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Zusammenfassung 

 

Die als Zehnfußkrebse oder auch als Decapoda bezeichneten Arthropoden sind eine weltweit 

verbreitete, zum Teil hoch spezialisierte und vielseitig angepasste Gruppe, die in fast allen 

aquatischen Ökosystemen, aber auch in terrestrischen Habitaten zu finden ist. Die enorme 

Artenzahl von 17,635 rezent und fossil bekannten Arten (De Grave et al., 2009) sowie das 

hohe Alter der Gruppe an sich erschwert die systematische Eingliederung einzelner Arten. 

Fossile Funde von Dekapoden wurden bis ins Devon (vor 415 bis 359,2 Millionen Jahren) 

datiert (Schram et al., 1978). Damit haben die rezenten Vertreter viele Millionen Jahre 

Evolution durchlaufen und die Ergebnisse dieses langwierigen Prozesses schlagen sich in 

einer hohen morphologischen Vielfalt zwischen den Arten nieder. Um eine zuverlässige 

Phylogenie aufstellen und Arten eindeutig charakterisieren zu können sind neue Merkmale, 

Methoden und Ansätze erforderlich. Eine zuverlässige Bestimmung und Einordnung der 

verschiedenen Arten bildet die Basis für verschiedene Datenbanken und Projekte wie z.B. 

GenBank, Barcoding of Life (BOLD), German Barcode of Life (GBOL) oder Barcoding 

Fauna Bavarica und zeigt, welch hohen Stellenwert die Taxonomie besitzt. 

Ziel dieser kumulativen Dissertation ist es mit Einsatz von verschiedenen modernen 

morphologischen und molekularen Methoden wie der Rasterelektronenmikroskopie, der 

Fluoreszenzmikroskopie und der Analyse von mitochondrialen DNA-Sequenzen (Cytochrom-

c-Oxydase) neue Merkmalssätze zur besseren Charakterisierung der verschiedenen Arten und 

deren Artabgrenzungen zu erarbeiten. Aber auch klassische Methoden wie das Abwägen von 

morphologischen Merkmalen, kommen in einem integrativen Ansatz zur Artabgrenzung zur 

Anwendung. Die in den Arbeiten angewandte Rasterelektronenmikroskopie erlaubt eine 

weitaus höhere Vergrößerung als die klassische Lichtmikroskopie bei gleichzeitig höherer 

Auflösung und Schärfentiefe. Somit konnten auch kleinste eidonomische (Bestimmungs-) 

Merkmale wie das Dorsalorgan oder einzelne Setae-Typen bei Zoea-Larven detailliert 

beschrieben und als neue oder früher wenig beachtete morphologischen Merkmale zur 

systematischen Einordnung herangezogen werden (Publikationen I, II und III). Des Weiteren 

konnte mit Hilfe der Fluoreszenzmikroskopie anhand von DAPI-Färbungen gezeigt werden, 

dass die Anordnung der Zellkerne von Zoea-Larven aus den verschiedenen Unterordnungen 

Caridea, Anomura und Brachyura charakteristische Muster aufweist. Dieses Kriterium wird 

als möglicher Merkmalssatz in der Taxonomie diskutiert (Publikation VI). Ein weiteres Feld 
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der modernen Taxonomie wird durch Publikation V abgedeckt: molekulare Analysen auf der 

Basis des mitochondrialen proteincodierenden Genes COI (cytochrome oxidase subunit 1) 

bzw „barcoding“-Gens. Zum ersten Mal für die südchilenische Fjordregion wurde mit dem 

Ansatz der integrativen Taxonomie die dortige Dekapoda-Fauna erfasst und analysiert. Nahe 

verwandte Arten der Gattungen Eurypodius Guérin, 1825 und Acanthocyclus Lucas, in H. 

Milne Edwards & Lucas, 1844, die morphologisch schwer zu trennen sind, konnten neu 

charakterisiert werden. In der Arbeit wurden klassische, morphologische Merkmale mit 

molekularen, morphologieunabhängigen Merkmalen kombiniert. 

Durch eine vorherige Inventarisierung der südchilenischen Dekapodenfauna während 

zahlreicher Expeditionen in die Region konnte zudem die Basis für die taxonomische Arbeit 

(ca. 650 Samples sind in der Zoologischen Staatssammlung München hinterlegt) geschaffen 

werden. Eine ausführlichen Dokumentation mit verschiedenen bildgebenden Methoden wie 

der Verwendung von tiefenscharfen Aufnahmen und in situ Fotos der verschiedenen Arten 

dieser noch nahezu unerforschten Region bildet das Rückgrat der taxonomischen Arbeiten 

und ist als Kapitel in dem zweisprachigen (Spanisch und Englisch) Standardwerk für die 

Region publiziert (PublikationVI). 

 

 

Summary 

 

Decapod crustaceans are a highly diverse and well adapted group belonging to the phylum 

Arthropoda. Representatives can be found in most aquatic ecosystems and in terrestrial 

habitats. The huge number of species, about 17,635 recent and fossil species are known (De 

Grave et al., 2009), but also the old age of the group makes a systematic classification of 

single species difficult. Fossil decapods were dated back to the Devonian (about 415 Mya to 

359,2 Mya) (Schram et al., 1978). Because of the old age of the group there has been ample 

time for evolution. The results of this ongoing process are reflected in an enormous 

morphological variety among the species. For a coherent classification of this group and 

species determination it could be essential to establish new morphological features and 

combine new methods. Furthermore a proper identification and classification of species forms 

the basis of various databanks and projects e.g. GenBank, Barcoding of Life (BOLD), 

German Barcode of Life (GBOL) and the Barcoding Fauna Bavarica show the high 

significance of taxonomist’s work. 
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The aim of this dissertation is to find and establish new features for the classification of 

decapods by various modern morphological methods i.e. scanning electron microscopy 

(SEM), fluorescence microscopy and morphology independent features like the analyses of 

gene sequences (cytochrome oxidase subunit 1). But additionally, classical methods like the 

use of morphological features in a combined, integrative approach are used for species 

delineation. In different publications we used SEM techniques which allow us in comparison 

to light microscopy a closer examination of morphological features (article I, II and III). It 

was possible to describe the dorsal organ and the different types of setae of zoea larvae in 

detail and use these features for systematic classification. Furthermore we used fluorescence 

microscopy and DAPI staining to describe and characterize nucleus patterns in various 

representatives of Decapoda of the Infraorders Caridea, Anomura and Brachyura. Results of 

these examinations show that nucleus patterns are characteristic for each Infraorder. In Article 

VI this feature is discussed as possible taxonomic criterion. 

In recent times molecular taxonomy gains more and more in importance. Integrative 

taxonomy combines sequence analyses of the COI gene (cytochrome oxidase subunit 1) or 

“barcoding gene” with classic morphological features. It is used to characterize and analyze 

the decapod fauna of the southern Chilean fjord region (article V). Furthermore, on the basis 

of our data, it was possible to give exact species descriptions for closely related and not 

always clear to distinguish representatives of the genera Eurypodius Guérin, 1825 and 

Acanthocyclus Lucas, in H. Milne Edwards & Lucas, 1844. 

As a backbone for this study serve the results of an intensive inventory of the southern 

Chilean fiord region. During various expeditions in that region about 650 samples of 

decapods were collected and are now deposited for further investigations at the Bavarian State 

Collection of Zoology. Samples are documented in detail using different imaging methods i.e. 

in situ pictures and high resolution photos of the different species of this unique and 

unexplored region are published as a chapter in the bilingual (Spanish and English) standard 

work for the Chilean fjord region (article VI). 
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1. General Introduction 
 

1.1. Introduction to the order Decapoda 

The order Decapoda Latreille, 1803 (Greek δέκα, deca-, "ten", and πούς / ποδός, -pod, "foot") 

consists of about 233 families containing 2,725 genera and an estimated 17,635 species 

(including both extant and fossil species) (De Grave et al., 2009). It contains shrimps, lobsters 

and crabs and therefore the range of morphological diversity among the extant decapods is 

immense: it ranges among others from the shrimp-like representatives of the infraorder 

Caridea to the highly variable representatives in the infraorder Anomura and the “true crabs” 

placed in the infraorder Brachyura. The morphological diversity is displayed in figure 1. 

The wide variety of this group is not only shown in morphological aspects but also in the size 

of the animals. Commensal pea crabs (Pinnotheridae) such as the chilean crab Pinnixa 

bahamondei Garth, 1957, which inhabits tubes of the tube worm Chaetopterus sp. and with 

sizes of a few centimeters can be found in this group as also the giant Japanese spider crab 

Macrocheira kaempferi (Temminck, 1836) with legs spanning up to 3.7 meters (Bassler et al., 

1931). This highly diverse group managed to colonize a wide variety of habitats: 

representatives can be found in most aquatic environments both, in fresh and saltwater and on 

all kinds of substrates (Abele, 1974, De Grave et al., 2008). Some representatives like the 

impressive and largest land living arthropod of the world, the coconut crab Birgus latro 

(Linnaeus, 1767) managed to conquer terrestrial habitats (Drew et al., 2010). Only the pelagic 

larval stages of this anomuran crab still depend on the aquatic environment (Brown et al., 

1991). But in general the life history of Decapoda is complex and comprises different phases. 

For more information see chapter “Development”. 
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Figure 1: Different representatives illustrating the wide variety in the order Decapoda: A 

Harlequin shrimp (Hymenocera picta Dana, 1852), B Emperor shrimp (Periclimenes 

imperator Bruce, 1967) living commensally on the sea cucumber Bohadschia argus Jaeger, 

1833, C Painted rock lobster (Panulirus versicolor (Latreille, 1804)), D Hairy squat lobster 

(Lauriea siagiani Baba, 1994), E Porcelain anemone crab (Neopetrolisthes maculatus (H. 

Milne Edwards, 1837)) F Jaiba mora (Homalaspis plana (H. Milne Edwards, 1834)). All 

photos by the author.  

 

 

1.2. Morphology 

The decapod exoskeleton is differentiated in two main sections: (1) the cephalothorax 

consisting of the fused head (cephalon) and trunk or pereion, and (2) the pleon. Appendages 

of the cephalothorax are the 1st and 2nd antennae (antennule and antenna), all mouthparts 

(mandible, 1st and 2nd maxilla, 1st to 3rd maxilliped), and the thoracic appendages (5 pairs of 

peraeopods). In many decapods the first peraeopods have enlarged pincers (chelae) and are 

therefore called chelipeds (Brachyura). The cephalothorax is covered by a protective 

carapace, which is divided in the frontal, hepatic, gastric, cardiac, branchial and intestinal 

regions. Further appendages are found on the 7-segmented pleon. Each segment carries a pair 

of biramous pleopods. The first pair of pleopods can be modified in the male as gonopods (e.g 
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the petasma). The last pleopods together with the telson form the tail fan and are called 

uropods. For the morphological nomenclature of the appendages see figure 2. 

 

 
 
Figure 2: A, B Schematic drawings of a brachyuran crab in ventral and dorsal view, C, D 

caridean shrimp in lateral view and anomuran crab in dorsal view. from Meyer et al., (2009). 

 

 

1.3. Phylogeny 

The classification of Decapoda has a long history and has been revised several times in the 

last centuries: following the Challenger expedition, Bate (1888) erected the sub-order 

Macrura (Macrura refers to the long tail and well developed abdomen of most decapods) and 

three divisions within, the Trichobranchiata, the Dendrobranchiata and the Phyllobranchiata. 

Later, these divisions were no longer accepted and Borradaile (1907) divided the Decapoda 

into two sub-orders: the Natantia (“swimmers”) and the Reptantia (“crawlers”). The Natantia 

united all forms that swim in the water column i.e. penaeideans, carideans and stenopodids 

but showed up to be a non-monophyletic group. In recent times, the order Decapoda is 

divided into two monophyletic sub-orders: the ancestral group, Dendrobranchiata (prawns), 

and the Pleocyemata (shrimps, true crabs, lobsters etc.) after Burkenroad (1963). These two 
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suborders are distinguished by their gill structure, which is branched in Dendrobranchiata 

(dendro: tree; branchia: gill) and has a lamellary structure in Pleocyemata. All taxa of 

Pleocyemata share a number of synapomorphic features, the most important of which is that 

the fertilized eggs are incubated by the females and remain stuck to the pleopods until the 

zoea larvae are ready to hatch (see figure 3). This character gave the group its name. The 

Pleocyemata are subdivided into different infraorders: the Stenopodidea (Cleaner Shrimps), 

the Caridea (Shrimps, Coral Shrimps, Snapping Shrimps), the Astacidea (Freshwater 

Crayfish, True Lobsters, Reef Lobsters, Scampi), the Glypheidea, the Axiidea (Ghost 

Shrimps, Mud Shrimps, Sponge Shrimps), the Gebiidea, the Achelata (spiny lobsters, slipper 

lobsters), the Polychelida, the Anomura (Hermit Crabs, King Crabs, Squat Lobsters, Porcelain 

Crabs, Mole Crabs) and the Brachyura (True Crabs) (Martin & Davis, 2001). 

 

 
 
Figure 3: A Ovigerous female of the caridean shrimp Palaemon elegans Rathke, 1837 and B 

the brachyuran crab Pilumnus spinifer H. Milne Edwards, 1834. The fertilized eggs are stuck 

at the pleopods and incubated by the females till larvae hatch. Photos by A. Böttcher. 

 

 

1.4. Development 

The Pleocyemata undergo indirect development and have a pelago-benthic life cycle. This 

means that the larvae are planktontic and the adults live in the benthos (Anger, 2001). On the 

other hand, in the Dendrobranchiata all developmental stages live freely in the water column 

(i.e. they exhibit a holopelagic life cycle). In the Pleocyemata the fertilized eggs are carried on 

the female’s pleopods, while in the Dendrobranchiata the eggs are set free into the water 

column. In the Dendrobranchiata the immatures hatch as nauplius larva. After 6 molts and 

anamorphic growth (i.e. the development of new segments at the posterior part of the larva) 

the nauplius develops into the zoea larva (see figure 4). The larvae of the Pleocyemata do not 

hatch until the zoea stage is reached, since the development of the nauplius occurs inside the 
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egg. While the zoea larvae of the Dendrobranchiata develop into the adult, pelagically-living 

prawn through several molts, the zoea larvae of the Pleocyemata pass through several 

morphologically different zoea stages. After a series of molts they develop into the 1st benthic 

stage (i.e. the megalopa) and after another molt they develop into the adult-shaped 

pleocyemate decapod (Gurney, 1942, Anger, 2001). 

Both the indirect development and the ecological habitat separation of juvenile and adult 

forms (i.e. pelagic/benthic) allow Decapoda larvae to be distributed over vast distances by the 

ocean currents and to colonize new areas as adults. 

 

 
 
Figure 4: SEM-pictures of the first stage of zoea larva of A the caridean shrimp 

Gnathophyllum elegans and B the brachyuran crab Portunus acuminatus. Abbreviations: I-VI, 

abdominal segments; AB, abdomen; AN, antenna; AU, antennule; C, carapace; DO, dorsal 

organ; DS, dorsal spine; E, eye; LAB, labrum; LS, lateral spine; MXP 1-3, first to third 

maxillipeds; PER1&2, pereiopods 1&2; PT, pterygostomial spine; R, rostrum; T, telson. Scale 

bars: A, 200µm; insert 20µm; B, 100µm. (left picture from Meyer et al., (2013), right picture 

from Meyer et al., (2006)). 

 

 

1.5. Morphological approach 

The decapod´s exoskeleton with its external structure and organization offers a wealth of 

species specific features, which are traditionally used for species characterization. Therefore 

species descriptions of decapod crustaceans are mainly based on characteristic eidonomic 

features and species delimitation in this group is defined by comparative morphology. But 

especially the larval morphology of zoea larvae is very similar and thus new sets of data are 

helpful to distinguish larvae of different species from each other i.e. in plankton hauls. 

Classical works (Lebour, 1930, Aikawa, 1937, Gurney, 1938) have formed standards for 
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larvae descriptions and features have been established during recent decades and displayed as 

drawings as well as in textual presentations (Rice, 1980, Rice, 1981, Ingle, 1992). 

By using modern methods in this thesis it was possible to analyze the external morphology of 

larval stages in greater detail and create additional sets of data i.e. the morphology of the 

sensory dorsal organ or the classification of different seta types described through the 

application of SEM. These additional results complement and support the morphology-based 

descriptions and can be set in taxonomic context (article I, II, III). 

But also historic species descriptions of adult specimens can be sometimes confusing and not 

always clear in the characterization of features as displayed in article V within the 2 genera 

Acanthocyclus in H. Milne Edwards & Lucas, 1844 and Eurypodius Guérin, 1825. 

Furthermore the interpretation of morphological features can be subjective (Padial et al., 

2010). Consequently the described morphospecies (=species based only on morphological 

features after Cain (1954)) should be confirmed by other, non-morphological data i.e. DNA 

sequencing in an approach of integrative taxonomy (Dayrat, 2005). In article V we combine 

both methods in an integrative approach to determine constant morphological features for 

species description and determination, and use DNA barcodes to check species delimitations. 

 

 

1.6. Molecular analyses and integrative taxonomy 

Molecular approaches are conquering the field of taxonomists work on a grand scale. Hebert 

et al. (2003) introduced the DNA barcode, an approximately 650-bp long segment of the 

mitochondrial cytochrome oxidase I gene, as a reliable tool for species identification. The 

morphology independent method is meanwhile established for various taxa, including 

common marine invertebrate groups like pycnogonids  (Nielsen et al., 2009, Arabi et al., 

2010, Krabbe et al., 2010, Masta et al., 2010, Dietz et al., 2011, Weis & Melzer, 2012), 

molluscs (Wilson et al., 2009, Joerger et al., 2010), echinoderms (Heimeier et al., 2010, 

Vardaro, 2010, Bribiesca-Contreras et al., 2013) and crustaceans (Lefebure et al., 2006, Costa 

et al., 2007, Pérez-Barros et al., 2008, Miguel Pardo et al., 2009). 

This “tool” offers taxonomists new possibilities: cryptic species complexes that seem to be 

very common in the marine environments (Knowlton, 1986, Knowlton, 1993) and are hard to 

resolve on the basis of morphological data solely can be identified and documented by 

molecular analyses. It can also be applied where no morphological information is available 

for example degraded specimens or fragments of organism or even pieces of tissues so that 

the diagnostic characters are lost (Schander & Willassen, 2005). In the field of carcinology 
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this technique furthermore is useful to identify pelagic larvae of decapod crustaceans (Miguel 

Pardo et al., 2009, Tang et al., 2010) as many of these are yet not described in literature and 

morphological data thus are not available. 

Barcoding was used in addition to traditional morphological methods for the investigation in 

the southern Chilean inventory of decapod crustaceans. In a case study, the approach of 

integrative taxonomy was useful to distinguish the single species of the genera Acanthocyclus 

(A. gayi Lucas, in H. Milne Edwards & Lucas, 1844, A. hassleri Rathbun, 1898, A. albatrossis 

Rathbun, 1898) and Eurypodius (E.longirostris Miers, 1886, E. latreillii Guérin, 1825) from 

each other and identify constant morphological species description characters. 

But for the efficient use of the COI-data a worldwide species inventory, proper identification 

by taxonomists and barcoding of specimens are the backbone. Datasets of the yet barcoded 

species as reference data are published in various databases like BOLD 

(www.boldsystems.org) or GenBank (www.ncbi.nlm.nih.gov/genbank/). 

With the inventory of decapod crustaceans of the southern Chilean fjord region and their 

proper identification based on morphological features (article VI) and the further barcoding of 

these species in cooperation with BOLD (article V) we made this data available for 

taxonomists worldwide. 

 

 

2. Sampling and sourcing of specimens 

 

2.1. Methods 

Because of the worldwide distribution of decapods it was possible to include different 

geographic regions for this study and use given infrastructures for sampling i.e. biological 

stations and excursions. Sampling methods remained the same on all field trips and various 

techniques were used for collecting specimens including hand sampling while snorkeling or 

Scuba diving and trap or dredge collection. All specimens presented in the different 

publications were sampled from a variety of habitats in depths between 0 and 40 m and are 

deposited at the Bavarian State Collection of Zoology for reference purpose and further 

investigation. 

To obtain identified zoea-larvae, ovigerous females were sampled, identified to species level 

and kept in aquarium enclosures till larvae hatched. To ensure a stable environment and good 

keeping conditions as well as appropriate conditions for the hatchery, we cooperated with Dr. 

Jens Bohn of the SEA LIFE Munich. Determination of the adult specimens was done using 
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external, eidonomical features such as the number of carapace spines or the shape of the legs 

and other appendages following various identification literature, e.g.(Rathbun, 1918, Rathbun, 

1925, Rathbun, 1937, Haig, 1955, Garth, 1957, Haig, 1960, Zariquiey Álvarez, 1968, 

Retamal, 1981, Riedl, 1983). In addition, original species descriptions were checked. 

 

 

2.2. Adriatic Sea and North Atlantic 

Decapod larvae studied and published in article II, IV and partly in article III were obtained 

using the infrastructure of courses in marine biology of the Ludwig Maximilians Universität 

Munich at the “Station Biologique de Roscoff”, Roscoff (France) and the “Institut Ruđer 

Bošković”, Rovinj (Croatia). 

First examinations on marine Decapoda larvae of the Rovinj-region were carried out by the 

work group “Arthropoda varia” in the year 2003. The results are presented in the form of my 

diploma theses “Decapoda-Larven aus der Nordadria: REM-Merkmalsanalyse und Atlas” and 

were published in Meyer et al. (2004) and Meyer and Melzer (2004). This research can be 

seen as preliminary work for the SEM-larvae analyses carried out in this thesis. During these 

projects it was possible to establish a zoea-larvae-collection at the Bavarian State Collection 

of Zoology for further investigations. Meanwhile several examinations have been conducted 

which were based on this collection i.e. Geiselbrecht and Melzer 2010 and Geiselbrecht and 

Melzer 2013. 

 

 

2.3. Central Pacific Ocean 

The material that was used in publication article I and partly in article III was obtained in the 

Gulf of Nicoya, Central Pacific Ocean in the framework of the research project “Desarrollo de 

estándares para una pesca sostenible del camarón camello (Heterocarpus vicarious Faxon, 

1893) in the working group of Dr. Ingo Wehrtmann, Universidad de Costa Rica. 

 

 

2.4. Southern Pacific Ocean 

For samples of the research projects presented in article V and the book chapter “Decapoda - 

crabs, shrimps & lobsters” (article VI) we were able to use the infrastructure of the Huinay 

Scientific Field Station (42°22´ S, 72°24´ W), located at the Comau fjord, southern Chile 

(figure 5 A). Up to now, it is the only scientific field station in all the vast Chilean Patagonia. 
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The directorial staff (Dr. V. Häussermann and G. Försterra) is organising expeditions to 

remote fjord regions. Sampling areas and dive conditions are illustrated in figure 5 B and 5 C. 

Since 2003 several expeditions have been accompanied by members of the work group 

“Arthropoda varia”. To date about 650 specimens of decapods of the southern Chilean region 

are housed at the Bavarian State Collection of Zoology as result of this cooperation. This 

material served as basis for these research projects. I hope the material will serve for further 

investigations of the southern Chilean decapod fauna and will help to conserve this unique 

region. 

 

 
 
Figure 5: A The Huinay Scientific Field Station, Chile, B Sample region of the “Huinay 

Fiordos”- Expeditions in southern Chile, C typical Patagonian dive conditions. D Guarello 

Island (50°23′ S 75°20′ W), base of the HF 16 Expedition. All photos by the author. 
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3. Article I 

 

Meyer R, Wehrtmann IS, Melzer RR (2006) Morphology of the first zoeal stage of Portunus 

acuminatus, Stimpson, 1871 (Decapoda: Portunidae: Portuninae) reared in the laboratory. 

Crustaceana 70(2): 261-270. 

 

 

 

 

 
 

 

 

 

 

Figure 6: SEM-picture of the first zoea stage of Portunus acuminatus in frontal view (bar 200 

µm). Photo by the author. 
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INTRODUCTION

The swimming crab Portunus acuminatus
(Stimpson, 1871) is a shallow water species distrib-
uted along the Pacific coast of America, from the
Gulf of California (USA) to La Libertad (Ecuador).
Sandy and/or muddy sediments are the habitat of P.
acuminatus. Ovigerous females can be found from
February to May (Garth and Stephenson, 1966).

The morphology of P. acuminatus zoeae has not
been described yet. In the present study we describe
and illustrate the first zoeal stage hatched in the lab-
oratory and compare its morphology with described
zoeae of other portunid species within the subfami-

ly Portuninae. The study gives a detailed description
of the larvae by analysing all morphological struc-
tures, by using a combination of SEM, light
microscopy and dissection techniques. This
includes an analysis of the inner, molar part of the
mandibles with the SEM.

MATERIALS AND METHODS

Ovigerous females of P. acuminatus were
trawled in April 2004 at a depth of 12 m in the Gulf
of Nicoya, Pacific Costa Rica (90°48.899’N,
84°40.498’W). Individuals were transported to the

SCIENTIA MARINA 70 (2)
June 2006, 261-270, Barcelona (Spain)

ISSN: 0214-8358

Morphology of the first zoeal stage of Portunus 
acuminatus Stimpson, 1871 (Decapoda: Portunidae:

Portuninae) reared in the laboratory

ROLAND MEYER 1, INGO S. WEHRTMANN 2 and ROLAND R. MELZER 1

1 Zoologische Staatssammlung, Münchhausenstr. 21, D-81247 München.E-mail: kld1129@mail.lrz-muenchen.de
2 Universidad de Costa Rica, Escuela de Biología, Museo de Zoología, 2060 San Pedro-San José, Costa Rica.

SUMMARY: Larvae of Portunus acuminatus (Stimpson, 1871) from one female, collected by trawling at a depth of 12 m
in the Gulf of Nicoya, Pacific Costa Rica, Central America (090°48.899’N, 084°40.498’W) were hatched in the laboratory.
The morphology of zoea I is described and illustrated for the first time and compared with known zoeae of other portunid
species belonging to the subfamily Portuninae. We present a combination of three features which allows zoea I larvae of P.
acuminatus to be distinguished from other described larvae of the genus. Descriptions are based on dissected larvae analysed
by SEM and light microscopy.

Keywords: larval morphology, zoea, description, scanning electron microscope, Portunidae, Costa Rica.

RESUMEN: MORFOLOGÍA DE LA PRIMERA ZOEA DE PORTUNUS ACUMINATUS (STIMPSON, 1871) OBTENIDA EN EL LABORATORIO. –
Se describe el primer estadio larvario del cangrejo Portunus acuminatus. Las larvas se obtuvieron en el laboratorio a partir
de una hembra ovígera capturada en el Golfo de Nicoya (090°48.899’N, 084°40.498’W), Pacífico de Costa Rica. La des-
cripción se ha realizado con la ayuda del microscopio electrónico de barrido y el microscopio óptico. Los caracteres morfo-
lógicos son comparados con los de otras especies de la subfamilia Portuninae. Presentamos una combinación de tres carac-
teres que permiten distinguir la primera zoea de P. acuminatus de otras larvas del género.

Palabras clave: morfología larval, zoea, SEM, Portunidae, Costa Rica, descripción.
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laboratory of the Universidad de Costa Rica, San
José, and held in separate aquaria containing filtered
seawater at ambient temperature and salinity
(22±2°C, 33.0 psu). The females were identified
according to Garth and Stephenson (1966). Water
was changed daily. Ovigerous females were not fed,
and kept under these conditions until the larvae
hatched.

Recently hatched larvae were removed from the
vials and fixed in a graded ethanol series (30%,
50%, 70%, 10 min. each) (see Meyer and Melzer,
2004). Fixed larvae were transported in August 2004
to the Zoologischen Staatssammlung München
(Germany), where the SEM and light microscope
preparation was done.

SEM preparation: fixed specimens were dehy-
drated in a graded acetone series (70%, 80%, 90%,
2 x 100%, 10 min. each). Larvae were either critical-
point-dried in a Baltec CPD 030 or in HMDS
(Hexamethyldisilazane) after Nation (1983) (see
also Laforsch and Tollrian, 2000). After mounting
on SEM stubs with self adhesive carbon stickers,
individuals were dissected using a binocular and
thin tungsten wires to make sure that all appendages
were optimally orientated and separated for the
scanning procedure. The dried specimens were coat-
ed with gold on a Polaron “Sputter Coater” and stud-
ied with a LEO 1430VP SEM at 10-15kV. To make
sure that no setae on the appendages were removed
or broken during the dissection, several appendages
of each type were scanned and compared.

