4.6 we will discuss ways of
estimating disparities of such partially occluded regions. Given a disparity estimate
for these regions, it is possible to fill some of the holes in one image with intensities
of partially occluded (unmatched) regions of the other image. It is still possible,
however, for both images to have a hole at the same position, which needs to be

filled explicitly. This will be discussed in Section 3.2.5.

3.2.4 Adjusting intensities

Filling holes from one image can create visual artifacts, in particular if the two

images have strong global intensity differences. The reason is that the filled hole
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has the intensity of a single image, while the surrounding has a blended intensity.
Thus, it is advisable to perform a global intensity correction before the images are
combined. There are two possibilities for intensity corrections. The first is to adjust
the global intensities before any new views are synthesized. This has the advantage
that the intensity stays constant if multiple views from different viewpoints are
generated. The other possibility is to adjust the intensities depending on the new
viewpoint, for example to achieve a smooth transition of views between the original
(unadjusted) reference images.

In our implementation, the intensity correction is performed by computing a
linear regression of image intensities using the warped views. Since the warped
images are spatially consistent, a linear regression of intensity values corrects for
cameras with different bias and gain. The idea is to fit the intensity values I, = {/;}

and Ir = {r;} to a straight-line model:?
]R:a—l—bIL. (39)

The regression coefficients @ and b can be computed using the following equations

[Press el al., 1992]:

. S”ST - SISZT . SSZT - SZST

_ L 3.10
T SS = (5)? SSn— ()2 (3.10)

where

S:ZL Sl:Zli7 ST:ZTZ', SZT:EZZ'TZ', S”:Zl?, STT:ET?, (311)

and all summations range over all pixels that are defined in both images (i.e.,
excluding locations for which there is a hole in one or both images).
Given the coefficients a and b, we can combine the intensities using a blending

weight a and an intensity weight ~:

Isum = a[yIr + (1 —~)(a+ bIL)]
+(1 = a)[y((Ir — a)/b) + (1 — ) Ir]. (3.12)

*For simplicity, we will use the symbols I1, and I instead of 1%, and I}, in this
section.
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What is the difference between the two weights? The blending weight « controls
the “mixture” of the two images: If @ = 1, only the left image is used; if & = 0, only
the right image 1s used. These are the settings used at locations of single holes. At
other locations, a should have a value between 0 and 1. According to the discussion
above, one possibility is to choose o and (1 — ) to be proportional to the distances
between the new viewpoint and the reference viewpoints (so that the less-distorted

image is weighted more), i.e.,

~dp+dR’

«

(3.13)

where d;, and dp are the distances

dr, = |Cs—Cy| = /X242, dp=|Cs—Cy|=\/(Xs— 12+ Y2 (3.14)

The second weight, v, controls whether the intensity of /g is adjusted towards that
of I, (v = 1), or whether the intensity of Iy, is adjust towards that of Ir (v = 0).

If several different views need to be synthesized, it is usually best to use a constant

weight (e.g., ¥ = 0.5). However, if a smooth transition between the original views
is desired, one can choose v = a (referring to Equation (3.13)). This way, if we
synthesize a new view close to the left view, we mostly change the intensity of the

right view, and vice versa.

3.2.5 Filling holes

Holes in the synthesized view occur when the new viewpoint reveals previously in-
visible scene points. We have seen that only holes occurring at the same position in
both images need to be filled explicitly. Such coinciding holes correspond to scene
points invisible from both cameras. These are quite likely observed from “extrapo-
lated” viewpoints outside the original baseline, but are unlikely for “interpolated”
viewpoints in between the reference viewpoints. The reason is illustrated in Fig-
ure 3.3: two different objects have to “conspire” in order for coinciding holes to
occur in intermediate views. We can not exclude this case in natural environments,
and thus holes can never be avoided completely.

Dealing with this situation involves synthesizing texture for the newly visible

areas. An easy way to fill these holes is to spread the intensities of the neighboring
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(a) (b)

Figure 3.3: The generation of holes. The illustration shows a top-down view of two
cameras . and R observing a scene that contains occluding objects. A synthetic
view S has holes due to the exposure of previously invisible scene points. Single
objects can cause holes only for views outside the original baseline (a), while multiple

objects can conspire to create holes even in intermediate views (b).
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pixels, but this often yields “blurry” regions. A different possibility is to mirror
the intensities in the scanline adjacent to the hole, which gives noticeably better
results than simple intensity spreading. It is very important to prevent intensities
from being spread across occlusion boundaries, since holes are usually created by
a close object that has uncovered part of the scene, and now bounds the hole on
one side. The new texture should be based only on existing intensities on the close
side of these boundaries, to avoid “smearing” of foreground and background. More
sophisticated texture synthesis methods based on neighboring intensity distributions
(again taking into account occlusion boundaries) are clearly possible, for example

those developed in the context of image restoration [Hirani and Totsuka, 1996;

Kokaram and Godsill, 1996].

3.2.6 The view synthesis algorithm

In summary, we can synthesize a new view I3 from images [, [ using the following

algorithm:
1. Compute rectified images I;, 1) using homographies H;, H,.

2. Using a stereo algorithm tailored to view synthesis,® compute dense disparity

maps di2(t, ) and dz(¢,7) between images [1(z,5) and 15(7, 7).
3. Compute new images I3, and I3, by mapping points
L(2,9) = I3 (1+ Xsdia(i,5), 7 + Ysdiz(i,5))
1(0,3) = i — (Xs = 1)dan(i3). — Yodua(i- 1)

4. Adjust the intensities of images I3, and I3 ,, and combine them into image

14, filling single holes in the process.
5. Fill the remaining holes in I} using texture synthesis.

6. Compute the final derectified image I3 from I} using inverse homography H3'.

3The specific requirements on such a stereo algorithm will be discussed in the
next chapter.
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Note that if many views need to be synthesized from the same original image
pair, the first two steps of the algorithm, i.e., rectification and stereo matching,
only need to be performed once. Even if the new views lie in different planes, which
requires a new rectification step, the disparity map does not need to be recomputed,
but can be reprojected using the appropriate homography (the disparity values need
to be rescaled accordingly also).

Stereo matching is the most time-intensive step of the algorithm. A typical
area-based stereo algorithm needs to perform a substantial number of operations
per pixel. Depending on disparity range, size of the support region, and the desired
quality, this number can range from a few hundred to several thousand. Rectification
and view generation, in comparison, can be accomplished much faster, since only a
few operations per pixel are necessary.

To give some actual running times, the computation of the disparity maps used
for the synthetic view shown in Figure 1.2 using the stereo method described in
Chapter 5 takes 38 seconds on a SPARCstation 5. The image size is 350 x 236, and
the number of disparity levels is 45. Creating a new view (i.e., warping, adjusting
intensities, filling holes, and combining the images) takes only 1.1 seconds. The
reported times were obtained using an experimental implementation that was not
optimized for speed.

This enables interesting applications, such as “low-cost virtual reality”, where a
single server with high computing power provides images and disparities in real time,
and a large number of clients with less computing power could generate different

viewpoints.

3.2.7 Limitations of the approach

The proposed method of view synthesis based on explicit rectification, warping, and
derectification has certain drawbacks. First, each of the three steps involves resam-
pling the image, which introduces blur. Second, the approach becomes impractical
for viewing directions close to parallel to the tri-focal plane, the plane containing the
three camera centers. The reason is that explicit rectification for these directions

results in distortions and large image sizes. If the tri-focal plane intersects the scene
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(caused, for example, by a pure forward or backward motion of the virtual camera),
rectification becomes impossible.*

Blurring due to repeated resampling can be counteracted with more sophisti-
cated interpolation techniques, or by super-sampling the intermediate images [Wol-
berg, 1990]. A different idea is to aggregate the three steps into a single warping
operation. This has the effect that the image is resampled only once. Furthermore,
as the image is never explicitly reprojected, large (or even infinite) intermediate
image sizes are no longer a problem. Both ideas have also been proposed by Seitz
and Dyer [Seitz and Dyer, 1996b; Seitz and Dyer, 1996a] in the context of their
view morphing method. An aggregated warping step, however, can no longer be
implemented using simple scanline operations. In particular, automatic visibility
resolution by ordered forward mapping is no longer possible, and it is difficult to
counteract sampling gaps. For these reasons, it would be preferable to implement a
combined warping step using backward mapping, resulting in an algorithm similar

to the “ray-tracing like” algorithm proposed by Laveau and Faugeras [1994].

3.3 Experiments

In this section we demonstrate the viability of our proposed method with experi-
mental results. We synthesize new views from the kids image pair used by Intille and
Bobick [1994] and the birch image pair from the JISCT data set [Bolles et al., 1993].
Both image pairs are already rectified, making explicit rectification unnecessary.
Figure 3.4 shows (from top to bottom) the left and right image of the kids
pair and the disparity maps dy5 and dy;. The image pair is identical to the one
in Figure 1.1, except that the images have been scaled vertically by 1/2.> The
disparity maps shown in the figure are computed using the stereo method presented
in Chapter 5. Also, as will be discussed in the next chapter, the disparities of

unmatched image regions due to partial occlusion and uniform intensities have been

“Laveau and Faugeras [1994] report the same problem for their forward-mapping
algorithm.

®This is the width-to-height ratio of the original images used by Intille and
Bobick.
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Figure 3.4: The left and right image of the kids pair, and the disparity maps dy
and dy;. The disparities are encoded with gray-levels: dark represents far, light

represents close.
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estimated.

Given these correspondence maps, new views can be generated very efficiently.
Figure 3.5 shows synthesized views from different positions along the baseline. The
distance between adjacent views is half the baseline. The second and fourth im-
age from the top are the left and right original image. The first, third, and fifth
image from the top are synthesized views corresponding to viewpoints to the left
of, in between, and to the right of the original viewpoints respectively. The holes
corresponding to previously invisible points are shown in black. As expected, the
center view has many fewer holes than the two extreme views, since in the center
view most scene points are visible from at least one of the original views.

In Figure 3.6, the holes have been filled by mirroring the intensities of the ad-
jacent scanlines. As can be observed in the figure, filling the holes introduces some
noticeable artifacts. The outline of the filled hole is sometimes visible, in particular
at locations where the stereo algorithm did not recover a depth discontinuity cor-
rectly. In other cases, the synthesized texture is not consistent with the surrounding
texture, in particular where strong lines are present in the image (e.g., the tiling
of the ground). The latter problem could be avoided by using a texture synthe-
sis method that matches the frequency and phase information of the surrounding
texture, such as the one by Hirani and Totsuka [1996].

Other artifacts are caused by wrongly estimated disparities. One such problem
is apparent in the bottom left quarter of the images, where the repeating pattern
of the tiles on the ground causes severe matching errors. (This can also be noticed
in Figure 3.4.) The stereo algorithm also fails to recover the correct structure of
the arms of the man in the background. Other noticeable artifacts occur along the
outline of the child in the foreground, in particular in the bottom image. It can be
seen that the correct recovery of occlusion boundaries is critical.

The second experiment demonstrates that realistic views can be synthesized even
from poor stereo data. Figure 3.7 shows the birch image pair at the top, and the
disparity maps di; and dy; at the bottom. Figure 3.8 shows a synthesized center
view for the birch image pair. Although the disparity maps contain many errors,
the synthesized view looks fairly realistic. (It would be impossible, however, to

construct an even remotely accurate 3D scene model from these disparity maps.)



Figure 3.5: Synthesized views for the kids image pair from different positions along
the baseline. The second and fourth row contain the original images. The holes are

shown in black.



Figure 3.6: Synthesized views for the kids image pair. The figure is identical to the
previous one, except that the holes (in the first, third, and fifth images) have been

filled by mirroring the intensities of the adjacent scanlines.
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Figure 3.7: The left and right image of the birch pair, and the disparity maps d
and dy;. The disparities are encoded with gray-levels: dark represents far, light

represents close.
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Figure 3.8: A synthesized center view for the birch image pair.



66

It is easier to evaluate the performance of the method when the synthesized views
are displayed in an animated movie sequence. A movie creates a quite striking
impression of depth, even if it contains noticeable errors. A movie of the birch
image pair with a virtual viewpoint moving smoothly between the two original
views is especially impressive: although the quality of the underlying disparity map
is not very good, the movie communicates a high amount of scene structure. This
clearly demonstrates the potential of view synthesis from stereo data for tele-reality
applications.

Most of the visual artifacts created by our current implementation are caused
by incorrect stereo data. The strongest artifacts are usually caused by occlusion
boundaries that are recovered incorrectly (especially in “extrapolated” views). Mis-
matched points due to uniform intensities, on the other hand, usually do not cause

problems.

3.4 Image-based scene representations

As mentioned in the introduction, the problem of synthesizing new views from a
stereo pair can be seen as part of a larger framework, in which a scene is repre-
sented by a graph consisting of images and correspondence maps. Similar image-
based scene representations have recently been proposed by several authors [Chen
and Williams, 1993; Laveau and Faugeras, 1994; Fuchs et al., 1994; Szeliski, 1994;
Kanade et al., 1995; McMillan and Bishop, 1995b; Kang and Szeliski, 1996]. Each
vertex in such a graph corresponds to a view from a physical location in the scene:
either a single image, or a mosaic composed from several images [Irani et al., 1995;
McMillan and Bishop, 1995b; Sawhney et al., 1995; Szeliski and Kang, 1995; Kang
and Szeliski, 1996]. The edges in the graph represent the correspondences between
adjacent views in the form of dense disparity maps, computed by a stereo matching
algorithm.

This graph constitutes a local view-based representation of the scene geometry,
and new views can be generated efficiently from two nearby existing views using
the techniques discussed above. Such an image-based representation avoids the

problems associated with global models, but it requires dealing with regions of
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unknown depth or even of unknown texture caused by occlusion in the scene. If the
sampling of reference images is reasonably dense, however, the instabilities of the
image-based method have a relatively small effect, since we only need to deal with
small changes in viewpoint.

Using only a small number of local images for view synthesis has the advantage
that we only need to know the relative configurations between adjacent views, which
do not need to be globally consistent. For example, images could be acquired with
a hand-held camera and labeled with rough global coordinates. Then, for each pair
of adjacent images, the epipolar geometry could be recovered by self-calibration.
Compared to methods that try to combine image data from a wide range of viewing
configurations, another advantage of using a small set of images is that common

assumptions (such as Lambertian surfaces) are less commonly violated.

3.5 Summary

In this chapter we have presented a new method for synthesizing new views from
a stereo pair. The method is based on three-view rectification, i.e., reprojecting
the images onto a plane parallel to the tri-focal plane. In the rectified geometry,
pixel displacements in the synthetic view are linear in disparity, which allows fast
generation of new views by warping the existing images. Visibility can be resolved
automatically using ordered forward mapping, but special care needs to be taken
to avoid sampling gaps. We have also outlined possible ways of filling holes in the
synthetic views which are unavoidable due to the limited information present in the
reference views. Finally, we have presented experiments demonstrating the viability

of the method.



Chapter 4
Re-evaluating Stereo

In the previous chapter we presented a method for efficiently generating new views
from two existing images. The method requires a stereo correspondence map relat-
ing the two rectified images. In this chapter we discuss the requirements imposed
on stereo algorithms whose output is to be used for view synthesis.

In Section 4.1 we examine the requirements imposed by traditional applications
of stereo. We then compare these requirements with the ones imposed by view
synthesis in Section 4.2. We show that the achievable accuracy of stereo is sufficient
for synthesizing nearby views in Section 4.3, and discuss the different criteria of
correct and realistic views in Section 4.4. In Section 4.5 we show that regions
of uniform intensity present less of a problem for view synthesis than for other
applications of stereo. Finally, we present ways of dealing with partial occlusion in

Section 4.6, and close with a summary in Section 4.7.

4.1 Traditional applications of stereo

Grimson has argued that the requirements on a stereo algorithm should be con-
sidered in light of the needs of the task that uses its output [Grimson, 1993]. He
demonstrates that exact 3D distance measurements can only be achieved with very
accurately calibrated cameras, and argues that stereo might be more useful for tasks

other than 3D reconstruction (for example, figure-ground separation). Our new ap-

68
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plication, view synthesis, imposes yet another set of requirements on stereo. We
will discuss the requirements for several different applications of stereo. We will see
that limited accuracy (as well as other well-known limitations of stereo) is not as
problematic when stereo is used for view synthesis.

Traditional applications of stereo include the following:

Computation of elevation maps from aerial images

Obstacle detection for robot navigation

Reconstruction of 3D objects

Recognition of 3D objects
e Visual servoing and hand-eye coordination

We will consider each of these applications in turn, and discuss their specific re-

quirements on input, output, accuracy, and speed.

