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Zusammenfassung 

Pycnogonida oder Meeresspinnen sind ausschließlich marine Arthropoden, welche in allen 

Weltmeeren zu finden sind: von den Polen zu den Tropen und von Gezeitenbereichen bis in 

die Tiefsee. Viele Studien über Pycnogoniden konzentrieren sich auf antarktische Regionen, 

da Pycnogonida dort eine erstaunliche Artenvielfalt aufweisen. Ziel der vorliegenden Arbeit 

ist es das Studiengebiet auf bis dato noch relativ unerforschte subantarktische Gebiete mit 

Fokus auf die chilenische Küste und die dazugehörigen Fjorden auszubreiten. Insgesamt sind 

40 Arten aus 9 der 11 Familien der Pycnogonida vertreten, und zwar: Ammotheidae, 

Colossendeidae, Callipallenidae, Nymphonidae, Pallenopsidae, Phoxichilidiidae, 

Pycnogonidae, Rhynchothoracidae und Austrodecidae. Die Tiere wurden detailliert mit dem 

Licht-, sowie dem Rasterelektronenmikroskop untersucht. Zur kompletten und aktualisierten 

Veranschaulichung der diagnostischen Merkmale der verschiedenen Arten werden zwei 

Bildatlanten (einer über antarktische und einer über chilenische/subantarktische) dargestellt 

und mit Ergebnissen früherer Literatur verglichen. Darüberhinaus sind die Angaben zu der 

geographischen Verbreitung der einzelnen Arten aktualisiert und zusammengefasst. 

Ein weiteres Ziel der vorliegenden Arbeit sind die molekularen Analysen eines Teils des 

mitochondrialen proteincodierenden Genes COI (cytochrome oxidase subunit 1) von 76 

chilenischen oder subantarktischen Pycnogonida, sowie die Gegenüberstellung molekularer 

und morphologischer Ergebnisse innerhalb eines integrativ-taxonomischen Ansatzes. Der 

phylogenetische Consensus-Baum zeigt 10 deutlich gut unterstützte Äste. Neben der 

Berechnung von intra- und interspezifischer Varianz wurden zur weiteren Überprüfung der 

Artgrenzen auch ein statistisches Parsimonie-Netzwerk sowie eine GMYC-Analyse 

herangezogen. Besonderer Fokus liegt hierbei auf 16 Tieren der Art Achelia assimilis 

(Haswell, 1885), welche sich in vier deutliche Unteräste untergliedern, die genau mit den 

verschiedenen geographischen Regionen korrespondieren. Da die morphologischen 

Unterschiede innerhalb der Variabilität liegen, wie sie in der Literatur für diese 

kosmopolitische Art beschrieben sind, repräsentieren die vier Unteräste von A. assimilis eher 

geographisch begrenzte Unterarten, bedingt durch die drastische Vereisung Patagoniens 

während des Känozoikums. 

Ein weiteres interessantes Beispiel, auf welches die integrative Taxonomie angewendet wird, 

stellt Pallenopsis patagonica (Hoek, 1881) dar. Diese Art gehört zu den taxonomisch 

problematischsten und variabelsten Pycnogonida-Arten der am südlichsten gelegenen Küsten 

Südamerikas sowie der Subantarktis und Antarktis. Neben detaillierten morphologischen 

Studien, welche auch wichtiges Typenmaterial von Hoek (1881) beinhalteten, wurde eine 
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phylogenetische Analyse von mitochondrialen COI-Sequenzen von 47 Pallenopsis- 

Exemplaren durchgeführt. Dabei können zwei größere Linien unterschieden werden, nämlich: 

die „Falkland“-Linie, zu welchem der ursprüngliche P. patagonica gehört, und die „Chile“ 

Linie, welcher als eine neue Art P. yepayekae Weis nov. spec., in Weis et al. accepted 

beschrieben wird. Zudem geben weitere Linien innerhalb des Pallenopsis-Komplexes einen 

Hinweis auf das mögliche Vorhandensein weiterer kryptischer Arten. 
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Summary 

Pycnogonids or sea spiders are exclusively marine arthropods found all over the ocean, from 

the poles to the tropics, and from littoral zones to abyssal depths. Many pycnogonid studies 

focus on the Antarctic area, since there they appear with remarkable species richness. The 

present study aims to extend the spectrum to hitherto relatively unexplored Subantarctic 

regions with special focus on the Chilean coast and inner fjords. Altogether 40 species from 9 

of the 11 pycnogonid families are represented, namely: Ammotheidae, Colossendeidae, 

Callipallenidae, Nymphonidae, Pallenopsidae, Phoxichilidiidae, Pycnogonidae, 

Rhynchothoracidae and Austrodecidae. Specimens were studied in detail with light and 

scanning electron microscopy (SEM). To depict complete and updated sets of the species’ 

diagnostic features two pictorial catalogues (one Antarctic and one Chilean/Subantarctic) are 

illustrated and compared to results from previous literature. Furthermore data on the species’ 

geographic distribution are updated and summarized. 

Further aim of the present thesis was the molecular analyses of the mitochondrial protein-

coding gene COI (cytochrome c oxidase subunit 1) from 76 Chilean/Subantarctic 

pycnogonids and to combine the results in an integrative taxonomic approach with the 

morphological results. In the phylogenetic consensus tree10 distinct, well-supported branches 

are displayed. Beneath the calculation of intra- and interspecific distances, a statistical 

parsimony network as well as a GMYC analysis were used to check for species boundaries. 

Special focus lies hereby on the 16 specimens of Achelia assimilis (Haswell, 1885), that 

represented four distinct subbranches corresponding to the different geographic regions. Since 

the morphological differences among the specimens lie well within the variation described in 

the literature for this cosmopolitan species, the four branches of A. assimilis might rather 

represent geographically limited subspecies as a result of drastic glaciation during the 

Cenozoic. 

Another interesting candidate for applying integrative taxonomy displays Pallenopsis 

patagonica (Hoek, 1881) one of the taxonomically most problematic and variable pycnogonid 

species from the southern South American coast and Subantarctic/Antarctic area. Besides 

detailed morphological studies including also important type material used by Hoek (1881), a 

phylogenetic analysis of mitochondrial COI sequences of 47 Pallenopsis specimens was 

conducted. Two major clades could be identified, namely the “Falkland” clade, to which the 

nominal P. patagonica is assigned, and the “Chilean” clade, which is described here as a new 

species P. yepayekae Weis nov. spec., in Weis et al. accepted. In addition further clades of  

the Pallenopsis complex give a hint of even more putative cryptic species. 
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1. General Introduction 

 

1.1. Introduction to Pycnogonids 

 

Pycnogonids or sea spiders are almost perfectly hidden in the benthic organisms they feed on 

(mainly hydrozoans but also anemones or small polychaetes (Bain, 1991; Arango & Brodie, 

2003)), furthermore moving so slowly that they are very hard to detect. 

 

 

Fig. 1. Anoplodactylus californicus (left) and Callipallene margarita (right); Photos by Michael 

Schrödl and Roland Melzer (left) and Roland Meyer (right). 

 

Viewing a pycnogonid gives the impression that the whole animal exists only of legs and 

appendages, lacking any kind of body. Already Stebbing (1902) therefore introduced the term 

“nobodies” as a popular name for this bizarre exclusively marine group of arthropods. Also 

the name Pantopoda implies its unique derived character of numerous multi-articulate 

ambulatory legs (Arango, 2003). While the term Pycnogonida compasses the valid name for 

the class including also fossils from the lower Silurian, lower Devonian and Jurassic (about 

425 MYa, 400 MYa and 150 MYa respectively) the order Pantopoda denominates exclusively 

extant forms (Bamber & El Nagar 2013). Whereas most pycnogonids are octopodous, 

possessing four pair of walking legs, there are also found some decapodous (five pairs of legs) 

or dodecapodous (six pairs of legs) species in the Antarctica (Schram & Hedgpeth, 1978). 

Body sizes of pycnogonids range from less than 2 mm to about 6 cm reaching therefore a 

maximum leg span of about 70-75 cm (Westheide & Rieger, 2007; Child, 1995). Although 

their body appendages and segmentation patterns are highly specialized and modified in 

different taxa and sexes (Arnaud & Bamber 1987), the basic pycnogonid body plan consists 

of a body divided into three sections: cephalon, thorax or trunk and abdomen (Fig. 2). 



 2

 

Fig. 2. Lateral view of an “idealized” pycnogonid (after Child, 1979). 

 

Unfortunately there are many ways describing and naming the segmentation pattern of 

pycnogonids. Depending on the different literature the body of a pycnogonid is either termed 

thorax or trunk. Furthermore following the segmentation pattern of Chelicerata where 

pycnogonids belong to, they are sometimes divided in cephalothorax or prosoma and 

abdomen or opisthosoma. To avoid any misunderstanding a better alternative would be: 

cephalosoma (since it already bears the first pair of walking leg; Winter 1980), leg segments 

2-4 and abdomen. The homology of the segmentation pattern of pycnogonids with the 

remaining arthropods is supported by gene expression and neuroanatomy studies (Jager et al. 

2006; Manuel et al. 2006; Brenneis et al. 2008) (see also below). 

The cephalon bears the ocular tubercle (dorsally), the proboscis (pycnogonid autapomorphy) 

and the first four sets of appendages: the cheliphores, palps, ovigers and the first pair of 

walking legs. As mentioned above depending on species or sex, some animals may lack one 

or more sets of cephalic appendages, making them crucial to the confident identification of 

pycnogonids (Stock, 1965; Arnaud & Bamber, 1987). Although the cheliphores are present in 

all pycnogonid larvae they show varying degrees of reductions in adults across genera (King, 

1973; Maxmen et al. 2005). Cheliphores help to manipulate food whilst feeding and are also 



 3

suitable for holding onto the surrounding habitat (Arnaud & Bamber 1987). The palps of 

pycnogonids are composed of between one and twenty articles, although most vary between 

five and ten segments (Helfer & Schlottke, 1935), representing further important 

classification tools (Hedgpeth, 1955). Palps are used whilst feeding, cleaning or as sensory 

organs (King, 1973). Most ovigers show ten articles (varies with genera and sex) with the last 

four articles forming a strigilis (sickle-shaped claw) with denticulate spines for most species 

(Child, 1998). Depending on the genus the number of denticulate spines varies enormously or 

are even lacking completely. These appendages are used for grooming and by the males for 

egg carrying until hatching or longer (King, 1973). 

The thorax consists of typically three segments, each bearing one pair of walking legs. The 

legs are composed of nine articles and connected with the thorax by lateral processes: coxa 1, 

coxa 2, coxa 3, femur, tibia 1, tibia 2, tarsus, propodus and claw (with or without auxiliary 

claws). The abdomen is mostly very small, which is also a distinct pycnogonid autapomorphy, 

situated at the posterior end of the trunk and terminating in the anus (Arnaud & Bamber, 

1987).  

The integument of pycnogonids is composed of a chitinous cuticle, but unlike to crustaceans, 

the cuticle of pycnogonids is never stiffened by calcium deposits (Arnaud & Bamber, 1987) 

and consists of three layers: the epi-, ecto-, and endocuticles (King, 1973). 

 

1.2. Phylogeny 

 

Both the presence of an exoskeleton and the segmentation of body parts clearly place 

pycnogonids within the monophyletic phylum Arthropoda (Weygoldt, 1986; Hickman et al. 

2000; Dunlop & Arango 2004). However, their exact phylogenetic position is often 

controversial and still under debate (Dunlop & Arango, 2004). The apparent resemblance of 

pycnogonid’s body shape to spiders (see also their nomination as sea spiders) and crabs gave 

rise to different interpretations of the phylogenetic classifications, either to the arachnids or to 

the crustaceans, which are both within the phylum Arthropoda. The hypotheses concerning 

their relationship to crustaceans, which was based on similarities in their larval morphology 

and development (Thompson, 1904) was recently refused by fossil descriptions (Hedgpeth, 

1978; Siveter et al. 2004) and even molecular data (Giribet et al. 2001; Arango & Wheeler 

2007; Arabi et al. 2010; Masta et al. 2010; Regier et al. 2010). 

King (1973) already stated that pycnogonids should have the status of a subphylum within the 

Arthropoda. This hypothesis is strongly supported by the distinct autapomorphies that are the 
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pycnogonid oviger, their prominent proboscis and highly reduced abdomen (Hedgpeth, 1955). 

Nowadays pycnogonids are considered as a basally branching lineage within the arthropod 

tree (Weygoldt & Paulus 1979; Schram 1978; Zrzavy et al. 1997; Edgecombe et al. 2000; 

Giribet & Ribera 2000; Giribet et al. 2001; Arango & Wheeler 2007; Regier et al. 2010). 

Pycnogonida are placed as an own class within the Chelicerata as a sister group to Xiphosura 

and Arachnida (Westheide & Rieger, 2007). In addition fossil records from the Cambrian and 

Silurian age provide information that pycnogonids are among the oldest clades of arthropods 

(Arango, 2003). Further studies concerning the brain development of pycnogonids and their 

protocerebral innervation of the cheliphores compared to other extant arthropods display 

further strong support for the placement of pycnogonids as the most basally deriving group of 

extant arthropods (Budd & Telford 2005; Maxmen et al. 2005). However, more recent studies 

based on developmental expression patterns and neuroanatomy suggest pycnogonid 

cheliphores to be chelicerae homologues (Jager et al. 2006; Manuel et al. 2006; Brenneis et al. 

2008). This evidence for a deutocerebral affiliation of the pycnogonid cheliphores (Brenneis 

et al. 2008) would be consistent with the placement of sea spiders as sister group to other 

chelicerates (Masta et al. 2010). 

 

1.3. Biodiversity and Natural habitat of pycnogonids 

 

Currently pycnogonids are counting more than 1300 species worldwide (Arango & Wheeler 

2007; Munilla and Soler-Membrives 2008;-Bamber & El Nagar 2013) classified into 11 

families, namely: Ammotheidae, Ascorhynchidae, Austrodeciade, Callipallenidae, 

Colossendeidae, Endeidae, Nymphonidae, Pallenopsidae, Phoxichilidiidae, Pycnogonidae and 

Rhynchothoracidae (Bamber 2007; Bamber & El Nagar 2013). Pycnogonids are exclusively 

marine arthropods, present in all oceans from the poles to the tropics, and from the littoral 

zone to abyssal depths (Bamber 2007; Park et al. 2007). In the Antarctic area pycnogonids 

appear with remarkable species richness (Stiboy-Risch 1993). While Hodgson (1927) 

described the seas around the Antarctic continent as the centre of speciation for pycnogonids 

(“Hauptquartier der Pantopoden”), later the Antarctic Ocean was also considered as a centre 

for geographic dispersion and evolutionary radiation (King 1973; Fry & Hedgpeth 1969; 

Hedgpeth 1947). 

The bigger part of recent pycnogonid studies concentrates on the Antarctic area (see for 

example Pushkin 1993, Child 1994, Child 1995, Munilla and Soler-Membrives 2008, Nielsen 

et al. 2009, Krabbe et al. 2010, Arango et al. 2011, Dietz et al. 2011). Over the last 35 million 
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years the Antarctic has been affected by many glaciation events (Wilson et al. 2009), with the 

last maximum about 15.000 years ago (Huybrechts 2002). Thereby many species that could 

not adapt to such vast climate change got extinct, and following postglacial recolonization 

events offered the chance for evolution of new species. The often changing environmental 

conditions force the benthos communities to adapt faster to different living conditions and 

therefore pushing divergence to higher levels. Thatje et al. (2005) already mentioned: 

„Enhanced habitat structuring through local disturbance has been frequently used to explain 

Antarctic species richness and community structure (Gutt & Piepenburg 2003).” Benthic 

organisms could have survived the last glacial period by either migration to the deep sea or 

occupation of shallow water niches (Thatje et al. 2005), explaining the high percentage of 

cryptic species found in the region (Held 2003; Held & Wägele 2005; Wilson et al. 2007; 

Hunter & Halanych 2008; Mahon et al. 2008). Furthermore the process of repeated glacial 

and interglacial cycles has been termed the “Antarctic diversity pump” (Clarke & Crame 

1989, 1992). Similar glacial events are also known for the relative unexplored Subantarctic 

region, offering another interesting study area. 

The Antarctic Peninsula extends far north not far away from the southern tip of South 

America connected beyond that by the Humboldt Current (Brattström & Johanssen 1983). 

Therefore the about 90.000 km long southern Chilean coastline (including the southernmost 

tip of South America) offers by its impressive fjord regions (fig. 3) a unique possibility for 

studying speciation processes of pycnogonids. 

 

 

Fig. 3. Overview of part of the Comau fjord at Huinay (Chile); Photo by Roland Meyer. 
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About 25.000-15.000 years ago the entire Chilean coastline including fjords and channels was 

covered by the Patagonian ice shield (Clapperton 1993, McCulloch et al. 2000). After this 

Last Glacial Maximum the Chilean fjord regions were subsequently re-colonized by benthic 

communities (Försterra 2009) including also pycnogonids (Melzer et al. 2006). As already 

Thatje and his colleagues (2005) hypothesized, survival of benthic communities during such 

glacial periods, was possible only in the deep sea or in shelters on the continental shelf. But 

along the Chilean coast the Pacific Ocean shows very steep slopes without any stepping 

stones which would be essential for survival of benthos communities. Thus postglacial 

recolonization occurred mainly from glacial refugia in the North and/or South. Furthermore 

Thatje et al. (2005) suggest that as a result of glacial isolation, taxa with poor dispersal 

abilities might form cryptic species. This is the case for pycnogonids, which exhibit a 

holobenthic life cycle (King 1973; Arnaud & Bamber 1987) lacking a pelagic larval stage, 

thus showing relatively limited dispersal abilities compared to pelagobenthic animals like for 

example crustaceans. All this makes the Chilean fjord region to a unique exceedingly 

interesting study area for studying speciation processes, cryptic species or even species that 

are new to science. 

A further region that has to be mentioned are the Falkland Islands, that are connected to the 

South American shelf, located about 500 km to the east of Patagonia (Leese et al. 2008). 

Beyond that major ocean current systems facilitate dispersal of specimens (Leese et al. 2008): 

on the one hand the Falkland current arriving from Tierra del Fuego and passing the Falklands 

on the Westside and on the other hand the Humboldt Current arriving from the Antarctic and 

passing the Chilean coast (Brattström & Johanssen 1983). Furthermore evidence from marine 

species supports the fact that migration of species between the continental South America and 

the Falkland Island is occurring repeatedly (Leese et al. 2008). Biogeographically the 

Falkland Islands are either seen as a distinct region (Powell 1965) or as part of the Magellanic 

region. The latter can be supported by the Falkland current and resembles also my point of 

view. 

Whereas the Chilean coast lacks any stepping stones which would be essential for survival of 

benthos communities, the Falkland Islands, lying between 51°S and 52° 30’ S and 57° 45’ W 

and 61° 30’ W in the South Atlantic (Wakeham-Dawson et al. 2009), display a different case. 

The area around the Falkland Islands and Burdwood bank provided potential glacial refugia 

for benthos communities including pycnogonids (Clapperton 1993). 
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1.4. Sourcing of pycnogonid material 

 

1.4.1. Huinay Scientific Field station (Chile) and “Huinay Fjordos” expeditions 

 

Getting access to the isolated and highly nested Chilean fjord channels for collecting 

pycnogonid material became possible by collaboration with the Huinay Scientific Field 

station (fig. 4). 

    

 

Fig. 4. Huinay Scientific Field Station (left), laboratory (right) and starting point for expeditions to the 

Chilean fjords (Upper left and lower photo by Roland Meyer; Upper right photo by Roland Melzer). 
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The private and non-profit institution “Fundacion San Ignacio del Huinay” is located (like the 

name implies) in Huinay in the Comau and Leptepu fjord, Palena Province, Region X (de los 

Lagos), Chile and founded by Endesa Chile and the Pontificia Universidad Católica de 

Valparaíso. The Huinay Scientific Center (inaugurated in December 2001) seeks to defend 

and preserve the bio-geographical patrimony of the Huinay area and of the surrounding 

Patagonian fjord region of Chile. Between 2005 and 2013 the Huinay Foundation carried out 

16 adventurous and successful expeditions organized by Dr. Verena Häussermann and Günter 

Försterra along the Chilean coast and inner fjords and collected hundreds of pycnogonids by 

SCUBA diving. Amongst others for example the Yepayek a small ranger boat of the CONAF 

(Corporación Nacional Forestal) under  captain German Coronado Vasquez and the crew 

members Victor  Munoz Aguero and Guillermo Igor Almonacid carried the scientists to the 

different places in the Chilean fjords. Our aim was to collect pycnogonids from a broad 

geographic area of the Chilean coast from the north to the south as well as from outer fjord 

channels to more inner situated/sheltered fjords like for example the Reñihué fjord. A detailed 

overview of the different collecting sites is shown in paper II, figure 1. 

An overview of marine benthic fauna of Chilean Patagonia is provided in “Marine Benthic 

Fauna of Chilean Patagonia” (Häussermann & Försterra 2009). Furthermore the molecular 

data of the Chilean pycnogonids are part of the barcoding project of the Canadian Centre for 

Barcoding at the Department of Zoology, University of Guelph, Ontario (project code: CFAP, 

project name: Chilean Fjord Pycnogonids). COI sequences of the Chilean pycnogonids of the 

present thesis are available from BOLD (http://www.boldsystems.org/). 

 

1.4.2. Additional material 

 

We received additional Chilean pycnogonid material including our northernmost sample site 

(30° 22.893’ S and 71° 57.759’ W) from Javier Sellanes López (Universidad Católica del 

Norte, Facultad De Ciencias Del Mar, Coquimbo, Chile). Furthermore Dr. Vladimir 

Laptikhovsky from the Falkland Islands Fisheries Department forwarded us supplementary 

material from the Westside of the Falkland Islands. 

Antarctic pycnogonid material was received by Enrico Schwabe (Zoologische 

Staatssammlung München) during different expedition journeys of the FS Polarstern 

(ANDEEP-SYSTCO), which were mainly located in the Weddell Sea, Amundsen Sea and 

other ocean areas around the Antarctic Peninsula (overview of Antarctic collecting sites are 

shown in paper I, figure 1). Furthermore we received material from the ICEFISH 2004 
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expedition of the FS Nathaniel B. Palmer and one further sample of the FS Polarstern (by 

Florian Leese, Ruhr University Bochum). 

Another important point concerning Chilean pycnogonid material are the collections from 

older expedition journeys like the H.M.S. Challenger Expedition (1872-1876) (Hoek 1881), 

the Antarctic Swedish Expedition (1901-1903) (Loman 1923a, b) and the Lund University 

Chile Expedition dating back to the 1950s (Hedgpeth 1961). Therefore additional specimens 

from the Swedish Museum of Natural History including the Loman collection as well as one 

specimen from the Lund Chile Expedition, determined by Hedgpeth were loaned for 

morphological analyses. Furthermore I examined Hoeks type material of P. patagonica 

(Hoek, 1881) from the Challenger expedition, which we loaned from the Natural History 

Museum London (Miranda Lowe). 

 

1.5. Identifying species boundaries 

 

According to Mayden (1997) there are existing more than 20 species definitions lacking any 

standardized operational criteria to delimit them (Sites & Marshall 2004). Hence the answer 

of the supposed simple question “what is a species?” is often subjective depending on the 

species concept one applies. The traditional biological species concept characterizes species 

as “…groups of actually or potentially interbreeding natural populations which are 

reproductively isolated from other such groups.” (Mayr 1942). 

For the present case, this definition is not practicable. Therefore morphospecies, and more 

recently DNA-based species delimitation are required. In the present thesis all species 

(Antarctic and Subantarctic) are firstly defined by various morphological traits including 

SEM (see paper I and paper II). For the Chilean/Subantarctic pycnogonids additional 

molecular COI data were consulted (see paper III and paper IV) and corroborated with the 

morphological results using integrative taxonomy (Dayrat 2005; Padial et al. 2010; Schlick-

Steiner et al. 2010). 

 

1.5.1. Morphological studies 

 

Species that are exclusively established on morphology are also called “morphospecies” by 

Cain (1954). Furthermore Dayrat (2005) introduced the term “morphodiversity” and stated 

that: “…morphospecies are hypotheses that should be tested via different approaches and with 

different kinds of data.” This suggests that defining species only by morphology (as any other 
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species concept) has some limits. For example defining and interpreting character states 

adheres always a subjective component (Padial et al. 2010). Beyond that morphology is also 

described as a complex and non-neutral marker which could lead to under- or over-estimation 

of biodiversity (Lefebure 2006). Another problem is the existence of so-called cryptic species 

that are amongst others found in the study area of the present Thesis. During the glacial 

maxima gene flow was inhibited, leading to genetic separation without morphological change 

resulting in high levels of cryptic species (Grant & Linse 2009). Hence further tools for 

species delineation are needed, for example molecular approaches such as recent 

methodological developments like DNA barcoding. 

 

1.5.2. Molecular analyses 

 

Many molecular studies concern common marine invertebrate groups like molluscs (Wilson 

et al. 2009, Jörger et al. 2010), echinoderms (Hunter & Halanych 2008) or crustaceans 

(Lefebure et al. 2006, Raupach & Wägele 2006, Oliveira-Biener et al. 2010, Meyer et al. 

2013). Also pycnogonids are gaining more and more interest (see Mahon et al. 2008, Nielsen 

et al. 2009, Arabi et al. 2010, Krabbe et al. 2010, Masta et al. 2010, Arango et al. 2011, Dietz 

et al. 2011). 

Ten years ago Paul Hebert and his team introduced a segment of the mitochondrial 

cytochrome oxidase I gene “as the core of a global bioidentification system for animals” the 

so-called DNA barcodes (Hebert et al. 2003a, 2003b). This approach also enables to 

document and study cryptic species that are difficult or impossible to identify by 

morphological traits solely. Besides the fact that barcoding works for all life stages, it can also 

be applied where no morphological information is available for example degraded specimens, 

fragments of organisms or even pieces of tissues (Birky 2007, Palumbi and Cipriano 1998). 

The proposal by Hebert et al. (2003a,b) to use COI-barcoding as a general method for 

specimen identification and discovery of new species led to the formation of international 

Consortium for the Barcode of Life (CBOL) (Birky 2007). CBOL provides a public database 

for barcodes, BOLD (www.boldsystems.org ), where COI-sequences are linked to voucher 

specimens deposited in museums or other institutions (for further information see also 

www.barcoding.si.edu/ or www.barcodeoflife.org/). 

In the recent years the combination of morphological and molecular data in phylogenetic 

studies was hotly debated (Goldstein & DeSalle 2010). Combined approaches such as 

integrative taxonomy are gaining more and more interest and acceptance (Dayrat 2005; Gibbs 
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2009; Heethoff et al. 2011; Padial et al. 2010; Roe & Sperling 2007; Schlick-Steiner et al. 

2010; Schwentner et al. 2011; Will et al. 2005). The present thesis uses for the first time both 

traditional (morphology) and modern (molecular) techniques in a combined approached called 

integrative taxonomy for analysing pycnogonids from the Chilean fjords. 

The need to assess the current state of biodiversity poses a significant time challenge, because 

under the current conditions species may become extinct before they have even been 

described (Wilson et al. 2007). 

 

2. Aims of the Thesis 

 

2.1. Morphological analyses of Antarctic and Subantarctic/Chilean pycnogonids using 

modern techniques 

 

An important basis for defining species boundaries using integrative taxonomy requires 

detailed knowledge of morphology. Since nowadays more modern techniques are available 

(like the scanning electron microscope) we have the opportunity to deepen our morphological 

knowledge compared to previous traditional species delimitations. 

Hence one aim of the present study is to contribute to a detailed light and scanning electron 

microscopy (SEM) atlas of the Antarctic and Subantarctic pycnogonid fauna including also 

their biogeographic data. Due to the possibility of using more modern techniques like the 

SEM the morphological knowledge/understanding could be deepened. Altogether 40 species 

(28 Antarctic plus 12 Chilean and Subantarctic species with Colossendeis megalonyx Hoek, 

1881 occuring in both areas) are illustrated and discussed concerning the species’ diagnostic 

features and compared to results from previous literature. The complete pycnogonid material 

has been collected on Antarctic and Subantarctic/Chilean expedition journeys during the last 

two decades and is housed at the Bavarian State Collection of Zoology (SNSB-ZSM). 

Surveys of Antarctic pycnogonids stored in natural history collections can provide a useful 

basis for future studies (Dunlop et al. 2007). Since species descriptions of pycnogonids are in 

most instances very old and sampled specimens might show some discrepancies to already 

described species, our aim is to facilitate future species determinations by providing detailed 

and extended depth of field pictures using more modern techniques like the powerful SEM. 

The present thesis displays the first light and scanning electron microscopy atlas of the 

Antarctic and Subantarctic with focus on the Chilean fjords and surrounding area. 
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2.2. Documentation of COI sequences and species delimitations of pycnogonids from the 

Chilean fjords and surrounding area using integrative taxonomy 

 

A further aim of the present thesis is the documentation of COI sequences of pycnogonids 

from the Chilean fjords and surrounding areas for the first time. So far molecular studies on 

pycnogonids have mostly be done for the Antarctic area (see for example Mahon et al. 2008, 

Nielsen et al. 2009, Krabbe et al. 2010, Masta et al. 2010, Arango et al. 2011, Dietz et al. 

2011), but never touched the South American Magellan region, Tierra del Fuego or the 

Chilean fjord region. Pycnogonid research in the latter regions included only morphological 

analyses (see Loman 1923a,b , Hedgpeth 1961, Sielfeld 2003, Melzer et al. 2006, Melzer 

2009). In the present study molecular analyses of 80 pycnogonids from the Chilean and 

Subantarctic region (including also three Antarctic and one Australian specimens) are 

discussed. 

 

2.2.1. Achelia assimilis (Haswell, 1885) 

 

Special focus lies on the species Achelia assimilis being one of the most abundant species in 

this region. While the morphological differences of the studied specimens lie well within the 

variation described in the literature, the molecular results show four distinct COI branches. 

Therefore A. assimilis is an excellent example for studying cryptic species. The 

morphological variation of A. assimilis is illustrated in detailed light and scanning electron 

microscopy pictures. Different haplotypes of the species are discussed concerning their 

different geographic locations. Furthermore the extraordinary distribution pattern gives hints 

concerning the speciation processes after the last glaciation. Possible evolutionary scenarios 

for the origin of the different branches concerning the species A.  assimilis are considered and 

discussed. 

 

2.2.2. Pallenopsis patagonica (Hoek, 1881) 

 

The second aim on the molecular level is to shed more light on the Pallenopsis patagonica  

species complex using morphological and molecular data. Beyond detailed morphological 

studies (using light and scanning electron microscopy) a phylogenetic analyses of 47 

mitochondrial COI sequences was conducted. From these 47 specimens 39 have been 

primarily identified under the umbrella of Pallenopsis patagonica. Consulting morphological 
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and molecular data we show that P. patagonica constitutes a species-rich complex which 

needs a thorough taxonomic revision. With the present thesis I achieved the first step to 

unscramble the complex taxonomy of P. patagonica and beyond that describe a Pallenopsis 

species that is new to science, namely: Pallenopsis yepayekae Weis nov. spec., in Weis et al. 

accepted. 
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3. Paper I 

 

Weis A, Friedrich S & Melzer RR (2011) Antarctic Pycnogonida housed at the Bavarian State 

Collection of Zoology. Zoosystematics and Evolution 87 (2), 297-317. 



Antarctic Pycnogonida housed at the Bavarian State Collection

of Zoology

Andrea Weis*, Stefan Friedrich and Roland R. Melzer

Zoologische Staatssammlung M�nchen, M�nchhausenstraße 21, 81247 M�nchen, Germany

Introduction

The Pycnogonida or sea spiders are an extraordinary

group of exclusively marine arthropods present in all

oceans. Their phylogenetic position is still under de-

bate. They have either been considered as a basally

branching lineage within the arthropod tree (Zrzavy

et al. 1997; Edgecombe et al. 2000; Giribet & Ribera

2000; Giribet et al. 2001; Arango & Wheeler 2007; Re-

gier et al. 2010) or seen as derived arachnids and

placed as a sister group to the Acari (e.g. Masta et al.

2010). Their holobenthic lifecycle (eggs are carried by

the males on their ovigera, and larvae deposited on ade-

quate foraging grounds; Arnaud & Bamber 1987; Heß

& Melzer 2003; Bain & Govedich 2004a, b) indicates

that their dispersal capacity is limited. Nevertheless,

pycnogonids are found from the poles to the tropics,

and from littoral zones to abyssal depths (Bamber

2007; Park et al. 2007).

In the Antarctic area, they appear with remarkable

species richness (Stiboy-Risch 1993). Hodgson (1927)

already considered this continent as the centre of spe-

ciation for pycnogonids (“Hauptquartier der Pantopo-

den”). Beyond that, the Southern Ocean has been de-

scribed as a centre of pycnogonid geographic dispersal

and evolutionary radiation (Hedgpeth 1947; Fry &

Hedgpeth 1969). So far, 264 austral pycnogonid species

have been recorded, representing 19.6% of the 1344

species described worldwide (Munilla & Soler-Mem-

brives 2008). From these 264 species 108 are endemic

to Antarctic waters, 62 to the sub-Antarctic, and 63 are

common in both regions (Munilla & Soler-Membrives

2008). According to the latter authors, genera with

most of their species in austral waters are Ammothea

Leach, 1814; Austrodecus Hodgson, 1907; Colossendeis

Jarzinsky, 1870; Nymphon Fabricius, 1794 and Palle-

nopsis Wilson, 1881.

A likely cause for this large species record is the last

ice age, since during the Cenozoic glacial periods com-

munity survival in the Antarctic was only possible by

migration to the deep sea or through occupation of shal-

low water niches (Thatje et al. 2005). The following re-

colonisation from different refuges could have favoured

speciation processes, including in various cryptic species

complexes found around the Antarctic in many taxa dis-

covered in the last years using molecular taxonomy

(e.g., Held 2003; Held & W�gele 2005). Examples for

two well studied cryptic species complexes among pyc-

nogonids are Nymphon australe (Arango et al. 2009)

and Colossendeis megalonyx (Krabbe et al. 2010).

Clearly, pycnogonids make a highly interesting taxon for

the study of speciation processes in the Antarctic Ocean.

# 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Zoosyst. Evol. 87 (2) 2011, 297–317 / DOI 10.1002/zoos.201100008

Received 15 December 2010

Accepted 17 February 2011

Published 23 September 2011

Key Words

sea spiders

catalogue

morphology

Antarctica

Weddell Sea

Abstract

The Antarctic pycnogonid material housed at the Bavarian State Collection of Zoology

is reviewed. It represents 28 species from 8 of the 11 pycnogonid families, namely:

Ammotheidae, Austrodecidae, Callipallenidae, Colossendeidae, Nymphonidae, Palle-

nopsidae, Pycnogonidae and Rhynchothoracidae. The animals were studied in detail

with a scanning electron microscope (SEM). Series of light microscopic pictures were

also taken in order to depict complete sets of the species’ diagnostic features. The latter

are discussed and compared to data from previous literature.
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All this explains why there is a rapidly growing body

of molecular studies on Antarctic pycnogonids (see

Arango 2002, 2003; Arango & Wheeler 2007; Mahon

et al. 2008; Arango 2009; Nielsen et al. 2009; Krabbe

et al. 2010; Masta et al. 2010).

However, in addition to the molecular data detailed

morphological analyses are needed, and surveys of Ant-

arctic pycnogonids stored in natural history collections

can provide a useful basis for future studies (see also

Dunlop et al. 2007).

Since collection specimens sometimes show discre-

pancies to published species descriptions, especially if

the latter are relatively old, one aim of our study is to

avoid such problems and facilitate future species deter-

minations and morphological reinvestigations, espe-

cially concerning cryptic species.

Representatives of some of the major genera of Ant-

arctic pycnogonids are housed at the Bavarian State

Collection of Zoology, distributed among 28 species.

We here contribute a catalogue of this material, which

has been collected on Antarctic expedition journeys in

the last 16 years. Furthermore, we present the classifi-

cation given in PycnoBase (Bamber & Nagar 2011) as

a taxonomic backbone, and illustrate a general over-

view of the most prominent characteristics of the col-

lected species.