Light microscopy: ethanol fixed specimens were
dissected in glycerine using a dissecting microscope
and tungsten wires. For light microscopy, a Leica DM
RBE and an Olympus SZX 12 equipped with a
Visitron Spot Insight Colour digital camera were used.

It was not possible to dissect the complete set of
appendages of a single, individual zoea. Therefore,
many zoeae were prepared, and setae were counted
from between 6 and 10 specimens of each type of
appendage. The drawings of the maxillule and the
maxilla were made with the aid of a camera lucida
and then compared with the SEM data to analyse the
different types of seta and smaller structures. For
classification of the different types of setae we fol-
low the terminology of Ingle (1992).

Measurements of the Zoea-I-larvae were done
using LEO’s SEM-User-Interface-Software.
Carapace length (CL) was measured from the base
of the rostrum to the posterior margin, carapace
width (CW) as the distance between tips of lateral

spines, the total length (TL) from the base of the ros-
trum to the tip of the furca, dorsal spine length (DS)
from the base of the dorsal spine to the tip, rostral
length (RL) from the base of the rostral spine to its
tip, and the rostrodorsal length (RDL) as the dis-
tance between the tip of the dorsal spine and the tip
of the rostral spine. Measurements are based on a
total of 10 larvae.

The female and zoeae of P. acuminatus were
deposited at the Zoologische Staatssammlung
München under the registration numbers ZSMA
20050130 for the adult and ZSMA 20050131 for
the larvae.

RESULTS

Description of the Zoea I

Dimensions [µm]: RDL = 996.61 ± 36.5, RL =
293.14 ± 6.7, DS = 427.1 ± 18.5, TL = 1041.3 ±
27.2, CW = 528.4 ± 19.5, CL = 363 ± 23.9.

General Characteristics (Fig. 1A-C)
Compound eyes sessile (Fig. 1A, B). Dorsal

organ in anterio-median region of the carapace (Fig.
1A, B). Carapace surface covered with tuberculettes
(Fig. 1A, insert), with posteriorly curved smooth
dorsal spine and lateral spines (Fig. 1A). Dorso-lat-
eral region, between dorsal and lateral spine, with a
pair of pappose setae (Fig. 1A, B). Anterior part of
rostral spine with small denticles (Fig. 1A).
Abdominal segments 2-5 with dorso-marginally
located setae (Fig. 1B).

Carapace (Fig. 4A): Group of pore-like struc-
tures located in the dorso-median region (Fig. 4A).
Two rows of pores posterior to dorsal spine; anteri-
or row with 4 pores, posterior row with 2. 2 pappose
setae in the dorso-lateral region.

Antennule (Fig. 2A): Conical, unsegmented,
with 2 aesthetascs and 2 single setae.

Antenna (Fig. 2A): Elongated spinous process
bears on its proximal part setules (S) grading on the
distal half in two rows of minute spines (D, inserts).
Exopod unsegmented, with 2 terminal simple setae
unequal in length.

Labrum (Fig. 4B): Posterior portion invested with
numerous small denticulettes; labrum without setae.

Mandible (Fig. 4C, D): Left and right mandible
dissimilar. Left mandible: outer margin of incisor
process armed with 9 marginal spines; molar
process a broad structure with 9 marginal and 2 sub-

SCI. MAR., 70(2), June 2006, 261-270. ISSN: 0214-8358
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marginal spines. Right mandible: incisor process
with two acute protrusions, inner margin of molar
process with 8 marginal spines.

Maxillule (Fig. 4E, 5A): Coxal endite unseg-
mented with 6 plumodendiculate setae and one sub-
terminal simple seta (s). Endopod 2-segmented; 4
terminal setae (one simple seta (s) and 3 thin
plumodenticulate setae) and 2 subterminal thin
plumodenticulate setae; proximal segment unarmed.

Basial endite unsegmented; with one thin, subtermi-
nal plumodenticulate (p), two cuspidate (c) and two
plumodenticulate (p) setae; microtrichia located on
inner margin. 

Maxilla (Fig. 4F, 5B): Coxal endite bilobed, with
3+3 plumodenticulate setae. Basial endite bilobed,
with 4+4 plumodenticulate setae. Endopod unseg-
mented, bilobed, with 2 long setae on proximal and
3 on distal lobe; long microtrichiae on both margins

SCI. MAR., 70(2), June 2006, 261-270. ISSN: 0214-8358
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FIG. 1. – Portunus acuminatus, zoea I. – A general overview. A: Lateral view; insert shows carapace structure. B: Dorsal view. C: Ventral
view. AB: abdominal segments, AN: antenna, AU: antennule, DO: dorsal organ, DMaS: dorso-marginal setae, DS: dorsal spine, E: eye, LS:
lateral spine, MXP1: first maxilliped, MXP2: second maxilliped, RS: rostral spine, T: telson. Arrows show setae in dorso-lateral region and 

dorso-marginal setae. All scale bars 100 µm, insert 10 µm.
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FIG. 2. – Portunus acuminatus, zoea I. – Appendages. A: Antennule (bar 20 µm) and antenna (bar 30 µm). Inserts: setules and denticles locat-
ed on the spinous process of antenna (bar 2 µm). B: first and second maxilliped (arrows show setae arrangement on basis) (bar 60 µm) and
distal part of endopod of maxiliped 2 (bar 20 µm). AN: antenna, AS: aesthetascs, AU: antennule, B: basis, D: denticle, EN: endopod, EX: 

exopod, MXP1: first maxilliped, MXP2: second maxilliped, S: setule, SP: spinous process.
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FIG. 3. – Portunus acuminatus, zoea I. – Appendages. A: Abdomen in lateral view (bar 100 µm) and abdominal segments 2-3 in dorsal view
(bar 60 µm). B: Telson, dorsal view (bar 40 µm). AB: abdominal segments, DLP: dorso-lateral process, DMaS: dorso-marginal setae, DS: 

dorsal spine, F: furca, LS: lateral spine, OLSP: outer lateral spine, PLP: posterior-lateral process, T: telson, TS: telson setae.

sm70n2261-2106  26/5/06  13:34  Página 265

15



of the endopod. Scaphognathite (exopod) with 4
plumose marginal setae and a long distal stout
process.

First maxilliped (Fig. 2B): Coxa without setae.
Basis with 10 medial simple setae arranged
2+2+3+3 on inner side. Endopod 5-segmented, with
2,2,0,2,5 (1 subterminal and 4 terminal) sparsely

plumose setae. Exopod 2-segmented; distal segment
with 4 long plumose natatory setae. 

Second maxilliped (Fig. 2B): Coxa without
setae. Basis with 5 single setae arranged 2+1+1+1.
Endopod 3-segmented, with 1,1,5 (2 plumodenticu-
late and 3 single setae). Exopod 2-segmented, distal
segment with 4 plumose natatory setae.

SCI. MAR., 70(2), June 2006, 261-270. ISSN: 0214-8358
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FIG. 4. – Portunus acuminatus, zoea I. – Appendages. A: carapace structure located at the dorso-median-region (bar 20 µm). B: Inner view
on the labrum (bar 10 µm). C: Mandibles orientated in the zoea (maxillule and maxilla removed) (bar 40 µm). D: Inner view of the surface
on dissected mandibles (bar 70 µm). E: Ventral view on the left maxillule; SEM and light microscope (bar 30 µm). F: Inner view of the right
maxilla; SEM and light microscope (bar 30 µm). Arrows show microtrichia. B: basial endite, c: cuspidate seta, CO: coxal endite, DLR: dorso-
lateral region, DMR: dorso-marginal region, DPM: dorso-posterior margin, EN: endopod, IP: incisor process, LAB: labrum, ML: left 

mandible, MOP: molar process MR: right mandible, p: plumodenticulate seta, PRO: protopod, s: simple seta, SC: scaphognathite
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Abdomen (Fig. 3A): 5-segmented; segments 2-5
with dorso-marginally located pair of single setae;
segments 2 and 3 with dorso-lateral processes; seg-
ments 3-5 with posterio-lateral processes.

Telson (Fig. 3B): Posterio-external margins
extended into furcae; inner margin with 6 plumod-
enticulate setae; the two innermost with broad medi-
al setules; distal part of each branch with small den-
ticles; each branch of furca with outer spines on
proximal third.

DISCUSSION

The present description of P. acuminatus zoeae is
based on a combination of SEM and light micro-
scopical techniques applied to fixed larvae and dis-
sected appendages. The advantage of this combina-
tion of techniques is that even minute setules or
spines can be located and analysed using the SEM
(e.g. Meyer et al. 2004). In addition, the three-
dimensional structure of mouthparts can be studied
in detail. However, it was not possible to get a com-
plete SEM-preparation of the maxillule and the
maxilla. Therefore light microscopy was used for an
overview and SEM data were used for details to pro-
duce complete drawings of these two mouthparts.

Another advantage of our combined technique
seems to be the fact that we could analyse in detail
the inner part of the mandibles with the SEM. Ingle
(1992) mentions that the left and right mandible in
zoeae are usually slightly dissimilar and that details
are not easy to resolve by light microscopy due to
their gross three-dimensional structure. Using SEM
combined with dissection allows a thorough analy-
sis of mandibular structures, as shown by
Greenwood and Fielder (1979) who described the
mandibles of Portunus rubromarginatus using
SEM. A comparison of the mandibular structures of

P. rubromarginatus and P. acuminatus revealed dif-
ferences between the species; thus, such analyses
could give access to a relevant, and yet poorly stud-
ied set of characters for larval diagnosis.

Comparison of portunid zoeae

The family Portunidae Rafinesque, 1815,
includes the following six subfamilies: Carcininae
Macleay, 1838, Polybiinae (syn. Macropininae)
Ortmann, 1893, Portuninae Rafinesque, 1815,
Catoptrinae Borradaile, 1903, Caphyrinae Paul´son
1875 and Podophthalminae Dana, 1851 (Stephenson
and Campbell, 1960). Larvae of only the first three
of these were known when Rice and Ingle (1975)
sought to survey their knowledge on portunid zoeae.
They found distinctive features between the zoeae of
the Carcininae, Polybininae and Portuninae subfam-
ilies based on the presence or absence of carapace
lateral spines, the number of abdominal segments
with dorsolateral projections, the length of the pos-
terio-lateral processes of abdominal segments 3 and
4, the telson fork armature, the number of setae of
the telson’s posterior border, and the armature of the
middle segment of the endopod of the first maxil-
liped. Two of these characters can be studied in
Zoea-I-larvae: (i) Carapace lateral spines are well
developed in Polybiinae and Portuninae, but not in
Carcininae. (ii) The middle segment of the endopod
of the first maxilliped is armed in Polybiinae and
unarmed in Portuninae (Rice and Ingle, 1975).

The morphological characters analysed in the
present study correspond well with the subfamilial
larval characters for the Portuninae established by
Rice and Ingle (1975): (1) lateral carapace spines are
well developed, (2) dorso-lateral projections are
found on abdominal segments 2 and 3, (3) abdomi-
nal segments 3 to 5 bear posterior lateral processes,
(4) the telson fork spine number is similar and (5)
there is an unarmed endopod middle segment at the
first maxilliped.

Since the publication of Rice and Ingle (1975)
the larval stages of several species of Portuninae
have been described, e.g. Callinectes sapidus,
(Costlow and Bookhout, 1966), Charybdis acuata,
(Kurata and Omi, 1969), Portunus spinicarpus,
(Bookhout and Costlow, 1974), Portunus gibbesii,
(Kurata, 1970), Scylla serrata, (Wear and Fielder,
1985), Callinectes similis, (Bookhout and Costlow,
1977), Portunus rubromarginatus, (Greenwood and
Fielder, 1979), Portunus pelagicus, (Shinkarenko,
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FIG. 5. – Portunus acuminatus, zoea I. A: maxillule (ventral view),
B: maxilla (inner view).
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1979), Portunus gladiator, (Terada, 1979),
Thalamita danae, (Fielder and Greenwood, 1979),
Charybdis callianassa, (Greenwood and Fielder,
1980), Portunus pelagicus, (Yatsuzuka and Sakai,
1980), Portunus trituberculatus, (Yatsuzuka and
Sakai, 1982), Charybdis japonica, (Yatsuzuka et al.,
1984), Arenaeus cribrarius, (Stuck and Truesdale,
1988), Thalamita prymna, (Terada, 1986),
Thalamita crenata, (Krishnan and Kannupandi,
1990), Charybdis bimaculata, (Hwang, 1995),
Charybdis helleri, (Negreiros-Fransozo, 1996),
Callinectes danae, (Sankarankutty et al., 1999),
Charybdis helleri, (Dineen et al., 2001), Cronius
ruber and C. tumidulus, (Fransozo et al., 2002) and
Portunus pelagicus, (Josileen and Menon, 2004).

To include our findings in a generalised view on
Portuninae zoeae and to find diagnostic features for
P. acuminatus, we summarised the different mor-
phological characters of Zoea-I-larvae of Portuninae
(Table 1). It is concluded that all the described Zoea-
I-larvae of this subfamily [Portuninae] share the fol-
lowing characteristics: (1) number of setae of the
antenna exopod [2, unequal], (2) number of setae of
the maxillula endopod [4 + 2], (3) the number of
setae of scaphognathite of maxilla of the first zoea is
4, as in all non-majid zoeas, (4) unarmed middle
segment of the endopod of the first maxilliped, (5)
number of setae of maxilliped 2 [1-1-5, except
Callinectes sapidus: 1-1-4], (6) number of natatory
setae of exopods of maxilliped 1 and 2 is 4 as in all
brachyuran zoeae, (7) presence of carapace lateral
spines, (8) dorso-lateral processes on abdominal
segments 2 and 3. These characteristics confirm the
subfamily-classification established by Rice and
Ingle (1975).

The distinction between the different subfamilies
seems to be well established within the Portuninae.
However, the comparison of the morphological char-
acteristics of representatives of the four genera
Arenaeus, Callinectes, Cronius and Portunus (Table
1) indicates that within the subfamily Portuninae all
larvae have a very similar morphology that makes a
diagnosis at the generic level based only on morpho-
logical data of the first zoeal stage impossible at the
moment. Hence, using a combination of morpholog-
ical and other characteristics like chromatophore-
patterns, mandible structure and a comparison
including all zoeal stages might lead to results (e.g.
Terada, 1979). In addition, intraspecific variability
hinders species distinction, as has been shown for P.
pelagicus and Charybdis helleri, where differences

between the setal numbers of various appendages
and the telson morphology occur depending on the
region of origin of the samples (Shinkarenko, 1979;
Yatsuzuka and Sakai, 1980; Josileen and Menon,
2004). Stephenson (1972) explained this by the pres-
ence of undetected clines and subspecies (see also
Meyer et al., 2004). Furthermore, even larvae from
the same location show differences (Wehrtmann and
Albornoz, 1998; 2003).

Distinctive features of P. acuminatus zoeae

Nevertheless we found “good candidates” for
species-specific features of P. acuminatus zoeae that
have to be checked when new descriptions of other
Portunus zoeae become available. At the present the
Zoea-I-stage of P. acuminatus can be characterised
and distinguished from other described larvae of the
genus Portunus by the combination of the following
three features: (1) absence of a seta on the proximal
endopod segment of the maxillule, (2) the endopod
setation of the maxilla and (3) the telson fork arma-
ture. As can be seen in Table 2, these features are
also found in some other Portunus species, but not
in this combination. 

In addition, the larvae of P. acuminatus have two
conspicuous carapace structures not well known in
other portunid zoeae: the dorsal organ, located in the
anterior median region and a cuticular pore organ
located in the dorso-median region. The ultrastruc-
ture of the dorsal organ of other Decapoda is dis-
cussed in several papers (e.g. Laverack et al., 1996).
We observed the presence of the posteriorly and dor-
sally situated organs in Zoea-I-larvae of different
decapods (Meyer, pers. obs.). The presence or
absence of these organs and their structure might
become a useful character for larval diagnosis and
also important for future phylogenetic studies.
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4. Article II 

 

Meyer R, Lehmann T, Melzer RR, Geiselbrecht H (2014) Morphology of the first zoeal stage 

of the mediterranean bumblebee shrimp Gnathophyllum elegans (Risso,1816) studied with 

light microscopy and scanning EM. Journal of the Marine Biological Association of the 

United Kingdom 94(1): 151-158. 

 

 

 

 
 

 

 

 

 

 

Figure 7: The mediterranean bumblebee shrimp Gnathophyllum elegans in dorsal view. Photo 

by the author. 
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Morphology of the first zoeal stage
of the Mediterranean bumblebee shrimp
Gnathophyllum elegans studied with
both light microscopy and scanning EM

roland meyer, tobias lehmann, roland r. melzer and hannes geiselbrecht

Zoologische Staatssammlung, Münchhausenstr. 21, D-81247 München, Germany

The morphology of the first zoea of Gnathophyllum elegans is described from laboratory-reared material for the first time and
analysed in detail with light and scanning electron microscopy. For systematic reasons, morphological characteristics in
G. elegans are compared with those in Gnathophyllum americanum, Periclimenes amethysteus, a representative of the sub-
family Pontoniinae and the closely related Hymenocera picta (Decapoda: Caridea: Hymenoceridae). We observed differences
in the morphology of both Gnathophyllum-larvae, such as the number and arrangement of certain setae. Thus, larvae of the
two Gnathophyllum species can be readily distinguished from each other. Further differential diagnosis with P. amethysteus
confirms a high similarity between Gnathophyllum-larvae and larvae in the subfamily Pontoniinae, as already mentioned in
earlier publications. The systematic relationships of the Gnathophyllidae, Hymenoceridae and Pontoniinae are discussed
based on zoeal characters.

Keywords: larval morphology, first zoea, scanning EM, Decapoda, Pontoniinae, Gnathophyllidae, Gnathophyllum elegans
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I N T R O D U C T I O N

The Mediterranean bumblebee shrimp Gnathophyllum
elegans (Risso, 1816) is widely distributed throughout the
Mediterranean Sea (Adriatic Sea, Aegean Sea, Alboran Sea,
Ionian Sea and Israelean coast) and adjacent Atlantic regions
(Azores, Canary Islands, Madeira and Moroccan Atlantic)
(d’Udekem d’Acoz, 1999; Türkay, 2001). As a nocturnal
species it can be found in shallow coastal waters (0–35 m)
(Denitto et al., 2009; Pipitone & Vaccaro, 2011), hidden
under stones and pebbles at daytime. Zariquiey Álvarez
(1955) mentioned that at night the species can be dredged in
Posidonia oceanica Delile, 1813 meadows. Occasionally it is
associated with the sea anemone Telmatactis cricoides
(Duchassaing, 1850) (Wirtz, 1997). In our sampling area we
did not observe any kind of association and found specimens
obviously free living. However, when transferred in a commu-
nity aquarium we monitored the bumblebee shrimp associated
with different echinoderms, e.g. Echinaster (Echinaster) seposi-
tus (Retzius, 1783) and Arbacia lixula (Linnaeus, 1758).

The family Gnathophyllidae includes five genera with a
total of 14 species (De Grave & Fransen, 2011). The
larval development of this family is poorly documented;
only the first stage zoea in Gnathophyllum americanum
Guérin-Méneville, 1855 (in Guérin-Méneville, 1855–1856)
is described so far (Bruce, 1986). Also the systematic classifi-
cation of the genera is under discussion. There are notions

of a close relationship between the Gnathophyllidae Dana,
1852, Hymenoceridae Ortmann, 1890 and members of the
palaemonid subfamily Pontoniinae Kingsley, 1879. To put
further arguments into this question, in the present study
we describe and illustrate the first zoea in G. elegans and
compare the first zoeal characteristics of G. elegans with
those of G. americanum, Hymenocera picta Dana, 1852 and
Periclimenes amethysteus (Risso, 1827).

M A T E R I A L S A N D M E T H O D S

On May 2012, one ovigerous female of Gnathophyllum elegans
was collected in a depth of 2 m while night-snorkelling west of
the isle of Šolta (43823′00′′N16813′47′′E), Croatia. The speci-
men was identified according to Zariquiey Álvarez (1968) and
kept in an aquarium with a temperature of 20–238C and sal-
inity of 35 psu at the Zoologische Staatssammlung München
(Germany) till larvae hatched. About 200 first zoeas were
released on 20 June 2012. Few larvae were observed and
photographed in the egg integument and instantly after hatch-
ing in order to document natural pigmentation. Larvae were
fixed immediately in a graded ethanol series (30%, 50%,
70% for 10 min each, see Meyer & Melzer (2004)) and then
dissected using a stereomicroscope and thin tungsten wires.
Of each type of appendage about 20 pieces were dissected
and kept separately in small glass vials containing 70%
ethanol. For scanning electron microscopy (SEM) dissected
appendages and entire larvae were dehydrated in a graded
acetone series (70%, 80%, 90%, 2 × 100%, 10 min each) and
then critical-point-dried in a Baltec CPD 030. After mounting
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on SEM stubs with self-adhesive carbon stickers, specimens
were coated with gold on a Polaron ‘Sputter Coater’
(Quorum Technologies, UK) and studied with a LEO
1430VP (Zeiss, Germany) SEM at 10–15 kV. Several appen-
dages were scanned and compared to identify the exact
number of setae. For classification of the different types of
setae the terminology of Ingle (1992) was followed.

Measurements of the first zoeas were made using LEO’s
SEM-User-Interface-Software (N ¼ 4). Total length (TL)
was measured from the base of the rostrum to the posterior
end of the telson, carapace length (CL) from the base of the
rostrum to the posterior margin of the carapace and carapace
width (CW) between the lateral margins of carapace directly
behind the eyes. Furthermore the rostrum length (RL)
measured from the tip of the rostrum to the antennule pedun-
cle and the antenna endopod length (AEL) measured to the
scale of the antenna are given in this description.

Complete larvae and dissected maxillipeds were also
studied with light microscopy (LM) using the Leica DM
5000 B microscope (Leica, Germany) equipped with the
CCD Camera ProgRes SpeedXTcore 5 (Jenaoptik,
Germany). Drawings of the mandibles and the telson were
prepared by interpretation of several SEM and LM images.

The female and the zoea larvae are deposited at the
Zoologische Staatssammlung München under the registration
numbers ZSMA 20120316 and ZSMA 20120317. Additionally
the DNA barcode (cytochrome oxidase I sequence) of a
different specimen of Gnathophyllum elegans sampled in
the same region (ZSMA 20111534) is available on the
Boldsystems website (www.boldsystems.org) under the
number CFAD190-11.

R E S U L T S

First zoea of Gnathophyllum elegans
Dimension (mm): TL ¼ 1.860 + 0.044; CL ¼ 0.446 + 0.020;
CW ¼ 0.459 + 0.038; RL ¼ 0.185 + 0.016; AEL ¼ 0.173 +
0.023.

Carapace (Figure 1A, B): with short, slender and unarmed
rostral process; epigastric tubercle with dorsal organ present;
carapace armed with pterygostomial spine, otherwise
absence of spines. Compound eyes sessile.

Anterior sensory dorsal organ (SDO) (Figure 1B): small
protrusion composed of four small cuticular depressions

Fig. 1. Gnathophyllum elegans, first zoea: (A) LM image, lateral view, natural pigmentation visible; insert showing egg just before hatching; (B) SEM image, lateral
view, arrowhead points to dorsal organ; insert showing detail of dorsal organ. Abbreviations: I–VI, abdominal segments; AB, abdomen; AN, antenna; AU,
antennule; C, carapace; E, eye; LAB, labrum; MXP 1–3, first to third maxillipeds; PER1&2, pereiopods 1 and 2; PT, pterygostomial spine; R, rostrum; T,
telson. Scale bars: A, 200 mm; B, 200 mm, insert 20 mm.
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disposed as the corners of a square with the centre occupied by
a pore.

Antennule (Figures 1A, B & 2A): subcylindrical, unseg-
mented peduncle with distal plumose seta; flagellum with
four aesthetascs and plumose seta.

Antenna (Figures 1A, B & 2B): biramous; protopod unseg-
mented, with medio-terminal small spine; endopod apically
with plumose seta and short spine; scaphocerite with four
segmentations distally and ten plumose setae plus simple
seta distomedially, first and last reduced, with small tubercle
proximally on medial border; small seta on the outer side of
the proximal article and small distal plumose seta, small
simple seta on the apex.

Mandibles (Figures 2C, D & 5A): right and left mandibles
almost identical; mandibular palps absent. Incisor process
with marginal protrusion bearing row of three acute spines
ventrally and serrated ‘lacinia mobilis’, molar process
slender, bearing group of small spines. Right mandible with
clearly separate submarginal spine between incisor process
and ‘lacinia mobili’. Left mandible with submarginal spine
grown together with ventral row of spines.

Maxillule (Figure 2E): coxal endite with four simple distal
setae and slightly serrated proximal located seta; basal endite

with two stout and slender plumose setae and two simple
setae distally; endopod compressed, stout, distally acute with
preterminal simple seta; exopod absent.

Maxilla (Figure 2F): coxal endite with three simple setae,
basal endite bilobed, proximal lobe with simple seta, and
distal lobe with two simple setae, endopod unsegmented
with long simple seta and microtrichia on inner margin.
Exopod with five marginal plumose setae.

First maxilliped (Figure 3A, B): basis with three simple
setae. Endopod 3-segmented with 0, 1, 1 + 3 setae; exopod
partially crossed by six incisions, the last one armed laterally
with simple seta, distally four long plumose setae arranged
in a row.

Second maxilliped (Figure 3C, E): basis with two simple
setae. Endopod 3-segmented, proximal segment largest and
unarmed, intermediate segment with distomedial serrated
and distolateral simple seta distally, distal segment with
small simple seta located proximally and three simple
setae plus strong serrate seta distally. Exopod partially
crossed by nine incisions, setae arranged as in first
maxilliped.

Third maxilliped (Figure 3D, F, G): basis with two simple
setae and small proximomedial tubercle. Endopod

Fig. 2. Gnathophyllum elegans, Zoea I, SEM images showing appendages of cephalothorax and mouthparts: (A) antennule; (B) antenna, arrowhead ¼ small spine;
arrows ¼ small setae and tubercle; (C) right mandible, asterisk ¼ ‘lacinia mobilis’; (D) left mandible, asterisk ¼ ‘lacinia mobilis’; (E) maxillule; (F) maxilla.
Abbreviations: AE, aesthetasc; B, basis; CO, coxa; ED, endite; EN, endopod; EX, exopod; F, flagellum; IP, incisor process; MOP, molar process; S, seta; SC,
scaphocerite. Scale bars: A, 40 mm; B, 100 mm; C, 10 mm; D, 10 mm; E, 20 mm; F, 40 mm.
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3-segmented; proximal segment with 1 + 1 simple setae;
intermediate segment with two strong serrate distal setae,
distal segment armed with proximolateral simple and three
simple and strong serrate distally located setae. Exopod par-
tially crossed by eight incisions, setae arranged as in first
maxilliped.

First and second pereiopods (Figure 4C): present as bira-
mous rudiments.

Third to fifth pereiopods: not differented.
Abdomen (Figures 1A, B & 4B): 6-segmented; strongly

flexed between third and fourth segments; small simple seta
on the posterior-lateral margin of the third and fourth
somite present.

Pleopods and uropods: absent.
Telson (Figures 4A & 5B): fused with sixth abdominal

segment; broadly triangular; 7 + 7 plumodenticulate setae
on the posterior margin; the inner- and outermost smaller,
the two outermost on each side with setules medially;
minute spines only between four inner setae; setal bases
armed with minute spines except inner and outermost.

D I S C U S S I O N

The present description of the first zoea in Gnathophyllum
elegans is based on a combination of SEM and LM techniques
applied to fixed larvae and dissected appendages. Using the
high resolution power of the SEM even minute structures
such as setules, spines or the anterior sensory dorsal organ
can be located and described. We also could analyse the
gnathal edge of the mandibles in great detail, a feature often
omitted in larval descriptions. Ingle (1992) mentioned that
left and right mandibles in zoea-larvae are usually slightly dis-
similar and that details are not easy to resolve by LM due
to their gross three-dimensional structure. In the case of
G. elegans this difference is marginal and can only be observed
in the position of the submarginal spine on the incisor process.