4.1.1 Automated cartography

Stereo algorithms can be used to automate the computation of digital elevation maps
from aerial images taken from a plane or from a satellite. This is a classic problem
in the field of photogrammetry, the science of “obtaining reliable measurements
from photographic images” [Moffitt and Mikhail, 1980; Slama, 1980; Wolf, 1983].
Using metric cameras practically free of distortion, an accurate global frame is first
established by matching a number of ground control points with known coordinates.
Topographic maps containing elevation information can then be constructed by
matching corresponding points across two images. Traditionally, matching points
are established manually using specialized equipment that enables the operator to
take measurements while stereoscopically fusing the two images.

The matching process can be automated using stereo algorithms. Commercial
systems can compute highly accurate elevation maps (on the order of a few meters),
due to precisely calibrated cameras and long baselines [ISTAR, 1993]. The corre-

spondence problem is not too difficult in this case since aerial images are typically
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highly textured and rarely contain occlusion. The desired output is a dense and
accurate displacement map. Real time performance is not required, and the stereo

matching process is typically guided by human interaction.

4.1.2 Robot navigation

A stereo algorithm to be used for robot navigation must operate in real time. A
dense depth map is usually not required, as the knowledge of the distance to a
sparse set of feature points is often sufficient.

In the context of navigation of autonomous robots and unmanned planetary
rovers, stereo has been proposed for obstacle detection [Horswill, 1992; Matthies,
1992]. The idea is to detect objects that extend from the ground plane ahead of
the robot, and to adjust the steering angle such that a collision with these objects
is avoided. To perform this task, a rough localization of close objects is sufficient,
which can be achieved in a variety of ways. One possibility is to use a disparity
filter tuned to a certain distance to detect close obstacles [Coombs et al., 1992]. As
a dense depth representation is unnecessary, it is sufficient to estimate the distance
to a sparse set of features, e.g., intensity edges that can be matched reliably.

It is also possible to use an area-based stereo method, but to restrict the estima-
tion of disparities to a sparse set of sample points arranged on a regular grid. This
approach has been taken by Robert et al. [1995], who show that navigation decisions
can be made even in a weakly-calibrated system (i.e., without metric calibration),
by comparing the relative heights of the feature points over the ground plane.

An easy method for obstacle detection for indoor robot navigation is to globally
transform the images using a homography that explicitly aligns the (flat) ground
plane. Objects that extend from the ground plane can then be detected by directly

comparing the transformed images (e.g., by differencing).

4.1.3 3D Reconstruction

The most natural output to expect from a stereo algorithm is an accurate three-
dimensional description of the observed scene, since this is what our own visual

system seems to provide. It is dangerous, however, to try to evaluate a stereo
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algorithm in isolation (i.e., independent of the proposed application). One is often
tempted to judge the quality of a stereo algorithm by observing, say, a gray-level
encoding of the computed disparity map, and to check whether it “looks good.”
The fact that humans feel competent to judge the quality of a disparity map by
simply comparing it with a single input image clearly demonstrates that our 3D
perception is aided by monocular cues, which stereo algorithms generally do not
have at their disposal.

Still, stereo algorithms have been implemented that perform reasonably well ac-
cording to the “looks good” criterion (given that the input images have a certain
amount of local texture). For example, the system by Cochran and Medioni [1992]
is fairly successful in recovering local surface structure such as depth discontinu-
ities and creases. The detection of depth discontinuities is aided by the heuristic
that object boundaries usually coincide with strong intensity gradients (see also
Section 5.6).

It is possible to build explicit 3D models of observed objects from stereo data,
but usually only in restricted environments (or with human assistance). Computing
elevation maps from aerial images as described in Section 4.1.1 is a good example. In
this case, the accuracy is sufficient due to a highly calibrated setup, and matching is
facilitated by textured scenes and smoothly varying disparities. Another example is
the automatic modeling of objects with relatively simple geometries (e.g., piecewise-
planar surfaces). Such stereo-based modeling systems are described by Koch [1995]
and by Debevec et al. [1996]. In the system by Koch, planar surface patches are
found using a segmentation of surface normals estimated from the disparity map.
The recovered object is modeled using a texture-mapped 3D triangulation. Koch
uses a whole sequence of stereo images and combines the different depth measure-
ments into a single model using a Kalman filter. The system by Debevec et al. 1s
a hybrid geometry- and image-based approach for modeling and rendering archi-
tectural scenes from a sparse set of images. Using a photogrammetric modeling
interface, a human operator first constructs a polyhedral model of the scene. A
model-based stereo algorithm then computes the deviation of the real scene from
the model.

To recover scene structure with high accuracy (and without human assistance), it
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is generally necessary to use the information from a whole sequence of images. This
approach is usually referred to as recovering structure from motion; an example is
the factorization method by Tomasi and Kanade [1992]. Methods such as the one by
Tomasi and Kanade require the tracking of points throughout the whole sequence,
which is usually only possible for image locations with large local intensity variation,
i.e., a sparse set of features. The geometry of other points needs to be interpolated,
e.g., by using a 3D triangulation of the feature points. Applications of automatic
object modeling that require dense, accurate 3D descriptions (such as virtual reality
and telepresence), thus usually resort to other techniques, for example using range
images [Shum et al., 1995].

In summary, it is difficult to compute accurate three-dimensional descriptions of
general objects observed by a stereo rig. The achievable accuracy is limited by the
small baseline required for reliable matching. This can be readily observed if the
recovered object is rendered from a different angle, as is often done in the “results”

section of stereo papers.

4.1.4 3D Recognition

Stereo can be used for recognition by extracting the three-dimensional coordinates
and orientation of (typically sparse) features, which are then compared to a database
of objects.

Since it is hard to maintain the precise calibration required for accurate 3D
measurements [Grimson, 1993], it has also been proposed to only reconstruct the
observed objects up to an affine or projective transform, and to base the recognition
algorithm on affine or projective invariants (see Section 4.1.6 below).

Another possibility is to use stereo vision to compute a Q%D sketch of a scene
[Marr, 1982], i.e., surface depth and orientation, and use this information to rec-
ognize 3D objects by the structure of their visible surfaces [Mayhew and Frishy,
1991].

The requirements on a stereo algorithm used for recognition are thus the fol-
lowing: the input can be a general scene, the output can be sparse (features) or

dense (surfaces). Global calibration is not always necessary, but the disparities of
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the features need to be computed with high accuracy. Real-time performance is

usually not an issue.

4.1.5 Visual servoing

If two cameras are mounted on a robot head that supports panning, tilting, and
verging motions, stereo vision can be used to actively fixate on a moving object
[Clark and Ferrier, 1992]. This is important in active vision, where the emphasis is
on the reactive behavior to visual input, rather than on the (off-line) processing of
a pair of static images. Real-time performance is critical in this context. Coombs
and Brown [1993] describe such an active vision system, which is capable of holding
gaze fixed upon a moving object. As in some obstacle-detection applications, stereo
is used here as a disparity filter to localize objects at the horopter, i.e., the distance
of fixation. The purpose of fixation is two-fold: it serves to separate the target from
its surroundings, and it counteracts motion-blur by keeping the target’s location in

the image fixed.

4.1.6 Full vs. weak calibration

The role of calibration in stereo deserves separate attention. While many stereo
vision tasks have traditionally relied on a fully (metrically) calibrated setup, recent
work has investigated the extent to which the dependence on full calibration can
be lessened. Among the first papers pursuing this idea are the ones by Koenderink
and van Doorn [1991], Faugeras [1992], and Hartley et al. [1992]. The basic obser-
vation for stereo is that weak calibration, i.e., knowing only the epipolar geometry,
is sufficient for the matching process, and that full metric calibration is not neces-
sary. Furthermore, weak calibration can be achieved from the two images alone, by
establishing a number of corresponding points between them.

It is possible to compute this calibration from five pairs of corresponding points,
but it involves the iterative solution of five simultaneous third-order equations. This
has been known by photogrammetrists for quite a while [Thompson, 1959; Slama,
1980]. A linear algorithm using eight pairs of points was proposed by Longuet-

Higgins [1981]. For a robust solution, however, it is best to utilize as many point
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correspondences as possible.

Recall from the introduction that the epipolar geometry can be characterized
concisely with the fundamental matriz F, a 3 x 3 matrix relating a point p (in
homogeneous coordinates) in one image with its corresponding epipolar line e in

the other image via the equation
Fp =e.

A robust system that automatically extracts many corresponding points from a
given input pair and computes the fundamental matrix from them has been made
available by Zhang et al. [1995].

Weakly calibrated stereo and affine and projective structure from motion has
been shown to have applications in reconstruction, recognition, navigation, and view
synthesis [Shashua and Navab, 1994; Zeller and Faugeras, 1994; Robert et al., 1995;
Laveau and Faugeras, 1994]. Depending on the context, the three-dimensional scene
structure is often reconstructed up to an unknown affine or projective transforma-
tion, and a scale factor. If necessary, the number of free parameters in the transfor-
mation can then be recovered by utilizing additional knowledge about the observed
scene. This can be done, for example, by identifying parallel or orthogonal lines on
houses or other man-made objects. To establish the overall scale, it is necessary to

use a scene feature with known dimension [Faugeras et al., 1995].

4.1.7 Comparison of requirements

Table 4.1 summarizes the comparisons of the five applications of stereo discussed
above: cartography, navigation, 3D reconstruction, recognition, and visual servo-
ing. It can be seen that 3D reconstruction is among the hardest of the traditional
applications of stereo: the input is unconstrained, and the output has to comply
with the most requirements. We now turn to the requirements for view synthesis,

which are listed in the last column of the table.
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Table 4.1: A comparison of requirements for different stereo applications

Cartog- Navi-  Recon-  Recog-  Visual View
raphy  gation struction nition servoing | synthesis
Input:
constrained yes® no no no yes® no
always textured yes yes© no no no no
occlusion present no! yes yes yes yes yes
Requirements:
dense output yes no yes (no)* no yes
handle occlusion no no yes no no yes
full calibration yes no’ yes no yes no?
accurate depth yes no yes yes yes no”
correct geometry yes yes yes yes yes no’
real time no yes no no yes no

¢Aerial images

"Usually in a laboratory setting
‘Except for indoor navigation

“Except for occlusion caused by tall buildings or bridges
‘Depends on the approach

’Except to allow projection of steering directions into image
YExcept for rough estimation of reference view parameters

hSee Section 4.3
‘See Section 4.5
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4.2 Stereo for view synthesis

Compared to the applications discussed above, the requirements for view synthesis
are most similar to the requirements for reconstruction. The similaritiesinclude that
we need a dense disparity map with an accurate description of depth discontinuities
and occluded areas. As we discuss below, it will even be necessary to estimate
the depth of partially occluded areas to maximally utilize the available intensity
information in synthesizing new views. (In reconstruction, such areas are ignored.)

In Section 4.1.3, however, we saw that general 3D reconstruction is the most
difficult task for stereo, and that 3D modeling is usually done using more reliable
sources, such as range images. Why should stereo be any better suited for the task
of view synthesis? We answer this question in the remainder of this chapter, and
show that stereo is indeed very well suited for view synthesis. The two main reasons
for this revolve around the required accuracy in depth, and the difference between

correct geometry and correct view.

4.3 Accuracy

There 1s a well known trade-off between ease of matching and accuracy of recon-
struction: the smaller the baseline (i.e., the distance between the two viewpoints),
the easier it 1s to establish correspondences across the two images. A small baseline,
however, severely limits the achievable depth resolution, as the finite resolution of
digital images causes discrete discernible depth levels whose spacing increases with
distance.

Figure 4.1 shows a geometric construction of the non-uniform spacing of discrete
depth levels for two parallel cameras with focal length f and a spatial resolution
of 6. Usually § = 1 pixel, but sub-pixel disparity estimation might yield 6 = 0.1
pixel. Given a baseline of length b, we can derive from similar triangles the following

relationship between the distance Z and the spacing of depth intervals AZ:

0
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Since AZ is small compared to Z, we have

6
A7~ —72% 4.2
: (4.2)
Thus, the spacing is roughly proportional to the square of the distance.
To give a concrete example, suppose we have two CCD cameras with a sensor
width of 640 pixels, and a horizontal field of view of 50°. The focal length is
640 pixels/2

= —————— = 686 pixels.
/ tan(50°/2) L

Given a resolution of 6 = 1 pixel, and a baseline of b = 50mm, the depth resolution

at a distance of Z = 0.5m is

A7 = %22 = 7.3mm,

while at a distance of Z = 5m it is only

AZ ~0.73m.

Thus, the depth resolution at this distance would not be adequate at all for 3D
reconstruction. Neither would it be adequate if we wanted to synthesize the view
from a very different viewing direction, for example, from above the observed scene.

In our proposed framework of many reference views, however, we only need to
synthesize views that are reasonably close to the reference views. More precisely,
we require the distance between the new viewpoint and the reference viewpoints to
be of a magnitude similar to the length of the baseline. For those viewpoints, the
accuracy provided by a disparity map is not only adequate, but also well-matched
across the depth range (i.e., neither too high nor too low). Remember that the view
synthesis technique from the previous chapter uses three-view rectification to keep
the virtual image plane coplanar with the existing image planes, and that the pixel
motion from the old to the new views is proportional to the motion between the
two original views (i.e., the disparity). Thus, errors in the computed disparities are
uniformly amplified for all possible disparities, depending only on the magnitude of
the offset vector to the new view. Since disparities are never explicitly converted

into depth, the error associated with depth does not affect the synthesized view.
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Figure 4.1: The non-uniform spacing of discrete depth levels. Two parallel cameras

with spatial resolution ¢ yield a depth resolution at discrete depth levels whose

spacing AZ increases with distance Z.
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Thus, the disparities provide a compact, uniform, view-based encoding of the
scene geometry, which is ideally suited for the task of view synthesis. In contrast, a
uniform global encoding of the scene, such as a voxel representation,! would be ill-
matched for view synthesis, as points far away would be represented with too much
detail, while the resolution might not be adequate for close points. Even worse, the
overrepresentation of far objects can actually impede fast rendering. This can only
be avoided by using a (more complicated) hierarchical representation, in which the

scene geometry is stored at multiple levels of resolution.

4.4 Correct vs. realistic views

The second reason why stereo is better suited for view synthesis than for recon-
struction has to do with the desired output. In reconstruction, the desired output
is a 3D description of the observed scene. In view synthesis, the desired output are
realistic-looking images of the scene as it would appear from novel viewpoints. This
criterion has both a “hard” and a “soft” interpretation. The former requires the
synthetic image to be correct, i.e., equivalent to the view that a real camera at this
position would provide. The latter reflects the goal of view synthesis: to provide a
human observer with a convincing three-dimensional impression. According to this
“soft” criterion, the synthetic view does not need to be correct, but rather realistic.

Even if we want the correct view, view synthesis is easier than 3D reconstruction.
This is true in terms of accuracy, as was discussed in the previous section. In
addition, there are common scenarios in which the correct view can be synthesized
even if the underlying geometry is wrong or unknown. This is true in particular for
image regions of uniform intensities, which are discussed in the next section.

In practice, however, it will hardly ever be possible to synthesize the correct
view, because most real scenes contain occlusion. A new viewpoint will, more often
than not, contain partially occluded areas of unknown depth and totally occluded
(previously invisible) areas of unknown intensities. Thus, we will have to fall back

on the “soft” criterion, i.e., trying to create a realistic impression.

LA wozel is the three-dimensional equivalent of a pixel: a small uniform volume
element in 3-space, encoding color information.
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To provide a convincing impression, it is necessary to estimate depth and to
synthesize texture in areas with insufficient information. Ideally, these estimates
should result in minimal visual artifacts, so that the synthetic views look realistic
and also convey a consistent three-dimensional impression. This would satisfy the
“soft” criterion, even though the views might neither be correct, nor represent the
correct geometry. Obviously, it is harder to evaluate the success of a view synthesis
method according to this subjective criterion. Instead of measuring the similarity
between the synthetic view and a real reference view, we have to evaluate the
impression on a human observer. A thorough evaluation would need to rely on
methods from experimental psychology, which is beyond the scope of this thesis.
Instead, we have to try to judge the quality of the synthesized images as objectively
as possible. An excellent way of testing for three-dimensional coherence is to watch
a “movie” of views from a trajectory of closely-spaced viewpoints. It is much easier
to spot visual artifacts and 3D incoherencies in an animated sequence, than in a
single image. We can not tolerate flaws that are unnoticeable only in still images,
however, since most applications of view synthesis do present animated sequences

of views to the observer.

