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1. Abstract 

The arbuscular mycorrhizal fungi are exceptionally important mutualists, forming a symbiosis with 70-

90% of all terrestrial plants. This root-fungus association is called the arbuscular mycorrhiza (AM). The 

plant obtains inorganic nutrients (e.g. N, P) via their obligate symbiotic fungal partners and the fungus 

obtains photosynthetically fixed carbon. In the last decade it turned out that morphological identification 

of AM fungi (AMF) is often misleading, due to few characters and dimorphic spores produced by many 

species. Furthermore, species recognition in roots based on morphology is not possible. Molecular data 

gave insights into many new and unexpected phylogenetic relationships, but were still scattered regarding 

used molecular markers and taxon sampling, which hampers molecular ecological studies.  

The focus of this study was to elaborate a robust molecular phylogeny as a base for natural systematics 

and as data baseline for molecular characterization and detection of AMF. The nuclear small subunit 

(SSU) rDNA, the internal transcribed spacer (ITS) region and a part of the large subunit (LSU) rDNA 

region of many described and several undescribed species was amplified with newly designed AMF 

specific primers, which were successfully tested and used on DNA-extracts from field sampled plant 

roots. These primers amplify ~250 bp of the SSU, the whole ITS region and ~800-1000 bp of the LSU 

rDNA (in total ~1.8-1.5 kb). Using the new, specific primers AMF could be detected and resolved down 

to the species-level from field collected material. The ~1.5 kb sequences were analyzed for their species 

resolving power and thus as potential DNA barcoding regions for AMF. Only the complete ~1.5 kb 

fragment allowed robust species resolution and recognition and therefore an extended DNA barcode, 

covering the ITS and LSU rDNA region, was recommended. 

In addition to the ~1.5 kb fragment, a ~1.8 kb fragment of the SSU rDNA region was amplified and 

analyzed for (sub-)genus-level resolution. Combining these two fragments, which overlap in the SSU by 

~250 bp, a ~2.7 kb fragment could be analyzed including the near full length SSU, the ITS-region (ITS1 

and ITS2 region excluded) and 800 bp of the LSU rDNA. Combining these three rDNA markers robust 

phylogenies could be inferred. Based on this data, the phylogenetic placement of the type species of 

Glomus could be defined, supporting the split of the order Glomerales into two families (Glomeraceae; 

Claroideoglomeraceae) and five genera (Glomus, Funneliformis, Rhizophagus, Sclerocystis; 

Claroideoglomus) and several debated changes in the taxonomy of Glomeromycota could be supported or 

rejected.  

The baseline data developed in this study will improve future molecular biodiversity and ecological 

studies and the uncovering of functional diversity and evolutionary aspects of AMF. 
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2. Zusammenfassung 

Die arbuskulären Mykorrhizapilze bilden mit 70-90% aller Landpflanzenarten eine außergewöhnlich 

wichtige mutualistische Symbiose. Diese Wurzel-Pilzassoziation nennt man die arbuskuläre Mykorrhiza 

(AM). Hierbei erhält die Pflanze inorganische Nährstoffe (z.B.: N, P) über ihre symbiotischen Pilzpartner, 

welche im Gegenzug photosynthetisch-fixierten Kohlenstoff bekommen. Innerhalb der letzten 10 Jahre 

wurde immer deutlicher, dass die morphologische Charakterisierung von AM-Pilzen oftmals unsicher ist, 

aufgrund weniger Sporenmerkmale und dimorphischer Sporen, welche von vielen Arten gebildet werden. 

Darüber hinaus ist die morphologische Artbestimmung von AM-Pilzen in Wurzeln nicht möglich. Seitdem 

wurden mittels molekularer Charakterisierung die Verwandtschaftsverhältnisse der AM-Pilze näher 

beleuchtet, durch unterschiedlich genutzte molekulare Marker und abweichendes Taxonsampling, werden 

molekular-ökologische Studien jedoch erschwert. 

Das Ziel dieser Arbeit war es eine Datenbasis zu erstellen, für eine robuste molekulare Phylogenie, welche 

als Grundlage für eine natürliche Systematik, molekulare Charakterisierung sowie Detektierung von AM-

Pilzen genutzt werden kann. Hierfür wurde die small subunit (SSU) rDNA, die internal transcribed spacer 

(ITS)-Region und die large subunit (LSU) rDNA-Region vieler beschriebener sowie einiger 

unbeschriebener Arten, mittels neu entwickelten AM-Pilz spezifischen Primern, amplifiziert. Diese 

wurden erfolgreich getestet und an DNA-Extrakten aus Pflanzenwurzeln angewendet. Die Primer 

amplifizieren ~250 bp der SSU, die gesamte ITS-Region und ~800-1000 bp der LSU rDNA (insgesamt 

~1.8-1.5 kb), womit AM-Pilze sequenzbasiert auf Artebene angesprochen werden können. Das ~1.5 kb 

Fragment wurde auf potentielle DNA-Barcode Regionen und deren damit verbundene Artauflösung für 

AM-Pilze getestet. Lediglich das ~1.5 kb Fragment erlaubte robuste Artauflösung und -identifizierung, 

weshalb ein DNA-Barcode empfohlen wurde, der die ITS und die LSU rDNA Region beinhaltet. 

Zusätzlich zu dem ~1.5 kb Fragment, wurden ~1.8 kb der SSU rDNA Region amplifiziert, um AM-Pilze 

auf Gattungsebene aufzulösen. Beide kombiniert zu einem ~2.7 kb Fragment, mit einem Überlapp von 

~250 bp in der SSU, decken die gesamte SSU, die ITS (ITS1 und ITS2 ausgenommen) und 800 bp der 

LSU rDNA ab. Diese drei rDNA-Marker zusammen ermöglichen robuste Phylogenien. Basierend auf 

diesen Daten konnte die phylogenetische Position der Typart von Glomus und darauffolgende Trennung 

der Glomerales in zwei Familien (Glomeraceae; Claroideoglomeraceae) und fünf Gattungen (Glomus, 

Funneliformis, Rhizophagus, Sclerocystis; Claroideoglomus) und einige debattierte Veränderungen 

innerhalb der Taxonomie der Glomeromycota klargestellt werden. 

Die in dieser Arbeit erstellte Datengrundlage wird zukünftige ökologische sowie molekulare 

Biodiversitätsstudien erleichtern und dazu führen funktionelle Diversitätsaspekte sowie die Evolution der 

AM-Pilze besser zu verstehen. 
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3. Introduction 

3.1 Arbuscular mycorrhizal fungi 

The arbuscular mycorrhiza (AM), a symbiosis formed between land plants and arbuscular mycorrhizal 

fungi (AMF), is widespread. This is indicated by the percentage of land plants forming this symbiosis, 

which is about 70-90% (Trappe, 1987; Wang & Qiu, 2006; Smith & Read, 2008). The eponymous feature 

of this symbioses are the arbuscules (Latin: arbuscula = small tree), tree-like structures which are formed 

during fungal colonization of the plant root and are present in the state of active bidirectional nutrient 

transfer between the plant and the fungal partner. The fungal partner of this symbiosis provides 

phosphorus (Sanders & Tinker, 1971; 1973; Jakobsen et al., 1992a,b; Harrison & van Buuren, 1995), 

nitrogen (Raven et al., 1978; Smith, 1980; Ames et al., 1983; Johansen et al., 1992; Frey & Schüepp, 

1993; Johansen et al. 1996; Hodge et al., 2001; Govindarajulu et al., 2005) and other nutrients (e.g. 

Cooper & Tinker, 1978; Liu et al., 2000) to the host plant. The plant partner, in exchange, supplies up to 

20% of the photosynthetically fixated carbon to the fungus (Douds et al., 2000; Graham, 2000). AMF are 

ecological and economical important as they can improve pathogen resistance (Vigo et al., 2000; de la 

Pena et al., 2006) as well as biomass production (Smith et al., 2009) of the host plant. In addition, AMF 

mitigate different kinds of plant stresses such as drought (Michelson & Rosendahl, 1990; Auge et al., 

2001; Aroca et al., 2007), or heavy metal toxicity (Hildebrandt et al., 1999) and protect plants against root 

herbivores (Gange, 2001). The putative asexual AMF (Sanders, 1999) are obligate symbionts, which 

means they are dependent on the host plant and cannot be cultivated without it. However, some studies 

raise the question about whether these fungi are able to grow independently of host plants (Hildebrand et 

al., 2002; 2006). Due to their hidden lifestyle, many aspects of the AMF are not well understood. 

Fundamental but unanswered questions regarding the evolution and the functional diversity of the 

multinucleate, asexual AMF are their hetero- (Kuhn et al., 2001) or homokaryotic nature (Pawlowska & 

Taylor, 2004), and, partly related to that question, how a reasonable species concept can be applied for 

AMF.  

Are AMF homo-or heterokaryotic? Kuhn et al. (2001) showed indications for the heterokaryotic nature of 

AMF, which were based on two highly variable ITS2 variants of Scutellospora castanea, show to be 

spread on different nuclei by fluorescence in situ hybridization (FISH). The heterokaryosis hypothesis was 

supported by Hijri & Sanders (2005), but Pawlowska & Taylor (2004) doubted it based on the study of 

POL-like sequences from Glomus etunicatum, showing that all sequence variants were present in all 

offspring, concluding this fungus to be homokaryotic. In a recent review Sanders & Croll (2010) state that 
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AMF are most likely heterokaryotic trying to explain the results of Pawlowska & Taylor (2004). 

Although, this matter is still debated most evidence points to heterokaryosis which is also indicated by the 

high ribosomal DNA (rDNA) polymorphism detected in individuals of AMF, e.g. within a single spore 

(Stockinger et al., 2009; 2010). 

For AMF currently there is no existing biological species concept, as AMF are asexual clonal organisms 

(Sanders, 2002) and it is challenging to explain speciation within these organisms. There are different 

explanations, for example speciation may occur as adaptation to specific niches, without the need of 

sexual reproduction (Birky et al., 2005). How could such ancient fungi survive and overcome the resulting 

deficits (accumulation of detrimental mutations) of asexual recombination? At the moment, the concept to 

recognize species in AMF is mainly based on the morphology of the resting spores (Mosse & Bowen, 

1968; Morton & Benny, 1990), but this morphospecies concept has many difficulties (Morton, 1985) and 

should be at least combined with phylogenetic analyses (e.g. Walker et al., 2007; Błaszkowski et al., 2008; 

Gamper et al., 2009), to reduce or prevent mischaracterization and misidentification of AMF species 

(see chapter 3.3). There may be a species concept feasible based on anastomosis compatibility of AMF 

(Càrdenas-Flores et al., 2010). However, hyphal fusion differs for the distinct families of AMF, e.g. 

Glomus species increase their capacity of root colonization with anastomosis and built up hyphal 

networks, whereas in Gigasporaceae anastomosis is mostly used for hyphal healing (de la Providencia et 

al., 2005). Another approach may be the ‘phylogenetic species’ concept (Taylor et al., 2000), based on 

definition of gene concordances e.g. distinct mutation rates and selection pressure. But such data are 

missing for most AMF species. Nevertheless, a multi-gene sequencing approach (Sokolski et al., 2010) 

showed essentially the same results as based on an SSU-ITS-LSU rDNA amplicon (Stockinger et al., 

2009), showing the model fungus of AMF research DAOM197198 to be conspecific with Glomus 

irregulare (Błaszkowski et al., 2008). 

3.2 Evolution of AMF 

The AMF are an ancient asexual group of eukaryotes, which separated from the other fungal lineages over 

600 million years ago (Mya). The earliest reliable evidence for AM in seed plants occurs in the form of 

non-septate hyphae, vesicles, arbuscules and clamydospores in silicified roots of the Triassic cycad 

Antarcticycas schopfii (Stubblefield et al., 1987; Phipps & Taylor, 1996). The earliest known direct fossil 

evidence for AMF forming symbiosis with an early vascular land plant Aglaophyton major (400 Mya; 

Remy et al., 1994) stems from the Rhynie chert. Aglaophyton major was shown to also contain well 

preserved Scutellospora- and Acaulospora-like spores (Dotzler et al., 2006; 2009). The oldest known 

fossils representing terrestrial fungi are from approx. 460 My old Ordovician dolomite rock of Wisconsin, 
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and resemble modern AMF (Redecker et al., 2000). It was concluded, based on this indirect evidence that 

terrestrial AMF already existed at a time when the land flora most likely consisted only of plants on the 

bryophytic level (Brundrett, 2002) supporting a mycotrophic origin of land plants (Pirozynski & Malloch, 

1975). 

Molecular clock estimates of the origin of the AMF have varied considerably depending on the fossil 

record used as calibration points and the molecular clock estimates (Taylor & Berbee, 2006). AMF are 

assumed to be older than 650 My based on the conserved hypothesis (Berbee & Taylor, 2001) or over 

1000 Mya when using the more extreme hypothesis (Heckman et al., 2001; Hedges & Kumar, 2003). 

3.3 Morphological characterization and taxonomy of AMF 

Based on pure spore morphology new species have to be described following the International Code of 

Botanical Nomenclature (McNeill et al., 2006), but molecular characterization is not a prerequisite. The 

identification of AMF based on their morphological characters is subject to few experts in the field, due to 

sparse spore characters, the ability of species to form dimorphic spores, ambiguous or incomplete species 

description and possible spontaneous changes of the spore characters (e.g., color, size). The last point was 

recently exemplified by Morton & Msiska (2010b) based on a Scutellospora heterogama culture that 

produced an unexpected albino mutant, stable for over 15 years and 19 pot culture generations, if this 

albino mutant would have been found in the field and described based on spore morphology only it may 

have been mistaken as new species, indicating the importance of molecular characterization. 

Currently there are 228 described AMF species (Glomeromycota species list at www.amf-

phylogeny.com), but only for about 50% sequence data are available and only ~81 spp. are available as 

cultures from culture collections (e.g. in the International Culture Collection of VA Mycorrhizal Fungi, 

INVAM; The International Bank for the Glomeromycota, BEG; Glomeromycota in Vitro Collection, 

GINCO; cf. Morton, 1993; Declerck et al., 2005; Fortin et al., 2005). Until 2001 it was discussed whether 

AMF are a non-monophyletic group of fungi (Morton, 2000), but based on phylogenetic analyses of the 

small subunit (SSU) rRNA gene, it was shown that the AMF are a monophyletic and well separated clade 

of fungi (Schüßler et al., 2001b). Thus, the AMF were placed in their own fungal phylum, the 

Glomeromycota (Schüßler et al., 2001b), as weakly supported sister group of Asco- and Basidiomycota 

(the Dikarya). This sister group relationship was also indicated by a six gene phylogeny (James et al., 

2006), but questioned by Lee & Young (2009). The latter study was based on sequences of the 

mitochondrial genome from Rhizophagus irregularis (formerly named Glomus intraradices, Stockinger et 

al., 2009), showing the Mortierellales – formerly grouped within the Zygomycota – as sister group of 

AMF.  
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Regarding the four main lineages in the Glomeromycota it was known that the Paraglomerales and 

Archaeosporales are basal lineages within the phylum, whereas the branching order was not yet resolved, 

and separate from the phylogenetically younger orders Diversisporales and Glomerales (Fig. 1). 

 

Fig. 1: Schematic phylogenetic relationships of taxa in the Glomeromycota sensu Schüßler & Walker (2010). 1 

including two phylogenetically uncharacterized species. 2 Racocetra now including Racocetra weresubiae. 3 the 

genus Intraspora was rejected by Schüßler & Walker (2010) and transferred to Archaeospora.  

Recently several taxonomic changes within the Glomeromycota, mainly in the Diversisporales, took 

place, e.g. the erection of two new (phylogenetically unsupported) genera Entrophospora and Kuklospora 

(Sieverding & Oehl, 2006). The latter genus was recently abolished (Kaonongbua et al., 2010). The 

phylogenetic affiliation of Entrophospora still remains unclear as no reliable sequence data are available. 

Oehl et al. (2008) published a revision of Gigasporaceae and split it into three new families and five new 

genera, which was controversially debated and recently rejected by Morton & Msiska (2010a) leaving 

only Racocetra as a new genus within the Gigasporaceae. A major revision of the Glomerales was 

recently published by Schüßler & Walker (2010). This was so far impossible as the phylogenetic 
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placement of Glomus macrocarpum, the type species of Glomus, was unknown and thus the needed 

evidence for reclassifying of the major clades in the Glomerales was lacking. Based on sequences of the 

SSU rRNA gene of Glomus macrocarpum, the order Glomerales was now separated into two families (as 

already proposed by Schwarzott et al., 2001) the Glomeraceae (phylogenetically corresponding to the 

former Glomus group [GlGr] A) and Claroideoglomeraceae (the former GlGrB). The family Glomeraceae 

now comprises the four genera Glomus, Funneliformis, Rhizophagus and Sclerocystis. The family 

Claroideoglomeracea includes one genus, Claroideoglomus, based on the former Glomus claroideum as 

generic type. 

All these taxonomic changes indicate the difficulties of morphological characterizations without a sound 

molecular phylogenetic base. The need for reliable molecular markers and the importance of a reliable 

data baseline for correct identification of AMF on species level is obvious. This was also exemplified by 

the wrong species affiliation of the model fungus in AMF research, formerly assigned to Glomus 

intraradices (now Rhizophagus intraradices) DAOM197198. Based on morphological and molecular 

characterization, Stockinger et al. (2009) showed that this fungus was misidentified and is conspecific 

with the recently described Glomus irregulare (Błaszkowski et al., 2008), which now is Rhizophagus 

irregularis (Schüßler & Walker, 2010). Sokolski et al. (2010) supported this conspecificity based on the 

analysis of three protein encoding genes (elongation factor 1-α, V-H+-ATPase VHA5 and F0F1-ATPase β-

subunit), but for unknown reasons used Rh. intraradices KS906 (=DAOM225240) as a reference strain 

and not the ex-type culture from Florida, Rhizophagus intraradices FL208 (Schenck & Smith, 1982). As 

earlier published KS906 sequences (submitted by Sudarshana et al., 2000) cluster with FL208 sequences 

(Stockinger et al., 2009) the results seem reasonable. But, as neither SSU, ITS or the LSU rRNA gene was 

used by Sokolski et al. (2010) as molecular marker, a comparison to existing rDNA data is difficult. 

3.4 Molecular characterization of AMF 

Systematics based on taxonomy and phylogeny nowadays relies on phylogenetic analyses of molecular 

data (Bruns et al., 1991; Hibbett et al., 2007) because exclusively using morphological characters is 

known to be problematic. Recently an increasing number of formal descriptions in the Glomeromycota 

include molecular beside the needed morphological characterization (e.g. Gamper et al., 2009; 

Kaonongbua et al., 2010). Both are required to place AMF species in their right taxonomic context, 

therefore, reliable markers are needed, such as the rDNA regions, which are well defined, conserved in 

function and do not undergo horizontal gene transfer. The largest taxon sampling for AMF is provided for 

the SSU rDNA marker region, but only allowing phylogenetic resolution down to genus level. This was 

exemplified for the genus Ambispora by Walker et al. (2007), where at least three species (Ambispora 
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leptoticha, Am. callosa, Am. gerdemannii) were unresolved when using the SSU. Phylogenetic analyses of 

the ITS and LSU rDNA region could separate these species and these marker regions provide species-

level resolution of AMF when combined. Due to the high intraspecific variability of the ITS region, this 

marker alone is not suited to resolve very closely related species, as for example Rhizophagus intraradices 

(former Glomus intraradices) and its close relatives (Stockinger et al., 2009). 

Beside the rDNA further molecular markers are available for AMF, such as the genes for the 

mitochondrial LSU rRNA (Croll et al., 2008; Börstler et al., 2008; Thiéry et al., 2010), β-tubulin (Msiska 

& Morton, 2009; Morton & Msiska, 2010a,b), elongation factor 1-α (Sokolski et al., 2010), H+-ATPases 

(Requena et al., 2003), etc., but they are either inapplicable or data are only available for few closely 

related AMF. 

3.5 In-field detection of AMF and community analyses 

Presently, the rDNA region is the most suitable molecular marker region for molecular detection of AMF 

species in the field and recognition of undescribed species. Furthermore the ITS region will most likely 

become the DNA-barcoding region for fungi, potentially in combination with the partial LSU rDNA 

region (see chapter 3.6). Despite the fact that molecular markers have been established and improved 

during the last years, there are still community analyses of AMF, which are purely based on spore surveys. 

The problem of these studies is that spores are resting stages and with regard to community analyses this 

is critical as they do not necessarily reflect the active AMF in the field (Merryweather & Fitter, 1998; 

Renker et al., 2005; Hempel et al., 2007). 

When using a DNA sequence based approach for in-field detection it is important to know the drawbacks, 

e.g., the SSU rDNA is not suited to resolve species and some frequently used PCR primers are not 

phylogenetic inclusive or amplify non-target sequences (Schüßler et al., 2001a; Gamper et al., 2009; 

Krüger et al., 2009 – chapter 4). Therefore the usage of DGGE and T-RFLP methods for in-field 

community analyses may be problematic. The multiple copies, when using the rDNA as marker region, 

are a disadvantage as repeats vary considerably. For example, the variability of the ITS region can range 

from 6% in Gigaspora margarita (Lanfranco et al., 1999) to over 15% in species of the genus 

Rhizophagus (containing the former G. irregulare and G. intraradices, see Stockinger et al., 2009). Thus it 

is important to define the intraspecific variability for correct interpretation of in-field AMF community 

studies, as those of Wubet et al. (2003) or Börstler et al. (2006), otherwise sequence variants may lead to 

mis- or over-interpretations. Especially when using the SSU rDNA region a phylotype may correspond to 

more than one species or vice versa several phylotypes may represent only one species. The diversity of 

AMF in roots would be nearly unknown without molecular methods. By 1993 about 150 AMF species had 
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been described (Smith & Read, 1997), today 228 species are known – an increase concerning species 

numbers of more than 50% within 18 years of research. However, field studies always recover a relatively 

large number of unknown sequence types, in comparison to sequences which can be assigned to known 

species (Husband et al., 2002; Wubet et al., 2003; 2004; Haug et al., 2004). Based on the assumption of a 

similar proportion of ‘unknown species’ worldwide, Börstler et al. (2006) gave a theoretical estimate of at 

least 1250 AMF species existing. However, the bottleneck of community studies still is the lack of well-

curated reference sequences (Seifert, 2009). 

3.6 DNA barcoding 

A DNA-barcode is defined as a standardized, short and easy amplifiable DNA fragment allowing 

recognition of a species (Frézal & Leblois, 2008). Appropriate fungal molecular marker regions are 

needed, but the SSU rDNA region is not suited as DNA barcode. For fungi the ITS region was proposed 

as official DNA barcode, which is also frequently used for AMF, but is not robustly resolving very closely 

related species, e.g. within Rhizophagus (former GlGrAb; Stockinger et al., 2009). Therefore a DNA 

barcode analysis was performed by Stockinger et al. (2010 - chapter 5) based on the 1.5 kb fragment 

amplified with the AMF specific primers SSUmAf-LSUmAr/SSUmCf-LSUmBr (Krüger et al., 2009 - 

chapter 4). The ITS2, the LSU-D1 and the LSU-D2 as 400 bp target regions were tested, but individually 

did not allow robust species-level resolution for closely related Rhizophagus species, but when using the 

1.5 kb fragment as phylogenetic backbone, species recognition was possible also for such short fragments.  

3.7 Deep sequencing of AMF communities 

There have been several attempts to detect AMF in the field based on PCR, cloning and sequencing, but 

this is expensive and time consuming for large scale experiments (Renker et al., 2006). Other ecological 

studies of AMF communities have been conducted based on massive parallel sequencing approaches (e.g. 

Öpik et al., 2009, Lumini et al., 2010). Both community analyses were based on the 454 sequencing 

technology with ~250 bp read lengths, which are too short for reliable phylogenies and the conserved SSU 

rDNA region is insufficient for species recognition. An improved approach with the recent titanium 

chemistry for 454 sequencing (read lengths of ~400 bp), AMF specific primers (Krüger et al., 2009 – 

chapter 4), the results of potential target marker regions (Stockinger et al., 2010) and a comprehensive 

sequences data baseline, making large scale community analyses, revealing the AMF diversity, are now 

feasible. In close future tools like the evolutionary placement algorithm (EPA, Stamatakis & Berger, 2009; 

http://i12k-exelixis3.informatik.tu-muenchen.de/raxml) or the web-based workbench PlutoF (Abarenkov 
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et al., 2010) will be available for analyses of 400 bp (or longer) 454 reads, which are superior to simple 

similarity tests using, e.g. BLAST and the public sequence databases. 

3.8 Aim of this study 

The aims of this study were to provide a phylogenetic framework for AMF as a foundation for a natural 

systematic and, based on such a data baseline, to develop and establish tools for species-level 

identification of AMF. Due to the lack of AMF specific primers amplifying rDNA of all main 

phylogenetic lineages of Glomeromycota, new primers were designed targeting the 3’ SSU rDNA, the 

whole ITS region and approx. 800 bp of the LSU rDNA (SSU-ITS-LSU fragment). These discriminate 

non-target organisms, were tested and shown to specifically and efficiently amplify AMF also from plant 

root extracted DNA (Krüger et al., 2009 - chapter 4). The rDNA amplified provides species-level 

resolution and therefore is also suited for in-field investigations at this level. A part of this study (chapter 

5) was conducted to analyze potential DNA barcoding regions also in regard to use them for deep 

sequencing of AMF community analyses. Furthermore the baseline for molecular characterization of AMF 

was improved using the SSU-ITS-LSU fragment in combination with a second, covering the near full 

length SSU (Schwarzott et al., 2001), resulting in a robust glomeromycotan phylogeny using 2.7 kb 

(SSUfull-ITS-LSU) sequences for phylogenetic tree computations (chapter 8). With these molecular 

detection tools and baseline data the phylogenetic relationship of the AMF species described as 

Ambispora brasiliensis (Goto et al., 2008) could be clarified, placing it into Acaulospora and it was also 

detected in plant roots where the trap culture material was sampled (chapter 6). Furthermore some species 

formerly assigned to Glomus, were placed in their correct phylogenetic context in Diversispora 

(chapter 7).
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DNA-based species level detection of Glomeromycota: 
one PCR primer set for all arbuscular mycorrhizal fungi

Manuela Krüger, Herbert Stockinger, Claudia Krüger and Arthur Schüßler
Ludwig-Maximilians-University Munich, Dept Biology I, Genetics, Großhaderner Strasse 4, D–82152 Planegg-Martinsried, Germany

Summary

• At present, molecular ecological studies of arbuscular mycorrhizal fungi (AMF)
are only possible above species level when targeting entire communities. To improve
molecular species characterization and to allow species level community analyses in
the field, a set of newly designed AMF specific PCR primers was successfully tested.
• Nuclear rDNA fragments from diverse phylogenetic AMF lineages were
sequenced and analysed to design four primer mixtures, each targeting one binding
site in the small subunit (SSU) or large subunit (LSU) rDNA. To allow species resolution,
they span a fragment covering the partial SSU, whole internal transcribed spacer
(ITS) rDNA region and partial LSU.
• The new primers are suitable for specifically amplifying AMF rDNA from material
that may be contaminated by other organisms (e.g., samples from pot cultures
or the field), characterizing the diversity of AMF species from field samples, and
amplifying a SSU-ITS-LSU fragment that allows phylogenetic analyses with species
level resolution.
• The PCR primers can be used to monitor entire AMF field communities, based on
a single rDNA marker region. Their application will improve the base for deep
sequencing approaches; moreover, they can be efficiently used as DNA barcoding
primers.
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Introduction

Arbuscular mycorrhizal fungi (AMF) are associated with
70–90% of land plants (Smith & Read, 2008) in a symbiosis
called arbuscular mycorrhiza (AM), that has existed for
> 400 million yr (Parniske, 2008; Schüßler et al., 2009). The
economic and ecological importance of these ancient biotrophic
plant symbionts is therefore obvious. Arbuscular mycorrhizal
fungi transfer inorganic nutrients and water to the plant and
receive carbohydrates in exchange. By driving this bidirectional
nutrient transport between soil and plants, they are highly
relevant for global phosphorus (P), nitrogen (N) and CO2
cycles. Moreover, they affect directly and indirectly the
diversity and productivity of land-plant communities (van
der Heijden et al., 1998) by their central role at the soil–plant
interface (van der Heijden et al., 2008). They can also improve
host plant pathogen resistance (Vigo et al., 2000; de la Pena
et al., 2006) and drought stress tolerance (Michelson &
Rosendahl, 1990; Aroca et al., 2007).

Despite the enormous role of AMF in the entire terrestrial
ecosystem, their biodiversity in relation to functional aspects

is little understood. Most of the 214 currently described
species (www.amf-phylogeny.com) are characterized only
by spore morphology and the majority have not yet been
cultured. Moreover, from molecular ecological studies we
know that the species described represent only a small fraction
of the existing AMF diversity (Kottke et al., 2008; Öpik et al.,
2008). Problems with identification of AMF result from
their hidden, biotrophic lifestyle in the soil, few morpho-
logical characters, and the potential formation of dimorphic
spores. This led to many AMF species, phylogenetically
belonging to different orders, being placed in one genus
(Glomus) and, conversely, individual species forming different
spore morphs being described as members of different orders.

Another drawback of morphologically monitoring AMF
by their resting spores (Oehl et al., 2005; Wang et al., 2008)
is that the presence of spores may not reflect a symbiotically
active organism community. Furthermore, many species
cannot be reliably identified at all from heterogeneous field
samples, and when identifying described species (likely to
represent less than 5% of the existing species diversity) similar
morphotypes may be erroneously determined as a single species.

mailto:krueger@lrz.uni-muenchen.de
mailto:krueger@lrz.uni-muenchen.de
mailto:krueger@lrz.uni-muenchen.de
http://www.amf-phylogeny.com
http://www.newphytologist.org
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To reveal functional and ecological aspects of distinct AMF
communities associated with different plants and/or under
different environmental conditions it is essential to detect
AMF communities in the field on the species level. However,
there are as yet no unbiased methods for this purpose, not
only for morphological identification but also for molecular
methods. Principally, DNA sequence based methods are most
useful for detecting organisms at different community levels,
but for ecological work they also depend on reliable baseline
databases and tools. For example, fingerprinting methods
such as random amplification of polymorphic DNA (RAPD),
inter-simple sequence repeat PCR (ISSR) and amplified
fragment length polymorphism (AFLP) are expected to be error
prone in uncharacterized environments because of too many
‘unknowns’ in the background, which hampers interpretation
of specificity (Mathimaran et al., 2008). A similar problem
exists for DNA array techniques. Nevertheless, suitable
molecular methods are crucial to overcome the limitations
of morphological identification (Walker & Schüßler, 2004;
Walker et al., 2007; Gamper et al., 2009; Stockinger et al., 2009).

But how are DNA or RNA sequence data for community
analyses obtained and how can the current limitations of
molecular tools be overcome? Molecular characterization of
AMF is in most cases achieved by PCR on DNA from roots
of host plants, spores or soil samples. Several primers targeting
the rDNA regions as molecular marker were claimed to be
AMF specific. Most of these amplify only a restricted number
of glomeromycotan taxa or DNA of nontarget organisms. The
most comprehensive taxon sampling for the Glomeromycota
covers the small subunit (SSU) rDNA region (Schüßler
et al., 2001a,b), for which a new, AMF specific primer pair
was recently published (AML1 and AML2; Lee et al., 2008).
Unlike the often used AM1 primer (Helgason et al., 1998) it
is perhaps suitable to amplify sequences from all AMF taxa,
but the SSU rDNA is inadequate for species resolution of
AMF. Inclusion of the internal transcribed spacer (ITS) and
the large subunit (LSU) rDNA region allows both robust
phylogenetic analyses and species level resolution (Gamper et al.,
2009; Stockinger et al., 2009).

The available public database sequences are scattered
through SSU, ITS and LSU rDNA subsets with varying
lengths, often only 500–800 bp. In most cases this does not
allow species level analyses, and short sequences obtained
with primers that have inaccurately defined specificity may
result in errors. For example, some short database sequences
labelled as Gigaspora (Jansa et al., 2003) cluster with those of
Glomus versiforme BEG47 (Diversisporaceae) (Gamper et al.,
2009). Because of the relatively few LSU sequences in the
public databases, the design of improved primers is challenging
or even impossible. We therefore sequenced the ITS region
and the 5′ part of the LSU rDNA of a set of well-characterized,
but phylogenetically diverse AMF, and designed new primers
from the resulting database. These primers are suited to
amplify DNA from members of all known glomeromycotan

lineages and, by allowing elaboration of a more accurate
baseline dataset, could be a breakthrough for molecular
community analyses of AMF.

Materials and Methods

Fungal and plant material for primer tests

We first tested different samples as DNA templates for PCR
to confirm the specificity of the newly designed primers.
These included plasmid inserts (Table 1), DNA extractions
from single AMF spores and root samples from the Andes
(Ecuador) and the Spessart Mountains (Germany). Primers
were tested for specificity by PCR with plasmids carrying rDNA
fragments with known sequences. All these plasmids had been
amplified from single spore DNA extracts with the SSU
rDNA primer SSUmAf, described here, and the LSU rDNA
primer LR4+2 (modified from LR4; www.aftol.org). The
specificity of SSUmAf could therefore not be investigated directly.

DNA extraction for primer tests

All vials, tips, beads, solutions, and other equipment used
were sterile and DNA free.

From cleaned, single AMF spores DNA was extracted
with the Dynabead DNA DIRECT Universal Kit (Invitrogen,
Karlsruhe, Germany) as described in Schwarzott & Schüßler
(2001).

Roots potentially colonized by AMF were cut into ten
0.5 cm pieces and collected in a single 1.5 ml Eppendorf tube
containing one tungsten carbide bead (diameter 3 mm;
Qiagen, Hilden, Germany). They were immediately frozen in
liquid N2 within the closed tube, placed in liquid N2 precooled
Teflon holders, and ground to a fine powder in a MM2000
bead-mill (Retsch, Haan, Germany). Extraction was done by
either an innuPREP Plant DNA Kit (Analytik Jena, Jena,
Germany) following the instructions of the manufacturer,
or a cetyltrimethylammonium bromide (CTAB) protocol
modified from Allen et al. (2006). For the CTAB protocol,
prewarmed extraction buffer (750 µl for 75 mg tissue) was
added to each sample of frozen, ground tissue, followed by
incubation at 60°C for 30 min. Next, one volume of a
chloroform–isoamylalcohol mixture (24 : 1) was added. The
samples were centrifuged for 5 min at 2570 g and the upper
phase was transferred into a new tube. After addition of 2.5 µl
RNase A (10 mg ml−1) this was incubated at 37°C for 30 min.
One volume chloroform–isoamylalcohol (24 : 1) was then
added and the tube was centrifuged as above. The supernatant
was collected and two-thirds volumes of isopropanol added.
The samples were incubated at 4°C for 15 min. After centrifu-
gation (10290 g for 10 min) the pellet was washed in 70%
ethanol, air dried, and eluted in 100 µl of molecular biology
grade H2O. Volumes of 2–5 µl of each DNA extract were
used as PCR template.

http://www.aftol.org
http://www.newphytologist.org
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PCR conditions

The Phusion High-Fidelity DNA polymerase 2× mastermix
(Finnzymes, Espoo, Finland) was used for PCR with the
SSUmAf–LSUmAr or SSUmCf–LSUmBr primer pairs.
SSUmCf and LSUmBr were also applied as nested primers
(see Fig. 1c). The final concentration of the reaction mix
contained 0.02 U µl−1 Phusion polymerase, 1× Phusion HF
Buffer with 1.5 mm MgCl2, 200 µm of each dNTP and
0.5 µm of each primer. Thermal cycling was done in an
Eppendorf Mastercycler Gradient (Eppendorf, Hamburg,
Germany) with the following conditions for the first PCR:
5 min initial denaturation at 99°C; 40 cycles of 10 s
denaturation at 99°C, 30 s annealing at 60°C and 1 min
elongation at 72°C; and a 10 min final elongation. The same
conditions were used for the nested PCR primers except that
the annealing temperature was 63°C and only 30 cycles were
carried out. The PCR products were loaded on 1% agarose
gels (Agarose NEEO; Carl Roth, Karlsruhe, Germany) with
1× sodium borate buffer (Brody & Kern, 2004) at 220 V, and
visualized after ethidium bromide staining (1 µg ml−1).

Cloning, restriction fragment length polymorphism 
(RFLP) and sequencing

Polymerase chain reaction products were cloned with the
Zero Blunt TOPO PCR Cloning Kit (Invitrogen) following
the instructions of the manufacturer, except that to reduce
costs only one-third of the specified volume of all components
was used. Only SOC medium for initial bacterial growth after
transformation was used in the volume as per the instructions.
From each cloning we analysed up to 48 clones for correct
length of plasmid inserts. In some instances fewer clones
were available because of low cloning efficiency. Colony-PCR

was performed with the GoTaq DNA Polymerase (5 U µl−1;
Promega, Mannheim, Germany) and modified M13F and
M13R primers. To roughly detect intrasporal and intersporal
sequence variability in the clones, RFLP was performed in
10 µl reaction volume, containing 5 µl colony-PCR product,
one of the restriction enzymes Hinf I (1 U), RsaI (1 U), or
MboI (0.5 U) and the specific buffer. One or two clones for
each restriction pattern were sequenced, using M13 primers,
by the LMU Sequencing Service Unit on an ABI capillary
sequencer with the BigDye v3.1 (Applied Biosystems, Foster
City, CA, USA) sequencing chemistry. The sequences were
assembled and edited in seqassem (www.sequentix.de) and
deposited in the EMBL/GenBank/DDBJ databases with the
accession numbers FM876780 to FM876839.

Primer design

For the design of new AMF specific primers a sequence
alignment was established with the programs align
(www.sequentix.de) and arb (Ludwig et al., 2004). The
alignments contained all AMF sequences present in the public
databases and our new data. In total > 1000 AMF sequences,
covering all known phylogenetic lineages, were analysed to
design the SSU and LSU rDNA primers. To allow com-
parison to the existing SSU rDNA datasets the primers were
designed to overlap (approx. 250 bp) with the SSU rDNA.
We used blast against the public databases and the probe
match tool in arb to test the specificity of the newly
designed primers in silico. For the alignment in the arb
database a combination of our new dataset and the 94th
release version of the SILVA database (Pruesse et al., 2007,
www.arb-silva.de) was used. The oligonucleotides were
then synthesized as standard primers (25 nmol, desalted)
by Invitrogen.

Table 1 Plasmids used to test primer specificity and their origin

Species (order)
Plasmid 
no.

Spore 
no.

Attempt number 
(culture code) Voucher

Source 
(collector) Origin

Glomus luteum (Glomerales) pMK020.1 2 Att 676-5 (SA101) W3184 INVAM Saskatchewan, Canada
Glomus intraradices (Glomerales) pHS051.14 283 Att 1102-12 

(MUCL49410)
W5070 GINCO (Nemec) Orlando, USA

Glomus sp. (Glomerales) pMK010.1 11 Att 15-5 (WUM3) W2940 Walker (Mercer) Merredin, Australia
Acaulospora sp. (Diversisporales) pMK005.1 19 Att 869-3 (WUM18) W2941 Walker (Mercer) Nedlands, Australia
Pacispora scintillans (Diversisporales) pMK027.1 190 Field collected W4545 Walker (Schüßler) Griesheim, Germany
Gigaspora sp. (Diversisporales) pMK003.1 14 Field collected W2992 Walker (Cabello) Tres Arroyos, Argentina
Scutellospora heterogama 
(Diversisporales)

pMK029.3 72 Att 334-16 (BEG35) W3214 Walker (Miranda) exact location unknown, 
North America

Glomus versiforme (Diversisporales) pHS036.4 262 Att 475-45 (BEG47) W5165 Walker (Bianciotto) Corvallis, USA
Kuklospora kentinensis (Diversisporales) pHS098.16 310 Att 1499-9 (TW111A) W5346 INVAM Tainan, Taiwan
Geosiphon pyriformis (Archaeosporales) pMK044.1 8 GEO1 W3619 Schüßler Bieber, Germany

Single spores from which the cloned amplicons (amplified with primers SSUmAf-LR4+2) originated and the geographic origin of the respective 
arbuscular mycorrhizal fungi (AMF) are shown.

http://www.sequentix.de
http://www.sequentix.de
http://www.arb-silva.de
http://www.newphytologist.org
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(a) SSUmAf1 TGGGTAATCTTTTGAAACTTYA...---------------------- 
SSUmAf2 TGGGTAATCTTRTGAAACTTCA...---------------------- 
SSUmCf1 ----------------------...--TCGCTCTTCAACGAGGAATC 
SSUmCf2 ----------------------...TATTGTTCTTCAACGAGGAATC 
SSUmCf3 ----------------------...TATTGCTCTTNAACGAGGAATC 
Gl. caledonium BEG20 Y17635 TGGGTAATCTTTTGAAACTTCA...TATTGCTCTTCAACGAGGAATC 
Gl. mosseae UT101 AY635833, Gl. geosporum BEG11 AJ132664 TGGGTAATCTTTTGAAACTTCA...TATTGCTCTTCAACGAGGAATC 
Gl. sp. 'intraradices' DAOM197198 AY635831  TGGGTAATCTTTTGAAACTTCA...TATTGCTCTTGAACGAGGAATC 
Gl. claroideum BEG14 AJ301851 TGGGTAATCTTTTGAAACTTTA...TATCGCTCTTCAACGAGGAATC 
Gl. luteum SA101 AJ276089 TGGGTAATCTTTKGAAACTTTA...TATCGCTCTTCAACGAGGAATC 
Ac. laevis AU211 AJ250847 TGGGTAATCTTTTGAAACTTCA...TATTGCTCTTAAACGAGGAATC 
Ac. longula W3302 AJ306439, Ac. rugosa WV949 Z14005 TGGGTAATCTTTTGAAACTTCA...TATTGCTCTTCAACGAGGAATC 
Ac. scrobiculata BEG33 AJ306442, Ac. spinosa WV860 Z14004 TGGGTAATCTTTTGAAACTTCA...TATTGCTCTTCAACGAGGAATC 
Ac. sp. W3424 AJ306440 TGGGTAATCTTTTGAAACTTCA...TATTGCTCTTTAACGAGGAATC 
Ku. colombiana WV877 Z14006 TGGGTAATCTTTTGAAACTTCA...TATTGCTCTTCAACGAGGAATC 
Di. spurca ex-type W3239 AJ276077 TGGGTAATCTTTTGAAACTTCA...TATTGCTCTTTAACGAGGAATC 
Gl. versiforme BEG47 X86687, G. sp. W2423 AJ301863 TGGGTAATCTTTTGAAACTTCA...TATTGCTCTTCAACGAGGAATC 
Gl. eburneum AZ420 AM713405 TGGGTAATCTTGTGAAACTTCA...TATTGCTCTTCAACGAGGAATC 
Gl. eburneum AM713406, Gl. fulvum AM418548, Ot. bareai AM905318 TGGGTAATCTTTTGAAACTTCA...TATTGCTCTTCAACGAGGAATC 
Gi. candida BEG17 AJ276091 TGGGTAATCTTTTGAAACTTTA...TATTGCTCTTCAACGAGGAATC 
Gi. cf. margarita W2992 AJ276090 TGGGTAATCTTTTGAAACTTCA...TATTGCTCTTTAACGAGGAATC 
Gi. rosea DAOM194757 X58726  TGGGTAATCTTTTGAAACTTCA...TATTGCTCTTCAACGAGGAATC 
Sc. cerradensis MAFF520056 AB041345 TGGGTAATCTTTTGAARCTTCA...TATTGCTCTTCAACGAGGAATC 
Sc. heterogama FL225 AY635832  TGGGTAATCTTTTGAAACTTCA...TATTGCTCTTCAACGAGGAATC 
Pac. scintillans W3793 AJ619940 TGGGTAATCTTTTGAAACTTCA...TATTGYTCTTAAACGAGGAAYC 
Ge. pyriformis AM183923 TGGGTAGTCTTATGAAACTTCA...TATTGCTCTTCAACGAGGAATC 
Am. fennica W3847 AM268194, W4752 AM268196 TGGGTAATCTTGTGAAACTTCA...TATTGCTCTTCAACGAGGAATC 
Am. leptoticha MAFF520055 AB047304, NC176 AJ006466 TGGGTAATCTTGTGAAACTTCA...TATTGCTCTTCAACGAGGAATC 
Ar. trappei NB112 AJ243420 TGGGTAATCTTTTGAAACTTCA...TATTGCTCTTAAACGAGGAATC 
In. schenkii CL401 AM743189 TGGGTAATCTTTTGAAACTTCA   TATTGCTCCTAAACGAGGAATC 
Pa. brasilianum WV219 AJ012112, Pa. occultum IA702 AJ276081 TGGGTAATCTTGTGAAACTTCA...TATTGTTCTTCAACGAGGAATC 
Ichthyophonus hoferi U25637 CGGGTAATCTTTTGAAACCTTA...TATTGATCTTCAACGAGGAATT 
Neurospora crassa X04971 CGGGTAATCTTGTTAAACTGTG...TATTGCTCTTCAACGAGGAATC 
Parasitella parasitica AF157149 TGGGTAAACTTTT-AAATTTCA...TATTGCTCTTCAACGAGGAATT 
Penicillium notatum M55628 TGGGTAATCTTGTTAAACCCTG...TATTGCTCTTCAACGAGGAATG 
Peridermium/Endocronartium harknessii M94339 TGGGTAATCTTGTGAAACTTGG...TATTGCTCTTCAACGAGGAATA 
Peziza badia L37539 TGGGTAATCTTGTGAAACTCTG...TATTGCTCTTCAACGAGGAATT 
Russula compacta U59093 TGGGTAATCTTGTGAAACTCTG...TATTGCTCTNCAACNAGGAAAT 
Saccharomyces cerevisiae J01353 TTGGTAATCTTGTGAAACTCCG...TATTGCTCTTCAACGAGGAATT 

(b) LSUmAr1                           -GCTCACACTCAAATCTATCAAA...---------------------- 
LSUmAr2                           -GCTCTAACTCAATTCTATCGAT...---------------------- 
LSUmAr3  TGCTCTTACTCAAATCTATCAAA...---------------------- 
LSUmAr4  -GCTCTTACTCAAACCTATCGA-...---------------------- 
LSUmBr1                           -----------------------...DAACACTCGCATATATGTTAGA 
LSUmBr2                           -----------------------....AACACTCGCACACATGTTAGA 
LSUmBr3                           -----------------------....AACACTCGCATACATGTTAGA 
LSUmBr4                           -----------------------...AAACACTCGCACATATGTTAGA 
LSUmBr5              -----------------------....AACACTCGCATATATGCTAGA 
Gl. etunicatum BEG92 AF145749          TGTTCTTACTCAAATCTATCAAA...GAACACTCGCATATATGTTAGA 
Gl. etunicatum AJ623309          TGCTCTTACTCAAATCTATCAAA...GAACACTCGCATATATGTTAGA 
Gl. etunicatum AJ623310          AGNTCTTACTCAAATGTATCAAA...GAACACTCGCACATATGTTAGA 
Gl. luteum SA101 FM876809, Gl. sp. W3349 FM876804 TGCTCTTACTCAAATCTATCAAA...GAACACTCGCATATATGCTAGA 
Gl. sp. WUM3 FM876813 TGCTCTTACTCAAATCTATCAAA...AAACACTCGCATATATGTTAGA 
Gl. coronatum W3582 FM876794, BEG28 AF145739  TGCTCTCACTCAAATCTATCAAA...AAACACTCGCATATATGTTAGA 
Gl. coronatum BEG49 AF145740, Gl. mosseae BEG25 AF145735 TGCTCTTACTCAAATCTATCAAA...AAACACTCGCATATATGTTAGA 
Gl. sp. 'intraradices' DAOM197198 DQ273790  TGCTCTTACTCAAATCTATCAAA...TAACACTCGCATATATGTTAGA 
Gl. claroideum BEG14 AF235007          TGCTCTTACTCAAATCTATCAAA...AAACACTCGCATATATGCTAGA 
Gl. constrictum BEG130 AF145741         TGCTCTTACTCAAATCTATCAAA...AAACACTCGCATATATGTTAGA 
Gl. fragilistratum BEG05 AF145747      TGC-CTTACTCAAATCTATCAAA...AAACACTCGCATATATGTTAGA 
Ac. laevis WUM11 FM876787 TGCTCACACTCAAATCTATCAAA...AAACACTCGCACACATGTTAGA 
Ac. sp. WUM18 FM876792 TGCTCGTACTCAAATCTATCAAA...AAACACTCGCACACATGTTAGA 
Ac. scrobiculata BEG33 FM876788 TGCTCTTACTCAAATCTATCAAA...AAACACTCGCACACATGTTAGA 
Di. celata BEG231 AM713417, Gl. versiforme BEG47 FM876814 TGCTCTTACTCAAATCTATCAAA...AAACACTCGCACATATGTTAGA 
Gi. sp. W2992 FM876803, Sc. heterogama BEG35 FM876837 TGCTCTAACTCAATTCTATCGAT...TAACACTCGCATACATGTTAGA 
Sc. heterogama FL225 DQ273792          TGCTCTGACTCAATCCTATCGAT...TAACACTCGCATACATGTTAGA 
Sc. sp. W3009 FM876833 TGCTTTAACTCAATTCTATCGAT...TAACACTCGCATACATGTTAGA 
Pac. scintillans W4545 FM876831 TGCTCTTACTCAAATCTATCAAA...AAACACTCGCATATATGTTAGA 
Ge. pyriformis GEO1 AM183920         TGCTCTAACTCAAATCTATCAAA...AAACACTCGCACGTATGTTAGA 
Pa. occultum IA702 DQ273827           TGCTCTTACTCAAACCTATCGAT...AAACACTCGCACATATGCTAGA 
Aspergillus niger AM270051     CGCTCTTACTCAAATCCATCCGA...GAACACTCGCGTAGATGTTAGA 
Endogone pisiformis DQ273811      TGCTCTTACTCAAATCTATCCAA...AAACACTTGCATATATGTTAGA 
Laccaria bicolor DQ071702        TGCTCTACCGCAGAATCGTCACA...AAATACTCGCAGGCATGTTAGA 
Malassezia cf. restricta HN312 DQ789978  TGCTCTTACGCAGACCCATCCGA...AAAAACTCGCACACATGTTAGA 
Mortierella sp. MS-6 DQ273786     TACTCTTACTCAATCCCAGTCAC...AAACACTCGCATATATGTTAGA 
Mucor racemosus M26190            TGCTTTACCTCGGTCATTTCAGT...AAATACTTGCACTTATGGTGGA 
Saccharomyces cerevisiae Z73326    TGCTCTTACTCAAATCCATCCGA...AAACACTCGCATAGACGTTAGA 

(c)

5.8S

ITS1
SSUmCf

SSUmAf LSUmAr
LSUmBr

SSU LSU

ITS2

Fig. 1 Forward and reverse primers designed in this study (5′–3′ direction), compared with their annealing sites in sequences from representative 
members of all main AMF taxa and some non-AMF species. Variable sites not represented in any primer mixture are shaded. When no culture 
identifiers are known, voucher (W) numbers are given behind the species name. (a) Forward primers SSUmAf (mixture SSUmAf1-2) and SSUmCf 
(mixture SSUmCf1-3). (b) Reverse primers LSUmAr (mixture LSUmAr1-4) and LSUmBr (mixture LSUmBr1-5). (c) Small subunit (SSU) rDNA, 
internal transcribed spacer (ITS) region and large subunit (LSU) rDNA (5465 bp) of Glomus sp. ‘intraradices’ DAOM197198 (AFTOL-ID48, other 
culture/voucher identifiers: MUCL43194, DAOM181602; accession numbers: AY635831, AY997052, DQ273790) showing the binding sites of 
the newly designed forward and reverse primer mixtures.
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Results

Primer design

Potentially suited binding sites for primers that match AMF
sequences but discriminate against plant and non-AM fungal
(non-AMF) sequences were identified for the SSU rDNA and
LSU rDNA. They were located at positions 1484 and 1532
on the SSU, and at positions 827 and 928 on the LSU rDNA
(based on Glomus sp. ‘intraradices’ DAOM197198 sequence;
Fig. 1c). Sequence variation made it impossible to derive
individual primer sequences that specifically amplify all
Glomeromycota. Thus, a set of four primer mixtures was
designed, each targeting one binding site (Table 2, Fig. 1).
Certain non-3′ located mismatches that only slightly altered
melting temperature and some mismatches (Glomus etunicatum)
that were perhaps caused by low sequence quality were
accepted for primer design (Fig. 1). To discriminate against
nontarget organisms mismatches at the 3′ end of the primers
were included. blast searches indicated high specificity of the
new primer pairs for AMF.

Glomeromycota sequences that represent the known
variability at the primer binding sites are shown in Fig. 1. We
aimed to include as many main phylogenetic lineages (Fig. 2)
for primer design as possible. However, the following taxa
could not be included for LSU rDNA binding sites analyses:
Entrophosporaceae, containing only two species lacking
sequence data; Archaeosporaceae, because available sequences
did not cover the LSU rDNA binding sites; Otospora for
which only two nonoverlapping partial SSU rDNA sequences
are known; Intraspora, represented by only one SSU rDNA
database sequence.

Primer specificity – discrimination against plants

The discrimination of primer SSUmAf1 against ‘lower’ plants
is weak and exemplified by only one mismatch to database
sequences from mosses (Polytrichastrum, Leptodontium
and Pogonatum), a liverwort (Trichocoleopsis), a hornwort
(Phaeoceros) and a clubmoss (Selaginella). Burmannia, one
Phaseoleae sp. and some other plant sequences also showed
only one mismatch. All other plant sequences had a minimum

Table 2 Polymerase chain reaction primer mixtures designed for amplification of arbuscular mycorrhizal fungi (AMF)

Primer Nucleotide sequence (5′–3′) nt Target taxa (mainly)

SSUmAf1 TGG GTA ATC TTT TGA AAC TTY A 22 Acaulosporaceae, Archaeosporaceae, Diversisporaceae, Geosiphonaceae, 
Gigasporaceae, Glomeraceae (GlGrA & GlGrB), Pacisporaceae

SSUmAf2 TGG GTA ATC TTR TGA AAC TTC A 22 Ambisporaceae, Diversisporaceae, Geosiphonaceae, Paraglomeraceae

SSUmAf Mix SSUmAf1-2 (equimolar) 22 All AMF lineages

SSUmCf1   T CGC TCT TCA ACG AGG AAT C 20 Archaeosporaceae (indirect evidence by amplification 
of Ambispora fennica), Glomeraceae (mainly GlGrB) 

SSUmCf2 TAT TGT TCT TCA ACG AGG AAT C 22 Paraglomeraceae
SSUmCf3 TAT TGC TCT TNA ACG AGG AAT C 22 Acaulosporaceae, Ambisporaceae, Archaeosporaceae, Diversisporaceae, 

Geosiphonaceae, Gigasporaceae, Glomeracea (mainly GlGrA), Pacisporaceae 

SSUmCf Mix of SSUmCf1-3 (equimolar) 20–22 All AMF lineages

LSUmAr1   GCT CAC ACT CAA ATC TAT CAA A 22 Acaulosporaceae
LSUmAr2   GCT CTA ACT CAA TTC TAT CGA T 22 Gigasporaceae
LSUmAr3 T GCT CTT ACT CAA ATC TAT CAA A 23 Acaulosporaceae, Diversisporaceae, Geosiphonaceae, Gigasporaceae, 

Glomeraceae (GlGrA and GlGrB), Pacisporaceae
LSUmAr4   GCT CTT ACT CAA ACC TAT CGA 21 Paraglomeraceae

LSUmAr Mix of LSUmAr1-4 (equimolar) 21–23 All AMF lineages

LSUmBr1 DAA CAC TCG CAT ATA TGT TAG A 22 Acaulosporaceae, Archaeosporaceae, Glomeraceae (GlGrA), Pacisporaceae 
LSUmBr2  AA CAC TCG CAC ACA TGT TAG A 21 Acaulosporaceae
LSUmBr3  AA CAC TCG CAT ACA TGT TAG A 21 Gigasporaceae
LSUmBr4 AAA CAC TCG CAC ATA TGT TAG A 22 Diversisporaceae, Geosiphonaceae, Glomeraceae, Paraglomeraceae, 

(primer sequence was also found in amplicons from Ambispora 
fennica and an Archaeospora sp.)

LSUmBr5  AA CAC TCG CAT ATA TGC TAG A 21 Gigasporaceae, Glomeraceae (GlGrB)

LSUmBr Mix of LSUmBr1-5 (equimolar) 21–22 All AMF lineages

Variable sites among primers of an individual mixture are shaded. Target taxa most likely amplified, according to known binding site sequences, 
are listed. Comments in parentheses indicate that the primer was successfully used to amplify the given taxon, although the binding site 
sequences were not known.
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of two mismatches, mainly at the 3′ end of the primer. For
SSUmAf2 there were at least two mismatches to all plant
sequences, except for a moss (Archidium) with only one
mismatch. For the nested forward primer SSUmCf1 a
minimum of three mismatches for all plants, except for one
environmental Phaseoleae sequence with two mismatches,
were observed. SSUmCf2 mismatched at one site to the same
Phaseoleae sequence and to liverworts (Radula, Ptilidium and
Porella), a hornwort (Anthoceros) and a Taxus species. Other
plant sequences displayed a minimum of two mismatches, at
least one at the 3′ end. For SSUmCf3 the above mentioned
sequence of Phaseoleae showed no mismatch, but all other
environmental Phaseoleae sequences had at least one mismatch
at the 3′ region of the primer. SSUmCf3 also showed only
one mismatch for sequences of liverworts (Radula, Ptilidium
and Porella), a hornwort (Anthoceros) and for one Liliopsida
and Taxus sequence. The remaining blast hits displayed
two mismatches (several Taxus spp., Pinus and the liverwort
Haplomitrium) or more. These results show that for primer
mixtures SSUmAf and SSUmCf the discrimination against
‘lower’ plants is less than for vascular plants.

The LSU rDNA primers had at least two mismatches
to plant sequences. The minimum for LSUmAr1 was four
mismatches to a Brassica sequence. LSUmAr2 and LSUmAr3
showed four mismatches for a Medicago sequence, in the
case of LSUmAr2 this holds also true for Vitis vinifera and
Oryza sativa. All other plant sequences showed more
mismatches to LSUmAr1, LSUmAr2 and LSUmAr3. For
LSUmAr4, which was designed to target Paraglomeraceae,

two mismatches were found for Solanum lycopersicum
followed by at least three for all other plant sequences.
The LSUmBr primer set had a minimum of three mismatches
to plant sequences. LSUmBr1 shows more than three mis-
matches to a Lotus and a Brassica sequence. At least three
mismatches (to Ephedra and Larix) occurred for LSUmBr2.
There were three mismatches for LSUmBr3 to Selaginella,
followed by a liverwort (Trichocoleopsis) and a moss (Bryum) species
with four. LSUmBr4 had three mismatches for V. vinifera
and at least five for all other plant sequences. LSUmBr5
displayed more than four mismatches to any plant sequence.

Primer specificity – discrimination against 
nontarget fungi

The primer mixture SSUmAf should partly exclude
amplification of nontarget fungi, whereas SSUmCf poorly
discriminates non-AMF (Fig. 1a). Therefore, the highly
specific amplification of AMF rDNA results mainly from the
LSU primers. The primer mixture LSUmAr discriminates
well against most non-AMF. An exception is LSUmAr1 with
only one mismatch to a group of sequences from uncultured
soil fungi (Basidiomycota related) from a Canadian forestry
centre. For all other known non-AMF sequences more than
four mismatches to LSUmAr1 and three to LSUmAr2 were
observed. The primer LSUmAr3 shows only one mismatch
with several chytrid sequences. For all other non-AMF
LSUmAr3 as well as LSUmAr4 mismatched with at least two
sites, mainly at the 3′ end.

Fig. 2 Phylogenetic relationships of taxa in the Glomeromycota (Schüßler et al., 2001b; Walker et al., 2007). 1Species currently named Glomus. 
One of the main Glomus clades (GlGrA or GlGrB) will represent the Glomeraceae, once the phylogenetic affiliation of the type species of Glomus 
is known; 2contains Glomus fulvum, Gl. megalocarpum, Gl. pulvinatum; 3contains Kuklospora colombiana and Ku. kentinensis (formerly 
Entrophospora) (Sieverding & Oehl, 2006); 4contains one genus with two species, Entrophospora infrequens and En. baltica (Sieverding & Oehl, 
2006), neither of which is phylogenetically characterized; 5Otospora (Palenzuela et al., 2008) contains one species, Otospora bareai. Based on 
small subunit (SSU) rDNA sequences and from a phylogenetic viewpoint this genus is congeneric with Diversispora.
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For the (nested) LSUmBr primer mixture the specificity is
lower; for example, LSUmBr1 showed no mismatch to some
fungi in the more ancestral lineages, namely Endogone lactiflua
and Mortierellaceae species, chytrids (Rhizophlyctis and
Gonapodya), an uncultured alpine tundra soil fungus and
matched one ascomycete sequence (Catenulostroma). For
LSUmBr2, no mismatches occurred for sequences of some
basidiomycetes (Bulleribasidium, Paullicorticium and Russula)
and a zygomycete (Spiromyces minutus). Only one mismatch
was observed for sequences including basidiomycetes
(Calocera, Calostoma and Ramaria) and ascomycetes (Pyxidi-
ophora, Eremithallus and Phaeococcus), and some other fungi.
LSUmBr3 discriminates well against other fungi with at least
three mismatches, except for one uncultured soil fungus
sequence (Cryptococcus related) that matched completely.
The primer LSUmBr4 showed no mismatch to Clavulina
griseohumicola and only one to some fungal sequences
including ascomycetes (Pyxidiophora and Phaeococcus) and
basidiomycetes (Cryptococcus spp.). LSUmBr5 showed only
one mismatch to fungal sequences of Mortierella spp., a chytrid
(Rhizophlyctis rosea), and some ascomycetes (Schizosaccharomyces,
Verrucocladosporium, Passalora and Catenulostroma). In general
the LSUmAr primers discriminate better against non-AMF
than the nested primers LSUmBr.

Primer efficiency – tests on plasmids and DNA extracts 
from single spores

The new primer pairs were designed to amplify fragments
of approx. 1800 bp (SSUmAf–LSUmAr) and 1500 bp
(SSUmCf–LSUmBr). In a first PCR amplification test,
samples were chosen to encompass divergent phylogenetic
lineages of the Glomeromycota. Cloned rDNA of the AMF species
Acaulospora sp. and Kuklospora kentinensis (Acaulosporaceae),
Glomus luteum, Gl. intraradices and a Glomus sp. (Glomeraceae),
Pacispora scintillans (Pacisporaceae), and Scutellospora heterogama
(Gigasporaceae) were used (Table 1, Fig. 3a). In addition,
rDNA fragments were amplified from single spore DNA
extracts from Geosiphon pyriformis (Geosiphonaceae), Gl. mosseae
(Glomeraceae), Gl. eburneum and Gl. versiforme (Diversisporaceae),
a Paraglomus sp. (Paraglomeraceae), and a Gigaspora sp.
(Gigasporaceae) (not shown). All tested AMF species were
successfully amplified with the new primer set.

To test the potential sensitivity of the new primers, the
same plasmids as in the first PCR test and additional
plasmids carrying inserts of a Gigaspora sp., Gl. versiforme and
Ge. pyriformis (Table 1, Fig. 3b) were used. They were diluted
over several magnitudes to contain 100 pg, 10 pg, 1 pg,
100 fg, 10 fg, 1 fg, 0.1 fg and 0.01 fg DNA µl−1. One micro-
litre was used as template for PCR, whereas the four lowest
concentrations correspond with 5000, 500, 50 and 5 plasmid
molecules in the 20 µl PCR reaction volume. Both primer sets
were tested independently. Differences between specificity of
the first and nested primer sets were observed for Pacispora,

Kuklospora, and Geosiphon. For Pacispora the PCR with
SSUmAf and LSUmAr yielded, even with the lowest DNA
concentration, a clearly visible band, whereas PCR with
SSUmCf and LSUmBr yielded weaker bands, indicating
lower specificity. Weaker bands were also observed for the
rDNA amplification of Ku. kentinesis with the primers
SSUmCf-LSUmBr and for Ge. pyriformis with SSUmAf-
LSUmAr. However, these differences may be within the
error-range of photometric DNA concentration measurement
of the plasmid stock-solutions. Only slight or no differences
occurred between the other plasmid templates, when comparing
the intensity of the bands, except for Gl. versiforme. Here,
clearly visible bands were only found for the higher DNA
concentrations, but with the same pattern for both primer
pairs. However, this was an artefact caused by low template
DNA integrity. Later dilution series with fresh plasmid
preparations (also from other Diversisporaceae) were indistin-
guishable from those obtained with the other species shown in
Fig. 3(b). For Ku. kentinensis no amplicon could be observed
after PCR with the primers SSUmAf–LSUmAr, because
the cloned fragment was originally amplified with the nested
primers. The plasmid therefore serves only as a negative
control in the first PCR and as positive control for the PCR
with the nested primers.

Primer efficiency – tests on field and nursery sampled 
roots and spores

To test whether the newly designed primers discriminate
against nonglomeromycotan fungi and plants, we used them
on DNA extracted from single spores from pot cultures,
environmental root samples, and root samples from a tree
nursery, in nested PCR approaches. We observed not a single
non-AMF contaminant sequence in the 12 environmental
root and 40 single spore samples processed. The discrimination
against plants was tested with DNA extracts from roots of
potential AMF hosts. The species collected comprised Poa cf.
annua, Ranunculus cf. repens, and Rumex acetosella from a field
site in Germany, and Podocarpus cf. macrostaqui, Heliocarpus
americanus and Cedrela montana tree seedlings from a tree
nursery in Ecuador. From a large number of nested PCR
approaches, on just one occasion, three identical clones
carrying a plant sequence (R. acetosella) were obtained. The
Rumex related database sequence (AF189730, 630 bp) covers
the ITS region, but not the binding sites for the nested
primers. The new primers were also used successfully on DNA
extractions from single AMF spores from pot cultures and a
root organ culture (ROC). This demonstrates PCR amplification
with a broad phylogenetic coverage of AMF, while efficiently
discriminating against non-AMF and plants (Table 3).

The results show that the new primers are suitable to
amplify DNA from members of the whole Glomeromycota
and can be used for species level analyses of AMF communities
in the field.
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Discussion

There have been numerous efforts to design PCR primers
generally applicable for detection of the whole group of AMF
(Simon et al., 1992; Helgason et al., 1998), but later studies
showed that they do not amplify DNA of all Glomeromycota
or they also amplify ascomycetes, basidiomycetes or plant
DNA (Clapp et al., 1995, 1999; Helgason et al., 1999).
Other primers were successfully used for certain groups of the
Glomeromycota (Kjøller & Rosendahl, 2000; Redecker, 2000;
Turnau et al., 2001; Wubet et al., 2003, 2006; Gamper &
Leuchtmann, 2007).

Many of the approaches require different primer pairs
and independent PCR attempts for distinct target taxa.

Comparison of such studies can be difficult since the distinct
primer binding sites may behave very different in PCR and do
not allow semiquantitative approaches. A single primer set
for PCR amplification that covers all groups of the Glomero-
mycota and allows the identification of AMF at the species
level was not available.

We have chosen the strategy of mixed primer sets to cover
the defined sequence variability, instead of using fully
degenerated primers. This reduces the degree of degeneration
and results in a higher ratio of efficiently binding primers. The
approach also allows adjustment of the concentrations of
individual primers in future attempts. At the beginning of the
study we speculated that the exonuclease activity of the proof-
reading DNA polymerase used could hamper discrimination

Fig. 3 Polymerase chain reaction amplification with primers SSUmAf–LSUmAr (approx. 1800 bp amplicons) and SSUmCf–LSUmBr (approx. 
1500 bp amplicons). (a) PCR on cloned DNA fragments, using different annealing temperatures and a template concentration of 1 ng µl−1. A.s., 
Acaulospora sp.; G.s., Glomus sp.; G.l., Glomus luteum; P.s., Pacispora scintillans; K.k., Kuklospora kentinensis; G.i., Glomus intraradices; S.h., 
Scutellospora heterogama; N, negative control. Annealing temperatures: 1, 55°C; 2, 55.7°C; 3, 57.8°C; 4, 60.5°C; 5, 63.1°C; 6, 65°C; 7, 55.2°C; 
8, 56.6°C; 9, 59.1°C; 10, 61.8°C; 11, 64.2°C; 12, 65.5°C. (b) PCR using 1 µl of a 10-fold plasmid dilution (100 pg – 0.01 fg µl−1) as template, 
corresponding to 5×107 to 5 plasmid molecules in 20 µl PCR reaction volume. Annealing temperatures: SSUmAf–LSUmAr 60°C; SSUmCf-LSUmBr 
63°C. N, negative control; Marker, NEB 2-Log DNA Ladder (bp: 10 000, 8000, 6000, 5000, 4000, 3000, 2000, 1500, 1200, 1000 (arrowhead), 
900, 800, 700, 600, 500, 400, 300, 200, 100).
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Table 3 PCR amplification with the new primer pairs; DNA extracted from roots or spores

Environmental samples
Sample 
or culture

First 
PCR

Nested 
PCR Clones sequenced, most likely genus (BLAST hits for full length and partial sequences)

Cedrela montana roots (tree nursery pot) N1 − + pCK011.1-7 Ambispora (uncultured Archaeospora LSU)
Cedrela montana roots (tree nursery pot) N3 + + first PCR: pCK009.1-3 Glomus (mycorrhizal symbiont of Marchantia foliacea SSU, ITS, LSU; Glomus sp. 

MUCL43206 LSU); nested PCR: pCK016.1-3, pCK017.1 Glomus (uncultured AMF clone Glom3524.1 SSU; 
symbiont of M. foliacea SSU, ITS, LSU; Glomus sp. MUCL43206 LSU, MUCL43194, LSU; Glomus sp. 
‘intraradices’ AFTOL-ID845 LSU) 

Cedrela montana roots (tree nursery pot) N8 + + (ns) pCK010.1,2 Gigaspora and/or Scutellospora (uncultured Gigasporaceae clone S2R2 SSU, ITS, LSU; 
Gi. rosea SSU, ITS, LSU; Sc. heterogama AFTOL-ID138 LSU)

Heliocarpus americanus roots (tree nursery pot) N2 − + pCK012.2-4 Archaeospora and Glomus (Ar. trappei NB112 SSU, ITS, LSU; Glomus sp. ‘intraradices’
AFTOL-ID845 LSU)

Podocarpus cf. macrostaqui root without nodules 
(seedling from forest)

P0 + + (ns) pCK018.1 Acaulospora (Ac. alpina clone 1060/33 SSU, ITS; uncultured Acaulospora clone: 
A3-68-c LSU)

Podocarpus cf. macrostaqui root with nodules 
(seedling from forest)

P1 + + (ns) pCK020.1-13 Acaulospora (Ac. alpina clone 1060/33 SSU, ITS; Acaulospora clone: A3-68-c LSU)

Podocarpus cf. macrostaqui root nodules only 
(seedling from forest)

P2 − + pCK006.1,2 Glomus (Gl. diaphanum clone 3.3 SSU, ITS, LSU; Gl. coronatum BEG28 LSU; symbiont of 
M. foliacea SSU, ITS1; uncultured Glomus LSU)

Podocarpus cf. macrostaqui root nodules only 
(seedling from forest)

P3 − + pCK007.1,3,4 Glomus (Glomus sp. 0171 SSU, ITS; uncultured Glomus clone K7-10 SSU, ITS; Glomus clone K31-1 
LSU; uncultured Glomus clone 1298-21 SSU, ITS, LSU; uncultured glomeromycete 2-09 LSU); pCK007.5,6 
pCK008.1,3-7 Glomus (uncultured Glomus clone S1R2 + S2R1/2 SSU, ITS, LSU; Glomus sp. MUCL43206 
LSU, MUCL43207 LSU; symbiont of M. foliacea SSU, ITS1; uncultured Glomus clone: A10-28 LSU)

Ranunculus repens roots (field sample) 1A − + pMK078.1-3 Acaulospora (uncultured Acaulospora SSU; LSU)
Ranunculus repens roots (field sample) 3A − + pMK083.2,3,5 Acaulospora (Acaulospora sp. ZS2005 SSU, ITS; Ac. paulinae clone 2.2 LSU )
Ranunculus repens roots (field sample) 5A − + pMK077.1-5 Glomus (uncultured Glomus clones S1R2 + 850-23 SSU, ITS; uncultured Glomus clone H5-2 LSU)
Ranunculus repens roots (field sample) 7A − + pMK080.1-5 Diversispora (Gl. aurantium SSU, ITS, LSU; Gl. versiforme BEG47 LSU, uncultured Glomus 

LSU); pMK080.6,7 Glomus (uncultured Glomus clone S1R2 SSU, ITS; uncultured Glomus LSU)
Poa annua roots (field sample) 1C − + pMK082.1,4,6,9-17 Acaulospora (uncultured Acaulospora SSU, ITS, LSU; uncultured Acaulospora LSU)
Poa annua roots (field sample) 2C − + pMK081.1,3-5 Acaulospora (uncultured Acaulospora SSU, ITS, LSU; Ac. laevis BEG13 LSU)
Plantago lanceolata roots (pot culture, 
inoculated with C. montana roots)

Att 1451-8 + + (ns) pCK024.1,3,4 Glomus (uncultured Glomus clone S2R2 SSU, ITS, LSU; uncultured Glomus clone S1R2 SSU, 
ITS, LSU; Glomus sp. ‘intraradices’ AFTOL-ID845 LSU, Glomus sp. MUCL43206 LSU; Glomus sp. 
MUCL43203 LSU)

Plantago lanceolata roots (pot culture, 
inoculated with H. americanus roots)

Att 1456-1 − + pCK025.1-4 Glomus (uncultured Glomus clone S1R2 SSU, ITS, LSU; Glomus sp. MUCL43203 LSU)

AMF ss (ss pot culture) Att 1449-5 − + pCK022.1-3 Diversispora (Gl. aurantium SSU, LSU; Gl. versiforme BEG47 LSU)
AMF ss (ss pot culture) Att 1450-1 − + pCK023.1-4 Acaulospora (Ac. colossica clones 15.1+15.4 SSU, ITS, LSU; uncultured Acaulospora clone 

H1-1 LSU)
AMF ss (ss pot culture) Att 1456-7 − + pCK026.1,2-6 Archaeospora (uncultured Archaeospora clone 1400-71 SSU, ITS, clone R8-37 LSU; 

Ar. trappei SSU, ITS, LSU)
AMF ss (ss pot culture) Att 1456-11 − + pCK027.1-3 Glomus (Gl. claroideum clone 57.10 SSU, ITS, LSU)
AMF ss (ss pot culture) Att 1449-10 − + pCK028.2-5,7-12 Glomus (Gl. claroideum clone 57.10 SSU, ITS, LSU)
AMF ss morphotype 1 (ms pot culture) Att 1451-6 + + first PCR: pCK029.1 Glomus (Gl. claroideum clone 57.10 SSU, ITS, LSU); nested PCR: pCK030.1-6 

Glomus (uncultured Glomus clone Pa127 SSU, ITS, LSU; uncultured Glomus clone S1R2 SSU, ITS, LSU; 
Gl. etunicatum LSU; Glomus sp. MUCL43203 LSU)

AMF ss morphotype 2 (ms pot culture) Att 1451-6 − + pCK031.1,2 Gigaspora (Gi. rosea clone Gr8.2 SSU, ITS, LSU; Sc. heterogama AFTOL-ID138 LSU)
Glomus intraradices spore cluster (ROC) Att 4-64 

(from FL208)
− + pHS099.3,6,8,11,14,16,25,32,36,40,41,47 Glomus (uncultured Glomus clone S2R2 SSU, ITS, LSU; Glomus sp. 