The family Gnathophyllidae (superfamily Palaemonoidea
Rafinesque, 1815) consists of five genera: Gnathophylleptum
d’Udekem d’Acoz, 2001, Gnathophylloides Schmitt, 1933,
Gnathophyllum Latreille, 1819, Levicaris Bruce, 1973, and
Pycnocaris Bruce, 1972 (Martin & Davis, 2001; De Grave &

Fig. 3. Gnathophyllum elegans, first zoea, SEM (A, C, D, G) and LM (B, E, F) images showing maxillipeds: (A) endopod and exopod of first maxilliped, arrow ¼
seta; (B) first maxilliped; (C) endopod of second maxilliped; (D) endopod of third maxilliped; (E) second maxilliped; (F) third maxilliped; (G) exopod of third
maxilliped, arrow ¼ seta. Abbreviations: EN, endopod; EX, exopod. Scale bars: A, 20 mm; B, 150 mm; C, 20 mm; D, 40 mm; E, 200 mm; F, 200 mm; G, 6 mm.
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Fransen, 2011). Until now the description of the first zoeal
stage in Gnathophyllum americanum was the only one
present for a representative of this family (Bruce, 1986).

Differential diagnosis between the larval characters of the
first zoea in G. elegans and G. americanum shows morphologi-
cal differences in the carapace shape and the arrangement and
number of setae on different appendages, e.g. the antennule,
antenna, maxillule, maxilla, first to third maxillipeds and the
telson (Table 1). The two Gnathophyllum-species can thus
be readily distinguished from each other. However, some of
the differences like the presence or absence of the pterygosto-
mial spine and the segmentation of the endopod of the first
maxilliped may also be a result from the different analysing
techniques used in both examinations, since the SEM’s resol-
ution power is much higher than that of the LM.

The absence of the distinct basal lobe on the endopod of the
maxilla and the branchiostegal spines as observed in the G.
elegans-zoea are morphological characteristics thought to be
specific for larvae of the palaemonid subfamily Pontoniinae
as well as the Gnathophyllidae and the Hymenoceridae
(Mitsuhashi et al., 2007).

Thus, with respect to species specific features and above-
family systematics our results fit well with what could be
expected. However, the search for features that allow us to

Fig. 4. Gnathophyllum elegans, first zoea, SEM images: (A) telson; (B) detail of abdomen segments II–IV, arrows ¼ setae; (C) pereiopods 1 and 2. Abbreviations:
II–IV, abdominal segments; PER1&2, pereiopods 1 and 2. Scale bars: A, 100 mm; B, 60 mm; C, 30 mm.

Fig. 5. Gnathophyllum elegans, first zoea, drawing: (A) posterio-ventral view
of mandibles; (B) dorsal view of telson. Abbreviations: asterisk, ‘lacinia
mobilis’; IP, incisor process; MNl, left mandible; MNr, right mandible;
MOP, molar process; Scale bars: A, 20 mm; B, 100 mm.
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distinguish the studied gnathophyllid zoeae from pontoniids
and hymenocerids proved to be more difficult. In Table 1
we summarize characters of selected representatives of these
taxa for detailed comparison. Periclimenes amethysteus was
selected as a Pontoniine ‘model’ because the larval description
is also based on a combined technique using LM and SEM and
thus is most suitable for comparison with our results
(Geiselbrecht & Melzer, 2009). A comparison of 14 zoeal
characteristics in G. elegans and P. amethysteus shows a
high degree of correspondence, though they are placed in
different families. Seven of these features are identical, and
only six differences are shown, i.e. setation of exopod of
antenna, basal endite of maxillule, proximal lobe of basal
endite of maxilla, second maxilliped, third maxilliped and
the abdomen. It was not possible to compare the structure
of the sensory dorsal organ, because an adequate description
of this feature was lacking in P. amethysteus. This is surpris-
ing, since the two studied gnathophyllids, G. elegans and G.
americanum, belonging to the same genus, show differences
in eight conspicuous features. Moreover, G. elegans and
Hymenocera picta, a representative of Hymenoceridae, the
putative sister taxon of the Gnathophyllidae, show 11 differ-
ences (Table 1).

What could be explanations for these partly contradictory
results? As mentioned above, our SEM technique used for the
analysis of G. elegans and P. amethysteus shows minute details
that are probably not detected with LM alone, viz., the tech-
nique used for description of G. americanum and H. picta.
Differences in meticulousness could thus hinder comparison
of zoeae and suggest false similarities. For example the struc-
ture of the sensory dorsal organ or the mandibles can only be
described by use of the SEM. Nonetheless our study clearly
supports a notion already put forward in several other differ-
ential diagnoses of pontoniine and gnathophyllid zoeas, i.e.
their high degree of correspondence (Bruce, 1986, Bruce,
1988; Yang & Ko, 2002; Yang & Ko, 2004; Mitsuhashi et al.,
2007).

Another explanation for the character distribution shown
here might lie in the not-well-understood relationships
between the Gnathophyllidae and the Pontoniinae. Holthuis
(1955) erected the family Gnathophyllidae based on adult
mouthpart morphology (shape of the third maxilliped)
by excision of genera Gnathophylloides, Gnathophyllum,
Levicaris and Pycnocaris from the Pontoniinae, and thereby
producing probably paraphyletic Pontoniinae as a ‘leftover’
group. With the first description of the larval features of
G. americanum and their high degree of similarity
to Pontoniinae zoeae, Bruce (1986) synonymized the
Gnathophyllidae with the former, but Chace & Bruce (1993)
concluded tentatively that the unique mouthparts of the
Gnathophyllidae discard the possibility of synonymy.
Moreover, Williamson & Rice (1996) and Williamson
(2001) proposed that highly similar larvae do not necessarily
signify related adults and, therefore, the Pontoniinae and the
Gnathophyllidae may be distinct. This would suggest that
some of the zoeal features presented in the present study
might be plesiomorphies and thus not useful for phylogenetic
considerations.

Recent molecular systematic analyses based on nuclear
rDNA and mitochondrial sequences (Mitsuhashi et al.,
2007; Bracken et al., 2009; Li et al., 2011) show that the
Gnathophyllidae are placed in a cluster of lineages including
the Hymenoceridae as the sister group of Gnathophyllidae,

plus several lineages belonging to Palaemoninae Rafinesque,
1815, Pontoniinae and Anchistioididae Borradaile, 1915 sup-
porting the idea of pontoniine paraphyly.

It seems that the above described unclear character distri-
bution between gnathophyllid and related zoeae is caused by
a combination of still valid traditional taxonomic acts, lack
of consequent cladistic analyses including molecular trees
and insufficient knowledge of larval morphology. Further
investigations combining molecular methods and classical
morphological analyses (larval and adult) involving more
gnathophyllid genera are therefore required.
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Cadaqués (España). Vie et Milieu 6, 397–409.

and
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Figure 8: SEM-picture of the first zoea stage of Portunus acuminatus in dorsal view with the 

sensory dorsal organ present in the anterior region (bar 40 µm). Photo by the author. 
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ABSTRACT

The cuticle of crustaceans bears numerous organs, of which the functions of many are unknown. One of these,
the sensory dorsal organ (SDO), is present in a wide diversity of taxa. Here we critically review the variability,
ultrastructure, distribution, and possible function of this enigmatic cuticular organ. Previous data are complemented
by new observations on larvae and adults of various malacostracans. The SDO is composed of four sensors arranged
as the corners of a square, the centre of which is occupied by a gland. Pores or pegs surrounding this central complex
may also form part of the organ. The arrangement and the external aspect of the five main elements varies greatly, but
this apparently has little impact on their ultrastructural organisation. The sensors and the gland are associated with a
particularly thin cuticle. Each sensor contains four outer dendritic segments and the central gland is made of a single
large cell. It is not yet known what this large cell secretes. The SDO is innervated from the tritocerebrum and therefore
belongs to the third cephalic segment. A similar organ, here called the posterior SDO, has been repeatedly observed
more posteriorly on the carapace. It resembles the SDO but has a greater number of sensors (usually six, but up to
ten) apparently associated with only two outer dendritic segments. The SDO and the posterior SDO are known in the
Eumalacostraca, the Hoplocarida, and the Phyllocarida. Some branchiopods also possess a ‘dorsal organ’ resembling
both the SDO and the ion-transporting organ more typical of this group. This may indicate a common origin for
these two functionally distinct groups of organs. New observations on the posterior SDO support the hypothesis that
the SDO and the posterior SDO are homologous to the lattice organ complexes of thecostracans. However, the
relationship between the SDO and the dorsal cephalic hump of calanoid copepods remains unclear. No correlation
can be demonstrated between the presence of a SDO and a particular ecological or biological trait. In fossils, the
most convincing examples of SDO-like organs are found in some Late Cambrian arthropods from the Alum Shale of
southern Sweden. They suggest that related organs might have been present in non-crustacean Cambrian arthropods.
The distribution of the SDO and posterior SDO in extant and fossil crustaceans strongly suggests that these organs
originated early in the history of the group, and are crucial to the functioning of these organisms. However, except for
knowing that the sensors are chemoreceptors and that in a given organ a functional relationship probably exists between
them and the gland, little is known about this function. The description of a SDO in freshwater carideans, which can
be easily reared in a laboratory, opens the way for behavioural and physiological experiments to be undertaken that
could prove crucial for the determination of this function.

Key words: Crustacea, sensory dorsal organ, lattice organ, cephalic dorsal hump, anatomy.
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I. INTRODUCTION

Arthropods are the most diverse group of metazoans,
their abundance and diversity of morphology, size, and
habitats attesting to their incomparable evolutionary success.
Spanning some 520 million years (My), the fossil record
of this phylum documents particularly well how the basic
construction of the arthropod body has been modified
to permit the evolution of a great variety of body
plans. This plasticity in body patterning is not the sole
explanation for their evolutionary success, for many other
aspects of their biology are very significant (e.g. variety of
developmental strategies, physiological tolerance). However,
it seems difficult to conceive that arthropods could have
acquired such a preponderant position in modern ecosystems
without developing efficient sensorial abilities. Obvious
sensory structures, such as eyes or antennae, have been
extensively studied in both modern (e.g. crustaceans, Meyer-
Rochow, 2001) and fossil arthropods (e.g. trilobites; Clarkson,
Levi-Setti & Horváth, 2006), but as revealed by electronic
microscopy, their cuticle also bears minute organs that
apparently complement these major sensory structures (e.g.
Laverack & Barrientos, 1985). One of these is the sensory
dorsal organ (SDO), which has been observed in many
crustaceans, situated along the sagittal line of the cephalic
shield. Despite the many studies carried out by the late
Professor Laverack and various collaborators from the mid-
1980s to the late 1990s, this minute organ remains enigmatic.

Introduced by Laverack et al. (1996), the term ‘sensory
dorsal organ’ refers to a small complex of structures (four
sensors and a gland) often present in malacostracans.
Previously, these structures were usually known as the ‘dorsal
organ’, but great confusion existed about this term, for it had
been used to refer to a variety of crustacean organs (e.g.
Fioroni, 1980; Martin & Laverack, 1992). On the basis of
ultrastructural features, Elofsson & Hessler (2008) proposed
that most of these ‘dorsal organs’ could be regrouped into
two functional categories: sensory organs (‘dorsal sensory
pit organs’; DSPOs) and ion-transporting organs (‘dorsal

ion-transporting complexes’; DITCs). In the present review,
only the DSPOs are considered, with a special emphasis
on the SDO, although the distinction between DSPOs
and DITCs may sometimes be tenuous (e.g. in some
branchiopods). The SDO was the first DSPO to be intensively
studied, particularly its distribution and variability (Laverack
& Macmillan, 1999), ultrastructure (Laverack et al., 1996),
and innervation (Laverack & Sinclair, 1994). By the end of
the 20th century it was clear that the SDO was extremely
common in crustaceans and that it performed an essential
function in these organisms. Surprisingly, however, not a
single study has been devoted to this organ during the last
decade, and its role and the exact nature of its relationships
with similar organs of modern (e.g. the other DSPOs) or
fossil (e.g. the cephalic median organ of trilobites) arthropods
remains unknown. In the meantime, though, there has been
a growing interest in another DSPO, the lattice organ
(LO), which is found in clusters on the cephalic shield
of the settling larval stages of thecostracans. Two clusters,
one set anteriorly and comprising two pairs of LOs and
one posterior comprising three pairs of LOs, have been
described in representatives of the three subclasses of the
Thecostraca (Høeg & Kolbasov, 2002). Each of these clusters
is associated with a central gland to constitute a sensory
glandular complex. The distribution and variability of these
structures is fairly well known (e.g. Høeg & Kolbasov, 2002)
and their ultrastructure has been described in a few taxa
(Høeg, Hosfeld & Jensen, 1998; Høeg & Kolbasov, 2002).
Their innervation, however, has not been investigated and,
as with the SDO, their precise function remains unknown. A
series of works dedicated to the LOs during the last 15 years
has resulted in the accumulation of important data, which
can now be used for a critical evaluation of the nature of
their relationship with the SDO.

The present contribution originated from a simple
statement of fact – despite an ever-growing accumulation of
evidence, scientists have not fully appreciated the significance
of the DSPO to crustaceans. Confusion about the term
‘dorsal organ’ may be a partial explanation for this situation.
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The dispersal of data on the DSPO may be another.
Herein we present a thorough review of the variability,
ultrastructure, distribution, and possible function of the
SDO. We complement these data with the results of
investigations on adults of various freshwater carideans
and on some malacostracan larvae, which include the first
detailed description of a similar, but more posteriorly located
organ, that we name the posterior SDO. A critical reappraisal
of the relationships between the different types of DSPO
identified by Elofsson & Hessler (2008) in living crustaceans
is presented and we discuss the possible occurrences of
related organs in fossil crustaceans. The main objective of
this contribution is to stimulate renewed interest in these
crustacean organs, which hopefully will enable their function
to be determined.

II. MATERIALS AND METHODS

The following freshwater caridean species were examined:
Atya gabonensis Giebel, 1875, Atyaephyra desmaresti (Millet,
1831), Atyopsis moluccensis (De Haan, 1849), Caridina cantonensis
Yu, 1938 (variety ‘tiger’), C. balbauti (Bouvier, 1918), C.
multidentata Stimpson, 1860 (‘Amano shrimps’), C. spinata
Woltereck, 1937, C. zeylanica Arudpragasam & Costa, 1962,
Neocaridina heteropoda Liang, 2002 (varieties ‘red cherry’ and
‘sp. green’), N. palmata (Shen, 1948), and Troglocaris (Troglocaris)
planinensis Birštejn, 1948. Apart from A. desmaresti and T . (T .)
planinensis, individuals were bought in pet shops and reared
in separate tanks in the laboratory. Depending on the taxa,
individuals from one to many generations could be studied
(e.g. descendants of a group of a dozen individuals over 4
years in the case of N. heteropoda). Some 30 specimens of A.
desmaresti were collected in the Hérault River, at the ‘Pont du
diable’ near Saint-Guilhem-le-Désert (Hérault) in southern
France. These specimens and their offspring were reared in
the laboratory for about 6 months. Six specimens of T. (T.)
planinensis were collected in the Logarček cave (vicinity of
Rakek, Western Slovenia), fixed in 70% ethanol, and kindly
provided for this study by B. Sket and J. Jugovic (University
of Ljubljana, Slovenia).

Investigations of the SDO and posterior SDO of these
carideans were mainly conducted on exuviae, since their
morphology is the same in dead specimens or on moults.
Moreover, exuviae better support preparation for scanning
electron microscopy, and their use permits, for a given
individual, several attempts to study its cuticular organs;
this was particularly useful for species that could not be
maintained for more than one generation. The exuviae were
collected as soon as possible after moulting, to minimise
microbial decay, air-dried for 24–48 h, and stored in plastic
boxes. They were then gold coated and studied at the
Senckenberg Research Institute of Frankfurt am Main using
a scanning electron microscope (SEM JEOL 310 JSM-
6490LV) in high vacuum mode.

We also investigated the SDO and posterior SDO of larvae
of 10 species of marine malacostracans, which represent

four infra orders of Pleocyemata (i.e. Achelata, Anomura,
Brachyura, Caridea). Ovigerous females were collected (see
Table 1 for details), identified and held in separate aquaria.
Recently hatched larvae were removed from the vials and
fixed in a graded ethanol series as described in Meyer &
Melzer (2004). For SEM preparation, fixed specimens were
dehydrated in a graded acetone series (70, 80, 90%, 2 ×
100%, 10 min each) and then critical-point-dried either in a
Baltec CPD 030 or in hexamethyldisilazane (Nation, 1983;
Laforsch & Tollrian, 2000). After coating with gold, they
were studied with a LEO 1430VP SEM.

The size of the SDO and its different elements was
calculated using the scale bars provided by the SEM or
associated with the published illustrations thereof. The
acronyms of the different organs discussed in this work
are listed in Table 2. Abbreviations used herein are: exs.,
exsagittally, sag., sagittally, and tr., transversally.

III. THE SENSORY DORSAL ORGAN

(1) Morphology and variability

(a) Description of a typical SDO

As described by Laverack et al. (1996), the SDO is typically
composed of a flexible, central area of cuticle exhibiting one
or more pores and four peripheral sensory plates (Fig. 1A).
The arrangement of these five elements usually forms a
quincunx, like the fifth side of a die. Mean values for the area
they occupy are about 33 μm × 36 μm [maximum length
(exs.) X width (tr.)]. The mean size of the sensory plates is
approximately 9 and 6.5 μm in maximum length and width,
respectively, while that of the central element(s) is about 9
and 8.5 μm in maximum length and width, respectively. The
SDO is located along the midline of the anterior half of the
carapace (Figs 2A, 3A).

(b) Variability

The SDO is associated with a thin and flexible cuticle
restricted to the central area or extending to the whole organ.
This flexible cuticle frequently collapses during specimen
preparation for electron microscopy, resulting in artificial
differences in the external aspect of the organ. This problem
must be kept in mind when describing the variability of the
SDO, especially since this organ in many taxa has been
described from only a few specimens.

Virtually every aspect of the SDO is subject to variation.
For instance, the central area commonly exhibits one (e.g.
Eualus cranchii, Pandalus montagni, Laverack & Crombie,
1988; Fig. 2B, C, F, H, K, L) to a few large pits (e.g.
Porcellana platycheles, Barrientos & Laverack, 1986; Figs 2D,
3S), but these pits are sometimes replaced by many minute
perforations (e.g. Macrobrachium intermedium, Laverack &
MacMillan, 1999) or by a large slit (e.g. Jasus edwardsii,
Laverack & MacMillan, 1999). In some carideans, it is
composed of a smooth and large depressed area or a hole
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Table 1. Taxonomic and collection details of the larval specimens investigated

Specimen Origin

Infraorder Achelata
Scyllarus sp. Sach. Kat. 34/10 19◦38′N, 18◦03′W off Cap Blanc, Mauritania (1 February 1970)

Infraorder Anomura
Galathea squamifera Leach, 1814 ZSMA20035574 Saline bay, Rovinj Croatia (29 March 2003)

Infraorder Brachyura
Eurypanopeus planus (Smith, 1869) ZSMA20080030 Cangrejal, Playa Samara Costa Rica (7 May 2004)
Goniopsis pulchra (Lockington, 1876) ZSMA20080030 Punta Morales, Playa Blanca Costa Rica (26 July 2004)
Panopeus chilensis Milne-Edwards & Lucas, 1843 ZSMA20080032 Punta Morales, Playa Blanca Costa Rica (25 July 2004)
Lophozozymus incisus (Milne-Edwards, 1834) ZSMA20071645 Roscoff, Bretagne France (1 June 2005)
Portunus acuminatus (Stimpson, 1871) ZSMA20050130 09◦48.9′N, 84◦40.5′W Golfo de Nicoya, Costa Rica (21 April 2004)
Xantho pilipes Milne-Edwards, 1867 ZSMA20035565 Saline bay, Rovinj Croatia (11 April 2003)
Xantho poressa (Olivi, 1792) ZSMA20035549 Saline bay, Rovinj Croatia (12 April 2003)

Infraorder Caridea
Palaemon adspersus Rathke, 1837 ZSMA20035515 Saline bay, Rovinj Croatia (29 March 2003)

Repository: Bavarian State Collection of Zoology (ZSMA).

Table 2. Acronyms and descriptions of the different organs discussed in this review

Acronym Name Description/location/distribution References

SDO Sensory dorsal organ Sensory glandular complex composed of four peripheral
sensors and one central gland. In the anterior region
of the carapace. Malacostraca, possibly Branchiopoda

Laverack et al. (1996)

Posterior SDO Posterior sensory dorsal organ Sensory glandular complex composed of six
(exceptionally eight or ten) peripheral sensors and one
central gland. Near posterior margin of the carapace.
Malacostraca

Herein

LO Lattice organ Sensory organ. See LOC. Thecostraca Elfimov (1986)
LOC (anterior or

posterior)
Lattice organ complex

(anterior or posterior)
Sensory glandular complex composed of four (anterior)

or six (posterior) peripheral sensors (LO) and one
central gland. Respectively in the anterior and
posterior regions of the cephalic shield of settling
larval stages. Thecostraca

Herein

CDH Cephalic dorsal hump Sensory glandular complex composed of one sensor and
two glands. In the anterior of the cephalic shield of
adult males. Copepoda (Calanoidea)

Nishida (1989)

DSPOs Dorsal sensory pitted organs Category regrouping the ‘dorsal organs’ with a sensory
function. This contains the SDO and posterior SDO,
the anterior and posterior LOC, and the CDH. All of
them occur on the cephalic shield. Malacostraca,
possibly Branchiopoda, Thecostraca, Copepoda
(Calanoidea)

Elofsson & Hessler (2008)

DITCs Dorsal ion-transporting
complexes

Category regrouping the ‘dorsal organs’ with an
ion-transporting function. This contains a great
variety of (sometimes embryonic) organs. Their
location is not restricted to the cephalic shield. In the
Crustacea: Branchiopoda, Copepoda
(Harpacticoidea), Malacostraca (Syncarida),
Peracarida (Isopoda)

Elofsson & Hessler (2008)

surrounded by tiny pits (Fig. 3C, F, G, L). The central
element can also take the form of a small knob (e.g. Palaemon
serenus, Laverack & MacMillan, 1999) or a slightly raised
area (e.g. Lynceus brachyurus, Olesen, 1996). More rarely, the
central area is devoid of any perforations (e.g. Scyllarus sp.,
Fig. 2J; Upogebia sp., Laverack & MacMillan, 1999) or even
of any features indicating the presence of a central element
(e.g. Callianassa australiensis, Laverack & MacMillan, 1999;

Eurycercus glacialis, Olesen, 1996). Lastly, this central area,
which is associated with a flexible cuticle, was too strongly
wrinkled in preparations of many taxa to permit description
of its morphology (e.g. Fig. 3P, R).

The four sensory elements are less variable in external
morphology, usually taking the form of ovoid plate-like
areas (e.g. Limnadia sp., Laverack & MacMillan, 1999;
Eualus cranchi, Pandalus montagni, Laverack & Crombie, 1988,
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A

B

Fig. 1. Drawings of the anterior and posterior sensory dorsal
organs (SDOs) of Caridina multidentata. (A) The anterior SDO is
composed of a central complex made of four sensory plates and
a large central pit, which is surrounded laterally and anteriorly
by numerous tiny pores/pegs. (B) The posterior SDO comprises
a central complex made of six sensory plates and a large central
pit, which is surrounded laterally and posteriorly by numerous
tiny pores/pegs.

Figs 2B–G, J–L, 3B, C, E, F, H, K–M, P–R, T–W). These
areas are usually slightly depressed, more rarely forming true
pits (e.g. Homarus gammarus, Barrientos & Laverack, 1986). As
observed in Atya gabonensis, this difference may depend on the
degree of collapse during the SEM preparation of the whole
organ. Elevated bumps/papillae can replace the sensory
plates in some taxa (e.g. Anaspides tasmaniae, Crangon crangon,
Laverack et al., 1996), or in some specimens in species which
otherwise exhibit sensory plates (e.g. Neocaridina heteropoda,
compare Fig. 3R, S). Structures sometimes occur on these
plates, the most common being four pores or pegs probably
associated with four underlying dendrites (see Section III.2;
Figs 2L, 3H, M, T, U). A more variable number (3–5)
of pegs was observed in larval stages of Homarus gammarus
by Barrientos & Laverack (1986), who also noted that they
were not visible in the earliest stages. More rarely, each
sensory plate can bear a nipple-like structure (e.g. Dissodactylus
crinitichelis, Pohle & Telford, 1981; Hyas cornatus, Laverack
& Barrientos, 1985; Scyllarus sp., Fig. 2J). The greatest
departure from the usual morphology of the SDO is known

in Euphausia superba, where the organ comprises six sensory
plates (Laverack & MacMillan, 1999). This may indicate a
closer affinity with a second, more posteriorly located organ
we have observed in several species (see Section III.3), rather
than an extreme evolution of the SDO in euphausiids.

Another source of variation is the positioning of the five
elements. Most of the time, it forms a quincunx, with the
sensory plates being at the corners of an imaginary square, the
centre of which is occupied by the fifth element, the central
element (e.g. Fig. 2B, D, F, J). In Crangon crangon, however,
the five elements are aligned transversally, probably due
to the position of the SDO at the base of a forwardly
projecting spine (Laverack & Crombie, 1988). Rather than a
square, the arrangement of the sensors forms a trapezoid in
Caridina zeylanica (Fig. 3P) or Neocaridina heteropoda (Fig. 3Q–S)
and an inverted trapezoid in several malacostracan larvae
(Fig. 2C, E, K, L). The position of the fifth element is also
frequently shifted forwards. In N. heteropoda, for example,
the wrinkled area representing this fifth element is located
between the two anterior sensory plates (Fig. 3R). The
quincunx pattern is found in an overwhelming majority
of cases, which suggests strong constraints on the relative
position of the main elements of the organ, possibly due to
functional requirements.

Our investigations revealed that this organ may sometimes
be composed of additional elements in malacostracans. For
instance, the complex of five elements is surrounded laterally
and anteriorly by a constellation of minute pits/pegs in
several carideans (e.g. Atya gabonensis, Atyopsis moluccensis,
Caridina multidentata; Fig. 3B, D, E, F, I, J, K, N). These pits are
not symmetrically arranged relative to the sagittal line and
their numbers differ from one side to another. In adults of
the other carideans investigated, the organ was too wrinkled
to enable the detection of such tiny structures (e.g. Fig. 3O,
V, W), but in Neocaridina heteropoda at least they are apparently
absent. In the larvae of grapsoid and xanthoid crabs, the
SDO is associated with a pair of pores located posteriorly at
a variable distance from it (Fig. 2B–F, I). Again, this suggests
that the SDO may comprise more than the five elements
of the central complex. However, because no attention has
been paid to such structures in the past (e.g. in Laverack &
MacMillan, 1999), it is not possible to assess their frequency in
the Crustacea, nor to make assumptions about their function.

Lastly, the presence/absence of a clear delimitation is
another source of variation of the external aspect of the SDO.
This is best exemplified in carideans, where a strong fold of
the cuticle may isolate the organ from the rest of the carapace
in some taxa (e.g. Atya gabonensis, Atyopsis moluccensis, Caridina

multidentata; Fig. 3B, E, K), but not in others (e.g. Caridina

zeylanica, Neocaridina heteropoda; Fig. 3P–S). The presence of a
surrounding rim has only been observed in the putative SDO
of some branchiopods (e.g. Olesen, 1996; see Section III.4a).
This character suggests possible affinities of these SDO-like
organs with DITC-type dorsal organs (Elofsson & Hessler,
2008) usually encountered in the Branchiopoda, supporting
the assumption of Walossek (1993) that they might in fact
represent both DSPO and DITC (see Section VI). All other
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Fig. 2. The sensory dorsal organ (SDO) in larvae of diverse decapods. All figures are scanning electron micrographs of specimens
coated with gold; anterior is to the bottom for all except J where anterior is to the top. (A, B) Goniopsis pulchra (Brachyura, Grapsoidea).
(A) Entire specimen in frontal view showing the position of the SDO (arrow head). (B) General view of the SDO; note the pair
of extra pores (arrow heads) behind the central pore. (C) Eurypanopeus planus (Brachyura, Xanthoidea), general view of the SDO; a
pair of additional pores (arrow heads) is located a short distance behind the main central complex. (D) Xantho poressa (Brachyura,
Xanthoidea), general view of the SDO; a pair of additional pores (arrow heads) is located a short distance behind the main central
complex. (E) Lophozozymus incisus (Brachyura, Xanthoidea), general view of the SDO; a pair of additional pores (arrow heads) is
located a short distance behind the main central complex. (F–I) Panopeus chilensis (Brachyura, Xanthoidea). (F) General view of the
SDO; a pair of additional pores (arrow heads) is located a short distance behind the main central complex. (G) Detail of one of the
four sensory plates. (H) Detail of the central pore. (I) Detail of one of the two extra pores located behind the main central complex.
(J) Scyllarus sp. (Achelata), general view of the SDO; note that the central area is devoid of any perforations. (K) Galathea squamifera
(Anomura), general view of the SDO. (L) Palaemon adspersus (Caridea), general view of the SDO; note that each sensory plate displays
four tiny pores (arrow head).
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Fig. 3. Legend on next page.
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known variations affecting these branchiopod SDOs can also
be observed in malacostracan SDOs.