4.5 Areas of uniform intensities

View synthesis (as opposed to many other applications of stereo) requires a dense
depth map that assigns depth to every pixel. During the mapping step, we can uti-
lize information neither about certainties of depth estimates nor about unmatched
points, since every pixel in the image needs to be mapped to a new position. This
has two consequences: we want the stereo algorithm to pick canonical solutions that
create minimal artifacts where there are multiple or ambiguous depth interpreta-
tions, and we have to make extra assumptions about the disparities of unmatched
points. We first address ambiguous depth interpretations.

Whenever a local area in one image matches multiple areas in the other image
(along the corresponding epipolar line), the matching problem is ambiguous. This

is usually caused either by an area of locally constant intensity, or by a repetitive
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pattern, such as a brick wall or a patterned wallpaper.? Mismatches due to repetitive
intensity patterns are hard to avoid, since, locally, matches have high certainty.
Often a third view (from another camera) would be necessary to disambiguate the
matches [Okutomi and Kanade, 1993]. Thus, repetitive patterns are problematic for
view synthesis, since the synthetic view can reveal matching errors to the observer.

The situation is different for areas of uniform intensities. Ambiguous depth in-
terpretations caused by areas of uniform intensities have been a traditional problem
for stereo methods that compute dense disparity maps. The key observation for
view synthesis is that these regions yield the same views largely independent of
the underlying depth interpretation. In contrast to the case of repetitive intensity
patterns, more views provided by extra cameras usually do not contribute any new
information about uniform areas, and would not substantially decrease the ambi-
guity of the geometry in these regions either. Intuitively, this illustrates that the
correct view of these areas can often be synthesized even though the underlying
geometry may be unknown (and unknowable from visual data). Even if the correct
view can not be guaranteed, it is possible to create a plausible view corresponding

to a canonical depth interpretation.

4.5.1 Geometric constraints

To make these ideas more precise, let us consider the scenario shown in Figure 4.2.
Two cameras L and R observe a textured scene containing a region of uniform
intensity. The figure shows a cross section of the scene taken along an epipolar
plane. The textured parts of the scene (to the left and the right of the uniform
patch) can be matched unambiguously, and thus their geometry is known. Similarly,
the positions of the endpoints of the uniform line are known, too. The geometry of
the interior of the uniform line is unknown, however, since any point on this line
matches any other point equally well. Note that while the shape of the uniform
surface 1s unknown, it must lie within the shaded area in Figure 4.2 due to visibility
constraints. If we further assume a continuous surface connecting the two endpoints

that is completely visible from both L and R (i.e., there is no occlusion), the shape

Wallpapers with a regular pattern often fool the human visual system as well.



82

L R

Figure 4.2: An area of uniform intensity: The figure shows a top-down view of two
cameras observing a textured scene (crisscrossed line) containing a region of uniform
intensity (solid line). The geometry is constrained by the combined shaded regions

in the general case, and by the darkly shaded region if no occlusion is allowed.
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is constrained to lie within the central, darkly shaded region.

To aid the discussion below, we define several terms: A camera’s visibility cone
is the angular region anchored at the camera and subtended by the uniform region.
The two half planes separated by the line through the two endpoints of the uniform
region are the protruding half plane and receding half plane. The protruding half
plane is the one containing the two cameras.

We can now define the strong and weak shape constraint regions. The strong
shape constraint region is simply the intersection of the two cameras’ visibility cones.
The weak shape constraint region has a protruding and a receding part: its protrud-
ing part is the intersection of the two visibility cones (in the protruding half plane),
while its receding part is the union of the two visibility cones (in the receding half
plane).

According to these definitions, the darkly shaded area in Figure 4.2 is the strong
shape constraint region, and the combined darkly and lightly shaded areas are the
weak shape constraint region. The uniform surface has to lie within the weak shape
constraint region in general, and within the strong shape constraint region under
the assumption of complete visibility.

Uniform (or nearly-uniform) intensity regions abound in real images, in partic-
ular in images of indoor scenes and of artificial objects. Under the right (though
perhaps unlikely) conditions of lighting and albedo (i.e., surface color and reflective-
ness), almost any shape can appear uniform. This is true even under the assumption
of Lambertian surfaces® which is commonly employed by intensity-based stereo al-
gorithms. Examples of different geometries (besides the straight line connecting the

endpoints) that could result in a uniform image are shown in Figure 4.3.

4.5.2 Interpolated views

Now, let us consider synthesizing a new view from a viewpoint in the same epipolar
plane. Figure 4.4 depicts this situation for a synthetic viewpoint S in between the

two reference views. It can be seen that any continuous, non-occluded surface yield-

SRecall that a Lambertian surface is a perfectly matte surface whose brightness
depends only on the angle of incident light and not on the angle of observation.
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L R

Figure 4.3: Ambiguous geometries due to uniform intensities. The figure shows a
straight, a curved, and a piecewise straight surface, all of which could give rise to
a uniform intensity area. Note that even under a Lambertian surface model, any
shape — although this is unlikely — could physically result in uniform intensities

(given a perhaps non-uniform albedo).
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L S R

Figure 4.4: An intermediate view (in between the reference views) does not constrain
the unknown geometry of a uniform region, and can usually be synthesized, unless

the new view uncovers previously invisible scene points (shown hatched).

ing uniform views from L and R will also appear uniform from the new viewpoint
S (assuming Lambertian surfaces). This is the case since the viewing cone from the
synthetic view completely contains the strong shape constraint region. Thus, the
new view does not impose any additional constraints on the geometry.

The situation is different if occlusion is allowed, since the new view could uncover
previously occluded scene points (shown hatched in the figure). If this is the case,
and the newly visible points have different intensities, the new view can not be
predicted. Geometrically, the newly visible points lie within the receding part of
the viewing cone from S, but not within the weak shape constraint region. Note
that this situation is rather unlikely to occur, since it corresponds to observing a
remote surface through a narrow gap. Usually, the true surface will lie within the
weak shape constraint region, and will appear uniform from the new viewpoint.

The observation that intermediate views of uniform areas can usually be syn-
thesized without any knowledge of the underlying geometry is in agreement with

similar results by Seitz and Dyer, who consider the problem of view interpolation
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under affine [Seitz and Dyer, 1995] and perspective [Seitz and Dyer, 1996a] projec-
tion. They propose a view interpolation algorithm that matches and shifts uniform
patches of intensity as a whole (based on the dynamic-programming stereo method
by Ohta and Kanade [1985]). Seitz and Dyer come to the conclusion that pure inter-
polation of views yields physically valid views if the images are first rectified. They
also argue that, under the additional assumption of monotonicity, view interpola-
tion is a well-posed problem (as opposed to 3D reconstruction). The monotonicity
constraint is the basic assumption made by dynamic-programming stereo methods,
and requires that the relative ordering of points along epipolar lines is preserved in
all views.

Seitz and Dyer derive a complete visibility constraint from the monotonicity con-
straint, i.e., they require that all points need to remain visible in all intermediate
views (which excludes any occlusion). They conclude that complete visibility is
required for view synthesis. However, this conclusion is overly restrictive. As dis-
cussed above, complete visibility (across all views) is certainly a sufficient condition
for the synthesis of correct views (which, geometrically, requires the surface to lie
within the strong shape constraint region). It is not a necessary condition, however,
as there are many more geometries (within the weak shape constraint region) that
can yield the correct (uniform) image. It is not necessary to exclude occlusion,
which is quite common in natural scenes. In fact, the unknown geometry could
consist of multiple occluding surfaces.

In summary, most surface geometries that appear uniform from L and R will also
appear uniform from an intermediate view S. It is not necessary to exclude occlusion
(i.e., to require complete visibility), but it is harder to characterize precisely the set
of surfaces that will appear uniform once occlusion is allowed.

In order to render the uniform area from a different viewpoint, we need an
(arbitrary) depth interpretation for the inside of the region. The easiest such inter-
pretation is the straight line connecting the two endpoints of known depth, which
we call the canonical depth interpretation. Note that even when the correct view
can not be predicted (i.e., if there are newly visible scene points), this depth inter-
pretation results in a plausible view, because the observer (usually) has no way of

predicting the appearance of the newly visible points either.
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4.5.3 Extrapolated views

We now consider the case of a new view outside the original baseline, but still on
the line through the two reference viewpoints (see Figure 4.5). That is, we want to
synthesize an extrapolated view (as opposed to an interpolated one). In this case,
the correct view can only be synthesized for some geometries, even if the surface
is completely visible from both reference views. The reason is that if the uniform
surface extends towards the front, it could occlude some of the textured background
in the new view, which would be impossible to predict. For example, this happens
if the surface extends into the region shown in black in Figure 4.5. The new view
now constrains the geometry, as its viewing cone no longer completely contains the
strong shape constraint region.

A new viewpoint outside the original baseline can also uncover previously oc-
cluded scene points. This is only possible if occlusion is present and the surface
extends into a previously invisible region, for example, the area shown hatched in
Figure 4.5. Since the intensity of the newly visible points is unknown, the new view
can not be predicted. As in the previous section, the geometric interpretation is
that the receding part of the viewing cone from the new viewpoint is not completely
contained in the weak shape constraint region.

Both of the above problems make the synthesis of extrapolated views more
difficult than the synthesis of interpolated views. The first problem (the constraint
in the protruding part of the plane) implies that the synthetic view can no longer be
guaranteed to be correct, even if we assume a continuous surface completely visible
from the original views. This was not the case for interpolated views. In addition,
the second problem (that of newly visible points in the receding part of the plane), is
more likely to occur, as it can be caused by any occlusion boundary. In interpolated
views, on the other hand, it requires the presence of a remote surface visible through
a narrow gap. As before, however, a plausible view can be synthesized by assuming
the canonical depth interpretation along the straight line connecting the two points

of known depth.
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L R S

Figure 4.5: An extrapolated view (outside the original baseline) constrains the ge-
ometry of a uniform region, and can only be synthesized correctly if the true surface
does not extend into the black and hatched areas. (If the surface does extend into
the black area, unpredictable occlusion can occur along the line of sight shown
dashed.) A plausible view can always be synthesized, however, by assuming the
canonical depth interpretation along the straight line connecting the endpoints of

the uniform region.
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4.5.4 General views and the aperture problem

Recall that we have parameterized the position of the new viewpoint with the co-
ordinates (Xg, Ys), while the two reference views have the coordinates (0,0) and
(1,0). So far we have investigated interpolated views (with 0 < Xg < 1), and ex-
trapolated views (with Xs < 0 or Xg > 1). In both cases we had Ys = 0. We now
consider the case where Y # 0.

Such views from a point not on the original baseline are affected by the aperture
problem, i.e., the fact that the local displacements can only be recovered in the
direction of the intensity gradient. In the context of stereo, the aperture problem
has the consequence that vertical intensity edges can be matched unambiguously
(unless they are part of a repetitive pattern), while horizontal intensity edges are
impossible to match at a local level, because each match looks (locally) equally
good. In fact, if we only consider a single (horizontal) epipolar line, a horizontal
intensity edge appears uniform along this line. Thus, for new viewpoints on the
original baseline, the discussion from the previous two sections extends to horizontal
intensity edges. As before, the image of such edges will be correct in the new view
independent of the underlying depth interpretation. We can conclude (in agreement
with Seitz and Dyer [1995; 1996a]) that the aperture problem is nonexistent and
that the view synthesis problem is well-posed in this case.

The situation is different for a new view with Ys # 0. This case corresponds to
observing the scene from a viewpoint either above or below the original viewpoints.
A horizontal intensity edge in the original views will now have a different shape and
position in the new view as a direct consequence of its estimated depth. This makes
the synthesis of a correct view much harder.

The main difference from the previous case is that uncertainties in depth esti-
mation and view synthesis no longer “cancel each other out”. These uncertainties
correspond to an intensity gradient whose component in the direction of the epipolar
line is zero. Before, the epipolar lines for depth estimation and view synthesis were
identical. Now, their direction differs: the epipolar lines between the two reference
views are horizontal, while the epipolar lines between each reference view and the

synthetic view are not.
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It 1s still possible to avoid most visual artifacts by assigning a canonical depth
interpretation, but this interpretation must now be consistent across scanlines. In
the case of a uniform region within a textured area, this can be achieved by in-
terpolating the disparities from the boundaries. The problem is harder, however,
for areas where the intensity gradients have mostly vertical components (i.e., in
the presence of horizontal stripes). In this case, the canonical depth interpretation

needs to be consistent over a larger area.

4.5.5 Assigning canonical depth interpretations

The above discussion has shown that uniform patches usually do not create visual
artifacts in the new view as long as their boundaries are matched correctly. We
now discuss how the canonical depth assignments of the interior of uniform regions
can be achieved by interpolating the disparities of the boundaries. The explicit
assignment of disparities to the interior of uniform regions is necessary since dense
disparity maps are required by the image warping step.

There are several possibilities for how the interpolation can be performed. One
possibility is to use dynamic-programming stereo methods, which efficiently interpo-
late across uniform areas on each scanline by relying on the monotonicity constraint
[Ohta and Kanade, 1985; Cox et al., 1992a; Intille and Bobick, 1994]. This is the
approach taken by Seitz and Dyer [1995; 1996a]. The disadvantages are that the
monotonicity constraint limits the allowable scene geometry, and that inter-scanline
consistency is harder to enforce in a dynamic-programming method.

A second possibility is to use iterative stereo methods, which gradually distribute
matches of high certainty (such as the boundaries) into ambiguous areas (i.e., the
interior of uniform regions). Examples are the diffusion-based methods that are
discussed in Chapter 6.

Finally, a third possibility is to compute explicit certainties for all matches,
and to assign a “don’t know” status to all points whose certainty is below a given
threshold. The resulting holes in the computed disparity map can then be filled,
for example by using thin-plate spline interpolation [Grimson, 1981], or by simply

interpolating the values along each scanline. Filling holes due to matches of low
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certainty can then be combined with filling holes due to partial occlusion (which is
discussed in Section 4.6). This is the approach that has been taken for the results
presented in this thesis.

In Chapter 5 we discuss a stereo method that incorporates the computation of

certainties into the matching process.

4.5.6 Does adding more cameras help?

For unrestricted scenes, there can always be viewpoints for which incorrect views will
be generated, even if the underlying disparity map is a canonical interpretation of an
ambiguity. In general, this is true for any viewpoint from which an additional (real)
camera could be used to disambiguate the possible depth interpretation. In other
words, if an error in the computed disparities could be detected with an additional
camera, then the view from this point can reveal the error. As mentioned in the
beginning of this section, this includes not only ambiguities due to uniform regions,
but also repetitive intensity patterns.

Multiple-camera stereo has been proposed to deal with precisely these ambi-
guities [[to and Ishii, 1986; Pietikidinen and Harwood, 1986; Bolles et al., 1987;
Ayache and Lustman, 1991]. In this thesis, however, we focus on the two-camera
case. The reason is that adding more cameras makes a simultaneous global recti-
fication for all views impossible (since a rectification plane parallel to all baselines
does not exist in general). Thus, a more complicated image warping procedure
would be required to allow the fusion of more than two reference images into the
combined new view. An exception is the case of multiple-baseline stereo [Okutomi
and Kanade, 1993], where all camera centers lie on a straight line. In this case,
global rectification is still possible, and the stereo matching process is very similar
to the two-view case.

To summarize, for view synthesis it is often not necessary to resolve ambiguities
that arise during the stereo matching process. In many situations, assuming the
canonical depth interpretation yields either the correct view, or a plausible view,
which, while being incorrect, represents a consistent geometry and contains no ap-

parent errors. That is, even though adding an extra camera would yield a different
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depth map (and different synthetic views), this is not necessary to convey a convinc-
ing three-dimensional structure. A similar argument can be made for the problem
of filling holes in the final synthesized images, which was discussed in Section 3.2.5.
The number and sizes of holes (corresponding to previously invisible scene points)
can be decreased by adding extra cameras. If there are fewer holes, less “guessing”
of textures is required, which increases the accuracy of the synthesized view. How-
ever, there is a trade-off involved, since adding extra cameras can require a more
complicated calibration procedure, and precludes the use of the fast view synthesis
method presented in the previous chapter. Unless the quality of the synthetic view

could be improved substantially, adding extra cameras is thus not economical.

