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SUMMARY 

This study involved the combination of molecular-cytogenetic data and phylogenetic 

approaches to infer pathways by which chromosome numbers and sizes may have changed 

during the course of evolution. The two systems for which I generated new data are the 

monocot plant family Araceae and Coccinia, a genus of Cucurbitaceae. Araceae have about 

3800 species in 118 genera, and chromosome numbers range from 2n = 168 to 2n = 8, the 

latter the lowest number so far and newly reported in my study. The small genus Coccinia 

includes C. grandis, with the largest known Y chromosome in plants, as documented in my 

work. The thesis comprises four published or submitted papers. 

The first paper reports the result of phylogenetic modeling of chromosome number 

change along a phylogeny for the Araceae with 113 genera represented. I used a maximum 

likelihood approach to find the most likely combination of events explaining today’s 

chromosome numbers in the 113 genera. The permitted events were chromosome gains (i.e. 

breaks), losses (i.e. fusions), doubling (polyploidization), or fusion of gametes with different 

ploidy. The best-fitting model inferred an ancestral haploid number of 16 or 18, higher than 

previously suggested numbers, a large role for chromosome fusion, and a limited role of 

polyploidization. The sparse taxon sampling and deep age (at least 120 Ma) of the events near 

the root of Araceae caution against placing too much weight on “ancestral” numbers, but 

inferred events in more closely related species can be tested with cytogenetic methods, which 

I did in two further studies (papers 2 and 3).  

I selected Typhonium, with 50-60 species, a range of 2n = 8 to 2n = 65 chromosomes. 

The family-wide study had suggested a reduction from a = 14 to 13 by fusion in Typhonium, 

but had included relatively few of its species. I built a phylogeny that included 96 species and 

subspecies sequenced for a nuclear and two chloroplast markers, and then selected 10 species 

with 2n = 8 to 24 on which to perform fluorescence in situ hybridization (FISH) with three 

chromosomal probes (5S rDNA, 45S rDNA, and Arabidopsis-like telomeres; paper 2). The 

results supported chromosome fusion in two species where I found interstitially located 

telomere repeats (ITRs), which can be a signal of end-to-end fusions, and polyploidization in 

one species where I found multiple rDNA sites. I then extended my cytological work to other 

lineages of Araceae, selecting 14 species from 11 genera in key positions in the family 

phylogeny, which I enlarged to 174 species, adding new chromosome counts and FISH data 

for 14 species with 2n = 14 to 2n = 60 (paper 3). With the new data, I confirmed descending 
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dysploidy as common in the Araceae, and I found no correlation between the number of 

rDNA sites and ploidy level (which would have pointed to recent polyploidy). I detected ITRs 

in three further species, all with 2n = 30. I also discovered gymnosperms-like massive repeat 

amplification in Anthurium. Similar ITRs are only known from Pinus species.   

Paper 4 presents molecular-cytogenetic data for Coccinia grandis, one of a handful of 

angiosperms with heteromorphic sex chromosomes. The male/female C-value difference in 

this species is 0.09 pg or 10% of the total genome. My FISH and GISH results revealed that 

the Y chromosome is heterochromatic, similar to the Y chromosomes of Rumex acetosa, but 

different from the euchromatic Y chromosome of Silene latifolia; it is more than 2x larger 

than the largest other chromosome in the genome, making C. grandis an ideal system for 

sequencing and studying the molecular steps of sex chromosome differentiation in plants.  
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The investigation of chromosome numbers has a long tradition in plant systematic 

research. Since Carl Wilhelm von Nägeli first identified chromosomes in pollen mother cells 

in 1842, angiosperm chromosome numbers have been published that range from n = 2 

(Haplopappus gracilis: Singh and Harvey, 1975; Yonezawa, 1981; Zingeria biebersteiniana: 

Bennett et al., 1995) to n = 250 (Strasburgeria robusta: Oginuma et al., 2006) and n = ~ 320 

(Sedum suaveolens: Uhl, 1978). The variation is even higher in ferns, where it ranges from n 

= 9 to n = ca. 720 (references in Leitch and Leitch, 2012). Counting and studying 

chromosomes became popular at the beginning of the 20th century, as the initially 

independent fields of genetics and cytogenetics developed, focusing on grasshoppers and 

Drosophila on the animal side, and Bryonia and a few other “systems” on the plant side 

(Correns, 1903; Rubin and Lewis, 2000; Crow and Crow, 2002). The word “gene” was coined 

in 1905. Today, abundant data from light microscopy have made clear that chromosome 

numbers can vary among closely related species and that single species can have different 

numbers even in the same population. For example, the common European species 

Cardamine pratensis can have 2n = 16, 17, 18, 20, 24, 28, 30, 32, 34, 38, 44, 46, 48, 56, 60, 

64, 80, 88, 90: Index to Plant Chromosome Numbers: IPCN, 

www.tropicos.org/Project/IPCN). Bennett et al. (1995) estimated that perhaps 25% of the 

angiosperms have had their chromosomes counted, and it is clear that numbers have increased 

and decreased during the course of evolution, although the mechanisms underlying the 

changes remain poorly understood. 

A similar range of chromosome numbers exists in animals. For example in ants, the 

chromosome number varies from n = 1 in Myrmecia pilosula ♂ to n = 47 in Prionomyrmex 

macrops (Crosland and Crozier, 1985; Imai et al., 2002). Myrmecia pilosula, originally 

described as one species, was revealed to include several distinct sibling species by the 

observation of multiple diploid chromosome numbers of 2n = 9, 10, 16, 24, 30, 31, and 32 

(Crosland and Crozier, 1985). Perhaps the most spectacular case of number variation is that of 

the muntjacs. The Indian muntjac, Muntiacus muntjak vaginalis, has a karyotype of 2n = 6 in 

females and 2n = 7 in males, while the Asia muntjac, M. reevesi, has 2n = 46 (Yang et al., 

1997). So far, the highest chromosome number reported for any animal comes from the fishes 

Acipenser baerii with 2n = ~368 and A. brevirostrum had 2n = 372 (Havelka et al., 2014).  

Features of a karyotype, such as chromosome number, morphology, and symmetry, 

can be used along with morphological traits to diagnose a species. These features are not 

http://mobot.mobot.org/W3T/Search/ipcn.html
http://www.tropicos.org/Project/
http://en.wikipedia.org/wiki/Acipenser_brevirostrum
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influenced by external conditions or age and therefore are reliable markers for taxonomic and 

molecular studies. In plants, it became common practice to propose a so-called basic (or base) 

number, x, by calculating the smallest common factor of series of haploid chromosome 

numbers (n) for entire groups (Sansome and Philp, 1932). This concept was never appreciated 

among zoologists, and appears not to have been used for any animal group; at least I have 

been unable to find an example.  

There are several problems with the “basic number approach.” First, the reliability of 

the inferred number depends on the sampling density, that is, the percentage of individuals 

and species in a group for which there are counts. Second, botanists commonly take the basic 

number as the ancestral number in the respective group, yet the approach does not incorporate 

phylogenetic relationships, and obviously was developed before the availability of 

morphological or molecular phylogenetic trees and before “tree thinking” took hold in the 

biological sciences in the 1980s. 

The application of x in plant systematics is well illustrated in a masterful review of 

chromosomal research by Raven (1975). Raven tried to bring new cytological data into a 

phylogenetic context. The available classification systems at the time, such as those of 

Cronquist (1968), Thorne (1968), or Takhtajan (1969), were still in the tradition of 

idiosyncratic groupings that could not be reproduced by scientists other than the author 

because they were not based on explicit data matrices as became common practice following 

the Hennigian revolution (Hennig, 1966). Peter Raven reviewed angiosperm chromosome 

numbers published at the time and proposed base numbers for each plant order (using the 

orders of Cronquist, every one of which has since turned out to be poly- or paraphyletic). 

Raven (1975: p. 760) also suggested that “the original basic chromosome number in 

angiosperms seems clearly to have been x = 7, characteristic of all major groups of both dicots 

and monocots except Caryophyllidae, with x = 9.” As his own data show, however, a 

chromosome number n = 7 only occurs in Annonaceae, a family in Cronquist’s order 

Magnoliales then seen as “primitive” (Raven 1975: p. 728; today, we would replace primitive 

by “early-diverging”). One has to remember that this was written before sister-group-thinking, 

and that Cronquist (1968) believed the Magnoliales had retained many traits from an 

imagined “original” flowering plant. Other families of the Magnoliales, such as 

Calycanthaceae, Monimiaceae, Lauraceae, and Myristicaceae, have much higher chromosome 

numbers. In Figure 1, I have plotted the chromosomes numbers mentioned by Raven (1975) 
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on the APG phylogeny as simplified by Stevens (2001 onwards). The most common haploid 

chromosome numbers among today’s magnoliids are n = 12 and 13, numbers also found in 

many living gymnosperms (Fig. 1), and in Amborella, the sister to all other angiosperms 

(Chamala et al., 2014 and many earlier references therein). 

Raven’s basic numbers for all angiosperm orders did not go unchallenged (Grant, 

1982), but in the context of this Introduction, it is important only to illustrate the many 

difficulties researchers who wanted to infer chromosome evolution or wanted to use 

chromosome information in plant systematics were experiencing before the availability of (i) 

phylogenies obtained in a reproducible manner, (ii) molecular data to infer relationships, and 

(iii) better ways to infer ancestral traits. In the following, I briefly discuss the progress in 

these three areas since 1975 because it is directly relevant to the approaches used in my 

doctoral research. 
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Fig. 1. Mapping of the chromosome numbers provided in Raven (1975) on the current DNA 

angiosperm phylogeny. Orders and families were searched online to find their current classification 

(from Cronquist [1968] to APG III). Only haploid or diploid chromosome numbers from Raven (1975) 

were plotted. Inferred basic numbers (x) are not included. The information for outgroups (green) is 

from Leitch and Leitch (2012). Numbers of basal angiosperms are shown in purple, others in black. 

Orders without chromosome numbers reflect the lack of data for these groups until 1975. Numbers in 

red are the proposed basic numbers (x = 7 or lower) for angiosperms according to Raven. 
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Progress in tree inference, trait reconstruction, and cytogenetics from 1966 

to 2014   

 

The work of Willi Hennig (1966) brought about a paradigm shift in systematic biology 

by putting forward a method for grouping species and lineages that in principle leads to 

reproducible and testable results. Although Hennig’s approach became quantitative and 

objective only after the development of computer algorithms by Farris (1970, also Kluge and 

Farris, 1969), it was Hennig who had the crucial idea of contrasting plesiomorphic with 

synapomorphic and autapomorphic characters, who realized that synapomorphies could 

identify sister groups, and who put forward the concept of paraphyly, so essential to his 

insistence that only monophyla are worth studying and naming (Renner, 2014). The first large 

DNA phylogenies for plants became available around 1993 (Chase et al., 1993; Steven et al., 

2001 onwards). They made it possible to understand the origin of land plants and to clarify 

the relationships among them. A few examples suffice to illustrate the huge changes in our 

understanding of plant relationships coming from DNA-based and quantitatively analyzed 

phylogenetic data matrices. Thus, the work of Olmstead and Palmer (1994), based on cpDNA 

restriction site data, revealed that tomato, classified by Cronquist (1968) in the genus 

Lycopersicum, is embedded in the genus Solanum. Koch and collaborators (1999), based on 

the analyses of nuclear ribosomal DNA (specifically the Internal Transcribed Spacer regions I 

and II), revealed that the closest relatives of Arabidopsis thaliana with n = 5 are species until 

then placed in the genus Cardaminopsis with n = 8. This result led to a new circumscription 

of Arabidopsis and Cardaminopsis (Koch et al., 1999; Soltis and Soltis, 2000). The work of 

Qiu and collaborators (1998) revealed that Nelumbo is related to Platanus and other 

Platanaceae. And finally the work of Davis et al. (2007) revealed that Rafflesiaceae are 

embedded in Euphorbiaceae. These few examples show the magnitude of the changes 

resulting from use of DNA matrices to infer phylogenetic relationships. By now, 2014, the 

new approaches to tree inference and modeling data have remodeled the thinking of an entire 

generation of biologists (human generation time is 25 years) regarding plant evolution. 

Progress in our understanding of chromosome evolution in Arabidopsis, however, not 

only came from statistical molecular phylogenetics. It also depended on the development of 

fluorescent-in-situ-hybridization or FISH (below, p. 9). The combination of molecular 

phylogenetics and FISH has shown that the 10 chromosomes of A. thaliana result from a 
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series of complex chromosome rearrangements that can be inferred by comparing the A. 

thaliana chromosomes to the 16 chromosomes of the closest relative A. lyrata (Lysak et al., 

2006). Whole genome sequencing of representative angiosperms also shows that the ancestor 

of Brassicaceae or Brassicales (to which A. thaliana belongs) was involved in multiple whole-

genome duplications, WGD, which must have involved huge increases (followed by 

decreases) of repetitive DNA and probably also ups and downs in chromosome numbers (Jiao 

et al., 2011). In combination, these results illustrate that there is no simple rule by which to 

infer the ancestral chromosome number of huge groups of flowering plants. 

Today it is clear that low or high chromosome numbers are neither consistently related 

to the absence or presence of a WGD nor to a species’ ancestral or derived evolutionary 

status. Using chromosome number to try and infer rates of polyploidization in land plants (as 

done by Wood et al., 2009) is thus simple-minded and will not yield convincing inferences 

without additional molecular cytogenetic work (Sousa et al., 2014). Instead, evolutionary 

changes in chromosome numbers need to be inferred separately from evolutionary change in 

genome size (a study doing both is Pellicer et al. 2014). The evolution of both types of 

characters (or traits) can be studied by preparing a data matrix with chromosome numbers or 

C-values (genome sizes) and then tracing the changes on a DNA-based phylogeny that 

includes the same species or individuals for which the characters of interest have been coded. 

Two methods of analysis are available, either parsimony or model-based approaches. 

Parsimony does not include a model of trait change and therefore cannot make use of the 

information contained in the genetic branch lengths (branches being the connecting lines in 

the phylogeny, which in parsimony have no information content, while in maximum 

likelihood they are proportional to the number of substitutions or can be made proportional to 

time under a clock model of substitution). This is because parsimony only considers 

synapomorphies as informative, while maximum likelihood uses information from 

synapomorphies as well as autapomorphies.  

There are many examples of parsimony-based inference of changing chromosome 

numbers. One such study is that of Soltis et al. (2005) who used a DNA phylogeny of 172 

genera from almost as many families to test if Raven’s (1975) suggested basic number of x = 

7 would hold up in the context of their new phylogeny (very different from Cronquist’s 

[1968] classification). The 172 tips in the tree represented the 13400 genera in 450 families of 

angiosperms. The resulting basic chromosome number for basal-most angiosperm lineages 



10 

 

was equivocal because many early-diverging lineages have high chromosome numbers (data 

not shown by Soltis et al., 2005). In an alternative coding approach, in which they modified 

the empirical numbers for 16 species in their tree to reflect supposed genus-specific ancestral 

numbers (based on the assumption that these species were paleopolyploids), they 

“reconstructed” an “original” base number for the angiosperms of 6 and 9, close to Raven’s 

(1975) proposed number of 7. Note that Soltis et al. (2005) coded the sister species to all other 

angiosperms, Amborella trichopoda, as n = 6 and 7, even though the empirical number of A. 

trichopoda is n = 13.   

There is a trend in studies of plant chromosome numbers of seeing polyploidization 

(the duplication of the set of chromosomes) as the main evolutionary source of chromosome 

number variation. Indeed, polyploidization is a common event in plants. One of the 

observations supporting this is the high mean frequency of unreduced gametes (0.56% of 

gametes, rising 50-fold to 27.52% in hybrids; Leitch and Leitch, 2012). However, the increase 

or decrease by a single chromosome in a karyotype, called dysploidy, may be equally 

frequent; no hard data are available yet. Dysploidy has been much less studied than 

polyploidy, and its numerical contribution to the organization of plant genomes is therefore 

unknown. In animals, dysploidy is the main source of chromosome number change, specially 

related to fission-fusion cycles or Robertsonian rearrangements (Imai et al., 2002).  

 

Model-based inference of chromosome evolution, and fluorescence in situ 

hybridization 

  

In the previous section, I have discussed an example of parsimony-based inference of 

change in chromosome numbers, namely Soltis et al. (2005), which stands for many similar 

studies. I will now turn to model-based approaches, in which the probability of character 

change along a branch is proportional to the length of that branch. The first and so far only 

approach implementing a model-based approach to the study of chromosome number change 

is that of Mayrose et al. (2010). These workers formulated probabilistic models describing the 

evolution of chromosome number along a phylogeny, and their software allows the user to 

apply either maximum-likelihood (ML) or Bayesian inference to the data. The input data 

consist of a maximum likelihood tree in newick format (for the ML approach) or the 

maximum clade credibility tree (for the Bayesian approach), also in newick format, a table 
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with the species and their respective haploid chromosome numbers, and a parameter file 

specifying file location, maximum and minimum chromosome numbers allowed, and number 

of simulations for computing a null distribution of the number of changes. The analysis then 

consists in comparing the fit of eight models to the phylogenies, with the following 

parameters: polyploidization (chromosome number duplication) with constant rate , demi-

duplication (fusion of gametes of different ploidy) with constant rate µ, and dysploidization 

with either constant or linearly changing rates (ascending: chromosome gain rates  or 1; 

descending: chromosome loss rates  or 1). As explained in the previous section, the 

advantage of the maximum likelihood method compared to the parsimony method is that the 

latter disregards information contained in phylogenetic branch lengths, which tends to 

underestimate the number of transition events. The advantage of the Bayesian approach 

compared to both other approaches is that it provides the statistically best way to calculate the 

uncertainty in ancestral state probabilities and thereby to obtain confidence limits.  

Mayrose et al. (2010) tested the power of their method with artificial data and also 

with empirical data from Aristolochia, Carex, Passiflora, and Helianthus. With the artificial 

data, they were able to correctly infer (known) chromosome numbers as long as the sampling 

density was 35% of the total and as long as the root-to-tip distance (the genetic branch 

lengths, that is, the “length of time”) was not longer than 0.76. The approach of Mayrose and 

collaborators has been applied in clades of Araceae, Iridaceae, Melanthiaceae, 

Pontederiaceae, Pteridaceae, Portulaceae, Ranunculaceae, and Colchicaceae (Ness et al., 

2011; Harpke et al., 2012; Ocampo and Columbus, 2012; Metzgar et al., 2013; Soza et al., 

2013; Pellicer et al., 2014; Chacón et al., 2014; Chapters 2 and 3 of this thesis). However, it is 

difficult to trust the inferred past chromosome numbers without cytogenetic data, especially 

given the known evolutionary lability of chromosome numbers as illustrated above in 

Cardamine pratensis or Arabidopsis (Lysak et al., 2006; Mandáková et al., 2013). Data from 

genomics and molecular-cytogenetic methods, such as FISH-labelling of chromosomes, 

remain the best way to search for evidence of evolutionarily recent chromosome number 

changes (Bowers et al., 2003; Lysak et al., 2006; Peruzzi et al., 2009; Chamala et al., 2014).  

I will now give a brief introduction to the FISH approach, which is one of the key 

methods used in my doctoral research (Chapters 3, 4, and 5). In situ hybridization was 

developed by Gall and Pardue (1969) and John et al. (1969), and initially involved the 

annealing of radioactive DNA or RNA probes to cytological preparations and their detection 
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by autoradiography. The major limitations of this method were that it required long exposure 

time (weeks or months) to detect hybridization sites and the poor resolution of 

autoradiographs (Rayburn and Gill, 1987). Subsequent modifications resulted in the detection 

of the hybridization sites after just a few hours and safer handling of the probes, which were 

no longer radioactive and stable for longer periods (Rayburn and Gill, 1985). Another 

advantage of the FISH technique is that different DNA probes can be labeled with different 

haptens (Fig. 2) and detected simultaneously using different fluorochromes (Jiang and Gill, 

1994). The fluorescence signals can be captured by special cameras and analyzed with digital 

imaging systems (Rayburn and Gill, 1985). The principle has also been used to identify 

parental genomes in situ on the chromosomes. In genomic in situ hybridization (GISH), the 

total DNA from the genome of one parent is labeled as a probe, and unlabeled total DNA 

from the other parent is added in the hybridization mixture (Fig. 3). The preferential 

hybridization of the labeled genome probe to the chromosomes is taken to indicate the 

original set of chromosomes, while the other set, blocked by unlabeled DNA and 

consequently without detectable hybridization signals, is taken to be from the other relative 

(Brasileiro-Vidal et al., 2005; Markova et al., 2007; Fig. 3).  

 

Fig. 2. (facing page) Main steps of fluorescent in situ hybridization (FISH). 1. The labeling of the 

probe is independent of the slide preparation. The nucleotides of the target DNA are replaced by 

nucleotides carrying haptens by the nick translation technique. 2. Next, both the target DNA (probe) 

and the chromosomal DNA in the slide are denatured by heating, and as the probe consists of small 

fragments, it hybridizes in situ on its native DNA strand faster than the long complementary DNA 

strand. The hybridization process takes at least 18 hours (steps 1 and 2). 3.  The experiment is 

followed by washes to remove the excess of DNA that did not hybridize with the chromosomal DNA 

and then the detection of the haptens by antibodies associated with fluorochromes. Different DNA 

regions can be detected at once when they are labeled with different haptens (in the figure hapten 1 

and hapten 2). 4. The final step is the observation of the target chromosomal regions under a 

fluorescence microscope. 
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FISH experiment 

 

GISH experiment 
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Fig. 3. (previous page) Main steps of the genomic in situ hybridization (GISH). 1. Similar to FISH, 

the labeling of the probe by nick translation, here the genomic DNA from a parent, is independent of 

the slide preparation. Additionally, the unlabeled DNA from the other parent is added in the 

hybridization mixture. 2. Next, the genomic DNA (probe), unlabeled DNA (blocking) and the 

chromosomal DNA in the slide are denatured by heating. The probe and the blocking DNA will 

hybridize in situ on the chromosomes faster than the long complementary DNA strand. The 

hybridization process takes at least 18 hours (steps 1 and 2). 3. Similar to FISH (Fig. 2). The blocking 

DNA competes with the probe in regions of DNA similarity, especially when the species are close 

related. The probe will label the chromosome set of its genomic origin while the blocking DNA does 

the same, but because it lacks haptens, no hybridization signals will be detected from the blocking 

DNA. 

 

Changes in chromosomes that can be inferred or tested using fluorescence in situ 

hybridization are structural changes associated mainly with primary (insertions, deletions, 

duplications, reciprocal translocations, and sequence amplification) or secondary (replication 

slipping) chromosome rearrangements (Schubert, 2007; Guerra, 2008). So far, none of the 

eudicots (e.g., Arabiodpsis, Papaya, soybean, poplar, grape) and monocots (e.g., the Poaceae 

rice, barley, hordeum) that have had their whole genome sequenced and annotated exhibit the 

deletion of an entire chromosome (Luo et al., 2009; Abrouk et al. 2010).With the sparse data 

available so far it instead appears that reciprocal translocation between chromosomes is 

common, with two chromosomes exchanging chromosomal regions simultaneously (Lysak et 

al. 2006; Schubert and Lysak 2011, see their Fig. 3). Genome comparisons in the grass family 

also revealed an unsuspected mechanism of chromosome number reduction, namely 

insertional dysploidy (Luo et al., 2009). In this case, a complete chromosome is inserted in the 

centromeric region of another chromosome in a single translocation event, followed by the 

inactivation of one of the centromeres (Srinivasachary et al. 2007; Luo et al. 2009).  

 

Testing model-basal inferences about chromosome evolution with 

cytogenetic data  

 

Testing ancestral state reconstructions obtained by parsimony or model-based 

approaches as described above (p. 10) with FISH data can be done in a manner that I 

developed during my doctoral research (Chapters 3 and 4): An inferred disploidy event (step-
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wise chromosome number increase or loss) would be supported by the discovery of interstitial 

telomere repeats (ITRs). Due to the normal terminal distribution of telomere repeats to protect 

the chromosomes against fusions and DNA degradation, the detection of interstitial signals 

may suggest chromosome reduction by fusion. With probes homologous to plant telomeric 

repeats one can visualize them (Ijdo et al., 1991; Weiss-Schneeweiss et al., 2004). Since 

several types of events can lead to interstitial telomere signals, a careful consideration of the 

specific karyotype(s) being analyzed is required, but in principle the distribution of ITRs can 

suggest chromosome loss by fusion. A second way to test inferred directions of chromosome 

number change are sister species comparisons focusing on the distribution and number of 5S 

rDNA and 45S rDNA sites. An increase in rDNA sites associated to the doubling of the 

chromosome number might indicate a recent duplication event (Ansari et al., 2008; Souza et 

al., 2010; Weiss-Schneeweiss et al., 2008) or the observation of rDNA sites in different 

chromosome regions among species might indicate chromosome rearrangements (da Silva et 

al, 2008; Souza et al., 2009; Chapter 3 of this thesis).    

The DNA probes most used in plant FISH studies are Arabidopsis-like telomere repeats, 

5S and 45S rDNA. They all belong to a class of repetitive DNAs organized in tandem in 

specific loci on a chromosome. The 45S rDNA was the first repetitive sequence to be cloned 

and mapped on the chromosome of plants by in situ hybridization (Gerlach and Bedbrook, 

1979), followed by the 5S rDNA (Gerlach and Dyer, 1980), and the telomere repeat (Richards 

and Ausubel, 1988). The 45S rDNA repeat unit consist of an external transcribed spacer 

(ETS), coding regions of the three rRNA and two internal transcribed spacers, ITS1 (between 

the 18S and 5.8S genes) and the ITS2 (between the 5.8S and 25S), as shown in Fig. 4a. The 

coding regions with ca. 1.800, 160, and 3.400 bp respectively, are highly conserved among 

the eukaryotes (Gerlach and Bedbrook, 1979; Unfried and Gruendler, 1990; Pendás et al. 

1993; Murray et al. 2002), both in length and in nucleotide sequence, and they are commonly 

used as molecular markers in plant molecular cytogenetics (Vaio et al., 2005; Ansari et al., 

2008; Sousa et al., 2011). In wheat and barley, a 45S rDNA repeat unit is usually 9 kb to 10 

kb long (Gupta, 2010), and overall in plants it ranges from 1 to 15 kb (Rogers and Bendich, 

1987; Falquet et al., 1997).  

The transcription of rDNA gives rise to the nucleolus, observed in cells in interphase 

and in prophase (Caperta et al., 2002). The nucleolus disappears with the suspension of gene 

transcription during the cell division (metaphase-telophase), and the loci with the active rRNA 



16 

 

genes, called nucleolar-organizing regions (NOR), can be visualized in metaphase 

chromosomes as secondary constrictions (Neves et al., 2005). The transcription of 5S rDNA, 

different from the 45S rDNA, occurs outside the nucleolus (Sastri et al., 1992; Douet and 

Torment, 2007; Gupta, 2010), and its conserved coding region consists of 120 bp (Fig. 4b) 

while the non-transcribed spacer (NTS) varies from 100 to 700 pb (Fig. 4b). In general, the 5S 

and 45S rRNA genes are located in chromosomal loci independent of each other. However, in 

some organisms, these genes are intercalated in the same repeat unit (Drouin and Moniz de 

Sá, 1995; Sone et al., 1999; Garcia et al., 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Repeat units of 45S (a) and 5S (b) rDNA in eukaryotes and approximate length in base pairs. 