In most species, the central complex (sensors + central
element) of the SDO is slightly less than 20 μm in length (sag.)
and slightly more than 20 μm in width (tr.). It occupies a
greater area in Caridina zeylanica [about 45 μm in length (sag.)
and 75 μm in width (tr.)] and Neocaridina heteropoda [about
85 μm in length (sag.) and 105 μm in width (tr.)], but the
size of the sensors in these species ranges from 3 to 7 μm in
length and slightly less in width, as in most species. These
greater dimensions of the central complex are not related to
a greater body size, which is rather modest (2–3 cm) in these
species. By contrast, in the two thalassanideans investigated
by Laverack & MacMillan (1999), the central complex was
not only notably larger [about 115 μm in length (sag.) and
145 μm in width (tr.) in Callianassa australiensis, and 100 μm in
length (sag.) and 70 μm in width (tr.) in Upogebia sp.], but was
associated with sensors about twice (Upogebia sp.) and four
times (C. australiensis) larger than the sensors of other species.
How this difference in the dimensions of the sensory plates
affects the way they function is unknown, but it is noteworthy
that these two taxa are endobenthic.

(2) Ultrastructure and innervation

Detailed investigations of the ultrastructure of the SDO have
only been undertaken in two species: the syncarid Anaspides
tasmaniae and the eucarid Crangon crangon (Laverack et al.,
1996). Interestingly, while the SDO of these two taxa differ
notably in external aspects, their ultrastructures are strikingly
similar, suggesting that the internal organization of the SDO
is conservative in malacostracans.

The whole complex is essentially an island of thin cuticle
(Laverack et al., 1996, Fig. 4). The central area is associated
with an invagination of an extremely thin epicuticle, which
forms a blind-ending tube surrounded by a single large cell.
This cell is not innervated and its strongly folded membrane
and numerous vacuoles/vesicles are suggestive of a secretory

function. In the two species investigated, the sensors take
the form of slightly elevated bumps externally (i.e. papillae).
In Anaspides tasmaniae, each bump contains a blind pocket,
while it corresponds to a blind tube in Crangon crangon.
The floor of the pocket/tube is made of an extremely thin
layer of cuticle (0.05–0.1 μm). Immediately below is a thin
layer of electron-dense, extracellular material of unknown
nature. In both taxa, four outer dendritic segments, separated
from one another by sheath cells, are found associated with
each sensory area. Only in C. crangon, however, do the
extremities of these dendrites pass through the electron-
dense material and protrude into the thin epicuticle. One
dendrite under each papilla lies alongside the pocket/tube,
instead of beneath it, as in the three others. These dendrites
correspond to four distinct monociliary nerve cells per papilla
in both taxa.

The presence of a single, large secretory cell under
the central area and four outer dendritic segments below
each papilla has previously been described in larvae of the
brachyuran Hyas cornatus by Laverack & Barrientos (1985).
However, the outer dendritic segments correspond to only
two biciliary nerve cells in these larvae. Four pegs, apparently
associated with the four dendrites, are visible at the surface
of each sensory plate in Crangon crangon (Laverack et al.,
1996), but also in the adults of Atya gabonensis (Fig. 3H),
Atyopsis moluccensis (Fig. 3M), Caridina cantonensis (Fig. 3U),
C. multidentata, Eualus cranchii (Laverack & Crombie, 1988),
Macrobrachium intermedium, Neocaridina heteropoda (Fig. 3T),
Palaemon serenus [Laverack & MacMillan, 1999; also in larvae
of P. adspersus (Fig. 2L)], and the larvae of Homarus gammarus
(Barrientos & Laverack, 1986), Jasus edwardsii (Nishida &
Kittaka, 1992), and an unidentified stomatopod (Laverack &
MacMillan, 1999).

Lastly, it has been shown in Macrobrachium intermedium
that the SDO is innervated from the tritocerebrum through
the tortuous route of a particular branch of a large nerve
(Laverack & Sinclair, 1994). This confirms a statement of
Hanstrøm (1947) concerning the innervation of the SDO in

Fig. 3. The sensory dorsal organ (SDO) in adults of diverse freshwater caridean shrimps. All figures are scanning electron
micrographs of exuviae coated with gold; anterior is to the top for all. (A–D) Caridina multidentata. (A) Carapace in dorsal view, with
the locations of the SDO (white arrow head) and posterior SDO (black arrow head). (B) General view of the SDO; note the tiny
pores surrounding the central complex laterally and anteriorly. (C) Detail of the central complex with four sensory plates and a large
central pit associated with tiny perforations. (D) Three of the numerous pores surrounding the central complex. (E–J) Atya gabonensis.
(E) General view of the SDO; the ovoid objects are pennate diatoms stuck to the cuticle. (F) Detail of the central complex; four
of the pits/pegs surrounding the central complex are visible on the left (arrow heads). (G) Detail of the central area of the central
complex made of a large depression (partially broken) and tiny perforations. (H) Sensory plate exhibiting four pegs. (I, J) Two of the
numerous pegs (I) or pores (J) surrounding the central complex. (K–N) Atyopsis moluccensis. (K) General view of the SDO; note the
tiny pores surrounding the central complex laterally and anteriorly. (L) Detail of the central complex made of four sensory plates and
a large central pit associated with tiny perforations. (M) Sensory plate with four pegs. (N) One of the numerous pegs surrounding the
central complex. (O) Atyaephyra desmaresti, detail of the carapace showing the location of the SDO a short distance posterior to the
last rostral spine. (P) Caridina zeylanica, general view of the SDO; note that the organ is not associated with an island of thin cuticle as
in B, E, or K. (Q–T) Neocaridina heteropoda. (Q) Detail of the carapace showing the location of the SDO a short distance posterior to
the last rostral spine; as in C. zeylanica, the organ is not associated with an island of thin cuticle. (R) General view of the SDO; note
that the glandular element is located between the two anterior sensory plates. (S) General view of the organ; note that each sensory
plate is covered by a bump in this specimen (arrow heads). (T) Sensory plates with four pegs. (U–W) Caridina cantonensis. (U) Sensory
plates bearing four pegs. (V) Detail of the carapace showing the location of the SDO a short distance posterior to the last rostral
spine. (W) General view of the SDO; only two of the four sensory plates are visible (arrow heads).
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Fig. 4. Schematic representation of the ultrastructure of the sensory dorsal organ. Only one of the four sensors is represented. Each
sensor is composed of four sensory cells, which are each surrounded by two sheath cells and an envelope cell. The central gland is
made of a single large glandular cell exhibiting numerous microvilli. ec, envelope cell; ep, epicuticle; en, endocuticle; ex, exocuticle;
gc, glandular cell; id, inner dendritic segment; m, microvilli; od, outer dendritic segment; pe, peg; s, sheath of electron-dense
material; sh1, inner sheath cell; sh2, outer sheath cell; sp, sensory plate; v, vacuole. Modified after Laverack et al. (1996, fig. 5).

Anaspides tasmaniae. Unfortunately, nothing is known about
the innervation of the SDO in other taxa. Such investigations
would provide critical arguments for testing the homology of
this organ both within and outside the Eumalacostraca.

(3) The posterior SDO

Laverack & MacMillan (1999) reported the presence in
larvae or adults of several crustaceans of a second, posteriorly
located organ. They suggested that this posterior organ may
be related to the SDO, but neither their succinct descriptions
nor their illustrations (Laverack & MacMillan, 1999, figs. 1.5,
2.4, 3.4) provide evidence in support of this relationship.
Nishida & Kittaka (1992) described with greater precision the
posterior organ of some phyllosoma larvae of Jasus edwardsii
(Hutton, 1875), but unfortunately their only illustration of it
is a schematic drawing (their fig. 3B). They clearly mentioned
that this organ and the SDO were virtually identical, except
for a greater number of sensory plates (10) in the former.
They also mentioned the presence of two to four pegs on
the sensory plates, but did not note whether the SDO and
the posterior organ differ in this feature. Another posterior
organ was illustrated by Meyer, Wehrtmann & Melzer (2006,
fig. 4A; Fig. 5C herein) in a larva of the brachyuran Portunus
acuminatus, which also displayed a SDO anteriorly. Our
investigations have revealed that similar organs occur in
larvae of xanthoid (Eurypanopeus planus, Lophozozymus incisus,
Panopeus chilensis) and grapsoid (Goniopsis pulchra) brachyurans
(Fig. 5A, B, D–H). They are composed of three pairs of
sensory plates often located on a swollen area. Two pairs
are arranged at the corners of a square. The sensory plates
composing the third pair are more medially positioned in
the anterior part of this square, or slightly in front of it,
flanking a large pore (Fig. 5B–E). A second, smaller pore
was repeatedly observed a short distance posteriorly from this

large pore (Fig. 5B–E). A pair of pores also occurs behind the
organ in the larvae of P. acuminatus (Fig. 5C) and P. chilensis

(Fig. 5E, H). No posterior organs were detected in the larvae
of Galathea squamifera (Anomura), Palaemon adspersus (Caridea),
and Scyllarus sp. This latter observation suggests that within
the Achelata the families Palinuridae and Scyllaridae may
differ with regard to this character.

A specific search for a posterior organ in adult freshwater
carideans revealed its occurrence in at least four species: Atya

gabonensis, Atyopsis moluccensis, Caridina multidentata, and Caridina

spinata (Fig. 5I–O). This organ occurs along the sagittal line
of the carapace near its posterior margin (Fig. 3A). Its
organisation is reminiscent of the SDO, but it appears more
complex. In C. multidentata, it consists of a large, discoid
island of flexible cuticle, with six plates surrounding a central
area (Figs 1B, 5I, J). As in the sensory plates of the SDO,
pegs occur at the surface, but only two instead of four for
each plate (Fig. 5J). The central area bears one or a few
large pores, sometimes surrounded by minute perforations.
As in the SDO, the central complex (sensors + gland) is
associated with numerous, minute pits, but these are located
posteriorly (instead of anteriorly) and laterally (Figs 1B, 5I).
Their arrangement is not symmetrical relative to the sagittal
axis and they are seldom replaced by pegs. The organ is
vaguely delimited by concentric wrinkles, but a few of the
peripheral pits can occur beyond this limit (Fig. 1B). A
similar organ has been observed on one individual (two
exuviae) of A. moluccensis (Fig. 5K–M). As in C. multidentata,
each sensory plate bears two pegs (Fig. 5L) and minute,
peripheral pits occur on both sides (but not posteriorly) of the
central complex. However, two additional sensory plates,
each bearing two pegs, are visible posterior to the organ
(Fig. 5K, M). The distance between these two additional
sensors exceeds 30 μm.
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Fig. 5. Legend on next page.
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The posterior organ observed in adult carideans and
brachyuran larvae strongly resembles the SDO in the
organisation of its central elements and the presence of pegs
on the plates, suggesting that they are sensory plates. In adult
carideans, additional similarities between the two organs
are the presence of numerous, minute pits surrounding
the central complex, their association with large islands of
flexible cuticle, and their location along the sagittal line of the
carapace. Accordingly, we consider that this posterior organ
is related to the SDO and probably undertakes a similar
function. We propose to name it the posterior SDO. In most
cases, it comprises six sensors. The extra fourth pair observed
in Atyopsis moluccensis is rather distant from the organ (Fig. 5K)
and at present it is difficult to assess whether it is in fact part of
this organ. In the posterior SDO of phyllosoma larvae of Jasus
edwardsii, however, five pairs of sensors seem to be associated
with the central swollen area, suggesting that variability may
occur in the number of sensors composing this organ.

IV. DISTRIBUTION

(1) Distribution within the Crustacea

The distribution of the SDO within the Crustacea was
surveyed by Laverack & Macmillan (1999). We complement
their data with our own observations in various marine or
freshwater malacostracans and with reports overlooked by
these authors or published more recently. This updated
distribution of the SDO in the Crustacea is presented
in Table 3. This table only includes occurrences of an
organ that we can reasonably assume to be a SDO. Several
structures described by Hansen (1921) or Mauchline (1977)
for example, were not included due to the absence of
adequate illustrations.

The great majority of the ‘dorsal organs’ described in
branchiopods are DITCs (Elofsson & Hessler, 2008). A few
species, however, exhibit a more complex organ composed
of five elements arranged in a quincunx, as in the SDO of
malacostracans. Laverack & MacMillan (1999) mentioned

the spinicaudatan Limnadia sp., and other examples have been
identified in the Diplostraca (Table 3). Rieder et al. (1984)
described the ultrastructure of such an organ in Limnadia
lenticularis and suggested a possible role in ion regulation.
However, its internal organization shows some similarities
with that of the SDO, such as the presence of a central
cell with microvilli and four nerve fibres (see Section III.2).
On the other hand, this organ comprised more cell types
than in the SDO; until further investigations are carried out
on the ultrastructure and innervation of both organs, their
homology remains uncertain.

The presence of a SDO in many malacostracans is less
equivocal (Table 3). Mostly known in eumalacostracans, the
organ has also been observed in the Phyllocarida and the
Hoplocarida (Laverack & MacMillan, 1999, Table 3). A
few remarks are necessary about its distribution within the
Eumalacostraca. Firstly, the ‘SDO’ described by Laverack
& MacMillan (1999) in the euphausiacean Euphausia superba
comprised seven elements suggesting that it may in fact be a
posterior SDO (Section III.1b). Secondly, the SDO has only
been observed in larval stages in many decapods (Table 3).
As illustrated by Jasus edwardsii (Laverack & MacMillan,
1999), the organ progressively disappears during ontogeny
in these taxa, possibly due to the development of a thick
and mineralized cuticle. Indeed, in the taxa where the SDO
persists until adulthood, the cuticle remains rather thin and
weakly mineralized. This is the case for all the carideans we
investigated, which are rather small species (rarely exceeding
4 cm in length), and for the two thalassanideans described
by Laverack & MacMillan (1999), which are burrowing
species (Ruppert & Barnes, 1994, p. 703). Lastly, Laverack
& MacMillan (1999) searched for the presence of a SDO
in various adult peracarids without success. However, no
younger developmental stages were investigated. Hansen
(1921) described several dorsal structures in some Isopoda
and Mysida, but none seems to be typical of a SDO. If
confirmed, this absence of SDOs in the Peracarida could
be regarded as an autapomorphy for this group. The
posterior SDO has been observed in representatives of the
Eumalacostraca, the Phyllocarida, and the Hoplocarida.

Fig. 5. Posterior sensory dorsal organs (posterior SDOs) in larvae and adults of diverse decapods. All figures are scanning electron
micrographs of specimens coated with gold; anterior is to the top for B–O. (A, B) Goniopsis pulchra (Brachyura, Grapsoidea). (A)
Entire specimen in posterior view showing the position of the posterior SDO (arrow head). (B) General view of the posterior SDO;
note the tiny pore (arrow head) located behind the larger one which is framed laterally by sensory plates. (C) Portunus acuminatus
(Brachyura, Portunoidea), general view of the posterior SDO; note the small pore (white arrow head) in the centre of the main central
complex and the pair of pores located behind this complex (black arrow heads). (D) Eurypanopeus planus (Brachyura, Xanthoidea;
larva), general view of the posterior SDO; note the small pore (arrow head) located in the centre of the main central complex.
(E–H) Panopeus chilensis (Brachyura, Xanthoidea; larva). (E) General view of the posterior SDO; note the small pore (white arrow
head) located behind the large pore and the pair of additional pores (black arrow heads) located a short distance behind the main
central complex. (F) Detail of two sensory plates. (G) Detail of the large pore. (H) Detail of one of the two pores present behind the
main central complex. (I, J) Caridina multidentata (Caridea; adult). (I) General view of the posterior SDO; the main central complex
is surrounded laterally and posteriorly by numerous, tiny pits (arrow heads). (J) Detail of the main central complex; note that each
sensory plate bears two pegs (arrow heads). (K–M) Atyopsis moluccensis (Caridea; adult). (K) General view of the posterior SDO; note
the extra pair of sensory plates behind the organ (arrow heads). (L) Detail of the main central complex; the large central pit is
surrounded by tiny perforations and each sensory plate bears two pegs (arrow heads). (M) Detail of one of the two extra sensory
plates located behind the organ; note the two pegs. (N) Caridina spinata (Caridea; adult), general view of a possible posterior SDO.
(O) Atya gabonensis (Caridea; adult), general view of the posterior SDO.
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Table 3. Distribution of the sensory dorsal organ (SDO) and posterior SDO in the Crustacea

Class (subclass)

Superorder
order

(suborder or infraorder) Species Remarks References

Branchiopoda
(Phyllopoda) Spinicaudata Limnadia sp.? Laverack & Macmillan (1999)

Diplostraca
(Cladocera) Eurycercus glacialis? -Quincunx organisation Olesen (1996)

E. lamellatus? -Quincunx organisation Olesen (1996)
(Cyclestherida) Cyclestheria hislopi? -Quincunx organisation Olesen (1996)
(Laevicaudata) Lynceus brachyurus?

L. gracilicornis?

-Quincunx organisation
-In larvae and adults
-Quincunx organisation

Olesen (1996, 2005) and

Martin & Belk (1988)
Paralimnetis mapini? -Quincunx organisation Martin & Belk (1988)

Malacostraca
(Phyllocarida) Leptostraca Nebalia longicornis -Second organ posteriorly Laverack & Macmillan (1999)

Malacostraca
(Hoplocarida) Stomatopoda Neogonodactylus oerstedii -Second organ posteriorly Laverack & Macmillan (1999)

Unidentified larvae -Second organ posteriorly Laverack & Macmillan (1999)
Malacostraca

(Eumalacostraca) Syncarida
Anaspidacea Anaspides tasmaniae Laverack et al. (1996)

Laverack & Macmillan (1999)
Eucarida

Euphausiacea Euphausia superba -Posterior organ Laverack & Macmillan (1999)
Eucarida
Decapoda

(Dendrobranchiata) Acetes sibogae Laverack & Macmillan (1999)
Sergestes sp. -Second organ posteriorly Laverack & Macmillan (1999)

(Pleocyemata)
(Achelata) Jasus edwardsii -Larvae only; progressively

disappear during ontogeny
-Second organ posteriorly in

earliest larval stages

Nishida & Kittaka (1992) and
Laverack & Macmillan (1999)

Scyllarus sp. -In larvae
-No second organ posteriorly

Herein

(Astacidea) Homarus gammarus -In larvae only Laverack & Barrientos (1985),
Barrientos & Laverack (1986)
and Laverack & Macmillan

(1999)
Nephrops sp. -In larvae only Laverack & Barrientos (1985)

(Anomura) Galathea squamifera -In larvae Herein
Porcellana sp.
P. platycheles

-In larvae only
-In larvae only

Laverack (1988), Barrientos &
Laverack (1986), and
Laverack & Macmillan
(1999)

(Brachyura) Carcinus maenas -In larvae only Laverack & Barrientos (1985)
and Barrientos & Laverack
(1986)

Dissodactylus crinitichelis -In larvae Pohle & Telford (1981)
Ebalia tuberosa -In larvae only Laverack & Macmillan (1999)
Eurypanopeus planus -In larvae

-Second organ posteriorly
Herein

Goniopsis pulchra -In larvae
-Second organ posteriorly

Herein

Hyas cornatus -In larvae only Laverack & Barrientos (1985)
and Barrientos & Laverack
(1986)

Leurocyclus tuberculosus -In larvae
-Second organ posteriorly

Santana & Marques (2009)

Lophozozymus incisus -In larvae
-Second organ posteriorly

Herein
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Table 3. (Cont.)

Class (subclass)

Superorder
order

(suborder or infraorder) Species Remarks References

Panopeus chilensis -In larvae
-Second organ posteriorly

Herein

Portunus acuminatus -In larvae
-Second organ posteriorly

Meyer et al. (2006)
Herein

Sesarma elegans -In larvae only Laverack (1988)
Xantho pilipes
X. poressa

-In larvae
-In larvae

Herein
Herein

(Caridea) Alpheus sp. -Second organ posteriorly Laverack & Macmillan (1999)
Atya gabonensis -Second organ posteriorly Herein
Atyaephyra desmaresti Herein
Atyopsis moluccensis -Second organ posteriorly Herein
Caridina cantonensis
C. balbauti
C. multidentata
C. spinata
C. zeylanica

-Second organ posteriorly
-Second organ posteriorly

Herein
Herein
Herein
Herein
Herein

Crangon crangon Laverack & Crombie (1988)
and Laverack et al. (1996)

Eualus cranchii Laverack & Crombie (1988)
Macrobrachium intermedium Laverack & Sinclair (1994) and

Laverack & Macmillan
(1999)

Neocaridina heteropoda
N. palmata

Herein
Herein

Palaemon adspersus
P. serenus

-In larvae Herein
Laverack & Macmillan (1999)

Pandalus montagni Laverack & Crombie (1988)
Rhynchocinetes rugulosus Laverack & Macmillan (1999)
Troglocaris (T.) planinensis Herein
Unidentified larvae Laverack & Macmillan (1999)

(Thalassanidea) Callianassa australiensis Laverack & Macmillan (1999)
Upogebia sp. -In larvae and adults Laverack & Macmillan (1999)

The presence of a question mark after a species name indicates that the organ present in this taxon may not be a typical SDO.

Within the Maxillopoda, the cephalic dorsal hump (CDH)
of some copepods and especially the lattice organ complex
(LOC) of thecostracan larvae may represent homologues to
the SDO (see Section IV). If confirmed, this would mean
that a DSPO might have been inherited from at least the
common ancestor of the Branchiopoda, the Malacostraca,
and the Maxillopoda. No DSPO has ever been described
in the Cephalocarida, the Ostracoda, or the Remipedia
(Elofsson & Hessler, 2008), but none of these groups has
been specifically surveyed for the presence of such organs
(Laverack & MacMillan, 1999). Such investigations will
be essential for determining whether a DSPO has been
acquired in specific groups of crustaceans, or if it was present
in the common ancestor of all crustaceans and then lost
secondarily in some clades.

(2) Distribution and ecological niche

Determining the function of the SDO will require
physiological and behavioural experiments to be undertaken.
In the meantime, analysing the distribution of this organ with

regard to ecological and biological characteristics may help
to elucidate its possible roles. SDO-bearing crustaceans occur
in fresh water (e.g. most carideans discussed herein; Anaspides

tasmaniae), brackish water (e.g. Macrobrachium intermedium),
and purely marine environments [e.g. Neogonodactylus oerstedii

(Hansen, 1895)]. Some are inhabitants of tide pools and are
therefore able to survive significant variations in salinity [e.g.
Eualus cranchii (Leach, 1817); Laverack & Crombie, 1988].
Others live in habitats where environmental parameters
(including salinity) are remarkably stable [e.g. the cave
shrimp Troglocaris (T .) planinensis]. It can therefore be
concluded that the presence of a SDO is unlikely to be
related to life in a particular environment. Likewise, it
is not restricted to organisms with one particular feeding
mode or diet. Indeed, most freshwater carideans investigated
herein are detritivores, feeding mainly on algae and other
organic remains they find on the substratum. A few of
them (Atya gabonensis, Atyopsis moluccensis), however, are filter
feeders, exposing fan-like chelae to water currents to trap
organic particles and microorganisms. Some SDO-bearing
crustaceans are predators, such as Alpheus sp., N. oerstedii,
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and M. intermedium. A relationship between the presence of
a SDO and a pelagic life style was suggested by Laverack
(1988) based on the occurrence of the SDO only in planktonic
larval stages in several decapods. However, this was rejected
following the description of SDOs in some epibenthic (e.g.
N. oerstedii) and endobenthic (e.g. Callianassa australiensis,
Upogebia sp.) crustaceans (Laverack & MacMillan, 1999).
The occurrence of a SDO and a posterior SDO only
in the early developmental stages of many crustaceans
(Table 3) is of interest, however, since it suggests that
these organs may be primarily larval features. It also raises
the question of the influence of developmental strategies
on the persistence of these organs in adults. Freshwater
carideans offer an opportunity to address this issue, since
hatching in these shrimps is frequently delayed compared
with marine forms as an adaptation to life in freshwater
environments. Some of the taxa investigated (e.g. Caridina
multidentata) still hatch as planktonic larvae and undergo
partial development in downstream brackish environments,
but others (e.g. Neocaridina heteropoda) hatch directly as minute
adult-like individuals that immediately adopt a (semi-)benthic
life style. The presence of the organ in adults of all these
forms implies that this variation in developmental strategy
does not affect the development of the SDO or its persistence
into adulthood. Likewise, when we investigated the sex
of individuals (in Atyaephyra desmaresti, C. multidentata, N.
heteropoda), we found no difference in external aspect or
location of the SDO between the sexes.

In summary, the SDO occurs in crustaceans with various
ecological or biological characteristics and apparently in both
sexes. Accordingly, a specific function cannot be inferred
from the analysis of its distribution pattern. On the other
hand, this significant ecological/biological diversity of SDO-
bearing crustaceans suggests that this organ carries out an
essential function in these organisms in a wide variety of
ecological niches.

V. THE OTHER DORSAL SENSORY PIT ORGANS

(1) The lattice organ complex (Thecostraca)

(a) Morphology, variability, internal structure, and ontogeny

Settlement larval stages of thecostracans (i.e. cypris or
homologous larvae) usually possess five pairs of cuticular
structures along the dorsal midline of the head shield. These
paired sensory structures, named lattice organs (LO) by
Elfimov (1986), are arranged in two clusters (Fig. 6A). The
first two pairs of LO (LO1 and LO2) are located in the
anterior region of the head shield (Fig. 6A, B). The second
cluster, comprising the remaining three pairs (LO3–LO5),
occurs in the posterior-third of the head shield, with LO5
being frequently positioned at a greater distance from LO4
than LO4 is from LO3 (e.g. Celis et al., 2008, Fig. 6A,
C). In the centre of the anterior cluster and of the area
circumscribed by LO3 and LO4 sit one or more large
pores. For a given pair, the LO are positioned symmetrically

relative to the midline of the head shield. This distribution
into two clusters of LO, each associated with a central gland,
is fixed in the Thecostraca, which suggests that they represent
two distinct sensory-glandular organs, only differing in the
number of sensors involved. It is therefore unfortunate that
the term ‘organ’ has been employed to refer to the sensory
elements (LO) only. However, as ‘lattice organ’ has been
repeatedly used in this sense in the past, we propose here the
term of lattice organ complex (LOC) for the association of
two or three pairs of LO with one central gland.

Two general types of LO can be recognized from their
external morphology, the ‘keel in a trough’ and the ‘pore
field’ types (Jensen et al., 1994b). As described by Rybakov
et al. (2003, p. 16), the ‘keel in a trough’ type resembles ‘an
open-ended seta lying prostrate in an oblong depression
and partially fused with the head shield’ (e.g. Høeg &
Kolbasov, 2002, fig. 5B). It has been observed in larvae of the
Ascothoracida, some Facetotecta, and some acrothoracican
Cirripedia (Jensen et al., 1994b; Høeg & Kolbasov, 2002). In
the remaining Cirripedia, LO are represented by an elongate,
plate-like area perforated by numerous pores (‘pore field’
type; e.g. Høeg & Kolbasov, 2002, fig. 5A). In both types, a
large terminal pore is present at one or the other end of the
area (except in the Rhizocephala Akentrogonida, Jensen et al.,
1994a), depending on the specific LO or taxon concerned
(Høeg & Kolbasov, 2002). The ‘pore field’ type occurs only
within the Cirripedia and the existence of an intermediate
type in this group suggests that it evolved from the ‘keel in a
trough’ type (Jensen et al., 1994b; Høeg & Kolbasov, 2002).