MUCL43203 LSU, Glomus sp. MUCL43206 LSU, MUCL43207 LSU, Glomus sp. 'intraradices' AFTOL-ID845 LSU)

First PCR, SSUmAf–LSUmAr; nested PCR, SSUmCf–LSUmBr. PCR reactions are given as positive when a PCR product of the expected size was visible. The closest BLAST hits are shown for the first and/or 
nested PCR derived sequences. Att, culture attempt; ITS, internal transcribed spacer; LSU, large subunit; ms, multi spore; ns, not sequenced; ROC, root organ culture; ss, single spore; SSU, small subunit.
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by terminal 3′ primer mismatches, but no such problems
were detected.

Primer specificity

The primers designed show some mismatches to AMF
sequences at the 5′ end (Fig. 1), which do not hinder PCR
amplification (Bru et al., 2008). Primer mismatches such
as C–T, T–C and T–G do not impair amplification strongly
even when situated at the 3′ end of the primer (Kwok et al.,
1990). The forward primers SSUmAf as well as the reverse
primers LSUmBr mismatched once with Ge. pyriformis, but
did not hamper amplification. The LSU rDNA primers show
sufficient sequence similarity to the target organisms, as the
mismatches are either in the middle or at the 5′ end.
LSUmAr primers displayed individual mismatches to
sequences of Scutellospora spp., Gl. etunicatum, and one
Acaulospora sp. (Fig. 1). Nevertheless, DNA of these species
was successfully amplified from environmental samples and
in the primer efficiency test (Fig. 3). Ambisporaceae and
Archaeosporaceae species could not be included in the design
of the LSU primers, but Ambispora fennica DNA from a single
spore extraction (not shown) and Archaeospora sp. from single
spores and roots of an Ecuadorian tree seedling (Table 3) could
be amplified with the new primers, indicating well matching
binding sites. Sequences from Otospora (Diversisporaceae;
Palenzuela et al., 2008; matching the SSU primers), Intraspora
(closely related to Archaeospora), and Entrophospora (sensu
Oehl & Sieverd.; with two species only) are either not or only
partly characterized and therefore could not be included in
several aspects of primer design. Otospora and Intraspora are
very closely related to their sister genera (maybe congeneric),
so the lack of LSU rDNA sequences was therefore interpreted
as a minor limitation.

We could successfully amplify all AMF tested with the new
primers, but because of the lower number of LSU rDNA
sequences available for AMF an optimization of the LSU
primers might be reasonable in future. The discrimination
against non-AMF and plant DNA is excellent, as shown on
DNA extracts from environmental samples and spores from
pot cultures. To discriminate against non-AMF, LSUmAr
works much better than the nested primers LSUmBr. The
cloned plant (Rumex) rDNA fragment that originated from
root material can be interpreted as an ‘outlier’. The primer
binding sites could not be investigated for Rumex, because of
lacking sequence coverage. It should be indicated in this
context that we did not use HPLC-purified primers. This
means a certain fraction of primers may not be fully synthesized
and could result in less specific amplification. All plasmids
used in the plasmid test carried inserts that were originally
amplified with SSUmAf. Therefore, the efficiency of this
primer could not be validated, but because of the high
number of SSU rDNA sequences known, it can be stated
that the binding sites in the cloned fragments correspond to a

realistic situation. The efficient amplification from spore DNA
extracts was, moreover, confirmed in numerous former PCR.

Advantages over previously used PCR primer sets

In most former field studies SSU rDNA phylotypes were
analysed for molecular detection of AMF. However, this
region does not allow species resolution and each defined
phylotype, irrespective of the used distance threshold value or
phylogenetic analysis method, may hide a number of species
(Walker et al., 2007). In general, the LSU rDNA region
allows species resolution, and thus the LSU primer pair
FLR3–FLR4 (Gollotte et al., 2004) was used for species-
level community analyses. However, in particular, FLR4
is not phylogenetically inclusive (Gamper et al., 2009)
and discriminates many lineages, including Diversisporales,
Archaeosporales and Paraglomerales, which results in a strong
bias in community analyses towards the Glomeraceae. The
primer FLR3 binds to DNA of many nontarget fungi as it
shows no mismatch to > 1300 basidiomycete sequences and
some ascomycete sequences in the public databases. Such
problems obviously may bias tRFLP community analyses
(Mummey & Rillig, 2008) and seminested PCR approaches
(Pivato et al., 2007) using FLR3 and/or FLR4. The primer
pair SSUGlom1–LSUGlom1 (Renker et al., 2003) amplifies
many non-AMF and plants. Combined with the primers
ITS5–ITS4 in a nested PCR (Hempel et al., 2007) this
resulted in a 5.8S rDNA phylogenetic analysis, which
resolved only the genus level. Even the ITS region does not
always resolve species for AMF (Stockinger et al., 2009).

In some cases, species-specific detection tools are available
for individual species or certain well-defined and closely
related species. The three closely related AM fungi Gl. mosseae,
Gl. caledonium and Gl. geosporum were detected by using
LSU primers in field studies (Stukenbrock & Rosendahl,
2005; Rosendahl & Matzen, 2008), but these primers were
designed to only amplify subgroups or certain taxa in the
Glomeromycota. For the well-studied Gl. intraradices related
AMF (e.g. DAOM197198), which are, however, not conspecific
with Gl. intraradices (Stockinger et al. 2009), microsatellite
markers are available for their detection in the field (Croll
et al., 2008; Mathimaran et al., 2008). Some mtLSU region
markers were also studied (Börstler et al., 2008), but because
of the high length variation observed (1070–3935 bp) and the
difficulty in amplifying this region it is not very promising for
community analyses. Thus, such markers cannot be used for
general AMF community analyses.

The new primers described in the present study were
used to amplify efficiently and specifically target rDNA from
environmental samples of the main phylogenetic groups in
the Glomeromycota. For the first time, this will allow molecular
ecological studies covering all AMF lineages to be carried out
with only one primer set. Furthermore, the long sequences
allow robust phylogenetic analyses and species level resolution
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by inclusion of the variable ITS and LSU rDNA region
(Walker et al., 2007; Gamper et al., 2009; Stockinger et al.
2009), whereas formerly used primers mainly amplified
rDNA fragments of up to 800 bp (Helgason et al., 1999;
Redecker, 2000; Lee et al., 2008).

Potential application as DNA barcoding primers

The new primers are suited to amplify the most likely primary
DNA barcode region for fungi, the ITS region (already online
at the Barcode of Life Data Systems (BOLD) website;
www.barcodinglife.org). In general ‘barcode primers’ should
amplify short fragments and for the ITS region the amplicons
generated by our primers are in fact too long. However, the
main criterion for DNA barcodes is the resolution at species
level. Since for Glomeromycota this is difficult or impossible
to achieve with the ITS region only (Stockinger et al., 2009),
the inclusion of the 5′ LSU rDNA fragment is strongly
recommended. Our new primer set (SSUmAf, SSUmCf,
LSUmAr and LSUmBr) appears to be well suited as barcoding
primers for Glomeromycota. The primers will be helpful for
the molecular characterization of AMF, including species
descriptions (Gamper et al., 2009), resulting in a sequence
database that allows the design of further primers for the
detection of AMF from field samples. LSUmAr and LSUmBr,
located approximately at positions 930–950 and 830–850 on
the LSU rRNA gene, may be used in combination with new
forward LSU primers for amplification of fragments within
the variable D1/D2 LSU regions. Based on such amplicons,
deep sequencing approaches with the now feasible longer
reads of the new 454 FLX-titanium chemistry will allow
species level detection of the ‘unknown’ AMF community, in
future molecular ecological studies.
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Summary

• Currently, no official DNA barcode region is defined for the Fungi. The COX1

gene DNA barcode is difficult to apply. The internal transcribed spacer (ITS) region

has been suggested as a primary barcode candidate, but for arbuscular mycorrhizal

fungi (AMF; Glomeromycota) the region is exceptionably variable and does not

resolve closely related species.

• DNA barcoding analyses were performed with datasets from several phylo-

genetic lineages of the Glomeromycota. We tested a c. 1500 bp fragment spanning

small subunit (SSU), ITS region, and large subunit (LSU) nuclear ribosomal DNA

for species resolving power. Subfragments covering the complete ITS region,

c. 800 bp of the LSU rDNA, and three c. 400 bp fragments spanning the ITS2, the

LSU-D1 or LSU-D2 domains were also analysed.

• Barcode gap analyses did not resolve all species, but neighbour joining analyses,

using Kimura two-parameter (K2P) distances, resolved all species when based on

the 1500 bp fragment. The shorter fragments failed to separate closely related

species.

• We recommend the complete 1500 bp fragment as a basis for AMF DNA

barcoding. This will also allow future identification of AMF at species level based

on 400 or 1000 bp amplicons in deep sequencing approaches.

Introduction

This study aimed to define a DNA barcoding region for
arbuscular mycorrhizal fungi (AMF) that also is useful for
molecular in-field community studies. Despite the fact
that AMF are perhaps the most important fungi in terres-
trial ecosystems, forming mutualistic symbioses with c.
80% of land plants (Brundrett, 2009), much of their
biology still is enigmatic. One recent example for a new
and surprising finding are the Mycoplasma-related
endobacteria of AMF (Naumann et al., 2010), with
completely unknown function. The lack of knowledge
about many aspects of AMF biology is partly because of
their asexual, obligate symbiotic and subterranean life-
style. All AMF belong to the phylum Glomeromycota
(Schüßler et al., 2001) and molecular biological methods
revealed cryptic species showing, for example, that spore
morphs previously defined as different species in distinct
families (e.g. morphs of Ambispora leptoticha) are con-
specific (Sawaki et al., 1998; Redecker et al., 2000;
Walker et al., 2007). However, the asexual reproduction
and potentially clonal diversity complicate the inter-
pretation of AMF species boundaries (Stukenbrock &

Rosendahl, 2005). Despite this limitation, the present
species concept is valuable, congruent with phylogenetic
analyses (Walker et al., 2007; Msiska & Morton, 2009;
Stockinger et al., 2009) and important for uncovering
functional diversity. Unfortunately, the knowledge of
preferential associations of AMF with plants under certain
environmental conditions is still very limited, although a
better understanding of differential AMF–plant associations
and symbiotic preferences is of high ecological rele-
vance and will affect sustainable management practices in
agriculture and forestry.

Identification of AM fungal species from the field

Community analyses based on morphologically monitoring
AMF spore occurrences in the soil reveal some important
hints about the species composition in different ecosystems
(Oehl et al., 2009; Robinson-Boyer et al., 2009), but spores
are resting stages and may not reflect those species that are
physiologically active at the time (Sanders, 2004).
Moreover, relatively little is known about the influence of
environment or host plant on sporulation dynamics over
both space and time (Walker et al., 1982).
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To overcome such drawbacks, molecular methods were
developed to detect AMF directly within roots. The most
frequently used markers are one or more of the nuclear
rRNA genes, for example the widely used small subunit
(SSU) rRNA gene (Helgason et al., 1999; Wubet et al.,
2006; Lee et al., 2008), the internal transcribed spacer
(ITS) rDNA region including the 5.8S rRNA gene (Wubet
et al., 2004; Hempel et al., 2007; Sýkorová et al., 2007),
and a part of the large subunit (LSU) rRNA gene (Gollotte
et al., 2004; Pivato et al., 2007; Rosendahl et al., 2009).
However, many molecular analyses are biased, as some of
the primers used detect only parts of the community and
the level of taxonomic resolution in most cases is uncertain.
Species-level community analyses based on rDNA regions
should be feasible (Gamper et al., 2009; Stockinger et al.,
2009), but no single molecular marker or DNA barcode is
yet suitable for species-level resolution of all AMF.

DNA barcoding for fungal species definition and
identification

DNA barcoding in the strict sense is defined as the stan-
dardized analysis of an easily amplifiable PCR fragment for
sequence-based identification of species. Identifications
must be accurate, rapid, cost-effective, culture-independent,
universally accessible and usable by nonexperts (Frézal &
Leblois, 2008). By DNA barcoding, organisms can be
identified in life cycle stages not suited for morphological
identification (Gilmore et al., 2009).

In DNA barcoding, species are separated by standardized
barcode gap analyses or phylogenetic tree-building methods.
A barcode gap exists if the minimum interspecific vari-
ation is bigger than the maximum intraspecific variation.
Alternatively, phylogenetic neighbour joining analysis based
on Kimura two-parameter (K2P = K80) distances is a sug-
gested standard method and in future more sophisticated
phylogenetic methods will most likely be applied.

A part of the mitochondrial cytochrome c oxidase 1 (COX1)
gene has become the first official animal DNA barcode
(Hebert et al., 2004; http://www.barcoding.si.edu/) and for
plants an agreed system is based on the plastid loci rbcL and
matK (Hollingsworth et al., 2009), but no official consensus
strategy exists for fungi. A standardized DNA-based species
identification system for fungi would be extremely useful.
There are c. 100 000 named fungi (Kirk et al., 2008), and
estimates suggest that as many as 1.5–3.5 million species
exist (Hawksworth, 2001; O’Brien et al., 2005).
Identification of many of these, particularly from their vege-
tative state, will only be possible by molecular methods.

Primers have long been available for the nuclear ITS
rDNA region (White et al., 1990; Gardes & Bruns, 1993)
which are now commonly used for fungal identification
(Kõljalg et al., 2005; Summerbell et al., 2007). The ITS
rDNA region will probably be proposed to the Consortium

for the Barcode of Life (CBOL, http://www.barcoding.
si.edu) as a fungal barcode (Seifert, 2009). As for many
other organism groups, fungal sequence data derived
from inaccurately identified material exist in the public data-
bases (Ryberg et al., 2008), and a lack of vouchers often
precludes verification of sequences (Agerer et al., 2000).
Unfortunately, third party corrections in the GenBank
sequence database are prohibited (Bidartondo et al., 2008).
Initiatives such as UNITE (http://unite.ut.ee) were estab-
lished to provide validated and curated data, but such data
are still lacking for AMF.

COX1 is not suited as general fungal barcode

Demonstration that the COX1 region is unsuitable for easy
PCR-amplification, sequencing and species identification
would preclude its use according to the CBOL standards.
Although this region showed promise for Penicillium spp.
(Seifert et al., 2007), the length of fungal COX1 is highly
variable (1.6–22 kb). The shortest potential barcoding
region varies in length from 642 bp to > 12 kb (Seifert,
2009). Moreover fungal species-level discrimination with
COX1 genes may be inaccurate (Chase & Fay, 2009) and in
Fusarium and the Aspergillus niger complex multiple para-
logues hinder species-level resolution (Geiser et al., 2007;
Gilmore et al., 2009). For the AMF Glomus sp. FACE#494,
the barcoding region of COX1 spans 2200 bp and contains
several introns (Lee & Young, 2009). Moreover, the
mtDNA of Glomus diaphanum contains a COX1 intron
with high sequence similarity to a corresponding COX1
intron in plants and Rhizopus oryzae (Lang & Hijri, 2009).
The plant intron is thought to have originated by horizontal
gene transfer (HGT) from fungi (Vaughn et al., 1995; Lang
& Hijri, 2009), further questioning the general usability of
COX1 as a barcode for either fungi or plants.

Defining a DNA barcoding region for AMF

Both potential primary barcoding regions – COX1 with its
large length variation and the ITS rDNA with its lack of dis-
crimination of closely related AMF species (Stockinger
et al., 2009) – seem unsuited for AMF. Therefore, we aimed
to define a DNA barcoding region for Glomeromycota by
comparing different nuclear rRNA gene regions and the
ITS.

We further on abbreviate the nuclear SSU rRNA gene as
SSU, the LSU rRNA gene as LSU, and the 5.8S rRNA gene
as 5.8S; the term ‘ITS region’ is used for the complete
ITS1–5.8S–ITS2 rDNA (Fig. 1), for simplicity. A DNA
fragment of 1420–1602 bp, amplified with AMF specific
primers (Krüger et al., 2009) from species in widely sepa-
rated AMF clades was sequenced. The fragment covers
c. 240 bp of the SSU, the 400–526 bp long ITS region,
and 776–852 bp of the LSU. We compared the complete
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fragment, the ITS region, the LSU region, and three c.
400 bp fragments, covering the 5.8S + ITS2, LSU-D1 or
LSU-D2, for species resolving power and suitability as
DNA barcode. This corresponds with the resolution level in
environmental deep sequencing approaches using the present
454 GS-FLX Titanium system, with c. 400 bp average read
lengths. The barcode we propose here will also facilitate the
identification of species using future deep sequencing
systems with > 1000 bp read lengths (http://www.454.com;
http://www.pacificbiosciences.com).

Materials and Methods

Taxa and public sequences used for analyses

The ‘core dataset’ sequences investigated in this study (see
the Supporting Information, Table S1) cover the partial
SSU, the ITS region and the partial LSU, completely cover-
ing a fragment spanning the region amplified with primers
SSU-Glom1 (Renker et al., 2003) and NDL22 (van Tuinen
et al., 1998). For all AMF analysed, a culture identifier or a
voucher deposited in a herbarium (W-numbers) is known;
for most, both items of information is available. The attempt
(Att) numbers refer to the culture collection of Christopher
Walker, BEG identifiers to the ‘International bank for the
Glomeromycota’ (http://www.kent.ac.uk/bio/beg), INVAM
to the ‘International culture collection of (vesicular) arbus-
cular mycorrhizal fungi’ (http://invam.caf.wvu.edu) and
MUCL to the ‘Glomeromycota in vitro collection’ (GINCO;
http://emma.agro.ucl.ac.be/ginco-bel/). Some additional
identifiers are listed in Table S1. For analysis of the five
AMF species included in the AFTOL (assembling the fungal
tree of life) project (James et al., 2006), the individual SSU,
ITS and LSU sequences were assembled to a contiguous
consensus sequence. For the ‘extended dataset’, analyses of
the Ambisporaceae, Diversisporaceae and Glomus Group Aa
additional public database sequences (Tables S2–S6) were
included. Sequences probably derived from contaminants
(Schüßler et al., 2003) were excluded.

DNA extraction, PCR amplification, cloning and
sequencing

Spores were cleaned and DNA was extracted as described in
Schwarzott & Schüßler (2001). At first, PCR was per-
formed with the primers SSU-Glom1 combined with
NDL22 or LR4+2 (Stockinger et al., 2009). Later, the PCR
approach with AMF-specific primers described in Krüger
et al. (2009) was used, for the majority of the AMF charac-
terized (Table S1). Polymerase chain reactions with the
Phusion High Fidelity DNA polymerase (Finnzymes,
Espoo, Finland), cloning, restriction fragment length poly-
morphism (RFLP) analyses and sequencing were performed
as described in Krüger et al. (2009), except for Glomus
caledonium BEG20 which was amplified using a Taq DNA
polymerase (Peqlab, Erlangen, Germany) and some clones
that were obtained using the StrataClone Blunt PCR
Cloning Kit (Stratagene Agilent Technologies, La Jolla,
CA, USA). Sequences were assembled and proofread with
seqassem (http://www.sequentix.de) and deposited in the
EMBL database with the accession numbers FN547474–
FN547681.

Phylogenetic and sequence divergence analyses

The partial SSU, ITS region and the partial LSU sequences
from this study and public database sequences covering the
same regions were analysed (Table S1). Data were mainly
from single-spore DNA extractions or single spore isolates
of characterized AMF species. Shorter regions were sepa-
rated either by the gene borders, or by primer binding sites.
The fragments used for analyses were: the ITS region (400–
526 bp) including the 5.8S and cut at the gene boundaries
to the SSU and LSU; the LSU fragment (776–852 bp) covering
the LSU until the binding site of primer LSUmBr
(Krüger et al., 2009); the ITS2 fragment (352–430 bp) cor-
responding to an ITS3–ITS4 (White et al., 1990) amplicon
including most of the 5.8S and the complete ITS2 region;
the LSU-D1 fragment (281–394 bp) corresponding to a

SSUmCf ITS3 LR1 FLR3

LSUmBrITS4

Small subunit 5.8S D1 D2 Large subunit
ITS1 ITS2

SSUmCf-LSUmBr

ITS2 fragment

LSU region

ITS region

LSU-D1 fragment

LSU-D2 fragment

Fig. 1 Schematic representation of the
nuclear ribosomal DNA regions studied.
Triangles indicate positions of priming sites
that were used as borders for in silico

analyses of the fragments. Lines indicate the
fragments analysed.
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portion bordered by the LR1 (van Tuinen et al., 1998)
and FLR3 (Gollotte et al., 2004) priming sites (whereas
FLR3 is a forward primer); the LSU-D2 fragment (370–
436 bp) corresponding to an FLR3-LSUmBr amplicon
(Fig. 1).

For some analyses, shorter or less well-defined sequences
from the database were included and manually aligned to
the core dataset with align (http://www.sequentix.de) or
arb (Ludwig et al., 2004; http://www.arb-home.de). The
resulting dataset is referred to as ‘extended dataset’.
Sequence divergences were calculated based on the K2P
model (Kimura, 1980) with pairwise deletion of gaps, using
the ape package of r (Paradis et al., 2004). To illustrate
the sequence divergences within and between species,
taxongap 2.3 (Slabbinck et al., 2008) was used.

The analyses of database sequences included some
identical sequences where, from the database entries, it
could not be excluded that these possibly originated from
different spores or cultures. Phylogenetic analyses were
performed with phylip 3.6 (Felsenstein, 2005) with
neighbour joining tree-building based on K2P distances.
A consensus tree was calculated from 1000-fold boot-
strapped analyses with sumtrees (Sukumaran & Holder,
2008). As an alternative approach, sequences were aligned
automatically using the MAFFT online server (MAFFT
version 6; http://align.bmr.kyushu-u.ac.jp/mafft/online/server/)
before phylogenetic analyses. The iterative refinement
option of MAFFT was set to FFT-NS-i (Katoh et al.,
2002). Phylogenetic trees were processed with treegraph2
(treegraph.bioinfweb.info), treeviewj (Peterson & Colosimo,
2007) and treedyn (Chevenet et al., 2006) and refined
with Adobe Illustrator CS3.

Results

The phylum Glomeromycota presently contains 219
described species. Of these, 81 are available as cultures from
the INVAM, BEG and GINCO collections. Only some of
these are single-spore isolates and some may be misidenti-
fied. Many undescribed or unaffiliated AMF are also hosted
in culture collections. In the present work, we analysed a
core dataset represented by 28 characterized AMF species
from three different orders, with a focus on close relatives.
For the Diversisporaceae, five of the eight known species
could be covered, whereas within the Gigasporaceae (sensu
Morton & Benny, 1990) and the Acaulosporaceae five of the
45 and four of the 36 known species, respectively, were
studied. For the Pacisporaceae (seven species; not available
as cultured AMF), one species could be analysed from
stored DNA extracts from the study of Walker et al.
(2004). In the monogeneric Glomerales 11 of 102 described
Glomus species and in the Ambisporaceae two of eight could
be studied. Further well-defined sequences were used for
some groups, such as the Ambisporaceae ITS region for five

of the eight known species. In general, the availability of
well-defined isolates is a major bottleneck for the study of
many AMF taxa.

We did not test the AM1-NS31 SSU fragment, used in
many environmental studies including a recent 454 GS-
FLX sequencing approach (Öpik et al., 2009), because the
AM1 primer discriminates many AMF taxa and the amplified
region lacks species resolution power.

Intraspecific rDNA sequence variation

No universal intraspecific percentage of sequence variation
(K2P distance) could be defined as a threshold to separate
AMF species. For the longest DNA fragment studied,
SSUmCf-LSUmBr (c. 1500 bp, see Table S7, corresponding
to the core dataset), the maximum intraspecific varia-
tion ranged from 0.47–10.8%. Considering only the seven
species for which at least 24 sequence variants are available
(Acaulospora laevis, Gigaspora margarita, Gigaspora rosea,
Scutellospora gilmorei, Glomus intraradices, Glomus sp.
‘irregulare-like’ DAOM197198 and Glomus versiforme) the
minimum intraspecific variation was 1.55%. The highest
value of 10.8% was found in G. intraradices (cultures
FL208 and MUCL49410).

The ITS region revealed a variation of 0.23–14.6%, or
2.96–14.6% when analysing only the seven species with at
least 24 variants of the SSUmCf-LSUmBr fragment avail-
able. Glomus intraradices (FL208 and MUCL49410) again
showed the highest intraspecific variation. The range of var-
iation in the LSU-D2 fragment was 0–15.7% (2.8–15.7%
for species with at least 24 sequence variants known), again
with G. intraradices showing the highest value.

For the LSU-D1 fragment (LR1-FLR3), five species
lacked intraspecific variation (number of distinct sequences
in parentheses): Glomus sp. WUM3 (6), G. caledonium (3),
Acaulospora scrobiculata (4), Glomus luteum (5), Diversispora
celata (3). In general, this region showed the lowest
intraspecific variation for most species analysed, with one
exception, Kuklospora kentinensis (14) where the ITS2 frag-
ment (ITS3–ITS4) showed the lowest variation with only a
single basepair insertion in some sequences. Further K2P
distance data are shown in the Supporting Information
Figs S1, S2.

Barcode gap analyses

A barcode gap is not a prerequisite for DNA barcoding, but
may allow easy distinguishing of species (Hebert et al.,
2004). Barcode gaps could not be found for all AMF species
studied. Comparison of the different regions, regardless of
the alignment method used (Table S7, Fig. S1), showed the
complete fragment (SSUmCf-LSUmBr) resulting in the
lowest number (4) of species without a barcode gap, fol-
lowed by the complete ITS region (5) and the LSU region
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(7). Analysis of the LSU-D2 fragment also resulted in seven
species lacking a barcode gap, whereas the LSU-D1 frag-
ment revealed 12 species without a barcode gap. The ITS2
fragment (covering most of the 5.8S) resulted in eight species
without a barcode gap. For the complete fragment, the size
of the barcode gaps, if they existed, varied from only 0.1%
to 22%. Some further analyses of the Ambisporaceae and
Diversisporaceae are shown in Fig. S2.

Phylogenetic analyses of the core dataset

The Gigasporaceae, Acaulosporaceae, Diversisporaceae,
Ambisporaceae, Glomus Group B, Glomus Group Aa and
Glomus Group Ab were analysed separately, as the high vari-
ation in the ITS region made it impossible to align across
family level groups. For each group, five defined regions
covered by the SSUmCf-LSUmBr fragment were analysed
(Fig. 1). All positions in the alignment were included in the
neighbour joining analyses (Figs 2, S3–S8), as summarized
in Table 1 for the core dataset (Figs 2, S3–S8).

The complete fragment (SSUmCf-LSUmBr) provided
the best discriminatory power. Each of the analysed species
was resolved with bootstrap support of at least 72%, for
most species of > 90%. The AFTOL sequences of Glomus
mosseae and Scutellospora heterogama cluster with those of
the corresponding species. Sequences of Glomus sp.
‘irregulare-like’ DAOM197198 (= MUCL43194 =
DAOM181602, used for the running Glomus genome
sequencing project) and ‘GINCO #4695rac-11G2’ cluster
with those of Glomus irregulare, and together are likely
representing one species, confirming the evidence of
Stockinger et al. (2009).

Almost all species could be separated using the complete
ITS region, except G. intraradices and its close relatives.
The same situation was reported for maximum likelihood
analyses of this region (Stockinger et al., 2009) and holds
true for analyses of the LSU region only. Using the LSU,
Scutellospora spinosissima (three sequences) and Glomus
proliferum (15 sequences) neither were resolved as mono-
phyletic and the Gigaspora rosea clade (27 sequences) had
bootstrap support below 50%. When the ITS2, LSU-D1
and LSU-D2 fragments were analysed separately, the LSU-
D1 fragment performed worst with sequences from 11 of
the 25 species not forming monophyletic clades. The ITS2
and LSU-D2 fragments performed better, but still did not
separate G. proliferum (15 sequences) from G. intraradices
(47 sequences). Gigaspora margarita BEG34 did not form a
well-supported clade for either fragment. As for the 800 bp
LSU, S. spinosissima (three sequences) was not resolved in
the LSU-D2 analysis.

Although not included in the CBOL standards or recom-
mendations, a blast approach was tested in addition to the
phylogenetic analyses. We used the blastn default settings
of NCBI in both, public database and local blast searches,

and studied all SSUmCf-LSUmBr fragment sequences for
their correct identification. This alternative approach always
resulted in first hits corresponding to the correct species
(data not shown).

Phylogenetic analyses of the extended dataset

Shorter sequences from the public database, selected accord-
ing to their assigned name or culture identifier, were
included in some analyses. In addition, some environmental
sequences were used, predominantly from the Ambisporaceae,
Diversisporaceae and Glomus Group Aa.

Analyses of Ambisporaceae Only two Ambisporaceae spe-
cies SSUmCf-LSUmBr fragments were available (Table S7,
Fig. S1), but five ITS regions and several environmental
sequences of Ambispora species could be analysed. All were
phylogenetically well separated (Fig. S9). The environ-
mental sequences (number in parentheses) from Taxus
baccata (6), Prunus africana (1) or Plantago lanceolata (1)
roots form branches distant from the characterized species.

Analyses of Diversisporaceae The ITS analyses of the
Diversisporaceae (Fig. S10) did not reveal any fundamental
differences from the analyses of the core dataset (Fig. S7).
At this point, we draw attention to the fact that several
Glomus species have not yet been formally transferred to the
genus Diversispora and therefore carry the ‘wrong’ genus
name. The four ITS database sequences from the INVAM
cultures AZ237B from Arizona together with the four
sequences of NB101 from Namibia are most likely of con-
specific origin. Also, a set of 30 environmental ITS
sequences annotated as G. versiforme in the database, cluster
separately from G. versiforme BEG47 and should be anno-
tated as unknown Diversispora species. It was already known
that Glomus fulvum (five sequences), Glomus megalocarpum
(2) and Glomus pulvinatum (2) form a clade much apart
from other Diversisporaceae species and together probably
represent a distinct genus (Redecker et al., 2007).

For the LSU analyses (Fig. S11), the four database
sequences (AM947664,65, AY842573,74) from G.
versiforme BEG47 clustered with the 25 sequences of our
BEG47 core dataset sequences, but the sequence EU346868
from a G. versiforme culture HDAM-4 was widely sepa-
rated. All database sequences (EF067886-88) referring to
Glomus eburneum INVAM AZ420A as well as D. celata
(Gamper et al., 2009) clustered with those of the respective
species in our core dataset. Three Glomus aurantium LSU
database sequences (EF581860,62,63) are separated from
two other sequences (EF581861,64). All five sequences are
linked to voucher W4728 and originate from one trap
culture setup with material collected near Tel Aviv in Israel
(J. Błaszkowski, pers. comm. 21 September, 2009). As trap
cultures usually contain several species, it is not certain that
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the sequences in the subclades were derived from conspecific
organisms.

Analyses of Glomus Group Aa (‘Glomus mosseae group’)
Analysis of our core dataset of this group showed clear
separation of species with the ITS region, the ITS2 frag-
ment, and both LSU fragments analysed. However, the
situation changed when including database sequences for
the ‘extended dataset’ (see Figs 3, S4).

For the ITS region, Glomus sp. WUM3 (six sequences),
G. caledonium (10 sequences) and Glomus geosporum (31
sequences) formed well-separated clades. Glomus mosseae
sequences formed two well supported subclades (Fig. 3),
which were rendered paraphyletic by the clustering of the
ex-type of Glomus coronatum BEG28 (16 sequences) in

between. However, the minor G. mosseae clade (only seven
sequences) consists exclusively of sequences derived from
field sampled spores with identifiers GMO2 and GMO3.
From spore GMO2 one sequence (AF161058) clusters in
the minor clade while the other entire ones (AF161055-57,
AF166276) cluster within the major clade.

The ITS sequences in Glomus Group Aa reveal more
discrepancies. Glomus monosporum (IT102: AF004689;
FR115: AF004690, AF125195), Glomus dimorphicum
(BEG59: X96838-41) and ‘Glomus fasciculatum’ BEG58
(X96842,43; but see following text) sequences cluster in the
major G. mosseae clade.

For the G. mosseae major clade (excluding the GMO2
and GMO3 sequences), the intraspecific variation of the
complete ITS region is 12.1% (100 sequences). When

Table 1 Respective bootstrap values supporting species as monophyletic after neighbour joining analyses (based on K2P distances, 1000
bootstraps) of six different regions (complete SSUmCf-LSUmBr fragment, complete internal transcribed spacer (ITS) region, ITS2, large subunit
(LSU), LSU-D1 and LSU-D2 fragments)

SSUmCf-LSUmBr ITS region LSU ITS2 (ITS3-ITS4) LSU-D1 (LR1-FLR3) LSU-D2 (FLR3-LSUmBr)

Gigaspora margarita 88 75 55 47 34
Gigaspora rosea 100 90 48 90 59
Scutellospora gilmorei 100 99 88 93 69
Scutellospora spinosissima 92 98 95
Scutellospora heterogama 100 99 100 100 97 98
Length of alignment (positions) 1505 468 795 394 398 376
Acaulospora laevis 100 100 100 100 100 100
Acaulospora scrobiculata 100 100 100 100 100 100
Acaulospora sp. WUM18 100 100 100 100 100 100
Kuklospora kentinensis 100 100 100 100 100 100
Length of alignment (positions) 1591 525 826 436 403 401
Diversispora celata 100 95 100 70 99 100
Diversispora spurca 100 96 100 97 100
Glomus aurantium 100 94 94 95 94
Glomus eburneum 100 75 100 72 99 93
Glomus versiforme 100 100 100 100 100 100
Length of alignment (positions) 1600 497 860 407 398 440
Glomus cf. clarum 100 100 100 100 100 100
Glomus intraradices 72
Glomus sp. ‘irregulare-like’ 100 96 99 53 95
Glomus proliferum 94 80
Length of alignment (positions) 1644 540 863 437 400 440
Glomus mosseae 100 97 100 93 98 99
Glomus sp. WUM3 100 97 100 98 100
Glomus caledonium 100 100 96 99 97
Glomus coronatum 100 100 100 100 99 99
Length of alignment (positions) 1664 565 862 448 397 442
Glomus etunicatum 100 99 100 90 96 100
Glomus sp. W3349 100 100 100 100 100 100
Glomus luteum 100 100 100 100 96 93
Length of alignment (positions) 1624 539 843 433 392 430

Fig. 2 Phylogenetic tree computed from all c. 1500 bp SSUmCf-LSUmBr fragment sequences analysed (core dataset), demonstrating species
level resolution. Neighbour joining analyses (1000 bootstraps) with bootstrap (BS) support displayed down to the level of species. Note that
the BS support values differ from those given in Table 1, because an unambiguous alignment of internal transcribed spacer 1 (ITS1) and ITS2
sequences between families, as computed here, is impossible. Therefore, the BS values shown here are biased by ambiguously aligned sites in
the highly variable regions and for species level comparison the values from Table 1 should be referred to. The corresponding species is written
to the right of each cluster; every second cluster is highlighted in grey.
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adding the G. monosporum, G. fasciculatum BEG58 and
G. dimorphicum sequences clustering in this clade the varia-
tion increased only marginally to 12.2% (109 sequences).
The intraspecific variation of the other characterized species
within Glomus Group Aa varied between 0.8 and 2.8%.

The LSU-D2 fragment analysis resulted in clear separa-
tion into several well-supported clades (Fig. 3), but some
contain sequences from more than one species. One Glomus
fragilistratum sequence clusters within the G. caledonium
clade. One G. coronatum BEG49 sequence is distant from
those of the ex-type culture G. coronatum BEG28
(=Att108). BEG49 clusters with Glomus sp. WUM3, but a
Glomus constrictum BEG130 sequence also falls in this
clade. The intraspecific variation of the LSU-D2 fragment
is 19.4% (170 sequences). The major G. mosseae clade had a
variation of 15.8% (158 sequences) and the smaller clade of
11.2% (12 sequences). The other species in this group
showed an intraspecific variation between 1.2–5.0% (5–28
sequences, respectively).

Discussion

In this study, we analysed several regions of the nuclear
rDNA region as possible candidates for DNA barcoding of
AMF, including the ITS region which is widely used for
identification of fungi. Because it was demonstrated that the
ITS region alone is unsuitable to resolve closely related
AMF species (Stockinger et al., 2009), whereas a longer,
1500 bp fragment could be successfully applied, we used
this longer rDNA fragment as a baseline. Moreover, c.
400 bp fragments were analysed for their power to resolve
species and suitability for community analyses using the
454 GS-FLX Titanium pyrosequencing method (Valentini
et al., 2009).

Intraspecific rDNA variation and its definition

In the present study, we calculated intrasporal and intra-
specific rDNA variability for several species. However, the
determination of species in the Glomeromycota is largely
based on a morphological species concept and the apparent
asexual lifestyle may complicate the interpretation of species
borders, though asexual speciation is found in diverse
organism groups. For AMF, perhaps the best-studied clade,
Glomus Group Ab, may exemplify the problems. A very
high intraspecific variation was found in G. intraradices
(Stockinger et al., 2009). This was characterized from two

isolates and the parent culture of one of the isolates (the
‘ex-type culture’ of this species, FL208, derived from a root
trap culture). The 1500 bp rDNA from a single spore,
interestingly, roughly encompassed the amount rDNA vari-
ation and moreover also the pattern of sequence types found
in the entirety of samples analysed, which were derived from
two isolates and the FL208 culture. Both isolates originated
from the same field site, but from material sampled 20 yr
apart. The results raise questions such as whether one AMF
spore contains most of the existing intraspecific rDNA
variation, or whether the similarity in the sequence type
patterns reflects, for example, the sampling of two recent
descendents of a clonal lineage. These are open questions,
but the closely related ‘G. irregulare-clade’ (likely represent-
ing a single species) contains a huge number of sequences
derived from diverse ecosystems and many continents.
Glomus intraradices sequences have never been detected in
these ecosystems, but are up to now only known from
Citrus sp. in Florida. We interpret these data as most likely
reflecting a biologically meaningful genetic separation of
different organisms. Although we can currently separate all
morphospecies studied, and take this as support for the
applicability of DNA barcoding for AMF, it must be noted
that the species concept used to define these asexual
organisms may change.

The intraspecific and intrasporal variation varied consid-
erably among the studied AMF, for all regions analysed
(Figs S1, S2). Here, we followed the CBOL barcoding
standards (http://www.barcoding.si.edu) and used K2P
distances. We stress this because the numbers for sequence
variation differ significantly, depending on the method
used for estimation; for example, the G. intraradices ITS
region (47 sequences) 14.6% K2P distances correspond to
> 23% uncorrected distances including gaps as a fifth
character (Stockinger et al., 2009). Similarly high K2P dis-
tances occur for the ITS region of G. mosseae (12.2%, 109
sequences). The intrasporal ITS variation we found in the
G. mosseae sequences was 4.6% (16 sequences) and only
slightly increased to 5.3% when adding 45 database
sequences from cultures with geographically widespread
origin published in Avio et al. (2009). An example for
high ITS variation is G. fulvum (Diversisporaceae), where
the addition of one sequence raises the variability from
< 10% to 15% (five sequences in total). The ‘outlier’
sequence is derived from a different geographical location
and might also represent a closely related, but distinct
species.

Fig. 3 Internal transcribed spacer (ITS) region (a), ITS2 fragment (b) and the large subunit (LSU)-D2 fragment (c) neighbour joining analyses
(1000 bootstraps) of Glomus Group Aa. Analysis (c) is performed with a different dataset than (a) and (b) (for details see the Supporting
Information, Tables S5, S6). Some long branches were reduced in length to 50% ( ⁄ ⁄ ). ‘AY635833, AY997053, DQ273793’ represents the
consensus sequences of these sequences. Glomus mosseae (closed square), Glomus sp. WUM3 (grey circle), Glomus coronatum (grey triangle,
apex up), Glomus caledonium (black triangle, apex right), Glomus monosporum (open square with cross), Glomus fasciculatum (diamond),
Glomus geosporum (grey triangle, apex down), Glomus dimorphicum (open square), Glomus constrictum (black circle), Glomus fragilistratum

(grey triangle, apex right).
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In general, for AMF the simple use of a percentage variation
value as threshold to define and cluster molecular oper-
ational taxonomic units (MOTUs) for species identification
must be considered inapplicable.

Barcode gap and phylogenetic analyses

The comparison of the maximum intraspecific and the min-
imum interspecific variation revealed that none of the studied
DNA fragments allowed absolute AMF species separation
by barcode gap analyses. Evidently, when based on the
rDNA regions studied, this method cannot be applied to
AMF. In general, barcode gaps may often be an artefact of
insufficient taxon sampling (Wiemers & Fiedler, 2007).
The likely existence of a large number of undescribed and
uncharacterized species (Sýkorová et al., 2007; Öpik et al.,
2009) adds further complexity to the topic. Moreover, there
are several inaccurate species determinations in the public
sequence databases and contaminant sequences cannot be
ruled out when using spores from mixed species cultures
(Schüßler et al., 2003). Examples of inconsistencies are G.
fasciculatum BEG53 and BEG58 sequences that cluster in
Glomus Group Ab and in Glomus Group Aa, respectively.
Morphologically interpreted, it is very unlikely that the
BEG58 sequences belong to G. fasciculatum (Lloyd-
Macglip et al., 1996).

DNA barcode-based identification of species can also be
derived from phylogenetic inference. The simple neighbour
joining analysis based on K2P distances of the complete
fragment (SSUmCf-LSUmBr) resulted in support for all
species investigated here. It allowed a distinction between
all closely related species in Glomus Group Ab. The species
concept in this difficult group is also supported by the fact
that the mitochondrial LSU rDNA as a marker (Börstler
et al., 2008) distinguishes G. intraradices from the genome
sequenced Glomus species DAOM197198 that is
represented by the ‘G. irregulare clade’.

For the 1500 bp fragment blast searches performed well
and could be an alternative tool for identification, but this
may be problematic for unknown species. It should be kept
in mind that similarity-based comparisons can be mislead-
ing and phylogenetic methods generally perform better.
Therefore, we recommend a phylogenetic approach, but
blast surely is an alternative for fast data screening or to
select sequences to be analysed more in detail.

The ITS region

The ITS region resolved many of the known species, but
not the closely related members within Glomus Groups Ab
and Aa, respectively. However, the ITS region was suited
to resolve relatively closely related species in the
Ambisporaceae (Walker et al., 2007), and also shows, for
example, that a set of environmental ITS sequences

labelled as G. versiforme does not cluster with those of
G. versiforme BEG47 and probably represent distinct species.
The ITS region might be useful for species delineation,
but with some limitations.

Other problems with species resolution might be caused
by synonyms. For example, in Glomus Group Aa several
sequences with uncertain assignment to species are from G.
dimorphicum and G. monosporum, which were, on morpho-
logical grounds, discussed as possibly conspecific with G.
mosseae (Walker, 1992). However, the difficulties might
also result from the use of mixed species cultures. The fun-
gus identified as G. monosporum INVAM FR115 was in a
culture that also contained spores of G. mosseae and
Paraglomus occultum (http://invam.caf.wvu.edu/cultures/
accessionculturedetails.cfm?ID=6356, 12.02.2010). The
G. monosporum culture INVAM IT102 also contained
G. mosseae and Glomus etunicatum spores (from http://
invam.caf.wvu.edu/cultures/accessionculturedetails.cfm?ID
=6895, 12 Feb 2010). It can therefore not be ruled out that
the spores identified as G. mosseae and G. monosporum are
of conspecific origin, or that contaminant sequences gave
rise to incorrect assignation.

The G. mosseae ITS sequences formed two distinct clades,
with the minor clade consisting only of sequences from two
field sampled spores (GMO2 and GMO3). As already dis-
cussed in Antoniolli et al. (2000) spore GMO3 could be an
unidentified species, and the ‘outlier’ sequence AF161058
from spore GMO2 might be interpreted as a contaminant
originating from GMO3. Currently, when including the
database ITS sequences, it seems impossible to state whether
the G. mosseae clade consists of one species or several species
that cannot be separated or have been misdetermined.
Analysing the complete fragment (SSUmCf-LSUmBr) for
more and well-defined isolates may solve such questions.

The LSU region

Using the 800 bp LSU region of the core dataset resulted in
more unresolved species than using the ITS region, but the
LSU-D2 region alone showed about the same species reso-
lution power as the ITS region. The LSU-D1 fragment
behaved worst with both extended and core datasets. It
seems unsuited for obtaining good resolution and this may
explain why the 800 bp LSU region resolution is not better
than that of the shorter LSU-D2. The G. mosseae sequences
analysed by Rosendahl et al. (2009), from cultures with
geographically widespread origin, all fell into the main G.
mosseae LSU subclade (Fig. 3, lower clade). The authors
proposed, based on the genetic variability found in the LSU
and in FOX2 and TOR gene introns, that these cultures are
closely related and the panglobal distribution likely was
caused by anthropogenic dispersal. It should also be men-
tioned that three single-spore isolates (HG isolate 209,
BEG224, JJ isolate 243) each gave rise to divergent
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sequence variants located in both G. mosseae LSU subclades.
This indicates that the rDNA variation reported in some
other studies is an underestimate, caused by a lack of detec-
tion of less frequent sequence types (represented by the
upper LSU-D2 subclade in Fig. 3).

DNA fragments for deep sequencing technologies

The 454 GS-FLX Titanium pyrosequencing technology
currently allows an average read length of c. 350–450 bp
and offers great potential for ecological studies. Our data
demonstrate that a read length of 400 bp will not be suffi-
cient to identify all AMF species with certainty, based on
neighbour joining analyses using such a short fragment
only. However, there are alternative phylogenetic
approaches that may overcome this lack of resolution when
taking an alignment based on longer sequences as a
‘backbone’ for the phylogenetic inference. For example, the
program raxml 7.2.6 (http://arxiv.org/abs/0911.2852v1;
Stamatakis et al., 2010) includes a novel likelihood-based
algorithm for evolutionary placement of short reads into a
given reference tree of full length sequences. We show the
LSU-D2 and ITS2 fragments to be good candidates for spe-
cies identification by 454 pyrosequencing. The LSU-D2
region may be preferred if AMF sequences are specifically
amplified from roots or soil (Krüger et al., 2009). In studies
where the diversity of other groups of fungi is also investi-
gated, the ITS2 fragment is a good alternative and can be
amplified with established primers for fungi. Although most
such published ITS and LSU region primers do not match
all AMF sequence variants, many do not strictly discrimi-
nate AMF taxa, as they match at least 50% of the known
intraspecific sequence variants. These primers are ITS1
(White et al., 1990) with a ratio of total number of
sequences analysed : total mismatches : 3¢-end mismatches
in the last four sites of 1250 : 56 : 5, ITS4 with
1271 : 23 : 5, ITS5 (White et al., 1990) with
1217 : 36 : 4, LR3 (http://www.biology.duke.edu/fungi/
mycolab/primers.htm) with 929 : 24 : 15 and ITS1F
(Gardes & Bruns, 1993) with 1250 : 75 : 4. ITS1F shows
mismatches to a number of AMF, such as most Ambispora
species, some Glomus species, Scutellospora projecturata and
many members of the Diversisporaceae and Acaulosporaceae,
but at positions that should not hamper amplification if
PCR conditions are not too stringent. Conversely, the fol-
lowing primers must be interpreted as not suited to amplify
all AMF: the LSU forward primer FLR3 (1239 : 128 : 64)
discriminates, for example some Scutellospora and
Paraglomus species; ITS3 (1219 : 604 : 577) mismatches at
the 3¢-end to most Glomus Group Ab, Ambisporaceae and an
unidentified Acaulospora species. Moreover, it has up to five
5¢-end mismatches to the Geosiphon pyriformis sequences.

New developments in 454 pyrosequencing methods will
soon allow a read length of 1000 bp. For this, new primers

could be designed targeting a fragment consisting of the
ITS2-LSU region (complete ITS2 and LSU until primer
LSUmBr), with a length of c. 960–1117 bp. This fragment
allowed resolution of all species investigated by NJ analyses
(data not shown), although with lower bootstrap support
when compared with the 1500 bp fragment.

Conclusion

We have shown that barcode gap analyses based on the
rDNA regions are not suited for AMF barcoding. The
intraspecific variation seems heterogeneous and exception-
ally high in some groups. Phylogenetic analyses of the c.
1500 bp SSUmCf-LSUmBr rDNA fragment distinguished
all species investigated, whereas shorter rDNA fragments
did not allow a separation of very closely related species.
The LSU-D2 and ITS2 fragments appear most suitable for
high-throughput 454 GS-FLX Titanium pyrosequencing
technology with 400 bp read length,

However, in addition to methodological aspects, species
recognition is mainly hampered by the lack of a compre-
hensive and accurate baseline dataset and accessibility of
biological material. To overcome this and to avoid prob-
lems using mixed or cross-contaminated cultures it would
be desirable to establish, provide and use single-spore iso-
lates. Many open questions could be answered by studying
more defined cultures and isolates, or sometimes by more
in-depth characterization of field material. Surprisingly, for
many very recently described AMF species no biological
material seems to be available at all, except for the voucher
that is needed for the formal description. Consequently
these species are not available from culture collections,
making any proof or improvement of concepts very
difficult.

From the molecular biological point of view, the use of
proof reading polymerases under optimal PCR conditions
is highly recommended, as it considerably reduces PCR
errors and sequence chimaera, as discussed in Lahr & Katz
(2009) for example, although it should be noted that the
Phusion-PCR conditions used in that paper are unsuitable
(see http://www.finnzymes.com). To mark errors in the
public databases, a third party annotation facility in
GenBank (as proposed by many mycologists, such as
Bidartondo et al., 2008) would help, but unfortunately is
not allowed. Therefore, curated databases such as UNITE
currently seem to be the only option to provide reliable
data.

For future analyses, a ‘quantitative world of community
analysis’ beyond the current limit of 400 bp read length will
be feasible, as 1000 bp 454-reads are possible (http://
www.454.com) and new high throughput (and possibly
low-cost) sequencing technologies may allow even
longer reads, soon (e.g. Pacific Biosciences, http://www.
pacificbiosciences.com; Eid et al., 2009). This may be taken
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as another argument in favour of using longer DNA bar-
codes for better species resolution, as suggested here.

As a baseline for Glomeromycota DNA barcoding, we pro-
pose the sequencing of variants of the easily PCR amplifiable
SSUmCf-LSUmBr 1500 bp fragment. We also recommend
that such a molecular characterization should be included
in AMF species descriptions whenever possible. The
sequence data will be very important for future molecular
ecological studies of AMF–plant associations and
preferences in the field, which are still mostly hidden.
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species level detection of Glomeromycota: one PCR primer set for all

arbuscular mycorrhizal fungi. New Phytologist 183: 212–223.

Lahr DJG, Katz LA. 2009. Reducing the impact of PCR-mediated

recombination in molecular evolution and environmental studies using a

new-generation high-fidelity DNA polymerase. BioTechniques 47: 857–

866.

Lang BF, Hijri M. 2009. The complete Glomus intraradices mitochondrial

genome sequence – a milestone in mycorrhizal research. New Phytologist
183: 3–6.

Lee J, Lee S, Young JPW. 2008. Improved PCR primers for the detection

and identification of arbuscular mycorrhizal fungi. FEMS Microbiology
Ecology 65: 339–349.

Lee J, Young JPW. 2009. The mitochondrial genome sequence of the

arbuscular mycorrhizal fungus Glomus intraradices isolate 494 and

implications for the phylogenetic placement of Glomus. New Phytologist
183: 200–211.

472 Research

New
Phytologist

� The Authors (2010)

Journal compilation � New Phytologist Trust (2010)

New Phytologist (2010) 187: 461–474

www.newphytologist.com



Lloyd-Macglip SA, Chambers SM, Dodd J, Fitter AH, Walker C, Young

JW. 1996. Diversity of the ribosomal internal transcribed spacers within

and among isolates of Glomus mosseae and related mycorrhizal fungi.

New Phytologist 133: 103–111.

Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar

AB, Buchner A, Lai T, Steppi S, Jobb G et al. 2004. ARB: a

software environment for sequence data. Nucleic Acids Research 32:

1363–1371.

Morton JB, Benny G. 1990. Revised classification of arbuscular

mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new

suborders, Glomineae and Gigasporineae, and two new families,

Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae.
Mycotaxon 37: 471–491.

Msiska Z, Morton J. 2009. Phylogenetic analysis of the Glomeromycota

by partial b-tubulin gene sequences. Mycorrhiza 19: 1432–1890.
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Abstract 

Spores of two supposedly arbuscular mycorrhizal fungal species, new to the United Kingdom and recently 

described as Acaulospora alpina and Ambispora brasiliensis (Glomeromycota), were discovered in soil 

samples from moorland in upland Scotland. Soil and plant trap pot cultures were established, but attempts 

to establish these fungi in single-species pot cultures with Plantago lanceolata as host were unsuccessful. 

Nevertheless, based on a 1.5-kb DNA fragment spanning part of the small subunit rRNA gene, the internal 

transcribed spacer region and part of the large subunit rRNA gene, both these species could be detected 

directly in field-sampled roots, together with one uncultured species each of Scutellospora, Rhizophagus 

(former Glomus group Ab, or ‘Glomus intraradices clade’) and Acaulospora. Whereas A. alpina has 

characteristic morphological similarities to other species in its genus, A. brasiliensis morphologically has 

little in common with any other species in Ambispora. The molecular phylogeny, DNA barcoding and 

morphological evidence clearly place A. brasiliensis in the genus Acaulospora. We therefore rename the 

species, reported from Brazil and Scotland, as Acaulospora brasiliensis comb. nov., and discuss 

ecological aspects of the very different environments from which A. brasiliensis and A. alpina have been 

reported. 

Introduction 

This study was initiated during an investigation of the mycorrhizal colonisation potential of Scottish 

upland soils for Salix lapponum cuttings (Milne et al. 2006). Natural S. lapponum and S. herbacea were 

sampled and examined for the occurrence of arbuscular mycorrhiza (AM). The presence of vesicles 

confirmed that AM fungi (Glomeromycota; Schüßler et al. 2001) were present, and samples were 

examined for the presence of glomeromycotan spores for morphological identification. Abundant spores 

that resembled Acaulospora alpina (from high altitude in Switzerland; Oehl et al. 2006) and Ambispora 

brasiliensis (from Minas Gerais State, Brazil; Goto et al. 2008) were recovered from trap cultures. The 

specimens of ‘A. brasiliensis’ appeared to be more like an Acaulospora species (Diversisporales), than a 

member of Ambispora (Archaeosporales), thus conflicting with the published description. Therefore, we 

re-examined and expanded our data and studied the taxonomic, phylogenetic and systematic position of 

the Scottish organism and A. brasiliensis with a view to reconciling this apparent conflict. There is no 
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DNA sequence data for the Brazilian organism, but a morphological study was undertaken to compare it 

with the Scottish collections. The holotype of A. brasiliensis, consisting of spores preserved on 

microscope slides, was examined and compared with similar preparations of the Scottish specimens. The 

Scottish A. brasiliensis-like fungus was also characterised by DNA sequences providing species-level 

resolution, including a region that probably will cover the official DNA barcode for fungi (see also 

Stockinger et al. 2010). This allowed a direct detection of the fungus in the roots of plants from the 

Scottish upland moorland, together with A. alpina and additional uncultured species, one each of 

Scutellospora, Rhizophagus and Acaulospora. The discovery of the same species of arbuscular 

mycorrhizal fungi (AMF) in very different ecological conditions is discussed. 

 

Materials and Methods 

Origin of plant and fungal material 

On the 23rd of September 2003 an excursion was made to Meall nan Tarmachan (approximately 900 m 

altitude, UK national grid coordinates NN 58789 38612: 56° 31′ 5.82″ N 4° 17′ 48.29″ W), an upland site 

in Scotland, to collect fruiting bodies of ectomycorrhizal fungi associated with Salix herbacea along with 

samples of the acidic soil (pH 4.0–5.0, measurements west of Lochan na Lairige; Stevens and Wilson 

1970) and vegetation. Samples were collected by removing a small patch of turf and attached soil with a 

hand trowel to a depth of about 10 cm. These samples came from a mainly grassy area supporting a mixed 

plant population of Festuca vivipara, Nardus stricta, Salix herbacea, Alchemilla alpina, Vaccinium 

myrtillus, Vaccinium vitis-idea, Galium rotundifolium, Carex spp. and Rhacomitrium lanuginosum. On 

16 April 2010, six new samples were collected from Meall nan Tarmachan by National Trust for Scotland 

staff. Spore extractions from these yielded the same species with acaulosporoid spores as had been found 

in the earlier samples. Mixed plant species root samples were taken for DNA extraction. More new 

samples were taken from a nearby location (close to Lochan na Lairige) at a slightly lower altitude 

(56°31′14.20″N 4°16′ 47.60″W at approximately 500 m amsl) on 6 September 2010. The soil was thin and 

peaty, with a pH (in water) of 4.9, and these also contained both species.  

Culture attempts 

Subsamples of the soil (approximately 15 ml) were subjected to centrifugation and sucrose floatation to 

extract spores (Walker et al. 1982). Attempts were made to establish multi-spore pot cultures with 

Plantago lanceolata in Sunbags (Sigma-Aldrich, UK) by pipetting spores onto seedling roots in the 

planting hole in 10 cm diameter pots containing a heat-disinfested mixture (3:1, v/v) of horticultural sand 

and Terragreen™ (expanded attapulgite clay, Oil Dry Corp., USA) (Walker 1999). Further culture 
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attempts, as ‘soil plus plant traps’ were established by mixing the soil with equal parts of Terragreen™ 

and replanting the sward sample to establish closed pot cultures in Sunbags (Walker and Vestberg 1994). 

 

Morphological analyses 

The holotype of A. brasiliensis consists of a single microscope slide, labelled ‘Ambispora brasiliensis 

15 08 06 Serra do Cipó’. The slide was contained in a cardboard slide holder upon which was written 

‘URM78879 Ambispora brasiliensis (typus)’. No other information was provided with the specimen 

except a note from URM saying ‘URM78880, also requested by Dr. Chris Walker, is not available.’  

The spores on the slide were studied in detail through a Zeiss Axioskop research microscope. Digital 

images were captured with a Canon EOS5D camera and size measurements were made with a calibrated 

eyepiece reticle. For the Scottish material, extracted spores were examined initially in water under a 

dissecting microscope, followed by study of spores in polyvinyl alcohol lactoglycerol (PVLG) without or 

with Melzer’s reagent (1:4, v/v; PVLG-M) under the compound microscope as described above. Some 

specimens were also examined in glycerol. Spain (1990) suggested including unmodified wall structure 

observations from water immersed specimens, but without special objective lenses water has poor optical 

properties for compound microscopy, and dries rapidly in unsealed mounts. Glycerol does not affect the 

wall structure and gives a satisfactory refractive index. Comparisons with other glomeromycotan fungi 

were made from original species descriptions (e.g. Walker and Trappe 1981; Walker et al. 1993; Walker et 

al. 2004) and from herbarium specimens collected by Walker since 1974. Spore colour descriptions were 

from spores in water, either by comparison with a chart (Anon 1969; Anon 1990) or, when unmatched, by 

use of vernacular colour names The purely morphological terms ‘acaulosporoid’ or ‘acaulospore’ refer to 

a spore produced in the stalk or neck of a sporiferous saccule and do not imply homology with similar 

spores of Ambispora or Archaeospora spp. We do not use the term ‘glomerospore’ (Goto and Maia 2006) 

used in the protologue of A. brasiliensis because there are several different kinds of spores produced by 

glomeromycotan fungi, and they are likely not to be homologues (Morton and Msiska 2010). Glomoid 

spores are found amongst widely separated systematic groups, and are unlikely to be homologous either 

amongst glomeromycotan higher taxa or with either acaulosporoid or gigasporoid spore morphs. 

 

Molecular characterisation 

DNA extractions from single spores, polymerase chain reaction (PCR), cloning, sequencing and sequence 

editing were as described in Schwarzott et al. (2001) and Krüger et al. (2009). The near full-length small 

subunit (SSU) rRNA gene was analysed together with the complete internal transcribed spacer (ITS) 

region, including the 5.8S rRNA gene and ~800-bp of the large subunit (LSU) rRNA gene. 

For the SSU rDNA three clones revealing slightly different sequence variants were sequenced from 

sample W4699/Att1211-0, taken 19th September 2004 to obtain robust evidence on the genus level. For 
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the ITS and LSU rDNA regions a ~1.5-kb fragment was cloned and analysed, to achieve species-level 

resolution (Stockinger et al. 2010) and to cover the potential official fungal primary DNA barcode (the 

ITS region or a combination of the ITS and the 5′ LSU regions). Part of the sequence data (clones 

pMK062-3; pMK064-4, 6; pMK065-4, 5, 6, 7; pMK109-1, 2) was derived from the same, stored material 

as the SSU rDNA (W4699/Att1211-0). The remaining clones sequenced (pCK032-1, 2, 4) came from a 

subculture (W5473/Att1210-5) sampled on the 5th of July 2008. DNA was extracted from 10 cm 

(20 randomly taken root fragments of 0.5 cm length; approximately 150 mg fresh weight) of field-sampled 

mixed plant roots. To cover a fraction of the intraspecific sequence variability, ten distinct sequences from 

two separate attempts (W4699/Att1211-0 and W5473/Att1210-5) were characterised and used for 

phylogenetic analyses of the ~1.5-kb SSU-ITS-LSU rDNA fragment. 

The SSU rDNA sequences were submitted to the EMBL database with the accession numbers 

FN825898-900, those of the SSU-ITS-LSU rDNA regions with the accession numbers FN825901–912 

and those for the DNA directly amplified from the roots with FR681926–936 and FR772326–334. 

Phylogenetic analyses were performed with RAxML 7.2. (Stamatakis et al. 2008) hosted at the CIPRES 

Portal 2.2 (http://www.phylo.org/portal2/) using the GTRGAMMA model for the bootstrapping phase and 

for the final tree inference model, with 1,000 bootstraps. Analyses of the SSU rDNA, using sequences 

covering all main phylogenetic lineages in the Glomeromycota, clearly showed the new sequences 

obtained to be Acaulospora-related. Further phylogenetic analyses of the 1.5-kb fragment were then 

restricted to sequences from the Acaulosporaceae only incorporating all well-characterised sequences 

from the public databases and Diversispora sequences as outgroup. 

The taxonomy and the sequence annotations used are adopted from the most recent systematic treatment 

of the Glomeromycota published by Schüßler and Walker (2010). 

Results 

The two dominantly sporulating species found in all three samplings from the upland moorland in 

Scotland possessed small, ornamented acaulosporoid spores. They were accompanied by a few spores of 

other glomeromycotan fungi. The trap cultures, in contrast, initially yielded only the two putative 

Acaulospora spp., later described as A. alpina by Oehl et al. (2006) and A. brasiliensis by Goto et al. 

(2008). Several unsuccessful attempts were made to isolate both these organisms in pot culture. 

Sporulation continued in these pots until March 2006, but when sampled again in October 2006 and in 

January 2008, no spore of either species was found. In November 2009, further sampling of the pot 

cultures revealed an Ambispora sp. (probably undescribed) and Glomus ambisporum, but all attempts at 

establishing subcultures of these species failed. The morphology of the spores of A. alpina was 

substantially as in the description of Oehl et al. (2006) and thus will not be discussed further herein. 
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Morphology of the Ambispora brasiliensis holotype 

The holotype consists of a number of specimens mounted under two 22-mm square cover slips in what 

appears to be PVLG. There were 15 spores of the species concerned, as well as one spore of an 

undetermined species of Scutellospora, and two small, globose spores of an undetermined 

Rhizophagus sp. There were also a few other inclusions, but these were not glomeromycotan. All but four 

of the specimens were crushed, and only one had a short ‘pedicel’ at the point of origin. It was not 

possible to observe a scar or pedicel on any of the remaining spores. Because the spore base could not be 

identified, shortest by longest dimension of the four uncrushed specimens were measured. The resultant 

measurements were 72 × 88, 78 × 80, 75 × 83 and 69 × 75 µm. The crushed spores were also measured 

and their approximate original, uncrushed size was estimated to have been 64–88 × 64–88 µm. There was 

no saccule on the type slide, and thus no observations could be made for comparison with the original 

species description. 

The wall structure of the type specimens was difficult to assess because, although they were crushed, in 

most specimens such detail was obscured and satisfactory observations were impossible. We interpret the 

most likely structure to be A(UoL)B(F)C(FF), where U refers to a ‘unit component’, L to a laminated 

component, and F to a flexible component. 

 

Morphology of the Scottish fungus 

The appearance of the specimens (Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) did not differ in glycerol, PVLG or 

PVLG-M. Because of the particularly small size of the spores, there is inevitably some doubt when 

interpreting the wall structure. Some components are flexible in nature, and because they wrinkle on 

crushing, it is often difficult to distinguish real components from artefactual ones resulting from folding. 

The outer component of the acaulospore wall of this species is also very difficult to see because of the 

ornamentation which usually obscures its origin. 

The acaulospores have a sparkling brownish yellow appearance in water under reflected light (Fig. 1). The 

colour of the spores varied depending on the collection. A few were more or less colourless (hyaline), but 

most were various shades of yellow to brown (Figs. 2, 3; Table S1). Some specimens were found with the 

sporiferous saccule still attached, though in all of these, it was collapsed and devoid of contents (Figs. 1, 

3). The saccule wall appears to consist of just one component, about 1 µm thick (Fig. 4, arrow). The 

majority of spores had become detached in the manner typical of most species in the genus Acaulospora. 

We did not find a saccule with content or with young or developing spores attached. 

The wall structure followed the expected pattern for members of the genus Acaulospora in that it 

consisted of a continuation of the saccule wall (Fig. 6), overlaying a laminated, pigmented, and relatively 

rigid, main structural component up to 4 µm thick, but mostly between 1 and 2 µm. These constitute a 

single wall group, A. This outer wall group is brittle and it fragments readily upon heavy crushing. 
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Although the saccule wall itself and the mycelium from which it is formed, are smooth, component 1 is 

ornamented to varying degrees with large, colourless collicles (more or less rounded elevations, Fig. 2) up 

to 10 µm high, and in length and width up to 20 × 30 µm, seemingly developed from the saccule wall 

component (Fig. 8). In outline, the collicles may be smooth or irregular. They vary considerably in size, 

and their outlines in plain view also is variable, from circular to oval to irregular with smooth to jagged 

boundaries. Their height, even on the same specimen, can vary from about 1 to 10 µm. On some spores, 

they are low and quite difficult to see, whereas on others, they are immediately evident, even under the 

dissecting microscope. Occasional specimens are almost smooth with only a few collicles remaining 

attached to the structural component, indicating that perhaps this outer component may break down over 

time. 

Inside the main structural wall group there sometimes appears to be a second group, B that is very difficult 

to observe. It is a single very thin flexible component up to, but normally considerably less than, 1 µm 

thick (Fig. 7). On most spores, it cannot be seen at all and might be an artefact of microscopy. It is more 

likely to be an ontogenetic character, as a similar group occurs in spores of some Acaulospora spp. that 

have been studied developmentally (e.g., Stürmer and Morton 1999). If it is part of a developmental 

sequence, it either is delicate, disintegrating when the spore is crushed, or it is ephemeral, disappearing at 

spore maturity. We could not resolve which is correct. Surrounded by this is a third wall group, C, 

consisting of a pair of apparently adherent thin components (Fig. 7). The outermost of these is very thin 

(<1 µm) and flexible, detaching on crushing from an innermost component (up to 1 µm thick) which 

encloses the spore contents. 

There is either a short pedunculate stalk (Fig. 5) formed from the proximal part of the sporiferous saccule 

wall or a distinct caldera-shaped scar resulting from a slightly raised collar at the point of formation of the 

laminated wall component (Fig. 9). There was no reaction to Melzer’s reagent. Glomoid spores were not 

found in either field samples or pot cultures. Germination was observed in one specimen (Fig. 10), but it 

was not possible to distinguish any pregermination structure such as a germination shield on this spore. 

 
Spore size comparison of holotype and Scottish material 

Fungal spore size measurements should be quoted as ‘length by width’ (Hawksworth et al. 1983). Ours are 

made by taking the length as normal to the spore base (origin of spore) and the width at right angles to 

this. By following this convention (see e.g. Thaxter 1922; Gerdemann and Trappe 1974) it is possible to 

determine if spores are broader than they are long, and to compare shapes by using terms such as ovoid 

versus obovoid and pyriform versus obpyriform. The dimensions given by Goto et al. (2008) in the 

protologue of A. brasiliensis seem to be simply shortest dimension (presumably width) by longest 

dimensions (presumably length) without reference to the spore base. We have combined the dimensions 

given in the protologue with our own measurements for the description of the new combination. 
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The size range of the Scottish spores is somewhat smaller than that given in the protologue of 

A. brasiliensis. We consider the difference between 48–91 × 51–96 µm, mean 66 × 67 µm (n = 215) for 

the Scottish material, and 59–88 × 69–100 (−118) µm (mean and number of specimens measured unstated 

in the protologue) given for the Brazilian specimens to be within the intraspecific range of glomeromy-

cotan spores. Measurements of the images in the protologue give one complete spore at 74 × 84 µm, and 

two for which only a single dimension could be measured at 88 and 93 µm, respectively. All these values 

are within the range of the Scottish material as well as our measurements of the spores in the holotype 

(64–88 × 64–88, mean 75 × 78 µm, n =15). 

 

Phylogenetic analyses 

The phylogenetic analysis of the SSU rRNA gene sequences (Fig. 1) clearly showed that the species 

described as A. brasiliensis (Goto et al. 2008) clusters with Acaulospora (Acaulosporaceae, 

Diversisporales) and not with Ambispora (Ambisporaceae, Archaeosporales). Thus, the species not only 

belongs in a different genus from that proposed in the protologue, but consequentially it must also be 

placed in a different order. For achievement of species-level resolution, we analysed an approximately 

1.5 kb rDNA fragment and we also characterised part of the intraspecific variability for this fragment 

(Krüger et al. 2009; Stockinger et al. 2010). When compared with the species for which sequence 

information is available, the Scottish fungus appeared most closely related to the recently published 

species Acaulospora colliculosa (Kaonongbua et al. 2010), followed by A. alpina (Fig. 12). We also 

detected the A. brasiliensis-like fungus in plant roots from the Scottish sampling site (sample no. 1518, 

Meall nan Tarmachan, 16 April 2010). Sequences representing A. alpina (Fig. 12), a Scutellospora sp. 

closely related to, but not conspecific with S. gilmorei (not shown), an unknown Rhizophagus sp. (not 

shown), and a further, unknown Acaulospora species also were obtained from the same plant root sample. 

Both the phylogenetic trees computed from the SSU rDNA and the ITS-LSU rDNA fragments, 

unquestionable show that the Scottish fungus, morphologically appearing conspecific with A. brasiliensis, 

clusters within Acaulospora (Acaulosporaceae) and does not belong in the Ambisporaceae. 

 

Formal transfer of Ambispora brasiliensis to Acaulospora 

Acaulospora brasiliensis (B.T. Goto, L.C. Maia & Oehl) C. Walker, M. Krüger & A. Schüßler comb. 

nov. Figs 1-12. 

MycoBank no. MB 518748 

Basionym: Ambispora brasiliensis B.T. Goto, L.C. Maia & Oehl, Mycotaxon 105: 13 (2008) (MycoBank 

no. 511612). 
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Acaulosporoid spores (acaulospores) borne singly in the soil, laterally in the neck of a hyaline sporiferous 

saccule, almost colourless to yellow to olive yellow to very pale brown to brownish yellow to yellowish 

brown to reddish yellow to yellowish red, globose to subglobose to broadly ellipsoid (rarely irregular), 

48–91 × 51–100 µm (rarely up to 118 µm in the longest dimension). Spore wall structure of five 

components 1–5 in three groups, A–C. Group A of two components; outer component hyaline, originating 

from the neck of the sporiferous saccule, forming a collicular ornamentation of variable size, apparently 

arising from a continuous basal layer approximately 1 µm thick, tightly adherent to a laminated, 

pigmented structural component, its point of origin appearing as a slightly raised collar or occasionally as 

a pedicel of variable length. Wall group B of one thin, flexible, hyaline, component, <1 µm thick. Wall 

group C, of two components, the outermost very thin and elastic, up to 1 µm thick, juxtaposed with a more 

robust component, approximately 1 µm thick enclosing the spore contents. No reaction to Melzer’s 

reagent. 

Distribution and habitat: Known from the Cerrado biome of Serra do Cipó, Minas Gerais State, Brazil 

(Goto et al. 2008) from a site described as ‘mainly consisting of Velozzia caruncularis’, and from an 

upland heathland in Scotland in which the dominant vegetation consists of Festuca vivipara and Nardus 

stricta, with Salix herbacea, Alchemilla alpina, Vaccinium myrtillus, V. vitis-idea, Galium rotundifolium, 

G. saxatile, Carex spp., and Rhacomitrium lanuginosum. From sequence analyses, it is known to be a 

member of a glomeromycotan community among the roots of these plants, including A. alpina, another 

Acaulospora sp., a Scutellospora sp. closely related to S. gilmorei and an undetermined Rhizophagus sp.  

Mycorrhizal associations are unknown, but root colonisation shown by DNA-based detection in plant 

roots that were sampled from the field site. 

Specimens examined  

Typus: Brazil. Minas Gerais. Serra do Cipó, beneath cerrado vegetation (dominated by Velozzia caruncularis). 

Microscope slide (URM78879) dated 15 Aug. 2006. In the protologue, the collection date is given as ‘July 2004’. 