Material and methods

The collecting sites and species distribution of the Antarctic pycnogo-

nids studied are displayed in Figure 1. Sampling sites are mainly lo-

cated in the Weddell Sea, Amundsen Sea and other ocean areas

around the Antarctic Peninsula; details are given in the species chap-

ters. Most of the material was collected using an Agassiz trawl or a

Rauschert dredge, and fixed in either 75% or 96% ethanol.

Species determinations were performed with a variety of literature

suitable for Antarctic pycnogonids. In addition to the works of Hoek

(1881), Hodgson (1907), Bouvier (1913) and Stock (1957), the dis-

covery reports by Gordon (1932, 1938, 1944) as well as the descrip-

tions and keys given by Fry & Hedgpeth (1969) proved helpful, since

they provide many drawings. Determinations were checked further

using the more recent works of Child (1994, 1995) and Pushkin

(1993). Synonyms were looked up in PycnoBase (Bamber and Nagar

2011) and M�ller’s (1993) “World Catalogue and Bibliography of the

recent Pycnogonida”.

Specimens were documented using an Olympus SZX stereo micro-

scope equipped with a Jenoptic Prog-Res C12 digital camera (2580�

14; 1944 px; 96 dpi; colour depth 24 bit). For each specimen, several

shots focused at different levels along the z-axis were taken, then edit-

ed and combined to a single respective image with greater depth of

field using the computer software CombineZ and/or Syncroscopy

Auto Montage. SEM preparations were made according to methods

described in Montoya Bravo et al. (2009). Specimens were examined

in a LEO 1430VP at 15 kV.

Annotated catalogue

General remarks

A total of 28 Antarctic pycnogonid species could be

identified. In all cases, the major morphological char-

acteristics correspond well with the respective descrip-

tions published earlier.

The species most frequently recorded in the literature

(Munilla & Soler-Membrives 2008), Nymphon australe,

is one of the most abundant species in our Antarctic pyc-

nogonid collection as well (16 specimens). However, the

most common species in our collection is Colossendeis

megalonyx (17 specimens). To our knowledge, Am-

mothea magniceps, Cilunculus cactoides, Nymphon com-

pactum, N. eltaninae, N. longicoxa and N. proceroides

are recorded for the first time from the Weddell Sea, the

first of these species even from the Antarctic (Fig. 1). In

addition, the depth ranges of some species could be ex-

panded; for example, the record of Colossendeis longi-

rostris from 3800 m is the deepest ever for this species.

Classification

Order Pantopoda Gerst�cker, 1863

Suborder Eupantopodida Fry, 1978

Superfamily Ascorhynchoidea Pocock 1904

Family Ammotheidae Dohrn, 1881

Achelia communis (Bouvier, 1906)

Achelia spicata (Hodgson, 1915)

Ammothea magniceps Thompson, 1884

Ammothea longispina Gordon, 1932

Cilunculus cactoides Fry & Hedgpeth, 1969

Superfamily Colossendoidea Hoek, 1881

Family Colossendeidae Hoek, 1881

Colossendeis australis Hodgson, 1907

Colossendeis longirostris Gordon, 1938

Colossendeis megalonyx Hoek, 1881

Colossendeis tortipalpis Gordon, 1932

Superfamily Nymphonoidea Pocock, 1904

Family Nymphonidae Wilson, 1878

Nymphon australe Hodgson, 1902

Nymphon biarticulatum (Hodgson, 1907)

Nymphon charcoti Bouvier, 1911

Nymphon compactum Hoek, 1881

Nymphon eltaninae Child, 1995

Nymphon longicollum Hoek, 1881

Nymphon longicoxa Hoek, 1881

Nymphon mendosum Hodgson, 1907

Nymphon proceroides Bouvier, 1913

Nymphon proximum Calman, 1915

Nymphon villosum Hodgson, 1907

Pentanymphon antarcticum Hodgson, 1904

Family Callipallenidae Hilton, 1942

Austropallene cornigera M�bius, 1902

Austropallene gracilipes Gordon, 1944

Family Pallenopsidae Fry, 1978

Bathypallenopsis macronyx (Bouvier, 1911)

Pallenopsis hodgsoni Gordon, 1938

Superfamily Pycnogonoidea Pocock, 1904

Family Pycnogonidae Wilson, 1878

Pycnogonum gaini Bouvier, 1910

Superfamily Rhynchothoracoidea Fry, 1978

Family Rhynchothoracidae Thompson, 1909

Rhynchothorax australis Hodgson, 1907

Weis, A. et al.: Antarctic Pycnogonida298
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Suborder Stiripasterida Fry, 1978

Family Austrodecidae Stock, 1954

Austrodecus glaciale Hodgson, 1907

Ammotheidae

Achelia Hodge, 1864

Achelia communis (Bouvier, 1906)

Figures 2a–d

Ammothea communis Bouvier, 1906: 44–50, figs 23–32

Synonyms

Ammothea affinis Bouvier, 1907

Achelia brucei Calman, 1915

Ammothea hoeki Loman, 1923

Material examined. ZSMA20100168: 1 specimen; Antarctica, Wed-

dell Sea; 16.12.2003; 06:38–06:54; FS Polarstern; Cruise: PS 65; Sta-

tion 173-1; Exp.: ANT XXI/2; 70�56.820 S, 010�31.760 W –

70�56.770 S, 010�31.170 W; AGT; 279.0–296 m.

Remarks. This species is very similar to Achelia spica-

ta, from which it can be distinguished by the presence

of anterior cephalic spurs (Fig. 2b). Furthermore, in

A. communis the propodal spines are much straighter,

more slender and further apart (Fig. 2d); see also Fry &

Hedgpeth (1969) and the remarks on A. spicata below.

Achelia spicata (Hodgson, 1915)

Figures 2e–f

Austrothea spicata Hodgson, 1915: 147

Synonym. Achelia intermedia Calman, 1915

Material examined. ZSMA20010087: 1 specimen; Antarctica, Wed-

dell Sea; 11.04.2000; 08:10–08:19; FS Polarstern; Station 138-1;

71�8.900 S, 013�12.800 W; EBS; 765.0–840.0 m.

Remarks. Since Achelia spicata shows a very wide

range of morphological variation, especially the more

compact form of this species can easily be confused

Zoosyst. Evol. 87 (2) 2011, 297–317 299

Figure 1. Overview of collecting sites of Antarctic pycnogonids deposited at the Bavarian State Collection of Zoology. Species are

numbered as follows: 1 – Achelia communis, 2 – Achelia spicata, 3 – Ammothea magniceps, 4 – Ammothea longispina, 5 –

Cilunculus cactoides, 6 – Colossendeis australis, 7 – Colossendeis longirostris, 8 – Colossendeis megalonyx, 9 – Colossendeis

tortipalpis, 10 – Nymphon australe, 11 – Nymphon biarticulatum, 12 – Nymphon charcoti, 13 – Nymphon compactum, 14 –

Nymphon eltaninae, 15 – Nymphon longicollum, 16 – Nymphon longicoxa, 17 – Nymphon mendosum, 18 – Nymphon procer-

oides, 19 – Nymphon proximum, 20 – Nymphon villosum, 21 – Pentanymphon antarcticum, 22 – Austropallene cornigera, 23 –

Austropallene gracilipes, 24 – Pallenopsis macronyx, 25 – Pallenopsis hodgsoni, 26 – Pycnogonum gaini, 27 – Rhynchothorax

australis, 28 – Austrodecus glaciale.

# 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim museum-zoosyst.evol.wiley-vch.de

17



with A. communis on account of the closely spaced lat-

eral processes, the shape of the proboscis with median

swelling, and the tendency toward fusion of the third

and fourth trunk somite (Fry & Hedgpeth 1969). How-

ever, besides the differences between the two species

already mentioned by Child (1994), there are further

discrepancies. Compared to A. communis, A. spicata

lacks the two anterior cephalic spurs, the stout propodal

spines are closely set and have a more thorn-like ap-

pearance (Fig. 2f), and in relation to the main claw also

the auxiliary claws are conspicuously shorter (Fry &

Hedgpeth 1969).

Weis, A. et al.: Antarctic Pycnogonida300

Figure 2. a–d. Achelia communis; a. Dorsal view; scale ¼ 3 mm; b. Dorsal view of trunk, note spine on cephalic segment (arrow);

scale ¼ 500 mm; c. Ocular tubercle; scale ¼ 250 mm; d. Tarsus and propodus with claw and auxiliary claws of left 3rd walking leg,

note sole spination (arrows); scale ¼ 250 mm; e–f. Achelia spicata; e. Dorsal view of trunk; scale ¼ 1 mm; f. Tarsus and propodus

with claw and auxiliary claws of right 2nd walking leg, note sole spines (arrows); scale ¼ 250 mm. ab – abdomen; ac – auxiliary

claw; ce – cephalon; cf – chelifore; cl – claw; cx – coxa; lp – lateral process; oc – ocular tubercle; pa – palp; pp – propodus;

tb – tibia; tr – trunk; ts – tarsus; wl – walking leg.
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Ammothea Leach, 1814

Ammothea magniceps, Thompson, 1884

Figures 3a–c

Ammothea magniceps Thompson, 1884: 244, pl. XV, figs 1–5

Synonym. Achelia flynni Marcus, 1940

Material examined. ZSMA20100169: 1 specimen; Antarctica, Wed-

dell Sea; 24.12.2003; 09:03–09:13; FS Polarstern; Cruise: PS 65; Sta-

tion: 259-1; Exp.: ANT XXI/2; 70�56.570 S, 010�31.980 W –

70�57.000 S, 010�33.020 W; GSN; 300.0–333.0 m

Remarks. The examined specimen corresponds well

with the description of Fry & Hedgpeth (1969). It can

be distinguished from other species by several charac-

Zoosyst. Evol. 87 (2) 2011, 297–317 301

Figure 3. a–c. Ammothea magniceps; a. Dorsal view; scale ¼ 3 mm; b. Detail view of palps; scale ¼ 1 mm; c. Tarsus and propodus

with claw and auxiliary claws of left 2nd walking leg, note sole spines (arrows); scale ¼ 1 mm. d–f. Ammothea longispina. d. Dor-

sal view of trunk and proboscis; scale ¼ 5 mm; e. Lateral view of trunk, note prominent body ridges (arrows); scale ¼ 5 mm;

f. Overview of right 3rd walking leg; scale ¼ 5 mm. Insert: Detail of propodus with claw and auxiliary claws; scale ¼ 1 mm. ab –

abdomen; ac – auxiliary claw; cf – chelifore; cl – claw; cx – coxa; fm – femur; oc – ocular tubercle; pa – palp; pp –

propodus; pr – proboscis; tb – tibia; tr – trunk; ts – tarsus; wl – walking leg.
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ters: The palp is 9-segmented, segments 5–8 are asym-

metrically conical (Fig. 3b), and the propodus bears 3–

5 sole spines with the most proximal being smaller than

the others (Fig. 3c).

To our knowledge this represents the first records of

Ammothea magniceps, both from the Antarctic region

and from depths of 300–333 m. This depth differs

strongly from the previous records, all of which were

from 0.5–24 m (M�ller 1993).

Ammothea longispina Gordon, 1932

Figures 3d–f

Ammothea longispina Gordon, 1932: 101–103, figs 50–52

Material examined. ZSMA20080524: 1 specimen; Antarctica, Wed-

dell Sea; 12.01.2008; 10:33–11:04; FS Polarstern; Cruise: ANT

XXIV/2; Station: PS71/048-01; Exp.: ANDEEP-SYSTCO;

70�24.000 S, 008�19.720 W – 70�23.860 S, 008�18.680 W; AGT;

597.0–601.8 m ZSMA20080578 – ZSMA20080579: each with 1 spe-

cimen (juvenile); Antarctica, Weddell Sea; 17.12.2007; 17:50–18:18;

FS Polarstern; Cruise: ANT XXIV/2; Station: PS71/016-01; Exp.:

ANDEEP-SYSTCO; 70�35.290 S, 009�2.890 W – 70�35.350 S,

009�2.270 W; Rauschert dredge; 486.3–488.4 m.

Remarks. The tapering proboscis in combination with the

very short palps distinguish Ammothea longispina from

all other congeneric species known from the Antarctic.

The palps are also very short in A. sextarticulata Mu-

nilla, 1990 and A. adunca Child, 1994, but in these the

proboscis is not styliform as in the species studied here

(Fig. 3d). Compared to the total body size the legs ap-

pear rather short and stout, with the second tibia being

the longest leg segment (Fig. 3f), which is in accor-

dance with the descriptions of Fry & Hedgpeth (1969).

According to Gordon (1944), the anterior eyes are lar-

ger than the posterior ones in A. longispina. However,

the individuals examined in this study all have eyes of

about the same size (Fig. 3e). Furthermore, Child (1994)

described the ocular tubercle as taller than the trunk

cones. In our specimens, the trunk segmentation ridges

show the same height as the ocular tubercle (Fig. 3e).

Cilunculus Loman, 1908

Cilunculus cactoides Fry & Hedgpeth, 1969

Figures 4a–c

Cilunculus cactoides Fry & Hedgpeth, 1969: 124–126, figs 205–206

Material examined. ZSMA20100165: 2 specimens; Antarctica; Ant-

arctic Peninsula; 26.04.2000; 14:42–14:57; FS Polarstern; Cruise: PS

56; Station: 158-1; Exp.: EASIZ III; 63�4.700 S, 057�31.600 W –

63�4.500 S, 057�32.000 W; AGT; 94.0–95.0 m.

Remarks. The most obvious characteristic of this spe-

cies is its very spinose appearance (Fig. 4b). This pro-

minent feature differentiates it from all other Ciluncu-

lus species (Fry & Hedgpeth 1969; Pushkin 1993).

This is the first record from the Weddell Sea for Ci-

lunculus cactoides. Previous sampling localities were

the Scotia Sea, Antarctic Peninsula, East Antarctic

Zone (Munilla & Soler-Membrives 2008), and the Ross

Sea (Fry & Hedgpeth 1969).

Colossendeidae

Colossendeis Jarzinsky, 1870

Colossendeis australis Hodgson, 1907

Figures 4d–e

Colossendeis australisHodgson, 1907: 59, pl. IX, fig. 1, pl. X, figs 1–2

Material examined. ZSMA20100170: 1 specimen; Antarctica, Wed-

dell Sea; 28.12.2003; 18:14–18:27; FS Polarstern; Cruise: PS 65; Sta-

tion: 276-1; Exp.: ANT XXI/2; 71�6.440 S, 011�27.760 W –

71�6.640 S, 011�27.280 W; AGT; 268.0–277.0 m.

Remarks. The short and downcurved proboscis shows a

conspicuous medial and distal inflation (Fig. 4e). This

unique shape of the proboscis and the very short main

claw serve to differentiate C. australis from other Co-

lossendeis species (see Child 1995; Cano & L�pez-

Gonz�lez 2007), as does the robust body with the clo-

sely spaced lateral processes.

Colossendeis longirostris Gordon, 1938

Figure 4f

Colossendeis longirostris Gordon, 1938: 8 [key], 9–10, fig. 1

Material examined. ZSMA20060794: 1 specimen; Antarctica; W Ant-

arctic Peninsula, Bellinghausen Sea; 30.03.2005; 16:14–16:49; FS Po-

larstern; Cruise: ANT XXII/2; Station: PS 67/154-7; Exp.: ANDEEP

III; 62�31.810 S, 064�38.310 W – 62�31.330 S, 064�40.520 W; AGT;

3801.0–3813.0 m

Remarks. As the name implies, this species can be

identified easily by its long proboscis (Fig. 4f). Besides

that, the distal palp segment is inserted anaxially at a

sharp angle (see Child 1995).

With a depth range of 3801–3813 m the present re-

cord is the deepest for Colossendeis longirostris. Pre-

vious documented depths did not exceed 3700 m (Mu-

nilla & Soler-Membrives 2008).

Colossendeis megalonyx Hoek, 1881

Figures 5a–d

Colossendeis megalonyx Hoek, 1881: 67–69, pl. IX, figs 1–3

Synonyms

Colossendeis arundorostris Fry & Hedgpeth, 1969

Colossendeis frigida Hodgson, 1907

Colossendeis orcadense Hodgson, 1909

Colossendeis rugosa Hodgson, 1907

Material examined. ZSMA20060788 – ZSMA20060790: each with 1

specimen; Antarctica; South Shetland Islands; 25.04.2002; FS Polar-

stern; Cruise: PS 61; Station: 252-1; Exp.: LAMPOS; 61�23.420 S,

055�26.820 W – 61�23.870 S, 055�26.660 W; AGT; 285.0–293.0 m.

ZSMA20060791 – ZSMA20060792: each with 1 specimen; Antarctica;

W Antarctic Peninsula, Bellinghausen Sea; 29.03.2005; 16:37–16:58;

FS Polarstern: Cruise: ANT XXII/3; Station: PS 67/153-8; Exp.: AN-

DEEP III; 63�19.530 S, 064�36.790 W – 63�19.100 S, 064�37.130 W;

AGT; 2069.0–2124.0 m. ZSMA20060793: 1 specimen; Antarctica;

South Shetland Islands; 25.04.2002; FS Polarstern; Cruise: PS 61; Sta-
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tion: 252-1; Exp.: LAMPOS; 61�23.420 S, 055�26.820 W – 61�23.870 S,

055�26.660 W; AGT; 285.0–293.0 m. ZSMA20060824: 1 specimen;

Antarctica; South Georgia, South Sandwich Islands; 09.04.2002; 16:25–

16:45; FS Polarstern; Cruise: ANT XIX/5; Station: PS 61/164-1; Exp.:

LAMPOS; 53�23.790 S, 042�41.780 W – 53�23.810 S, 042�42.480 W;

AGT; 299.3–322.5 m. ZSMA20080516: 1 specimen; Antarctica, Wed-

dell Sea; 22.12.2007; 10:10–11:22; FS Polarstern; Cruise: ANT XXIV/

2; Station: PS 71/017-10; Exp.: ANDEEP-SYSTCO; 70�4.780 S,

003�21.090 W – 70�4.310 S, 003�19.110 W; AGT; 2084.7 – 2163.0 m.

ZSMA20080517 – ZSMA20080518: each with 1 specimen; Antarctica,

Weddell Sea; 12.01.2008; 10:33–10:55; FS Polarstern; Cruise: ANT

XXIV/2; Station: PS71/048-01; Exp.: ANDEEP-SYSTCO; 70�24.000 S,

008�19.720 W – 70�23.880 S, 008�18.650 W; AGT; 594.6–601.8 m.

ZSMA20080521: 1 specimen; Antarctica, Weddell Sea; 04.01.2008;

01:45–01:56; FS Polarstern; Cruise: ANT XXIV/2; Exp.: ANDEEP-

SYSTCO; 64�28.870 S, 002�52.35’E – 64�28.790 S, 002�52.74’E; AGT;

Zoosyst. Evol. 87 (2) 2011, 297–317 303

Figure 4. a–c. Cilunculus cactoides; a. Dorsal overview; scale ¼ 3 mm; b. Dorsal view of trunk; scale ¼ 500 mm; c. Tarsus and

propodus with claw and auxiliary claws (right 2nd walking leg), note spines of inner margin of propodus (arrows);

scale ¼ 200 mm; d–e. Colossendeis australis. d. Dorsal overview; scale ¼ 2 cm; e. Proboscis and palps; scale ¼ 5 mm. Insert: De-

tail view of propodus and claw (right 4th walking leg); scale ¼ 2 mm; f. Colossendeis longirostris. Dorsal view of trunk and pro-

boscis, note recurved distal palp segments (arrows); scale ¼ 3 mm. ab – abdomen; ac – auxiliary claw; ce – cephalon; cl – claw;

oc – ocular tubercle; pa – palp; pp – propodus; pr – proboscis; tb – tibia; tr – trunk; ts – tarsus; wl – walking leg.
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2150.4–2151.3 m. ZSMA20100172: 6 specimens; Antarctica; NW Ant-

arctic Peninsula; 29.03.2005; 16:48–16:58; FS Polarstern; Cruise: PS

67; Station: 153-8; Exp.: ANT XXII/3; 63�19.210 S, 064�37.070 W –

63�19.100 S, 064�37.130 W;AGT; 2108.0–2124.0 m.

Remarks. According to the older literature, the palps

are 9-jointed in this species (Loman 1923; Fry & Hedg-

peth 1969), whereas in recent papers they are consid-

ered as “10-segmented” (Cano & L�pez-Gonz�lez

2007). This is due to the small basal element, which is

either identified as the first palp segment or not

(Fig. 5b). Here, the palps are seen as 10-jointed in ac-

cordance with recent literature like (Fig. 5c) (e.g. Child

1995; Cano & Lopez-Gonzalez 2007).

Weis, A. et al.: Antarctic Pycnogonida304

Figure 5. a–d. Colossendeis megalonyx; a. Dorsal overview; scale ¼ 1 cm; b. Lateral view of ocular tubercle and first right palp
segments; scale ¼ 1 mm; c. Overview of right palp; scale ¼ 1 mm; d. Distal oviger segment with terminal spatulate claw;
scale ¼ 200 mm; e–f. Colossendeis tortipalpis; e. Dorsal overview of trunk and proboscis; scale ¼ 1 cm; Insert: Right distal oviger
segments with compound spines, note subchelate claw (arrow); scale ¼ 2 mm; f. Tarsus, propodus and claw of right 3rd walking
leg; scale ¼ 5 mm; Insert: Detail view of claw (right 3rd walking leg), note two spines on propodus (arrow); scale ¼ 1 mm. ab –

abdomen; cl – claw; cs – compound spine; oc – ocular tubercle; os – oviger segment; ov – oviger; pa – palp; pp – propodus;
pr – proboscis; ps – palp segment; tb – tibia; tr – trunk; ts – tarsus; wl – walking leg.
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In the examined individuals different developing

stages of the ocular tubercle and eyes were noticed. Ac-

cording to Fry & Hedgpeth (1969), the eyes of Colos-

sendeis megalonyx have variably developed ocular tu-

bercles, but the shape of the ocular tubercle is always

conical. In our material two individuals show a very

low ocular tubercle with unpigmented eyes (Fig. 5b). In

this context a detailed study on C. megalonyx by

Krabbe et al. (2010) should be mentioned which deals

with problematic taxonomic issues associated with this

species name. This work presents five cryptic and one

pseudocryptic mitochondrial lineages, suggesting that

cryptic speciation occurred within the genus Colossen-

deis, but without 3 though without describing morpho-

logical correlates for the genetic lineages. Since the

material of Krabbe et al. (2010) had been collected

from Burdwood Bank, the South Sandwich Islands,

Bouvet Island and the tip of the Antarctic Peninsula,

the Weddell Sea specimens housed at ZSM represent a

geographic complement. However, the specimens ana-

lysed here did not show any morphological discrepan-

cies either. Slightly different ocular tubercle shapes do

not seem to justify separation of our specimens from

those described earlier.

Colossendeis tortipalpis Gordon, 1932

Figures 5e–f

Colossendeis tortipalpis Gordon, 1932: 12–15, figs. 2b–e, 3b, d, 4a

Material examined. ZSMA20080523: 1 specimen; Antarctica, Weddell

Sea; 12.01.2008; 10:33–10:55; FS Polarstern; Cruise: ANT XXIV/2;

Station: PS71/048-01; Exp.: ANDEEP-SYSTCO; 70�24.000 S,

008�19.720 W – 70�23.880 S, 008�18.650 W; AGT; 594.6–601.8 m

Remarks. This species can be distinguished from other re-

presentatives of its group by the last oviger segment being

subchelate (Fig. 5e) (Child 1995). Another outstanding

character is the anaxial articulation of the distal palp arti-

cles. There is only one other Antarctic species with tiny,

recurved distal palp segments, namely Colossendeis longi-

rostris. From this, C. tortipalpis can be distinguished by

a larger, triangular eighth palp segment and a down-

curved, medially more inflated proboscis (Child 1995).

Additionally, according to Gordon (1932) the propodus

measures about 1.4–1.7 times the length of the main

claw. In our material, however, main claw and propodus

are of almost equal size. Furthermore, Gordon described

an occasional spine on tarsus and propodus, whereas the

individual studied here shows two larger spines each on

the distal ends of tarsus and propodus (Fig. 5f).

Nymphonidae

Nymphon Fabricius, 1794

Nymphon australe Hodgson, 1902

Figures 6a–d

Nymphon australe Hodgson, 1902: 257, pl. XL

Synonyms

Nymphon altioculatum M�bius, 1902

Chaetonymphon assimile Hodgson, 1908

Nymphon stylops Bouvier, 1911

Material examined. ZSMA20080556 – ZSMA20080570: each with

1 specimen; Antarctica, Weddell Sea; 12.01.2008; 10:33–11:04; FS

Polarstern; Cruise: ANT XXIV/2; Station: PS71/048-01; Exp.: AN-

DEEP-SYSTCO; 70�24.000 S, 008�19.720 W – 70�23.860 S,

008�18.680 W; AGT; 597.0–601.8 m. ZSMA2010164: 1 specimen;

Antarctica; Weddell Sea, between Vestkapp and Halley; 13.02.1996;

14:42–14:57; FS Polarstern; Cruise: Antarktis; Station: 39/11; Exp.:

ANT XIII/3; 73�22.600 S, 021�10.600 W – 73�23.000 S, 021�12.900 W;

GSN; 338 m

Remarks. Nymphon australe is the most frequently cap-

tured species in the Antarctic and exhibits a high level

of morphological plasticity (Child 1995; Mahon et al.

2008). The Nymphon australe individuals examined

here correspond well with the description by Gordon

(1932) in the Discovery Reports. One of the most pro-

minent characteristics is the much inflated 5th oviger

segment in males (Fig. 6c), which is a typical feature in

males of nymphonids (Arnaud & Bamber 1987). On

the other hand, while Child’s key (1995) gives trunk

segments 3–4 as fused, all our examined individuals

show distinct segment borders (Fig. 6b).

Nymphon biarticulatum (Hodgson, 1907)

Figures 6e–f

Nymphon biarticulatum Hodgson, 1907: 85, pl. IV, figs 2, 97, pl. X,

fig. 12

Material examined. ZSMA2010088: 1 specimen; Antarctica, Weddell

Sea; 31.03.2000; 19:09–19:39; FS Polarstern; Station: 65-1;

71�17.600 S, 013�48.000 W; GSN; 615.0–648.0 m

Remarks.This species is very closely related to Nym-

phon brevicaudatum Miers, 1875. Gordon (1932) even

considered N. biarticulatum as “. . .only a more south-

ern form of Nymphon brevicaudatum.” However, the

present species can be distinguished clearly by its much

higher ocular tubercle and the ‘club shaped’ 5th oviger

segment (Fig. 6f) (Child 1995).

Nymphon charcoti Bouvier, 1911

Figures 7a–c

Nymphon charcoti Bouvier, 1911: 1137

Material examined. ZSMA20042394: 1 specimen; Antarctica; Antarc-

tic Peninsula, Bransfield Strait; 28.04.2000; 12:37–13:03; FS Polar-

stern; Cruise: ANT XVII/3; Station: 164-1; Exp.; EASIZ III;

63�4.900 S, 059�32.900 W – 63�4.700 S, 059�32.700 W; AGT; 858.0–

859.0 m, ZSMA20080534 – ZSMA20080544: each with 1 specimen;

Antarctica, Weddell Sea; 17.12.2007; 17:50–18:18; FS Polarstern;

Cruise: ANT XXIV/2; Station: PS71/016-01; Exp.: ANDEEP-SYST-

CO; 70�35.290 S, 009�2.890 W – 70�35.350 S, 009�2.270 W; Rauschert

dredge; 486.3–488.4 m

Remarks. This species can be distinguished from other

Antarctic Nymphon by the four terminal palp segments

being subequal (Fig. 7b). Although N. charcoti can ea-

sily be confused with N. unguiculatum Hodgson, 1915,

the latter species shows a more compact appearance

with the lateral processes not as widely separated as in

Zoosyst. Evol. 87 (2) 2011, 297–317 305
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N. charcoti. This can be seen from figures published in

PycnoBase (Bamber & Nagar 2011).

As mentioned in the literature, the lateral processes

are separated by a considerable interval (Gordon 1932).

According to Gordon, this interval is about 1.5 times

the diameter of the lateral process, whereas some of the

individuals studied here show a remarkable distance of

up to 2.0 times the width of this process (Fig. 7a).

Furthermore, the adult individual examined in this

study shows conspicuous spines on the lateral pro-

cesses. There are three such spines on lateral processes

1–2, and another two on lateral processes 3–4

(Fig. 7c). These spines have not been described in the

literature.

Weis, A. et al.: Antarctic Pycnogonida306

Figure 6. a–d Nymphon australe; a. Dorsal overview; scale ¼ 5 mm; b. Dorsal view of trunk, note segment borders (arrows);
scale ¼ 200 mm; c. Male, overview of right oviger, note inflated oviger-segments 5 and 6; scale ¼ 1 mm; d. Terminal claw of right
3rd walking leg with vestigial auxiliary claws (arrow); scale ¼ 200 mm. Insert: Detail view of auxiliary claws; scale ¼ 20 mm;
e–f. Nymphon biarticulatum; e. Dorsal overview; scale ¼ 2 mm. Insert lower left: Detail view of ocular tubercle; scale ¼ 250 mm.
Insert upper right: Right oviger with club shaped 5th oviger segment (arrow); scale ¼ 500 mm. f. Ventral overview; scale ¼ 1 mm.
ab – abdomen; ac – auxiliary claw; cf – chelifore; cl – claw; oc – ocular tubercle; os – oviger segment; ov – oviger; pa – palp;
pp – propodus; pr – proboscis; wl – walking leg.
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Nymphon compactum Hoek, 1881

Figures 7d–f

Nymphon compactum Hoek, 1881: 41–43, pl. II, figs. 6–8, pl. XV,

fig. 10

Material examined. ZSMA20060797: 2 specimens; Antarctica; NW

Weddell Sea, Powell Basin; 13.03.2005; 14:53–15:25; FS Polarstern;

Cruise: ANT XXII/3; Station: PS 67/121-7; Exp.: ANDEEP III;

63�35.660 S, 050�42.860 W – 63�34.650 S, 050�41.680 W; AGT;

2617.0–2618.0 m

Remarks. The short neck, absence of an ocular tubercle

and the long main claw missing auxiliary claws serve

to differentiate N. compactum from other Nymphon spe-

cies (Fig. 7e). As mentioned in Child (1995), trunk and

Zoosyst. Evol. 87 (2) 2011, 297–317 307

Figure 7. a–c. Nymphon charcoti; a. Dorsal overview; scale ¼ 1 mm; b. Frontal view; scale ¼ 200 mm; c. Dorsal view of trunk,

note spines on lateral processes and first coxae (arrows); scale ¼ 1 mm; d–f. Nymphon compactum; d. Dorsal overview; sca-

le ¼ 3 mm; e. Dorsal view of cephalon and chelifores; scale ¼ 1 mm; Insert: Detail view of propodus and claw (left 2nd walking

leg); scale ¼ 500 mm; f. Distal segments of left oviger; scale ¼ 250 mm. ab – abdomen; ce – cephalon; cf – chelifore; cl – claw;

cs – compound spine; lp – lateral process; ne – neck; oc – ocular tubercle; os – oviger segment; ov – oviger; pa – palp; pr –

proboscis; tr – trunk; wl – walking leg.
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lateral processes are glabrous and the chela bears 40–

48 teeth on each finger.

Nymphon compactum was previously recorded from

the Scotia Sea, South Africa and New Zealand (East of

Auckland) (M�ller 1993; Munilla & Soler-Membrives

2008). Here, we present the first record for the Weddell

Sea.

Nymphon eltaninae Child, 1995

Figures 8a–b

Nymphon eltaninae Child, 1995: 14–16, fig. 2

Material examined. ZSMA20042385, ZSMA20042387 –

ZSMA20042389, ZSMA20042391 – ZSMA20042393: each with 1

specimen; Antarctica; Antarctic Peninsula, Bransfield Strait;

28.04.2000; 12:37–13:03; FS Polarstern; Cruise: ANT XVII/3; Sta-

tion: 164-1; Exp.; EASIZ III; 63�4.900 S, 059�32.900 W – 63�4.700 S,

059�32.700 W; AGT; 858.0–859.0 m. ZSMA20100173: 1 specimen;

Antarctica; SW South Orkney Islands; 20.03.2005; 21:50–22:20; FS

Polarstern; Cruise: PS 67; Station: 151-1; Exp.: ANT XXII/3;

61�45.510 S, 047�7.490 W – 61�45.310 S, 047�7.840 W; AGT; 1179.0–

1187.0 m

Remarks. The original description of this species by

Child (1995) is matched well by the examined speci-

mens. The most outstanding characteristic are the lateral

processes bearing many long, curved spines (Fig. 8a).

On the other hand, there are some differences. Accord-

ing to Child (1995), the 3rd palp segment is longer than

the 2nd and the oviger bears 33 denticulate spines. In

our specimens, the 2nd palp segment is always longer

than the 3rd (Fig. 8b) and the number of denticulate

spines on the distal four oviger segments ranged be-

tween 23 and 30, but never reached 33. Also, our ani-

mals do not show a teardrop-shaped ocular tubercle as

mentioned by Child (1995), because there is neither a

basal constriction nor a pointed apex in lateral view.

Nymphon eltaninae was previously recorded from the

Scotia Sea and the Ross Sea (Child 1995; Munilla &

Soler-Membrives 2008). Here we present two further

localities at which this species occurs, namely the Ant-

arctic Peninsula and the South Orkney Islands.

Nymphon longicollum Hoek, 1881

Figures 8c–d

Nymphon longicollum Hoek, 1881; 40–41, pl. II, figs 1–5, pl. XV,

figs 8–9

Material examined. ZSMA20060830: 1 specimen; Antarctica; NW-

Weddell Sea, Powell Basin; 20.03.2005; 23:17–01:00; FS Polarstern;

Cruise: ANT XXII/3; Station: PS 67/151-2; Exp.: ANDEEP III;

61�45.560 S, 047�7.410 W – 61�45.640 S, 047�7.990 W; AGT; 1179.0

– 1186.0 m

Remarks. The slight gap between the oviger and the

first lateral process as well as the very broad-based

ocular tubercle lacking eyes allow identification of this

species as Nymphon longicollum (Figs 8c–d). While

Child (1995) described the ocular tubercle in this spe-

cies as tall, the ocular tubercle of the individual exam-

ined here appears as rather low.

Nymphon longicoxa Hoek, 1881

Figures 8e–f

Nymphon longicoxa Hoek, 1881: 38–39, pl. 2, figs 1–5, pl. XV,

figs 8–9

Material examined. ZSMA20060796: 1 specimen; Antarctica; NW

Weddell Sea, Powell Basin; 13.03.2005; 14:53–15:25; FS Polarstern;

Cruise: ANT XXII/3; Station: PS 67/121-7; Exp.: ANDEEP III;

63�35.660 S, 050�42.860 W – 63�34.650 S, 050�41.680 W; AGT;

2617.0–2618.0 m. ZSMA20060826: 1 specimen; Antarctica; Weddell

Sea, Kapp Norvegia; 20.02.2005; 17:32–17:50; FS Polarstern; Cruise:

ANT XXII/3; Station: PS 67/074-7; Exp.: ANDEEP III; 71�18.600 S,

013�59.110 W – 71�18.400 S, 013�58.140 W; AGT; 1047.0–1066.0 m.

ZSMA20060827: 1 specimen; Antarctica; E Weddell Sea; 20.02.2005;

15:50–16:08; FS Polarstern; Cruise: ANT XXII/3; Station: PS 67/

074-6; Exp.: ANDEEP III; 71�18.420 S, 013�58.220 W – 71�18.280 S,

013�57.310 W; EBS; 1040.0–1048.0 m. ZSMA20100162: 1 specimen;

Antarctica; N Carney Island; 28.02.1994; 21:06–22:30; FS Polarstern;

Cruise: Antarktis; Station: 29/057; Exp.: ANT XI/3; 73�10.800 S,

121�54.200 W; AGT; 627.0 m

Remarks. This species has an extended, curled chela tip

on the movable finger which is unlike any other species

(Fig. 8f). Child (1982) compared its shape to that of a

“pig’s tail”. Another important diagnostic character is

the separation of the oviger implantation from the first

lateral processes (Gordon 1932).