The internal structure of the LO has been investigated
in representatives of the Ascothoracida, Cirripedia, and
Facetotecta (Høeg et al., 1998; Høeg & Kolbasov, 2002).
These investigations revealed striking similarities in the
internal organisation of LOs of the ‘keel in a trough’ and the
‘pore field’ types. Each LO is composed of a chamber situated
in the exocuticle, which is, as a consequence, thickened locally
(Fig. 6D). In ‘pore field’ LOs, numerous canals associated
with the minute pores seen on the surface run through the
roof of this chamber, but remain separated from the inside by
an extremely thin layer of epicuticle and a thin layer of highly
electron-lucent exocuticle (Høeg et al., 1998). It is not clear
whether the canal associated with the large terminal pore
opens into the chamber (Høeg et al., 1998; Høeg & Kolbasov,
2002). The chamber communicates with the interior of the
larva by a large channel through the cuticle. Each organ
is innervated by two sensory cells, whose inner dendritic
segments continue into two outer dendritic segments (Høeg
et al., 1998). The resulting four outer dendritic segments enter
the cuticular chamber and run through it up to the vicinity of
the terminal pore (Fig. 6D). Sheath cells devoid of scolopale
envelop these dendrites, except at their most distal regions.
In the chamber, the outer dendritic segments are also more
or less enveloped by an electron-dense, extracellular sheath
of unknown nature. This sheath extends to the terminal
pore of the organ and is associated with balls of similarly
electron-dense material adhering to the roof of the chamber
(Høeg et al., 1998, Fig. 6D).
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Fig. 6. External morphology and ultrastructure of the lattice organ complexes (LOC) of thecostracans. (A–C) Capitulum mitella
(Cirripedia; cyprid larva), scanning electron micrographs (courtesy of J. Høeg); anterior is to the left. (A) Entire specimen in dorsal
view showing the positions of the anterior and posterior lattice organ complexes (aLOC and pLOC, respectively). (B) Anterior
LOC; note a pair of pegs anteriorly (pe), apparently associated with the anterior LOC in this species. (C) Posterior LOC; note that
LO5 occupy unusual antero-lateral positions in this species. (D, E) Schematic representations of the ultrastructure of one lattice
organ (LO) (D) and the central gland (E) of a generalised cirripede LOC. D is modified after Høeg et al. (1998, fig. 6). b, ball of
electron-dense material; cc, cuticular chamber; ep, epicuticle; en, endocuticle; ex, exocuticle; gc, glandular cell; gp, gland pore;
id1 and id2, inner dendritic segments 1 and 2; m, microvilli; n, nucleus; od, outer dendritic segment; pe, peg; pi, pit; s, sheath of
electron-dense material; sh1, inner sheath cell; sh2, outer sheath cell; sm, secreted material; tp, terminal pore; v, vacuole.

The internal organisation of the central element of the
LOC was also investigated by Høeg et al. (1998; their
‘lattice organ glands’). In Trypetesa lampas (Acrothoracica), the
putative central ‘pore’ represents a small cuticular chamber
covered by the epicuticle and a thin layer of electron-lucent
exocuticle (Fig. 6E). An electron-dense material is released
into the chamber by a large secretory cell located beneath.
In Peltogaster paguri (Rhizocephala), the ultrastructure of the
central area is similar, but in the posterior cluster at least the
gland is composed of two secretory cells.

Lastly, it has been shown that precursors of the LOs of
cyprids (or cyprid-like larvae) exist in nauplii in the form
of pore-bearing setae (Walossek, Høeg & Shirley, 1996;
Rybakov et al., 2003; Høeg et al., 2009).

(b) Comparison with the SDO

It has been repeatedly mentioned that the LO exhibits
interesting similarities with the sensors of the SDO (e.g.

Høeg et al., 1998; Laverack & MacMillan, 1999; Elofsson
& Hessler, 2008). The description of the posterior SDO in
adult carideans and brachyuran larvae provides additional
support for a possible homology between the LOC of
thecostracans and the SDO of (mostly) malacostracans.
Indeed, the posterior sensory-glandular complex differs from
the anterior one in having an extra pair of sensors in both
groups (for exceptions, see Section III.3). Thus, it is not
only the number (two) and position (anterior and posterior)
of the sensory-glandular complexes that are the same in
thecostracans and many malacostracans, but also the number
(five or seven) and gross disposition (four or six peripheral
sensors, one central gland) of the elements of each of these
complexes.

The most notable difference between the SDO and the
LOC is to be found in the external aspect of their sensors.
To date, there is no report of a SDO with sensory plates
having a ‘keel in a trough’ or a ‘pore field’ morphology.
These external characteristics of the sensors have apparently
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evolved only in the Thecostraca, probably in relation to
the development of a cuticular chamber housing the outer
dendritic segments of the nerve cells. However, the external
morphology of the sensors of the SDO is known to vary (see
Section III.1b) and a comparable differentiation of the cuticle
associated with the sensors might be described in the SDO
of a malacostracan in the future. Moreover, this difference in
external morphology should not mask the striking similarities
in internal organisation between the SDO and the LOC. The
sensors (sensory plates/LO), for example, are associated with
four outer dendritic segments in both organs (Figs 4, 6D).
These correspond to four nerve cells in adults of Atyaephyra
tasmaniae and Crangon crangon, but in the zoea of Hyas they
are associated with two biciliary sensory cells as in the LO of
thecostracan larvae. Moreover, an electron-dense material
has been observed in close association with these outer
dendritic segments in both organs, and no scolopales occur
within the enveloping sheath cells (Høeg et al., 1998). The
central gland is also similar in the SDO and the LOC, being
composed of a restricted number of secretory cells (one in the
SDO, Laverack et al., 1996; one, more rarely two in the LOC,
Høeg et al., 1998) with similar ultrastructural characteristics.

In summary, several lines of evidence (number,
position, composition, and internal organisation) support
the hypothesis that the thecostracan LOC and the SDO
are homologous organs, a view shared with Høeg et al.
(1998). A definitive confirmation of this could come from
the demonstration that the anterior and posterior organs
in the two groups are similarly innervated. Exploring the
innervation of the posterior SDO and the two LOCs would
therefore be of the utmost importance to demonstrate an
ancient origin of DSPOs within the Crustacea.

(2) The cephalic dorsal hump (Copepoda)

The third organ considered by Elofsson & Hessler (2008)
as a DSPO is the cephalic dorsal hump (CDH) of calanoid
copepods. Like the SDO and the LOC, the CDH is a
sensory glandular organ located antero-medially on the
dorsal surface of the cephalic shield. However, it differs
significantly from the other two DSPOs in its external
morphology and ultrastructure and unlike them, has only
been observed in males.

Nishida (1989) described the CDH as a keel-shaped
process with four surfaces. The anterior and dorsal surfaces
typically bear one pore each (the anterior and apical pores,
respectively), while the lateral surfaces are characterized by
an extremely thin cuticle. The number of pores associated
with this organ varies greatly. There can be one, two,
or several minute anterior pores, between zero and two
apical pores and in a few instances, one or two additional
pores posteriorly. Strikingly, these variations are sometimes
observed within a single species.

The CDH is composed of two distinct glands, made of one
secretory cell each, and one sensor composed of two biciliary
sensory cells and two pairs of sheath cells (Nishida, 1989).
The anterior gland (connected to the anterior pore) differs
from the apical gland (connected to the apical pore) in the

presence of a canal cell and the absence of modification of the
overlying cuticle. In this regard, it also differs strongly from
the glands of the SDO and the LOC. The sensory cells are
more similar to the sensory cells of these latter two organs,
being biciliary and associated with two sheath cells devoid of
scolopales. However, these sheath cells form cavities housing
the outer dendritic segments of the nerve cell, a feature not
observed in other DSPOs. Lastly, Nishida (1989) mentioned
that the glands and the receptor are surrounded by muscle
cells, the presence of which has not been reported in the
SDO or the LOC.

In summary, the CDH possesses an apical gland and
a sensor which have some ultrastructural characteristics
in common with the gland and the sensors of the other
DSPOs. But it also exhibits important differences: the
presence of an additional gland of a different type, a possible
association with muscle cells, and the absence of the typical
configuration of four/six sensors surrounding one gland.
This latter characteristic is strongly constrained in the SDO
and the LOC (see Section V.3), probably due to their specific
functions. Also, while the CDH may deserve to be grouped
within the DSPOs with regards to its sensory glandular
nature and some of its ultrastructural characteristics, any
possible homology with the SDO and the LOC remains
uncertain.

VI. FUNCTION

While the SDO and the LOC are composed of both
sensory and glandular elements, the function of these organs
remains enigmatic. Indeed, neither the nature of the stimuli
monitored by the sensors nor the material secreted by the
gland have been determined.

(1) The sensors (sensory plates/LO)

Laverack et al. (1996; see also Laverack, 1988) suggested
that the sensors of the SDO are mechanoreceptors, with the
sensory cells monitoring the movements of the thin, overlying
cuticle in response to pressure changes in the external
environment. The description of a SDO in epibenthic or even
endobenthic (burrowing) animals led Laverack & MacMillan
(1999) to reconsider this hypothesis.

Alternatively, the sensors of the SDO could be
chemoreceptors (Barrientos & Laverack, 1986; Laverack,
1988; Elofsson & Hessler, 2008). The most convincing
evidence for this comes from their ultrastructural
characteristics, especially the lack of scolopales in the
sheath cells. As pointed out by Høeg et al. (1998), these
intracellular elements are typical of mechanoreceptors or
bimodal receptors, and their absence in the LO and the
sensors of the SDO suggests they more likely represent
chemoreceptors. In the LO, the outer dendritic segments
are enclosed in a cuticular chamber. However, the roof of
this chamber is most likely permeable, as suggested by the
presence of a terminal pore and, in the ‘pore field’ type,

Biological Reviews 88 (2013) 406–426 © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society

46



422 Rudy Lerosey-Aubril and Roland Meyer

of the numerous pits (Fig. 6D). Likewise, the sensors of the
SDO are associated with an extremely thin cuticle, which
probably permits chemicals from the outside to come into
contact with the outer dendritic segments lying below (Fig. 4).
The description in both organs of an electron-dense material
of unknown nature in contact with, or close to the outer
dendritic segments is particularly intriguing. In the LO, this
material is abundant at the opening of the canal leading to
the terminal pore and the outside environment (Høeg et al.,
1998, Fig. 6D), possibly suggesting an external origin.

(2) The gland

The role of the central gland is even more enigmatic. Barri-
entos & Laverack (1986) hypothesized that it could secrete a
chemical that reduces surface tension and therefore facilitates
buoyancy and/or swimming. Laverack (1988) suggested
that the secreted product could be a surfactant or some sort
of mucus. Laverack et al. (1996) suggested a more intimate
functional relationship between the gland and the sensors,
the former producing a gaseous or non-gaseous material to
aid the latter in the monitoring of pressure changes. Until this
product has been isolated and analysed, assumptions about
the function of this gland will remain highly speculative.
However, the suggestion of a possible functional link
between the gland and the sensors of a given organ through
the secretions of the former deserves consideration.

(3) Functional interactions between the gland and
the sensors

Ultrastructural studies of the sensors and the glands of the
SDO and the LOC have demonstrated that there are no
direct (cell to cell contacts) or indirect (via the central nervous
system and an innervation of the gland) physical relationships
between them. However, these different elements are always
found associated in a particular configuration, which implies
a functional relationship between them (Laverack, 1988) and
more specifically, the question of the sensitivity of the sensors
to the product of the gland. Indeed, the sensors appear to
encircle the gland. This is well illustrated by the lozenge
configuration of LO around the central pore in the anterior
LOC of some cirripeds (Jensen et al., 1994b, fig. 2; Høeg
& Kolbasov, 2002, fig. 7). Similarly tight surrounding of
the gland by sensors is also observed in the posterior SDO
of adult carideans (Fig. 3C, F, L). Moreover, the presence
of numerous pores/pegs surrounding the sensors and the
gland in the SDO and posterior SDO in adult carideans
(see Sections III.1b and III.3) strengthens the view that
these organs are functionally organized around the gland
(e.g. Figs 1A, 3B, E, K). The proximity and the size of
the different elements of the SDO/LOC also need to be
considered. Indeed, the gland is composed of one, or more
rarely two, cells in these organs and therefore its production
must be limited. This does not imply that the secreted
substance could not be detected by other organs on the same
individual or on another individual, but the proximity of
the surrounding sensors make them the best candidates for

its detection. This proximity might also explain the limited
number of sensors and their simplicity (only 2–4 sensory cells
per sensor). In this regard, it is noteworthy that the material
secreted by the glandular cell and the material occurring
in the cuticular chambers of the sensors both appear as
electron-dense in the LOC.

However, one might wonder why such an indirect
relationship exists between the sensors and the gland. This
apparent complexity might be the result of the evolution
of the organ. The different elements might have had
separate functions, which later became integrated during
their evolution, resolving into a more complex organ
that performed a new function (exaptation). This indirect
relationship may also be a way for the animal to detect a
parameter of the environment that cannot be monitored
by sensory cells alone. In this scenario, the secretion of the
gland could be stimulated by a change in an environmental
parameter or the contact of its apical membrane with
an unknown chemical. The secreted material would then
be detected by the sensors, which transmit the signal
to the central nervous system (CNS). Lastly, the indirect
relationship between the sensors and the gland could
be a means of monitoring a physical parameter of the
environment, such as water movement. In this hypothesis, the
positions of the sensors surrounding the gland is crucial, since
it would enable, after integration of the signals transmitted
to the CNS by each of the sensors, the movement of the
secreted substance from its central origin to the periphery to
be monitored.

Another question is the possible interaction between
the anterior and posterior organs within an individual.
Theoretically, their positions at the two extremities of the
cephalic shield should permit more accurate monitoring in
space of changes in the external parameter they are meant
to detect. However, cooperation between the two organs
may also be more direct than the simple integration by the
CNS of the information they provide. Indeed, both organs
apparently function as effectors (gland) and as receptors
(sensors) and if the sensors are sensitive to the chemical
secreted by the gland, it can be imagined that the substance
released by the gland of the anterior organ could also be
detected by the sensors of the posterior organ and vice versa. In
this regard, the absence of extra pores/pegs posterior to the
central complex in the SDO and anterior to it in the posterior
SDO in Caridina multidentata (Fig. 1) is particularly interesting.

We are well aware of the highly speculative nature of
these suggestions considering our limited knowledge of the
SDO and the LOC. However, they highlight some aspects
of the morphology of these organs that are, in our opinion,
crucial for understanding their function. The position of
these organs on the carapace and the strongly constrained
arrangement of their elements are obviously not fortuitous
and as such they deserve greater attention, especially in
the light of a possible functional relationship between the
gland and the sensors. We also concur with others (e.g.
Laverack et al., 1996; Laverack & MacMillan, 1999) that
physiological experiments, possibly coupled with behavioural
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observations, would be decisive in determining the function
of the SDO/LOC. Perhaps the suggestions developed above
will help to define the best way to conduct such investigations.

VII. POSSIBLE OCCURRENCE IN FOSSIL
CRUSTACEANS AND RELATIVES

Various cuticular structures exhibited by fossil crustaceans,
or forms phylogenetically close to the stem lineage of
crustaceans, have been compared, if not homologized with
the DSPOs of living taxa. However, several of these structures
differ from DSPOs by at least one, and usually several, of
the following criteria: external form, number, size, quincunx
organisation or location (Table 4). We consider that there
is no real justification for their comparison with the DSPOs
of living crustaceans and accordingly, these organs are not
discussed further herein.

By contrast, the dorsal structures possessed by three
species of arthropods from the Late Cambrian of Orsten
in Sweden may represent examples of DSPOs in fossils.
This is particularly the case for an organ described in the
eucrustacean Bredocaris admirabilis, which consists of four
pores located on a slightly swollen area on the top of the
cephalic shield (‘neck organ’; Müller & Walossek, 1988, p.
8, fig. 4, pl. 3, fig. 2, pl. 9, fig. 6). A similar organ is present
in a similar position in another eucrustacean, Rehbachiella
kinnekullensis, but its pores are positioned at the margin of
a plate-like, somewhat folded area (‘neck organ’; Walossek,

1993, pp. 108–110, fig. 6, pl. 1, figs 1, 3, 6, pl. 2, figs 7, 8,
pl. 3, fig. 5, pl. 5, fig. 5). This organ progressively disappears
during the ontogeny of this species, while it is still visible in
the largest specimens of B. admirabilis.

Walossek (1993) compared the anterior organ of
Rehbachiella kinnekullensis with the ‘dorsal organs’ of modern
branchiopods and found support for the attribution of this
fossil taxon to the Branchiopoda. However, the location and
the composition of this organ in both R. kinnekullensis and
Bredocaris admirabilis are consistent with it being a DSPO and
within the Branchiopoda, it is actually best compared to
the SDO-like organ exhibited by some (e.g. in Paralimnetis
mapini; Table 3). Consequently, it can be reasonably assumed
that its function was in part, if not exclusively, sensory. The
similarities between these fossil organs and the malacostracan
SDO were noted by Walossek (1993) leading him to suggest
that the fossil organs and the SDO-like organs of some
modern branchiopods might represent composite organs
assuming the functions of both a DSPO and a DITC. In this
scenario, a role in ion transport would have been acquired
secondarily, and the organ having this function would
therefore constitute a synapomorphy of the Branchiopoda
[and the Maxillopoda, but all the examples cited by Walossek
(1993) in this group have proved to be DSPOs]. We have no
new arguments in favour of or against this assumption, but
we agree with Walossek (1993) that the organs of these two
fossil species and the SDO-like organs of some branchiopods
suggest a particularly ancient origin of DSPOs in crustaceans
(at least in the common ancestor of the Branchiopoda, the
Maxillopoda, and the Malacostraca).

Table 4. Cuticular structures in fossil crustaceans for which a supposed relationship with dorsal sensory pit organs (DSPOs) are
rejected herein

Taxon (age) Cuticular structure
Main differences compared

with DSPO of living crustaceans Age/References

Archaeostraca
(Ordovician-Carboniferous) (1) Anterolateral sensory

structures
(2) Dorsal sensory structures
(3) Posterodorsal sensory

structure

(1) No morphological similarities; not located
along carapace midline

(2) No morphological similarities;
asymmetrically disposed (one valve only)

(3) No morphological similarities; single
structure

Crasquin et al. (2009)

Bradoriida
(Cambrian) ‘Dorsal organ’ No morphological similarities (tubercle

bearing a pore at its apex); only one pair of
structures

Zhang (2007)

Eucrustacean metanauplius
(Cambrian)

‘Dorsal organ’ ‘Plate-like suboval area’ devoid of pits or pores Zhang et al. (2010)

Thylacocephala
(Cretaceous) Organs supposedly homologous

to keel-in-a-trough LO
Lack obvious keel (and terminal pore); not

arranged as clusters with central pores; size
about three times that of LO; more than 20
pairs (instead of five)

Lang & Schram (2002)

The organ of the Cambrian eucrustacean metanauplius described by Zhang et al. (2010) is more similar to a dorsal ion-transporting complex
(DITC) than to a DSPO, as correctly mentioned by these authors. This review of the sensory dorsal organ (SDO) does not support the
assumption of Lang & Schram (2002) that adult (larger) crustaceans may have a greater number of sensors and that these may be larger.
Consequently, this is not an explanation for the differences observed between thecostracan lattice organs (LOs) and the structures described
in thylacocephalans.
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Interestingly, Rehbachiella kinnekullensis displays a second
organ made of three pairs of pores, located near the posterior
margin of the cephalic shield (Walossek, 1993, pl. 11, figs 6, 7).
A similar organ was observed in another arthropod from the
Orsten fauna, Agnostus (Agnostus) pisiformis (Müller & Walossek,
1987). It is composed of a cluster of pits on and around the
glabellar node (Müller & Walossek, 1987, pl. 8, figs 5–7).
This node is located in the posterior region of the cephalic
shield at its highest point. At its apex, six large pores and a
central smaller one are visible, the large pores being paired
and symmetrically disposed as in R. kinnekullensis. Unlike this
species, however, they are associated with a central pore and
eight paired, smaller pores that surround the glabellar node
posterolaterally. The precise arrangement of these different
pores suggests that they might have constituted a single organ.
The number (seven) and the disposition (six peripheral,
one central, somewhat different) of the main pores are
strongly suggestive of the morphology of the posterior SDO
described herein (see Section III.3). The smaller peripheral
pores and their posterolateral location relative to the main
pores also recall the small pits/pegs which surround postero-
laterally the central complex of the posterior SDO in Caridina
multidentata (Fig. 5I). The agnostids (suborder Agnostina)
have been traditionally recognized as trilobites (e.g. Cotton
& Fortey, 2005), but strong arguments against this have been
formulated (e.g. Walossek & Müller, 1990; Bergström &
Hou, 2005), placing them instead close to the stem lineage of
Crustaceans. Following the traditional view, Lerosey-Aubril
& McNamara (2008) hypothesized that the organ of A.
(A.) pisiformis might have evolved from the cephalic median
organ of other trilobites. However, considering the new data
on the posterior SDO of crustaceans presented herein, it
seems now more sensible to suggest that the organ of A.
(A.) pisiformis, the posterior organ of R. kinnekullensis, and the
posterior SDO/LOC may represent homologous organs.
If confirmed, this hypothesis would provide support to the
claim that agnostids are more closely related to stem-group
crustaceans than to trilobites. However, the number of SDO-
like structures that might have been present on the cephalic
shield of the earliest crustaceans remains ambiguous. Indeed,
A. (A.) pisiformis does not possess a second, more anteriorly
located organ, whereas this is the only SDO-like structure
observed in the eucrustacean B. admirabilis. Moreover, A. (A.)
pisiformis also exhibits clusters of regularly and symmetrically
arranged pores on the axial and terminal nodes (i.e. on the
pygidial axis). No SDO-like structure has ever been described
posterior to the cephalic shield in living crustaceans. It
remains likely that A. (A.) pisiformis provides a strong case for
the presence of putative DSPO in fossil arthropods outside
the Eucrustacea.

VIII. CONCLUSIONS

(1) The SDO is a sensory glandular complex made of
four peripheral sensors and a central gland. These elements
vary greatly in external appearance, but this has little

impact on their ultrastructural organisation. This organ is
associated with a thinning of the cuticle, particularly above
the sensors and the central gland. Each sensor typically
contains four outer dentritic segments that can be derived
from either four monociliary or two biciliary nerve cells.
The SDO is connected to the tritocerebrum, which indicates
that it belongs to the third cephalic segment, but further
investigations would be required to confirm this observation
from a single species. Likewise, minute pits/pegs frequently
surround the sensory glandular complex in adult carideans,
suggesting that the SDO may be composed of a greater
number of elements in some species. Determining whether
these structures only occur in the Caridea and how they
interact with the central sensory glandular complex would
be of particular interest.

(2) Many malacostracans possess a second, more
posteriorly located organ. It differs from the SDO by having
six (occasionally more) sensory elements, possibly associated
with only two dendritic extremities each. This number of
sensors may vary, but this organ probably functions in a
similar way to the SDO. How common its co-occurrence
with the SDO is needs to be ascertained. The description of
its innervation would also allow a determination to be made
of the cephalic segment to which it belongs. This potentially
might provide critical information about the nature of the
carapace in malacostracans.

(3) The presence of the SDO is best documented in the
Eumalacostraca, but it is also known in the Hoplocarida
and the Phyllocarida. In branchiopods, most ‘dorsal organs’
are ion-transporting complexes (DITCs). However, in a
few cases, the organ appears more complex and shows
similarities with the SDO. This suggests that the two types
of organ (DSPO and DITC), although having different
functions, might have a common origin. In this scenario,
the DSPOs would have evolved particularly early in the
history of crustaceans. As for the SDO, the presence of the
posterior SDO has been reported in the Eumalacostraca, the
Hoplocarida, and the Phyllocarida. No correlation could
be demonstrated between the presence of a SDO and
a particular ecological (feeding and life habits, habitats)
or biological (developmental strategies) trait. However, the
organ and its sensors apparently display greater sizes in the
Thalassanidea, which are endobenthic crustaceans.

(4) The homology of the two LOCs of thecostracans
and the SDO and posterior SDO of malacostracans is
supported by their similarities in location (along the sagittal
line of the cephalic shield; one anterior, one posterior),
composition (four sensors + one gland, usually six sensors +
one gland), organisation (peripheral sensors, central glands),
and ultrastructure. A more definitive demonstration of this
might come from the description of the innervation of the
LOC and of the posterior SDO. The CDH of calanoid
copepods exhibits notable differences with the other DSPOs,
which questions possible homology with the latter organs.
However, some of its characteristics may indicate similarity
in function. Again, determining the relationship of the CDH
with the CNS would provide critical information.
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(5) The SDO, the posterior SDO, and the LOC are
sensory glandular complexes, but their function remains
unknown. The ultrastructure of the sensors suggests that
they are chemoreceptors, but the nature of the chemical they
detect is unidentified. Likewise, the strongly constrained
relative positions of the gland and sensors of a given
organ suggests a functional relationship between them,
but how these different elements interact is unknown. A
possible interaction between the anterior and posterior
organs (SDO/LOC) of an individual remains to be tested.
Considering the wide distribution of these organs in
crustaceans and the fact they have probably been conserved
for a great part of the history of the group, it is of the utmost
importance to determine their function. The description of
the presence of such organs in freshwater carideans, which
can be easily reared in a laboratory, opens the way for
behavioural and physiological experiments that could prove
crucial for achievement of this goal.

(6) The most convincing examples of the presence of
DSPOs in fossil arthropods are found in two eucrustaceans
and one arthropod close to the stem lineage of crustaceans
from the Cambrian of Sweden. They suggest that DSPOs
probably evolved very early in the history of the Crustacea
and therefore their possible occurrence in non-crustacean
Cambrian arthropods should not be excluded.
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Figure 10: DAPI stained first zoea stage of Lophozozymus incisus (H. Milne Edwards, 1834) 

in lateral view (bar 250 µm). Photo by J. Martin. 
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Abstract

Using DAPI as a nucleus marker, we studied zoeas of 6 decapods (Palaemon adspersus Rathke, 1837; Palaemon elegans
Rathke, 1837; Porcellana platycheles (Pennant, 1777); Pisidia longicornis (Linnaeus, 1767); Xantho hydrophilus
(Herbst, 1780) Xantho pilipes A. Milne Edwards, 1867) representing one species pair of Palaemonidae (Caridea), 
Porcellanidae (Anomura) and Xanthidae (Brachyura) each, with special reference to the telson, and correlated our 
observations with the general morphological features of the zoeas.

The different taxa exhibit specific features with respect to the distribution of nuclei, the patterns they exhibit, their 
size, density and numbers, thus being sets of characters potentially useful for taxonomic descriptions and diagnoses 
especially on the “above-species”-level. We discuss how nuclear patterns and classical morphological and/or 
morphogenetical features normally examined in zoeal larvae are related, and give some ideas on how “nucleus”-
characters can contribute to taxonomic descriptions.

Key words: Zoea, DAPI, pattern, taxonomy, description (Decapoda)

Introduction

DAPI, a universal nucleic acid fluorescence dye (Kubista et al. 1987), is a popular marker for nuclei in a wide 
set of applications, e.g. mapping nuclei or giving evidence of the cellular composition of samples. This does 
not only account for organisms with well permeable body walls, but also for small arthropods, where DAPI 
can even be used as a vital marker in single dye preparations as well as a background stain for neuronal 
markers (Wohlfrom & Melzer 2001). Our preliminary tests showed that this is also possible in zoeal larvae of 
decapod crustaceans, and that mapping of nuclear features may reveal taxon-specific differences. In order to 
check the relevance of this method for comparison and diagnosis of different taxa, we therefore analysed the 
telsons of DAPI stained zoeal larvae of six different decapods with respect to nucleus distribution, patterns, 
size, density and numbers. 

The studied zoeas represent three species pairs with the representatives of each pair belonging to the same 
or closely related genus, and one pair each represents the three infraorders Caridea (Palaemonidae: Palaemon 
adspersus and Palaemon elegans), Anomura (Porcellanidae: Porcellana platycheles and Pisidia longicornis) 
and Brachyura (Xanthidae: Xantho hydrophilus and Xantho pilipes). Detailed descriptions of the external 
morphology of the zoeas of these species are available: The Palaemon zoeas were described by Fincham 
(1977, 1985, 1986), those of Porcellana and Pisidia by Barnich (1995) and Gonzales-Gordillo et al. (1996), 
and those of the Xantho by Ingle (1983), Paula and Dos Santos (2000), and Meyer et al. (2004).