United Kingdom, Scotland, Perthshire, Ben Lawers National Nature Reserve, Meall nan Tarmachan (Hill of the 

Ptarmigan), approximately 900 m amsl, from within 200 m of UK National Grid Reference: NN58789 38612 

(latitude, 56.518284N; longitude, 4.296748W) from soil beneath heathland vegetation or from subsequent pot 

cultures. C. Walker (voucher numbers preceded by W). W4514 from sample 1136 on 23 Sep 2003; W5748 from 

Sample 1517; W5751 from sample 1518; W5755 from sample 1519; W5759 from sample 1520; W5762 from sample 

1521; W5765 from sample 1522, all collected 16 April 2010. W5827 from sample 1527, close to Lochan na Lairige 

(56°31′14.20″N 4°16′47.60″W) at approximately 500 m amsl, collected 6 September 2010. From trap pot cultures 

from containing Festuca vivipara, Nardus stricta and Galium rotundifolium: W4699 from Att1211-0 from sample 

1136 on 19 September 2004; W4786 from Att1210-0 from sample 1136 on 6 February 2006; W4796 from Att1210-0 

from sample 1136 on 21 February 2006; W4833 from Att1210-0 from sample 1136 on 15 July 2006. 
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Discussion 

We showed first records of two Acaulospora spp., A. alpina and A. brasiliensis from a Scottish upland. 

The latter species was initially described as Ambispora brasiliensis (Goto et al. 2008) and is transferred to 

Acaulospora (Acaulosporaceae) based on molecular evidence and morphological characterisation. 

To study its morphology, isotypes of A. brasiliensis were requested as a loan from the herbaria OSC and 

Z+ZT (Oregon State University and Zurich), but neither of them could locate the specimens concerned. 

Nevertheless, it is clear from the holotype and the protologue of A. brasiliensis that there are no significant 

differences between spores of the Brazilian and Scottish organisms, and we conclude they are conspecific. 

Goto et al. (2008) described, but did not illustrate, one glomoid spore of 25–30 µm in diameter attached to 

a germinating hypha from a single acaulosporoid spore. The Scottish collections contained glomoid spores 

of an Ambispora sp., but these were very large (~300 µm in diameter) in comparison with those of 

A. brasiliensis, and corresponded with the descriptions given for members of Ambispora (Walker et al. 

2007). No glomoid spores have been found linked to the Scottish acaulospores. Therefore, more evidence 

is needed before the asserted dimorphic nature of this organism can be verified. 

The Brazilian acaulospores have a slightly larger maximum dimension than those from Scotland, but 

similar differences even occur among subcultures of single-spore AMF isolates (Walker and Vestberg 

1998). Though the Brazilian spores are described as being ‘hyaline to light yellow’, images in the 

protologue show them to be yellow to brown. The range of colour for the Scottish collections is almost 

colourless to yellow to pale yellow brown or reddish brown. Such differences are likely to result from 

different perceptions and methods of comparison and, as the slight size differences, are not sufficient to 

separate species. The ‘pedicel’ used to place the organism in Ambispora is not a feature confined to that 

genus being present on members of Acaulospora and Entrophospora infrequens (Hall 1977). Some 

specimens of A. brasiliensis from Scotland had a short stalk although most had only a circular or oval scar 

as seen in most Acaulospora spores. The illustration of a ‘collar’ in the Brazilian species description (Goto 

et al. 2008) is similar to those typical of spores in the genus Acaulospora, showing that both scars and 

short ‘pedicels’ may be present.  

We could not reconcile the wall structure in the species description with either the holotype specimens or 

those in our own collections. Even with large-spored species, it usually is impossible to follow spore 

development from field-collected material. In our collections and trap cultures, we have so far found 

spores either completely sessile or attached only to empty and collapsed saccules. Thus, it was impossible 

to follow the development of the saccules or spore wall structure. The thickened and uneven ornamen- 

tation on the acaulospore surface makes it difficult to determine wall structure or to see internal structures 

such as a germination shield. 
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The sporiferous saccule wall is described by Goto et al. (2008) as being two-layered, but their illustrations 

do not convincingly illustrate more than one layer, and saccules are completely lacking from the holotype 

material available to us. Their ‘evanescent outer layer’ appears to be soil particles adherent to the 

collapsed and decaying saccule. We have been unable to see more than a single wall component in our 

specimens, and from the images in the protologue, the wall structure seems the same as that observed in 

the Scottish material. In our interpretation, the main structural wall group of the spore consists of two 

components. The first is colourless and seems to be continuous with the wall of the saccule. It is 

ornamented to varying degrees with pustule-like collicles which occur only around the spore and not on 

the saccule itself. However, the limitations of light microscopy on such small specimens must be 

considered. The illustration of the pedicel in Goto et al. (2008) as continuous with the main structural 

spore wall (‘outer wall’) does not adequately illustrate such a feature. Although one specimen on the 

holotype slide does have a short pedicel, it is presented in such a way that its structure and relationship to 

the wall components of the acaulospore could not be determined. We interpret it as part of the outermost 

component (the saccule wall). Tightly adherent to it is the coloured outer component of the spore itself. 

This is probably ‘laminated’, though in many specimens it is so thin that layers cannot be seen. Many 

spores of glomeromycotan species seem to have such a laminated component as the main structural 

component or layer. We, therefore, interpret the wall structure of wall group 1 as consisting of one 

component originating from the saccule wall and a second component, the structural wall of the 

acaulospore, that is probably produced de novo within a lateral swelling in the saccule neck. Goto et al. 

(2008), however, consider that the saccule has two components (layers) that later differentiate into two 

separate ‘walls’, the outermost having three layers and the innermost having two layers. From 

examination of many specimens, it is clear that the inner wall groups lack any attachment to either the 

saccule wall or the main structural wall group of the acaulospore. Spores of both Acaulospora spp. and 

Ambispora spp. develop their main structural wall de novo within the saccule wall (Kaonongbua et al. 

2010; Stürmer and Morton 1999; Walker et al. 2007). 

Moving towards the interior of the spore, Goto et al. (2008) describe a ‘middle wall’ that consists of two 

layers (formed by differentiation from the saccule wall). Such a development has not been recorded for 

any species in the Glomeromycota, and in particular is different from the structure of either Ambispora or 

Acaulospora (Kaonongbua et al. 2010; Walker et al. 2007). We could see only a very thin flexible 

component that we consider to be a second wall group because sometimes, upon crushing the spore, it 

remains close to wall group 1, and sometimes to the innermost group (group 3). Goto et al. (2008) 

illustrate a third ‘wall’ consisting of three layers. We interpret the third wall group as having two distinct 

components of more or less equal thickness, though sometimes only a single one could be seen. We were 

able to see what we thought might be a germination shield from a lateral view on one specimen (not 
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shown), but we were not certain that we were interpreting it correctly. Goto et al. (2008) described (but 

did not illustrate) a germination shield on one spore only as being a lobed structure similar to that present 

in spores of species in Scutellospora or Racocetra (Morton and Msiska 2010). We could not find a 

germination shield on any of the holotype specimens. 

With the exception of A. colliculosa, no other member of the Acaulosporaceae has small, yellow to 

brownish yellow acaulosporoid spores possessing collicular ornamentation. The spores of A. brasiliensis 

lack reaction to Melzer’s reagent, even after the most vigorous crushing on a microscope slide with 

PVLG/Melzer’s (4:1, v/v) and in pure Melzer’s reagent. Although most Acaulospora species react to this 

reagent, producing a pale purple to dark purple colour associated with at least one internal component, a 

few species, such as A. laevis, and A. colliculosa (Kaonongbua et al. 2010) lack such a reaction. However, 

A. alpina, which is a close relative of A. brasiliensis, possesses an inner wall component that becomes 

purple when spores are crushed in PVLG/Melzer’s (Oehl et al. 2006; C. Walker unpublished). This 

provides support for the opinion that the reaction to Melzer’s reagent may not be a phylogenetically 

informative character (Kaonongbua et al. 2010). 

Neither ourselves nor Goto et al. (2008) have been able to establish the fungus in pure culture or to isolate 

it by single-spore culturing attempts. Spores of A. brasiliensis have been produced only in pot cultures 

established from field soil and natural plants, but these could not be maintained even by moving entire 

plants to a new pot of sterilised substrate. However, we could directly detect the presence of 

A. brasiliensis in field-collected roots from the Scottish location by molecular biological methods, 

together with A. alpina and one undetermined AMF species each of Scutellospora (closely related to 

S. gilmorei), Rhizophagus (different from any other species yet sequenced from this genus), and 

Acaulospora (clustering in a monophyletic clade with A. colliculosa, A. brasiliensis and A. alpina). It will 

still be necessary to establish it in pure culture before its mycorrhizal nature can be confirmed through the 

application of Koch’s postulates. 

Acaulospora alpina was previously known only from altitudes above 1,300 m amsl in the alpine region of 

mainland Europe. Although the Scottish locations are at much lower altitude (500–900 m amsl), the 

climatic conditions in Scotland are also very severe, but soil conditions and plant communities clearly are 

very different in these ecosystems. The Scottish samples came from a thin, peaty soil of approximately 

pH 5, overlaying a ‘Ben Lawers schist’. In contrast, the bedrock in the alpine areas from which A. alpina 

is known seems to be very variable. Spores of A. alpina were found in ‘...acidic sandstones, siliceous 

gneiss and granite rocks, up to ultrabasic serpentinite and calcareous “Bündner Schiefer” schists and 

carbonatic and dolomitic limestones ...’ (Oehl et al. 2006). The pH value given is five for the sample from 

which the type material came. However, it is much more unexpected to find a fungus, A. brasiliensis, 
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reported from a dry, cerrado ecosystem with predominantly summer rainfall (Minas Gerais State, Brazil) 

on almost permanently wet, cold, peaty Scottish moorland. Nevertheless, the bedrock in the Serra do Cipó 

also seems to be igneous, and has a low pH of 4.7 (Goto et al. 2008), as does the Scottish site (pH 4–5). 

Low pH has been shown as a likely key factor in affecting populations of glomeromycotan fungi in 

agricultural conditions (Wang et al. 1985). 

The distribution of some species in the Glomeromycota is known to be very wide with respect to different 

site conditions (Börstler et al. 2010), even to the point of speculation that humans have been responsible 

for spread through agricultural practices (Rosendahl et al. 2009). A. brasiliensis to date is known only 

from two sites that are not so heavily influenced by humans and its occurrence in such widely different 

ecosystems could lead to suggestions that it may be very widespread. On the other hand from two records, 

it is certainly too early to draw conclusions about its ecological preferences as a species, and it is not too 

far from the truth that the known distribution of organism may reflect the distribution of people interested 

in them rather than their true spread. As far as we can discover, the only common factor seems to be 

igneous bedrock with low soil pH, and this might be one of the problems in relation to establishing pot 

cultures. Molecular tools with species-level resolution should soon provide a better basis for interpreting 

such ecological and biogeographical information at the level of species on a secure foundation.  
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Legends to figures 

 

Fig. 1 Acaulospora brasiliensis comb. nov. Several acaulospores, some with attached saccules, extracted 

from substrate by swirling and decanting. Fig. 2 Acaulospora brasiliensis comb. nov. Individual spore, 

detached from the saccule, showing the collicular ornamentation on the outermost surface. Fig. 3 

Acaulospora brasiliensis comb. nov. Spore still attached to the colourless, transparent collapsed 

sporiferous saccule. Fig. 4 Acaulospora brasiliensis comb. nov. Detail of saccule wall, showing a single 

component (indicated with an arrow). Fig. 5 Acaulospora brasiliensis comb. nov. Pedicel-like spore base 

(indicated with an arrow) formed by the thickened saccule neck at the point of spore development. Fig. 6 

Acaulospora brasiliensis comb. nov. Point at which the spore has detached from the saccule showing a 

short ‘pedicel’ and the components of the main structural wall group (indicated with 1 & 2, respectively). 

Fig. 7 Acaulospora brasiliensis comb. nov. Structure of the apparent middle (3), and paired innermost 

wall components (4 & 5). Fig. 8 Acaulospora brasiliensis comb. nov. Composite image at two depths of 

focus (joined at the white diagonal line), showing the continuous nature of the saccule wall (S) and the 

outermost component of the acaulospore (1). Fig. 9 Acaulospora brasiliensis comb. nov. The caldera-

shaped scar at the point of detachment of the spore from the saccule. Fig. 10 Acaulospora brasiliensis 

comb. nov. Germinating acaulospore; the thick, coloured outer wall components obscure the contents, and 

it is not possible to see if a germination shield is formed. 

Fig. 11 Phylogenetic maximum likelihood tree computed with RAxML from individual or consensus 

sequences of near full-length SSU rRNA gene sequences, including all main lineages of the 

Glomeromycota. New taxa are adopted from Schüßler and Walker (2010). Support values derived from a 

1,000-fold bootstrapped analysis are shown on the branches; values below 60% were considered as 

unresolved and the respective topologies were collapsed to polytomies. Paraglomus sequences were used 

as outgroup. 

Fig. 12 Phylogenetic maximum likelihood tree computed with RAxML from approx. 1500 bp sequences 

covering approx. 250 bp of the SSU rRNA gene, the whole ITS region and an approx. 800 bp of the LSU 

rRNA gene. Some shorter sequences from the public databases were also included for comparison and are 

marked as follows: #, covering partial SSU and whole ITS region; *, covering partial LSU. Support values 

derived from a 1000-fold bootstrapped analysis are shown on the branches; values below 60% were 

considered as unresolved and the respective topologies were collapsed to polytomies. The tree was rooted 

with Diversispora sequences as outgroup; the root was shortened by 50%, as indicated by diagonal 

slashes. 
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Abstract

Background: Understanding the mechanisms underlying biological phenomena, such as evolutionarily conservative trait
inheritance, is predicated on knowledge of the natural relationships among organisms. However, despite their enormous
ecological significance, many of the ubiquitous soil inhabiting and plant symbiotic arbuscular mycorrhizal fungi (AMF,
phylum Glomeromycota) are incorrectly classified.

Methodology/Principal Findings: Here, we focused on a frequently used model AMF registered as culture BEG47. This
fungus is a descendent of the ex-type culture-lineage of Glomus epigaeum, which in 1983 was synonymised with Glomus
versiforme. It has since then been used as ‘G. versiforme BEG47’. We show by morphological comparisons, based on type
material, collected 1860–61, of G. versiforme and on type material and living ex-type cultures of G. epigaeum, that these two
AMF species cannot be conspecific, and by molecular phylogenetics that BEG47 is a member of the genus Diversispora.

Conclusions: This study highlights that experimental works published during the last .25 years on an AMF named ‘G.
versiforme’ or ‘BEG47’ refer to D. epigaea, a species that is actually evolutionarily separated by hundreds of millions of years
from all members of the genera in the Glomerales and thus from most other commonly used AMF ‘laboratory strains’.
Detailed redescriptions substantiate the renaming of G. epigaeum (BEG47) as D. epigaea, positioning it systematically in the
order Diversisporales, thus enabling an evolutionary understanding of genetical, physiological, and ecological traits, relative
to those of other AMF. Diversispora epigaea is widely cultured as a laboratory strain of AMF, whereas G. versiforme appears
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Introduction

A solid phylogeny is the basis for natural systematics and the

understanding of hierarchical levels in taxonomy and functional

diversity of organisms. This is particularly important for those

organisms that are widely used in basic research and are

commonly known as model species. Here, we clarify and rectify

the systematic classification of an experimentally frequently used

arbuscular mycorrhizal fungus (AMF). This fungus, catalogued as

BEG47, is phylogenetically distinct from most other laboratory

strains affiliated with the genus Glomus, but since the early 1980s

has erroneously been known as Glomus versiforme.

Fungi forming arbuscular mycorrhiza (AM) are main drivers of

most terrestrial ecosystems, living in intimate mutualistic symbiosis

with the majority of vascular land plants, which they provide with

water and inorganic nutrients, mainly phosphorus (P). Because

most crop plants form AM, and global P deposits are on the verge

of depletion, AMF can be considered indispensable for sustainable

agriculture. It will thus become very important to better

understand the biology and ecology of individual AMF species.

The fact that they are asexual, multikaryotic, and obligately

biotrophic, however, makes their study complicated and difficult.

All AMF are placed in the monophyletic fungal phylum,

Glomeromycota [1]. In the past, morphological classification often

yielded taxonomic groupings that did not reflect natural

relationships. Fortunately, such misclassifications are now less

frequent as DNA based characterisation becomes more common.

Many AMF formerly assigned to the genus Glomus, based on a

limited number of morphological characters, have now been

shown to belong to any one clade of the four presently described

orders of the Glomeromycota, separated by hundreds of millions of

years of evolution. For example, the former G. occultum and its

relatives were shown to belong to an ancient lineage [2] and

consequently transferred to Paraglomus in the Paraglomeraceae [3],

which later was assigned to a separate order, the Paraglomerales [1].

Likewise, G. callosum and G. gerdemannii are now placed in the genus

Ambispora [4–5] (Archaeosporales), another basal glomeromycotan

lineage. Many systematically misplaced species were thus trans-
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ferred from Glomus to other genera, in agreement with a natural

classification [6], and recently several species from the phyloclade

Glomus Group C (GlGrC, [7]) have been transferred to the genus

Diversispora (Diversisporales) [8]. Nonetheless, there are many species

still called Glomus, which remain to be correctly placed once their

phylogenetic affiliation is known.

A natural classification system is crucial for the description and

understanding of phylogenetic, functional and trait diversity that

influence patterns of plant and AMF community productivity. Plant

phylogenetic diversity is possibly correlated with community

productivity through functional diversity, and high AMF diversity

has been shown to promote plant diversity and also plant

community productivity [9–10]. Functional differences of AMF

and plants must impact upon each other and order- or family-level

phylogenetic relations, or both, have been shown to determine AMF

community assemblies and mycorrhizal symbiotic functioning [11].

Phylogenetic affiliation may also be important for understanding

functioning at the molecular level, as might, for example, be

indicated by differential gene expression and pathogen resistance

upon colonization by either culture DAOM197198 (as G. intraradices,

Glomerales), BEG47 (as G. versiforme) or Gigaspora gigantea (Diversisporales)

[12]. In this instance, BEG47, although named ‘Glomus’, is a species

from the Diversisporales and thus more closely related to Gigaspora

than to ‘G. intraradices’ DAOM197198.

As previously presented for the ‘model fungus’ in AM research,

DAOM197198 [13] (now Rhizophagus irregularis: synonym G.

irregulare, [8][14]), we here present a detailed review of the

phylogenetic position of BEG47, which is probably the second

most often used AMF culture in basic research and molecular

biological studies (e.g. [15–17]). The type material of both, G.

epigaeum and G. versiforme (synonym Endogone versiformis) and the

synonymisation [18] of BEG47 with G. versiforme were re-examined.

The species under consideration in relation to BEG47 are:

i) Endogone versiformis, named from combined collections (November

1860 to January 1861) [19] and deposited in the Helsingfor Botanic

Garden, Helsinki (H) by W. Nylander. The species was later

transferred to the genus Glomus as a heterotypic synonym of G.

macrocarpus var. macrocarpus [20] and then recognised as not conspecific

with G. macrocarpum, and classified as G. versiforme [18].

ii) Glomus epigaeum (described as G. epigaeus) [21], synonymised as

a later heterotypic synonym of G. versiforme [18]. The species was

described from a pot culture at Oregon State University,

numerous subcultures of which have been extensively used for

research, as G. epigaeus [22], as G. epigaeum [23] and, most

commonly, as G. versiforme (e.g., [15–17][24–25]). The culture-line

used in basic research, which includes BEG47, stems from the

original multi-spore culture from which G. epigaeum was described

in 1979 [21].

This study aimed at substantiating the phylotaxonomic

affiliation of BEG47 and clarifying its phylogenetic relationship

within the Diversisporaceae. We also included some other species

recently transferred from Glomus to Diversispora and Redeckera [8]

and considered, in addition, the environmental sequences of

Diversisporaceae from public databases to analyse the global

distribution of species from the Diversisporaceae. These data will

also facilitate future molecular ecological, evolutionary and

taxonomic studies, as they are currently implemented in a third

party annotated, web-accessible database [26] for reliable analyses

based on well-annotated fungal sequences.

Results

The culture-line represented by BEG47, which was already

known to be phylogenetically distinct from most other species in

Glomus [27–28], produces both pale (e.g. W5167/Att475-45) and

darkly coloured (e.g. W5165/Att475-45) spores. The pale spores

(which are considerably larger than the size range given for E.

versiformis [ = G. versiforme] and may darken with age) are

characterized by the same rDNA sequence types as the darker

ones and thus are doubtless conspecific.

Molecular phylogeny of Diversispora epigaea BEG47 and
Diversisporaceae

To study the phylogenetic relationships in greater detail, a core

sequence dataset was analysed consisting of all Diversisporaceae

sequences available, except environmental sequences lacking

species assignment. The internal transcribed spacer (ITS) and

partial large subunit (LSU) rDNA regions of the generic type

species, D. spurca, were also characterised. The phylogenetic

analysis (Figure 1) clearly shows that G. epigaea ( = G. versiforme

BEG47), G. aurantium, G. eburneum, and G. trimurales all belong to

Diversispora, in the Diversisporaceae, in agreement with the recent

major taxonomic revision of Glomeromycota [8]. Redeckera is well

separated from Diversispora, justifying its generic status as already

suggested by Redecker and colleagues [29].

The extended dataset contained environmental sequences

carrying sufficient phylogenetic information for analysis below

genus level (Figure 2), although the sequences that vary greatly in

length did not always overlap in the multiple alignment. From

non-monophyletic clustering of such non- or partly-overlapping

sequences it is impossible to prove whether or not they are of

conspecific origin. A couple of short environmental database SSU

rDNA sequences were omitted from the analysis shown in Figure 2

because they lowered phylogenetic resolution and disturbed tree-

topologies. They all clustered within Diversispora at the generic level

(Figure S1), except one environmental sequence (DQ357079) from

Ammophila arenaria rhizosphere soil from Portugal, which clusters

basally in the Diversisporaceae. The geographical annotations of

sequences falling within the phylogenetic lineage of Diversispora

indicate a panglobal distribution of the genus, through Europe,

Africa, Asia, Hawaii, the Middle East, North America and Central

America (Figure 2; Figure S1).

Morphology of the spores in the type material of
Endogone versiformis (G. versiforme)

The herbarium packet was annotated ‘Type of Endogone versiforme

Karst. DET: S. M. BERCH DATE: AUG 25, 1983’. The sample

was accompanied by a note with sketches in ink, dated ‘nov.1860’.

The note is expanded with additional drawings and further

annotation in pencil, indicating that it was originally in the hand of

W. Nylander; however, the additional drawings are unsigned and

it could not be established when or by whom they were made. The

original notes on the type material, together with the translation

into English of the Latin descriptions and annotations, are shown

in Figure S2 and the spore dimensions are given in Figure 3. The

type consisted of two small packets, each containing a very small

quantity of dried substrate incorporating a few very small

fragments of sporocarps (Figure S3). No prepared microscope

slides or other preserved material were included. Examination of

the holotype material of G. versiforme (Figure 4) shows that it

contained two rather distinctive kinds of spores (Figure 4A–C,I),

found either individually in the substrate or as fragments of

sporocarps (Figure 4A–E). One morph consists of small, pale

spores (Figure 4D,F) with relatively thin walls (Figure 4J). The

second morph (Figure 4K) has large, thick-walled darkly coloured

spores. Both morphs are directly compared in Figure 4C and

Figure 4I. The type was fractionated but it is difficult to determine
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if the individual spores result from disintegration of the sporocarps

during almost one-and-a-half centuries of storage and handling, or

if they actually were produced ectocarpically in the substrate.

Nevertheless, for both morphs, spores in the sporocarps and

substrate are morphologically identical.

Pale coloured spores form epigeously in sporocarps that are up

to 1 cm wide (information from the protologue), though only

minute fragments remain in the type collection. The sporocarp

peridium has a whitish, matted appearance and consists of tightly

tangled thin-walled (,1 mm thick) somewhat squamous aseptate

hyphae, 3-6 mm in diameter (Figure 4G). The glebal hyphae

appear tangled and are colourless, up to 15 mm wide, with very

thin (,1 mm) walls.

The spores (Figure 4D,F,J) are very pale in colour (Methuen

3A3, yellow) and translucent. For 27 of 85 measured spores, it was

impossible to determine the point of detachment from the

subtending hypha (spore origin) and thus also to determine their

lengths and widths. The dimensions of these, by simply taking the

longest and shortest dimensions, were 70–104664–91 (mean

85677) mm. There is little variation in spore shape, and no spore

was noted that exceeded the broadly ellipsoid category, defined by

a maximum ratio of length to width of 1:1.3 [30]. Of the

remaining 58 spores that could be measured conventionally, 16

were broader than long. Their dimensions were 64–109664–99

(mean, 83682) mm. Spore shape varied little; 26 were globose, 29

subglobose, and three broadly ellipsoidal. No truly ellipsoidal

(elongate, see [30]) spores were found. The structural spore wall

most probably consists of two colourless components in a single

group (Figure 4P). Component 1 is persistent and found on all

specimens. It is up to 1 mm thick and tightly adherent to

component 2 which is 2–5 mm thick. In some specimens, there

appears to be a third component, ,1 mm thick, but this might be

an artefact caused by congealing of spore contents in these very old

dried specimens. Most spores were completely detached from their

subtending hypha. However, where the subtending hypha could

be seen (Figure 4L,M) it was very short (no more than a few mm,

but rarely up to 15 mm long), with a very thin (#1 mm) wall, up to

7 mm wide distally, and usually tapered sharply proximally to a

width of ,1 mm. Hyphal attachments appear to be occluded by

fusing of the spore wall internally.

Redescription of Glomus versiforme (P. Karst.) S. M. Berch

(MycoBank MB106567) ; Endogone versiformis P. Karst (Myco-

Bank MB372848) (Figure 4A,D,F,G,J,L,M,P).

Sporocarps of indeterminate size and irregular shape, with a

pale, felty peridium; protruding through, or on the surface of

substrate. Spores globose to subglobose to broadly ellipsoid, 64–

109664–99 (mean, 83682) mm, with a subtending hypha, often

truncated proximally and difficult or impossible to locate. Sealed

by a septum-like structure apparently formed from the inner layers

of the main structural wall component. Wall structure of an outer,

unit wall component (up to 1 mm thick) adherent to an inner,

laminated main structural component, 2–5 mm thick, both being

continuous with the wall of the subtending hypha, and thus

presumably of the sporogenous mycelium. Spores in sporocarps

accompanied by thin-walled (,1 mm), balloon-shaped vesicles,

41–92661–196 mm.

Figure 1. Phylogenetic tree of Diversisporales computed from the core dataset of nuclear SSU-ITS-LSU rDNA sequences. RAxML
maximum likelihood analysis with bootstrap support shown at the branches; topologies with support below 50% were collapsed to polytomies. The
most recent synonyms for species in Diversispora are given in brackets. The published ‘Entrophospora nevadensis‘ sequence (SSU rDNA) is short and
does not allow species resolution, but clusters with high support within the Diversispora celata - D. eburnea clade. The two short, concatenated
‘Otospora bareae‘ sequences (SSU rDNA) also cluster within the genus Diversispora. The genus Redeckera comprises the species formerly published as
Glomus fulvum, G. megalocarpum and G. pulvinatum. The tree is rooted with three representative sequences of the sister order Glomerales. The scale
bar indicates proportional substitutions per site.
doi:10.1371/journal.pone.0023333.g001
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Mycorrhizal status unknown, but by analogy with other

members of the Glomeromycota, and considering that the specimens

came from potted plants in a greenhouse, it is likely that G.

versiforme forms AM.

Specimens examined: Finland, Nylandia, Helsingfors (Hel-

sinki). Spores and fragments of sporocarps from the potting

substrate of Cercocarpus ledifolia grown in a cold glasshouse, ‘23. XI.

1860 – I. 1861’ [sic], leg. W. Nylander (Mus. Bot. Univ., Helsinki

3936 p.p. H – Lectotype [Voucher W4551 (H, isolectotype E)]).

Dark coloured spores form in sporocarps, embedded in coarse,

reddish yellow glebal hyphae, and ectocarpically in the substrate

(Figure 4B). Because the type sample is fragmented, it is impossible

to determine the original size of the sporocarps. The spores are

abundant in the substrate as individual spores and also found

embedded in substrate aggregates. Therefore it appears that they

can be formed ectocarpically and hypogeously. The peridium is

reddish yellow (Methuen 4A6) in colour and has a woolly

appearance, consisting of angular, thin-walled anastomosing

coenocytic mycelium ,3–18 mm diameter (Figure 4H). The

spores (Figure 4C,E,K) are coloured variably in shades of orange

to brown (Methuen 5D8–5D8), and are opaque due to their thick

coloured wall (Figure 4K). Of the 121 measured spores, for 52 it

was impossible to determine the location of the attachment to the

subtending hypha, and thus impossible to distinguish lengths from

Figure 2. Phylogenetic tree of Diversisporaceae computed from the extended dataset, including environmental nuclear rDNA
sequences. RAxML maximum likelihood analysis with bootstrap support shown at the branches; topologies with support below 50% were collapsed
to polytomies. The tree is rooted with representatives of the Glomerales. The scale bar indicates proportional substitutions per site. Except for very
short environmental SSU rDNA sequences that distorted the tree topology, all Diversisporaceae sequences which were available from the public
databases were used and have the following origins: 1 the specimen from which this sequence was derived has Claroideoglomus etunicatum-like
spore morphology; soil from a re-vegetated coal spoil heap, beneath Salix sp. and associated weeds, which included Plantago major, P. lanceolata,
Fragaria vesca and various grasses; 2 Fazio’s Greenhouse, from M. Pfeiffer’s pot culture no. 157, Building 42-2R, University of Arizona; 3 other plants
reported at the soil sampling location were Alchemilla fontqueri and Senecio elodes (both endemic) and Sorbus hybrid (non-endemic); 4 fungus with an
appearance similar to a ‘large-spored D. epigaea’, from a temperate greenhouse of Royal Botanical Garden Edinburgh, Plant No. 842581 H; 5 immature
spores; from fern house of Botanical Garden Jena (the plant was transferred to Jena from the botanical garden of the Wilhelma, Stuttgart, Germany);
7 Diversispora epigaea-like spores; temperate greenhouse of Royal Botanical Garden Edinburgh, the pot also contained an Oxalis sp. as a weed;
6 tropical greenhouse at the USDA-ARS horticultural research station; 8 sporocarp from litter layer of semi natural woodland, with associated
understory, including an Allium sp.; 9 this sequence most likely represents a species distinct from Redeckera fulvum, therefore it is annotated here as
‘R. fulvum-like’; 10 sequences annotated as ‘D. trimurales’, from the same submission as the three sequences (FJ461851,54,55) that cluster in
Diversispora, but clearly falling in distinct families; 11 culture published as GINCO4695rac-11G2 from the AFTOL project, but lacking further
information.
doi:10.1371/journal.pone.0023333.g002
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breadth. By simply taking longest and shortest dimensions, the

resulting size range was 73–208673–208 mm (mean

1376128 mm). There is considerable variation in spore shape,

and many spores exceeded the broadly ellipsoid category and were

ellipsoidal. Of the remaining 69 spores, 15 were broader than long

and 47 were longer than broad. The shape of the spores varied

considerably. Seven were globose, 32 subglobose, 20 were broadly

ellipsoidal, and 10 were ellipsoidal (elongate).

The spore wall consists of three, possibly four, components

(Figure 4Q,R). Component 1 at first is thin, ,1 mm thick. It

appears to expand to become as much as 4 mm thick, and

eventually to disintegrate and disappear, and thus can be classified

as evanescent as defined by Walker [31]. It tightly adheres to

component 2, a unit component that varies in thickness from 1–

5 mm. Wall component 3 is 5–12 mm thick and very finely

laminated, though the laminations often are difficult to distinguish.

In many specimens, there seems to be a fourth thin flexible inner

component 4 (Figure 4R), though on others it was not detectable

(Figure 4Q). It is not clear if this is an artefact of specimen

preparation such as a loose lamina of component 3, but it is

evident in both glycerol and PVLG-based preparations. The wall

thins at the spore base to produce a bowl-shaped lumen 3–10 mm

diameter internally, tapering to ,1 mm externally where the

subtending hypha is attached (Figure 4N,O). The majority of

spores have their subtending hypha detached close to the spore

base. When it is retained, it is very difficult to see because it often is

extremely thin-walled (normally ,1 mm). It can be up to 37 mm

long and as much as 15 mm wide distally, tapering to become

constricted proximally to about 1 mm in diameter, where it usually

becomes detached. On a few specimens, the subtending hypha is

thickened to ,2 mm proximally (Figure 4O) and sometimes it

appears to be occluded by a plug of amorphous material.

Morphology of Glomus epigaeum from the holotype and
ex-type culture-lines, including BEG47

The spores are produced in dense masses, lacking a peridium

(Figure 5A–C) and with or without varying amounts of brownish

contextual hyphae, or singly (Figure 5D), or in loose clusters in the

substrate. The spore masses (referred to in the protologue as

‘sporocarps’) were originally recorded as being 2–863–15 mm

[21], but they are very variable in size and shape. The colour of

the spores is variable (Figure 5B–G). They are colourless at first,

soon becoming pale yellow, gradually becoming orange at

maturity to dark reddish brown (Methuen 8E8) when moribund.

The spore wall components do not react to Melzer’s reagent,

although the pale spores may become overall slightly yellow.

Seven-hundred and eighty spores were measured from among

29 ex-type cultures (Table S1; Figure 3C); 346 were broader than

long, 158 were equal in length and width, and 276 were longer

than broad. Spore shape was not very variable, 497 spores being

globose, 212 subglobose, 56 broadly ellipsoidal, and only 15

ellipsoidal. Some of these spores were ovoid (8) or obovoid (28),

two were flattened somewhat on one side, six were pyriform, and

two were subtriangular. The spore dimensions were 78–213678–

192 mm (mean = 1316131 mm, n = 780). The protologue gives

spore measurements for the epigeous spores as (602)75–

140(2165)695–140 mm. In one sample, 100 dark epigeous spores

and 100 pale hypogeous spores were measured separately, yielding

dimensions of 82–146685–146 mm (mean = 1156116 mm) and

85–194696–192 mm (mean = 1356134 mm).

In some spores, the spore wall appears to have a unit outer

component (Figure 5J), but on others, it breaks down in patches

(Figure 5K), and thus must be considered to be evanescent. The

coloured main structural component sometimes seems laminated

(Figure 5H,J,K), and at other times the laminae cannot be seen by

light microscopy (Figure 5I). Finally there is an innermost

component (Figure 5J,K) that is often difficult to discern under

the light microscope, but was described as clearly visible in

transmission electron micrographs [23]. By light microscopy, the

wall structure of spores in PVLG is of three components as follows:

component 1 unit or more or less evanescent, colourless, up to

1 mm thick; component 2 laminated, pigmented, 1–10 mm thick

depending on age; component 3 ,1 mm thick, lightly pigmented,

often tightly adherent to component 2 and difficult to discern,

sometimes appearing flexible due to shrinkage after immersion in

the mounting medium (Figure 5J,K). In a few spores the inner wall

component appears to form a septum (Figure 5O). The subtending

hypha is variable (Figure 5H,I,M,N,O), very narrow, not more

than 10 mm at the base of the spore; straight (Figure 5I) or slightly

curved (Figure 5H), or often constricted at the base (Figure 5M).

Usually the subtending hyphal wall is thin (1–2 mm), tapering little

in most (though not all) of the pale spores. On some mainly darkly

coloured spores, the wall of the subtending hypha tapers quite

Figure 3. Dimensions of spores from Glomus versiforme type
collection and of Diversispora epigaea (grey: lengths and white:
width). A. Spores of the lectotype of Glomus versiforme (W4551)
prepared from the Endogone versiformis type material. B. Large spore
type (W4550) of an unknown species in the E. versiformis type material.
C. Diversispora epigaea BEG47 (combined measurements of specimens
from 49 voucher collections sampled from among 29 ex-type sub-
cultures).
doi:10.1371/journal.pone.0023333.g003
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Figure 4. Photomicrographs of specimens from the holotype collection of Glomus versiforme (basionym Endogone versiformis). Pale
spores (G. versiforme) of W4551, dark spores (undetermined Glomus sp.) of W4550. A. Sporocarp portion of G. versiforme showing pale spores (s) and a
felted, pale-coloured peridium (p). Larger, dark coloured spores of an unknown Glomus sp. can be seen out of focus in the background. B. Part of a
sporocarp of Glomus sp. showing the pigmented peridial (p) and contextual (c) hyphae and embedded spores (arrows). C. The two different spore
morphs in water (G. versiforme indicated by arrows), illustrating the difference in spore size and colour. D. The pale-coloured spores of G. versiforme
showing clustered spores from a sporocarp. E. Sporocarp portion of the dark spored unknown Glomus sp. F. Five clustered spores of G. versiforme
from a sporocarp with accompanying vesicles (ve). G. Peridial hyphae of G. versiforme showing size and colour. H. Peridial hyphae of the dark spored
Glomus sp. I. Spores of G. versiforme (left) and of the dark spored Glomus sp. (centre), allowing comparison of size, shape and pigmentation. J. Thin-
walled pale-coloured spore of G. versiforme. K. A thick-walled darkly coloured spore of Glomus sp. L and M. Subtending hyphae of G. versiforme. Most
specimens are sessile because of breakage of the very thin subtending hyphal wall at the spore base. N and O. Subtending hyphae of the dark
spored Glomus sp., broken close to the spore base and occluded by an amorphous plug in the bowl-shaped lumen (N) or persistent and occluded by
spore wall thickening (O). P. Wall detail of a spore of G. versiforme showing two components in the structural spore wall (1, 2) and a questionable
third component internally (3?). Q and R. Wall detail of a spore of the dark spored Glomus sp. showing three components in the structural spore wall
(Q), and a possible fourth (4?) separate component (R) internally.
doi:10.1371/journal.pone.0023333.g004
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sharply from up to 5 mm thick proximally (Figure 5H) to ,1 mm

distally where detached from the mycelium.

Germination is by emergence of a germ tube through the

remnant subtending hypha or directly through the spore wall

(Figure 5M,N). This species exhibits the type of self-anastomosis

known as hyphal bridging (Figure 5L) or wound healing [32], also

found in D. celata [33] and D. spurca [34]. This phenomenon has also

been observed for members of Ambispora, Gigaspora, and Scutellospora,

but differs from the formation of interhyphal anastomoses in hyphal

networks of members of the Glomeraceae [35–36].

Redescription of Diversispora epigaea (B.A. Daniels and

Trappe) C. Walker and A. Schüßler (MycoBank MB542916) ;
Glomus epigaeum (MycoBank MB314591) (Figure 5).

Two spore morphs (overall size range 60–213678–192 mm),

depending upon whether formed epigeously or hypogeously.

Epigeous dense spore clusters, sometimes called sporocarps,

irregular, known to be 2–863–15 mm, but seemingly indetermi-

nate in size and shape, formed on substrate surface: peridium

lacking, sometimes with a basal hyphal mat extending around the

lower sides of the spore cluster. Spores globose to subglobose to

Figure 5. Photomicrographs of specimens from Diversispora epigaea ex-type pot cultures (including culture line BEG47). Dark spores
of W5165, pale spores of W5167 except Figure 5L, which is from W4565. A. Spore cluster, formed on roots near the surface of a pot. B. View of a spore
cluster showing the undifferentiated aggregation of pale coloured and orange spores. C. Spore mass, showing pale and dark spores. D. Spores
photographed in water, uncovered on a glass microscope slide. E. Spores of both colours, showing variation in size, shape and pigmentation. F. A
thick-walled pigmented spore of the dark morph. G. Thin-walled, immature pale-coloured spore. H and I. Subtending hyphae of dark (H) and pale (I)
spores showing occlusion by spore wall thickening and a distal septum in the dark morph. Note the difference in wall thickness. J and K. Wall
structure of dark (J) and pale (K), spores showing thin outer (1), thick laminated (2), and thin inner (3) components. L. Hyphal bridging, also known as
wound healing, in the somatic mycelium. M. Spore germination (g) at the base of the subtending hypha (sh). N. Germination directly through the
wall. O. A septum occluding the hyphal attachment of a thin-walled spore of the pale morph close to the spore base.
doi:10.1371/journal.pone.0023333.g005
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broadly ellipsoid 60–170685–174 mm, pale cream when young,

becoming dull brownish yellow to orange at maturity or, at

senescence, brown. Spore wall structure of three components in

two groups. Wall group 1 of an evanescent component up to 1 mm

thick overlaying a laminated component up to 10 mm thick. Wall

group 2 of a thin (,1 mm) flexible component. Subtending hypha

variable, straight or slightly curved, up to 10 mm in diameter and

often constricted proximally, to 4–6 mm in diameter; subtending

hyphal wall proximally up to 5 mm thick, tapering to 1 mm distally,

the continuous inner wall component appearing to form an

internal septum. Hypogeous spores formed singly, or in loose

clusters in the soil; rarely as single spores, bursting through the root

cortex; formed on colourless mycelium; colourless at first, soon

becoming orange-white to light orange; globose to subglobose or

broadly ellipsoid 85–213696–192 mm. Wall structure and sub-

tending hypha as for epigeous spores. Neither hypogeous nor

epigeous spores react in PVLG-Melzer’s or pure Melzer’s reagent

except to become slightly yellowish (contents sometimes becoming

orange). Anastomosis of the type known as hyphal bridging

(wound healing) present in extraradical somatic mycelium.

Forming arbuscular mycorrhiza with numerous hosts including

Araucaria excelsa [21], Asparagus officinalis, Sorghum bicolor,

Allium porrum, Plantago lanceolata, Trifolium repens, Lotus

japonicus and Festuca ovina (see Table S1).

Specimens examined: Spores and spore clusters from the type

material and 29 other ex-type collections from cultures maintained

in the USA, UK, Italy, France, Belgium, Finland and Germany

(see Table S1).

Discussion

Glomus versiforme ( = Endogone versiformis)
The epithet given by Karsten [19], versiforme, indicates

variability although in the protologue there is no mention of

extreme variation or of the presence of two morphs in the type

material. Obviously, only the paler morph was included in the

species circumscription of W. Nylander (Figure S2), and this has

been followed by Karsten [19] in his species description, which is

brief, but specific. It describes the spores as globose and white, and

gives spore dimensions (65–95 mm) that fit only with the smaller of

the two morphs. The size range we measured for the pale-coloured

spores in the type material of G. versiforme corresponds well with

that of the protologue of that species. Both the size and

appearance of these are very different from those of the larger,

orange and more ovoid spores in the substrate comprising the type

material. The smaller paler-coloured spores were produced in

sporocarps with a pale coloured peridium with white woolly

elements, specified in the protologue as a feature of E. versiformis.

The larger, darkly-coloured spore clusters come from sporocarps

with darkly coloured peridial hyphae. With the description of

spore colour, size and shape [19] this confirms the opinion that the

author’s intention was to apply the epithet versiformis only to the

pale spores. The notes left by W. Nylander and the pencilled

annotations (Figure S2) thereon also support this view. Drawings

show only globose spores with a rather thin wall, relative to the

spore dimensions, unlike the more darkly pigmented spores which

have relatively thick walls and received no particular attention by

either authority.

Diversispora epigaea ( = Glomus epigaeum)
The species defined as G. epigaeum by Daniels and Trappe [21]

and the monospecific type material lodged at OSC required little

emendation with respect to its morphology. The junction of the

subtending hypha is somewhat more varied than the description

implies, and the statement that the subtending hypha is ‘inserted

into the spore wall’ is misleading, because it is continuous with

both spore components. In addition, the weak orange reaction to

Melzer’s reagent is in the cytoplasm, and not in the wall. Spore

colour changes considerably with spore development, from nearly

colourless for young spores to light orange (hypogeous spores) or

dark orange for old epigeous spores. The wall structure of the

spores was difficult to assess, sometimes the main structural wall

appeared laminated, and other times laminations could not be

detected. Because transmission electron microscopy of D. epigaea

spores [23] showed fine laminae as twisted microfibril layers, the

light microscopically visible lamination is considered not to be

artefactual. Molecular phylogenetic evidence (Figure 1, Figure S1)

clearly shows that BEG47 is not a member of the genus Glomus but

belongs to Diversispora.

Glomus versiforme ( = E. versiformis) is a fungal species
neither cultured nor re-discovered since its original
description

The size, colour and nature of the peridium of the two different

kinds of sporocarps in the E. versiformis ( = G. versiforme) type

collection already indicate that they are unlikely to be conspecific,

as indicated by differences in colour, size, form of the subtending

hypha and wall structure of the smaller pale and the larger dark-

spored morphs. For the pale morph most spores are more or less

globose or broader than long, whereas for the dark morph most

were longer than broad (we considered this significant, because the

ratio of length to width has been used as a species-specific

characteristic [37][20]). The pale sporocarps of E. versiformis have

balloon-shaped saccules amongst their spores, a feature lacking in

the larger, darkly pigmented spores, which are morphologically

similar to mature spores of D. epigaea.

Although spore size of the dark spores in the E. versiformis type

material is not very different from those of D. epigaea BEG47, there

are some morphological differences. In the former, hyphal

attachments are rare; 68% of spores were broader than long;

and there appears to be a complete peridium although only

fragments of it were preserved. In contrast, for BEG47, hyphal

attachments are easily found; only 44% of spores were broader

than long. They are produced in large naked masses of ectocarpic

epigeous spores on the surface of the substrate. Whilst it is possible

that peridial development may depend on environmental

conditions, true sporocarps with peridia have never been reported

from cultures of BEG47 over decades of propagation in different

laboratories and with different plant hosts and substrates. This

further supports the distinctiveness of D. epigaea and both G.

versiforme and the accompanying dark-spored fungus.

Berch and Fortin noted [18] that spores of G. epigaeum were

much darker and larger than the description in the protologue and

concluded that the spores used for the protologue were ‘probably

immature’. Based on this assumption both the small, pale spores

and the large, coloured spores were incorporated within a single

combined description [18]. From our microscopic examination of

the type material, however, we conclude that the different spore

types in the type collection of E. versiformis most likely represent

different organisms mixed in the same herbarium packet. The use

of the plural (glasshouses, plants), and the dating of the collection

(23.XI.1860-I.1861) in W. Nylander’s notes and P. A. Karsten’s

protologue indicates that the type material is composed of several

collections from different glasshouses and plants and thus is most

likely to be mixed. The current Botanical Code dictates that type

material must come from only one collection, but no such

requirement applied at the time of Karsten’s description.
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The Botanical Code, Articles 9.9, 9.12, requires that the spore

morph selected to represent G. versiforme from the mixed collection

must be that which most closely conforms to the original diagnosis.

The pale spores, presence of a ‘white-woolly’ peridium with fine

hyphae and the narrow hyphal attachments therefore preclude G.

epigaeum ( = D. epigaea BEG47) as a potential synonym of G.

versiforme. Nevertheless, given that we could not obtain glomer-

omycotan DNA sequences from the type material of G. versiforme,

we cannot completely exclude the possibility that the small pale

and large pigmented spores in the type collection originate from a

single dimorphic species, although this seems extremely unlikely.

As a consequence of this notion that the original species

description of G. versiforme was based on more than one species,

a lectotype (W4551) was designated to define precisely the species

[8] and to provide an emended description, based only on the pale

spores (W4551). It should be noted that the new species

description of G. versiforme is made from a combination of the

original protologue and a limited number of dead spores from a

mixed collection preserved in air-dried substrate for about 150

years, during which time the spores have deteriorated. To date we

have not found any other conspecific specimens, nor can we find

evidence that similar spores have been collected by anybody else

since the original description of the species. If a representative of

G. versiforme were to be found, it would be advantageous to define

an epitype and to resolve its phylogenetic position. Without

molecular evidence, the natural systematic position of G. versiforme

must remain uncertain but morphologically, it is not conspecific

with D. epigaea.

BEG47 represents Diversispora epigaea ( = G. epigaeum)
and not Glomus versiforme ( = E. versiformis)

Based on the present investigation, we must conclude that

BEG47 is not synonymous with G. versiforme in the strict sense

because:

a) two distinct spore morphs from more than one collection

were included in the type material of E. versiformis ( = G. versiforme),

most likely from two different AMF species, whereas the species

description of E. versiformis clearly refers only to the smaller spore

morph and does not mention the D. epigaea-like spore morph;

b) BEG47 and other D. epigaea ( = G. epigaeum) ex-type cultures do

not form spores similar to the small pale spore morph in the type

collection of E. versiformis, which represent G. versiforme.

Molecular evidence presented here shows BEG47 to belong to

the genus Diversispora, and consequently, under the rules of the

Botanical Code, it has to be placed in that genus as D. epigaea.

Diversispora epigaea is widely cultured and frequently used as a

laboratory strain for molecular, physiological and ultrastructural

research, whereas G. versiforme appears not to have been cultured

nor found in the field since its original description.

DNA sequence annotation in the public databases
Based on previous phylogenetic analyses [6][33] and additional

data gathered during this study, D. aurantium, D. eburnea, and D.

trimurales were also transferred from Glomus to Diversispora [8].

Several of these sequences are still annotated as ‘Glomus’, in the

public databases. Another database sequence ascribed to G.

tortuosum culture accession JA306A clusters basal to Diversispora but

has to be considered of uncertain phylogenetic affiliation. No entry

with the identifier JA306 could be found in the INVAM culture

collection database and the sequence was included in a sequence

deposition (FJ461790-FJ461888) to Genbank that likely contains

mis-annotations or contaminant sequences, as for example, those

attributed to ‘G. trimurales’ which are derived from at least three

divergent AMF lineages (Figure 2). There are many sequences in

the public databases that probably are incorrectly named. This

problem will soon be overcome by third party annotation using the

PlutoF workbench [26], through which environmental sequences

from the ITS region, such as those earlier annotated as ‘uncultured

Glomus versiforme’ from Thuringia (AM076638, AM076637), will be

accessible. Species identity of these environmental sequences is not

known, but is unlikely to be conspecific with D. epigaea (BEG47)

[33], and thus should be annotated as ‘Diversispora sp.’. The

Diversispora sp. sequences annotated as ‘NamAri’ from the INVAM

cultures NB101 (AF185682,90-91, AF185693-95; from Namibia)

and AZ237B (AF185677-81; from Arizona) are most likely of

conspecific origin and are very closely related to, or perhaps

conspecific with, D. celata. Also the short SSU rDNA sequence

FN397100 ascribed to Entrophospora nevadensis from Sierra Nevada,

Spain, is very closely related to those of D. celata. For the INVAM

cultures NB101 and AZ237B, we suspect that the sequences could

be derived from culture contaminants, wrongly determined

species, or that there was a mistake made during sequence

annotation, because the cultures themselves are named as ‘G.

intraradices’ in the INVAM database. The taxonomic assignment of

the sequence for E. nevadensis is difficult to explain. Perhaps it has

been derived from a contaminant and not from the fungus

morphologically described in its protologue [38], which does not

share morphological characteristics with any other species in

Diversispora.

Biogeography of the genera Diversispora and Redeckera
(Diversisporaceae)

Members of the genus Diversispora appear to occur worldwide, with

sequence-based records from Europe (England, Scotland, Spain,

Switzerland, Germany, Poland, Estonia, Iceland), North America

(California), Central America (Panama), Africa (Ethiopia), Asia

(South Korea), Hawaii, and the Middle East (Israel). One sequence

from Portugal (DQ357079) might be derived from another as yet

undescribed genus in the Diversisporaceae. Habitats and hosts of

Diversispora spp. are diverse and include some from natural and

disturbed temporal and tropical ecosystems. So far, members of the

genus Redeckera have been recorded from Guadeloupe (Caribbean

Sea) and Micronesia, and one environmental sequence representing

this genus originated from South Korea. Regarding the biogeography

of the species in the Diversisporaceae, present data do not yet provide a

distinct picture of global biogeography, and in some instances (e.g. for

Diversispora sp. ‘NamAri’) the origin of the sequences seems

questionable. Nevertheless, members of the genus Diversispora are

widely distributed, reinforcing the notion that species of this genus are

much overlooked although integral parts of many ecosystems

[33][45]. Improved molecular characterisation and in-field identifi-

cation, in future will lead to better understanding of this ecologically

and perhaps also economically significant group of AMF.

Materials and Methods

Generation of sequences and gathering of reference
sequences

To study the phylogenetic relationships of BEG47 with other

members of the Diversisporaceae, a core dataset was analysed that

contained all available sequences of Diversisporaceae, except

environmental sequences lacking species assignment. For the

generic type species, D. spurca, the nuclear internal transcribed

spacer (ITS) and large subunit (LSU) rDNA sequences were also

characterised in this study.

For BEG47, DNA was extracted from single spores (see Table S2).

PCR amplification of the near full length nuclear small subunit (SSU)

rRNA gene was carried out with the primer pairs NS1/Geo10 and
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GeoA2/Geo11. Cloning, sequencing and sequence editing were

carried out as described previously [6]. Some shorter fragments were

amplified with different primer pairs, which are noted in the

corresponding sequence database entries. The ITS region of nuclear

rDNA was initially amplified with the primers SSU-Glom1 [39] and

LSU-Glom1b (TCGTTTCCCTTTCAACAATTTCAC; [5]) or the

reverse primer LR4+2 [13]. PCR was run with the Phusion High-

Fidelity DNA polymerase with the following thermocycling program:

99uC denaturation for 2 min; 35 cycles of: 99uC for 10 s, 65uC for

30 s, 72uC for 60 s; final elongation at 72uC for 5 min. Later, the ITS

region was amplified together with a part of the LSU rRNA gene as

previously described [40]. The resulting SSU-ITS-LSU fragment

covers ,250 bp (39 end) of the SSU rDNA, the complete ITS region

including the 5.8S rRNA gene, and ,800 bp (59 end) of the LSU

rDNA. After cloning and plasmid isolation, fragments were

sequenced on an ABI automated capillary sequencer (Applied

Biosystems, Forsters City, CA, USA). Electropherograms were proof-

read, trimmed and assembled with SeqAssem and sequences

manually aligned to a seed-alignment by using Align (both programs

from Sequentix, Klein Raden, Germany; http://www.sequentix.de).

The nucleotide basic local alignment search tool (nBLAST [41]) at

NCBI was used to compare the new nucleotide sequences against

entries in public databases and to identify diversisporacean public

database sequences.

The core alignment comprised the near full-length SSU rRNA

gene sequences from this study as well as such of the Diversisporaceae

from public databases. These SSU rDNA sequences were

condensed to one strict consensus sequence (coding any variable

site as a degenerate base, according to IUPAC ambiguity code) if

from the same fungal isolate or culture, or in one instance (Redeckera

fulvum; synonym G. fulvum) from field-collected material. Details

about how the strict consensus sequences were calculated are given

in Table S2. The term ‘ex-type’ is used in a broad sense to indicate

that the studied material is derived from a descendent of the type

culture. Besides culture-derived sequences also environmental

public database sequences of Diversisporaceae were included. An

extended alignment was created for a second, broader phylogenetic

analysis containing those additional short environmental sequences

that did not completely disturb tree topology at the below genus

level. A third dataset, used to compute the tree shown in Figure S1,

additionally comprised all short environmental sequences available

from the databases, including very short ones.

Computation of phylogenetic trees
Phylogenetic maximum likelihood (ML) analyses were performed

with the software RAxML through the CIPRES science gateway

(http://www.phylo.org/portal2/) with the GTRGAMMA model for

1000-fold bootstrapping as well as for final tree construction. The

analyses, with species from the Glomerales as outgroup, were based on

3043 sites from an alignment of 23 sequences (core dataset, Figure 1) or

3023 sites from an alignment of 86 sequences (extended dataset,

Figure 2). Neighbour joining and parsimony analyses gave essentially

the same results as the ML method (results not shown). Resulting trees

were drawn in FigTree 1.3.1 (http://tree.bio.ed.ac.uk//) and edited

with Microsoft PowerPoint 2007 and Adobe Illustrator CS3. New

rDNA sequences were deposited in the EMBL database with the

accession numbers AM713428, AM713432, and FR686934-

FR686958.

Morphology of spores, spore masses and sporocarps
Spores from pot culture substrate were extracted by centrifu-

gation and sugar floatation [42] or by agitating and swirling in

water and decanting through sieves with 35 or 50 mm openings.

Selected spores were mounted in polyvinyl alcohol lactophenol

(PVL) or polyvinyl alcohol lacto-glycerol (PVLG) with (PVLG/M)

or without the addition of Melzer’s reagent (4:1 PVLG:Melzer’s v/

v) and observed through a compound microscope, with or without

Nomarski differential interference contrast optics. Vouchers were

stored as colonised, dried potting substrate containing roots and

spores, or as semi-permanent microscope slides with specimens

mounted in PVL, PVLG or PVLG/M. Vouchers, other than

types, are deposited in the herbarium of the Royal Botanic Garden

Edinburgh (E), along with an isolectotype of G. versiforme consisting

of a prepared microscope slide in PVLG (Slide W4551-8). The

terminology for defining spore shapes and the convention of giving

spore dimensions as length by breadth, including ornamentation

but excluding appendages, follows Hawksworth and colleagues

[30]. Length was always taken as a perpendicular from the spore

base (point of subtending hypha). Consequently, spores can be

‘broader than long’. Spore dimensions were measured on selected

samples with a calibrated eyepiece graticule under a compound

microscope and colours were matched with the Methuen

Handbook of Colour [43]. Specimens were indexed by referring

to pot cultures as Attempts (Att) and giving herbarium voucher

specimens a number with a ‘W’ prefix [44], which from our own

work always include microscope-slide preparations, but that may

be any preserved material.

The culture tracking and specimen vouchering system allows

the addition of cultures and vouchers from other sources. Thus in

this study, we notionally numbered the original Araucaria plant,

part of the plant collection in the tropical glasshouse at Oregon

State University, as Att475-0 even though it was not a deliberate

attempt to create a mycorrhizal pot culture. The subsequent pot

culture, established by B. Daniels on asparagus with spores taken

from Att475-0, was given the notional number Att475-1. The

holotype of Glomus epigaeum (now Diversispora epigaea) came from this

type culture pot. It was given the voucher number W90, and an

authenticated sample from this pot culture, provided to C. Walker

on 12 Apr 1979 by B. Daniels, was numbered W100.

The holotype of Endogone versiformis (now Glomus versiforme),

loaned by the herbarium in Helsinki (H), consisted of two small

packets of dried spore masses or fragments of spore masses in a

gritty substrate. It included no prepared slides or other evidence of

microscopic preparations, though there were some annotations by

previous workers (Figures S2, S3). Type specimens were examined

first dry, and then, as small subsamples, in a dish of water. Where

the spore masses were sufficiently large, they were illuminated by

reflected light and examined through a dissecting microscope.

Colour determinations were made in comparison with standard

charts, illuminated with the same light as the specimens through a

split fibre optic light source at its full working voltage (colour

temperature, ,3100 K). Individual spores or very small spore

clusters were selected with fine forceps and suspended in water for

detailed examination.

For G. epigaeum we examined type or authenticated material and

living ex-type subcultures such as BEG47. The type material

(OSC39475) consisted of a herbarium packet that included a slide

holder, labelled ‘TYPE Glomus epigaeum B. Daniels’, The slide

mailer also has ‘Pot217’ (or ‘Pot2,7’) and ‘7/7/78’ hand printed on

the upper right corner. There was also a small unlabelled vial

about half full of lactophenol containing spores and spore masses.

In addition, a plastic slide holder with two slides made by J. Spain,

one with spores in lactophenol and one with spores in

PVLG+lactophenol, was included. The former had dried out,

and was re-constituted with acidified glycerol. There was also a

slide (spores in what seems to be PVLG) made by S. M. Berch in

1983. The original lactophenol mounted slide (Trappe 5174) was

missing. Three new slides were made by mounting spores and
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small fragments of spore masses in PVLG, and given the voucher

numbers W90-2, W90-3, and W90-4. By deduction from the

protologue and from personal communication with Barbara

Hetrick (née Daniels), we determined that the type culture of G.

epigaeum (now named D. epigaea) was established with Asparagus

officinalis between autumn 1976 and an unknown date in 1977,

with a single spore mass removed from a greenhouse pot with

Araucaria excelsa. No further details of the culturing history and

origin of the species are available. Thirty nine vouchers, collected

from among 29 ex-type subcultures between 1979 and the present,

are available from the herbarium of the Royal Botanic Garden

Edinburgh (E) (C. Walker collection; see Table S1).

Supporting Information

Figure S1 Phylogenetic tree of Diversisporaceae with
additional environmental nuclear rDNA sequences.
Owing to the short length of most environmental sequences several

branches lack statistical support and phylogenetic resolution. RAxML

maximum likelihood tree with bootstrap support shown at the

branches; topologies with support below 50% were collapsed to

polytomies. Sequences that were not included in the analysis shown in

Figure 2 all cluster in the Diversispora clade, except one (DQ357079

from rhizosphere soil from Portugal), which clusters basally in the

Diversisporaceae. The other short sequences not shown in Figure 2

originated from Great Britain, from colonised roots of Agrostis

capillaries and Trifolium repens (annotated as ‘phylotype Glo12’,

AF437656, AF437657) and from roots, probably of Acer pseudoplatanus,

from an urban environment (indirect evidence, no definitive source

given in database, AJ716004); from Estonia, from roots of Fragaria

vesca (AM849266, AM849271F) sampled in a boreo-nemoral forest in

Koeru and from roots of Oxalis acetosella (AM849285) and Hepatica

nobilis (AM849295, AM849296, AM849307); from South Korea,

Chungbuk, from Panax japonicus roots (EU332718, EU332719,

EU332707); from U.S.A., California, from a grassland (EU123386,

EU123387, EU123390, EU123394, EU123465, EU123391,

EU123392); from Panama, Barro Colorado Island, from Faramea

occidentalis seedling roots (AY129577).

(PDF)

Figure S2 Information accompanying the Endogone
versiformis type material. Transcription of the handwritten

labels and notes of W. Nylander (23 Nov 1860 – Jan 1861), and

annotations included in the herbarium packet containing the

holotype of Glomus versiforme (basionym Endogone versiformis), and

their translation into English. Protologue of E. versiformis (Karsten

1884) and its translation into English.

(PDF)

Figure S3 Type collection of Endogone versiformis.
Open herbarium packet of the type of E. versiformis, containing

dried substrate from potted plants, with spores and fragments of

sporocarps and a Petri dish (5 cm diameter) containing sporocarp

fragments from the dried substrate.

(PDF)

Table S1 List of studied samples of the Diversispora
epigaea ( = Glomus epigaeum) ex-type culture-line. The

culture that was registered as BEG47 is part of the ex-type culture-

line of D. epigaea.

(PDF)

Table S2 Composition of the strict consensus sequences
used in the phylogenetic analyses. In strict consensus

sequences, site variations are coded by the IUPAC ambiguity

code, thus retaining information of the source sequences as

degenerate bases, unlike majority rule consensus sequences.

(PDF)
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detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal

fungi. New Phytol 183: 212–223.
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Summary 

• Although the molecular phylogeny, evolution and biodiversity of the arbuscular mycorrhizal fungi 

(AMF) are becoming clearer, reliable sequence data are still limited. Therefore, a dataset allowing 

resolution and environmental tracing across all major taxonomic levels, including species, is provided. 

• Two overlapping nuclear DNA regions, totalling ~3 kb were analysed: the small subunit (SSU) rRNA 

gene (up to 1800 bp) and a fragment spanning ~250 bp of the SSU rDNA, the internal transcribed 

spacer region (ITS region, ~475-520 bp) and ~800 bp of the large subunit (LSU) rRNA gene. The 

entire range could be analysed for 34 species, the SSU rDNA for ~76 unnamed and 18 undefined 

species, and the ITS or LSU rDNA or a combination of both of ~87 named and 17 yet undefined 

species were analysed. 

• Phylogenetic analyses of the three rDNA markers provide a reliable and robust resolution from Phylum 

to species level. Altogether 105 named and 28 cultures ascribed to yet undefined species were 

analysed.  

• With this study we provide a baseline dataset for molecular systematics and community analyses of 

AMF in the field, including analyses based on deep sequencing. 

 

Introduction 

 

The arbuscular mycorrhizal (AM) fungi (Glomeromycota; Schüßler et al., 2001) form symbioses 

with most land plants, in almost any terrestrial ecosystem (Smith & Read, 2008). Despite the 

considerable ecological importance of these fungi, their biology and ecology is still not well 

understood. This is partly because of their obligately symbiotic, asexual and hidden lifestyle in 

soil and roots.  
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The characterization and identification of AM fungi (AMF) has been mainly based on the 

structure of their spores. However, conclusions may be flawed because many taxa show limited 

morphological characters. Some species form more than one spore morph, and cryptic species 

can be determined only through molecular evidence. Such problems are reflected by several 

recent taxonomic revisions (Kaonongbua et al., 2010; Morton & Msiska, 2010a; Schüßler & 

Walker, 2010). Irrespective of difficulties in AMF classification, in many studies it is important 

to know the fungal identities and species. However, even 'model fungi’ in AM research were 

shown to be misclassified (Stockinger et al., 2009; Sokolski et al., 2010; Schüßler et al., 2011).  

Correct affiliations are crucial for AMF community studies, which are increasingly performed 

solely based on molecular genetic markers. Most commonly used is the nuclear small subunit 

(SSU) rRNA gene, hereafter referred to as SSU. Several SSU-targeting PCR primers (e.g. Simon 

et al., 1992; Helgason et al., 1998; Lee et al., 2008) that amplify fragments of ~500-800 bp have 

been widely applied in ecological studies (Öpik et al., 2008; Zhang et al., 2010). However, even 

the full length SSU does not resolve closely related species (Walker et al., 2007; Gamper et al., 

2009). In SSU datasets, one phylotype may represent several different species and, conversely, 

different phylotypes may belong to one species. We therefore eschew terms like ‘virtual taxa’ 

(Öpik et al., 2010) for taxonomically undefined phylotypes, as ‘taxon’ in mycology is clearly 

defined (Botanical Code, Article 1.1). A more appropriate term is molecular operational 

taxonomic unit (MOTU). Standardised MOTUs are a goal for the classification of unknown 

fungal species from environmental samples (Hibbett et al., 2011), but care has to be taken that the 

units indeed are based on coherent taxonomic levels (Hawksworth et al., 2011).  

The more variable region covering the nuclear internal transcribed spacer (ITS) 1, the 5.8S rRNA 

gene and ITS2 rDNA (hereafter referred to as ITS region) has also been used for detecting AMF 

(Redecker et al., 2000; Renker et al., 2003; Hempel et al., 2007), but is often inadequate for 

discriminating closely related species (Stockinger et al., 2010). As a marker with intermediate 

sequence variability the nuclear large subunit rRNA gene (hereafter referred to as LSU) has 

proved useful for AMF detection (Gollotte et al., 2004; Pivato et al., 2007), although many of the 

primers used do not amplify particular AMF lineages (Krüger et al., 2009). Other markers such 

as the mitochondrial LSU rRNA gene (Börstler et al., 2010; Sýkorová et al., 2011), β-tubulin 

(Msiska & Morton, 2009), RPB1 and RPB2 (James et al., 2006; Redecker & Raab, 2006) or H+-

ATPase (Corradi et al., 2004; Sokolski et al., 2010) have been used, but either they are 
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inapplicable for AMF identification, only studied for few species, or unsuitable for phylogenetic 

species resolution. 

The nuclear rDNA region sequence dataset is taxonomically sufficiently broad to permit 

molecular ecological field studies of AMF communities. However, comparisons among studies 

are often difficult because of inconsistency in the use and coverage of the different loci. The 

variable ITS region sequences are often used to determine fungal species (e.g., Tedersoo et al., 

2008), but for AMF most environmental phylotypes based on this region are not determined, and 

often are not determinable (Stockinger et al., 2010), to species-level. Thus, neither the SSU nor 

the highly variable ITS region alone resolve closely related AMF, but reliable species 

identification is possible based on a ~1.5 kb rDNA fragment (Stockinger et al., 2009), easily 

amplifiable with AMF specific primers (Krüger et al., 2009). This SSU-ITS-LSU fragment 

covers ~250 bp of the SSU, the complete ITS region and ~800 bp of the LSU. Shorter fragments, 

such as the ~400 or soon 800 bp reads, provided by 454 sequencing, can provide species 

resolution if analysed together with a ‘phylogenetic backbone’ based on longer sequences 

(Stockinger et al., 2010). 

In this further effort to establish a solid reference database, we (re-)analysed the nuclear rDNA 

regions that i) can be specifically and easily PCR-amplified for AMF (Krüger et al., 2009), ii) 

resolve closely related species to allow DNA barcoding (Stockinger et al., 2009, 2010), and iii) 

facilitate the application of deep sequencing technologies for in-field detection of AMF 

(Stockinger et al., 2010).  

Materials and Methods 

AMF material, DNA-extraction, PCR, cloning and sequencing 

The identities of the AMF subjected to molecular analyses were determined from morphological 

characters. For most of them, vouchers were deposited in the C. Walker collection and are 

available from the Royal Botanic Garden Edinburgh (Table S1). 

Cleaned AMF spores were used for DNA extraction or stored as described in Schwarzott & 

Schüßler (2001). For some extractions, a simplified PCR-buffer protocol was followed (Naumann 

et al., 2010). DNA was extracted from individual spores, except for some isolates (derived from 

one single spore) for which up to 10 spores were pooled. PCR amplification of the near full 
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length SSU was as described in Schwarzott & Schüßler (2001). Some SSU fragments, from 

earlier studies, were amplified with the primers AML1-AML2, NS1-NS2, NS1-Geo10 and 

GeoA1-ITS1Frc (ITS1F reverse complementary, 5’-TTACTTCCTCTAAATGACCAAG-3’). 

For amplification of a ~1.8 kb SSU-ITS-LSU fragment, the primers SSUmAf-LSUmAr (in some 

cases with LR4+2 as reverse primer; Stockinger et al., 2009) were used, mostly followed by a 

nested PCR with the primers SSUmCf-LSUmBr or, in some earlier attempts, SSU-Glom1-

NDL22 (Krüger et al., 2009; Stockinger et al., 2010), resulting in an ~1.5 kb amplicon covering 

~250 bp of the SSU, the whole ITS region and ~800 bp of the LSU. PCR products were cloned 

and analysed as described in Krüger et al. (2009).  

New sequences were deposited in the EMBL database under the accession numbers AM114274, 

AM713432, FR750012-FR750095, FR750101-FR750117, FR750126-FR750127, FR750134-

FR750217, FR750219-FR750228, FR750363-FR750376, FR750526-FR750544, FR772325, 

FR773142-FR773152 and FR774917. 

Sequence data and Glomeromycota taxonomy used 

Sequences in the public databases were reviewed to establish if they were from defined cultures 

or environmental samples. Environmental sequences not identified to species were excluded. 

Defined sequences of >650 bp and some shorter sequences were included or assembled to 

’contiguous’ sequences if they were the only ones available for a particular taxon, or culture. For 

several database sequences it is unclear if they refer to an AMF single spore isolate, multi spore 

culture, or simply to a recombinant DNA E. coli clone number. Our annotations follow the most 

recent systematics of the Glomeromycota (Schüßler & Walker, 2010), including the suggestions 

of Morton & Msiska (2010a) and Kaonongbua et al. (2010). Detailed sequence origin 

information is listed in Table S1. 

Phylogenetic analyses 

For the SSU sequences, one strict (with variable sites coded according to IUPAC as degenerated 

bases) consensus sequence was deduced from up to 10 sequence variants for each isolate or 

culture. The PCR primer binding sites were excluded, when known. Three different datasets were 

then analysed: 
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i) For the phylogenetic tree computed from ~2.7 kb sequences (Fig. 1) we concatenated the above 

noted strict SSU consensus sequence with one strict consensus sequence made from all SSU-ITS-

LSU sequence variants of the same fungus (defined by culture identifier), whereas the 

unalignable ITS1 and ITS2 were excluded. Such SSUfull-5.8S-LSU sequences could be 

assembled for 34 species from 38 cultures. Since there were no corresponding SSU and SSU-

ITS-LSU sequences available for an individual Archaeospora schenckii culture, sequences from 

two different cultures (Att58-6, Att212-4; sequences identical in the 250 bp SSU overlap) had to 

be concatenated to cover the genus Archaeospora. Batrachochytrium dendrobatidis 

(Chytridiomycota) was used as outgroup and the following members of basal fungal lineages and 

Dikarya were also included: Ascomycota (Exophiala dermatitidis, Schizosaccharomyces pombe), 

Basidiomycota (Henningsomyces candidus, Rhodotorula hordea), Kickxellomycotina (Orphella 

haysii, Smittium culisetae), Mucoromycotina (Endogone pisiformis, Mortierella verticillata, 

Phycomyces blakesleeanus, Rhizopus oryzae) and Blastocladiales (Allomyces arbusculus, 

Coelomomyces stegomyiae). 

ii) Near full length SSU strict consensus sequences (≤1.8 kb) were used to compute a SSU tree 

(Fig. 2) for 76 AMF species from 145 cultures (including shorter fragments of 500-1300 bp for 

18 species from 26 cultures). 

iii) All individual SSU-ITS-LSU sequences (up to 24 variants; ~1.5 kb) available from a culture 

were analysed. To ‘anchor’ phylogenetically the variable ITS and LSU sequences by the more 

conserved SSU, each variant was concatenated at the 5’ end with one SSU strict consensus 

sequence of the same culture, if available. This allows a more robust resolution of deeper (above 

genus) topologies and avoids artificial clustering resulting from misalignment or convergent 

characters due to mutational saturation in the highly variable regions. Subtrees at order and 

family level could be computed for 87 defined and 17 unnamed species (Figs 3-9), representing 

all main lineages in the Glomeromycota. For the model fungus Rhizophagus irregularis 

DAOM197198, a reduced sequence set, still representing the breadth of rDNA variability, was 

used, as a detailed analysis was already published in Stockinger et al. (2009). For Gigasporaceae, 

Paraglomerales and Archaeosporales, the composite dataset also included short database 

sequences (≥500 bp) if their inclusion did not reduce the topological support too much (Figs 3, 

4). For the genera in the Glomerales (except Rhizophagus) separate analyses were conducted for 

long sequences (Figs 7, 9), and after inclusion of short sequences (Figs S1, S2). 
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All maximum likelihood phylogenetic analyses were computed through the CIPRES web-portal 

with RAxML ver. 7.2.7 (Stamatakis et al., 2008) using the GTRGAMMA model and 1000 

bootstraps for both the bootstrapping phase and the final tree inference model. 

 

Results 

For phylogenetic analyses, a ~1.8 kb SSU fragment and a ~1.5 kb SSU-ITS-LSU fragment, both 

overlapping by ~250 bp in the 3’ SSU, were analysed (Table S1) together with public database 

sequences. Altogether, sequences derived from 105 AMF annotated to species and 28 

undescribed species could be analysed phylogenetically.  