Based on Sastri et al. (1992), Ritland et al. (1993), Douet and Tourmente (2007), and Eickbush and 

Eickbush (2007). 

 

Telomere sequences are localized at the chromosome ends. The Arabidopsis-like 

telomere repeat consist of arrays of 7-bp DNA (TTTAGGG) and has been investigated in 

many species, ranging from the green alga Chlorella vulgaris over mosses, ferns, and Pinus to 

many monocots and dicots (Lamb et al., 2012). So far, only a few Asparagales are known to 

lack the Arabidopsis-type repeat at the chromosome ends, instead having vertebrate-type 

telomere repeats, TTAGGG (Weiss-Schneeweiss et al., 2004; Lamb et al., 2012). For the 
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monocot genus Allium and the eudicot genus Cestrum (Solanaceae), the composition of the 

telomere sequences remains unknown (Lamb et al., 2012).     

 

My study systems and research questions: Araceae and Coccinia 

 

In my doctoral research I use three of the above-described tools to study the evolution 

of chromosome numbers, namely molecular phylogenetics, model-based character 

reconstruction, and FISH-labeling. I applied these tools to study chromosome evolution in the 

monocot family Araceae and to investigate the increase in size of sex chromosomes in the 

Cucurbitaceae genus Coccinia. One species in this genus, C. grandis, has the largest Y 

chromosome known in the land plants. Although its huge Y chromosome was first 

documented in 1952 (Kumar and Vishveshwaraiah, 1952), the species and its relatives were 

not studied with molecular studies until the beginning of the 21st century (Chapter 5). I now 

explain my choice of these two study systems. 

Araceae are a large family – at least 3790 species in 118 genera (Boyce and Croat, 

2011) – and their chromosome numbers range from 2n = 8 to 168 (Cusimano et al., 2012a: 

Table S1; Sousa et al., 2014). Including my own new counts, chromosome counts are now 

available for 862 (26%) of the species (Cusimano et al., 2012a: Table S1 lists their names and 

the original references). Prior to my work, chromosome evolution in this family had been 

studied only by compiling chromosome numbers and discussing them in the context of 

morphology-based classifications (Petersen, 1993; Bogner and Petersen, 2007). The 

frequency of chromosome numbers in different clades of the family, or the clades’ 

composition and relationships, were thus not considered in a reproducible (quantitative) way. 

Two basic chromosome numbers (cf. pp. 5 and 6) had been suggested for the Araceae. 

Larsen (1969) and Marchant (1973) argued for x = 7, with higher numbers derived through 

ancient polyploidization event (genome duplication) or ascending dysploid series (increase or 

decrease of chromosomes numbers by rearrangements or fission). By contrast, Petersen 

(1993) hypothesized a base number of x = 14 because 2n = 28 is especially common in the 

family. While the former hypothesis was put forward without the benefit of a phylogenetic 

framework, Petersen (1993) and Bogner and Petersen (2007) took into account morphological 

phylogenies (Grayum, 1990; Mayo et al., 1997). Nevertheless and as discussed above (p. 9), 

the use of “the most common number” or “the smallest chromosome number found in the 
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family” does not necessarily reflect or reconstruct the evolution of past chromosome changes 

that underlie current karyotypes (see the example of Arabidopsis thaliana on pp. 8 and 9). 

Criteria for inferring ancestral (perhaps no longer present) chromosome numbers from 

empirical counts could come from phylogenies, the relative frequencies of different haploid 

numbers in various species groups, cytogenetic work on closely related species, or, best, a 

combination of all such information.  

 To infer chromosome evolution in the Araceae in a reproducible manner, I used the 

model-based method of ancestral trait reconstruction developed by Mayrose et al. (2010) on a 

phylogeny for the family (113 species from 113 genera) that I slightly enlarged and modified, 

using four chloroplast markers (Chapter 2). The results suggest an ancestral haploid number 

to the family of a (my symbol for inferred ancestral numbers) = 16 or 18, higher than the 

previously hypothesized base numbers of x = 7 (Larsen, 1969; Marchant, 1973) or x =14 

(Peterssen, 1993). I also inferred a limited role of polyploidization, while descending 

dysploidy (loss) is the most common event explaining the chromosome number reduction 

across the family tree (Cusimano et al., 2012a; Chapter 2). Given the inferred high ancestral 

haploid numbers, chromosome fusions (neutrally termed ‘losses’ in the models of Mayrose et 

al., 2010) must have been common during evolution of Araceae, which is tested in the paper 

in Chapter 3. 

Although many Araceae species are in cultivation, molecular cytogenetics studies in 

this family only began with my doctoral research, initially focusing on a relatively derived 

group, namely Typhonium. Typhonium is a Southeast Asian genus of 50-60 species that has 

also been the focus of phylogenetic studies, natural geographic range, and diversification rate 

(Cusimano et al., 2010, 2012b; Chapter 3 and 4 of this thesis). At the start of my work, 

chromosome counts were available for 10 Typhonium species and ranged from 2n = 10 to 65. 

The genus is embedded within clades with chromosome numbers based on n = 13 or 14 

(Arisaema, Pinellia, Sauromatum, Biarum, Helicodiceros, Dracunculus, and Arum), only 

Theriophonum has n = 8. In Cusimano et al. (2012a; Chapter 2), an ancestral chromosome 

number of a = 14 was inferred for the tribe Areae to which Typhonium belongs, and 

consequently, the low numbers found in this genus most likely represents a reduction. 

After combining molecular cytogenetic and phylogenetic modeling in Typhonium to 

elucidate the evolution of its wide range of chromosome numbers, I tested the inferred past 

evolutionary changes by using FISH to search for the presence of interstitial telomere repeats 
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that might indicate chromosomal fusion, following my idea to test inferred dysploidy with 

FISH (p. 15 above). I greatly enlarged the phylogeny for the genus and its relatives to cover 

96 taxa, and combined new and published chromosome counts to model evolutionary changes 

in chromosome complements at a finer scale. Ten species cultivated in the Botanical Garden 

of Munich were selected to perform FISH experiments, with the species chosen to represent 

the full range from 2n = 8, the lowest number in family (newly reported in Chapter 3), to 2n = 

24.  

Following my work on the 113-genus tree and the Typhonium group (Chapters 2 and 3), I 

decided to carry out cytogenetic analyses of telomere organization, focusing on early-

diverging genera in the Araceae and on other genera of pivotal phylogenetic position never 

before studied (Chapter 4). The idea still was to search for signals of chromosome loss to test 

for cytogenetic traces of the dysploidy inferred in my modeling studies. So far, Pinus is the 

genus with the most conspicuous interstitial telomere FISH signals, with often up to four 

signals near the centromere and in interstitial positions (Fuchs et al., 1995; Lubaretz et al. 

1996; Schmidt et al. 2000; Hizume et al. 2002; Islam-Faridi et al. 2007). I built another larger 

phylogeny from sequences of the plastid trnL intron and spacer, the matK gene and partial 

trnK intron, and the rbcL gene, this time for 173 species from 118 genera, and carried out an 

analysis of chromosome number evolution. I also performed FISH with three probes (5S 

rDNA, 45S rDNA, and Arabidopsis-like telomeres) on 14 species with 2n = 14 to 2n = 60. 

 Besides carrying out broad-scale analysis in the Araceae, I decided to work on the 

evolution of heteromorphic sex chromosomes, focusing on one species for which cultivated 

material and a phylogeny were available in our lab from the doctoral dissertation of Norbert 

Holstein (Holstein and Renner, 2010; Holstein and Renner, 2011a; Holstein and Renner, 

2011b; Chapter 5). The species in question is Coccinia grandis from a genus with just 28 

species that is phylogenetically close to cucumber and melon, both in the genus Cucumis 

(Schaefer and Renner, 2011; Fig. 5). I first reviewed published molecular cytogenetic studies 

on plant species with sex chromosomes and then used FISH, GISH, and C-banding on species 

of Coccinia cultivated in the green houses in Munich. In the flowering plants, heteromorphic 

(morphologically different) sex chromosomes are known from only 19 species belonging to 

four families; homomorphic sex chromosomes have been reported in 20 species belonging to 

13 families (Ming et al., 2011). In angiosperms with heteromorphic sex chromosomes, the Y-

chromosome is often larger than the X and the autosomes, and this has been attributed to the 
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accumulation of repetitive DNA (Shibata et al., 1999; Sakamoto et al., 2000; Cemark et al., 

2008; Kejnovsky et al., 2009). In the land plants, Marchantia polymorpha (liverworts) and in 

Cycas revoluta (Cycadaceae) have the Y chromosome smaller than the X chromosome 

(Segawa et al., 1971; Ono, 1976; Okada et al., 2001). 

Only little is known about the steps involved in the formation of sex chromosomes in 

plants compared with animals. Most molecular studies focus on the DNA composition and 

characterization of repetitive elements on X and Y chromosomes or on sex chromosomes 

versus the rest of the genome, development of specific sex chromosome probes and genetic 

mapping (Carica sp.: Liu et al., 2004; Humulus sp.: Divashuk et al., 2011; Grabowska-

Joachimiak et al., 2011; Rumex sp.: Shibata et al., 1999; Steflova et al., 2013; Silene sp.: 

Lengerova et al., 2004; Filatov, 2005; Makova et al., 2007; Cermak et al., 2008; Macas et al., 

2012). So far, only the Silene latifolia sex specific regions (MSY) and sex-linked genes are 

reasonably well studied, although the Silene genome (5.85 pg/2C in males) is huge and has 

therefore not been sequenced. By contrast, the Coccinia grandis genome is tiny, with 2C = 

0.943 pg/2C (Sousa et al., 2013).  

Based on a few molecular clock studies, it is thought that sex chromosomes in plants 

are young (Sousa et al., 2013: Table 3). The X and Y chromosomes of Silene latifolia may 

have diverged from each other between 8 and 24 Ma ago, in Rumex between 15-16 Ma ago, 

and in papaya between 0.5-2.2 Ma ago (Sousa et al., 2013: Table 3). Prior to my doctoral 

research, Coccinia grandis (incl. C. indica) had not been analyzed with molecular-cytogenetic 

methods, although experimental work had clearly established the sex-determining role of the 

single large Y chromosome found in males (Roy and Roy, 1971; for classic cytogenetic 

studies on this species see Chapter 5).  

 Chromosome counts are now available for six species of Coccinia, and so far only C. 

grandis has heteromorphic sex chromosomes. Coccinia grandis is about 3 Ma old (Fig. 5). 

My results show that the Y chromosome is twice as long as the largest autosome, resulting in 

a male/female C-value difference of 0.09 pg or 10% of the total genome (Chapter 5), 

compared to 8-9% in Silene. Its relatively small genome size, large Y chromosome, and 

phylogenetic proximity to the fully sequenced Cucumis sativus make C. grandis a promising 

model to study sex chromosome evolution. 
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Fig. 5. Modified from Yang et al. (2014). An asterisk marks species with whole genome data in 

GenBank. Photo of C.grandis from N. Holstein (personal communication). 
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† Background and Aims For 84 years, botanists have relied on calculating the highest common factor for series of
haploid chromosome numbers to arrive at a so-called basic number, x. This was done without consistent (repro-
ducible) reference to species relationships and frequencies of different numbers in a clade. Likelihood models that
treat polyploidy, chromosome fusion and fission as events with particular probabilities now allow reconstruction
of ancestral chromosome numbers in an explicit framework. We have used a modelling approach to reconstruct
chromosome number change in the large monocot family Araceae and to test earlier hypotheses about basic
numbers in the family.
† Methods Using a maximum likelihood approach and chromosome counts for 26 % of the 3300 species of
Araceae and representative numbers for each of the other 13 families of Alismatales, polyploidization events
and single chromosome changes were inferred on a genus-level phylogenetic tree for 113 of the 117 genera
of Araceae.
† Key Results The previously inferred basic numbers x ¼ 14 and x ¼ 7 are rejected. Instead, maximum likelihood
optimization revealed an ancestral haploid chromosome number of n ¼ 16, Bayesian inference of n ¼ 18.
Chromosome fusion (loss) is the predominant inferred event, whereas polyploidization events occurred less fre-
quently and mainly towards the tips of the tree.
† Conclusions The bias towards low basic numbers (x) introduced by the algebraic approach to inferring chromo-
some number changes, prevalent among botanists, may have contributed to an unrealistic picture of ancestral
chromosome numbers in many plant clades. The availability of robust quantitative methods for reconstructing
ancestral chromosome numbers on molecular phylogenetic trees (with or without branch length information),
with confidence statistics, makes the calculation of x an obsolete approach, at least when applied to large clades.

Key words: Araceae, Bayesian inference, chromosome evolution, haploid chromosome number, dysploidy,
maximum likelihood inference, polyploidy.

INTRODUCTION

Chromosome numbers in angiosperms vary from n ¼ 2
(Tsvelev and Zhukova, 1974; Singh and Harvey, 1975;
Sokolovskaya and Probatova, 1977; Erben, 1996) over n ¼
250 (Oginuma et al., 2006) and n ¼ 298 (Johnson et al.,
1989) to n ¼ 320 (Uhl, 1978). The range in animals is
similar (Crosland and Crozier, 1986; Imai et al., 2002). Such
drastic differences in chromosome number, sometimes even
within small groups, raise questions about the evolutionary dir-
ection and frequency of the implied drastic genome rearrange-
ments. Cytogenetic studies have shown that chromosome
numbers can change due to fission, fusion or genome doubling
(Guerra, 2008), and there is ample evidence that such changes
can contribute to speciation. It has also been inferred that a
large fraction of all plant species may have polyploid
genomes (Stebbins, 1971; Goldblatt, 1980; Otto and
Whitton, 2000; Ramsey and Schemske, 2002; Cui et al.,
2006; Soltis et al., 2009; Wood et al., 2009; Jiao et al.,
2011). Chromosome counts, however, exist only for 60 000
of the 300 000–352 000 species of flowering plants
(Bennett, 1998; http://www.theplantlist.org/browse/A/). Most
published numbers are listed in an electronic database for

chromosome numbers, the ‘Index of Plant Chromosome
numbers’ (http://mobot.mobot.org/W3T/Search/ipcn.html).

Given the incomplete knowledge of angiosperm chromo-
some numbers, evolutionary changes in chromosome
numbers in most clades can only be estimated. Botanists do
this by calculating a so-called basic, or monoploid, chromo-
some number, denoted x, to differentiate it from the haploid
(usually the gametophytic) number n and the diploid (sporo-
phytic or somatic) number 2n. The concept of x goes back
to Langlet (1927) who explained it using Aconitum as an
example; if different Aconitum species have n ¼ 8, n ¼ 12,
n ¼ 16 and n ¼ approx. 32, their inferred monoploid
number x is 4 (Langlet, 1927: 7). Langlet’s idea took off, at
least in botany, where thousands of basic chromosome
numbers have been inferred, even for poorly counted groups.
Thus, for flowering plants, Raven (1975, p. 760) suggested x
¼ 7 as ‘characteristic of all major groups of both dicots and
monocots except Caryophyllidae.’ Similarly, base chromo-
some numbers of x ¼ 12 or x ¼ 5 and 6 have been suggested
for Poaceae (reviewed in Hilu, 2004) and x ¼ 7 or x ¼ 12 for
Triticeae (Heslop-Harrison, 1992; Luo et al., 2009). Many
further examples of divergent base numbers having been cal-
culated for a clade could be cited (Soltis et al., 2005; Blöch
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et al., 2009). Part of the reason why different researchers
arrived at different base numbers (x) has to do with the
unclear definition of x, with some treating it in Langlet’s ori-
ginal sense as an algebraically discoverable highest common
factor, others as ‘the lowest detectable haploid number
within a group of related taxa’ (Stuessy, 2009: 264; italics
ours), and yet others as ‘the haploid number present in the
initial population of a monophyletic clade’ (Guerra, 2008:
340), i.e. an inferred number, since the ‘initial population’
will not usually have its chromosomes counted. How to
make the inference is up to the investigator. Zoologists, in con-
trast, never became enamoured of the concept of an inferred
base number x.

Criteria for inferring ancestral (perhaps no longer present)
chromosome numbers from empirical counts could come
from phylogenetic analyses, the relative frequencies of differ-
ent haploid numbers in various species groups, cytogenetic
work on closely related species or, best, a combination of all
such information. Data from genomics and molecular–
cytogenetic methods, such as fluorescence in situ hybridization
(FISH)-marking chromosomes, are probably the best way to
search for evidence of past chromosome number changes
because they can identify synteny, fusion sites or unusual loca-
tions of centromeres, in turn providing evidence for duplica-
tions, fusions or losses (Bowers et al., 2003; Lysak et al.,
2006; Peruzzi et al., 2009). Such methods, however, may not
be feasible in large clades or those with few species in
cultivation.

In 2010, an approach was developed that moves the infer-
ence of chromosome number evolution to maximum likeli-
hood (ML) character state reconstruction (Mayrose et al.,
2010). Mayrose et al. (2010) formulated probabilistic models
describing the evolution of chromosome number across a
phylogenetic tree. Their approach makes use of branch
lengths as a proxy for time and of the frequencies of different
numbers at the tips and in outgroups to infer transition rates
between the different states. Ancestral chromosome numbers
have previously sometimes been reconstructed using
maximum parsimony (e.g. Soltis et al., 2005: 178, 298–
302). Parsimony, however, assigns all state transitions the
same weight and disregards information contained in phylo-
genetic branch length, which tends to result in an underesti-
mate of the number of transition events.

In this study we use the approach of Mayrose et al. (2010) to
reconstruct ancestral haploid chromosome numbers in
Araceae, a large and old family of monocotyledons. For a
mainly tropical family, Araceae have a high number of chro-
mosomes counts, with 862 (26 %) of their approx. 3300
species counted, including at least one species for most of
the 117 genera (Petersen, 1989; Bogner and Petersen, 2007;
Appendix; Supplementary Data Table S1 lists all species
with their n and/or 2n counts and the respective references).
Two basic chromosome numbers have been suggested for
Araceae. Larsen (1969) and Marchant (1973) argued for x ¼
7, with higher numbers derived through ancient polyploidiza-
tion events or ascending dysploid series. In contrast, Petersen
(1993) hypothesized a base number of x ¼ 14 because 2n ¼
28 is especially common in the family. The former hypothesis
was put forward without the benefit of a phylogenetic frame-
work, but Petersen (and also Bogner and Petersen, 2007)

took into account morphological phylogenetic analyses
(Grayum, 1990; Mayo et al., 1997).

Molecular phylogenetic work over the past few years has
resulted in aroid relationships at the generic level becoming
relatively clear (French et al., 1995; Cabrera et al., 2008;
Cusimano et al., 2011). We here use the most recent phylogen-
etic analysis of Araceae to infer chromosome evolution in the
family, using the model-based approach of Mayrose et al.
(2010), in both its ML and Bayesian implementations, the
latter having the advantage that uncertainty in ancestral state
probabilities is readily quantified. To test the power of their
method, Mayrose et al. (2010) first used simulated data and
then four exemplar plant clades (Aristolochia, Carex,
Passiflora and Helianthus) with relatively densely sampled
phylogenetic trees and chromosome counts. Sampling in
these clades ranged from 11 to 100 % of the species in the
genera. The Araceae data set analysed here represents an
entire family that is larger and older by at least an order of
magnitude. This poses challenges that we tried to address by
experimentally modifying character codings to take into
account uncertainties in the larger genera and the 13 outgroup
families.

METHODS

Family and order phylogeny

The phylogenetic tree for Araceae on which ancestral chromo-
some numbers were inferred in this study is based on the six-
plastid marker matrix of Cusimano et al. (2011). Clades are
named as proposed in that study. We used the ML tree from
that study or an ultrametric Bayesian tree newly obtained
using BEAST v. 1.6.1 (Drummond and Rambaut, 2007). In
BEAST, we used the GTR + G model with four rate categor-
ies, a mean substitution rate estimated from the data, and a
pure-birth Yule model as the tree prior. The GTR + G
model fit the data best, as assessed with Modeltest (Posada
and Crandall, 1998). The analysis was run for 37 million gen-
erations, sampling every 1000th step. The burn-in fraction, i.e.
the number of trees to be discarded before runs reached statio-
narity, was assessed using the Tracer v. 1.4.1 program (part of
the BEAST package) and AWTY (Nylander et al., 2008). For
one set of analyses (below), we included only Araceae. For
another, we included one exemplar each of the other families
of Alismatales (Stevens, 2001 onwards), using branch lengths
of 0.01 except for Tofieldiaceae (Tofieldia), which was the out-
group used by Cusimano et al. (2011) and had an empirical
branch length.

Chromosome number coding

Total numbers of genera and species of Araceae were taken
from the website Creating a Taxonomic eScience (CATE; http://
www.cate-araceae.org/) and then updated by the Araceae spe-
cialist Josef Bogner (see Acknowledgements). Of the 117 cur-
rently recognized genera of Araceae, 29 are monospecific
(and hence can be coded unambiguously for chromosome
number), 19 have just two species, 31 have 3–10 species, 25
have 11–50 species and 13 have .50 species. Araceae chromo-
some counts were compiled from original literature
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(Supplementary Data Table S1, available online), checking the
generic assignment of each species against the current classifi-
cation and for synonymy. Chromosome numbers for four mono-
typic genera were contributed by J. Bogner and E. Vosyka (see
Acknowledgements) and are newly reported here: Filarum man-
serichense Nicolson (M. Sizemore s.n., voucher in the herbar-
ium M), Hestia longifolia (Ridl.) S. Y. Wong & P. C. Boyce
(J. Bogner 3003, M), Philonotion americanum (A. M. E.
Jonker & Jonker) S. Y. Wong & P. C. Boyce (J. Bogner
2911, M) and Pichinia disticha S. Y. Wong & P. C. Boyce
(P. C. Boyce s.n., M; Supplementary Data Table S1). One
genus was coded as unknown (X), namely the monotypic
Schottariella, the chromosomes of which have not been
counted. The presence of B chromosomes was not coded.
Overall, our phylogenetic analysis includes 113 of the 117
accepted genera of Araceae, with 112 of them coded for
haploid chromosome number (Appendix).

Chromosome numbers were coded in three ways to address
the problem of genera with more than one chromosome
number. First, we coded all reported numbers for each
genus, regardless of frequency in different species, but exclud-
ing odd numbers (Appendix, column 5; Supplementary Data
Table S1). This resulted in 55 genera coded as polymorphic.
Our second coding scheme (‘reduced polymorphism’ coding)
took into account the frequency of different numbers and
treated the most common as the ancestral state (Appendix,
column 7; Supplementary Data Table S1). For example,
Lemnoideae have many different chromosome numbers, but
n ¼ 20 is especially common (Landolt, 1986; Appendix,
Supplementary Data Table S1). For genera with numbers sug-
gesting different ploidy levels, we used the lowest haploid
chromosome number (e.g. Arum). Polymorphisms could thus
be reduced to two states (chromosome numbers) per genus
or even a single haploid number, leaving 34 instead of 55
genera with polymorphic numbers. In a third coding scheme
(‘informed’ coding), we took into account molecular phylo-
genetic analyses for the genera Philodendron (Gauthier
et al., 2008), Biarum and Typhonium (Cusimano et al.,
2010), and assigned the state (chromosome number) found in
the early-branching species to the entire genus. The numbers
thus inferred were compared with those inferred by Bogner
and Petersen (2007). This third approach left just ten genera
coded as polymorphic with maximally two states (Appendix,
column 8; Supplementary Data Table S1, Supplementary
Data Figs S1 and S2). In this third scheme, Lazarum, a
genus of 23 species with a few chromosome counts and insuf-
ficient phylogenetic information (Matthew Barrett, Botanic
Gardens & Parks Authority, West Perth; personal communica-
tion, 2011) was coded as ‘unknown’ (X) because no ancestral
haploid number could be inferred. In all cases, changes among
character states (i.e. chromosome numbers) were assigned
equal probability.

The remaining families of Alismatales were coded as
follows: Alismataceae n ¼ 7, 8; Aponogetonaceae n ¼ 12,
16, 19; Butomaceae n ¼ 7, 8, 10, 11, 12; Cymodoceaceae
n ¼ 7, 8, 10, 14, 15; Hydrocharitaceae n ¼ notably variable;
Juncaginaceae n ¼ 6, 8, 15; Maundiaceae only Maundia tri-
glochinoides, no chromosome count reported; Posidoniaceae
n ¼ 10; Ruppiaceae n ¼ 8–12, 15; Potamogetonaceae n ¼ 7,
12, 14–18; Scheuchzeriaceae n ¼ 11; Tofieldiaceae n ¼ 15;

Zosteraceae n ¼ 6, 9, 10 (numbers from Stevens, 2001
onwards). Those of these families with more than one
number listed by Stevens were coded as polymorphic in all
analyses. The above-described three coding schemes were
first run on the phylogenetic tree that included only Araceae
and then on the tree that included the 13 outgroups, resulting
in six analyses (labelled A1–A6 in Table 1).

Inference of chromosome number change

For ML and Bayesian phylogenetic inferences of ancestral
haploid chromosome numbers, we relied on the chromEvol
program v. 1.2 of Mayrose et al. (2010; http://www.zoology.
ubc.ca/prog/ chromEvol.html). This implements eight models
of chromosome number change (Table 2), two more than
described in the original paper. The models include the follow-
ing six parameters: polyploidization (chromosome number du-
plication with rate r, ‘demi-duplication’ or triploidization with
rate m) and dysploidization (ascending, chromosome gain rate
l; descending, chromosome loss rate d) and two linear rate
parameters, l1 and d1, for the dysploidization rates l and d,
allowing them to depend on the current number of chromo-
somes. Four of the models have a constant rate, whereas the
other four include the two linear rate parameters. Both
model sets also have a null model that assumes no polyploidi-
zation events. We fitted all models to the data, each with 10
000 simulations to compute the expected number of changes
of the four transition types along each branch. The
maximum number of chromosomes was set to 10× higher
then the highest number found in the empirical data, and the
minimum number was set to 1. The null hypothesis (no poly-
ploidy) was tested with likelihood ratio tests using the Akaike
information criterion (AIC).

We also ran an analysis, using the informed polymorphism-
coding scheme, but excluding Calla because of its unclear
relationships in Araceae (Cusimano et al., 2011). For a final
sensitivity test, we again used the informed coding scheme
but the non-ultrametric ML phylogenetic tree from
Cusimano et al. (2011) instead of the ultrametric tree used
in the remaining analyses.