4.6 Partial occlusion

Besides regions of uniform intensity, we also have to deal with partially occluded
regions that are visible from only one camera. Figure 4.6 shows an example of such
a case. Note that we have intensity information but no depth information for the
points that are visible only from one camera. To be able to generate new views
of these half-occluded points, we have to make assumptions about their depth. A
different possibility is to ignore these points completely. This approach has been
taken by Ott et al. [1993] in their proposed application of view synthesis for creating
a center view for teleconferencing. Ignoring the partially occluded points in the
image warping step results in more holes in the final image, which eventually need
to be filled. We maintain that better results can usually be achieved by utilizing
the intensity information provided by the partially occluded regions, instead of
discarding it. To do this, we must assign explicit depth to these points.

Just as with filling holes in the final image, assigning depth has to rely on heuris-
tics, as there are an infinite number of possible depth interpretations. Any surface
spanning the lightly shaded region in Figure 4.6 could result in the observed inten-
sities. Given the known depth of points P and Q bounding the partially occluded
region, however, there are a number of reasonable generic assumptions: (a) interpo-
lating the depth values between the points of known depth, (b) assuming constant

depth, or (¢) assuming constant depth gradient. These choices are illustrated in
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L R

Figure 4.6: An example of partial occlusion. The illustration shows a top-down
view of two cameras L and R observing a scene in which a wedge-shaped object in
the foreground partially occludes a curved background. The lightly-shaded region
is only visible from the left camera, while the striped region is completely occluded.
The surfaces with known intensity and geometry are marked with a solid line. The
partially occluded surface, whose texture is known but whose geometry is unknown,

is marked with a dashed line.
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L R

Figure 4.7: Some possible depth interpretations under partial occlusion. Using the
known depth of the boundaries P and Q of the partially occluded region, three
possible depth hypotheses (among the infinitely many) include (a) interpolating
depth; (b) assuming constant depth; and (c¢) assuming constant depth gradient.

Figure 4.7.

Assuming interpolated depth values (a) is almost certainly the wrong interpre-
tation, since it relies on an unlikely viewing position of the right camera. That
is, if (a) would be the correct depth interpretation, then the right camera would
be looking straight along a surface. Thus, the camera would not be in a general
position with respect to the scene, and a slight perturbation of the camera position
would yield a different geometric configuration. On a related note, Nakayama and
Shimojo [1990; 1992] have argued that the human visual system interprets many
underconstrained visual scenarios by assuming a general viewpoint as well. Thus,
we will discard choice (a) from consideration. (This is different from the case of uni-
form regions, where the canonical depth interpretation does require an interpolation

of depth values.)
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Assuming a general viewpoint, the most likely cause for a partially visible area
is the occlusion of a surface by a (different) object at a closer distance. The depth
estimate of the partially occluded region should therefore not depend on the depth
of the near boundary of the region (i.e., point Q in the figure), but only on the
depth of the far boundary (i.e., point P). This motivates the choices (b) and (c).

Assuming a constant slope of the background (c) seems like a good idea. A
continuous surface orientation at point P would also be implied by the assumption
of a general viewpoint. In practice, however, it is difficult to reliably estimate the
depth gradient from a discrete noisy disparity map. The easiest and most stable
solution turns out to be the constant-depth hypothesis (b). In our experiments we
found that this strategy usually produces good results. Also, since the half-occluded
regions are fairly narrow in most cases, the difference between constant-slope and

constant-depth assumptions are usually small.

Detecting partially occluded points

From the above discussion we can conclude that it is crucial that the stereo algo-
rithm detects and correctly labels partially occluded points, rather than assigning
random disparities in these areas. Recall that the view synthesis algorithm requires
symmetric disparity maps dis and dy;. An easy way of detecting occluded regions
is to compute the two disparity maps separately, and then perform a consistency
check. Points whose disparities disagree are labeled occluded. This “two-pass” ap-
proach to dealing with occlusion, using two symmetrical matching processes (left-
to-right and right-to-left) and cross-checking after matching is used in our current
implementation.

One can argue that it would be preferable to use a concurrent stereo matching
process that computes consistent symmetric disparities while also detecting occluded
regions. Stereo algorithms based on dynamic programming are examples of such
processes [Belhumeur and Mumford, 1992; Cox et al., 1992a; Geiger et al., 1992;
Intille and Bobick, 1994], but they suffer from a number of inherent problems.
First, stereo methods based on dynamic programming require assigning a cost to

unmatched pixels. Choosing the right cost is difficult, even if it is based on an «a
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priori assumption about the likelihood of occlusion in the scene, as is done in some
approaches. The second problem is that these approaches do not yield an easy way
of enforcing inter-scanline consistency. Finally, dynamic-programming algorithms
rely on the ordering constraint (or monotonicity), which is usually not satisfied in
real scenes.

There are also other ways to detect occluded areas, or other areas that are
unlikely to be matched correctly. A method based on binary matching that explicitly
computes the probability of a false match is described by Huttenlocher and Jaquith
[1995].

4.7 Summary

In summary, a stereo algorithm whose output is to be used for view synthesis has
to satisfy many of the requirements demanded by the task of 3D reconstruction.
While it can be argued that stereo is not particularly well suited for 3D recon-
struction, we have seen that this is not the case for view synthesis. The parallels
between the two tasks include that the stereo algorithm must be able to perform
in general, unconstrained environments containing both textured and textureless
objects, and occlusion. Further, a dense disparity map with high spatial accuracy is
required as output. It is particularly important that object boundaries (i.e., depth
discontinuities) and partially occluded areas are accurately localized.

The two main problems for 3D reconstruction from stereo data, limited accuracy
and unknown geometry in textureless areas, do not apply to the application of view
synthesis, however.

The depth resolution achievable from stereo is often inadequate for accurate 3D
modeling. It is sufficient, however, for the synthesis of views from nearby viewpoints,
as the depths of points at greater distances need to be known with less precision. In
other words, the disparity maps constitute a representation of the scene geometry
well-suited for the task of synthesizing nearby views, as the achievable accuracy for
remapping a point (in image coordinates) is independent of the point’s depth.

Textureless areas (whose geometries are unknown) are another source of trouble

for 3D reconstruction methods. In view synthesis, however, a plausible (and in many
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cases correct) view can be synthesized by assuming a canonical depth interpretation.
This interpretation can be achieved by interpolating the depth of featureless areas
from their boundaries.

Finally, for performing accurate 3D measurements, full (and exact) calibration
is required, which is difficult to achieve and to maintain. View synthesis, on the
other hand, can proceed from pairwise rectified stereo pairs, which can be achieved
by weak calibration (without knowledge of the external camera parameters). In
order to specify a synthetic viewpoint, a rough knowledge of the reference view

parameters can be sufficient.



Chapter 5

Gradient-Based Stereo

This chapter begins the second major part of this thesis: the discussion of actual
stereo algorithms. So far we have discussed how new views can be synthesized
and what requirements view synthesis imposes on stereo algorithms. Given this
background, we are now ready to examine several different stereo methods, and to
evaluate their performance in the context of view synthesis.

The topic of this chapter is a stereo method whose similarity measure is based
on comparing intensity gradients. In Chapter 6 we discuss different stereo methods
that operate by iteratively diffusing support for different disparity hypotheses.

The method presented in this chapter is a continuation of previous work, which
was originally motivated by the need for a robust matching technique for the com-
putation of visual correspondence [Scharstein, 1994b]. As we will discuss in more
detail below, the advantages of the method include that it is insensitive to absolute
intensity differences between images (it can thus tolerate cameras with different
bias), and that it allows easy integration of the concept of confidence (or certainty)
into the matching process. The latter property makes the method very well suited
for view synthesis applications: the fact that the certainty of a computed match can
be evaluated easily is useful for assigning canonical depth interpretations in areas
of uniform intensities (as was discussed in Section 4.5).

The diffusion-based methods of the next chapter, on the other hand, are moti-
vated by the problem of boundary blurring, since poorly localized boundaries can

yield strong artifacts in synthesized views.

98
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To put the different stereo methods of this and the next chapter into context, re-
call the framework from Section 2.2.1, which categorizes stereo algorithms according

to the following tasks:

1. Preprocessing (optional)

2. Computation of a local matching cost

3. Aggregation of spatial support

4. Selecting the best match

5. Sub-pixel disparity estimation (optional)

The main emphasis of the method in this chapter is on the matching cost. In
particular, we will discuss a way of measuring the evidence for or against matches
under a given displacement. The emphasis in the following chapter, in contrast, will
be on the aggregation of support.

We start by discussing the notions of similarity and confidence in Section 5.1, and
the difference between point-oriented and displacement-oriented control strategies in
Section 5.2. We introduce our new gradient-based evidence measure in Section 5.3,
and discuss the accumulation of the measure in Section 5.4. In Section 5.5 we
present experimental results, both for the computation of stereo and of general
motion. We then discuss in Section 5.6 the detection of half-occluded regions and
other post-processing steps necessary for the application of view synthesis. We
discuss efficiency issues in Section 5.7, and close with a discussion in Section 5.8

and a summary in Section 5.9.

5.1 Similarity and confidence

Comparing locations in two images involves a matching criterion: a measure of
goodness of a proposed match. A key observation is that most methods for com-

puting correspondences have two underlying criteria:

o a similarily criterion that reflects how well two locations in the two images

resemble each other;
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e a confidence criterion that reflects the likelihood that a match is correct.

Existing methods often treat these two criteria separately. The method pre-
sented here uses a single measure, which — given a certain displacement — gives
a (strong) positive response where points match with (high) confidence, a negative
response where there is a clear mismatch, and zero response in regions where there
is neither evidence for a match nor evidence against a match. The measure is based
on comparing the gradient fields of the images.

There are several reasons why combining the criteria of similarity and certainty
is a good idea. By introducing a confidence value early in the matching process,
both similarity and confidence influence the aggregation of support for a match.
This causes the aggregation to proceed in a non-uniform way, as matches with
higher confidence receive more weight. Thus, when it comes to selecting the best
match, matches with high certainty have already influenced neighboring areas. In
addition, the certainty of each selected match is preserved, and areas where no
clear match has been achieved can be detected later. This allows the detection
of both unmatched areas due to partial occlusion (i.e., areas visible from only one
camera), and of low-confidence areas due to regions of uniform intensity. As was
discussed in the previous chapter, both properties are critical for the application of
view synthesis.

The gradient-based approach has the following additional advantages, each of

which will be discussed in more detail below.

e The evidence measure, which is only based on the local gradients, can be

computed quickly and in parallel.

e For a given displacement, the measure can be accumulated by simply averaging
over a certain area. The average value represents evidence for or against a
match. This enables the use of a displacement-oriented control strategy, which

is the topic of the next section.

e Finding maxima in the accumulated measure is a stable way of computing

correspondences without smoothing across motion boundaries.
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e Dominant displacements can be detected by accumulating the measure over
large regions. This can be used to automatically select interesting displace-

ment ranges, and also as attention cues in the context of active vision.

5.2 Displacement-oriented stereo

A stereo algorithm can proceed according to a point-oriented or a displacement-
oriented control strategy. Informally, the point-oriented strategy is “For each loca-
tion in one image, find the displacement that aligns this location with the best
matching location in the other image,” while the displacement-oriented control
strategy is “Given a certain displacement, find all the locations that match well.”
This can be characterized more precisely by examining the loop structure of a stereo
algorithm, as discussed below.

Conceptually, a stereo algorithm contains two nested loops, “for all points” and
“for all disparities,” which can be nested in two different ways. The outer loop
of a point-oriented algorithm is “for all points.” For each point in one image, the
point is then compared (“for all disparities”) with points in the other image to
select the best match. Each comparison involves the aggregation of a similarity
measure over a certain neighborhood (using a third loop, “for each location in the
neighborhood of the point”). Thus, the total number of operations is O(Ndw?),
where N is the number of points, d is the number of disparity levels, and w is the
size of the (typically square) neighborhood of aggregation. The number of pixels N
usually ranges from 70,000 to 300,000; the number of disparity levels d is usually
between 10 and 100. The window size w is typically between 5 and 15.

In a displacement-oriented algorithm, the nesting of the loops is reversed. The
outer loop is now “for each disparity.” For each fixed disparity (i.e., a fixed transla-
tional offset between the two images), the similarity measure is then computed (“for
all points”) and subsequently aggregated (“for all neighborhoods of all points”). Fi-
nally, the best match across all disparities is selected for each point.

Obviously, simply switching the order of the loops does not affect the complexity
at all, which is still O(Ndw?) for the naive implementation of the displacement-

oriented algorithm outlined above. However, the aggregation step at each disparity
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level (which corresponds to a convolution with a finite kernel of size w x w) can
usually be performed faster. If this kernel is separable’ — as is the case for a
Gaussian kernel, for example — the convolution can be performed in O( Nw) instead
of O(Nw?) time. For a constant kernel (i.e., a box filter), the convolution can be
performed with a constant number of operations per pixel, so that the time further
decreases to O(N). It is possible to approximate non-constant kernels such as the
Gaussian by a sequence of box-filter operations [Wells, 1986]. In practice, the total
running time of the displacement-oriented algorithm is therefore only O(Nd).

A drawback of the displacement-oriented algorithm is that its space requirements
are higher, since it is necessary to store the current best match for all points,
instead of only for one point. If the procedure for picking the best match is more
complex than a simple minimization and needs to examine all match values, the
space requirements for the displacement-oriented algorithm are O( Nd), as compared
to O(N + d) for the point-oriented algorithm.

Recall from Section 2.2.1 that stereo algorithms can be divided into two groups,
according to whether the computation of matching cost and the spatial aggregation
can be separated or not. Some matching costs (for example, correlation) are defined
over a fixed support region, and thus combine cost computation and aggregation
into one step. In such cases, the displacement-oriented control strategy offers no
advantages over the point-oriented control strategy. The point-oriented strategy
is also the right choice if the disparity estimation of a sparse subset of points is
sufficient for the application. This approach has been taken in the context of rover
navigation [Robert et al., 1995).

If a dense disparity map needs to be computed, however, it is usually better
to use a displacement-oriented algorithm. This includes the application of view
synthesis. Besides the faster performance, a displacement-oriented algorithm is also
more easily parallelizable. (In the next chapter we will discuss a highly parallel
aggregation method based on iterative diffusion.) Thus, a measure for which cost

computation and aggregation can be performed in separate steps is preferable.

LA two-dimensional convolution kernel is separable if it can be expressed as the
convolution of two one-dimensional kernels.
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5.3 The evidence measure

We will now describe the gradient-based evidence measure in detail. The particular
measure we introduce has proven to work quite well, and is an example of a measure
that can be used in a displacement-oriented control strategy. In the following, we
will treat an image as a continuous intensity function 7(z,y); we will discuss dealing

with discrete images in Section 5.3.3.

5.3.1 Comparing two gradient vectors

As mentioned in Section 5.1, the method combines the notions of similarity and
confidence (or distinctiveness) into a single measure of evidence for or against a
match at a certain location under a certain displacement. The basic idea is to
compare the two intensity gradients at this location. In particular, if g7 and gp are

the two gradient vectors to be compared, we use the average gradient magnitude

m = (|gz| + [gr[)/2 (5.1)

to represent confidence, and the (negated) magnitude of the difference of the two

gradients
—d = —|gr, — 8r| (5.2)

to represent similarity. We define the evidence for a match to be the weighted sum

of these two terms:

e = m—aoad (5.3)
gr| + |8Rr
R

To achieve a symmetric range [—m, m] of values for e when comparing two vectors
of equal length m, we choose a weight parameter of o = 1. (Evidence e = m if the
two vectors have the same direction, and ¢ = —m if the two vectors have opposite
directions.) See Figure 5.1 for an illustration of the values of e for different pairs of
gradient vectors.

If both gradients are zero, there is neither local evidence for nor against a match,

and consequently e = 0. Note that the measure ignores the original intensities,
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Figure 5.1: The evidence measure e for different pairs of gradient vectors. The
illustration shows the value of the evidence measure e = m — d for different pairs of
gradient vectors of length m (represented by an arrow) and of length 0 (represented

by a dot).
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although one can argue that comparing the intensity values directly can provide ad-
ditional information (in particular, evidence against a match, in case the intensities
are very different). In practice, however, comparing absolute intensity values is not
very stable, since individual cameras often differ by global additive and multiplica-
tive intensity factors (i.e., bias and gain).?

The evidence value e can also be zero for two non-zero gradient vectors, for
example, in the case of two vectors of equal length subtending an angle of 60°.
Intuitively, this reflects the situation where the directions of the gradients are too
different to consider it a match, but not different enough to count it as a mismatch.
Of course, the right value for this “angle of zero evidence” might depend on the
application, in particular on how much rotation is possible in the motion between
two images. By choosing a higher weight a for the gradient difference, one can
reduce the angle for which e = 0. Our experiments have indicated, however, that
changing the weight is not critical, and that @ = 1 is a reasonable general choice.