SSUfull-5.8S-LSU phylogeny of the Glomeromycota (Fig. 1) 

The phylogenetic tree was computed from 39 assembled 2.7 kb consensus sequences representing 

34 species. The highly variable ITS1 and ITS2 regions were excluded because alignment is 

impossible among higher taxa. However, their inclusion did not alter tree topology (data not 

shown), demonstrating robust phylogenetic anchoring by the more conserved regions (that 

receive more weight in RAxML analyses). The topology of the SSUfull-5.8S-LSU tree is 

congruent with previously published rDNA trees, but with higher bootstrap support (BS). The 

Glomeromycota are supported as monophyletic, with the Paraglomerales as the most ancestral 

lineage (separated with 85% BS from all other AMF lineages). The next basal lineage, the 

Archaeosporales (including Geosiphonaceae, Archaeosporaceae and Ambisporaceae) resolves as 

monophyletic (88% BS) and the following sister clades Diversisporales and Glomerales cluster 

together with 100% BS. The Diversisporales appears monophyletic (94% BS), with all its 

families well supported (except Entrophosporaceae which had to be excluded for lack of reliable 

sequence data). 

Members of the Glomerales (63% BS) separate into the Glomeraceae (former Glomus Group 

[GlGr] A) and Claroideoglomeraceae (former GlGrB). The Glomeraceae contains the four 

genera Funneliformis (former GlGrAa), Rhizophagus and Sclerocystis (former GlGrAb), and 

Glomus (former GlGrAc). Glomus is represented by the generic type species Glomus 

macrocarpum (epitype W5581/Att1495-0) and Funneliformis by F. mosseae, F. coronatum, F. 

caledonium and Funneliformis sp. WUM3. In Rhizophagus, the ‘model fungus’ Rh. irregularis 

DAOM197198 clusters with two other cultures of this species, GINCO4695rac11G2 and a root 
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organ culture (ROC) annotated as DAOM212349. However, the last number is the voucher 

number also used for the type material of Claroideoglomus lamellosum (from a field collection) 

and moreover for an ‘isotype’ pot culture of that species. The sequences of Rh. intraradices ex-

type culture FL208 cluster as sister to Rh. proliferus (DAOM226389). 

SSU phylogeny of the Glomeromycota (Fig. 2) 

The available sequences of 76 species (145 cultures) were analysed. For the basal lineages 

Archaeosporales and Paraglomerales relatively few are characterised. Sequences of the former 

Intraspora schenckii cluster among those of Archaeospora. 

In the Diversisporales, the SSU tree shows 100% BS for the Gigasporaceae. Gigaspora appears 

monophyletic, but Racocetra and Scutellospora are not convincingly resolved. Scutellospora 

gilmorei, S. nodosa and S. pellucida cluster on a branch together with Racocetra species. 

Scutellospora cerradensis, S. reticulata, S. heterogama and the recently described Dentiscutata 

colliculosa form a monophyletic clade (80% BS), and the remaining Scutellospora species fall 

close to the type species S. calospora, in an unresolved basal polytomy. The family 

Acaulosporaceae is well supported (100% BS), but not the deeper branching order within the 

family. For Otospora bareae (Palenzuela et al., 2008) the concatenation of two short non-

overlapping partial SSU sequences (AM400229, AM905318) clusters among Diversispora 

sequences, as does the only sequence (FN397100) published for Entrophospora nevadensis 

(Palenzuela et al., 2010). Redeckera, a genus based on data from Redecker et al. (2007), clearly 

separates from Diversispora. The Pacisporaceae are sister to Gigasporaceae with 79% BS. 

The Glomeraceae and Claroideoglomeraceae are both supported by 100% BS. Glomus iranicum 

and G. indicum (Błaszkowski et al., 2010a,b) fall basally into a polytomy in the Glomeraceae. 

Funneliformis is composed of F. mosseae (9 cultures), F. coronatum (W3582/Att108-7, COG1), 

F. geosporum (BEG11), Funneliformis sp. DAOM225952, F. caledonium (BEG15, BEG20), 

Funneliformis sp. WUM3, F. fragilistratum and F. verruculosum. Funneliformis constrictum, 

together with F. africanum, clusters basally. Glomus clusters with low BS (61%) sister to 

Funneliformis, comprising sequences of G. macrocarpum (W5293, W5605/Att1495-0) and 

Glomus sp. W3347/Att565-7. Rhizophagus comprises Rh. irregularis (DAOM197198, AFTOL-

ID845, W4533/Att1225-1, and the above noted DAOM212349), Rhizophagus sp. W3563, F. 

vesiculiferum (W2857/Att14-8; erroneously placed in Funneliformis in Schüßler & Walker, 2010, 
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to be classified as Rhizophagus), Rh. fasciculatus BEG53, Rh. intraradices FL208, Rh. clarus 

(BR147B, W3776/Att894-7) and Rh. manihotis (FL879, W3224/Att575-9). The genus 

Sclerocystis is represented by two sequences, one each from Sc. sinuosa (MD126) and Sc. 

coremioides (BIORIZE), forming a lineage basal to Rhizophagus. Claroideoglomus separates 

into two clades, one comprising Claroideoglomus sp. W3349/Att565-11 and C. viscosum BEG27 

(possibly incorrectly annotated, see discussion) sequences, and the other containing sequences of 

C. lamellosum (W3161/Att672-13, W3158/Att244-7 (ex-‘isotype’ culture, corresponding to 

DAOM212349), W3814/Att756-1, W3816/Att844-2), C. etunicatum (UT316, W3815/Att843-1, 

W3808/Att367-3), C. luteum SA101, C. claroideum (BEG14, BEG23, BEG31), and 

Claroideoglomus spp. (BR212, W3234/Att13-7, DAOM215235).  

SSU-ITS-LSU phylogeny of the basal AMF lineages - Paraglomerales and Archaeosporales (Fig. 

3) 

Sequence data are available for all three described Paraglomus species. Paraglomus occultum 

sequences from four cultures cluster together with 95% BS, including two of three sequences 

from P. occultum CL383. The third short CL383 sequence and one from P. occultum FL703 

group with P. laccatum, but with low support. One sequence (FJ461809) of W5141 and one 

annotated as Archaeospora schenckii (FJ461809), submitted to the database by Amarasinghe & 

Morton in 2010, tightly group with P. laccatum. The latter must be misannotated. All sequences 

from this submission are marked below with ‘◄’ (see also Figs 3-6, S1-S2). Sequence 

FJ461884◄ of the INVAM culture NI116B clusters basally to these sub-clades, and U81987◄ 

ascribed to P. occultum GR582 falls in the P. brasilianum clade, implying a possible 

misannotation. 

The Archaeosporales are represented by sequences from 15 Ambispora, five Archaeospora and 

one Geosiphon cultures. Archaeospora trappei was analysed using concatenated sequences for 

cultures AU219 (=WUM19) and NB112, respectively. Ar. schenckii sequences cluster with those 

assigned to Ar. trappei. For Ar. schenckii CL401 the two short sequences available could not be 

concatenated, because sequence AM743189 (3’-SSUpartial-ITS) clustered close to Ar. trappei 

NB112, but a partial LSU sequence (FJ461809◄) clusters in Paraglomus. According to personal 

communication (J. Morton, 8 Apr 2011) regarding this sequence submission set (◄), it later was 

discovered that the CL401 culture also contains P. occultum; therefore FJ461809◄ must be 

considered as contaminant-derived. Ambispora leptoticha (85% BS), Am. callosa (79% BS), Am. 
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fennica (98% BS), and Am. granatensis (Palenzuela et al., 2011; 100% BS) are well resolved, but 

when including the short NC169-3 sequences, which cluster unresolved, BS decreases. NC169-3 

was recently named Am. appendicula (Kaonongbua et al., 2010) based on conspecificity with the 

former Acaulospora appendicula (Morton et al., 1997). The concatenated sequence of Am. 

gerdemannii AU215 clusters with Am. callosa (BS 85%). Another sequence annotated as Am. 

gerdemannii MT106 (FJ461885◄) clusters with Am. fennica (BS 100%), pointing to 

misannotation or a contaminant.  

SSU-ITS-LSU phylogeny of the Diversisporales – Gigasporaceae (Fig. 4) 

After two recent revisions (Oehl et al., 2008; Morton & Msiska, 2010a), the family 

Gigasporaceae currently contains Gigaspora, Scutellospora and Racocetra. Gigaspora and 

Racocetra are supported without conflict. From the nine described Gigaspora species, five could 

be analysed and separated into two subclades. One comprises Gi. rosea (DAOM194757, BEG9) 

along with sequences of putatively conspecific field-collected yellowish Gigaspora spores 

(W2992), and one shorter sequence each of Gi. albida BR235◄ (listed as ‘Gi. rosea?’ in 

INVAM) and Gi. gigantea MA401◄. The other clade comprises Gi. margarita BEG34 

sequences from two independent cultures and shorter sequences, one from Gi. decipiens 

AU102◄, three from ‘Gi. gigantea isolates’ and two Gi. margarita sequences (Gigmar58, 

Gigmar60). 

In Scutellospora, comprising 23 described species including Dentiscutata colliculosa, sequences 

are available for 11 species. Scutellospora divides in three groups, one (Scutellospora sensu Oehl 

et al., 2008) clusters basally within the Gigasporaceae and is represented by S. spinosissima 

W3009/Att664-1, four S. calospora (generic type) cultures, and S. dipurpurescens WV930◄. A 

second clade (90% BS; corresponding to Cetraspora sensu Oehl et al., 2008) clusters with high 

support sister to Racocetra and comprises S. gilmorei (99% BS when short sequences were 

excluded; not shown) and S. nodosa BEG4 (100% BS when short sequences excluded; not 

shown). When including short S. pellucida sequences (AY639261, AY639309, AY639313, 

AY639323; Gamper & Leuchtmann, 2004), the BS for S. nodosa BEG4 decreased to 60% and S. 

gilmorei is no longer supported, and the short S. pellucida NC155C◄ sequence clusters among 

sequences of S. nodosa BEG4 (Fig. 4). The third clade of Scutellospora (85% BS), corresponding 

to Dentiscutata and Quatunica sensu Oehl et al. (2008), is basal to Gigaspora. It comprises 

sequences from several S. heterogama cultures (BR155, NY320, WV858B, SN722, FL225, 
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CL157, BEG35, FL654=W5611/Att1577-4 originally determined by Schenck as S. dipapillosa), 

S. cerradensis MAFF520056, S. reticulata CNPAB11 and some short sequences of S. reticulata 

(annotated as S. nigra, but re-determined by C. Walker as S. reticulata from stored specimens 

provided by J. Jansa, Dec 2010) and S. erythropa. Short sequences of two S. erythropa cultures 

(Sen, MA453B) cluster together with reasonable support while a third one (HA150◄) is 

unresolved. The well supported genus Racocetra (96% BS) comprises sequences from six 

species. Racocetra fulgida (W2993) is well supported (not shown), but becomes unresolved when 

including shorter sequences of R. verrucosa, R. gregaria, R. persica and R. coralloidea. 

Racocetra weresubiae was transferred back to Scutellospora by Morton & Msiska (2010a), but 

returned to Racocetra (Schüßler & Walker, 2010) because of its phylogenetic position (Fig. 4). 

SSU-ITS-LSU phylogeny of the Diversisporales – Acaulosporaceae (Fig. 5) 

Presently there are sequences from 38 described Acaulospora species, 21 of which could be 

analysed. The phylogenetic tree clearly supports the transfer of the former Kuklospora 

kentinensis TW110 and K. colombiana to Acaulospora (Kaonongbua et al., 2010). 

Acaulospora alpina, A. brasiliensis, A. colliculosa, A. lacunosa, A. kentinensis and A. laevis are 

well resolved. The species concept for A. entreriana is questionable as it appears morphologically 

indistinguishable from A. laevis. Sequences of cultures from both species could be separated in 

the analyses if the variable ITS region was included (Fig. 5). For A. paulinae two sister-clades 

appear, one comprising eight sequences of CW4 and a second clade containing one A. paulinae 

AU103A◄ and two Acaulospora sp. WUM18 sequences. Acaulospora cavernata BEG33 and A. 

denticulata cluster monophyletically with A. paulinae (note: BEG33 was earlier mis-determined 

as A. scrobiculata by C. Walker, the error has been communicated to the BEG for correction). 

The only available partial LSU sequence of A. scrobiculata AU303◄ clusters much apart, sister 

to A. tuberculata (VZ103E) in a clade together with A. spinosa W3574/Att165-9 (ex-type culture) 

and MN405B◄. For several short sequences the results are rather unclear, as they are only 

represented by one sequence or by sequences from different cultures that cluster apart from each 

other. 

SSU-ITS-LSU phylogeny of the Diversisporales – Diversisporaceae (Fig. 6) 

All data available for Pacispora were already shown in Figs 1 and 2 and are therefore omitted 

here. For Diversispora, there are six described species (Schüßler & Walker, 2010), all 
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characterised by rDNA sequences. The relatively short sequences of Diversispora sp. NB101 and 

Diversispora sp. AZ237B with stated origin from Namibia and Arizona, respectively, are very 

closely related. Including these short sequences decreases the BS for D. celata as a monophyletic 

clade from 99% (not shown) to 62% (Fig. 6). The Diversispora species are well supported, but 

for both D. spurca and D. aurantia, two distinct clades appear in the phylogenetic analysis. One 

D. spurca clade is well defined by sequences from an ex-type culture (W4119/Att246-18) and 

contains a sequence of D. spurca WV109◄. The second clade is composed of two sequences 

(FJ461848◄, FJ461849◄) from other cultures, and might represent another species. Despite the 

reasonable support of the D. aurantia clade, comprising sequences derived from the holotype trap 

culture (W4728/Att1296-0), two sequences from the same culture (EF581864, EF581861) form a 

separated clade. The only sequence published for G. tortuosum JA306A (FJ461850◄) clusters in 

a basal polytomy. Three diverse ‘D. trimurales’ sequences from the cultures KS101◄, FL707◄ 

and BR608◄ cluster at different positions throughout Diversispora and require further 

validation. The three species in Redeckera form a separated, well supported clade (99% BS). 

Entrophosporaceae is phylogenetically undefined 

There are only two described species, E. baltica and E. infrequens (generic type), in the 

Entrophosporaceae. Additionally E. nevadensis was recently described (Palenzuela et al., 2010), 

but its sequence clusters in the Diversispora clade (Fig. 2). Other database sequences annotated 

as Entrophospora species are often shorter than 450 bp (e.g., AF378456-523), environmental, 

uncharacterised, or should be annotated as Acaulospora (Kaonongbua et al., 2010). We excluded 

all E. infrequens sequences from the analyses as they were very short or showed high similarity 

with Claroideoglomus, Gigaspora or Rhizopus oryzae sequences (see Schüßler et al., 2003). 

Sequences from the cultures CA203◄ and IN215◄, all of which are of doubtful identity, also 

cluster within Claroideoglomus (not shown).  

 

SSU-ITS-LSU phylogeny of the Glomerales – Glomeraceae (Funneliformis and Glomus, Fig. 7) 

Glomus in its strict sense currently comprises only Glomus macrocarpum (W5581/Att1495-0, 

W5293/field-collected) and Glomus sp. W3347/Att565-7, morphologically similar to G. 

macrocarpum, but distinct because of a darker spore color. One sequence attributed to Glomus 

hoi (BEG104) clusters with Glomus sp. W3347 and one of G. aggregatum (OR212◄) clusters 
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basally to G. macrocarpum (Fig. S1). Funneliformis is well supported and represented by F. 

mosseae (75% BS), F. coronatum W3582/Att108-7 (100% BS), Funneliformis sp. WUM3 

(100%) and F. caledonium BEG20 (97%), agreeing with Stockinger et al. (2010).  

When including short sequences (Fig. S1), F. coronatum ZTL clusters with cultures 

W3582/Att108-7, BEG28, and IMA3. A BEG49 sequence clusters apart, together with F. 

constrictum BEG130. Funneliformis multiforum DAOM240256 is well supported; F. geosporum 

separates in two clades. For culture MD124 one ITS sequence annotated as G. geosporum 

(AF197918) clusters within Claroideoglomus (Fig. S2) and one LSU sequence (FJ461841◄) 

annotated as G. macrocarpum clusters with F. geosporum (Fig. S1). Examination of MD124 (C. 

Walker W2843 in 1996, W5729 in 2010) showed it to be F. geosporum. Funelliformis 

caledonium sequences (BEG86, BEG20, DAOM234210, SC658, RMC658, RWC658, JJ45) 

cluster unresolved. Several such discrepancies (e.g. for F. monosporum, F. dimorphicum) were 

already revealed by Stockinger et al. (2010). Sequences of G. deserticola, represented by an ex-

type culture (BEG73, AJ746249), F. xanthium, and F. constrictum (NE202◄, UT188◄) cluster 

in a separated clade, and a sequence from IN214A◄ forms another, basal and very long branch 

(Fig. S1). This also holds true for G. globiferum FL327B◄ and G. insculptum PL121◄, which 

were excluded from our analyses. 

SSU-ITS-LSU phylogeny of the Glomerales – Glomeraceae (Rhizophagus and Sclerocystis, Fig. 

8) 

For Rh. irregularis and Rh. intraradices, Stockinger et al. (2009) already published detailed 

analyses. Here, we add new sequences from ‘G. cerebriforme’  MUCL43208 (not formally placed 

in Rhizophagus, because of uncertain identification), Rhizophagus sp. MUCL46100, and several 

Rh. irregularis cultures (W4682/Att857-12, BEG195, DAOM197198, DAOM233750, 

MUCL46240, MUCL43205, FTRS203). Rhizophagus irregularis, Rhizophagus sp. 

MUCL46100, Rh. intraradices (FL208, MUCL49410), Rh. clarus W3776/Att894-7 and Glomus 

cerebriforme DAOM227022 (species identification needs further study), which clusters basally to 

all studied Rhizophagus species, are very well supported (96-100% BS). The weaker support for 

Rh. proliferus DAOM226389 (68% BS) is caused by the short sequence GQ205079 that most 

likely is of chimeric origin. When including short sequences, one from G. microaggregatum 

DAOM212150 clusters close to Rhizophagus sp. MUCL46100 (not shown), and one from G. 

microaggregatum UT216B◄ on a long branch within Claroideoglomus (Fig. S2). All three 
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available Rh. custos DAOM236381 sequence variants cluster among sequences of Rh. irregularis 

and one ‘Glomus trimurales’ VA102A◄ sequence clusters with those of Rh. irregularis (not 

shown). One of ML110◄ and two sequences annotated as ‘Glomus intraradices’ (Gamper & 

Leuchtmann, 2004) apparently are neither Rh. intraradices nor Rh. irregularis (Stockinger et al., 

2009; 2010). Rhizophagus clarus sequences from 10 cultures cluster in a well resolved 

monophyletic clade together with Rh. manihotis sequences. Sclerocystis sinuosa MD126 falls 

basal to Rhizophagus and G. achrum (FM253379-81). Glomus bistratum (FM253382-84) and G. 

indicum (GU059544-49) cluster basally within Glomeraceae (formerly GlGrAb) in a polytomy 

(not shown). 

SSU-ITS-LSU phylogeny of the Glomerales - Claroideoglomeraceae (Fig. 9) 

Claroideoglomus walkeri, C. drummondi and C. etunicatum are well supported, but C. 

claroideum is rendered paraphyletic by C. luteum SA101 sequences. The supplementary analysis 

including shorter sequences (Fig. S2) shows a number of sequences from additional C. 

etunicatum cultures (AU401, NB119, CA-OT-126-3-2, KE118, etc.) clustering together (66% 

BS). Sequences of C. drummondi also form a well supported clade. Claroideoglomus luteum, C. 

claroideum and a sequence annotated as G. microaggregatum UT126B◄ cluster unresolved. 

Discussion  

By publishing further sequences produced over the recent years and re-analyses of available 

phylotaxonomic reference sequences, we established what we consider could serve as a 

phylogenetic backbone for a natural systematics of Glomeromycota and a basis for future 

environmental (deep) sequencing projects. For some analyses we use consensus sequences, which 

are theoretical constructs that may cause problems in some instances (Lindner & Banik, 2011). 

However, in our AMF analyses the use of strict (all variations represented by degenerate base 

symbols) SSU consensus sequences anchors taxa by conserved sequences and thus reduces the 

risks of coincidential phylogenetic attraction by shared characters at highly variable sites and of 

potential problems by inhomogenous sequence or taxon sampling. We analysed the available 

nuclear rDNA data of ~105 described species and ~28 unnamed AMF cultures and samples 

ascribed to undescribed species (approximate numbers, because determinations may not always 

be correct). More than 50% (118 species) of the currently 228 described AMF are covered by 

sequences deposited in the public databases, but only 81 (~36%) are propagated in the culture 
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collections INVAM (http://invam.caf.wvu.edu), BEG (http://www.kent.ac.uk/bio/beg), and 

GINCO (http://emma.agro.ucl.ac.be/ginco-bel), making reanalyses or improvements of the 

sequence database difficult. 

The need for a solid molecular genetic base for the systematics of Glomeromycota 

SSU analyses (Schüßler et al., 2001) and the six-gene phylogeny of James et al. (2006) indicated 

a likely sister-grouping of the Glomeromycota to Dikarya. By including basal fungal lineages as 

well as members of Dikarya, we again found the same sister grouping (Fig. 1). In contrast, 

analyses of the mitochondrial genome of Rh. irregularis isolate 494 (Lee & Young, 2009) and of 

nucleus-encoded proteins (Liu et al., 2009) questioned this sister relationship and indicate a 

possible common ancestry of AMF with Mortierellales. However, tree topologies in the latter 

study varied dependent on taxon sampling. At present resolving these differences must await 

more data from phylogenetically basal AMF, but clearly the Glomeromycota are a monophyletic 

and basal group of terrestrial fungi. 

The dataset and analyses presented here provided one of the foundations for major taxonomic 

reclassifications in the Glomeromycota (Schüßler & Walker, 2010). Such data are also important 

as reference for new species descriptions. For example, the sole use of morphology for the 

description of Ambispora brasiliensis (Goto et al., 2008) placed an Acaulospora species 

incorrectly at generic, familial and even ordinal level (Krüger et al., 2011). Similar instances of 

species descriptions only based on morphology were discussed by Morton & Msiska (2010b) 

who reported an albino mutant of S. heterogama WV859, which would have been considered as a 

new morphospecies if found in the field. Another example was the description of G. irregulare 

(Błaszkowski et al., 2008), now Rh. irregularis, based on a restricted analysis of intraspecific 

morphological plasticity. Therefore, the quality of formal species descriptions should be 

improved by including an appropriate phylogenetic characterization whenever possible. 

Obviously, this is particularly important for newly described species not represented by publicly 

available isolates. 

The phylogenetically basal lineages, Paraglomerales and Archaeosporales 

Only relatively few data are available for evolutionarily ancient phylogenetic lineages of 

Glomeromycota. Presently there are only three recognized or described species in the 

Paraglomerales and 11 in the Archaeosporales (www.amf-phylogeny.com), but most likely this 
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is only a small proportion of the existing species. Our study is the first to yield reasonable branch 

support for Paraglomerales as the most ancient lineage of the Glomeromycota (Fig. 1). It also 

supports the genus Intraspora (Sieverding & Oehl, 2006) as congeneric with Archaeospora 

(Schüßler & Walker, 2010). 

Diversisporales 

There has been considerable nomenclatural change among the Diversisporales recently. Oehl et 

al. (2008) split the genus Scutellospora into three new families containing six genera 

(Scutellospora in the Scutellosporaceae; Racocetra and Cetraspora in the Racocetraceae; 

Dentiscutata, Fuscutata, and Quatunica in the Dentiscutataceae). Except for Racocetra, these 

new taxa were all rejected by Morton & Msiska (2010a). Nevertheless, it has long been indicated 

that Scutellospora is non-monophyletic (e.g., Kramadibrata et al., 2000; da Silva et al., 2006). 

Although we support the notion of Morton & Msiska (2010a) that a robust taxon sampling and 

phylogenetic analysis should be the base of taxonomic changes, the phylogeny of Gigasporaceae 

presented herein may provide support for some of the genera proposed by Oehl et al. (2008), but 

certainly not for erecting new families in this clade. 

The case of two different D. aurantia clades exemplifies problems in interpretation of data from 

trap cultures seemingly producing spores of one species (often called single species cultures). It 

seems possible, but cannot be proven, that the trap culture contained more than one species. For 

the monospecific genus Otospora (Palenzuela et al., 2008), the assembled two short, non-

overlapping O. bareae sequences cluster within Diversispora. This could support the view that O. 

bareae is a morphologically exceptional member of the Diversisporaceae, but might as readily be 

the result of a contamination. The sequence of the recently described Entrophospora nevadensis 

(Palenzuela et al., 2010) also clusters unexpectedly, in regard to its morphology, among those of 

Diversispora. A detailed analysis of Diversisporaceae, with focus on D. epigaea, often named 

‘Glomus versiforme BEG47’, and including biogeographical aspects, is given in Schüßler et al. 

(2011).  

Kuklospora sensu Oehl & Sieverding (2006) was described based solely on spore morphology. 

The recent transfer of all Kuklospora species to Acaulospora (Kaonongbua et al., 2010) is 

congruent with our analyses. In our opinion the species, A. laevis and A. entreriana are 
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morphologically indistinguishable. They could not be separated in analyses when excluding the 

ITS1 and ITS2, but more data are needed to confirm conspecificity. 

Glomerales 

A decade ago, it was proposed that Glomus should be split into several families (Schwarzott et 

al., 2001). These were named as phylogenetic groups, Glomus Group (GlGr) A and B, until it 

was clear where the generic type of Glomus, G. macrocarpum, belongs phylogenetically 

(Schüßler & Walker, 2010). Now, the family Glomeraceae represents the former GlGrA, 

separated into four genera: Glomus (GlGrAc), Funneliformis (GlGrAa), Rhizophagus and 

Sclerocystis (both GlGrAb). In addition, G. iranicum and G. indicum sequences form a basal 

clade in this family, and G. bistratum and G. achrum cluster in a basal polytomy in the 

Glomeraceae. However, the correct phylogenetic placements may require additional data. The 

family Claroideoglomeraceae corresponds to the former GlGrB. 

For Claroideoglomus, Funneliformis and Rhizophagus, detailed analyses were already conducted 

by Stockinger et al. (2010), under the previous generic name Glomus. The uncovered 

inconsistencies discussed in that study are also recognizable from the phylogenetic trees of the 

present study, but are not further discussed here. Rhizophagus irregularis was defined 

(Błaszkowski et al., 2008), as G. irregulare, mainly based on perceived morphological 

differences from G. intraradices in a former sense, which included DAOM197198. The analysis 

of corresponding sequences is implemented in Fig. 8 and show that the organisms interpreted as 

different, based on morphology, in fact belong to the same species. Glomus irregulare (now Rh. 

irregularis) is conspecific with DAOM197198 (and other cultures of ‘G. intraradices’ in the 

former sense), and not with G. intraradices (now Rh. intraradices) (Sokolski et al., 2010; 

Stockinger et al., 2009, 2010). The molecular data suggest that Rh. clarus and Rh. manihotis are 

conspecific, but this issue requires further morphological work before the species can be 

synonymized.  

Putative errors in public sequence databases 

As discussed repeatedly (e.g. Schüßler et al., 2003; Bidartondo et al., 2008), annotation of 

sequence entries in public databases is often inadequate or incorrect. There are different types of 

errors; some sequences are obviously based on wrong identification or undiscovered species 

synonymy, some on contaminants, and others perhaps on accidental or simple misannotation. For 
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example, a batch of LSU sequences submitted by Amarasinghe & Morton (FJ461790-

FJ461888◄) caused numerous problems in our initial analyses, until we realized that many of the 

contained sequences seem to be either misannotated or derived from contaminants and must be 

interpreted with caution. For example, sequences from ‘Glomus trimurales’, originally annotated 

as Glomus sp., fall among three different orders, in the genera Diversispora, Claroideoglomus 

and Rhizophagus. Several entries will be updated (personal communication J. Morton, 8 Apr 

2011). The failure to update public database sequences with taxonomic changes can result in 

confusion and for accurate analyses many of the database entries cannot be accepted as provided. 

Our own past errors include the annotation of A. cavernata BEG33 as A. scrobiculata, and 

mixing up two samples resulting in mistakenly naming the corresponding sequences of S. 

spinosissima W3009/Att664-1 as S. nodosa BEG4 and vice versa. Moreover, we doubt our own 

annotation of a sequence (Y17652) attributed to G. viscosum BEG27 because morphologically, 

an affiliation to Claroideoglomus is surprising and the culture used for sequencing later turned 

out also to contain a contaminant C. claroideum-like fungus. A revived culture of G. viscosum 

has been established and will be used to clarify this matter. An example for putative culture mis-

annotation is DAOM212349. The number originally refers, as a voucher number, to both the C. 

lamellosum holotype (field collected) and, additionally, a pot culture from which specimens 

designated as ‘isotype’ (which cannot be correct, as, by definition, an isotype has to be from the 

original type-collection) were derived (Dalpé et al., 1992). A later ROC established from this pot 

culture was given the same number in the GINCO database, but it contains Rh. irregularis. 

DAOM212349 therefore must represent either an initially mixed culture, or a later contamination, 

but certainly one identifier is used for fungi from two distinct genera. To facilitate the correct 

interpretation of AMF sequence data, third party annotations are currently implemented in a 

PlutoF (Abarenkov et al., 2010) based metadatabase. 

Conclusions 

Systematics and molecular phylogenetics influence more scientific disciplines than often is 

realised. It is therefore important to correct misclassifications of organisms as soon as possible 

after discovery. This is particularly true for those used as model organisms, to allow correct 

interpretation of studies on functional, genetic and ecological traits. 

Besides providing a solid phylogenetic backbone, the dataset presented here covers the most 

likely future primary DNA barcode for fungi, namely the ITS region, and the 5’ portion of the 
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LSU for use as an extended barcode. Such data will assist the detection of species in the field 

(Stockinger et al., 2010). However, the database must be further improved by filling the gaps in 

relation to sequence and taxon coverage. The latter relates to described species, but also to 

environmental MOTUs, for which affiliation to species is feasible by the use of the SSU-ITS-

LSU fragment. Using such data will facilitate more accurate molecular ecological and, for 

example, biosafety analyses based on next generation sequencing of fungal communities. For 

AMF the lack of available well characterised biological material from described species is a 

problem, which partly lies in the nature of the organisms (many have so far proved impossible or 

difficult to establish or maintain in culture). This problem could be alleviated by contributing 

more isolates (single spore cultures) to public culture collections. Maintenance of non-

commercial living culture collections seems, however, hampered by inadequate funding. 

AMF are integral components of nearly all terrestrial ecosystems. To ascertain more about AMF-

plant preferences and the functional roles of AMF a solid systematic classification is 

indispensable, the foundation for which may have been laid with the dataset and analyses 

described herein. More sequences with sufficient lengths would morover facilitate improved 

understanding of biogeography and evolution of AMF, and research in practical aspects, such as 

biosafety assessments and AMF species traceability in field applications. 
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Figure Legends 

Fig. 1 Maximum likelihood phylogenetic tree based on concatenated nuclear SSUfull-5.8S-LSU rDNA 

strict consensus sequences (~2700 bp) of the Glomeromycota and other fungal lineages that were used as 

outgroups. Branches receiving less than 60% bootstrap support (1000 bootstraps) were collapsed to 

polytomies, long branches were shortened by 50% as indicated with the diagonal slashes. Terminal nodes 

marked with (consensus #) represent strict consensus sequences of sequences with the accession numbers 

listed in Supporting Information S3. Scale bar, number of substitutions per site. The following culture 

identifiers are not shown in the tree for space reasons: Acaulospora brasiliensis (consensus 5) is derived 

from W4699/Att1211-0 and W5473/Att1210-5, Diversispora spurca (consensus 7) from W2396/Att246-4 

and W4119/Att246-18, Diversispora aurantia (consensus 8) from W4728/Att1296-0, Glomus 

macrocarpum (consensus 22) from a field collected sporocarp (W5288) and Att1495-0 (two independent 

samplings W5581 and W5605), Ambispora fennica (consensus 36) from W4752/Att200-23 and 

W3569/Att200-11, and Archaeospora schenckii is derived from W3571/Att58-6 and W5673/Att212-4. 

Fig. 2 Maximum likelihood phylogenetic tree based on concatenated nuclear SSU rDNA strict consensus 

sequences (~1.8 kb). Paraglomus was used as outgroup as it represents the most basal glomeromycotan 

branch (see Fig. 1). Branches receiving less than 60% bootstrap support (1000 bootstraps) were collapsed 

to polytomies. Terminal nodes marked with (consensus #) represent strict consensus sequences of 

sequences with the accession numbers listed in Supporting Information S4. Scale bar, number of 

substitutions per site. Sequences ≤1300 bp are indicated with *. The generic type species, when included 

in the analysis, is shown in bold and underlined. 

Figs 3, 4. Maximum likelihood phylogenetic tree based on individual SSU-ITS-LSU rDNA sequence 

variants assembled with, when available, the corresponding SSU strict consensus sequence. Branches 

receiving less than 60% bootstrap support (1000 bootstraps) were collapsed to polytomies, long branches 

were shortened by 50% as indicated with two diagonal slashes or by 75% indicated with three slashes. 

Bootstrap values are given for branches among but not within different cultures. Scale bar, number of 

substitutions per site. Sequences submitted by Amarasinge & Morton, 2010 are marked with ◄, potential 

contaminant or wrongly annotated sequences are indicated with ●, the respective sequence length of all 

sequences shorter than 1 kb is shown within the taxon labels. Fig. 3 Paraglomerales and Archaeosporales, 

Ascomycota and Basidiomycota were used as outgroup. Terminal nodes marked with (consensus #) 

represent strict consensus sequences of sequences with the accession numbers listed in Supporting 

Information S5. Fig. 4 Gigasporaceae, including public database sequences of >700 bp; Acaulospora 
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species were used as outgroup. Consensus 10 is a strict consensus sequence of the sequences AY635832, 

AY997088, DQ273792 and consensus 11 from sequences AJ871270-73. 

Figs 5, 6. Maximum likelihood phylogenetic tree based on SSU-ITS-LSU rDNA sequence variants 

assembled with, when available, the corresponding SSU strict consensus sequence. Branches receiving 

less than 60% bootstrap support (1000 bootstraps) were collapsed to polytomies, long branches were 

shortened by 50% as indicated with two diagonal slashes or by 75% indicated with three slashes. 

Bootstrap values are given for branches among but not within different cultures. Scale bar, number of 

substitutions per site. Sequences submitted by Amarasinge & Morton, 2010 are marked with ◄, potential 

contaminant or wrongly annotated sequences are indicated with ●, the respective sequence length of all 

sequences shorter than 1 kb is noted. Fig. 5 Acaulosporaceae, with Diversispora as outgroup. Consensus 1 

is a strict consensus sequence of sequences AJ250847, AJ242499, FJ461802. Fig. 6 Diversisporaceae, 

Acaulospora species were used as outgroup. Consensus 2 is a strict consensus sequence of sequences 

DQ350448-53 and consensus 3 of sequences AM418543-44. 

Fig. 7-9. Maximum likelihood phylogenetic tree based on SSU-ITS-LSU rDNA sequence variants of the 

Glomerales assembled with, when available, the corresponding SSU strict consensus sequence. Branches 

receiving less than 60% bootstrap support (1000 bootstraps) were collapsed to polytomies, long branches 

were shortened by 50% as indicated with two diagonal slashes or by 75% indicated with three slashes. 

Bootstrap values are given for branches among but not within different cultures. Scale bar, number of 

substitutions per site. Sequences submitted by Amarasinge & Morton, 2010 are marked with ◄, potential 

contaminant or wrongly annotated sequences are indicated with ●, the respective sequence length of all 

sequences shorter than 1 kb is shown within the taxon labels. Fig. 7 Funneliformis and Glomus. 

Consensus 1 is a strict consensus sequence of sequences AY635833, AY997053, DQ273793; Fig. 8 

Rhizophagus and Sclerocystis; consensus 2 is a strict consensus sequence of sequences DQ322630, 

AY997054, DQ273828 and consensus 3 of AY635831, AY997052, DQ273790; Fig. 9 Claroideoglomus; 

consensus 4 is a strict consensus sequence of Y17639, Z14008, AJ239125. 
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Am. callosa OK1, MAFF520057, W4769/Att1323-7 (AB048656) 

Am. callosa OK1, MAFF520057, W4769/Att1323-7 ( AB048666) 

Am. callosa HZ-6K, W4772/Att1322-4 (AB259846) 586 bp 

Am. granatensis JEP-2010 (FN820281) 598 bp 

Am. gerdemannii AU215 (consensus 3) 

P. brasilianum W5793/Att260-8 (FR750053) 

Am. appendicula W5156/Att1235-2 (FN547524) 

Am. callosa HZ-6K, W4772/Att1322-4 (AB259845) 578 bp 

Ar. trappei AU219 (consensus 6) 

Am. fennica W4752/Att200-23 (FN547542) 

Ar. trappei W5791/Att178-3 (FR750034) 

Am. fennica W3569/Att200-11 (AM268197) 

Am. appendicula W5156/Att1235-2 (FN547532) 

Am. callosa V1, MAFF520058, W4771/Att321-10 (AB048682) 

Am. callosa OK1, MAFF520057, W4769/Att1323-7 (AB048658) 

Am. leptoticha F3b, MAFF520055, W4770/Att315-11 (AB048635) 

Am. granatensis JEP-2010 (FN820278) 594 bp 

Am. leptoticha FL130 (consensus 1) 

Ge. pyriformis GEO1, W3619 (FM876842) 

P. brasilianum WV215 (FJ461882) 657 bp ◄ 

P. brasilianum W5793/Att260-8 (FR750047) 

P. brasilianum WV224 (AF165922) 522 bp 

Am. leptoticha F3b, MAFF520055, W4770/Att315-11 (AB048651) 

Rhodotorula hordea AFTOL-ID674  

Ge. pyriformis GEO1, W3619 (FM876844) 

P. brasilianum W5793/Att260-8 (FR750054) 

Am. appendicula NC169-3 (AJ510234) 704 bp 

P. occultum CL383 (AF005065) 580 bp 

Ar. trappei W5791/Att178-3 (FR750037) 

Am. leptoticha F3b, MAFF520055, W4770/Att315-11 (AB048631) 

Am. appendicula W5156/Att1235-2 (FN547527) 

Am. callosa V1, MAFF520058, W4771/Att321-10 (AB048681) 

P. brasilianum W5793/Att260-8 (FR750049) 

Am. granatensis JEP-2010 (FN820276) 594 bp 

Ge. pyriformis GEO1, W3619 (FM876843) 

Am. appendicula W5156/Att1235-2 (FN547533) 

Am. callosa OK-m, W4768/Att1321-4 (AB259842) 580 bp 

Ar. schenckii W5673/Att212-4 (FR750023) 

Am. fennica W4752/Att200-23 (FN547541) 

Am. callosa OK1, MAFF520057, W4769/Att1323-7 (AB048670) 

P. laccatum (AM295494) 

Am. callosa V1, MAFF520058, W4771/Att321-10 (AB048672) 

P. laccatum W5141/Att960-11 (FR750083) 

Am. callosa OK1, MAFF520057, W4769/Att1323-7 (AB048665) 

P. brasilianum WV224 (AF165921) 525 bp 

Ar. trappei NB112 (consensus 5) 

Ar. schenckii W5673/Att212-4 (FR750020) 

Am. leptoticha F3b, MAFF520055, W4770/Att315-11 (AB048647) 

Ar. trappei W5791/Att178-3 (FR750036) 

P. brasilianum W5793/Att260-8 (FR750050) 

Am. leptoticha F3b, MAFF520055, W4770/Att315-11 (AB048636) 

Ge. pyriformis GEO1, W3619 (FM876841) 

Am. leptoticha F3b, MAFF520055, W4770/Att315-11 (AB048633) 

Am. fennica W4752/Att200-23 (FN547535) 

Am. appendicula W5156/Att1235-2 (FN547530) 

Am. callosa V1, MAFF520058, W4771/Att321-10 (AB048677) 

Am. callosa OK1, MAFF520057, W4769/Att1323-7 (AB048657) 

P. occultum CL383 (AF005481) 558 bp 

Am. leptoticha F3b, MAFF520055, W4770/Att315-11 (AB048646) 

Am. callosa OK-m, W4768/Att1321-4 (AB259840) 578 bp 

Am. callosa V1, MAFF520058, W4771/Att321-10 (AB048676) 

Ar. schenckii CL401 (AM743189) 803 bp 

Am. leptoticha F3b, MAFF520055, W4770/Att315-11 (AB048630) 

Am. fennica W4752/Att200-23 (FN547540) 

Am. leptoticha NC176 (consensus 2) 

Am. appendicula NC169-3 (AJ271712) 664 bp 

Am. granatensis JEP-2010 (FN820279) 587 bp 

Am. callosa V1, MAFF520058, W4771/Att321-10 (AB048678) 

P. brasilianum W5793/Att260-8 (FR750051) 

Ar. schenckii W5673/Att212-4 (FR750021) 

Ge. pyriformis GEO1, W3619 (FM876840) 

Am. fennica W3569/Att200-11 (AM268201) 

Ar. schenckii W5673/Att212-4 (FR750022) 

Am. granatensis JEP-2010 (FN820277) 589 bp 

P. brasilianum WV224 (AF165920) 523 bp 

Exophiala dermatitidis AFTOL-ID668 

P. occultum HA771 (consensus 9) 

Am. callosa V1, MAFF520058, W4771/Att321-10 (AB048673) 

Am. callosa OK1, MAFF520057, W4769/Att1323-7 (AB048659) 

Am. leptoticha F3b, MAFF520055, W4770/Att315-11 (AB048640) 

P. brasilianum ITH43 (AF165919) 527 bp 

Am. appendicula W5156/Att1235-2 (FN547531) 

Am. callosa HZ-6K, W4772/Att1322-4 (AB259844) 570 bp 

Am. appendicula W5156/Att1235-2 (FN547526) 

Am. callosa OK-m, W4768/Att1321-4 (AB259843) 583 bp 

Am. fennica W4752/Att200-23 (FN547539) 

Henningsomyces candidus AFTOL-ID468 

Am. fennica W4752/Att200-23 (FN547537) 

Ar. trappei W5791/Att178-3 (FR750038) 

Am. fennica W4752/Att200-23 (FN547544) 

P. brasilianum WV219 (consensus 7) 

Am. callosa OK1, MAFF520057, W4769/Att1323-7 (AB048668) 

Am. appendicula W5156/Att1235-2 (FN547525) 

Am. callosa OK1, MAFF520057, W4769/Att1323-7 (AB048663) 

Paraglomus sp. NI116B (FJ461884) 657 bp ◄ 

P. occultum FL703 (AF005062) 575 bp 

Am. callosa OK-m, W4768/Att1321-4 (AB259841) 575 bp 

Am. granatensis JEP-2010 (FN820282) 594 bp 

P. brasilianum W5793/Att260-8 (FR750052) 

Am. fennica W3569/Att200-11 (AM268200) 

Ge. pyriformis GEO1, AFTOL-ID574 (consensus 4) 

Am. appendicula W5156/Att1235-2 (FN547528) 

Am. leptoticha F3b, MAFF520055, W4770/Att315-11 (AB048639) 

Am. callosa V1, MAFF520058, W4771/Att321-10 (AB048675) 

Am. leptoticha F3b, MAFF520055, W4770/Att315-11 (AB048650) 

Am. granatensis JEP-2010 (FN820280) 589 bp 
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S. calospora HDMA-3 (EU346867) 742 bp 

S. reticulata isolate 1 (AY900494) 656 bp 

S. reticulata isolate 3 (AY900496) 656 bp 

R. verrucosa isolate 2 (AY900508) 656 bp ● 

S. gilmorei W5342/Att590-16 (FN547613) 

R. weresubiae W2988/field collected (FR750135) 

S. heterogama W4733/Att1283-1 (FR750166) 

Gi. rosea DAOM194757, W2856/Att1509-20 (FR750174) 
Gi. rosea DAOM194757, W2856/Att1509-20 (FR750177) 

S. heterogama W4733/Att1283-1 (FR750165) 

S. gilmorei W5342/Att590-16 (FN547617) 

Gigaspora sp. W2992/field collected (FM876800) 

Gi. margarita Gigmar58 (AF396783) 701 bp 

R. fulgida W2993/field collected (FR750141) 

R. fulgida W2993/field collected (FR750148) 

Gi. rosea DAOM194757, W2856/Att1509-20 (FN547581) 

Gi. margarita W5792/Att256-18 (FR750042) 

S. heterogama NY320 (FJ461878) 650 bp ◄ 

R. fulgida W2993/field collected (FR750143) 

S. heterogama WV858B (FJ461875) 650 bp ◄ 

S. gilmorei W5342/Att590-16 (FN547616) 

Gi. rosea DAOM194757, W2856/Att1509-20 (FN547579) 

Gi. rosea DAOM194757, W2856/Att1509-20 (FN547595) 

S. heterogama W4733/Att1283-1 (FR750163) 

A. cavernata BEG33, W3293/Att209-37 (FM876790) 

Gi. margarita BEG34 (FN547553) 

Gi. margarita BEG34 (FN547562) 

Gi. margarita BEG34 (FN547548) 

Gi. rosea DAOM194757, W2856/Att1509-20 (FR750184) 

Gi. rosea BEG9 (Y12075) 679 bp 

R. fulgida W2993/field collected (FR750137) 

S. pellucida (AY639309) 701 bp 

Gi. rosea DAOM194757, W2856/Att1509-20 (FN547586) 

Gi. rosea DAOM194757, W2856/Att1509-20 (FR750183) 

Gi. margarita BEG34 (FN547568) 

Gi. margarita BEG34 (FN547561) 

Gi. rosea DAOM194757, W2856/Att1509-20 (FN547572) 

R. verrucosa isolate 1 (AY900507) 656 bp ● 

S. gilmorei W5342/Att590-16 (FN547606) 

S. heterogama W4733/Att1283-1 (FR750160) 

R. verrucosa isolate 3 (AY900509) 656 bp ● 

S. heterogama W5611/Att1577-4 (FR750012) 

S. calospora AU212A (FJ461864) 674 bp ◄ 

S. heterogama W4733/Att1283-1 (FR750158) 

S. erythropa MA453B (AM040357) 674 bp 

R. fulgida W2993/field collected (FR750146) 

Gi. margarita BEG34 (FN547567) 

S. pellucida (AY639261) 700 bp 

S. gilmorei W5342/Att590-16 (FN547608) 

S. heterogama W5611/Att1577-4 (FR750014) 

S. gilmorei W5342/Att590-16 (FN547604) 

S. heterogama isolate 5 (AY900503) 656 bp 

S. gilmorei W5342/Att590-16 (FN547601) 

S. heterogama isolate 3 (AY900501) 656 bp 

S. gilmorei W5342/Att590-16 (FN547610) 

Gi. margarita W5792/Att256-18 (FR750039) 

S. gilmorei W5342/Att590-16 (FN547614) 

Gi. gigantea isolate 1 (AY900504) 657 bp ● 

S. gilmorei W5342/Att590-16 (FN547600) 

S. heterogama BEG35, W3214/Att334-16 (FM876839) 

S. heterogama W5611/Att1577-4 (FR750015) 

Gi. rosea DAOM194757, W2856/Att1509-20 (FN547582) 

Gi. margarita BEG34 (FN547552) 

R. fulgida W2993/field collected (FR750136) 

Gi. gigantea isolate 2 (AY900505) 657 bp ● 

S. gilmorei W5342/Att590-16 (FN547609) 

Gigaspora sp. W2992/field collected (FM876802) 

S. gilmorei W5342/Att590-16 (FN547603) 

S. gilmorei W5342/Att590-16 (FN547611) 

Gi. margarita W5792/Att256-18 (FR750040) 

S. erythropa Sen (AM040354) 684 bp 

S. erythropa MA453B (AM040355) 672 bp 

Gi. rosea DAOM194757, W2856/Att1509-20 (FN547575) 

S. heterogama SN722 (FJ461877) 650 bp ◄ 

R. weresubiae W2988/field collected (FR750134) 

Gi. margarita BEG34 (FN547563) 

S. reticulata isolate 4 (AY900497) 656 bp 

Gi. rosea DAOM194757, W2856/Att1509-20 (FN547588) 

Gigaspora sp. W2992/field collected (FM876803) 

R. fulgida W2993/field collected (FR750142) 

S. gilmorei W5342/Att590-16 (FN547621) 

Gi. rosea DAOM194757, W2856/Att1509-20 (FN547590) 

Gi. rosea DAOM194757, W2856/Att1509-20 (FN547571) 

Gi. rosea DAOM194757, W2856/Att1509-20 (FN547594) 

Gi. margarita BEG34 (FN547570) 

Gi. rosea DAOM194757, W2856/Att1509-20 (FN547596) 

Gi. margarita W5792/Att256-18 (FR750041) 

Gi. margarita BEG34 (FN547555) 

R. fulgida W2993/field collected (FR750138) 

Gi. rosea DAOM194757, W2856/Att1509-20 (FN547591) 

S. calospora BEG32 (AJ510231) 707 bp 

Gi. margarita BEG34 (FN547564) 

Gi. margarita BEG34 (FN547559) 

S. gilmorei W5342/Att590-16 (FN547612) 

S. pellucida NC155C (FJ461879) 650 bp ◄ 

R. fulgida NC303A (FJ461870) 652 bp ◄ 

S. heterogama W4733/Att1283-1 (FR750159) 

Scutellospora nodosa BEG4, W3485/Att209-44 (FM876833) 

Gi. rosea DAOM194757, W2856/Att1509-20 (FN547597) 

S. gilmorei W5342/Att590-16 (FN547599) 

S. heterogama W4733/Att1283-1 (FR750164) 

S. gilmorei W5342/Att590-16 (FN547622) 

Gi. rosea DAOM194757, W2856/Att1509-20 (FN547576) 

S. heterogama W5611/Att1577-4 (FR750017) 

Gi. margarita W5792/Att256-18 (FR750045) 

Gi. rosea DAOM194757, W2856/Att1509-20 (FR750182) 

Gi. rosea DAOM194757, W2856/Att1509-20 (FN547584) 

S. reticulata CNPAB11 (consensus 11) 

S. heterogama WV858B (FJ461876) 650 bp ◄ 

S. heterogama CL157 (FJ461871) 650 bp ◄ 

Gi. margarita BEG34 (FN547565) 

S. gilmorei W5342/Att590-16 (FN547602) 

Gi. margarita BEG34 (FN547557) 

S. heterogama isolate 4 (AY900502) 656 bp  

Scutellospora nodosa BEG4, W3485/Att209-44 (FM876835) 

Gigaspora sp. W2992/field collected (FM876799) 

Gi. rosea DAOM194757, W2856/Att1509-20 (FN547585) 

Gi. margarita Gigmar60 (AF396782) 701 bp 

S. heterogama BR155 (FJ461872) 650 bp ◄ 

S. pellucida (AY639323) 699 bp 

Gi. rosea DAOM194757, W2856/Att1509-20 (FN547593) 

A. cavernata BEG33, W3293/Att209-37 (FM876791) 

Gi. rosea DAOM194757, W2856/Att1509-20 (FN547580) 

Gi. rosea DAOM194757, W2856/Att1509-20 (FR750178) 

Gi. margarita W5792/Att256-18 (FR750044) 

R. fulgida W2993/field collected (FR750140) 

Gi. gigantea MA401C (FJ461863) 651 bp ◄ 

S. heterogama BEG35, W3214/Att334-16 (FM876838) 

S. reticulata isolate 5 (AY900498) 656 bp 

Gi. rosea DAOM194757, W2856/Att1509-20 (FN547577) 

Gigaspora sp. W2992/field collected (FM876801) 

S. erythropa HA150B (FJ461869) 650 bp ◄ 

S. erythropa Sen (AM040352) 671 bp 

S. dipurpurescens WV930 (FJ461868) 674 bp ◄ 

Scutellospora spinosissima W3009/Att664-1 (FR750150) 

Gi. rosea DAOM194757, W2856/Att1509-20 (FR750185) 

Scutellospora nodosa BEG4, W3485/Att209-44 (FM876834) 

S. erythropa Sen (AM040351) 670 bp 

Scutellospora nodosa BEG4, W3485/Att209-44 (FM876836) 

S. heterogama W4733/Att1283-1 (FR750161) 

Gi. margarita BEG34 (FN547560) 

S. heterogama FL225, AFTOL-ID138 (consensus 10) 

S. heterogama isolate 1 (AY900499) 655 bp 

Gi. margarita BEG34 (FN547547) 

S. gilmorei W5342/Att590-16 (FN547619) 

S. heterogama BEG35, W3214/Att334-16 (FM876837) 

S. gilmorei W5342/Att590-16 (FN547620) 

Gi. rosea DAOM194757, W2856/Att1509-20 (FR750181) 

S. gilmorei W5342/Att590-16 (FN547615) 

R. verrucosa VA103A (FJ461881) 650 bp ◄ 

Gi. margarita BEG34 (FN547549) 

Gi. margarita W5792/Att256-18 (FR750043) 

S. heterogama W5611/Att1577-4 (FR750016) 

Gi. rosea DAOM194757, W2856/Att1509-20 (FR750175) 

Scutellospora spinosissima W3009/Att664-1 (FR750149) 

Gi. margarita BEG34 (FN547551) 

S. gilmorei W5342/Att590-16 (FN547607) 

Gi. margarita BEG34 (FN547558) 

Gi. rosea DAOM194757, W2856/Att1509-20 (FR750176) 

R. verrucosa isolate 4 (AY900510) 656 bp ● 

R. fulgida W2993/field collected (FR750144) 

S. gilmorei W5342/Att590-16 (FN547605) 

S. heterogama WV858B (FJ461874) 650 bp ◄ 

Gi. rosea DAOM194757, W2856/Att1509-20 (FN547592) 

S. heterogama W5611/Att1577-4 (FR750019) 

Gi. rosea DAOM194757, W2856/Att1509-20 (FN547574) 

S. heterogama isolate 2 (AY900500) 656 bp 

S. gilmorei W5342/Att590-16 (FN547598) 

R. fulgida W2993/field collected (FR750139) 

Gi. rosea DAOM194757, W2856/Att1509-20 (FR750179) 

Gi. rosea DAOM194757, W2856/Att1509-20 (FN547578) 

S. pellucida (AY639313) 699 bp 

Gi. gigantea isolate 3 (AY900506) 657 bp ● 

R. coralloidea SA260 (FJ461866) 650 bp ◄ 

R. gregaria LPA48 (AJ510232) 668 bp 
R. persica MA461A (FJ461880) 650 bp ◄ 

Gi. rosea DAOM194757, W2856/Att1509-20 (FN547587) 

Gi. margarita BEG34 (FN547556) 

R. fulgida W2993/field collected (FR750145) 

Gi. rosea DAOM194757, W2856/Att1509-20 (FR750180) 

S. reticulata isolate 2 (AY900495) 656 bp 

S. calospora PL114 (FJ461865) 673 bp ◄ 

S. heterogama W5611/Att1577-4 (FR750013) 

Gi. rosea DAOM194757, W2856/Att1509-20 (FN547583) 

R. verrucosa isolate 5 (AY900511) 656 bp ● 

S. calospora HDAM-3 (EU252109) 742 bp 

S. heterogama WV858B (FJ461873) 650 bp ◄ 

S. heterogama W4733/Att1283-1 (FR750162) 

Gi. margarita BEG34 (FN547554) 

S. gilmorei W5342/Att590-16 (FN547618) 

S. heterogama W4733/Att1283-1 (FR750167) 

Gi. rosea DAOM194757, W2856/Att1509-20 (FN547589) 

Gi. margarita BEG34 (FN547550) 

R. fulgida W2993/field collected (FR750147) 

Gi. decipiens AU102 (FJ461862) 652 bp ◄ 

Gi. rosea DAOM194757, W2856/Att1509-20 (FN547573) 

S. heterogama W5611/Att1577-4 (FR750018) 

Gi. margarita BEG34 (FN547569) 

Gi. margarita BEG34 (FN547566) 
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S. cerradensis MAFF520056 (AB048685) 

S. cerradensis MAFF520056 (AB048688) 

S. cerradensis MAFF520056 (AB048683) 
S. cerradensis MAFF520056 (AB048686) 

S. cerradensis MAFF520056 (AB048684) 

S. cerradensis MAFF520056 (AB048689) 

S. cerradensis MAFF520056 (AB048690) 
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P. occultum GR582 (U81987) 529 bp ● 



A. longula AcS (AM040293) 689 bp 

A. longula AcS (AM040292) 709 bp 
A. longula AcS (AM040291) 687 bp 

A. longula AcS (AM040294) 689 bp 

A. dilatata WV204 (FJ461792) 674 bp ◄ 
A. mellea CR316B (FJ461794) 675 bp ◄ 
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A. laevis BEG26 (FN547513) 

A. scrobiculata AU303 (FJ461797) 673 bp ◄ 

Acaulospora sp. WUM18, W2941/Att869-3 (FM876793) 

A. paulinae CW4 (AJ891115) 525 bp 

A. alpina ST2700 (AJ891103) 551 bp 

A. colliculosa (GU326339) 662 bp 

A. cavernata BEG33, W3293/Att209-37 (FM876789) 

A. entreriana W5469 (FR750170) 

A. paulinae CW4 (AJ891117) 532 bp 

A. tuberculata VZ103E (FJ461799) 673 bp ◄ 

A. kentinensis TW111 (FN547523) 

A. laevis BEG13 (FN547509) 

A. longula BEG8 (AJ510228) 709 bp 

A. alpina ST2700 (AJ891101) 562 bp 

A. colliculosa (GU326350) 662 bp 

A. mellea isolate 3 (AY900514) 663 bp ● 

A. cavernata BEG33, W3293/Att209-37 (FM876791) 

A. kentinensis TW111 (FN547522) 

A. laevis BEG13 (FN547510) 

A. lacunosa BEG78 (AJ510230)  

A. laevis BEG13 (FN547507) 

A. brasiliensis W4699/Att1211-0 (FN825904) 

A. laevis W3247/Att423-4 (FN547502) 

A. colliculosa (GU326352) 662 bp 

A. colliculosa (GU326349) 662 bp 

A. colliculosa (GU326342) 662 bp 

A. brasiliensis W4699/Att1211-0 (FN825908) 

A. kentinensis TW111 (FM876821) 

A. paulinae CW4 (AJ891119) 536 bp 

A. entreriana W5469 (FR750171) 

A. kentinensis TW111 (FM876829) 

A. cavernata BEG33, W3293/Att209-37 (FM876788) 

A. entreriana W5469 (FR750172) 

A. kentinensis TW111 (FN547521) 

A. colliculosa (GU326345) 662 bp 

A. laevis BEG13 (FN547508) 

A. lacunosa BEG78 (AJ891112) 

A. colliculosa (GU326351) 662 bp 

A. alpina DS1908 (AJ891109) 571 bp 

A. paulinae CW4 (AJ891116) 548 bp 

A. entreriana W5469 (FR750168) 

D. celata BEG231, FACE234, W4718+19/Att1278-2 (AM713404) 

A. laevis W3247/Att423-4 (FN547504) 

A. spinosa W3574/Att-none (FR750151) 

A. brasiliensis W4699/Att1211-0 (FN825909) 

A. colombiana W5795/Att1476-8 (FR750063) 

A. colliculosa (GU326347) 662 bp 

Acaulospora sp. CL283, FL709 (FJ461810) 658 bp ◄ 

A. alpina ST2700 (AJ891105) 552 bp 

A. alpina OV2600 (AJ891107) 547 bp 

A. laevis W3247/Att423-4 (FN547506) 

A. brasiliensis W4699/Att1211-0 (FN825902) 

A. entreriana W5469 (FR750173) 

A. delicata ML103 (FJ461790) 675 bp ◄ 

A. brasiliensis W4699/Att1211-0 (FN825903) 

A. paulinae CW4 (AJ891121) 539 bp 

A. spinosa W3574/Att-none (FR750155) 

A. spinosa W3574/Att-none (FR750153) 

A. laevis W3247/Att423-4 (FN547517) 

Acaulospora sp. WUM18, W2941/Att869-3 (FM876792) 

A. spinosa W3574/Att-none (FR750156) 

A. laevis BEG26 (FN547514) 

A. kentinensis TW111 (FM876824) 

A. mellea isolate 2 (AY900513) 663 bp ● 

A. laevis BEG26 (FN547519) 

A. brasiliensis W4699/Att1211-0 (FN825905) 

A. spinosa W3574/Att-none (FR750154) 

A. brasiliensis W4699/Att1211-0 (FN825907) 

A. koskei WV786 (FJ461793) 658 bp ◄ 

A. colliculosa (GU326346) 662 bp 

A. paulinae CW4 (AJ891120) 535 bp 

A. kentinensis TW111 (FM876827) 

A. kentinensis TW111 (FM876828) 

A. kentinensis CU114A (FJ461808) 679 bp ◄ 

A. lacunosa BEG78 (AJ891110) 

A. colombiana C-18-3 (AJ239117) 523 bp 

A. laevis BEG13 (AJ510229) 705 bp 

A. mellea isolate 1 (AY900512) 662 bp ● 

A. spinosa MN405B (FJ461798) 675 bp ◄ 

A. laevis BEG13 (FN547512) 

A. delicata NY304 (FJ461791) 675 bp ◄ 

A. laevis AU211 (consensus 1) 

A. colliculosa (GU326340) 662 bp 

A. brasiliensis W4699/Att1211-0 (FN825901) 

A. laevis W3247/Att423-4 (FN547505) 

A. kentinensis TW111 (FM876826) 

A. paulinae CW4 (AJ891114) 549 bp 

A. laevis BEG13 (FN547511) 

A. cavernata BEG33, W3293/Att209-37 (FM876790) 

A. lacunosa BEG78 (AJ891113) 

Acaulospora sp. CU141 (FJ461803) 674 bp ◄ 
A. morrowiae CR404 (FJ461795) 674 bp ◄ 

A. colliculosa (GU326341) 662 bp 

A. entreriana W5469 (FR750169) 

A. brasiliensis W5473/Att1210-5 (FN825910) 

A. laevis W3247/Att423-4 (FN547503) 

A. colombiana BR100B (FJ461804) 657 bp ◄ 

A. laevis BEG26 (FN547518) 

A. denticulata CL139-3 (AJ239115) 497 bp 

A. foveata CR315 (FJ461801) 645 bp ◄ 

A. alpina ST2700 (AJ891102) 561 bp 

A. lacunosa WV110 (FJ461800) 653 bp ◄ 

Acaulospora sp. CL283, FL709 (FJ461811) 678 bp ◄ 

A. kentinensis TW111 (FM876823) 

D. spurca W4119/Att246-18 (FN547644) 

A. laevis BEG13 (FN547516) 

A. paulinae AU103A (FJ461796) 674 bp ◄ 

A. alpina OV2600 (AJ891106) 572 bp 

Acaulospora sp. BHRRA-2009a, VA105E (FJ461805) 657 bp ◄ 

A. brasiliensis W5473/Att1210-5 (FN825911) 

A. colliculosa (GU326348) 662 bp 

A. colliculosa (GU326344) 662 bp 

A. kentinensis TW111 (FN547520) 

A. colliculosa (GU326343) 662 bp 

A. kentinensis TW111 (FM876825) 

A. alpina ST2700 (AJ891104) 552 bp 

A. kentinensis TW111 (FM876822) 
A. kentinensis TW111 (FM876830) 

A. paulinae CW4 (AJ891118) 535 bp 

A. spinosa W3574/Att-none (FR750152) 

A. lacunosa BEG78 (AJ891111) 

A. alpina OV2600 (AJ891108) 564 bp 

A. brasiliensis W4699/Att1211-0 (FN825906) 

A. laevis BEG26 (FN547515) 
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D. aurantia ex-type W4728/Att1296-0 (FN547665) 

D. trimurales BR608 (FJ461851) 702 bp ◄ 

D. celata BEG231, FACE234, W4718-19/Att1278-2 (AY639235) 

D. eburnea UK121 (FJ461831) 708 bp ◄ 

D. epigaea BEG47, W3180/Att475-22 (FR686938) 

D. aurantia ex-type W4728/Att1296-0 (FN547656) 

Diversispora sp. NB101 (AF185693) 577 bp 

Re. pulvinatum CL-Mart05-035 (AM418550) 767 bp 

D. aurantia ex-type W4728/Att1296-0 (FN547661) 

D. epigaea BEG47, W3180/Att475-22 (FN547666) 

D. eburnea AZ420A, W4729 (AM713407) 

D. epigaea BEG47 (AY842568) 

D. epigaea BEG47, W5165/Att475-45 (FM876817) 

D. epigaea BEG47, W3180/Att475-22 (FR686940) 

Diversispora sp. NB101 (AF185690) 516 bp 

Diversispora sp. W5257 (FR686947) 

D. spurca ex-type W4119/Att246-18 (FN547646) 

D. celata BEG232, FACE272, W4757/Att1291-2 (AY639237) 

Diversispora sp. AZ237B (AF185677) 567 bp 

D. aurantia ex-type W4728/Att1296-0 (EF581861) 761 bp 

D. eburnea AZ420A, W4729 (AM713411) 

D. celata BEG230, FACE83, W4758/Att1292-2 (AY639228) 

D. celata BEG233, FACE410, W5306+07/Att1500-2 (DQ350451) 

Diversispora sp. W5257 (FR686946) 

Diversispora sp. W5257 (FR686945) 

D. celata BEG232, FACE272, W4757/Att1291-2 (AY639239) 

D. spurca ex-type W4119/Att246-18 (FN547640) 

Diversispora sp. NB101 (AF185682) 688 bp 

D. epigaea BEG47 (FJ461852) 707 bp ◄ 

D. spurca ex-type W4119/Att246-18 (FN547650) 

D. epigaea BEG47 (AM947665) 

D. spurca ex-type W4119/Att246-18 (FN547647) 

Diversispora sp. NB101 (AF185691) 528 bp 

D. eburnea AZ420A, W4729 (EF067888) 

D. celata BEG230, FACE83, W4758/Att1292-2 (AY639225) 

D. aurantia ex-type W4728/Att1296-0 (FN547663) 

D. epigaea BEG47, W5165/Att475-45 (FN547636) 

D. celata BEG230, FACE83, W4758/Att1292-2 (AY639232) 

Diversispora sp. NB101 (AF185695) 567 bp 

D. aurantia ex-type W4728/Att1296-0 (EF581864) 761 bp  

A. cavernata BEG33, W3293/Att209-37 (FM876791) 

D. aurantia ex-type W4728/Att1296-0 (FN547658) 

Diversispora sp. AZ237B (AF185678) 332 bp 

D. celata BEG231, FACE234, W4718-19/Att1278-2 (AY639306) 

D. aurantia ex-type W4728/Att1296-0 (EF581862) 758 bp 

D. spurca ex-type W4119/Att246-18 (FN547651) 

D. epigaea BEG47, W3180/Att475-22 (FN547669) 

D. spurca ex-type W4119/Att246-18 (FN547652) 

Re. pulvinatum CL-Mart05-035 (AM418549) 772 bp 

D. aurantia holotype (AJ849468) 

D. epigaea BEG47, W5165/Att475-45 (FN547635) 

D. spurca ex-type W4119/Att246-18 (FN547645) 

D. eburnea AZ420A, W4729 (AM713416) 

D. celata BEG232, FACE272, W4757/Att1291-2 (AY639238) 

D. celata BEG230, FACE83, W4758/Att1292-2 (AY639230) 

D. epigaea BEG47, W3180/Att475-22 (FN547674) 

D. aurantia ex-type W4728/Att1296-0 (FN547664) 

D. celata BEG232, FACE272, W4757/Att1291-2 (AY639236) 

D. aurantia ex-type W4728/Att1296-0 (EF581860) 760 bp 

Diversispora sp. NB101 (AF185694) 517 bp 

D. celata BEG233, FACE410, W5306+07/Att1500-2 (DQ350450) 

A. laevis W3247/Att423-4 (FN547502) 

D. eburnea AZ420A, W4729 (AM713410) 

D. aurantia ex-type W4728/Att1296-0 (FN547657) 

Diversispora sp. W5257 (FR686951) 

D. spurca ex-type W4119/Att246-18 (FN547648) 

D. aurantia ex-type W4728/Att1296-0 (FN547655) 

D. epigaea BEG47, W3180/Att475-22 (FR686941) 

D. celata BEG230, FACE83, W4758/Att1292-2 (AY639226) 

D. epigaea BEG47, W3180/Att475-22 (FN547670) 

D. spurca ex-type W4119/Att246-18 (FN547644) 

D. eburnea AZ420A, W4729 (AM713413) 

D. epigaea BEG47, W3180/Att475-22 (FN547680) 

D. eburnea AZ420A, W4729 (AM713409) 

D. spurca ex-type W4119/Att246-18 (FN547654) 
D. spurca ex-type W4119/Att246-18 (FN547641) 

Diversispora sp. AZ237B (AF185680) 564 bp 

D. spurca ex-type W4119/Att246-18 (FN547638) 

D. epigaea BEG47, W5165/Att475-45 (FM876820) 

D. eburnea AZ420A, W4729 (AM713415) 

D. epigaea BEG47 (AY842573) 

D. spurca ex-type W4119/Att246-18 (FN547642) 

D. epigaea BEG47, W3180/Att475-22 (FN547681) 

D. spurca ex-type W4119/Att246-18 (FN547637) 

D. epigaea BEG47, W3180/Att475-22 (FN547668) 

D. eburnea AZ420A, W4729 (AM713414) 

Re. fulvum CL-Mart05-111 (AM418547) 754 bp 

D. spurca ex-type W4119/Att246-18 (FN547653) 

D. epigaea BEG47, W3180/Att475-22 (FN547678) 

D. epigaea BEG47, W5165/Att475-45 (FM876815) 

D. epigaea BEG47 (AY842567) 

D. epigaea BEG47, W3180/Att475-22 (FN547676) 

D. celata BEG230, FACE83, W4758/Att1292-2 (AY639229) 

D. eburnea AZ420A, W4729 (AM713412) 
D. eburnea AZ420A, W4729 (EF067887) 

D. celata BEG233, FACE410, W5306+07/Att1500-2 (DQ350452) 

G. tortuosum JA306A (FJ461850)705 bp ◄ 

D. spurca ex-type W4119/Att246-18 (FN547643) 

D. celata BEG233, FACE410, W5306+07/Att1500-2 (DQ350453) 

D. celata BEG232, FACE272, W4757/Att1291-2 (AY639241) 

D. celata BEG233, FACE410, W5306+07/Att1500-2 (DQ350448) 

D. aurantia ex-type W4728/Att1296-0 (FN547659) 

D. eburnea AZ420A, W4729 (AM713408) 

D. spurca WV109F (FJ461847) 713 bp ◄ 

Diversispora sp. W5257 (FR686949) 

D. epigaea BEG47, W3180/Att475-22 (FN547672) 

D. celata BEG231, FACE234, W4718-19/Att1278-2 (AM713418) 

Diversispora sp. AZ237B (AF185681) 757 bp 

Diversispora sp. AZ237B (AF185679) 578 bp 

D. aurantia ex-type W4728/Att1296-0 (EF581863) 760 bp 

A. cavernata BEG33, W3293/Att209-37 (FM876790) 

Diversispora sp. W5257 (FR686952) 

Re. megalocarpum CL-Guad05-051 (AM418552) 778 bp 

D. eburnea AZ420A, W4729 (AM713406) 

D. epigaea BEG47 (AY842574) 

D. celata BEG230, FACE83, W4758/Att1292-2 (AY639231) 

D. epigaea BEG47, W5165/Att475-45 (FM876818) 

D. celata BEG230, FACE83, W4758/Att1292-2 (AY639227) 

D. epigaea BEG47, W5165/Att475-45 (FM876819) 

Re. megalocarpum CL-Guad05-051 (AM418551) 786 bp 

Diversispora sp. W5257 (FR686948) 

D. celata BEG231, FACE234 ,W4718-19/Att1278-2 (AM713403) 

D. epigaea BEG47, W3180/Att475-22 (FN547671) 

Diversispora sp. W5257 (FR686950) 

Re. fulvum CL-Mart05-111 (AM418548) 762 bp 

D. epigaea BEG47, W3180/Att475-22 (FN547679) 

Diversispora sp. W5257 (FR686958) 

D. trimurales KS101 (FJ461855) 713 bp ◄ 

D. celata BEG231, FACE234, W4718-19/Att1278-2 (AY639234) 

D. epigaea BEG47 (AY842569) 

D. epigaea BEG47, W5165/Att475-45 (FM876814) 

D. celata BEG232, FACE272, W4757/Att1291-2 (AY639240) 

D. epigaea BEG47, W3180/Att475-22 (FN547677) 

D. celata BEG231, FACE234, W4718-19/Att1278-2 (AM713402) 

D. spurca ex-type W4119/Att246-18 (FN547639) 

Re. fulvum CL-Mart05-049 (AM418546) 767 bp 

D. celata BEG231, FACE234, W4718-19/Att1278-2 (AY639233) 

Re. fulvum CL-Mart05-049 (AM418545) 765 bp 

D. celata BEG231, FACE234, W4718-19/Att1278-2 (AM713417) 

D. epigaea BEG47, W5165/Att475-45 (FM876816) 

Redeckera sp. fulvum-like AC-Pohn99-001 (consensus 2) 

D. celata BEG231, FACE234, W4718-19/Att1278-2 (AM713404) 

D. epigaea BEG47, W3180/Att475-22 (FN547667) 

D. epigaea BEG47, W3180/Att475-22 (FN547675) 

A. laevis W3247/Att423-4 (FN547503) 

D. aurantia ex-type W4728/Att1296-0 (FN547662) 

D. epigaea BEG47, W3180/Att475-22 (FR686939) 

D. celata BEG233, FACE410, W5306+07/Att1500-2 (DQ350449) 

D. trimurales FL707B (FJ461854) 709 bp ◄ 

D. celata BEG231, FACE234, W4718-19/Att1278-2 (AM713419) 

D. epigaea BEG47, W3180/Att475-22 (FN547673) 

D. eburnea AZ420A, W4729 (EF067886) 

D. aurantia ex-type W4728/Att1296-0 (FN547660) 

D. spurca ex-type W4119/Att246-18 (FN547649) 

D. eburnea AZ420A, W4729 (AM713405) 
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D. spurca SC157 (FJ461849) 710 bp ◄ 
D. spurca HA567 (FJ461848) 713 bp ◄ 100 
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C. claroideum W5794/Att1063-4 (FR750056) 