RESULTS

The results obtained in the six analyses (A1–A6) are summar-
ized in Table 1. The three-parameter constant-rate model
(Mc2), with the chromosome duplication rate equal to the
demi-duplication rate, was the best explanation of the empiric-
al data in all analyses. All analyses rejected the null model of
no polyploidy with high significance (P , 0.999). The inferred
rates of change, chromosome numbers at nodes (and their
probability) and numbers of events were similar regardless
of which of the three schemes for polymorphism coding was
applied. We therefore show the results obtained from
Bayesian and ML analyses with the most conservative
coding scheme, namely the one including all polymorphisms
and all outgroups (Table 1, A1; Figs 1 and 2). For comparison,
the results from analysis A6, without outgroups and the phylo-
genetically informed coding (Appendix, column 8), can be
found in Supplementary Data Figs S1 and S2.
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The loss rate d ranges from 45.9 (Table 1, A1) to 58.2 (A3),
and the polyploidization rate r ¼ m from 5.4 (A6) to 6.9 (A1).
A gain rate l is inferred only for models A1 (3.9) and A4
(1.8, analyses with all polymorphisms coded). The number
of events inferred with a probability of .0.5 is higher in
the analyses using the tree with outgroups than in that
without outgroups, simply because it has more branches.
Inferred chromosome loss events range from 98.1 (A1) to
120.1 (A3), duplications from 11.5 (A2) to 14.3 (A1) and
demi-duplications from 13 (A2) to 14.3 (A3) ); in A1, 8.4
chromosome gain events were inferred, whereas, in the tree
without outgroups, the number of losses ranges from 86.6
(A4) to 94.4 (A6), that of duplications from 9.7 (A6) to
10.5 (A4) and that of demi-duplications from 9.3 (A4) to
10.5 (A6); finally in A4, 3.2 chromosome gain events were
inferred (Table 1, Fig. 1 and Supplementary Data Fig. S1,
Bayesian inference). In the Bayesian analyses, the haploid
chromosome number at the root with the highest posterior
probability (PP) was n ¼ 18, and support for this number
was higher in analyses without outgroups (0.37–0.42) than
in those with outgroups (0.18–0.26, Table 1). Similarly, a
range of n ¼ 17–19 at the root node had a PP of ≥0.85
without outgroups, but only ≤0.52 when outgroups were
included (Table 1). A broader range of ancestral numbers
[n ¼ 8–18 (A1); n ¼ 10–20 (A2, A3)] could be inferred
with higher PP (.0.85, Table 1, Fig. 1 and Supplementary
Data Fig. S1). In the ML analyses with outgroups (Fig. 2),
the most likely haploid number at the root was n ¼ 16/17,
and without outgroups it was 17/18 (Table 1;
Supplementary Data Fig. S2).

To describe inferred chromosome evolution in Araceae, we
focus on the Bayesian inference of the most conservative ana-
lysis scheme A1 depicted in Fig. 1. Starting from the root
node, chromosome numbers decreased, becoming n ¼15
along the branch leading to the Spirodela clade (PP ¼ 0.32;
n ¼ 16: PP ¼ 0.29), n ¼ 15 in Araceae (PP ¼ 0.55; n ¼ 14:
PP ¼ 0.21), and n ¼ 14 in the Podolasia clade (PP ¼ 0. 62;
n ¼ 15: PP ¼ 0.24). The number n ¼ 14 is inferred with in-
creasing probability as one moves up the phylogenetic tree
towards the present. It has 0.77 PP in Aroideae and 0.99 PP
in the Ambrosina clade.

Increases in chromosome number are inferred as deriving
from (demi-) duplication events, never via single chromosome
gains (centric fission), whereas decreases in chromosome
number are inferred as resulting from chromosome loss
(fusion). The most likely events (PP .0.5) predicted by the
best-fitting model are descending dysploidy (98.1 events),
and these are inferred both on branches leading to major
clades (e.g. Pothoideae, Lasioideae and Spathicarpeae) and
on terminal branches. The only chromosome gain event in
Araceae inferred with high probability occurred on the
branch leading to Scaphispatha (n ¼ 14). Polyploidization
events (29 in total, Fig. 1) occur mainly towards the tips of
the tree (Gymnostachys, Alloschemone, Urospatha, Anubias,
Montrichardia, Cryptocoryneae, Calla, Filarum and
Peltandra). Only three polyploidization events are inferred
deeper in the tree: a genome duplication on the branch
leading to the Rhaphidophora (Fig. 1) clade (from n ¼ 15
to n ¼ 30), a demi-duplication on the branch leading to the
Zantedeschia clade (from n ¼14 to n ¼ 21) and one
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Dracunculus 14
Arum 14
Biarum 13
Helicodiceros 14
Eminium 14
Sauromatum 13
Typhonium 13
Theriophonum 12
Lazarum 84
Pinellia 14
Arisaema 14
Alocasia 14
Steudnera 14
Remusatia 14
Colocasia 14
Ariopsis 14
Pistia 14
Protarum 14
Carlephyton 27
Colletogyne 27
Arophyton 27
Typhonodorum 56
Peltandra 56
Arisarum 14
Ambrosina 11
Zomicarpella 13
Zomicarpa 11
Scaphispatha 14
Chlorospatha 13
Xanthosoma 13
Ulearum 7
Filarum 14
Syngonium 13
Caladium 13
Jasarum 11
Hapaline 13
Amorphophallus 13
Pseudodracontium 13
Calla 18
Phymatarum 13
Schismatoglottis 13
Schottariella 13
Bakoa 13
Aridarum 13
Bucephalandra 13
Piptospatha 13
Cryptocoryne 18
Lagenandra 18
Philonotion 13
Asterostigma 17
Taccarum 17
Spathicarpa 17
Croatiella 17
Synandrospadix 17
Spathantheum 17
Gorgonidium 17
Incarum 17
Mangonia 17
Dieffenbachia 17
Gearum 17
Bognera 17
Zantedeschia 16
Furtadoa 20
Homalomena 20
Philodendron 18
Culcasia 21
Cercestis 21
Pseudohydrosme 20
Anchomanes 20
Nephthytis 20
Aglaodorum 20
Aglaonema 20
Anubias 24
Montrichardia 24
Callopsis 17
Zamioculcas 17
Gonatopus 17
Stylochaeton 14
Dracontioides 13
Anaphyllopsis 13
Dracontium 13
Urospatha 26
Podolasia 13
Pycnospatha 13
Cyrtosperma 13
Anaphyllum 13
Lasimorpha 13
Lasia 13
Epipremnum 30
Amydrium 30
Monstera 30
Scindapsus 30
Anadendrum 30
Rhaphidophora 30
Spathiphyllum 15
Holochlamys 15
Alloschemone 42
Rhodospatha 14
Heteropsis 14
Stenospermation 14
Pothoidium 12
Pedicellarum 12
Pothos 12
Anthurium 13
Wolffiella 21
Wolffia 20
Landoltia 20
Lemna 20
Spirodela 20
Symplocarpus 15
Lysichiton 14
Orontium 13
Gymnostachys 24
Tofieldiaceae 15

Hydrocharitaceae 8
Butomaceae 8

Alismataceae 8
Scheuchzeriaceae 11

Aponogetonaceae 12
Juncaginaceae 8
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Events inferred with PP > 0·5
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Araceae

Spirodela  clade

Podolasia clade

Aroideae 

Philonotion clade

Spathicarpeae

Lasioideae 

Pothoideae

Lemnoideae 

True Araceae 

Rhaphidophora  clade

Ambrosina clade

Areae

Zantedeschia
clade

Typhonodorum
clade

FI G. 1. Chromosome number evolution in Araceae inferred under Bayesian optimization, with outgroups included and all polymorphic chromosome states
coded (analysis A1 in Table 1). Pie charts at nodes and tips represent the probabilities of the inferred chromosome number(s); numbers inside charts have
the highest probability. Numbers at the tips are chromosome numbers inferred with the highest probability, i.e. the inferred ancestral haploid chromosome
number for each genus. Numbers above branches represent the inferred frequency of those of the four possible events (gains, losses, duplications and demi-

duplications) that had a probability .0.5. The colour coding of chromosome numbers and event types is explained in the insets.
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Dracunculus
Arum
Biarum
Helicodiceros
Eminium
Sauromatum
Typhonium
Theriophonum
Lazarum
Pinellia
Arisaema
Alocasia
Steudnera
Remusatia
Colocasia
Ariopsis
Pistia
Protarum
Carlephyton
Colletogyne
Arophyton
Typhonodorum
Peltandra
Arisarum
Ambrosina
Zomicarpella
Zomicarpa
Scaphispatha
Chlorospatha
Xanthosoma
Ulearum
Filarum
Syngonium
Caladium
Jasarum
Hapaline
Amorphophallus
Pseudodracontium
Calla
Phymatarum
Schismatoglottis
Schottariella
Bakoa
Aridarum
Bucephalandra
Piptospatha
Cryptocoryne
Lagenandra
Philonotion
Asterostigma
Taccarum
Spathicarpa
Croatiella
Synandrospadix
Spathantheum
Gorgonidium
Incarum
Mangonia
Dieffenbachia
Gearum
Bognera
Zantedeschia
Furtadoa
Homalomena
Philodendron
Culcasia
Cercestis
Pseudohydrosme
Anchomanes
Nephthytis
Aglaodorum
Aglaonema
Anubias
Montrichardia
Callopsis
Zamioculcas
Gonatopus
Stylochaeton
Dracontioides
Anaphyllopsis
Dracontium
Urospatha
Podolasia
Pycnospatha
Cyrtosperma
Anaphyllum
Lasimorpha
Lasia
Epipremnum
Amydrium
Monstera
Scindapsus
Anadendrum
Rhaphidophora
Spathiphyllum
Holochlamys
Alloschemone
Rhodospatha
Heteropsis
Stenospermation
Pothoidium
Pedicellarum
Pothos
Anthurium
Wolffiella
Wolffia
Landoltia
Lemna
Spirodela
Symplocarpus
Lysichiton
Orontium
Gymnostachys
Tofieldiaceae

Hydrocharitaceae
Butomaceae

Alismataceae
Scheuchzeriaceae

Aponogetonaceae
Juncaginaceae

Maundiaceae
Posidoniaceae

Ruppiaceae
Cymodoceaceae

Zosteraceae
Potamogetonaceae

8

16

15

15

14

14

14

14

14

14

14

14

14

14

14
14

14
14

14
14
14
14
14

14

14

14 14
14

14

14
28

28
27 27

14

14

13

13
13
13

13
13

13

9

13

13

13

13
13

13
13
13
13

13

13

18

13

20

19
17
17

17

17
17

17

17

17
17

17
17

20

20
20

20

21

20
20

20

20

13

14
17

13
13
13
13
13
13

13
13

13

15

15

15
30
30

30
30

30

15

14

14 14

14 12
12

21
21

21
21

16
15

15

8

8
8

8

12
12

10
10

10
10

10

10

Araceae

Spirodela clade

Podolasia clade

Aroideae 

Philonotion clade

Spathicarpeae 

Lasioideae 

Pothoideae 

Lemnoideae 

True Araceae 

Rhaphidophora clade

Ambrosina clade

Areae

Zantedeschia
clade

Typhonodorum
clade

FI G. 2. Chromosome number evolution in Araceae inferred under maximum likelihood optimization, with outgroups included and all polymorphic chromosome
states coded (analysis A1 in Table 1).
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duplication event on the branch leading to the Typhondorum
clade (from n ¼ 14 to n ¼ 28).

Results of the two additional analyses (inclusion/exclusion
of Calla; ultrametric or non-ultrametric trees) did not yield
results substantially different from those obtained in analysis
A6 and shown in Supplementary Data Fig. S1. Model Mc2
remained the best-fitting model, and chromosome number
reconstructions at nodes and change rates were similar.

DISCUSSION

The results presented here provide an example of the power of
ML-based or Bayesian inference of chromosome number
changes. The new approach, which distinguishes (and separ-
ately infers) chromosome gains, losses, polyploidization and
demi-ploidization, not only reconstructs numbers at particular
phylogenetic nodes, but also infers rates of change throughout
the phylogenetic tree. Equally importantly, Bayesian PPs yield
a statistically well-understood measure of confidence in the
results. Most previous ancestral chromosome numbers, in con-
trast, have been inferred without confidence assessment
(examples and critical discussion in Soltis et al., 2005). The
experiments we carried out with the different coding
schemes for genera polymorphic for chromosome number
revealed surprising robustness of the states inferred at interior
nodes, although as expected the inclusion or exclusion of out-
groups (in our case 13 families) affected the number inferred
for the basal-most node, albeit only slightly (Table 1). The
results of the present study further confirm that model-based
chromosome inference works well even with large data matri-
ces; the largest of the four matrices analysed by Mayrose et al.
(2010) had 107 terminals, and the present tree had 126.

Chromosome fusion (loss) appears to be the predominant
pattern in the evolution of chromosome number in Araceae;
polyploidization events are much less frequent and apparently
occurred mainly towards the tips of the tree. However, ancient
polyploidization events may be harder to detect than recent
ones, because of the genomic restructuring that follows poly-
ploidization. Only detailed studies, perhaps involving chromo-
some painting techniques, will reveal how rapid intergenomic

rearrangements have occurred after genome doubling, perhaps
especially following hybridization (Hayasaki et al., 2000; Lim
et al., 2008; Peruzzi et al., 2009; Tu et al., 2009).

In general, basic chromosome numbers inferred according
to Langlet’s (1927) approach, as the lowest detectable or
somehow calculated haploid number within a group of
related taxa, will be low, simply because of the way they are
arrived at (see Introduction for Langlet’s original example).
For Araceae, the hypothesized ancestral numbers were x ¼
14 or x ¼ 7 (Larsen, 1969; Marchant, 1973; Petersen, 1993).
The present study instead inferred an ancestral haploid
number of n ¼ 16 (under ML) or n ¼ 18 (with Bayesian infer-
ence) and, moreover, an evolutionary trend from higher to
lower numbers, rather than the other way around. One needs
to keep in mind that none of the earlier studies (Larsen,
1969; Marchant, 1973; Petersen, 1993) included Lemnoideae
in Araceae, a taxonomic difference that greatly affects the
range of chromosome numbers found in early-diverging
clades (Figs 1 and 2). It is also likely that the high frequency
of 2n ¼ 28 in the well-counted unisexual Aroideae unduly
influenced the hypotheses about x being 7 or 14. Finally, the
earlier hypotheses were developed without the relatively com-
plete and solid phylogenetic information that is available
today.

Nevertheless, any inferences about character evolution from
a taxon sampling of just 112 representatives, however well
coded their states may be, must be regarded with caution.
Every genus with more than one species must have its own,
perhaps complex, history of cytogenetic change. It is also con-
ceivable that dysploidy rates might change in different parts of
the tree (e.g. in clades of taxa living in different environments)
and that relatively derived and rapidly radiating clades,
perhaps with frequent hybridization, might have different
rates of polyploidization than older, genetically isolated
groups. The phylogenetically informed coding scheme (our
scheme three) may be the best way of coding ancestral
haploid chromosome numbers in larger clades (here genera),
an idea that could be tested by cytological work in small
genera with solid phylogenetic hypotheses, such as Arum
(e.g. Espı́ndola et al., 2010).

Given the inferred high ancestral haploid numbers, chromo-
some fusions (neutrally termed ‘losses’ in the models of
Mayrose et al., 2010) must have been common during evolu-
tion of Araceae. This hypothesis now needs to be tested.
Large chromosomes in Araceae, with distally positioned cen-
tromeres, may be the result of fusion between smaller meta-
centric chromosomes (Petersen, 1993). If so, one expects to
find interstitial telomeric sites. With probes, using primer
pairs homologous to the basic plant telomeric repeats, one
can visualize these regions (Ijdo et al., 1991;
Weiss-Schneeweiss et al., 2004). Such chromosome prepara-
tions are now being carried out in our laboratory on
Typhonium species with suspected chromosome fusion (pre-
dicted from high or low chromosome numbers in species of
known phylogenetic relationships).

The results of the present study suggest that quantitative
methods for inferring ancestral haploid numbers should
replace inferences that rely on algebraically finding the greatest
common factor for a series of numbers or on interpreting the
lowest available haploid count as the ancestral condition.

TABLE 2. The eight models of chromosome number evolution
implemented in the software of Mayrose et al. (2010), indicating
the considered parameter estimates (d, l, r, m, d1, l1), the
number of parameters included, and, in the case of m, with

which condition

Model d l r m d1 l1 No. of parameters

Mc1 + + + – – – 3
Mc2 + + + r ¼ m – – 3
Mc3 + + + r= m – – 4
Mc0 + + r ¼ 0 m ¼ 0 – – 2
Ml1 + + + – + + 5
Ml2 + + + r ¼ m + + 5
Ml3 + + + r= m + + 6
Ml0 + + r ¼ 0 m ¼ 0 + + 4

Mc indicates models with constant rates, and Ml models that include linear
rate parameters (d1, l1). Zero indicates the respective null model.
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The new approaches also yield a measure of statistical confi-
dence or estimates of the rates of polyploidization, fusion or
fission, We suggest that the concept ‘x’, which sets botanists
apart from zoologists, be retained only in the context of
small species groups in which the history of polyploidy is
known in detail (Vanzela et al. 2003).

SUPPLEMENTARY DATA

Supplementary data are available online at www.aob.oxford-
journals.org and consist of the following. Table S1: chromo-
some counts for species of Araceae with references. Figure
S1: chromosome number evolution in Araceae inferred under
Bayesian optimization, with phylogenetically informed
coding and outgroups excluded. Figure S2: chromosome
number evolution in Araceae inferred under maximum likeli-
hood optimization, with phylogenetically informed coding
and outgroups excluded.
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APPENDIX

The 117 genera of Araceae with number of species, number and percentage of species with chromosome counts, diploid chromo-
some numbers and coded ancestral haploid chromosome numbers in the three coding schemes used in this study (see Methods).

X ¼ unknown.

Genera
Spp.

number
Spp.

counted %

Counted diploid
chromosome

numbers 2n ¼
All polymorphic

n ¼

Reduced
polymorphic

n ¼
Informed

n ¼

1 Aglaodorum 1 1 100 40 20 20 20
2 Aglaonema 23 6 26 14, 40, 100 7, 20, 50 7, 20, 50 20
3 Alloschemone 2 1 50 84 42 42 42
4 Alocasia 107 17 16 24, 26. 28, 40,42, 56, 68, 70,

84
12, 13, 14, 20, 21, 28,
34, 35, 42

12, 13, 14, 20, 21, 28,
34, 35, 42

14

5 Ambrosina 1 1 100 22 11 11 11
6 Amorphophallus 196 47 24 26, 28, 39 13, 14 13, 14 13
7 Amydrium 5 2 40 60 30 30 30
8 Anadendrum 11 3 27 60 30 30 30
9 Anaphyllopsis 3 1 33 26 13 13 13
10 Anaphyllum 2 2 100 26 13 13 13
11 Anchomanes 6 3 50 40 20 20 20
12 Anthurium 903 171 19 14, 20, 24, 26, 28, 29,

30 + Bs, 34, 36, 40, 48, 49,
56, 60, 84, approx. 90, approx.
124

7, 13, 15, 17, 18, 30 7, 13, 15, 17, 18, 30 15

13 Anubias 8 8 100 48 24 24 24
14 Apoballis 12 6 50 26, 39, 56 13, 28 13 13
15 Aridarum 10 4 40 24, 26 12, 13 12, 13 12, 13
16 Ariopsis 2 1 50 28, 84, 86 14, 42, 43 14 14
17 Arisaema 150 97 65 20, 24, 26, 28, 32,42, 48, 52,

56, 64, 70, 72, 84, 112, 140,
168

10, 12, 13, 14, 16, 21,
24, 26, 28, 32, 42, 56,
70, 84

10, 12, 13, 14, 16, 21,
24, 26, 28, 32, 42, 56,
70, 84

14

18 Arisarum 4 2 50 14, 28, 42, 52, 56 7, 14, 21, 26, 28 7, 14, 21, 26, 28 14
19 Arophyton 7 6 86 38, 40, 54, approx. 76 19, 20, 27 19, 20, 27 19
20 Arum 29 26 90 28, 29, 30, 42, 56, 63, 70, 84 14, 15, 21, 28, 35, 42 14 14
21 Asterostigma 8 2 25 34 17 17 17
22 Bakoa 2 2 100 26 13 13 13
23 Biarum 21 12 57 16, 18, 22, 24, 26, 32, 36, 40,

74, approx. 96, 98, 108
8, 9, 11, 12, 13, 16, 18,
20, 37, 49, 54

8, 9, 11, 12, 13, 16, 18,
20, 37, 49, 54

13

24 Bognera 1 1 100 34 17 17 17
25 Bucephalandra 3 3 100 26 13 13 13
26 Caladium 12 6 50 19, 22, 26, 28, 30 11, 13, 14, 15 11, 13, 14, 15 13, 14
27 Calla 1 1 100 36, 54, 60, 72 18, 27, 30, 36 18 18
28 Callopsis 1 1 100 36 17 17 17
29 Carlephyton 3 3 100 54, 108 27, 54 27 27
30 Cercestis 10 6 60 approx. 36, 42 21 21 21
31 Chlorospatha 28 2 7 26 13 13 13
32 Colletogyne 1 1 100 44, 46, 54 22, 23, 27 27 27
33 Colocasia 16 5 31 26, 28, 30, 36, 38, 42, 44, 46,

48, 52, 58, 84, 116
13, 14, 15, 18, 19, 21,
22, 23, 24, 26, 42, 58

13, 14, 15, 18, 19, 21,
22, 23, 24, 26, 42, 58

14

34 Croatiella 1 1 100 34 17 17 17
35 Cryptocoryne 60 64 107 20, 22, 28, 30, 33, 34, 36, 42,

54, 56, 66, 68, 70, 72, 85, 88,
90, 102, 112, approx. 132

10, 11, 14, 15, 17, 18,
21, 27, 28, 33, 34, 35,
36, 44, 45, 51, 56

10, 11, 14, 15, 17, 18,
21, 27, 28, 33, 34, 35,
36, 44, 45, 51, 56

17, 18

36 Culcasia 24 9 38 approx. 40, 42 21 21 21
37 Cyrtosperma 12 4 33 24, 26 12, 13 12, 13 13
38 Dieffenbachia 57 14 25 34, 36, 40, 44, 68 17, 18, 20, 22, 34 17 17
39 Dracontioides 2 1 50 26 13 13 13
40 Dracontium 24 5 21 26 13 13 13
41 Dracunculus 2 2 100 28, 32 14, 16 14 14
42 Eminium 9 3 33 28 14 14 14
43 Epipremnum 15 3 20 60, 70, 84 30, 35, 42 30, 35, 42 30
44 Filarum 1 1 100 28 14 14 14
45 Furtadoa 2 1 50 40 20 20 20
46 Gearum 1 1 100 34, 68 17, 34 17 17
47 Gonatopus 5 4 80 34, approx. 68 17 17 17
48 Gorgonidium 8 3 38 34 17 17 17
49 Gymnostachys 1 1 100 48 24 24 24
50 Hapaline 8 2 25 26, 28 13, 14 13, 14 13, 14

Continued
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TABLE Continued

Genera
Spp.

number
Spp.

counted %

Counted diploid
chromosome

numbers 2n ¼
All polymorphic

n ¼

Reduced
polymorphic

n ¼
Informed

n ¼

51 Helicodiceros 1 1 100 56 14 14 14
52 Hestia 1 1 100 26 13 13 13
53 Heteropsis 17 1 6 26–28 13, 14 13, 14 14
54 Holochlamys 1 1 100 30, 60 15 15 15
55 Homalomena 117 24 21 38, 40, 42, 56 19, 20, 21, 28 19, 20, 21, 28 20
56 Incarum 1 1 100 34 17 17 17
57 Jasarum 1 1 100 22 11 11 11
58 Lagenandra 15 14 93 32, 36, approx. 72 16, 18 16, 18 18
59 Landoltia 1 1 100 40,46, 50 20, 23, 25 20 20
60 Lasia 2 1 50 26 13 13 13
61 Lasimorpha 1 1 100 26 13 13 13
62 Lazarum 23 2 9 approx. 118, 130, 152, approx.

160,168
59, 65, 76, 84 59, 65, 76, 84 X

63 Lemna 13 11 85 20, 30, 36, 40, 42, 44, 50, 60,
63, 64, 70, 80, 84, 126

10, 15, 18, 20, 21, 22,
25, 30, 32, 35, 40, 42, 63

20 20

64 Lysichiton 2 2 100 28 14 14 14
65 Mangonia 2 1 50 34 17 17 17
66 Monstera 39 5 13 24, 56, 58, 60 12, 28, 29, 30 30 30
67 Montrichardia 2 1 50 48 24 24 24
68 Nephthytis 6 5 83 36, 40, 60 18, 20, 30 18, 20 18, 20
69 Ooia 2 1 50 26 13 13 13
70 Orontium 1 1 100 26 13 13 13
71 Pedicellarum 1 1 100 24 12 12 12
72 Peltandra 2 1 50 112 56 56 56
73 Philodendron 483 31 6 26, 30, 32, 34, 36, 48, 54 13, 15, 16, 17, 18, 24, 27 13, 15, 16, 17, 18, 24, 27 17, 18
74 Philonotion 3 1 33 26 13 13 13
75 Phymatarum 1 1 100 26, 28 13 13 13
76 Pichinia 1 1 100 26 13, 14 13, 14 13
77 Pinellia 9 9 100 20, 26, 28, 39, 42, 52, 54, 72,

78, 90, 91, 99, 104, 108, 115,
116, 117, 128, 129

10, 13, 14, 21, 26, 27,
36, 39, 45, 52, 54, 58, 64

10, 13, 14, 21, 26, 27,
36, 39, 45, 52, 54, 58, 64

13

78 Piptospatha 10 6 60 26, 39 13 13 13
79 Pistia 1 1 100 14, 28 7, 14 7, 14 14
80 Podolasia 1 1 100 26 13 13 13
81 Pothoidium 1 1 100 24 12 12 12
82 Pothos 57 3 5 24, 36, 60 12, 18, 30 12 12
83 Protarum 1 1 100 28 14 14 14
84 Pseudodracontium 7 2 29 26 13 13 13
85 Pseudohydrosme 2 1 50 approx. 40 20 20 20
86 Pycnospatha 2 2 100 26 13 13 13
87 Remusatia 4 4 100 20, 28, 30, 42, 56 10, 14, 15, 21, 28 10, 14, 15, 21, 28 14
88 Rhaphidophora 98 8 8 26, 42, 54, 56, 60, approx. 120 13, 21, 27, 28, 30 28, 30 28, 30
89 Rhodospatha 29 3 10 28, 56, 60 14, 28, 30 14, 28 14
90 Sauromatum 9 7 78 26, 52, 54, 104 13, 26, 27, 52 13 13
91 Scaphispatha 2 1 50 28 14 14 14
92 Schismatoglottis 100 15 15 26, 30, 39, 52 13, 15, 26 13 13
93 Schottariella 1 0 0 – X X X
94 Scindapsus 35 8 23 48, 60 (42, 56, 58, 64, 70,

112), approx. 110
28, 30 28, 30 28, 30

95 Spathantheum 2 2 100 34 17 17 17
96 Spathicarpa 4 1 25 34 17 17 17
97 Spathiphyllum 49 9 18 30, 60 15, 30 15 15
98 Spirodela 3 2 67 20, 30, 32, 36, 38, 40, 50, 80 10, 15, 16, 18, 19, 20,

25, 40
15, 20 15, 20

99 Stenospermation 50 4 8 28 14 14 14
100 Steudnera 9 4 44 28, 36,56 14, 18, 28 14 14
101 Stylochaeton 18 4 22 28, 56 14, 28 14, 28 14
102 Symplocarpus 5 2 40 30, 60 15, 30 15, 30 15
103 Synandrospadix 1 1 100 34 17 17 17
104 Syngonium 35 9 26 22, 24, 26, 28 11, 12, 13, 14 14 14
105 Taccarum 6 1 17 34 17 17 17
106 Theriophonum 5 5 100 16, 24, 32 (14, 18) 8, 12, 16 8 8
107 Typhonium 68 8 12 10, 16, 18, 20, 26, 36, 52,65 5, 8, 9, 10, 13, 18, 26 5, 6, 7, 8, 9, 10, 13, 18,

26
8, 13

Continued
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TABLE Continued

Genera
Spp.

number
Spp.

counted %

Counted diploid
chromosome

numbers 2n ¼
All polymorphic

n ¼

Reduced
polymorphic

n ¼
Informed

n ¼

108 Typhonodorum 1 1 100 112 56 56 56
109 Ulearum 2 2 100 14 7 7 7
110 Urospatha 12 1 8 52 26 26 26
111 Wolffia 11 8 73 16, 20, 22, 23, 30, 40, 42, 46,

50, 60, 62, 63, 70, 80
8, 10, 11, 15, 20, 21, 23,
25, 30, 31, 35, 40

20 20

112 Wolffiella 10 7 70 20, 40, 42, 50, 70 10, 20, 21, 25, 35 20 20
113 Xanthosoma 75 11 15 22, 26, 39, 52 11, 13, 26 11, 13, 26 13
114 Zamioculcas 1 1 100 34 17 17 17
115 Zantedeschia 8 7 88 32 16 16 16
116 Zomicarpa 3 2 67 20, 22 10, 11 10, 11 10
117 Zomicarpella 2 1 50 26 13 13 13

Total 3309 847
Mean 61
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SUPPLEMENTARY DATA 

FIG. S1. Chromosome number evolution in Araceae inferred under Bayesian optimization, with phylogenetically 

informed coding and outgroups excluded (coding scheme A6 in Table 2 of the main text). Pie charts at nodes and 

tips represent the probabilities of the inferred chromosome number(s); numbers inside charts have the highest 

probability. The numbers at tips are the input chromosome numbers used in the ‘phylogenetically informed’ 

coding scheme (see Materials and Methods). Numbers above branches represent the inferred frequency of those of 

the four possible events (gains, losses, duplications, demi-duplications) that had a posterior probability >0.5. The 

colour-coding of chromosome numbers and the four events is explained in the insets. 