Figure 5.2 shows a contour plot of e for comparing any vector (z,y) to the unit
vector (1,0). The contour lines are the locations of the endpoints of all vectors that

yield the same value e.

5.3.2 Comparing gradient fields

We now extend the measure to entire images. Let Ir(z,y), Ir(z,y) be the two
images, and let VI, VIg be their gradient vector fields. That is,

on o1y
dx dx

Vig= ||, Vie=|"|. (5.4)
En By

For a given displacement 6 = (é,,6,), the evidence Es for a match at (x,y) under

this displacement is

Vi(z,y)| + |VIr(x+6s,y+6,)|
2

2Other approaches for dealing with global intensity changes include filtering the

Es(z,y) = (5.5)

images [O’Gorman and Sanderson, 1987], using non-parametric measures [Zabih,
1994], and utilizing explicit models of image brightness [Gennert, 1988; Fuh and
Maragos, 1991; Negahdaripour and Yu, 1993].
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Figure 5.2: Contour lines of the evidence measure e for a match with the unit vector
(1,0). The unit vector at angle 60° is shown as an example; note that its endpoint

lies on the e = 0 curve.
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—a |VIg(z,y) — VIg(z+b.,y+6,)|

As before, we will use a weight @ = 1 unless noted otherwise.

Note that we have specified the displacement as a general vector, with both =
and y components. In the context of stereo on rectified images, it is sufficient to only
consider a scalar (horizontal) disparity d = é,. The evidence measure can also be
used in a broader context to compute general image motion. For example, the two
images could be taken sequentially by a single camera observing a dynamic envi-
ronment (and possibly moving itself). In this case, a two-dimensional displacement
range needs to be considered (see Section 5.5.3).

Yet a different possibility in the context of stereo is not to explicitly rectify
the images, but to fold rectification and disparity into one instead. That is, the
displacement function 6 could be a continuous transformation acting on the original

images that keeps the epipolar lines aligned.

5.3.3 Computing gradients of discrete images

In order to apply the method to discrete images, we need to approximate the deriva-

tives by finite differences:

o (ay) ™ AuT(a,y) = e + Ly] ~ TTessl, (5:6)
00 = AT (0) = Hoy+ 1]~ Tla,y) (5.7)

These equations can be characterized by simply specifying the convolution kernels

A,=[-1 1], A= 1]. (5.8)

—1

The above kernels estimate the gradients at locations between the pixels. To avoid
this positional offset of 1/2 pixel, symmetric kernels can be used, which are derived

by convolving the differencing kernel with an averaging kernel:

10 1]=[-1 1]e[1 1], (1) :[_1]@@
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(Where ® denotes the convolution opemtm’).
In practice, it is more stable to use square kernels that average not only in the
direction of the gradient, but also in the direction orthogonal to it. This yields the

well know Sobel operator:

-1 0 1 1 2 1
-1 1 11 1 1 11
-2 0 2| = ® ; 0 0 0]= ® .
-1 1 11 -1 -1 11
-1 0 1 -1 -2 -1
A different set of gradient operators has been proposed by Simoncelli [1994]
in a paper on the design of multi-dimensional derivative filters. Simoncelli argues
that the estimation of gradients by simple differencing can give highly inaccurate
results, and proposes an alternate set of small derivative kernels with sizes ranging
from 2 x 2 to 5 x 5. These kernels are separable into two one-dimensional kernels:
a symmetric prefilter kernel pg, and an anti-symmetric derivative kernel d. The
key idea underlying the design is that the prefilter and the derivative filter are

matched, which means that the derivative filter should be a good approximation of

the derivative of the prefilter. The filter pairs of size 3 and size 5 are

ps = [ 0.2242 0.5516 0.2242 ],
ds = [ —04553 0.0 04553 ],

ps = [ 0.0357  0.2489 0.4308 0.2489 0.0357 |,
ds = [ 0.1077 —0.2827 0.0 0.2827 0.1077 |.

The horizontal gradient is computed by convolution with the vertical prefilter and
the horizontal derivative filter, while the vertical gradient is computed by convolu-
tion with the horizontal prefilter and the vertical derivative filter.

In our implementation we have experimented with both the simple 3 x 1 kernels
from Equation (5.9), and Simoncelli’s filters of size 3 and 5. We found no noticeable
difference in performance, except that Simoncelli’s filters perform a higher degree
of smoothing (in particular the 5 x 5 filter), which results in loss of detail. This
demonstrates that our method is robust, and insensitive to the particular choice of
gradient computation. A small amount of smoothing is often necessary to compen-

sate for quantization error and noise, however, and we have used a Gaussian filter
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with o = 0.5 pixels in conjunction with the 3 x 1 kernels from Equation (5.9) for
the experimental results reported here.

In computing the displacement fields, we only consider displacements § = (6, 6,)
whose components are multiples of whole pixels. If sub-pixel accuracy is required,
it is possible to compute Fs; for non-integer displacements by interpolating the
gradients. An alternative is to increase the resolution by interpolating the images
before the gradients are computed.

For a given displacement, Fs can be computed very fast, since only a few floating
point operations and a single square root is needed at each pixel. The square
root is necessary to compute the magnitude of the gradient differences. The two
magnitudes of gradients |V /| and |VIg|, which do not depend on the displacement
0, only need to be computed once. The local nature of the computations makes the
method ideally suited for a parallel implementation. In Section 5.7 we will discuss

performance issues in more detail.

5.4 Accumulating the measure

Recall that area-based stereo methods involve the aggregation of a similarity mea-
sure over local neighborhoods. The reason is that the amount of local information
at each point is insufficient to solve the underconstrained matching problem, in par-
ticular in the presence of noise. That is, if we were to maximize Fs (across all §) for
each point in isolation, we would be left with a noisy and inconsistent displacement
field.

To avoid these instabilities, we aggregate Ejs for each 6, using the displacement-
oriented control strategy discussed in Section 5.2. The underlying assumption vali-
dating the aggregation step is that, almost everywhere, nearby points have similar
displacements. This assumption is made by most stereo and motion methods that
compute a dense displacement field (i.e., a dense depth map, or a dense motion
field). It is based on the observation that most natural scenes are composed of solid
objects with continuous surfaces. A slight change in viewpoint will usually yield
very similar visual motions of neighboring points, except if the points belong to two

different objects (i.e., lie on different sides of an occlusion boundary). Since dis-
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continuities in the visual motion (or disparity) field caused by occlusion boundaries
violate the “smooth motion” assumption, occlusion boundaries present the biggest
problem for aggregation-based algorithms. This is the topic of the next chapter.

In this chapter we will use a uniform aggregation procedure, for each displace-
ment 6 independently (i.e., we will not aggregate across neighboring displacements).
This corresponds to the assumption that the visual motion of neighboring points
can be described locally by pure translation, or, in other words, that the surface
geometry can be approximated by small fronto-parallel patches. The assumption
is reasonable for small neighborhoods, in which the effects of surface slant and of
perspective foreshortening are small. For the computation of general motion, this
also restricts the allowable rotational component of the visual motion between cor-
responding image patches (although the gradient measure itself tolerates a certain
amount of local rotation as was discussed above).

Some point-oriented motion methods utilize the assumption of a smooth motion
field after computing initial matches by smoothing the displacement field, often
employing some confidence measure associated with each match to constrain the
smoothing process [Horn and Schunck, 1981; Anandan, 1989]. The problem is
that this tends to smooth over motion discontinuities, which contain important
information about the scene geometry.

In contrast, our displacement-oriented method uses the assumption of a smooth
motion field while finding the matches. The idea is that if a certain displacement ¢
aligns two matching objects, Fs will have a strong positive response at the location
of the match. By aggregating Fjs over a certain area (i.e., computing the average
or smoothing with a Gaussian filter), dominant motions can be detected. Only the
correct displacement Fs will yield support for a match over a larger area, thereby
creating a maximum among all 6 under consideration.

Note that our method does not smooth over motion boundaries, since it is not
assumed that all close pixels have the same disparity. A point on a motion boundary
will give rise to a positive response for two different displacements, corresponding
to the two different motions. Depending on the amount of support for each of the
two candidate displacements, however, it is possible that the point be “co-opted”

into the wrong displacement. Instead of smoothing over the disparity values, this
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has the effect of boundary blurring. (A more detailed discussion of this phenomenon
can be found in Section 6.2.) Ideally, the local response at the point could help in
deciding between the two candidate displacements. If the two neighboring regions
with different displacements also have different amounts of texture, however, the
more strongly textured region will tend to dominate the estimated motion of the
less textured region.

To accumulate Fs, a simple convolution can be performed for each displacement
6. A box filter (i.e., averaging over a rectangular window) can be performed most
quickly, but in our implementation we found that a convolution with a Gaussian
kernel produces superior results. Using a Gaussian filter for accumulation, the
influence of neighboring points decreases gradually with their distance. Another
advantage is rotational symmetry. In practice, we use an approximation of a true
Gaussian kernel by a sequence of three or four box-filter operations, as proposed by
Wells [1986].

Since our measure represents evidence (instead of just similarity), the aggregated
measure yields a meaningful way of comparing matches of larger areas, such as
a quarter of an image or even an entire image. By accumulating Fs over very
large areas, it is possible to find an initial set of interesting displacements. Most
displacements will only align a small subset of features, yielding a negative value for
the accumulated Fs. Only the displacements that align larger parts of the image
will yield an above-average response, which can serve to select an initial set of
displacements for which the matching with smaller windows is undertaken. In the
next section we present experiments that demonstrate this discriminating property
of the accumulated evidence measure. To speed up the initial selection of interesting
displacements, a scale-space approach could be used. Peaks in the accumulated Fjs

as a function of § can also serve as attention cues for active vision systems.

5.5 Experiments

In this section we undertake several experiments to support the ideas presented so
far. The first experiments demonstrate the ideas discussed in the previous section.

We will then use the evidence measure to compute the disparities of a rectified
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Figure 5.3: The street image pair used as test data for the gradient-based stereo
method. The image pair is challenging in that it contains large untextured areas
and global intensity differences due to different camera characteristics. The images

are displayed in reverse order to allow free fusing.

stereo pair (with a 1D search). Finally, we will test the suitability of the measure
for computing general image motion (using a 2D search). We will also demonstrate
how the magnitude of the maximal response can be used as a confidence measure,

which 1s important in the context of view synthesis.

5.5.1 Observing F;s for interesting displacements

An interesting experiment is to observe a gray-level rendering of F;s for different
displacements 6. As test data we use a stereo pair from the street image sequence
depicting a woman crossing a street, which is shown in Figure 5.3. The street im-
ages were provided by Wilfried Enkelmann, Fraunhofer Institut fir Informations-
und Datenverarbeitung IITB, Karlsruhe, Germany. This image pair is a challeng-
ing example because i1t contains large regions with little texture, and the absolute
intensities are quite different between the two images.

To illustrate the power of using maxima in the accumulated measure Fjs as
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8, =15, 6, = —1 8, =11, 6, = —2

Figure 5.4: Gray-level plots of Fs for maximizing displacements. The four plots
correspond to the displacements ¢ that maximize > Fs in each of the four quadrants.
Gray corresponds to a value of zero, light to positive values, and dark to negative
values. Thus, light image regions indicate image features in alignment, while dark
regions indicate mismatches. Most image regions are gray, indicating that there is

neither evidence for nor against a match.
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Figure 5.5: Surface plot of the cumulative response 3~ Es over the entire image for
a displacement range of 6, = —40...50, and 6, = —20...20. The strongest peak
is located at roughly 6 = (0,0). Note that the distinct ridge of high responses cor-

responds to purely horizontal displacements, which keep the epipolar lines aligned.

attention cues, we have selected the displacements that yield the strongest response
(maximal 3° Fjs) in each of the four quadrants of the image. Figure 5.4 shows plots of
Ejs for the resulting four displacements 6. Gray corresponds to a value of zero, light
to positive values, and dark to negative values. Note that these displacements align
the dominant features in each quadrant, and also that the measure is insensitive to
the brightness difference between the original images.

Figure 5.5 shows a surface plot of the cumulative response Y~ Fs over the entire
image for a large range of displacements (6, = —40...50, and 6, = —20...20).
For comparison, Figure 5.6 shows a surface plot of the (negated) root-mean-square
differences of the entire image under the different offsets. While both measures peak
at roughly the same displacement of § = (0,0), the evidence measure is clearly more

discriminatory.
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Figure 5.6: Surface plot of the negated root-mean-square difference over the en-
tire image for the same displacement range as in Figure 5.5. The sum of squared

differences is clearly less discriminatory than the cumulative response 3~ Fs.

Figure 5.7: The tree image pair. The images are displayed in reverse order to allow

free fusing.
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5.5.2 Stereo: 1D search range

We now show disparity maps computed by a stereo matcher that uses the evidence
measure to select matches. We use rectified images with purely horizontal displace-
ments. After precomputing the gradients and gradient magnitudes, we compute Ej
for a range of different . The measure is then accumulated by smoothing each Fj
with a Gaussian filter (G, :

Es =G, ® Fs. (5.10)

In the experiments reported here, we use o = 2. The disparity D(z,y) at each point

(x,y) is taken to be the displacement that maximizes the accumulated measure:
D = arg méaXEg. (5.11)

In the first experiment, we use the tree image pair shown in Figure 5.7. These are
two images from the Stanford tree sequence (provided by Harlyn Baker and Bob
Bolles at SRI), which was taken sequentially with a camera mounted on a horizontal
motion stage. We use images 18 and 24 as right and left images respectively. The
images depict an outdoor scene and are highly textured, and thus well suited for an
area-based method.

Figure 5.8 shows a gray-level plot of the computed disparities. Lighter shades of
gray correspond to closer points, darker shades correspond to points farther away.
The considered disparity range is 6, = 0...12.

In the next experiment we show how confidence can be incorporated into the
matcher. We use the sireet image pair from Figure 5.3 above. The image pair
has been rectified manually, so that the search range can again be restricted to
displacements with ¢, = 0. The confidence information is important for dealing
with images containing untextured areas, which can lead to matching ambiguities.
An advantage of the evidence measure is that the value M of the achieved maximum
is related to the gradient magnitude at that point, and thus represents the confidence

that the match is correct. Formally,
M = m5aXE5. (5.12)

Unreliable matches can be suppressed by setting a threshold for the actual achieved

maximum at each point. Figure 5.9 shows two gray-level plots of the computed
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Figure 5.8: Disparities for the tree image pair. Gray levels correspond to disparities:

lighter is closer, darker is farther away.
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Figure 5.9: Disparities for the street image pair. Gray levels correspond to dispari-
ties: lighter is closer, darker is farther away. In the second image, uncertain matches

are displayed in black.

disparities. The first image shows all computed disparities. Note the erroneous
matches in untextured areas (e.g., the sky), and in areas that can not be matched
(e.g., the lower left corner). The second image shows only the disparities at lo-
cations for which M > 2 (i.e., the points with high confidence), while all other
(unreliable) matches are displayed in black. The considered range of disparities is
0, = —3...21. As opposed to feature-based matchers, which try to decide before-
hand which locations to match, our method allows the selection of reliable points

after the matching process.?

5.5.3 General motion: 2D search range

To test the method on general motion, we use frames 1 and 5 from the cat image

sequence (provided by John Woodfill). The images are shown in Figure 5.10. The

3A confidence value can also be derived for other similarity measures (such
as SSD) by examining the distribution of values for all disparities at each pixel

[Matthies et al., 1989].
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Figure 5.10: The cal image pair. The two images are frames 1 and 5 from a sequence

of images containing camera motion as well as independent object motion.

sequence depicts a cat walking on a lawn in front of some bushes. The camera
follows the cat, so that the visual motion of the cat is almost only caused by its
(non-rigid) change of shape, whereas the background moves by more than 10 pixels
to the left. As the displacements are no longer constrained to occur along epipolar
lines, we now have to consider a two-dimensional displacement range. Here, the
considered ranges are 6, = —15...4, 6, = —2...1. Accumulation is done as before
with a Gaussian filter (G, with ¢ = 2.

Figure 5.11 shows the z-components of the displacements that maximize the
accumulated measure. Like the {ree images, the cat images are well textured, so we

do not display the confidence information here.