Nymphon longicoxa was previously recorded from

the Scotia Sea, Bellingshausen Sea, Ross Sea, Rio de la

Plata and from southeast of New Zealand (M�ller

1993; Munilla & Soler-Membrives 2008). Here, we pre-

sent the first record from the Weddell Sea.

Nymphon mendosum (Hodgson, 1907)

Figure 9a

Nymphon mendosum Hodgson, 1907: 30–32, 85, pl. IV, figs 3, 97,

pl. X, fig. 13

Material examined. ZSMA20071581: 1 specimen; Antarctica;

03.04.2000; 15:37–15:56; FS Polarstern; Cruise: ANT XVII/3; Sta-

tion: PS 56/102–1; Exp.: EASIZ III; 71�11.900 S, 12�21.700 W –

71�11.440 S, 12�19.200 W; GSN; 312–323 m ZSMA20100232: 1 spe-

cimen; Antarctica, Weddell Sea, N Kapp Norvegia; 02.02.1998; FS

Polarstern; Cruise: ANT XV/3; Station: PS 48–77; Exp.: EASIZ II;

71�09.70 S, 12�28.70 W – 71�09.90 S, 12�29.20 W; AGT; 341.0–

360.0 m

Remarks. The size of the laterodistal spines and their

arrangement in Nymphon mendosum are unlike those in

any other species (Child 1995). At first sight this spe-

cies might be mistaken for N. proximum, but it differs

in having the lateral processes much more separated, a

longer abdomen and a glabrous trunk (Fig. 9a) (Child

1995).

Nymphon proceroides Bouvier, 1913

Figures 9b–c

Nymphon proceroides Bouvier, 1913: 90–94, figs 42–48

Material examined. ZSMA20010085: 1 specimen; Antarctica; Wed-

dell Sea; 26.04.2000; 17:25–17:35; FS Polarstern; Station: 159–1;

62�55,000 S, 57�39,500 W; AGT; 214–218 m

Weis, A. et al.: Antarctic Pycnogonida308
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Remarks. The most prominent characters which distin-

guish this species are the well separated lateral pro-

cesses and the small number of teeth on the chela fin-

gers (Figs 9b–c). Furthermore, the anterior body

appendages appear very small in relation to the remain-

der of the species’ habitus (see Child 1995).

While Child (1995) counted only 3–4 spinules on the

oviger claw, the specimens examined here correspond

better with the description of Gordon (1932), who men-

tioned 4–7 spinules on the terminal oviger claw.

This is the first record of Nymphon proceroides

from the Weddell Sea. Previously mentioned local-
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Figure 8. a–b. Nymphon eltaninae; a. Dorsal view of trunk, note long curved spines on lateral processes (arrows); scale ¼ 1 mm.

Insert: Detail view of ocular tubercle; scale ¼ 200 mm; b. Ventral view of palps; scale ¼ 500 mm. Insert: Detail view of chelifores;

scale ¼ 500 mm; c–d. Nymphon longicollum; c. Dorsal overview; scale ¼ 1 mm; d. Dorsal view of cephalon, note gap between

first pair of walking leg and oviger (arrow); scale ¼ 1 mm; e–f. Nymphon longicoxa; e. Dorsal overview; scale ¼ 1 mm; f. Left

chelifore; scale ¼ 1 mm. Insert: Detail view of tip of movable finger (right chelifore), note recurled chela tip (arrows);

scale ¼ 100 mm. ab – abdomen; cf – chelifore; cx – coxa; ff – fixed finger; lp – lateral process; mf – movable finger; ne –

neck; oc – ocular tubercle; ov – oviger; pa – palp; pr – proboscis; ps – palp segment; te – teeth; tr – trunk; wl – walking leg.
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ities are the Scotia Sea, Antarctic Peninsula, east

Antarctic zone, Palmer Archipelago and South Shet-

land Islands (M�ller 1993; Munilla & Soler-Mem-

brives 2008).

Nymphon proximum Calman, 1915

Figure 9d

Nymphon proximum Calman, 1915: 34–36, fig. 6

Material examined. ZSMA20091355, ZSMA20091356: 1 specimen;

Antarctica, Weddell Sea; 12.01.2008; 10:33–11:04; FS Polarstern;

Weis, A. et al.: Antarctic Pycnogonida310

Figure 9. a. Nymphon mendosum; Dorsal view of trunk; scale ¼ 1 mm. Insert: Detail view of chelifores; scale ¼ 250 mm; b–

c. Nymphon proceroides; b. Dorsal overview; scale ¼ 1 mm; c. Frontal view; scale ¼ 500 mm. Insert: Distal segments of right ovi-

ger, note compound spines (arrows); scale ¼ 200 mm; d. Nymphon proximum; Dorsal overview, note spines on trunk (arrows);

scale ¼ 1 mm; e–f. Nymphon villosum; e. Dorsal overview; scale ¼ 500 mm; f. Overview of right 3rd walking leg; scale ¼ 1 mm.

Insert: Detail view of claw and auxiliary claws; scale ¼ 100 mm. ab – abdomen; ac – auxiliary claw; cf – chelifore; cl – claw;

cx – coxa; fm – femur; ne – neck; oc – ocular tubercle; ov – oviger; pa – palp; pp – propodus; pr proboscis; tb – tibia; tr –

trunk; ts – tarsus; wl – walking leg.
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Cruise: ANT XXIV/2; Station: PS71/048-01; Exp.: ANDEEP-SYST-

CO; 70�24.000 S, 008�19.720 W – 70�23.860 S, 008�18.680 W; AGT;

597–601.8 m; ZSMA20091379, ZSMA20091380: 1 specimen; Ant-

arctica, Weddell Sea; 12.01.2008; 10:33–11:04; FS Polarstern; Cruise:

ANT XXIV/2; Station: PS71/048-01; Exp.: ANDEEP-SYSTCO;

70�24.000 S, 008�19.720 W – 70�23.860 S, 008�18.680 W; AGT;

597.0–601.8 m; ZSMA20091381, ZSMA20091382: 1 specimen; Ant-

arctica, Weddell Sea; 12.01.2008; 10:33–11:04; FS Polarstern; Cruise:

ANT XXIV/2; Station: PS71/048-01; Exp.: ANDEEP-SYSTCO;

70�24.000 S, 008�19.720 W – 70�23.860 S, 008�18.680 W; AGT;

597.0–601.8 m; ZSMA20080545–ZSMA20080550, ZSMA20080552,

ZSMA20080553, ZSMA20080555: each with 1 specimen; Antarctica,

Weddell Sea; 12.01.2008; 10:33–11:04; FS Polarstern; Cruise: ANT

XXIV/2; Station: PS71/048-01; Exp.: ANDEEP-SYSTCO;

70�24.000 S, 008�19.720 W – 70�23.860 S, 008�18.680 W; AGT;

597.0–601.8 m

Remarks. In comparison to the closely related Nymphon

mendosum (see above), the present species can be re-

cognized by its closely set lateral processes, the moder-

ately short abdomen and the conspicuous spines on the

trunk (Fig. 9d) (Child 1995).

Nymphon villosum (Hodgson, 1907)

Figures 9e–f

Chaetonymphon villosum Hodgson, 1907: 26–28, 85, pl. IV, figs 1,

97, pl. X, fig. 11

Synonym. Chaetonymphon villosum Hodgson, 1907

Material examined. ZSMA20080525: 1 specimen; Antarctica, Wed-

dell Sea; 17.12.2007; 17:50–18:18; FS Polarstern; Cruise: ANT

XXIV/2; Station: PS71/016-01; Exp.: ANDEEP-SYSTCO;

70�35.290 S, 009�2.890 W – 70�35.350 S, 009�2.270 W; Rauschert

dredge; 486.3–488.4 m; ZSMA20080527 – ZSMA20080530: each

with 1 specimen; Antarctica, Weddell Sea; 12.01.2008; 10:33–11:04;

FS Polarstern; Cruise: ANT XXIV/2; Station: PS71/048-01; Exp.:

ANDEEP-SYSTCO; 70�24.000 S, 008�19.720 W – 70�23.860 S,

008�18.680 W; AGT; 597.0–601.8 m

Remarks. This species differs from most other nympho-

nids by its hairy appearance and its thickly set trunk.

The tibiae are covered with extremely long and con-

spicuous setae with a well developed basal ring and a

distal hair shaft (Figs 9e–f) (Gordon 1932).

Pentanymphon Hodgson, 1904

Pentanymphon antarcticum Hodgson, 1904

Figures 10a–b

Pentanymphon antarcticum Hodgson, 1904: 459, pl. XIV

Synonym. Pentanymphon minutum Gordon, 1944

Material examined. ZSMA20080531: 1 specimen; Antarctica, Wed-

dell Sea; 12.01.2008; 10:33–10:55; FS Polarstern; Cruise: ANT

XXIV/2; Station: PS71/048-01; Exp.: ANDEEP-SYSTCO;

70�24.000 S, 008�19.720 W – 70�23.880 S, 008�18.650 W; Rauschert

dredge; 594.6–601.8 m; ZSMA20080532: 1 specimen; Antarctica,

Weddell Sea; 12.01.2008; 10:33–11:04; FS Polarstern; Cruise: ANT

XXIV/2; Station: PS71/048-01; Exp.: ANDEEP-SYSTCO;

70�24.000 S, 008�19.720 W – 70�23.860 S, 008�18.680 W; AGT;

597.0–601.8 m; ZSMA20080533: 1 specimen; Antarctica, Weddell

Sea; 12.01.2008; 10:33–10:55; FS Polarstern; Cruise: ANT XXIV/2;

Station: PS71/048-01; Exp.: ANDEEP-SYSTCO; 70�24.000 S,

008�19.720 W – 70�23.880 S, 008�18.650 W; AGT; 594.6–601.8 m;

ZSMA20100226: 1 specimen; Antarctica, Weddell Sea, N Kapp Nor-

vegia; 02.02.1998; FS Polarstern; Cruise: ANT XV/3; Station: PS

48–77; Exp.: EASIZ II; 71�09.70 S, 12�28.70 W – 71�09.90 S,

12�29.20 W; AGT; 341.0–360.0 m

Remarks. The present material corresponds well with

the descriptions in the literature (Gordon 1932, Child

1995). The species can be recognized by its five pairs

of walking legs (Figs 10a–b).

Callipallenidae

Austropallene Hodgson, 1915

Austropallene cornigera (M�bius, 1902)

Figures 10c–d

Pseudopallene cornigera M�bius, 1902: 186, pl. XXVII, figs 14–20

Synonyms

Pseudopallene australis Hodgson, 1907

Pseudopallene cornigera M�bius, 1902

Cordylochele turqueti Bouvier, 1905

Material examined. ZSMA2010086: 1 specimen; Antarctica, Weddell

Sea; 26.04.2000; 14:42–14:57; FS Polarstern; Station: 158-1;

63�4.700 S, 057�31.600 W; AGT; 94.0–95.0 m. ZSMA20071578: 1

specimen (juvenile); Antarctica; Antarctic Peninsula; 26.04.2000;

14:42–14:57; FS Polarstern; Cruise: ANT XVII/3; Station: PS 56/

158-1; Exp.: EASIZ III; 63�4.700 S, 057�31.600 W – 63�4.500 S,

057�32.000 W; AGT; 94.0–95.0 m; ZSMA20080571: 1 specimen;

Antarctica, Weddell Sea; 17.12.2007; 17:50–18:18; FS Polarstern;

Cruise: ANT XXIV/2; Station: PS71/016-01; Exp.: ANDEEP-SYST-

CO; 70�35.290 S, 009�2.890 W – 70�35.350 S, 009�2.270 W; Rauschert

dredge; 486.3–488.4 m; ZSMA20080572 – ZSMA20080576: each

with 1 specimen; Antarctica, Weddell Sea; 12.01.2008; 10:33–11:04;

FS Polarstern; Cruise: ANT XXIV/2; Station: PS71/048-01; Exp.:

ANDEEP-SYSTCO; 70�24.000 S, 008�19.720 W – 70�23.860 S,

008�18.680 W; AGT; 597.0–601.8 m; ZSMA20100229: 1 specimen;

Antarctica, N Antarctic Peninsula, Drake Passage, South Orkney Is-

lands; 23.04.2002; FS Polarstern; Cruise: ANT XIX/5; Station: PS

61/238-1; Exp.: LAMPOS; 61�10.820 S, 45�42.780 W – 61�10.480 S,

45�42.030 W; 322.0–324.0 m.

Remarks. In this study it was possible to take SEM pic-

tures of the tuft of hairs surrounding the mouth which

had been mentioned in the literature as a “Borsten-

kranz” (Helfer & Schlottke 1935) (Fig. 10d) and seems

to be unique in the genus Austropallene. Although the

description of Gordon (1932) generally corresponds

well with the SEM images, the absence of any refer-

ence to such a distinguishing mark as the hair tuft is

quite notable.

Austropallene gracilipes Gordon, 1944

Figures 10e–f

Austropallene gracilipes Gordon, 1944: 39–41, figs 10a, 11a, 11c,

14c–d

Material examined. ZSMA20100231: 1 specimen; Antarctica, Weddell

Sea, N Kapp Norvegia; 02.02.1998; FS Polarstern; Cruise: ANT XV/
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3; Station: PS 48–77; Exp.: EASIZ II; 71�09.70 S, 12�28.70 W –

71�09.90 S, 12�29.20 W; AGT; 341.0–360.0 m

Remarks. This species can be distinguished from other

members of Austropallene by its slender build, the long

neck and the presence of two spurs on each lateral pro-

cess (Figs 10e–f). The unusually long and slender walk-

ing legs also are a characteristic feature (Gordon 1944).

Pallenopsidae

Bathypallenopsis Pushkin, 1993

Bathypallenopsis macronyx (Bouvier, 1911)

Figures 11a–b

Pallenopsis macronyx Bouvier, 1911: 1139

Synonym. Pallenopsis knipovichi Turpaeva, 1974

Weis, A. et al.: Antarctic Pycnogonida312

Figure 10. a–b. Pentanymphon antarcticum; a. Dorsal overview, note eggs (arrows); scale ¼ 1 mm; b. Dorsal view of trunk, note

five pairs of walking legs; scale ¼ 1 cm; c–d. Austropallene cornigera; c. Dorsal overview, note smaller left 3rd walking leg (ar-

row); scale ¼ 5 mm; d. Lateral view of proboscis, note prominent mouth protrusion; scale ¼ 200 mm. Insert: Close up of mouth

opening; scale ¼ 20 mm; e–f. Austropallene gracilipes; e. Dorsal overview; scale ¼ 1 mm; f. Detail view of cephalon; scale ¼ 500 mm.

ab – abdomen; cf – chelifore; eg – eggs; mo – mouth opening; mp – mouth protrusion; ne – neck; oc – ocular tubercle;

ov – oviger; pr – proboscis; tr – trunk; wl – walking leg.
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Material examined. ZSMA20042386, ZSMA20042390: each with

1 specimen; Antarctica; Antarctic Peninsula, Bransfield Strait;

28.04.2000; 12:37–13:03; FS Polarstern; Cruise: ANT XVII/3; Sta-

tion: 164-1; Exp.; EASIZ III; 63�4.900 S, 059�32.900 W – 63�4.700 S,

059�32.700 W; AGT; 858.0–859.0 m.

Remarks. The examined specimens differ from other re-

presentatives of the genus Pallenopsis by the short pro-

boscis and the lateral palp buds which appear as rather

long and slender compared to other species (Child

1995). Furthermore, as described by Child (1995), the

trunk, lateral processes and legs are covered with many

plain and short setae (Fig. 11a).

Beyond that, two peculiar features must be pointed

out that are of high taxonomic relevance. The first are

Zoosyst. Evol. 87 (2) 2011, 297–317 313

Figure 11. a–b. Bathypallenopsis macronyx; a. Dorsal overview; scale ¼ 3 mm. Insert left: Detail view of ovigers and chelifores;

scale ¼ 1 mm. Insert right: Close up of chelifores; scale ¼ 500 mm; b. Tarsus and propodus with claw (right 4th walking leg);

scale ¼ 1 mm; c–d. Pallenopsis hodgsoni; c. Dorsal overview; scale ¼ 3 mm. Insert: Detail view of chelifores; scale ¼ 500 mm.

d. Tarsus and propodus with claw and auxiliary claws of right 2nd walking leg; scale ¼ 1 mm; e–f. Pycnogonum gaini; e. Dorsal

overview; scale ¼ 3 mm. Insert: Lateral view of proboscis, note distal hump (arrow); scale ¼ 500 mm; f. Tarsus and propodus with

claw of right 3rd walking leg; scale ¼ 1 mm. ac – auxiliary claw; cf – chelifore; cl – claw; ov – oviger; pp – propodus; pr –

proboscis; tb – tibia; ts – tarsus; wl – walking leg.
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the atypical chelae. Whereas in related species, e.g. in

Pallenopsis lateralia Child, 1995 and P. villosa Hodg-

son, 1907, the fingers are placed laterally to the palm,

in P. macronyx the fingers are carried as longitudinal

extensions of the palm (Fig. 11a). The second peculiar-

ity is the absence of auxiliary claws, as shown in Fig-

ure 11b.

Remarkably, these two features do not fit with those

of representatives of the subgenus Pallenopsis, but in-

stead correspond to what has been described as diag-

nostic for Bathypallenopsis. Originally introduced as a

subgenus by Stock (1975), it was raised to genus rank

by Pushkin (1993), who also transferred Pallenopsis

macronyx to Bathypallenopsis. In spite of the latter, re-

cent studies carried the species in the preceding way, as

Pallenopsis (P.) macronyx (Child 1995; Munilla 2008;

Bamber & Nagar 2011). However, the articulation of

the chelae as well as the absence of auxiliary claws –

which are conspicuous features of our specimens, too –

have convinced us of following Pushkin’s interpretation

here.

Pallenopsis Wilson, 1881

Pallenopsis hodgsoni Gordon, 1938

Figures 11c–d

Pallenopsis hodgsoni Gordon, 1938: 16–17, figs 3a, 4d, 5d

Material examined. ZSMA20100163: 1 specimen; Antarctica; N Car-

ney Island; 28.02.1994; 21:06–22:30; FS Polarstern; Cruise: Antark-

tis; Station: 29/057; Exp.: ANT XI/3; 73�10.800 S, 121�54.200 W;

AGT; 627.0 m.

Remarks. This species corresponds well with the de-

scriptions given by Gordon (1938) and Child (1995).

Only the auxiliary claws show well visible differences.

According to Child the auxiliaries are half the length of

the main claw, but in the specimen examined here they

are significantly shorter (Fig. 11d), more in agreement

with the drawings by Munilla (1991).

Pycnogonidae

Pycnogonum Bruennich, 1764

Pycnogonum gaini Bouvier, 1910

Figures 11e–f

Pycnogonum gaini Bouvier, 1910: 30

Material examined. ZSMA20100171: 1 specimen; Antarctica; Wed-

dell Sea; 05.01.2004; 15:21–15:31; FS Polarstern; Cruise: PS 65; Sta-

tion; 336-1; Exp.: ANT XXI/2; 70�50.700 S, 010�28.320 W –

70�50.750 S, 010�28.010 W; AGT; 276.0–281.0 m.

Remarks. Following the key given in Child (1995), the

defining difference between Pycnogonum gaini and the

similar P. diceros is the presence of two dorsal tubercles

on the proboscis in the latter species. The specimen ex-

amined here shows a single distal tubercle on the pro-

boscis (Fig. 11e). Pentapycnon charcoti “lacks the more

proximal of the two proboscis tubercles” (Child 1995)

but it differs from the examined specimen in the pre-

sence of five pairs of walking legs. Hence, our observa-

tion corresponds well with the description of Gordon

(1944), that “the proboscis is enlarged distally and pos-

sesses a dorsal hump near the apex.”

Rhynchothoracidae

Rhynchothorax Costa, 1861

Rhynchothorax australis Hodgson, 1907

Figures 12a–b

Rhynchothorax australis Hodgson, 1907: 57–58, 93, pl. VIII, fig. 3

Material examined. ZSMA20100167: 1 specimen; Antarctica; Antarc-

tic Peninsula; 26.04.2000; 14:42–14:57; FS Polarstern; Cruise: PS 56;

Station: 158-1; Exp.: EASIZ III; 63�4.700 S, 057�31.600 W –

63�4.500 S, 057�32.000 W; AGT; 94.0–95.0 m.

Remarks. This specimen corresponds well with the de-

scription given by Child (1995). It can be distinguished

from other Rhynchothorax species by the arrangement

of tubercles on the lateral processes and the first coxae.

While R. percivali Clark, 1976 shows tubercles on both,

the lateral processes and the first coxae, R. australis

has tubercles on the first coxae, but none on the lateral

processes (Figs 12a–b).

Austrodecidae

Austrodecus Hodgson, 1907

Austrodecus glaciale Hodgson, 1907

Figures 12c–d

Austrodecus glaciale Hodgson, 1907: 53, 93, pl. VIII, fig. 1

Material examined. ZSMA20080577: 1 specimen; Antarctica, Wed-

dell Sea; 17.12.2007; 17:50–18:18; FS Polarstern; Cruise: ANT

XXIV/2; Station: PS71/016-01; Exp.: ANDEEP-SYSTCO;

70�35.290 S, 009�2.890 W – 70�35.350 S, 009�2.270 W; Rauschert

dredge; 486.3–488.4 m; ZSMA20100166: 1 specimen; Antarctica;

Antarctic Peninsula; 26.04.2000; 14:42–14:57; FS Polarstern;

Cruise: PS 56; Station: 158-1; Exp.: EASIZ III; 63�4.700 S,

057�31.600 W – 63�4.500 S, 057�32.000 W; AGT; 94.0–95.0 m;

ZSMA20100192: 1 specimen; Antarctica, Weddell Sea, Atka Bay;

12.01.2008; 10:33–11:04; FS Polarstern; Cruise: ANTXXIV/2; Sta-

tion: PS71/048-01; Exp.: ANDEEP-SYSTCO; 70�24.000 S,

008�19.720 W – 70�23.860 S, 008�19.200 W; AGT; 597.0–601.8 m;

ZSMA20100228: 2 specimens; Antarctica, E Weddell Sea;

16.12.2003; FS Polarstern; Cruise: ANT XXI/2; Station: PS 65/173-

1; Exp.: BENDEX; 70�56.820 S, 10�31.760 W – 70�56.770 S,

10�31.170 W; AGT; 279.0–296.0 m.

Remarks. The examined specimens correspond well

with the descriptions of Stock (1957) and Child (1994).

The long ocular tubercle (Fig. 12d) and the specific

spine arrangement on the coxae (Fig. 12c), with one

single tubercle on the coxae of the first pair of walking

legs and two tubercles on the posterior three pairs of

walking legs, separate this species from others in its

genus.
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Note added in proof

After acceptance of the present paper, a new study by R. Bamber

(2011) was published, giving new localities for 9 of the species stud-

ied here. Nevertheless the distribution range is not expanded remark-

ably by adding the King George Island as further location. However,

the depth range could be expanded for Nymphon eltaninae. The shal-

lowest depth ever measured for this species is now at 111 m.

Acknowledgements

This study was partly supported by a Graduiertenstipendium

(BayEFG) given to A. Weis and the Deutsche Forschungsge-

meinschaft (DFG ME 2683/5). Special thanks go to Martin Spies

(Munich) for polishing the English.

References

Arango, C. P. 2002. Morphological phylogenetics of the sea spiders

(Arthropoda: Pycnogonida). – Organisms Diversity and Evolution

2: 107–125.

Arango, C. P. 2003. Molecular approach to the phylogenetics of sea

spiders (Arthropoda: Pycnogonida) using partial sequences of nu-

clear ribosomal DNA. – Molecular Phylogenetics and Evolution

28: 588–600.

Arango, C. P. & Wheeler, W. C. 2007. Phylogeny of sea spiders (Ar-

thropoda, Pycnogonida) based on direct optimization of six loci

and morphology. – Cladistics 23: 1–39.

Arango, C. P., Soler-Membrives, A. & Miller, K. J. 2011. Genetic dif-

ferentiation in the Circum-Antarctic sea spider Nymphon australe

(Pycnogonida; Nymphonidae). – Deep Sea Research II 58: 212–

219.

Arnaud, F. & Bamber, R. N. 1987. The biology of Pycnogonida. –

Advances in Marine Biology 24: 1–96.

Bain, B. A. & Govedich, F. R. 2004a. Courtship and mating behaviours

in the Pycnogonida (Chelicerata: class Pycnogonida): a summary. –

Invertebrate Reproduction and Development 46 (1): 63–79.

Bain, B. A. & Govedich, F. R. 2004b. Mating behaviour, female ag-

gression and infanticide in Propallene saengeri (Pycnogonida:

Callipallenidae). – Victorian Naturalist 121 (4): 168–171.

Bamber, R. N. 2007. A holistic re-interpretation of the phylogeny of

the Pycnogonida Latreille, 1810 (Arthropoda). – Zootaxa 1668:

295–312.

Bamber, R. N. 2011. The sea-spiders (Arthropoda: Pycnogonida) of

Admiralty Bay, King George Island. – Polish Polar Research 32

(1): 27–38.

Bamber, R. N. & El Nagar, A. (eds) 2011. Pycnobase: World Pycno-

gonida Database. Available online at http://www.marinespecie-

s.org/pycnobase

Zoosyst. Evol. 87 (2) 2011, 297–317 315
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Introduction

The Pycnogonida or sea spiders are thought to repre-

sent a basally branching lineage within Chelicerata of

primarily marine origin present in all oceans from the

littoral zone to abyssal depths (Bamber 2007; Park

et al. 2007). Currently these cryptic “nobodies” are

containing more than 1300 species worldwide (Arango

& Wheeler 2007; Munilla & Soler-Membrives 2008).

Many species are almost perfectly hidden in the benthic

organisms they feed on, moving so slowly that they are

very hard to detect. At the moment many pycnogonid

studies concentrate on the Antarctic area, since there

they appear with remarkable species richness (Stiboy-

Risch 1993). Beyond that also Hodgson (1927) consid-

ered this continent as the centre of speciation for pyc-

nogonids (“Hauptquartier der Pantopoden”). Since the

Southern Ocean has been described as a centre of pyc-

nogonid geographic dispersal and evolutionary radiation

(Hedgpeth 1947; Fry & Hedgpeth 1969; Munilla & So-

ler-Membrives 2008; Griffiths et al. 2011) we want to

extend the spectrum to hitherto relatively unexplored

Subantarctic regions. In this context, the 90.000 km

long Southern Chilean coastline with its impressive

fjord regions represents an interesting study area. The

last extensive studies on Chilean fjord pycnogonids are

those of Loman (1923a, b) on pycnogonids collected by

the Antarctic Swedish Expedition (1901–1903), and of

Hedgpeth (1961) on the Lund University Chile Expedi-

tion which dates back to the 1950s. The Chilean fjord

regions were completely covered by glaciers during the

last ice age and were subsequently recolonized by

benthic communities (F�rsterra 2009). Today this area

is strongly influenced by precipitation, since numerous

rivers and streams carry down fresh water from the

mountains into the upper benthos zone. This leads to

the formation of an uppermost low salinity layer attain-

ing a thickness of up to 7 m creating specific living

conditions. Below the transitional zone to the seawater,

the halocline, various types of benthic communities are

found including also pycnogonids (see Fig. 2) (Melzer

et al. 2006).

The animals studied in this paper originate from a

wide range of latitudes (30�–55� S) including several

biogeographic regions: (1) The Peruvian or warm-tem-

perate province of northern Chile ranging from Penin-

sula Illescas (approx. 6� S) to Chilo� Island (42� S)

(H�ussermann & F�rsterra 2005), (2) the Magellanic or

cold-temperate region ranging from Chilo� Island

(42� S) to Tierra del Fuego (55� S) (Dall 1909; Car-

celles & Williamson 1951; Stuardo 1964; Dell 1971;

Brattstr�m & Johanssen 1983), (3) the Subantarctic re-

gion generally considered as ranging from about 46� to

60� S, and (4) the Falkland Islands (52� S) that is either
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Abstract

The Chilean and Subantarctic pycnogonid material housed at the Bavarian State Collec-

tion of Zoology mainly collected by the “Huinay fjordos” expeditions between 2005

and 2011 is reviewed. It represents 12 species from 5 of the 11 pycnogonid families,

namely: Ammotheidae, Callipallenidae, Colossendeidae, Pallenopsidae and Phoxichili-

diidae. The animals were studied with light and scanning electron microscopy (SEM)

in order to depict complete sets of the species’ diagnostic features. Series of light mi-

croscopic pictures were used to generate extended depth of field pictures. The observed

features are discussed and compared to results from previous literature and data on the

species’ geographic distribution are updated.
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Figure 1. Overview of collecting sites of Chilean and Subantarctic pycnogonids deposited at the Bavarian State Collection of

Zoology. Species are numbered as follows: 1. Achelia assimilis, 2. Ammothea spinosa, 3. Tanystylum cavidorsum, 4. Tanystylum

neorhetum, 5. Colossendeis macerrima, 6. Colossendeis megalonyx, 7. Colossendeis scoresbii, 8. Anoropallene palpida, 9. Calli-

pallene margarita, 10. Pallenopsis notiosa, 11. Pallenopsis patagonica, 12. Anoplodactylus californicus.
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seen as a distinct region (Powell 1965) or as part of the

Magellanic region.

This study displays samples predominantly collected

from expeditions of the Huinay Scientific Field Station

from 2005 to now. The few species found in the Chi-

lean fjord regions so far are particularly interesting due

to their extraordinary distribution patterns. Our new re-

cords expand the known geographic range for some of

the species (see also Melzer et al. 2006; Melzer 2009).

This might correspond with the idea suggested in pre-

vious studies that wideranging Magellanic invertebrate

taxa are extending their distribution range also far north

due to the Humboldt Current (see Brattstr�m & Johans-

sen 1983; Schr�dl 2003).

Representatives of most of the Chilean fjord pycno-

gonids previously recorded are housed at the Zoolo-

gische Staatssammlung M�nchen (ZSM), distributed

among 12 species. According to Sielfeld’s (2003) spe-

Zoosyst. Evol. 88 (2) 2012, 185–203 187

Figure 2. In situ pictures of Chilean fjord pycnogonids: a. Tanystylum cavidorsum; b. Anoplodactylus californicus; c. Achelia

assimilis; d. Pallenopsis patagonica; e, f. Callipallene margarita; Underwater-photos a, c, e, f by Roland Meyer.
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cies list about 40 pycnogonid species have been found

in the southeast Pacific Ocean including Chilean Pata-

gonia so far, many of them being inhabitants of deep

waters. The species figured in the present study were

already mentioned in Sielfeld (2003) with the exception

of Colossendeis macerrima Wilson, 1881, C. megalonyx

Hoek, 1881 and Anoropallene palpida (Hilton, 1939).

Here we document the morphology and sample loca-

tions of the different species housed at the ZSM contri-

buting to a taxonomic and faunistic survey of Pycnogo-

nida from the Chilean Fjords. Based on our catalogue

of Antarctic Pycnogonida (Weis et al. 2011) we present

the classification given in PycnoBase (Bamber &

Nagar 2011) as a taxonomic backbone, and illustrate a

general overview of the most prominent characteristics

of the collected Chilean/Subantarctic pycnogonid

species.

Material and methods

Sampling sites are mainly located in the Chilean fjord regions, but we

also got some specimens from more northern areas (from Dr. Javier

Sellanes L�pez; Universidad Cat�lica del Norte, Facultad De Ciencias

Del Mar, Coquimbo, Chile) and the Falklands (from Dr. Vladimir

Laptikhovsky; Falkland Islands Fisheries Department); details are giv-

en under the material examined section for each species. Figure 1

shows the location where the species were collected. Most of the ma-

terial was collected by SCUBA diving during stays at the Huinay

Scientific field station or “Huinay fjordos 3–10” expeditions between

2005 and 2011 (F�rsterra 2009) and fixed in either 75% or 96%

ethanol.

Chilean/Subantarctic pycnogonids were determined using a variety

of literature. Especially the works of Loman (1923a, b) and Hedgpeth

(1961) must be pointed out since they are the only studies that con-

centrate on Chilean pycnogonids and provided many helpful draw-

ings. Determinations were checked further using the more recent

work of Sielfeld (2003) and Melzer (2009). Beyond that synonyms

were looked up in PycnoBase (Bamber & Nagar 2011) and M�ller’s

(1993) “World Catalogue and Bibliography of the recent Pycnogoni-

da”.

All specimens were documented using an Olympus SZX stereo mi-

croscope equipped with a Jenoptic Prog-Res C12 digital camera

(2580 ;�1944 px; 96 dpi; colour depth 24 bit) at different levels along

the z-axis. In a following step these pictures were edited and

combined to a single respective image with greater depth of field

using the computer software CombineZ and/or Syncroscopy Auto

Montage. Specimens used for SEM documentation (using a LEO

1430VP at 15 kV) were prepared according to methods described in

Montoya Bravo et al. (2009).

Annotated catalogue

General remarks

A total of 12 Subantarctic/Chilean pycnogonid species

could be identified. In all cases, the major morphologi-

cal characteristics correspond well with the respective

descriptions published earlier. The species most fre-

quently recorded in our collection is Achelia assimilis

(Haswell, 1884) with a total of 226 specimens.

Classification

Order Pantopoda Gerst�cker 1863

Suborder Eupantopodida Fry 1978

Superfamily Ascorhynchoidea Pocock 1904

Family Ammotheidae Dohrn, 1881

Achelia assimilis (Haswell, 1884)

Ammothea spinosa (Hodgson, 1907)

Tanystylum cavidorsum Stock, 1957

Tanystylum neorhetum Marcus, 1940

Superfamily Colossendoidea Hoek 1881

Family Colossendeidae Hoek, 1881

Colossendeis macerrima Wilson, 1881

Colossendeis megalonyx Hoek, 1881

Colossendeis scoresbii Gordon, 1932

Superfamily Nymphonoidea Pocock 1904

Family Callipallenidae Hilton, 1942

Anoropallene palpida (Hilton, 1939)

Callipallene margarita (Gordon, 1932)

Family Pallenopsidae Fry, 1978

Pallenopsis notiosa Child, 1992

Pallenopsis patagonica (Hoek, 1881)

Superfamily Phoxichilidoidea Sars 1891

Family Phoxichilidiidae Sars, 1891

Anoplodactylus californicus Hall, 1912

Ammotheidae

Achelia Hodge, 1864

Achelia assimilis (Haswell, 1884)

Figures 3a–f, 4a–d

Ammothea assimilis Haswell, 1884: 1026–1027, figs 5–9

Synonyms

Ammothea wilsoni Schimkewitsch, 1887

Achelia variabilis Stock, 1954

Achelia wilsoni Stock, 1957

Nymphopsis denticulate Gordon, 1932 (misidentification)

Material examined. Chilean fjord region, Comau fjord, Punta Huinay:

42�220 S, 72�250 W; 1 specimen; 04.05.2005; 18 m; ZSMA20051920;

1 ,, 1 <; 04.03.2006; 15–25 m; ZSMA20111018, ZSMA20111019;

31 specimens; 05.03.2009; 20–30 m; ZSMA20100115,

ZSMA20100116, ZSMA20111068; 1 <; 06.03.2009; 20–30 m;

ZSMA20111069; 2 ,,, 2 <<, 2 juv.; 12.03.2006; 5–10 m;

ZSMA20111029, ZSMA20111033, ZSMA20111034,

ZSMA20111037, ZSMA20111038, ZSMA20111040; 4 ,,, 7 <<,

3 juv.; 14.03.2011; 25 m; ZSMA20111163–ZSMA20111171,

ZSMA20111186, ZSMA20111187–ZSMA20111190; 6 ,,, 3 <,

5 juv.; 22.03.2011; 20–30 m; ZSMA20111311–ZSMA20111315;

ZSMA20111539–ZSMA20111547. Chilean fjord region, Comau

fjord, Huinay: 42�19.880 S, 72�27.660 W; 1 specimen; 09.03.2004;

10–25 m; ZSMA20051994. Chilean fjord region, Comau fjord, Hui-

nay, Punta Gruesa: 42�240 S, 72�250 W; 5 specimens; 22.02.2005;

20–30 m; ZSMA20051921, ZSMA20051922, ZSMA20051931–

ZSMA20051933; 3 ,,, 1 <, 24 juv.; 13.03.2011; 20 m;

ZSMA20111132–ZSMA20111158, ZSMA20111162. Chilean fjord

region, Comau fjord, Huinay, Swall: 42�190 S, 72�270 W; 2 <<;

15.03.2011; 10–20 m; ZSMA20111193, ZSMA20111194. Chilean

fjord region, Comau fjord, Huinay, Anti-Punta: 16 specimens;

21.02.2005; 5–36 m; ZSMA20051928–ZSMA20051930,
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ZSMA20051946–ZSMA20051957, ZSMA20051993. Chilean fjord re-

gion, Comau fjord, Lilihuapi: 42�090 S, 72�350 W; 5 specimens;

24.02.2005; 5–36 m; ZSMA20051923–ZSMA20051927; 3 ,,, 1 <,

2 juv.; 26.03.2006; 17 m; ZSMA20111041–ZSMA20111046; 2 ,,,

1 <; 14.04.2006; 15–25 m; ZSMA20111047, ZSMA20111049,

ZSMA20111050. Chilean fjord region, Comau fjord, Quintopeu:

42�090 S, 72�260 W; 15 specimens; 25.02.2005; 15–25 m;

ZSMA20051934–ZSMA20051945, ZSMA20051978; 2 ,,, 2 <<,

1 juv.; 27.03.2006; 17 m; ZSMA20111052, ZSMA20111054–

ZSMA20111057. Chilean fjord region, Fjord Renihu�, Loberia:

42�34050.000 S, 72�33014.600 W; 13 ,,, 6 <<, 1 juv.; 20.03.2011; 20 m;

ZSMA20111256–ZSMA20111275. Chilean fjord region, Fjord Reni-

hu�, Cabudahue: 42�32045.900 S, 72�37’06.600 W; 10 ,,, 10 <<, 15 juv.;

20.03.2011; 20 m; ZSMA20111276–ZSMA20111310. Chilean fjord re-

gion, Fiordo corno: 1 ,; 25.02.2005; 19–25 m; ZSMA20111021. Chi-

lean fjord region, Madres Dios Archipelago, Canal Copihue:

50�20023.100 S, 75�22039.200 W; 1 ,; 12.03.2006; 20 m; ZSMA20111001.