C. etunicatum W5347/Att1505-8 (FN547634) 

C. claroideum W5155/Att1063-3 (FR750075) 

C. luteum SA101-3, W3184/Att676-5 (FM876810) 

C. claroideum W5794/Att1063-4 (FR750060) 

C. drummondii (AJ972464)  

F. caledonium W3294/Att263-15, BEG20 (FN547494) 

C. claroideum W5794/Att1063-4 (FR750055) 

C. etunicatum W5347/Att1505-8 (FN547623) 

Claroideoglomus sp. W3349/Att565-11 (FM876805) 

C. etunicatum UT316 (consensus 4)  

Claroideoglomus sp. W5155/Att1063-3 (FR750077) 

C. claroideum W5794/Att1063-4 (FR750059) 

C. luteum SA101-3, W3184/Att676-5 (FM876812) 

C. etunicatum W5347/Att1505-8 (FN547627) 

C. etunicatum W5347/Att1505-8 (FN547625) 

C. claroideum W5155/Att1063-3 (FR750074) 

C. drummondii (AJ972465) 

C. etunicatum W5347/Att1505-8 (FN547632) 

C. etunicatum W5347/Att1505-8 (FN547629) 

C. claroideum W5794/Att1063-4 (FR750061) 

C. luteum SA101-3, W3184/Att676-5 (FM876811) 

C. walkeri (AJ972467)  

C. etunicatum W5347/Att1505-8 (FN547633) 

C. etunicatum W5347/Att1505-8 (FN547626) 
C. etunicatum W5347/Att1505-8 (FN547631) 

C. claroideum W5794/Att1063-4 (FR750057) 

C. etunicatum W5347/Att1505-8 (FN547630) 

Claroideoglomus sp. W3349/Att565-11 (FM876806) 

C. luteum SA101-3, W3184/Att676-5 (FM876808) 

Claroideoglomus sp. W3349/Att565-11 (FM876804) 

C. etunicatum W5347/Att1505-8 (FN547628) 

C. drummondii (AJ972466) 

Claroideoglomus sp. W3349/Att565-11 (FM876807) 

C. claroideum W5155/Att1063-3 (FR750076) 

C. etunicatum W5347/Att1505-8 (FN547624) 

F. caledonium W3294/Att263-15, BEG20 (FN547495) 

C. claroideum W5794/Att1063-4 (FR750058) 

C. luteum SA101-3, W3184/Att676-5 (FM876809) 

C. claroideum W5794/Att1063-4 (FR750062) 
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Rh. irregularis DAOM197198, W3182/Att1192-52 (FM865609) 

Rh. irregularis DAOM197198 (FR750067) 

Rh. irregularis MUCL46240 (FR750091) 

Rh. irregularis A (FR750193) ♦ 

Rh. irregularis MUCL43205 (FR750116) 

Rh. irregularis W4682/Att857-12 (FR750190) 

Rh. irregularis MUCL41833, DAOM233750 (FR750102) 

Rh. irregularis (FJ009609) ◊ 

Rh. irregularis MUCL43195 (FR750080) 

Rh. irregularis MUCL43205 (FR750111) 

Rh. irregularis DAOM197198, W5533/Att1192-27 (FM865550) 

Rh. irregularis (FJ009612) ◊ 

Rh. irregularis MUCL43205 (FR750112) 

Rh. irregularis DAOM197198, W5495/Att1192-27 (FM865611) 

Rh. irregularis W4682/Att857-12 (FR750186) 

Rh. irregularis MUCL43205 (FR750109) 

Rh. irregularis MUCL41833, DAOM233750 (FR750104) 

Rh. irregularis DAOM197198, W5495/Att1192-27 (FM865616) 
Rh. irregularis DAOM197198, W5495/Att1192-27 (FM865615) 

Rh. irregularis DAOM197198, W5533/Att1192-27 (FM865555) 

Rh. irregularis DAOM197198, Att690-23 (FM992384) 

Rh. irregularis MUCL41833, DAOM233750 (FR750101) 

Rh. irregularis (FJ009617) ◊ 

Rh. irregularis MUCL43195 (FR750081) 

Rh. irregularis A (FR750195) ♦ 

Rh. irregularis DAOM197198 (FR750066) 

Rh. irregularis DAOM197198 (FR750070) 

Rh. irregularis BEG195, W5272/Att1485-12 (FM865593) 

Rh. irregularis BEG195, W5272/Att1485-12 (FM865591) 

Rh. irregularis MUCL46240 (FR750089) 

Rh. irregularis DAOM197198, Att690-23 (FM992382) 

G. cerebriforme DAOM227022, MUCL43208 (FR750094) 

Rh. irregularis A (FR750200) ♦ 

Rh. irregularis FTRS203 (FR750087) 

Rh. irregularis MUCL43205 (FR750110) 

Rh. irregularis DAOM197198, W5533/Att1192-27 (FM865551) 

G. cerebriforme DAOM227022, MUCL43208 (FR750095) 

Rh. irregularis BEG195, W5272/Att1485-12 (FM865595) 

Rh. irregularis MUCL43195 (FR750078) 

Rh. irregularis W4682/Att857 12 (FR750188) 

Rh. irregularis (FJ009606) ◊ 

Rh. irregularis MUCL43205 (FR750115) 

Rh. irregularis DAOM197198 (FR750069) 

Rh. irregularis (FJ009607) ◊ 

Rh. irregularis (FJ009610) ◊ 

G. cerebriforme DAOM227022, MUCL43208 (FR750093) 

Rh. irregularis DAOM197198, W5533/Att1192-27 (FM865558) 

Rh. irregularis DAOM197198, Att690-23 (FM992377) 

Rh. irregularis DAOM197198, W3182/Att1192-52 (FM865608) 

Rh. irregularis DAOM197198 (FR750065) 

Rhizophagus sp. MUCL46100 (FR750073) 

Rh. irregularis MUCL41833, DAOM233750 (FR750105) 

Rh. irregularis BEG195, W5272/Att1485-12 (FM865589) 

Rh. irregularis (FJ009616) ◊ 

Rh. irregularis BEG195, W5272/Att1485-12 (FM865588) 

Rh. irregularis MUCL46240 (FR750088) 

Rh. irregularis MUCL43205 (FR750117) 

Rh. irregularis MUCL43205 (FR750114) 

Rh. irregularis (FJ009613) ◊ 

G. cerebriforme DAOM227022, MUCL43208 (FR750092) 

Rh. irregularis A (FR750196) ♦ 

Rh. irregularis A (FR750198) ♦ 

Rh. irregularis BEG195, W5272/Att1485-12 (FM865592) 

Rh. irregularis DAOM197198, W5533/Att1192-27 (FM865554) 

Rh. irregularis W4682/Att857-12 (FR750189) 

Rh. irregularis MUCL43195 (FR750082) 

Rh. irregularis FTRS203 (FR750084) 

Rh. irregularis DAOM197198, Att690-23 (FM992386) 

Rh. irregularis (FJ009615) ◊ 

Rh. irregularis (FJ009608) ◊ 

Rh. irregularis (FJ009605) ◊ 

Rh. irregularis A (FR750199) ♦ 

Rh. irregularis (FJ009618) ◊ 

Rh. irregularis W4682/Att857-12 (FR750187) 

Rh. irregularis MUCL43205 (FR750106) 

Rh. irregularis MUCL43205 (FR750108) 

Rhizophagus sp. MUCL46100 (FR750071) 

Rh. irregularis A (FR750191) ♦ 

Rh. irregularis DAOM197198, W3182/Att1192-52 (FM865610) 

Rh. irregularis DAOM197198, W5495/Att1192-27 (FM865617) 

Rh. irregularis BEG195, W5272/Att1485-12 (FM865590) 

Rh. irregularis A (FR750194) ♦ 

Rh. irregularis FTRS203 (FR750085) 

Rh. irregularis MUCL46240 (FR750090) 

Rh. irregularis DAOM197198, AFTOL-ID48 (consensus3) 

Rh. irregularis DAOM197198, Att690-23 (FM992387) 

Rh. irregularis DAOM197198, Att690-23 (FM992383) 

Rh. irregularis DAOM197198, Att690-23 (FM992381) 

Rh. irregularis DAOM197198, W5495/Att1192-27 (FM865614) 

Rh. irregularis A (FR750197) ♦ 

Rh. irregularis (FJ009614) ◊ 

Rh. irregularis DAOM197198, W5495/Att1192-27 (FM865613) 

Rh. irregularis GINCO4695rac-11G2, AFTOL-ID845 (consensus 2) 

Rh. irregularis DAOM197198 (FR750064) 

Rh. irregularis MUCL41833, DAOM233750 (FR750103) 

Rh. irregularis FTRS203 (FR750086) 

Rh. irregularis BEG195, W5272/Att1485-12 (FM865594) 

Rh. irregularis A (FR750192) ♦ 

Rh. irregularis MUCL43205 (FR750107) 

Rh. irregularis DAOM197198 (FR750068) 

Rh. irregularis MUCL43195 (FR750079) 

Rh. irregularis MUCL43205 (FR750113) 

Rh. irregularis DAOM197198, W5533/Att1192-27 (FM865552) 

Rh. irregularis (FJ009611) ◊ 

Rh. irregularis DAOM197198, Att690-23 (FM992379) 

Rhizophagus sp. MUCL46100 (FR750072) 

90 

100 

100 

98 

99 

100 

100 

94 

0.05 

Rh. proliferus DAOM226389, MUCL41827 (AJ973393) 

Rh. intraradices MUCL49410, W5070/Att1102-9 (FM865548) 

Rh. intraradices FL208, W5166/Att4-38 (FM865603) 

Claroideoglomus sp. W3349/Att565-11 (FM876805) 

Rh. intraradices FL208, W5166/Att4-38 (FM865582) 
Rh. intraradices FL208, W5166/Att4-38 (FM865586) 

Rh. intraradices FL208, W5166/Att4-38 (FM865597) 

Rh. proliferus MUCL41827 (FM992401) 

Rh. intraradices FL208, W5166/Att4-38 (FM865570) 

Rh. proliferus MUCL41827 (FM992398) 

Rh. intraradices FL208, W5166/Att4-38 (FM865575) 

Rh. proliferus MUCL41827 (FM992400) 

Rh. intraradices FL208, W5166/Att4-38 (FM865583) 

Rh. intraradices FL208, W5273/Att4-38 (FR750372) 

Rh. proliferus MUCL41827 (FM992396) 

Rh. intraradices FL208, W5166/Att4-38 (FM865602) 

Rh. proliferus MUCL41827 (FM992395) 

Rh. proliferus MUCL41827 (FN547501) 

Rh. intraradices FL208, W5166/Att4-38 (FM865577) 

Rh. proliferus DAOM226389, MUCL41827 (GQ205079) 497 bp ● 

Rh. proliferus MUCL41827 (FN547500) 

Rh. intraradices FL208, W5273/Att4-38 (FR750126) 

Rh. intraradices FL208, W5166/Att4-38 (FM865580) 

Rh. intraradices FL208, W5166/Att4-38 (FM865572) 

Rh. intraradices FL208, W5166/Att4-38 (FM865585) 

Rh. intraradices FL208, W5166/Att4-38 (FM865559) 

Rh. proliferus DAOM226389, MUCL41827 (GQ205078) 
Rh. proliferus DAOM226389, MUCL41827 (GQ205077) 

Rh. intraradices FL208, W5273/Att4-38 (FR750127) 

Rh. intraradices FL208, W5166/Att4-38 (FM865578) 

Rh. intraradices MUCL49410, W5070/Att1102-9 (FM865547) 

Rh. intraradices FL208, W5166/Att4-38 (FM865599) 

Claroideoglomus sp. W3349/Att565-11 (FM876807) 

Rh. intraradices FL208, W5166/Att4-38 (FM865573) 

Rh. intraradices FL208, W5166/Att4-38 (FM865598) 

Rh. proliferus MUCL41827 (FM992390) 

Rh. intraradices FL208, W5166/Att4-38 (FM865604) 

Rh. proliferus MUCL41827 (FM992391) 

Rh. intraradices FL208, W5166/Att4-38 (FM865562) 

Rh. proliferus MUCL41827 (FM992402) 

Claroideoglomus sp. W3349/Att565-11 (FM876804) 

Rh. intraradices MUCL49410, W5070/Att1102-9 (FM865546) 

Rh. intraradices MUCL49410, W5070/Att1102-9 (FM865545) 

Rh. intraradices FL208, W5166/Att4-38 (FM865601) 

Rh. intraradices FL208, W5166/Att4-38 (FM865606) 

Rh. intraradices FL208, W5166/Att4-38 (FM865565) 
Rh. intraradices FL208, W5166/Att4-38 (FM865600) 

Rh. intraradices FL208, W5166/Att4-38 (FM865607) 

Rh. intraradices FL208, W5166/Att4-38 (FM865605) 

68 

66 

96 

68 

83 

0.05 

F. mosseae BEG12, W5147/Att109-20 (FN547489) 

F. mosseae BEG12, W5790/Att109-28 (FR750024) 

F. mosseae BEG12, W5790/Att109-28 (FR750032) 
F. mosseae BEG12, W5147/Att109-20 (FN547487) 

G. macrocarpum W5581/Att1495-0 (FR750363) 

F. mosseae BEG12, W5147/Att109-20 (FN547493) 

G. macrocarpum W5293/field collected (FR750543) 

F. mosseae BEG12, W5147/Att109-20 (FN547488) 

G. macrocarpum W5581/Att1495-0 (FR750367) 

F. coronatum W3582/Att108-7 (FM876794) 

F. mosseae BEG12, W5790/Att109-28 (FR750031) 

Rh. intraradices FL208, W5166/Att4-38 (FM865606) 

F. mosseae BEG12, W5147/Att109-20 (FN547492) 

Glomus sp. W3347/Att565-7 (FR750203) 

G. macrocarpum W5581/Att1495-0 (FR750368) 

G. macrocarpum W5581/Att1495-0 (FR750366) 

F. mosseae BEG12, W5147/Att109-20 (FN547476) 

G. macrocarpum W5293/field collected (FR750535) 

G. macrocarpum W5293/field collected (FR750540) 

F. mosseae BEG25 (X96827) 

F. coronatum W3582/Att108-7 (FM876797) 

F. mosseae BEG12, W5790/Att109-28 (FR750028) 

F. mosseae BEG12, W5147/Att109-20 (FN547483) 

G. macrocarpum W5293/field collected (FR750532) 

F. mosseae BEG12, W5147/Att109-20 (FN547491) 

Glomus sp. W3347/Att565-7 (FR750201) 

F. mosseae BEG12, W5147/Att109-20 (FN547490) 

F. mosseae BEG12, W5147/Att109-20 (FN547486) 

F. caledonium BEG20, W3294/Att263-15 (FN547497) 

F. mosseae BEG12, W5790/Att109-28 (FR750029) 

G. macrocarpum W5293/field collected (FR750536) 

F. mosseae UT101, AFTOL-ID139 (consensus 1) 

F. mosseae BEG12, W5147/Att109-20 (FN547475) 

G. macrocarpum W5293/field collected (FR750544) 

F. caledonium BEG20, W3294/Att263-15 (FN547494) 

F. mosseae BEG25 (X96828) 

G. macrocarpum W5293/field collected (FR750537) 

F. caledonium BEG20, W3294/Att263-15 (FN547496) 

F. coronatum W3582/Att108-7 (FM876796) 

G. macrocarpum W5293/field collected (FR750539) 

G. macrocarpum W5288/field collected (FR750528) 

G. macrocarpum W5293/field collected (FR750538) 

F. caledonium BEG20, W3294/Att263-15 (FN547499) 

Funneliformis sp. WUM3, W2939/Att15-5 (FN547480) 

Rh. intraradices FL208, W5166/Att4-38 (FM865604) 

F. mosseae BEG12, W5790/Att109-28 (FR750026) 

F. coronatum W3582/Att108-7 (FM876798) 

Funneliformis sp. WUM3, W2939/Att15-5 (FN547478) 

F. mosseae BEG12, W5790/Att109-28 (FR750030) 

F. coronatum W3582/Att108-7 (FM876795) 

F. mosseae BEG12, W5147/Att109-20 (FN547482) 

G. macrocarpum W5288/field collected (FR750527) 

G. macrocarpum W5288/field collected (FR750530) 

Funneliformis sp. WUM3, W2939/Att15-5 (FN547477) 

F. mosseae BEG12, W5790/Att109-28 (FR750027) 

Funneliformis sp. WUM3, W2939/Att15-5 (FN547479) 

F. caledonium BEG20, W3294/Att263-15 (FN547495) 

F. mosseae BEG25 (X96826) 

G. macrocarpum W5581/Att1495-0 (FR750365) 

G. macrocarpum W5581/Att1495-0 (FR750371) 

F. mosseae BEG12, W5790/Att109-28 (FR750033) 

G. macrocarpum W5293/field collected (FR750542) 

G. macrocarpum W5288/field collected (FR750526) 

G. macrocarpum W5581/Att1495-0 (FR750370) 

F. mosseae BEG12, W5147/Att109-20 (FN547474) 

G. macrocarpum W5581/Att1495-0 (FR750369) 

G. macrocarpum W5581/Att1495-0 (FR750364) 

F. mosseae BEG12, W5147/Att109-20 (FN547484) 

G. macrocarpum W5288/field collected (FR750529) 

G. macrocarpum W5293/field collected (FR750533) 

G. macrocarpum W5293/field collected (FR750541) 

F. caledonium BEG20, W3294/Att263-15 (FN547498) 

G. macrocarpum W5293/field collected (FR750531) 

Funneliformis sp. WUM3, W2939/Att15-5 (FN547481) 

F. mosseae BEG12, W5147/Att109-20 (FN547485) 

Glomus sp. W3347/Att565-7 (FR750202) 

Funneliformis sp. WUM3, W2940/Att15-5 (FM876813) 

G. macrocarpum W5293/field collected (FR750534) 

97 

75 

100 

100 

98 

100 

99 

100 

89 

100 

100 

Rh. clarus W3776/Att894-7 (FM865536) 

Rh. clarus W3776/Att894-7 (FM865541) 

Rh. clarus W3776/Att894-7 (FM865539) 

Rh. clarus W3776/Att894-7 (FM865538) 

Rh. clarus W3776/Att894-7 (FM865543) 
Rh. clarus W3776/Att894-7 (FM865544) 

Rh. clarus W3776/Att894-7 (FM865540) 

Rh. clarus W3776/Att894-7 (FM865542) 

100 
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9. Discussion 

9.1 General discussion 

The aim of my thesis was to elaborate the molecular phylogeny of the ecologically and economically 

important AMF, for a better understanding of their evolution, diversity and applicability. These data 

should moreover be used to develop molecular tracing tools for AMF recognition in molecular-ecological 

studies. As suitable markers for phylogenetically inclusive detection of AMF were still missing, a new 

primer set for characterization of AMF with species-level resolution, was successfully designed and tested 

(chapter 4). 

Using the 1.5 kb SSU-ITS-LSU fragment as baseline data, detailed DNA barcoding analyses could be 

conducted, including the analysis of intraspecific variability and potential DNA barcoding regions for 

species recognition of AMF (chapter 5). DNA barcoding could be helpful in biological research and 

agronomic field analyses regarding AMF, e.g. as quality control of applied inoculum or for beforehand 

characterization of the occurring AMF in the field. It is well known that AMF can improve plant tolerance 

to drought stress and pathogen resistance, but many mechanisms are not yet understood. Using a suited 

DNA barcoding region will allow detecting AMF-plant preferences in different environments and thus 

also help to uncover such yet unknown mechanisms. 

Based on a ~2.7 kb (SSUfull-ITS-LSU) rDNA consensus sequence analysis, the sister-grouping of 

glomeromycotan fungi to Dikarya (Schüßler et al., 2001b; James et al., 2006), when using the SSU, ITS 

and/or LSU rDNA regions, was confirmed and the Paraglomerales were, for the first time, supported in 

bootstrap analyses as the most ancient lineage in the Glomeromycota (chapter 8, Fig. 1). Furthermore 

several debated revisions in the systematics of AMF could be clarified, supported or rejected based on the 

more comprehensive database provided, e.g. that of the Gigasporaceae (Oehl et al., 2008; Morton & 

Msiska, 2010a) and of Entrophospora (Sieverding & Oehl, 2006), as well as the transfer of Kuklospora to 

Acaulospora (Kaonongbua et al., 2010). Furthermore, the major taxonomic revision of Schüßler & Walker 

(2010) within the Glomeromycota was partially based on the SSUfull-ITS-LSU data. 

This ~2.7 kb SSUfull-ITS-LSU sequence baseline was established and will become a base of a curated 

dataset to make the improvements in molecular detection and species recognition of AMF available for 

ecosystem research and AMF application.   
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9.2 The recent taxonomy of Glomeromycota 

The fundamental changes in the systematics of Glomeromycota (Schüßler et al., 2001b), due to the large 

number of revised or modified revisions, indicate the needs for reliable molecular characterization and 

tracing tools. A revision of Gigasporaceae by Oehl et al. (2008) was rejected in most parts by Morton & 

Msiska (2010a) lacking a sufficient taxon sampling and robust phylogenetic analyses for an adequate 

revision. Further changes in the systematics of AMF were made, e.g. with the erection of Intraspora and 

Kuklospora (Sieverding & Oehl, 2006) solely based on morphology and recently revised (Kaonongbua et 

al., 2010) founded on molecular evidence as Kuklospora spp. cluster polyphyletically in Acaulospora. 

Last but not least a major revision of Glomus, Diversisporaceae and the rejection of Intraspora was 

published by Schüßler & Walker (2010), attempting to base the systematic of AMF on a natural, 

phylogenetic framework. The latter revision was also done to avoid the inflation of names announced at a 

symposium at the ICOM6 conference in Brazil, which would have led to a large number of new taxa in 

the Glomeromycota. 

The results of the phylogenetic analyses of the 2.7 kb SSUfull-ITS-LSU, the SSU-ITS-LSU fragment and 

the SSU rRNA gene (chapter 8, Figs 1-9) are congruent with, and partly were the base for, the revision of 

Schüßler & Walker (2010). The data presented here also support the changes in the Diversisporaceae, 

namely the transfer of four Glomus species to Diversispora (Schüßler & Walker, 2010) based on 

molecular evidence (Schüßler et al., 2011 - chapter 7) and the new genus Redeckera, with the species Re. 

fulvum, Re. pulvinatum and the generic type species Re. megalocarpum. Scutellospora weresubiae was re-

transferred to Racocetra based on the phylogenetic data shown in chapter 8, as it clusters 

monophyletically with this genus. The monospecific genus Intraspora, was rejected and Intraspora 

schenckii transferred to Archaeospora as it is phylogenetically placed in between Archaeospora cultures 

and thus congeneric, as demonstrated in chapter 8. The recently described Entrophospora nevadensis 

(Palenzuela et al., 2010), as well as Otospora bareae (Palenzuela et al., 2008) was shown to be congeneric 

with Diversispora (Schüßler et al., 2011 - chapter 7; chapter 8) and the published sequence data may be 

derived from contaminations. Furthermore the phylogenetic relationship of Ambispora brasiliensis (Goto 

et al., 2008), which was described based only on spore morphology, could be clarified and molecular 

evidence place the fungus in Acaulospora as Ac. brasiliensis (Krüger et al., 2011 - chapter 6). 

It seems clear that further revisions within the Glomeromycota have to be done as e.g. for the genera 

erected by Oehl et al. (2008), representing Scutellospora species sensu Morton & Msiska (2010a). These 

genera are largely supported by the SSU and LSU analyses shown here, but the results are still based on a 

limited taxon sampling. A robust taxon sampling, beside the molecular tools that allow species 

recognition, should be the base for any major taxonomic changes.  
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9.3 Evolution of Glomeromycota 

A correct natural systematics of the Glomeromycota should reflect the evolution of this ancient fungal 

phylum, which is dated back to at least 460 Mya and whose members co-evolved with land plants since 

their origin. Molecular clock estimates seem to be the only method to date back the origin of early fungal 

lineages and the Glomeromycota. However, due to rare fossil records and variant substitution rates in 

different fungal lineages this method may produce artefacts and divergence time estimates may be biased 

(Berbee & Taylor, 2010). There are only few fossil records for glomeromycotan fungi, such as fossil 

spores resembling modern glomeromycotan spores (460 Mya, Redecker et al., 2000; 400 Mya, Dotzler et 

al., 2006; 2009) and the well preserved arbuscules found in Aglaophyton (400 Mya; Remy et al., 1994). 

These recently discovered fossils (Dotzler et al., 2006; 2009) could be very valuable for re-calibrating 

molecular estimates, especially the origin of the Gigasporaceae. 

The molecular clock estimates for the origin of the glomeromycotan lineages differ from 760 Mya to over 

1000 Mya, indicating the limitations of the molecular clock methods and the lack of appropriate fossil 

calibration points. It is very likely that AMF arose before land plants (Brundrett, 2002) and are thus 

hypothesized to have played an important role in colonization of the land by plants (Pirozynski & 

Malloch, 1975), which is widely accepted nowadays. Functional evidence for this hypothesis was lacking 

so far, but Humphrey et al. (2010) recently showed support for this scenario by demonstrating that 

mycorrhizal Marchantia paleaceae (a thalloid liverwort) shows enhanced biomass production, uptake of 

nitrogen and phosphorus, in contrary to the non-mycorrhizal plants, when grown at CO2 concentrations 

similar to them in the early Palaeozoic era. Before such mycorrhiza-like symbioses with bryophytes, AMF 

may have been associated with other photoautrophic organisms (Selosse & Tacon, 1999; Heckman et al., 

2001) such as the unique endosymbiosis of Geosiphon pyriformis (Schüßler, 2002) which forms symbiosis 

with the cyanobacterium Nostoc punctiforme (Schüßler et al., 2007). 

Land plants were recently dated back using an uncorrelated relaxed-clock analysis including 33 fossil 

calibration points to have been originated at 477 Mya (Middle Ordovician; Smith et al., 2010), but in fact 

Smith et al. (2010) discuss the split between bryophytes and Lycopodiophyta and not the origin of the land 

plant lineage. This split is consistent with the earliest known microfossil records of land plants (~470 

Mya, Wellmann & Gray, 2000). Flowering plants (Angiospermae) were suggested to have originated 217 

Mya (Late Triassic) approx. 20 My earlier than previously estimated (140 Mya, Bell et al., 2005; 190 

Mya, Magallon & Sanders, 2005). It seems likely that the origin of land plants and of AMF will be dated 

back further in time. 
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9.4 Molecular phylogeny of Glomeromycota 

The Glomeromycota (Schüßler et al., 2001b) and their sister-grouping to Asco- and Basidiomycota (James 

et al., 2006; chapter 8), was questioned by Lee & Young (2009). They demonstrated low supported sister-

grouping to Mortierella verticillata based on the phylogenetic analyses on 14 mitochondrially encoded 

proteins. The relationship with the Mortierellales was also indicated by analyses of actin genes, RPB1 and 

elongation factor 1-alpha (EF-1α) (Redecker & Raab, 2006) and an analysis based on 113 nucleus-

encoded proteins (Liu et al., 2009). The α- and β-tubulin gene phylogenies suggested Chytridiomycota as 

sister-group of glomeromycotan fungi (Corradi et al., 2004), while with increased taxon sampling and 

exclusion of the third codon position of the β-tubulin gene Msiska & Morton (2009) showed sister 

relationship to Zygomycota for Glomeromycota. The phylogenetic relationship of Glomeromycota to other 

fungal phyla remains unclear and varies depending on the marker used, but in contrast the monophyly of 

glomeromycotan fungi is supported in all analyses independent of the marker region used.  

Currently only few data is available for the protein coding genes of AMF, mainly from Rhizophagus 

irregularis and closely related species, and a more comprehensive sampling of taxa is needed. Therefore 

only the rDNA as marker regions are discussed here, as providing the largest taxon sampling and sequence 

numbers have grown considerably in the last years. 

Genus resolution with the SSU rDNA marker region 

Despite the limited resolution power of the SSU rDNA, which was also indicated in previous studies 

(Bruns et al., 1991; Hofstetter et al., 2007), the SSU rDNA is still widely used for characterization of 

AMF in the field (Lee et al., 2008; Beck et al., 2007; Öpik et al., 2008, 2010; Turrini et al., 2008; Long et 

al., 2010; Ryszka et al., 2010). As the SSU rDNA provides the largest taxon sampling, Öpik et al. (2009) 

and Lumini et al. (2010) both conducted in-field community studies of AMF using a 454 sequencing 

approach based on the conserved SSU and the relatively short 200-250 bp reads. Both defined phylotypes 

with 97% sequence similarity, widely used for full length SSU sequences of bacteria, but clearly 

corresponding to above species recognition for AMF. Thus, this method may hide many AMF species, 

making interpretations in ecological studies difficult and error-prone. We considered the SSU rDNA 

region as unsuited for community analysis at species-level and DNA barcoding. 

New AMF specific primers and species resolution with the ITS and LSU rDNA region 

As the SSU rDNA region is unsuited for species recognition, we designed new AMF specific primers 

(SSUmAf-LSUmAr, SSUmCf-LSUmBr), which amplify a fragment of ~1.5-1.8 kb covering the 3’ SSU, 
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the whole ITS and a part of the LSU rDNA region. They were tested and amplify members of all main 

lineages in the Glomeromycota (chapter 4). In a field trial using the primers for amplification of AMF 

DNA from plant roots we only observed two non-target sequence from over 100 processed samples, 

which was Ranunculus repens and Rumex acetosella. Due to the increasing number of sequence data for 

AMF it seems clear that the primers have to be optimized in future, as we, e.g. recently observed some 

mismatches for Archaeospora schenckii and Archaeospora trappei. To improve the efficiency of the 

primers and to prevent bias in amplification towards certain groups of AMF the concentration of the 

individual primers in the mixture could easily be adjusted, in future attempts, and new versions of 

individual primers may be designed, when necessary. 

The ITS region was used as a kind of ‘de facto DNA barcode’ since the early 1990s for fungi (Kõljalg et 

al., 2005) and may provide species-level resolution. The ITS region was used for AMF to separate species 

e.g. in the Ambisporaceae (Walker et al., 2007) and in combination with the LSU rRNA gene for 

Diversisporaceae (Gamper et al., 2009), but species recognition of the ITS alone for very closely related 

species e.g. for Rhizophagus intraradices FL208 and Rhizophagus irregularis DAOM197198 (the latter 

usually wrongly named as Glomus intraradices, see Stockinger et al., 2009) is not always robust, due to 

high intraspecific variability. We considered the ITS region as useful to distinguish species, but with some 

limitations. 

The LSU rDNA was also frequently used for identification of AMF in community analyses (van Tuinen et 

al., 1998; Kjøller & Rosendahl, 2000; Turnau et al., 2001; Gollotte et al., 2004; Pivato et al., 2007; 

Gamper et al., 2009), often covering the variable D1 or D2 region, sometimes both. The LSU-D2 region 

could resolve AMF species (Kjøller & Rosendahl, 2000) and most of the frequently used LSU primer 

pairs are designed to amplify the LSU-D2 in a nested PCR approach (Gollotte et al., 2004; Kjøller & 

Rosendahl, 2000). Our results now demonstrate the good resolution provided by the LSU-D2 alone, which 

was almost the same as for the 800 bp LSU-fragment covering both, the D1 and D2 regions. In contrast, 

the LSU-D1 alone could not separate over half of the analyzed AMF species (chapter 5). 

Using the SSU-ITS-LSU fragment, amplified with the AMF specific primers, we could achieve species-

level resolution and clarify some inconsistencies within the systematics of Glomeromycota (see chapter 

9.1). With the SSU-ITS-LSU fragment, which covers all earlier used regions, we could analyze all 

available data and compare results of different studies, which was not possible before. The analysis in 

chapter 5 was the first using the SSU-ITS-LSU fragment to characterize AMF, therefore no other 

comparative data covering the complete 1.5 kb SSU-ITS-LSU fragment were available yet, but we know 

from personal communications that it is now used by several research groups and soon more data will be 
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published. Further sequence data were published and analyzed here (chapter 8), for all main phylogenetic 

lineages of Glomeromycota, which confirmed and refined the former results. This indicates that the SSU-

ITS-LSU fragment carries appropriate informative regions for robust phylogenetic analyses and molecular 

detection of AMF at species-level. Furthermore using the SSU-ITS-LSU fragment as a phylogenetic 

‘backbone’, species recognition was possible even with shorter fragments included (Stockinger et al., 

2010 – chapter 5).  

In combination with a fragment, covering almost the full length of the SSU, a robust phylogenetic analysis 

based on 2.7 kb SSUfull-ITS-LSU sequences was conducted, which might be used as future standard in 

molecular characterization of glomeromycotan fungi, also helping to fill up the gaps in the coverage 

provided by public sequence databases.  

 

9.5 DNA barcoding of Glomeromycota 

For fungi, a standardized official DNA barcode is currently lacking. Our recommendation is to use the 

complete 1.5 kb SSU-ITS-LSU fragment as baseline for AMF DNA barcoding, because shorter fragments 

failed to separate closely related species robustly (chapter 5). However, species identification is only as 

good as the reference sequence database (Begerow et al., 2010) and standards are needed, e.g. regarding 

vouchers, geographical data, correct annotation, more available sequence data, etc. Thus and because of 

the known problems in the international sequence databases (Bidartondo et al., 2008), curated databases 

such as the ‘user-friendly nordic ITS ectomycorrhiza database’ (UNITE, http://unite.ut.ee) and the 

accompanied web-based workbench PlutoF (Abarenkov et al., 2010; http://plutof.ut.ee) are needed. 

Presently UNITE and PlutoF only provide upload and comparison of the ITS region, but for UNITE the 

LSU rDNA region will also be implemented in future also for Glomeromycota (UNITE/NordForsk 

Network Meeting, Helsinki Finland, 2009). To support such databases, descriptions of new AMF species 

should be as accurate as possible (vouchers, geo-data, covering intraspecific sequence variability, etc.). 

We here publish our curated sequence database to partly overcome the current limitations of AMF species 

recognition in ecological studies (chapter 8). 
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10. Outlook 

The currently 228 described AMF species are only the tip of the iceberg and it is most likely that within 

the next years many new species will be described. In regard to the high-throughput sequencing methods 

even more undescribed species will be published. Therefore it is important to have a standardized 

molecular characterization, e.g. the one we introduced based on a 2.7 kb SSUfull-ITS-LSU rDNA 

fragment (chapter 8) also covering the most likely future DNA barcode for fungi and part of the 

intraspecific variability. Such molecular characterization should be done for all available and 

morphological characterized, defined AMF cultures to improve the data-baseline for community analyses. 

For a reliable taxonomy and systematic of AMF, new species should be described as accurate as possible, 

both, morphologically and molecularly. Lacking cultures and high-quality sequence data are the biggest 

bottlenecks for glomeromycotan molecular-ecological research. 

Further improving the dataset for protein encoding genes for AMF is also important, as comparison of 

phylogenetic analyses for multiple genes may solve the yet unclear relationship of the Glomeromycota to 

other fungal phyla. Partly due to such problems, the limited fossil records and variable molecular clock 

estimates, the understanding how AMF have evolved still is in its infancy. Molecular clock estimates are 

not always congruent and tend to result in earlier dating (Bromham & Penny, 2003) than estimates based 

on fossil records. Furthermore the fossil records are getting rare with increasing geological age 

(Heckmann et al., 2001) and thus the precision of molecular clock estimates cannot be proven, which was 

called ‘the negative evidence dilemma’ by Berbee & Taylor (2010). New fossil findings and refined 

molecular clock methods will improve the precision of the estimations about the origin of the 

Glomeromycota. It is likely that their origin will be dated back in regard to the more conserved estimation 

methods as it was recently done for the origin of land plants (Smith et al., 2010). 

The molecular tools presented (chapter 4, 5) could be used for detection of AMF species applied from an 

inoculum mixture, e.g. in tree nurseries or agriculture. Knowing which AMF persists in the field the 

inoculum could be improved, making afforestation or agricultural application more efficient. This could 

be time and cost efficient with the recent GS-FLX system (~400 bp) or the upcoming upgrade of the 

system (~800 bp).  

Third generation sequencing technologies, such as the PACBIO RS (Pacific Bioscience) combining the 

high amount of sequences generated (second generation) and the reduction of the bias introduced by PCR 

with projected read lengths of ≤1kb (www.pacificbioscience.com) will help to discover the biodiversity of 

AMF in an unknown range, further improving the knowledge about the important and potential plant 

preferences of these indispensable fungi. 
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13.1 Supplementary data – chapter 5 

The following data are supplementary material for the publication ‘DNA barcoding of arbuscular 

mycorrhizal fungi’. 
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A: SSUmCf-LSUmBr B: ITS region C: LSU region

D: ITS2 fragment E: LSU-D1 fragment F: LSU-D2 fragment
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Figure S3: For legend see next page.



Figure S4: SSUmCf-LSUmBr (A), ITS region (B), LSU region (C), ITS2 fragment (D), LSU-D1 
fragment (E), LSU-D2 fragment (F) NJ analyses (1000 BS) of Glomus Group Aa from the core dataset. Glomus Group Aa from the core dataset. Glomus
Glomus mosseae (■), Glomus sp. WUM3 (Glomus sp. WUM3 (Glomus ●), Gl. coronatum (▲), Gl. caledonium (▶).
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F: LSU-D2 fragment

Figure S3: SSUmCf-LSUmBr (A), ITS region (B), LSU region (C), ITS2 fragment (D), LSU-D1 
fragment (E), or LSU-D2 fragment (F) neighbour joining (NJ) analyses, 1000 bootstraps (BS), of 
Glomus Group Ab from the core dataset. Glomus Group Ab from the core dataset. Glomus Glomus cf. clarum (▶), Gl. intraradices (Gl. intraradices (Gl. intraradices ), Gl. proliferum (□), 
Glomus sp. ‘irregulare-like’ (◆).



Figure S5: SSUmCf-LSUmBr (A), ITS region (B), LSU region (C), ITS2 fragment (D), LSU-D1 
fragment (E), LSU-D2 fragment (F) NJ analyses (1000 BS) of Acaulosporaceae from the core dataset. 
Kuklospora kentinensis (Kuklospora kentinensis (Kuklospora kentinensis ◆), Acaulospora sp. WUM18 (◀), Ac. scrobiculata (□), Ac. laevis (Ac. laevis (Ac. laevis ●).
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Figure S6: SSUmCf-LSUmBr (A), ITS region (B), LSU region (C), ITS2 fragment (D), LSU-D1 
fragment (E), LSU-D2 fragment (F) NJ analyses (1000 BS) of Glomus Group B from the core dataset. Glomus Group B from the core dataset. Glomus
Glomus sp. W3349 (Glomus sp. W3349 (Glomus ◆), Gl. luteum (□), Gl. etunicatum (●).
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Figure S7: SSUmCf-LSUmBr (A), ITS region (B), LSU region (C), ITS2 fragment (D), LSU-D1 
fragment (E), LSU-D2 fragment (F) NJ analyses (1000 BS) of Diversisporaceae from the core dataset. 
Glomus eburneum (▼), Gl. aurantium (◀), Gl. versiforme (□), Diversispora celata (◀), Di. spurca (▼).
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Figure S8: SSUmCf-LSUmBr (A), ITS region (B), LSU region (C), ITS2 fragment (D), LSU-D1 fragment 
(E), LSU-D2 fragment (F) NJ analyses (1000 BS) of Gigasporaceae from core dataset. Scutellospora 
spinosissima (■), Sc. heterogama (□), Gigaspora rosea (▼), Sc. gilmorei (◆), Gi. margarita (●).
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Figure S9: ITS region (A) and ITS2 fragment (B) NJ analyses (1000 BS) of the Ambisporaceae. 
Ambispora gerdemannii (Ambispora gerdemannii (Ambispora gerdemannii ▼), Am. leptoticha (⊠), Am. callosa (◀), Am. fennica (▲), 
Am. appendicula (◆), Ambispora sp. from Plantago (■), from Prunus ( Prunus ( Prunus □), from Taxus (Taxus (Taxus ▶).
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Figure S10: ITS region (A) and ITS2 fragment (B) NJ analyses (1000 BS) of the Diversisporaceae. 
Glomus eburneum (▼), Gl. aurantium (◀), Gl. versiforme (□), Diversispora celata (◀), Di. spurca (▼),
Gl. megalocarpum (●), Gl. fulvum (●), Gl. pulvinatum (▶), Gl. sp. NB101 (▲), Gl. sp. AZ37B (▲), 
Gl. sp. ’versiforme’ environmental (⊠).

A: ITS region B: ITS2 fragment



Figure S11: LSU region (A), LSU-D1 fragment (B) and LSU-D2 fragment (C) NJ analyses (1000 BS) 
of the Diversisporaceae. Glomus eburneum (▼), Gl. aurantium (◀), Gl. versiforme (□), Di. celata (◀), 
Di. spurca (▼).
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Supplementary Tables S1 – S7 

 

Table S1: Sequences used to assemble the core dataset. Number of spores used for DNA extraction is shown, if known (ss, single spore; ms, multi-

spore), as well as cloning numbers (in parentheses, following the number of sequences) and the primers used for the sequences published here (in 

parentheses, following the accession numbers; [n], amplified by nested PCR). 

Identifier, culture (Att)/voucher (W) used Species name No. of sequences 
DNA 
extraction Acc Nos.  

BEG12, Att109-20/W5147 Glomus mosseae 7 (pHS110), 8 (pHS101) 1 x ss FN547474-6,82-93 (SSUmCf-LSUmBr [n]) 

WUM3, Att15-5/W2939 Glomus sp. WUM3 5 (pMK23) ss FN547477-81 (SSUGlom1-NDL22 [n]) 

MUCL41827, -/- Glomus proliferum 2 (pHS113) ss FN547500-1(SSUmCf-LSUmBr [n]) 

BEG13, -/W5258 Acaulospora laevis 7 (pHS054) ss FN547507-12, 16 (SSUmAf-LR4+2) 

none, Att423-4/W3077 Acaulospora cf. laevis  6 (pHS032) ss FN547502-6,17 (SSUmAf-LR4+2) 

BEG26, -/- Acaulospora cf. laevis 5 (pHS030) ss FN547513-5,18,19 (SSUGlom1-NDL22[n]) 

INVAM TW111, Att1499-9/W5346 Kuklospora kentinensis 4 (pHS098) ss FN547520-3 (SSUmCf-LSUmBr [n]) 

none, Att1235-2/W5156 Ambispora appendicula 11 (pMK096) ms (3 spores) FN547524-34 (SSUmAf-LSUmAr) 

none, Att200-23/W4752 Ambispora fennica 12 (pMK094) ss FN547535-46 (SSUmCf-LSUmBr [n]) 

BEG34, -/- Gigaspora margarita 24 (pHS108) ss FN547547-70 (SSUmAf-LSUmAr) 
DAOM194757, Att1509-20/W5384 Gigaspora rosea 6 (pHS106), 18 (pHS105), 3 

(pHS104) 
1 x ss FN547571-97 (SSUmCf-LSUmBr [n]) 

FCPC1145, Att590-16/W5342 Scutellospora gilmorei 21 (pHS107), 5 (pHS103) 1 x ss FN547598-622 (SSUmCf-LSUmBr [n]) 

none, Att1505-8/W5347 Glomus etunicatum 12 (pHS112) ss FN547623-34 (SSUGlom1-NDL22 [n]) 

BEG20, Att263-15/W3294 Glomus caledonium 6 (pHS031) ss FN547494-9 (SSUGlom1-NDL22 [n]) 

BEG47, Att475-45/W5165 Glomus versiforme 2 (pHS034) ss FN547635-6 (SSUGlom1-NDL22 [n]) 

BEG47, Att475-22/W3180 Glomus versiforme 10 (pMK73), 6 (pMK72) 2 x ss FN547666-81 (SSUmAf-LR4+2) 

none, Att1296-0/W4728 Glomus aurantium 11 (pHS109) ss FN547655-65 (SSUmCf-LSUmBr [n]) 

none, Att246-18/W4119 Diversispora spurca 18 (pHS100) ss FN547637-54 (SSUmCf-LSUmBr [n]) 

WUM18, Att869-3/-  Acaulospora sp. WUM18 2 1 ss FM876792-3 

BEG33, Att209-37/- Acaulospora scrobiculata 4 1 ss FM876788-91 

BEG231, FACE#234 Diversispora celata 3 2 ms AM713402-4 

INVAM AZ420A, Att1290-5/W4729 Glomus eburneum 12 2 ms AM713405-16 

BEG28, Att108-7/- Glomus coronatum 5 1 ss FM876794-8 

WUM3, Att15-5/W2940 Glomus sp. WUM3 1 1 ss FM876813 
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INVAM SA101, Att676-5/- Glomus luteum 5 1 ss FM876808-12 

none, Att565-11/W3349 Glomus sp. W3349  4 1 ss FM876804-7 

WUM11, Att862-7/W2928 Acaulospora laevis 8 1 ss FM876780-7 

none, Att894-7/- Glomus cf. clarum 9 3 ss FM865536-44 
DAOM197198 related, -/W5533, W5495, W3182, 
W5499; BEG195, -/W5272 

Glomus sp. 'irregulare-like' 39 3 4 x ss, 1 x ms 
(3 spores) 

FM865550-8, FM865588-96, FM865608-17, 
FM992377-87 

INVAM FL208, -/W5413, W5166, W5507; 
MUCL49410, -/W5070 

Glomus intraradices 45 3 4 x ss FM865545-49, FM865559-87, FM865597-607 

none, -/W4545 Pacispora scintillans 2 1 ss FM876831-2 

INVAM TW111, Att1499-9/W5346 Kuklospora kentinensis 10 1 ss FM876821-30 

MUCL41827, -/- Glomus proliferum 15 3 1 x ss, 1 x ms FM992388-402 

none, -/W3009 Scutellospora spinosissima 3 1 ss FM876834-6 

BEG35, Att334-16/- Scutellospora heterogama 3 1 ss FM876837-9 

BEG47, Att475-45/W5165 Glomus versiforme 7 1 ss FM876814-20 

AFTOL-139, INVAM UT101/ BL022 Glomus mosseae 1 4 unknown Consensus AY635833 + AY997053 + DQ273793 

AFTOL-845, 4695rac-11G2/ BL095 Glomus sp. 'irregulare-like' 1 4 unknown Consensus DQ273828 + DQ322630 + AY997054 

AFTOL-48, MUCL 43194/DAOM181602 Glomus sp. 'irregulare-like' 1 4 ms Consensus AY635831 + AY997052 + DQ273790 

AFTOL-138, INVAM FL225/ BL021 Scutellospora heterogama 1 4 unknown Consensus AY635832 +  AY997088 + DQ273792 

AFTOL-844, INVAM IA702/ BL093 Paraglomus occultum 1 4 unknown Consensus DQ322629 + DQ273827 + AY997069 
     

1 Krüger et al. 2009, 2 Gamper et al. 2009, 3 Stockinger et al. 2009, 4 James et al. 2006 
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Table S2: Sequences used for analysis of the Ambisporaceae ITS region (see Figure S9). 
 
Accession  Species Culture/voucher 
FN547524 Ambispora appendicula Att1235-2/W5156 
FN547525 Ambispora appendicula Att1235-2/W5156 
FN547526 Ambispora appendicula Att1235-2/W5156 
FN547527 Ambispora appendicula Att1235-2/W5156 
FN547528 Ambispora appendicula Att1235-2/W5156 
FN547529 Ambispora appendicula Att1235-2/W5156 
FN547530 Ambispora appendicula Att1235-2/W5156 
FN547531 Ambispora appendicula Att1235-2/W5156 
FN547532 Ambispora appendicula Att1235-2/W5156 
FN547533 Ambispora appendicula Att1235-2/W5156 
FN547534 Ambispora appendicula Att1235-2/W5156 
AB048656 Ambispora callosa MAFF520057/W4769 
AB048657 Ambispora callosa MAFF520057/W4769 
AB048658 Ambispora callosa MAFF520057/W4769 
AB048659 Ambispora callosa MAFF520057/W4769 
AB048660 Ambispora callosa MAFF520057/W4769 
AB048661 Ambispora callosa MAFF520057/W4769 
AB048662 Ambispora callosa MAFF520057/W4769 
AB048663 Ambispora callosa MAFF520057/W4769 
AB048664 Ambispora callosa MAFF520057/W4769 
AB048665 Ambispora callosa MAFF520057/W4769 
AB048666 Ambispora callosa MAFF520057/W4769 
AB048667 Ambispora callosa MAFF520057/W4769 
AB048668 Ambispora callosa MAFF520057/W4769 
AB048669 Ambispora callosa MAFF520057/W4769 
AB048670 Ambispora callosa MAFF520057/W4769 
AB048671 Ambispora callosa MAFF520058/W4771 
AB048672 Ambispora callosa MAFF520058/W4771 
AB048673 Ambispora callosa MAFF520058/W4771 
AB048674 Ambispora callosa MAFF520058/W4771 
AB048675 Ambispora callosa MAFF520058/W4771 
AB048676 Ambispora callosa MAFF520058/W4771 
AB048677 Ambispora callosa MAFF520058/W4771 
AB048678 Ambispora callosa MAFF520058/W4771 
AB048679 Ambispora callosa MAFF520058/W4771 
AB048680 Ambispora callosa MAFF520058/W4771 
AB048681 Ambispora callosa MAFF520058/W4771 
AB048682 Ambispora callosa MAFF520058/W4771 
AB259840 Ambispora callosa OK-m1/W4768 
AB259841 Ambispora callosa OK-m1/W4768 
AB259842 Ambispora callosa OK-m1/W4768 
AB259843 Ambispora callosa OK-m1/W4768 
AB259844 Ambispora callosa MAFF520073/W4752 
AB259845 Ambispora callosa MAFF520073/W4752 
AB259846 Ambispora callosa MAFF520073/W4752 
AM268197 Ambispora fennica Att200-11/W3569 
AM268198 Ambispora fennica Att200-23/W4752 
AM268199 Ambispora fennica Att200-11/W3569 
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AM268200 Ambispora fennica Att200-11/W3569 
AM268201 Ambispora fennica Att200-11/W3569 
AM268202 Ambispora fennica Att200-11/W3569 
AM268203 Ambispora fennica Att200-23/W4752 
FN547535 Ambispora fennica Att200-23/W4752 
FN547536 Ambispora fennica Att200-23/W4752 
FN547537 Ambispora fennica Att200-23/W4752 
FN547538 Ambispora fennica Att200-23/W4752 
FN547539 Ambispora fennica Att200-23/W4752 
FN547540 Ambispora fennica Att200-23/W4752 
FN547541 Ambispora fennica Att200-23/W4752 
FN547542 Ambispora fennica Att200-23/W4752 
FN547543 Ambispora fennica Att200-23/W4752 
FN547544 Ambispora fennica Att200-23/W4752 
FN547545 Ambispora fennica Att200-23/W4752 
FN547546 Ambispora fennica Att200-23/W4752 
AM743187 Ambispora gerdemannii INVAM AU215 
AB048630 Ambispora leptoticha MAFF520055/W4770 
AB048631 Ambispora leptoticha MAFF520055/W4770 
AB048632 Ambispora leptoticha MAFF520055/W4770 
AB048633 Ambispora leptoticha MAFF520055/W4770 
AB048634 Ambispora leptoticha MAFF520055/W4770 
AB048635 Ambispora leptoticha MAFF520055/W4770 
AB048636 Ambispora leptoticha MAFF520055/W4770 
AB048637 Ambispora leptoticha MAFF520055/W4770 
AB048638 Ambispora leptoticha MAFF520055/W4770 
AB048639 Ambispora leptoticha MAFF520055/W4770 
AB048640 Ambispora leptoticha MAFF520055/W4770 
AB048641 Ambispora leptoticha MAFF520055/W4770 
AB048642 Ambispora leptoticha MAFF520055/W4770 
AB048643 Ambispora leptoticha MAFF520055/W4770 
AB048644 Ambispora leptoticha MAFF520055/W4770 
AB048645 Ambispora leptoticha MAFF520055/W4770 
AB048646 Ambispora leptoticha MAFF520055/W4770 
AB048647 Ambispora leptoticha MAFF520055/W4770 
AB048648 Ambispora leptoticha MAFF520055/W4770 
AB048649 Ambispora leptoticha MAFF520055/W4770 
AB048650 Ambispora leptoticha MAFF520055/W4770 
AB048651 Ambispora leptoticha MAFF520055/W4770 
AB048652 Ambispora leptoticha MAFF520055/W4770 
AB048653 Ambispora leptoticha MAFF520055/W4770 
AB048654 Ambispora leptoticha MAFF520055/W4770 
AB048655 Ambispora leptoticha MAFF520055/W4770 
AJ567807 Am. sp. from Plantago lanceolata environmental 
AY236277 Am. sp. from Prunus africana environmental 
AY174701 Am. sp. from Taxus baccata  environmental 
AY174702 Am. sp. from Taxus baccata  environmental 
AY174703 Am. sp. from Taxus baccata  environmental 
AY174707 Am. sp. from Taxus baccata  environmental 
AY174708 Am. sp. from Taxus baccata  environmental 
AY174710 Am. sp. from Taxus baccata  environmental 
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Table S3: Sequences used for analyses of the Diversisporaceae ITS region (see Figure S10). 
 
Accession  Species Culture/voucher 
AM713402 Diversispora celata  FACE234; BEG231 
AM713403 Diversispora celata  FACE234; BEG231 
AM713404 Diversispora celata  FACE234; BEG231 
FN547637 Diversispora spurca Att246-18/W4119 
FN547638 Diversispora spurca Att246-18/W4119 
FN547639 Diversispora spurca Att246-18/W4119 
FN547640 Diversispora spurca Att246-18/W4119 
FN547641 Diversispora spurca Att246-18/W4119 
FN547642 Diversispora spurca Att246-18/W4119 
FN547643 Diversispora spurca Att246-18/W4119 
FN547644 Diversispora spurca Att246-18/W4119 
FN547645 Diversispora spurca Att246-18/W4119 
FN547646 Diversispora spurca Att246-18/W4119 
FN547647 Diversispora spurca Att246-18/W4119 
FN547648 Diversispora spurca Att246-18/W4119 
FN547649 Diversispora spurca Att246-18/W4119 
FN547650 Diversispora spurca Att246-18/W4119 
FN547651 Diversispora spurca Att246-18/W4119 
FN547652 Diversispora spurca Att246-18/W4119 
FN547653 Diversispora spurca Att246-18/W4119 
FN547654 Diversispora spurca Att246-18/W4119 
AM418549 G. pulvinatum environmental 
AM418550 G. pulvinatum environmental 
AJ849468 Glomus aurantium Holotype. Błaszkowski J., 2444 (DPP) 
FN547655 Glomus aurantium Att1296-0/W4728 
FN547656 Glomus aurantium Att1296-0/W4728 
FN547657 Glomus aurantium Att1296-0/W4728 
FN547658 Glomus aurantium Att1296-0/W4728 
FN547659 Glomus aurantium Att1296-0/W4728 
FN547660 Glomus aurantium Att1296-0/W4728 
FN547661 Glomus aurantium Att1296-0/W4728 
FN547662 Glomus aurantium Att1296-0/W4728 
FN547663 Glomus aurantium Att1296-0/W4728 
FN547664 Glomus aurantium Att1296-0/W4728 
FN547665 Glomus aurantium Att1296-0/W4728 
AM713405 Glomus eburneum  AZ420A/W4729 
AM713406 Glomus eburneum  AZ420A/W4729 
AM713407 Glomus eburneum  AZ420A/W4729 
AM713408 Glomus eburneum  AZ420A/W4729 
AM713409 Glomus eburneum  AZ420A/W4729 
AM713410 Glomus eburneum  AZ420A/W4729 
AM713411 Glomus eburneum  AZ420A/W4729 
AM713412 Glomus eburneum  AZ420A/W4729 
AM713413 Glomus eburneum  AZ420A/W4729 
AM713414 Glomus eburneum  AZ420A/W4729 
AM713415 Glomus eburneum  AZ420A/W4729 
AM713416 Glomus eburneum  AZ420A/W4729 
AM418544 Glomus fulvum environmental 
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AM418545 Glomus fulvum environmental 
AM418546 Glomus fulvum environmental 
AM418547 Glomus fulvum environmental 
AM418548 Glomus fulvum environmental 
AM418551 Glomus megalocarpum environmental 
AM418552 Glomus megalocarpum environmental 
AF185677 Glomus sp. INVAM AZ237B 
AF185679 Glomus sp. INVAM AZ237B 
AF185680 Glomus sp. INVAM AZ237B 
AF185681 Glomus sp. INVAM AZ237B 
AF185682 Glomus sp. INVAM NB101 
AF185690 Glomus sp. INVAM NB101 
AF185693 Glomus sp. INVAM NB101 
AF185694 Glomus sp. INVAM NB101 
AJ504642 Glomus sp. 'versiforme' environmental 
AJ504643 Glomus sp. 'versiforme' environmental 
AJ504644 Glomus sp. 'versiforme' environmental 
AJ516922 Glomus sp. 'versiforme' environmental 
AJ516923 Glomus sp. 'versiforme' environmental 
AJ516924 Glomus sp. 'versiforme' environmental 
AJ516925 Glomus sp. 'versiforme' environmental 
AJ516926 Glomus sp. 'versiforme' environmental 
AJ516927 Glomus sp. 'versiforme' environmental 
AJ516928 Glomus sp. 'versiforme' environmental 
AJ516929 Glomus sp. 'versiforme' environmental 
AJ516930 Glomus sp. 'versiforme' environmental 
AJ516931 Glomus sp. 'versiforme' environmental 
AJ516932 Glomus sp. 'versiforme' environmental 
AJ516933 Glomus sp. 'versiforme' environmental 
AJ516934 Glomus sp. 'versiforme' environmental 
AJ516935 Glomus sp. 'versiforme' environmental 
AJ517781 Glomus sp. 'versiforme' environmental 
AM076636 Glomus sp. 'versiforme' environmental 
AM076637 Glomus sp. 'versiforme' environmental 
AM076638 Glomus sp. 'versiforme' environmental 
DQ400187 Glomus sp. 'versiforme' environmental 
DQ400194 Glomus sp. 'versiforme' environmental 
DQ400197 Glomus sp. 'versiforme' environmental 
DQ400198 Glomus sp. 'versiforme' environmental 
DQ400212 Glomus sp. 'versiforme' environmental 
DQ400223 Glomus sp. 'versiforme' environmental 
DQ400225 Glomus sp. 'versiforme' environmental 
DQ400227 Glomus sp. 'versiforme' environmental 
DQ400229 Glomus sp. 'versiforme' environmental 
AF246141 Glomus versiforme BEG47 
AF246142 Glomus versiforme BEG47 
AF246143 Glomus versiforme BEG47 
AY842567 Glomus versiforme BEG47 
AY842568 Glomus versiforme BEG47 
AY842569 Glomus versiforme BEG47 
FM876814 Glomus versiforme BEG47/W5165 
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FM876815 Glomus versiforme BEG47/W5165 
FM876816 Glomus versiforme BEG47/W5165 
FM876817 Glomus versiforme BEG47/W5165 
FM876818 Glomus versiforme BEG47/W5165 
FM876819 Glomus versiforme BEG47/W5165 
FM876820 Glomus versiforme BEG47/W5165 
FN547635 Glomus versiforme BEG47/W5165 
FN547636 Glomus versiforme BEG47/W5165 
FN547666 Glomus versiforme BEG47/W3180 
FN547667 Glomus versiforme BEG47/W3180 
FN547668 Glomus versiforme BEG47/W3180 
FN547669 Glomus versiforme BEG47/W3180 
FN547670 Glomus versiforme BEG47/W3180 
FN547671 Glomus versiforme BEG47/W3180 
FN547672 Glomus versiforme BEG47/W3180 
FN547673 Glomus versiforme BEG47/W3180 
FN547674 Glomus versiforme BEG47/W3180 
FN547675 Glomus versiforme BEG47/W3180 
FN547676 Glomus versiforme BEG47/W3180 
FN547677 Glomus versiforme BEG47/W3180 
FN547678 Glomus versiforme BEG47/W3180 
FN547679 Glomus versiforme BEG47/W3180 
FN547680 Glomus versiforme BEG47/W3180 
FN547681 Glomus versiforme BEG47/W3180 
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Table S4: Sequences used for analyses of the Diversisporaceae LSU region (see Figure S11). 
 

 

Accession  Species Culture/voucher 
AM713402 Diversispora celata BEG231 (FACE234)  
AM713403 Diversispora celata BEG231 (FACE234)  
AM713404 Diversispora celata BEG231 (FACE234)  
AM713405 Glomus eburneum  AZ420A/W4729 
AM713406 Glomus eburneum  AZ420A/W4729 
AM713407 Glomus eburneum  AZ420A/W4729 
AM713408 Glomus eburneum  AZ420A/W4729 
AM713409 Glomus eburneum  AZ420A/W4729 
AM713410 Glomus eburneum  AZ420A/W4729 
AM713411 Glomus eburneum  AZ420A/W4729 
AM713412 Glomus eburneum  AZ420A/W4729 
AM713413 Glomus eburneum  AZ420A/W4729 
AM713414 Glomus eburneum  AZ420A/W4729 
AM713415 Glomus eburneum  AZ420A/W4729 
AM713416 Glomus eburneum  AZ420A/W4729 
FN547635 Glomus versiforme BEG47/W5165 
FN547636 Glomus versiforme BEG47/W5165 
FM876814 Glomus versiforme BEG47/W5165 
FM876815 Glomus versiforme BEG47/W5165 
FM876816 Glomus versiforme BEG47/W5165 
FM876817 Glomus versiforme BEG47/W5165 
FM876818 Glomus versiforme BEG47/W5165 
FM876819 Glomus versiforme BEG47/W5165 
FM876820 Glomus versiforme BEG47/W5165 
FN547637 Diversispora spurca Att246-18/W4119 
FN547638 Diversispora spurca Att246-18/W4119 
FN547639 Diversispora spurca Att246-18/W4119 
FN547640 Diversispora spurca Att246-18/W4119 
FN547641 Diversispora spurca Att246-18/W4119 
FN547642 Diversispora spurca Att246-18/W4119 
FN547643 Diversispora spurca Att246-18/W4119 
FN547644 Diversispora spurca Att246-18/W4119 
FN547645 Diversispora spurca Att246-18/W4119 
FN547646 Diversispora spurca Att246-18/W4119 
FN547647 Diversispora spurca Att246-18/W4119 
FN547648 Diversispora spurca Att246-18/W4119 
FN547649 Diversispora spurca Att246-18/W4119 
FN547650 Diversispora spurca Att246-18/W4119 
FN547651 Diversispora spurca Att246-18/W4119 
FN547652 Diversispora spurca Att246-18/W4119 
FN547653 Diversispora spurca Att246-18/W4119 
FN547654 Diversispora spurca Att246-18/W4119 
FN547655 Glomus aurantium Att1296-0/W4728 
FN547656 Glomus aurantium Att1296-0/W4728 
FN547657 Glomus aurantium Att1296-0/W4728 
FN547658 Glomus aurantium Att1296-0/W4728 
FN547659 Glomus aurantium Att1296-0/W4728 
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FN547660 Glomus aurantium Att1296-0/W4728 
FN547661 Glomus aurantium Att1296-0/W4728 
FN547662 Glomus aurantium Att1296-0/W4728 
FN547663 Glomus aurantium Att1296-0/W4728 
FN547664 Glomus aurantium Att1296-0/W4728 
FN547665 Glomus aurantium Att1296-0/W4728 
FN547666 Glomus versiforme BEG47/W3180 
FN547667 Glomus versiforme BEG47/W3180 
FN547668 Glomus versiforme BEG47/W3180 
FN547669 Glomus versiforme BEG47/W3180 
FN547670 Glomus versiforme BEG47/W3180 
FN547671 Glomus versiforme BEG47/W3180 
FN547672 Glomus versiforme BEG47/W3180 
FN547673 Glomus versiforme BEG47/W3180 
FN547674 Glomus versiforme BEG47/W3180 
FN547675 Glomus versiforme BEG47/W3180 
FN547676 Glomus versiforme BEG47/W3180 
FN547677 Glomus versiforme BEG47/W3180 
FN547678 Glomus versiforme BEG47/W3180 
FN547679 Glomus versiforme BEG47/W3180 
FN547680 Glomus versiforme BEG47/W3180 
FN547681 Glomus versiforme BEG47/W3180 
AY842574 Glomus versiforme BEG47/W3180 
AY842573 Glomus versiforme BEG47/W3180 
EF067888 Glomus eburneum INVAM AZ420A 
EF067887 Glomus eburneum INVAM AZ420A 
EF067886 Glomus eburneum INVAM AZ420A 
AM947665 Glomus versiforme BEG47 
AM947664 Glomus versiforme BEG47 
EU346868 Glomus versiforme HDAM-4 
AY639306 Diversispora celata BEG231 (FACE234)  
AY639235 Diversispora celata BEG231 (FACE234)  
AY639234 Diversispora celata BEG231 (FACE234)  
AY639233 Diversispora celata BEG231 (FACE234)  
AY639241 Diversispora celata BEG232 (FACE272) 
AY639240 Diversispora celata BEG232 (FACE272) 
AY639239 Diversispora celata BEG232 (FACE272) 
AY639238 Diversispora celata BEG232 (FACE272) 
AY639237 Diversispora celata BEG232 (FACE272) 
AY639236 Diversispora celata BEG232 (FACE272) 
DQ350448 Diversispora celata BEG233 (FACE410) 
DQ350449 Diversispora celata BEG233 (FACE410) 
DQ350450 Diversispora celata BEG233 (FACE410) 
DQ350451 Diversispora celata BEG233 (FACE410) 
DQ350452 Diversispora celata BEG233 (FACE410) 
DQ350453 Diversispora celata BEG233 (FACE410) 
AY639232 Diversispora celata BEG230 (FACE83) 
AY639231 Diversispora celata BEG230 (FACE83) 
AY639230 Diversispora celata BEG230 (FACE83) 
AY639229 Diversispora celata BEG230 (FACE83) 
AY639228 Diversispora celata BEG230 (FACE83) 
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AY639227 Diversispora celata BEG230 (FACE83) 
AY639226 Diversispora celata BEG230 (FACE83) 
EF581864 Glomus aurantium Att1296-0/W4728 
EF581863 Glomus aurantium Att1296-0/W4728 
EF581862 Glomus aurantium Att1296-0/W4728 
EF581861 Glomus aurantium Att1296-0/W4728 
EF581860 Glomus aurantium Att1296-0/W4728 
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Table S5: Sequences used for analysis of the Glomus Group Aa ITS region (see Figure 3). 
 
Accession  Species Culture/voucher 
X96842 Glomus cf. fasciculatum BEG58 
X96843 Glomus cf. fasciculatum BEG58 
AY035642 Glomus caledonium JJ36 
AY035646 Glomus caledonium JJ40 
AY035647 Glomus caledonium JJ41 
AY035651 Glomus caledonium BEG161 
FN547494 Glomus caledonium BEG20/W3294 
FN547495 Glomus caledonium BEG20/W3294 
FN547496 Glomus caledonium BEG20/W3294 
FN547497 Glomus caledonium BEG20/W3294 
FN547498 Glomus caledonium BEG20/W3294 
FN547499 Glomus caledonium BEG20/W3294 
AJ890365 Glomus coronatum IMA3 
AJ890366 Glomus coronatum IMA3 
FM213083 Glomus coronatum environmental 
FM213084 Glomus coronatum environmental 
FM213085 Glomus coronatum environmental 
FM213086 Glomus coronatum environmental 
FM213087 Glomus coronatum environmental 
FM213088 Glomus coronatum environmental 
FM876794 Glomus coronatum BEG28 (Att108-7) 
FM876795 Glomus coronatum BEG28 (Att108-7) 
FM876796 Glomus coronatum BEG28 (Att108-7) 
FM876797 Glomus coronatum BEG28 (Att108-7) 
FM876798 Glomus coronatum BEG28 (Att108-7) 
X96844 Glomus coronatum BEG28 
X96845 Glomus coronatum BEG28 
X96846 Glomus coronatum BEG28 
X96838 Glomus dimorphicum BEG59 
X96839 Glomus dimorphicum BEG59 
X96840 Glomus dimorphicum BEG59 
X96841 Glomus dimorphicum BEG59 
AF231469 Glomus geosporum unknown 
AJ319778 Glomus geosporum unknown 
AJ319779 Glomus geosporum unknown 
AJ319780 Glomus geosporum unknown 
AJ319781 Glomus geosporum unknown 
AJ319782 Glomus geosporum unknown 
AJ319783 Glomus geosporum unknown 
AJ319784 Glomus geosporum unknown 
AJ319785 Glomus geosporum unknown 
AJ319786 Glomus geosporum unknown 
AJ319787 Glomus geosporum unknown 
AJ319788 Glomus geosporum unknown 
AJ319789 Glomus geosporum unknown 
AJ319790 Glomus geosporum unknown 
AJ319791 Glomus geosporum unknown 
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AJ319792 Glomus geosporum unknown 
AJ319793 Glomus geosporum unknown 
AJ319794 Glomus geosporum unknown 
AJ319795 Glomus geosporum unknown 
AJ319796 Glomus geosporum unknown 
AJ319797 Glomus geosporum unknown 
AJ319798 Glomus geosporum unknown 
AJ319799 Glomus geosporum unknown 
AJ319800 Glomus geosporum unknown 
AJ319801 Glomus geosporum unknown 
AJ319802 Glomus geosporum unknown 
AJ319803 Glomus geosporum unknown 
FJ009619 Glomus geosporum unknown 
FJ009620 Glomus geosporum unknown 
FJ009621 Glomus geosporum unknown 
FJ009622 Glomus geosporum unknown 
AF004689 Glomus monosporum INVAM IT102 
AF004690 Glomus monosporum INVAM FR115 
AF125195 Glomus monosporum INVAM FR115 
AF161043 Glomus mosseae environmental (GMO1a) 
AF161044 Glomus mosseae environmental (GMO1b) 
AF161045 Glomus mosseae environmental (GM01c) 
AF161046 Glomus mosseae environmental (GMO1d) 
AF161047 Glomus mosseae environmental (GMO1e) 
AF161048 Glomus mosseae environmental (GMO1f) 
AF161049 Glomus mosseae environmental (GMO1g) 
AF161050 Glomus mosseae environmental (GMO1h) 
AF161051 Glomus mosseae environmental (GMO1i) 
AF161052 Glomus mosseae environmental (GMO1j) 
AF161053 Glomus mosseae environmental (GMO1l) 
AF161054 Glomus mosseae environmental (GMO1) 
AF161055 Glomus mosseae environmental (GMO2a) 
AF161056 Glomus mosseae environmental (GMO2b) 
AF161057 Glomus mosseae environmental (GMO2c) 
AF161058 Glomus mosseae environmental (GMO2e) 
AF161059 Glomus mosseae environmental (GMO3a) 
AF161060 Glomus mosseae environmental (GMO3b) 
AF161061 Glomus mosseae environmental (GMO3c) 
AF161062 Glomus mosseae environmental (GM03d) 
AF161063 Glomus mosseae environmental (GM03e) 
AF161064 Glomus mosseae environmental (GM03f) 
AF166276 Glomus mosseae environmental (GMO2d) 
AJ849469 Glomus mosseae unknown 
AJ919273 Glomus mosseae INVAM AZ225C 
AJ919274 Glomus mosseae INVAM AZ225C 
AJ919275 Glomus mosseae INVAM NB114 
AJ919276 Glomus mosseae INVAM IN101C 
AJ919277 Glomus mosseae INVAM FL156 
AJ919278 Glomus mosseae INVAM FL156 
AM076635 Glomus mosseae environmental 
AM157131 Glomus mosseae ISCB13 
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AM157132 Glomus mosseae ISCB17 
AM157133 Glomus mosseae ISCB22 
AM157134 Glomus mosseae ISCB19 
AM157135 Glomus mosseae ISCB20 
AM423114 Glomus mosseae IMA1 
AM423115 Glomus mosseae IMA1 
AM423116 Glomus mosseae BEG25 
AM423117 Glomus mosseae BEG25 
AM423118 Glomus mosseae BEG25 
AM423119 Glomus mosseae BEG25 
AY035650 Glomus mosseae BEG160 
AY035652 Glomus mosseae BEG161 
AY236331 Glomus mosseae SP301 
AY236332 Glomus mosseae SP302 
AY236333 Glomus mosseae SP303 
AY236334 Glomus mosseae SP304 
AY236335 Glomus mosseae SP305 
AY236336 Glomus mosseae SP306 
AY997053 Glomus mosseae INVAM UT101 (AFTOL-ID 139) 
DQ400127 Glomus mosseae environmental 
DQ400128 Glomus mosseae environmental 
DQ400129 Glomus mosseae environmental 
DQ400130 Glomus mosseae environmental 
DQ400131 Glomus mosseae environmental 
DQ400132 Glomus mosseae environmental 
DQ400134 Glomus mosseae environmental 
DQ400136 Glomus mosseae environmental 
DQ400137 Glomus mosseae environmental 
DQ400138 Glomus mosseae environmental 
DQ400139 Glomus mosseae environmental 
DQ400141 Glomus mosseae environmental 
DQ400142 Glomus mosseae environmental 
DQ400144 Glomus mosseae environmental 
DQ400146 Glomus mosseae environmental 
DQ400149 Glomus mosseae environmental 
DQ400151 Glomus mosseae environmental 
DQ400158 Glomus mosseae environmental 
DQ400160 Glomus mosseae environmental 
EF989113 Glomus mosseae environmental 
EF989114 Glomus mosseae environmental 
EF989115 Glomus mosseae environmental 
EF989116 Glomus mosseae environmental 
EF989117 Glomus mosseae environmental 
FN547474 Glomus mosseae BEG12 
FN547475 Glomus mosseae BEG12 
FN547476 Glomus mosseae BEG12 
FN547482 Glomus mosseae BEG12 
FN547483 Glomus mosseae BEG12 
FN547484 Glomus mosseae BEG12 
FN547485 Glomus mosseae BEG12 
FN547486 Glomus mosseae BEG12 
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FN547487 Glomus mosseae BEG12 
FN547488 Glomus mosseae BEG12 
FN547489 Glomus mosseae BEG12 
FN547490 Glomus mosseae BEG12 
FN547491 Glomus mosseae BEG12 
FN547492 Glomus mosseae BEG12 
FN547493 Glomus mosseae BEG12 
U31996 Glomus mosseae BEG 12 
U49264 Glomus mosseae UKJII8 
U49265 Glomus mosseae INVAM FL156 
X84232 Glomus mosseae BEG12 
X84233 Glomus mosseae BEG12 
X96826 Glomus mosseae BEG25 
X96827 Glomus mosseae BEG25 
X96828 Glomus mosseae BEG25 
X96829 Glomus mosseae BEG55 
X96830 Glomus mosseae BEG54 
X96831 Glomus mosseae BEG54 
X96832 Glomus mosseae BEG54 
X96833 Glomus mosseae BEG57 
X96834 Glomus mosseae BEG57 
X96835 Glomus mosseae BEG57 
X96836 Glomus mosseae BEG61 
X96837 Glomus mosseae BEG61 
FM876813 Glomus sp. WUM3 WUM3/W2940 
FN547477 Glomus sp. WUM3 WUM3/W2939 
FN547478 Glomus sp. WUM3 WUM3/W2939 
FN547479 Glomus sp. WUM3 WUM3/W2939 
FN547480 Glomus sp. WUM3 WUM3/W2939 
FN547481 Glomus sp. WUM3 WUM3/W2939 
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Table S6: Sequences used for analysis of the Glomus Group Aa LSU-D2 fragment (see Figure 3). 
 