5.6 Computing disparity maps for view synthesis

Recall from Chapters 3 and 4 that we need two symmetric disparity maps dy, and
do1 for our view synthesis method. Furthermore, these disparity maps should satisfy

the following requirements:

1. The occlusion boundaries need to be recovered accurately;
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Figure 5.11: Horizontal components of the maximizing displacements for the cat

images. Dark shades correspond to motions to the left, light shades correspond to

motions to the right.
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2. Partially occluded points need to be detected, and a disparity estimate needs
to be computed for them (see Section 4.6);

3. Uncertain disparity estimates (in areas of uniform intensities) need to be re-

placed with a canonical depth interpretation (see Section 4.5).

We have implemented several extensions to our gradient-based method to deal with
these requirements. We start by computing two disparity maps (left-to-right and
right-to-left) independently using the method described above, and then perform
several post-processing steps, which are explained in detail below. Figure 5.12
illustrates the post-processing of the disparity maps for the right image of the kids

image pair.

Occlusion boundaries

In synthesized views, incorrectly recovered object boundaries can cause noticeable
artifacts. Object boundaries typically correspond to coinciding intensity disconti-
nuities and depth discontinuities. Our basic gradient-based method has the disad-
vantage that intensity discontinuities are not considered during the estimation of
depth. (The same is true for any stereo method that uses a uniform aggregation
process.) In particular, strongly textured objects in front of a fairly uniform back-
ground are often found too large, since the influence of matches with high certainty
(within the object) extends past the objects’ boundaries. Similarly, uniform objects
in front of a textured background tend to be found too small.

To counteract this undesirable effect, we adjust the depth discontinuities in the
computed disparity maps. We first compute intensity edges with the edge detector
by Canny [1986], using the following parameters: o = 1 for smoothing, lo = 6, and
hi = 10. We then adjust depth discontinuities that are at most 4 pixels away from
an edge such that they coincide with the edge. The first three images from the top
in Figure 5.12 illustrate this process.

Although this post-processing step performs reasonably well in practice, it would
be preferable to use a stereo method that recovers the location of depth discontinu-
ities correctly in the first place. This is the motivation for the method presented in

the next chapter.
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Figure 5.12: Post-processing of the computed disparities for the right image of
the kids pair. The figure shows from top to bottom the original disparities, the
original disparities with edges overlaid, the adjusted disparities with edges overlaid,
the disparities with partially occluded points detected, and the final extrapolated

disparities.
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Detecting partially occluded points and uniform regions

After the depth discontinuities have been adjusted, we detect partially occluded
points by cross-checking. That is, we perform a consistency check between the two
disparity maps, and mark every point whose left-to-right and right-to-left disparities

disagree by more than a fixed amount ¢. That is, we mark all points (7, j) for which
|di2(4, ) + daa (i + daa(2,5), )| = £ (5.13)

(Recall that di2 and dy; have different signs.) The allowable disparity difference ¢
should be chosen proportional to the disparity range of the image pair. We use a
value of { = 3 for the images in Figure 5.12, which have a disparity range of 4-48.
To deal with regions of uniform intensities, we also mark all points with insuffi-
cient confidence in the correctness of the match. Referring to Equation (5.12), we

mark those points (¢, j) for which
M(z,5) <0. (5.14)

Note that it is difficult to distinguish between partial occlusion and uncertain
matches after the disparities have been computed, because partially occluded points
often also match with low certainty, while uniform regions usually also result in dis-
agreeing matches. We therefore use a single “unmatched” status for both cases.

The fourth image in Figure 5.12 shows these unmatched points in black.

Extrapolating the disparities

We use the constant-depth hypothesis described in Section 4.6 to fill the unmatched
regions in both disparity maps. In particular, we process each scanline and assign
to all unmatched pixels the disparity of the adjacent background pixel. Note that
this means that the holes in di; are filled from the left, while the holes in dy; are
filled from the right. (The unmatched pixels at the border of each image need to
be filled from the other side, since they only have one neighboring disparity value.)
The result of this disparity extrapolation process is shown in the bottom image in

Figure 5.12.
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5.7 Efficiency

As stated before, the computation of Fs can be carried out very quickly, using
precomputed gradients. In addition, the computation is easily parallelizable. A
sequential implementation on a SPARCstation 5 takes 1.2 seconds to compute Fjs
for a 512 x 512 pixel image.

Depending on the hardware, additional speed can be gained by approximating
the Euclidean norm L,, which involves the computation of a square root, by simpler
norms such as the Ly or the L., norm.

These norms are not rotationally invariant; their relative error with respect to
the Euclidean norm depends on the orientation of the vector. One can visualize this
by comparing the unit circles of the different norms, which are a diamond, a circle,
and a square for Ly, Ly, and L., respectively. A much better approximation to
the circle is given by an octagon, and the corresponding norm is only slightly more

complicated. It can be expressed as a weighted sum of the [,; and the L., norm:
Lot = Blaly + (1 — a)Le). (5.15)

A weight a = v/2 — 1 yields a regular octagon; together with the optimal scaling
factor B =2/(1+4 — \/g) the relative error (Ly — Loet)/ L2 always remains below
4%. Thus, the best weighted sum is given by

LOCt = flLl —I_ fOOLOO7 (516)
with
2
fi = (V2—1)——— ~0.3978, (5.17)
14+4/4 -8
2
foo = (2—V2)———= ~0.5626.

144 —+8

Using Lgct instead of the Euclidean norm in the computation of Es can yield a
speedup of 30%, depending on the hardware. This can be particularly interesting
for highly parallel architectures where single processors have only limited arithmetic

capabilities.
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Experiments indicate that the results of the matching process are usually not af-
fected by this change, and depend mainly on the qualitative “shape” of the evidence

function e. This is further indication of the robustness of our method.

5.8 Discussion and possible extensions

A problem with the measure discussed here is that partially aligned intensity edges
yield a positive response, which can make it hard to find the component of the
displacement that is parallel to these edges. For example, in Figure 5.9 one can
observe errors in the computed disparities of the street marks in the foreground of
the scene. This is due to the so-called aperture problem, which states that, locally,
only the component of displacement in the direction of the intensity gradient can be
recovered. Thus, edges that are aligned with the epipolar lines present a problem
for all stereo algorithms, since their disparity can not be estimated locally.

An important observation is that derivatives of all orders can contribute to
evidence against a match, while evidence for a match is harder to capture. That
is, different absolute intensities as well as different gradients are indicators for a
mismatch, while (purely local) identical intensities are not evidence for a match,
and identical gradients only tell us about a match in the direction of the gradient.
Other information needs to be taken into account to avoid these false positives. For
example, in a calibrated stereo system in which the epipolar lines coincide with the
scanlines, only the gradient in the x direction should be counted as evidence for a
match (but the gradient in the y direction can still tell us about mismatches).

As mentioned earlier, an obvious extension to the current method would be to
incorporate it into a scale-space approach, and thereby make the evidence measure
sensitive to a larger pool of displacements. Multiple scales can also be used in

accumulating Fs, to allow for varying levels of detail of image features.

5.9 Summary

In this chapter we have presented a simple yet powerful method to perform point-to-

point matching between two images. The method uses an evidence measure that is
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based on the gradient fields of the images and that combines the notions of similarity
between two locations, and confidence for a correct match. The computation of the
measure is simple and highly parallelizable. Furthermore, the method is robust
with respect to the computation of the intensity gradients, the choice of the weight
parameter «, and approximations to the Euclidean norm.

For a given displacement, the measure can be accumulated over a larger area,
to collect evidence for or against a match at this location. Using a displacement-
oriented control strategy that accumulates evidence for a range of different displace-
ments, dominant motions can be detected, which can serve as attention cues in an
active vision system.

Finding maxima in the accumulated measure is a stable way of computing cor-
respondences without smoothing across motion boundaries. The method works well
both on highly textured images and on images containing regions of uniform inten-
sities, and can be used for a variety of applications, including stereo vision, motion

segmentation, object tracking, and active vision.



Chapter 6
Stereo Using Diffusion

The topic of this chapter is diffusion-based stereo. The methods presented here
are motivated by the problem of boundary blurring inherent in most area-based
approaches. As we have seen, poorly localized boundaries can yield strong visual
artifacts in synthesized views. Thus, the correct recovery of object boundaries by
the stereo algorithm is critical.

Boundary blurring in area-based stereo is caused by the presence of multiple
points at different depths in the supporting area around a point. That is, the under-
lying assumption that all points in the supporting area have the same displacement
is violated. This can be caused by perspective foreshortening, by partially occluded
points, and if the supporting region spans a depth boundary. Thus, the estimated
disparities of points close to object boundaries are often wrong.

The central problem is to find the optimal size and shape of the support region. If
the region is too small, a wrong match might be found due to ambiguities and noise.
If the region is too big, it can no longer be matched as a whole. Ideally, we would
like the support region to be as large as possible without crossing object boundaries.
To find the boundaries, however, we would need to run a stereo algorithm first.

Jones and Malik [1992a] have proposed an iterative solution to this “recursive”
problem. An initial run of a stereo algorithm yields estimates of the location of
depth boundaries, which are then used to control the size of support regions in
subsequent runs.

Kanade and Okutomi have addressed the problem of choosing the right support

127
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region with adaptive windows [Okutomi and Kanade, 1992; Kanade and Okutomi,
1994]. At each point, a rectangular window is grown to an optimal size based on
an estimate of disparity uncertainty in the current window. A greedy algorithm
(gradient descent) is used to select the best of the four possible directions to grow
the window at each step.

The approach taken in this chapter avoids the problem of explicitly selecting the
optimal size and shape of the support region. Instead of using fixed windows, we
aggregate support using non-uniform and non-linear diffusion.

Recall from Section 2.2.1 that area-based stereo algorithms typically perform
four tasks: computing a local matching cost, aggregating support spatially, finding
the best disparity, and computing a sub-pixel disparity estimate. This framework
allows us to compare different approaches that have been taken for each task in
isolation, without being distracted by how the other tasks are being solved. In the
previous chapter, we focussed on a new matching cost; in this chapter, we focus
mainly on the second task: aggregating support. We discuss various kinds of local
diffusion, including a membrane model and a Bayesian model, and contrast them
with existing approaches, such as SSD and adaptive windows.

The other three tasks, although important, are not the central issue of this
chapter. Unless noted otherwise, we use squared intensity differences as a matching
cost, and, after the aggregation step, simply select the best disparity locally at each
pixel. In the cases where we compute sub-pixel disparity estimates, we fit a parabola
to the three cost values centered around the best disparity. It is important to keep
in mind that the algorithms presented here are independent of these choices and
apply also to more sophisticated matching costs and disparity selection strategies.

We start by introducing the concept of disparity space, which is used by all our
diffusion algorithms. We then review the traditional SSD algorithm, and discuss the
need for spatially-adaptive support regions. In Sections 6.3 and 6.5 we introduce
aggregation by diffusion, and discuss a non-uniform diffusion process using local
stopping. We then develop a Bayesian model of stereo using explicit disparity dis-
tributions, and a novel iterative support aggregation algorithm based on this model
in Section 6.6. We present a comparative experimental evaluation of our algorithms

in Section 6.7, and close with a discussion of the results.
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6.1 Disparity space

As was discussed in Section 5.2, the control strategy of a stereo algorithm can be
point-oriented or displacement-oriented. For a square, fixed-size support region, a
point-oriented algorithm would compare a square window in one image with several
windows on the corresponding scanline.! This is illustrated in Figure 6.1 (a). The
same computation can be performed more efficiently by a displacement-oriented
algorithm in a 3D data volume that we call disparity space (Figure 6.1 (b)): for
each displacement, the matching cost can be aggregated at all points by convolution
with the window. The best match can then be selected in each vertical disparity
column.

Formally, we define the initial (not yet aggregated) disparity space Fjy as

Eo(w,y,d) = p(Ii(e + d,y) — In(x.y)), (6.1)

where [, Ig, are the intensity functions of the left and right images respectively,

and p measures the similarity between two intensities, e.g.,

p(l—r)=(1—-r) (6.2)
This formulation uses Ir as the reference image. After aggregating support into a

final space F(z,y,d), we can compute a disparity function
d(z,y) = argmin £(z, y, d) (6.3)

that represents the matches as offsets to the points in the right image. In practice,

we will use the discrete disparity space F(¢,7,d) = E(x;,y;,d) and
di; = d(zi, y;). (6.4)

E is a skewed version of the symmetric disparity space E [Marr and Poggio, 1976],

A

E(zp,zr,y) = p(Ir(zr,y) — I1(z1,y)), (6.5)

which is not biased towards either eye. In a symmetric setting, however, it is more
difficult to enforce uniqueness for each pixel and to define the final disparity map.
(See Section 6.8 for a discussion.) Figure 6.2 illustrates the shape of slices through
E and E for a given y and a limited disparity range D = [dmin, dmax]-

'Throughout this chapter we assume rectified images.
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(a)

TR

(b)

X

Figure 6.1: Comparing windows in disparity space. (a) A point-oriented stereo
algorithm compares a window in one image with several windows in the other image.
(b) The same computation in disparity space. After convolving each layer with a

square window, the best match is selected in a vertical disparity column.
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Figure 6.2: Slices through (skewed) disparity space £ and symmetric disparity space
E for a fixed y. The lines of sight are shown as dashed lines for a given point in
disparity space. The vertical dashed line corresponds to the right line of sight in

both representations.
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(b) (©

Figure 6.3: The disparity pattern for the ramp and rds pairs: (a) isometric plot;

(b) gray-level encoding; (c) gray-level encoding with occlusion information.

6.2 The SSD algorithm and boundary blurring

The standard sum-of-squared-differences algorithm (SSD) uses square windows to
aggregate the evidence at each disparity. As mentioned before, choosing the right
window size involves a trade-off between a noisy disparity map and blurring of
depth boundaries. We will illustrate this using two synthetic image pairs. Both
pairs have the same disparity pattern (see Figure 6.3): a central square floating in
front of a background with constant disparity. Figure 6.3 (c) includes the occlusion
information: the area displayed in white can not be matched due to occlusion, and
thus algorithms will assign arbitrary disparities in this region.

Figure 6.4 shows the two synthetic image pairs based on this disparity pattern.
The first pair, ramp, is similar to the image pair in Figure 5 in the paper by Kanade
and Okutomi [1994], which we will use as a benchmark for our results. The image
pair is based on a linear intensity ramp in the direction of the baseline; Gaussian
noise has been added to each image independently. The second image pair, rds, is
based on a binary random dot pattern using two gray levels with equal probability.
No noise has been added to this image pair.

The two image pairs are quite different. The ramp pair has no local texture

variation and constant gradients everywhere, except for the boundaries of the central
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Figure 6.4: Synthetic stereo pairs ramp (left) and rds (right). The left and right
images of both pairs differ in that a central square region is offset horizontally (this

might be difficult to observe for the ramp pair).

square. The two images can only be matched by comparing absolute intensities, and
any algorithm based on band-pass filtered intensities or gradients will fail (as will
the human visual system). The rds pair, on the other hand, has strong local texture
variation, but is highly ambiguous since pixels not in correspondence still have a
50% chance of matching.

Figure 6.5 shows the performance of the simple SSD algorithm on these two
image pairs using two different window sizes, w = 3 and w = 7. As can be seen, the
bigger window size yields a disparity map with less noise, but results in an overall
blurring of the features. (The “bumpiness” in the recovered disparities is due to
sub-pixel disparity estimation, which is done by fitting a parabola to the three SSD
values centered around the best match.) The effect on the two image pairs is quite
different: in the ramp pair, the disparities are smoothed across the boundaries,
while in the rds pair only the outlines of the square are blurred, i.e., the corners are
rounded, while the two disparity levels of foreground and background are clearly
recovered.

The latter effect, smoothing of object boundaries, is more common in real image
pairs than the smoothing of disparities. The smoothing of disparities we observed
in the ramp pair is a direct result of the ramp intensity pattern and the small local

variations in intensity.
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Figure 6.5: Performance of the SSD algorithm using square windows with sizes

w =3 and w = 7 on the ramp and rds image pairs.
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d = dy

Figure 6.6: Support for the two disparities df and d; of foreground and background

for two points @ and b close to the boundary of the central square.
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The need for adaptive support regions

Let us briefly discuss the reasons for boundary blurring by considering the support
for two points a and b inside the central square, but close to its boundary (see
Figure 6.6). Both points receive partial support for the two disparities ds and d,
of foreground and background respectively, and little support for other disparities.
Point a, lying next to one of the sides of the square, receives slightly more support
from the inside of the square, and is thus correctly found to be at disparity dy.
Point b, lying in the corner, however, receives more support for dp, since almost 3/4
of its support region covers the background, and thus is erroneously found to be
at disparity dp. The overall effect is that corners get rounded since points close to
corners are “co-opted” into the wrong disparity. Straight object boundaries are not

affected. Note also that no smoothing of the disparity values takes place.