Chilean fjord region, Hanover Area, Canal Pitt Chico: 50�500 07.100 S,
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Figure 3. Achelia assimilis: a. Dorsal overview; scale ¼ 1 mm; b. Dorsal view of trunk; scale ¼ 200 mm; c. Lateral view of trunk;

scale ¼ 200 mm; d. Dorsal view of trunk, note spines on trunk, lateral processes and first coxae (arrows); scale ¼ 200 mm;

e. Dorsal view of cephalon; scale ¼ 200 mm; f. Overview of left palp; scale ¼ 100 mm. Abbreviations: ab – abdomen; cf – chelifore;

oc – ocular tubercle; ps – palp segment; tr – trunk; wl – walking leg.
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74�08020.900 W; 1 <; 07.03.2006; 20 m; ZSMA20111010. Chilean fjord

region, Raul Marin, Las Hermanas: 43�46.2850 S, 073�02.6320 W; 1 ,;

11.03.2007; 16 m; ZSMA20111014. Chilean fjord region, Messier

Channel and Fjords, Estero Denmann: 48�51034.500 S, 74�22047.200 W;

1 <; 11.03.2006; 5–15 m; ZSMA20111025. Chile, Tierra del Fuego,

Fjord Ponsenby: 55�03071.9600 S, 68�44013.4800; 1 <, 1 juv.; 19.12.2010;

29 m; ZSMA20111341, ZSMA20111342. Chile, off Coquimbo:

30�22.8930 S, 71�57.7590 W; 1 <; 140 m; ZSMA20111076. Chile,

Playa Chica: 39�43010.300 S, 73�24011.800 W; 3 ,,, 4 <<; 07.03.2011;

0–1 m; ZSMA20111080–ZSMA20111082, ZSMA20111085–

ZSMA20111087, ZSMA20111089; 1 juv.; 08.03.2011; 0–1 m;

ZSMA20111094.

Remarks. With a total of 226 specimens Achelia assim-

ilis is the most frequently found pycnogonid species in

the Chilean fjords so far. As Hedgpeth (1961) already

mentioned this species shows a variable appearance

concerning the spination of the dorsal trunk and lateral

processes. Our specimens show two (Fig. 3c) or three

dorsal trunk spines (Fig. 3d) and further two spines on

each of the lateral processes. Specimens with three dor-

sal trunk spines are well in accordance with the draw-

ings provided by Gonz�lez and Edding (1990).

After Hedgpeth (1961) some spurs of the lateral pro-

cesses are bifurcate. Here we could observe additional

bifurcated spurs on the first coxa as well (see Fig. 3d).

Beyond that there are also distinct spurs at the anterior

margin of the cephalic segment (Fig. 3e). The remain-

ing characteristic features like for example the ovigers

(Fig. 4a–b) and walking legs (Fig. 4c–d) correspond

well with the descriptions of the older literature.

Apart from being the most frequently collected spe-

cies, Achelia assimilis shows also the largest distribu-

tion area of the pycnogonid species analysed in our

study. Achelia assimilis is found in both of the above-

mentioned climates, the warm-temperate and the cold-

temperate zones of Chile (see Fig. 1). M�ller (1993)

summarized records of this species from tropical and

temperate southwest Pacific and Indonesia, Malaysia,

French Polynesia and Chile. Furthermore this species

was reported for Australia (Child 1975; Arango 2003)

and New Zealand (Munilla & Soler-Membrives 2008).

Although the material from the Lund expedition con-

tains specimens from about 53� S (see Hedgpeth 1961),

with Tierra del Fuego being situated at 55� S, our col-

lected specimens show the southernmost collecting site

for A. assimilis (see Melzer 2009).

Ammothea Leach, 1814

Ammothea spinosa (Hodgson, 1907)

Figures 4e–f, 5a–c

Leionymphon spinosum Hodgson, 1907: 49–50, pl. VII, fig. 2

Synonyms

Ecleipsothremma spinosa Fry & Hedgpeth, 1969

Material examined. Subantarctic, Falkland Islands West: 51� 508.0000 S,

61�4400.0000 W; 1 ,; 06.02.2010; 174–176 m; ZSMA20111356.

Remarks. The present material corresponds well with

the description of Fry and Hedgpeth (1969) and Child

(1994). At first sight this species might be mistaken for

Ammothea allopodes Fry & Hedgpeth, 1969, but it dif-

fers in having prominent dorsal trunk ridges (Fig. 4e)

and a tall ocular tubercle with a pointed cone (Fig. 5b).

Furthermore the articulation of the scape with palm of

Ammothea spinosa is synaxial and the first four palp

segments are as long as the proboscis (Fig. 4f). Based

on these characteristics, A. spinosa can be clearly dis-

tinguished from A. allopodes.

Ammothea spinosa has so far been collected from

the Antarctic area, the Argentine Basin and the Magel-

lanic region (M�ller 1993; Child 1994). Thus the here

examined individual from the Falkland Islands fits well

in the previous described distribution pattern.

Tanystylum Miers, 1879

Tanystylum cavidorsum (Stock, 1957)

Figures 5d–f, 6a–d

Tanystylum neorhetum Stock, 1954: 149–151, figs 73–74

Synonyms

Tanystylum cavidorsum var. steatopygidium Hedgpeth, 1961

Material examined. Chile, Playa Chica: 39�43010.300 S,

73�240 11.800 W; 1 <, 3 juv.; 07.03.2011; 0–1 m; ZSMA20111083,

ZSMA20111084, ZSMA20111088, ZSMA20111090; 9 ,,, 10 <<,

20 juv.; 08.03.2011; 0–1 m; ZSMA20111091–ZSMA20111093,

ZSMA20111095–ZSMA20111130. Chile, Regi�n de Magellanes y de

la Ant�rctica Chilena, Puerto del Hambre: 53�360 S, 70�550 W; 1 spe-

cimen; 25.02.2002; ZSMA20111575.

Remarks. The most obvious characteristic of this species is

the large rounded bulb-like base of the abdomen (Fig. 5e).

This prominent feature differentiates it from all other Ta-

nystylum species from this region. There is only one

known congener from the study region with a similar bulb-

shaped abdomen base, namely Tanystylum oedinotum Lo-

man, 1923b. However, this species differs from Tanystylum

cavidorsum in having a truncate conical proboscis (Child

1994), instead of a barrel-shaped one (Figs 5d, 6a).

In the literature Tanystylum cavidorsum is known

from New Zealand, South Georgia, Possession Island,

Crozet Island, South Sandwich Islands and Southern

Chile with the northernmost discovery in Mehuin at

39� S (Clark 1977; M�ller 1993; Child 1994). Our spe-

cimens (except ZSMA20111575) have been found in

the warm-temperate region at Playa Chica, coinciding

in terms of latitude (39� S) with the northernmost of

the previously documented sample sites. Just as given

in Hedgpeth (1961) we also found all 39 specimens in

the tidal area between 0 and 1 meter water depth.

Tanystylum neorhetum (Marcus, 1940)

Figures 6e–f, 7a–b

Clotenia dohrnii Pfeffer, 1889: 48

Synonyms

Tanystylum pfefferi Bouvier, 1913

Material examined. Chilean fjord region, Hanover Area, Canal Pitt

Chico: 50�50007.100 S, 74�08020.900 W; 1 juv.; 07.03.2006; 20 m;
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ZSMA20111011. Chilean fjord region, Raul Marin, Las Hermanas:

43�46.2850 S, 073�02.6320 W; 1 ,, 1 <; 11.03.2007; 16 m;

ZSMA20111013, ZSMA20111015. Chilean fjord region, Messier

Channel and Fjords, Angostura Inglesa: 48�5901800 S, 74�2500800 W;

1 ,; 11.03.2006; 15 m; ZSMA20111022.

Remarks. As Child (1994) already mentioned this is a

very plain species. Compared to the species described

above it lacks a prominent bulb at the base of the abdo-

men and has a more cone-like proboscis with a rounded

tip (Figs 6e, 7a). The only outstanding character of Ta-

nystylum neorhetum might be the long and obliquely

upwards pointing abdomen (Fig. 6f). While the ocular

tubercle has been described as being not as tall as wide

by Child (1994), the ocular tubercles of our specimens

Zoosyst. Evol. 88 (2) 2012, 185–203 191

Figure 4. a–d. Achelia assimilis; a. Overview of right oviger; scale ¼ 100 mm; b. Distal segments of right oviger; scale ¼ 20 mm;

c. Male, overview of left 4th walking leg; scale ¼ 200 mm. Insert: Detail view of genital opening of second coxa; scale ¼ 100 mm;

d. Tarsus and propodus with claw and auxiliary claws of left 4th walking leg; scale ¼ 200 mm; e, f. Ammothea spinosa; e. Frontal

overview; scale ¼ 5 mm; f. Dorsal view of palps; scale ¼ 1 mm. Abbreviations: ac – auxiliary claw; cf – chelifore; cl – claw;

cs – compound spine; cx – coxa; fm – femur; os – oviger segment; pa – palp; pp – propodus; pr – proboscis; tb – tibia; ts –

tarsus.
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have a much taller appearance (Fig. 6f). Since this spe-

cies seems to be very variable in most respects (see

Stock 1954; Hedgpeth 1961; Clark 1977), we anyhow

determined these four specimens as Tanystylum neorhe-

tum because the remaining characteristics are well in

accordance with the literature.

Tanystylum neorhetum shows the widest known dis-

tribution pattern for any Subantarctic species of its

genus (Child 1994). It has been collected from New

Zealand, South Georgia, Kerguelen Islands, Macquarie

Islands, Tristan da Cunha, Bouvet Islands, Southern

Chile, Tierra del Fuego and the Falkland Islands (M�l-

ler 1993; Child 1994). Thus the collecting sites from

the cold-temperate Chilean fjord regions from the spe-

cimens studied here are not surprising. After Child

(1994) these diverse collecting localities suggest disper-

Weis, A. & Melzer, R. R.: Chilean and Subantarctic Pycnogonida192

Figure 5. a–c. Ammothea spinosa; a. Detail view of ovigers; scale ¼ 500 mm; b. Frontal view of ocular tubercle; scale ¼ 250 mm;

c. Tarsus and propodus with claw and auxiliary claws (left 1st walking leg); scale ¼ 1 mm; d–f. Tanystylum cavidorsum; d. Dorsal

overview; scale ¼ 1 mm; e. Dorsal view of trunk; scale ¼ 200 mm; f. Frontal view of cephalon; scale ¼ 100 mm. Abbreviations: ab

– abdomen; ac – auxiliary claw; ce – cephalon; cl – claw; oc – ocular tubercle; pp – propodus; pr – proboscis; tb – tibia; tr –

trunk; ts – tarsus.
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sal dispensation of the species supported by the forces

of the west wind drift around the southern hemisphere.

The majority of the specimens are found in shallower

depths between 0–115 m which is well in accordance

with our findings.

Colossendeidae

Colossendeis Jarzinsky, 1870

Colossendeis macerrima Wilson, 1881

Figures 7c–f

Colossendeis macerrima Wilson, 1881: 246–247, pl. 1, fig. 2, pl. 4,

figs 9–12, pl. 5, fig. 32

Zoosyst. Evol. 88 (2) 2012, 185–203 193

Figure 6. a–d. Tanystylum cavidorsum; a. Overview of right palp; scale ¼ 200 mm; b. Close up of mouth opening; scale ¼ 50 mm;

c. Overview of right 4th walking leg; scale ¼ 200 mm; d. Tarsus and propodus with claw and auxiliary claws of right 4th walking

leg; scale ¼ 100 mm; e–f. Tanystylum neorhetum; e. Dorsal view of trunk and proboscis; scale ¼ 500 mm; f. Lateral view of trunk;

scale ¼ 250 mm. Abbreviations: ab – abdomen, cl – claw, cx – coxa; fm – femur; oc – ocular tubercle, pa – palp; pp –

propodus; pr – proboscis; tb – tibia; ts – tarsus.
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Synonyms

Colossendeis gigas-leptorhynchus Bouvier, 1937

Colossendeis japonica Hoek, 1898

Colossendeis leptorhynchus var. septentrionalis Caullery, 1896

Colossendeis spei Pushkin, 1970

Colossendeis villegentei Milne-Edwards, 1881

Material examined. Chile, off Peninsula de Taitao: 45�54.4710 S,

75�36.0210 W; 2 specimens; AGT; 510 m; ZSMA20111336,

ZSMA20111337.

Remarks. The short propodus, tiny claw (Fig. 7f) and

distally upturned long proboscis (Fig. 7d) serve to dif-

Weis, A. & Melzer, R. R.: Chilean and Subantarctic Pycnogonida194

Figure 7. a, b. Tanystylum neorhetum; a. Ventral view of proboscis; scale ¼ 100 mm; b. Overview of left 2nd walking leg;

scale ¼ 250 mm; c–f. Colossendeis macerrima; c. Dorsal overview; scale ¼ 6 mm; d. Lateral view of palps and proboscis, note

upturned distal end of proboscis (arrow); scale ¼ 3 mm; e. Distal segments of left palp; scale ¼ 1 mm; f. Overview of left 2nd

walking leg; scale ¼ 6 mm. Insert: Detail view of tarsus and propodus; scale ¼ 1 mm; g. Colossendeis megalonyx: Lateral over-

view; scale ¼ 6 mm. Abbreviations: cl – claw; cx – coxa; fm – femur; pa – palp; pp – propodus; pr – proboscis; ps – palp

segment; tb – tibia; ts – tarsus; wl – walking leg.
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ferentiate Colossendeis macerrima from other Subant-

arctic Colossendeis species. As mentioned in Child

(1995) the palps are longer than the proboscis

(Figs 7c–d) with the 8th palp segment articulated sy-

naxially (Fig. 7e) (see Fry & Hedgpeth 1969).

Colossendeis macerrima is a deep sea species with

worldwide distribution and a recorded depth range of

121–4000 m. Thus the sample location of the two speci-

mens studied here does not deviate from the literature.

Colossendeis megalonyx Hoek, 1881

Figures 7g, 8a

Colossendeis megalonyx Hoek, 1881: 67–69, pl. IX, figs 1–3

Synonyms

Colossendeis arundorostris Fry & Hedgpeth, 1969

Colossendeis frigida Hodgson, 1907

Colossendeis orcadense Hodgson, 1908

Colossendeis rugosa Hodgson, 1907

Material examined. Chile, Concepcion; 36�24.0100 S, 73�43.0740 W;

2 specimens; AGT; 769 m; ZSMA20111071, ZSMA20111338. Sub-

antarctic, Falkland Islands West: 51�508.0000 S, 61�4400.0000 W; 2 spe-

cimens; 06.02.2010; 174–176 m; ZSMA20111358, ZSMA20111364.

Remarks. The present material of four specimens is

well in accordance with the descriptions in the litera-

ture (Fry & Hedgpeth 1969; Child 1995). Colossendeis

megalonyx can be recognized by its down-curved pro-

boscis, which is much longer than the trunk (Figs 7g,

8a), the 8th palp segment which is always shorter than

the two more distal ones (Fig. 8a) and the claw being

longer than half of the propodus length (Fig. 8a). As

mentioned in our previous paper (Weis et al. 2011) dif-

ferent adult individuals show deviating shapes of the

ocular tubercle and their eyes are found to show vary-

ing degrees of differentiation. In the specimens studied

here the ocular tubercles are well developed presenting

four dark pigmented eyes (Fig. 8a). In this context also

the work of Krabbe et al. (2010) should be mentioned

suggesting cryptic lineages exist within C. megalonyx.

Colossendeis megalonyx was originally described by

Hoek (1881) from the South American shelf between

Falkland Islands and Patagonia. Nevertheless this spe-

cies is predominantly found around the Antarctica (see

Munilla & Soler-Membrives 2008; Krabbe et al. 2010)

and according to Child (1995) has one of the widest

distributions known for a deep-water non-cosmopolitan

species. Further sample localities have been the east

coasts of South America and New Zealand and even as

far north as South Africa (off southern Madagascar)

(Child 1995). Two of our specimens were found in a

more northern part of Chile near Concepcion, thus re-

presenting an interesting geographic complement.

Colossendeis scoresbii Gordon, 1932

Figures 8b–c

Colossendeis scoresbii Gordon 1932: 18–21, figs 5c, 6b, c, 7a, b

Material examined. Subantarctic, Falkland Islands West:

50�4005.0000 S, 62�2601.0000 W; 1 specimen; 09.02.2010; 160–165 m;

ZSMA20111347. Subantarctic, Falkland Islands West: 51�1608.0000 S,

62�5708.0000 W; 1 specimen; 05.02.2010; 171–174 m;

ZSMA20111353. Subantarctic, Falkland Islands West: 51�508.0000 S,

61�4400.0000 W; 1 specimen; 06.02.2010; 174–176 m;

ZSMA20111362.

Remarks. In former times Colossendeis scoresbii was

seen as a subspecies of C. megalonyx (Fry & Hedgpeth

1969). Currently C. scoresbii is regarded as a separate

species (see Child 1995). This could be confirmed by

recent studies done by Krabbe et al. (2010). Also mor-

phologically there are some distinct differences to C.

megalonyx like the shorter proboscis (Fig. 8b), the sub-

equal tarsus and propodus as well as the extremely long

propodal claw (Fig. 8c).

Beside the South Orkney Islands, Tierra del Fuego

and the Ross Sea Colossendeis scoresbii is also found

northwest of the Falkland Islands in 130–304 m (Child

1994). The specimens examined in this study were all

collected west from the Falkland Islands between 160–

176 m and agree therefore with the literature.

Callipallenidae

Anoropallene Stock, 1956

Anoropallene palpida (Hilton, 1939)

Figures 8d–e

Pallene palpida Hilton, 1939: 30

Synonyms

Anoropallene crenispina Stock, 1956

Anoropallene heterodenta Stock, 1956

Oropallene palpida Hilton, 1942

Oropallene heterodenta Hilton, 1942

Material examined. Chile, Bahia de Coliumo; 36�31023.7600 S,

72�5709.1900 W; 2 ,, 1 <; May 1992; 3–5 m; ZSMA20010828.

Remarks. The most prominent characters which distin-

guish this species are the absence of auxiliary claws,

palps which are only present in the male and the ven-

trally carried abdomen (Fig. 8d). Child (1979) mentions

an abnormality in the chelifores in one of the females

collected by B. W. Walker. In this specimen, the scapes

show proximally distinct constrictions, which might

point to a previous loss and regeneration of the cheli-

fores (Child 1979). However the two females present in

our material show the same “abnormality” regarding

their chelifores (Fig. 8e), whereas the chelifores of the

male appear without any such distinctive feature.

Furthermore females of the species Propallene stocki

Fage, 1956 show the constriction of the chelifores as

well, which suggests, that this might be a characteristic

feature of females in these two genera rather than an

abnormality. To confirm this hypothesis, the chelifores

of all other hitherto collected females of Anoropallene

palpida should be analysed in detail as well. Unfortu-

nately in the available literature there was no evident

hint regarding detailed morphology of the females che-

lifores.
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Pursuant to the literature Anoropallene palpida has

been collected from southern California, the Panama

Canal area, Mexico, Peru and Ecuador (Child 1992;

M�ller 1993). Even though the samples studied here

were also collected in the warm-temperate region, with

Bahia de Coliumo (Chile) our specimens extend the

previously known distribution to the South. The south-

ernmost sample location so far was South-East of Punta

Lomas (Peru) (see Child 1992). The specimens exam-

ined here have been found about 2500 km more south.

Weis, A. & Melzer, R. R.: Chilean and Subantarctic Pycnogonida196

Figure 8. a. Colossendeis megalonyx; Dorsal view of trunk and proboscis; scale ¼ 3 mm. Insert: Detail view of tarsus and propo-

dus with claw of right 1st walking leg; scale ¼ 3 mm; b, c. Colossendeis scoresbii; b. Dorsal overview; scale ¼ 5mm. Insert:

Dorsal view of trunk and proboscis; scale ¼ 2 mm. c. Overview of right 2nd walking leg; scale ¼ 1 mm; d–e. Anoropallene pal-

pida; d. Dorsal overview, note eggs (arrows); scale ¼ 1 mm. Insert upper right: Dorsal view of abdomen; scale ¼ 100 mm. Insert

middle right: Detail view of chelifores; scale ¼ 100 mm; e. Detail view of cephalon, note constrictions of chelifores (arrows);

scale ¼ 500 mm; f. Callipallene margarita; Frontal overview; scale ¼ 1 mm. Abbreviations: ab – abdomen; cf – chelifore; cl –

claw; cx – coxa; eg – eggs; fm – femur; ff – fixed finger; mf – movable finger; oc – ocular tubercle; ov – oviger; pa – palp;

pp – propodus; pr – proboscis; tb – tibia; tr – trunk; ts – tarsus; wl – walking leg.
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Callipallene Flynn, 1929

Callipallene margarita (Gordon, 1932)

Figures 8f, 9a–c

Pallene margarita Gordon, 1932: 82–85, figs 40–41

Material examined. Chilean fjord region, Comau fjord, Punta Huinay:

42�220 S, 72�250 W; 1 <; 12.03.2006; 5–10 m; ZSMA20111039; 4 ,,,

1 <, 1 juv.; 04.05.2005; 18 m; ZSMA20051909, ZSMA20051914,

ZSMA20111535–ZSMA20111538; 3 ,,, 6 <<, 4 juv.; 14.03.2011; 25 m;

ZSMA20111172–ZSMA20111175, ZSMA20111177, ZSMA20111178,

ZSMA20111180–ZSMA20111185, ZSMA20111191; 4 ,,, 2 <<;

22.03.2011; 20–30 m; ZSMA20111316–ZSMA20111318,

ZSMA20111333–ZSMA20111335. Chilean fjord region, Comau fjord,

Huinay, Punta Gruesa: 42�240 S, 72�250 W; 3 ,,, 1 <; 03.03.2009; 8–

30 m; ZSMA20111058–ZSMA20111061; 4 ,,; 13.03.2011; 20 m;
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Figure 9. a–c. Callipallene margarita; a. Dorsal view of cephalon; scale ¼ 100 mm; b. Ventral view of chelifores; scale ¼ 100 mm; c.

Overview of left 1st walking leg; scale ¼ 200 mm. Insert: Detail view of propodus with claw and auxiliary claws (right 3rd walking

leg); scale ¼ 100 mm; d–g. Pallenopsis notiosa; d. Frontal overview, note long second coxa (arrow); scale ¼ 3 mm. Insert: Dorsal view

of chelifores; scale ¼ 500 mm; e. Detail view of ovigers with eggs; scale ¼ 1 mm; f. Right 2nd walking leg, note long setae (arrows);

scale ¼ 1 mm; g. Detail view of propodus with claw and auxiliary claws (right 2nd walking leg); scale ¼ 500 mm. Abbreviations:

ac – auxiliary claw; cf – chelifore; cl – claw; cx – coxa; eg – eggs; fm – femur; ff – fixed finger; mf – movable finger; ne – neck;

oc – ocular tubercle; ov – oviger; pp – propodus; pr – proboscis; tb – tibia; ts – tarsus; wl – walking leg.
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ZSMA20111131, ZSMA20111159–ZSMA20111161. Chilean fjord re-

gion, Comau Fjord, Huinay, Swall: 42�190 S, 72�270 W; 2 ,,, 2 juv.;

04.03.2009; 20–30m; ZSMA20111063–ZSMA20111066.

Remarks. The present material corresponds well with

the descriptions in the literature (Gordon 1932; Hedg-

peth 1961; Child 1994; Melzer 2009). The lack of both

palps (Fig. 9a) and terminal oviger claw as well as the

slender legs with long claws and auxiliary claws

(Fig. 9c) allow identification of this species as Callipal-

lene margarita.

As already mentioned in Melzer (2009) these speci-

mens are the first described from SCUBA-accessible

depths between 10–40 m. Also in accordance with our

records Callipallene margarita is found in southern

South America off the shores of both Chile and Argen-

tina. Further sampling localities were Brazil, South

Georgia and the Palmer Archipelago in high Antarctic

waters.

Pallenopsidae

Pallenopsis Wilson, 1881

Pallenopsis notiosa Child, 1992

Figures 9d–g

Pallenopsis notiosa Child, 1992: 25–27, fig. 10

Material examined. Chile, Temuco: 38�500 S, 73�380 W; 3 <<; 344

m; ZSMA20111077–ZSMA20111079.

Remarks. The original description of this species by

Child (1992) is matched well by the examined speci-

mens. Pallenopsis notiosa is characterized amongst

others by its massive chelifores with anaxially articu-

lated short fingers (Fig. 9d–e). Furthermore the immo-

vable finger is slightly shorter than the movable one,

which bears many short setae on its proximal third

(Fig. 9d). Another important diagnostic character is the

long second coxa measuring three times the length of

the third coxa (Fig. 9d). Beyond that the cement gland

tube is about half as long as the femoral diameter. Ac-

cording to Child (1992) the auxiliary claws are only

about 0.4 times as long as the main claw. In our speci-

mens they appear even somewhat shorter (Fig. 9g). The

legs and particularly the propodi of the species studied

here are very similar to those of P. meinerti Schimke-

witsch, 1930 (see Stock 1975; Child 1992). But the

slightly longer auxiliary claws and the pointed ocular

tubercle in the latter species serve to separate it from

P. notiosa. The ocular tubercle of P. notiosa possesses a

rounded apex (see Fig. 9d).

To our knowledge, only two specimens of P. notiosa

have been collected so far, off Bahia Las Canas (see

Child 1992). The three males examined in our study

have been collected in the warm-temperate region as

well, nearly at the same area close-by Temuco, which

is located only 3� more to the south. The depth of 344 m

lies in the depth range given by Child (1992) which

was between 290–450 m.

Pallenopsis patagonica (Hoek, 1881)

Figures 10a–e

Phoxichilidium patagonicum Hoek, 1881: 199, figs 6–9

Synonyms

Pallenopsis glabra M�bius, 1902

Pallenopsis hiemalis Hodgson, 1907

Pallenopsis meridionalis Hodgson, 1915

Pallenopsis moebiusi Pushkin, 1975

Material examined. Chilean fjord region, Western Katalalixar, Canal

Adalberto: 48�36028.700 S, 74�53055.700 W; 1 ,; 12.03.2006; 32 m;

ZSMA20111016. Chilean fjord region, Western Katalalixar, Canal

Castillo: 48�44011.400 S, 75�24053.100 W; 1 <; 12.03.2006; 15 m;

ZSMA20111000; 1 juv.; 23 m; ZSMA20111005. Chilean fjord region,

Messier Channel and Fjords, Paso del Abismo: 49�34038.700 S,

74�26049.300 W; 1 ,, 1 juv.; 10.03.2006; 28 m; ZSMA20111023,

ZSMA20111024. Chilean fjord region, Hanover Area, Canal Pitt Chi-

co: 50�50007.100 S, 74�08020.900 W; 1 <; 07.03.2006; 25 m;

ZSMA20111002. Chilean fjord region, Fjords of region X:

43�25003.000 S, 74�04051.200 W; 1 ,, 1 <; 24.02.2008; 25 m;

ZSMA20111003, ZSMA20111006. Chilean fjord region, Fjords of re-

gion X: 43�24034.500 S, 74�05000.700 W; 1 ,; 24.02.2008; 9 m;

ZSMA20111004. Chilean fjord region, Fjords of region X:

43�23033.400 S, 74�07056.500 W; 1 ,; February 2008; 26 m;

ZSMA20111009. Chilean fjord region, Raul Marin, Las Hermanas:

43�46.2850 S, 073�02.6320 W; 1 juv.; 11.03.2007; 22 m;

ZSMA20111012; 1 ,, 2 juv.; 12.03.2007; 25 m; ZSMA20111020,

ZSMA20111026, ZSMA20111027. Chile, Anihue, Raul Marin, Bal-

maceda, Islas Tres Hermanas: 43�46031.3500 S, 73�01044.1400 W; 1 <;

17.01.2011; 19 m; ZSMA20111339. Chile, Tierra del Fuego, Canal

Murray: 55�00.0060 S, 68�18.8810 W; 1 ,; 22.12.2010; 28 m;

ZSMA20111340. Subantarctic, Falkland Islands West: 50�2604.0000 S,

62�4605.0000 W; 1 specimen; 09.02.2010; 146–148 m;

ZSMA20111348. Subantarctic, Falkland Islands West: 51�1608.0000 S,

62�5708.0000 W; 3 ,,, 1 juv.; 05.02.2010; 171–174 m;

ZSMA20111349–ZSMA20111352. Subantarctic, Falkland Islands

West: 51�508.0000 S, 61�4400.0000 W; 4 ,,, 2 <<; 06.02.2010; 174–

176 m; ZSMA20111354, ZSMA20111355, ZSMA20111357,

ZSMA20111359–ZSMA20111361.

Remarks. The almost glabrous appearance, well sepa-

rated lateral processes and the long erect abdomen

serve to differentiate P. patagonica from almost all

other Pallenopsis species. The movable finger of the

chelae bears a prominent proximal pad without con-

spicuous setae (Fig. 10c). In the male the cement gland

tube is very short compared to other species of its

group. Also the propodus with claw and auxiliary claws

(Fig. 10e) is well in accordance with the description of

the literature (Hedgpeth 1961; Child 1995; Gusso &

Gravina 2001). Moreover some of the Chilean speci-

mens show some kind of additional eyes on the ocular

tubercle just below the usual two pairs (Fig. 10b), a

characteristic that was already mentioned by Munilla

and Stock (1984) for the species Pallenopsis bulbifera

Munilla & Stock, 1984.

Another peculiarity we could observe among our

material is the difference in size. The specimens from

the Falkland Islands are conspicuously larger than

those collected from the Chilean coast. While the

Chilean specimens show a leg span of about 90 mm,

the specimens from the Falklands reach a leg span of

approximately 120 mm. But perhaps this could be ex-
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plained by the deviating depth ranges. Whereas the

Falkland specimens were captured between 146–176 m

the Chilean individuals could only be collected dur-

ing SCUBA dives at about 9–32 m. On the other

hand the conspicuous size differences in adults could

also be an indication of possibly cryptic species.

Previous collecting sites were the Magellanic region,

Scotia Sea, Antarctic Peninsula, Ross Sea and several

localities around the eastern sector of the Antarctic

coast (Child 1994; Munilla & Soler-Membrives 2008).

Zoosyst. Evol. 88 (2) 2012, 185–203 199

Figure 10. a–e. Pallenopsis patagonica; a. Dorsal overview; scale ¼ 5 mm; b. Detail view of ocular tubercle from two specimens;

scales ¼ 250 mm each; c. Detail view of chelifores, note movable finger without conspicuous setae (arrows); scale ¼ 500 mm; d.

Left picture: Detail view of abdomen; scale ¼ 250 mm. Right picture: Overview of right 4th walking leg; scale ¼ 5 mm; e. Tarsus

and propodus with claw and auxiliary claws of left 1st walking leg; scale ¼ 500 mm; f, g. Anoplodactylus californicus; f. Dorsal

Overview; scale ¼ 1 mm; g. Male, ventral view of ovigers with eggs; scale ¼ 500 mm. Abbreviations: ac – auxiliary claw; cf –

chelifore; cl – claw; cx – coxa; eg – eggs; fm – femur; ov – oviger; pp – propodus; pr proboscis; tb – tibia; ts – tarsus; wl –

walking leg.
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Phoxichilidiidae

Anoplodactylus Wilson, 1878

Anoplodactylus californicus Hall, 1912

Figures 10f–g, 11a–g

Anoplodactylus californicus Hall, 1912: 91

Synonyms

Anoplodactylus californiensis Hedgpeth, 1941

Anoplodactylus carvalhoi Marcus, 1940

Anoplodactylus portus Calman, 1927

Anoplodactylus projectus Hilton, 1942

Anoplodactylus robustus Hilton, 1939 non Dohrn, 1881

Material examined. Chilean fjord region, Comau fjord, Punta Hui-

nay: 42�220 S, 72�250 W; 3 ,,, 3 <<; 12.03.2006; 5–10 m;

Weis, A. & Melzer, R. R.: Chilean and Subantarctic Pycnogonida200

Figure 11. a–f. Anoplodactylus californicus; a. Male, frontal view; Scale ¼ 100 mm; b. Detail view of chelifores; scale ¼ 100 mm;

c. Female, ventral view of proboscis, note alar process (arrows); scale ¼ 100 mm; d. Overview of left 3rd walking leg;

scale ¼ 200 mm; e. Detail view of tarsus and propodus of left 4th walking leg; scale ¼ 100 mm; f. Detail view of auxiliary claw of

left 4th walking leg; scale ¼ 20 mm. Abbreviations: ac – auxiliary claw; cf – chelifore; cl – claw; cx – coxa; eg – eggs; fm –

femur; ff – fixed finger; go – genital opening; mf – movable finger; oc – ocular tubercle; ov – oviger; pp – propodus; pr –

proboscis; tb – tibia; ts – tarsus; wl – walking leg.
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ZSMA20111028, ZSMA20111030–ZSMA20111032,

ZSMA20111035, ZSMA20111036; 1 <; 17.03.2006; 8 m;

ZSMA20111051; 1 <; 14.03.2011; 25 m; ZSMA20111179; 2 ,,,

11 <<, 1 juv.; 22.03.2011; 20–30 m; ZSMA20111319–

ZSMA20111332; 4 <<; 08.03.2004; 20–30 m; ZSMA20111343–

ZSMA20111346. Chilean fjord region, Comau fjord, Huinay, Anti-

Punta: 3 specimens; 21.02.2005; 7–30 m; ZSMA20051910,

ZSMA20051911, ZSMA20051913. Chilean fjord region, Comau fjord,

Playa Llonco; 42�200 S, 72�270 W; 1 specimen; 18.02.2005; 10–30 m;

ZSMA20051912. Chilean fjord region, Comau fjord, Lilihuapi:

42�090 S, 72�350 W; 1 ,; 14.04.2006; 15–25 m; ZSMA20111048;

1 ,; 06.01.2005; 20 m; ZSMA20051967; 1 specimen; 07.03.2009;

10–20 m; ZSMA20111070. Chilean fjord region, Comau fjord,

Quintopeu: 42�090 S, 72�260 W; 1 ,, 4 <<; 25.02.2005; 15–25 m;

ZSMA20051915–ZSMA20051919; 1 <; 27.03.2006; 17 m;

ZSMA20111053. Chilean fjord region, Comau fjord, Swall: 42�190 S,

72�270 W; 1 ,; 04.03.2009; 20–30 m; ZSMA20111062; 26 ,,,

30 <<, 1 juv.; 15.03.2011; 10–20 m; ZSMA20111192,

ZSMA20111195–ZSMA20111250. Chilean fjord region, Comau

fjord, X-Huinay: 42�19.8940 S, 72�27.6610 W; 1 ,; 04.03.2009; 20–

30 m; ZSMA20111067.