Accession  Species Culture/voucher 
FN547474 Glomus mosseae BEG12/W5147 
FN547475 Glomus mosseae BEG12/W5147 
FN547476 Glomus mosseae BEG12/W5147 
FN547477 Glomus sp.  WUM3/W2939 
FN547478 Glomus sp.  WUM3/W2939 
FN547479 Glomus sp.  WUM3/W2939 
FN547480 Glomus sp.  WUM3/W2939 
FN547481 Glomus sp.  WUM3/W2939 
FN547482 Glomus mosseae BEG12/W5147 
FN547483 Glomus mosseae BEG12/W5147 
FN547484 Glomus mosseae BEG12/W5147 
FN547485 Glomus mosseae BEG12/W5147 
FN547486 Glomus mosseae BEG12/W5147 
FN547487 Glomus mosseae BEG12/W5147 
FN547488 Glomus mosseae BEG12/W5147 
FN547489 Glomus mosseae BEG12/W5147 
FN547490 Glomus mosseae BEG12/W5147 
FN547491 Glomus mosseae BEG12/W5147 
FM876813 Glomus sp.  WUM3/W2940 
FN547492 Glomus mosseae BEG12/W5147 
FN547493 Glomus mosseae BEG12/W5147 
FM876798 Glomus coronatum BEG28 (Att108-7) 
FM876796 Glomus coronatum BEG28 (Att108-7) 
FM876797 Glomus coronatum BEG28 (Att108-7) 
FM876794 Glomus coronatum BEG28 (Att108-7) 
FM876795 Glomus coronatum BEG28 (Att108-7) 
FN547494 Glomus caledonium BEG20/W3294 
FN547495 Glomus caledonium BEG20/W3294 
FN547496 Glomus caledonium BEG20/W3294 
FN547497 Glomus caledonium BEG20/W3294 
FN547498 Glomus caledonium BEG20/W3294 
FN547499 Glomus caledonium BEG20/W3294 
AF145741 Glomus constrictum BEG130 
AF145747 Glomus fragilistratum BEG05 
AF145735 Glomus mosseae BEG25 
AF145745 Glomus caledonium BEG20 
AF145740 Glomus coronatum BEG49 
AF145742 Glomus geosporum BEG90 
AF396789 Glomus caledonium RMC658 
AF396794 Glomus caledonium RWC658 
AF145736 Glomus mosseae BEG85 
AF396799 Glomus caledonium SC_658 
AJ510239 Glomus caledonium BEG86 
AF396788 Glomus mosseae 243 
AF396793 Glomus mosseae 243 
AF396798 Glomus mosseae 243 
AY639156 Glomus mosseae 8 
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AY639157 Glomus mosseae 8 
AY639158 Glomus mosseae 8 
AY639160 Glomus mosseae environmental 
AY639162 Glomus mosseae environmental 
AY639163 Glomus mosseae environmental 
AY639164 Glomus mosseae 101 
AY639270 Glomus mosseae environmental 
AY639159 Glomus mosseae environmental 
AY639274 Glomus mosseae environmental 
AY639281 Glomus mosseae 209 
AY639271 Glomus mosseae environmental 
AY639278 Glomus mosseae 102 
AY639280 Glomus mosseae BEG224 (FACE 130) 
AY639161 Glomus mosseae environmental 
AY639165 Glomus mosseae BEG224 (FACE 130) 
AY639166 Glomus mosseae BEG224 (FACE 130) 
AY639167 Glomus mosseae BEG224 (FACE 130) 
AY639168 Glomus mosseae BEG224 (FACE 130) 
AY639169 Glomus mosseae BEG224 (FACE 130) 
AY639170 Glomus mosseae BEG224 (FACE 130) 
AY639171 Glomus mosseae 209 
AY639172 Glomus mosseae 209 
AY639173 Glomus mosseae 209 
AY639174 Glomus mosseae 209 
AY639266 Glomus mosseae 8 
AY639267 Glomus mosseae 8 
AY639268 Glomus mosseae 8 
AY639269 Glomus mosseae 8 
AY639272 Glomus mosseae environmental 
AY639273 Glomus mosseae environmental 
AY639276 Glomus mosseae environmental 
AY639277 Glomus mosseae 101 
DQ469128 Glomus mosseae 505 
AJ628059 Glomus caledonium BEG86 
AJ510241 Glomus geosporum BEG11 
DQ273793 Glomus mosseae INVAM UT101 (AFTOL-ID 139) 
AY639279 Glomus mosseae BEG224 (FACE 130) 
FJ790678 Glomus mosseae DDAM 
EU931286 Glomus geosporum BEG199 
EU931285 Glomus geosporum BEG199 
EU931284 Glomus geosporum BEG199 
EU931283 Glomus geosporum BEG199 
EU931282 Glomus geosporum BEG199 
EU931281 Glomus geosporum BEG199 
EU931280 Glomus geosporum BEG199 
EU931279 Glomus geosporum BEG199 
EU931278 Glomus geosporum BEG199 
EU931277 Glomus geosporum BEG199 
EU931276 Glomus geosporum BEG199 
EU931275 Glomus geosporum BEG199 
EU931274 Glomus geosporum BEG199 
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EU931273 Glomus geosporum BEG211 
EU931272 Glomus geosporum BEG211 
EU931271 Glomus geosporum BEG211 
EU931270 Glomus geosporum BEG211 
EU931269 Glomus geosporum BEG211 
EU931267 Glomus geosporum BEG211 
EU931266 Glomus geosporum BEG211 
EU931265 Glomus geosporum BEG211 
EU931264 Glomus geosporum BEG211 
EU931263 Glomus geosporum BEG211 
EU931262 Glomus geosporum BEG211 
EU931261 Glomus geosporum BEG211 
EU346866 Glomus mosseae HDAM-2 
EU234489 Glomus mosseae BEG116 
AM158954 Glomus mosseae BEG167 
AM158953 Glomus mosseae BEG167 
DQ469131 Glomus mosseae 505 
DQ469130 Glomus mosseae 505 
DQ469129 Glomus mosseae 505 
DQ469127 Glomus mosseae 505 
DQ469126 Glomus mosseae 505 
DQ469125 Glomus mosseae 505 
AJ459412 Glomus mosseae environmental 
AJ628057 Glomus mosseae BEG29 
AJ628056 Glomus mosseae BOL3 
AJ628055 Glomus mosseae BOL1 
AJ628054 Glomus mosseae V150 
AJ628053 Glomus mosseae V249 
AJ628052 Glomus mosseae V293 
AJ628051 Glomus mosseae V91 
AJ628050 Glomus mosseae V296 
AJ628049 Glomus mosseae V296 
AF145746 Glomus caledonium BEG86 
AF145743 Glomus geosporum BEG106 
AF145738 Glomus mosseae BEG84 
AF145737 Glomus mosseae BEG83 
AJ271924 Glomus mosseae HM-CL1 
AJ510240 Glomus caledonium BEG20 
AF389014 Glomus mosseae BEG68 
AF389013 Glomus mosseae BEG68 
AF389012 Glomus mosseae BEG68 
AF389011 Glomus mosseae BEG68 
AF389010 Glomus mosseae BEG68 
AF389009 Glomus mosseae BEG68 
AF389008 Glomus mosseae BEG68 
GQ330818 Glomus mosseae AU34 
GQ330817 Glomus mosseae AU33 
GQ330815 Glomus mosseae AU8 
GQ330814 Glomus mosseae AU2 
GQ330813 Glomus mosseae WUM16 
GQ330811 Glomus mosseae Narrabii 
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GQ330807 Glomus mosseae Bur11 
GQ330806 Glomus mosseae INVAM JA205c 
GQ330805 Glomus mosseae BEG229 
GQ330800 Glomus mosseae BEG55 
GQ330797 Glomus mosseae INVAM NB103c 
GQ330793 Glomus mosseae INVM SF1171 
GQ330791 Glomus mosseae INVAM CU134a 
GQ330789 Glomus mosseae DKB01D4 
GQ330788 Glomus mosseae DKK04D22 
GQ330787 Glomus mosseae DKGm1 
GQ330785 Glomus mosseae Sp813 
GQ330784 Glomus mosseae Sp6314 
GQ330783 Glomus mosseae Sp4318 
GQ330781 Glomus mosseae Sp2735 
GQ330780 Glomus mosseae Sp1841 
GQ330779 Glomus mosseae BEG128 
GQ330778 Glomus mosseae BEG124 
GQ330777 Glomus mosseae BEG85 
GQ330774 Glomus mosseae Dk11107 
GQ330773 Glomus mosseae Dk21107 
GQ330772 Glomus mosseae Dk17107 
GQ330771 Glomus mosseae BEG230 
GQ330768 Glomus mosseae Dk23135 
GQ330760 Glomus mosseae INVAM WY111 
GQ330757 Glomus mosseae INVAM MT107 
GQ330756 Glomus mosseae INVAM OR229 
GQ330754 Glomus mosseae INVAM SC226 
GQ330749 Glomus mosseae INVAM MN101 
GQ330748 Glomus mosseae INVAM MI210 
GQ330747 Glomus mosseae INVAM ON201 
GQ330744 Glomus mosseae INVAM WI101 
GQ330743 Glomus mosseae INVAM NV106 
GQ330742 Glomus mosseae INVAM IN101 
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Table S7: Barcode gap analyses with TaxonGap 2.3 based on pairwise comparison of K2P 
distances based on a manual or automated alignment (MAFFT) of the large SSUmCf-LSUmBr 
fragment. Variation is given in % K2P distances. The closest species and presence or absences 
of a barcode gap were identical for the manual and MAFFT alignments, respectively. Seq, 
number of sequences; CS, closest species; BG, barcode gap; Max. ISV, maximum intraspecific 
variation; Min. ISV, minimum intraspecific variation; ?, unknown. 
 

     
manual 
alignment 

MAFFT 
alignment 

 

Family Species Seq CS BG 
Max. 
ISV 

Min. 
ISV 

Max. 
ISV 

Min. 
ISV 

 

Glomus mosseae 16 Gl. coronatum Yes 2.52 2.66 2.58 3.78  
Gl. sp. WUM3 6 Gl. caledonium Yes 0.85 2.1 0.85 2.09  
Gl. coronatum 5 Gl. mosseae Yes 0.5 2.66 1.01 3.78  

Glomeraceae 
(Glomus Group 
Aa) Gl. caledonium 3 Gl. sp. WUM3 Yes 0.8 2.1 0.8 2.09  

Gl. intraradices 47 Gl. proliferum No 10.77 4.29 11.75 4.7  
Gl. proliferum 15 Gl. intraradices Yes 4.02 4.29 3.89 4.7  
Gl. sp. 'irregulare-like’ 39 Gl. proliferum Yes 6.43 7 6.29 6.94  

Glomeraceae 
(Glomus Group 
Ab) Gl. clarum 9 Gl. proliferum Yes 1.09 7.58 1.59 7.96  

Acaulospora laevis 26 
Ku. kentinensis & 
Ac. scrobiculata Yes 3.42 13.07 3.99 13.16 

 

Acaulospora sp. 
WUM18 2 Ac. scrobiculata Yes 1.02 5.66 1.02 5.66 

 

Ac. scrobiculata 4 Ac. sp. WUM18 Yes 0.47 5.66 0.47 5.66  
Acaulosporaceae Kuklospora kentinensis 14 Ac. scrobiculata Yes 0.54 11.98 0.54 11.38  

Ambispora appendicula 11 Am. fennica Yes 2.87 12.11 2.87 13.26  
Ambisporaceae Am. fennica 12 Am. appendicula Yes 1 12.11 1.14 13.26  

Gigaspora margarita 24 Gi. rosea No 4.15 3.26 4.42 3.34  
Gi. rosea 27 Gi. margarita No 6.17 3.26 6.53 3.34  
Sc. gilmorei 25 Sc. spinosissima Yes 1.55 2.64 1.62 2.5  
Sc. spinosissima 3 Sc. gilmorei No 2.84 2.64 2.84 2.5  

Gigasporaceae Sc. heterogama   4 Gi. margarita Yes 1.95 4.69 2.74 5.07  
Glomus sp. W3349 4 Gl. luteum Yes 0.77 11.54 0.71 12.27  
Gl. etunicatum 12 Gl. luteum Yes 0.93 3.64 0.94 3.63  

Glomeraceae 
(Glomus Group 
B) Gl. luteum 5 Gl. etunicatum Yes 0.64 3.64 0.96 3.63  

Diversispora celata 3 Gl. eburneum Yes 0.9 2.61 0.83 3.39  
Gl. eburneum 12 Di. celata Yes 0.92 2.61 0.92 3.39  
Gl. versiforme 25 Gl. eburneum Yes 2.52 5.81 2.79 5.64  
Diversispora spurca 18 Gl. aurantium Yes 1.59 2.73 1.66 2.87  

Diversisporaceae Gl. aurantium 11 Di. spurca Yes 1.71 2.73 1.71 2.87  
Paraglomeraceae Paraglomus occultum 1 Sc. gilmorei ? - 34.93 - 31.7  
Pacisporaceae Pacispora scintillans 2 Sc. heterogama Yes 0.62 22.59 0.55 20.55  
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13.2 Supplementary data – chapter 6 

The following table is supplementary material for the publication ‘Acaulospora brasiliensis comb. nov. 

and Acaulospora alpina (Glomeromycota) from upland Scotland: morphology, molecular phylogeny and 

DNA based detection in roots’. 

 

Table S1. Colour of spores observed in water with reflected light at 3100 K. Colours are either unmatched 

to a chart, or are matched with the Royal Botanic Garden Edinburgh colour chart or are given in 

Munsell notation (Anon 1969; Anon 1990). 

Voucher Observed colour of spores 

W4514 non matched: orange brown 

W4699 ochraceous to ochre (9-11 RBG)  

W4786 reddish yellow to yellowish red (5YR 7.8-6.8 Munsell) 

W4796 non matched: pale yellow brown 

W4833 pale sienna (pale 11 RBG) 

W5125 sienna (11 RBG) 

W5473 non matched: yellow brown 

W5516 pale ochraceous to sienna (6-11 RBG) 

W5748 non matched: pale yellow 

W5751 very pale brown to yellow to brownish yellow to yellowish brown (10YR 8/3-5/8 Munsell) 

W5755 non matched: yellow to brownish yellow 

W5759 non matched: pale yellow brown 

W5762 non matched: yellow to yellow brown 

W5765 non matched: pale yellow to yellow brown 
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13.3 Supplementary data – chapter 7 

The following data are supplementary material of the publication ‘Arbuscular mycorrhizal fungi: 

biogeography and molecular systematics of the Diversisporaceae, with special reference to Diversispora 

epigaea (formerly known as ‘Glomus versiforme BEG47’)’ 

 

Supplementary Figure 1. 

Phylogenetic tree derived from the extended dataset analysis of members of the Diversisporaceae, 

including all environmental Diversisporaceae sequences available from the public databases. RAxML 

maximum likelihood tree with bootstrap support shown at the branches. Branchings with bootstrap 

support below 50% are shown as polytomies. The sequences not included in the analysis in Fig. 2 all 

cluster in the Diversispora clade, except one (DQ357079 from Portugal). 

 

Supplementary Figure 2. 

The handwritten labels and notes of Nylund (23 Nov 1860 - Jan 1861), and annotations included in the 

herbarium packet containing the holotype of Glomus versiforme (basionym Endogone versiformis), its 

translation, and the protologue and its translation of Endogone versiformis (Karsten 1884). 
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Diversispora sp environm [EU123465] (California USA)

Diversispora sp. Z3_FV_F2 [AM849271] (Estonia) 

Diversispora sp. environm. [DQ396724] (Ethiopia)

Diversispora sp. environm. [DQ396726] (Ethiopia)

Diversispora sp. S2_FV_A2 [AM849266] (Estonia) 

Diversispora sp. environm. [DQ396723] (Ethiopia)

Diversispora sp. W2423/Att382-16 [consensus] (Great Britain, Scotland)

Diversispora sp. environm. [EU123390] (California, USA)

Diversispora sp. environm. [DQ396719] (Ethiopia)

Diversispora sp. W3033/Att669-1 [FR686934] (Iceland)
Diversispora sp. environm. [DQ396766] (Ethiopia)

89

67

75

Diversispora sp. environm. [EU123465] (California, USA)

Diversispora sp. Z1_OA_G5 [AM849285] (Estonia) 

Diversispora spurca WV109G [FJ461847] (West Virginia, USA)

Diversispora sp. P04 environm. [EU332718] (South Korea) 

Diversispora sp. environm. [EU123392] (California, USA)

Diversispora spurca ex-type [consensus] (Tuscon, USA)

Diversispora spurca HA567 [FJ461848] (Hawaii)

Diversispora sp. environm. [EU123391] (California, USA)

Di i t i l FL707B [FJ461854] (Fl id USA)
Diversispora aurantia W4728 consensus [EF581861,64] (Israel)

Diversispora spurca SC157 [FJ461849] (South Carolina, USA)

Diversispora sp. environm. [EU123394] (California, USA)

Diversispora sp. Y1_HN_B8 [AM849307] (Estonia) 

Diversispora sp. environm. [EU123386] (California, USA)

Diversispora aurantia W4728 consensus [AJ849468,AM713432,EF581860,62-63,80-83,FN547655-65] (Israel)

Otospora bareai JP-2006a/2007a [AM400229,AM905318] (Spain)

Diversispora sp. environm. [EU123387] (California, USA)

Diversispora sp. environm. ‘phylotype Glo36’ [AY129577] (Panama)

96

82

Diversispora celata BEG230 FACE83 [consensus] (Switzerland)

Diversispora trimurales BR608 [FJ461851] (Brasil) 

Diversispora eburnea UK121 [FJ461831] (Great Britain, Scotland)
Diversispora eburnea AZ420A W4729 [consensus] (Arizona, USA)

Diversispora sp. Y3_OA_J4 [AM849296] (Estonia) 

Diversispora epigaea W4671/Att1236-0 [FR686936] (Thuringia, Germany)

Diversispora celata BEG232 FACE272 [consensus] (Switzerland)

Diversispora sp. environm. [AM076637] (Thuringia, Germany)

Entrophospora nevadensis JP-2009-2 EEZ164 [FN397100] (Spain)

Diversispora trimurales FL707B [FJ461854] (Florida, USA)

Diversispora sp. environm. [AM076638] (Thuringia, Germany)

Diversispora sp. W4538/Att1226-0 [FR686935] (Great Britain, Scotland)

Diversispora celata BEG233 FACE410 [consensus] (Switzerland)

Diversispora sp. P10 environm. [EU332719] (South Korea)
Diversispora sp. ‘NamAri’ NB101 [consensus] (Namibia)
Diversispora sp. ‘NamAri’ AZ237B [consensus] (Arizona, USA)

Diversispora celata BEG231 FACE234 [consensus] (Switzerland)

68

87

92

100

98

Diversispora trimurales W3577/Att 710-6 [FR686955] (Poland)
Diversispora trimurales W4124/Att1152-1 [consensus] (Poland)

Diversispora sp. epigaea-like W4568/Att1231-0 [FR686937] (Great Britain, Scotland)

‘Glomus tortuosum‘ JA306A [FJ461850] (Japan)
Diversispora sp. environm. [DQ396728] (Ethiopia)

Diversispora sp. environm. ‘phylotype Glo12’ [AF437656] (Great Britain, England)

Diversispora sp. environm. ‘phylotype Glo12’ [AJ716004] (Great Britain, England)

Diversispora sp. PFC140 environm. [DQ396727] (Ethiopia)

Diversispora sp. environm. Y3_OA_G2 [AM849295] (Estonia) 

Diversispora trimurales KS101 [FJ461855] (Kansas, USA)

Diversispora sp. environm. [DQ396736] (Ethiopia)

Diversispora sp. environm. ‘phylotype Glo12’ [AF437657] (Great Britain, England)

Diversispora sp. W5257 [consensus] (Great Britain, England)

Redeckera fulvum CL/Mart05-111 [AM418547] (Martinique)

Diversispora sp. environm. [DQ396733] (Ethiopia)
Diversispora sp. environm. [DQ396731] (Ethiopia)

Diversispora epigaea ex-type BEG47 [consensus] (Corvallis, USA)
95

68

89

100

93

82

Scutellospora nodosa BEG4 [consensus]

Redeckera sp. fulvum-like AC/Pohn99-001 [consensus] (Micronesia)

Scutellospora heterogama BEG35 [consensus]

Redeckera fulvum CL/Mart05-049 [AM418545] (Martinique)

Redeckera megalocarpum CL/Guad05-051 [consensus] (Guadeloupe)

Gigaspora rosea DAOM194757 [consensus]

Redeckera sp. P13 environm. [EU332707] (South Korea)

Acaulospora laevis AU211 [consensus]

Redeckera fulvum CL/Mart05-111 [AM418548] (Martinique)

Acaulospora sp. WUM18 [consensus]

Acaulospora lacunosa BEG78 [consensus]
‘uncultured Diversispora clone SJsp79‘.[DQ357079] (Portugal)

Redeckera fulvum CL/Mart05-049 [AM418546] (Martinique)

Redeckera pulvinatum CL/Mart05-035 [consensus] (Martinique)

Acaulospora cavernata BEG33 [consensus]

Redeckera fulvum CL/Mart05 111 [AM418547] (Martinique)

Racocetra castanea BEG1 [consensus]

Pacispora scintillans environm W4545/field collected [consensus]

80

78
95

97

100

74

100

100

94

65

100

99

54

0.1

‘Glomus trimurales‘ BR603A [FJ461860]

Claroideoglomus claroideum BEG14 [consensus]

‘Glomus trimurales‘ VA102A [FJ461858]

‘Glomus trimurales‘ MT112 [FJ461856]

‘Glomus trimurales‘ WA105 [FJ461859]

Funneliformis mosseae UT101 AFTOL-ID139 [consensus]

Pacispora scintillans environm. W4545/field-collected [consensus]

‘Glomus trimurales‘ NB103A [FJ461857]

Rhizophagus irregularis AFTOL-ID845 [consensus]

82
100

100
100

100
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The notes of Nylund (23 Nov 1860 - Jan 1861) are transcribed as “Peridium carneo, pallidum vel pallido-ochraceum, albo-
floccosum, tuberculiforme irregulare depressum, molle, ex elementis filamentaris ramosis contextum inarticulatis (crassit. circa 
0.006 mm), sporae globulosae albae diam. 0.065–92 mm. In horto botanico in calidariis [as ‘calilidariis’] (frigidioribus), 
subsepulta in terra plantarum, nov. 1860”. This is translated as “Peridium carnose, pale to pale-ochraceous, whitish floccose, 
tubercular irregularly flattened, soft, composed of filamentous branching aseptate elements (about 0.006 mm [6 µm] thick), white, 
globular spores with a diameter of 0.065-92 mm [65-92 µm]. In botanical garden in greenhouses (temperate), buried in the soil of 
plants, Nov. 1860.” 
Continued on the reverse with notes that are very difficult to transcribe. We transcribe the Latin as: “Peridii paries sat tenuis, 
extus subtiliter albo-arachnoideus vel floccoso-tomentosus, sed tactu pallescit. Cavitas cum sporis primo incolor, dein fuscescit. 
Sporae guttulis oleosis repletae; conceptacula sunt (minime sporis ut autunaverant auctores,) guttulas illas pro sporis sumentes 
(quod esse erroneum probatum facillime cum spiritu vini concentrato, et idem alioquin iam mox sub microscopico concludere 
licet a facie et [as ‘et et’] magnitudine maxime variabili globulorum (quibus agitur)!” The following translation is based on this 
transcript, whereas it should be kept in mind that many words were difficult to read or misspelled: “Wall of the peridium 
moderately thin, outer layer finer, white-interwoven or floccose-tomentose, but when touched becoming yellowish. Interior 
containing the spores initially colorless, then darkening. Spores filled with oily guttules; being within a receptacle these guttules 
(small spores by earlier authors) appearing to be spores (which is an artefact easily tested with concentrated ethanol, and the same 
in general immediately then can be seen under the microscope concluding from appearance and greatly variable size of the 
globules (which lead to that interpretation). 
 
The protologue of Endogone versiformis (Karsten 1884) “Peridia tuberculiformia, irregularia, mollia, ex hyphis ramosis 
inarticulatis, circa 6 mmm crassis contexta, carneo-pallida vel pallido-ochracea, albofloccosa, sicca subochraceae, usque ad 1 
cm lata. Sporangia subsphaeroidea, albida, diam. 65–95 mmm. Sporae sporoidae. In horto botanico Helsingforsiensi in calidariis 
(frigidioribus), subsepulta in terra plantarum m., Nov.-Jan.” is translated as “Peridium tubercular, irregular, soft, composed of 
aseptate racemose hyphae, about 6 mmm [6 µm] thick, pale flesh coloured or pale ochraceous, white-woolly, dry pale yellowish, 
up to 1 cm wide. Spores [as ‘sporangia’] sub-globose, white, diameter 65-95 mmm [65-95 µm]. Spores spore-like. In the botanical 
garden Helsinki in glasshouses (temperate), buried in the soil of plants, Nov. - Jan.” 



 

 

Supplementary Table 1.  
Strict consensus sequences used in the phylogenetic analyses. 

Diversispora aurantia AJ849468 (type culture); FN547655-65, AM713432, 
EF581860,62,63,80-83 (W4728/Att1296-0 (ex-type soil trap culture) 

Diversispora celata AM713423-25, AY639225-32, EF581865-68 (W4758/Att1292-2, 
BEG230 = FACE83); AM713426-28, AY639236-41, EF581873-76 
(W4757/Att1291-2, BEG232 = FACE272); DQ350448-53 (W5306-
07/Att1500-2 = BEG233 = FACE410); AM713417-22, AM713402-
04, AY639233-35, AY639306, EF581869-72 (ex-type single spore 
culture W4718-19/Att1278-2, BEG231 = FACE234) 

Diversispora eburnea AM713405-16,29-31, EF067886-88, EF581877-79 (AZ420A 
W4729/Att1290-5, ex-type culture) 

Diversispora epigaea 
(all ex-type cultures, originally from 
Oregon State University, USA, all in the 
same culture-lineage as BEG47): 

AJ132666 (BEG47 from BEG at INRA Dijon, France); AJ276088 
(W3221/Att475-21 from C. Walker, Hampshire, England); 
AM947665, AY842567-69,73,74, FJ461852, FM876814-20, 
FN547635,36, (W5165/Att475-45 from P. Bonfante, Torino via C. 
Walker, UK via B. Blal, Dijon, France via INRA, Dijon, France via 
Rothamsted Experimental Station, UK); FN547666-81 
(W3180/Att475-22); X86687, Y17651, FR686938-42 (HC/F-E01 
from P. Bonfante, Torino, Italy via J. Trappe, Corvallis, USA) 

Diversispora sp. W2423 AJ301863, AJ276076, Y17644, AJ301860, FR686943-44 
(W2423/Att382-16) 

Diversispora sp. ‘NamAri’ AF185677-81 (in sequence database as Glomus sp. AZ237B; in 
INVAM culture collection as Glomus intraradices AZ237B); 
AF185682,90,91, AF185693-95 (in sequence database as Glomus sp. 
NB101; in INVAM culture collection as Glomus intraradices 
NB101) 

Diversispora sp. W5257 FR686945-52, FR686958 (W5257) 
Diversispora spurca 
(all ex-type cultures) 

AJ276077 (W3239/Att246-4); AJ276078, Y17649,50, FR686953 
(W2396/Att246-4); FN547637-54, FR686954 (W4119/Att246-18) 

Diversispora trimurales FR686956-57 (W4124/Att1152-1) 
Redeckera fulvum AM418543-44 (AC/Pohn99-001) 
Redeckera megalocarpum 
(from type material) 

AM418551,52 (CL/Guad05-051) 

Redeckera pulvinatum AM418549,50 (CL/Mart05-035) 
Otospora bareai 
(thought to be from the type material) 

AM400229, AM905318 (assembly of non-overlapping 5' and 3' 
regions of SSU rRNA gene) 

Acaulospora lacunosa BEG78 FR719957, AJ891110-13, AJ510230 
Acaulospora laevis AU211 AJ250847, AJ242499, FJ461802 
Acaulospora cavernata BEG33  
(given as A. scrobiculata at BEG) 

AJ306442, FM876788-91 

Acaulospora sp. WUM18 
(equivalent to INVAM AU103A) 

AJ306441, FM876792,93 

Claroideoglomus claroideum BEG14 
(=Glomus claroideum) 

AJ301851,52, AJ276075, Y17636, AF235007 

Rhizophagus irregularis 
GINCO4695rac-11G2 (AFTOL-ID845) 
(=Glomus irregulare) 

DQ322630, AY997054, DQ273828 

Funneliformis mosseae UT101 
(AFTOL-ID139) (=Glomus mosseae)  

AY635833, AY997053, DQ273793 

Gigaspora rosea DAOM194757 X58726, AJ410746,47, FN547571-97 
Pacispora scintillans W4545 
(vouchD1, sample3) 

FM876831,32, AJ619952-55 

Racocetra castanea BEG1 
(ex-type culture) 

AF038590, AJ002874, AJ313169-75, FJ461867, FN423706,07, 
U31997,98, Y12076 

Scutellospora heterogama BEG35 AJ306434, FM876837-39 
Scutellospora nodosa BEG4 FM876833-36, AJ306436 
 



Supplementary Table 2.  
Diversispora epigaea (=Glomus versiforme BEG47, =Glomus epigaeum) samples studied. 

Voucher 
(W) 

Culture Attempt 
(Att) 

Collection Date Collector Locality 

90 475-1. Pot culture with 
Asparagus officinalis 
established from a single 
‘sporocarp’ 

13 December 1977 B. Daniels USA, Oregon, Benton Co., USDA- ARS, 
Horticultural Crops Research Unit, 
Tropical Greenhouse. HOLOTYPE. 
Trappe 5174. OSC39475 

100 475-1. As above 12 April 1979 B. Daniels As above 

407 475-3. No culture or 
collection data 

July 1978. Date 
known only to month 

B. Daniels As above 

1518 475-7. From pot culture 
with Sorghum bicolor 

24 January 1981 D. Egel USA, Ames, Iowa, Iowa State Univeristy 
Forestry Greenhouse 

526 475-6. No culture or 
collection data except 
‘Menge 0-1’ 

13 January 1982 J. Menge USA, California, University of 
California, Riverside 

1640 475-14. Pot culture with 
Allium porrum 

2 December1991 C. Grace UK, England, Hertfordshire, Harpenden, 
Rothamsted Experiment Station 

1641 475-17. No culture or 
collection data 

1990. Date known 
only to year 

F. Sanders UK, England, Yorkshire, Leeds, 
University of Leeds, Dept. of Plant 
Sciences 

1728 475-12. No culture or 
collection data 

19 March 1993 B. Breuinett Italy, Torino, University of Torino, 
Departimento di Biologia Vegetale 

2336 475-18. Pot culture with 
Plantago. lanceolata 

11 October 1995 A. Broome UK, Scotland, Midlothian, Roslin, Forest 
Research, Northern Research Station 

2842 475-20. No culture or 
collection data 

1 October 1996 P. Bonfante Italy, Torino, University of Torino, 
Departimento di Biologia Vegetale 

3180 475-22. No culture or 
collection data 

15 October 1996 P. Bonfante Italy, Torino, University of Torino, 
Departimento di Biologia Vegetale 

3206 475-21. Pot culture with P. 
lanceolata 

13 January 1999 C. Walker UK, England, Hampshire, Efford, 
Horticultural Research International 

3221 475-21. Pot culture with P. 
lanceolata 

24 February 1999 C. Walker UK, England, Hampshire, Efford, 
Horticultural Research International 

3537 475-30. Pot culture with P. 
lanceolata 

3 November 2000 M. Vestberg Finland, Vihtavuori, Laukaa Research & 
Elite Plant Laboratory 

3581 475-21. Pot culture with P. 
lanceolata 

5 February 2001 C. Walker UK, England, Hampshire, Efford, 
Horticultural Research International 

3864 475-21. Pot culture with P. 
lanceolata 

15 March2002 C. Walker UK, England, Hampshire, Efford, 
Horticultural Research International 

4475 475-38. No culture or 
collection data 

12 June 2003 B. Blal France, Dijon, Biorize 

4560 475-39. Pot culture with P. 
lanceolata 

9 December 2003 C. Walker Belgium, Louvain-la-Neuve, Catholic 
University of Louvain 

4565 475-40. Pot culture with P. 
lanceolata 

15 December 2003 C. Walker UK, Scotland, Royal Botanic Garden 
Edinburgh 

5164 475-40. Pot culture with P. 
lanceolata 

15 April 2006 C. Walker UK, England, Gloucester (moved from 
Edinburgh) 

5065 475-44. Pot culture with P. 
lanceolata 

30 January 2007 G. Bending UK, England, Wellesbourne, University 
of Warwick 

5066 475-44. Pot culture with P. 
lanceolata 

30 January 2007 G. Bending UK, England, Wellesbourne, University 
of Warwick 

5117 475-45. Pot culture with 08 February 2007 M. Naumann Italy, Torino, University of Torino, 



Trifolium repens Departimento di Biologia Vegetale 

5165 475-45. Pot culture with T. 
repens 

28 April 2007 M. Naumann Italy, Torino, University of Torino, 
Departimento di Biologia Vegetale 

5167 475-45. Pot culture with T. 
repens 

28 April 2007 M. Naumann Italy, Torino, University of Torino, 
Departimento di Biologia Vegetale 

5170 475-46. Pot culture with P. 
lanceolata 

16 May 2007 M. Naumann Italy, Torino, University of Torino, 
Departimento di Biologia Vegetale 

5260 475-45. Pot culture with T. 
repens 

1 June 2007 M. Naumann Italy, Torino, University of Torino, 
Departimento di Biologia Vegetale 

5358 475-45. Pot culture with T. 
repens 

25 July 2007 M. Naumann Italy, Torino, University of Torino, 
Departimento di Biologia Vegetale 

5606 475-55. No culture or 
collection data 

1 February 2009 M. Harrison USA, New York, Ithaca, Boyce 
Thompson Institute for Plant Research 

5707 475-59. Pot culture with P. 
lanceolata 

25 January 2010 C. Walker UK, England, Wellesbourne, University 
of Warwick 

5708 475-60. Pot culture with P. 
lanceolata 

25 January 2010 C. Walker UK, England, Wellesbourne, University 
of Warwick 

5728 475-56. Pot culture with P. 
lanceolata, Festuca ovina 
agg. Lotus japonicus var. 
gifu 

3 March 2010 A. Schüßler Germany, Martinsried, Ludwig-
Maximilians-University Munich 

5724 475-48. Pot culture with P. 
lanceolata 

9 March 2010 M. Krüger Germany, Martinsried, Ludwig-
Maximilians-University Munich 

5725 475-49. Pot culture with P. 
lanceolata 

9 March 2010 M. Krüger Germany, Martinsried, Ludwig-
Maximilians-University Munich 

5726 475-57. Pot culture with P. 
lanceolata 

9 March 2010 M. Krüger Germany, Martinsried, Ludwig-
Maximilians-University Munich 

5727 475-47. Pot culture with P. 
lanceolata 

9 March 2010 A. Schüßler Germany, Martinsried, Ludwig-
Maximilians-University Munich 

5786 475-61. Pot culture with P. 
lanceolata 

24 June 2010 C. Walker UK, England, Gloucester 

5835 475-61. Pot culture with P. 
lanceolata 

23 September 2010 C. Walker UK, England, Gloucester 

5848 475-66. Pot culture with P. 
lanceolata 

26 October 2010 C. Krüger Germany, Martinsried, Ludwig-
Maximilians-University Munich 

5849 475-71. Pot culture with P. 
lanceolata 

26 October 2010 C. Krüger Germany, Martinsried, Ludwig-
Maximilians-University Munich 
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13.4 Supplementary data – chapter 8 

The following data are supplementary material of the publication ‘A 3 kb, three-rDNA-loci phylogenetic 

framework for arbuscular mycorrhizal fungi - from phylum to species resolution’.  

 

Supplementary Figure S1  

Maximum likelihood phylogenetic tree based on the nuclear SSU-ITS-LSU rDNA of Glomeraceae, 

except Rhizophagus and Sclerocystis, including public database sequences of >500 bp. Rhizophagus 

species were used as outgroup. Branches receiving less than 60% bootstrap support (1000 bootstraps) 

were collapsed to polytomies, long branches were shortened by 50% as indicated with two diagonal 

slashes or by 75% indicated with three slashes. Bootstrap values are given for branches among but not 

within different cultures. Scale bar, number of substitutions per site. The annotation marked with 

(consensus) was computed from a strict consensus sequence of the accession numbers given in the tree. 

 

Supplementary Figure S2  

Maximum likelihood phylogenetic tree based on nuclear SSU-ITS-LSU rDNA of the 

Claroideoglomeraceae, including public database sequences of ≥450 bp, Funneliformis was used as 

outgroup. Branches receiving less than 60% bootstrap support (1000 bootstraps) were collapsed to 

polytomies, long branches were shortened by 50% as indicated with two diagonal slashes or by 75% 

indicated with three slashes. Bootstrap values are given for branches among but not within different 

cultures. Scale bar, number of substitutions per site. 

 

Supplementary Table S1 

List of sequence identifiers derived from this and related studies published by the authors, with their 

current species affiliations and, for recently changed names, synonyms, their source publication, culture 

identifier, clone number type of culture, sample used for DNA extraction, and geographic origin when 

known. (#), if more than one number is shown, respective clones had identical sequences; (*) all cultures 

are pot cultures if not otherwise stated; ROC, root organ culture (monoxenic). 

 

 



G. macrocarpum W5293/field collected (HS094-12)

Fig. S1 F. mosseae JJ44, isolate Nr.243 (AY035650) 579 bp

F. mosseae BEG12 (FN547488)

F. mosseae BEG12 (FN547482)

F. mosseae isolate 8 (AY639158) 768 bp

F. caledonium BEG20, W3294/Att263-15 (FN547498)

F. coronatum ZTL (FN423686) 954 bp

Funneliformis sp. WUM3, W2939/Att15-5 (FN547478)

F. geosporum BEG11 (AJ510241) 747 bp

F. mosseae BEG25 (X96828)

F. mosseae FL156 (AJ919277) 583 bp

F. mosseae BEG12 (FN547489)

F. mosseae BEG12 (FN547486)

F. mosseae ISCB18 (FN423688) 935 bp

F. geosporum BEG106 (AF145743) 713 bp

F. mosseae isolate 8 (AY639267) 768 bp

F. mosseae BEG12 (FN547475)

F. caledonium RWC 658 (AF396794) 767 bp

F. mosseae DAOM240162 (GQ205093) 526 bp

F. caledonium DAOM234210 (GQ205090) 548 bp

F. mosseae BEG25 (AM423117) 540 bp

F. mosseae isolate 8 (AY639269) 769 bp

F. mosseae BEG12 (FN547493)

F. mosseae isolate 8 (AY639156) 767 bp

F. coronatum W3582/Att108-7 (FM876798)

F. fasciculatum BEG58 (X96843) 576 bp ●

F. mosseae W5790/Att109-28 (FR750026)

F. caledonium DAOM234210 (GQ205088) 548 bp

F. mosseae BEG12 (FN547474)

F. caledonium BEG20 (FN423698) 978 bp

F. caledonium JJ45, isolate Nr.658 (AY035651) 596 bp

F. mosseae W5790/Att109-28 (FR750024)

Funneliformis sp. WUM3, W2939/Att15-5 (FN547480)

F. mosseae isolate 209 (AY639173) 767 bp

F. multiforum DAOM240256 (GQ205087) 560 bp
F. multiforum DAOM240256 (GQ205086) 545 bp

F. mosseae BEG85 (AF145736) 874 bp

F. mosseae BEG224, FACE130 (AY639167) 767 bp

F. mosseae W5790/Att109-28 (FR750032)

F. coronatum IMA3 (AJ890365) 597 bp

F. mosseae BEG12 (FN423695) 945 bp

F. mosseae ISCB18 (FN423689) 946 bp

F. mosseae BEG25 (X96827)

F. geosporum (FJ009620)

F. mosseae BEG25 (AM423116) 542 bp

F. constrictum NE202 (FJ461827) 719 bp ◄

F. mosseae ISCB13 (FN423690)

F. mosseae W5790/Att109-28 (FR750028)

F. mosseae BEG12 (FN547476)

F. coronatum UK216 (FJ461828) 718 bp ◄

F. mosseae IMA1 (AM423115) 542 bp

F. mosseae isolate 209 (AY639172) 767 bp

F. mosseae BEG12 (FN547485)

F. caledonium BEG86 (AJ510239) 750 bp

F. constrictum BEG130 (AF145741) 945 bp

F. mosseae ISCB13 (FN423691) 948 bp

F. caledonium BEG20, W3294/Att263-15 (FN547497)

F. caledonium DAOM234210 (GQ205089) 547 bp

F. mosseae NB114 (AJ919275) 538 bp

F. mosseae BEG12 (FN547492)

F. mosseae SM 243 (AF396798) 767 bp

F. mosseae IMA1 (AM423114) 539 bp

F. mosseae BEG12 (FN547484)

F. mosseae JJ46, isolate Nr.964 (AY035652) 578 bp

F. mosseae isolate 8 (AY639266) 767 bp

F. mosseae isolate 101 (AY639277) 768 bp

Funneliformis sp. WUM3, W2940/Att15-5 (FM876813)

F. geosporum (FJ009619)

F. mosseae IN101C (AJ919276) 538 bp

F. mosseae isolate 209 (AY639174) 767 bp

F. mosseae W5790/Att109-28 (FR750030)

F. mosseae ISCB14 (FN423693) 934 bp

F. caledonium BEG20, W3294/Att263-15 (FN547495)

F. coronatum ZTL (FN423687) 954 bp

F. mosseae isolate 209 (AY639171) 767 bp

F. mosseae W5790/Att109-28 (FR750025)

F. mosseae BEG12 (FN547490)

F. coronatum W3582/Att108-7 (FM876794)

F. mosseae W5790/Att109-28 (FR750033)

F. mosseae DAOM240162 (GQ205092) 528 bp

F. geosporum BEG11 (AJ239122) 555 bp

F. geosporum (FJ009621)

F. mosseae isolate 8 (AY639157) 767 bp

F. mosseae AZ225C (AJ919273) 577 bp

F. mosseae BEG25 (AM423118) 540 bp

F. mosseae BEG12 (FN547483)

F. monosporum FR115 (AF125195) 534 bp ●

F. mosseae UT101, AFTOL-ID139 (AY635833, AY997053, DQ273793)

F. multiforum DAOM240256 (GQ205084) 558 bp

Funneliformis sp. WUM3, W2939/Att15-5 (FN547479)
Funneliformis sp. WUM3, W2939/Att15-5 (FN547477)

F. constrictum UT188 (FJ461826) 719 bp ◄

F. fasciculatum BEG58 (X96842) 572 bp ●

F. mosseae BEG12 (FN547491)

F. caledonium BEG20, W3294/Att263-15 (FN547499)

F. mosseae BEG12 (FN423694) 950 bp

F. geosporum BEG18 (FN423700) 972 bp

F. mosseae BEG224, FACE130 (AY639170) 769 bp

F. mosseae ISCB14 (FN423692) 927 bp

F. caledonium SC 658 (AF396799) 767 bp

F. mosseae BEG224, FACE130 (AY639166) 768 bp

F. fragilistratum DN988 (FJ461834) 718 bp ◄

F. mosseae isolate 101 (AY639164) 767 bp

F. mosseae W5790/Att109-28 (FR750027)

F. coronatum BEG28 (AF145739) 919 bp

G. macrocarpum MD124 (FJ461841) 720 bp ◄

F. coronatum W3582/Att108-7 (FM876797)

F. xanthium (AJ849467)

F. mosseae W5790/Att109-28 (FR750031)

F. caledonium BEG20 (AF145745) 845 bp

F. geosporum (FJ009622)

F. mosseae FR115 (FJ461844) 718 bp ◄

F. mosseae BEG12 (FN547487)

F. caledonium BEG20, W3294/Att263-15 (FN547496)

F. mosseae & caledoinum UK112A (FJ461814, as ‘G. caledonium‘) 718 bp ◄

Funneliformis sp. WUM3, W2939/Att15-5 (FN547481)

F. mosseae AZ225C (AJ919274) 577 bp

F. mosseae RWM 243 (AF396793) 767 bp

F. mosseae BEG224, FACE130 (AY639168) 768 bp

F. mosseae BEG224, FACE130 (AY639169) 767 bp

F. mosseae BEG84 (AF145738) 771 bp

F. geosporum BEG90 (AF145742) 812 bp

F. coronatum BEG49 (AF145740) 944 bp ●

F. caledonium RMC 658 (AF396789) 771 bp

F. geosporum BEG18 (FN423701) 970 bp

F. caledonium BEG20 (FN423699) 970 bp

F. mosseae WY110 (FJ461845) 717 bp ◄

F. coronatum W3582/Att108-7 (FM876796)

F. monosporum FR115 (AF004690) 536 bp ●

F. mosseae BEG25 (X96826)

F. caledonium HA692B (FJ461813) 719 bp ◄

F. fragilistratum BEG05 (AF145747) 914 bp ●

F. mosseae BEG25 (AF145735) 927 bp

F. coronatum W3582/Att108-7 (FM876795)

F. caledonium DAOM234210 (GQ205091) 547 bp

F. multiforum DAOM240256 (GQ205085) 557 bp

F. mosseae BEG25 (AM423119) 536 bp

F. caledonium BEG20, W3294/Att263-15 (FN547494)

G. deserticola NC302A (FJ461829) 711 bp ◄

F. mosseae FL156 (AJ919278) 581 bp

F. mosseae W5790/Att109-28 (FR750029)

85

89

97

95

63

92

74

97

94

81

98

93

82

72

80

83

96

94

97

61

94

90

68

0.05

G. aggregatum ‘yellow‘ OR212 (FJ461812) 707 bp ◄

Glomus sp. W3347/Att565-7 (FR750202)
Glomus sp. W3347/Att565-7 (FR750201)

R. intraradices FL208, W5166/Att4-38 (FM865604)

G. luteum? & G. claroideum? IN214A (FJ461835, as ‘G. geosporum‘) 710 bp ◄

Glomus sp. W3347/Att565-7 (FR750203)

R. intraradices FL208, W5166/Att4-38 (FM865606)

G. hoi BEG104, Att769-1 (AM743188) 848 bp
100

85

99
97

92

95

93

G. deserticola BEG73 (AJ746249) 740 bp
G. viscosum BEG50 (FJ461853) 717 bp

100

G. macrocarpum W5288/field collected (FR750527)

G. macrocarpum W5293/field collected (FR750543)

G. macrocarpum W5581/Att1495-0 (FR750367)

G. macrocarpum W5293/field collected (FR750541)

G. macrocarpum W5581/Att1495-0 (FR750366)

G. macrocarpum W5288/field collected (FR750529)

G. macrocarpum W5581/Att1495-0 (FR750369)

G. macrocarpum W5581/Att1495-0 (FR750364)

G. macrocarpum W5293/field collected (FR750537)

G. macrocarpum W5293/field collected (FR750531)
G. macrocarpum W5293/field collected (FR750536)

G. macrocarpum W5293/field collected (FR750535)
G. macrocarpum W5293/field collected (FR750532)

G. macrocarpum W5293/field collected (FR750540)
G. macrocarpum W5293/field collected (FR750544)

G. macrocarpum W5293/field collected (FR750538)

G. macrocarpum W5293/field collected (FR750542)

G. macrocarpum W5293/field collected (FR750539)

G. macrocarpum W5581/Att1495-0 (FR750363)

G. macrocarpum W5288/field collected (FR750526)

G. macrocarpum W5293/field collected (FR750533)

G. macrocarpum W5581/Att1495-0 (FR750365)

G. macrocarpum W5288/field collected (FR750528)

G. macrocarpum W5288/field collected (FR750530)

G. macrocarpum W5293/field collected (FR750534)
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C. etunicatum UT316 (Y16739, Z14008, AJ239125)
C. etunicatum CA-OT-126-3-2, W5347/Att1505-8 (FN547624)

C. etunicatum FL705A-5 (HM485730) 717 bp

C. etunicatum CA-GT24-6 (HM485713) 721 bp

C. claroideum JJ50, isolate Nr.133 (AY035656) 585 bp

C. claroideum BR106 (FJ461817) 708 bp ◄

C. claroideum W5155/Att1063-3 (FR750077)

C. etunicatum AU401A-2 (HM485693) 740 bp

C. claroideum HM-CL3 (AJ271927) 718 bp

C. luteum SA101-3, W3184/Att676-0 (FM876810)

Claroideoglomus sp. W3349/Att565-11 (FM876804) 

C. luteum SA101-3, W3184/Att676-0 (FM876808)

C. etunicatum AU401A-1 (HM485692) 740 bp

C. claroideum BEG96 (AY953108) 468 bp

C. claroideum SF_133 (AF396795) 759 bp

C. claroideum DAOM235359 (GQ205096) 535 bp

C. etunicatum BR215 (FJ461832) 710 bp ◄

C. claroideum BEG31 (AJ271929) 719 bp

F. caledonium BEG20, W3294/Att263-15 (FN547494)

C. luteum SA112 (HM485771) 740 bp

C. claroideum W5155/Att1063-3 (FR750075)
C. claroideum W5794/Att1063-4 (FR750055)

F. caledonium BEG20, W3294/Att263-15 (FN547495)

C. claroideum W5794/Att1063-4 (FR750058)

C. etunicatum CA-OT-126-3-2, W5347/Att1505-8 (FN547631)

C. claroideum CH110A (FJ461818) 710 bp ◄

C. etunicatum MD127-2 (HM485743) 720 bp

C. etunicatum W5347/Att1505-8 (FN547626)

C. claroideum OR210 (FJ461820) 710 bp ◄

Claroideoglomus sp. W3349/ Att565-11 (FM876805)

C. etunicatum CA-OT-126-3-2, W5347/Att1505-8 (FN547623)

C. claroideum V284 (AJ628061) 735 bp

C. etunicatum CA-OT-126-3-2, W5347/Att1505-8 (FN547633)

C. etunicatum BR220-2 (HM485701) 740 bp

C. etunicatum CA-OT-126-3-2, W5347/Att1505-8 (FN547625)

C. etunicatum BR155C (FJ461833) 710 bp ◄

C. drummondii (AJ972464)

C. claroideum W5794/Att1063-4 (FR750062)

C. etunicatum BEG92 (AF145749) 882 bp

C. claroideum RMF_133 (AF396785) 759 bp

G. microaggregatum UT126B (FJ461843) 697 bp ◄

C. drummondii (AJ972466)

C. etunicatum NPI (AJ623309) 917 bp

C. claroideum JJ42, isolate Nr.133 (AY035648) 596 bp

C. etunicatum AU401A-41 (HM485694) 740 bp

C. luteum JJ49, isolate Nr.770 (AY035655) 586 bp ●
C. claroideum W5794/Att1063-4 (FR750061)

C. etunicatum 3-5-4 (AY330597) 547 bp

C. drummondii (AJ972465)

C. etunicatum KE118-37 (HM485735) 740 bp

C. etunicatum 3-5-4 (AY330582) 556 bp

C. luteum SA112 (FJ461840) 710 bp ◄

C. etunicatum CA-OT-126-3-2, W5347/Att1505-8 (FN547632)

C. etunicatum CA-OT-126-3-2, W5347/Att1505-8 (FN547628)

C. claroideum RWF_133 (AF396790) 759 bp

C. claroideum V289 (AJ628062) 701 bp
C. claroideum V12 (AJ628063) 741 bp

C. claroideum JJ52, isolate Nr.672 (AY035658) 582 bp

C. etunicatum MX916B-2 (HM485748) 740 bp

C. claroideum W5794/Att1063-4 (FR750057)

C. claroideum BEG96 (AY953104) 444 bp

C. claroideum W5794/Att1063-4 (FR750059)

C. claroideum WV114 (FJ461815) 710 bp ◄

C. etunicatum CA-OT-126-3-2, W5347/Att1505-8 (FN547634)

C. luteum SW202 (HM485774) 690 bp ●

C. etunicatum KE118-13 (HM485734) 740 bp

C. claroideum DAOM235359 (GQ205094) 536 bp

C. etunicatum NB119-18 (HM485750) 740 bp

C. etunicatum 3-5-4 (AY330592) 541 bp

C. luteum SA101-3, W3184/Att676-0 (FM876809)
C. luteum SA101-3, W3184/Att676-0 (FM876812)

G. geosporum MD124 (AF197918) 538 bp ●
C. claroideum JJ51, isolate Nr.360 (AY035657) 584 bp

C. claroideum W5794/Att1063-4 (FR750056)

C. etunicatum AZ201C-3 (HM485697) 740 bp

C. luteum JJ47, isolate Nr.132 (AY035653) 582 bp ●

C. claroideum DN9874 (AF235009) 893 bp

C. claroideum DN987 (FJ461819) 710 bp ◄

C. claroideum SW204 (FJ461816) 710 bp ◄

C. walkeri (AJ972467)

C. etunicatum FL705A-4 (HM485729) 740 bp

C. etunicatum AZ201C-1 (HM485695) 740 bp

C. claroideum BEG150 (AM158949) 719 bp

C. claroideum W5794/Att1063-4 (FR750060)

C. claroideum W5155/Att1063-3 (FR750074)

C. claroideum BEG96 (AY953110) 468 bp

C. etunicatum BEG168 (AM158951) 719 bp

C. claroideum BEG14 (AJ271928) 719 bp

C. etunicatum CA-OT-126-3-2, W5347/Att1505-8 (FN547627)

C. claroideum BEG96 (AY953107) 468 bp

C. etunicatum CU127-47 (HM485728) 740 bp
C. etunicatum CA-GT4-7 (HM485705) 740 bp

C. claroideum BEG88 (AF145748) 889 bp

C. etunicatum 5-5-4 (AY330588) 556 bp

C. claroideum DAOM235359 (GQ205095) 536 bp

C. claroideum BEG150 (AM947663) 719 bp

C. etunicatum CA-OT-126-3-2, W5347/Att1505-8 (FN547629)

C. claroideum BEG96 (AY953105) 582 bp

Claroideoglomus sp. W3349/Att565-11 (FM876807) 

C. claroideum BEG96 (AY953111) 468 bp

C. claroideum BEG150 (AM158950) 719 bp

C. claroideum BEG96 (AY953106) 468 bp

C. claroideum JJ43, isolate Nr.133 (AY035649) 587 bp

Claroideoglomus sp. W3349/Att565-11 (FM876806)

C. etunicatum CA-OT-126-34 (HM485723) 740 bp
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Supporting Table 1. Annotation of sequences from our laboratory, which were used in the analyses.
rDNA region accession no. clone no. species name (synonym, if recently changed) type-information attempt no. voucher other identifier(s) culture type or sample origin DNA extraction from reference geographical origin collector or originator
SSU FN825898 FD22-1 Acaulospora brasiliensis (Ambispora brasiliensis Att1211-0 W4699 soil trap single spore Krüger et al. 2011 UK, Perthshire, Meall nan Tarmachan C Walker
SSU FN825899 FD22-6 Acaulospora brasiliensis (Ambispora brasiliensis Att1211-0 W4699 soil trap single spore Krüger et al. 2011 UK, Perthshire, Meall nan Tarmachan C Walker
SSU FN825900 MK113-1 Acaulospora brasiliensis (Ambispora brasiliensis Att1211-0 W4699 soil trap single spore Krüger et al. 2011 UK, Perthshire, Meall nan Tarmachan C Walker
SSU-ITS-LSU FN825901 MK109-1 Acaulospora brasiliensis (Ambispora brasiliensis Att1211-0 W4699 soil trap single spore Krüger et al. 2011 UK, Perthshire, Meall nan Tarmachan C Walker
SSU-ITS-LSU FN825902 MK109-2 Acaulospora brasiliensis (Ambispora brasiliensis Att1211-0 W4699 soil trap single spore Krüger et al. 2011 UK, Perthshire, Meall nan Tarmachan C Walker
SSU-ITS-LSU FN825903 MK065-7 Acaulospora brasiliensis (Ambispora brasiliensis Att1211-0 W4699 soil trap single spore Krüger et al. 2011 UK, Perthshire, Meall nan Tarmachan C Walker
SSU-ITS-LSU FN825904 MK065-6 Acaulospora brasiliensis (Ambispora brasiliensis Att1211-0 W4699 soil trap single spore Krüger et al. 2011 UK, Perthshire, Meall nan Tarmachan C Walker
SSU-ITS-LSU FN825905 MK065-5 Acaulospora brasiliensis (Ambispora brasiliensis Att1211-0 W4699 soil trap single spore Krüger et al. 2011 UK, Perthshire, Meall nan Tarmachan C Walker
SSU-ITS-LSU FN825906 MK065-4 Acaulospora brasiliensis (Ambispora brasiliensis Att1211-0 W4699 soil trap single spore Krüger et al. 2011 UK, Perthshire, Meall nan Tarmachan C Walker
SSU-ITS-LSU FN825907 MK064-6 Acaulospora brasiliensis (Ambispora brasiliensis Att1211-0 W4699 soil trap single spore Krüger et al. 2011 UK, Perthshire, Meall nan Tarmachan C Walker
SSU-ITS-LSU FN825908 MK064-4 Acaulospora brasiliensis (Ambispora brasiliensis Att1211-0 W4699 soil trap single spore Krüger et al. 2011 UK, Perthshire, Meall nan Tarmachan C Walker
SSU-ITS-LSU FN825909 MK062-3 Acaulospora brasiliensis (Ambispora brasiliensis Att1211-0 W4699 soil trap single spore Krüger et al. 2011 UK, Perthshire, Meall nan Tarmachan C Walker
SSU-ITS-LSU FN825910 CK032-4 Acaulospora brasiliensis (Ambispora brasiliensis Att1210-5 W5473 soil trap single spore Krüger et al. 2011 UK, Perthshire, Meall nan Tarmachan C Walker
SSU-ITS-LSU FN825911 CK032-2 Acaulospora brasiliensis (Ambispora brasiliensis Att1210-5 W5473 soil trap single spore Krüger et al. 2011 UK, Perthshire, Meall nan Tarmachan C Walker
SSU-ITS-LSU FN825912 CK032-1 Acaulospora brasiliensis (Ambispora brasiliensis Att1210-5 W5473 soil trap single spore Krüger et al. 2011 UK, Perthshire, Meall nan Tarmachan C Walker
SSU FR750213 FD002-1 (+3) Acaulospora capsicula Att1186-5 W4681 single spore (= isolate single spore Krüger et al. 2011 Australia, New South Wales, Sydney P McGee
SSU AJ306442 WD159-1-1 Acaulospora cavernata epitype predecessor Att209-37 W3293 BEG33 multispore single spore Schüßler et al. 2001 UK, Northumberland, Kielder C Walker
SSU-ITS-LSU FM876788 MK006-1 Acaulospora cavernata epitype predecessor Att209-37 W3293 BEG33 multispore single spore Krüger et al. 2009 UK, Northumberland, Kielder C Walker
SSU-ITS-LSU FM876789 MK006-2 Acaulospora cavernata epitype predecessor Att209-37 W3293 BEG33 multispore single spore Krüger et al. 2009 UK, Northumberland, Kielder C Walker
SSU-ITS-LSU FM876790 MK006-3 Acaulospora cavernata epitype predecessor Att209-37 W3293 BEG33 multispore single spore Krüger et al. 2009 UK, Northumberland, Kielder C Walker
SSU-ITS-LSU FM876791 MK006-4 Acaulospora cavernata epitype predecessor Att209-37 W3293 BEG33 multispore single spore Krüger et al. 2009 UK, Northumberland, Kielder C Walker
SSU-ITS-LSU FR750063 CK086-4 Acaulospora colombiana ex-type Att1476-8 W5795 CIAT C-10; INVAM CL356 pot culture (details unknown) single spore this study Colombia, Meta, Carimagua J Spain
SSU-ITS-LSU FR750168 MK095-1 Acaulospora entreriana ex-type Att1541-1 W5476 multispore single spore this study Argentina, Colón County, Ubajay S Velazquez
SSU-ITS-LSU FR750169 MK095-2 Acaulospora entreriana ex-type Att1541-1 W5476 multispore single spore this study Argentina, Colón County, Ubajay S Velazquez
SSU-ITS-LSU FR750170 MK095-3 Acaulospora entreriana ex-type Att1541-1 W5476 multispore single spore this study Argentina, Colón County, Ubajay S Velazquez
SSU-ITS-LSU FR750171 MK095-4 Acaulospora entreriana ex-type Att1541-1 W5476 multispore single spore this study Argentina, Colón County, Ubajay S Velazquez
SSU-ITS-LSU FR750172 MK095-5 Acaulospora entreriana ex-type Att1541-1 W5476 multispore single spore this study Argentina, Colón County, Ubajay S Velazquez
SSU-ITS-LSU FR750173 MK095-6 Acaulospora entreriana ex-type Att1541-1 W5476 multispore single spore this study Argentina, Colón County, Ubajay S Velazquez
SSU-ITS-LSU FM876821 HS098-1 Acaulospora kentinensis (Kuklospora kentinensis authenticated Att1499-9 W5346 TW111A pot culture (details unknown) single spore Krüger et al. 2009 Taiwan, Tainam C-G Wu
SSU-ITS-LSU FM876822 HS098-2 Acaulospora kentinensis (Kuklospora kentinensis authenticated Att1499-9 W5346 TW111A pot culture (details unknown) single spore Krüger et al. 2009 Taiwan, Tainam C-G Wu
SSU-ITS-LSU FM876823 HS098-5 Acaulospora kentinensis (Kuklospora kentinensis authenticated Att1499-9 W5346 TW111A pot culture (details unknown) single spore Krüger et al. 2009 Taiwan, Tainam C-G Wu
SSU-ITS-LSU FM876824 HS098-16 Acaulospora kentinensis (Kuklospora kentinensis authenticated Att1499-9 W5346 TW111A pot culture (details unknown) single spore Krüger et al. 2009 Taiwan, Tainam C-G Wu
SSU-ITS-LSU FM876825 HS098-20 Acaulospora kentinensis (Kuklospora kentinensis authenticated Att1499-9 W5346 TW111A pot culture (details unknown) single spore Krüger et al. 2009 Taiwan, Tainam C-G Wu
SSU-ITS-LSU FM876826 HS098-23 Acaulospora kentinensis (Kuklospora kentinensis authenticated Att1499-9 W5346 TW111A pot culture (details unknown) single spore Krüger et al. 2009 Taiwan, Tainam C-G Wu
SSU-ITS-LSU FM876827 HS098-24 Acaulospora kentinensis (Kuklospora kentinensis authenticated Att1499-9 W5346 TW111A pot culture (details unknown) single spore Krüger et al. 2009 Taiwan, Tainam C-G Wu
SSU-ITS-LSU FM876828 HS098-29 Acaulospora kentinensis (Kuklospora kentinensis authenticated Att1499-9 W5346 TW111A pot culture (details unknown) single spore Krüger et al. 2009 Taiwan, Tainam C-G Wu
SSU-ITS-LSU FM876829 HS098-56 Acaulospora kentinensis (Kuklospora kentinensis authenticated Att1499-9 W5346 TW111A pot culture (details unknown) single spore Krüger et al. 2009 Taiwan, Tainam C-G Wu
SSU-ITS-LSU FM876830 HS098-57 Acaulospora kentinensis (Kuklospora kentinensis authenticated Att1499-9 W5346 TW111A pot culture (details unknown) single spore Krüger et al. 2009 Taiwan, Tainam C-G Wu
SSU-ITS-LSU FN547520 HS098-38 Acaulospora kentinensis (Kuklospora kentinensis authenticated Att1499-9 W5346 TW111A pot culture (details unknown) single spore Stockinger et al. 2010 Taiwan, Tainam C-G Wu
SSU-ITS-LSU FN547521 HS098-43 Acaulospora kentinensis (Kuklospora kentinensis authenticated Att1499-9 W5346 TW111A pot culture (details unknown) single spore Stockinger et al. 2010 Taiwan, Tainam C-G Wu
SSU-ITS-LSU FN547522 HS098-21 Acaulospora kentinensis (Kuklospora kentinensis authenticated Att1499-9 W5346 TW111A pot culture (details unknown) single spore Stockinger et al. 2010 Taiwan, Tainam C-G Wu
SSU-ITS-LSU FN547523 HS098-35 Acaulospora kentinensis (Kuklospora kentinensis authenticated Att1499-9 W5346 TW111A pot culture (details unknown) single spore Stockinger et al. 2010 Taiwan, Tainam C-G Wu
SSU FR719957 WD195-1-2 Acaulospora lacunosa Att626-8 W3289 BEG78 multispore single spore this study USA, New Hampshire D Watson
SSU Y17633 WD95–1-4 Acaulospora laevis Att896–8 W3107 WUM46 multispore single spore Schüßler et al. 2001 Australia, Western Australia, Jarrahdale D Jasper
SSU FR750214 FD061 Acaulospora laevis Att423-4 W3247 multispore single spore this study UK, Sutherland, Elphin C Walker
SSU-ITS-LSU FN547502 HS032-80 Acaulospora laevis Att423-4 W3247 multispore single spore Stockinger et al. 2010 UK, Sutherland, Elphin C Walker
SSU-ITS-LSU FN547503 HS032-82 Acaulospora laevis Att423-4 W3247 multispore single spore Stockinger et al. 2010 UK, Sutherland, Elphin C Walker
SSU-ITS-LSU FN547504 HS032-88 Acaulospora laevis Att423-4 W3247 multispore single spore Stockinger et al. 2010 UK, Sutherland, Elphin C Walker
SSU-ITS-LSU FN547505 HS032-81 Acaulospora laevis Att423-4 W3247 multispore single spore Stockinger et al. 2010 UK, Sutherland, Elphin C Walker
SSU-ITS-LSU FN547506 HS032-89 Acaulospora laevis Att423-4 W3247 multispore single spore Stockinger et al. 2010 UK, Sutherland, Elphin C Walker
SSU-ITS-LSU FN547517 HS032-69 Acaulospora laevis Att423-4 W3247 multispore single spore Stockinger et al. 2010 UK, Sutherland, Elphin C Walker
SSU-ITS-LSU FN547513 HS030-1 Acaulospora laevis none (material from BEG) none BEG26 multispore single spore Stockinger et al. 2010 China V. Gianinazzi-Pearson
SSU-ITS-LSU FN547514 HS030-22 Acaulospora laevis none (material from BEG) none BEG26 multispore single spore Stockinger et al. 2010 China V. Gianinazzi-Pearson
SSU-ITS-LSU FN547515 HS030-2 Acaulospora laevis none (material from BEG) none BEG26 multispore single spore Stockinger et al. 2010 China V. Gianinazzi-Pearson
SSU-ITS-LSU FN547518 HS030-9 Acaulospora laevis none (material from BEG) none BEG26 multispore single spore Stockinger et al. 2010 China V. Gianinazzi-Pearson
SSU-ITS-LSU FN547519 HS030-26 Acaulospora laevis none (material from BEG) none BEG26 multispore single spore Stockinger et al. 2010 China V. Gianinazzi-Pearson
SSU-ITS-LSU FM876780 HS028-4 Acaulospora laevis Att862-7 W2928 WUM11, AU221? multispore single spore Krüger et al. 2009 Australia, Shire of Dandaragan, Badgingara L Abbott
SSU-ITS-LSU FM876781 HS028-10 Acaulospora laevis Att862-7 W2928 WUM11, AU221? multispore single spore Krüger et al. 2009 Australia, Shire of Dandaragan, Badgingara L Abbott
SSU-ITS-LSU FM876782 HS028-12 Acaulospora laevis Att862-7 W2928 WUM11, AU221? multispore single spore Krüger et al. 2009 Australia, Shire of Dandaragan, Badgingara L Abbott
SSU-ITS-LSU FM876783 HS028-17 Acaulospora laevis Att862-7 W2928 WUM11, AU221? multispore single spore Krüger et al. 2009 Australia, Shire of Dandaragan, Badgingara L Abbott
SSU-ITS-LSU FM876784 HS028-22 Acaulospora laevis Att862-7 W2928 WUM11, AU221? multispore single spore Krüger et al. 2009 Australia, Shire of Dandaragan, Badgingara L Abbott
SSU-ITS-LSU FM876785 HS028-25 Acaulospora laevis Att862-7 W2928 WUM11, AU221? multispore single spore Krüger et al. 2009 Australia, Shire of Dandaragan, Badgingara L Abbott
SSU-ITS-LSU FM876786 HS028-6 Acaulospora laevis Att862-7 W2928 WUM11, AU221? multispore single spore Krüger et al. 2009 Australia, Shire of Dandaragan, Badgingara L Abbott
SSU-ITS-LSU FM876787 HS028-1 Acaulospora laevis Att862-7 W2928 WUM11, AU221? multispore single spore Krüger et al. 2009 Australia, Shire of Dandaragan, Badgingara L Abbott
SSU-ITS-LSU FN547507 HS054-36 Acaulospora laevis ex-epitype Att192-10 W5258 BEG13 multispore single spore Stockinger et al. 2010 New Zealand, unknown location B Mosse
SSU-ITS-LSU FN547508 HS054-1 Acaulospora laevis ex-epitype Att192-10 W5258 BEG13 multispore single spore Stockinger et al. 2010 New Zealand, unknown location B Mosse
SSU-ITS-LSU FN547509 HS054-2 Acaulospora laevis ex-epitype Att192-10 W5258 BEG13 multispore single spore Stockinger et al. 2010 New Zealand, unknown location B Mosse
SSU-ITS-LSU FN547510 HS054-42 Acaulospora laevis ex-epitype Att192-10 W5258 BEG13 multispore single spore Stockinger et al. 2010 New Zealand, unknown location B Mosse
SSU-ITS-LSU FN547511 HS054-24 Acaulospora laevis ex-epitype Att192-10 W5258 BEG13 multispore single spore Stockinger et al. 2010 New Zealand, unknown location B Mosse
SSU-ITS-LSU FN547512 HS054-35 Acaulospora laevis ex-epitype Att192-10 W5258 BEG13 multispore single spore Stockinger et al. 2010 New Zealand, unknown location B Mosse
SSU-ITS-LSU FN547516 HS054-7 Acaulospora laevis ex-epitype Att192-10 W5258 BEG13 multispore single spore Stockinger et al. 2010 New Zealand, unknown location B Mosse
SSU AJ306441 WD157-2-3 Acaulospora sp. Att869-3 W2941 WUM18 multispore single spore Krüger et al. 2008 Australia, Nedlands, Univ. of Western Australia L Abbott
SSU-ITS-LSU FM876792 MK005-1 Acaulospora sp. Att869-3 W2941 WUM18 multispore single spore Krüger et al. 2009 Australia, Nedlands, Univ. of Western Australia L Abbott
SSU-ITS-LSU FM876793 MK005-2 Acaulospora sp. Att869-3 W2941 WUM18 multispore single spore Krüger et al. 2009 Australia, Nedlands, Univ. of Western Australia L Abbott
SSU FR750204 WD210-1-1 Acaulospora spinosa ex-type Att165-9 W3574 multispore single spore this study USA, Iowa, Boone C Walker
SSU-ITS-LSU FR750151 MK038-11 Acaulospora spinosa ex-type Att165-9 W3574 multispore single spore this study USA, Iowa, Boone C Walker
SSU-ITS-LSU FR750152 MK038-15 Acaulospora spinosa ex-type Att165-9 W3574 multispore single spore this study USA, Iowa, Boone C Walker
SSU-ITS-LSU FR750153 MK038-32 Acaulospora spinosa ex-type Att165-9 W3574 multispore single spore this study USA, Iowa, Boone C Walker
SSU-ITS-LSU FR750154 MK038-41 Acaulospora spinosa ex-type Att165-9 W3574 multispore single spore this study USA, Iowa, Boone C Walker
SSU-ITS-LSU FR750155 MK038-42 Acaulospora spinosa ex-type Att165-9 W3574 multispore single spore this study USA, Iowa, Boone C Walker
SSU-ITS-LSU FR750156 MK038-44 Acaulospora spinosa ex-type Att165-9 W3574 multispore single spore this study USA, Iowa, Boone C Walker
SSU-ITS-LSU FN547524 MK096-1 Ambispora appendicula authenticated Att1235-1 W5156 multispore multi spore (3) Stockinger et al. 2010 Brazil, Mato Grosso, between Barra do Gracas & Poxore J Spain
SSU-ITS-LSU FN547525 MK096-10 Ambispora appendicula authenticated Att1235-1 W5156 multispore multi spore (3) Stockinger et al. 2010 Brazil, Mato Grosso, between Barra do Gracas & Poxore J Spain
SSU-ITS-LSU FN547526 MK096-11 Ambispora appendicula authenticated Att1235-1 W5156 multispore multi spore (3) Stockinger et al. 2010 Brazil, Mato Grosso, between Barra do Gracas & Poxore J Spain
SSU-ITS-LSU FN547527 MK096-12 Ambispora appendicula authenticated Att1235-1 W5156 multispore multi spore (3) Stockinger et al. 2010 Brazil, Mato Grosso, between Barra do Gracas & Poxore J Spain
SSU-ITS-LSU FN547528 MK096-2 Ambispora appendicula authenticated Att1235-1 W5156 multispore multi spore (3) Stockinger et al. 2010 Brazil, Mato Grosso, between Barra do Gracas & Poxore J Spain
SSU-ITS-LSU FN547529 MK096-3 Ambispora appendicula authenticated Att1235-1 W5156 multispore multi spore (3) Stockinger et al. 2010 Brazil, Mato Grosso, between Barra do Gracas & Poxore J Spain
SSU-ITS-LSU FN547530 MK096-4 Ambispora appendicula authenticated Att1235-1 W5156 multispore multi spore (3) Stockinger et al. 2010 Brazil, Mato Grosso, between Barra do Gracas & Poxore J Spain
SSU-ITS-LSU FN547531 MK096-5 Ambispora appendicula authenticated Att1235-1 W5156 multispore multi spore (3) Stockinger et al. 2010 Brazil, Mato Grosso, between Barra do Gracas & Poxore J Spain
SSU-ITS-LSU FN547532 MK096-6 Ambispora appendicula authenticated Att1235-1 W5156 multispore multi spore (3) Stockinger et al. 2010 Brazil, Mato Grosso, between Barra do Gracas & Poxore J Spain
SSU-ITS-LSU FN547533 MK096-7 Ambispora appendicula authenticated Att1235-1 W5156 multispore multi spore (3) Stockinger et al. 2010 Brazil, Mato Grosso, between Barra do Gracas & Poxore J Spain
SSU-ITS-LSU FN547534 MK096-8 Ambispora appendicula authenticated Att1235-1 W5156 multispore multi spore (3) Stockinger et al. 2010 Brazil, Mato Grosso, between Barra do Gracas & Poxore J Spain
SSU AM268192 FD36-3-3 Ambispora fennica type-culture predecesso Att200-11 W3569 single spore (= isolate single spore Walker et al. 2007 Finland, Kurikka, Jyllintaival M Vestberg
SSU AM268193 FD98-1 Ambispora fennica type-culture predecesso Att200-11 W3569 single spore (= isolate single spore Walker et al. 2007 Finland, Kurikka, Jyllintaival M Vestberg
SSU AM268195 FD35-6 Ambispora fennica type-culture predecesso Att200-11 W3570 single spore (= isolate single spore Walker et al. 2007 Finland, Kurikka, Jyllintaival M Vestberg
SSU AM268194 WD265-1-1 Ambispora fennica type-culture predecesso Att200-21 W3847 single spore (= isolate single spore Walker et al. 2007 Finland, Kurikka, Jyllintaival M Vestberg
SSU AM268196 FD120-2 Ambispora fennica ex-type Att200-23 W4752 single spore (= isolate single spore Walker et al. 2007 Finland, Kurikka, Jyllintaival M Vestberg
SSU-ITS-LSU FN547535 MK094-1 Ambispora fennica ex-type Att200-23 W4752 single spore (= isolate single spore Stockinger et al. 2010 Finland, Kurikka, Jyllintaival M Vestberg
SSU-ITS-LSU FN547536 MK094-10 Ambispora fennica ex-type Att200-23 W4752 single spore (= isolate single spore Stockinger et al. 2010 Finland, Kurikka, Jyllintaival M Vestberg
SSU-ITS-LSU FN547537 MK094-11 Ambispora fennica ex-type Att200-23 W4752 single spore (= isolate single spore Stockinger et al. 2010 Finland, Kurikka, Jyllintaival M Vestberg
SSU-ITS-LSU FN547538 MK094-12 Ambispora fennica ex-type Att200-23 W4752 single spore (= isolate single spore Stockinger et al. 2010 Finland, Kurikka, Jyllintaival M Vestberg
SSU-ITS-LSU FN547539 MK094-2 Ambispora fennica ex-type Att200-23 W4752 single spore (= isolate single spore Stockinger et al. 2010 Finland, Kurikka, Jyllintaival M Vestberg
SSU-ITS-LSU FN547540 MK094-3 Ambispora fennica ex-type Att200-23 W4752 single spore (= isolate single spore Stockinger et al. 2010 Finland, Kurikka, Jyllintaival M Vestberg
SSU-ITS-LSU FN547541 MK094-4 Ambispora fennica ex-type Att200-23 W4752 single spore (= isolate single spore Stockinger et al. 2010 Finland, Kurikka, Jyllintaival M Vestberg
SSU-ITS-LSU FN547542 MK094-5 Ambispora fennica ex-type Att200-23 W4752 single spore (= isolate single spore Stockinger et al. 2010 Finland, Kurikka, Jyllintaival M Vestberg
SSU-ITS-LSU FN547543 MK094-6 Ambispora fennica ex-type Att200-23 W4752 single spore (= isolate single spore Stockinger et al. 2010 Finland, Kurikka, Jyllintaival M Vestberg
SSU-ITS-LSU FN547544 MK094-7 Ambispora fennica ex-type Att200-23 W4752 single spore (= isolate single spore Stockinger et al. 2010 Finland, Kurikka, Jyllintaival M Vestberg
SSU-ITS-LSU FN547545 MK094-8 Ambispora fennica ex-type Att200-23 W4752 single spore (= isolate single spore Stockinger et al. 2010 Finland, Kurikka, Jyllintaival M Vestberg
SSU-ITS-LSU FN547546 MK094-9 Ambispora fennica ex-type Att200-23 W4752 single spore (= isolate single spore Stockinger et al. 2010 Finland, Kurikka, Jyllintaival M Vestberg
SSU-ITS-LSU FR750157 MK074-1 Ambispora fennica ex-type Att200-23 W4752 single spore (= isolate single spore this study Finland, Kurikka, Jyllintaival M Vestberg
ITS AM268198 FD120-13 Ambispora fennica ex-type Att200-23 W4752 single spore (= isolate single spore Walker et al. 2007 Finland, Kurikka, Jyllintaival M Vestberg
ITS AM268203 FD120-6 Ambispora fennica ex-type Att200-23 W4752 single spore (= isolate single spore Walker et al. 2007 Finland, Kurikka, Jyllintaival M Vestberg
ITS AM268197 FD120-10 Ambispora fennica type-culture predecesso Att200-11 W3569 single spore (= isolate single spore Walker et al. 2007 Finland, Kurikka, Jyllintaival M Vestberg
ITS AM268199 FD120-7 Ambispora fennica type-culture predecesso Att200-11 W3569 single spore (= isolate single spore Walker et al. 2007 Finland, Kurikka, Jyllintaival M Vestberg
ITS AM268200 FD114-12 Ambispora fennica type-culture predecesso Att200-11 W3569 single spore (= isolate single spore Walker et al. 2007 Finland, Kurikka, Jyllintaival M Vestberg
ITS AM268201 FD114-5 Ambispora fennica type-culture predecesso Att200-11 W3569 single spore (= isolate single spore Walker et al. 2007 Finland, Kurikka, Jyllintaival M Vestberg
ITS AM268202 FD114-6 Ambispora fennica type-culture predecesso Att200-11 W3569 single spore (= isolate single spore Walker et al. 2007 Finland, Kurikka, Jyllintaival M Vestberg
SSU AJ301861 WD147–1-1 Ambispora leptoticha Att733-0 W3442 NC176 single spore (= isolate single spore (acaulos Schüßler et al. 2001 USA, North Carolina, Durham J Bever