6.3 Aggregating support by diffusion

Instead of using a fixed window, support can also be aggregated with a weighted
support function such as a Gaussian. A convolution with a Gaussian can be im-

plemented using local iterative diffusion [Szeliski and Hinton, 1985] defined by the

equation
ok 9
— = V°E. .
Y \% (6.6)
In a discrete system, this yields the update rule
E(i,j,d) « (1—4XN)E(i,5,d) + AZE(i—I—k,j—I—l, d), (6.7)
(k,l)€N4

where Ny = {(—1,0),(1,0),(0,—1),(0,1)} is the local neighborhood containing the
four direct neighbors, and A controls the speed of the diffusion. A value of A < 0.25
is needed to ensure convergence; we use A = (.15 for the experiments reported in
this chapter.

Aggregation using a finite number of simple diffusion steps yields results fairly
similar to using square windows. Advantages include the rotational symmetry of the
support kernel and the fact that points further away have gradually less influence.

The problem of boundary blurring still exists, however.
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6.4 The membrane model

A problem with simple diffusion is that the size of the support region increases
with the number of iterations. In other words, while the diffusion would eventu-
ally converge to a uniform support covering the whole image, we are interested in
an intermediate time step in which the diffusion has only progressed to a certain
degree. We can change this behavior by adding a term to the diffusion equation
that measures the amount each current value has diverged from its original value,

yielding the membrane equation [Terzopoulos, 1986; Szeliski and Hinton, 1985].

oE  _,
= = VE + 3(Eo — B). (6.8)

In the discrete implementation we use

E(i,j,d) — 1= XB+4)]E(,j,d)+ X |BEo(i,j,d) + Y E(i+k,j+1,d)|. (6.9)
(k,D)EN,

Unless noted otherwise, we use the parameters A = 0.15 and # = 0.5 in the ex-
perimental results shown in this chapter. The #-term ensures that the diffusion
converges to a stable solution not too far from the original values. A closed-form
solution for the support function can easily be derived using Fourier analysis (see
Appendix A).

Figure 6.7 shows the results of applying our diffusion process to the rds image
pair. The amount of support at each discrete disparity level is shown before diffusion
(Fo), after one iteration, and after 10 iterations. Light regions correspond to little
support, dark regions indicate strong support. Figure 6.8 shows the results for
accumulating support using the membrane model for the ramp and rds pairs. The
number of diffusion iterations is n = 10 (the results are almost identical at n = 5).

Using the membrane model alleviates the contour blurring problem to some ex-
tent, since the #-term “ties” the center of each support region to its original value.
For very noisy images, however, 3 needs to be chosen quite small to produce enough
smoothing for stable matching, making the process more similar to regular diffu-
sion. Both regular diffusion and the membrane model yield identical, rotationally
symmetric support regions at every location. We now turn to non-uniform diffusion

methods to achieve adaptive support.
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Ey
E,n=1
E, n=10 B

Figure 6.7: Sections through the disparity space of the rds image pair during dif-
fusion using the membrane model. The initial disparity space Ey is displayed at
the top. The diffused disparity space F is shown after one iteration (middle) and
after 10 iterations (bottom). Light regions correspond to little support, dark regions

indicate strong support.

. n

rds

Figure 6.8: Performance of the membrane model on the ramp and rds image pairs

(gray level images and isometric plots).



139

6.5 Diffusion with local stopping

The first non-uniform diffusion strategy for preventing both corner co-opting and
diffusion to uniformity is to locally stop the diffusion process depending on the
distribution of values in each disparity column. To do this, we associate a measure
of certainty C(i,5) with each location. Intuitively, this measure should reflect how
“clear” a minimum there is among the values E(z,7,d) for all d. Given such a

measure C', we can aggregate support using non-uniform diffusion:

For each (1, j), compute certainties C' and C’ before and after a single
iteration of diffusion. If C'(z,5) > C’(4,7), do not diffuse, i.e., restore the
old values F(i,j,d) for all d.

The idea is that diffusion takes place only at locations of ambiguous matches. Also,
certainties never decrease, thus guaranteeing convergence.

We have experimented with several different certainty measures. The two mea-
sures that worked best are the winner margin and the entropy. The winner margin
C,, 1s the normalized difference between the minimum and the second minimum in

a disparity column:

L. Emin2 - Emin
Cul(t,)) = ————7 6.10
( ) Ed E(lvjvd) ( )
with
Emin = mde(z’]’ d); Emin2 = 4B (i) E i EG.j,d). (6.11)

The second measure C. is the negative entropy of the probability distribution in the
disparity column. We convert to probabilities by taking the inverse exponent and

normalizing®:
e—E(z,],d)

= = —pw (6.12)

Ce(i,j) = =Y _p(d)logp(d),  with  p(d)

Figure 6.9 shows disparity maps for the ramp pair computed with four kinds of
diffusion and increasing iterations. The first row shows regular diffusion, the sec-

ond and third row show diffusion with local stopping based on C,, and C.. The

2We will develop the idea of converting to probabilities further in the next section.
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Figure 6.9: Disparities of the ramp image pair based on diffusion with local stopping

compared to regular diffusion and the membrane model.

fourth row shows diffusion using the membrane model for comparison. It is clearly
visible that regular diffusion keeps blurring the features as the number of iterations
increases, while the other three diffusion processes converge quickly to a stable so-
lution. Which of the three performs best is hard to tell by looking at the disparity
maps. In Section 6.7 we analyze their respective performance based on errors in the

computed disparities.



141

6.6 A Bayesian model of stereo matching

In this section, we develop a Bayesian model for stereo matching that includes both
a measurement model corresponding to the matching criterion and a prior Markov
Random Field model corresponding to the aggregation function. Our model uses
robust (non-Gaussian) statistics to handle gross errors and discontinuities in the
surface. We also develop a novel approximation algorithm that results in a non-
linear diffusion process, and show how this produces better results than standard
diffusion.

As before, stereo reconstruction is specified as the estimation of a discrete dis-
parity field d;; = d(z;,y;) given two input images I1(z,y) and Ir(z,y). Using a
Bayesian framework, we first specify a model of image formation, and then derive

estimation algorithms from this model.

6.6.1 The prior model

The Bayesian model of stereo image formation consists of two parts. The first part,
a prior model for the disparity surface, uses a traditional Markov Random Field
(MRF) to encode preferences for smooth surfaces [Geman and Geman, 1984]. This
model is specified as a Gibbs distribution pp, the exponential of a potential function
Ep:

prld) = - exp (—Er(d)) (6.13)

where d is the vector of all disparities d;; and Zp is a normalizing factor. The

potential function itself is the sum of clique potentials
Ep(d)=>_ E.(d) (6.14)
ceC

which only involve neighboring sites in the field. Here, we study only first-order

fields, where
Ep(d) =3 pp(disr; — dig) + pp(dijn — dij) (6.15)
27]

(see [Terzopoulos, 1986; Szeliski, 1989] for generalizations to higher order fields).
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4 2 2 4
Figure 6.10: Shape of the robust penalty function pp for e = 0.01 and o =1

When p(z) is a quadratic, p(z) = z?, the field is a Gauss-MRF, and corresponds
in a probabilistic sense to a first-order regularized (membrane) surface model [Ter-
zopoulos, 1986; Szeliski, 1989]. When p(z) is a unit impulse, p(z) = 1 — §(z), it
corresponds to a MRF that favors fronto-parallel surfaces [Geman and Geman, 1984;
Marroquin et al., 1987]. In between these two extremes are functions derived from
robust statistics [Huber, 1981], which behave much like surface models with disconti-
nuities [Blake and Zisserman, 1987; Geiger and Girosi, 1991; Black and Rangarajan,
1994; Black and Rangarajan, 1996]. A wide variety of robust penalty functions are

possible. Here, we use a contaminated Gaussian model,
pp(x) = —log ((1 — ep)exp(—z®/20%) + ep) . (6.16)

Figure 6.10 shows the shape of this function for € = 0.01 and o = 1.

6.6.2 The measurement model

The second part of our Bayesian model is the data or measurement model which

accounts for differences in intensities between left and right images. This model
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assumes independent, identically distributed measurement errors,

pu (I, Irld) = T par(To(wi + dijy y;) = Ta(wi, ;). (6.17)

0j
This distribution does not fully specify the distributions of I; and Ig, only the
distribution of their intensity differences at matching pixels.> As mentioned before,
traditional stereo matching methods use either a squared intensity error metric
(Gaussian noise), pa(z) = log par(z) = 2%, or an exact binary matching criterion
(e.g., for random-dot stereograms or binary features such as edges or the sign of the

Laplacian), par(z) = 1 — 6(z). We again use a contaminated Gaussian model,
pu(z) = —log ((1 — €M) eXp(—CL‘Z/QO‘]ZW) + eM) , (6.18)

to model both Gaussian noise and possible outliers due to occlusions or non-modeled
photometric effects such as specularities.
The posterior distribution p(d|/r, Ir) can be derived from the prior and mea-

surement models using Bayes’ rule,
Pz, Tr) o pr()par(Iz, Trld). (6.19)

As is often the case, it i1s more convenient to study the negative log probability

distribution

E(d) = —logp(d|IL,Ir) (6.20)
= 2 rp(digr; = dig) + pp(dijpn — dij)
27]
+ > pv(In(zi + dij,y;) — Ir(zi,y5)).
%
While p(d|I1, Ir) specifies a complete distribution, usually only a single optimal
estimate of d(z,y) is desired (but see [Szeliski, 1989] for why modeling of uncer-

tainties may be useful). The most commonly studied estimate is the peak of the

30ur formulation easily admits fractional disparities, since Ir(z,y) and Ig(z,y)
are viewed as continuous functions. Sub-pixel disparities can be used to improve
the accuracy of stereo reconstructions [Matthies et al., 1989].
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distribution, or Mazimum A Posteriori (MAP) estimate, which is equivalent to min-
imizing the energy given in Equation (6.20). Alternate estimates include quantities
such as the mean of the distribution [Marroquin et al., 1987].

A variety of techniques have been developed for minimizing Equation (6.20).
Two of the most popular are the Gibbs Sampler [Geman and Geman, 1984; Mar-
roquin et al., 1987] and mean field theory [Geiger and Girosi, 1991]. The Gibbs
Sampler randomly chooses values for each d; ; site according to the local distribution
determined by the current guesses for a site’s neighbors [Geman and Geman, 1984;
Szeliski and Hinton, 1985; Barnard, 1989]. This process will in theory converge to
a statistically optimal sample, given enough time. Mean field theory updates an
estimate of the mean value of d;; at each site using a deterministic update rule
derived from the original probability distribution [Geman and Geman, 1984]. It is
not guaranteed to find an optimal estimate, but in practice it often finds a good so-

lution, similar to one available through continuation methods [Blake and Zisserman,

1987].

6.6.3 Explicit local distribution model

The Gibbs Sampler and its variants can produce good solutions, but at the cost of
long computation times. Mean field techniques, on the other hand, are not very
good at modeling ambiguous estimates, such as multiple potential matches at each
pixel. Instead of using either of these two traditional approaches, we will develop a
novel estimation algorithm based on modeling the probability distribution of d; ; at
each site. To do this, we associate a scalar value between 0 and 1 with each possible

discrete value of d at each pixel (7, 7), and require that
S plijd) = 1. (621)
d

Our representation is therefore the same as that used by diffusion-based algorithms,
i.e., we explicitly model all possible disparities at each pixel, rather than modeling a
single estimated disparity as in traditional Gibbs Sampler or mean-field approaches

[Barnard, 1989].

To initialize our algorithm, we calculate the probability distribution for each
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pixel (7, ) based on the intensity errors between matching pixels, i.e.,

po(t, j,d) o exp (—Fo(i, j,d)), (6.22)

where
Eo(i,5,d) = pyr(In(z: + dyy;) — Ir(2i,y;)) (6.23)

is the matching cost of pixel (¢, 7) at disparity d.

To derive the update formula, we start with a basic observation about Markov
Random Fields: if the joint probability distribution of all interacting neighbors
is known, the local probability distribution of a site is completely determined. To
compute this distribution, we take the part of the potential energy (Equation (6.20))

which involves (¢, 7), i.e.,
E(dij{dipriri}) = Bo(isg,d) + Y2 pe(diprjpn — i), (6.24)
(k,l)€N4
and turn this into a probability distribution

p(dij{dipnjri}) = poli,j.d) T[] exp(—pp(dizrjp —dij)) - (6.25)
(k,l)€N4

We then integrate out all of the neighboring disparities according to their joint
probability distribution

pldig) o< Y- pdigl{disrjri})p({divr i })- (6.26)

{ditk,j41}
In practice, however, it is impossible to estimate the full joint probability dis-
tribution of the neighbors, without resorting to a statistical technique such as the
Gibbs Sampler.* Instead, we assume (sub-optimally) that the neighboring disparity

columns have independent distributions

pP{disrgnt) = I pldivr) (6.27)
(k,l)EN4

where the p(ditr j4+1) are the current probability density estimates for each neigh-
boring site (¢ + k,j + [).

4This is not true, however, of 1D processes such as Markov Random Walks.
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The complete update formula is therefore

(k Z)EN4

p(di;) o< po(i, j, d) H { /Z exp (—PP(d§+k,j+z - dm’)) p(di+k ]-H)] (6.28)

i+ k,g+1

or

E(i,7,d) « Fo(e,7,d —I—Zlog l Zexp —pp(d'—d) — E(i—l—k,j—l—l,d’))] . (6.29)
(k1) EN,

For notational and computational convenience, we will introduce a few more addi-

tional quantities. The smoothed probability distribution
ps(i,g,d) = e Ip(i j,d) (6.30)
dl

= Z:U)P(d, - d)p(iv.jv d/)

is simply the current probability distribution p(¢,7,d) after it has been convolved
vertically (in disparity) with the smoothing kernel

wp(d) x e~ rr(d), with pr(d) =
d
It has a corresponding smoothed energy
Es(i,j,d) = —logps(i, 7, d). (6.31)
Finally, the update rule can be written as a pair of equations

(k,l)ENx;
Lo e_E(ivjvd)
p(i,g,d) S g e~ Blind) (6.33)

In practice, since the values of E(i, j, d) are being updated simultaneously at all

pixels and disparity, we use a modified version of (6.32),

(k,l)€N4
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Figure 6.11: Illustration of the four-step diffusion algorithm. At each iteration,
the probabilities are smoothed vertically in each disparity column, converted to

energies, diffused horizontally, and converted back to probabilities.

i.e., we weight the neighboring values somewhat less (we use p = 0.5) and include
the current estimated energy in the update rule.

If we interpret the above Equations (6.30), (6.31), (6.34), and (6.33) as a four-
step algorithm for iteratively computing the best stereo matches, we see that they
are a special instance of a non-linear diffusion process. This is illustrated in Fig-
ure 6.11.

The smoothing step (Equations (6.30), (6.31)) blurs the current disparity prob-
abilities vertically along a column, thereby enabling different nearby disparities to
support each other (depending on the size of op). It also adds a small amount to
each probability (ep), which in effect limits the largest possible value that Es can
take and thus limits the effect of disparity discontinuities.

The update step (Equations (6.34), (6.33)) is identical to a regular diffusion
step with -terms (membrane model). However, the probability re-normalization

step ensures that the energies represent meaningful log probabilities (in practice, it
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forces the smallest £ to be slightly above 0). The robust form of the £, function
also ensures that bad matches have only limited effects, thus allowing for occlusions
or other non-modeled errors to occur.

For the above algorithm to work well, the various parameters {op, cp,orr, €ar}
must be set to appropriate values. oj; and €j; are based on the expected noise
in the image sensor, i.e., op should be proportional to the regular image noise,
while €pr should be the probability of gross errors or occlusions (say 1-10%). The
choice of op depends on the class of disparity surfaces which may be expected, i.e.,
a small op favors fronto-parallel surfaces. For the experiments presented here, we
set op = 0.1 and ¢p = 0.01.

Figure 6.12 shows the results of our probabilistic aggregation technique applied
to the ramp and rds images. We use a different oas for the two image pairs: oy = 2
for ramp, and oy = 20 for rds, to compensate for the different signal strengths of
the two pairs. The other parameters are the same for both image pairs: ey =

0.1,0p = 0.1,ep = 0.01. The number of diffusion iterations is n = 10.

6.7 Experiments

In this section we numerically evaluate the performance of the different algorithms
on synthetic images. We also show results for real image data.