Remarks. The most obvious characteristic of this spe-

cies is the female proboscis bearing a conspicuous alate

process on the ventral side (Fig. 11c). Although a thor-

ough description of this feature is discussed in Arango

& Maxmen (2006) the wing-shaped form of this pro-

cess is unique in the females of this species. The males

of C. margarita can be distinguished from other species

in this genus by their long sex pore tubercles on the

second coxae, the tiny cement gland tube and the hairy

oviger strigilis (Child 1992). All the specimens studied

here match well with the descriptions of the literature

(Hedgpeth 1961; Child 1992; Melzer 2009).

The specimens collected from our own sampling

trips are some of the southernmost found Anoplodacty-

lus californicus, tolerating even water temperatures be-

low 10 �C (see Melzer 2009). According to Child

(1994) this species has been collected from the Straits

of Magellan south of Punta Arenas as well. Normally

this species is found in the tropical and temperate

North Atlantic and the Mediterranean Sea (M�ller

1993).

Conclusions

Altogether 12 Subantarctic/Chilean pycnogonid species

that are housed at the ZSM could be classified and

documented regarding their species-specific morpholo-

gical features, and also their biogeographical distribu-

tion. Since the Antarctic pycnogonid fauna is already

well explored (see Arango & Wheeler 2007; Arango

et al. 2011; Griffiths et al. 2011; Mahon et al. 2008;

Munilla & Soler-Membrives 2008; Nielsen et al. 2009;

Krabbe et al. 2010; Weis et al. 2011) our aim is to fo-

cus on hitherto relatively unexplored neighbouring re-

gions. Out of these Chile is especially interesting be-

cause it can be divided in different zones: the warm-

temperate (Peruvian), the cold-temperate (Magellanic)

and Subantarctic regions. The latter is directly con-

nected to the Antarctic, and it can be surmised that it

underwent postglacial recolonisation from various di-

rections. Also recent molecular studies (Mahon et al.

2008; Krabbe et al. 2010) already show that cryptic

speciation exists in Antarctic pycnogonids. Based on

this, similar phenomena related to the examined materi-

al could also affect our Chilean fjord pycnogonids. To

clarify the recolonisation issue, genetic analyses are

needed in addition to the morphological examination.

As mentioned above the definition of the Subantarctic

area and the Magellanic region differs greatly depending

on the view/definitions of the different authors. In our

point of view the Falkland Islands should be considered

as being part of the Magellanic region, since they are

greatly influenced by the Falkland current arriving from

Tierra del Fuego and passing the Falklands on the West-

side where our specimens were collected. Our material

accrues from two different climates namely the tempe-

rate zone with Chilo� taken as the southern border (cor-

responding to the majority of the authors) and the cold-

temperate zone enclosing the Magellanic region with

Tierra del Fuego and the Falkland Islands.

In this connection it is important to note that our

sample includes both species of a probably northern

origin that extend far to the south and species with

southern origin extending to the north. The first group

is represented by Anoplodactylus californicus Hall,

1912 from the family Phoxichilidiidae, which is nor-

mally found in tropical and subtropical regions. This

species was collected by the Lund expedition at about

41� S (Hedgpeth 1961), collected by SCUBA-dives in

the Chilean fjord region at about 42� S (Melzer et al.

2006), and has been reported even for the Straits of

Magellan at about 53� S by Child (1995). In addition,

Achelia assimilis could be found at Tierra del Fuego

(55� S). Most of the numerous records of this species

are located in tropical, subtropical and temperate waters

of the southwest Pacific as well as the coasts of Austra-

lia and New Zealand. However, along the Chilean coast

this species seems to reach the southernmost limit of

its distribution range. In the Antarctic region it has not

been found to date (Munilla & Soler-Membrives 2008).

Furthermore to our knowledge, with Bahia de Coliu-

mo (Chile) Anoropallene palpida (Hilton, 1939) shows

also a more southern distribution pattern than pre-

viously recorded. So far this species has only been col-

lected from southern California, the Panama Canal

area, Mexico, Peru and Ecuador.

In the second group we find C. megalonyx with a

more northern distribution pattern than previously re-

corded. This non-cosmopolitan species is predominantly

found around the Antarctica and between the Falkland

Islands and Patagonia, and our record at about 36� S

(near Concepcion) is the northernmost collecting site

for this species. This discovery from a warm-temperate

zone could be explained by the Humboldt Current aris-

ing from the Antarctic and passing along the Chilean

coast to the north probably supporting northward dis-

persal of Magellanic species as suggested by Brattstr�m

& Johanssen (1983).

Zoosyst. Evol. 88 (2) 2012, 185–203 201
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Our sample size does not allow a detailed compari-

son of species composition/distribution between outer

coast, channels, and inner fjords. However, in the inner

fjords pycnogonids were not found above the halocline,

i.e. in depth between 0 and 5–7 m. Conversely, at the

outer coast where a low salinity layer is absent, pycno-

gonids were sampled already close to the water surface

like for example Achelia assimilis and Tanystylum cavi-

dorsum at Playa Chica. The fjord species thus seem to

have a low tolerance for brackish water.

Beside the geographical aspects the species A. palpi-

da displays also a morphologically interesting peculiar-

ity. The abnormality regarding the female chelifores of

A. palpida mentioned in the literature (Child 1979)

could be observed in our specimens as well. This obser-

vation suggests the possibility that this might be rather

a common characteristic of females of this species than

an irregularity by chance.
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How did sea spiders recolonize the Chilean fjords after glaciation?

DNA barcoding of Pycnogonida, with remarks on phylogeography

of Achelia assimilis (Haswell, 1885)
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The present paper reports on a first attempt at resolving the taxonomy of Chilean Pycnogonida using a combination of DNA
sequence and morphological data. In a subproject of the Marine Barcode of Life (MarBoL) campaign we analysed a
fragment (about 657 base pairs) of the mitochondrial protein-coding gene COI (cytochrome c oxidase subunit 1) from 76
Chilean/Subantarctic pycnogonids. Since most molecular data on pycnogonids are from the Antarctic region, the new
information constitutes a significant extension. The phylogenetic consensus tree displays 10 distinct, well-supported
branches corresponding to the studied species, namely Achelia assimilis (Haswell, 1885), Ammothea spinosa (Hodgson,
1907), Tanystylum cavidorsum Stock, 1957, T. neorhetum Marcus, 1940, Colossendeis macerrima Wilson, 1881, C.
megalonyx Hoek, 1881, C. scoresbii Gordon, 1932, Callipallene margarita (Gordon, 1932), Pallenopsis patagonica (Hoek,
1881), and Anoplodactylus californicus Hall, 1912. These represent four superfamilies, and five of the 11 existing
pycnogonid families (Bamber & El Nagar, 2011): Ammotheidae Dohrn, 1881, Colossendeidae Hoek, 1881, Callipallenidae
Hilton, 1942, Pallenopsidae Fry, 1978 and Phoxichilidiidae Sars, 1891. Within Achelia assimilis, four distinct subbranches
correspond to the different geographic regions represented in our samples. While these include a total of 11 distinct
haplotypes, the morphological differences among the corresponding specimens lie well within the variation described in the
literature for this cosmopolitan species. Therefore, the four branches of A. assimilis might represent geographically limited
subspecies rather than cryptic species. Repeated drastic glaciation of the fjord region during the Cenozoic resulting in
alternating extinction and recolonization phases and the holobenthic lifecycle of sea spiders are discussed as the main
factors resulting in the observed phylogeographic pattern. Standard barcoding sequences are confirmed as a suitable tool in
addition to morphology for taxonomic analyses in Pycnogonida. The corresponding haplotype distribution patterns allow
inferences on the biogeographical history of the relatively unexplored Chilean fjord region.

Key words: Ammotheidae, biogeography, COI, cryptic species, Pantopoda, Subantarctic

Introduction
In recent years, molecular approaches have increasingly

been taken as an adjunct to classical taxonomy in marine

benthic invertebrate groups. The results are used as the ba-

sis for taxonomic descriptions and revisions as well as for

studies on speciation processes. Besides common groups

such as echinoderms (Hunter & Halanych, 2008), molluscs

(Wilson et al., 2009; Joerger et al., 2010) or crustaceans

(Lefebure et al., 2006; Raupach & Wägele, 2006; Oliveira-

Biener et al., 2010), pycnogonids are also gaining more re-

search interest concerning molecular or phylogenetic stud-

ies (Mahon et al., 2008; Nielsen et al., 2009; Arabi et al.,

2010; Krabbe et al., 2010; Masta et al., 2010; Arango et al.,

Publication # 74 of the Huinay Scientific Field Station.
Correspondence to: Andrea Weis. E-mail: andreaweis@gmx.net

2011; Dietz et al., 2011). A particular study focus lies on

the Southern Oceans, where pycnogonids appear with high

species richness, endemism and wide geographic distribu-

tion (Munilla Leon, 2001; Mahon et al., 2008; Munilla

& Soler Membrives, 2008; Weis et al., 2011). In adja-

cent areas, specifically in the South American Magellan

region, Tierra del Fuego and the Chilean fjord region, pyc-

nogonid research has included morphological analyses only

(Loman, 1923a, 1923b; Hedgpeth, 1961; Sielfeld, 2003;

Melzer et al., 2006; Melzer, 2009; Weis & Melzer, 2012).

The 90 000 km long southern Chilean coastline was cov-

ered by glaciers during the last ice age 15 000 years ago,

and was subsequently recolonized by benthic communi-

ties (Försterra, 2009). The fact that species could recol-

onize Chile by immigration either from the north or the

south, combined with the lack of a planktonic stage in

ISSN 1477-2000 print / 1478-0933 online
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pycnogonids (King, 1973; Arnaud & Bamber, 1987), makes

them an interesting group to study in this region. Using

integrative taxonomy (Dayrat, 2005; Padial et al., 2010;

Schlick-Steiner et al., 2010), which combines morpholog-

ical species determination by means of classical taxonomy

with modern methodological developments like DNA bar-

coding, helps us to recheck species boundaries or search

for cryptic species previously undetected by morphological

analysis. According to Hebert et al. (2003a, 2003b) the mi-

tochondrial gene cytochrome c oxidase I (COI) can serve

as ‘the core of a global bioidentification system for ani-

mals’. Advantages of choosing a mitochondrial gene over

a nuclear gene are, for example, the absence of introns, the

limited exposure to recombination, and the haploid mode of

inheritance (Saccone et al., 1999). Furthermore, the rapid

evolution of the COI gene allows not only the discrimina-

tion of closely allied species, but also predictions concern-

ing phylogeographic groups within a single species (Cox &

Hebert, 2001; Wares & Cunningham, 2001).

The aim of the present study is to document for the first

time COI sequences of pycnogonids from the Chilean fjords

and surrounding areas. A special focus is directed at A.

assimilis, which is one of the most abundant species in this

region and shows a remarkable distribution pattern. We hy-

pothesized that molecular data for this species from various

sampling locations might give a first hint concerning speci-

ation processes correlated with the last glaciation periods.

A detailed description of the morphology of A. assimilis

has been given in Weis & Melzer (2012).

Materials and methods

Specimens and vouchers

Specimens were collected by scuba-diving during several

expeditions along the Chilean coastline organized by the

Huinay Scientific Field Station between 2005 and 2011

(Huinay fjordos 3-10). In addition we received samples

from more northern areas in Chile as well as from the Falk-

land Islands. The material was preserved in 96% ethanol

to ensure high-quality DNA for genetic analysis. Prior

to molecular analysis, species determination was made

based on external morphology according to Loman (1923a,

1923b), Gordon (1932), Marcus (1940), Hedgpeth (1961)

and Fry & Hedgpeth (1969), and rechecked with the more

recent works of Pushkin (1993), Child (1992, 1994, 1995),

Melzer (2009) and Weis et al. (2011).

All barcoded voucher specimens are kept at the Zo-

ologische Staatssammlung München (ZSM) under spe-

cific museum voucher IDs (see also Table 1); their

respective DNA extract aliquots are stored at the Cana-

dian Center for DNA Barcoding (CCDB) and the ZSMs

DNA bank facility. Tables 1 and 2 list collection data,

BOLD and GenBank accession numbers of all 76 pycno-

gonid sequences produced in this study and of the chosen

outgroup taxa. Further specimen details can be accessed

in Barcode of Life Data Systems (BOLD; Ratnasing-

ham & Hebert 2007, http://www.boldsystems.org) under

the project CFAP (Chilean Fjord Pycnogonids) as part

of the ‘Marine Life (MarBOL)’ campaign. Morphologi-

cal documentation for this paper was done using the fol-

lowing specimens: ZSMA20111055, ZSMA20111086 and

ZSMA20111094 for light microscopy; ZSMA20111540,

ZSMA20111545-ZSMA20111547 for SEM studies. The

sequences for three additional haplotypes of P. patago-

nica and one of A. assimilis were accessed from GenBank

(FJ969367-69, DQ390087) (see also Table 2).

DNA extraction and sequencing

Depending on the size of the individual, either whole legs

or a piece of one leg was taken for DNA extraction. Se-

quencing was performed at the CCDB using the standard

protocols of IBOL (http://dnabarcoding.ca/pa/ge/research/

protocols). Specimen data, images and DNA sequences of

the studied pycnogonids will be available from BOLD and

GenBank.

Search for species boundaries

Intra- and interspecific distances were calculated (except

for DQ390087, FJ969367-69, which were mined from Gen-

Bank) using the K2P distance model in BOLD. The search

for barcoding gaps was performed with the freely avail-

able software ABGD (Automatic Barcode Gap Discovery)

(Puillandre et al., 2012).

Phylogenetic analysis

Altogether, 80 pycnogonid sequences and seven outgroup

sequences were used for phylogenetic analysis. DNA se-

quences were aligned with MUSCLE using GENEIOUS Pro

version 5.5.4 (Drummond et al., 2011). Aligned COI nu-

cleotide sequences were translated into amino acids using

the invertebrate mitochondrial genetic code to check for

frameshift mutations or stop codons. Base pair frequencies

were calculated with MEGA 5.05 (Tamura et al., 2011).

The alignment was tested statistically for substitutional sat-

uration in DAMBE 5.2.69 (Xia et al., 2003; Xia & Lemey,

2009).

Nucleotide composition, maximum parsimony (MP) and

neighbour-joining (NJ) trees based on the Kimura 2-

parameter (K2p) model (Kimura, 1980; Saitou & Nei, 1987)

with bootstrap values (1000 replicates) were calculated us-

ing MEGA 5.05 software. Maximum likelihood (ML) was

performed after 1000 replicates by ML bootstrap analy-

sis under RaxML 7.0.4. Based on Modeltest by MEGA

5.0 the selected model was GTRCAT+I+G with propor-

tion of invariable sites = 0.389486, and gamma shape

parameter = 0.99356. The same model was chosen for
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Table 1. Overview of collection data and registration of specimens included in this study.

Museum
voucher ID Species Country/Region Latitude Longitude Depth BOLD ID

ZSMA20111001 Achelia assimilis Chile; Region de Magallanes
y de la Antarctica Chilena

50◦20′23.1′′S 75◦22′39.2′′W 20m CFAP092-11

ZSMA20111085 Achelia assimilis Chile; Region de los Rios 39◦43′10.3′′S 73◦24′11.8′′W 0-1m CFAP078-11
ZSMA20111086 Achelia assimilis Chile; Region de los Rios 39◦43′10.3′′S 73◦24′11.8′′W 0-1m CFAP079-11
ZSMA20111087 Achelia assimilis Chile; Region de los Rios 39◦43′10.3′′S 73◦24′11.8′′W 0-1m CFAP080-11
ZSMA20111089 Achelia assimilis Chile; Region de los Rios 39◦43′10.3′′S 73◦24′11.8′′W 0-1m CFAP081-11
ZSMA20111162 Achelia assimilis Chile; Region de los Lagos 42◦24′S 72◦25′W 20m CFAP082-11
ZSMA20111163 Achelia assimilis Chile; Region de los Lagos 42◦24′S 72◦25′W 20m CFAP083-11
ZSMA20111164 Achelia assimilis Chile; Region de los Lagos 42◦24′S 72◦25′W 20m CFAP084-11
ZSMA20111166 Achelia assimilis Chile; Region de los Lagos 42◦22′S 72◦25′W 25m CFAP085-11
ZSMA20111256 Achelia assimilis Chile; Region de los Lagos 42◦34′50.0′′S 72◦33′14.6′′W 20m CFAP086-11
ZSMA20111257 Achelia assimilis Chile; Region de los Lagos 42◦34′50.0′′S 72◦33′14.6′′W 20m CFAP087-11
ZSMA20111258 Achelia assimilis Chile; Region de los Lagos 42◦34′50.0′′S 72◦33′14.6′′W 20m CFAP088-11
ZSMA20111259 Achelia assimilis Chile; Region de los Lagos 42◦34′50.0′′S 72◦33′14.6′′W 20m CFAP089-11
ZSMA20111341 Achelia assimilis Chile; Region de Magallanes

y de la Antarctica Chilena
55◦03′71.96′′S 68◦44′13.48′′W CFAP090-11

ZSMA20111342 Achelia assimilis Chile; Region de Magallanes
y de la Antarctica Chilena

55◦03′71.96′′S 68◦44′13.48′′W CFAP091-11

ZSMA20111356 Ammothea spinosa Falkland Islands 51◦05′8.00′′S 61◦44′0.00′′W 174-176m CFAP048-11
ZSMA20111195 Anoplodactylus

californicus
Chile; Region de los Lagos 42◦19′S 72◦27′W 10-20m CFAP061-11

ZSMA20111196 Anoplodactylus
californicus

Chile; Region de los Lagos 42◦19′S 72◦27′W 10-20m CFAP062-11

ZSMA20111197 Anoplodactylus
californicus

Chile; Region de los Lagos 42◦19′S 72◦27′W 10-20m CFAP063-11

ZSMA20111198 Anoplodactylus
californicus

Chile; Region de los Lagos 42◦19′S 72◦27′W 10-20m CFAP064-11

ZSMA20111320 Anoplodactylus
californicus

Chile; Region de los Lagos 42◦22′S 72◦25′W 20-30m CFAP065-11

ZSMA20111321 Anoplodactylus
californicus

Chile; Region de los Lagos 42◦22′S 72◦25′W 20-30m CFAP066-11

ZSMA20111322 Anoplodactylus
californicus

Chile; Region de los Lagos 42◦22′S 72◦25′W 20-30m CFAP067-11

ZSMA20111323 Anoplodactylus
californicus

Chile; Region de los Lagos 42◦22′S 72◦25′W 20-30m CFAP068-11

ZSMA20111131 Callipallene margarita Chile; Region de los Lagos 42◦24′S 72◦25′W 20m CFAP069-11
ZSMA20111159 Callipallene margarita Chile; Region de los Lagos 42◦24′S 72◦25′W 20m CFAP070-11
ZSMA20111160 Callipallene margarita Chile; Region de los Lagos 42◦24′S 72◦25′W 20m CFAP071-11
ZSMA20111161 Callipallene margarita Chile; Region de los Lagos 42◦24′S 72◦25′W 20m CFAP072-11
ZSMA20111173 Callipallene margarita Chile; Region de los Lagos 42◦22′S 72◦25′W 25m CFAP073-11
ZSMA20111174 Callipallene margarita Chile; Region de los Lagos 42◦22′S 72◦25′W 25m CFAP074-11
ZSMA20111182 Callipallene margarita Chile; Region de los Lagos 42◦22′S 72◦25′W 25m CFAP076-11
ZSMA20111336 Colossendeis macerrima Chile; Region de Asien del

General Carlos Ibanez del
Campo

45◦54.471′S 75◦36.021′W 510m CFAP040-11

ZSMA20111337 Colossendeis macerrima Chile; Region de Asien del
General Carlos Ibanez del
Campo

45◦54.471′S 75◦36.021′W 510m CFAP041-11

ZSMA20111071 Colossendeis megalonyx Chile; Region del Bio-Bio 36◦24.010′S 73◦43.074′W 769m CFAP038-11
ZSMA20111358 Colossendeis megalonyx Falkland Islands 51◦05′8.00′′S 61◦44′0.00′′W 174-176m CFAP044-11
ZSMA20111364 Colossendeis megalonyx Falkland Islands 51◦05′8.00′′S 61◦44′0.00′′W 174-176m CFAP045-11
ZSMA20111347 Colossendeis scoresbii Falkland Islands 50◦40′5.00′′S 62◦26′1.00′′W 160-165m CFAP042-11
ZSMA20111353 Colossendeis scoresbii Falkland Islands 51◦16′8.00′′S 62◦57′8.00′′W 171-174m CFAP043-11
ZSMA20111362 Colossendeis scoresbii Falkland Islands 51◦05′8.00′′S 61◦44′0.00′′W 174-176m CFAP046-11
ZSMA20111363 Colossendeis sp. Falkland Islands 51◦05′8.00′′S 61◦44′0.00′′W 174-176m CFAP047-11
ZSMA20111000 Pallenopsis patagonica Chile; Region de Magallanes

y de la Antarctica Chilena
48◦44′11.4′′S 75◦24′53.1′′W 15m CFAP013-11

ZSMA20111002 Pallenopsis patagonica Chile; Region de Magallanes
y de la Antarctica Chilena

50◦50′07.1′′S 74◦08′20.9′′W 25m CFAP017-11

(Continued on next page)

D
o
w

n
lo

ad
ed

 b
y
 [

A
n
d
re

a 
W

ei
s]

 a
t 

0
2
:0

5
 2

0
 S

ep
te

m
b
er

 2
0
1
2
 

59



364 A. Weis and R. R. Melzer

Table 1. (Continued)

Museum
voucher ID Species Country/Region Latitude Longitude Depth BOLD ID

ZSMA20111003 Pallenopsis patagonica Chile; Region de los Lagos 43◦25′03.0′′S 74◦04′51.2′′W 25m CFAP006-11
ZSMA20111004 Pallenopsis patagonica Chile; Region de los Lagos 43◦24′34.5′′S 74◦05′00.7′′W 9m CFAP005-11
ZSMA20111005 Pallenopsis patagonica Chile; Region de Magallanes

y de la Antarctica Chilena
48◦44′11.4′′S 75◦24′53.1′′W 23m CFAP014-11

ZSMA20111006 Pallenopsis patagonica Chile; Region de los Lagos 43◦25′03.0′′S 74◦04′51.2′′W 20m CFAP007-11
ZSMA20111008 Pallenopsis patagonica Chile; Region de Magallanes

y de la Antarctica Chilena
50◦24′52′′S 74◦33′33′′W 15-25m CFAP026-11

ZSMA20111009 Pallenopsis patagonica Chile; Region de los Lagos 43◦23′33.4′′S 74◦07′56.5′′W 26m CFAP004-11
ZSMA20111012 Pallenopsis patagonica Chile; Region de los Lagos 43◦46′28.5′′S 073◦02′63.2′′W 22m CFAP008-11
ZSMA20111016 Pallenopsis patagonica Chile; Region de Magallanes

y de la Antarctica Chilena
48◦36′28.7′′S 74◦53′55.7′′W 32m CFAP012-11

ZSMA20111017 Pallenopsis patagonica Chile; Region de Magallanes
y de la Antarctica Chilena

48◦36′28.7′′S 74◦53′55.7′′W 32m CFAP025-11

ZSMA20111024 Pallenopsis patagonica Chile; Region de Magallanes
y de la Antarctica Chilena

49◦34′38.7′′S 74◦26′49.3′′W 28m CFAP016-11

ZSMA20111072 Pallenopsis patagonica Chile; Region de Valparaiso 33◦23′55′′S 71◦52′78.2′′W 339m CFAP023-11
ZSMA20111339 Pallenopsis patagonica Chile; Anihue Raul Marin

Balmaceda
43◦46′31.35′′S 73◦01′44.14′′W 19m CFAP019-11

ZSMA20111340 Pallenopsis patagonica Chile; Region de Magallanes
y de la Antarctica Chilena

55◦00′00.6′′S 68◦18′88.1′′W 24m CFAP018-11

ZSMA20111348 Pallenopsis patagonica Falkland Islands 50◦26′4.00′′S 62◦46′5.00′′W 146-148m CFAP027-11
ZSMA20111349 Pallenopsis patagonica Falkland Islands 51◦16′8.00′′S 62◦57′8.00′′W 171-174m CFAP034-11
ZSMA20111350 Pallenopsis patagonica Falkland Islands 51◦16′8.00′′S 62◦57′8.00′′W 171-174m CFAP035-11
ZSMA20111351 Pallenopsis patagonica Falkland Islands 51◦16′8.00′′S 62◦57′8.00′′W 171-174m CFAP036-11
ZSMA20111352 Pallenopsis patagonica Falkland Islands 51◦16′8.00′′S 62◦57′8.00′′W 171-174m CFAP037-11
ZSMA20111354 Pallenopsis patagonica Falkland Islands 51◦05′8.00′′S 61◦44′0.00′′W 174-176m CFAP028-11
ZSMA20111355 Pallenopsis patagonica Falkland Islands 51◦05′8.00′′S 61◦44′0.00′′W 174-176m CFAP029-11
ZSMA20111357 Pallenopsis patagonica Falkland Islands 51◦05′8.00′′S 61◦44′0.00′′W 174-176m CFAP030-11
ZSMA20111359 Pallenopsis patagonica Falkland Islands 51◦05′8.00′′S 61◦44′0.00′′W 174-176m CFAP031-11
ZSMA20111360 Pallenopsis patagonica Falkland Islands 51◦05′8.00′′S 61◦44′0.00′′W 174-176m CFAP032-11
ZSMA20111361 Pallenopsis patagonica Falkland Islands 51◦05′8.00′′S 61◦44′0.00′′W 174-176m CFAP033-11
ZSMA20111090 Tanystylum cavidorsum Chile; Region de los Rios 39◦43′10.3′′S 73◦24′11.8′′W 0-1m CFAP053-11
ZSMA20111091 Tanystylum cavidorsum Chile; Region de los Rios 39◦43′10.3′′S 73◦24′11.8′′W 0-1m CFAP054-11
ZSMA20111102 Tanystylum cavidorsum Chile; Region de los Rios 39◦43′10.3′′S 73◦24′11.8′′W 0-1m CFAP057-11
ZSMA20111103 Tanystylum cavidorsum Chile; Region de los Rios 39◦43′10.3′′S 73◦24′11.8′′W 0-1m CFAP058-11
ZSMA20111104 Tanystylum cavidorsum Chile; Region de los Rios 39◦43′10.3′′S 73◦24′11.8′′W 0-1m CFAP059-11
ZSMA20111105 Tanystylum cavidorsum Chile; Region de los Rios 39◦43′10.3′′S 73◦24′11.8′′W 0-1m CFAP060-11
ZSMA20111110 Tanystylum cavidorsum Chile; Region de los Rios 39◦43′10.3′′S 73◦24′11.8′′W 0-1m CFAP055-11
ZSMA20111111 Tanystylum cavidorsum Chile; Region de los Rios 39◦43′10.3′′S 73◦24′11.8′′W 0-1m CFAP056-11
ZSMA20111011 Tanystylum neorhetum cf Chile; Region de Magallanes

y de la Antarctica Chilena
50◦50′07.1′′S 74◦08′20.9′′W 20m CFAP049-11

ZSMA20111015 Tanystylum neorhetum cf Chile; Region de los Lagos 43◦46.285′S 073◦02.632′W 16m CFAP051-11

Table 2. Overview of pycnogonids and outgroup specimens
mined from GenBank.

GenBank ID Species

Pycnogonids DQ390087 Achelia assimilis
FJ969367 Pallenopsis patagonica
FJ969368 Pallenopsis patagonica
FJ969369 Pallenopsis patagonica

Outgroups AF216203 Limulus polyphemus
AINV-019 Limulus polyphemus
EU834780 Limulus polyphemus
NC 003057 Limulus polyphemus
AY731174 Mastigoproctus giganteus
EU520643 Mastigoproctus giganteus
NC 010430 Mastigoproctus giganteus

calculating Bayesian inference (BI) using MrBayes 3.1.2

(Ronquist & Huelsenbeck, 2003). Bayesian analysis was

performed with 5.5 million Metropolis-coupled MCMC

generations, with tree sampling every 200 generations and

a burn-in of 6875. The figure of the recovered phylogenetic

tree was edited with FigTree 1.3.1 and MEGA 5.0.

COI haplotype network

For the species Achelia assimilis, we constructed a sta-

tistical parsimony network with all 16 individual COI se-

quences, using TCS 1.21 (Clement et al., 2000). To illus-

trate the number of mutation steps between the different

D
o
w

n
lo

ad
ed

 b
y
 [

A
n
d
re

a 
W

ei
s]

 a
t 

0
2
:0

5
 2

0
 S

ep
te

m
b
er

 2
0
1
2
 

60



DNA barcoding of Chilean Pycnogonida 365

haplotypes in a single parsimony network, the maximum

number of connection steps was raised to 69.

Morphological analysis

All studied pycnogonids were documented using a Wild

M400 photomacroscope equipped with a digital camera

(Nikon D700) by taking several shots focused at different

levels along the z-axis. This series of pictures was then

edited and combined to a single respective image with

greater depth of field using the computer software Com-

bineZ. Specimens used for scanning electron microscopy

(SEM) documentation were transferred into 100% acetone

for dehydration in three steps of about 20 minutes each.

Subsequent critical-point drying was performed on a BAL-

TEC CPD 030 at 40 ◦C and 80 bar. Afterwards specimens

were sputtered with gold for three minutes using a Balzers

Polaron E5100. Pictures (2048 × 1536 px; 72 dpi; colour

depth 8 bit) were taken at 15 kV using a LEO 1430VP scan-

ning electron microscope. Further editing and composition

of both light microscopic and SEM pictures was done with

Adobe Photoshop CS.

Results

Molecular and phylogenetic analysis

The 657-bp COI fragment alignment shows no gaps

and includes 80 pycnogonid specimens (10 species), as

well as three Mastigoproctus giganteus and four Limulus

polyphemus sequences chosen as outgroups. A total of

10 Chilean/Subantarctic pycnogonid COI branches could

be identified (Fig. 1). These correspond to the species

Achelia assimilis, Ammothea spinosa, Tanystylum cavidor-

sum, T. neorhetum, Colossendeis macerrima, C. mega-

lonyx, C. scoresbii, Callipallene margarita, Pallenopsis

patagonica and Anoplodactylus californicus. The mor-

phological determinations of the species are well in ac-

cordance with the molecular analysis, which showed 10

well-defined clusters within the studied pycnogonids. All

branches received high bootstrap support, which indicates

that the COI barcoding method is a suitable tool for resolv-

ing relationships of among these pycnogonids at species

level.

Although the COI gene appears as inadequate for resolv-

ing relationships at taxonomic levels higher than species,

some of the pycnogonid families studied here show dis-

tinct COI branches as well. For example, Ammothea Leach,

1814 and Tanystylum Miers, 1879, both genera belonging to

the Ammotheidae, form a single COI branch. Similarly, all

three examined Colossendeis species, viz. C. macerrima,

C. megalonyx and C. scoresbii, are clustering together,

representing the Colossendeidae with supported bootstrap

values >95%. On the other hand, Anoplodactylus califor-

nicus and Callipallene margarita belong to different fami-

lies (Phoxichilidiidae and Callipallenidae) and form distinct

branches with high bootstrap values >99%.

Calculated mean base pair frequencies for A (29.7%),

C (17.5%), G (15.0%) and T (37.8%) indicated a bias to-

wards adenosine and thymine, which is characteristic for

arthropods. The index of substitution saturation (Iss) was

tested for the whole alignment as well as for the third codon

position. Iss was always significantly lower than the critical

Iss.c value, indicating only little substitution saturation. Our

COI data showed no frameshift mutations or stop codons

when sequences were translated using the invertebrate mi-

tochondrial codon table.

Among our 76 pycnogonid sequences the mean interspe-

cific distance was 18.83%. The lowest interspecific dis-

tance was found between Colossendeis megalonyx and

C. scoresbii (13.36%), the maximum distance between

Callipallene margarita and Anoplodactylus californicus

(29.4%). Intraspecific distances ranged from 0.09% to

10.4% (mean 2.48%). Achelia assimilis and Pallenopsis

patagonica showed the highest mean intraspecific values at

6.81% and 10.4%, respectively (see Fig. 2).

For the phylogenetic analysis we reconstructed three

rooted phylograms (BI, ML and NJ) and one cladogram

(MP). Since all trees were concordant in topology, Figure 1

shows the Bayesian inference tree only, but indicates the

bootstrap values of the other trees as well. Since a Baysian

tree is depicted, and the majority of the applied methods

of analyses result in phylograms we name its components

branches. The two outgroup species, Mastigoproctus gi-

ganteus and Limulus polyphemus, are clustering against all

pycnogonid sequences with boostrap values >99%.

Although each studied species forms a single COI

branch, Pallenopsis patagonica and Achelia assimilis both

show four distinct and well-supported subbranches. The

number of individuals representing the four different

branches of P. patagonica varies between 1 and 15 spec-

imens. Since P. patagonica seems to be a more complex

case, a detailed analysis of this species, including more in-

dividuals from more geographic regions, will be the goal of

a future publication.

The subbranches of A. assimilis are distinctly split by

geographic origin. Four specimens from the Región de los

Rios, eight from Región de los Lagos, and three specimens

from a more southern Chilean area (>50 ◦S) cluster in a

single branch each, with bootstrap values >93%. The se-

quence DQ390087 for A. assimilis from Australia contrasts

to the three Chilean branches (bootstrap value >95%).

Given the high intraspecific divergence and high support

for branches, we used ABGD to test whether these clusters

comprise cryptic species. Based on the different calculated

distance values (minimum 0.01, maximum 0.18) this anal-

ysis also shows four distinct branches, with three obvious

barcode gaps in between (Fig. 3).

A parsimony network for the A. assimilis branch is shown

in Figure 4. The COI data for the 16 specimens formed 11
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366 A. Weis and R. R. Melzer

Fig. 1. Bayesian inference tree of cytochrome c oxydase I (COI) sequences, showing the placement of 80 pycnogonids, plus 7 outgroup
specimens retrieved from GenBank. Numbers in brackets indicate the number of analysed individuals. Different haplotypes of A. assimilis
are defined as HT1-HT11. Numbers above and below branches show posterior probability of BI and bootstrap values (>75%) of NJ, MP
and ML analyses; branch length indicates substitutions per site.
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Fig. 2. Intraspecific and interspecific distance distribution among cytochrome c oxidase I sequences for 76 pycnogonids.

distinct haplotypes. Some haplotypes were represented by

multiple individuals. Haplotype 1 comprised four individu-

als (ZSMA20111256-59), all collected from Reñihué fjord;

haplotype 2 contained two individuals (ZSMA20111163,

Fig. 3. Automatic Barcode Gap Discovery (ABGD) analysis for
all 16 specimens of Achelia assimilis used in this study.