SSU FR773150 WD198_1 Archaeospora schenkii (Intraspora schenckii Att58-6 W3571 CIAT -C133-8 multispore single spore this study Colombia, Cundinamarca, between Cajic & Tabio E Sieverding
SSU-ITS-LSU FR750020 CK077-1 (2+4+5) Archaeospora schenkii (Intraspora schenckii Att212-4 W5673 multispore single spore this study Argentina, Puna region A Menendez 
SSU-ITS-LSU FR750021 CK077-3 (+6) Archaeospora schenkii (Intraspora schenckii Att212-4 W5673 multispore single spore this study Argentina, Puna region A Menendez 
SSU-ITS-LSU FR750022 CK077-6 Archaeospora schenkii (Intraspora schenckii Att212-4 W5673 multispore single spore this study Argentina, Puna region A Menendez 
SSU-ITS-LSU FR750023 CK077-7 Archaeospora schenkii (Intraspora schenckii Att212-4 W5673 multispore single spore this study Argentina, Puna region A Menendez 
SSU AM114274 WD103-3-10 Archaeospora trappe Att186-1 W3179 soil trap single spore this study Austria, Tyrol, Schulterberg P Schweiger
SSU Y17634 WD103–3-8 Archaeospora trappe Att186–1 W3179 soil trap single spore Schüßler et al. 2001 Austria, Tyrol, Schulterberg P Schweiger
SSU-ITS-LSU FR750034 CK082-10 Archaeospora trappe Att178-3 W5791 multispore single spore this study UK, Midlothian, Dolphinton C Walker
SSU-ITS-LSU FR750035 CK082-3 Archaeospora trappe Att178-3 W5791 multispore single spore this study UK, Midlothian, Dolphinton C Walker
SSU-ITS-LSU FR750036 CK082-4 Archaeospora trappe Att178-3 W5791 multispore single spore this study UK, Midlothian, Dolphinton C Walker
SSU-ITS-LSU FR750037 CK082-5 (+8+9) Archaeospora trappe Att178-3 W5791 multispore single spore this study UK, Midlothian, Dolphinton C Walker
SSU-ITS-LSU FR750038 CK082-7 Archaeospora trappe Att178-3 W5791 multispore single spore this study UK, Midlothian, Dolphinton C Walker
SSU AJ276080 KL14–4a Claroideoglomus claroideum (Glomus claroideum none (material from BEG) none BEG23 multispore single spore Schüßler et al. 2001 Czech Republic, Novy Bydzov, Knezice M Gryndler
SSU Y17642 TR5-5 Claroideoglomus claroideum (Glomus claroideum none (material from BEG) none BEG23 multispore single spore Schüßler et al. 2001 Czech Republic, Novy Bydzov, Knezice M Gryndler
SSU AJ276079 KL4–2 Claroideoglomus claroideum (Glomus claroideum Att79–3 W1843 BEG31 multispore single spore Schüßler et al. 2001 Finland. Laukaa, Hoho M Vestberg
SSU Y17641 KL4-1 Claroideoglomus claroideum (Glomus claroideum Att79-3 W1843 BEG31 multispore single spore Schüßler et al. 2001 Finland, Laukaa, Hoho M Vestberg
SSU AJ276075 KL2–9a Claroideoglomus claroideum (Glomus claroideum none (material from BEG) none BEG14 pot culture (details unknown) single spore Schüßler et al. 2001 Denmark, Zealand S Rosendahl
SSU Y17636 GCL-1 Claroideoglomus claroideum (Glomus claroideum none (material from BEG) none BEG14 pot culture (details unknown) single spore Schüßler et al. 2001 Denmark, Zealand S Rosendahl
SSU AJ301851 KL2-7 Claroideoglomus claroideum (Glomus claroideum none (material from BEG) none BEG14 pot culture (details unknown) single spore Schüßler et al. 2001 Denmark, Zealand S Rosendahl
SSU AJ301852 KL2-10a Claroideoglomus claroideum (Glomus claroideum none (material from BEG) none BEG14 pot culture (details unknown) single spore Schüßler et al. 2001 Denmark, Zealand S Rosendahl
SSU-ITS-LSU FR750055 CK085-1 Claroideoglomus claroideum (Glomus claroideum Att1063-4 W5794 SW210 single spore (= isolate single spore this study Switzerland, Canton Thurgau, Tänikon J Jansa
SSU-ITS-LSU FR750056 CK085-2 Claroideoglomus claroideum (Glomus claroideum Att1063-4 W5794 SW210 single spore (= isolate single spore this study Switzerland, Canton Thurgau, Tänikon J Jansa
SSU-ITS-LSU FR750057 CK085-3 Claroideoglomus claroideum (Glomus claroideum Att1063-4 W5794 SW210 single spore (= isolate single spore this study Switzerland, Canton Thurgau, Tänikon J Jansa
SSU-ITS-LSU FR750058 CK085-4 Claroideoglomus claroideum (Glomus claroideum Att1063-4 W5794 SW210 single spore (= isolate single spore this study Switzerland, Canton Thurgau, Tänikon J Jansa
SSU-ITS-LSU FR750059 CK085-5 Claroideoglomus claroideum (Glomus claroideum Att1063-4 W5794 SW210 single spore (= isolate single spore this study Switzerland, Canton Thurgau, Tänikon J Jansa
SSU-ITS-LSU FR750060 CK085-6 Claroideoglomus claroideum (Glomus claroideum Att1063-4 W5794 SW210 single spore (= isolate single spore this study Switzerland, Canton Thurgau, Tänikon J Jansa
SSU-ITS-LSU FR750061 CK085-8 Claroideoglomus claroideum (Glomus claroideum Att1063-4 W5794 SW210 single spore (= isolate single spore this study Switzerland, Canton Thurgau, Tänikon J Jansa
SSU-ITS-LSU FR750062 CK085-9 Claroideoglomus claroideum (Glomus claroideum Att1063-4 W5794 SW210 single spore (= isolate single spore this study Switzerland, Canton Thurgau, Tänikon J Jansa
SSU-ITS-LSU FR750074 HS035-33 Claroideoglomus claroideum (Glomus claroideum Att1063-3 W5155 SW210 single spore (= isolate single spore this study Switzerland, Canton Thurgau, Tänikon J Jansa
SSU-ITS-LSU FR750075 HS035-44 Claroideoglomus claroideum (Glomus claroideum Att1063-3 W5155 SW210 single spore (= isolate single spore this study Switzerland, Canton Thurgau, Tänikon J Jansa
SSU-ITS-LSU FR750076 HS035-52 Claroideoglomus claroideum (Glomus claroideum Att1063-3 W5155 SW210 single spore (= isolate single spore this study Switzerland, Canton Thurgau, Tänikon J Jansa
SSU-ITS-LSU FR750077 HS035-61 Claroideoglomus claroideum (Glomus claroideum Att1063-3 W5155 SW210 single spore (= isolate single spore this study Switzerland, Canton Thurgau, Tänikon J Jansa
SSU FR750216 WD249-1-1 Claroideoglomus etunicatum (Glomus etunicatum) Att367-3 W3808 single spore (= isolate single spore this study UK, Strathclyde Region, Cambuslang C Walker
SSU FR750217 WD255-2-1 Claroideoglomus etunicatum (Glomus etunicatum) Att843-1 W3815 single spore (= isolate single spore this study Mexico, Yucatan R Rodriguez
SSU Y17639 WD106–3-2 Claroideoglomus etunicatum (Glomus etunicatum) Att678–4 W3093 UT316–8 pot culture (details unknown) single spore Schüßler et al. 2001 USA, no location data Unknown
SSU-ITS-LSU FN547623 HS112-36 Claroideoglomus etunicatum (Glomus etunicatum) Att1505-8 W5347 CA-OT-126-3-2 single spore (= isolate) ROC single spore Stockinger et al. 2010 USA, California, Berkeley T Pawlowska
SSU-ITS-LSU FN547624 HS112-24 Claroideoglomus etunicatum (Glomus etunicatum) Att1505-8 W5347 CA-OT-126-3-2 single spore (= isolate) ROC single spore Stockinger et al. 2010 USA, California, Berkeley T Pawlowska
SSU-ITS-LSU FN547625 HS112-40 Claroideoglomus etunicatum (Glomus etunicatum) Att1505-8 W5347 CA-OT-126-3-2 single spore (= isolate) ROC single spore Stockinger et al. 2010 USA, California, Berkeley T Pawlowska
SSU-ITS-LSU FN547626 HS112-15 Claroideoglomus etunicatum (Glomus etunicatum) Att1505-8 W5347 CA-OT-126-3-2 single spore (= isolate) ROC single spore Stockinger et al. 2010 USA, California, Berkeley T Pawlowska
SSU-ITS-LSU FN547627 HS112-13 Claroideoglomus etunicatum (Glomus etunicatum) Att1505-8 W5347 CA-OT-126-3-2 single spore (= isolate) ROC single spore Stockinger et al. 2010 USA, California, Berkeley T Pawlowska
SSU-ITS-LSU FN547628 HS112-17 Claroideoglomus etunicatum (Glomus etunicatum) Att1505-8 W5347 CA-OT-126-3-2 single spore (= isolate) ROC single spore Stockinger et al. 2010 USA, California, Berkeley T Pawlowska
SSU-ITS-LSU FN547629 HS112-39 Claroideoglomus etunicatum (Glomus etunicatum) Att1505-8 W5347 CA-OT-126-3-2 single spore (= isolate) ROC single spore Stockinger et al. 2010 USA, California, Berkeley T Pawlowska
SSU-ITS-LSU FN547630 HS112-23 Claroideoglomus etunicatum (Glomus etunicatum) Att1505-8 W5347 CA-OT-126-3-2 single spore (= isolate) ROC single spore Stockinger et al. 2010 USA, California, Berkeley T Pawlowska
SSU-ITS-LSU FN547631 HS112-5 Claroideoglomus etunicatum (Glomus etunicatum) Att1505-8 W5347 CA-OT-126-3-2 single spore (= isolate) ROC single spore Stockinger et al. 2010 USA, California, Berkeley T Pawlowska
SSU-ITS-LSU FN547632 HS112-18 Claroideoglomus etunicatum (Glomus etunicatum) Att1505-8 W5347 CA-OT-126-3-2 single spore (= isolate) ROC single spore Stockinger et al. 2010 USA, California, Berkeley T Pawlowska
SSU-ITS-LSU FN547633 HS112-6 Claroideoglomus etunicatum (Glomus etunicatum) Att1505-8 W5347 CA-OT-126-3-2 single spore (= isolate) ROC single spore Stockinger et al. 2010 USA, California, Berkeley T Pawlowska
SSU-ITS-LSU FN547634 HS112-28 Claroideoglomus etunicatum (Glomus etunicatum) Att1505-8 W5347 CA-OT-126-3-2 single spore (= isolate) ROC single spore Stockinger et al. 2010 USA, California, Berkeley T Pawlowska

SSU FR773151 WD99_5_1 Claroideoglomus lamellosum (Glomus lamellosum) ex-'isotype' Att244-7 W3158  DAOM212349 (note: a later ROC subculture 
carries same no., but contains Rh. irregularis) multispore (approx. 25 spores) single spore this study Canada, Ontario, Wasaga Beach Provincial Park Y Dalpé

SSU FR773152 WD99_5_2 Claroideoglomus lamellosum (Glomus lamellosum ex-'isotype Att244-7 W3158 DAOM212349 multispore (approx. 25 spores single spore this study Canada, Ontario, Wasaga Beach Provincial Park Y Dalpé
SSU AJ276087 WD100–2-6 Claroideoglomus lamellosum (Glomus lamellosum ex-'isotype Att244–13 W3160 DAOM212349 single spore (= isolate single spore Schüßler et al. 2001 Canada, Ontario, Wasaga Beach Provincial Park Y Dalpé
SSU AJ276083 WD116–1-2 Claroideoglomus lamellosum (Glomus lamellosum Att672–13 W3161 single spore (= isolate single spore Schüßler et al. 2001 Iceland, Myrdalssandur, S Greipsson
SSU AJ276089 WD141–1 Claroideoglomus luteum (Glomus luteum) authenticated Att676-5 (formerly 676-0) W3090 SA101-3 pot culture (details unknown) single spore Schüßler et al. 2001 Canada, Saskatchewan N Talukdar
SSU Y17645 KL12-1 Claroideoglomus luteum (Glomus luteum) authenticated Att676-4 (formerly 676-0) W3184 SA101-1 pot culture (details unknown) single spore Schüßler et al. 2001 Canada, Saskatchewan N Talukdar
SSU-ITS-LSU FM876808 MK002-1 Claroideoglomus luteum (Glomus luteum) authenticated Att676-5 (formerly 676-0) W3090 SA101-3 pot culture (details unknown) single spore Krüger et al. 2009 Canada, Saskatchewan N Talukdar
SSU-ITS-LSU FM876809 MK020-1 Claroideoglomus luteum (Glomus luteum) authenticated Att676-5 (formerly 676-0) W3090 SA101-3 pot culture (details unknown) single spore Krüger et al. 2009 Canada, Saskatchewan N Talukdar
SSU-ITS-LSU FM876810 MK020-2 Claroideoglomus luteum (Glomus luteum) authenticated Att676-5 (formerly 676-0) W3090 SA101-3 pot culture (details unknown) single spore Krüger et al. 2009 Canada, Saskatchewan N Talukdar
SSU-ITS-LSU FM876811 MK020-3 Claroideoglomus luteum (Glomus luteum) authenticated Att676-5 (formerly 676-0) W3090 SA101-3 pot culture (details unknown) single spore Krüger et al. 2009 Canada, Saskatchewan N Talukdar
SSU-ITS-LSU FM876812 MK020-6 Claroideoglomus luteum (Glomus luteum) authenticated Att676-5 (formerly 676-0) W3090 SA101-3 pot culture (details unknown) single spore Krüger et al. 2009 Canada, Saskatchewan N Talukdar
SSU AJ301856 WD175-1-5 Claroideoglomus sp Att565-11 W3349 individual spore cluster single spore Schwarzott et al. 2001 UK, Yorkshire, York J Merryweather
SSU-ITS-LSU FM876804 MK007-1 Claroideoglomus sp Att565-11 W3349 individual spore cluster single spore Krüger et al. 2009 UK, Yorkshire, York J Merryweather
SSU-ITS-LSU FM876805 MK007-2 Claroideoglomus sp Att565-11 W3349 individual spore cluster single spore Krüger et al. 2009 UK, Yorkshire, York J Merryweather
SSU-ITS-LSU FM876806 MK007-3 Claroideoglomus sp Att565-11 W3349 individual spore cluster single spore Krüger et al. 2009 UK, Yorkshire, York J Merryweather
SSU-ITS-LSU FM876807 MK007-4 Claroideoglomus sp Att565-11 W3349 individual spore cluster single spore Krüger et al. 2009 UK, Yorkshire, York J Merryweather
SSU FR750220 WD252_1_6 Claroideoglomus sp. Att757-1 W3814 single spore (= isolate single spore this study Germany, Darmstadt, Truppenübungsplatz C Walker & A. Schüßler
SSU FR750221 WD279_1_3 Claroideoglomus sp. Att844-2 W3816 single spore (= isolate single spore this study Mexico, Veracruz, Antigua C Walker
SSU AM713432 FD102-5 Diversispora aurantia (Glomus aurantium ex-type Att1296-0 W4728 Błaskowsky 1219-T1 pot culture (details unknown) single spore Gamper et al. 2009 Israel, Tel-Aviv J Błaszkowsky
SSU-ITS-LSU FN547655 HS109-27 Diversispora aurantia (Glomus aurantium ex-type Att1296-0 W4728 Błaskowsky 1219-T1 pot culture (details unknown) single spore Stockinger et al. 2010 Israel, Tel-Aviv J Błaszkowsky
SSU-ITS-LSU FN547656 HS109-7 Diversispora aurantia (Glomus aurantium ex-type Att1296-0 W4728 Błaskowsky 1219-T1 pot culture (details unknown) single spore Stockinger et al. 2010 Israel, Tel-Aviv J Błaszkowsky
SSU-ITS-LSU FN547657 HS109-22 Diversispora aurantia (Glomus aurantium ex-type Att1296-0 W4728 Błaskowsky 1219-T1 pot culture (details unknown) single spore Stockinger et al. 2010 Israel, Tel-Aviv J Błaszkowsky
SSU-ITS-LSU FN547658 HS109-29 Diversispora aurantia (Glomus aurantium ex-type Att1296-0 W4728 Błaskowsky 1219-T1 pot culture (details unknown) single spore Stockinger et al. 2010 Israel, Tel-Aviv J Błaszkowsky
SSU-ITS-LSU FN547659 HS109-2 Diversispora aurantia (Glomus aurantium ex-type Att1296-0 W4728 Błaskowsky 1219-T1 pot culture (details unknown) single spore Stockinger et al. 2010 Israel, Tel-Aviv J Błaszkowsky
SSU-ITS-LSU FN547660 HS109-4 Diversispora aurantia (Glomus aurantium ex-type Att1296-0 W4728 Błaskowsky 1219-T1 pot culture (details unknown) single spore Stockinger et al. 2010 Israel, Tel-Aviv J Błaszkowsky
SSU-ITS-LSU FN547661 HS109-5 Diversispora aurantia (Glomus aurantium ex-type Att1296-0 W4728 Błaskowsky 1219-T1 pot culture (details unknown) single spore Stockinger et al. 2010 Israel, Tel-Aviv J Błaszkowsky
SSU-ITS-LSU FN547662 HS109-6 Diversispora aurantia (Glomus aurantium ex-type Att1296-0 W4728 Błaskowsky 1219-T1 pot culture (details unknown) single spore Stockinger et al. 2010 Israel, Tel-Aviv J Błaszkowsky
SSU-ITS-LSU FN547663 HS109-15 Diversispora aurantia (Glomus aurantium ex-type Att1296-0 W4728 Błaskowsky 1219-T1 pot culture (details unknown) single spore Stockinger et al. 2010 Israel, Tel-Aviv J Błaszkowsky
SSU-ITS-LSU FN547664 HS109-25 Diversispora aurantia (Glomus aurantium ex-type Att1296-0 W4728 Błaskowsky 1219-T1 pot culture (details unknown) single spore Stockinger et al. 2010 Israel, Tel-Aviv J Błaszkowsky
SSU-ITS-LSU FN547665 HS109-43 Diversispora aurantia (Glomus aurantium ex-type Att1296-0 W4728 Błaskowsky 1219-T1 pot culture (details unknown) single spore Stockinger et al. 2010 Israel, Tel-Aviv J Błaszkowsky
SSU AM713423 FD155-14 Diversispora celata Att1292-2 W4758 BEG230, FACE 83 single spore (= isolate multi spores (250) Gamper et al. 2009 Switzerland, Eschikon-Lindau H Gamper
SSU AM713424 FD155-01 Diversispora celata Att1292-2 W4758 BEG230, FACE 83 single spore (= isolate multi spores (250) Gamper et al. 2009 Switzerland, Eschikon-Lindau H Gamper
SSU AM713425 FD155-13 Diversispora celata Att1292-2 W4758 BEG230, FACE 83 single spore (= isolate multi spores (250) Gamper et al. 2009 Switzerland, Eschikon-Lindau H Gamper
SSU AM713426 FD154-16 Diversispora celata Att1291-2 W4757 BEG232, FACE272 single spore (= isolate multi spores (250) Gamper et al. 2009 Switzerland, Eschikon-Lindau H Gamper
SSU AM713427 FD154-14 Diversispora celata Att1291-2 W4757 BEG232, FACE272 single spore (= isolate multi spores (250) Gamper et al. 2009 Switzerland, Eschikon-Lindau H Gamper
SSU AM713428 FD154-15 Diversispora celata Att1291-2 W4757 BEG232, FACE272 single spore (= isolate multi spores (250) Gamper et al. 2009 Switzerland, Eschikon-Lindau H Gamper
SSU AM713420 HS004-10 Diversispora celata ex-type Att1278-2 W4718/W4719 BEG231, FACE234 single spore (= isolate multi spores (250) Gamper et al. 2009 Switzerland, Eschikon-Lindau H Gamper
SSU AM713421 HS004-9 Diversispora celata ex-type Att1278-2 W4718/W4719 BEG231, FACE234 single spore (= isolate multi spores (250) Gamper et al. 2009 Switzerland, Eschikon-Lindau H Gamper
SSU AM713422 HS004-1 Diversispora celata ex-type Att1278-2 W4718/W4719 BEG231, FACE234 single spore (= isolate multi spores (250) Gamper et al. 2009 Switzerland, Eschikon-Lindau H Gamper
LSU AM713417 HS006-1 Diversispora celata ex-type Att1278-2 W4718/W4719 BEG231, FACE234 single spore (= isolate multi spores (250) Gamper et al. 2009 Switzerland, Eschikon-Lindau H Gamper
LSU AM713418 HS006-6 Diversispora celata ex-type Att1278-2 W4718/W4719 BEG231, FACE234 single spore (= isolate multi spores (250) Gamper et al. 2009 Switzerland, Eschikon-Lindau H Gamper
LSU AM713419 HS006-5 Diversispora celata ex-type Att1278-2 W4718/W4719 BEG231, FACE234 single spore (= isolate multi spores (250) Gamper et al. 2009 Switzerland, Eschikon-Lindau H Gamper
SSU-ITS-LSU AM713402 HS005-1 Diversispora celata ex-type Att1278-2 W4718/W4719 BEG231, FACE234 single spore (= isolate multi spores (250) Gamper et al. 2009 Switzerland, Eschikon-Lindau H Gamper
SSU-ITS-LSU AM713403 HS005-2 Diversispora celata ex-type Att1278-2 W4718/W4719 BEG231, FACE234 single spore (= isolate multi spores (250) Gamper et al. 2009 Switzerland, Eschikon-Lindau H Gamper
SSU-ITS-LSU AM713404 HS005-4 Diversispora celata ex-type Att1278-2 W4718/W4719 BEG231, FACE234 single spore (= isolate multi spores (250) Gamper et al. 2009 Switzerland, Eschikon-Lindau H Gamper
SSU AM713429 HS003-11 Diversispora eburnea (Glomus eburneum ex-type Att1290-5 W4729 AZ420A multispore multi spores (120) Gamper et al. 2009 USA, Arizona, Lewis Springs J Stutz
SSU AM713430 HS003-12 Diversispora eburnea (Glomus eburneum ex-type Att1290-5 W4729 AZ420A multispore multi spores (120) Gamper et al. 2009 USA, Arizona, Lewis Springs J Stutz
SSU AM713431 HS003-10 Diversispora eburnea (Glomus eburneum ex-type Att1290-5 W4729 AZ420A multispore multi spores (120) Gamper et al. 2009 USA, Arizona, Lewis Springs J Stutz
SSU-ITS-LSU AM713405 CK235-39 Diversispora eburnea (Glomus eburneum ex-type Att1290-5 W4729 AZ420A multispore multi spores (120) Gamper et al. 2009 USA, Arizona, Lewis Springs J Stutz
SSU-ITS-LSU AM713406 CK235-31 Diversispora eburnea (Glomus eburneum ex-type Att1290-5 W4729 AZ420A multispore multi spores (120) Gamper et al. 2009 USA, Arizona, Lewis Springs J Stutz
SSU-ITS-LSU AM713407 CK235-35 Diversispora eburnea (Glomus eburneum ex-type Att1290-5 W4729 AZ420A multispore multi spores (120) Gamper et al. 2009 USA, Arizona, Lewis Springs J Stutz
SSU-ITS-LSU AM713408 CK235-22 Diversispora eburnea (Glomus eburneum ex-type Att1290-5 W4729 AZ420A multispore multi spores (120) Gamper et al. 2009 USA, Arizona, Lewis Springs J Stutz
SSU-ITS-LSU AM713409 CK235-41 Diversispora eburnea (Glomus eburneum ex-type Att1290-5 W4729 AZ420A multispore multi spores (120) Gamper et al. 2009 USA, Arizona, Lewis Springs J Stutz
SSU-ITS-LSU AM713410 CK235-36 Diversispora eburnea (Glomus eburneum ex-type Att1290-5 W4729 AZ420A multispore multi spores (120) Gamper et al. 2009 USA, Arizona, Lewis Springs J Stutz
SSU-ITS-LSU AM713411 CK235-38 Diversispora eburnea (Glomus eburneum ex-type Att1290-5 W4729 AZ420A multispore multi spores (120) Gamper et al. 2009 USA, Arizona, Lewis Springs J Stutz
SSU-ITS-LSU AM713412 CK235-42 Diversispora eburnea (Glomus eburneum ex-type Att1290-5 W4729 AZ420A multispore multi spores (120) Gamper et al. 2009 USA, Arizona, Lewis Springs J Stutz
SSU-ITS-LSU AM713413 CK235-43 Diversispora eburnea (Glomus eburneum ex-type Att1290-5 W4729 AZ420A multispore multi spores (120) Gamper et al. 2009 USA, Arizona, Lewis Springs J Stutz
SSU-ITS-LSU AM713414 CK235-44 Diversispora eburnea (Glomus eburneum ex-type Att1290-5 W4729 AZ420A multispore multi spores (120) Gamper et al. 2009 USA, Arizona, Lewis Springs J Stutz
SSU-ITS-LSU AM713415 CK235-46 Diversispora eburnea (Glomus eburneum ex-type Att1290-5 W4729 AZ420A multispore multi spores (120) Gamper et al. 2009 USA, Arizona, Lewis Springs J Stutz
SSU-ITS-LSU AM713416 CK235-47 Diversispora eburnea (Glomus eburneum ex-type Att1290-5 W4729 AZ420A multispore multi spores (120) Gamper et al. 2009 USA, Arizona, Lewis Springs J Stutz



SSU AJ132666 TR29-9 Diversispora epigaea (Glomus epigaeum ex-type none (material from BEG) none BEG47 individual spore cluster single spore Schüßler et al. 2001 USA, Oregon, Corvallis, Oregon State University B Hetrick nee Daniels
SSU AJ276088 WD111–2-1 Diversispora epigaea (Glomus epigaeum ex-type Att475–21 W3221 BEG47 individual spore cluster single spore Schüßler et al. 2001 USA, Oregon, Corvallis, Oregon State University B Hetrick nee Daniels
SSU X86687 WD191-3-5 Diversispora epigaea (Glomus epigaeum ex-type Att475-22 W3180 BEG47 individual spore cluster single spore Gehrig et al. 1996 USA, Oregon, Corvallis, Oregon State University B Hetrick nee Daniels
SSU Y17651 TR15-B6a Diversispora epigaea (Glomus epigaeum ex-type Att475-22 W3180 BEG47 individual spore cluster single spore Schüßler et al. 2001 USA, Oregon, Corvallis, Oregon State University B Hetrick nee Daniels
SSU-ITS-LSU FM876814 HS036-4 Diversispora epigaea (Glomus epigaeum ex-type Att475-45 W5165 BEG47 individual spore cluster single spore Krüger et al. 2009 USA, Oregon, Corvallis, Oregon State University B Hetrick nee Daniels
SSU-ITS-LSU FM876815 HS036-6 Diversispora epigaea (Glomus epigaeum ex-type Att475-45 W5165 BEG47 individual spore cluster single spore Krüger et al. 2009 USA, Oregon, Corvallis, Oregon State University B Hetrick nee Daniels
SSU-ITS-LSU FM876816 HS036-7 Diversispora epigaea (Glomus epigaeum ex-type Att475-45 W5165 BEG47 individual spore cluster single spore Krüger et al. 2009 USA, Oregon, Corvallis, Oregon State University B Hetrick nee Daniels
SSU-ITS-LSU FM876817 HS036-10 Diversispora epigaea (Glomus epigaeum ex-type Att475-45 W5165 BEG47 individual spore cluster single spore Krüger et al. 2009 USA, Oregon, Corvallis, Oregon State University B Hetrick nee Daniels
SSU-ITS-LSU FM876818 HS036-12 Diversispora epigaea (Glomus epigaeum ex-type Att475-45 W5165 BEG47 individual spore cluster single spore Krüger et al. 2009 USA, Oregon, Corvallis, Oregon State University B Hetrick nee Daniels
SSU-ITS-LSU FM876819 HS036-13 Diversispora epigaea (Glomus epigaeum ex-type Att475-45 W5165 BEG47 individual spore cluster single spore Krüger et al. 2009 USA, Oregon, Corvallis, Oregon State University B Hetrick nee Daniels
SSU-ITS-LSU FM876820 HS036-23 Diversispora epigaea (Glomus epigaeum ex-type Att475-45 W5165 BEG47 individual spore cluster single spore Krüger et al. 2009 USA, Oregon, Corvallis, Oregon State University B Hetrick nee Daniels
SSU-ITS-LSU FN547635 HS034-1 Diversispora epigaea (Glomus epigaeum ex-type Att475-45 W5165 BEG47 individual spore cluster single spore Stockinger et al. 2010 USA, Oregon, Corvallis, Oregon State University B Hetrick nee Daniels
SSU-ITS-LSU FN547636 HS034-2 Diversispora epigaea (Glomus epigaeum ex-type Att475-45 W5165 BEG47 individual spore cluster single spore Stockinger et al. 2010 USA, Oregon, Corvallis, Oregon State University B Hetrick nee Daniels
SSU-ITS-LSU FN547666 MK073-02 Diversispora epigaea (Glomus epigaeum ex-type Att475-22 W3180 BEG47 individual spore cluster single spore Stockinger et al. 2010 USA, Oregon, Corvallis, Oregon State University B Hetrick nee Daniels
SSU-ITS-LSU FN547667 MK072-02 Diversispora epigaea (Glomus epigaeum ex-type Att475-22 W3180 BEG47 individual spore cluster single spore Stockinger et al. 2010 USA, Oregon, Corvallis, Oregon State University B Hetrick nee Daniels
SSU-ITS-LSU FN547668 MK072-03 Diversispora epigaea (Glomus epigaeum ex-type Att475-22 W3180 BEG47 individual spore cluster single spore Stockinger et al. 2010 USA, Oregon, Corvallis, Oregon State University B Hetrick nee Daniels
SSU-ITS-LSU FN547669 MK072-06 Diversispora epigaea (Glomus epigaeum ex-type Att475-22 W3180 BEG47 individual spore cluster single spore Stockinger et al. 2010 USA, Oregon, Corvallis, Oregon State University B Hetrick nee Daniels
SSU-ITS-LSU FN547670 MK073-01 Diversispora epigaea (Glomus epigaeum ex-type Att475-22 W3180 BEG47 individual spore cluster single spore Stockinger et al. 2010 USA, Oregon, Corvallis, Oregon State University B Hetrick nee Daniels
SSU-ITS-LSU FN547671 MK073-05 Diversispora epigaea (Glomus epigaeum ex-type Att475-22 W3180 BEG47 individual spore cluster single spore Stockinger et al. 2010 USA, Oregon, Corvallis, Oregon State University B Hetrick nee Daniels
SSU-ITS-LSU FN547672 MK073-07 Diversispora epigaea (Glomus epigaeum ex-type Att475-22 W3180 BEG47 individual spore cluster single spore Stockinger et al. 2010 USA, Oregon, Corvallis, Oregon State University B Hetrick nee Daniels
SSU-ITS-LSU FN547673 MK073-09 Diversispora epigaea (Glomus epigaeum ex-type Att475-22 W3180 BEG47 individual spore cluster single spore Stockinger et al. 2010 USA, Oregon, Corvallis, Oregon State University B Hetrick nee Daniels
SSU-ITS-LSU FN547674 MK073-10 Diversispora epigaea (Glomus epigaeum ex-type Att475-22 W3180 BEG47 individual spore cluster single spore Stockinger et al. 2010 USA, Oregon, Corvallis, Oregon State University B Hetrick nee Daniels
SSU-ITS-LSU FN547675 MK073-11 Diversispora epigaea (Glomus epigaeum ex-type Att475-22 W3180 BEG47 individual spore cluster single spore Stockinger et al. 2010 USA, Oregon, Corvallis, Oregon State University B Hetrick nee Daniels
SSU-ITS-LSU FN547676 MK073-14 Diversispora epigaea (Glomus epigaeum ex-type Att475-22 W3180 BEG47 individual spore cluster single spore Stockinger et al. 2010 USA, Oregon, Corvallis, Oregon State University B Hetrick nee Daniels
SSU-ITS-LSU FN547677 MK072-01 Diversispora epigaea (Glomus epigaeum ex-type Att475-22 W3180 BEG47 individual spore cluster single spore Stockinger et al. 2010 USA, Oregon, Corvallis, Oregon State University B Hetrick nee Daniels
SSU-ITS-LSU FN547678 MK073-03 Diversispora epigaea (Glomus epigaeum ex-type Att475-22 W3180 BEG47 individual spore cluster single spore Stockinger et al. 2010 USA, Oregon, Corvallis, Oregon State University B Hetrick nee Daniels
SSU-ITS-LSU FN547679 MK072-04 Diversispora epigaea (Glomus epigaeum ex-type Att475-22 W3180 BEG47 individual spore cluster single spore Stockinger et al. 2010 USA, Oregon, Corvallis, Oregon State University B Hetrick nee Daniels
SSU-ITS-LSU FN547680 MK073-04 Diversispora epigaea (Glomus epigaeum ex-type Att475-22 W3180 BEG47 individual spore cluster single spore Stockinger et al. 2010 USA, Oregon, Corvallis, Oregon State University B Hetrick nee Daniels
SSU-ITS-LSU FN547681 MK072-08 Diversispora epigaea (Glomus epigaeum ex-type Att475-22 W3180 BEG47 individual spore cluster single spore Stockinger et al. 2010 USA, Oregon, Corvallis, Oregon State University B Hetrick nee Daniels
SSU-ITS-LSU FR686938 MK072-5 Diversispora epigaea (Glomus epigaeum ex-type Att475-22 W3180 BEG47 individual spore cluster single spore Schüßler et al. 2011 USA, Oregon, Corvallis, Oregon State University B Hetrick nee Daniels
SSU-ITS-LSU FR686942 MK073-12 Diversispora epigaea (Glomus epigaeum ex-type Att475-22 W3180 BEG47 individual spore cluster single spore Schüßler et al. 2011 USA, Oregon, Corvallis, Oregon State University B Hetrick nee Daniels
SSU AJ276076 KL6 Diversispora sp Att382-16 W2423 multispore single spore Schüßler et al. 2001 UK, Strathclyde Region, Cambuslang C Walker
SSU AJ301860 KL6-9b1 Diversispora sp Att382-16 W2423 multispore single spore Schwarzott et al. 2001 UK, Strathclyde Region, Cambuslang C Walker
SSU AJ301863 KL6-6 Diversispora sp Att382-16 W2423 multispore single spore Schwarzott et al. 2001 UK, Strathclyde Region, Cambuslang C Walker
SSU Y17644 ASGE-10 Diversispora sp Att382–16 W2423 multispore single spore Schüßler et al. 2001 UK, Strathclyde Region, Cambuslang C Walker
SSU AJ276077 WD115–1-9 Diversispora spurca ex-type Att246–4 W3239 FCPC1000 multispore single spore Schüßler et al. 2001 USA, Arizona, Tucson, Univ. of Arizona M Pfeiffer
SSU AJ276078 KL1-3a Diversispora spurca ex-type Att246–4 W2396 FCPC1000 multispore single spore Schüßler et al. 2001 USA, Arizona, Tucson, Univ. of Arizona M Pfeiffer
SSU FR686953 KL1-2 Diversispora spurca ex-type Att246-4 W2396 FCPC1000 multispore single spore Schüßler et al. 2011 USA, Arizona, Tucson, Univ. of Arizona M Pfeiffer
SSU Y17649 KL1-1 Diversispora spurca ex-type Att246-4 W2396 FCPC1000 multispore single spore Schüßler et al. 2001 USA, Arizona, Tucson, Univ. of Arizona M Pfeiffer
SSU Y17650 HG-17 Diversispora spurca ex-type Att246-4 W2396 FCPC1000 multispore single spore Schüßler et al. 2001 USA, Arizona, Tucson, Univ. of Arizona M Pfeiffer
SSU FR686954 WD296-1-6 Diversispora spurca ex-type Att246-18 W4119 single spore (= isolate single spore Schüßler et al. 2011 USA, Arizona, Tucson, Univ. of Arizona M Pfeiffer
SSU-ITS-LSU FN547637 HS100-25 Diversispora spurca ex-type Att246-18 W4119 single spore (= isolate single spore Stockinger et al. 2010 USA, Arizona, Tucson, Univ. of Arizona M Pfeiffer
SSU-ITS-LSU FN547638 HS100-26 Diversispora spurca ex-type Att246-18 W4119 single spore (= isolate single spore Stockinger et al. 2010 USA, Arizona, Tucson, Univ. of Arizona M Pfeiffer
SSU-ITS-LSU FN547639 HS100-21 Diversispora spurca ex-type Att246-18 W4119 single spore (= isolate single spore Stockinger et al. 2010 USA, Arizona, Tucson, Univ. of Arizona M Pfeiffer
SSU-ITS-LSU FN547640 HS100-31 Diversispora spurca ex-type Att246-18 W4119 single spore (= isolate single spore Stockinger et al. 2010 USA, Arizona, Tucson, Univ. of Arizona M Pfeiffer
SSU-ITS-LSU FN547641 HS100-2 Diversispora spurca ex-type Att246-18 W4119 single spore (= isolate single spore Stockinger et al. 2010 USA, Arizona, Tucson, Univ. of Arizona M Pfeiffer
SSU-ITS-LSU FN547642 HS100-34 Diversispora spurca ex-type Att246-18 W4119 single spore (= isolate single spore Stockinger et al. 2010 USA, Arizona, Tucson, Univ. of Arizona M Pfeiffer
SSU-ITS-LSU FN547643 HS100-5 Diversispora spurca ex-type Att246-18 W4119 single spore (= isolate single spore Stockinger et al. 2010 USA, Arizona, Tucson, Univ. of Arizona M Pfeiffer
SSU-ITS-LSU FN547644 HS100-40 Diversispora spurca ex-type Att246-18 W4119 single spore (= isolate single spore Stockinger et al. 2010 USA, Arizona, Tucson, Univ. of Arizona M Pfeiffer
SSU-ITS-LSU FN547645 HS100-28 Diversispora spurca ex-type Att246-18 W4119 single spore (= isolate single spore Stockinger et al. 2010 USA, Arizona, Tucson, Univ. of Arizona M Pfeiffer
SSU-ITS-LSU FN547646 HS100-3 Diversispora spurca ex-type Att246-18 W4119 single spore (= isolate single spore Stockinger et al. 2010 USA, Arizona, Tucson, Univ. of Arizona M Pfeiffer
SSU-ITS-LSU FN547647 HS100-4 Diversispora spurca ex-type Att246-18 W4119 single spore (= isolate single spore Stockinger et al. 2010 USA, Arizona, Tucson, Univ. of Arizona M Pfeiffer
SSU-ITS-LSU FN547648 HS100-18 Diversispora spurca ex-type Att246-18 W4119 single spore (= isolate single spore Stockinger et al. 2010 USA, Arizona, Tucson, Univ. of Arizona M Pfeiffer
SSU-ITS-LSU FN547649 HS100-19 Diversispora spurca ex-type Att246-18 W4119 single spore (= isolate single spore Stockinger et al. 2010 USA, Arizona, Tucson, Univ. of Arizona M Pfeiffer
SSU-ITS-LSU FN547650 HS100-33 Diversispora spurca ex-type Att246-18 W4119 single spore (= isolate single spore Stockinger et al. 2010 USA, Arizona, Tucson, Univ. of Arizona M Pfeiffer
SSU-ITS-LSU FN547651 HS100-24 Diversispora spurca ex-type Att246-18 W4119 single spore (= isolate single spore Stockinger et al. 2010 USA, Arizona, Tucson, Univ. of Arizona M Pfeiffer
SSU-ITS-LSU FN547652 HS100-36 Diversispora spurca ex-type Att246-18 W4119 single spore (= isolate single spore Stockinger et al. 2010 USA, Arizona, Tucson, Univ. of Arizona M Pfeiffer
SSU-ITS-LSU FN547653 HS100-38 Diversispora spurca ex-type Att246-18 W4119 single spore (= isolate single spore Stockinger et al. 2010 USA, Arizona, Tucson, Univ. of Arizona M Pfeiffer
SSU-ITS-LSU FN547654 HS100-39 Diversispora spurca ex-type Att246-18 W4119 single spore (= isolate single spore Stockinger et al. 2010 USA, Arizona, Tucson, Univ. of Arizona M Pfeiffer
SSU FR686956 WD294B-1-3 Diversispora trimurales Att1152-1 W4124 multispore single spore Schüßler et al. 2011 Poland, Szczecin J Błaszkowsky
SSU FR686957 WD294-1-1 Diversispora trimurales Att1152-1 W4124 multispore single spore Schüßler et al. 2011 Poland, Szczecin J Błaszkowsky
SSU AJ301854 TR9-11 Funneliformis caledonium (Glomus caledonium) none (material from BEG) none BEG15 pot culture (details unknown) single spore Schüßler et al. 2001 Denmark, Skjern I Jakobsen
SSU Y17653 KL10–2 Funneliformis caledonium (Glomus caledonium) none (material from BEG) none BEG15 pot culture (details unknown) single spore Schüßler et al. 2001 Denmark, Skjern I Jakobsen
SSU AJ301853 KL9-1 Funneliformis caledonium (Glomus caledonium) Att263-15 W3294 BEG20 multispore single spore Schwarzott et al. 2001 UK, Bedfordshire, Woburn D Hayman
SSU Y17635 WD135–1 Funneliformis caledonium (Glomus caledonium) Att263–15 W3294 BEG20 multispore single spore Schüßler et al. 2001 UK, Bedfordshire, Woburn D Hayman
SSU-ITS-LSU FN547494 HS031-34 Funneliformis caledonium (Glomus caledonium) Att263-15 W3294 BEG20 multispore single spore Stockinger et al. 2010 UK, Bedfordshire, Woburn D Hayman
SSU-ITS-LSU FN547495 HS031-33 Funneliformis caledonium (Glomus caledonium) Att263-15 W3294 BEG20 multispore single spore Stockinger et al. 2010 UK, Bedfordshire, Woburn D Hayman
SSU-ITS-LSU FN547496 HS031-38 Funneliformis caledonium (Glomus caledonium) Att263-15 W3294 BEG20 multispore single spore Stockinger et al. 2010 UK, Bedfordshire, Woburn D Hayman
SSU-ITS-LSU FN547497 HS031-41 Funneliformis caledonium (Glomus caledonium) Att263-15 W3294 BEG20 multispore single spore Stockinger et al. 2010 UK, Bedfordshire, Woburn D Hayman
SSU-ITS-LSU FN547498 HS031-45 Funneliformis caledonium (Glomus caledonium) Att263-15 W3294 BEG20 multispore single spore Stockinger et al. 2010 UK, Bedfordshire, Woburn D Hayman
SSU-ITS-LSU FN547499 HS031-57 Funneliformis caledonium (Glomus caledonium) Att263-15 W3294 BEG20 multispore single spore Stockinger et al. 2010 UK, Bedfordshire, Woburn D Hayman
SSU FR750212 FD001-1 (+2) Funneliformis constrictum (Glomus constrictum) Att756-1 W3809 Darmstad Att6-7 single spore (= isolate single spore this study Germany, Darmstadt, Truppenübungsplatz C Walker & A. Schüßler
SSU Y17637 TR27B-10 Funneliformis coronatum (Glomus coronatum) none (material from BEG) none BEG22 multispore single spore Schüßler et al. 2001 Australia, South Australia, Loxton V Gianinazzi-Pearson
SSU AJ276086 WD93–2-1 Funneliformis coronatum (Glomus coronatum) Att143–5 W3153 COG1 single spore (= isolate single spore Schüßler et al. 2001 Australia, New South Wales, Sydney P McGee
SSU FR773144 WD203_1_1 Funneliformis coronatum (Glomus coronatum) ex-type Att108-7 W3582 BEG28, UY285 multispore single spore this study Italy, Tuscany, Folonica M Giovannetti
SSU FR773145 WD203_1_4 Funneliformis coronatum (Glomus coronatum) ex-type Att108-7 W3582 BEG28, UY285 multispore single spore this study Italy, Tuscany, Folonica M Giovannetti
SSU-ITS-LSU FM876794 MK028-8 Funneliformis coronatum (Glomus coronatum) ex-type Att108-7 W3582 BEG28, UY285 multispore single spore Krüger et al. 2009 Italy, Tuscany, Follonica M Giovannetti
SSU-ITS-LSU FM876795 MK028-9 Funneliformis coronatum (Glomus coronatum) ex-type Att108-7 W3582 BEG28, UY285 multispore single spore Krüger et al. 2009 Italy, Tuscany, Follonica M Giovannetti
SSU-ITS-LSU FM876796 MK028-10 Funneliformis coronatum (Glomus coronatum) ex-type Att108-7 W3582 BEG28, UY285 multispore single spore Krüger et al. 2009 Italy, Tuscany, Follonica M Giovannetti
SSU-ITS-LSU FM876797 MK028-11 Funneliformis coronatum (Glomus coronatum) ex-type Att108-7 W3582 BEG28, UY285 multispore single spore Krüger et al. 2009 Italy, Tuscany, Follonica M Giovannetti
SSU-ITS-LSU FM876798 MK028-12 Funneliformis coronatum (Glomus coronatum) ex-type Att108-7 W3582 BEG28, UY285 multispore single spore Krüger et al. 2009 Italy, Tuscany, Follonica M Giovannetti
SSU AJ276085 WD114–3-3 Funneliformis fragilistratum (Glomus fragilistratum) ex-type Att112–6 W3238 multispore single spore Schüßler et al. 2001 Denmark, Skjern/Ringkøbing, Hanning I Jakobsen
SSU AJ132664 TR12B-6a Funneliformis geosporum (Glomus geosporum none (material from BEG) none BEG11 single spore (= isolate single spore Schüßler et al. 2001 UK, Kent, Ramsgate J Dodd
SSU AJ245637 KL11-1a Funneliformis geosporum (Glomus geosporum none (material from BEG) none BEG11 single spore (= isolate single spore Schüßler et al. 2001 UK, Kent, Ramsgate J Dodd
SSU Y17643 TR12C-8 Funneliformis geosporum (Glomus geosporum none (material from BEG) none BEG11 single spore (= isolate single spore Schüßler et al. 2001 UK, Kent, Ramsgate J Dodd
SSU FR750227 WD319_2_2 Funneliformis mosseae (Glomus mosseae epitype predecessor Att109-25 W4540 BEG12 single spore (= isolate single spore this study England, Kent, East Malling B Mosse (isolated by L.Whitfield)
SSU-ITS-LSU FN547474 HS101-C1 Funneliformis mosseae (Glomus mosseae epitype predecessor Att109-20 W5147 BEG12 single spore (= isolate single spore Stockinger et al. 2010 UK, Kent, East Malling B Mosse
SSU-ITS-LSU FN547475 HS101-A1 Funneliformis mosseae (Glomus mosseae epitype predecessor Att109-20 W5147 BEG12 single spore (= isolate single spore Stockinger et al. 2010 UK, Kent, East Malling B Mosse
SSU-ITS-LSU FN547476 HS110-38 Funneliformis mosseae (Glomus mosseae epitype predecessor Att109-20 W5147 BEG12 single spore (= isolate single spore Stockinger et al. 2010 UK, Kent, East Malling B Mosse
SSU-ITS-LSU FN547482 HS101-F1 Funneliformis mosseae (Glomus mosseae epitype predecessor Att109-20 W5147 BEG12 single spore (= isolate single spore Stockinger et al. 2010 UK, Kent, East Malling B Mosse
SSU-ITS-LSU FN547483 HS110-22 Funneliformis mosseae (Glomus mosseae epitype predecessor Att109-20 W5147 BEG12 single spore (= isolate single spore Stockinger et al. 2010 UK, Kent, East Malling B Mosse
SSU-ITS-LSU FN547484 HS101-C2 Funneliformis mosseae (Glomus mosseae epitype predecessor Att109-20 W5147 BEG12 single spore (= isolate single spore Stockinger et al. 2010 UK, Kent, East Malling B Mosse
SSU-ITS-LSU FN547485 HS110-39 Funneliformis mosseae (Glomus mosseae epitype predecessor Att109-20 W5147 BEG12 single spore (= isolate single spore Stockinger et al. 2010 UK, Kent, East Malling B Mosse
SSU-ITS-LSU FN547486 HS110-37 Funneliformis mosseae (Glomus mosseae epitype predecessor Att109-20 W5147 BEG12 single spore (= isolate single spore Stockinger et al. 2010 UK, Kent, East Malling B Mosse
SSU-ITS-LSU FN547487 HS110-9 Funneliformis mosseae (Glomus mosseae epitype predecessor Att109-20 W5147 BEG12 single spore (= isolate single spore Stockinger et al. 2010 UK, Kent, East Malling B Mosse
SSU-ITS-LSU FN547488 HS101-B2 Funneliformis mosseae (Glomus mosseae epitype predecessor Att109-20 W5147 BEG12 single spore (= isolate single spore Stockinger et al. 2010 UK, Kent, East Malling B Mosse
SSU-ITS-LSU FN547489 HS101-D2 Funneliformis mosseae (Glomus mosseae epitype predecessor Att109-20 W5147 BEG12 single spore (= isolate single spore Stockinger et al. 2010 UK, Kent, East Malling B Mosse
SSU-ITS-LSU FN547490 HS110-4 Funneliformis mosseae (Glomus mosseae epitype predecessor Att109-20 W5147 BEG12 single spore (= isolate single spore Stockinger et al. 2010 UK, Kent, East Malling B Mosse
SSU-ITS-LSU FN547491 HS101-B1 Funneliformis mosseae (Glomus mosseae epitype predecessor Att109-20 W5147 BEG12 single spore (= isolate single spore Stockinger et al. 2010 UK, Kent, East Malling B Mosse
SSU-ITS-LSU FN547492 HS101-D1 Funneliformis mosseae (Glomus mosseae epitype predecessor Att109-20 W5147 BEG12 single spore (= isolate single spore Stockinger et al. 2010 UK, Kent, East Malling B Mosse
SSU-ITS-LSU FN547493 HS110-15 Funneliformis mosseae (Glomus mosseae epitype predecessor Att109-20 W5147 BEG12 single spore (= isolate single spore Stockinger et al. 2010 UK, Kent, East Malling B Mosse
SSU-ITS-LSU FR750024 CK081-1 Funneliformis mosseae (Glomus mosseae epitype Att109-28 W5790 BEG12 single spore (= isolate single spore this study UK, Kent, East Malling B Mosse
SSU-ITS-LSU FR750025 CK081-10 Funneliformis mosseae (Glomus mosseae epitype Att109-28 W5790 BEG12 single spore (= isolate single spore this study UK, Kent, East Malling B Mosse
SSU-ITS-LSU FR750026 CK081-11 Funneliformis mosseae (Glomus mosseae epitype Att109-28 W5790 BEG12 single spore (= isolate single spore this study UK, Kent, East Malling B Mosse
SSU-ITS-LSU FR750027 CK081-2 Funneliformis mosseae (Glomus mosseae epitype Att109-28 W5790 BEG12 single spore (= isolate single spore this study UK, Kent, East Malling B Mosse
SSU-ITS-LSU FR750028 CK081-3 Funneliformis mosseae (Glomus mosseae epitype Att109-28 W5790 BEG12 single spore (= isolate single spore this study UK, Kent, East Malling B Mosse
SSU-ITS-LSU FR750029 CK081-4 Funneliformis mosseae (Glomus mosseae epitype Att109-28 W5790 BEG12 single spore (= isolate single spore this study UK, Kent, East Malling B Mosse
SSU-ITS-LSU FR750030 CK081-6 Funneliformis mosseae (Glomus mosseae epitype Att109-28 W5790 BEG12 single spore (= isolate single spore this study UK, Kent, East Malling B Mosse
SSU-ITS-LSU FR750031 CK081-7 Funneliformis mosseae (Glomus mosseae epitype Att109-28 W5790 BEG12 single spore (= isolate single spore this study UK, Kent, East Malling B Mosse
SSU-ITS-LSU FR750032 CK081-8 Funneliformis mosseae (Glomus mosseae epitype Att109-28 W5790 BEG12 single spore (= isolate single spore this study UK, Kent, East Malling B Mosse
SSU-ITS-LSU FR750033 CK081-9 Funneliformis mosseae (Glomus mosseae epitype Att109-28 W5790 BEG12 single spore (= isolate single spore this study UK, Kent, East Malling B Mosse
SSU AJ301864 WD160-1-1 Funneliformis sp. Att15-5 W2940 WUM3 multispore single spore (dark mo Schwarzott et al. 2001 Australia, Merredin W Porter
SSU AJ301865 WD169-1-4 Funneliformis sp. Att15-5 W2939 WUM3 multispore single spore (pale mo Schwarzott et al. 2001 Australia, Merredin W Porter
SSU-ITS-LSU FM876813 MK010-01 Funneliformis sp. Att15-5 W2940 WUM3 multispore single spore Krüger et al. 2009 Australia, Merredin W Porter
SSU-ITS-LSU FN547477 MK023-4 Funneliformis sp. Att15-5 W2939 WUM3 multispore single spore Stockinger et al. 2010 Australia, Merredin W Porter
SSU-ITS-LSU FN547478 MK023-7 Funneliformis sp. Att15-5 W2939 WUM3 multispore single spore Stockinger et al. 2010 Australia, Merredin W Porter
SSU-ITS-LSU FN547479 MK023-2 Funneliformis sp. Att15-5 W2939 WUM3 multispore single spore Stockinger et al. 2010 Australia, Merredin W Porter
SSU-ITS-LSU FN547480 MK023-10 Funneliformis sp. Att15-5 W2939 WUM3 multispore single spore Stockinger et al. 2010 Australia, Merredin W Porter
SSU-ITS-LSU FN547481 MK023-8 Funneliformis sp. Att15-5 W2939 WUM3 multispore single spore Stockinger et al. 2010 Australia, Merredin W Porter



SSU Y15905 HGGeo1-Ba Geosiphon pyriformis none (cyanobacteria symbiosis GEO1 multi-bladders single spore Schüßler et al. 2001 Germany, Bieber, Biebergemünd A Schüßler
SSU Y17831 TR17-2 Geosiphon pyriformis none (cyanobacteria symbiosis GEO1 multi-bladders single spore Schüßler et al. 2001 Germany, Bieber, Biebergemünd A Schüßler
SSU AJ276074 HGGeo1-Ca Geosiphon pyriformis none (cyanobacteria symbiosis GEO1 multi-bladders single spore Schüßler et al. 2001 Germany, Bieber, Biebergemünd A Schüßler
SSU AM183923 WD205-1-1 Geosiphon pyriformis none (cyanobacteria symbiosis GEO1 multi-bladders single spore James et al. 2006 Germany, Bieber, Biebergemünd A Schüßler
SSU X86686 GEO2 (=GEOB2) Geosiphon pyriformis none (cyanobacteria symbiosis GEO1 multi-bladders multi spore Gehrig et al. 1996 Germany, Bieber, Biebergemünd A Schüßler
SSU Y15904 HGGeo1-Aa Geosiphon pyriformis none (cyanobacteria symbiosis GEO1 multi-bladders single spore Schüßler et al. 2001 Germany, Bieber, Biebergemünd A Schüßler
SSU-5.8S-LSU FM876840 MK044-1 Geosiphon pyriformis none (cyanobacteria symbiosis GEO1 multi-bladders single spore Krüger et al. 2009 Germany, Bieber, Biebergemünd A Schüßler
SSU-5.8S-LSU FM876841 MK044-23 Geosiphon pyriformis none (cyanobacteria symbiosis GEO1 multi-bladders single spore Krüger et al. 2009 Germany, Bieber, Biebergemünd A Schüßler
SSU-5.8S-LSU FM876842 MK044-36 Geosiphon pyriformis none (cyanobacteria symbiosis GEO1 multi-bladders single spore Krüger et al. 2009 Germany, Bieber, Biebergemünd A Schüßler
SSU-5.8S-LSU FM876843 MK044-35 Geosiphon pyriformis none (cyanobacteria symbiosis GEO1 multi-bladders single spore Krüger et al. 2009 Germany, Bieber, Biebergemünd A Schüßler
SSU-5.8S-LSU FM876844 MK044-9 Geosiphon pyriformis none (cyanobacteria symbiosis GEO1 multi-bladders single spore Krüger et al. 2009 Germany, Bieber, Biebergemünd A Schüßler
5.8S AM268204 FD112-2 Geosiphon pyriformis none (cyanobacteria symbiosis GEO1 multi-bladders single spore James et al. 2006 Germany, Bieber, Biebergemünd A Schüßler
LSU AM183920 pAS36A+C.2, pAS37 Geosiphon pyriformis none (cyanobacteria symbiosis GEO1 multi-bladders single spore James et al. 2006 Germany, Bieber, Biebergemünd A Schüßler
SSU AJ276091 WD131–7 Gigaspora candida Att26–19 W3292 BEG17 single spore (= isolate single spore Schüßler et al. 2001 Republic of China, Taiwan W Chou
SSU Y17646 TR28-1a Gigaspora margarita none (material from BEG) none BEG34 multispore single spore Schüßler et al. 2001 Unknown, possibly New Zealand Uncertain, possibly J Crush
SSU-ITS-LSU FR750039 CK083-1 Gigaspora margarita Att256-18 W5792 BEG34 multispore single spore this study Unknown, possibly New Zealand Uncertain, possibly J Crush
SSU-ITS-LSU FR750040 CK083-2 Gigaspora margarita Att256-18 W5792 BEG34 multispore single spore this study Unknown, possibly New Zealand Uncertain, possibly J Crush
SSU-ITS-LSU FR750041 CK083-3 Gigaspora margarita Att256-18 W5792 BEG34 multispore single spore this study Unknown, possibly New Zealand Uncertain, possibly J Crush
SSU-ITS-LSU FR750042 CK083-4 Gigaspora margarita Att256-18 W5792 BEG34 multispore single spore this study Unknown, possibly New Zealand Uncertain, possibly J Crush
SSU-ITS-LSU FR750043 CK083-6 Gigaspora margarita Att256-18 W5792 BEG34 multispore single spore this study Unknown, possibly New Zealand Uncertain, possibly J Crush
SSU-ITS-LSU FR750044 CK083-7 Gigaspora margarita Att256-18 W5792 BEG34 multispore single spore this study Unknown, possibly New Zealand Uncertain, possibly J Crush
SSU-ITS-LSU FR750045 CK083-8 Gigaspora margarita Att256-18 W5792 BEG34 multispore single spore this study Unknown, possibly New Zealand Uncertain, possibly J Crush
SSU-ITS-LSU FN547547 HS108-10 Gigaspora margarita none (material from Univ. Torino none BEG34 multispore ROC single spore Stockinger et al. 2010 Unknown, possibly New Zealand Uncertain, possibly J Crush
SSU-ITS-LSU FN547548 HS108-11 Gigaspora margarita none (material from Univ. Torino none BEG34 multispore ROC single spore Stockinger et al. 2010 Unknown, possibly New Zealand Uncertain, possibly J Crush
SSU-ITS-LSU FN547549 HS108-12 Gigaspora margarita none (material from Univ. Torino none BEG34 multispore ROC single spore Stockinger et al. 2010 Unknown, possibly New Zealand Uncertain, possibly J Crush
SSU-ITS-LSU FN547550 HS108-13 Gigaspora margarita none (material from Univ. Torino none BEG34 multispore ROC single spore Stockinger et al. 2010 Unknown, possibly New Zealand Uncertain, possibly J Crush
SSU-ITS-LSU FN547551 HS108-14 Gigaspora margarita none (material from Univ. Torino none BEG34 multispore ROC single spore Stockinger et al. 2010 Unknown, possibly New Zealand Uncertain, possibly J Crush
SSU-ITS-LSU FN547552 HS108-16 Gigaspora margarita none (material from Univ. Torino none BEG34 multispore ROC single spore Stockinger et al. 2010 Unknown, possibly New Zealand Uncertain, possibly J Crush
SSU-ITS-LSU FN547553 HS108-18 Gigaspora margarita none (material from Univ. Torino none BEG34 multispore ROC single spore Stockinger et al. 2010 Unknown, possibly New Zealand Uncertain, possibly J Crush
SSU-ITS-LSU FN547554 HS108-19 Gigaspora margarita none (material from Univ. Torino none BEG34 multispore ROC single spore Stockinger et al. 2010 Unknown, possibly New Zealand Uncertain, possibly J Crush
SSU-ITS-LSU FN547555 HS108-21 Gigaspora margarita none (material from Univ. Torino none BEG34 multispore ROC single spore Stockinger et al. 2010 Unknown, possibly New Zealand Uncertain, possibly J Crush
SSU-ITS-LSU FN547556 HS108-23 Gigaspora margarita none (material from Univ. Torino none BEG34 multispore ROC single spore Stockinger et al. 2010 Unknown, possibly New Zealand Uncertain, possibly J Crush
SSU-ITS-LSU FN547557 HS108-24 Gigaspora margarita none (material from Univ. Torino none BEG34 multispore ROC single spore Stockinger et al. 2010 Unknown, possibly New Zealand Uncertain, possibly J Crush
SSU-ITS-LSU FN547558 HS108-27 Gigaspora margarita none (material from Univ. Torino none BEG34 multispore ROC single spore Stockinger et al. 2010 Unknown, possibly New Zealand Uncertain, possibly J Crush
SSU-ITS-LSU FN547559 HS108-28 Gigaspora margarita none (material from Univ. Torino none BEG34 multispore ROC single spore Stockinger et al. 2010 Unknown, possibly New Zealand Uncertain, possibly J Crush
SSU-ITS-LSU FN547560 HS108-31 Gigaspora margarita none (material from Univ. Torino none BEG34 multispore ROC single spore Stockinger et al. 2010 Unknown, possibly New Zealand Uncertain, possibly J Crush
SSU-ITS-LSU FN547561 HS108-32 Gigaspora margarita none (material from Univ. Torino none BEG34 multispore ROC single spore Stockinger et al. 2010 Unknown, possibly New Zealand Uncertain, possibly J Crush
SSU-ITS-LSU FN547562 HS108-36 Gigaspora margarita none (material from Univ. Torino none BEG34 multispore ROC single spore Stockinger et al. 2010 Unknown, possibly New Zealand Uncertain, possibly J Crush
SSU-ITS-LSU FN547563 HS108-4 Gigaspora margarita none (material from Univ. Torino none BEG34 multispore ROC single spore Stockinger et al. 2010 Unknown, possibly New Zealand Uncertain, possibly J Crush
SSU-ITS-LSU FN547564 HS108-41 Gigaspora margarita none (material from Univ. Torino none BEG34 multispore ROC single spore Stockinger et al. 2010 Unknown, possibly New Zealand Uncertain, possibly J Crush
SSU-ITS-LSU FN547565 HS108-43 Gigaspora margarita none (material from Univ. Torino none BEG34 multispore ROC single spore Stockinger et al. 2010 Unknown, possibly New Zealand Uncertain, possibly J Crush
SSU-ITS-LSU FN547566 HS108-45 Gigaspora margarita none (material from Univ. Torino none BEG34 multispore ROC single spore Stockinger et al. 2010 Unknown, possibly New Zealand Uncertain, possibly J Crush
SSU-ITS-LSU FN547567 HS108-47 Gigaspora margarita none (material from Univ. Torino none BEG34 multispore ROC single spore Stockinger et al. 2010 Unknown, possibly New Zealand Uncertain, possibly J Crush
SSU-ITS-LSU FN547568 HS108-5 Gigaspora margarita none (material from Univ. Torino none BEG34 multispore ROC single spore Stockinger et al. 2010 Unknown, possibly New Zealand Uncertain, possibly J Crush
SSU-ITS-LSU FN547569 HS108-6 Gigaspora margarita none (material from Univ. Torino none BEG34 multispore ROC single spore Stockinger et al. 2010 Unknown, possibly New Zealand Uncertain, possibly J Crush
SSU-ITS-LSU FN547570 HS108-7 Gigaspora margarita none (material from Univ. Torino none BEG34 multispore ROC single spore Stockinger et al. 2010 Unknown, possibly New Zealand Uncertain, possibly J Crush
SSU Y17647 TR26-6 Gigaspora rosea none (material from BEG) none BEG9 multispore single spore Schüßler et al. 2001 Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FN547571 HS105-E10 Gigaspora rosea Att1509-19 W5384 DAOM194757 multispore single spore Stockinger et al. 2010 Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FN547572 HS105-E7 Gigaspora rosea Att1509-19 W5384 DAOM194757 multispore single spore Stockinger et al. 2010 Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FN547573 HS105-E8 Gigaspora rosea Att1509-19 W5384 DAOM194757 multispore single spore Stockinger et al. 2010 Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FN547574 HS105-E9 Gigaspora rosea Att1509-19 W5384 DAOM194757 multispore single spore Stockinger et al. 2010 Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FN547575 HS105-F10 Gigaspora rosea Att1509-19 W5384 DAOM194757 multispore single spore Stockinger et al. 2010 Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FN547576 HS105-F7 Gigaspora rosea Att1509-19 W5384 DAOM194757 multispore single spore Stockinger et al. 2010 Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FN547577 HS105-F8 Gigaspora rosea Att1509-19 W5384 DAOM194757 multispore single spore Stockinger et al. 2010 Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FN547578 HS105-F9 Gigaspora rosea Att1509-19 W5384 DAOM194757 multispore single spore Stockinger et al. 2010 Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FN547579 HS105-G10 Gigaspora rosea Att1509-19 W5384 DAOM194757 multispore single spore Stockinger et al. 2010 Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FN547580 HS105-H10 Gigaspora rosea Att1509-19 W5384 DAOM194757 multispore single spore Stockinger et al. 2010 Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FN547581 HS105-H7 Gigaspora rosea Att1509-19 W5384 DAOM194757 multispore single spore Stockinger et al. 2010 Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FN547582 HS106-B11 Gigaspora rosea Att1509-19 W5384 DAOM194757 multispore single spore Stockinger et al. 2010 Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FN547583 HS106-C11 Gigaspora rosea Att1509-19 W5384 DAOM194757 multispore single spore Stockinger et al. 2010 Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FN547584 HS106-D11 Gigaspora rosea Att1509-19 W5384 DAOM194757 multispore single spore Stockinger et al. 2010 Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FN547585 HS106-E12 Gigaspora rosea Att1509-19 W5384 DAOM194757 multispore single spore Stockinger et al. 2010 Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FN547586 HS106-F11 Gigaspora rosea Att1509-19 W5384 DAOM194757 multispore single spore Stockinger et al. 2010 Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FN547587 HS106-H11 Gigaspora rosea Att1509-19 W5384 DAOM194757 multispore single spore Stockinger et al. 2010 Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FN547588 HS104-C4 Gigaspora rosea Att1509-19 W5384 DAOM194757 multispore single spore Stockinger et al. 2010 Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FN547589 HS104-F3 Gigaspora rosea Att1509-19 W5384 DAOM194757 multispore single spore Stockinger et al. 2010 Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FN547590 HS104-G3 Gigaspora rosea Att1509-19 W5384 DAOM194757 multispore single spore Stockinger et al. 2010 Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FN547591 HS105-B7 Gigaspora rosea Att1509-19 W5384 DAOM194757 multispore single spore Stockinger et al. 2010 Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FN547592 HS105-C7 Gigaspora rosea Att1509-19 W5384 DAOM194757 multispore single spore Stockinger et al. 2010 Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FN547593 HS105-C8 Gigaspora rosea Att1509-19 W5384 DAOM194757 multispore single spore Stockinger et al. 2010 Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FN547594 HS105-C9 Gigaspora rosea Att1509-19 W5384 DAOM194757 multispore single spore Stockinger et al. 2010 Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FN547595 HS105-D5 Gigaspora rosea Att1509-19 W5384 DAOM194757 multispore single spore Stockinger et al. 2010 Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FN547596 HS105-D8 Gigaspora rosea Att1509-19 W5384 DAOM194757 multispore single spore Stockinger et al. 2010 Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FN547597 HS105-D9 Gigaspora rosea Att1509-19 W5384 DAOM194757 multispore single spore Stockinger et al. 2010 Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FR750174 MK097-1 Gigaspora rosea Att1509-13 W2856 DAOM194757 multispore (2 spores) ROC single spore this study Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FR750175 MK097-10 Gigaspora rosea Att1509-13 W2856 DAOM194757 multispore (2 spores) ROC single spore this study Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FR750176 MK097-11 Gigaspora rosea Att1509-13 W2856 DAOM194757 multispore (2 spores) ROC single spore this study Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FR750177 MK097-12 Gigaspora rosea Att1509-13 W2856 DAOM194757 multispore (2 spores) ROC single spore this study Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FR750178 MK097-13 Gigaspora rosea Att1509-13 W2856 DAOM194757 multispore (2 spores) ROC single spore this study Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FR750179 MK097-2 Gigaspora rosea Att1509-13 W2856 DAOM194757 multispore (2 spores) ROC single spore this study Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FR750180 MK097-3 Gigaspora rosea Att1509-13 W2856 DAOM194757 multispore (2 spores) ROC single spore this study Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FR750181 MK097-4 Gigaspora rosea Att1509-13 W2856 DAOM194757 multispore (2 spores) ROC single spore this study Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FR750182 MK097-5 Gigaspora rosea Att1509-13 W2856 DAOM194757 multispore (2 spores) ROC single spore this study Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FR750183 MK097-6 Gigaspora rosea Att1509-13 W2856 DAOM194757 multispore (2 spores) ROC single spore this study Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FR750184 MK097-7 Gigaspora rosea Att1509-13 W2856 DAOM194757 multispore (2 spores) ROC single spore this study Unknown, thought to be from USA Unknown collector
SSU-ITS-LSU FR750185 MK097-8 Gigaspora rosea Att1509-13 W2856 DAOM194757 multispore (2 spores) ROC single spore this study Unknown, thought to be from USA Unknown collector
SSU AJ276090 WD143–12 Gigaspora sp. none W2992 field collected spores (sand dunes single spore Schüßler et al. 2001 Argentina, Buenos Aires, Tres Arroyas M Cabello
SSU-ITS-LSU FM876800 MK021-6 Gigaspora sp. none W2992 field collected spores (sand dunes single spore Krüger et al. 2009 Argentina, Buenos Aires, Tres Arroyas M Cabello
SSU-ITS-LSU FM876801 MK021-2 Gigaspora sp. none W2992 field collected spores (sand dunes single spore Krüger et al. 2009 Argentina, Buenos Aires, Tres Arroyas M Cabello
SSU-ITS-LSU FM876802 MK021-1 Gigaspora sp. none W2992 field collected spores (sand dunes single spore Krüger et al. 2009 Argentina, Buenos Aires, Tres Arroyas M Cabello
SSU-ITS-LSU FM876803 MK003-1 Gigaspora sp. none W2992 field collected spores (sand dunes single spore Krüger et al. 2009 Argentina, Buenos Aires, Tres Arroyas M Cabello
SSU-ITS-LSU FM876799 MK021-10 Gigaspora sp. none W2992 field collected spores (sand dunes single spore Krüger et al. 2009 Argentina, Buenos Aires, Tres Arroyas M Cabello
SSU FR750376 MK111-4 Glomus macrocarpum none W5293 field collected spores (sporocarp single spore this study UK, Gloucestershire, Painswick C Walker
SSU-ITS-LSU FR750526 HS093-32 Glomus macrocarpum none W5288 field collected spores (sporocarp single spore this study UK, Cardiff, Morganstown C Walker
SSU-ITS-LSU FR750527 HS093-34 Glomus macrocarpum none W5288 field collected spores (sporocarp single spore this study UK, Cardiff, Morganstown C Walker
SSU-ITS-LSU FR750528 HS093-45 Glomus macrocarpum none W5288 field collected spores (sporocarp single spore this study UK, Cardiff, Morganstown C Walker
SSU-ITS-LSU FR750529 HS093-48 Glomus macrocarpum none W5288 field collected spores (sporocarp single spore this study UK, Cardiff, Morganstown C Walker
SSU-ITS-LSU FR750530 HS093-49 Glomus macrocarpum none W5288 field collected spores (sporocarp single spore this study UK, Cardiff, Morganstown C Walker
SSU-ITS-LSU FR750531 HS094-1 Glomus macrocarpum none W5293 field collected spores (sporocarp single spore this study UK, Gloucestershire, Painswick C Walker
SSU-ITS-LSU FR750532 HS094-10 Glomus macrocarpum none W5293 field collected spores (sporocarp single spore this study UK, Gloucestershire, Painswick C Walker
SSU-ITS-LSU FR750533 HS094-11 Glomus macrocarpum none W5293 field collected spores (sporocarp single spore this study UK, Gloucestershire, Painswick C Walker
SSU-ITS-LSU FR750534 HS094-12 Glomus macrocarpum none W5293 field collected spores (sporocarp single spore this study UK, Gloucestershire, Painswick C Walker
SSU-ITS-LSU FR750535 HS094-14 Glomus macrocarpum none W5293 field collected spores (sporocarp single spore this study UK, Gloucestershire, Painswick C Walker
SSU-ITS-LSU FR750536 HS094-15 Glomus macrocarpum none W5293 field collected spores (sporocarp single spore this study UK, Gloucestershire, Painswick C Walker
SSU-ITS-LSU FR750537 HS094-16 Glomus macrocarpum none W5293 field collected spores (sporocarp single spore this study UK, Gloucestershire, Painswick C Walker
SSU-ITS-LSU FR750538 HS094-17 (+19+22) Glomus macrocarpum none W5293 field collected spores (sporocarp single spore this study UK, Gloucestershire, Painswick C Walker
SSU-ITS-LSU FR750539 HS094-18 Glomus macrocarpum none W5293 field collected spores (sporocarp single spore this study UK, Gloucestershire, Painswick C Walker
SSU-ITS-LSU FR750540 HS094-20 (+21) Glomus macrocarpum none W5293 field collected spores (sporocarp single spore this study UK, Gloucestershire, Painswick C Walker
SSU-ITS-LSU FR750541 HS094-30 Glomus macrocarpum none W5293 field collected spores (sporocarp single spore this study UK, Gloucestershire, Painswick C Walker
SSU-ITS-LSU FR750542 HS094-4 Glomus macrocarpum none W5293 field collected spores (sporocarp single spore this study UK, Gloucestershire, Painswick C Walker
SSU-ITS-LSU FR750544 HS094-6 Glomus macrocarpum none W5293 field collected spores (sporocarp single spore this study UK, Gloucestershire, Painswick C Walker
SSU-ITS-LSU FR750543 HS094-5 Glomus macrocarpum none W5293 field collected spores (sporocarp single spore this study UK, Gloucestershire, Painswick C Walker
SSU FR772325 MK112-3 Glomus macrocarpum ex-epitype Att1495-0 W5605 multispore (sporocarp fragment single spore this study UK, Cardiff, Morganstown C Walker
SSU-ITS-LSU FR750363 CK076-1 Glomus macrocarpum epitype Att1495-0 W5581 multispore (from sporocarp W5288) single spore this study UK, Cardiff, Morganstown C Walker
SSU-ITS-LSU FR750364 CK076-10 Glomus macrocarpum epitype Att1495-0 W5581 multispore (from sporocarp W5288) single spore this study UK, Cardiff, Morganstown C Walker
SSU-ITS-LSU FR750365 CK076-11 Glomus macrocarpum epitype Att1495-0 W5581 multispore (from sporocarp W5288) single spore this study UK, Cardiff, Morganstown C Walker
SSU-ITS-LSU FR750366 CK076-13 Glomus macrocarpum epitype Att1495-0 W5581 multispore (from sporocarp W5288) single spore this study UK, Cardiff, Morganstown C Walker
SSU-ITS-LSU FR750367 CK076-2 (+3) Glomus macrocarpum epitype Att1495-0 W5581 multispore (from sporocarp W5288) single spore this study UK, Cardiff, Morganstown C Walker
SSU-ITS-LSU FR750368 CK076-4 Glomus macrocarpum epitype Att1495-0 W5581 multispore (from sporocarp W5288) single spore this study UK, Cardiff, Morganstown C Walker
SSU-ITS-LSU FR750369 CK076-5 Glomus macrocarpum epitype Att1495-0 W5581 multispore (from sporocarp W5288) single spore this study UK, Cardiff, Morganstown C Walker
SSU-ITS-LSU FR750370 CK076-6 (+7+8+14) Glomus macrocarpum epitype Att1495-0 W5581 multispore (from sporocarp W5288) single spore this study UK, Cardiff, Morganstown C Walker
SSU-ITS-LSU FR750371 CK076-9 Glomus macrocarpum epitype Att1495-0 W5581 multispore (from sporocarp W5288) single spore this study UK, Cardiff, Morganstown C Walker