 



 

FIG. S2. Chromosome number evolution in Araceae inferred under maximum likelihood optimization, with 

phylogenetically informed coding and outgroups excluded (analysis A6 in Table 2).  
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SUPPLEMENTARY DATA 
TABLE S1. Chromosome counts for species of Araceae with references, including the four 

new counts reported in the present paper. Where a species’ name has been changed due to 

taxonomic revision, the name under which the number was originally published is given in 

brackets. 

 

Species n 2n References 

    

Aglaodorum griffithii  40 Petersen, 1989 

Aglaonema commutatum  14 Subramanian & Munian, 1988 

Aglaonema modestum 20 II 

+ 20I 

 Srivastava, 1982  

Aglaonema oblongifolium  40 Marchant, 1971a 

Aglaonema pictum  40 Okada, 1982  

Aglaonema simplex  40 Marchant, 1971a 

Aglaonema treubii  100 Marchant, 1971a 

Alloschemone occidentalis  84 Bogner & Petersen, 2007 

Alocasia acuminata  28 Mehra & Sachdeva 1979 

Petersen, 1989 

Alocasia alba (Alocasia 

crassifolia) 

 28 Okada, 1982 

Petersen, 1989 

Alocasia argyrea not 

accepted 

 56 Sharma, 1970  

Alocasia brancifolia  28 Petersen, 1989 

Alocasia cucullata  28 Ankei, 1987; Petersen, 1989 

Alocasia cuprea 14 28 Petersen, 1989 

Alocasia decipiens  24, 28 Bhattacharya, 1974  

Petersen, 1989 

Alocasia fornicata 14 28, 42 Ramachandran, 1978 

Petersen, 1989 

Alocasia lauterbachiana 

(Xenophya 

lauterbachiana) 

 28 Petersen, 1989 

Alocasia lauterbachiana 

(Alocasia wavriniana) 

 28 Marchant, 1971a 

Alocasia longiloba  28, 56 Sharma, 1970 

Marchant, 1971a 

Alocasia longiloba var. 

denudata (Alocasia 

denudata) 

 28 Marchant, 1971a 

Alocasia longiloba var. 

korthalsii (Alocasia 

korthalsii) 

 28 Petersen, 1989 

Alocasia longiloba var. 

lowii (Alocasia lowii) 

 28, 40 Bhattacharya, 1974 

Petersen, 1989 

Alocasia longiloba var. 

putzeysii (Alocasia 

putzeysii) 

 70, 84 Petersen, 1989 

Alocasia longiloba var. 

thibautiana (Alocasia 

 28 Sharma, 1970 
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thibautiana) 

Alocasia macrorrhiza  26, 28 Sharma, 1970 

Petersen, 1989 

Alocasia macrorrhizos 

(Alocasia indica) 

21 28, 42 Ramachandran, 1978 

Bhattacharya, 1974 

Petersen, 1989 

Alocasia microlitziana  28 Petersen, 1989 

Alocasia Montana not 

accepted 

 28 Ramachandran, 1978  

Alocasia navicularis  28, 68 Sharma, 1970 

Petersen, 1989 

Alocasia odora  28, 56 Nguyen et al., 1998 

Petersen, 1989 

Alocasia putii  28 Sharma, 1970 

Alocasia regina  28 Sharma, 1970 

Alocasia sanderiana 14  Petersen, 1989 

Alocasia zebrina  28, 42 Sharma, 1970; Bhattacharya, 1974 

Ambrosina bassii  22 Petersen, 1989 

Amorphophallus 

abyssinicus 

 26 Chauhan & Brandham, 1985 

Amorphophallus albus  26 Liu et al., 1985 

Amorphophallus ankarana  26 Hetterscheid et al., 1999 

Amorphophallus 

asterostigmatus 

 26 Petersen, 1992 

Amorphophallus 

bannanensis 

 26 Gu et al., 1992 

Amorphophallus bulbifer  26, 39 Chauhan & Brandham, 1985 

Kuruvilla et al., 1989 

Amorphophallus 

campanulatus 

14 26, 28 Sharma, 1970 

Chaudhuri & Sharma, 1979  

Amorphophallus 

commutatus 

 26 Chauhan & Brandham, 1985 

Amorphophallus dixenii  28 Larsen & Larsen, 1974 

Amorphophallus 

dracontioides 

 26 Chauhan & Brandham, 1985 

Amorphophallus dubius  28 Chauhan & Brandham, 1985 

Amorphophallus dunnii  26 Zheng & Liu, 1989 

Amorphophallus eichleri  26 (56) Petersen, 1989 

Amorphophallus 

gallaënsis 

 26  Petersen, 1989 

Amorphophallus 

giganteus 

 39 Petersen, 1989 

Amorphophallus goetzii  26 Chauhan & Brandham, 1985 

Amorphophallus 

gombocziamus 

 26 Marchant, 1971b 

Amorphophallus 

hildebrandtii 

 26 Chauhan & Brandham, 1985 

Amorphophallus hirtus  26 Petersen, 1989 

Amorphophallus 

hohenackeri 

 26 Petersen, 1989 
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Amorphophallus johnsonii  26 Chauhan & Brandham, 1985 

Amorphophallus kerrii  26 Chauhan & Brandham, 1985 

Amorphophallus konjac  26, 39 Ishida & Akagi, 2000 

Petersen, 1989 

Amorphophallus 

konkanensis 

 26 Patil & Dixit, 1995 

Amorphophallus lambii  26 Chauhan & Brandham, 1985 

Amorphophallus laxiflorus  26 Chauhan & Brandham, 1985 

Amorphophallus 

linumaana 

 26 Petersen, 1989 

Amorphophallus 

longituberosus 

 28 (56) Petersen, 1989 

Amorphophallus 

maculatus 

 26 Petersen, 1989 

Amorphophallus mairei  26 Zheng & Liu, 1989 

Amorphophallus 

margaritifer 

 26 De Sarker & Hetterscheid, 1997 

Amorphophallus maximus  26 Petersen, 1989 

Amorphophallus 

napalensis 

 28 Petersen, 1989 

Amorphophallus 

oncophyllus 

 39 Chauhan & Brandham, 1985 

Amorphophallus 

paeoniifolius 

14 26, 28 Chauhan & Brandham, 1985 

Petersen, 1989 

Amorphophallus 

palawanensis 

 26 Petersen, 1992 

Amorphophallus prainii  28 Chauhan & Brandham, 1985 

Amorphophallus rivieri  26 Zheng & Liu 1989 

Amorphophallus 

siamensis 

 26 Petersen, 1989 

Amorphophallus sinensis  26 Sun, 1999 

 

Amorphophallus 

sumawongii 

 26 Petersen, 1989 

Amorphophallus 

sutepensis 

 26 Chauhan & Brandham, 1985 

Amorphophallus 

sylvaticus 

 26 Petersen, 1989 

Amorphophallus 

taurostigma 

 26 Hetterscheid et al., 1999 

Amorphophallus 

thomsonii 

 26 (24, 

25) 

Petersen, 1989 

Amorphophallus titanum 13 26 Giordano, C. 1999 

Petersen, 1989 

Amorphophallus variabilis 13 26 Chauhan & Brandham, 1985 

Petersen, 1989 

Amydrium humile  60 Petersen, 1989 

Amydrium medium  60 Petersen, 1989 

Anadendrum marginatum  60 Petersen, 1989 

Anadendrum  60 Petersen, 1989 
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microstachyum 

Anadendrum montanum  60 Petersen, 1989 

Anaphyllopsis americana  26 Petersen, 1989 

Anaphyllum beddomei  Ca. 26 Petersen, 1989 

Anaphyllum wightii 13 26 Ramachandran, 1978 

Petersen, 1989 

Anaphyllum wightii ssp. 

revolutum 

 26 Petersen, 1989 

Anchomanes abbreviatus  40 Petersen, 1989 

Anchomanes difformis  40 Petersen, 1989 

Anchomanes welwitchii  40 Marchant, 1971a 

Anthurium acaule 15 30 + 

2B, 0-

2B or 

2-5B 

Sharma, 1970 

Bhattacharya, 1976 

Vij et al., 1982 

Anthurium acussatum c. 15 c. 30 Petersen, 1989 

Anthurium acutangulum c. 15 30 Sheffer & Croat, 1983 

Petersen, 1989 

Anthurium acutum   30 Petersen, 1989 

Anthurium aemulum  30, 60 Sheffer & Kamemoto, 1976  

Anthurium affine  30 Carvalheira et al., 1991 

Anthurium allenii  30 Sheffer & Kamemoto, 1976 

Anthurium amnicola  30 Marutani et al., 1988 

Anthurium andicola  30 Sheffer & Croat, 1983 

Anthurium andraeanum  c. 15, 

16 

30, 32 Sheffer & Croat, 1983 

Petersen, 1989 

Anthurium angustispadix  30 Sheffer & Croat, 1983 

Anthurium antioquiense  30 Sheffer & Croat, 1983 

Anthurium armeniense  30 Sheffer & Croat, 1983 

Anthurium aureum  30, 31 Sheffer & Kamemoto, 1976 

Anthurium baileyi  60 Sheffer & Kamemoto, 1976 

Anthurium bakeri 15 30 Sheffer & Croat, 1983 

Petersen, 1989 

Anthurium bellum  28, 56 Bhattacharya, 1976 

Vij et al., 1982 

Petersen, 1989 

Anthurium beltianum  30 Sheffer & Croat, 1983 

Anthurium 

berriozabalense 

 30 Sheffer & Croat, 1983 

Anthurium bicollectivum   28, 30 Sheffer & Croat, 1983 

Anthurium boucheanum   56 Petersen, 1989 

Anthurium brenesii  30 Sheffer & Croat, 1983 

Anthurium bristanii  30 Petersen, 1989 

Anthurium brittonianum  30 Sheffer & Croat, 1983 

Anthurium brownii  30 Sheffer & Croat, 1983 

Anthurium caperatum  30 Marutani et al. 1993 

Anthurium cerrobaulense  30 Sheffer & Croat, 1983 

Anthurium 

cerrocampanense 

 30, 30 

+ 2B 

Sheffer & Croat, 1983 

Marutani et al., 1993 

Anthurium chamulense  30 Sheffer & Croat, 1983 
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Anthurium chiriquense   30 Sheffer & Kamemoto, 1976 

Anthurium circinatum  30 Sheffer & Croat, 1983 

Anthurium clarinervium 15 30 Sheffer & Croat, 1983 

Sheffer and Croat, 1983 

Anthurium clavatum  30 Sheffer & Croat, 1983 

Anthurium clavigerum  30 Petersen, 1989 

Anthurium clidemioides  30 Petersen, 1989 

Anthurium colonicum  30 Sheffer & Croat, 1983 

Anthurium comtum 15 c. 30 Petersen, 1989 

Anthurium concinnatum  30 Sheffer & Kamemoto, 1976 

Anthurium concolor  30 Sheffer & Croat, 1983 

Anthurium consobrinum  15 30 Sheffer & Croat, 1983 

Petersen, 1989 

Anthurium cordatum c. 15 c. 30 Petersen, 1989 

Sheffer & Croat, 1983 

Anthurium cotobrusii  60 Sheffer & Croat, 1983 

Anthurium crassinervium c. 30 60 Sheffer & Croat, 1983 

Petersen, 1989 

Anthurium crassiradicans  30 Petersen, 1989 

Anthurium crenatum 15 30 Petersen, 1989 

Anthurium crystallinum 15 30 +0-

3B 

Bhattacharya, 1976 

Vij et al., 1982 

Sharma, 1970 

Anthurium cubense c. 15 30 Sheffer & Croat, 1983 

Petersen, 1989 

Anthurium cucullispathum  30 Sheffer & Croat, 1983 

Anthurium curvilaminum  30 Sheffer & Croat, 1983 

Anthurium cuspidatum   30 Sheffer & Croat, 1983 

Anthurium denudatum c. 15 30 Sheffer & Kamemoto, 1976 

Petersen, 1989 

Anthurium digitatum 30 26, 30, 

36 

Sheffer & Kamemoto, 1976 

Bhattacharya, 1976 

Vij et al., 1982 

Sharma, 1970 

Petersen, 1989 

Anthurium dominicense 15 c. 30 Petersen, 1989 

Anthurium durandii 15 c. 30 Petersen, 1989 

Anthurium ellipticum  30 Sheffer & Kamemoto, 1976 

Anthurium fatoense  Ca. 30 Sheffer & Croat, 1983 

Anthurium flavoviride  30 Sheffer & Kamemoto, 1976 

Anthurium flexile  60 Sheffer & Croat, 1983 

Anthurium folsonii   30 Petersen, 1989 

Anthurium forgetii  15 30 + Bs Sheffer & Kamemoto, 1976 

Petersen, 1989 

Sheffer & Croat, 1983 

Anthurium formosum  30 Marutani et al., 1993 

Anthurium friedrichsthalii 15 30 Sheffer & Kamemoto, 1976 

Petersen, 1989 

Anthurium garagaranum  30 + 0-

1B 

Marutani et al., 1993 
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Anthurium gladiifolium  30 Sheffer & Kamemoto, 1976 

Anthurium gracile  20, 30, 

40, 49, 

60 

Sheffer & Croat, 1983 

Guerra, 1986  

Sheffer & Kamemoto, 1976 

Petersen, 1989 

Anthurium grande  28, 30 Sheffer & Kamemoto, 1976 

Sharma, 1970 

Anthurium grandifolium  30 Sheffer & Kamemoto, 1976 

Anthurium gustavii  30 Sheffer & Kamemoto, 1976 

Anthurium gymnopus  30 Petersen, 1989 

Anthurium hacumense   30 Sheffer & Croat, 1983 

Anthurium harrisii  28 + 

2B, 30 

Bhattacharya, 1976 

Vij et al., 1982 

Petersen, 1989 

Anthurium hoffmannii  30 Sheffer & Kamemoto, 1976 

Anthurium hookeri 15 30, 60 Sheffer & Kamemoto, 1976 

Petersen, 1989 

Anthurium hornitense  30 Sheffer & Croat, 1983 

Anthurium huixtlense  30 Sheffer & Croat, 1983 

Anthurium hutchisonii  30 Sheffer & Croat, 1983 

Anthurium imperiale  30 + f, 

60 

Marchant, 1973 

Petersen, 1989 

Anthurium jenmanii   48 Sheffer & Croat, 1983 

Anthurium joseanum  30 Sheffer & Kamemoto, 1976 

Anthurium 

kamemotoanum  

 30 Marutani et al., 1993 

Anthurium lancifolium  30 Sheffer & Croat, 1983 

Anthurium lentii  30 Sheffer & Croat, 1983 

Anthurium leuconeurum  35 Sheffer & Croat, 1983 

Anthurium lezamae  30 Sheffer & Croat, 1983 

Anthurium lindenianum  30 Marutani et al., 1993 

Anthurium lindenianum  30 Sheffer & Kamemoto, 1976 

Anthurium littorale  28 Sheffer & Kamemoto, 1976 

Anthurium longipeltatum  30 Sheffer & Croat, 1983 

Anthurium longistipitatum  30 Sheffer & Croat, 1983 

Anthurium lucens   30, 66 Sheffer & Croat, 1983 

Anthurium lucidum  c. 124 Petersen, 1989 

Anthurium luteynii  30 Sheffer & Croat, 1983 

Anthurium magnificum c. 15 30, 60 Sheffer & Croat, 1983 

Sheffer & Kamemoto, 1976 

Petersen, 1989 

Anthurium maximum c. 15 c. 30 Petersen, 1989 

Anthurium mexicanum  60 Sheffer & Kamemoto, 1976 

Anthurium michelii  30 Sheffer & Croat, 1983 

Anthurium micromystrium  30 Sheffer & Kamemoto, 1976 

Anthurium microphyllum  30 + B Petersen, 1989 

Anthurium microspadix  c. 30, 

60 

Sheffer & Croat, 1983 

Petersen, 1989 

Anthurium montanum   30 Sheffer & Croat, 1983 

Anthurium nervatum  30 Sheffer & Croat, 1983 
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Anthurium 

nymphaeifolium 

 28, 30 Marutani et al., 1993 

Bhattacharya, 1976 

Vij et al., 1982 

Anthurium obtusilobum  30 Sheffer & Croat, 1983 

Anthurium ochranthum  30 + 2B Marutani et al., 1993 

Anthurium oerstedianum  30 Sheffer & Croat, 1983 

Anthurium olfersianum c. 15 30 + B Petersen, 1989 

Sheffer & Croat, 1983 

Anthurium ovandense  30 Sheffer & Croat, 1983 

Anthurium paludosum  30  Petersen, 1989 

Anthurium papillaminum  30  Petersen, 1989 

Anthurium paraguayense   60 Fernandez, A. 1977 

Anthurium patulum 14 28 + B Petersen, 1989 

Sheffer & Croat, 1983 

Anthurium 

pedatoradiatum 

c. 15 c. 30 Petersen, 1989 

Anthurium pentaphyllum 15 60 Sheffer & Kamemoto, 1976 

Petersen, 1989 

Anthurium pichinchae  30 Sheffer & Kamemoto, 1976 

Anthurium pittieri  30 Sheffer & Croat, 1983 

Anthurium pluricostatum  30 Sheffer & Croat, 1983 

Anthurium podophyllum 15 30 Bhattacharya, 1976 

Vij et al., 1982 

Anthurium procerum  30 Sheffer & Kamemoto, 1976 

Anthurium 

pseudospectabile  

 30 Sheffer & Croat, 1983 

Anthurium pulchellum  63  Petersen, 1989 

Anthurium 

purpureospathum 

 30 Sheffer & Croat, 1983 

Anthurium radicans 15 30 Sheffer & Croat, 1983 

Petersen, 1989 

Anthurium ramonense  30 Sheffer & Croat, 1983 

Anthurium ranchoanum  30 Sheffer & Kamemoto, 1976 

Anthurium ravenii  30 Sheffer & Croat, 1983 

Anthurium regale  30 + 1B Sheffer & Kamemoto, 1976 

Anthurium rhodostachyum  28, 29, 

30, 31 

Sheffer & Kamemoto, 1976 

Anthurium roraimense  30 Sheffer & Kamemoto, 1976 

Anthurium roseospadix  30 Marutani et al., 1993 

Anthurium rzedowskii   30 Sheffer & Croat, 1983 

Anthurium sagawanae  30 Sheffer & Croat, 1983 

Anthurium salvadorense  30 Sheffer & Croat, 1983 

Anthurium salviniae  30 Sheffer & Croat, 1983 

Anthurium sanctifidense  30 Marutani et al., 1993 

Anthurium scandens 16, 24 24, 48, 

84 

Sheffer & Kamemoto, 1976 

Sheffer & Croat, 1983 

Anthurium scandens. 

scandens 

 48, 84 Sheffer & Croat, 1983 

Petersen, 1989 

Anthurium scherzerianum 15, 16 14, 30, 

32 

Subramanian & Munian, 1988 

Sheffer & Croat, 1983 
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Petersen, 1989 

Anthurium schlechtendalii 15 30 Sheffer & Croat, 1983 

Anthurium schottianum  30 Sheffer & Croat, 1983 

Anthurium 

scolopendrinum 

 20, 40 Sheffer & Kamemoto, 1976 

Anthurium seibertii   30 Sheffer & Croat, 1983 

Anthurium seleri  30 Sheffer & Croat, 1983 

Anthurium sellowianum 15  Petersen, 1989 

Anthurium signatum  30 + B, 

34  

Sheffer & Croat, 1983 

Petersen, 1989 

Anthurium solitarum  30 + B, 

34 

Sheffer & Croat, 1983 

Petersen, 1989 

Anthurium splendidum 15 30 + Bs Bhattacharya, 1976 

Vij et al., 1982 

Sharma, 1970  

Anthurium standleyi  60 Sheffer & Croat, 1983 

Anthurium subhastatum  30 Sheffer & Kamemoto, 1976 

Anthurium subovatum  30 Sheffer & Croat, 1983 

Anthurium subsignatum  30 Marutani et al., 1993 

Anthurium supianum   c. 90 Sheffer & Kamemoto, 1976 

Anthurium tenerum  30 Sheffer & Croat, 1983 

Anthurium testaceum  30 Sheffer & Croat, 1983 

Anthurium tonduzii  30 Sheffer & Croat, 1983 

Anthurium trianae  28, 29 

+ 1B 

Sheffer & Kamemoto, 1976 

Anthurium triangulum  30 Sheffer & Kamemoto, 1976 

Anthurium trinerve  24, 30 Petersen, 1989 

Anthurium trinerve  24, 30 Sheffer & Croat, 1983 

Anthurium triphyllum 30 60 Bhattacharya, 1976 

Vij et al., 1982 

Anthurium turrialbense  30 Sheffer & Kamemoto, 1976 

Anthurium umbrosum   30 Sheffer & Croat, 1983 

Anthurium undatum  c. 60 + 

B 

Marchant, 1973 

Anthurium upalaense  30 Sheffer & Croat, 1983 

Anthurium vallense  30 Sheffer & Croat, 1983 

Anthurium veitchii 15 30 Sheffer & Kamemoto, 1976 

Anthurium velutium  30 Sheffer & Kamemoto, 1976 

Anthurium venosum  30 Sheffer & Kamemoto, 1976 

Anthurium wallisii  30 + 

2B, c. 

60  

Sheffer & Kamemoto, 1976 

Anthurium warocqueanum 15 30 + Bs Marutani & Kamemoto, 1983 

Petersen, 1989 

Anthurium watermaliense  30 Sheffer & Croat, 1983 

Anthurium wendlingeri   30 Sheffer & Croat, 1983 

Anthurium wullschlaegelii   30 Sheffer & Kamemoto, 1976 

Anubias afzelii  48 Arends & van der Laan, 1982 

Anubias gigantea  48 Arends & van der Laan, 1982 

Anubias gilletii  48 Arends & van der Laan, 1982 
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Anubias gracilis  48 Arends & van der Laan, 1982 

Anubias hastifolia  48 Arends & van der Laan, 1982 

Anubias heterophylla  48 Arends & van der Laan, 1982 

Anubias lanceolata  48 Marchant, 1971a 

Anubias pynaertii  48 Arends & van der Laan, 1982 

Apoballis 

(Schismatoglottis) 

belophylla 

 26 Petersen, 1989 

Apoballis 

(Schismatoglottis) 

brevipes 

 26 Okada, 2000 

Apoballis 

(Schismatoglottis) okadae 

 26 + Bs Okada, 2000 

Petersen, 1989 

Apoballis 

(Schismatoglottis) 

rupestris 

 26 + B Okada, 1982 

Apoballis acuminatissima 

(Schismatoglottis 

concinna) 

 26 + B Marchant, 1971a 

Apoballis acuminatissima 

(Schismatoglottis 

kurimana) 

 26, 39 Petersen, 1989 

Apoballis mutata 

(Schismatoglottis 

batoeensis) 

 26 Okada, 1982 

Apoballis rupestris 

(Schismatoglottis treubii) 

 26 Petersen, 1989 

Apoballis rupestris 

(Schismatoglottis 

wigmannii) 

 56 Petersen, 1989 

Aridarum annae  24 Petersen, 1989 

Aridarum burttii  26 Okada, 2000 

Aridarum incavum  26 Okada, 2000 

Aridarum nicolsonii  24, 26 Okada, 2000 

Petersen, 1989 

Ariopsis peltata  28, 84, 

86 

Petersen, 1989 

Marchant, 1971a 

Arisaema aequinoctiale  26 Watanabe et al., 1998  

Arisaema album  28 Petersen, 1989 

Arisaema amurense  26,28, 

39, 48, 

52, 56, 

70 

Ae, 1975  

Serizawa, 1981  

Murata, 1990  

Sokolovskaya & Probatova, 1985 

Petersen, 1989 

Arisaema angustatum  28 Watanabe et al., 1998  

Arisaema aprile  28 Murata, J. 1983 

Arisaema atrorubens  56 Kapoor, B. M. 1982 

Arisaema biauriculatum  28 Gu, Z.-j. & H. Sun 1998  

Arisaema candidissimum  56 Petersen, 1989 

Arisaema caudatum  28 Patil, K. S. & G. B. Dixit 1995 
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Arisaema concinum   28, 56 Mehra, P. N. & S. K. Sachdeva 1976 

Petersen, 1989 

Arisaema consanguineum  28, 48, 

56 

Wang, Jenn-che 1996 

Sarkar, A. K. & N. Datta 1978 

Arisaema consenouinum  28 Sarkar, A. K. 1991 

Arisaema costatum  20  Murata, J. 1990 

Arisaema cucullatum  28 Petersen, 1989 

Arisaema curvatum  28 Mehra, P. N. & S. K. Sachdeva 1976 

Arisaema decipiens  28 Sharma, 1970 

Arisaema dracontium  56 Murata, J. & M. Iijima 1983 

Arisaema dulongense  26 Gu, Z.-j., L. Wang & H. Li 1992 

Arisaema echinatum   28 Petersen, 1989 

Arisaema ehimense  28 Murata, J. & J. Ohno 1989 

Arisaema erubescens  28, 56 Gu, Z.-j., L. Wang & H. Li 1992 

Mehra, P. N. & S. K. Sachdeva 1976 

Arisaema filiforme  28 Murata, J. 1990 

Arisaema flavum  56 Murata, J. & M. Iijima 1983 

Arisaema formosanum  28, 56 Wang, Jenn-che 1996 

Arisaema franchetianum  56 Murata, J. & M. Iijima 1983 

Arisaema galeatum  26 Murata, J. 1990 

Arisaema grapsospadix  28 Wang, Jenn-che 1996 

Arisaema griffithii  28, 32 

+ 1B 

Sharma, 1970 

Bhattacharya, 1978  

Arisaema hatizyoense  26 Watanabe et al., 1998  

Arisaema heterocephalum   28 Petersen, 1989 

Arisaema heterophyllum  28, 56, 

64, 84, 

140, 

168 

Murata, 1990 

Wang, 1996 

Ko & Kim, 1985 

Arisaema ilanense  28 Wang, 1996 

Arisaema inclusum  24 Murata & Iijima, 1983 

Arisaema intermedium 14 28 Mehra & Sachdeva, 1976 

Sachdeva, 1977 

Arisaema iyonum  28 Petersen, 1989 

Arisaema jacquemontii  28, 52 Mehra & Sachdeva, 1976  

Petersen, 1989 

Arisaema japonicum  26, 28, 

42 

Watanabe et al., 1998  

Petersen, 1989 

Arisaema kawashimae  28 Serizawa, 1980  

Arisaema kelung-insulares  28 Petersen, 1989 

Arisaema kishidae   28 Watanabe et al., 1998  

Arisaema kiushianum  56 Petersen, 1989 

Arisaema komarovii  56 Sokolovskaya & Probatova, 1985 

Arisaema leschenaultii  28 Petersen, 1989 

Arisaema limbatum  26 Watanabe et al., 1998  

Arisaema lobatum  28, 56, 

Ca. 84 

Murata, 1990 

Hong & Zhang, 1990 

Arisaema longilaminum  28 Petersen, 1989 

Arisaema 

longipedunculatum 

 28, 56 Serizawa, 1981  
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Arisaema macrospathum  28 Pringle, 1979 