ZSMA20111166) from the Comau fjord; and sequences

ZSMA20111086 and ZSMA20111087, both collected near

Valdivia, showed the same haplotype (HT9). In the A.

assimilis alignment we found a total of five amino acid

replacement substitutions. Other illustrated replacement

substitutions involved only amino acids with similar chem-

ical characteristics. Specimens collected from Región de

los Lagos showed four haplotypes (HT1–HT4); four A.

assimilis from Región de los Rios represented three haplo-

types (HT8–HT10) that differ by a maximum of two sub-

stitutions only, one of which involves a single amino acid

substitution (HT2/HT3). Each of the three specimens from

the Región de Magallanes y de la Antártica Chilena formed

its own haplotype (HT5–HT7); the latter differed by either

two amino acid substitutions (HT6/HT7) or a maximum of

five substitutions (HT5/HT6). The Australian A. assimilis

individual (HT11) differed by a minimum of 69 substitu-

tions (HT11/HT5), including one amino acid replacement.

Analysis of the 16 COI sequences of A. assimilis using TCS

with 99% and 90% statistical parsimony connection limits,
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368 A. Weis and R. R. Melzer

Fig. 4. Statistical parsimony network of 11 COI haplotypes (HT1-HT11) in Achelia assimilis. Sizes of the circles are proportional to
the number of specimens. Lines represent the most-parsimonious relationships between haplotypes; black dots represent intermediate
haplotypes missing in the sample set. Dashed lines show branches with a connection limit <90% (allowing a maximum number of
69 steps). Shades of grey indicate different geographic locations.

respectively, resulted in four separate networks representing

the four subbranches already displayed in the phylogenetic

tree (Fig. 1). Allowing a fixed connection limit at 69 steps

we obtained a statistical parsimony network in which the

four groups were connected by long branches illustrating

high numbers of substitutions (including two amino acid

substitutions between HT11/HT5 and HT5/HT8) between

haplotypes from different geographical regions (Fig. 4).

Morphology

The members of A. assimilis show great morphological

variation concerning the spination of the trunk, lateral pro-

cesses and first coxae (Figs 5–8). Whereas the number of

trunk spines is either two or three, the number of spines

on the lateral processes and first coxae varies between two

and five (Figs 6–8). However, based on the distinct charac-

teristics of the species, for example the leg setae borne on
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Figs 5–8. Light microscopy of Achelia assimilis. 5. Dorsal overview; scale = 1 mm. 6–8. Variation of spination of first coxae (arrows);
scales = 500 µm, 250 µm and 250 µm, respectively.

rounded tubercles (Figs 12–13), the spination of the trunk

(Figs 9–10), the auxiliary claws one-half to two-thirds as

long as the terminal claw, and the long (see Weis & Melzer,

2012) and slender abdomen (Fig. 11), all studied specimens

are clearly identified as A. assimilis. Furthermore, when we

checked the leg length ratio of several individuals from dif-

ferent collection sites, the femur, tibia 1 and tibia 2 always

showed proportions near 1:1:1. Detailed illustrations of legs

and further A. assimilis characteristics can be found in Weis

& Melzer (2012). Specimens from Playa Chica (Región de

los Rios) are generally smaller but were sexually mature,

as some of the males carry eggs (Fig. 8). The spines on

the lateral processes and first coxae of these specimens are

less prominent, but this too falls within the known variation

in this species. Consequently, with all individuals showing

the typical features of A. assimilis mentioned above, and

without any morphological pattern that would correspond

to the different molecular branches, we determined all cor-

responding specimens as A. assimilis.

Discussion
Our study demonstrates that DNA barcoding provides a

reliable tool for identifying Chilean and Subantarctic pyc-

nogonids to species level. Although it is generally assumed

that the COI sequence is not adequate to resolve higher phy-

logenetic relationships, it is conspicuous that species from

the same genus form clusters with high bootstrap support

(>95%). Tanystylum cavidorsum and T. neorhetum form a

distinct branch, as well as the three Colossendeis species (C.

macerrima, C. megalonyx, C. scoresbii). This is not very

surprising, as we studied a limited number of species from

a relatively small geographic area, and pycnogonid species

coverage by available DNA barcodes is still limited (158

species with barcodes in BOLD by June 2012 versus 1344

described pycnogonid species; Munilla & Soler Membrives,

2008). Thus, many more steps will have to follow to reveal

DNA sequence divergences between closely related species

and sister taxa in general worldwide. However, some of the

taxa covered by this study deserve particular attention, since
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370 A. Weis and R. R. Melzer

Figs 9–13. SEM of Achelia assimilis. 9. Dorsal overview; scale = 200 µm. 10. Lateral view of trunk, note prominent trunk spines
(arrows); scale = 200 µm. 11. Dorsal view of abdomen; scale = 100 µm. 12. Overview of first tibia of right 2nd walking leg, note setae
on rounded tubercles (arrows); scale = 200 µm. 13. Detail view of setae situated on rounded tubercle; scale = 20 µm.

a body of comparable results has been published on them,

and they exhibit high intraspecific divergence.

It is generally surmised that cases like ours of Pallenopsis

patagonica (about 11% intraspecific divergence) and Ache-

lia assimilis (about 7%) regularly reflect the presence of a

species complex composed of previously undetected ‘cryp-

tic’ species (Allcock et al., 1997; Held, 2003; Raupach &

Wägele, 2006; Leese & Held, 2008; Mahon et al., 2008;

Wilson et al., 2009). Colossendeis megalonyx also shows

relatively high intraspecific variation (about 3%), confirm-

ing the results of Krabbe et al. (2010).

While the four branches of A. assimilis receive high boot-

strap support, we have not found any matching morpholog-

ical differences. The only potentially significant exception

might concern the specimens from Playa Chica (Región de

los Rios), which are smaller and carry fewer and less promi-

nent spines on the first coxae (Fig. 8). There are two descrip-

tions of A. assimilis from Australia and the Tiahura barrier

reef lacking trunk spination (Müller, 1989; Arango, 2003).

However, these and all other studied individuals show the

characteristics typical for this very variable species (Hedg-

peth, 1961; Fry & Hedgpeth, 1969), which has been dis-

cussed also under the synonyms A. variabilis Stock, 1954

and A. wilsoni Schimkewitsch, 1890. The only species bear-

ing trunk spines like those in A. assimilis is A. columnaris

Stock, 1992. The latter species, however, is found in Brazil,

and can be distinguished from A. assimilis by the tall and

pillar-shaped spurs on femur and tibiae (Stock, 1992).

On the other hand, our molecular analyses show four

distinct COI branches representing four geographical re-

gions, namely Región de los Rios, Región de los Lagos,

Región de Magallanes y de la Antártica Chilena and Aus-

tralia. We have constructed NJ, ML and BI trees (data not

shown) including two other Achelia species, A. bitubercu-

lata Hedgpeth, 1949 (NC009724, AY457170) and A. hoekii

(Pfeffer, 1889) (DQ390087), to test whether they fall within
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or outside of our A. assimilis complex. As expected, A. bitu-

berculata and A. hoekii each formed a branch of their own

beside the studied A. assimilis, supporting the assignment of

our specimens. Furthermore, a statistical parsimony anal-

ysis yielded four completely separated networks for the

four A. assimilis branches, indicating definite geographical

splitting.

In most DNA barcoding publications, the A. assimilis

branches we found in the Chilean fjords would probably

be referred to as cryptic species (see, e.g. Hebert et al.,

2004; Lefébure et al., 2006; Krabbe et al., 2010), due to

the high intraspecific sequence divergence, tree statistics in-

dices strongly supporting the branches, distinctly separated

haplotype networks, and deep barcoding gaps between the

branches. In recent publications intraspecific divergence

greater than 3% has been interpreted either as suggesting

the presence of cryptic species (Radulovici et al., 2009) or

as a threshold for species delineation (Hebert et al., 2003a,

2003b). Our calculated intraspecific value of 6.81% for A.

assimilis lies clearly above that proposed threshold. This

corresponds well with Child’s (1990) notion that ‘there

may possibly be more than one species hiding under the

umbrella of this name’, A. assimilis. Since there are al-

ready remarkable differences between the Chilean Achelia

assimilis specimens, we suppose that if there are cryptic

species, then the Australian specimen (DQ390087) would

be the best candidate.

However, the geographically discrete distribution of our

branches leads us to handle this point with care. Accord-

ing to classical biogeography-based taxonomy (e.g. Mayr,

1975) the branches showing distinct areas without overlap

would be referred to as subspecies rather than as species.

In addition, we have found no morphological evidence for

differences at species level, only the already well-known

variability of this species. Moreover, we cannot exclude

with certainty any artefacts due to the small sample size.

What could be an evolutionary scenario for the origin

of the branches, if we refer to them as phylogeographic

units? The most probable explanation is that they are prod-

ucts of alternating extinction and colonization events from

shelters and/or surrounding regions during the ice ages. For

example, the last postglacial recolonization took place in

the Chilean fjords after the end of the latest glaciation about

15 000 years ago. At that time the entire Chilean coastline

(as far as about 30 ◦S), including the Chilean fjord regions

and a large portion of the offshore shelf area, was covered

by the Patagonian ice shield (Clapperton, 1993). Along

the Chilean coast the Pacific Ocean has very steep slopes

achieving depths of several kilometres. The absence of step-

ping stones in the Pacific Ocean, which would be essential

for survival, explains why no shallow benthos communities

were present; the same has been inferred for Antarctica.

Thatje et al. (2005) hypothesized that during glacial peri-

ods, survival of benthic communities was possible only in

the deep sea or in shelters on the continental shelf. Further-

more, they suggested that taxa with poor dispersal abilities

might constitute cryptic species as a result of isolation in

glacial shelters.

Although A. assimilis has also been recorded from a

depth of 903 m off Peninsula Mitre (Argentina) (Child,

1994), it can be considered as a shelf species mostly oc-

curring at shallow depths above 300 m (Hedgpeth, 1961;

Müller, 1993; Arango, 2003). We therefore assume that

postglacial recolonization of the Chilean fjords by A.

assimilis occurred either from the deep sea (relatively un-

likely) or from glacial refugia in the North and/or South.

Pycnogonids have holobenthic life cycles as they lack

a pelagic larval stage, thus have relatively limited disper-

sal abilities (except for very rare drift events) compared

with pelagobenthic animals such as decapod crustaceans.

Therefore, both preconditions for cryptic species suggested

by Thatje et al. (2005) apply to A. assimilis in the Chilean

fjords. All this could explain the high intraspecific varia-

tion among our A. assimilis specimens and the patchy dis-

tribution of their branches. What might be the underlying

mechanisms of these phenomena? In our view, the follow-

ing two (or a combination of both) have to be considered:

(1) As is indicated by high sequence divergence between the

branches, pre-existing, ‘old’ lineages might have colonized

the fjords after the last glaciation from different refugia, and

(2) small colonist populations might have been highly sus-

ceptible to founder effects and/or genetic drift, which may

also push divergence to higher and higher levels. Testing

these hypotheses will require more A. assimilis specimens

and sequence data from different regions along the Chilean

coastline.

The advantages and disadvantages of DNA barcoding are

still hotly debated and discussed (Hebert & Gregory, 2005;

Will et al., 2005; Birky, 2007; Taylor & Harris, 2012). Ben-

efits of DNA barcoding are, for example, that it can be

applied even to fragments of organisms, that it works for all

life stages, and is much faster and cheaper than traditional

systematics (Birky, 2007). However, molecular techniques

are nothing more than another source of information; they

cannot replace morphological analysis for assigning organ-

isms to species (Birky, 2007). Therefore, different meth-

ods for species determination should be used in combined

approaches such as ‘integrative taxonomy’ (Dayrat, 2005;

Padial et al., 2010; Schlick-Steiner et al., 2010; see also

Huxley, 1940). The present paper takes the first such step

toward using both traditional (morphology) and modern

(molecular) techniques for analysing pycnogonids from the

Chilean coast and inner fjord regions.
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FÖRSTERRA, G. 2009. Ecological and biogeographical aspects of
the Chilean fjord region. In: HÄUSSERMANN, V. & FÖRSTERRA,
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Abstract 17 

 18 

Pallenopsis patagonica (Hoek, 1881) is one of the most taxonomically problematic and 19 

variable pycnogonid species and distributed around the southern South American coast, the 20 

Subantarctic and Antarctic areas. We conducted a phylogenetic analysis of mitochondrial COI 21 

sequences of 47 Pallenopsis specimens, including 39 morphologically identified as P. 22 

patagonica, five P. pilosa, one P. macneilli, one P. buphtalmus and one P. latefrontalis. 23 

Furthermore, we studied morphological differences between the different COI lineages using 24 

light and scanning electron microscopy, including also material of Loman’s and Hedgpeth’s 25 

classical collections as well as Hoek’s type material of P. patagonica from 1881. The 26 

molecular results unambiguously reveal that P. patagonica is a complex of several divergent 27 

clades, which also includes P. macneilli, P. buphtalmus and P. latefronalis. Based on the 28 

material available, two major clades could be identified, namely a “Falkland” clade, to which 29 

we assign the nominal P. patagonica, and a “Chilean” clade, which is distinct from the 30 

former. The latter we describe as new species, P. yepayekae Weis, 2013. All molecular results 31 

are confirmed by specific morphological characteristics that are discussed in detail and 32 

compared to Pallenopsis species closely related to the P. patagonica complex. Our results 33 

reveal that P. patagonica is a species-rich complex that is in need for a thorough taxonomic 34 

revision using both, morphological and genetic approaches.  35 

 36 

Key words: biogeography – Chile – COI - cryptic species – Pallenopsidae – Pantopoda - 37 

Subantarctic. 38 

 39 

40 
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Introduction 41 

 42 

Pallenopsis patagonica (Hoek, 1881), from the material of the Challenger expedition, was, as 43 

the name implies, first sampled off southern South American coasts. It represents one of the 44 

most taxonomically problematic and variable pycnogonid species known to date. The 45 

complexity can already be recognized by the various synonyms that exist for this species, viz. 46 

P. glabra Möbius, 1902, P. hiemalis Hodgson, 1907, P. meridionalis Hodgson, 1915, P. 47 

moebiusi Pushkin, 1975 and Bathypallenopsis meridionalis (Hodgson, 1927) (Bamber & El 48 

Nagar, 2011). In addition, some valid species exist that are morphologically very similar to P. 49 

patagonica, e.g. P. buphtalmus Pushkin, 1993. P. patagonica is known from Antarctic and 50 

Subantarctic regions, mainly the Scotia Sea, Ross Sea, Antarctic Peninsula, South America 51 

including the Magellan Strait, but also from the Falkland Islands, South Georgia and the 52 

eastern sector of the Antarctic coast (Child, 1995; Gordon, 1932; Hedgpeth, 1961; Hodgson, 53 

1907; Hoek, 1881; Loman, 1923a; Loman, 1923b; Marcus, 1940; Möbius, 1902; Müller, 54 

1993; Munilla & Soler Membrives, 2008; Pushkin, 1975; Pushkin, 1993; Stock, 1975; Weis 55 

& Melzer, 2012b). Specimens can be found in depths ranging from 3 down to 4540 meters 56 

(Munilla & Soler Membrives, 2008). 57 

To unscramble the complex taxonomy of P. patagonica, and to test whether all 58 

morphologically variable specimens available for our analysis represent a single species, we 59 

sequenced a fragment of the mitochondrial cytochrome c oxidase subunit I (COI) gene. This 60 

gene is variable and has been applied successfully for species-level taxonomy in pycnogonids 61 

(Krabbe et al., 2010; Mahon, Arango & Halanych, 2008; Weis & Melzer, 2012a). Altogether 62 

39 P. patagonica specimens were sampled from 33°-72° South and 11°-170° West (depth 63 

range between 3 and 466 m), with focus on the area around the southern tip of South 64 

America. Furthermore, morphology of all available specimens was studied in detail with light 65 

and scanning electron microscopy (SEM), demonstrating differences among samples from 66 

different localities. Morphological analyses include specimens from Loman’s type material 67 

(SMNH Type 1293 and syntypes) of P. tumidula, one specimen of P. patagonica (SMNH-68 

125527) from Hedgpeth’s collections from the Swedish Museum of Natural History 69 

(Hedgpeth, 1961; Loman, 1923b), eight other specimens of P. patagonica (SMNH-125445, 70 

SMNH-125507, SMNH-125508, SMNH-125509, SMNH-125510), and one unidentified 71 

Pallenopsis spec. (SMNH-125514). In addition we also studied/consulted Hoek’s type 72 

material of P. patagonica (BMNH 1881.38, three specimens) and P. patagonica var. elegans 73 

(BMNH 188.38, one specimen) which are kept in the Natural History Museum of London. 74 



 75

Furthermore, we analysed three P. notiosa Child, 1992 specimens, which are housed at the 75 

Zoologische Staatssammlung München (ZSM) (Weis & Melzer, 2012b). Our morphological 76 

data set includes a total of 61 specimens. 77 

As mentioned in our previous study (Weis & Melzer, 2012a) the southern Chilean coastline 78 

displays an interesting chance for studying speciation processes. Given that the last glaciation 79 

ended only 15.000 years ago, and the low dispersal ability of pycnogonids, haplotypes of 80 

cryptic species have already been linked with their geographical distribution, as was the case 81 

for Achelia assimilis (Haswell, 1885) (Weis & Melzer, 2012a). Whether similar effects can be 82 

found concerning the species P. patagonica is one aim of the present study. 83 

Further molecular studies focusing on particular groups of pycnogonids have only explicitly 84 

been done for the genus Colossendeis (Dietz et al., 2011; Krabbe et al., 2010) and Nymphon 85 

(Mahon et al., 2008; Arango, Soler-Membrives & Miller, 2011) so far. With Pallenopsis we 86 

want to open the field for a further very complex, variously shaped group with focus on 87 

southern South American coasts and surrounding areas. 88 

 89 

Material and Methods 90 

 91 

Specimens and vouchers 92 

 93 

Specimens from the Chilean coast were collected by “SCUBA diving” during expeditions 94 

organized by the Huinay Scientific Field Station between 2006 and 2011 (Försterra, 2009). 95 

Additionally, we received material from the region of Valparaiso, a more northern area in 96 

Chile, from the Falkland Islands, South Georgia and the Weddell Sea (see acknowledgments). 97 

A detailed overview of the different sample locations of the studied individuals is given in 98 

figure 1. Material was fixed in 96% ethanol to ensure high quality DNA for genetic analysis. 99 

Pycnogonids were identified based on morphology using a variety of literature (Child, 1995; 100 

Gordon, 1932; Gordon, 1944; Hodgson, 1907; Hoek, 1881; Möbius, 1902; Pushkin, 1975; 101 

Pushkin, 1993; Stock, 1957; Stock, 1975; Weis & Melzer, 2012b). Furthermore, synonyms, 102 

depth ranges and distribution patterns were taken from Müller’s (1993) “World Catalogue and 103 

Bibliography of the recent Pycnogonida”(Müller, 1993), Munilla and Soler-Membrives 104 

(2008) and Pycnobase (Bamber & El Nagar, 2011). All barcoded voucher specimens are kept 105 

at the Zoologische Staatssammlung München (ZSM) under specific Voucher ID’s (see table 106 

1) including also PpaE_001-008, PpaE_010, PpaA_001 and PxxE001-002; their respective 107 

DNA extract aliquots are stored partially at the Canadian Center for DNA Barcoding 108 
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(CCDB), the ZSM’s DNA bank facility and the Ruhr University Bochum. Collection data, 109 

BOLD or GenBank accession numbers of all 39 pycnogonid sequences examined in this study 110 

as well as chosen outgroup taxa are summarized and listed on table 1. Some of the specimen 111 

details can further be accessed in Barcode of Life Data Systems (Ratnasingham & Hebert, 112 

2007) under the project CFAP (Chilean Fjord Pycnogonids) as part of the “Marine Life 113 

(MarBOL)” campaign. The sequences FJ969367-69 of P. patagonica from the Ross Sea were 114 

accessed from GenBank (Nielsen, Lavery & Lorz, 2009). Furthermore, we used five Genbank 115 

sequences of P. pilosa Hodgson, 1915 (PxxE001, PxxE002, KC 848052, KC848053, 116 

KC848054,), one sequence of P. buphtalmus Pushkin, 1993 (HM426171), one P. latefrontalis 117 

Pushkin, 1993 (HM426218), and P. macneilli Clark, 1963 (DQ390086) as outgroups. While 118 

specimens PxxE001 and PxxE002 were checked for correct determination, we could not 119 

access the outgroup specimens KC 848052, KC848053, KC848054 (deposited at the British 120 

Antarctic Survey in Cambridge), HM426171, HM426218 and DQ390086. 121 

For comparative morphological analyses in addition to our specimens used for dna 122 

sequencing we investigated 18 specimens from historical collections housed at the Swedish 123 

Museum of Natural History, and the British Museum of Natural History i.e. P. tumidula 124 

(SMNH- Type 1293 and seven syntypes), P. patagonica (SMNH-125445, SMNH-125507, 125 

SMNH-125508, SMNH-125509, SMNH-125510) and one unidentified Pallenopsis spec. 126 

(SMNH-125514) from the Loman collection, as well as one P. patagonica (SMNH-125527) 127 

sampled by the Lund University Chile expedition, determined by Hedgpeth (1949). Beyond 128 

that we examined Hoek’s type material from the Challenger expedition that include three 129 

specimens of P. patagonica and one specimen designated as P. patagonica var. elegans 130 

(BMNH 1881.38). Furthermore, we studied a related species P. notiosa (ZSMA20111077-131 

79), which is kept at the ZSM and discussed in a previous paper(Weis & Melzer, 2012b). 132 

For morphological documentation we used the following specimens: ZSMA20111000, 133 

ZSMA20111002, ZSMA20111004, ZSMA20111006, ZSMA20111009, ZSMA20111016, 134 

ZSMA20111348, ZSMA20111350, ZSMA20111357, PpaE007 and PpaE010 for light 135 

microscopy; ZSMA20111006, ZSMA20111009, ZSMA20111024, ZSMA20111349, 136 

ZSMA20111359 and ZSMA20111360 for SEM studies. 137 

 138 

DNA extraction and sequencing 139 

 140 

Since all the studied individuals had a suitable size it was sufficient to take only a piece of leg 141 

for DNA extraction. Here, muscle tissue from the tibia was extracted using the DNeasy Mini 142 
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Kit following the tissue protocol of the manufacturer. As a modification from the original 143 

protocol, we used only 100 µl of AE buffer for elution. Amplification of a 657 bp fragment of 144 

the Cytochrome c Oxidase subunit 1 gene (COI) was performed using standard Folmer 145 

primers (Folmer et al., 1994) in 25 ul reactions. Individual reactions consisted of 1x PCR 146 

buffer (5Prime HotMaster), 0.2 mM dNTPs, 0.5 uM of each primer, 0.025 U/ul Taq (5Prime 147 

Hotmaster), 1-3 ul extracted DNA (depending on yield), and was filled up to 25 ul with 148 

molgrade H2O. Cycle conditions were: initial denaturation at 94°C for 2 min followed by 36 149 

cycles of 94°C for 20s, 48°C for 30 s, 65°C for 80 s. After a final extension at 65°C for 5 min 150 

the reactions were stored at 4°C. Both, DNA extraction and PCR success were checked on a 151 

1% TBE agarose gel. 10 μl PCR product were purified enzymatically with 0.5 μl Exonuclease 152 

I (20 U/μl) and 1 μl FastAP (1 U/μl, Thermofisher), by incubating in a thermocycler at 37°C 153 

for 15 min followed by 96 °C for 15 min prior to sequencing. Sequencing was conducted at 154 

GATC (Konstanz, Germany) or performed partially at the CCDB using the standard protocols 155 

of IBOL (http://dnabarcoding.ca/pa/ge/research/protocols). 156 

 157 

Phylogenetic analysis 158 

 159 

A total of 47 pycnogonid sequences were used for the phylogenetic analyses of the 657 bp 160 

fragment of the cytochrome c oxidase I gene (COI). All 47 DNA sequences were aligned with 161 

MUSCLE using GENEIOUS Pro version 5.5.4 (Drummond et al., 2011). To check for 162 

frameshift mutations or stop codons, the COI sequences were translated into amino acids 163 

using the invertebrate mitochondrial genetic code (translation table 5). After the calculation of 164 

“base pair” frequencies and uncorrected pairwise distances with MEGA 5.05 (Tamura et al., 165 

2011) we tested the alignment statistically for substitution saturation in DAMBE 5.2.69 (Xia 166 

& Lemey, 2009; Xia et al., 2003).  167 

Using MEGA 5.05 software we calculated nucleotide composition, maximum parsimony 168 

(MP), and since we were interested in shallow species level differences also Neighbor-Joining 169 

(NJ) trees based on the Kimura 2 parameter (K2P) model (Kimura, 1980; Saitou & Nei, 1987) 170 

with bootstrap values. For Maximum Likelihood (ML) and Bayesian inferences (BI) we first 171 

identified the most appropriate substitution model using Modeltest2 and the Akaike / 172 

Bayesian Information Criteria (Darriba et al. 2012). For ML we used the full set of 88 173 

models, for MrBayes we used the reduced model search scheme (nst=1,2 and 6; +I, +G, +IG). 174 

Just as for MP and NJ we used 1,000 replicates for the ML analysis under RAxML 7.0.4. The 175 

1,000 rapid bootstraps were conducted by using the –x option (random seed number). Based 176 
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on jModeltest2 the best models according to both the AIC and the BIC was GTR+I+G and 177 

used in RAxML and the Bayesian analyses with MrBayes 3.2 (Ronquist et al., 2012). 178 

Bayesian analysis was performed using four independent runs with 4 independent chains and 179 

5 million Metropolis-coupled MCMC generations each. Every 500
th

 tree was saved (10000 in 180 

total). The four independent runs reached stationarity after 0.7 – 0.9 million generations 181 

(average standard deviation of split frequencies below 0.01) and thus the consensus tree was 182 

calculated after discarding the first 25% of the trees as burn-in (1.25 million generations). The 183 

figure of the recovered phylogenetic tree was made using FigTree 1.4.0. 184 

 185 

Search for species boundaries using DNA sequences 186 

 187 

To be independent from morphology, we decided to perform molecular analyses on the whole 188 

dataset including also P. macneilli, P. buphtalmus and P. latefrontalis. To check for species 189 

boundaries in our P. patagonica complex, we conducted a general mixed Yule-coalescent 190 

(GMYC) analysis (Monaghan et al., 2009; Pons et al., 2006). As identical sequences cannot 191 

be considered in GMYC analyses, we removed identical sequences, resulting in a dataset of 192 

32 sequences. An ultrametric starting tree was obtained using BEAUTi and BEAST (both 193 

version 1.6.1) (Drummond & Rambaut, 2007). The chain length for the Markov-Chain Monte 194 

Carlo (MCMC) algorithm was set to 10 million generations, with sampling trees every 1,000 195 

generations. Effective sampling sites and convergence of the parameter estimates was 196 

inspected using Tracer (version 1.5). Using TreeAnnotator (version 1.6.1) a consensus tree 197 

was obtained. The burn-in was set to 2500, rejecting the first 25% of the trees and the 198 

posterior probability threshold was set to 0.5. The resulting ultrametric tree was subsequently 199 

imported into the statistics software R 2.15.2 (available: http://www.R-project.org/ accessed 200 

2012). GMYC analysis was conducted with the R package “SPLITS” (Species Limits by 201 

Threshold Statistics, obtained from: http://r-forge.r-project.org/projects/splits). We used the 202 

single and multiple threshold model for the inference of the number of entities with standard 203 

parameters (interval = c(0,10)) and used a likelihood ratio test to select the appropriate model. 204 

Furthermore, we used the freely available software ABGD (Automatic Barcode Gap 205 

Discovery) (Puillandre et al., 2012) for searching barcoding gaps between all 42 sequences 206 

(sequences of P. pilosa were excluded) and for calculating their intraspecific 207 

distance/variance. 208 

 209 

COI network 210 
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 211 

Since networks are better suited to visualize the often reticulate relationships within as well as 212 

among closely related species, we constructed a NeighborNet of all individual COI sequences, 213 

using Splitstree version 4.12 (Huson & Bryant, 2006) and K2P-corrected distances.  214 

 215 

Morphological analysis 216 

 217 

Specimens were photographed using a Wild M400 photomacroscope equipped with a digital 218 

camera (Nikon D700) by taking several shots focused at different levels along the z-axis. To 219 

constitute a greater depth of field this series of pictures was then edited and combined to a 220 

single respective image using the computer software Helicon Focus 221 

(http://www.heliconsoft.com/). Specimens were prepared for SEM as described in Weis and 222 

Melzer (2012a). The editing and composition of both light microscopic and SEM pictures was 223 

performed with Adobe Photoshop CS. 224 

 225 

Nomenclatural Acts 226 

The electronic edition of this article conforms to the requirements of the amended 227 

International Code of Zoological Nomenclature, and hence the new name contained herein is 228 

available under that Code from the electronic edition of this article. This published work and 229 

the nomenclatural acts it contains have been registered in ZooBank, the online registration 230 

system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the 231 

associated information viewed through any standard web browser by appending the LSID to 232 

the prefix "http://zoobank.org/". The LSID for this publication is: 233 

urn:lsid:zoobank.org:act:0E39E226-30C7-4853-A6A1-7DD2336F33FE. The electronic 234 

edition of this work was published in a journal with an ISSN, and has been archived and is 235 

available from the following digital repositories: PubMed Central and LOCKSS. 236 

 237 

Results 238 

 239 

Molecular and phylogenetic analysis 240 

 241 

The 657-bp COI alignment of 47 pycnogonid specimens showed no gaps. Base pair 242 

frequencies indicated an arthropod-typical bias towards adenosine and thymine: A 31.31 %, C 243 

19.80 %, G 13.95 % and T 34.68 %. The value of substitution saturation (Iss), which was 244 
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calculated for the whole alignment as well as for the third codon position, was always 245 

significantly lower than the critical Iss.c value. Iss being lower than Iss.c implies only little 246 

substitution saturation for the analysed sequences. The 657 basepairs consisted of 410 247 

conservative sites and 247 variable sites of which 202 were parsimony informative. 248 

Translating the COI sequences into amino acid sequences using the invertebrate 249 

mitochondrial codon table in Geneious showed neither frame shift mutations nor stop codons. 250 

Phylogenetic trees constructed with the different approaches (BI, MP, NJ, ML) showed no 251 

major differences, therefore we present the Bayesian tree (Fig. 2). Support values of the other 252 

inferences are also shown on the branches. Minor differences are caused by ZSMA20111008 253 

and ZSMA20111072, which are also showing bad bootstrap support. Both are slightly 254 

changing their position within the tree but are never affecting any of the other “well 255 

supported” clades. 256 

Specimens of P. patagonica from Chile (ZSMA20111000, ZSMA20111002-06, 257 

ZSMA20111009, ZSMA20111012, ZSMA20111016, ZSMA20111024, ZSMA20111339) 258 

and the Falkland Islands (ZSMA20111348-51, ZSMA20111354-55, ZSMA20111357, 259 

ZSMA20111359-61, PpaE004-008, PpaE010) cluster within two well-supported, 260 

geographically distinct clades (Figs 2 and 3). Several specimens cluster outside these two 261 

distinct groups, highlighting the complex nature of P. patagonica: ZSMA20111008, 262 

ZSMA20111072 (both from 33°S) and [ZSMA20111017 (48°S) and ZSMA20111340 263 

(Region de Magallanes)], [PpaE003 and ZSMA20111352 (Falklands)]. Specimens from the 264 

Ross Sea (FJ969367-69) cluster together with one individual from the East Weddell Sea 265 

(PpaA001), one from the Shag Rocks (PpaE001) and two Southern Ocean specimens assigned 266 

to different species (P. buphtalmus, P. latefrontalis) forming an “almost Antarctic” clade. The 267 

only specimen from South Georgia (PpaE002) clusters basally to the Falkland and “Antarctic” 268 

clades. P. macneilli clusters with ZSMA20111008. The results reveal that specimens initially 269 

identified as P. patagonica are genetically very heterogeneous and some show close affinities 270 

to specimens identified as different species. Figure 3 shows the Neigbornet of all Pallenopsis 271 

specimens including alternative connections. 272 

The five specimens of P. pilosa selected as the outgroup cluster apart from all other 42 273 

pycnogonids. The statistical support for the ingroup is good for the model-based inferences 274 

(BI:1, ML: 88) but poor for the NJ and MP inferences (25 and 40, respectively). Interestingly, 275 

the five P. pilosa specimens are genetically highly heterogeneous, hinting at further problems 276 

with the taxonomy of other Pallenopsis specimens. In general, the mitochondrial COI 277 



 81

fragment is a suitable marker for uncovering lineages previously undetected by morphological 278 

analyses (see also Weis & Melzer, 2012a). 279 

To test whether these clusters comprise cryptic or overlooked species we calculated and 280 

compared uncorrected pairwise distances between the different specimens/clades (see table 281 

S1). Variation between clades or specimens are high with a maximum of 23.6 % uncorrected 282 

genetic distance. Genetic distances between P. patagonica s. str. (Falkland Clade) and P. 283 

yepayekae sp. nov. (Chile Clade) were high (4.5-5.3% and 14.9-19.1%), whereas the variation 284 

within these clades was low (0-1.2 % and 0-3.5 %, respectively). 285 

In addition, we analysed the distance data for distinct barcode gaps using ABGD. Including 286 

all 42 studied pycnogonids (five specimens of P. pilosa excluded) no distinct barcode gap is 287 

visible (Fig. 4). Although there is a large increase at the beginning of the slope, the two 288 

horizontal lines are connected by several dots or small clusters of dots. However doing the 289 

same analyses with the 11 specimens from the Chilean clade together with the 16 specimens 290 

from the Falkland clade a barcoding gap becomes more obvious (Fig. 5). The two vertical 291 

“clusters” are now clearly separated without any dots in between them. Using ABGD we 292 

calculated the intraspecific distance of the same 42 specimens. Intraspecific distance varied 293 

between 0 and 23 % (see Fig. 6). 294 

For the tree-based assessment of hidden species, using the GMYC model with multiple 295 

branching events (indicating the presence of several species) was preferred over the null 296 

model (single coalescent branching model): Likelihood ratio test: p<0.001. This indicates the 297 

presence of several species. We also compared the single-threshold model versus the 298 

multiple-threshold model and found support for the single-threshold model p=0.861 (Chi 299 

square 0.751 and 3 degrees of freedom). According to the single-threshold GMYC model, the 300 

tree consists of 32 haplotypes split into three clusters (confidence interval: 3-5) and 15 distinct 301 

GMYC species (ML entities; confidence interval: 11-16). The threshold between Yule 302 

speciation and coalescence within populations is indicated by a vertical line in the lineage-303 

through-time plot (LTT) of the Bayesian tree in figure 7. According to this, all Falkland Clade 304 

specimens and the Chile clade specimens represent GMYC species. Furthermore, [FJ969367 305 

and FJ96968 (HT21)] and [ZSMA20111017 (HT11) and ZSMA20111340 (HT12)] and all 306 

other 11 specimens represent distinct GMYC species. 307 

 308 

Morphology 309 

 310 
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To check if the results of our sequence analyses i.e., that P. patagonica might be a complex of 311 

several species, are paralleled by previously undetected morphological differences between 312 

these clades we made a detailed analysis of all available specimens. Table S2 displays the 313 

enormous morphological variance of the different clades/specimens with respect to their 314 

general body size, length of the cement gland tube, leg setation and auxiliary claw length, but 315 

they all fit in the traditional definition of P. patagonica. Since for most cases only one 316 

specimen is available, and since these lack morphological differences that allow us to decide 317 

whether they represent variations or putative species-specific features, their analysis will be 318 

continued when more specimens are available. Thus we focused our analyses on the two 319 

biggest clades, initially referred to as the Chile clade and the Falkland clade (including 11 and 320 

16 specimens, respectively). Within each of the two clades we observed constant 321 

morphological features, which is in accordance with the molecular results. Light microscopy 322 

pictures of individuals from the Falkland Island and the Chilean clade are shown in figures 8 323 

and 9. Furthermore, figure 10 displays detailed SEM studies of the cement gland ducts, 324 

female ovigers and hairs of the second and third coxae from specimens of both clades. 325 

Specimens from the Chilean coast seem to be smaller in their body size compared to the 326 

specimens captured from the Falklands and South Georgia (except ZSMA20111352 and 327 