SSU AJ301857 WD145-6-4 Glomus sp. Att565-7 W3347 individual spore cluster single spore Schwarzott et al. 2001 UK, Yorkshire, Pretty Wood J Merryweather
SSU-ITS-LSU FR750201 MK110-1 (+6) Glomus sp. Att565-7 W3347 individual spore cluster single spore this study UK, Yorkshire, Pretty Wood J Merryweather
SSU-ITS-LSU FR750202 MK110-2 (+3+5) Glomus sp. Att565-7 W3347 individual spore cluster single spore this study UK, Yorkshire, Pretty Wood J Merryweather
SSU-ITS-LSU FR750203 MK110-4 Glomus sp. Att565-7 W3347 individual spore cluster single spore this study UK, Yorkshire, Pretty Wood J Merryweather
SSU Y17652 WD107–1-2 Glomus viscosum (contaminant?) Att179–8 W3207 BEG27 multispore single spore Schüßler et al. 2001 Europe, from compost of unknown origin M Giovannetti
SSU FR750224 WD315_2_1 Pacispora franciscana Att961-1 W3850 multispore single spore this study Poland, Pomerani, Lipki J Błaszkowsky
SSU FR750225 WD315_2_4 Pacispora franciscana Att961-1 W3850 multispore single spore this study Poland, Pomerani, Lipki J Błaszkowsky
SSU FR750226 WD315_2_5 Pacispora franciscana Att961-1 W3850 multispore single spore this study Poland, Pomerani, Lipki J Błaszkowsky
SSU FR750219 WD121_3 Pacispora franciscana Att599-7 W3251 soil trap single spore this study Germany, Niedersachsen, Braunschweig P Vandenkoornhuyse
SSU FR750375 WD121-3 Pacispora franciscana Att599-7 W3251 soil trap single spore this study Germany, Niedersachsen, Braunschweig P Vandenkoornhuyse
SSU AJ619944 WD273-3-2 Pacispora scintillans Att961-1 W3849 multispore single spore Walker et al. 2004 Poland, Pomerani, Lipki J Błaszkowsky
SSU AJ619945 WD273-3-3 Pacispora scintillans Att961-1 W3849 multispore single spore Walker et al. 2004 Poland, Pomerani, Lipki J Błaszkowsky
SSU AJ619946 WD273-3-5 Pacispora scintillans Att961-1 W3849 multispore single spore Walker et al. 2004 Poland, Pomerani, Lipki J Błaszkowsky
SSU AJ619947 WD273-3-1 Pacispora scintillans Att961-1 W3849 multispore single spore Walker et al. 2004 Poland, Pomerani, Lipki J Błaszkowsky
SSU AJ619940 WD245-1-1 Pacispora scintillans none W3793 field collected spores single spore Walker et al. 2004 Griesheim, Germany C Walker & A. Schüßler
SSU AJ619941 WD245-1-2 Pacispora scintillans none W3793 field collected spores single spore Walker et al. 2004 Griesheim, Germany C Walker & A. Schüßler
SSU AJ619942 WD245-1-5 Pacispora scintillans none W3793 field collected spores single spore Walker et al. 2004 Griesheim, Germany C Walker & A. Schüßler
SSU AJ619943 WD245-1-6 Pacispora scintillans none W3793 field collected spores single spore Walker et al. 2004 Griesheim, Germany C Walker & A. Schüßler
SSU AJ619948 WD274-3-1 Pacispora scintillans none W3862 field collected spores single spore Walker et al. 2004 UK, Dorset, East Lulworth C Walker
SSU AJ619949 WD274-3-2 Pacispora scintillans none W3862 field collected spores single spore Walker et al. 2004 UK, Dorset, East Lulworth C Walker
SSU AJ619950 WD274-3-3 Pacispora scintillans none W3862 field collected spores single spore Walker et al. 2004 UK, Dorset, East Lulworth C Walker
SSU AJ619951 WD274-3-4 Pacispora scintillans none W3862 field collected spores single spore Walker et al. 2004 UK, Dorset, East Lulworth C Walker
SSU AJ619952 WD200-2-3 Pacispora scintillans none W4545 field collected spores single spore Walker et al. 2004 Griesheim, Germany C Walker & A. Schüßler
SSU AJ619953 WD200-2-4 Pacispora scintillans none W4545 field collected spores single spore Walker et al. 2004 Griesheim, Germany C Walker & A. Schüßler
SSU AJ619954 WD200-2-5 Pacispora scintillans none W4545 field collected spores single spore Walker et al. 2004 Griesheim, Germany C Walker & A. Schüßler
SSU AJ619955 WD200-2-6 Pacispora scintillans none W4545 field collected spores single spore Walker et al. 2004 Griesheim, Germany C Walker & A. Schüßler
SSU-ITS-LSU FM876831 MK027-1 Pacispora scintillans none W4545 field collected spores single spore Krüger et al. 2009 Griesheim, Germany C Walker & A. Schüßler
SSU-ITS-LSU FM876832 MK027-2 Pacispora scintillans none W4545 field collected spores single spore Krüger et al. 2009 Griesheim, Germany C Walker & A. Schüßler
SSU-ITS-LSU FR750046 CK084-1 Paraglomus brasilianum Att260-8 W5793 single spore (= isolate single spore this study Brazil, Minus, Januaria J Spain
SSU-ITS-LSU FR750047 CK084-10 Paraglomus brasilianum Att260-8 W5793 single spore (= isolate single spore this study Brazil, Minus, Januaria J Spain
SSU-ITS-LSU FR750048 CK084-12 Paraglomus brasilianum Att260-8 W5793 single spore (= isolate single spore this study Brazil, Minus, Januaria J Spain
SSU-ITS-LSU FR750049 CK084-13 Paraglomus brasilianum Att260-8 W5793 single spore (= isolate single spore this study Brazil, Minus, Januaria J Spain
SSU-ITS-LSU FR750050 CK084-4 Paraglomus brasilianum Att260-8 W5793 single spore (= isolate single spore this study Brazil, Minus, Januaria J Spain
SSU-ITS-LSU FR750051 CK084-5 (+11+14) Paraglomus brasilianum Att260-8 W5793 single spore (= isolate single spore this study Brazil, Minus, Januaria J Spain
SSU-ITS-LSU FR750052 CK084-6 Paraglomus brasilianum Att260-8 W5793 single spore (= isolate single spore this study Brazil, Minus, Januaria J Spain
SSU-ITS-LSU FR750053 CK084-7 Paraglomus brasilianum Att260-8 W5793 single spore (= isolate single spore this study Brazil, Minus, Januaria J Spain
SSU-ITS-LSU FR750054 CK084-8 Paraglomus brasilianum Att260-8 W5793 single spore (= isolate single spore this study Brazil, Minus, Januaria J Spain
SSU-ITS-LSU FR750083 HS038-1 Paraglomus laccatum Att960-3 W5141 multispore single spore this study UK, from compost of unknown origin C Walker
SSU AJ276081 WD108–2-1 Paraglomus occultum Att677–4 W3166 IA702–3 pot culture (details unknown) single spore Schüßler et al. 2001 USA, Iowa, Boone N Klopfenstein for C Walker
SSU AJ276082 WD117–1-1 Paraglomus occultum Att677–3 W3091 IA702–3 pot culture (details unknown) single spore Schüßler et al. 2001 USA, Iowa, Boone N Klopfenstein for C Walker
SSU AJ306435 WD167-1-6 Racocetra fulgida (Scutellospora fulgida none W2993 field collected spores single spore Schüßler et al. 2001 Argentina, Buenos Aires, Tres Arroyas M Cabello
SSU-ITS-LSU FR750136 MK022-05 Racocetra fulgida (Scutellospora fulgida none W2993 field collected spores single spore this study Argentina, Buenos Aires, Tres Arroyas M Cabello
SSU-ITS-LSU FR750137 MK022-06 Racocetra fulgida (Scutellospora fulgida none W2993 field collected spores single spore this study Argentina, Buenos Aires, Tres Arroyas M Cabello
SSU-ITS-LSU FR750138 MK022-07 Racocetra fulgida (Scutellospora fulgida none W2993 field collected spores single spore this study Argentina, Buenos Aires, Tres Arroyas M Cabello
SSU-ITS-LSU FR750139 MK022-10 Racocetra fulgida (Scutellospora fulgida none W2993 field collected spores single spore this study Argentina, Buenos Aires, Tres Arroyas M Cabello
SSU-ITS-LSU FR750140 MK022-11 Racocetra fulgida (Scutellospora fulgida none W2993 field collected spores single spore this study Argentina, Buenos Aires, Tres Arroyas M Cabello
SSU-ITS-LSU FR750141 MK022-13 Racocetra fulgida (Scutellospora fulgida none W2993 field collected spores single spore this study Argentina, Buenos Aires, Tres Arroyas M Cabello
SSU-ITS-LSU FR750142 MK022-17 Racocetra fulgida (Scutellospora fulgida none W2993 field collected spores single spore this study Argentina, Buenos Aires, Tres Arroyas M Cabello
SSU-ITS-LSU FR750143 MK022-19 Racocetra fulgida (Scutellospora fulgida none W2993 field collected spores single spore this study Argentina, Buenos Aires, Tres Arroyas M Cabello
SSU-ITS-LSU FR750144 MK022-20 Racocetra fulgida (Scutellospora fulgida none W2993 field collected spores single spore this study Argentina, Buenos Aires, Tres Arroyas M Cabello
SSU-ITS-LSU FR750145 MK022-22 Racocetra fulgida (Scutellospora fulgida none W2993 field collected spores single spore this study Argentina, Buenos Aires, Tres Arroyas M Cabello
SSU-ITS-LSU FR750146 MK022-23 Racocetra fulgida (Scutellospora fulgida none W2993 field collected spores single spore this study Argentina, Buenos Aires, Tres Arroyas M Cabello
SSU-ITS-LSU FR750147 MK022-24 Racocetra fulgida (Scutellospora fulgida none W2993 field collected spores single spore this study Argentina, Buenos Aires, Tres Arroyas M Cabello
SSU-ITS-LSU FR750148 MK022-25 Racocetra fulgida (Scutellospora fulgida none W2993 field collected spores single spore this study Argentina, Buenos Aires, Tres Arroyas M Cabello
SSU AJ306444 WD170-1-4 Racocetra weresubiae (Scutellospora weresubiae none W2988 field collected spores single spore Schüßler et al. 2001 Argentina, Buenos Aires, Tres Arroyas M Cabello
SSU-ITS-LSU FR750134 MK011-1 Racocetra weresubiae (Scutellospora weresubiae none W2988 field collected spores single spore this study Argentina, Buenos Aires, Tres Arroyas M Cabello
SSU-ITS-LSU FR750135 MK011-2 Racocetra weresubiae (Scutellospora weresubiae none W2988 field collected spores single spore this study Argentina, Buenos Aires, Tres Arroyas M Cabello
SSU AJ276084 WD125–1 Rhizophagus clarus (Glomus clarum) Att72–1 W3163 BR147B-8 pot culture (details unknown) single spore Schüßler et al. 2001 Brazil (proprietary; no data M Lin
SSU FR773148 WD236_1_4 Rhizophagus clarus (Glomus clarum) Att894-7 W3776 single spore (= isolate single spore this study Iceland, Sanda S Greipsson
SSU FR773149 WD236_1_3 Rhizophagus clarus (Glomus clarum) Att894-7 W3776 single spore (= isolate single spore this study Iceland, Sanda S Greipsson
SSU-ITS-LSU FM865536 HS029-10 Rhizophagus clarus (Glomus clarum) Att894-7 W3776 single spore (= isolate single spore Stockinger et al. 2009 Iceland, Sanda S Greipsson
SSU-ITS-LSU FM865537 HS029-17 Rhizophagus clarus (Glomus clarum) Att894-7 W3776 single spore (= isolate single spore Stockinger et al. 2009 Iceland, Sanda S Greipsson
SSU-ITS-LSU FM865538 HS029-2 Rhizophagus clarus (Glomus clarum) Att894-7 W3776 single spore (= isolate single spore Stockinger et al. 2009 Iceland, Sanda S Greipsson
SSU-ITS-LSU FM865539 HS029-22 Rhizophagus clarus (Glomus clarum) Att894-7 W3776 single spore (= isolate single spore Stockinger et al. 2009 Iceland, Sanda S Greipsson
SSU-ITS-LSU FM865540 HS029-24 Rhizophagus clarus (Glomus clarum) Att894-7 W3776 single spore (= isolate single spore Stockinger et al. 2009 Iceland, Sanda S Greipsson
SSU-ITS-LSU FM865541 HS029-26 Rhizophagus clarus (Glomus clarum) Att894-7 W3776 single spore (= isolate single spore Stockinger et al. 2009 Iceland, Sanda S Greipsson
SSU-ITS-LSU FM865542 HS029-28 Rhizophagus clarus (Glomus clarum) Att894-7 W3776 single spore (= isolate single spore Stockinger et al. 2009 Iceland, Sanda S Greipsson
SSU-ITS-LSU FM865543 HS029-29 Rhizophagus clarus (Glomus clarum) Att894-7 W3776 single spore (= isolate single spore Stockinger et al. 2009 Iceland, Sanda S Greipsson
SSU-ITS-LSU FM865544 HS029-6 Rhizophagus clarus (Glomus clarum) Att894-7 W3776 single spore (= isolate single spore Stockinger et al. 2009 Iceland, Sanda S Greipsson
SSU Y17640 KL5–3 Rhizophagus fasciculatus (Glomus fasciculatum none (material from BEG) none BEG53 single spore (= isolate single spore Schüßler et al. 2001 Canada, Quebéc, La Pocatière V Furlan
SSU FR750205 CK087-1 Rhizophagus intraradices (Glomus intraradices ex-type Att4-70 W5570 FL208 (MUCL49413) one spore cluster from ROC (= isolate single spore this study USA, Orlando, Clermont-Minneola S. Nemec
SSU FR750206 CK087-2 Rhizophagus intraradices (Glomus intraradices ex-type Att4-70 W5570 FL208 (MUCL49413) one spore cluster from ROC (= isolate single spore this study USA, Orlando, Clermont-Minneola S. Nemec
SSU FR750207 CK087-3 Rhizophagus intraradices (Glomus intraradices ex-type Att4-70 W5570 FL208 (MUCL49413) one spore cluster from ROC (= isolate single spore this study USA, Orlando, Clermont-Minneola S. Nemec
SSU FR750208 CK087-4 Rhizophagus intraradices (Glomus intraradices ex-type Att4-70 W5570 FL208 (MUCL49413) one spore cluster from ROC (= isolate single spore this study USA, Orlando, Clermont-Minneola S. Nemec
SSU FR750209 CK087-5 Rhizophagus intraradices (Glomus intraradices ex-type Att4-70 W5570 FL208 (MUCL49413) one spore cluster from ROC (= isolate single spore this study USA, Orlando, Clermont-Minneola S. Nemec
SSU FR750210 CK087-6 Rhizophagus intraradices (Glomus intraradices ex-type Att4-70 W5570 FL208 (MUCL49413) one spore cluster from ROC (= isolate single spore this study USA, Orlando, Clermont-Minneola S. Nemec
SSU FR750211 CK087-7 Rhizophagus intraradices (Glomus intraradices ex-type Att4-70 W5570 FL208 (MUCL49413) one spore cluster from ROC (= isolate single spore this study USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865597 HS099-11 Rhizophagus intraradices (Glomus intraradices ex-type Att4-57 W5507 FL208 (MUCL49413) one spore cluster from ROC (= isolate single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865598 HS099-14 Rhizophagus intraradices (Glomus intraradices ex-type Att4-57 W5507 FL208 (MUCL49413) one spore cluster from ROC (= isolate single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865599 HS099-16 Rhizophagus intraradices (Glomus intraradices ex-type Att4-57 W5507 FL208 (MUCL49413) one spore cluster from ROC (= isolate single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865600 HS099-3 Rhizophagus intraradices (Glomus intraradices ex-type Att4-57 W5507 FL208 (MUCL49413) one spore cluster from ROC (= isolate single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865601 HS099-32 Rhizophagus intraradices (Glomus intraradices ex-type Att4-57 W5507 FL208 (MUCL49413) one spore cluster from ROC (= isolate single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865602 HS099-36 Rhizophagus intraradices (Glomus intraradices ex-type Att4-57 W5507 FL208 (MUCL49413) one spore cluster from ROC (= isolate single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865603 HS099-40 Rhizophagus intraradices (Glomus intraradices ex-type Att4-57 W5507 FL208 (MUCL49413) one spore cluster from ROC (= isolate single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865604 HS099-41 Rhizophagus intraradices (Glomus intraradices ex-type Att4-57 W5507 FL208 (MUCL49413) one spore cluster from ROC (= isolate single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865605 HS099-47 Rhizophagus intraradices (Glomus intraradices ex-type Att4-57 W5507 FL208 (MUCL49413) one spore cluster from ROC (= isolate single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865606 HS099-6 Rhizophagus intraradices (Glomus intraradices ex-type Att4-57 W5507 FL208 (MUCL49413) one spore cluster from ROC (= isolate single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865607 HS099-8 Rhizophagus intraradices (Glomus intraradices ex-type Att4-57 W5507 FL208 (MUCL49413) one spore cluster from ROC (= isolate single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865545 HS051-14 Rhizophagus intraradices (Glomus intraradices re-isolate from type locality Att1102-12 W5070 MUCL49410 ROC single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865546 HS051-20 Rhizophagus intraradices (Glomus intraradices re-isolate from type locality Att1102-12 W5070 MUCL49410 ROC single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865547 HS051-24 Rhizophagus intraradices (Glomus intraradices re-isolate from type locality Att1102-12 W5070 MUCL49410 ROC single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865548 HS051-39 Rhizophagus intraradices (Glomus intraradices re-isolate from type locality Att1102-12 W5070 MUCL49410 ROC single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865549 HS051-49 Rhizophagus intraradices (Glomus intraradices re-isolate from type locality Att1102-12 W5070 MUCL49410 ROC single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865559 HS080-12 Rhizophagus intraradices (Glomus intraradices ex-type Att4-38 W5166 FL208 root fragment single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865560 HS080-16 Rhizophagus intraradices (Glomus intraradices ex-type Att4-38 W5166 FL208 root fragment single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865561 HS086-2 Rhizophagus intraradices (Glomus intraradices ex-type Att4-38 W5166 FL208 root fragment single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865562 HS086-4 Rhizophagus intraradices (Glomus intraradices ex-type Att4-38 W5166 FL208 root fragment single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865563 HS086-5 Rhizophagus intraradices (Glomus intraradices ex-type Att4-38 W5166 FL208 root fragment single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865564 HS089-11 Rhizophagus intraradices (Glomus intraradices ex-type Att4-38 W5166 FL208 root fragment single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865565 HS089-14 Rhizophagus intraradices (Glomus intraradices ex-type Att4-38 W5166 FL208 root fragment single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865566 HS089-15 Rhizophagus intraradices (Glomus intraradices ex-type Att4-38 W5166 FL208 root fragment single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865567 HS089-16 Rhizophagus intraradices (Glomus intraradices ex-type Att4-38 W5166 FL208 root fragment single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865568 HS089-17 Rhizophagus intraradices (Glomus intraradices ex-type Att4-38 W5166 FL208 root fragment single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865569 HS089-19 Rhizophagus intraradices (Glomus intraradices ex-type Att4-38 W5166 FL208 root fragment single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865570 HS089-6 Rhizophagus intraradices (Glomus intraradices ex-type Att4-38 W5166 FL208 root fragment single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865571 HS089-7 Rhizophagus intraradices (Glomus intraradices ex-type Att4-38 W5166 FL208 root fragment single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865572 HS096-10 Rhizophagus intraradices (Glomus intraradices ex-type Att4-41 W5413 FL208 root fragment single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865573 HS096-11 Rhizophagus intraradices (Glomus intraradices ex-type Att4-41 W5413 FL208 root fragment single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865574 HS096-12 Rhizophagus intraradices (Glomus intraradices ex-type Att4-41 W5413 FL208 root fragment single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865575 HS096-16 Rhizophagus intraradices (Glomus intraradices ex-type Att4-41 W5413 FL208 root fragment single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865576 HS096-19 Rhizophagus intraradices (Glomus intraradices ex-type Att4-41 W5413 FL208 root fragment single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865577 HS096-22 Rhizophagus intraradices (Glomus intraradices ex-type Att4-41 W5413 FL208 root fragment single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865578 HS096-27 Rhizophagus intraradices (Glomus intraradices ex-type Att4-41 W5413 FL208 root fragment single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FM865579 HS096-28 Rhizophagus intraradices (Glomus intraradices ex-type Att4-41 W5413 FL208 root fragment single spore Stockinger et al. 2009 USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FR750372 HS089-18 Rhizophagus intraradices (Glomus intraradices ex-type Att4-38 W5273 FL208 root fragment single spore this study USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FR750126 HS080-32 Rhizophagus intraradices (Glomus intraradices ex-type Att4-38 W5166 FL208 root fragments single spore this study USA, Orlando, Clermont-Minneola S. Nemec
SSU-ITS-LSU FR750127 HS080-7 Rhizophagus intraradices (Glomus intraradices ex-type Att4-38 W5166 FL208 root fragments single spore this study USA, Orlando, Clermont-Minneola S. Nemec



SSU FR750223 WD313_1_1 Rhizophagus irregularis (Glomus irregulare Att1225-1 W4533 LW139 single spore (= isolate single spore this study UK, Berkshire, Maidenhead L Whitfield

SSU FR750222 WD303_6_3 Rhizophagus irregularis (Glomus irregulare) none (material from GINCO) none

 DAOM212349 (=MUCL43195) (note: 
DAOM212349 is used in the literature for two 
different cultures of different species; see Cl. 
lamellosum entries)  

ROC spores from ROC this study Canada, Ontario, Wasaga Beach Provincial Park GINCO (G Mitrow, Y Dalpé)

SSU FR750228 WDG_lam_3 Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none DAOM212349 (=MUCL43195) ROC spores from ROC this study Canada, Ontario, Wasaga Beach Provincial Park GINCO (G Mitrow, Y Dalpé)
SSU-ITS-LSU FR750078 HS037-10 Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none DAOM212349 (=MUCL43195) ROC single spore this study Canada, Ontario, Wasaga Beach Provincial Park GINCO (G Mitrow, Y Dalpé)
SSU-ITS-LSU FR750079 HS037-23 Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none DAOM212349 (=MUCL43195) ROC single spore this study Canada, Ontario, Wasaga Beach Provincial Park GINCO (G Mitrow, Y Dalpé)
SSU-ITS-LSU FR750080 HS037-4 Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none DAOM212349 (=MUCL43195) ROC single spore this study Canada, Ontario, Wasaga Beach Provincial Park GINCO (G Mitrow, Y Dalpé)
SSU-ITS-LSU FR750081 HS037-5 Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none DAOM212349 (=MUCL43195) ROC single spore this study Canada, Ontario, Wasaga Beach Provincial Park GINCO (G Mitrow, Y Dalpé)
SSU-ITS-LSU FR750082 HS037-8 Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none DAOM212349 (=MUCL43195) ROC single spore this study Canada, Ontario, Wasaga Beach Provincial Park GINCO (G Mitrow, Y Dalpé)
SSU-ITS-LSU FR750084 HS043-17 Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none FTRS203 ROC single spore this study Unknown sent from LLN by S Cranenbrouck
SSU-ITS-LSU FR750085 HS043-4 Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none FTRS203 ROC single spore this study Unknown sent from LLN by S Cranenbrouck
SSU-ITS-LSU FR750087 HS043-7 Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none FTRS203 ROC single spore this study Unknown sent from LLN by S Cranenbrouck
SSU-ITS-LSU FR750086 HS043-6 Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none FTRS203 ROC single spore this study Unknown sent from LLN by S Cranenbrouck
SSU-ITS-LSU FR750106 HS058-1 (+23+44) Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none MUCL43205 ROC single spore this study Canada, Québec, Terrebonne GINCO (Y Dalpé, S Seguin)
SSU-ITS-LSU FR750107 HS058-10 (+40) Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none MUCL43205 ROC single spore this study Canada, Québec, Terrebonne GINCO (Y Dalpé, S Seguin)
SSU-ITS-LSU FR750108 HS058-11 Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none MUCL43205 ROC single spore this study Canada, Québec, Terrebonne GINCO (Y Dalpé, S Seguin)
SSU-ITS-LSU FR750109 HS058-12 Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none MUCL43205 ROC single spore this study Canada, Québec, Terrebonne GINCO (Y Dalpé, S Seguin)
SSU-ITS-LSU FR750110 HS058-13 Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none MUCL43205 ROC single spore this study Canada, Québec, Terrebonne GINCO (Y Dalpé, S Seguin)
SSU-ITS-LSU FR750111 HS058-15 Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none MUCL43205 ROC single spore this study Canada, Québec, Terrebonne GINCO (Y Dalpé, S Seguin)
SSU-ITS-LSU FR750112 HS058-2 Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none MUCL43205 ROC single spore this study Canada, Québec, Terrebonne GINCO (Y Dalpé, S Seguin)
SSU-ITS-LSU FR750113 HS058-27 Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none MUCL43205 ROC single spore this study Canada, Québec, Terrebonne GINCO (Y Dalpé, S Seguin)
SSU-ITS-LSU FR750114 HS058-30 Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none MUCL43205 ROC single spore this study Canada, Québec, Terrebonne GINCO (Y Dalpé, S Seguin)
SSU-ITS-LSU FR750115 HS058-38 Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none MUCL43205 ROC single spore this study Canada, Québec, Terrebonne GINCO (Y Dalpé, S Seguin)
SSU-ITS-LSU FR750116 HS058-6 (+29) Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none MUCL43205 ROC single spore this study Canada, Québec, Terrebonne GINCO (Y Dalpé, S Seguin)
SSU-ITS-LSU FR750117 HS058-7 Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none MUCL43205 ROC single spore this study Canada, Québec, Terrebonne GINCO (Y Dalpé, S Seguin)
SSU-ITS-LSU FR750089 HS050-25 Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none MUCL46240 ROC single spore this study Canada, Québec, Buckingham GINCO (Y Dalpé, S Seguin)
SSU-ITS-LSU FR750088 HS050-1 Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none MUCL46240 ROC single spore this study Canada, Québec, Buckingham GINCO (Y Dalpé, S Seguin)
SSU-ITS-LSU FR750090 HS050-30 Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none MUCL46240 ROC single spore this study Canada, Québec, Buckingham GINCO (Y Dalpé, S Seguin)
SSU-ITS-LSU FR750091 HS050-44 Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none MUCL46240 ROC single spore this study Canada, Québec, Buckingham GINCO (Y Dalpé, S Seguin)
SSU-ITS-LSU FR750101 HS057-14 (+19) Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none MUCL41833 single vesicle (spore?) from roo single spore this study Spain, Canary Islands GINCO
SSU-ITS-LSU FR750102 HS057-17 Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none MUCL41833 single vesicle (spore?) from roo single spore this study Spain, Canary Islands GINCO
SSU-ITS-LSU FR750103 HS057-23 Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none MUCL41833 single vesicle (spore?) from roo single spore this study Spain, Canary Islands GINCO
SSU-ITS-LSU FR750104 HS057-24 Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none MUCL41833 single vesicle (spore?) from roo single spore this study Spain, Canary Islands GINCO
SSU-ITS-LSU FR750105 HS057-39 Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none MUCL41833 single vesicle (spore?) from roo single spore this study Spain, Canary Islands GINCO
SSU-ITS-LSU FR750191 MK108-1 Rhizophagus irregularis (Glomus irregulare none none soil trap single spore this study Poland, location unknown J Błaszkowsky
SSU-ITS-LSU FR750192 MK108-10 Rhizophagus irregularis (Glomus irregulare none none soil trap single spore this study Poland, location unknown J Błaszkowsky
SSU-ITS-LSU FR750193 MK108-2 Rhizophagus irregularis (Glomus irregulare none none soil trap single spore this study Poland, location unknown J Błaszkowsky
SSU-ITS-LSU FR750194 MK108-3 Rhizophagus irregularis (Glomus irregulare none none soil trap single spore this study Poland, location unknown J Błaszkowsky
SSU-ITS-LSU FR750195 MK108-4 Rhizophagus irregularis (Glomus irregulare none none soil trap single spore this study Poland, location unknown J Błaszkowsky
SSU-ITS-LSU FR750196 MK108-5 Rhizophagus irregularis (Glomus irregulare none none soil trap single spore this study Poland, location unknown J Błaszkowsky
SSU-ITS-LSU FR750197 MK108-6 Rhizophagus irregularis (Glomus irregulare none none soil trap single spore this study Poland, location unknown J Błaszkowsky
SSU-ITS-LSU FR750198 MK108-7 Rhizophagus irregularis (Glomus irregulare none none soil trap single spore this study Poland, location unknown J Błaszkowsky
SSU-ITS-LSU FR750199 MK108-8 Rhizophagus irregularis (Glomus irregulare none none soil trap single spore this study Poland, location unknown J Błaszkowsky
SSU-ITS-LSU FR750200 MK108-9 Rhizophagus irregularis (Glomus irregulare none none soil trap single spore this study Poland, location unknown J Błaszkowsky
SSU-ITS-LSU FR750186 MK100-1 Rhizophagus irregularis (Glomus irregulare Att857-12 W4682 WUM38 single spore (= isolate single spore this study Australia, Argyle K. Clarke
SSU-ITS-LSU FR750187 MK100-2 (+3+6) Rhizophagus irregularis (Glomus irregulare Att857-12 W4682 WUM38 single spore (= isolate single spore this study Australia, Argyle K. Clarke
SSU-ITS-LSU FR750188 MK100-4 Rhizophagus irregularis (Glomus irregulare Att857-12 W4682 WUM38 single spore (= isolate single spore this study Australia, Argyle K. Clarke
SSU-ITS-LSU FR750189 MK100-5 Rhizophagus irregularis (Glomus irregulare Att857-12 W4682 WUM38 single spore (= isolate single spore this study Australia, Argyle K. Clarke
SSU-ITS-LSU FR750190 MK100-7 Rhizophagus irregularis (Glomus irregulare Att857-12 W4682 WUM38 single spore (= isolate single spore this study Australia, Argyle K. Clarke
SSU-ITS-LSU FR750064 HS027-1 Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none DAOM197198 (=DAOM181602, =MUCL43194) multispore ROC single spore this study Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FR750065 HS027-18 Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none DAOM197198 (=DAOM181602, =MUCL43194) multispore ROC single spore this study Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FR750066 HS027-2 Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none DAOM197198 (=DAOM181602, =MUCL43194) multispore ROC single spore this study Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FR750067 HS027-21 Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none DAOM197198 (=DAOM181602, =MUCL43194) multispore ROC single spore this study Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FR750068 HS027-24 Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none DAOM197198 (=DAOM181602, =MUCL43194) multispore ROC single spore this study Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FR750069 HS027-27 Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none DAOM197198 (=DAOM181602, =MUCL43194) multispore ROC single spore this study Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FR750070 HS027-6 Rhizophagus irregularis (Glomus irregulare none (material from GINCO) none DAOM197198 (=DAOM181602, =MUCL43194) multispore ROC single spore this study Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FM865550 HS059-1 Rhizophagus irregularis (Glomus irregulare Att1192-44 W5533 DAOM197198 (=DAOM181602, =MUCL43194) ROC single spore Stockinger et al. 2009 Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FM865551 HS059-12 Rhizophagus irregularis (Glomus irregulare Att1192-44 W5533 DAOM197198 (=DAOM181602, =MUCL43194) ROC single spore Stockinger et al. 2009 Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FM865552 HS059-20 Rhizophagus irregularis (Glomus irregulare Att1192-44 W5533 DAOM197198 (=DAOM181602, =MUCL43194) ROC single spore Stockinger et al. 2009 Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FM865553 HS059-23 Rhizophagus irregularis (Glomus irregulare Att1192-44 W5533 DAOM197198 (=DAOM181602, =MUCL43194) ROC single spore Stockinger et al. 2009 Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FM865554 HS059-2 Rhizophagus irregularis (Glomus irregulare Att1192-44 W5533 DAOM197198 (=DAOM181602, =MUCL43194) ROC single spore Stockinger et al. 2009 Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FM865555 HS059-38 Rhizophagus irregularis (Glomus irregulare Att1192-44 W5533 DAOM197198 (=DAOM181602, =MUCL43194) ROC single spore Stockinger et al. 2009 Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FM865556 HS059-47 Rhizophagus irregularis (Glomus irregulare Att1192-44 W5533 DAOM197198 (=DAOM181602, =MUCL43194) ROC single spore Stockinger et al. 2009 Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FM865557 HS059-7 Rhizophagus irregularis (Glomus irregulare Att1192-44 W5533 DAOM197198 (=DAOM181602, =MUCL43194) ROC single spore Stockinger et al. 2009 Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FM865558 HS059-9 Rhizophagus irregularis (Glomus irregulare Att1192-44 W5533 DAOM197198 (=DAOM181602, =MUCL43194) ROC single spore Stockinger et al. 2009 Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FM865608 MK009-1 Rhizophagus irregularis (Glomus irregulare Att1192-53 W3182 DAOM197198 (=DAOM181602, =MUCL43194) ROC single spore Stockinger et al. 2009 Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FM865609 MK009-3 Rhizophagus irregularis (Glomus irregulare Att1192-53 W3182 DAOM197198 (=DAOM181602, =MUCL43194) ROC single spore Stockinger et al. 2009 Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FM865610 MK009-4 Rhizophagus irregularis (Glomus irregulare Att1192-53 W3182 DAOM197198 (=DAOM181602, =MUCL43194) ROC single spore Stockinger et al. 2009 Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FM865611 MK041-10 Rhizophagus irregularis (Glomus irregulare Att1192-27 W5495 DAOM197198 (=DAOM181602, =MUCL43194) ROC multi spores (3) Stockinger et al. 2009 Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FM865612 MK041-20 Rhizophagus irregularis (Glomus irregulare Att1192-27 W5495 DAOM197198 (=DAOM181602, =MUCL43194) ROC multi spores (3) Stockinger et al. 2009 Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FM865613 MK041-23 Rhizophagus irregularis (Glomus irregulare Att1192-27 W5495 DAOM197198 (=DAOM181602, =MUCL43194) ROC multi spores (3) Stockinger et al. 2009 Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FM865614 MK041-24 Rhizophagus irregularis (Glomus irregulare Att1192-27 W5495 DAOM197198 (=DAOM181602, =MUCL43194) ROC multi spores (3) Stockinger et al. 2009 Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FM865615 MK041-7 Rhizophagus irregularis (Glomus irregulare Att1192-27 W5495 DAOM197198 (=DAOM181602, =MUCL43194) ROC multi spores (3) Stockinger et al. 2009 Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FM865616 MK041-9 Rhizophagus irregularis (Glomus irregulare Att1192-27 W5495 DAOM197198 (=DAOM181602, =MUCL43194) ROC multi spores (3) Stockinger et al. 2009 Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FM865617 MK041-21 Rhizophagus irregularis (Glomus irregulare Att1192-27 W5495 DAOM197198 (=DAOM181602, =MUCL43194) ROC multi spores (3) Stockinger et al. 2009 Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FM992377 HS111-8 Rhizophagus irregularis (Glomus irregulare Att690-23 W5499 DAOM197198 (=DAOM181602, =MUCL43194) root fragment single spore Stockinger et al. 2009 Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FM992378 HS111-20 Rhizophagus irregularis (Glomus irregulare Att690-23 W5499 DAOM197198 (=DAOM181602, =MUCL43194) root fragment single spore Stockinger et al. 2009 Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FM992379 HS111-22 Rhizophagus irregularis (Glomus irregulare Att690-23 W5499 DAOM197198 (=DAOM181602, =MUCL43194) root fragment single spore Stockinger et al. 2009 Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FM992380 HS111-44 Rhizophagus irregularis (Glomus irregulare Att690-23 W5499 DAOM197198 (=DAOM181602, =MUCL43194) root fragment single spore Stockinger et al. 2009 Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FM992381 HS111-21 Rhizophagus irregularis (Glomus irregulare Att690-23 W5499 DAOM197198 (=DAOM181602, =MUCL43194) root fragment single spore Stockinger et al. 2009 Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FM992382 HS111-6 Rhizophagus irregularis (Glomus irregulare Att690-23 W5499 DAOM197198 (=DAOM181602, =MUCL43194) root fragment single spore Stockinger et al. 2009 Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FM992383 HS111-48 Rhizophagus irregularis (Glomus irregulare Att690-23 W5499 DAOM197198 (=DAOM181602, =MUCL43194) root fragment single spore Stockinger et al. 2009 Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FM992384 HS111-16 Rhizophagus irregularis (Glomus irregulare Att690-23 W5499 DAOM197198 (=DAOM181602, =MUCL43194) root fragment single spore Stockinger et al. 2009 Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FM992385 HS111-7 Rhizophagus irregularis (Glomus irregulare Att690-23 W5499 DAOM197198 (=DAOM181602, =MUCL43194) root fragment single spore Stockinger et al. 2009 Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FM992386 HS111-43 Rhizophagus irregularis (Glomus irregulare Att690-23 W5499 DAOM197198 (=DAOM181602, =MUCL43194) root fragment single spore Stockinger et al. 2009 Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU-ITS-LSU FM992387 HS111-41 Rhizophagus irregularis (Glomus irregulare Att690-23 W5499 DAOM197198 (=DAOM181602, =MUCL43194) root fragment single spore Stockinger et al. 2009 Canada, Québec, Pont Rouge GINCO (C Plenchette, V Furlan)
SSU Y17648 WD113–4-1 Rhizophagus manihotis (Glomus manihotis ex-type Att575–9 W3224 CIAT C-1-1 multispore single spore Schüßler et al. 2001 Colombia, Cauca, Santander de Quilachao R Howeler
SSU FR773146 WD82_2_1 Rhizophagus manihotis (Glomus manihotis Att1597-10 W3095 FL879-6 pot culture (details unknown) single spore this study USA, Florida, White Springs D Sylvia
SSU FR773147 WD82_2_2 Rhizophagus manihotis (Glomus manihotis Att1597-10 W3095 FL879-6 pot culture (details unknown) single spore this study USA, Florida, White Springs D Sylvia
SSU Y17638 TR31-11 Rhizophagus manihotis (Glomus manihotis none (material from INVAM) none FL879-3 pot culture (details unknown) single spore Schüßler et al. 2001 USA, Florida, White Springs D Sylvia
SSU-ITS-LSU FN547500 HS113-5 Rhizophagus proliferus (Glomus proliferum ex-type none (material fom GINCO) none DAOM226389 (=MUCL41827) root fragment ROC single spore Stockinger et al. 2010 Guadeloupe, Capastere-Bel-Eau, Neufchatea J Risède
SSU-ITS-LSU FN547501 HS113-36 Rhizophagus proliferus (Glomus proliferum ex-type none (material fom GINCO) none DAOM226389 (=MUCL41827) root fragment ROC single spore Stockinger et al. 2010 Guadeloupe, Capastere-Bel-Eau, Neufchatea J Risède
SSU-ITS-LSU FM992388 HS113-1 Rhizophagus proliferus (Glomus proliferum ex-type none (material fom GINCO) none DAOM226389 (=MUCL41827) root fragment ROC single spore Stockinger et al. 2009 Guadeloupe, Capastere-Bel-Eau, Neufchatea J Risède
SSU-ITS-LSU FM992389 HS113-14 Rhizophagus proliferus (Glomus proliferum ex-type none (material fom GINCO) none DAOM226389 (=MUCL41827) root fragment ROC single spore Stockinger et al. 2009 Guadeloupe, Capastere-Bel-Eau, Neufchatea J Risède
SSU-ITS-LSU FM992390 HS113-17 Rhizophagus proliferus (Glomus proliferum ex-type none (material fom GINCO) none DAOM226389 (=MUCL41827) root fragment ROC single spore Stockinger et al. 2009 Guadeloupe, Capastere-Bel-Eau, Neufchatea J Risède
SSU-ITS-LSU FM992391 HS113-2 Rhizophagus proliferus (Glomus proliferum ex-type none (material fom GINCO) none DAOM226389 (=MUCL41827) root fragment ROC single spore Stockinger et al. 2009 Guadeloupe, Capastere-Bel-Eau, Neufchatea J Risède
SSU-ITS-LSU FM992392 HS113-20 Rhizophagus proliferus (Glomus proliferum ex-type none (material fom GINCO) none DAOM226389 (=MUCL41827) root fragment ROC single spore Stockinger et al. 2009 Guadeloupe, Capastere-Bel-Eau, Neufchatea J Risède
SSU-ITS-LSU FM992393 HS113-21 Rhizophagus proliferus (Glomus proliferum ex-type none (material fom GINCO) none DAOM226389 (=MUCL41827) root fragment ROC single spore Stockinger et al. 2009 Guadeloupe, Capastere-Bel-Eau, Neufchatea J Risède
SSU-ITS-LSU FM992394 HS113-25 Rhizophagus proliferus (Glomus proliferum ex-type none (material fom GINCO) none DAOM226389 (=MUCL41827) root fragment ROC single spore Stockinger et al. 2009 Guadeloupe, Capastere-Bel-Eau, Neufchatea J Risède
SSU-ITS-LSU FM992395 HS113-26 Rhizophagus proliferus (Glomus proliferum ex-type none (material fom GINCO) none DAOM226389 (=MUCL41827) root fragment ROC single spore Stockinger et al. 2009 Guadeloupe, Capastere-Bel-Eau, Neufchatea J Risède
SSU-ITS-LSU FM992396 HS113-27 Rhizophagus proliferus (Glomus proliferum ex-type none (material fom GINCO) none DAOM226389 (=MUCL41827) root fragment ROC single spore Stockinger et al. 2009 Guadeloupe, Capastere-Bel-Eau, Neufchatea J Risède
SSU-ITS-LSU FM992397 HS113-29 Rhizophagus proliferus (Glomus proliferum ex-type none (material fom GINCO) none DAOM226389 (=MUCL41827) root fragment ROC single spore Stockinger et al. 2009 Guadeloupe, Capastere-Bel-Eau, Neufchatea J Risède
SSU-ITS-LSU FM992398 HS113-33 Rhizophagus proliferus (Glomus proliferum ex-type none (material fom GINCO) none DAOM226389 (=MUCL41827) root fragment ROC single spore Stockinger et al. 2009 Guadeloupe, Capastere-Bel-Eau, Neufchatea J Risède
SSU-ITS-LSU FM992399 HS113-8 Rhizophagus proliferus (Glomus proliferum ex-type none (material fom GINCO) none DAOM226389 (=MUCL41827) root fragment ROC single spore Stockinger et al. 2009 Guadeloupe, Capastere-Bel-Eau, Neufchatea J Risède
SSU-ITS-LSU FM992400 HS116-IIC4 Rhizophagus proliferus (Glomus proliferum ex-type none (material fom GINCO) none DAOM226389 (=MUCL41827) root fragment ROC multi spores (10) Stockinger et al. 2009 Guadeloupe, Capastere-Bel-Eau, Neufchatea J Risède
SSU-ITS-LSU FM992401 HS116-IIC6 Rhizophagus proliferus (Glomus proliferum ex-type none (material fom GINCO) none DAOM226389 (=MUCL41827) root fragment ROC multi spores (10) Stockinger et al. 2009 Guadeloupe, Capastere-Bel-Eau, Neufchatea J Risède
SSU-ITS-LSU FM992402 HS117-IID Rhizophagus proliferus (Glomus proliferum ex-type none (material fom GINCO) none DAOM226389 (=MUCL41827) root fragment ROC multi spores (10) Stockinger et al. 2009 Guadeloupe, Capastere-Bel-Eau, Neufchatea J Risède
SSU FR750373 WD194-1-1 Rhizophagus sp. none W3563 field collected spores single spore this study Uganda, Kigeza, Kisoro T Pettitt
SSU-ITS-LSU FR750092 HS055-34 Rhizophagus sp. (Glomus cerebriforme, but questionable determination none (material fom GINCO) none DAOM227022 (=MUCL43208) ROC single spore this study Canada, Québec, Lotbinière GINCO (Y Dalpé, S Seguin)
SSU-ITS-LSU FR750093 HS055-39 Rhizophagus sp. (Glomus cerebriforme, but questionable determination none (material fom GINCO) none DAOM227022 (=MUCL43208) ROC single spore this study Canada, Québec, Lotbinière GINCO (Y Dalpé, S Seguin)
SSU-ITS-LSU FR750094 HS055-43 Rhizophagus sp. (Glomus cerebriforme, but questionable determination none (material fom GINCO) none DAOM227022 (=MUCL43208) ROC single spore this study Canada, Québec, Lotbinière GINCO (Y Dalpé, S Seguin)
SSU-ITS-LSU FR750095 HS055-47 Rhizophagus sp. (Glomus cerebriforme, but questionable determination none (material fom GINCO) none DAOM227022 (=MUCL43208) ROC single spore this study Canada, Québec, Lotbinière GINCO (Y Dalpé, S Seguin)
SSU-ITS-LSU FR750071 HS033-11 Rhizophagus sp. (Glomus sp.) none (material from GINCO) none MUCL46100 ROC (unknown if isolate) single spore this study Unknown GINCO (Strullu)
SSU-ITS-LSU FR750072 HS033-2 Rhizophagus sp. (Glomus sp.) none (material from GINCO) none MUCL46100 ROC (unknown if isolate) single spore this study Unknown GINCO (Strullu)
SSU-ITS-LSU FR750073 HS033-9 Rhizophagus sp. (Glomus sp.) none (material from GINCO) none MUCL46100 ROC (unknown if isolate) single spore this study Unknown GINCO (Strullu)
SSU FR750374 WD193-2-3 Rhizophagus vesiculiferus (Glomus vesiculiferum Att14-8 W2857 plant trap single spore this study Canada, Quebec V Furlan
SSU AJ276092 WD66–5 Scutellospora aurigloba Att860-10 W3121 WUM53 multispore single spore Schüßler et al. 2001 Australia, Western Australia, Cape Jayasundra F
SSU AJ276093 WD66–26 Scutellospora aurigloba Att860-10 W3121 WUM53 multispore single spore Schüßler et al. 2001 Australia, Western Australia, Cape Jayasundra F



SSU AJ306443 WD153-1-1 Scutellospora calospora epitype predecessor Att333-17 W3290 BEG32 multispore single spore Schüßler et al. 2001 UK, Scotland, Midlothian C Walker
SSU AJ306445 WD162-1-5 Scutellospora calospora epitype predecessor Att333-17 W3290 BEG32 multispore single spore Schüßler et al. 2001 UK, Scotland, Midlothian C Walker
SSU AJ306446 WD162-1-6 Scutellospora calospora epitype predecessor Att333-17 W3290 BEG32 multispore single spore Schüßler et al. 2001 UK, Scotland, Midlothian C Walker
SSU AJ276094 WD140–3 Scutellospora gilmore Att590–1 W3085 from FCPC1145 single spore (= isolate single spore Schüßler et al. 2001 USA, Oregon, Newport I Ho
SSU FR773142 FD055 Scutellospora gilmore Att590-7 W3557 from FCPC1145 single spore (= isolate single spore this study USA, Oregon, Newport I Ho
SSU FR773143 FD088_2 Scutellospora gilmore Att590-7 W3557 from FCPC1145 single spore (= isolate single spore this study USA, Oregon, Newport I Ho
SSU-ITS-LSU FN547598 HS103-A3 Scutellospora gilmore Att590-16 W5342 from FCPC1145 single spore (= isolate single spore Stockinger et al. 2010 USA, Oregon, Newport I Ho
SSU-ITS-LSU FN547599 HS103-B3 Scutellospora gilmore Att590-16 W5342 from FCPC1145 single spore (= isolate single spore Stockinger et al. 2010 USA, Oregon, Newport I Ho
SSU-ITS-LSU FN547600 HS103-C3 Scutellospora gilmore Att590-16 W5342 from FCPC1145 single spore (= isolate single spore Stockinger et al. 2010 USA, Oregon, Newport I Ho
SSU-ITS-LSU FN547601 HS103-D3 Scutellospora gilmore Att590-16 W5342 from FCPC1145 single spore (= isolate single spore Stockinger et al. 2010 USA, Oregon, Newport I Ho
SSU-ITS-LSU FN547602 HS103-G2 Scutellospora gilmore Att590-16 W5342 from FCPC1145 single spore (= isolate single spore Stockinger et al. 2010 USA, Oregon, Newport I Ho
SSU-ITS-LSU FN547603 HS107-2 Scutellospora gilmore Att590-16 W5342 from FCPC1145 single spore (= isolate single spore Stockinger et al. 2010 USA, Oregon, Newport I Ho
SSU-ITS-LSU FN547604 HS107-9 Scutellospora gilmore Att590-16 W5342 from FCPC1145 single spore (= isolate single spore Stockinger et al. 2010 USA, Oregon, Newport I Ho
SSU-ITS-LSU FN547605 HS107-4 Scutellospora gilmore Att590-16 W5342 from FCPC1145 single spore (= isolate single spore Stockinger et al. 2010 USA, Oregon, Newport I Ho
SSU-ITS-LSU FN547606 HS107-32 Scutellospora gilmore Att590-16 W5342 from FCPC1145 single spore (= isolate single spore Stockinger et al. 2010 USA, Oregon, Newport I Ho
SSU-ITS-LSU FN547607 HS107-1 Scutellospora gilmore Att590-16 W5342 from FCPC1145 single spore (= isolate single spore Stockinger et al. 2010 USA, Oregon, Newport I Ho
SSU-ITS-LSU FN547608 HS107-10 Scutellospora gilmore Att590-16 W5342 from FCPC1145 single spore (= isolate single spore Stockinger et al. 2010 USA, Oregon, Newport I Ho
SSU-ITS-LSU FN547609 HS107-3 Scutellospora gilmore Att590-16 W5342 from FCPC1145 single spore (= isolate single spore Stockinger et al. 2010 USA, Oregon, Newport I Ho
SSU-ITS-LSU FN547610 HS107-30 Scutellospora gilmore Att590-16 W5342 from FCPC1145 single spore (= isolate single spore Stockinger et al. 2010 USA, Oregon, Newport I Ho
SSU-ITS-LSU FN547611 HS107-8 Scutellospora gilmore Att590-16 W5342 from FCPC1145 single spore (= isolate single spore Stockinger et al. 2010 USA, Oregon, Newport I Ho
SSU-ITS-LSU FN547612 HS107-22 Scutellospora gilmore Att590-16 W5342 from FCPC1145 single spore (= isolate single spore Stockinger et al. 2010 USA, Oregon, Newport I Ho
SSU-ITS-LSU FN547613 HS107-26 Scutellospora gilmore Att590-16 W5342 from FCPC1145 single spore (= isolate single spore Stockinger et al. 2010 USA, Oregon, Newport I Ho
SSU-ITS-LSU FN547614 HS107-27 Scutellospora gilmore Att590-16 W5342 from FCPC1145 single spore (= isolate single spore Stockinger et al. 2010 USA, Oregon, Newport I Ho
SSU-ITS-LSU FN547615 HS107-28 Scutellospora gilmore Att590-16 W5342 from FCPC1145 single spore (= isolate single spore Stockinger et al. 2010 USA, Oregon, Newport I Ho
SSU-ITS-LSU FN547616 HS107-11 Scutellospora gilmore Att590-16 W5342 from FCPC1145 single spore (= isolate single spore Stockinger et al. 2010 USA, Oregon, Newport I Ho
SSU-ITS-LSU FN547617 HS107-13 Scutellospora gilmore Att590-16 W5342 from FCPC1145 single spore (= isolate single spore Stockinger et al. 2010 USA, Oregon, Newport I Ho
SSU-ITS-LSU FN547618 HS107-14 Scutellospora gilmore Att590-16 W5342 from FCPC1145 single spore (= isolate single spore Stockinger et al. 2010 USA, Oregon, Newport I Ho
SSU-ITS-LSU FN547619 HS107-17 Scutellospora gilmore Att590-16 W5342 from FCPC1145 single spore (= isolate single spore Stockinger et al. 2010 USA, Oregon, Newport I Ho
SSU-ITS-LSU FN547620 HS107-29 Scutellospora gilmore Att590-16 W5342 from FCPC1145 single spore (= isolate single spore Stockinger et al. 2010 USA, Oregon, Newport I Ho
SSU-ITS-LSU FN547621 HS107-20 Scutellospora gilmore Att590-16 W5342 from FCPC1145 single spore (= isolate single spore Stockinger et al. 2010 USA, Oregon, Newport I Ho
SSU-ITS-LSU FN547622 HS107-21 Scutellospora gilmore Att590-16 W5342 from FCPC1145 single spore (= isolate single spore Stockinger et al. 2010 USA, Oregon, Newport I Ho
SSU AJ306434 WD163-2-6 Scutellospora heterogama Att334-16 W3214 BEG35 pot culture (details unknown) single spore Schüßler et al. 2001 Unknown, probably USA Unknown collector
SSU-ITS-LSU FM876837 MK029-3 Scutellospora heterogama Att334-16 W3214 BEG35 pot culture (details unknown) single spore Krüger et al. 2009 Unknown, probably USA Unknown collector
SSU-ITS-LSU FM876838 MK029-5 Scutellospora heterogama Att334-16 W3214 BEG35 pot culture (details unknown) single spore Krüger et al. 2009 Unknown, probably USA Unknown collector
SSU-ITS-LSU FM876839 MK029-4 Scutellospora heterogama Att334-16 W3214 BEG35 pot culture (details unknown) single spore Krüger et al. 2009 Unknown, probably USA Unknown collector
SSU FR774917 FD121-5 Scutellospora heterogama Att1283-1 W4733 Goldsboro 2003-38 multispore single spore this study USA, North Carolina, Goldsboro D Watson
SSU-ITS-LSU FR750158 MK075-1 Scutellospora heterogama Att1283-1 W4733 Goldsboro 2003-38 multispore single spore this study USA, North Carolina, Goldsboro D Watson
SSU-ITS-LSU FR750159 MK075-2 Scutellospora heterogama Att1283-1 W4733 Goldsboro 2003-38 multispore single spore this study USA, North Carolina, Goldsboro D Watson
SSU-ITS-LSU FR750160 MK075-5 Scutellospora heterogama Att1283-1 W4733 Goldsboro 2003-38 multispore single spore this study USA, North Carolina, Goldsboro D Watson
SSU-ITS-LSU FR750161 MK076-1 Scutellospora heterogama Att1283-1 W4733 Goldsboro 2003-38 multispore single spore this study USA, North Carolina, Goldsboro D Watson
SSU-ITS-LSU FR750162 MK076-2 Scutellospora heterogama Att1283-1 W4733 Goldsboro 2003-38 multispore single spore this study USA, North Carolina, Goldsboro D Watson
SSU-ITS-LSU FR750163 MK076-4 Scutellospora heterogama Att1283-1 W4733 Goldsboro 2003-38 multispore single spore this study USA, North Carolina, Goldsboro D Watson
SSU-ITS-LSU FR750164 MK076-5 Scutellospora heterogama Att1283-1 W4733 Goldsboro 2003-38 multispore single spore this study USA, North Carolina, Goldsboro D Watson
SSU-ITS-LSU FR750165 MK076-6 Scutellospora heterogama Att1283-1 W4733 Goldsboro 2003-38 multispore single spore this study USA, North Carolina, Goldsboro D Watson
SSU-ITS-LSU FR750166 MK076-7 Scutellospora heterogama Att1283-1 W4733 Goldsboro 2003-38 multispore single spore this study USA, North Carolina, Goldsboro D Watson
SSU-ITS-LSU FR750167 MK076-8 Scutellospora heterogama Att1283-1 W4733 Goldsboro 2003-38 multispore single spore this study USA, North Carolina, Goldsboro D Watson
SSU-ITS-LSU FR750012 CK066-1(+7+13) Scutellospora heterogama Att1577-4 W5611 FL654 pot culture (details unknown) single spore this study USA, Florida A Adholeya
SSU-ITS-LSU FR750013 CK066-2(+9) Scutellospora heterogama Att1577-4 W5611 FL654 pot culture (details unknown) single spore this study USA, Florida A Adholeya
SSU-ITS-LSU FR750014 CK066-3(+4) Scutellospora heterogama Att1577-4 W5611 FL654 pot culture (details unknown) single spore this study USA, Florida A Adholeya
SSU-ITS-LSU FR750015 CK066-5 Scutellospora heterogama Att1577-4 W5611 FL654 pot culture (details unknown) single spore this study USA, Florida A Adholeya
SSU-ITS-LSU FR750016 CK066-6(+8+10+11) Scutellospora heterogama Att1577-4 W5611 FL654 pot culture (details unknown) single spore this study USA, Florida A Adholeya
SSU-ITS-LSU FR750017 CK067-1(+2) Scutellospora heterogama Att1577-4 W5611 FL654 pot culture (details unknown) single spore this study USA, Florida A Adholeya
SSU-ITS-LSU FR750018 CK067-3 Scutellospora heterogama Att1577-4 W5611 FL654 pot culture (details unknown) single spore this study USA, Florida A Adholeya
SSU-ITS-LSU FR750019 CK067-4 Scutellospora heterogama Att1577-4 W5611 FL654 pot culture (details unknown) single spore this study USA, Florida A Adholeya
SSU AJ306436 WD188-2-3 Scutellospora nodosa ex-epitype Att209-44 W3485 BEG4 single spore (= isolate single spore Schüßler et al. 2001 UK, Northumberland, Kielder C Walker
SSU-ITS-LSU FM876833 MK008-1 Scutellospora nodosa ex-epitype Att209-44 W3485 BEG4 single spore (= isolate single spore Krüger et al. 2009 UK, Northumberland, Kielder C Walker
SSU-ITS-LSU FM876834 MK008-2 Scutellospora nodosa ex-epitype Att209-44 W3485 BEG4 single spore (= isolate single spore Krüger et al. 2009 UK, Northumberland, Kielder C Walker
SSU-ITS-LSU FM876835 MK008-4 Scutellospora nodosa ex-epitype Att209-44 W3485 BEG4 single spore (= isolate single spore Krüger et al. 2009 UK, Northumberland, Kielder C Walker
SSU-ITS-LSU FM876836 MK008-5 Scutellospora nodosa ex-epitype Att209-44 W3485 BEG4 single spore (= isolate single spore Krüger et al. 2009 UK, Northumberland, Kielder C Walker
SSU FR750215 FD142-4 Scutellospora pellucida Att1295-9 W4761 CL750A (from CIAT, Colombia) pot culture (details unknown) single spore this study Colombia, Timbio, Cauca E Sieverding
SSU AJ306437 WD186-1-2 Scutellospora spinosissima isotype Att664-1 W3009 soil trap single spore Schüßler et al. 2001 Venezuela, Bolivar, Iboribó G Cuenca
SSU-ITS-LSU FR750149 MK024-1(+2+4+5) Scutellospora spinosissima isotype Att664-1 W3009 soil trap single spore this study Venezuela, Bolivar, Iboribó G Cuenca
SSU-ITS-LSU FR750150 MK024-3(+6+8) Scutellospora spinosissima isotype Att664-1 W3009 soil trap single spore this study Venezuela, Bolivar, Iboribó G Cuenca
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Supporting Information S3 - Consensus sequences used for Fig. 1. 

1: AJ306442, FM876788-91; 2: AJ306441, FM876792-93; 3: FR750204, FR750151-56; 4: AJ250847, 
AJ242499, FJ461802; 5: FN825898-912; 6: FR719957, AJ891110-13, AJ510230; 7: AJ276077-78, 
FN547637-54, Y17649-50, FR686953,54; 8: AJ849468, AM713432, EF581860,62,63,80-83, FN547655-
65; 9: AM713417-22, AM713402-04, AY639233-35, AY639306, EF581869-72; 10: AM713405-
16,29-31, EF067886-88, EF581877-79; 11: AJ132666, AJ276088, AM947665, 
AY842567-69,73-74,FJ461852,FM876814-20,FN547635-36,66-81, FR686938, FR686942, X86687, 
Y17651; 12: AJ306434, FM876837-39; 13: AY635832, AY997088, DQ273792; 14: AJ276090, 
FM876799-803; 15: X58726, AJ410746-47, FN547571-97, FR750174-85; 16: FM876833-36, AJ306436; 
17: AF038590, AJ002874, AJ313169-75, FJ461867, FN423706-07, U31997-98, Y12076; 18: AJ306437, 
FR750149-50; 19: FM876831-32, AJ619952-55; 20: AJ301857, FR750201-03; 21: FR750531-44, 
FR750376; 22: FR750526-30, FR750363-71, FR772325; 23: AY635833, AY997053, DQ273793; 24: 
FN423694,95, FN547474-76, FN547482-93, U31995,96, U96139, X84232,33; 25: FR773144+45, 
FM876794-98; 26: AJ301864-65, FM876813, FN547477-81; 27: AF145745, AJ301853, FN423698-99, 
FN547494-99, Y17635; 28: FR750222, FR750228, FR750078-82; 29: AY635831, AY997052, 
DQ273790; 30: DQ322630, AY997054, DQ273828; 31: AF213462, AJ973393, FM992388-402, 
FN547500-01, GQ205077-79; 32: AF185661-68, AM980860-63, FM865559-79, FM865597-607, 
FR750205-11; 33: AJ437105-06, AJ133706, FJ461846; 34: AJ301856, FM876804-07; 35: AJ276089, 
U36591, Y17645, FM876808-12; 36: FN547535-46, FR750157, AM268192-203; 37: AM183923, 
AM183920, X86686, Y17831, Y15904-05, AJ276074, FM876840-44; 38: FR773150, FR750020-23; 39: 
DQ322629, AY997069, DQ273827. 
 
Supporting Information S4 - Consensus sequences used for Fig. 2. 

1: AJ306434, FM876837-39; 2: FR774917, FR750158-67; 3: AY635832, AY997088, DQ273792; 4: 
AB041344-45, AB048683-90; 5: AJ871270-73; 6: AJ132662-63, AJ504639, Y12075, Y17647, 
AJ410748-50; 7: AJ276091, AJ539263; 8: X58726, AJ410746-47, FN547571-97, FR750174-85; 9: 
AJ276090, FM876799-803; 10: Y17646, AF001053, AJ852011, FN547547-70; 11: FM876833-36, 
AJ306436; 12: AJ276094, FR773142-43, FN547598-622; 13: AJ871274-75; 14: AJ306444, FR750134-
35; 15: AF038590, AJ002874, AJ313169-75, FJ461867, FN423706-07, U31997-98, Y12076; 16: 
AJ306435, FR750136-48; 17: AJ306437, FR750149-50; 18: AJ306443, AJ306445-46, AJ510231; 19: 
AJ276092, AJ276093; 20: AJ619940-43; 21: AJ619944-47; 22: AJ619948-51; 23: FM876831-32, 
AJ619952-55; 24: AM713423-25, AY639225-32, EF581865-68; 25: AM713417-22, AM713402-04, 
AY639233-35, AY639306, EF581869-72; 26: AM713426-28, AY639236-41, EF581873-76; 27: 
AM713405-16, AM713429-31, EF067886-88, EF581877-79; 28: AJ301863, AJ276076, Y17644, 
AJ301860; 29: AM400229, AM905318; 30: AJ849468, AM713432, EF581860,62-63,80-83, FN547655-
65; 31: AJ276077-78, FN547637-54, Y17649-50, FR686953, FR686954; 32: AJ132666, AJ276088, 
AM947665, AY842567-69,73-74, FJ461852, FM876814-20, FN547635-36,66-81, FR686938, FR686942, 
X86687, Y17651; 33: FR686956, FR686957; 34: AM418543-44; 35: AJ306442, FM876788-91; 36: 
AJ306441, FM876792-93; 37: FR750204, FR750151-56; 38: FR719957, AJ891110-13, AJ510230; 39: 
AJ250847, AJ242499, FJ461802; 40: FR750214, FN547502-06, FN547517; 41: FN825898-912; 42: 
U96140, X96826-28, AM423116-19, AF145735; 43: AY635833, AY997053, DQ273793; 44: FN423694-
95, FN547474-76, FN547482-93, FR750227, U31995-96, U96139, X84232-33; 45: AJ919277-78, 
Z14007; 46: AJ132664, Y17643, AJ245637; 47: AJ301864-65, FM876813, FN547477-81; 48: AF145745, 
AJ301853, FN423698-99, FN547494-99, Y17635; 49: Y17653, AJ301854; 50: FR773144-45, 
FM876794-98; 51: HM153415-19; 52: FR750531-44, FR750376; 53: FR750526-30, FR750363-71, 
FR772325; 54: AJ301857, FR750201-03; 55: AY635831, AY997052, DQ273790; 56: FR750222, 
FR750228, FR750078-82; 57: FJ009605-10, FJ009612-18; 58: DQ322630, AY997054, DQ273828; 59: 
AF185661-68, AM980860-63, FM865559-87, FM865597-607, FR750205-11; 60: AF213462, AJ973393, 
FM992388-402, FN547500-01, GQ205077-79; 61: FR773148-49; 62: FR773146-47, U36590, Y17638, 
FJ461842; 63: AJ437105-06, AJ133706, FJ461846; 64: GU059534-43; 65: HM153420-24; 66: Y17639, 
Z14008, AJ239125; 67: FR773151, 52, AJ276087; 68: AJ276079, Y17641; 69: AJ301851-52, AJ276075, 
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Y17636, AF235007; 70: Y17642, AJ276080; 71: AJ276089, U36591, Y17645, FM876808-12; 72: 
AJ301856, FM876804-07; 73: AJ006793, AJ012201; 74: AJ301861, AJ006466, AJ006794-97, 
AJ012109-10; 75: AB047302-04, AB015052, AB048630-55; 76: AB047305-07, AB048656-70; 77: 
AB047308-09, AB048671-82; 78: FN547535-46, AM268192-93, AM268195-203, FR750157; 79: 
FN820272-74, FN820272-75; 80: AM183923, AM183920, AM268204, X86686, Y17831, Y15904-05, 
AJ276074, FM876840-44; 81: AJ006801, AJ243419; 82: AJ006800, AJ243420; 83: FR773150, 
FR750020-23; 84: Y17634, AM114274; 85: AJ012203, AJ012112; 86: DQ322629, AY997069, 
DQ273827. 
 

Supporting Information S5 - Consensus sequences used for Fig. 3. 

1: AJ006793, AJ012201; 2: AJ301861, AJ006466, AJ006794-97, AJ012109-10; 3: AJ012111, 
AM743187, AJ510233; 4: AM183923, AM183920, AM268204; 5: AJ006800, AJ243420; 6: AJ006801, 
AJ243419; 7: AJ012203, AJ012112; 8: DQ322629, AY997069, DQ273827; 9: AJ006799, AJ012113.
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223. 
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together with A. Schüßler and H. Stockinger, and most of the newly published sequences were generated 
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conducted the phylogenetic analyses, and wrote the manuscript together with C. Walker and A. Schüßler. 

 

Schüßler A, Krüger M, Walker C. 2011. Revealing natural relationships among arbuscular mycorrhizal 

fungi: culture line BEG47 represents Diversispora epigaea, not Glomus versiforme. PLoS ONE 6: 

e23333.  
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