Arisaema maximowiczii  28 Petersen, 1989 

Arisaema minamitanii   28 Murata, 1990 

Arisaema minus  26 Watanabe et al., 1998  

Arisaema monophyllum  28 Murata &. Iijima, 1983 

Arisaema murrayi 14 28, 56 Patil & Dixit, 1995  

Arisaema nambae  28 Watanabe et al., 1998  

Arisaema nanjenense  28 Huang & Wu, 1997 

Arisaema negishii  28 Ko et al., 1987 

Arisaema neglectum  28, 56 Ramachandran, 1978 

Subramanian & Munian, 1988 

Arisaema nepenthoides  26 + 1B Bhattacharya, 1978 

Arisaema nikoense  28 Watanabe et al., 1998  

Arisaema ogatae   28 Petersen, 1989 

Arisaema ostiolatum  28 Petersen, 1989 

Arisaema ovale  26, 52, 

56, 112  

Ko et al., 1987 

Petersen, 1989 

Arisaema peninsulae  26, 28 Lee, 1967  

Arisaema pingbianense  28 Murata, 1990 

Arisaema polyphyllum  28 Petersen, 1989 

Arisaema propiquum  28 Petersen, 1989 

Arisaema rhizomatum  28 Murata & Iijima 1983 

Arisaema ringens  28, 56 Watanabe et al., 1998  

Petersen, 1989 

Arisaema robustum  56 Ko & Kim 1985 

Arisaema roxburghii   24 Petersen, 1989 

Arisaema sachalinense  56 Murata, J. 1990 

Arisaema sahyadricum  28 Patil & Dixit 1995 

Arisaema sanguineum  28 Sharma & Mukhopadhyay, 1963 

Arisaema sazenzo  28 Murata & Iijima, 1983 

Arisaema schimperianum  28 Petersen, 1989 

Arisaema seppikoense  26 Watanabe et al., 1998  

Arisaema serratum  26, 28 Lijima, 1982 

Arisaema sikkimense  26 + 1B Bhattacharya, 1978 

Arisaema sikokianum  28 Watanabe et al., 1998  

Arisaema speciosum   28 Sharma, 1970 

Arisaema stenophyllum  26 Watanabe et al., 1998  

Arisaema taiwanense  28 Wang, Jenn-che 1996 

Arisaema takedae  28 Petersen, 1989 

Arisaema takesimense  28 Ko et al., 1987 

Arisaema tashiroi  28 Petersen, 1989 

Arisaema ternatipartitum  72 Watanabe et al., 1998  

Arisaema thunbergii  28 Ko & Kim, 1985 

Arisaema tortuosum 14, 26 24, 26, 

28, 56 

Mehra & Sachdeva, 1976 

Ramachandran, 1978 

Sachdeva, 1977 

Sharma & Mukhopadhyay, 1963 

Arisaema tosaense  28 Watanabe et al., 1998  

Arisaema triphyllum   28, 56 Hill, 1995  

Sachdeva, 1977 
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Arisaema undulatifolium  26 Watanabe et al., 1998  

Arisaema urashima  28 Watanabe et al., 1998  

Arisaema wallichianum 14 26 + 4B Mehra & Sachdeva, 1976 

Sharma, 1970 

Arisaema wightianum  28 Subramanian & Munian, 1988 

Arisaema wightii  28 Ramachandran, 1978 

Arisaema yamatense  28 Watanabe et al., 1998  

Arisaema yunnanense   48 Murata & Iijima, 1983 

Arisarum proboscideum  14, 28, 

42, 56 

Diosdado et al., 1993 

Petersen, 1989 

Arisarum vulgare 28 56 Aboucaya & Verlaque, 1990 

Petersen, 1989 

Arophyton buchetii  40 Petersen, 1989 

Arophyton crassifolium  54 Petersen, 1989 

Arophyton humbertii  38 Petersen, 1989 

Arophyton rhizomatosum  38 Petersen, 1989 

Arophyton simplex  38 Sharma, 1970 

Arophyton tripartitum  c. 76 Marchant, 1970 

Arum alpinum = Arum 

cylindraceum 

 28 D'Emerico et al., 1993 

Arum apulum  56, 63, 

70 

Bianco et al., 1993 

Arum arisarum  56 Fernandez & Ruiz Rujon, 1976 

Arum byzantinum  28 Alpinar, 1986  

Arum concinnatum  84 Alpinar, 1986 

Arum creticum  28 Alpinar, 1987  

Arum cyrenaicum  56 Petersen, 1989 

Arum detruncatum  28 Alpinar, 1986 

Arum dioscoridis   28 Alpinar, 1986 

Arum elongatum   28 Alpinar, 1986 

Arum euxinum  28 Alpinar, 1986 

Arum hygrophilum  28, 29 Bedalov, 1978 

Petersen, 1989 

Arum idaeum  28 Bedalov & Küpfer, 2006 

Arum italicum  28, 70, 

84 

Alpinar, 1986 

Petersen, 1989 

Arum korolkowii  28 Petersen, 1989 

Arum maculatum  28, 30, 

42, 56 

Šopova & Sekovski, 1989 

Mesíček, 1992 

 D'Emerico et al., 1993 

Petersen, 1989 

Arum nickelii  84 Alpinar, 1986  

Arum nigrum  28 D'Emerico et al., 1993 

Arum orientale   28 Bedalov et al., 1998 

Arum palaestinum   28 Bedalov, 1978 

Arum petteri  28 Petersen, 1989 

Arum pictum  28 D'Emerico et al., 1993 

Arum purpureospathum  56 Bedalov & Küpfer, 2006 

Arum rupicola  28 Bedalov & Küpfer, 2006 

Arum sintenisii  28 Bedalov & Küpfer, 2006 
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Arum sooi    42 Bedalov & Terpo, 1998 

Asterostigma cryptostylum  34  Bogner, 1997 

Asterostigma lividum  34 + Bs Petersen, 1989 

Bakoa (Piptospatha) 

brevipedunculata 

 26 Okada, 2000 

Bakoa (Piptospatha) 

lucens 

 26 Okada, 2000 

Biarum bovei  74 Petersen, 1989 

Biarum carduchorum   24 Petersen, 1989 

Biarum carratracense  22, 36, 

c. 96, 

98 

Fernandez Piqueras & Ruiz Rujon, 1976 

Fernandez et al., 1978  

Marchant, 1971b 

Biarum davisii  26 Petersen, 1989 

Biarum dispar  74 Talavera, 1976 

Biarum ditschianum  26 Petersen, 1989 

Biarum eximium  16 Petersen, 1989 

Biarum fraasianum  32 Popova & Ceschmedjiev, 1978 

Biarum kotschyi   c. 96 Petersen, 1989 

Biarum marmarisense  22, 24, 

26 

Athanasiou & Kamari, 1992 

Gill, 1988 

Biarum pyrami  108 Borzatti von Löwenstern & Garbari, 1999 

Biarum tenuifolium   16, 18, 

26 

Athanasiou & Kamari, 1992 

Petersen, 1989 

Biarum tenuifolium (B. 

spruneri) 

 26, 40 Athanasiou & Kamari, 1992 

Biarum tenuifolium ssp. 

arundanum (Biarum 

arundanum) 

 22 Elena Rossello & Gallego, 1984 

Biarum tenuifolium ssp. 

galiani (Biarum galiani) 

 26 Elena Rossello & Gallego, 1984 

Bognera recondita  34 Bogner, 2008 

Bucephalandra 

catherineae 

 26  Okada, 2000 

Bucephalandra magnifolia  26 Okada, 2000 

Bucephalandra motleyana  26 Okada, 2000 

Caladium bicolor 15 22, 26, 

28, 30 

Ramachandran, 1978 

Sarkar, 1975 

Sarkar, 1976 

Caladium chanjur  28 Petersen, 1989 

Caladium humboldtii  19 Petersen, 1989 

Caladium lindenii 13  Petersen, 1989 

Caladium macrotites  30 Petersen, 1989 

Caladium striatipes  22 Petersen, 1989 

Calla palustris 18, 36 36, 60, 

72 

Uotila & Pellinen, 1985  

Kartashova et al., 1974 

Geber & Schweizer, 1988 

Petersen, 1989 

Callopsis volkensii  36 Marchant, 1971a 

Carlephyton diegoense  c. 108 Petersen, 1989 

Carlephyton  54 Marchant, 1973 
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glaucophyllum Petersen, 1989 

Carlephyton 

madagascariense 

 108 Marchant, 1970 

Cercestis afzelii  42 Petersen, 1989 

Cercestis camerunensis  c. 42 Petersen, 1989 

Cercestis mirabilis  42 Petersen, 1989 

Cercestis sagittatus  42 Petersen, 1989 

Cercestis stigntaticus  c. 36 Petersen, 1989 

Cercestis talensis  42 Petersen, 1989 

Chlorospatha corrugata  26 Bogner, 1985 

Chlorospatha longipoda  26 Petersen, 1989 

Colletogyne perrieri  44, 46, 

54 

Sharma, 1970 

Marchant, 1973 

Petersen, 1989 

Colocasia affins  28 Petersen, 1989 

Colocasia antiquorum 14 26, 28, 

30, 36, 

38, 42, 

44, 46, 

48, 52, 

58, 116 

Subramanian, 1979 

Sarkar, 1991 

Subramanian & Munian, 1988 

Chaudhuri & Sharma, 1979  

Colocasia esculenta 14 28, 36, 

38,  42, 

48, 84 

Ramachandran, 1978 

Tanimoto & Matsumoto, 1986 

Huang et al., 1989  

Sreekumari & Mathew, 1991 

Subramanian & Munian, 1988 

Colocasia gigantea 14 28, 42 Tanimoto & Matsumoto, 1986 

Petersen, 1989 

Colocasia indica  28 Ankei, 1987 

Croatiella integrifolia  34 Bogner, 2008 

Cryptocoryne affinis  34 Arends et al., 1982  

Cryptocoryne albida  36 Arends et al., 1982 

Cryptocoryne amicorum  34 Arends et al., 1982 

Cryptocoryne annamica  34 Petersen, 1993 

Cryptocoryne 

aponogetifolia 

 34 Petersen, 1989 

Cryptocoryne auriculata  34 Petersen, 1993 

Cryptocoryne balansae  36 Jacobson, 1977 

Cryptocoryne beckettii  28, 42 Arends et al., 1982; Petersen, 1989 

Cryptocoryne 

bertelibansenii 

 36 Jacobson, 1977 

Cryptocoryne blassii   102 Jacobson, 1977 

Cryptocoryne bogneri  36 Jacobson, 1977 

Cryptocoryne bullosa  34 Jacobson, 1977 

Cryptocoryne ciliata  22, 33 Jacobson, 1977 

Cryptocoryne cognata  28 Petersen, 1993a 

Cryptocoryne consobrina  36 Petersen, 1989 

Cryptocoryne cordata  28, 34, 

68, 85, 

102 

Jacobson, 1977 

Patil & Dixit, 1995 
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Cryptocoryne costata  34 Jacobson, 1977 

Cryptocoryne crispatula  36, 54 Jacobson, 1977 

Arends et al., 1982  

Cryptocoryne cruddasiana  36 Bogner & Petersen, 2007 

Cryptocoryne didericii  34 Arends et al., 1982  

Cryptocoryne edithiae   34, 68 Arends et al., 1982  

Petersen, 1989 

Cryptocoryne elliptica  34 Petersen, 1989 

Cryptocoryne ferruginea  34, 68 Arends et al., 1982 

Petersen, 1989 

Cryptocoryne fusca  34 Arends et al., 1982  

Cryptocoryne gasseri  30, 34 Jacobson, 1977 

Arends et al., 1982  

Cryptocoryne grabowskii  68 Arends et al., 1982  

Cryptocoryne gracilis  20 Arends et al., 1982 

Cryptocoryne griffithii  34 Arends et al., 1982  

Cryptocoryne hudoroi  20 Petersen, 1989 

Cryptocoryne jacobsenii  34 Arends et al., 1982  

Cryptocoryne keei   20, 34 Arends et al., 1982  

Petersen, 1989 

Cryptocoryne lingua  36 Arends et al., 1982  

Cryptocoryne longicauda  30 Arends et al., 1982  

Cryptocoryne longispatha  36 Marchant, 1971b 

Cryptocoryne lutea  28 Jacobson, 1977 

Cryptocoryne minima  34 Jacobson, 1977 

Cryptocoryne 

moehlmannii 

 30 Arends et al., 1982  

Cryptocoryne nevillii  28, 30 Arends et al., 1982  

Petersen, 1989 

Cryptocoryne nurii  34 Arends et al., 1982  

Cryptocoryne 

pallidinervia 

 34 Petersen, 1989 

Cryptocoryne parva   28 Jacobson, 1977 

Cryptocoryne petchii  42 Jacobson, 1977 

Cryptocoryne 

pontederiifolia 

 30 Jacobson, 1977 

Cryptocoryne purpurea  34 Jacobson, 1977 

Cryptocoryne pygmaea  34 Arends et al., 1982  

Cryptocoryne retrospiralis  36, 56, 

70, 72, 

90 

Arends et al., 1982  

Jacobson, 1977 

Patil & Dixit, 1995 

Subramanian & Munian, 1988 

Sampathkumar & Ayyangar, 1981  

Cryptocoryne schulzei  34, 68 Arends et al., 1982  

Petersen, 1989 

Cryptocoryne scurrilis  68 Arends et al., 1982  

Cryptocoryne siamensis  68 Jacobson, 1977 

Cryptocoryne sp.  34 Petersen, 1993 

Cryptocoryne spiralis 45 33, 66, 

70, 72, 

Jacobson, 1977 

Ramachandran, 1978 



16 
 

88, 90, 

112, 

Ca. 132 

Sarkar et al., 1976  

Arends et al., 1982  

Patil & Dixit, 1995 

Subramanian & Munian, 1988 

Petersen, 1993 

Cryptocoryne striolata   20 Arends et al., 1982  

Cryptocoryne thwaitesii  36, 42 Jacobsen, 1976 

Marchant, 1971b 

Cryptocoryne tonkinensis  36 Jacobson, 1977 

Cryptocoryne tortilis  34 Arends et al., 1982  

Cryptocoryne undulata  28, 42 Jacobson, 1977 

Cryptocoryne usteriana  34 Jacobson, 1977 

Cryptocoryne venemae  34 Arends et al., 1982  

Cryptocoryne versteegii  34 Jacobson, 1977 

Cryptocoryne villosa  30 Petersen, 1989 

Cryptocoryne walkeri  28, 42 Arends et al., 1982  

Jacobson, 1977 

Cryptocoryne wendtii   28, 42 Jacobson, 1977 

Cryptocoryne willisii  28 Marchant, 1971b 

Cryptocoryne zonata  68 Arends et al., 1982  

Cryptocoryne zukalii   34 Arends et al., 1982  

Culcasia glandulosa  42 Petersen, 1989 

Culcasia liberica  c. 42 Petersen, 1989 

Culcasia longevaginata  42 Petersen, 1989 

Culcasia orientales  42 Petersen, 1989 

Culcasia ponduriformes  c. 42 Petersen, 1989 

Culcasia rotundifolia  42 Petersen, 1989   

Culcasia saxatilis  c. 42 Petersen, 1989 

Culcasia scandes  c. 40 Petersen, 1989 

Culcasia seretii  42 Petersen, 1989 

Cyrtosperma chamissonis  24 Petersen, 1989 

Cyrtosperma 

cuspidispathum 

 26 Petersen, 1989   

Cyrtosperma ferox  26 Petersen, 1989   

Cyrtosperma johnstonii  26 Petersen, 1989 

Dieffenbachia amoena  34 Gireesh &. Bhavanandan, 1994 

Dieffenbachia 

barraquiniana 

 34 Gireesh & Bhavanandan, 1994 

Dieffenbachia baumanii  54 Petersen, 1989 

Dieffenbachia bausei c. 17 34 Petersen, 1989 

Dieffenbachia eburnea  34 Damerval, 1980  

Dieffenbachia exotica  34 Gireesh & Bhavanandan, 1994 

Dieffenbachia hoffmannii  34 Petersen, 1989 

Dieffenbachia 

macrophylla 

17 34 Petersen, 1989 

Dieffenbachia maculata  34, 40 Gireesh & Bhavanandan, 1994 

Dieffenbachia 

memoriacorsii 

 34 Petersen, 1989 

Dieffenbachia oerstedii  34 Petersen, 1989 

Dieffenbachia picta 17 34, 36, Ramachandran, 1978 
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68 Sharma, 1970 

Subramanian & Munian, 1988 

Dieffenbachia seguine  34 Petersen, 1989 

Dieffenbachia splendens  34 Damerval, 1980 

Dracontioides desciscens  26 Petersen, 1989  

Dracontium aricuaisanum  26 Petersen, 1989  

Dracontium changuango  26 Petersen, 1989  

Dracontium foecundum  26 Petersen, 1989 

Dracontium gigas  26 Petersen, 1989 

Dracontium prancei 

(polyphyllum) 

 26 Petersen, 1989 

Dracunculus canariensis  28 Petersen, 1989 

Dracunculus muscivorus  56 Scrugli, 1977 

Dracunculus vulgaris  28, 32 Popova & Ceschmedjiev, 1978 

Van Loon, 1982  

Eminium crassipes 14 28 (56) Petersen, 1989 

Eminium koenenianum  28 Johnson & Brandham, 1997  

Eminium lehmannii  28  Petersen, 1989 

Epipremnum falicifolium  84 Petersen, 1989 

Epipremnum mirabile  70 Sharma, 1970 

Epipremnum pinnatum  60 Petersen, 1989 

Filarum manserichense  28 This paper 

Furtadoa sumatrensis  40 Okada, 1982 

Furtadoa sumatrensis  40 Petersen, 1989 

Furtadoa sumatrensis  40 Okada, 2000 

Gearum brasiliense  34,68 Bogner & Petersen, 2007 

Gonatopus 

(Heterolobium) 

petiolulatus 

 34 Marchant, 1971a 

Gonatopus angustus  c. 68 Petersen, 1989 

Gonatopus boivinii  34 Petersen, 1989 

Gonatopus marattioides  34 Petersen, 1989 

Gonatopus petiolulatus  34 Petersen, 1989 

Gorgonidium mirabile  34 Petersen, 1989 

Gorgonidium vargasii  34 Petersen, 1989 

Gorgonidium vermicidum  34 Petersen, 1989 

Gymnostachys anceps  48 Petersen, 1989 

Hapaline benthamiana  26 Petersen, 1989 

Hapaline brownii  28 Petersen, 1989 

Helicodiceros muscivorus  56 Petersen, 1989 

Hestia longifolia  26 This paper 

Heteropsis oblongifolia  26, 28 Petersen, 1989 

Holochlamys beccarii  30, 60 Petersen, 1989  

Oginuma et al., 1998  

Homalomena caerulescens  40 Marchant, 1971a 

Homalomena consobrina  40 Okada, 2000 

Homalomena cordata  40 Petersen, 1989 

Homalomena cristata  40 Petersen, 1989 

Homalomena elliptica  42 Petersen, 1989 

Homalomena gadutensis  38 Okada, 1985  
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Homalomena griffithii  40 Okada, 2000 

Homalomena hastata  40 Okada, 1985 

Homalomena humilis  40, 42 Petersen, 1989 

Homalomena lancifolia   40 Okada, 2000 

Homalomena lindenii  40, 56 Petersen, 1989 

Homalomena lindenii 

(Alocasia lindenii) 

 40, 56 Sharma, 1970 

Homalomena 

megalophylla 

 40 Okada, 1985 

Homalomena monandra  40 Petersen, 1989 

Homalomena occulta  42 Petersen, 1989 

Homalomena padandensis  40 Petersen, 1989 

Homalomena pendula  40 Petersen, 1989 

Homalomena pygmaea  40 Okada, 1982  

Homalomena rubescens  40 Petersen, 1989 

Homalomena rusdii  40 Okada, 2000 

Homalomena sagitifolia   40 Okada, 1982  

Homalomena 

singaporense 

 40 Petersen, 1989 

Homalomena speariae  42 Petersen, 1989 

Homalomena sulcata  40 Okada, 2000 

Homalomena wallisii   42 Petersen, 1989 

Incarum pavonii  34 Bogner & Petersen, 2007 

Jasarum steyermarkii  22 Petersen, 1989 

Lagenandra bogneri  36 Petersen, 1989 

Lagenandra dewitii  36 Petersen, 1989 

Lagenandra erosa  36 Petersen, 1989 

Lagenandra jacobsenii  36 Petersen, 1989 

Lagenandra koenigii  36 Petersen, 1989 

Lagenandra lancifolia  36 Marchant, 1971b 

Lagenandra meeboldii  36 Petersen, 1989 

Lagenandra nairii  c. 72 Petersen, 1989 

Lagenandra ovata 18 32, 36 Ramachandran, 1978; Battacharya, 1975 

Lagenandra praetermissa   36 Petersen, 1989 

Lagenandra schulzei  36 Petersen, 1989 

Lagenandra thwaitesii  36 Arends & van der Laan, 1978  

Lagenandra toxicaria  36 Petersen, 1989 

Lagenandra toxicaria  36 Marchant, 1971b 

Landotia punctata  40 Landolt, 1986 

Lasia heterophylla  26 Sharma, 1970 

Lasia heterophylla 

(spinosa) 

13 26 Ramachandran, 1978 

Petersen, 1989 

Lasimorpha senegalensis  26 Petersen, 1989 

Lazarum (Typhonium) 

brownii 

 c. 160 Petersen, 1989 

Lazarum (Typhonium) 

eliosurum 

 c. 118, 

130, 

152, 

168 

Petersen, 1989 

Lazarum brownii   c. 160 Petersen, 1989 
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Lazarum eliosurum  c. 118, 

130, 

152, 

168 

Petersen, 1989 

Lemna aequinoctialis  40 Landolt, 1986 

Lemna disperma  40 Landolt, 1986 

Lemna gibba  40 Landolt, 1986 

Lemna japonica  40 Landolt, 1986 

Lemna minor  40 Landolt, 1986 

Lemna minuscula  40 Landolt, 1986 

Lemna obscura  40 Landolt, 1986 

Lemna perpusilla  40 Landolt, 1986 

Lemna trisulca  40 Landolt, 1986 

Lemna turionifera  40 Landolt, 1986 

Lemna valdiviana  40 Landolt, 1986 

Lysichiton americanus  28 Petersen, 1989 

Lysichiton 

camtschatcensis 

 28 Sokolovskaya & Probatova, 1985 

Mangonia tweediana  34 Bogner & Petersen, 2007 

Monstera acuminata   60 Petersen, 1989 

Monstera adansonii   60 Petersen, 1989 

Monstera deliciosa  24, 56, 

58, 60 

Chaudhuri & Sharma, 1979 

Huang et al., 1989 

Monstera friedrichsthalii  60 Marchant, 1970 

Monstera spruceana 

(Alloschemone 

occidentalis) 

 60 Petersen, 1989 

Montrichardia 

arborescens 

 48 Petersen, 1989 

Nephthytis afzelli  60 Marchant, 1971a 

Nephthytis bintuluensis  36 Hay, A., J. Bogner & P. C. Boyce 1994 

Nephthytis hallaei  40 Petersen, 1989   

Nephthytis poissonii  60 Marchant, 1971a 

Nephthytis swainei  40 Petersen, 1989   

Ooia (Piptospatha) 

grabowskii 

 26 Petersen, 1989   

Orontium aquaticum 13 26 Petersen, 1989   

Petersen, 1989 

Pedicellarum paiei  24 Bogner & Petersen, 2007 

Peltandra virginica  112 Marchant, 1971a 

Philodendron andreanum  32, 34 Sharma, 1970 

Petersen, 1989 

Philodendron 

bipinnatifidum 

18 36 Petersen, 1989 

Philodendron cannifolium  34 Petersen, 1989 

Philodendron cordatum  34 Petersen, 1989 

Philodendron cuspidatum  30 (32), 

36 

Chaudhuri & Sharma, 1979 

Petersen, 1989 

Philodendron erubescens  32 Petersen, 1989 

Philodendron eximium  34 Petersen, 1989 
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Philodendron giganteum  30, 34 Petersen, 1989 

Philodendron 

glandifolium  

 34 Petersen, 1989 

Philodendron gloriosum  34 Petersen, 1989 

Philodendron hastatum  34 Petersen, 1989 

Philodendron 

houlletianum 

 32 Petersen, 1989 

Philodendron imbe 17 34 Petersen, 1989 

Philodendron lacerum  36 Petersen, 1989 

Philodendron laciniosum  32 Petersen, 1989 

Philodendron lundii  36 Petersen, 1989 

Philodendron melinonii  30 Petersen, 1989 

Philodendron micans  32 Petersen, 1989 

Philodendron 

panduraeforme 

 34 Petersen, 1989 

Philodendron pittieri   34 Petersen, 1989 

Philodendron radiatum  32 + B Petersen, 1989 

Philodendron rugosum  36 Petersen, 1989   

Philodendron scandens  30, 32 Petersen, 1989 

Subramanian & Munian, 1988 

Philodendron selloum  32, 34, 

36, 48 

Subramanian & Munian, 1988 

Chaudhuri & Sharma, 1979 

Petersen, 1989 

Philodendron sodiroi  34 Petersen, 1989 

Philodendron speciosum  36 Petersen, 1989 

Philodendron 

sqaumiferum 

 26, 34 Petersen, 1989 

Philodendron undulatum 18 36 Petersen, 1989 

Philodendron verrucosum 17 34 Petersen, 1989 

Philodendron 

warscewiczii  

 34 Petersen, 1989 

Philodendron wendlandii   54 Subramanian & Munian, 1988 

Philonotion americanum  26 This paper 

Phymatarum borneense  26, 28 Petersen, 198  

Pichinia disticha   26 This paper 

Pinellia cordata  26, 72, 

78  

Li et al., 1997 

Yi et al., 2005 

Pinellia integrifolia  78 Yi et al., 2005 

Pinellia major  20 Petersen, 1989 

Pinellia pedatisecta  26 Li et al., 1997 

Pinellia peltata  78 Li et al., 1997 

Pinellia polyphylla  26 Yi et al., 2005 

Pinellia ternata  28, 42, 

54, 72, 

78 90, 

91, 99, 

104, 

108, 

115, 

116, 

Li et al., 1997; 

Cheng et al.; 1991  

Gu & Hsu, 1991  

Wang & Peng, 2000 

Marchant, 1971b 
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117, 

128 

Pinellia tripartita 26 26, 52 Petersen, 1989 

Pinellia yaoluopingensis  26 Li et al., 1997 

Piptospatha burbidgei  26 + Bs Okada, 2000 

Piptospatha elongata  26, 39 Okada, 2000 

Piptospatha insignis  26 Petersen, 1989 

Piptospatha perakensis  26 Petersen, 1989 

Piptospatha ridleyi  26 Petersen, 1989 

Piptospatha ridleyi  26 Petersen, 1989   

Piptospatha truncatum  26 Okada, 2000 

Pistia stratiotes 12 14, 28 Subramanian & Munian, 1988 

Petersen, 1989 

Podolasia stipitata  26 Petersen, 1993 

Pothoidium lobbianum  24 Petersen, 1989 

Pothos chapelieri  24 Marchant, 1973 

Pothos scandens 12 24, 36 Sarkar, 1991 

Petersen, 1989 

Pothos viridis  60 Sharma, 1970 

Protarum sechellarum  28 Petersen, 1989 

Pseudodracontium 

lacourii 

 26 Petersen, 1989  

Pseudodracontium 

siamense 

 26 Petersen, 1989 

Pseudohydrosme 

gabunensis 

 Ca. 40 Petersen, 1989 

Pycnospatha arietina  26 Petersen, 1989 

Pycnospatha arietina 

(soerensenii) 

 26 Marchant, 1973 

Pycnospatha palmata  26 Bogner & Petersen, 2007 

Remusatia hookeriana  28 Gu et al., 1992 

Remusatia ornata  42 Long et al., 1989 

Remusatia ornatus  30 Kuruvilla et al., 1989 

Remusatia pumila  20 Li & Hay, 1992 

Remusatia pumila 

(sarmentosus) 

 28 Sharma, 1970 

Remusatia pumilus  28 Petersen, 1989 

Remusatia vivipara  28, 42, 

56 

Li & Hay, 1992 

Marchant, 1971a 

Rhaphidophora beccarii  60 Okada, 2000 

Rhaphidophora bogneri  60 Petersen, 1989 

Rhaphidophora 

celatocaulis 

 56, 60 Petersen, 1989 

Marchant, 1970 

Rhaphidophora decursiva  26, 54, 

56 

Chaudhuri & Sharma, 1979 

Sarkar et al., 1976  

Petersen, 1989 

Rhaphidophora glauca  56 Chaudhuri & Sharma, 1979 

Rhaphidophora lancifolia  56 Sharma, 1970 

Rhaphidophora peepla  42, c. 