PpaE003 from Burdwood Bank) (Figs 8A and 9 A). Whereas the shape of the proboscis is 328 

cylindrical along its length for most specimens (Fig. 8B), individuals from the Chilean clade 329 

show a distinct swelling at the middle of the proboscis (Fig. 9C). Also specimens 330 

ZSMA20111008 (Region de Magallanes), ZSMA20111072 (Region de Valparaiso), 331 

ZSMA20111352 (Falkland Islands) and PpaE003 (Burdwood Bank) show a light swelling at 332 

about half the length of the proboscis. Almost all studied specimens bear an upwards erected 333 

slender abdomen (except PpaE002 horizontal) with some short setae. The abdomen from 334 

specimens from the Chilean clade is dorsodistally sloped. At the beginning of the slope a 335 

rounded edge is found bearing two very prominent spines (Fig. 9D). In contrast specimens 336 

from the Falklands and Antarctic area lack those spines, but show several randomly 337 

distributed short setae on the abdomen (Fig. 8C). All examined individuals show a pointed or 338 

slightly pointed ocular tubercle. Specimen ZSMA20111008 is the only one with a rounded 339 

ocular tubercle. 340 

Furthermore, whereas the length of the cement gland tubes in the Chilean pycnogonids is 341 

about three times their diameter (Fig. 10B), specimens from the Falklands and Antarctic area 342 

show a very short cement gland tube (Fig. 10A), which is sometimes only hardly visible. 343 

Additionally females of the Chilean clade show a swollen 4
th

 oviger segment which is not 344 
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noticeable in the females from the Falkland clade (Figs 8D, 9F, 10C-D). Furthermore, female 345 

ovigers from the Chilean clade are eight- to nine-segmented (distal segments often fused) 346 

compared to females of the Falkland clade, which exhibit a “ten-segmented” oviger (Figs 347 

10C-D). 348 

The proportion of the length of the different leg segments is similar throughout all studied 349 

specimens, with tibia 2 being the longest. The number of heel spines on the propodus varies 350 

between three and four (Fig. 8F). Concerning the leg setae, all individuals show setae being 351 

not longer than the diameter of the segment on which they are situated (except 352 

ZSMA20111017). The 11 specimens from the Chilean clade show numerous distinct small 353 

and stout hairs on the distal ventral side of the second and third coxa (Fig. 9E). Though this 354 

characteristic is weakly developed in juveniles, it is already discernable at that stage. This 355 

characteristic is not visible or that prominent in any of the other studied specimens (Fig. 8E). 356 

Furthermore, the setae themselves show remarkable differences. The setae on the second and 357 

third coxae of the specimens from the Chilean clade bear several tiny hairs on their surface 358 

(Fig. 10F), whereas the setae from the other specimens are “smooth” or rather normally 359 

developed (Fig. 10E). 360 

The length of the auxiliary claws varies between one third and one half the length of the main 361 

claw without distinction between specimens from different areas. Only specimen 362 

ZSMA20111008 from the Chilean fjord region at 50°S bears extremely short auxiliary claws 363 

being one fourth the length of the main claw. 364 

P. patagonica specimens from the Swedish Museum of Natural History determined by Loman 365 

show similar morphological characteristics to those of our specimens from the Falkland clade. 366 

Loman’s specimens were collected by the Swedish South Polar Expedition (1901-1903) at the 367 

Graham Region, South Georgia and the Falkland Islands. The undetermined Pallenopsis 368 

(SMNH-125514) was collected at the Patagonia archipelago (Tierra del Fuego) 55°10’S, 369 

66°15’W and is in good accordance in morphology with our Chilean clade. This specimen, an 370 

ovigerous male, shows the characteristic hairs on the ventral side of the second and third 371 

coxae, has a long cement gland tube (more than three times its width) and a proboscis with a 372 

light swelling at half of its length. 373 

The specimen of Hedgpeth (SMNH-125527) appears to be a female and was collected by the 374 

Lund University Chile Expedition (1948-49) at Canal San Antonio 41°47’S, 73°15’W. This is 375 

the exact region where samples from our Chilean clade are from. Also this specimen shows 376 

the same morphological characteristics as our specimens from the Chilean fjords that are: a 377 

nine-segmented oviger (with the 4
th

 oviger segment swollen), a proboscis with a slight 378 
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swelling at the middle and prominent brush-like setae on the ventral side of the second and 379 

third coxae. 380 

 381 

Reinvestigation of Hoek’s type material 382 

 383 

Hoek’s type material consists of three female specimens: one bigger specimen on which his 384 

type determination is based and two smaller specimens which he designated as juveniles. The 385 

three individuals were sampled from three different stations, namely station 304, 308 and 313 386 

(located at 46°53’S, 75°11’W, 50°10’S, 74°42’W and 52°20’S, 68°0’W, respectively). 387 

Unfortunately it is not known which specimen was captured from which sample site, since the 388 

specimen labels don’t contain this information. Whereas the bigger specimen and one of the 389 

smaller ones are morphologically identical with the individuals of our “Falkland clade”, the 390 

other one resembles accurately the specimens from our “Chilean clade”. It shows the distinct 391 

prominent features which are (i) a proboscis slightly swollen at the middle, (ii) an “eight-“ to 392 

“nine–segmented” oviger with the fourth oviger segment thickened and (iii) several short 393 

brush-like setae at the ventral side of the second and third coxae. Also the structure of these 394 

hairs accords well with that described for the individuals of our “Chilean clade”. The 395 

abdomen shows the same shape bearing two spines on the rounded edge of the beginning of 396 

the dorsodistal slope. One of the spines on the dorsal side is broken, the other one is not as 397 

prominent as in most of the individuals from our “Chilean clade” but nevertheless clearly 398 

visible. 399 

Moreover Hoek’s material also contains a specimen called P. patagonica var. elegans from 400 

station 320 near the La Plata estuary in Argentine (37°17’S, 53°52’W). As Hoek already 401 

mentions this individual resembles a variety of P. patagonica, i.e. our “Falkland clade”, with 402 

only a more slender appearance. 403 

 404 

Results of our morphological analyses as well as our molecular data strongly indicate that the 405 

“Chilean clade”, i.e. the 11 specimens collected at the southern Chilean coast, represents a 406 

new species that is described in the following. 407 

 408 

Pallenopsis yepayekae Weis spec. nov. urn:lsid:zoobank.org:act:0E39E226-30C7-4853-409 

A6A1-7DD2336F33FE 410 

Figs 9A-F, 10B, D, F, 11A-F 411 

 412 
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The new species can clearly be attributed to the genus Pallenopsis Wilson, 1881 by its slender 413 

segmented body, cylindrical proboscis, rudimentary palps, “ten–segmented” ovigers in males 414 

and slender legs with claws and auxiliary claws (Wilson, 1881). 415 

Species description of P. yepayekae is based altogether on 14 specimens: 11 specimens 416 

collected by the “Huinay Fjordos” expeditions 2006-2011, one specimen (SMNH-125514) 417 

that was only determined to genus level by Loman (1902) and two further specimens that 418 

were initially determined as P. patagonica, namely SMNH-125527 from Hedgpeth (1949) 419 

and BMNH-1881.38 from Hoek (1881). 420 

 421 

Types: Holotype: male (ZSMA20111002), Chile, Hanover area, Canal Pitt Chico, 422 

50°50'07.1''S, 74°08'20.9''W, 25 m, 07.03.2006, leg. R. Melzer, M. Schrödl.  423 

Paratypes:  424 

4 males: ZSMA20111000, Chile, Western Katalalixar, Canal Castillo, 48°44'11.4''S, 425 

75°24'53.1''W, 15m, 12.03.2006, leg. R. Melzer, M. Schrödl; ZSMA20111006, Chile, Fjords 426 

of region x, Inio 4, 43°25'03.0''S, 74°04'51.2''W, 20m, 24.02.2008, leg. G. Försterra; 427 

ZSMA20111339, Chile Anihue Raul Marin Balmaceda, Islas Tres Hermanas, 43°46'31.35" S, 428 

73°01'44.14" W, 19m, 17.01.2011, leg. V. Häussermann; SMNH-125514, South Atlantic 429 

Ocean, Argentina, Patagonia archipelago (Tierra del Fuego), 55°10'S, 66°15'W (St. no. 60 of 430 

Swedish South Polar Expedition 1901-03), 100m, 15.09.1902, leg. J. C. C. Loman. 431 

7 females: ZSMA20111003, Chile, Fjords of region x, Inio 4, 43°25'03.0''S, 74°04'51.2''W, 432 

25m, 24.02.2008, leg. RF; ZSMA20111004, Chile, Fjords of region x, Inio 5, 43°24'34.5''S, 433 

74°05'00.7''W, 9m, 24.02.2008, leg. NR; ZSMA20111009, Chile, Fjords of region x, Inio 3, 434 

43°23'33.4''S, 74°07'56.5''W, 26m, 24.02.2008, leg. V. Häussermann; ZSMA20111016, Chile, 435 

Western Katalalixar, Canal Adalberto, 48°36'28.7"S, 74°53'55.7"W, 32m, 12.03.2006, leg. R. 436 

Melzer, M. Schrödl; ZSMA20111024, Chile, Messier Channel and Fjords, Paso del Abismo, 437 

49°34'38.7"S, 74°26'49.3"W, 28m, 10.03.2006, leg. R. Melzer, M. Schrödl; SMNH-125527, 438 

South Pacific Ocean, Chile, Canal Chacao, Canal San Antonio, 41°47'40''S, 73°15'40''W (St. 439 

no. M109 of Lund University Chile Expedition 1948-49), 36m, 06.05.1949; BMNH-1881.38, 440 

either from station 304, 308 or 313 of the H.M.S. Challenger expedition 1872-76 between 441 

46°53'S, 75°11'W and 52°20'S, 68°0'W, between 82-320m, 31.12.1875-20.01.1876.  442 

2 juveniles: ZSMA20111005, Chile, Western Katalalixar, Canal Castillo, 48°44'11.4''S, 443 

75°24'53.1''W, 23m, 12.03.2006, leg. V. Häussermann; ZSMA20111012, Chile, Raul Marin, 444 

Las Hermanas, 22m, 11.03.2007, leg. R. Meyer, K. Jörger.  445 
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Beside the specimens there are also DNA aliquots (including ten paratypes plus holotype) 446 

stored under specific Voucher ID’s at the Zoologische Staatssammlung München (see also 447 

table 1) and at the Canadian Center for DNA Barcoding (CCDB). 448 

 449 

Etymology: 450 

In Kawésar language, yepayek is the name of the ciprés de las güaitecas (Pilgerodendron 451 

uviferum). If one looks at the fine ramification of the branches of a cypress-like tree, the 452 

similarity to the structure of the setae of the ventral side of the second and third coxae of the 453 

new species described here becomes obvious. The name of the species also refers to the 454 

Yepayek, ranger boat of the CONAF (Corporación Nacional Forestal) named after the tree, 455 

which carried the scientists to the different places in the Chilean fjords sampled during 456 

“Huinay fjordos” expedition # 3. It was the Yepayek and its always friendly and cooperative 457 

crew to whom we owe the chance to collect this new species. Therefore, we decided to name 458 

the species Pallenopsis yepayekae and also to keep in mind the adventurous trip through the 459 

labyrinth of the Chilean fjords. 460 

 461 

Diagnosis: 462 

Compared to P. patagonica a rather small species of smooth habitus and in a few individuals 463 

the legs show red stripes. Proboscis (Fig. 11B) with distinct swelling at the middle. Abdomen 464 

(Fig. 11B) erect (about 45°) and dorsodistally sloped. The beginning of the slope shows a 465 

rounded edge on which two very prominent spines are sited (Fig. 11B). Second and third 466 

coxae with many conspicuous short brush-like setae on the ventral side (Fig. 11C). Oviger of 467 

the females eight- to nine-segmented with the fourth oviger segment being swollen (Fig. 468 

11E). Cement gland duct of males relatively long measuring about three times the length of its 469 

diameter.  470 

 471 

Description: 472 

 473 

Male: Size moderate to small, leg span less than 60 mm. Trunk glabrous with distinct segment 474 

borders, lateral processes separated by about 1/3 their diameter (Figs 11A and 11B). Ocular 475 

tubercle at anterior portion of cephalic segment, slightly pointed (Fig. 11B). Eyes prominent, 476 

pigmented with posterior ones smaller than anterior ones. Proboscis slightly directed 477 

downwards, swollen at middle (Fig. 11B). Abdomen erect, somewhat extending beyond the 478 
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distal margins of the lateral processes, dorsodistally sloped, with two very prominent spines 479 

on the dorsal side (Fig. 11B). 480 

Chelifores with movable finger equipped with setose pad. Tips overlap when closed, inner 481 

edges join when closed. Lateral palp buds have the form of short knobs (Fig. 11B). 482 

Oviger “ten segmented”, typical for genus (Fig. 11F). Distal segments more setose than 483 

proximal segments, with setae pointing in various directions. 484 

Legs (Fig. 11C) with several setae not longer than the diameter of the segment on which they 485 

are situated. Coxae one and three subequal. Second coxa about twice length of third coxa. 486 

Second and third coxae with many conspicuous short brush-like setae on the ventral side (Fig. 487 

11C). Femur and tibia 1 of about equal size. Tibia 2 longest leg article. Tarsus short, armed 488 

with one bigger spine on the ventral side. Propodus (Fig. 11D) slightly curved, with three to 489 

four heel spines. Sole with many shorter spines. Claw robust, slightly curved, auxiliary claws 490 

about 1/3 to ½ of main claw length.  491 

Cement gland tube about three times as long as its diameter, medioventrally on femur on 492 

slightly raised surface. Sexual pores on ventral side of second coxae of third and fourth pair of 493 

legs. 494 

Measurements (holotype, in mm): length of trunk (anterior margin of first trunk segment to 495 

distal margin of 4
th

 lateral processes), 4,82; trunk width (across first lateral processes), 2,94; 496 

proboscis length, 2,29; abdomen length, 1,81; third leg, coxa1, 0,85; coxa 2, 2,58; coxa 3, 497 

1,23; femur, 5,90; tibia 1, 5,49; tibia 2, 7,06; tarsus, 0,27; propodus, 1,44; claw, 0,76; 498 

auxiliary claws, 0,50. Different leg segments were measured in natural posture. 499 

Female: General habitus and size similar to male. Differences are only in the sexual 500 

characters: oviger (Fig. 11E) eight-to nine-segmented with fourth oviger segment swollen; 501 

distal oviger segments fused and less setose than in the male; all setae pointing distally. 502 

Sexual pores on all second coxae on ventrodistal surface.  503 

 504 

Distribution: Chilean fjord region 41°47'40''S - 55°10'S and 66°15' W - 75°24'53.1''W; depth 505 

range 9-100 m. 506 

 507 

Since Hoek’s syntypes series of P. patagonica includes one specimen of P. yepayekae spec. 508 

nov. a lectotype for P. patagonica has to be designated. Of the two specimens from the 509 

BMNH-1881.38 material of the Challenger expedition, the larger specimen on which Hoek’s 510 

description is based shall be the lectotype, and the smaller specimen the paralectotype. The 511 

lectotype of P. patagonica can clearly be distinguished from the new species P. yepayekae 512 
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spec. nov. by the following characteristics: abdomen without two prominent spines on the 513 

dorsal side, ten segmented oviger in females, second and third coxae without conspicuous 514 

short brush-like setae on the ventral side and a cylindrical proboscis without a swelling at the 515 

middle. 516 

 517 

Discussion 518 

 519 

The results of our study indicate great morphological as well as genetic variation in the 520 

examined individuals, indicating P. patagonica –sensu lato is a good example for studying 521 

species complexes.  522 

To avoid circular reasoning by mixing morphology-based considerations and molecular 523 

results, all molecular analyses were done using the whole dataset, and checked against the 524 

morphological results later. Correspondingly morphology of the specimens was analysed 525 

without taking sequence-defined groupings into account. After the first morphological 526 

determinations all studied specimens could be assigned to P. patagonica according the 527 

hitherto existing definitions (Child, 1995; Gordon, 1932; Pushkin, 1975; Pushkin, 1993; 528 

Stock, 1957). We also decided to include available sequences of P. macneilli, P. buphtalmus 529 

and P. latefrontalis in our studies, owing to their close relationship to P. patagonica. 530 

Furthermore, since we did not have these three specimens at hand to check whether the 531 

determinations and the genetic data show their affinities to the P. patagonica complex, we 532 

treated them as neutrally as possible and considered them also as possible P. patagonica 533 

specimens. 534 

 535 

Molecular analysis 536 

 537 

Regarding the molecular results presented in this study, different clades are supported by high 538 

bootstrap or posterior probability values. Regarding all studied Pallenopsis specimens, two 539 

bigger clades can be clearly distinguised: on the one hand the Chilean clade with 11 540 

specimens and on the other hand the Falkland clade comprising 16 individuals. This is not 541 

surprising, since already our morphological data put the Chilean and Falkland specimens in 542 

separated groups (see table S2). 543 

Combining all evidence of our results, in particular the extremely high intraspecific distances 544 

of 23%, and also considering the high “intraspecific” variation of 10.4% for P. patagonica 545 
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reported in our previous study (Weis & Melzer, 2012a), we conclude that P. patagonica 546 

might represent a large species complex, potentially hiding several undescribed new species.  547 

In contrast to our previous study of Achelia assimilis (Haswell, 1885), where we assumed 548 

subspecies due to their geographic pattern (possible allopatric speciation process), in P. 549 

patagonica we find another case. As seen in the network and the phylogenetic tree, there is 550 

geographic overlap between the single clades, i.e. haplotypes of different sub-networks are 551 

present at the same location (see Fig. 3). The same pattern has been observed at several 552 

locations for the giant sea spider Colossendeis megalonyx (Krabbe et al., 2010). To confirm 553 

this finding, more sequences from specimens from South Georgia, Antarctica and more 554 

northern areas of the Chilean coast are required.  555 

Again, like in other pycnogonids, in P. patagonica we observe very high interspecific 556 

distances compared to other taxa (Hebert et al., 2004; Lefebure et al., 2006; Raupach et al., 557 

2010). Either the amount of undescribed species in Pycnogonida is higher than in other taxa, 558 

or there is a peculiar “pycnogonid” phenomenon not understood at the moment. 559 

Furthermore, the tree-based GMYC modelling analyses, a recently developed species 560 

delimitation method (Monaghan et al., 2009; Pons et al., 2006), which has been used in 561 

several groups of organisms (Barraclough et al., 2009; Bode et al., 2010; Esselstyn et al., 562 

2012; Williams et al., 2012) reveal the presence of about 15 distinct GMYC species, of which 563 

only two are represented by our two bigger clades (Falkland Island and Chile). This suggests 564 

the presence of possibly unrecognized species. However, further sampling is needed to test 565 

explicitly for this phenomenon. 566 

 567 

Morphological analysis 568 

 569 

Since for most of the clusters/clades only a few or even only one specimen is available at the 570 

moment, more specimens from these scattered clades are needed to unravel this complex 571 

phenomenon. However, there are enough specimens in the Falkland and the Chilean clade for 572 

making conclusions regarding their species status. Since the original description of 573 

Pallenopsis patagonica (Hoek, 1881) fits perfectly with the morphology of the 16 specimens 574 

from the Falkland clade, they must be the Pallenopsis patagonica sensu stricto. Specimens 575 

from the Chilean clade in contrast show several morphological and molecular differences, 576 

which leads us to the description of a species new to science. 577 

Specimens described by Hoek have a cylindrical proboscis without swelling at half of its 578 

length and a “ten-segmented” oviger in females. The bigger female Hoek describes has a body 579 
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length of about 16 mm, which is similar to our specimens from the Falkland Islands, South 580 

Georgia and Antarctica. Hoek mentions some small and stout hairs at the swollen extremity of 581 

the second, third and fourth joint of the leg (meaning coxa 2, coxa 3 and femur, respectively). 582 

Perhaps this could be the setae we describe in the specimens from the Falkland clade on the 583 

ventral side of coxa two and three. However these hairs are not visible in his drawings (see 584 

Hoek 1881, Plate XII, Figs 6-9), implying that they are not as prominent as for example in our 585 

studied individuals from the Chilean coast. Hoek’s specimens were captured by the H.M.S. 586 

Challenger at station 304 (46°53’S, 75°11’W), station 308 (50°10’S, 74°42’W) and station 587 

313 (52°20’S, 68°0’W). Fortunately two of our specimens, namely ZSMA20111008 and 588 

ZSMA20111002, are from almost exactly the same location as Challenger station 308. 589 

Regrettably Hoek did not mention which of the three specimens is from which sample 590 

location. We assume that the only adult female, on which also his description and drawings 591 

are based, has been captured east of Chile in the Atlantic at station 313, since this description 592 

matches much better with our specimens from the Falkland Islands and surrounding area (see 593 

above). 594 

If one follows the first description given by Hoek (1881) under the synonym Phoxichilidium 595 

patagonicum, the specimens from the Falkland Islands and Antarctica would match better 596 

than those from the Chilean clade. Hoek focused his description only on the bigger individual 597 

and denominated the smaller ones as juveniles, without giving them any more attention. In 598 

our opinion these two specimens are adult females as well since both are already carrying 599 

eggs inside the femur. After specific study one of the smaller females resembles exactly P. 600 

yepayekae spec. nov. Furthermore, one of Hoek’s sample location (station 308) falls exactly 601 

in the area of the sample sites given for P. yepayekae spec. nov. Hence we assume, that this 602 

individual of Hoek’s material derives from station 308. Unfortunately we can not deduce 603 

either from Hoek’s descriptions nor from his material we have at hand which specimen was 604 

captured at which station. The bigger specimen and the one that resembles P. yepayekae spec. 605 

nov. are both kept in the same tube labelled with station 313 which is obviously wrong since 606 

according to Hoek’s original data these samples come from two different locations. Also the 607 

sample site of the third specimen is not well documented.  608 

Later on also Möbius (1902), Hodgson (1907), Hodgson (1915), Bouvier (1913), Calman 609 

(1915), Loman (1923), Gordon (1932), Marcus (1940), Hedgpeth (1961), Pushkin (1975, 610 

1993), Stock (1957) and Child (1994) described several further specimens and synonyms of 611 

P. patagonica. The specimens were mainly captured from the Southern Ocean including 612 

Bouvet and South Georgia, or from the Falkland Islands and the Atlantic coast of South 613 
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America. With every newly added description the species P. patagonica with its various 614 

existing synonyms became more and more diverse and variable. The morphological frame 615 

under which one could assign a pycnogonid to this species became broader and more 616 

ambiguous. Hence it is not surprising that in a broader sense, all our studied specimens match 617 

with the characterisation of P. patagonica.  618 

To check if there are no other species hidden behind the 39 studied specimens, we choose P. 619 

pilosa as outgroup as well as P. buphtalmus, P. latefrontalis and P. macneilli and examined 620 

and compared the descriptions of other Pallenopsis species found in this area with our 621 

individuals. 1992 Child described two new Pallenopsis species from Chile, namely P. notiosa 622 

and P. truncatula. The latter one has very short auxiliary claws (about 0.15 the length of the 623 

main claw), well separated lateral processes, a glabrous abdomen, a very short cement gland 624 

tube in males and a ten segmented oviger in females. None of our individuals shows all of 625 

these features in combination. For example ZSMA20111008 is the only specimen bearing 626 

such short auxiliary claws, but in contrast to P. truncatula it has a rounded ocular tubercle, a 627 

setose abdomen and a femur being as long as tibia one (femur is shorter than tibia one in P. 628 

truncatula). Also P. notiosa can be excluded concerning our specimens, since it has a rounded 629 

ocular tubercle, well separated lateral processes and a very long second coxa (about three 630 

times coxa 3) (see Weis & Melzer, 2012b). Our specimens have a slightly conical or pointed 631 

ocular tubercle, only little separated lateral processes and a second coxa being about twice the 632 

length of the third coxa. ZSMA20111008 for example has a rounded ocular tubercle, but the 633 

other characteristics do not match. Furthermore, in neither of the two species Child mentions 634 

are there prominent hairs on the ventral side of the second and third coxae which occur in our 635 

Chilean specimens. P. macneilli, which is closest to ZSMA20111008 in the tree does not fit 636 

with our material due to its horizontal abdomen, relatively long auxiliary claws and also its 637 

distribution area which is located in Australia. 638 

Two other interesting possible species could be P. tumidula Loman, 1923 and P. candidoi 639 

Mello-Leitao, 1923, since both seem to exhibit the short hairs on the ventral side of the 640 

second and third coxa. However the latter has an eight-segmented oviger in females and 641 

auxiliary claws clearly longer than half the length of the main claw, which differs from our 642 

specimens. Furthermore, P. candidoi is only sampled from South Georgia to South Brazil so 643 

far. P. tumidula is characterized and drawn by Stock (1957) with “Fiederdornen” on the 644 

ventral distal side of coxa two and three. He mentions that this feature makes P. tumidula 645 

clearly distinguishable from P. patagonica. Confusingly if one regards the original 646 

description of 1923, Loman neither mentions short hairs on the coxae nor shows them in his 647 
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drawings. Furthermore, the type material we had at hand from the Swedish Museum of 648 

Natural History didn’t show any prominent hairs on the coxae. Only our specimens from the 649 

Chilean clade show this kind of “Fiederdornen” and in contrast to P. tumidula they have 650 

eight- to nine-segmented ovigers in females, whereas Loman mentions a “ten-segmented” 651 

oviger in his individuals. One drawing by Loman of a young female shows the last oviger 652 

segments to be fused, which could be more consistent with our specimens. But this would 653 

mean that all our specimens from the Chilean clade would be just juveniles, which can be 654 

excluded for example by the visible eggs inside the femur in females, indicating an adult 655 

state. Furthermore, Loman does not mention any setae on the abdomen. Besides several short 656 

setae, our specimens show also two very prominent larger spines on the distal end of the 657 

abdomen. Another fact that should be kept in mind is that P. tumidula has only been captured 658 

from North Argentina so far. All this leads us to the decision that our specimens can not be P. 659 

tumidula. 660 

Concerning our specimens from the Falkland clade, on the first view one possible candidate 661 

could be P. kupei Clark, 1971. However, the auxiliary claws, being more than half as long as 662 

the main claw (Clark, 1971), and the Macquarie and New Zealand Plateau distribution of this 663 

species (Child, 1995) separate it from P. patagonica.  664 

Analysing Loman’s P. patagonica collection and one P. patagonica specimen of Hedgpeth 665 

from the Swedish Museum of Natural History furthermore confirms our considerations. Eight 666 

specimens (SMNH-125445, SMNH-125507, SMNH-125508, SMNH-125509, SMNH-667 

125510) captured from the Graham region, South Georgia and Falkland Islands determined as 668 

P. patagonica by Loman are perfectly in accordance with the morphology of our specimens 669 

from the Falkland clade. In contrast the specimen SMNH-125527 determined as P. 670 

patagonica by Hedgpeth, which was collected 41°47’S, 73°15’W, fits better with the 671 

description of the specimens of our Chilean clade. This would mean this specimen is not a P. 672 

patagonica, but a P. yepayekae. Furthermore, the only undetermined specimen by Loman 673 

(SMNH-125514), which was collected at Tierra del Fuego (55°10’S, 66°15’W) shows the 674 

same characteristics as P. yepayekae, here described as a new species. This also explains why 675 

Loman determined this specimen only to genus level. He seemed to see the differences to P. 676 

patagonica. 677 

For P. patagonica however a broad variability concerning different characteristics is 678 

discussed. Gordon (1932) notices that the gap between the lateral processes ranges from being 679 

little separated to separated by about their own diameter. Furthermore, the spination of the 680 

propodus varies greatly in numbers and length, bearing for example either two, three or four 681 



 93

spines (Gordon, 1944). Whereas Stock (1975) describes the propodus as more heavy and 682 

robust, it is considered as long by Child (1995). 683 

The length of the auxiliary claws is given as either one third the length of the main claw 684 

(Stock, 1957), half the length of the main claw (Calman, 1915; Gordon, 1944; Hodgson, 685 

1907; Möbius, 1902) or even longer (Pushkin, 1975; Pushkin, 1993). Except for one specimen 686 

(ZSMA20111008) our studied specimens have auxiliary claws reaching one third to one half 687 

the length of the main claw. 688 

Whereas Stock (1957) remarks that P. patagonica lacks “Fiederdornen” (stellate setae) on the 689 

second and third coxa of the legs, some kind of short hairs are mentioned in Pushkin (1975): 690 

“…The few very small spines are located along the ventral surface of the 2
nd

 and 3
rd

 691 

segments. Similar spines surround the genital pore and form a small cluster on the ventral 692 

dilatation of the distal part of the third segment.” Here specimens from the Chilean clade are 693 

distinguishable by their “Fiederdornen” from specimens from the Antarctic region or Falkland 694 

Islands. 695 

Another very variable characteristic affects the cement gland of the males. Whereas the 696 

cement gland tube itself when present is always very short, the ventral pore can be on a flat 697 

surface, on a broad raised surface or something in between (Child, 1995). Our specimens 698 

show a mixture of everything: sometimes the cement gland tube is hardly visible (PpaE_001-699 

002, PpaA_001), short (specimens from the Falkland Islands) or three times its own width 700 

(which is the case for the Chilean clade). Concerning the orientation of setae of the ovigers, 701 

we could detect the same sexual dimorphism as mentioned in Bamber (2002). There are no 702 

differences between P. yepayekae spec. nov. and P. patagonica. 703 

Moreover the abdomen of P. patagonica can be long and erect or be shorter and horizontal 704 

(Child, 1995). The only specimen with a straight horizontal abdomen is PpaE_001 from the 705 

Shag rocks, near South Georgia. All other individuals have an upwards erected abdomen. 706 

Since the morphological differences among the corresponding specimens lie well within the 707 

broad variation described in the literature, we assigned all of our studied specimens (except 708 

those assigned to P. yepayekae) tentatively to P. patagonica. However, this pronounced 709 

morphological variability in many features indicates in parallel with our molecular results that 710 

P. patagonica is a species complex. 711 

 712 

Conclusion 713 

 714 
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To summarize our considerations, we could not assign our specimens (except P. yepayekae 715 

described in the present paper) to any of the described/known Pallenopsis species other than 716 

P. patagonica occurring near the studied area with sufficient certainty. It seems necessary to 717 

attach, beyond the morphological description, also another level/source of information, i.e. a 718 

dataset independent of morphology, as is done here. With our molecular data, this is the first 719 

attempt/step to unravel the species complex of P. patagonica also with a wider set of 720 

techniques. But also the molecular data confirm the variability of the species, resulting in 721 

different clades supported by high bootstrap values.  722 

As already discussed in our previous study (Weis & Melzer, 2012a), with focus on Achelia 723 

assimilis, the distribution area of P. yepayekae corresponds well to the area covered by 724 

glaciers during the last ice age. However, the Pallenopsis habitat extends to much deeper 725 

waters (down to 3,500m) than for Achelia (about 900m) (Child, 1994). Therefore, the present-726 

day distribution was either achieved by recolonization from deeper waters or by leading-edge 727 

recolonization from more northern, ice-free habitats. The diversity of different haplotypes 728 

does not imply that there was a strong bottleneck, however, further specimens are needed to 729 

verify this assumption. The extremely high genetic distances between the Falkland 730 

“patagonica” clade and the Chilean “yepayekae” Clade indicates that these do not resemble 731 

populations geographically isolated. Over a long geographic gradient, genetic distances within 732 

P. yepayekae were low. Therefore, an allopatric speciation, possibly influenced by the 733 

massive glaciations, may be a likely explanation for the speciation.  734 

The morphological and molecular results strongly support the hypothesis that the specimens 735 

from the Chilean clade represent a species new to science, described here as Pallenopsis 736 

yepayekae spec. nov. The decision to errect P. yepayekae as a new species is also supported 737 

by the number of eleven individuals, which do not differ strongly both, genetically and 738 

morphologically. It is known from previous works (for example (Hebert et al., 2004)) that in 739 

less extensively studied invertebrate taxa (such as pycnogonids) hidden biological diversity, 740 

in the form of cryptic or overlooked species, is often the rule rather than the exception. How 741 

many further species may be hidden behind the Pallenopsis complex remains beyond the 742 

scope of this paper. This will be an interesting question for further analyses with hopefully 743 

more available specimens from the Southern Ocean.  744 

 745 
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Figure 1. Map of sampling sites of Chilean, Antarctic and Subantarctic Pallenopsis 922 

specimens deposited at the Bavarian State Collection of Zoology. Sequences of 923 

specimens from the Ross Sea were downloaded from GenBank. 924 

 925 

Figure 2. Bayesian phylogenetic tree of COI sequences of 28 P. patagonica (Falkland 926 

clade and others), 11 P. yepayekae sp. nov. (Chile clade), one P. macneilli, one P. 927 

buphtalmus, one P. latefrontalis and five P. pilosa, which serve as the outgroup. Posterior 928 

probabilities of the Bayesian inference and bootstrap values (>75%) of NJ, MP and ML 929 

analyses are displayed above or below branches; different branch lengths indicate 930 
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substitutions per site. Different haplotypes of the studied specimens are defined as HT1-931 

HT29. 932 

 933 

Figure 3. NeighborNet of all individual COI sequences, using Splitstree and K2P-934 

correction method. 935 

 936 

Figure 4. Automatic Barcode Gap Discovery (ABGD) analysis for 42 Pallenopsis 937 

specimens (P. pilosa excluded) used in the present study. 938 

 939 

Figure 5. Automatic Barcode Gap Discovery (ABGD) analysis for 27 Pallenopsis 940 

specimens: 16 specimens from the Falkland clade vs. 11 specimens from the Chilean 941 

clade. 942 

 943 

Figure 6. Pairwise genetic distances (K2P) for COI sequences of Pallenopsis specimens 944 

(P. pilosa excluded) used in the present study. 945 

 946 

Figure 7. Lineage-through-time plot of the number of lineages (N) in the linearized 947 

Bayesian haplotype tree (32 unique COI-barcode sequences). Vertical line represents the 948 

single threshold identified by the GMYC model between Yule speciation and coalescence 949 

within populations. The number of GMYC species identified was 15. 950 

 951 

Figure 8. Light microscopy of Pallenopsis patagonica s. str. (Falkland clade). A Dorsal 952 

view; scale = 4 mm. B Ventral view of proboscis; scale = 2 mm. C Dorsal view of abdomen; 953 

scale = 500 µm. D Right oviger (female); scale = 500 µm. E Detail view of second and third 954 

coxa of left fourth walking leg; scale = 1 mm. F Tarsus and propodus with claw and auxiliary 955 

claws of right third walking leg; scale = 500 µm. 956 

A: PpaE007; B: PpaE010; C: ZSMA20111357; D-E: ZSMA20111350; F: ZSMA20111348. 957 

ac - auxiliary claws; cf - chelifore; cl - claw; cx - coxa; eg - eggs; fm - femur; os - oviger 958 

segment; ov - oviger; pp - propodus; pr - proboscis; tb - tibia.  959 

 960 

Figure 9. Light microscopy of Pallenopsis yepayekae spec. nov. (Chile clade). A Dorsal 961 

view; scale = 2 mm. B Lateral view of trunk; scale = 1 mm. C Ventral view of proboscis; 962 

scale = 500 µm. D Detail view of abdomen, note two prominent spines (arrows); scale = 250 963 
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µm. E Detail view of second and third coxae of right walking legs, note several short and 964 

prominent hairs (arrows); scale = 500 µm. F Left oviger (female); scale = 250 µm. 965 

A: ZSMA20111009; B: ZSMA20111006; C: ZSMA20111000; D: ZSMA20111004; E: 966 

ZSMA20111002; F: ZSMA20111016. 967 

ab - abdomen; cf - chelifore; cx - coxa; os - oviger segment; ov - oviger; pr - proboscis; tr - 968 

trunk; wl - walking leg. 969 

 970 

Figure 10. SEM of Pallenopsis patagonica (A, C, E) and Pallenopsis yepayekae spec. nov. 971 

(B, D, F). A. Detail view of cement gland tube of left first walking leg; scale = 200 µm. B 972 

Detail view of cement gland tube of left second walking leg; scale = 100 µm. C Right oviger 973 