For our experiments we use five synthetic image pairs, based on combining three
different intensity patterns ramp, rds, and real, and two different disparity pat-
terns, square and bars. We have already introduced the square disparity pattern
(Figure 6.3), and the combinations ramp/square and rds/square (Figure 6.4).

The new disparity pattern bars consists of two rectangular regions with two dif-
ferent disparities (see Figure 6.13). The narrow region in the bottom half of the
image 1s displaced by more than twice its width, thus violating the commonly as-
sumed monotonicity (ordering) constraint. Together with the large disparity range,
this provides an extra challenge to stereo algorithms, but reflects common situations
in real images. The new intensity pattern, real, is part of a real image depicting
ground covered with grass.

Figure 6.14 shows all five synthetic image pairs, including the three new image
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(b) (©)

Figure 6.13: The bars disparity pattern, containing an ordering constraint violation:
(a) isometric plot; (b) gray-level encoding; (c) gray-level encoding with occlusion

information.

pairs synthesized using the texture/disparity combinations real/square, rds/bars,
and real/bars. We do not use the combination ramp/bars since the narrow region can
not be matched unambiguously, resulting in meaningless disparity error statistics.
We compared the following algorithms: SSD, diffusion using the membrane
model, diffusion with local stopping, and diffusion using the probabilistic model.
For each algorithm, we varied the parameters: window size (SSD), 3, A (membrane),
certainty measure (local stopping), oar, op, €nmr, €p, i (probabilistic), and the num-
ber of iterations (all diffusion algorithms). For each parameter setting, we ran the
algorithm on a test set of 40 images (the 5 image pairs with 8 different levels of ad-
ditive Gaussian noise: o = 0,0.25,0.5,1,2.4,8,16). We tried more than 70 different
parameter settings, resulting in about 3000 experiments. In each experiment, we
compared the computed disparities with the true disparities (ignoring the occluded
regions), and collected three different error statistics: mean absolute disparity error,
root-mean-square (RMS) disparity error, and the “percentage of bad points”, i.e.,
the percentage of points whose absolute disparity error is greater than 1/2.
Remember that our goal in devising the different algorithms was to recover the
occlusion boundaries correctly. The percentage of bad points gives a good indication

of whether the boundaries are recovered correctly, since this is where the errors are
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Figure 6.14: The five synthetic image pairs.
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big. For similar reasons, we prefer the RMS error over the mean absolute error since
it penalizes outliers more.

First we analyzed the error statistics for each method separately to gain under-
standing of the effect of the different parameters. Then we chose the best parameters
for each method, and compared the different methods with each other. We present
in detail the results of the second, comparative stage, after briefly discussing the
general trends we noticed.

SSD, which we include for comparison, has only one parameter: the size of the
support region. The same holds for simple diffusion, where the size of the support
region is controlled by the number of iterations. Not surprisingly, the optimal size
of the support region depends on the noise level. In general, higher noise levels (or,
more precisely, lower signal-to-noise ratios) require larger window sizes. The best
window size can also depend on the image.

The membrane model behaves similarly to regular diffusion with a fixed number
of iterations. For small noise levels, a value of # between 1/3 and 1 usually yields
smaller errors than regular diffusion, but not always. Also, as mentioned before, for
high noise levels, 4 needs to be chosen quite small to produce enough smoothing
for stable matching.

In analyzing regular diffusion with local stopping, we found that the certainty
measure is critical. In our experiments, the winner margin (', almost always out-
performed the measure based on entropy C.. A problem with our definition of local
stopping is that an initial wrong but “certain” match can survive. There is clearly
a potential for both better certainty measures and different ways of implementing
local stopping.

The probabilistic model, which performed by far the best, also has the most
parameters. We found, however, that many parameters have only small effects and
can be set to default values, including ep; = 0.1,ep = 0.01, and g = 0.5. As
expected, a small op worked best for our test images composed from fronto-parallel
surfaces. For real images, we found that op needs to be chosen slightly higher. The
most important parameter is op;, which should reflect the strength of the image
signal. We used three different values for the three different textures of our test

images. Finally, the number of iterations is less critical, since the method seems
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to converge relatively fast to a stable solution. Higher numbers of iterations are
necessary for images containing regions of uniform intensity, such as the real images
discussed below.

For direct comparison of the methods, we plot the disparity error versus the noise
level on all five image pairs: Figure 6.15 shows the RMS errors, and Figure 6.16
shows the percentage of bad points. We compare SSD with a window size of 5,
the membrane model with g = 0.5, diffusion with local stopping based on winner
margin C,,, and the probabilistic model with ep = 0.01,0p = 0.1,¢epy = 0.1, and
opm = 2,8, 20, for ramp, real, and rds textures respectively. The number of iterations
is 10 for all methods.

The probabilistic model clearly beats the three other methods. For small noise
levels, the occlusion boundaries are recovered almost perfectly. In fact, in three
of five images the percentage of bad points is 0%, i.e., the absolute RMS error is
less than 1/2 everywhere. Note that the algorithm recovers the “correct” disparity
pattern, even though the notion of true disparities is not well defined for ambiguous
images such as random dot stereograms.

We also tested our algorithms on real images. We include results of the proba-
bilistic method on images from the SRI’s {ree sequence and CMU’s town sequence.
We used multiple baseline stereo based on five images to initialize the disparity
space with the sum of four (appropriately scaled) similarity measures [Okutomi
and Kanade, 1993]. Figures 6.17 and 6.18 show the disparity maps computed
by the probabilistic algorithm after 50 iterations, using the following parameters:
op=0.4,ep =0.01,00 = 5,epr = 0.1. Note that we use a bigger op than before to
account for slanted surfaces.

The running times are 220 seconds for the tree pair (image size: 256 x 233,
disparity levels: 16), and 119 seconds for the town pair (image size: 240 x 256,
disparity levels: 9). Thus, on average about 4.5 microseconds are spent per pixel
per disparity per iteration. These times were obtained on a DEC Alpha workstation

using an experimental implementation that was not optimized for speed.
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Figure 6.15: Comparative performance of four stereo algorithms on five test image
pairs. The plots show the RMS error of the computed disparities versus the standard
deviation of image noise. The error at occluded points is not included.
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Figure 6.16: Comparative performance of four stereo algorithms on five test image
pairs. The plots show the percentage of points whose absolute disparity error is

greater than 1/2, versus the standard deviation of image noise. Occluded points are

not considered.
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Figure 6.17: Tree images (top) and disparities computed by the probabilistic algo-
rithm (bottom).
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Figure 6.18: Town images (top) and disparities computed by the probabilistic al-
gorithm (bottom).
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6.8 Discussion and possible extensions

As we have shown, linear and non-linear diffusion algorithms are an attractive alter-
native to the adaptive windows introduced by Kanade and Okutomi [Kanade and
Okutomi, 1994]. In its simplest form, the membrane algorithm simply requires the
iterative summation of neighboring matching costs, with an additional term thrown
in to prevent the support region from growing indefinitely. The increased weighting
of the central pixel relative to the periphery is sufficient to counteract many of the
artifacts introduced by the squared summing window used in SSD. When combined
with a local stopping condition, the resulting non-linear diffusion process has an
adaptive support behavior similar to the variably-sized window algorithm. The in-
clusion of additional non-linearities in the Bayesian diffusion algorithm improves
the performance even more.

In addition to their simplicity and computational efficiency, our non-linear diffu-
sion algorithms can also handle stereograms with more ambiguity than the adaptive
window SSD algorithm. Kanade and Okutomi’s algorithm is based on locally ad-
justing the sub-pixel disparity estimate simultaneously with growing the window
size. This presupposes that the algorithm is somehow initialized in the vicinity
of the true disparity. This is achieved in their synthetic image sequences using
small disparities, and in their real sequences using a multi-frame version of the ba-
sic SSD algorithm [Okutomi and Kanade, 1993]. Image pairs with rapidly varying
textures and many potential matches such as the random-dot stereograms used in
our experiments could not be handled by their current algorithm. Of course, their
basic method could potentially be extended to include a standard multiple disparity
search component, but the performance of such a hybrid method is as yet unknown.

In its present form, our algorithm computes monocular rather than binocular
disparity maps, i.e., the disparity map is associated with the right image. A binoc-
ular representation would remove this restriction, enabling the representation of
occluded regions in both left and right images. Extending our diffusion algorithms
to a binocular representation is relatively straightforward: the concept of neighbors
at the same disparity is modified to define equal disparities in the cyclopean repre-

sentation of depth, i.e., the depth seen by a camera halfway between the original
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two. Such a representation would also allow us to deal with occlusions more grace-
fully, allowing occluded pixels to float to the same disparity as other pixels in the
background. However, it is unclear how to extend the Bayesian algorithm, since it
requires the re-normalization of disparities along each column in disparity space.
In addition to these extensions, we also plan to study better local stopping
conditions based on improved certainty measures. We would also like to investigate
multi-resolution versions of our diffusion algorithms to help fill in regions which

have few features to match.

6.9 Summary

In this chapter we have demonstrated that diffusion-based aggregation of support
is a useful alternative to both traditional area-based correlation and to more recent
techniques based on adaptive window sizes. Qur algorithms are simple to implement
and computationally efficient, and result in better quality estimates, especially near
discontinuities in the disparity surface. The addition of local stopping conditions
to the basic diffusion process results in a behavior similar to that of adaptively
sized windows. Furthermore, our novel non-linear diffusion algorithm derived from

a Bayesian model of stereo matching results in markedly improved performance.



Chapter 7
Conclusion

In this thesis, we have investigated the use of stereo vision for the application of view
synthesis. We conclude by summarizing the contributions made and by outlining

possible extensions and directions of future research.

7.1 Contributions in view synthesis

In Chapter 3, we proposed a new method for view synthesis from real images using
stereo vision. In our approach, scene geometry is implicitly represented by corre-
spondence maps acquired by stereo vision techniques.

Using three-view rectification, we achieve a purely two-dimensional way of phras-
ing view synthesis under the full perspective model as rectification, warping, and
derectification. In the rectified geometry, pixel displacements in the synthetic view
are linear in disparity, allowing the efficient generation of new views by local image
warping. Visibility is resolved automatically by using ordered forward mapping.

A prime advantage of our method of synthesizing new views from stereo data is
that realistic views can be synthesized easily and quickly independent of scene com-
plexity. A disadvantage is the limited available information about scene geometry,
requiring strategies for dealing with partially occluded points of unknown geometry
and totally occluded points of unknown intensity. We have proposed possible ways

of dealing with both problems.

160
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We have also outlined a framework for view synthesis, in which a scene is repre-
sented by a graph of images and correspondence maps. The basic building block in
this framework is our method for synthesizing new views from a single stereo pair.
This approach has the advantage that a globally consistent calibration of all refer-
ence views 1s not necessary, as view synthesis can proceed from pairwise rectified
image pairs.

In Chapter 4, we re-evaluated the requirements on stereo algorithms in light
of the new application of view synthesis. We compared view synthesis to several
traditional applications of stereo, and concluded that stereo vision is better-suited
for view synthesis than for applications requiring explicit 3D reconstruction.

While the correct recovery of occlusion boundaries and the detection of par-
tially occluded regions becomes especially important for view synthesis, two major
problems for 3D reconstruction do not affect view synthesis. The first problem for
reconstruction is the limited depth resolution achievable from stereo. Since dis-
parities are never explicitly converted to depths in the view synthesis process, the
achievable accuracy for remapping a point is independent of its depth. Thus, dis-
parity maps constitute an ideal representation of scene geometry for the task of
synthesizing nearby views. The other main problem for 3D reconstruction are tex-
tureless areas, whose geometry can not be recovered. In view synthesis, however, a
plausible (and in many cases correct) view can be synthesized by assuming a canon-
ical depth interpretation. Finally, the difficult task of maintaining full calibration
necessary for accurate 3D reconstruction is not necessary for view synthesis.

We have presented experiments demonstrating that it is possible to efficiently
synthesize realistic new views even from inaccurate and incomplete depth informa-
tion, thus meeting our goal of creating convincing impressions of three-dimensional

structure.

7.2 Contributions in stereo

We have also presented two new stereo methods that are motivated by the require-
ments imposed by view synthesis.

In Chapter 5, we introduced a new gradient-based evidence measure that com-
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bines the notions of similarity and confidence. This measure allows stable matching
and easy assignment of canonical depth interpretations in image regions of insuffi-
cient information.

In Chapter 6, we presented several new diffusion-based stereo algorithms mo-
tivated by the problem of boundary blurring. These algorithms are simple to im-
plement and computationally efficient. Non-uniform diffusion using local stopping
conditions results in adaptive support similar to the algorithm using variably-sized
windows. The best results are achieved by a novel non-linear diffusion algorithm
derived from a Bayesian model of stereo matching, which significantly outperforms

traditional window-based techniques.

7.3 Extensions and future work

Most of the visual artifacts created by our current implementation are caused by
incorrect stereo data. The strongest artifacts are usually caused by occlusion bound-
aries that are recovered incorrectly (especially in “extrapolated” views).

While the stereo algorithms presented in this thesis are motivated by the applica-
tion of view synthesis, they should only be considered a first step towards designing
better algorithms that are specifically tailored to view synthesis. The discussion in
Chapter 4 is intended to stimulate and focus such further development.

There are several possibilities for improving the stereo methods presented in
this thesis. One idea is to combine the evidence measure from Chapter 5 with the
diffusion-based aggregation methods from Chapter 6. A problem with the evidence
measure that needs to be taken into account is that the intensity gradient across
occlusion boundaries can be quite different between the two images, which can lead
to substantial matching errors.

The diffusion methods themselves can also be improved. In particular, we plan
to investigate new ways of implementing local stopping. One possibility is to let
the diffusion of support be influenced by a concurrent anisotropic diffusion of inten-
sities, to encourage depth boundaries to coincide with locations of strong intensity
gradients (i.e., intensity edges). We are also interested in symmetric representations

of disparities. One option is to use a cyclopean representation; another is to em-
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ploy dynamic-programming methods for selecting the disparities. We believe that
further study of the basic support and aggregation methods in stereo matching is
central to developing algorithms with improved performance over a wide range of
imagery.

There is also room for improving the view synthesis method presented in this the-
sis. As mentioned in Section 3.2.7, explicit three-view rectification can not be used
if the tri-focal plane intersects the observed scene. In addition, multiple resampling
of the images introduces blur. Both problems could be remedied by aggregating
rectification, warping, and derectification into a single transformation [Seitz and
Dyer, 1996b; Seitz and Dyer, 1996a]. We would like to devise a fast local warping
algorithm that could be used in conjunction with such a combined transform. This
might require extending our view synthesis method to backward mapping, in or-
der to avoid sampling gaps. How this can be done efficiently while also resolving
visibility is an interesting problem. Another area with room for improvement is
the task of filling holes in the synthesized view. A possible approach would be to
extend existing texture synthesis algorithms developed for the application of image
restoration.

Generally, our plans for future work are based on the belief that image-based
scene representations have the potential to fundamentally change the fields of com-
puter vision and computer graphics as they are known today. We believe that
viewer-centered applications such as tele-reality will gain central importance in the
next two decades and will require re-thinking commonly assumed paradigms in com-
puter vision. In the context of view synthesis, we plan to further investigate stereo
algorithms that are able to robustly handle depth discontinuities and occlusion. We
also plan to investigate view synthesis methods that incorporate multiple images
without requiring a global calibration between all images, as well as the combination

of stereo with image registration and image mosaicing techniques.



Appendix A

Support Function for the
Membrane Model

In Section 6.3 we introduced the membrane equation (Equation (6.8))

oE
= = V'E.

The support function (i.e., impulse response or kernel) for the membrane diffusion
model is a function that can be convolved with the original input data Fy to yield
the final value of F. This function can be computed by setting £y to a unit impulse
E(i,7) = 6(2)6(y), and setting the right-hand side of Equation (6.8) to 0.
For the discrete case (Equation (6.9)), this involves solving the coupled set of
equations
BE8(6G) — fGN) + X (Fl+kj+)=[65)=0 (A1)
(k,1)EN,
(the support function is the same for all disparity levels d). Re-writing these in the

Fourier domain, we obtain

B = Flwmw))+ D (Flwnw)e/® ) — Flwg,w,)) =0 (A2)
(k,l)€N4
or
Flwn,) = 4 (A3)

- B+4—2cosw, — 2coswy'
While the inverse transform of F(w,,w,) has no closed form solution, it is simple

enough to compute numerically (see Figure A.1 for a plot).
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Figure A.1: Shape of the membrane support function for § = 0.7: 3D plot and

contour plot.
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