120 

Sharma, 1970 

Petersen, 1989 
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Rhaphidophora pteropoda  60 Petersen, 1989 

Rhodospatha blanda  56 + f Petersen, 1989 

Rhodospatha hastata  60 Petersen, 1989 

Rhodospatha picta  28 Petersen, 1989   

Sauromatum (Typhonium) 

diversifolium 

 52 Mehra & Sachdeva, 1976 

Sauromatum (Typhonium) 

giganteum  

 52 Petersen, 1989 

Sauromatum 

gaoligongense 

 26 Cusimano et al., 2010 

Sauromatum giganteum 

(Typhonium giraldii) 

 54 Petersen, 1989 

Sauromatum guttatum  26 Chaudhuri & Sharma, 1979 

Sauromatum hirsutum  26 Cusimano et al., 2010 

Sauromatum horsfieldii 

(Typhonium larsenii) 

 26 Petersen, 1989 

Sauromatum tentaculatum  26 Cusimano et al.,  2010 

Sauromatum venosum  26, 52, 

104 

Sarkar, A. K. 1991 

 

Scaphispatha gracilis  28 Petersen, 1989 

Schismatoglottis bulbifera  26 Okada, 2000 

Schismatoglottis 

calyptrata 

 26 Okada, 1982 

Schismatoglottis celebica  26 Okada, 2000 

Schismatoglottis erecta  26 Okada, 2000 

Schismatoglottis hayana  26 Bogner & Petersen, 2007 

Schismatoglottis 

homalomenoidea 

 26 Okada, 2000 

Schismatoglottis irrorata   52 + Bs Okada, 2000 

Schismatoglottis lancifolia  26 + 

Bs, 39 

+ Bs  

Okada, 2000 

Schismatoglottis 

multiflora 

 26 Okada, 2000 

Schismatoglottis 

parvifolia 

 26 Okada, 2000 

Schismatoglottis picta  30, 52  Sharma, 1970 

Petersen, 1989 

Schismatoglottis 

roseospatha 

 26 Petersen, 1989 

Schismatoglottis tecturata  52 Petersen, 1989 

Schismatoglottis triandra  26 Petersen, 1989 

Schismatoglottis wallichii  26 Petersen, 1989 

Schottariella mirifica  -- Not counted 

Scindapsus aureus  48 Subramanian & Munian, 1988 

Sharma, 1970 

Scindapsus hederaceus  64 Okada, 1982 

Scindapsus latifolius  58 Petersen, 1989 

Scindapsus lucens  60 Petersen, 1993 

Scindapsus megaphyllus  56 Huang et al., 1989  
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Scindapsus officinalis  56 Chaudhuri & Sharma, 1979 

Scindapsus perakensis  60 Petersen, 1989 

Scindapsus pictus  60, 70, 

112 

Sharma, 1970 

Petersen, 1989 

Spathantheum 

intermedium 

 34 Bogner, 1997 

Spathantheum 

orbignyanum 

 34 Petersen, 1993  

Spathicarpa sagittifolia 17 34 Petersen, 1989 

Spathiphyllum 

cannaefolium 

15 30 Jos & Rajendran, 1976 

Petersen, 1989 

Spathiphyllum 

cochlearispathum 

 30 Damerval, 1980 

Spathiphyllum 

commutatum 

 c. 30 Petersen, 1989 

Spathiphyllum 

floribundum 

30  30, 60 Petersen, 1989 

Spathiphyllum 

friedrichsthalii 

 30 Marchant, 1973 

Spathiphyllum 

grandifolium 

 30 Petersen, 1989 

Spathiphyllum 

harveyanum 

15 30 Petersen, 1989 

Spathiphyllum patinii 9 18, 30 Petersen, 1989 

Spathiphyllum wallisii  30 Petersen, 1989 

Spirodela intermedia  30 Landolt, 1986 

Spirodela polyrriza  30 Landolt, 1986 

Stenospermation 

popayanense 

 28 Petersen, 1989 

Stenospermation 

popayense 

 28 Marchant, 1970 

Stenospermation robustum  28 Petersen, 1989 

Stenospermation 

sodiroanum 

 28 Petersen, 1989 

Steudnera colocasiifolia  36 Sharma, 1970 

Steudnera colocasioides  28 Kuruvilla et al., 1989 

Steudnera discolor 16 56 Jos et al., 1971 

Petersen, 1989 

Steudnera henryana  28 Petersen, 1993 

Stylochaeton bogneri  56 Petersen, 1989   

Stylochaeton puberulus  28 Petersen, 1989 

Stylochaeton salaamicus  28 Petersen, 1989 

Stylochaeton zenkeri  56 Petersen, 1989  

Symplocarpus foetidus  60 Blair, A. 1975 

Symplocarpus renifolius  30, 60 Sokolovskaya & Probatova, 1985 

Petersen, 1989 

Synandrospadix 

vermitoxicus 

17 34 Petersen, 1989 

Syngonium albolineatum  22 Subramanian & Munian, 1988 

Syngonium auritum  24 Guha & Bhattacharya, 1987 
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Syngonium 

erythrophyllum 

 28 Petersen, 1989 

Syngonium hastifolium  28 Sharma, 1970 

Syngonium macrophyllum  24 Guha & Bhattacharya, 1987 

Syngonium podophyllum 12 24, 26 Guha & Bhattacharya, 1987; Petersen, 1989 

Syngonium steyermarkii  28 Petersen, 1989 

Syngonium vellozianum  26 Marchant, 1971b 

Syngonium wendlandii  24 Guha & Bhattacharya, 1987 

Taccarum weddellianum  34 Petersen, 1989 

Theriophonum dalzellii 8 16 Jayalakshmi, 1994 

Petersen, 1989 

Theriophonum indicum 8 16 Ramachandran, 1978 

Theriophonum infaustum  16 Ramachandran, 1978 

Theriophonum minutum 8 14, 16, 

24 

Ramachandran, 1978 

Subramanian & Munian, 1988 

Jayalakshmi, 1994 

Theriophonum 

sivaganganum 

 32 Jayalakshmi, 1994 

Typhonium baoshanense  10 Zhin-Lin et al., 2007 

Typhonium blumei  52 Wang &. Yang, 1996 

Typhonium bulbiferum  10 20 Ramachandran, 1978 

Petersen, 1989 

Typhonium flagelliforme 8 16 Petersen, 1989 

Typhonium flagelliforme 

(cuspidatum) 

8 16 Ramachandran, 1978 

Typhonium inopinatum 13 26 Petersen, 1989 

Typhonium jinpingense  10 Zhoglang et al., 2002 

Typhonium roxburghii  (26), 52 Petersen, 1989 

Typhonium roxburghii 

(divaricatum) 

26 16, 52, 

65 

Ramachandran, 1978 

Jos et al., 1971 

Typhonium trilobatum  18, 26, 

36 

Ramachandran, 1978 

Chaudhuri & Sharma, 1979 

Typhonodorum 

lindleyanum 

 112 Petersen, 1989 

Ulearum donburnsii  14 Bogner & Petersen, 2007 

Ulearum viridispadix  14 Petersen, 1989 

Urospatha sagittifolia  52 Petersen, 1989 

Wolffia angusta  40 Landolt, 1986 

Wolffia arrhiza  40 Landolt, 1986 

Wolffia australiana  20, 40 Landolt, 1986 

Wolffia borealis  40 Landolt, 1986 

Wolffia brasiliensis  40 Landolt, 1986 

Wolffia columbiana  40 Landolt, 1986 

Wolffia globosa  40 Landolt, 1986 

Wolffia microscopica  40 Landolt, 1986 

Wolffiela denticulata  20, 40 Landolt, 1986  

Wolffiela gladiata  40 Landolt, 1986 

Wolffiela hyalina  40 Landolt, 1986 

Wolffiela lingulata  20, 40 Landolt, 1986 

Wolffiela neotropica  40 Landolt, 1986 
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Wolffiela oblonga  40 Landolt, 1986 

Wolffiela welwitschii  40 Landolt, 1986 

Xanthosoma alrovirens  26 Marchant, 1971a 

Xanthosoma brasiliense  26 Petersen, 1989 

Xanthosoma 

helleborifolium 

 39 Petersen, 1989 

Xanthosoma mariae  26 Bogner & Petersen, 2007 

Xanthosoma nigrum  c. 26 Petersen, 1989   

Xanthosoma pentaphyllum  26 Petersen, 1989   

Xanthosoma plowmanii  26 Petersen, 1989   

Xanthosoma robustum 13  Petersen, 1989 

Xanthosoma sagittifolium  26 Udengwu & Okafor, 1999 

Xanthosoma striatipes  22 Petersen, 1993 

Xanthosoma violaceum  26 Udengwu & Okafor, 1999 

Zamioculcas zamiifolia 17 34 Petersen, 1989 

Zantedeschia aethiopica 16 32 Yao et al., 1994  

Petersen, 1989 

Zantedeschia albo-

maculata 

16 32 Petersen, 1989 

Zantedeschia elliottiana 16 32 Yao et al., 1994; Petersen, 1989 

Zantedeschia odorata  32 Yao et al., 1994  

Zantedeschia pentlandii  32 Yao et al., 1994  

Zantedeschia rehmannii 16 32 Yao et al., 1994; Petersen, 1989 

Zantedeschia tropicalis  32 Marchant, 1971a 

Zomicarpa pythonium  22 Petersen, 1989 

Zomicarpa riedelianum  20 Petersen, 1989  

Zomicarpella amazonica  26 Bogner, 1997 
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† Background and Aims Since the advent of molecular phylogenetics, numerous attempts have been made to infer the
evolutionary trajectories of chromosome numbers on DNA phylogenies. Ideally, such inferences should be evaluated
against cytogenetic data. Towards this goal, we carried out phylogenetic modelling of chromosome number change
and fluorescence in situ hybridization (FISH) in a medium sized genus of Araceae to elucidate if data from chromo-
somal markers would support maximum likelihood-inferred changes in chromosome numbers among close relatives.
Typhonium, the focal genus, includes species with 2n ¼ 65 and 2n ¼ 8, the lowest known count in the family.
† Methods A phylogeny from nuclear and plastid sequences (96 taxa, 4252 nucleotides) and counts for all included
species (15 of them first reported here) were used to model chromosome number evolution, assuming discrete events,
such as polyploidization and descending or ascending dysploidy, occurring at different rates. FISH with three probes
(5S rDNA, 45S rDNA and Arabidopsis-like telomeres) was performed on ten species with 2n ¼ 8 to 2n ¼ 24.
† Key Results The best-fitting models assume numerous past chromosome number reductions. Of the species ana-
lysed with FISH, the two with the lowest chromosome numbers contained interstitial telomeric signals (Its),
which together with the phylogeny and modelling indicates decreasing dysploidy as an explanation for the low
numbers. A model-inferred polyploidization in another species is matched by an increase in rDNA sites.
† Conclusions The combination of a denselysampled phylogeny, ancestral state modelling and FISH revealed that the
species with n ¼ 4 is highly derived, with the FISH data pointing to a Robertsonian fusion-like chromosome re-
arrangement in the ancestor of this species.

Key words: Ancestral trait reconstruction, 5S rDNA, 45S rDNA, telomeres, FISH, Bayesian inference, maximum
likelihood inference, aneuploid chromosome numbers, chromosome evolution, Typhonium, Araceae.

INTRODUCTION

Araceae are a large familyof monocotyledons (3300 species, 117
genera; Boyce and Croat, 2013) that are phylogenetically well
understood (Cusimano et al., 2011; Nauheimer et al., 2012).
Many of the species are in cultivation, and chromosome counts
are available for 862 species (26 % of the family), ranging
from 2n ¼ 10 to 2n ¼ 168 (Cusimano et al., 2012a: Supple-
mentary Data Table S1 provides species names and original
references). The family’s range of chromosome numbers, phylo-
genetic framework and often easy cultivation (i.e. access to root
tips) make Araceae suitable for bringing together modern
methods of cytogenetics and ancestral trait reconstruction to
advance our understanding of genome evolution and organiza-
tion. As a first step, we recently inferred chromosome evolution
using a genus-level phylogeny and maximum likelihood models
of chromosome number change (Cusimano et al., 2012a; model
details are given in the Materials and Methods). The results sug-
gested an ancestral haploid number of 16 or 18, rather than the
base numbers of x ¼ 7 (Larsen, 1969; Marchant, 1973) or x ¼14
(Peterssen, 1993) previously hypothesized without consider-
ation of phylogenetic relationships and probably overweighting
derived chromosome numbers because the early-branching
groups, such as Lemnoideae, which have relatively high chromo-
some numbers, were not yet included in Araceae. Other results

were a limited role for polyploidization and numerous reductions
of chromosome numbers.

Typhonium, a Southeast Asian clade of 50–60 species, has
already been the focus of studies in our lab treating its circum-
scription, natural geographic range and diversification rate
(Cusimano et al., 2010, 2012b). Prior to the present study,
chromosome counts were available for only 10 of its species
and ranged from 2n ¼ 10 (in Typhonium baoshanense and
T. jinpingense; Zhonglang et al., 2002; Zhin-Lin et al., 2007)
to 2n ¼ 65 [Typhonium roxburghii, Cusimano et al., 2012a;
Index to Plant Chromosome Numbers (IPCN) www.tropicos.
org/Project/IPCN]. For the present study, we added new chromo-
some counts for another 15 species of the genus. Typhonium is
embedded among genera with chromosome numbers based on
n ¼ 13 or 14 (Arisaema, Pinellia, Sauromatum, Biarum,
Helicodiceros, Dracunculus and Arum); only Theriophonum
has n ¼ 8. In our family-wide study, which included just one
species per genus, we inferred a reduction from an ancestral
number a ¼ 14–13 in this group (Cusimano et al., 2012a). We
here enlarge the phylogeny for Typhonium and its relatives and
use the new and published chromosome counts to understand
the chromosomal changes at a finer scale.

To achieve this, we selected ten species for fluorescence in situ
hybridization (FISH) experiments, chosen to represent the range
from 2n ¼ 24 to 2n ¼ 8, the lowest number in the family (newly
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reported in this study). By applying three probes, 5S rDNA, 45S
rDNA and an Arabidopsis-type telomeric probe – and with the
more densely sampled phylogeny with more counted species –
we hoped to test the previously inferred direction from higher
to lower numbers via chromosome ‘loss’ and to be able to infer
mechanisms behind numerical changes. Mechanisms detectable
with FISH are structural changes associated with primary
chromosome rearrangements (insertions, deletions, duplica-
tions, reciprocal translocations and sequence amplification) or
secondary chromosome rearrangements (replication slipping)
(Schubert, 2007). Recent examples of such inferences based on
FISH come from Hypochaeris and Nothoscordum arenarium
(Weiss-Schneeweiss et al., 2008; Souza et al., 2009). FISH can
also help detect recent polyploidization, i.e. duplication of an
organism’s entire set of chromosomes, or dysploidy, i.e. an in-
crease or decrease in chromosome number related to chromo-
some rearrangements, especially when used in a phylogenetic
framework. For instance, the number of 5S rDNA and 45S
rDNA sites sometimes doubles with polyploidization (Ansari
et al., 2008; Weiss-Schneeweiss et al., 2008; Souza et al.,
2010). Similarly, decreasing dysploidy inferred from a phyl-
ogeny would be supported by the discovery of interstitial telo-
meric signals. Such signals are sometimes found following
fusion–fission cycles, and with probes homologous to plant telo-
meric repeats they can be visualized (Schubert, 1992; Fuchs
et al., 1995). Since several mechanisms can lead to interstitial
telomere signals, a careful consideration of the specific karyo-
type(s) being analysed is always required, but in principle the dis-
tribution of telomeric signals can suggest chromosome loss by
fusion.

MATERIALS AND METHODS

Sampling of taxa and molecular markers

We sampled the 96 species and subspecies of Areae tribe plus
outgroups listed in Supplementary Data Table S1, which also
provides information on vouchers, DNA loci sequenced and
GenBank accession numbers. Seventy-nine sequences were
newly generated for this study. The taxon sample covers
all but one genus of the Areae [Arum, Biarum, Dracunculus,
Helicodiceros, Australian Typhonium (¼ Lazarum), Sauromatum,
Theriophonum and Typhonium]. Only Eminium is not included
due to lack of chromosome counts. As outgroups, we used a
species of Alocasia, 24 of Arisaema (one with two accessions)
and five of Pinellia. Only species with known chromosome
numbers are included. Typhonium itself is represented by 22 of
its 50–60 species (one species is represented by two accessions).

To infer phylogenetic relationships, we relied on part of the
nuclear phytochrome C gene (PhyC) and two chloroplast loci,
the rpl20–rps12 intergenic spacer and part of the lysine tRNA
gene (trnK), which contains the maturase K intron (matK).
Total DNA from silica-dried leaves was extracted with the
NucleoSpin Plant II kit according to the manufacturer’s protocol
(Macherey-Nagel, Düren, Germany). Amplification and sequen-
cing were performed using the primers described in Cusimano
et al. (2010). Polymerase chain reactions were performed using
1.25 U of Taq DNA polymerase (New England Biolabs
GmbH, Frankfurt am Main, Germany) and the following cycle
conditions: the initial step of 3 min at 94 8C was followed by

39 cycles of 94 8C for 30 s for DNA denaturation, 54 8C for
60 s for primer annealing, 68 8C for 90 s for primer extension
and 68 8C for 10 min after the final cycle. The PCR products
were purified with Exo I and FastAP (Fermentas, St Leon-Rot,
Germany). Sequencing was done on an ABI 3130-4 capillary se-
quencer, and sequences were assembled and edited with
Sequencher 4.2 (Gene Codes Cooperation, Ann Arbor, MI,
USA). All contigs were BLAST-searched in GenBank, which
for nuclear sequences provides a check against fungal contamin-
ation and for plastid sequences a check against DNA from leaf
epiphytes.

Phylogenetic analyses

Alignments were generated in MAFFT (http://mafft.cbrc.jp/
alignment/server/) and checked visually using MEGA5
(Tamura et al., 2011). To remove poorly aligned positions,
single alignments were exported to a server running Gblocks
vs. 0.91b (http://molevol.cmima.csic.es/castresana/Gblocks_
server.html) with the less stringent options selected
(Castresana, 2000). The plastid and nuclear data were first ana-
lysed separately and, in the absence of statistically supported
topological contradictions (.80 %), they were combined. The
combined matrix (4252 aligned nucleotides) was used for
maximum likelihood (ML) tree searches in RAxML
(Stamatakis, 2006; Stamatakis et al., 2008), using the GTR +
G substitution model with four rate categories. Bootstrapping
under ML used 1000 replicates. We also generated ultrametric
trees in BEAST v. 1.7.5 (Drummond and Rambaut, 2007),
using the same substitution model and a pure-birth Yule model
as the tree prior. The analysis was run for 10 million generations,
sampling every 1000th step. The burn-in fraction, i.e. the number
of trees to be discarded from the consensus tree (the maximum
clade credibility tree), was assessed using Tracer v. 1.4.1,
which is part of the BEAST package.

Inference of chromosome number change

To infer ancestral haploid chromosome numbers, we relied on
ChromEvol v. 1.3 of Mayrose et al. (2010). This lets users chose
among eight models of chromosome number change that have
the following six parameters: polyploidization (chromosome
number duplication) with rate r, demi-polyploidization (poly-
ploids derived from the fusion of gametes with different ploidy
levels) with ratem, and dysploidization (ascending, chromosome
gain rate l; descending, chromosome loss rate d) as well as two
linear rate parameters, l1 and d1, for the dysploidization rates l
andd, allowing them to depend on the current numberof chromo-
somes. Four of the models have a constant rate, whereas the other
four include the two linear rate parameters. Both model sets also
have a null model that assumes no polyploidization events. We
fitted all models to the data, using either an ML phylogram or
an ultrametric BEAST maximum clade probability tree, in
each case with 10 000 simulated repetitions to compute the
expected number of changes of the four transition types along
each branch of the phylogeny. The maximum number of chromo-
somes was set to 10-fold higher than the highest number found in
the empirical data, and the minimum number was set to 1. The
root nodewas fixed to a ¼ 14, based on our previous family-wide
analysis (Cusimano et al., 2012a).
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Model fit was assessed using the Akaike information criterion
(AIC). Mayrose et al. (2010) have shown that accurate recon-
structions of ancestral chromosome numbers and events are
only obtained from trees with intermediate evolutionary dis-
tances. We therefore adjusted the phylogram and ultrametric
tree such that both had a total length of 0.2, which could be
achieved by multiplying all branch lengths by suitable factors.
Results were plotted in R using the ChromEvol functions
version 0.9-1 of N. Cusimano (http://www.sysbot.biologie.uni-
muenchen.de/en/people/cusimano/use_r.html).

Chromosome preparation, FISH analyses,
DNA probes and C-banding

Bulbs of Typhonium were cultivated in the greenhouses of the
Munich Botanical Garden, and, for most, plenty of root tips were
available although usually only from a single individual. They
originally came from W. Hetterscheid’s taxonomic studies on
Typhonium (Hetterscheid and Boyce, 2000; Hetterscheid and
Nguyen, 2001; Hetterscheid et al., 2001; Hetterscheid and
Galloway, 2006; Hetterscheid, 2013). The chromosomes of 15
species (single individuals) were newly counted, namely
T. circinnatum, T. corrugatum, T. echinulatum, T. filiforme,
T. gallowayi, T. huense, T. laoticum, T. spec. H.AR. 664 (morpho-
logically similar to T. laoticum, but clearly a separate species
based on the molecular results), T. orbifolium, T. saraburiense,
T. stigmatilobatum, T. tubispathum, T. violifolium, Typhonium
spec. 17 Thailand, and T. trilobatum. Authors of species
names and voucher material for each species are given in
Supplementary Data Table S1.

Root tips were pre-treated in 2 mM 8-hydroxyquinoline for
20 h at 4 8C, fixed in freshly prepared 3:1 (v/v) ethanol/glacial
acetic acid at room temperature overnight and kept at –20 8C.
For chromosome preparations, fixed root tips were washed
three times for 5 min in distilled water, digested with 1 % cellu-
lase (w/v; Onozuka RS, Serva), 0.4 % pectolyase (w/v; Sigma),
0.4 % cytohelicase (w/v; Sigma) in citric buffer, pH 4.8 for
30 min at 37 8C, dissected in a drop of 45 % acetic acid and
squashed. Coverslips were removed after freezing in dry ice,
and preparations were air-dried at room temperature. The
quality of spreads was checked microscopically using phase
contrast, and only preparations with at least ten well-spread
metaphases were used for FISH. For T. filiforme, T. gallowayi,
T. orbifolium, T. tubispathum and Typhonium spec. 17 Thailand,
only a few cells per species (1–5) were counted. Pictures were
taken using 4’,6-diamidino-2-phenylindole (DAPI) staining
(T. spec. 17 Thailand) and without staining using a phase contrast
microscope.

We performed FISH with a telomeric probe, and 5S rDNA and
45S rDNA probes; the telomeric probe was not used on
T. violifolium because of a shortage of suitable material.
To locate rDNAs, we used the 18S–5.8S–25S rDNA repeat
unit of Arabidopsis thaliana in the pBSK+ plasmid, labelled
with digoxigenin-11-dUTP (Roche) by nick translation, and a
349 bp fragment of the 5S rRNA gene repeated unit from Beta
vulgaris cloned into pBSK+ (Schmidt et al., 1994), labelled
with biotin-16-dUTP (Roche) by PCR. The Arabidopsis-like
telomeric probe was amplified by PCR according to Ijdo et al.
(1991) using the oligomer primers (5′-TTTAGGG-3′)5 and
(5′-CCCTAAA-3′)5, and labelled with digoxigenin-11-dUTP T
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by nick translation. Hybridization mixes consisted of 50 %
formamide (w/v), 2× SSC, 10 % dextran sulfate (w/v) and
70–200 ng of labelled probe. The hybridization mix was dena-
tured at 75 8C for 10 min and immediately cooled on ice for
10 min; 10–15 mL of the mix was then added to each slide.
Hybridization was carried out in a humid chamber at 37 8C for
20 h. The 5S rDNA was detected with streptavidin–Cy3 conju-
gate (Sigma), and the 45S rDNA with anti-digoxigenin–fluores-
cein isothiocyanate (FITC) conjugate (Roche) at 37 8C for 1 h.
The chromosomes were counterstained with DAPI (2 mg
mL21) and mounted in Vectashield (Vector). Slides first ana-
lysed with telomeric and 5S rDNA probes were de-stained, and
a second hybridization was performed with 45S rDNA to
obtain a sequential staining with both markers in a single cell.
For more details, see Sousa et al. (2013).

To study a supernumerary chromosome discovered in
T. trilobatum, we performed C-banding and FISH using the
nuclear ribosomal internal transcribed spacer 2 (ITS2) of this
species. The ITS2 of T. trilobatum was amplified by PCR using
primers ITS3 and ITS4 (White et al., 1990). The resulting
DNA fragment (KC478077) was cloned into the pGEM-T
Easy plasmid (Promega, Mannheim, Germany), sequenced
and PCR-labelled with biotin-16-dUTP (Roche). Procedures
for chromosome preparation, post-hybridization washes and
C-banding follow Sousa et al. (2013).