(female); scale = 1 mm. D Right oviger (female); scale = 200 µm; insert: Detail view of distal 974 

oviger segments (female); scale = 100 µm. E Detail view of hairs on third coxa of left fourth 975 

walking leg; scale = 100 µm. F Detail view of hairs on second coxa of left second walking 976 

leg; scale = 20 µm. 977 

A: ZSMA20111360; B, F: ZSMA20111006; C: ZSMA20111349; D: ZSMA20111009, insert: 978 

ZSMA20111024; E: ZSMA20111359. 979 

 980 

Figure 11. Drawings of Pallenopsis yepayekae spec. nov. A Dorsal view. B Lateral view of 981 

female and detailed view of abdomen. C Walking leg, with enlargement of setae of coxae two 982 

and three. D Propodus with claw and auxiliary claws. E Female oviger. F Male oviger. 983 

 984 

Table 1. Summary of collection data and registration of specimens used in this study. 985 

 986 

Supporting information 987 

 988 

Table S1 Uncorrected pairwise distances between the different specimens/clades. Chile 989 

clade = ZSMA20111000, ZSMA20111002-006, ZSMA20111009, ZSMA20111012, 990 

ZSMA20111016, ZSMA20111024 and ZSMA20111339. Falkland clade = PpaE004-008, 991 

PpaE010, ZSMA20111348-51, ZSMA20111354-55, ZSMA20111357, ZSMA20111359-61. 992 

(XLS) 993 

 994 

Table S2 Morphological characteristics of specimens that were available for 995 

morphological studies. 996 
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A: 0 = oval, 1 = slightly swollen at middle, 2 = swollen at middle; B: 0 = ≤ 7,5 mm, 1 = ≥ 8,5 997 

mm; C: 0 = erected, 1 = horizontal; D: 0 = glabrous, 1 = two rows of lateral spines, two 998 

outermost spines not conspicuously larger, 2 = two outermost spines very prominent (about 999 

three times larger); E: 0 = ≤ 1/3 main claw lengths, 1 = 1/3-1/2 main claw lengths; F: 0 = 1000 

rounded, 1 = slightly pointed, 2 = pointed; G: 0 = almost glabrous, 1 = few hairs, 2 = many 1001 

prominent hairs; H: 0 = swollen, 1 = not swollen/straight; I: 0 = 10 oviger segments, 1 = < 10 1002 

oviger segments; J: 0 = hardly/not visible, 1 = ≤ 2 times its diameter, 2 = > 2 times its 1003 

diameter; K: 0 = separated by less their diameter, 1 = separated ≥ their diameter. Chile clade 1004 

= ZSMA20111000, ZSMA20111002-006, ZSMA20111009, ZSMA20111012, 1005 

ZSMA20111016, ZSMA20111024 and ZSMA20111339. Falkland clade = PpaE004-008, 1006 

PpaE010, ZSMA20111348-51, ZSMA20111354-55, ZSMA20111357, ZSMA20111359-61. 1007 

(XLS) 1008 

1009 



 104

Figure 1. Map of sampling sites of Chilean, Antarctic and Subantarctic Pallenopsis 1010 

specimens deposited at the Bavarian State Collection of Zoology. Sequences of 1011 

specimens from the Ross Sea were downloaded from GenBank. 1012 

 1013 

 1014 
1015 
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Figure 2. Bayesian phylogenetic tree of COI sequences of 28 P. patagonica (Falkland 1016 

clade and others), 11 P. yepayekae sp. nov. (Chile clade), one P. macneilli, one P. 1017 

buphtalmus, one P. latefrontalis and five P. pilosa, which serve as the outgroup. Posterior 1018 

probabilities of the Bayesian inference and bootstrap values (>75%) of NJ, MP and ML 1019 

analyses are displayed above or below branches; different branch lengths indicate 1020 

substitutions per site. Different haplotypes of the studied specimens are defined as HT1-1021 

HT29. 1022 

 1023 

 1024 

 1025 
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Figure 3. NeighborNet of all individual COI sequences, using Splitstree and K2P-1026 

correction method. 1027 

 1028 

 1029 
1030 
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Figure 4. Automatic Barcode Gap Discovery (ABGD) analysis for 42 Pallenopsis 1031 

specimens (P. pilosa excluded) used in the present study. 1032 

 1033 

 1034 
1035 
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Figure 5. Automatic Barcode Gap Discovery (ABGD) analysis for 27 Pallenopsis 1036 

specimens: 16 specimens from the Falkland clade vs. 11 specimens from the Chilean 1037 

clade. 1038 

 1039 

 1040 
1041 



 109

Figure 6. Pairwise genetic distances (K2P) for COI sequences of Pallenopsis specimens 1042 

(P. pilosa excluded) used in the present study. 1043 

 1044 
1045 
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Figure 7. Lineage-through-time plot of the number of lineages (N) in the linearized 1046 

Bayesian haplotype tree (32 unique COI-barcode sequences). Vertical line represents the 1047 

single threshold identified by the GMYC model between Yule speciation and coalescence 1048 

within populations. The number of GMYC species identified was 15. 1049 

 1050 
1051 
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Figure 8. Light microscopy of Pallenopsis patagonica s. str. (Falkland clade). A Dorsal 1052 

view; scale = 4 mm. B Ventral view of proboscis; scale = 2 mm. C Dorsal view of abdomen; 1053 

scale = 500 µm. D Right oviger (female); scale = 500 µm. E Detail view of second and third 1054 

coxa of left fourth walking leg; scale = 1 mm. F Tarsus and propodus with claw and auxiliary 1055 

claws of right third walking leg; scale = 500 µm. 1056 

A: PpaE007; B: PpaE010; C: ZSMA20111357; D-E: ZSMA20111350; F: ZSMA20111348. 1057 

ac - auxiliary claws; cf - chelifore; cl - claw; cx - coxa; eg - eggs; fm - femur; os - oviger 1058 

segment; ov - oviger; pp - propodus; pr - proboscis; tb - tibia.  1059 

  1060 

 1061 

 1062 
1063 
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Figure 9. Light microscopy of Pallenopsis yepayekae spec. nov. (Chile clade). A Dorsal 1064 

view; scale = 2 mm. B Lateral view of trunk; scale = 1 mm. C Ventral view of proboscis; 1065 

scale = 500 µm. D Detail view of abdomen, note two prominent spines (arrows); scale = 250 1066 

µm. E Detail view of second and third coxae of right walking legs, note several short and 1067 

prominent hairs (arrows); scale = 500 µm. F Left oviger (female); scale = 250 µm. 1068 

A: ZSMA20111009; B: ZSMA20111006; C: ZSMA20111000; D: ZSMA20111004; E: 1069 

ZSMA20111002; F: ZSMA20111016. 1070 

ab - abdomen; cf - chelifore; cx - coxa; os - oviger segment; ov - oviger; pr - proboscis; tr - 1071 

trunk; wl - walking leg. 1072 

 1073 

 1074 

 1075 
1076 
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Figure 10. SEM of Pallenopsis patagonica (A, C, E) and Pallenopsis yepayekae spec. nov. 1077 

(B, D, F). A. Detail view of cement gland tube of left first walking leg; scale = 200 µm. B 1078 

Detail view of cement gland tube of left second walking leg; scale = 100 µm. C Right oviger 1079 

(female); scale = 1 mm. D Right oviger (female); scale = 200 µm; insert: Detail view of distal 1080 

oviger segments (female); scale = 100 µm. E Detail view of hairs on third coxa of left fourth 1081 

walking leg; scale = 100 µm. F Detail view of hairs on second coxa of left second walking 1082 

leg; scale = 20 µm. 1083 

A: ZSMA20111360; B, F: ZSMA20111006; C: ZSMA20111349; D: ZSMA20111009, insert: 1084 

ZSMA20111024; E: ZSMA20111359. 1085 

 1086 

 1087 

 1088 
1089 
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Figure 11. Drawings of Pallenopsis yepayekae spec. nov. A Dorsal view. B Lateral view of 1090 

female and detailed view of abdomen. C Walking leg, with enlargement of setae of coxae two 1091 

and three. D Propodus with claw and auxiliary claws. E Female oviger. F Male oviger. 1092 

 1093 

 1094 

 1095 
1096 
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Table 1. Summary of collection data and registration of specimens used in this study. 1097 

 1098 
Voucher ID Haplotype Species Country/Region

ZSMA20111000 HT 7 Pallenopsis yepayekae n. sp. Chile; Region de Magallanes y de la Antarctica Chilena

ZSMA20111002 HT 6 Pallenopsis yepayekae n. sp. Chile; Region de Magallanes y de la Antarctica Chilena

ZSMA20111003 HT 3 Pallenopsis yepayekae n. sp. Chile; Region de los Lagos

ZSMA20111004 HT 1 Pallenopsis yepayekae n. sp. Chile; Region de los Lagos

ZSMA20111005 HT 4 Pallenopsis yepayekae n. sp. Chile; Region de Magallanes y de la Antarctica Chilena

ZSMA20111006 HT 1 Pallenopsis yepayekae n. sp. Chile; Region de los Lagos

ZSMA20111008 HT 28 Pallenopsis patagonica Chile; Region de Magallanes y de la Antarctica Chilena

ZSMA20111009 HT 2 Pallenopsis yepayekae n. sp. Chile; Region de los Lagos

ZSMA20111012 HT 8 Pallenopsis yepayekae n. sp. Chile; Region de los Lagos

ZSMA20111016 HT 9 Pallenopsis yepayekae n. sp. Chile; Region de Magallanes y de la Antarctica Chilena

ZSMA20111017 HT 11 Pallenopsis patagonica Chile; Region de Magallanes y de la Antarctica Chilena

ZSMA20111024 HT 10 Pallenopsis yepayekae n. sp. Chile; Region de Magallanes y de la Antarctica Chilena

ZSMA20111072 HT 29 Pallenopsis patagonica Chile; Region de Valparaiso

ZSMA20111339 HT 5 Pallenopsis yepayekae n. sp. Chile; Anihue Raul Marin Balmaceda

ZSMA20111340 HT 12 Pallenopsis patagonica Chile; Region de Magallanes y de la Antarctica Chilena

ZSMA20111348 HT 14 Pallenopsis patagonica Falkland Islands

ZSMA20111349 HT 13 Pallenopsis patagonica Falkland Islands

ZSMA20111350 HT 15 Pallenopsis patagonica Falkland Islands

ZSMA20111351 HT 20 Pallenopsis patagonica Falkland Islands

ZSMA20111352 HT 27 Pallenopsis patagonica Falkland Islands

ZSMA20111354 HT 17 Pallenopsis patagonica Falkland Islands

ZSMA20111355 HT 18 Pallenopsis patagonica Falkland Islands

ZSMA20111357 HT 16 Pallenopsis patagonica Falkland Islands

ZSMA20111359 HT 18 Pallenopsis patagonica Falkland Islands

ZSMA20111360 HT 15 Pallenopsis patagonica Falkland Islands

ZSMA20111361 HT 19 Pallenopsis patagonica Falkland Islands

PpaE_004 HT 18 Pallenopsis patagonica Falkland Islands

PpaE_005 HT 15 Pallenopsis patagonica Falkland Islands

PpaE_006 HT 17 Pallenopsis patagonica Falkland Islands

PpaE_007 HT 15 Pallenopsis patagonica Falkland Islands

PpaE_008 HT 15 Pallenopsis patagonica Falkland Islands

PpaE_010 HT 15 Pallenopsis patagonica Falkland Islands

PpaE_001 HT 24 Pallenopsis patagonica Subantarctic; West of South Georgia; Shag Rocks

PpaE_002 HT 25 Pallenopsis patagonica Subantarctic; South Georgia

PpaE_003 HT 26 Pallenopsis patagonica Subantarctic; Burdwood Bank

PpaA_001 HT 23 Pallenopsis patagonica Antarctic; Eastern Weddell Sea

NIWA46256 HT 21 Pallenopsis patagonica Antarctic; Ross Sea

NIWA46257 HT 21 Pallenopsis patagonica Antarctic; Ross Sea

NIWA46258 HT 22 Pallenopsis patagonica Antarctic; Ross Sea

HM426218 Pallenopsis latefrontalis Antarctic; Eastern Weddell Sea

HM426171 Pallenopsis buphtalmus Antarctic; Eastern Weddell Sea

DQ390086 Pallenopsis macneilli Australia; Rocky Point, Torquay

PxxE001 Pallenopsis pilosa Subantarctic; Bouvet Islands

PxxE002 Pallenopsis pilosa Subantarctic; Bouvet Islands

CEA047 Pallenopsis pilosa Antarctica

CEA112 Pallenopsis pilosa Antarctica

CEA082 Pallenopsis pilosa Antarctica  1099 
1100 
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Latitude Longitude Depth BOLD ID/GenBank ID

48°44'11.4''S 75°24'53.1''W 15m CFAP013-11

50°50'07.1''S 74°08'20.9''W 25m CFAP017-11

43°25'03.0''S 74°04'51.2''W 25m CFAP006-11

43°24'34.5''S 74°05'00.7''W 9m CFAP005-11

48°44'11.4''S 75°24'53.1''W 23m CFAP014-11

43°25'03.0''S 74°04'51.2''W 20m CFAP007-11

50°24'52''S 74°33'33''W 15-25m CFAP026-11

43°23'33.4''S 74°07'56.5''W 26m CFAP004-11

43°46'28.5''S 073°02'63.2''W 22m CFAP008-11

48°36'28.7"S 74°53'55.7"W 32m CFAP012-11

48°36'28.7"S 74°53'55.7"W 32m CFAP025-11

49°34'38.7"S 74°26'49.3"W 28m CFAP016-11

33°23'55''S 71°52'78.2''W 339m CFAP023-11

43°46'31.35"S 73°01'44.14"W 19m CFAP019-11

55°00'00.6''S 68°18'88.1''W 24m CFAP018-11

50°26'4.00"S 62°46'5.00"W 146-148m CFAP027-11

51°16'8.00"S 62°57'8.00"W 171-174m CFAP034-11

51°16'8.00"S 62°57'8.00"W 171-174m CFAP035-11

51°16'8.00"S 62°57'8.00"W 171-174m CFAP036-11

51°16'8.00"S 62°57'8.00"W 171-174m CFAP037-11

51°05'8.00"S 61°44'0.00" W 174-176m CFAP028-11

51°05'8.00"S 61°44'0.00"W 174-176m CFAP029-11

51°05'8.00"S 61°44'0.00"W 174-176m CFAP030-11

51°05'8.00"S 61°44'0.00"W 174-176m CFAP031-11

51°05'8.00"S 61°44'0.00"W 174-176m CFAP032-11

51°05'8.00"S 61°44'0.00"W 174-176m CFAP033-11

52°57'42''S 60°08'36''W 378m KC794961

52°57'42''S 60°08'36''W 378m KC794962

52°57'42''S 60°08'36''W 378m KC794963

52°57'42''S 60°08'36''W 378m KC794964

52°57'42''S 60°08'36''W 378m KC794965

52°57'42''S 60°08'36''W 378m KC794966

53°46'12''S 41°26'6''W 193m KC794959

54°00'59''S 37°26'14''W 78m KC794960

54°33'00''S 58°49'20''W 158m KC794969

71°08'09''S 11°31'37''W 123m KC794958

71°15'45''S 170°38'08''W 466m FJ969367

72°00'81''S 170°46'47''W 235.5m FJ969368

71°37'24''S 170°51'99''W 204.5m FJ969369

71° 5' 31.23"S 11° 30' 28.8"W 302m HM426218

71° 19' 1.2"S 13° 56' 31.2"W 848m HM426171

38°20'38.07''S 144°19'12.77''E 0.5m DQ390086

54°21'00''S 3°11'36''E 465m KC794967

54°21'30''S 3°26'6''E 200m KC794968

66° 23' S 140° 25' 43.87"E 743m AAC7281

65° 52' 11.81"S 143° 0' 5.57"E 428m AAC7183

65° 51' 9.32"S 144° 2' 23.15"E 1104m AAC7182  1101 
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7. General Discussion and Results 

 

The present thesis provides a detailed overview including plenty of explicit light- and 

scanning electron microscope pictures of Antarctic and Subantarctic pycnogonids. Beside a 

comprehensive discussion concerning their species’ diagnostic features compared to previous 

literature, this work supplies beyond that an updated version of their geographic distributions. 

Both the Antarctic and the Subantarctic pycnogonid material are housed at the Bavarian State 

Collection of Zoology in Munich. This material also includes specimens from the Chilean 

coast and fjords that have been mainly collected during the “Huinay fjordos” expeditions 

between 2005 and 2011. Altogether 40 species from 9 of the 11 pycnogonid families are 

represented, namely: 

 

Order Pantopoda Gerstäcker, 1863 

Suborder Eupantopodida Fry, 1978 

Superfamily Ascorhynchoidea Pocock, 1904 

Family Ammotheidae Dohrn, 1881 

Achelia assimilis (Haswell, 1884) 

Achelia communis (Bouvier, 1906) 

Achelia spicata (Hodgson, 1915) 

Ammothea longispina Gordon, 1932 

Ammothea magniceps Thompson, 1884 

Ammothea spinosa (Hodgson, 1907) 

Cilunculus cactoides Fry & Hedgpeth, 1969 

Tanystylum cavidorsum Stock, 1957 

Tanystylum neorhetum Marcus, 1940 

Superfamily Colossendoidea Hoek, 1881 

Family Colossendeidae Hoek, 1881 

Colossendeis australis Hodgson, 1907 

Colossendeis longirostris Gordon, 1938 

Colossendeis macerrima Wilson, 1881 

Colossendeis megalonyx Hoek, 1881 

Colossendeis scoresbii Gordon, 1932 

Colossendeis tortipalpis Gordon, 1932 

Superfamily Nymphonoidea Pocock, 1904 
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Family Callipallenidae Hilton, 1942 

Anoropallene palpida (Hilton, 1939) 

Austropallene cornigera Möbius, 1902 

Austropallene gracilipes Gordon, 1944 

Callipallene margarita (Gordon, 1932) 

Family Nymphonidae Wilson, 1878 

 Nymphon australe Hodgson, 1902 

 Nymphon biarticulatum (Hodgson, 1907) 

 Nymphon charcoti Bouvier, 1911 

 Nymphon compactum Hoek, 1881 

 Nymphon eltaninae Child, 1995 

 Nymphon longicollum Hoek, 1881 

 Nymphon longicoxa Hoek, 1881 

 Nymphon mendosum Hodgson, 1907 

 Nymphon proceroides Bouvier, 1913 

 Nymphon proximum Calman, 1915 

 Nymphon villosum Hodgson, 1907 

 Pentanymphon antarcticum Hodgson, 1904 

Family Pallenopsidae Fry, 1978 

Bathypallenopsis macronyx (Bouvier, 1911) 

Pallenopsis hodgsoni Gordon, 1938 

Pallenopsis notiosa Child, 1992 

Pallenopsis patagonica (Hoek, 1881) 

Pallenopsis yepayekae Weis nov. spec., in Weis et al. accepted 

Superfamily Phoxichilidoidea Sars 1891 

Family Phoxichilidiidae Sars, 1891 

Anoplodactylus californicus Hall, 1912 

Superfamily Pycnogonoidea Pocock, 1904 

Family Pycnogonidae Wilson, 1878 

 Pycnogonum gaini Bouvier, 1910 

Superfamily Rhynchothoracoidea Fry, 1978 

Family Rhynchothoracidae Thompson, 1909 

 Rhynchothorax australis Hodgson, 1907 

Suborder Stiripasterida Fry, 1978 
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Family Austrodecidae Stock, 1954 

 Austrodecus glaciale Hodgson, 1907 

 

7.1. Morphological analyses and biogeographic remarks 

 

7.1.1. Antarctic pycnogonid fauna 

 

Concerning the species richness pycnogonids display an important component of the 

Antarctic and Subantarctic benthos (Chimenz Gusso & Gravina 2001). Up to now about 

40.000 specimens have been found in the Antarctic and surrounding area (Munilla & Soler-

Membrives 2008), an area which has previously been described as a centre of pycnogonid 

geographic dispersal and evolutionary radiation (Hedgpeth 1947, Fry & Hedgpeth 1969, 

Munilla & Soler-Membrives 2008, Griffiths et al. 2011). From the so far 264 recorded 

pycnogonid species recorded from Antarctic waters (representing 19.6% of the 1344 species 

described worldwide!) 108 are endemic (Munilla & Soler-Membrives 2008). According to the 

latter authors the main austral genera are Nymphon Fabricius, 1794 with 67 species of about 

270 worldwide (Bamber & El Nagar 2013) (with Nymphon australe being the most frequently 

recorded species) and Colossendeis Jarzinsky, 1870 with 36 species of about 70 worldwide 

(Bamber & El Nagar 2013). This is in well accordance with the Antarctic collection 

(comprising 119 specimens) of the present study where Nymphon australe and Colossendeis 

megalonyx were the most abundant species (16 and 17 specimens respective). Furthermore 

this study presents to our knowledge the first record of Ammothea magniceps, Cilunculus 

cactoides, N. compactum, N. eltaninae, N. longicoxa and N. proceroides from the Weddell 

Sea. Beyond that Ammothea magniceps is recorded for the first time from the Antarctic and in 

depths between 300-333 m, much deeper than previously mentioned (see Müller 1993: 0.5-24 

m). Also the depth ranges for some further species could be expanded like for example C. 

longirostris showing with 3800 m its deepest location ever measured. Although the major 

morphological characteristics correspond well with the respective descriptions published 

earlier, I could discover some minor discrepancies which could impede correct species 

determination. To avoid problems in future species determinations, I added “remark-sections” 

beneath each species description followed with high resolution pictures of the species’ 

diagnostic features (see Paper I). 

An example for these new findings is the most frequently found species N. australe showing 

distinct segment borders between segments 3-4 in all examined individuals. This is 
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contradictory to Child’s key (1995) where the trunk segments 3-4 are described as fused. 

Furthermore for the species N. charcoti I could illustrate detailed SEM pictures of several 

spines on the lateral processes that have not been described in the literature so far. Beyond 

that for the genus Austropallene it was possible to take SEM pictures of the tuft of hairs 

surrounding the mouth which has previously been mentioned in the literature as a 

“Borstenkranz” (Helfer & Schlottke 1935). 

 

7.1.2. Subantarctic and Chilean pycnogonid fauna 

 

As already mentioned above many pycnogonid studies focus on the Antarctic area. Aim of 

my theses is to extend the spectrum to hitherto relatively unexplored Subantarctic regions. 

The 90.000 km long Southern Chilean coastline with its impressive fjord regions represents 

an interesting study area. However even in that, to some extent very isolated area 

pycnogonids have already been studied decades of years ago by Hoek (1881), Loman (1923a, 

b) and Hedgpeth (1961). Pycnogonid material was collected on the one hand during the H. M. 

S. Challenger Expedition (1872-1876), the Antarctic Swedish Expedition (1901-1903) and on 

the Lund University Chile Expedition which dates back to the 1950s. Now about 50 years 

later we resume the work adding plenty of new Chilean pycnogonid material and are able to 

study them with more modern techniques like SEM or molecular approaches (DNA 

barcoding). 

A species list of pycnogonids that have been found in the southeast Pacific Ocean was 

published by Sielfeld (2003) including Chilean Patagonia and subtropical habitats. From these 

about 40 pycnogonid species many are inhabitants of deep waters (Melzer 2009). In contrast 

the pycnogonid material in the present study was mostly collected by SCUBA diving from 

shallower depths. Nine of the altogether 12 collected Subantarctic/Chilean species are already 

mentioned in Sielfeld (2003) (exceptions are Colossendeis macerrima, C. megalonyx and 

Anoropallene palpida). Although C. megalonyx was already described from the South 

American shelf by Hoek (1881), two of our specimens were found in a more northern part of 

Chile near Concepcion (36°S). Since this species is predominantly found in more southern 

region, especially the Antarctica (see Munilla & Soler-Membrives 2008) this locality 

represents the northernmost collecting site for this species. A northward dispersal of 

Magellanic species could be explained by the Humboldt Current arising from the Antarctic 

and passing along the Chilean coast (see also Brattström & Johanssen 1983). 



 121 

On the other hand Anoropallene palpida has been collected about 2500 km more south (in 

Bahia de Coliumo) from its previous southernmost sample location South-East of Punta 

Lomas (Peru) (see Child 1992). Two further examples are Anoplodactylus californicus and 

Achelia assimilis which are both predominantly known from tropical and subtropical regions 

(Müller, 1993). The specimens collected from our own sampling trips are some of the 

southernmost found, with Anoplodactylus californicus from the Chilean fjord region at about 

42°S and Achelia assimilis from Tierra del Fuego at about 55°S. The latter one resembles with 

a total of 226 specimens beyond that also the most frequently recorded species in the present 

study. Our samples include both species of a probably northern origin that extend far to the 

south and species with a southern origin extending to the north, confirming again the Chilean 

fjord region as a particular interesting study area for pycnogonids. A detailed overview of the 

most prominent characteristics and different distribution patterns is illustrated in Paper II. 

 

7.2. DNA barcoding of Subantarctic/Chilean pycnogonida 

 

Detailed morphological studies of specimens form the basis for further deeper analytical 

analyses using molecular techniques. Methodological developments like DNA barcoding has 

been introduced by Hebert et al.  (2003) and may serve as “the core of a global 

bioidentification system for animals” and tie in where morphological analyses reach their 

limits. Especially where character combinations overlap or high variability within one species 

occurs another level of analyses is needed. Beyond that cryptic species can often be 

misidentified based on morphological traits alone (Baker & Gatesy 2002, Proudlove & Wood 

2003). Therefore a more modern approach called integrative taxonomy (Dayrat 2005, Padial 

et al. 2010, Schlick-Steiner et al. 2010) has reached public interest by combining 

morphological and molecular data to delineate and identify species. Like Grant and his 

colleagues (2011) stated: “Molecular taxonomy in combination with traditional taxonomic 

methods, is the way forward and offers the best chance of recording, and therefore protecting 

biodiversity.” 

The mitochondrial protein-coding gene COI from 76 Subantarctic/Chilean pycnogonids was 

analysed displaying 10 distinct, well-supported branches in the phylogenetic consensus tree, 

namely: Achelia assimilis, Ammothe spinosa, Tanystylum cavidorsum, T. neorhetum, 

Colossendeis macerrima, C. megalonyx, C. scoresbii, Callipallene margarita, Pallenopsis 

patagonica and Anoplodactylus californicus. The calculated trees received high bootstrap 

support and are in well accordance with the previous species determination based on 
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morphology, indicating that the COI barcoding method is a suitable tool for resolving 

relationships of pycnogonids at species level. Special focus however is directed on the most 

abundant species Achelia assimilis which is splitted up in four distinct lineages. 

 

7.2.1. Achelia assimilis 

 

As mentioned above Achelia assimilis belongs with a total of 226 specimens in our samples to 

one of the most abundant species in the Chilean fjord region. Interestingly the 16 barcoded 

specimens are divided into four subbranches corresponding to their different geographic 

distributions. Región de los Rios forms one branch with four specimens, Región de los Lagos 

one branch with eight specimens and three specimens from a more southern Chilean area 

(>50°S) cluster in a third branch (bootstrap values >93%). The single specimen of A. assimilis 

from Australia (DQ390087) contrasts to the three Chilean branches with a bootstrap value of 

>95%.  

Whereas the morphological differences lie well within the variation described in the literature 

for this cosmopolitan species (Stock 1954, Hedgpeth 1961, Fry & Hedgpeth 1969), molecular 

analyses could distinguish 11 different haplotypes. Furthermore A. assimilis shows a high 

mean intraspecific value of 6.81% sequence divergence. Intraspecific divergences greater than 

3% has been interpreted either to suspect the presence of cryptic species (Radulovici et al. 

2009) or a threshold for species delineation (Hebert et al. 2003a, b). However it is hard to 

decide whether there are cryptic species already existent or there is ongoing allopatric 

speciation. Concerning the geographically discrete distribution of the four subbranches, 

according to Mayr (1975) they would be referred rather to as subspecies than species. Hence 

in this case it would be adventurous to speak of different species. A more probable 

explanation of the four phylogeographic units of A. assimilis might be given by the last ice 

age. About 15 000 years ago the entire Chilean coastline (as far as 30°S) was covered by the 

Patagonian ice shield (Clapperton 1993). During glacial periods survival of benthic 

communities was possibly only in the deep sea or in shelters on the continental shelf (Thatje 

et al. 2005). Beyond that Thatje and his colleagues suggested that taxa with poor dispersal 

abilities might constitute cryptic species as a result of isolation in glacial shelters. Limited 

dispersal abilities are also given for pycnogonids concerning their holobenthic lifecycle and 

lack of a pelagic larval stage. Furthermore the Pacific Ocean along the Chilean coast is known 

for its steep slopes achieving depths of kilometres and its absence of stepping stones, which 

would be essential for survival. Since A. assimilis can be considered as an almost exclusive 
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shelf species mostly occurring at shallow depths above 300 m (Hedgpeth 1961, Müller, 1993, 

Arango 2003) a postglacial recolonization of the Chilean fjords from the deep sea is relatively 

unlikely. Recolonization of A. assimilis must have been occurred from glacial refugia in the 

North and/or South. The high intraspecific variation among A. assimilis and the patchy 

distribution of their branches could be products of alternating extinction and colonization 

events from surrounding regions during the ice age. Furthermore founder effects and/or 

genetic drift are a common phenomenon concerning small colonist populations and can 

increase divergence among species/specimens. 

 

7.2.2. Revision of the Pallenopsis patagonica complex 

 

Pallenopsis patagonica represents one of the most taxonomically problematic and variable 

pycnogonid species and is known from the Antarctic, Subantarctic and South America 

including also the Falkland Islands. To unscramble this species complex the COI fragment of 

39 P. patagonica specimens was sequenced, displaying two bigger clades which we named 

the “Falkland” and the “Chilean” clade. Supported also by thorough morphological analyses 

all 11 specimens from “Chilean” clade could be described as a species new to science: 

Pallenopsis yepayekae Weis nov. spec., in Weis et al. accepted, whereas the “Falkland” clade 

could be assigned to the “real” P. patagonica described by Hoek 1881. Beyond that one 

specimen of Hoek’s type material which he originally described as a juvenile could be 

assigned to P. yepayekae Weis nov. spec., in Weis et al. accepted as well. Furthermore this 

specimen represents rather an adult female than a juvenile since there are already eggs visible 

inside the femur. In addition one specimen originally determined by Hedgpeth as P. 

patagonica (SMNH-125527) and one only to genus level determined specimen of Loman 

(SMNH-125514) could both be assigned to P. yepayekae Weis nov. spec., in Weis et al. 

accepted as well. Molecular and morphological data confirm the need for a taxonomic 

revision of P. patagonica as it is done in the present study. Even decades later the high 

variability of the species complex P. patagonica is evident and underpinned by DNA 

barcoding. 

In contrast to Achelia assimilis the Pallenopsis habitat extends to much deeper waters (down 

to 3,500m). A recolonization of the Chilean fjords of P. yepayekae Weis nov. spec., in Weis 

et al. accepted after the last ice age from deeper waters cannot be excluded. Furthermore 

haplotypes of different P. patagonica sub-networks are present in the same location. This 

could suggest that P. patagonica was able to outlive glaciation by moving back to much 
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deeper refugia of/across the deep sea. This geographic overlap between the single clades 

could not be detected in the case of A. assimilis. A similar pattern as seen for P. patagonica 

has been observed at several locations around the Antarctica for the giant sea spider 

Colossendeis megalonyx (Krabbe et al. 2010). Perhaps pycnogonids that are able to live and 

survive also in greater depth are less susceptible to glaciation processes than smaller shallow 

depth species as A. assimilis. To our knowledge up to date no specimen of A. assimilis has 

been captured from the Antarctic area. 

To test the different hypotheses concerning the recolonization after glaciation more specimens 

and sequence data from different regions along the Chilean coastline are needed. In P. 

patagonica we could observe very high interspecific distances compared to other taxa (Hebert 

et al. 2004, Lefebure et al. 2006, Raupach et al. 2010). If this phenomenon may be a peculiar 

“pycnogonid” phenomenon lies beyond the scope of this Thesis.  

 

8. Conclusions and Outlook 

 

There is a strong need to study biodiversity, because especially marine biodiversity is 

changing rapidly. The vast changing biodiversity has many factors some of them caused by 

nature itself (glaciations, climate change, invasive alien species, etc.) others by humans like 

pollution, overfishing or building of various salmon farms (aquaculturing) in areas where 

biodiversity has not yet been explored. In many cases we are going to destroy or extinct 

species, before they even have the possibility to be discovered or further to get to know their 

functional role in the complex ecosystem. We do not know to what extent such changes in 

biodiversity might lead to environmental or economic problems. As Boero (2010) already 

stated, the study of biodiversity in all its facets is needed, from phenotypes to genotypes, 

ecological niches, life cycles, populations and communities. Some work has already 

successfully been done, like for example the ten-year international research programme of the 

major marine biodiversity initiative the Census of Marine Life (CoML), which was completed 

in 2010. More than 2.700 scientists assembled more than 30 million species-level records, 

including 1.200 newly discovered species and established a baseline of the diversity, 

distribution and abundance of life in the world’s oceans (see also www.coml.org). CoML 

estimates that there are 240.000 marine species known to science. In contrast recent estimates 

of the total number of living marine eukaryotic species range from 0.7 million (Appeltans et 

al. 2012) to 2.2 million (Mora et al. 2011). This indicates, that only a fraction of species is 

known, whereas the majority of marine eukaryotic species (at least 70%) are waiting to be 
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described. Moreover every second specimen collected from waters deeper than 3.000 m by 

the CoML belongs to a species new to science (Crist et al. 2009). The establishment of a 

better understanding/baseline knowledge of the marine living organisms and their role in 

ecosystem functioning provides the scientific basis for the protection and conservation of 

marine biodiversity. 

Therefore main focus should lie on studying hitherto relatively unexplored regions which is 

the case for the Chilean fjord area. The present thesis takes the first such step by analysing 

and describing invertebrates from isolated and partly difficult to access areas, which might be 

neglected otherwise. For successful protection of the ecosystem and natural habitats within 

the fjords more knowledge about the marine biodiversity is needed and lies in focus for future 

explorations. 

Pycnogonids with their remarkable holobenthic lifestyle offer an interesting and fascinating 

model group. In contrast to other invertebrates like for example decapod crustaceans, 

pycnogonids due to their low mobility in all stages of development are philopatric, i.e. 

constrained to a certain place (except for very rare drift events) and gene flow with 

individuals living in the neighbourhood is low. This fact constitutes an important precondition 

for speciation, already suggested by Thatje and his colleagues (2005). Accordingly COI-

sequences of pycnogonids show very high intraspecific distances compared to other taxa 

(Hebert et al. 2004; Lefebure et al. 2006; Raupach, et al. 2010). More specimens will be 

necessary to clarify if this could be a specific “pycnogonid” phenomenon that is not 

understood at the moment. 

Concerning the studied Achelia assimilis as well as the Pallenopsis complex cryptic species 

are no rarity in pycnogonids, making them to a suitable study taxon. Due to similar 

environmental conditions between the different fjords there might be no need for developing 

different morphological traits. Nonetheless there are enormous molecular differences resulting 

in several clades that could be explained by recolonization events from different glacial 

refugia. Small colonist populations could have been highly susceptible to founder effects 

which push further divergence. 

Up to now only a small percentage of the over 1300 known pycnogonid species are found and 

described for the Chilean area. More specimens are needed to get a better overview of the 

pycnogonid diversity in that region and to detect more species potentially new to science. Due 

to molecular methods it is possible to detect considerably more (cryptic) species than by 

morphological approaches alone. Pycnogonids are philopatric due to their holobenthic 

lifecycle and low mobility, thus high amounts of endemism appears possible. This can be seen 
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by Achelia assimilis, which shows large genetic differences corresponding well to the 

different geographic regions (Paper III). All this shows the importance to explore and/or 

protect such relatively unexplored areas like the Chilean fjords, because the damage of only a 

small area could mean the death for several (pycnogonid) species. Although pycnogonids 

represent an interesting and suitable study object there are even more taxa waiting to be 

explored. 
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