The combination of both very closely related species and representatives of different infraorders should 
allow to infer on which taxonomic level the observed features might be relevant. Apart from this, we seek to 
reveal in which way the commonly studied characters of zoeas are correlated with nucleus pattern, and what 
might be the potential use of these features in the context of taxonomy, hence adding this approach to the 
stock of species description techniques available for zoeas or small arthropods in general, such as scanning 
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EM diagnoses of zoeas that have been introduced as an additional source of data in zoeal descriptions (Meyer 
et al. 2004, 2006, Geiselbrecht & Melzer 2009). Comparatively analysing all the nuclei of zoeal larvae is, 
however, a very wide field for a first approach to this technique. Therefore, we study the telson here as a 
model organ, since its flattened form makes it relatively easy to visualize the nuclei completely.

Material and methods

Animals and fixation. Egg bearing females of Palaemon adspersus Rathke, 1837, Palaemon elegans Rathke, 
1837, Porcellana platycheles (Pennant, 1777), Pisidia longicornis (Linnaeus, 1767), Xantho hydrophilus
Herbst, 1780 and Xantho pilipes A. Milne Edwards, 1867 were caught in Roscoff (France) and Rovinj 
(Croatia) during courses in marine biology and kept in the aquarium in enclosures at a salinity of 3.7% and 
22°C. The females were fed with Sera San and Krill Pacifica from local aquarium shops. After hatching, the 
juveniles were either kept alive for some hours for vital stains or either fixed in 4% formaldehyde in sea water, 
in 75% ethanol, or in a graded ethanol series as described in Meyer and Melzer (2004). Hence all our 
specimens represent very early zoea-I-stages. Prior to inspection or fixation the zoeas were anaesthetised in 
7.14% magnesium chloride.

The studied animals are deposited at the Zoologische Staatssammlung München (Sektion Arthropoda 
varia) under the following collection numbers: Palaemon adspersus Rathke, 1837: female A20035514, larvae 
A20035516, SEM specimen A20071658. Palaemon elegans Rathke, 1837: female A20071637, larvae 
A20071636, A20071638, SEM specimens A20071628, A20071629. Porcellana platycheles (Pennant, 1777): 
female A20071639, larvae A20071640, SEM specimens A20071641-A20071643. Pisidia longicornis
(Linnaeus, 1767): female A20071633, larvae A20071635, SEM specimens A20071630-A20072632. Xantho
hydrophilus Herbst, 1780: larvae A20071646, SEM specimen A20071648. Xantho pilipes A. Milne Edwards, 
1867: female A20071654, larvae A20071656, SEM specimen A20071657. Larvae were determined according 
to the above-cited larval descriptions, female adults from which the zoeae were obtained after Zariquiey 
Alvarez (1968).

DAPI staining. 1mg DAPI (4’6-Diamidino-2-Phenyindol-Dihydrochlorid; Sigma-Aldrich) was dissolved 
in 10ml distilled water (stock solution). 7 drops of the DAPI solution were either put into vials with 5-10 vital 
zoeas in 3ml sea water or with 5-10 zoeas in the respective fixans. The incubation time was 20-30 minutes in 
darkness for all stains (for details see Wohlfrom & Melzer 2001).

Fluorescence and conventional light microscopy. After staining zoeae, wholemounts or dissected 
telsons were studied with a Leica DMRBE at a wavelength of 365nm. The same and/or other specimens were 
also studied under conventional illumination or under both combined in order to get information on several 
parallel channels which enables us to correlate the fluorescence pictures with the conventional information on 
zoea morphology (Figs. 1, 3–5).

Focus series and normal pictures were made with a Visitron Spot Insight Color digital camera. 3D stacks 
were processed with Auto-Montage (Syncroscopy). Countings and measurements of nuclei were made on 
prints of the respective pictures. Partly, inverted enhanced contrast pictures were used. Depending on the 
shape and size of the telsons, the values for the number of nuclei per area were either counted from 100µm or 
25µm squares.

Confocal microscopy. Some of the specimens were also studied under a Leica SP5 AOBS confocal 
microscope using a 405 nm diode laser and a Leica HCX Apo L UVI 40x NA 0.8 water dipping objective. 
Picture stacks were processed with ImageJ (Fig. 2).

Scanning EM. Specimens were dehydrated in Acetone, critical-point-dried in a Bal-Tec CPD 030 in 
carbon dioxide, mounted on stubs with self-adhesive carbon plates, sputtered with gold in a Polaron Sputter 
Coater and studied in a Leo 1430VP scanning EM at ca. 15kV (Figs. 3–5).
MEYER ET AL.32  ·   Zootaxa 2422  © 2010 Magnolia Press
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Results

General observations
In our zoeae all the nuclei are stained, those of the epidermis as well as those of the inner organs (Fig. 1). 

The nuclei located close to the cuticle are somewhat equally distributed all over the body while underlying 
clusters of nuclei mark inner organs, e.g. nervous system and gut. In addition regions with high fluorescence 
signal caused by densely arranged nuclei are recognisable. These are found at the base of the antennules, 
around the eyes, at the base of the mouthparts and maxillipeds, the ventral side of the thorax and at the ventral 
side of each pleon segment (Fig. 1). The latter are of varying shape or in the form of a continuous stripe. In 
addition, between the last pleon segment and the telson, in all the studied species a dense arrangement of 
nuclei is found (see below). 

FIGURE 1. Survey of DAPI stained zoeas. a. Palaemon elegans, viewed from dorsally. b. Porcellana platycheles, 
viewed from laterally. c. Xantho incisus, viewed from laterally. Arrowheads regions with intensely stained nuclei.

Nuclear features of the telson
In the following, we will describe both the nuclear features as well as other morphological characteristics 

revealed by the light microscope and the scanning EM that are relevant for the understanding of the nuclear 
patterns.

In the zoea I of all the studied species, both pleopods and uropods are as yet not developed, and therefore 
the last pleon segments are of longitudinal shape and bear no other appendages than posteriolateral processes 
and setae. The last segment is confluent with the telson, which in all species is somewhat flattened and 
equipped with telson setae at the posterior edge (Figs. 2–5). 
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FIGURE 2. Confocal microscopy of telson of Palaemon elegans viewed from dorsally. a., survey of telson, b., detail. 
Arrowehads, dense arrangement of nuclei at the telson edge (a.) and nucleus clusters at the base of setae (b.); B, bristles; 
Se, setae.

Regarding the nucleus arrangement, two regions characterised by different arrangement of nuclei can be 
distinguished, the basal part, anterior to the anus, and the distal part, posterior to the anus. Anteriorly, one 
finds distinct organs, e.g. the gut, and muscles, hence densely arranged clusters of nuclei are visible here in 
addition to the epidermal nuclei (Figs. 2–5).

Posteriorly, i.e. in the flattened area of the telson, only the epidermis including sensory units forms the 
cellular part. The nuclei are not equally distributed here, but are arranged in distinct patterns. Two different 
regions have to be considered in this area as well: Along the edges of the telson, the nuclei are of elliptical 
appearance and – due to the angle under which they are viewed and the confluence of the dorsal and ventral 
epidermal layers – seem to exhibit a higher density than on the paddle surface (Fig. 2, 3B). In addition, at the 
base of setae, mostly on the posterior telsonal edge, small clusters of nuclei are seen, those of the seta forming 
cells and corresponding sensory cells (Fig. 2, 4A). In addition, in some preparations the sensory axons 
originating at the base of the sensory cells are labelled, too (Fig. 4A). Surprisingly, strong DAPI signal 
indicating presence of nuclei is also found inside the setal shafts in many preparations (see below).

Along the flat surface of the telson, our pictures show the nuclei of the epidermal cells located here, on the 
dorsal as well as on the ventral side. The arrangement of nuclei within the species pairs is very similar in this 
area (Figs. 3–5A,B). However, when the different genera studied are compared, one sees differences in 
nuclear pattern as well as other nuclear features that allow to unequivocally characterize them. Our countings 
and measurements are summarized in Table 1.

Palaemon adspersus Rathke, 1837 and Palaemon elegans Rathke, 1837
In the two Palaemon species studied, the telson is of an inverted triangular, flattened paddle like shape 

(Figs. 1A, 2, 3). Its posterior edge is of a wavelike form and armed with 14 plumodenticulate setae inserted on 
the wave crests (Fig. 2). Except for the two outer setae, they are of the same length and bear numerous small 
lateral setules giving them a feathered appearance (Figs. 2, 3E,F). The two outer setae are shorter and are 
equipped with only a small amount of setules. Between the setae, 4 to 6 tiny bristles are inserted on the 
paddle’s edge (Fig. 2). At the base of the setae, densely arranged nuclei of the cells associated with the setae 
(sensory, trichogen and tormogen cells) are seen. A few strongly stained spots (4–7) indicating nuclei located 
within the setae are also labelled (Figs. 2, 3A,B; see also table 1). Around the anus, i.e. in the thicker basal 
area of the telson, muscle strands and the gut containing densely arranged nuclei are strongly labelled by 
DAPI. This area with densely arranged nuclei is cup-shaped in P. adspersus and heart-shaped in P. elegans. In 
addition, in P. adspersus two strands of nuclei project from the anus in a latero-posterior direction. In P. 
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elegans, these strands are shorter (Fig. 3A,B).
The light microscopes and the SEM show that posterior to this area, the telson is very flat and contains 

mostly the dorsal and ventral epidermal layers (Figs. 2, 3C–E). Here, the nuclei are not randomly distributed. 
They rather show a marmorated or mottled pattern, i.e. there are small groups of nuclei in a relatively dense 
arrangement, and areas of low nucleus density in between. This can be observed in ventral as well as dorsal 
views (Fig. 3A,B).

As Table 1 shows, in Palaemon adspersus we counted ca. 1000 nuclei within the telson from dorsal as 
well as from ventral side (average value dorsal = 1103 (n = 5; p = 1.242E-8; t = 148.2; one-sided t-test)), the 
nuclei having an average diameter of 6.59 µm (n = 15; dorsal: p = 1.445E-13, t = 27.41; ventral: p = 7.669E-
12, t = 20.5; one-sided t-test). We counted ca. 190 nuclei per 100 µm2. Remarkably, 4–5 nuclei were seen 
inside setae. The values for Palaemon elegans are very similar. The total amount of nuclei was between 998 
(ventral) and 1007 (dorsal), and their average diameter 7.56 µm (n = 15; dorsal: p = 2.181E-2, t = 2.58; 
ventral: p = 7.199E-14, t = 28.84; one-sided t-test). We counted 170–180 nuclei per 100 µm2. 4–7 nuclei were 
located inside the shaft of setae.

TABLE 1. Census and rating of nuclei in the 6 studied species.

Porcellana platycheles (Pennant, 1777) and Pisidia longicornis (Linnaeus, 1767)
In these two studied species (Figs. 1B, 4), pleon segments 4 and 5, though deprived of externally visible 

leg buds as other zoea I, are armed with appendages, i.e. a pair of posteriolateral protrusions each (Fig. 4E). 
Posterior to these segments, the telson is of an oval shape and dorsoventrally flattened (Fig. 4). The lateral 
edges posteriorly form a single spine each oriented along the telson’s edges (Fig. 4 E,F). In between these 
spines, inserted on the parabola-shaped rear edge, 10 plumodenticulate setae are seen. In contrast to the 2 
spines, they possess well-recognisable basal rings (Fig. 4E,F). Between the innermost of these large setae, two 
fine ones are found near the telson’s midline. Furthermore, a similar pair of setae is located on the telson’s 
dorsal side, at about 2/3 of its length (Fig. 4E).

As in the other studied zoeas, three telson regions can be distinguished using the nuclear patterns (Fig. 
4A,B). (1) At the base of the telson, there is a dense arrangement of nuclei of a somewhat rectangular shape in 
P. platycheles and having the form of an “Y” in P. longicornis, confluent with the tissue of the 5th pleon 
segment, hence labelling the gut and muscle strands near the anus. (2) At the posterior edge of the telson, at 
the insertion of the setae, clusters of nuclei are found, those belonging to the setal cells (Fig. 4A). Small fibers 
originating from these cells indicate that sensory cell axons are labelled with DAPI (Fig. 4A). Remarkably, 
also in the 2 spines and the 10 setae numerous nuclei are visible. (3) On both the dorsal and the ventral sides of 

Palaemonidae Porcellanidae Xanthidae

Palaemon 
adspersus

Palaemon 
elegans

Porcellana 
platycheles

Pisidia 
longicornis

Xantho 
hydrophilus

Xantho pilipes

dorsal ventral dorsal ventral dorsal ventral dorsal ventral dorsal ventral dorsal ventral

Number of 
nuclei in telson

1103 
(n=5)

1101 1007 998 1688 1200 1492 1511 679 690 766 777

Number of 
nuclei in setae

5 4 4 7 153 181 113 117 0 0 61 59

Mean number of 
nuclei per 100 
µm2 

192 
(n=3)

190 
(n=3)

168 
(n=3)

184 
(n=3)

353
(n=3)

351 
(n=3)

319 
(n=3)

310 
(n=3)

358 
(n=5)

349 
(n=5)

343 
(n=5)

294 
(n=5)

Mean nucleus 
diameter in µm 
(n = 30 for each 
species; SD = 
Standard 
deviation)

6,59
 (SD = 1,196)

7,56
 (SD = 1,266)

3,91
 (SD = 0,536)

3,46
 (SD = 0,687)

3,92
 (SD = 0,588)

3,94
 (SD = 0,744)
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the telson’s surface, nuclei are arranged in a very distinct pattern, i.e. in somewhat parallel rows oriented 
anteroposteriorly (Fig. 4A,B).

FIGURE 3. Telson of Palaemon elegans viewed from dorsally (a., c., e.) and Palaemon adspersus viewed from 
ventrally (b., d., f.), corresponding views made with different techniques. a., b. DAPI stained, c., d. conventional light 
microscopy, e., f. Scanning EM. An, anus; B, bristles; PLP, posteriolateral process; Ps5 and Ps6, pleon segments 5 and 6; 
Se, setae; arrowheads, nuclei in setae (b.) and feather-like lateral branches on setae (e.), arrows, dense arrangement of 
nuclei at the telson edge.

In Porcellana platycheles, we counted 1688 and 1200 telsonal nuclei from dorsal and ventral, 
respectively. The nucleus diameter averages 3.91µm (n = 15; dorsal: p = 5.344E-12, t = 21.06; ventral: p = 
2.876E-14, t = 30.82; one-sided t-test). We counted ca. 350 nuclei per 100 µm2, and in the setae, more than 
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altogether 150 nuclei were observed. In Pisidia longicornis, the corresponding counts added to 1492 nuclei 
viewed from the dorsal side, and 1511 from the ventral side. The average nucleus diameter was 3.46µm (n = 
15; dorsal: p = 1.397E-12, t = 23.23; ventral: p = 3.833E-13, t = 25.54; one-sided t-test). Per 100 µm2, 310–
319 nuclei were found, and in the setae 113 and 117 (Table 1).

FIGURE 4. Telson of Pisidia longicornis viewed from dorsally (a., c., e.) and Porcellana platycheles viewed from 
ventrally (b., d., f.), corresponding views made with different techniques. (a.,b.) DAPI stained, (c., d.) conventional light 
microscopy, (e. ,f.) Scanning EM. An, anus, PLP, posteriolateral process; Ps4 and Ps5, pleon segments 4 and 5; Se, setae; 
T, telson .
 Zootaxa 2422  © 2010 Magnolia Press  ·   37NUCLEUS PATTERNS OF ZOEA I LARVAE 

59



FIGURE 5. Telson of Xantho hydrophilus viewed from dorsally (a., c., e.) and Xantho pilipes viewed from ventrally (b., 
d., f.), corresponding views made with different techniques. a., b. DAPI stained, c., d. conventional light microscopy, e., 
f. Scanning EM. An, anus; B, bristles; F, furca branch; PLP, posteriolateral process; Ps3-5, pleon segments 3-5; Se, setae; 
arrowheads, small lateral processes on setae.

Xantho hydrophilus Herbst, 1780 and Xantho pilipes A. Milne Edwards, 1867
In the two species of Xantho, the telson is of a different shape than in the other studied taxa: A furca, 

composed of two lateroposteriorly oriented branches originating from the v-shaped base of the telson (Figs. 
1C, 5) is well developed. Each branch narrows posteriorly, and has a pointed tip. At about 2/3 of the furca’s 
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length, 2 lateral and 1 dorsal protrusion are inserted, and on the inner edge of the branches one finds 3 
denticulate setae with numerous short setules. However, the most proximal one is equipped with 4–6 long 
setules (Fig. 5C–F).

As in the other studied taxa, a distinct accumulation of nuclei is found around the anus. In Xantho, it is of 
a rectangular shape. The other nuclei of the telson are irregularly arranged. From both the dorsal and the 
ventral sides, areas with higher and lower nucleus density can be distinguished (Fig. 5A,B).

Our counts (Table 1) yielded 679 telsonal nuclei from dorsal, and 690 from ventral in Xantho hydrophilus. 
The average nucleus diameter was 3.92µm (n = 15; dorsal: p = 2.995E-12, t = 21.97; ventral: p = 3.192E-12, t 
= 21.87; one-sided t-test). The average number of nuclei per 100 µm2 was 358 from dorsal, and 349 from 
ventral. In the setae, no nuclei were detected. In Xantho pilipes, we counted from dorsally 766 nuclei, and 
ventrally 777. The diameter of the nuclei was 3.94µm (n = 15; dorsal: p = 1.797E-11, t = 19.26; ventral: p = 
3.971E-12, t = 21.52; one-sided t-test), and per 100µm2, we counted 343 nuclei from dorsal, and 294 nuclei 
from ventral. 61 and 59 nuclei were found inside the telson’s appendages viewed from dorsally and ventrally, 
respectively.

Discussion

The epidermis of crustacean larvae has been studied in detail including the different cell types and their 
development (reviews, e.g. in Freeman 1993, Anger 2001). Furthermore, cellular and nuclear patterns have 
been analysed in an “evo-devo” context in various ways in various organisms, non-crustaceans (e.g., Höfer et 
al. 1995, Brook et al. 1996) as well as crustaceans (e.g., Scholtz and Dohle 1996, Scholtz 2000). The aim of 
the present study differs from these approaches by omitting the analysis of developmental processes and/or 
the underlying mechanisms, and focussing on the comparison of the patterns between taxa, hence a 
“horizontal” comparison as a test for taxonomic significance.

In general one can say that the closely related species forming the three studied species pairs are very 
similar with respect to the observed characteristics, and therefore our descriptions of the qualitative features 
could be made in common for both species of each pair. Differences, however, become obvious when 
comparisons between the pairs representing different decapod families (and infraorders) are made.

Here, the main difference is the pattern in which epidermal nuclei are arranged: in rows in the studied 
porcellanid zoeas, irregular or marmorated in palaemonids and xanthids. General traits seem to be the dense 
arrangement of non-epidermal nuclei around the anus, probably including nuclei of the intestine and of 
muscles terminating in this area, and the absence of nuclei other than those of the epidermis and sensilla in the 
telson’s posterior part, which seems to be a passively maneuvered organ in which muscles are found only at its 
base.

Looking at our counts and measurements, more differences become apparent. The total amount of telsonal 
nuclei increases from the xanthids (ca. 700) to the palaemonids (ca. 1000) to the porcellanids (1200–1700). 
This seems to be correlated with the different shape and size of the telson in the three taxa: the porcellanids 
and palaemonids with their fin-shaped or roundish telsons (Gonzales-Gordillo et al. 1996, Fincham 1977, 
1985, 1986) have more nuclei than the xanthids with their branched furca (Ingle 1983, Paula & Dos Santos 
2000, Meyer at al. 2004) having the smallest surface area. However, also the number of nuclei per 100µm2

differs between the taxa, with the palaemonids having a much lower number than the porcellanids and 
xanthids studied. Hence, the differences are not caused by the size of the telson alone, and there must be other 
immanent reasons. Conversely, the palaemonids have bigger nuclei than the other two taxa, a fact that is at the 
moment also hard to explain. One possibility is that the nucleus size might be correlated with the amount of 
DNA. It has been shown that polyploid nuclei are bigger than normal ones (Frankhauser 1945, Mundkur 
1953), but in this respect data are missing for our studied zoeae.

Remarkable is the fact that in most of the studied species in addition to the seta-related cells at the setal 
base, we found spots strongly labelled with DAPI, and thus indicative of the presence of nuclei inside the 
telsonal setae, a few in the palaemonids, many in the porcellanids, and also a considerable amount in Xantho 
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pilipes, but not in Xantho hydrophilus. Especially the stains of Porcellana show so many of these structures 
labelled in such a strong way that their nuclear origin is quite clear. But, provided that these setae would be 
somewhat normal setae as found throughout the arthropods, the cell bodies of the cells assigned to them (and 
their nuclei), i.e. tormogen, thecogen, trichogen and sensory cells should be located at the base of the setae 
near the basal ring, and not inside their shafts (e.g., Ball and Cowen 1976, Altner 1977, Eguchi & Tominaga 
1999). Do the large setae inserted at the hind edge of the telson therefore not represent setae s.str., but 
protrusions of another type containing their own epidermis sections? It is known that around molts, seta 
secreting cells move into the setal shafts (Berg & Schmidt 1996). However, all our zoeas were newly hatched 
animals, and it is highly improbable that they were in a close-to-molt stage. Furthermore, why should there be 
180 nuclei, more than 10 per seta, in the setae, as found in Porcellana platycheles? Considering the high 
amount of lateral branches these setae possess, is it therefore possible that the telson is equipped with a 
previously unknown setal type, more complex than the normal ones? This point needs further investigation.

An interesting point is the question why there are such differences in the nucleus features of the studied 
species. It is obvious that we cannot expect any selection that directly brings about kind of an “evolution” of 
nucleus positions. Hence, the observed differences must be a secondary effect. In our stains every nucleus 
represents one cell, and the distance between nuclei gives some ideas about the dimensions of the cells they 
belong to. Form, size and function of cells thus determine the position of their nuclei. Specific structures, e.g. 
setae or protrusions, have a characteristic set of cells associated with them exhibiting a distinct arrangement. 
Hence there are morphological constraints that force cells – and secondarily also their nuclei – in certain 
positions. This is obvious for, e.g. the setal cell nuclei located at the base of the setae in all the studied species 
(review in Eguchi & Tominaga 1999), or the cells around the anus which have a well defined, unchangeable 
position. This idea is well supported by the light microscopical and the scanning EM observations we made 
parallel with the DAPI stains.

What might be the constraints producing the different nucleus patterns along the telsonal surface, i.e. 
within the “normal” epidermal layer? Principally, the epidermis nuclei – and the cells they are part of – could 
be evenly distributed and of equal size in all taxa studied, but, as we saw, they are not. One could think of 
inconsistencies in cuticle thickness or the arrangement of nerve bundles projecting from the setae anteriorly 
across the telson that bring about inhomogenous cell arrangement and thus specific nucleus pattern, but we 
could not find indications for such mechanisms.

Since a zoea I larva is a developing organism that will undergo thorough changes until it reaches the adult 
stage, ontogenetical constraints should be considered, too. Mitotic waves that increase the number of cells and 
alter the arrangement of nuclei by forming kind of embryonic cell nests have been analysed in detail in 
embryos of crustaceans (Scholtz & Dohle 1996, Scholtz 2000), and one can expect similar processes during 
larval development, e.g. in pre-molt zoeae that should differentiate the cellular material needed for 
morphogenetical changes and growth to the next instar. In our specimens, however, all of them being early 
rather than late zoeas in a pre-molt-stage, there was no indication of such changes, e.g. cleavage stages. One 
can conclude that the differences we observed are genuine taxon specific features and not morphogenetical 
effects caused by analysing different zoea I substages.

Whatever reason the differences of the nucleus features between the studied taxa might have, they seem to 
allow to distinguish taxa, and hence are potentially useful features in the context of taxonomy, and could be 
added to lists of diagnostic features, not on the species level – since we found no relevant differences here – 
but on a higher taxonomic level, e.g. genus or families or suborders. If we hypothesize the nucleus features 
seen in the two studied porcellanids to be characteristic of Porcellanidae, this diagnostic list would read as 
follows: “telson with big amount of nuclei (> 1000) arranged in rows with a density of 300–350 nuclei per 
100µm2 and a diameter of 3,5 to 4 µm”. Our intention of course is not to introduce these features as a 
prerequisite for zoea I descriptions. What we want to show is that on many levels one can find features that 
may contribute to species diagnosis and apply them if they are helpful.
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Figure 12: The brachyuran crab Eurypodius latreillii Guérin, 1825 climbing on macroalgae. 
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Decapoda of southern Chile: DNA barcoding and integrative taxonomy
with focus on the genera Acanthocyclus and Eurypodius
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A combination of DNA sequence and morphological data is used to assess the taxonomy of Chilean decapods. The
c. 657-base-pair long mitochondrial protein-coding gene COI (cytochrome c oxidase subunit 1) of 154 decapod specimens
(41 species in 31 genera and 21 families) of the southern Chilean area (36◦33′S–54◦56′S) is analysed for the first time. The
resulting phylogenetic consensus tree displays 41 distinct branches corresponding to the morphological determination of
the studied species. These results confirm that standard DNA barcoding sequences are a suitable tool in addition to
morphology for taxonomic analyses in Decapoda of the region. Genetic results are compared with morphological data to
check and confirm species delimitations in morphologically closely related species, i.e. the representatives of the genera
Eurypodius Guérin, 1825 (E. latreillii Guérin, 1825 and E. longirostris Miers, 1886) and Acanthocyclus Lucas, in H. Milne
Edwards & Lucas, 1844 (A. albatrossis Rathbun, 1898, A. hassleri Rathbun, 1898 and A. gayi Lucas, in H. Milne Edwards
& Lucas, 1844). Available morphological descriptions of these species are in many aspects contradictory, confusing and not
always clear. The status of the different species is confirmed using the morphology-independent barcoding feature in
combination with classic morphological features, clarifying species-specific morphological features for further species
determination. An identification key of Acanthocyclus species based on constant features is given. Biogeographical aspects
and distribution range for the selected species are discussed.

Key words: Acanthocyclus, Chile, COI, Decapoda, DNA barcoding, Eurypodius, integrative taxonomy, southern fjords

Introduction
The coast of Chilean Patagonia extends more than 2000 km,
from Puerto Montt (41◦S) in the north to Cape Horn (55◦S)
in the south, with a poorly explored coastline of approxi-
mately 84 000 km (Bustamente, 2009). This unique coast
was covered and created by glaciers of the Northern and
Southern Patagonian Ice Shield during the last ice age
15 000 years ago and was subsequently recolonized by
benthic communities (Clapperton, 1993; Försterra, 2009).
Steep slopes in coastal zones of the fjords and shallow
water areas at SCUBA-accessible depths are nearly unex-
plored. Recent examinations show that these particular lo-
cations include hitherto undiscovered biodiversity hotspots
awaiting exploration (Försterra, 2009). To close this gap of
knowledge several Huinay Fjordos (HF) expeditions have
been carried out in the southern Chilean region since 2005,
organized by the Huinay Scientific Field Station (for de-
tails see: http://www.fundacionhuinay.cl/). The purpose of
the expeditions is a complete faunistic inventory of the

Correspondence to: Roland Meyer. E-mail: rolandmeyer@
hotmail.de

Chilean antiboreal region with a special sampling concept:
species are documented in situ by underwater photography
and then collected for further investigations during scuba
diving (Häussermann & Försterra, 2009). Scuba diving al-
lows collection activities in depths between 0 and 40 m and
in all types of environment, e.g. steep walls, which is a great
advantage in comparison to dredge-based sampling. Dur-
ing these expeditions about 600 decapod specimens were
collected in the southern Chilean region between Dichato
(36◦33′S) and Islas Holger (54◦56′S) as the basis for the
present work, this extending over the southern Chilean fjord
region and further northwards to the Región del Bı́o-Bı́o
(Fig. 1).

In the present paper we report the first COI barcoding
results for decapods of the southern Chilean region. For
Crustacea COI barcoding has been found to be a useful
tool for specimen identification (Bucklin et al., 2007; Costa
et al., 2007; Miguel Pardo et al., 2009), species delineation
and the resolution of taxonomic problems of closely re-
lated species (Gusmao et al., 2000; Daniels et al., 2003;
Machordom & MacPherson, 2004; Lefebure et al., 2006;
Pérez-Barros et al., 2008).

ISSN 1477-2000 print / 1478-0933 online
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390 R. Meyer et al.