Images were taken with a Leica DMR microscope equipped
with a KAPPA-CCD camera and the KAPPA software. They
were optimized for optimum contrast and brightness using
Adobe Photoshop CS3 version 10.0.

RESULTS

New chromosome counts for 15 Typhonium species

The new chromosome counts for 15 Typhonium species range
from 2n ¼ 8, the lowest number reported so far for the Araceae
family, to 2n ¼ 24 (Table 2). Of the 15 species, five displayed
odd chromosome numbers. Prior to our study, an aneuploid

number, namely 2n ¼ 65, had only been reported for
T. roxburghii (as T. divaricatum) (Ramachandran, 1978), but in
other genera, such as Amorphophallus, Anthurium, Apoballis,
Arisaema, Arum, Caladium, Pinellia and Schismatoglottis, an-
euploidy is well documented (Cusimano et al., 2012a). For
Anthurium and Schismatoglottis, the aneuploid numbers have
been discussed as possible B chromosomes (Cusimano et al.,
2012a).

Ancestral state reconstructions for Typhonium
chromosome numbers

The combined matrix of nuclear and chloroplast markers (96
species and subspecies, 22 of them Typhonium; 4252 nucleo-
tides) yielded a well-supported phylogeny (Fig. 1). We then
used either the ML phylogram or an ultrametric tree (see the
Materials and Methods), and chromosome counts for all 96
accessions, to model chromosome evolution, fitting all models
implemented in the ChromEvol program and comparing their
likelihood using AIC scores. A reconstruction on an ultrametric
tree is shown in Fig. 1 and a reconstruction on a phylogram is
shown in Supplementary Data Fig. S1. The statistical support
for both is shown in Supplementary Data Figs S2 and S3. The
best-fitting models differ slightly, depending on the tree’s
overall branch lengths, which is their only difference, and is
shorter in the phylogram than in the ultrametric tree (phylogram
2.1 vs. ultrametric tree 3.5; Table 1). On the phylogram, the
four-parameter-constant-rate model, which assumes constant
gain and loss rates and a polyploidization rate that differs from
the demi-polyploidization rate, best explained the empirical
numbers at the tips of the tree (AIC ¼ 666.2). On the ultrametric
tree, the six-parameter-linear-rate model, which includes add-
itional parameters for the gain and loss rates (making them lin-
early dependent on the current chromosome number), best
explained the empirical data (AIC ¼ 536.5). The inferred rates
of change and numbers of events on the two trees are summarized
in Table 1.

TABLE 2. Typhonium species investigated with their chromosome number, presence of interstitial telomeric signals (Its) and
distribution of 5S and 45S rDNA sites

Species 2n Its No. 5S rDNA No. 45S rDNA

Typhonium circinnatum 24 – 1 Sub-terminal 8 Interstitial/terminal
T. violifolium 22 – 1 Sub-terminal 2 Terminal
T. corrugatum 20 – 1 Interstitial 2 Terminal
T. trilobatum 19 – 1 Sub-terminal 2 Terminal
T. saraburiense 18 – 1 Sub-terminal 2 Terminal
T. echinulatum 18 – 1 Sub-terminal 2 Terminal
T. huense 15 – 1 Interstitial 2 Terminal
T. stigmatilobatum 15 – 1 Interstitial 2 Terminal
T. laoticum 9 2 1 Proximal 1 Terminal
T. spec. H.AR. 664 8 5 1 Interstitial 2 Terminal
T. filiforme* 12 – – – – –
T. gallowayi* 20 – – – – –
T. orbifolium* 12 – – – – –
T. spec. 17 Thailand* 19 – – – – –
T. tubispathum* 10 – – – – –

Authors of species names and voucher information are given in Supplementary Data Table S1.
An asterisk marks species for which only chromosome counts were obtained.
Atypical numbers of 45S rDNA sites (five instead of four) are shown in bold.

Sousa et al. — Combining FISH and chromosome modelling in Typhonium672

 at W
ashington U

niversity in St. L
ouis on February 27, 2014

http://aob.oxfordjournals.org/
D

ow
nloaded from

 

http://aob.oxfordjournals.org/lookup/suppl/doi:10.1093/aob/mct302/-/DC1
http://aob.oxfordjournals.org/lookup/suppl/doi:10.1093/aob/mct302/-/DC1
http://aob.oxfordjournals.org/lookup/suppl/doi:10.1093/aob/mct302/-/DC1
http://aob.oxfordjournals.org/
http://aob.oxfordjournals.org/


Alocasia macrorrhizos-14

13

0·80·8

11
1·5

1

1

1·1

1

3·9

1·30·8

1·40·6

1·50·9

0·6

0·70·7
1·2

0·50·9

1·4

0·6

1·5

0·8

0·5

11

11

2

1

1

2

1

1

0·6

0·6

*

*

1

1
1

1

1·1

0·7

0·60·61·9

0·6

0·9

0·8
1·9

1

0·5

0·5

0·5

1

1

1

14

14

14

14

14

10

9

14

13

13

13
13

13

13

n  = 

4
5
6
7
8
9
10
11
12
13
14
16
26
28
37
39
42
48
52
54

Events inferred with an exp. > 0·5: 76

Chromosome gains : 6·5

Areae
tribe

Chromosome losses : 31·1
Duplications : 33·4
Demiduplications : 5

13
13

13

12
12

12
914

14
14

14 14

14

14

14
14

14

14

14 14

14
14

14

14
14

14

14
14

14

28

14

14

14

14
14

14

14
14

14

14

14
14

14

14

14

14
14

14

14

14
14

14

14

8

7

7

7

6

5

9

5

10

13
7

7
7

6

6

6
5

5
6

6

8

6

6

13

13
13

Pinellia pedatisecta-13
Pinellia peltata-39
Pinellia ternata-39 = 0·5 52 = 0·5
Pinellia tripartita-13 = 0·5 26 = 0·5
Pinellia cordata-13 = 0·5 39 = 0·5
Arisaema nepenthoides-13
Arisaema speciosum-14
Arisaema costatum-10
Arisaema erubescens-14 = 0·5 28 = 0·5
Arisaema concinnum-14
Arisaema franchetianum-28

Arisaema clavatum-28
Arisaema macrospathum-14
Arisaema filiforme-14
Arisaema balansae-14
Arisaema jacquemontii-26
Arisaema murrayi-28
Arisaema tortuosum-14 = 0·5 28 = 0·5
Arisaema flavum subsp flavum-28
Arisaema flavum-28
Arisaema flavum subsp tibeticum-14
Arisaema heterophyllum-14
Arisaema ilanense-14
Arisaema negishii-14
Arisaema dracontium-28
Arisaema serratum-13 = 0·5 14 = 0·5
Arisaema amurense-28
Arisaema ringens-14
Arisaema triphyllum-14 = 0·5 28 = 0·5
Arisaema rhizomatum-14

Typhonium violifolium-11

Typhonium saraburiense-9

Typhonium trilobatum-9 = 0·5 18 = 0·5

Typhonium circinnatum-12

Typhonium corrugatum-10
Typhonium huense-7

Typhonium echinulatum-9
Typhonium laoticum Gagnep-4

Typhonium spec HAR 664-4

Typhonium stigmatilobatum-7

Typhonium filiforme-6
Typhonium spec 17 Thailand-9

Typhonium tubispathum-5

Typhonium gallowayi-10
Typhonium orbifolium-6

Typhonium flagelliforme-8 = 0·5 16 = 0·5

Typhonium baoshanense-5
Typhonium jinpingense-5

Typhonium bulbiferum-10
Typhonium blumei-26

Typhonium roxburghii HAR 026-13 = 0·5 26 = 0·5
Typhonium roxburghii HAR 076-13 = 0·5 26 = 0·5
Typhonium sp nov Vietnam-12

Theriophonum infaustum-8
Theriophonum dalzellii-8
Sauromatum giganteum-26
Sauromatum hirsutum-13
Sauromatum tentaculatum-13
Sauromatum venosum-13 = 0·5 26 = 0·5
Sauromatum diversifolium-26
Sauromatum horsfieldii-13
Sauromatum gaoligongense-13
Biarum ditschianum-13
Biarum davisii-13
Biarum pyrami-54
Biarum bovei-37
Biarum kotschyi-48
Biarum carduchorum-12
Biarum dispar-37
Biarum tenuifolium-8 = 0·5 9 = 0·5
Helicodiceros muscivorus-28
Dracunculus vulgaris-14
Dracunculus canariensis-14
Arum pictum-14
Arum sintenisii-14
Arum hygrophilum-14
Arum dioscoridis-14
Arum concinnatum-42
Arum palaestinum-14
Arum rupicola-14
Arum creticum-14
Arum cylindraceum-14
Arum maculatum-28
Arum cyrenaicum-28
Arum apulum-28
Arum euxinum-14
Arum purpureospathum-28
Arum idaeum-14
Arum byzantinum-14
Arum korolkowii-14
Arum italicum-42
Arum orientale-14
Arum nigrum-14
Arum elongatum-14

Arisaema formosanum-14 = 0·5 28 = 0·5

141

1

111

FI G. 1. Chromosome number reconstruction for the Areae on an ultrametric tree, rooted on Alocasia macrorrhizos. Pie charts represent the probabilities of inferred
numbers, with the number inside a pie having the highest probability. Numbers above branches are colour coded by event type (gains, losses, duplications and demi-
duplication) as shown in the rectangular inset, and represent the frequency with which an event type(s) with a probability .0.5 occurred along a branch. The colour
coding of chromosome numbers is explained in the elongate inset on the left. Problematic inferences on the backbone are marked with an asterisk. Species investigated

by FISH are labelled in red; species with only chromosome counts are labelled in blue.
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The inferred chromosome gains, losses, duplication (poly-
ploidization) and demi-duplications are shown in the insets in
the lower left of Fig. 1, and Supplementary Data Figs S1 and
S3. The number of events with an expectation .0.5 is similar
on the phylogram and the ultrametric tree (80.6 vs. 76;
Table 1). The predominant events were chromosome losses
and duplications (31.1 vs. 33.4 on the ultrametric tree), with
the number of inferred losses being slightly higher on the phylo-
gram (38.3). There are few inferred chromosome gains (phylo-
gram 2.5; ultrametric tree 6.5) and demi-duplications
(phylogram 8.9; ultrametric tree 5).

Inferred ancestral haploid chromosome numbers, which we
refer to as a, are shown in the pie diagrams at the nodes of the
trees. They were similar on the phylogram and ultrametric tree,
with a few exceptions, mostly at deeper internal nodes where
inferences had low statistical support [posterior probability
(PP) ,0.4; see legend in Fig. 1 and Supplementary Data Fig.
S1]. Inference on the backbone was problematic for two nodes
(marked with an asterisk in Fig. 1 and Supplementary Data
Fig. S1) involving Typhonium, and Theriophonum for which
an ancestral number of a ¼ 8 has been inferred. These genera
are embedded in clades with a ¼ 14, which results in an inferred
(but not statistically supported) decrease from a ¼ 14 via 10 and
9, back to 14. Along the Typhonium backbone, the inferred an-
cestral haploid numbers decrease from a ¼ 8 to 7, 6 and 5,
with different states inferred for nodes in the T. saraburiense/
T. bulbiferum clade on the phylogram and ultrametric tree
(Fig. 1; Supplementary Data Fig. S1): on the ultrametric tree
the inferred ancestral number for this clade is a ¼ 6 (5) with
the higher numbers (n ¼ 9, 10) deriving from polyploidization
events, and n ¼ 5 in T. baoshanense and T. jingpigense being
the ancestral condition. On the phylogram, the ancestral
number is inferred as a ¼ 10, with n ¼ 5 the consequence of
several chromosome losses. On both trees, other higher
numbers, such as n ¼ 12 in T. circinnatum, n ¼ 13 in
T. roxburghii and n ¼ 26 in T. blumei, are inferred as resulting
from polyploidization, while low numbers, such as n ¼ 4 in T.
spec. H.AR. 664 and in T. laoticum, are inferred as resulting
from chromosome losses (descending dysploidy). Compared
with the remaining Areae and the clade’s outgroups,
Typhonium has a low ancestral number (a ¼ 8 or 7).

Molecular cytogenetic results

Observed chromosome numbers of the ten FISH-investigated
species of Typhonium range from 2n ¼ 8 to 2n ¼ 24 (Table 2).
They all have only one 5S rDNA site, with its distribution
varying between species. In four species it was located intersti-
tially, in five sub-terminally and in T. laoticum it had a proximal
position (Figs 2 and 3B, E, H, K, N; Table 2). Most species had
two 45S rDNA sites, predominantly distributed in terminal
regions (Figs 2F, I, L, O and 3C, O). Typhonium laoticum
(2n ¼ 9) had a single 45S rDNA site, localized terminally on a
chromosome pair (Fig. 3L), and T. circinnatum (2n ¼ 24) had
eight 45S rDNA sites located interstitially and/or terminally in
eight chromosome pairs (Fig. 2C). Typhonium huense and
T. stigmatilobatum, both with 2n ¼ 15, each had two 45S
rDNA sites with an unusual number of signals (five; Fig. 3F, I;
Table 2). The 5S and 45S rDNA sites were distributed on differ-
ent chromosomes, with the exception of T. circinnatum,

T. huense and T. stigmatilobatum (Figs 2B, C and 3E, F, H, I).
rDNA satellites were seen in most cells (Figs 2L, O and 3F, L,
O). For species on which no FISH experiments were performed,
pictures of mitotic metaphases are provided in Supplementary
Data Fig. S4.

Telomeric signals were localized at chromosome ends in all
species. Typhonium laoticum in addition had two Its on its
largest chromosome pair (Fig. 3J), and Typhonium spec. H.AR.
664 (2n ¼ 8) had five Its positioned close to terminal regions
on five chromosomes (Fig. 3M).

One small chromosome of the aneuploid species T. trilobatum
(Fig. 2L, white arrowhead) yielded a diffuse rDNA signal, so we
undertook additional experiments to find out the heterochroma-
tin composition of this chromosome and if the diffuse 45S rDNA
signal might be related to the amplification of one of its internal
transcribed spacers. Similar experiments have been performed in
plant species with B chromosomes (Dhar et al., 2002; Marschner
et al., 2007). With C-banding (Fig. 4A, B), one chromosome was
labelled along its length and was thus heterochromatic (Fig. 4B),
while other chromosomes were labelled in sub-terminal or ter-
minal regions. A T. trilobatum-specific ITS2 probe revealed
only four signals (Fig. 4D) distributed in sub-terminal/terminal
regions of a large and medium chromosome pairs. These sites
represent the two rDNA sites seen in Fig. 2L.

DISCUSSION

Phylogenetic modelling of chromosome number change

With the current sampling of Typhonium (22 of its 50–60 species
are included in our phylogeny) it appears that low chromosome
numbers evolved twice, once in T. baoshanense and
T. jinpingense, both with 2n ¼ 10 (Zhonglang et al., 2002;
Zhin-Lin et al., 2007) and embedded among species with 2n ¼
18–20, and again in T. tubispathum (2n ¼ 10), T. laoticum
(2n ¼ 9) and T. spec. H.AR. 664 (2n ¼ 8), which are embedded
among species with 2n ¼ 12, 18 or 20. We believe that this infer-
ence is reliable because the tree is robust (nuclear and plastid
regions were used; relevant nodes have good statistical
support), and the key finding of a high dysploidy rate is insensi-
tive to whether the inferences were made on a phylogram or on an
ultrametric tree. How exactly branch lengths influence chromo-
some number reconstruction is currently not understood, and it
is advisable to carry out maximum likelihood runs on both
types of trees and then to trust those findings supported by both
sets of reconstructions (Cusimano and Renner, 2014). Clearly,
all character state reconstruction also stands and falls with
dense species sampling and reliable counts for the included
species. Regarding species sampling and chromosome counts
in Typhonium, we have data for only about half the species in
the genus. If the missing species had generally higher
numbers, the inferred ancestral number in Typhonium might in-
crease. However, the conclusion of at least two independent dys-
ploidy events will not change by an improved sampling.

The main purpose of placing chromosome numbers in a phylo-
genetic context is to infer the likely direction of change, from
high to low numbers or the other way around. While this is diffi-
cult to achieve, having an evolutionary framework is essential.
Only cytogenetic methods, however, can then lead to an under-
standing of the mechanisms behind any inferred changes, and
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A B C

D E F

G H I

J K L

M N O

TELOMERES 5S rDNA 45S rDNA

FI G. 2. Detection of telomeric signals, 5S and 45S rDNA sites in chromosomes of (A–C) Typhonium circinnatum (2n ¼ 24), (D–F) T. violifolium (2n ¼ 22), (G–I)
T. corrugatum (2n ¼ 20), (J–L) T. trilobatum (2n ¼ 19) and (M–O) T. saraburiense (2n ¼ 18) by FISH. Red arrowheads indicate the position of 5S rDNA sites in all
cells, whereas white arrowheads in B and C indicate a chromosome pair with both rDNA sites, and in L a chromosome exhibiting a dispersed 45S rDNA signal. Insets in
C show a chromosome with a weak 45S rDNA treated with a differential brightness/contrast, and in L a fifth diffuse 45S rDNA signal that overlaps the supernumerary

chromosome. Scale bars ¼ 5 mm.
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TELOMERES 5S rDNA 45S rDNA

FI G. 3. Detection of telomeric signals, 5S and 45S rDNA sites in chromosomes of (A–C) Typhonium echinulatum (2n ¼ 18), (D–F) T. huense (2n ¼ 15), (G–I)
T. stigmatilobatum (2n ¼ 15), (J–L) T. laoticum (2n ¼ 9) and (M–O) T. spec. H.AR. 664 (2n ¼ 8) by FISH. Red arrowheads indicate the position of 5S rDNA
sites in all cells, while green arrowheads in F and I indicate a fifth 45S rDNA signal and in J and M interstitial telomeric signals. Insets in I show chromosome with
a weak 45S rDNA signal treated with a differential brightness/contrast, and in J and M display chromosomes with the telomeric probe, without the overlapping

with DAPI. Scale bars ¼ 5 mm.
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full genome sequencing is required for detailed synteny. In this
study, we brought together several of these approaches, using
the same plant accessions, because we were initially critical of
the high rate of chromosome ‘loss’ (decreasing dysploidy) in-
ferred by the modelling approach.

Testing some of the inferred events with FISH

The FISH experiments, which to our knowledge are the first in
the Araceae, revealed Its in the two Typhonium species with the
lowest chromosome numbers, T. laoticum and T. spec. H.AR.
664. The ancestral state reconstructions (Fig. 1; Supplementary
DataFig.S1) for thesespecies suggestednumber reductionbydes-
cending dysploidy. In other species with relatively low numbers,
such as T. stigmatilobatum and T. huense, no dysploidy was in-
ferred and no Its were detected. The cytogenetic evidence of Its,
low chromosome numbers (incidentally including the lowest in
the family) and aneuploid number series in combination suggests
that dysploidy is an important mechanism in Typhonium. The con-
sequences of dysploidy may include karyotype asymmetry and
possibly also B chromosomes (Raskina et al., 2008). Aneuploid
numbers probably originate through meiotic irregularities
leading to the formation of aneuploid gametes. Our Typhonium
bulbs had been maintained in cultivation for several years, and,
for each species, we had only one or a few individuals available
for counting. Thus, the aneuploid chromosome numbers reported
here may not represent the natural condition. It is also possible that
some of the species are polyploids, suffering meiotic irregular-
ities. So far, polyploidy had only been inferred for T. trilobatum
and T. roxburghii (Cusimano et al., 2012a; Supplementary Data
Table S1), and we newly inferred it for T. circinnatum (see below).

How trustworthy are Its as indicators of evolutionary chro-
mosome rearrangements (fusions) in Typhonium? Normally,
telomeres protect chromosomes from end to end fusion
(Slijepcevic, 1998), and their (rare) location in interstitial
chromosome regions revealed in FISH studies is therefore inter-
esting. Supplementary Data Fig. S5 illustrates the explanations
proposed so far. Interstitial telomere signals have been related
to paracentric or pericentric inversions, processes that do not
imply a reduction in chromosome number (Supplementary
Data Fig. S5a modified from Schubert, 2007). Another explan-
ation for them is chromosome fusion by symmetrical reciprocal
translocation involving the centromere (Supplementary Data
Fig. S5b modified from Schubert and Lysak, 2011). This gives
rise to a single chromosome and a small fragment composed
mainly of the centromere of one chromosome and short rests of
both previous chromosomes and their telomeres. Such short frag-
ments will be eliminated from the cell unless they carry essential
genes. A third mechanism, called a fusion–fission cycle or
Robertsonian rearrangement, involves a reciprocal translocation
with breakpoints within the telomeric arrays of two telocentric
chromosomes. This preserves both chromosomes’ centromeres
and telomere sequences although one of the centromeres and
the interstitial telomeric sequences must be inactive (Schubert
and Lysak, 2011; Supplementary Data Fig. S5c). A large dicen-
tric chromosome with/without Its may result, which can then
break again and form two viable telocentric chromosomes
(after formation of new telomeres). In plants, fusion–fission
cycles have been documented in Vicia faba (Schubert et al.,
1995; Fuchs et al., 1995: fig. 1). In T. laoticum and T. spec.
H.AR. 664, however, we observed onlyone primary constriction,
not two, which does not fit with a classical Robertsonian
rearrangement.

A B

C D

FI G. 4. Karyograms of Typhonium trilobatum (2n ¼ 19). (A) Metaphase before and in (B) after C-banding. The heterochromatin is restricted mainly to sub-terminal/
terminal regions of chromosomes, but only one chromosome (white arrowhead) was completely labelled and thus is heterochromatic. (C) Metaphase stained only with
DAPI, and in (D) four signals visible after application of the T. trilobatum ITS2 probe. These signals correspond to the two sites of 45S rDNA. Scale bars ¼ 5 mm.
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To explain the Its localized in the proximal region of the largest
chromosome pair of T. laoticum, we now propose a new explan-
ation (Fig. 5). It assumes a reciprocal translocation between two
acrocentric chromosomes, with one chromosome having breaks
in its telomere sequence array and the other having breaks close
to the centromeric region of its long arm. The product of this trans-
location would be a submetacentric chromosome with a weakly
detectible Its, no longer functional,plusasmallchromosomecom-
prising only part of the telomere sequence from one donor and the
entire short armandcentromere of theother donor.Alternatively, a
metacentric chromosome would be formed plus a small DNA
fragment composed by only part of a telomere sequence from
one donor and a centromere and complete telomere sequence
array from the other donor (Fig. 5). We never found such small
chromosomes, but the co-localization of Its with rDNA is suggest-
ive. The presence of two Its in the proximal region of a large
chromosome in Sideritis montana (2n ¼ 16) has also been inter-
preted as indicating centric fusion and adduced to explain des-
cending dysploidy (Raskina et al., 2008).

To explain the Its close to the terminal regions of five chromo-
somes in Typhonium spec. H.AR. 664, we assume a mechanism
similar to what has been suggested for Pinus (Schmidt et al.,

2000). Telomere-like repeats are highlyamplified in Pinus elliot-
tii and not restricted to the ends of chromosomes; instead they
form large intercalary and pericentric blocks, attributed to
random short sequence arrays, perhaps extended by slippage rep-
lication, insertion of extrachromosomal linear DNA fragments,
or inversions (Biessmann and Mason, 1992). Meiotic studies
would further clarify the pathways by which T. spec. H.AR.
664 (and also T. laoticum) acquired their low chromosome
numbers. For example, a chromosome ring, as seen in
Eleocharis subarticulata in meiosis I (Da Silva et al., 2005),
would point to multiple translocations having played a role in
the reduction of chromosome number.

Polyploidy in T. circinnatum, loss of a chromosome pair in
T. laoticum and an rDNA cluster jump or amplification in
T. huense, T. stigmatilobatum and T. circinnatum

The 45S rDNA sites in Typhonium are stable in number and
position (Table 2). Eight of the ten investigated species have
two 45S rDNA sites, although T. huense and T. stigmatilobatum
showed five instead of four signals at the two sites. Only
T. laoticum has one site and T. circinnatum has eight rDNA

Only part of telomere is involved in the reciprocal
translocation. A small fragment of telomere sequences,
probably inactive, can be detected in the pericentric
region of the newly formed monocentric chromosome

Robertsonian rearrangement-like fusions in Typhonium laoticum

Reciprocal translocations between
two acrocentric chromosomes

Reciprocal translocations between
two telocentric chromosomes

??

Key

Telomere

Centromere

Inactivated

(Loss)

(Reversible)

(Breakpoint)
(Insertion point)

Dicentric
chromosome

(one centromere
inactivated)

de novo formation

p

pq
q

q

FI G. 5. Mechanisms explaining the interstitial telomeric signals on chromosomes of Typhonium laoticum (see text for details). Chromosome arms are labelled p for
the short arm and q for the long arm. Telocentric chromosomes present only the long arm.
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sites. The increase of rDNA sites might indicate polyploidiza-
tion, as indeed suggested by our chromosome number recon-
struction for T. circinnatum (Fig. 1; Supplementary Data Fig.
S1). Known polyploid angiosperms commonly show increased
numbers of rDNA sites. Thus, in Trifolium, the allotetraploid
T. dubium has twice the number the rDNA sites compared with
any of its diploid parents, indicating additive inheritance
(Ansari et al., 2008). Also in Aloe, rDNA inheritance in poly-
ploids is sometimes additive (Adams et al., 2000). However, in
the allotetraploid Tragopogon mirus and T. miscellus, both
with 2n ¼ 24, the copy numbers of rDNA sites are slightly less
than double the parental numbers (Kovarik et al., 2005), while
in intraspecific polyploids in Passiflora, rDNA site numbers
exceed those expected under additive inheritance (De Melo
and Guerra, 2003). Based on these examples, the eight rDNA
sites of Typhonium circinnatum may well indicate a polyploidi-
zation event. Alternative explanations involve jumping
nucleolus-oganizing regions (Schubert and Wobus, 1985; for a
review, see Raskina et al., 2008), perhaps mediated by transpos-
able elements. Such events could also explain the odd numbers of
rDNA signals in T. huense (Fig. 3D–F) and T. stigmatilobatum
(Fig. 3G–I). For T. laoticum (Fig. 3J–L), the loss of one chromo-
some pair with its rDNA site may explain the species’ single 45S
rDNA site.

B chromosomes in the Araceae – insufficiently tested so far

Supernumerary or putative B chromosomes have been
reported from numerous species in seven genera of Araceae
(Anthurium, Apoballis, Arisaema, Asterostigma lividium,
Philodendron radiatum, Piptospatha burbidgei and
Schismatoglottis), although not from Typhonium (original refer-
ences in Supplementary Data table S1 in Cusimano et al.,
2012a). None of these studies used meiotic analyses for a more
detailed understanding. Our C-banding and FISH experiments
(using a specific ITS2 probe from T. trilobatum; Fig. 4A–D)
appear to be the first molecular–cytogenetic analyses of any an-
euploid chromosome number in the Araceae. The C-banding
showed that heterochromatin blocks were mainly distributed in
terminal regions of the regular chromosomes, while at least
one small chromosome was completely stained (Fig. 4B). The
complete staining resembles the situation in Plantago lagopus
B chromosomes (Dhar et al., 2002), a species in which the repeti-
tive DNA of B chromosomes consists mainly of 5S rDNA (as
shown with FISH). The small heterochromatic chromosome of
T. trilobatum instead contained a single diffuse 45S rDNA
signal (Fig. 2L, inset). Using the 18S nuclear ribosomal ITS2
of T. trilobatum as an in situ hybridization probe, we detected
only four signals (Fig. 4D), representing the typical two 45S
rDNA sites (Fig. 2L). These experiments, of course, are insuffi-
cient to establish the presence of B chromosomes, which can only
be done by demonstrating meiotic drive in a population.