Fig. 1. Overview of collection sites of southern chilean decapods analysed in this study. Sampling area extends from Dichato (36◦32′S)
to Islas Holger (54◦56′S). Red stars indicate sampling stations. Latitudes for species boundaries of Acanthocyclus and Eurypodius species
are given.
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DNA barcoding of Chilean Decapoda 391

The genus Acanthocyclus consists of 3 morphologically
very closely related species found in southern Chile: A.
gayi Lucas, in H. Milne Edwards & Lucas, 1844, A. has-
sleri Rathbun, 1898, and A. albatrossis Rathbun, 1898.
Two morphologically very closely related species of the
genus Eurypodius occur in southern Pacific waters: Eu-
rypodius longirostris Miers, 1886 and Eurypodius latreillii
Guérin, 1825 (Rathbun, 1925, 1930; Garth, 1957; Boschi &
Gavio, 2005). These two genera raise difficulties for mor-
phology based identification, since available descriptions
are in many aspects contradictory and not always clear.
We took the opportunity to recheck species delimitations
and delineations using integrative taxonomy (Dayrat, 2005;
Padial et al., 2010; Schlick-Steiner et al., 2010). We re-
analysed the morphological characteristics, adjusted these
data with available type-material of the species and cor-
roborated them with the DNA sequences that represent a
second character set independent from morphology.

Materials and methods
Samples
For DNA sequencing we used 190 specimens collected in
southern Chile in the years between 2005 and 2011 dur-
ing expeditions organized by the Huinay Scientific Field
Station, Huinay, Chile (Huinay Fjordos 3-10). The collec-
tion area is displayed in Fig. 1. Samples were taken at
depths between 0 and 30 m by scuba diving, snorkelling
and hand collection in the intertidal zone. Muscle tissue of
the ambulatory legs was preserved in 96% ethanol to en-
sure high-quality DNA for genetic analysis. All barcoded
voucher specimens are stored in 75% ethanol and deposited
at the Bavarian State Collection of Zoology and their respec-
tive DNA extract aliquots at the CCDB (Canadian Center
for DNA Barcoding: www.dnabarcoding.ca) and the ZSM’s
DNA bank facility Munich (www.zsm.mwn.de).

All details regarding taxonomy, collection sites (in-
cluding the geographical coordinates), BOLD and
GenBank accession numbers are listed in Table S1
(see online supplemental material, which is avail-
able from the article’s Taylor & Francis Online page
at http://dx.doi.org/10.1080/14772000.2013.833143), and
can also be accessed on the Barcode of Life Data System
website (BOLD) (Ratnasingham & Hebert, 2007) under the
project CFAD (Chile Fjord Arthropods Decapoda) as part
of the campaign ‘Marine Life (MarBOL)’.

In addition to these samples, type material of Eurypodius
longirostris Miers, 1886 (1884.31 Natural History Mu-
seum, UK), E. latreillii Guérin, 1825 (RMNH D 42178,
Nationaal Natuurhistorisch Museum, Leiden), Acanthocy-
clus hassleri Rathbun, 1898 (MCZ CRU-4889, Museum
of Comparative Zoology, Harvard), A. albatrossis Rathbun,
1898 (USNM 1086178, Smithsonian Institution National
Museum of Natural History) and A. gayi Lucas in H. Milne

Edwards & Lucas, 1844 (RMNH D 43615, Nationaal Natu-
urhistorisch Museum, Leiden) was studied.

Species determination based on external morphological
features used various sources (Rathbun, 1918, 1925, 1930;
Haig, 1955; Garth, 1957; Retamal, 1981; Meyer et al.,
2009) including original descriptions of the Eurypodius
and Acanthocyclus species.

DNA extraction, amplification and
sequencing
Laboratory operations were carried out at the Canadian
Centre for DNA Barcoding (CCDB), University of
Guelph, Canada following the standard protocols of
IBOL (http://dnabarcoding.ca/pa/ge/research/protocols).
Depending on the size of the individuals, either whole
legs (small specimens) or a sample of muscle tissue
from each specimen was taken for DNA extraction
and further sequencing. For the PCR a 1 : 1 ratio mix
of LepF1/LepR1-primer (Hebert et al., 2004a) and
LCO1490/HCO2198 primer (Folmer et al., 1994) was
used. Prior to routine sequencing of samples at the
barcoding facility in Guelph, a pilot study was conducted
by kmbs (www.kmbioservices.com) to evaluate tissue
quality and primer sequences.

Phylogenetic methods
In total 184 decapod sequences were used for phylogenetic
analysis (154 sequences from this study, 21 additional se-
quences of species already represented in this study mined
from GenBank and nine outgroup sequences of Oratosquil-
lina interrupta (Kemp, 1911) (Squillidae, Stomatopoda)
(Accession no. FJ229788-FJ229796)) (for details see
Table 1) (Hultgren & Stachowicz, 2008; Pérez-Barros et al.,
2008; Miguel Pardo et al., 2009; Tang et al., 2010; Haye
et al., 2012). COI sequences were blasted with GENEIOUS
Pro version 5.5.4 (Drummond et al., 2011) using Megablast.
The alignment was performed with GENEIOUS Pro ver-
sion 5.5.4, using MUSCLE Alignment (Edgar, 2004).
Aligned COI nucleotide sequences were manually checked
for ambiguities and translated to amino acids to maintain the
integrity of codon triplets and the alignment of amino acids.

The alignment was statistically tested for substitution
saturation with the DAMBE 5.2.69 software package (Xia
et al., 2003; Xia & Lemey, 2009). MEGA 5.05 was used
to find the best fitting substitution model. According to
these results, we used the GTR (general time reversible)
model with proportion of invariable sites (I) = 0.475 and
the gamma shape parameter (G) = 1.169 (GTR+I+G),
(Rodriguez et al., 1990).

We used RAxML 7.0.4 (Stamatakis, 2006) to calculate
the Maximum likelihood (ML) analyses with 1000
bootstraps; neighbour joining (NJ) trees based on Kimura
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Table 1. Overview of decapods and outgroup specimens mined from GenBank.

GenBank ID Species Reference

FJ229788 Oratosquillina interruptal Tang et al. 2010
FJ229789 Oratosquillina interruptal Tang et al. 2010
FJ229790 Oratosquillina interruptal Tang et al. 2010
FJ229791 Oratosquillina interruptal Tang et al. 2010
FJ229792 Oratosquillina interruptal Tang et al. 2010
FJ229793 Oratosquillina interruptal Tang et al. 2010
FJ229794 Oratosquillina interruptal Tang et al. 2010
FJ229795 Oratosquillina interruptal Tang et al. 2010
FJ229796 Oratosquillina interruptal Tang et al. 2010
FJ155383 Homalaspis plana Miguel Pardo et al. 2009
JN315643 Homalaspis plana Haye et al. 2012
JN315644 Homalaspis plana Haye et al. 2012
FJ155372 Metacarcinus edwardsii Miguel Pardo et al. 2009
FJ155373 Metacarcinus edwardsii Miguel Pardo et al. 2009
FJ155374 Metacarcinus edwardsii Miguel Pardo et al. 2009
JN315645 Metacarcinus edwardsii Haye et al. 2012
JN315646 Metacarcinus edwardsii Haye et al. 2012
AY700163 Munida gregaria Peréz-Barros et al. 2008
AY700164 Munida gregaria Peréz-Barros et al. 2009
AY700165 Munida gregaria Peréz-Barros et al. 2010
FJ155378 Romaleon polydon Miguel Pardo et al. 2009
FJ155379 Romaleon polydon Miguel Pardo et al. 2009
FJ155380 Romaleon polydon Miguel Pardo et al. 2009
FJ155381 Romaleon polydon Miguel Pardo et al. 2009
FJ155382 Romaleon polydon Miguel Pardo et al. 2009
JN315651 Romaleon polydon Haye et al. 2012
JN315652 Romaleon polydon Haye et al. 2012
EU682872 Taliepus dentatus Hultgren & Stachowicz 2008
JN315653 Taliepus dentatus Haye et al. 2012
JN315654 Taliepus dentatus Haye et al. 2012

2-parameter (K2p) model (Kimura, 1980; Saitou & Nei,
1987) and maximum parsimony (MP) (all 1000 bootstraps)
analysis were performed using MEGA 5.05 software
(Tamura et al., 2011).

Bayesian inference (BI) MrBayes 3.1.2 (Ronquist &
Huelsenbeck, 2003) was performed with 5.5 million
Metropolis-coupled MCMC generations; every 200th tree
was saved with a burn-in of 6875. The consensus tree was
calculated under the 50% majority rule consensus. Graphic
editing of the tree was done with FigTree 1.3.1 and MEGA
5.0.

Bootstrap values of the character-based trees (MP, ML,
Bayes) and distance-based trees (NJ) were combined and
given in the consensus tree of MrBayes (Fig. 2). Intra-
and interspecific distances were calculated (excluding se-
quences mined from GenBank) using the K2P distance
model in BOLD. The search for barcoding gaps was per-
formed by the software Automatic Barcode Gap Discovery
(ABGD) (Puillandre et al., 2012).

Results
Overall molecular results
The selected specimens represent 41 species in 31 gen-
era and 21 families of the order Decapoda. Extraction and

sequencing of the COI fragment was successful in 154 out
of 190 specimens, i.e. 81.6%. We observed low success
in barcoding anomuran species: for example the barcod-
ing process for Petrolisthes tuberculatus (Guérin, 1835)
failed completely and the total sequencing rate within this
infraorder was 60.7%.

The morphological determinations of species accord
very well with the results of the molecular analysis: 41 mor-
phologically determined species correlate with 41 branches
supported by high bootstrap (>90%) and posterior proba-
bility values (>93%) (Fig. 2). For species details see Fig. 2
and Table S1 (see supplemental material online).

For resolving relationships at a higher taxonomic level
the COI gene appears to be inadequate: all representa-
tives of the Porcellanidae Haworth, 1825 in this study
(genera Petrolisthes Stimpson, 1858, Allopetrolisthes Haig,
1960, and Pachycheles Stimpson, 1858) cluster in one clade
though only the species-level branches are well-supported
by high values. Other representatives of the Anomura are
not well separated at higher taxonomic levels: different
families (Paguridae Latreille, 1802 with genera Pagurus
Fabricius, 1775 and Propagurus McLaughlin & de Saint
Laurent, 1998; Munididae Ahyong, Baba, Macpherson &
Poore, 2010, with genera Munida Leach, 1820 and Lithodi-
dae Samouelle, 1819, with genera Lithodes Latreille, 1806
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DNA barcoding of Chilean Decapoda 393

Fig. 2. Bayesian inference tree of cytochrome c oxydase I (COI) sequences, showing the placement of 154 decapods, plus eight outgroup
specimens retrieved from GenBank. Numbers in parentheses indicate the number of analysed individuals (+ number of sequences of
the respective species mined from GenBank). Numbers above and below branches show posterior probability of BI and bootstrap values
(>90%) of NJ, MP and ML analysis branch length indicates substitutions per site.
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Fig. 3. Intraspecific and interspecific distance distribution among
154 south Chilean decapods for cytochrome c oxidase I sequences.

and Paralomis White, 1856) cluster in one clade. As in the
Porcellanidae cluster, only the species-level branches are
well supported.

In the Brachyura the Inachidae MacLeay, 1838, repre-
sented by the genus Eurypodius Guérin, 1825 (of which
only two species are known, both in the study area: E.
latreillii and E. longirostris), species-level discrimination is
supported with high values. Furthermore the Bellidae Dana,
1852 cluster is remarkable; this cluster consists of two gen-
era: Bellia H. Milne Edwards, 1848 (one species known)
and Acanthocyclus Lucas in H. Milne Edwards & Lucas,
1844 (three species known; only occurring in South Amer-
ica). Both genera are well separated through high bootstrap
support and species branches are well defined (Fig. 2).

Blasted in GenBank, only 15.38% of our sequences had
matches since most species in our study had not been COI-
sequenced before. The COI alignment had 331 variable
sites, 329 conserved sites, while 316 sites were parsimony-
informative. All sequences were longer than 500-bp and
thus fulfil the requirements for barcoding (Ratnasingham &
Hebert, 2007). Sequence compositions show a bias towards
adenosine and thymine (average values: A 26.4%, C 19.4%,
G 17.9%, T 36.3%) which is typical for arthropods. When
sequences were translated into protein sequences the dataset
showed no frame shift mutations or stop codons. According
to the results of the substitution saturation test, the index of
substitution saturation (Iss) was significantly lower than the
critical value of the index of substitution saturation (Iss.c).

Results of the analysis of the intra- and interspecific dis-
tances are shown in Fig. 3. Among the studied specimens
these values are as follows: the mean interspecific distance
is 15.54% with a range of min. values of 3.46% (Acan-
thocyclus albatrossis/Acanthocyclus hassleri) and 5.61%
(Peltarion spinosulum/Pseudocorystes sicarius) to a max.
value of 25.11% (Nauticaris magellanica/Propagurus gau-
dichaudii). Intraspecific distances were calculated with an

average value of 0.77% and with a min. value of 0.0%
(Peltarion spinosulum n = 8, Acanthocyclus hassleri n =
3, Austropandalus grayi n = 2, Pilumnoides perlatus n =
5, Allopetrolisthes spinifrons n = 2) and a max. value of
5.04% (Hemigrapsus crenulatus n = 5). The high intraspe-
cific distance in the Hemigrapsus crenulatus clade is based
on a single specimen with a somewhat aberrant COI se-
quence (ZSMA 20111369). The clade’s intraspecific dis-
tance value excluding this sample has an average of 0.535%
(max. 1.075%); including this sample values go up to a
mean of 5.04% (max. 12.522%).

The topology of the three constructed rooted phylograms
(Bayesian inference, Maximum likelihood, Neighbour join-
ing) and one cladogram (Maximum parsimony) calculated
for the south Chilean decapods are similar and thus all val-
ues are integrated in the consensus tree of MrBayes indicat-
ing the bootstrap values of the other calculated trees (Fig. 2).
Clades represented by a single specimen lack values. The
chosen outgroup Oratosquillina interrupta (Kemp, 1911)
clusters with high bootstrap values (>99%) and a high pos-
terior probability value of 1 against all decapods studied in
this paper.

Eurypodius Guérin, 1825
Molecular results. Specimens of the genus Eurypodius
cluster in two clades in the COI analysis. These are sup-
ported by high bootstrap values (>99) and posterior prob-
ability values (1). Morphological comparisons of these two
lineages with the type material of E. latreilli (Holotype
RMNH D 42178, Nationaal Natuurhistorisch Museum,
Leiden) and E. longirostris (Holotype, ZOO2012-247T,
Natural History Museum, UK) show that these two lineages
represent the two valid species.

The Eurypodius latreillii clade consists of five specimens
(ZSMA20111424-428) while the Eurypodius longirostris
clade is composed of 10 specimens (ZSMA20060440,
ZSMA20061441, ZSMA20061446-447, ZSMA20061455,
ZSMA20061464, ZSMA20111429-432). Intraspecific dis-
tances in these clades are low (E. latreillii mean 0.15%,
max. 0.3% and E. longirostris mean 0.13%, max. 0.31%)
while the interspecific distance in between these two clades
is high (11.83%). To crosscheck the data and illustrate the
barcode gap between these two clades we used the software
ABGD. Based on the calculated different distance values
(min. 0.01 and max. 0.18) this analysis confirms the two
distinct clades (Fig. 4).

The two Eurypodius species show a distinct geographical
distribution pattern: while Eurypodius latreillii was found
in the northern part of the region investigated (range in
this study: Dichato (36◦S), Región del Bı́o-Bı́o and Inio 2
(43◦S), Región de los Lagos) Eurypodius longirostris was
found in the southern part between Inio 5 (43◦S) and Los
Gemelos (53◦S), Región de Magallanes y de la Antártica
Chilena.
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DNA barcoding of Chilean Decapoda 395

Fig. 4. Automatic Barcode Gap Discovery (ABGD) analysis for
the Eurypodius specimens used in this study showing barcoding
gaps.

Morphological aspects. Morphological features such as
the rostral horns of E. latreillii are extremely variable. In
small specimens (ZSMA20111603) they are divergent; in
larger specimens they are contiguous (ZSMA20111425).
The orientation of the rostrum also changes with size: hor-
izontal in small specimens (ZSMA20061480) and with its
distal portion slightly bent downwards in larger specimens
(ZSMA20111427). All specimens collected during Huinay
fjordos expeditions were characterized by the absence of a
supraorbital spine (ZSMA20111427, RMNH D 42178).

Eurypodius longirostris is morphologically very sim-
ilar to E. latreillii. The rostral horns can be divergent
(ZOO2012-247T) or contiguous (ZSMA20061440). The
orientation of the rostrum is more variable than in E. la-
treillii and can be orientated upwards (ZSMA20061447) or
horizontal (ZSMA20061463) with its distal portion slightly
bent downwards. The variability of these features was fur-
ther shown through morphological analysis of the 44 spec-
imens housed at the Bavarian State Collection of Zoology.
Only the presence of the supraorbital spine was constant
(ZSMA20061440, ZOO2012-247T) (Fig. 5–16).

Morphological comparisons of representatives of the two
lineages of the Eurypodius clade with the type material of
Eurypodius latreillii and E. longirostris confirm this con-
stant morphological feature.

Acanthocyclus Lucas, in H. Milne
Edwards & Lucas, 1844
Molecular results. The Acanthocyclus clade consists
of three lineages, all of which are supported by high
bootstrap values (>92%) and high posterior probability
values (>0.99). The A. hassleri clade is composed
of three specimens from the same collection site
(ZSMA20111501, ZSMA20111504, ZSMA20111531),
the A. albatrossis clade of 12 specimens (ZSMA 20111503,

ZSMA 20111447, ZSMA20111448, ZSMA20061657,
ZSMA20061658, ZSMA20111444, ZSMA20061660,
ZSMA20061662, ZSMA20111451, ZSMA20111452,
ZSMA20111453, ZSMA20111454), and the A. gayi clade
of four specimens (ZSMA20111446, ZSMA20111443,
ZSMA20111449, ZSMA20111455). Intraspecific dis-
tances in the clades are low (A. hassleri 0%, A. albatrossis
mean 0.1%, max. 0.3% and A. gayi mean 0.23%, max.
0.46%). Interspecific distances for the clades are as fol-
lows: A. gayi/A. hassleri: 8.39%, A. albatrossis/A. hassleri:
3.46%, A. gayi/A. albatrossis: 8.97%. To crosscheck the
data and illustrate the barcode gap between these three
clades we used ABGD. Based on the calculated different
distance values (min. 0.01 and max. 0.18) this analysis
confirms the three distinct clades (Fig. 17).

Analysis of the distribution of these three species in our
sampling area (based on all available samples, those bar-
coded and others also collected by Huinay expeditions)
show that all specimens of the A. hassleri clade were col-
lected at the same location: Playa Chica (39◦43′S), Región
de los Rı́os. Acanthocyclus gayi is distributed, according
to our data, from Playa Chica (39◦43′S) to Playa Corrales
(41◦15′S), Región de los Lagos. Specimens of A. alba-
trossis have a wide range: our northernmost sample locality
is Dichato (36◦32′S), Región del Bı́o-Bı́o and the southern-
most Canal Messier (49◦51′S), Región de Magallanes y de
la Antártica Chilena.

Morphological aspects. The three lineages of Acantho-
cyclus correspond with the known morphological species.
Morphological comparisons of the three clades with each
other, with type material and with species descriptions in
the literature show that these species can only be reliably
distinguished from each other by a few features that were
seen to be constant in our analysis. Conversely, many of
the morphological characteristics given in the literature,
e.g. the differential diagnosis of Rathbun, 1930 and Garth,
1957, using the width to length ratio of the carapace, the
shape and form of the carapace lateral teeth, the carapace
structure, the orientation and shape of ischium and merus
joints of the 3rd maxilliped, the width–depth ratio of the
orbit and the shape of the dactylus of the ambulatory legs
of Acanthocyclus are, with analysis of a larger number of
individuals, not consistent (Tables 2–4 and Figs 18–53).
However, we observed several consistent features through
our examinations: the shape and orientation of the front (en-
tire or bilobed, directed forward or not) and the presence of
hairs on the carapace and ambulatory legs. Our differential
diagnosis between the three species shows a higher simi-
larity of morphological features between A. hassleri and A.
albatrossis (structure of male abdomen and 1st pleopod)
than A. hassleri and A. albatrossis against A. gayi. On the
basis of our data we can suggest an identification key for the
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396 R. Meyer et al.

Figs 5–16. Selected morphological features and their variation of Eurypodius longirostris (6–11) and E. latreillii (12–17). 6, 7: dorsal
view on rostrum (ZSMA20061440, Holotype ZOO2012-247T); 8, 9: lateral view of rostrum (ZSMA20061447, ZSMA20061463); 10, 11:
detail of orbit with supraorbital spine (ZSMA20061440, Holotype ZOO2012-247T); 12, 13: dorsal view on rostrum (ZSMA20061480,
20111603); 14, 15: lateral view of rostrum (ZSMA20061480, ZSMA20111427); 16, 17: detail of orbit without supraorbital spine
(ZSMA20111427, Holotype RMNH.CRUS42178). Small arrowheads pointing at supraorbital spine; large arrowheads at rostral horns.

three species of the genus Acanthocyclus of the southern
Chilean region:

1. Front entire → (2)
Front at least faintly bilobed and directed forward
→ A. albatrossis

2. Carapace and ambulatory legs covered with hair
→ A. gayi
Carapace not covered with hair, front bent downwards
→ A. hassleri

Discussion
This study confirms that the barcode region of COI delivers
species-level resolution for Decapoda lineages as suggested
in Costa et al. (2007) and Lefebure et al. (2006) at least for
the southern Chilean area.

Mean interspecific sequence divergence in southern
Chilean decapods is high with respect to other groups of
animals (15.54% with a max. of 25.11%), but fits well with
the results of Costa et al. (2007) who observed a mean inter-
specific divergence for crustaceans of 17.16%. By compari-
son, variation of lepidopterans analysed worldwide is 6.1%
(Hebert et al., 2003), birds of North America 7.93% (Hebert

et al., 2004b), pycnogonids of southern Chile 18.83% (Weis
& Melzer, 2012) and fishes of Australia 9.93% (Ward et al.,
2005). Hebert et al. (2004a) proposed that species can be
resolved when their sequence divergence is 10× larger than
the average intraspecific variation for the group. If applied
to the decapods examined in this study (7.7% threshold),
the 10× threshold would recognize 90.25% of the exam-
ined species. Species not identified at this threshold are

Fig 17. Automatic Barcode Gap Discovery (ABGD) analysis for
the Acanthocyclus specimens used in this study showing barcoding
gaps.
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Table 2. Morphological features of A. gayi compared with features given in literature.

Feature Literature (Rathbun, 1930) This study Reference∗

carapace width length ratio 1.05-1.08 1.00-1.10 ZSMA20111443, ZSMA20111446
carapace lateral teeth intermediate appressed or intermediate ZSMA20111605, ZSMA2011606
front entire entire all specimens this study
pubescence of carapce and

legs
carapace and legs carapace and legs all specimens this study

carapace structure almost smooth almost smooth all specimens this study
orientation of ischium of 3rd

maxilliped
ischium joints with inner margin

subparalell, but leaving a wide
hiatus

ischium joints with inner
margins in contact or with
hiatus

ZSMA20111443

orbit width depth ratio
(viewed from above)

less than twice as wide as deep more than twice as wide as
deep

ZSMA20111443

structure of dactyli of legs short, much curved from base much or less curved from base ZSMA20111605

∗Specimen registration number.

P. sicarius and P. spinosulum with 5.61% and A. albatrossis
and A. hassleri with 3.46% interspecific variation. In the
first case, morphological differences are clear and define the
two species; in the second case A. albatrossis and A. hassleri
are closely related, but our examinations show significant
morphological differences. The sequence divergence for the
Eurypodius species, with a value of 11.83%, clearly is in
accord with a 10× threshold.

Other recent publications suggest that divergences
greater than 3% suggest either the presence of cryptic
species (Radulovici et al., 2009) or can be seen as the
threshold for species delineation (Hebert et al., 2003). In
decapods, distances among haplotype clades varied from
2.78% to 9.6% (Oliveira-Biener et al., 2010); in our study
variation between 3.46% and 25.11% was found, sup-
porting a 3% threshold for species level discrimination.
Detailed analyses with the ABGD software on the fo-
cus genera Acanthocyclus and Eurypodius show obvious
‘barcode gaps’ between the individual species (Figs 4 and

17). Furthermore, the mean level of intraspecific variation
of 0.77% in the studied decapods is slightly higher than
the 0.46% reported in previous studies of crustacea (Costa
et al., 2007). The high intraspecific variation appearing in
the Hemigrapsus clade might indicate presence of a cryp-
tic species, or at least the beginning of genetic divergence
between Hemigrapsus subgroups. Since this observation is
based on a single specimen only and since this specimen
does not show any morphological difference, we left this
species tentatively in the H. crenulatus clade.

The values of interspecific variation and the methods ap-
plied for sequence-based delineation of taxa support the
validity of DNA barcoding for species identification in de-
capod crustaceans of the studied region. However, these
clear results are accepted primarily for the relatively small
geographical area studied. Currently decapod species’ bar-
code coverage worldwide is about 14.3% (2147 species
with barcodes in BOLD by August 2012 compared with
c. 15 000 described Decapoda species) and thus still at

Table 3. Morphological features of A. albatrossis compared with features given in literature.

Feature Literature (Rathbun, 1930) This study Reference∗

carapace width length ratio 1.08–1.13 1.07–1.21 ZSMA20111455, ZSMA20061657
carapace lateral teeth prominent, acute intermediate all specimens this study
front faintly bilobed faintly bilobed all specimens this study
pubescence of carapce and

legs
less hairy than A.gayi less hairy than A.gayi all specimens this study

carapace structure tuberculate or granulate almost smooth, front part
granular

all specimens this study

orientation of ischium of 3rd
maxilliped

ischium joints with inner
margins in contact

ischium joints with inner
margins in contact or
leaving a wide hiatus

ZSMA20111455, ZSMA20061657,
ZSMA20111610, ZSMA20111447,
ZSMA20061658, ZSMA20111607

orbit width depth ratio
(viewed from above)

less than twice as wide as deep more than twice as wide as
deep

Sach.Kat.Nr 792/1

structure of dactyli of legs long, little curved in comparison to A. gayi
longer and little curved

ZSMA20061662, ZSMA20061657

∗Specimen registration number.
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Table 4. Morphological features of A. hassleri compared with features given in literature.

Feature Literature (Rathbun, 1930) This study Reference∗

carapace width length ratio 1.16 1.18–1.29 ZSMA20111531, ZSMA20111504
carapace lateral teeth teeth appressed appressed or intermediate all specimens this study
front front entire entire all specimens this study
pubescence of carapce and legs less hairy carapace not hairy, legs little

hairy
all specimens this study

carapace structure carapce tuberculate almost smooth, front part
granular

all specimens this study

orientation of ischium of 3rd
maxilliped

ischium joints with inner
margins diverging anteriorly,
gape less than in A.gayi

small gape, sometimes
diverging anteriorly

ZSMA20111501, ZSMA20111531

orbit width depth ratio (viewed
from above)

more than twice as wide as
deep

twice or more than twice as
wide as deep

ZSMA20111501

structure of dactyli of legs dactyli short, much curved much or less curved from base ZSMA20111531

∗Specimen registration number.

the beginning of the barcoding process. Within this study
species of the genera Acanthocyclus and Eurypodius are
the only representatives exclusively occurring in the study
area but nowhere else; all other genera have a much wider
distribution area and are not completely barcoded. Closing
this information gap could reduce apparent interspecific
variation once there is a global taxonomic view. However,
in our two focus genera Eurypodius and Acanthocyclus we
observed valid values.

The interspecific divergence value between the two
branches of the genus Eurypodius, and the distinct morpho-
logical features, clearly define and confirm the two species
E. latreillii and E. longirostris. We compared morphologi-
cal species descriptions in the literature with all 44 speci-
mens available from the Huinay expeditions and observed
an extremely high morphological variation. However, the
two species could be separated by the morphological fea-
ture of the absence or presence of the postorbital spine.
This consistent feature was mentioned in Rathbun’s exam-
inations (Rathbun, 1925) and is confirmed by our study.
Conversely, other features used historically for determina-
tion and separation of these two species, such as the ori-
entation and shape of the rostral horns (Lagerberg, 1905;
Stebbing, 1914; Garth, 1957, 1958), were shown not to be
consistent throughout our samples and thus do not serve for
species distinction. Putting the molecular results in context
with the morphological analyses we were able to find and
present a valid feature for further species discrimination,
and clarify historical descriptions that were based on only
a few specimens. In these cases there could be misinter-
pretation of features that seem distinctive between species
if only a few specimens are analysed, but these disappear
when a large sample of specimens is examined, as in this
study.

Interspecific divergence of the three clades of the stud-
ied Acanthocyclus species complex is high in two cases (A.
gayi/A. albatrossis 8.97%, A. gayi/A. hassleri 8.39%) and

shows a well-defined threshold between these three species,
confirming the specific status of A. gayi. The low distance
value of 3.46% (A. hassleri/A. albatrossis) and the narrow
differences in morphologically constant features between
A. hassleri and A. albatrossis illustrates the closer rela-
tionship between these two species. Hence, we cannot ex-
clude with certainty the possibility that A. hassleri is a sub-
species of A. albatrossis (Garth, 1957). Interspecific values
in this study for other decapods of this region range be-
tween 5.61% (Peltarion spinosulum/Pseudocorystes sicar-
ius) and 25.11% (Nauticaris magellanica/Propagurus gau-
dichaudii).

Holthuis, 1952 and Ekman 1953 identified Chiloé Island
(41◦30′S) in the Pacific Ocean as the northern boundary
of the South American antiboreal region. The geographical
range and the distribution pattern of the Eurypodius species
depicted in this study are very clear (we included all 44
available Eurypodius specimens (barcoding and collection)
in the biogeographical analysis): Eurypodius samples north
of Las Hermanas (43◦46′S) were determined as E. latreillii
(ZSMA20111589) and south of Inio 3, Chiloé (43◦23′S)
as E. longirostris (ZSMA20111597). However, distribution
ranges for these species given in the literature (e.g. Rath-
bun, 1930; Garth, 1957) differ from our observations; the
range of E. latreillii is stated to be ‘from Peru south to Strait
of Magellan’ and E. longirostris is only known from its type
locality (east coast of Madre de Diós Island, 50◦08′S). Sam-
ples of E. latreillii and E. longirostris obtained in the Strait
of Magellan and its southern channel system including the
southern islands (52◦57′S–55◦47′S) document the occur-
rence of both species in this southern region (Arntz et al.,
1999). Other expeditions (CIMAR-Fjordo III and CIMAR-
Fiordo VII) sampled the South Patagonian Ice shield and
the Strait of Magellan and collected E. latreillii at 24% of
their stations (29 stations in total) (50◦29′S–53◦33′S) (Rios
et al., 2005). Notably, among the 1895 collected inverte-
brate samples collected by these expeditions not even one
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Figs 18–29. Selected morphological features of Acanthocyclus gayi. 18: dorsal view, 19: ventral view (both ZSMA20111449);
20, 21: variation of orientation of 3rd maxilliped (ZSMA20111449, ZSMA20111443); 22, 23: variation of lateral carapace teeth
(ZSMA20111443, ZSMA2011605); 24: male abdomen (ZSMA20111443); 25: female abdomen (ZSMA20111449); 26, 27: variation
of dactylus (ZSMA20111443, ZSMA20111605); 28: frontal view (ZSMA20111605); 29: 1st male pleopod (ZSMA20111443).

specimen of E. longirostris was found. Due to the simi-
larity of the two species, it is hard to state to what extent
specimens of E. longirostris were identified as E. latreillii
and vice versa in older literature. Boschi & Gavio (2005)
present a species checklist including the geographical distri-
bution of decapods in the South American antiboreal region.
According to these authors, both Eurypodius species occur
in our sampling area, thus supporting our results.

The different Acanthocyclus species have, according to
Garth, 1957 and Rathbun, 1930, overlapping distribution ar-
eas: A. gayi from Salaverry, Peru (8◦13′S) to Lota (37◦05′S),
A. hassleri from Alacrán Island (18◦27′S) to Valparaiso
(33◦02′S) and A. albatrossis from Talcahuano (36◦43′S) to
the Strait of Magellan (53◦31′S).

From our data we are able to clarify the southern distribu-
tion boundary of A. gayi and A. hassleri. Acanthocyclus gayi
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Figs 30–41. Selected morphological features of Acanthocyclus albatrossis. 30: dorsal view, 31: ventral view (both ZSMA20061662);
32, 33: variation of orientation of 3rd maxilliped (ZSMA20111447, ZSMA20111453); 34, 35: variation of lateral carapace teeth
(ZSMA20111451, ZSMA20061658); 36: male abdomen (ZSMA20111451); 37: female abdomen (ZSMA20111453); 38, 39: variation of
dactylus (ZSMA20061662, ZSMA20061657); 40: frontal view (ZSMA20111451); 41: 1st male pleopod (ZSMA20061657).

is distributed to Playa Corrales (41◦15′S) – about 500 km
south of the previously proposed boundary. All specimens
of A. hassleri were collected at one location: Playa Chica
(39◦43′S), which is located about 800 km south of the south-
ern species boundary given in the literature. All specimens
of A. albatrossis collected for this study were found in the
range of distributions given for this species in the literature
and thus confirm at least the northern boundary. Further

information of the species ranges is hard to obtain: the
Acanthocyclus species are shallow water inhabitants and
thus not collected during large expeditions which mainly
sampled at greater depths (Arntz et al., 1999; Mutschke
and Gorny, 1999; Rios et al., 2003). The occurrence of
A. albatrossis in the antiboreal region is confirmed by
Boschi & Gavio (2005), Campodonico & Guzman (1973)
and Gorny (1999).

D
ow

nl
oa

de
d 

by
 [

T
&

F 
In

te
rn

al
 U

se
rs

],
 [

Ja
yn

e 
K

ay
] 

at
 0

1:
54

 0
8 

O
ct

ob
er

 2
01

3 

77



DNA barcoding of Chilean Decapoda 401

Figs 42–53. Selected morphological features of Acanthocyclus hassleri. 42: dorsal view, 43: ventral view (both ZSMA20111531); 44,
45: variation of morphology of 3rd maxilliped (MCZ CRU-4889, ZSMA20111531); 46, 47: variation of lateral carapace teeth (Holotype
MCZ CRU-4889, ZSMA20111531); 48: male abdomen (Holotype MCZ CRU-4889); 49: female abdomen (ZSMA20111531); 50, 51:
variation of dactylus (Holotype MCZ CRU-4889, ZSMA20111531); 52: frontal view (ZSMA20111531); 53: 1st male pleopod (Holotype
MCZ CRU-4889).

At the moment the only comparable DNA barcoding
study on Chilean arthropods is that on Pycnogonida by
Weis & Melzer (2012), who observe a ‘patchy’ distribution
pattern of different clades all attributed to Achelia assim-
ilis (Haswell, 1885), and relate this phenomenon to post-
glacial recolonization. In the present study no such effect
has been detected. In comparison to the holobenthic life
cycle of Pycnogonids, Decapods’ pelago-benthic life cycle

enables species to spread over wide geographical distances
in a relatively short period of time, and minimize genetic
divergences, i.e. intraspecific variation (Thatje et al., 2005).

The use of a dataset independent of morphology (COI
sequences) in addition to the classical morphological data
of the two species complexes studied here in detail con-
firms the species status and delimitations in both cases.
In addition the methodology allows clarification of the
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diagnostic features and unequivocal diagnoses of these ‘dif-
ficult species’ in the future. By the support of the phyloge-
netic analysis and the high number of samples we were able
to rank previously used morphological features according
to their utility for species determination. Furthermore we
expand the DNA barcode database involving these species
of this hitherto unexplored region and reconfirm the use-
fulness of DNA barcoding for the identification of marine
decapods.

In many DNA barcoding studies cryptic species are found
that have not been detected using morphology alone (Malay
et al., 2012). This situation is more common that the op-
posite, i.e. the number of DNA branches is less than the
number of already described valid species. In the present
study, the molecular and morphological species are per-
fectly consistent. On the one hand, this contradicts the no-
tion that DNA-based taxonomy is generally superior to the
traditional one (Janzen, 2004; Hajibabaei et al., 2006). On
other hand it supports the excellent work done by the ‘old’
morphological taxonomists such as Mary J. Rathbun and
John S. Garth who obviously ‘knew their animals’.
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PÉREZ-BARROS, P., D’AMATO, M.E., GUZMAN, N.V. & LOVRICH,
G.A. 2008. Taxonomic status of two South American sym-
patric squat lobsters, Munida gregaria and Munida subrugosa
(Crustacea: Decapoda: Galatheidae), challenged by DNA se-
quence information. Biological Journal of the Linnean Society
94, 421–434.

PUILLANDRE, N., LAMBERT, A., BROUILLET, S. & ACHAZ, G.
2012. ABGD, Automatic Barcode Gap Discovery for pri-
mary species delimitation. Molecular Ecology 21, 1864–
1877.

RADULOVICI, A.E., SAINTE-MARIE, B. & DUFRESNE, F. 2009. DNA
barcoding of marine crustaceans from the Estuary and Gulf of
St Lawrence: a regional-scale approach. Molecular Ecology
Resources 9, 181–187.

RATHBUN, M.J. 1898. The Brachyura collected by the U.S. Fish
Commission steamer Albatross on the voyage from Norfolk,
Virginia, to San Francisco, California, 1887–1888. Proceed-
ings of the United States National Museum 21, 567–616.

RATHBUN, M.J. 1918. The grapsoid crabs of America. Bulletin of
the United States National Museum 97, 1–461.

RATHBUN, M.J. 1925. The spider crabs of America. Bulletin of the
United States National Museum 129, 1–613.

RATHBUN, M.J. 1930. The cancroid crabs of America of the fam-
ilies Euryalidae, Portunidae, Atelecyclidae, Cancridae, and
Xanthidae. Bulletin of the United States National Museum
152, 1–609.

RATNASINGHAM, S. & HEBERT, P.D.N. 2007. BOLD: The Barcode
of Life Data System (http://www.barcodinglife.org). Molecu-
lar Ecology Notes 7, 355–364.

RETAMAL, M.A. 1981. Catalogo ilustrado de los crustáceos de-
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8. Article VI 

 

Meyer R, Lochner S, Melzer RR (2009) Decapoda - crabs, shrimps & lobsters. In: 

Häussermann, V. & Försterra, G. (eds.) 2009. Marine Benthic Fauna of Chilean Patagonia, 

Nature in Focus, Santiago de Chile, 1000 pp. Spanish version: Häussermann, V. & Försterra, 

G. (eds.) 2009. Fauna Marina Bentonica de la Patagonia Chilena, Nature in Focus, Santiago 

de Chile, 1000 pp. ISBN 978-956-332-243-9 spanish; 978-956-332-244-6 english. 

 

 

 
 

 

 

 

 

Figure 12: Close up of Lithodes santolla (Molina, 1782), an anomuran crab of the southern 

Chilean fjord area. Photo by the author. 
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9. General discussion and results 

The present thesis provides a variety of modern methods used to analyse the morphology of 

different life stages of decapods. The aim was to establish and characterize new 

morphological features in larval stages with the use of scanning electron, light and confocal 

microscopy for taxonomic purpose. Furthermore an inventory of the decapod fauna of the 

southern Chilean fjord area was carried out and results are analysed with both classical 

morphological methods and with the use of COI - barcoding in an integrative approach for 

species delimitation of southern Chilean Decapoda. 

 

 

9.1. Larval morphology and SEM 

The descriptions of the thitherto undescribed first zoea stage of Gnathophyllum elegans 

(article II) and Portunus acuminatus (article I) are mainly based on SEM data. With the use of 

the resolving power of the SEM it was possible to identify and describe several characters of 

zoea larvae not generally given in standard descriptions, e.g. the mandible structure and 

sensory dorsal organ (SDO). We furthermore were able to display tiny structures and describe 

their steric arrangement i.e. the composition of the carapace structure of P. acuminatus and 

the reliable description of the different types of setae and their classification according to 

Watling (1989) and Garm (2004). 

Both larval descriptions included in this thesis, enable us to display details of the gross three-

dimensional structure of the mandibles of the zoea larvae. This feature often is omitted in 

larval descriptions due to its complex structure and hidden position under other mouthparts, 

which is not easy to resolve with the predominantly used description technique of light 

microscopy (Ingle, 1992). Geiselbrecht and Melzer (2010) discussed the significance of 

mandible morphology as a set of characters for phylogenetic examinations and indicated that 

a significant phylogenetic signal is present on the features of the mandibles. Our results of the 

mandible structures of G. elegans and P. acuminatus support this conclusion on the basis of 

available data. Thus, structural analyses of this organ could give access to a relevant and yet 

poorly studied set of characters for larval diagnosis and further phylogenetic studies. Since the 

number of species for which detailed larval descriptions are available is still quite limited, this 

feature needs to be analyzed in more detail in future larval descriptions of larval stages. 

The sensory dorsal organ (SDO) is a sensory glandular complex which is located along the 

sagittal line at the anterior part of the cephalic shield (see article III). It is documented in the 

Eumalacostraca but is also known in the Hoplocarida and the Phyllocarida (Laverack & 
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Macmillan, 1999). We observed this seldom described organ in various malacostracan larvae 

(articles I, II, III) and observed that the arrangement of the elements (4 sensors and 1 central 

gland) varies greatly in external appearance throughout different species. Presumably due to 

its small dimensions it is not described in classical descriptions based on light microscopy. 

Within the studied species the external morphology is a constant species-specific feature and 

therefore could be used as a potential character for species description and determination. A 

homologous structure can be found on the cephalic shield of cyprid larvae and is named the 

“lattice organ (LO)”. Examinations of the LO show that the variations in the arrangement are 

phylogenetically informative (Celis et al., 2008). Due to the lack of described SODs in larval 

descriptions of decapod crustaceans it was not possible to carry out further comparative 

studies, but on the base of our examinations we expect this feature as phylogenetically 

informative. 

 

 

9.2. Zoea larvae and confocal microscopy 

Confocal microscopy was used to investigate the density and number of nuclei in zoea larvae 

as a diagnostic feature. As a model organ the telson was used since its flattened form makes it 

relatively easy to visualize the nuclei completely and evaluate its density. 

This potential “taxonomically-relevant-feature” was checked within zoea larvae of 

representatives of all major infraorders of the Decapoda i.e. Caridea (Palaemon adspersus 

Rathke, 1837, Palaemon elegans Rathke, 1837), Anomura (Porcellana platycheles (Pennant, 

1777), Pisidia longicornis (Linnaeus, 1767)) and Brachyura (Xantho hydrophilus Herbst, 

1780, Xantho pilipes A. Milne Edwards, 1867). Results indicate that the arrangement as well 

as the density of nuclei varies at least on higher taxonomic level e.g. genus or families or 

suborders between the selected species. Comparisons of results between the nearly related 

species Palaemon adspersus / Palaemon elegans respectively Xantho hydrophilus / Xantho 

pilipes show no significant variations. Therefore on species level no relevant differences were 

recorded. Hence it can be stated that the detected taxonomic signal is exclusively valid at 

higher taxonomic level. 

This approach based on confocal microscopy data as a modern method in taxonomy, shows 

that diagnostic features can be found on many different levels using various sets of characters. 

In the history of taxonomy, several of these “levels” have been checked for their taxonomic 

value i.e. biochemical characters such as protein, enzyme and hemoglobin chemistry, DNA 

hybridizations and immunochemistry (Baker, 1965, Manwell & Kerst, 1966, Throckmo, 
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1968, Goodman & Moore, 1971). However these biochemical characters seem to be most 

informative at higher taxonomic level (Sibley, 1960). Manwell and Baker (1963) studied 

biochemical factors in blood sera of marine arthropods and were able to observe qualitative 

and considerable qualitative variations of blood sera of different decapod-species (Emerita 

talpoida (Say, 1817) and Uca (Leptuca) pugilator (Bosc, 1802). However closely related 

species were not studied and the authors quoted that it is possible that under such 

circumstances the individual variations observed in these crustaceans could obscure existing 

species specificity. Furthermore, possible protein variations during physiological effects such 

as the moulting process were not considered in the study. Consequently these methods could 

serve as tools for higher taxonomy but have no resolution on species level. Further 

morphological independent approach was established by Moore and Goodman (1968) as the 

authors introduced immunodiffusion comparisons in taxonomy. In this approach, distances 

between species were calculated on the base of Ouchterlony data. 

In our work, we studied the taxonomic potential of nuclei-pattern and sizes of decapod zoea 

larvae as a further, “exotic” character and the obtained results may contribute to species 

diagnosis as a new feature in taxonomy. Other relevant species features, including 

morphological and molecular characters can be supported by these results and form a 

substantiated set of taxonomic data for species identification and thus for taxonomic purpose. 
 

 

9.3. Inventory and barcoding of Chilean decapods 

The objectives of this project were (1) to get an overview of species richness through a 

systematic inventory of this nearly unexplored region as reference data for further 

investigations, (2) to check on this basis the systematic state of different species with 

integrative taxonomy (barcoding and classical morphology), and (3) to analyse these selected 

species complexes for the presence of cryptic species. 

The systematic inventory of the southern Chilean fjord region is carried out since 2005 in 

organisation of the Huinay Scientific Field Station (www.fundacionhuinay.cl/projects.html). 

Since then over 650 lots with decapod samples have been analysed for this thesis at the 

Bavarian State Collection of Zoology and results have been published in the field guide 

“Marine Benthic Fauna of Chilean Patagonia” (article VI). The identification and 

determination of species was based on eidonomic, morphological features. In addition to the 

original descriptions, available identification literature was used (Rathbun, 1918, Rathbun, 

1925, Garth, 1957, Retamal, 1981, Retamal & Gorny, 2001).  
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The taxonomic state of the species in the genera Acanthocyclus (A. gayi, A. hassleri, A. 

albatrossis) and Eurypodius (E. longirostris and E. latreillii) was not clear though species 

descriptions in literature are confusing. To check species boundaries of these “problematic 

cases” integrative taxonomy was used. In cooperation with Barcode of Life Data System 

(BOLD) (Ratnasingham & Hebert, 2007) selected decapod specimens of all collected species 

were barcoded for the first time for this region and analysed with the focus on theses 2 genera 

(article V). Data sets including collection data, specimen photos and the COI-sequence can be 

accessed on the BOLD website under the project CFAD (Chile Fjord Arthropods Decapoda) 

as part of the campaign ‘Marine Life (MarBOL)’. 

Species definition and identification based on eidonomic features only can sometimes be 

unclear because interpretation of character sets by different taxonomists can have a subjective 

component (Padial et al., 2010). On the other hand molecular data can be misinterpreted: false 

data could occur in the way of sampling specimen tissue, its preservation and other effects 

like the occurrence of mitochondrial pseudogenes (Song et al., 2008). To minimize and 

compensate these effects both methods have to be combined and furthermore new sets of 

characters must be added (like the SOD and setae morphology in larvae descriptions) to the 

given morphological data. 

In the Chilean case study it was possible to identify constant morphological features in the 

species of the genera Acanthocyclus and Eurypodius (article V) by the the use of integrative 

taxonomy. Furthermore, on the basis of the collection data of the systematic inventory we 

were able to give new biogeographic information of distribution ranges of the collected 

species. Collection data including exact geographic coordinates are available at the BOLD 

website or on the sampling voucher of each specimen at the Bavarian State Collection of 

Zoology. 

 

 

9.4. Conservation aspects 

In the second half of the 20th century the Chilean Patagonia was discovered as one of the last 

natural marine and terrestrial exploitable areas on the planet. Infrastructure like forestry roads 

and the Carretera Austral offered better access into the remoter parts of the region. Industrial 

fisheries harvested large portions of fish with unknown consequences for food webs and 

artisanal fishermen not only satisfied own consumption and local markets but were integrated 

in the national and international markets. But the activity with the most dramatic impact on 

the Chilean Patagonian benthos and the marine life in the fjords is the development of 
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aquaculture. (Gowen & Bradbury, 1987, Johannessen et al., 1994, Häussermann et al., 2013). 

This alarming progress is now broadly recognized as a critical element of ecosystem change 

and a major threat to local diversity. Only by bringing these unique biocoenoses to the 

attention of the (scientific) public, the fish-farming community and the enforcement agencies 

will hopefully have a better understanding and acceptance for the need of protection of these 

scientifically little known resources (Reed, 2002). 

With our efforts in supporting and participating at the “Huinay Fjordos” expeditions since 

2006, and with publishing our results not only in scientific journals (article V, article VI) but 

also in popular scientific journals (Meyer & Melzer, 2012) and presentation on various 

conferences we hope to place this problem more and more in the public focus. 

 

 

10. Conclusions and outlook 

The future of taxonomy should be based in the combination of different methods (e.g. 

molecular, morphological, geographical, biochemical, data) to create a more and more perfect 

set of characters for each species. Taxonomy is a dynamic issue and methods applied are 

developing with the technological change. From the use of basic microscope technology and 

drawings for species description to high tech microscopy and next generation sequencing 

producing a high amount of specific data it took centuries. But in newer times, methods are 

changing faster and faster and will influence this scientific discipline rapidly. 

In this thesis, we established new morphological data for zoea-larvae using modern methods. 

Molecular data for decapods of the unique southern Chilean fjord region are made available 

for colleagues around the world. We showed that different approaches can lead to well based 

taxonomic results and that features for species characterizations are available on several 

different levels. The combination of these results with the reinvestigation of type and other 

historical material create a significant species specific data set. Thus further research using 

integrative taxonomy can help to check species boundaries, identify cryptic species and 

finally characterize these properly. 

But these results are just small pieces of a giant puzzle. To understand and characterize our 

environment, future projects have to pursue an interdisciplinary approach in order to identify 

new and cryptic species and define their species boundaries. The proper identification of 

species, their characterization and taxonomic evaluation forms an essential basis for a caring 

relationship with nature. To achieve these aims ongoing studies, especially in remote areas 
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like the southern Chilean fjord region are essential to create a platform for regimentations and 

conservation activities. 
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11. Relevant posters 

Parts of this thesis by publication have been presented in poster format at different congresses. 

As a final summary and overview the relevant posters have been added. 
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11.1. Morphology of the first zoeal stage of the spotted bumblebee shrimp Gnathophyllum 

elegans (Risso,1816) studied with light and scanning electron microscopy. Presented at the 

Jahrestagung der DZG (Deutsche Zoologische Gesellschaft), 21.-24.09.2012, Konstanz, 

Germany. 
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Abstract 

The morphology of the first stage zoea of Gnathophyllum elegans raised in the laboratory is 

illustrated and described for the first time. Larvae were obtained from an ovigerous female, 

caught in shallow waters west of the isle of Šolta (43°23´00´´N,16°13´47´´O), Croatia.  

Differential diagnosis between G. elegans and G. americanum Guérin-Méneville, 1855 the 

only other Gnathophyllum species with available zoea description Bruce (1986) shows 

distinct differences in seta patterns on the antennule, maxilla, all maxillipeds and the telson. 

Hence both species can be clearly distinguished by larval morphology. The systematic 

position of the genus Gnathophyllum is under question since Bruce (1986) discovered strong 

similarities between the larvae of G. americanum and different representatives of the 

subfamily of the Pontoniinae. Comparison of our results with the partner shrimp Periclimenes 

amethysteus Risso, 1827, also studied with the scanning EM (Geiselbrecht & Melzer, 2009), 

shows several common features, hence supporting the need for further examinations on this 

systematic background. 
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11.2. Decapoda of the Chilean fjords: taxonomy and biogeography. Presented at the 104th 

Jahrestagung der DZG (Deutsche Zoologische Gesellschaft), 09.-12.09.2011, Saarbrücken, 

Germany. 
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Abstract 

The decapod fauna of the southern Chilean fjord region (41°- 55° South) is partially well 

investigated by several large expeditions, e.g. the Lund university Chile expedition 1948-

1949. However only easily accessible areas were hitherto studied and sampled. The aims of 

this work are to extend the sampling area to the benthos communities of scuba-accessible 

depths of the inner fjords, to include relatively unexplored subantarctic regions with its unique 

environmental conditions, e.g. eurybathy, and to establish a taxonomic and biogeographic 

survey of Decapoda fauna from the Chilean Fjords. 

About 600 decapod samples representing 16 decapod families were collected predominantly 

by several expeditions carried out by the Huinay Scientific Field Station from 2005 to now. In 

addition to determination, and taxonomic revision, distribution patterns of different species 

are given and set in a biogeographic context. Selected morphological features of several 

species are reinvestigated and combined with molecular data in order to check species state 

and delimitations. 
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11.3. Decapoda of the Chilean Fjords: DNA Barcoding and integrative taxonomy with focus 

on the genera Acanthocyclus H.Milne Edwards & Lucas, 1844 and Eurypodius Guérin, 1825. 

Presented at  the Crustacean Society (TCS) summer meeting 03.-07.07.2012, Athens, Greece. 
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Abstract 

The decapod fauna of the southern Chilean fjord region (41°- 55° South) is partially well 

investigated by several large expeditions, e.g. the Lund university Chile expedition 1948-

1949. However only easily accessible areas were hitherto studied and sampled. The aims of 

this work are to extend the sampling area to the benthos communities of scuba-accessible 

depths of the inner fjords, to include relatively unexplored subantarctic regions with its unique 

environmental conditions, e.g. eurybathy, and to establish a taxonomic and biogeographic 

survey of the Decapoda fauna from the Chilean Fjords. 

About 600 decapod samples representing 31 species out of 16 decapod families were 

collected predominantly by several expeditions carried out by the Huinay Scientific Field 

Station, Huinay, Chile from 2005 to now. In addition to determination, and taxonomic 

revision, distribution patterns of different species are given and set in a biogeographic context. 

Selected morphological features of several species are reinvestigated and combined with 

molecular data in order to check species state and delimitations. COI (cytochrome c oxidase 

subunit 1) sequence data of 190 specimens are analysed and set in context with morphological 

results. 93,5 % of the sequenced specimens grouped into clusters corresponding to known 

morphological species. For 2 species complexes (Acanthocyclus sp. and Eurypodius sp.) the 

occurrence of cryptic lineages is suggested by our data: specimens cluster in 3 and 2 groups 

respectively. Furthermore we expand the DNA barcode database involving these species of 

this hitherto unexplored region and reconfirm the usefulness of DNA barcoding for the 

identification of marine decapods. 
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11.4. Preliminary results of a marine expedition to the end of the world: status and 

perspectives. Presented at the 3rd International Marine Protected Areas Congress (IMPAC3), 

Marseille, France, 21.-27.10.2013. 
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Abstract 

Chile’s economy is one of the fastest growing worldwide. As a consequence its environment 

is faced to increasing level of anthropogenic pressure. With a coastline of more than 80.000 

km, the Chilean fjord region is both the most extensive fjord region and one of the biggest 

estuarine systems in the world hosting a unique diversity of marine life including a high level 

of endemic species. However, this region is exposed to various anthropogenic impacts such as 

global warming, intensive aquaculture projects and illegal fishing. Especially salmon farming 

and cultured mussel production, significant industries for Southern Chile, are negatively 

impacting marine life.  

The Huinay Scientific Field Station research is strongly focused on the investigation of the 

biodiversity of the fjords of Southern Chile extending from Puerto Montt to Cape Horn. Since 

2005 15 ”Huinay fiordos” (HF) expeditions established marine species inventories of least 

studied regions. 

In April 2013 the destination of the “HF 16” expedition was Guarello Island (50°21'54.15"S, 

75°20'29.66"W) located in the remote archipelago Madre de Dios, XII Región de Magallanes 

y de la Antártica Chilena. 

Species were obtained by scuba diving and hand collection in depths between 0 and 30m. The 

sampling concept followed the approved method of former expeditions: in situ documentation 

by underwater photography before preservation to ensure the documentation of habitat and 

coloration. In total 647 samples consisting of 28 taxa were collected with a considerable 

number of species new to science (e.g. ~ 15 new poriferan species). The presence or absence 

of species was examined by scuba diving and hand collection. Furthermore different 

biocoenoses were investigated and their status recorded. This recent study confirms the results 

of preliminary studies (HF 3) as it is a hotspot of diversity with unique communities such as 

hydrocoral reefs. Our data are foreseen as a basis for comparisons with data obtained in 

further investigations in the context of a long term biodiversity monitor program in this area 

by the approach for detecting key data gaps by using MARXAN “reversely” though 

stimulation of data set improvements. 
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