Conclusions

The new cytogenetic data supported two model-based infer-
ences of descending dysploidy and one of polyploidization
obtained in phylogenetic reconstructions of chromosome number
change along a molecular phylogeny for Typhonium (using both
phylograms and ultrametric trees). This is the first time that phylo-
genetic trait reconstruction for chromosome numbers has been

tested by physical (microscopy-based) evidence. We also
provideadetailedcytogenetic investigationof theaneuploidkaryo-
type of T. trilobatum. The heterochromatic constitution of one of
this species’ chromosomes and the detection of dispersed 45S
rDNA signals are reminiscent of B chromosomes in other plant
species. However, without meiotic analyses, the existence of B
chromosomes in the Araceae remains speculative.

SUPPLEMENTARY DATA

Supplementary data are available online at www.aob.oxford-
journals.org and consist of the following. Table S1: species
and DNA regions sequenced, their sources and GenBank acces-
sion numbers. Figure S1: chromosome number reconstruction
for the Areae on a phylogram, rooted on Alocasia macrorrhizos.
Figure S2: maximum likelihood phylogeny for the Areae and
three outgroups (Alocasia, Arisaema and Pinellia) based on
the combined analysis of plastid and nuclear markers (4252
aligned nucleotides). Figure S3: chromosome number reconstruc-
tion for the Areae on an ultrametric tree rooted on Alocasia macro-
rrhizos. Figure S4: mitotic metaphases of Typhonium filiforme,
T. orbifolium, T. spec. 17 Thailand and T. gallowayi, and karyo-
gram of T. tubispathum. Figure S5: chromosome rearrangements
that may lead to a reduction of chromosome numbers.
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SUPPLEMENTARY DATA 
 
Table S1. Species and DNA regions sequenced, their sources, and GenBank accession numbers. BG 
stands for botanical garden, cult. for cultivated. Herbarium acronyms in parentheses are from Index 
Herbariorum (http://sciweb.nybg.org/science2/IndexHerbariorum.asp). Species used in the 
cytogenetic work are marked in bold. 
 
 

Species and authors Source Plastid  
trnK 

Plastid  
rpl20-rps12 

Nuclear  
PhyC 

Alocasia macrorrhizos (L.) Don M. P. Medecilo 435 (De La Salle 
University, Dasmarinas Herbarium, 
Philippines, DLSU-DH ) 

JQ238841 JQ238925 JQ083523  

Arisaema amurense Maxim. J. Bogner 2759 (M) - AY248911 - 

Arisaema balansae Engl. D. K. Harder et al. 5739 (MO) - AY279139 - 

Arisaema clavatum Buchet G. Gusman 01084, cult. - AY279142 - 

Arisaema concinnum Schott W. Hetterscheid H.AR.313, cult.  - AY279143 - 

Arisaema costatum (Wall.) Mart. W. Hetterscheid H.AR.287, cult.  - AY279144 - 

Arisaema dracontium (L.) Schott T. Barkman 352 (WMU) - AY248914 - 

Arisaema erubescens (Wall.) 
Schott 

G. Gusman 99007, cult. - AY279146 - 

Arisaema filiforme (Reinw.) 
Blume 

G. Gusman 99084, cult. - AY279146 - 

Arisaema flavum (Forssk.) Schott  YP-Q. Yang 1034 (KUN) (1); 
W. Hetterscheid s.n., 27.07.2001, 
cult. (2) 

JF953250 (1) AY248915 (2) - 

Arisaema flavum subsp. flavum M. W. Chase 16880 (K) - AY376841 - 

Arisaema flavum subsp. tibeticum 
J. Murata 

A. M. Chambers s.n., 1.6.2002, 
China, Chusum, Tibet, wild 
collected 

- AY279150 - 

Arisaema formosanum Hayata G. Gusman 95173, cult. - AY279151 - 

Arisaema franchetianum Engl. M. W. Chase 10478 (K) (1); 
W. Hetterscheid s.n., 27.7.2001, 
cult. (2) 

AM920628 (1) AY279152 (2) - 

Arisaema heterophyllum Blume G. Gusman 92100, cult. - AY248916 - 

Arisaema ilanense J.C. Wang J. C. Wang 11620 (TNU) - AY279155 - 

Arisaema jacquemontii Blume G. Gusman 96151, cult. - AY279156 - 

Arisaema macrospathum Benth. G. Gusman 97229, cult. - AY248917 - 

Arisaema murrayi (Graham) 
Hook. ex Blatter 

J. Murata 29 (TI) - AY279160 - 

Arisaema negishii Makino J. Murata s.n., 20.2.2002 (TI) - AY279161 - 

Arisaema nepenthoides (Wall.) 
Mart. 

B. W. Magrys s.n., 25.4.2002, cult.  - AY279162 - 

Arisaema rhizomatum C.E.C. 
Fisher  

209-LSF-GBOWS 0218 (KUN) 
(1); B. Chen 06 (MO) (2) 

JF953256 (1) AY248919 (2)  

http://sciweb.nybg.org/science2/IndexHerbariorum.asp


Arisaema ringens (Thunb.) 
Schott 

G. Gusman 91250, cult. - AY279163 - 

Arisaema serratum (Thunb.) 
Schott 

T. Ohi-Toma Arisa222 (TI) (1);  
J. Murata 23-15 (TI) (2) 

AB494679 (1) AY279167 (2) - 

Arisaema speciosum (Wall.) 
Mart. 

W. Hetterscheid H.AR.294, cult.  EU886502 AY279168 EU886470 

Arisaema tortuosum (Wall.) 
Schott  

P. Bruggeman, India, Anaimudi 
20.5.2005 (M, photo voucher) (1)  
W. Hetterscheid s.n., 27.7.2002, 
cult. (2) 

EU886577 (1) AY248920 (2) EU886469 (1) 

Arisaema triphyllum (L.) Torr. T. Barkman 351 (WMU) - AY248921 - 

Arum apulum (Carano) P.C. 
Boyce 

DNA bank 1022 (RBG Kew) GU067591 - - 

Arum byzantinum Blume D.C. Drummond 18, cult. GU067593 - - 

Arum concinnatum Schott B. W. Magrys s.n., 15.3.2002, cult.  EU886516 GU255991 - 

Arum creticum Boiss. & Heldr. H-J. Tillich 4881 (M) EU886504 EU886595 - 

Arum cylindraceum Gasp. M. Neumann I 21/05, cult. BG 
Bonn 

EU886511 - - 

Arum cyrenaicum Hruby W. Lobin 6425 (BONN) EU886515 EU886623 - 

Arum dioscoridis Sm. B. W. Magrys s.n., 15.3.2002, cult.  EU886505 GU255992 - 

Arum elongatum Steven DNA bank 12032 (RBG Kew) GU067598 - - 

Arum euxinum R.R. Mill DNA bank 11019 (RBG Kew) GU067599 - - 

Arum hygrophilum Boiss. W. Lobin 14469 (BONN) EU886509 EU886620 EU886471  

Arum idaeum Coustur. & 
Gandoger 

J. Linz et al. 58, cult. GU067602 - - 

Arum italicum Miller Cult. BG Mainz, 20.7.2001  EU886517 AY248922 EU886472 

Arum korolkowii Regel S. Volz 20 (M) EU886589  EU886598 - 

Arum maculatum L. N. Cusimano 06-3 (M, photo 
voucher) 

EU886506 EU886593 - 

Arum nigrum Schott N. Cusimano 06-1 (M, photo 
voucher) 

EU886507  EU886597 EU886473   

Arum orientale Bieb. Cult. BG Munich 06/1845w EU886510  EU886621 - 

Arum palaestinum Boiss. J. Linz et al. 1, cult. GU067607 - - 

Arum pictum L. f. W. Lobin 273 (BONN) EU886518    EU886596 - 

Arum purpureospathum P.C. 
Boyce 

E. Walton s.n., 15.4.2002, cult.   EU886508  EU886594 - 

Arum rupicola Boiss. J. Bogner 1790 (M) EU886519 EU886592 - 

Arum sintenisii (Engler) P.C. 
Boyce 

D. C. Drummond 16, cult. GU067613 - - 

Biarum bovei Blume T. F. Hewer H1951 (M) EU886529    EU886601 - 

Biarum carduchorum (Schott) 
Engl. 

M. Jaeger JLMS-60, cult. BG 
Giessen 

EU886521  EU886618 - 

Biarum davisii Turrill Cult. BG Missouri, acc. 78231 EU886525 AY248923 EU886479- 

Biarum dispar (Schott) Talavera M. Jaeger SBL 564, cult. BG 
Giessen 

EU886522   EU886619 - 



Biarum ditschianum Bogner & 
Boyce 

Cult. BG Bonn 4695 EU886526  EU886600 EU886477 

Biarum kotschyi (Schott) B. 
Mathew ex H. Riedl 

Cult. BG Bonn TR-0 BONN 8431 EU886527 EU886599 - 

Biarum pyrami (Schott) Engler J. Mayr s.n., cult. BG Giessen EU886523 EU886617 - 

Biarum tenuifolium (L.) Schott Cult. BG Bonn 16014 EU886528 AY248924 - 

Dracunculus canariensis Kunth Cult. BG Bonn ES-0 BONN 13049 EU886531 AY248926 EU886475 

Dracunculus vulgaris Schott T. Croat 78286 (MO) EU886532 AY248927 EU886476  

Helicodiceros muscivorus (L. f.) 
Engl. 

Cult. BG Missouri, acc. 71821 EU886533 AY248929 EU886480 

Pinellia cordata N. E. Brown J. McClements s.n., 30.7.2001, cult. - AY248930 - 

Pinellia pedatisecta Schott M. W. Chase 11752 (K) (1); 
J. McClements s.n., 30.7.2001, cult. 
(2) 

AM920629 (1) AY279170 (2) - 

Pinellia peltata (Thunb.) Breit. J. W. Waddick s.n., cult. 8.8.2001 - AY279171 - 

Pinellia ternata (Thunb.) Breit. J. McClements s.n., 30.7.2001 EU886503 AY248931 JQ083574 

Pinellia tripartita (Blume) Schott  T. Ohi-Toma Pin02 (TI) (1); 
T. Croat 78128 (MO) (2) 

AB494681 (1) AY279172 (2) - 

Sauromatum diversifolium 
(Wall.) Cusimano & Hett. 

W. Hetterscheid H.AR.484 (L, 
spirit coll.) 

EU886540 EU886605 EU886482 

Sauromatum gaoligongense 
Wang & H. Li  

Y. M. Chen 24 (KUN) EU886590 KC460384 EU886487 

Sauromatum giganteum (Engl.) 
Cusimano & Hett. 

J. W. Waddick s.n. 20.8.2001, cult.  EU886536 AY248938 EU886490 

Sauromatum hirsutum (S. Y. Hu) 
Cusimano & Hett. 

W. Hetterscheid H.AR.036 (L, 
spirit coll.) 

EU886542 AY248939 EU886489 

Sauromatum horsfieldii Miq. J. Murata 3 (TI) EU886541 EU886604 EU886483 

Sauromatum tentaculatum (Hett.) 
Cusimano & Hett. 

W. Hetterscheid H.AR.042 (L, 
spirit coll.) 

EU886543 EU886612 EU886488 

Sauromatum venosum (Dryand. 
ex Aiton) Kunth 

J. Bogner 2972 (M) EU886544 EU886603 EU886481 

Theriophonum dalzellii Schott P. Bruggeman PB168, India (M, 
photo voucher)  

EU886534 KC460348 EU886486 

Theriophonum infaustum 
N.E.Brown 

P. Bruggeman PB099, India (M, 
photo voucher)  

EU886535 EU886602 EU886485 

Typhonium baoshanense Z.L. 
Dao & H. Li 

Y. M. Chen 17 (KUN) EU886591 EU886629 - 

Typhonium blumei Nicholson & 
Sivadasan 

G. Hausner 5 (M, photo voucher) EU886553 KC460351 KC434103 

Typhonium bulbiferum Dalzell                                               S. R. Yadav s.n., cult. AB494517   AB494517 - 

Typhonium circinnatum Hett. & 
J.Mood 

W. Hetterscheid H.AR.248 (L, 
spirit coll.) = M. V. Silber 2 (M) 
from H.AR. 537 

EU886551 - - 

Typhonium corrugatum Hett. & 
Rybkova 

W. Hetterscheid H.AR.598, leg. R. 
Rybkova s.n., Vietnam = J. Bogner 
2962 (M) 

GU255984 - KC434106 

Typhonium echinulatum Hett. & 
Sookchaloem 

W. Hetterscheid H.AR.225 (L, 
spirit coll.) = M. V. Silber 6 (M)  

EU886554 KC460355 EU886499 



Typhonium filiforme Ridl. W. Hetterscheid H.AR.128 (L, 
spirit coll.) 

EU886555 KC460356 KC434108 

Typhonium flagelliforme (Lodd.) 
Blume 

W. Hetterscheid H.AR.028 (L, 
spirit coll.) 

EU886556 KC460357 - 

Typhonium gallowayi Hett. & 
Sookchaloem 

W. Hetterscheid H.AR.575 (L, 
spirit coll.) = A. Galloway AGA-
1297-01 

KC434090 KC460358 KC434109 

Typhonium huense 
       V.D. Nguyen & Croat 

W. Hetterscheid H.AR.306 = M. V. 
Silber 11 (M, photo voucher) 

KC434091 KC460362 KC434111 

Typhonium H.AR. 523  
        spec. nov. Vietnam 

W. Hetterscheid H.AR.523 KC434100 KC460378 KC434125 

Typhonium jinpingense Z.L. 
Wang, H. Li & F.H. Bian 

Y. M. Chen 023 (KUN) EU886564 EU886614 EU886498 

Typhonium laoticum Gagnep. W. Hetterscheid H.AR.526  

= M. V. Silber 8 (M) 

KC434093 KC460364 KC434113 

Typhonium spec. H.AR. 664  W. Hetterscheid H.AR.664  
= M. V. Silber 9 (M) = A. 
Galloway 
AGA-0521-01, collected on Doi 
Inthanon, Thailand 

KC434089 KC460352 KC434104 

Typhonium orbifolium Hett. & 
Sookchaloem 

W. Hetterscheid H.AR.227 (L, 
spirit coll.)  

EU886566 KC460366 KC478075 

Typhonium roxburghii Schott W. Hetterscheid H.AR.026 KC434095 - KC434117 

Typhonium roxburghii Schott W. Hetterscheid H.AR.076 KC434094 KC460369 KC434116 

Typhonium saraburiense 
Sookchaloem, Hett. & 
Murata 

W. Hetterscheid H.AR.538 (L, 
spirit coll.) = A. Galloway AGA-
1734-01, collected in Lop Bori, 
Thailand, 

EU886570 KC460370 KC434118 

Typhonium spec. 17, Thailand W. Hetterscheid H.AR.566 
= M. V. Silber 7 (M) = A. 
Galloway AGA-1048-02, 
http://www4.ncsu.edu/~alan/plants/
aroids/typhoniums/sp-017/ 

KC434098 KC460376 KC434123 

Typhonium stigmatilobatum 
V.D.Nguyen 

V. D. Nguyen 369 (HN) KC434101 KC460379 KC434126 

Typhonium trilobatum (L.) 
Schott 

W. Hetterscheid s.n.  
=  M. V. Silber 4 (M)  

KC434102 KC460381 KC434127 

Typhonium tubispathum Hett. & 
A.Galloway 

W. Hetterscheid H.AR.469 (L, 
spirit coll.), CS-0201410, type, 
collected in Tak, Thailand 

EU886574 KC460382 KC434128 

Typhonium violifolium Gagnep.  W. Hetterscheid H.AR.168 (L, 
spirit coll.), Thailand 

EU886562 EU886611 KC434129 

 

http://www.ipni.org/ipni/idPlantNameSearch.do?id=77095658-1&back_page=%2Fipni%2FeditAdvPlantNameSearch.do%3Ffind_infragenus%3D%26find_isAPNIRecord%3Dtrue%26find_geoUnit%3D%26find_includePublicationAuthors%3Dtrue%26find_addedSince%3D%26find_family%3D%26find_genus%3DTyphonium%2B%26find_sortByFamily%3Dtrue%26find_isGCIRecord%3Dtrue%26find_infrafamily%3D%26find_rankToReturn%3Dall%26find_publicationTitle%3D%26find_authorAbbrev%3D%26find_infraspecies%3D%26find_includeBasionymAuthors%3Dtrue%26find_modifiedSince%3D%26find_isIKRecord%3Dtrue%26find_species%3Dstig*%26output_format%3Dnormal


Figure S1. Chromosome number reconstruction for the Areae on a phylogram, rooted on Alocasia 
macrorrhizos. Pie charts represent the probabilities of inferred chromosome numbers, with the 
number inside each pie having the highest probability. Numbers above branches are colour-coded 
by event type (gains, losses, duplications, demiduplication) as shown in the rectangular inset and 
represent the frequency with which event type(s) with a probability >0.5 occurred along that 
branch. The colour-coding of chromosome numbers is 
explained in the elongated inset on the left. Problematic inferences on the backbone are marked 
with an asterisk. Species investigated by FISH are labelled in red while species which only 
chromosome counts were made are shown in blue. 

 

 



Figure S2. Maximum Likelihood phylogeny for the Areae and three outgroups (Alocasia, Arisaema, 
and Pinellia) based on the combined analysis of plastid and nuclear markers (4252 aligned 
nucleotides). The tree is rooted on Alocasia macrorrhizos. Bootstrap support (bold, above branch) 
and posterior probabilities (below branch) values are given at the nodes. Species investigated by 
FISH are labeled in red while species which only chromosome counts were made are shown in blue. 
 

 



Figure S3. Chromosome number reconstruction for the Areae on an ultrametric tree rooted on 
Alocasia macrorrhizos. Posterior probabilities are indicated at nodes and the inferred frequency of 
the four possible events (gains, losses, duplications, demiduplications) with a probability >0.5 are 
shown above branches. The colour-coding of event types is explained in the inset. Species 
investigated by FISH are labeled in red while species which only chromosome counts were made 
are shown in blue. 
 

 



Figure S4. Mitotic metaphases of (A) Typhonium filiforme (2n = 12), (B) T. orbifolium (2n = 12), 
(C) T. spec. 17 Thailand (2n = 19), (D) T. gallowayi (2n = 20), and (E) karyogram of T. 
tubispathum (2n = 10). For (A), (B), and (D) photographs were scanned, and their chromosomes 
were counted using Adobe Photoshop CS3 version 10.0. All pictures were taken in a phase contrast 
microscope without staining, except by (C) which was stained in DAPI and photographed using a 
fluorescence microscope. Bars correspond to 5 μm. 
 

 



Figure S5. Chromosome rearrangements that may lead to a reduction of chromosome numbers. 
Chromosomes arms are labelled p for the short arm and q for the long arm. Telocentric 
chromosomes present only the long arm. Modified from Schubert (2007) and Schubert and Lysak 
(2011).  
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 Abstract 

Chromosome losses and polyploidy appear to be the main evolutionary mechanisms 

generating chromosome number change, and both events can in principle be inferred on 

densely sampled phylogenies. Applied to the monocot family Araceae with chromosome 

numbers of 2n = 8 to 2n = 160, this type of approach has suggested that descending dysploidy 

has played a larger role than polyploidy in the evolution of the current chromosome numbers. 

Since dysploidy is commonly associated with interstitial telomeres, we carried out cytogenetic 

analyses of telomere organization in a sample of Araceae of pivotal phylogenetic position to 

search for possible interstitial telomeric signals. A phylogeny from plastid sequences for 174 

species and new chromosome counts were used to newly model chromosome number 

evolution (in a maximum likelihood framework), and FISH with three probes (5S rDNA, 45S 

rDNA, and Arabidopsis-like telomeres) was performed on 14 species with 2n = 14 to 2n = 60. 

The chromosome number reconstruction on the phylogeny confirmed the large role of 

descending dysploidy in the Araceae. The number of 5S rDNA sites (one) was conserved, 

while the number of 45S rDNA sites varied from one to eight, and there was no correlation 

between the number of rDNA sites and ploidy level. Interstitial telomere repeats (ITRs) were 

detected in Anthurium leuconerum, A. wendlingeri, and Spathyphyllum tenerum, all with 2n = 

30. The ITR bands in Anthurium are of a type previously reported from the gymnosperms 

Cycas and Pinus and involve massive repeat amplification. Such extreme repeat amplification 

probably relates to transposable elements and chromosome rearrangements in driving Araceae 

genome evolution. 

 

 Introduction 

A phylogeny establishes the direction of evolution and allows reconstructing the likely 

timeframe and sequence of events that led to the character states seen in the included species. 

With the availability of DNA-based phylogenies, cytogeneticists have increasingly turned to 

“trait reconstruction” to infer the direction of change in chromosome numbers. Attention has 

mostly focusing on groups with polyploidy, while fewer studies have concentrated on clades 

with descending chromosome numbers (dysploidy), for example, in the Brassicaceae 

(Yogeeswaran et al., 2005; Lysak et al., 2006; Mandakova and Lysak, 2008; Cheng et al., 

2013), Rosaceae (Vilanova et al., 2008; Illa et al., 2011; Jung et al., 2012), Poaceae (Luo et 
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al., 2009), and Melianthaceae (Pellicer et al., 2014). Probably the best studied case of 

chromosome rearrangements leading to descending dysploidy is Arabidopsis, where n = 8 is 

ancestral to n = 5 through inversions, fusions, and translocations (Lysak et al., 2006). This 

could be inferred by combining phylogenies for the relevant species with fluorescent in situ 

hybridization (FISH). Recent work in the large monocot family Araceae, with 3790 species in 

118 genera (Boyce and Croat, 2011), revealed that in this family, too, dysploidy has played a 

much more important role than polyploidy (Cusimano et al., 2012: Table S1 lists all counts 

for the Araceae family; Sousa et al. in press). This inference, however, was based on a 

relatively sparse sample of species representing the many genera (Cusimano et al., 2012) and 

a follow-up study on a derived tribe, the Areae (Sousa et al., in press). The hypothesis of 

frequent chromosome losses in the Araceae therefore is in need of further cytogenetic testing.  

 One cytogenetic test for an inferred reduction in chromosome number is the presence 

of interstitial telomere repeats (ITRs), which can be visualized using standard probes for plant 

telomere repeats (Ijdo et al., 1991; Fuchs et al., 1995; Weiss-Schneeweiss et al., 2004). Such 

repeats may be found in interstitial positions because of translocations or inversions (Fuchs et 

al., 1995). They are also considered indicators of chromosome fusion. For example, telomere 

signals near a centromere may indicate the fusion of two telocentric chromosomes (Schubert, 

1992). So far, Pinus is the genus with the most conspicuous interstitial telomere FISH signals, 

with often up to four signals near the centromere and in interstitial positions (Fuchs et al., 

1995; Lubaretz et al., 1996; Schmidt et al., 2000; Hizume et al., 2002; Islam-Faridi et al., 

2007). Based on the inferred large role of dysploidy in the Araceae (previous paragraph), we 

decided to carry out cytogenetic analyses of telomere organization, focusing on early-

diverging genera in the Araceae phylogeny and on other genera of pivotal phylogenetic 

position. The only previous FISH study on the Araceae focused on species of Typhonium, a 

genus of Areae (Sousa et al., 2014). The enlarged Araceae phylogeny and new cytogenetic 

data on which we report here afford a better understanding of family-wide chromosomal 

patterns and the presence (or absence) of interstitial telomeric signals in the Araceae. 
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 Material and Methods 

 

Plant material and DNA sequencing   

We augmented the DNA data matrix of Nauheimer et al. (2012) by adding sequences 

for 29 further species from GenBank and by sequencing 14 additional species (on which 

cytogenetic studies were performed) for the same gene loci used by Nauheimer et al., viz. the 

plastid trnL intron and spacer, the matK gene and partial trnK intron, and the rbcL gene. We 

used standard primers, except for matK for which we used the primers listed in Cusimano et 

al. (2010). Total DNA from silica-dried leaves was extracted with the NucleoSpin plant II kit 

according to the manufacturer’s protocol (Macherey-Nagel, Düren, Germany). Polymerase 

chain reactions were performed using 1.25 units of Taq DNA polymerase (New England 

Biolabs GmbH, Frankfurt am Main, Germany) and the following cycle conditions: An initial 

step of 3 min at 95°C, followed by 39 cycles at 95°C for 30 sec for DNA denaturation, 60 sec 

at 50-52°C for primer annealing, 60 sec at 68°C for primer extension, and 10 min at 68°C 

after the final cycle. The PCR products were purified with Exo I and FastAP (Fermentas, St 

Leon-Rot, Germany). Sequencing was done on an ABI 3130 4-capillary sequencer, and 

sequences were assembled and edited with Sequencher 4.2 (Gene Codes Cooperation, Ann 

Arbor, Michigan, U.S.A.). The newly studied and sequenced species, with their taxonomic 

authors, herbarium vouchers, and GenBank accession numbers are listed in Supporting 

Information Table S1. For voucher information on the previously sequenced Araceae see 

Nauheimer et al. (2012; Table S1). The final alignment comprised 174: 163 Araceae plus 11 

outgroups that represent the remaining families of the order Alismatales. 

Phylogenetic analyses  

 Alignments were generated in MAFFT (Katoh and Standley, 2013; 

http://mafft.cbrc.jp/ alignment/server/) and checked visually using MEGA5 (Tamura et al., 

2011). To remove poorly aligned positions, alignments were exported to a server 

runningGblocks v. 0.91b (http://molevol.cmima.csic.es/castresana/Gblocks_server.html) with 

the least stringent options selected (Castresana, 2000). The combined matrix (4928 aligned 

nucleotides) was used for maximum likelihood (ML) tree searches in RAxML (Stamatakis, 

2006; Stamatakis et al., 2008), using the GTR + G substitution model with four rate 

categories. Bootstrapping under ML used 1000 replicates. We also generated ultrametric trees 

in BEAST v. 1.7.5 (Drummond and Rambaut, 2007), using the same substitution model for 

http://mafft.cbrc.jp/
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the entire concatenated alignment and a pure-birth Yule model as the tree prior. The analysis 

was run for 100 million generations, sampling every 1000
th

 step. The burn-in fraction, i.e., the 

number of trees to be discarded before constructing a consensus tree (the maximum clade 

credibility tree) from the remaining trees, was assessed using Tracer v. 1.4.1, which is part of 

the BEAST package.  

 

Inference of chromosome number change 

For maximum likelihood and Bayesian phylogenetic inferences of ancestral haploid 

chromosome numbers we used ChromEvol v. 1.4 version with eight models (Mayrose et al., 

2010; http://www.tau.ac.il/~itaymay/cp/chromEvol/index.html). ChromEvol models change 

in chromosome number with the following parameters: polyploidization (chromosome 

number duplication) with constant rate , demi-duplication (fusion of gametes of different 

ploidy) with constant rate µ, and dysploidization with either constant or linearly changing 

rates (ascending: chromosome gain rates  or 1; descending: chromosome loss rates  or 1). 

We fitted all models to a phylogram (in which branch lengths are proportional to numbers of 

substitution) and an ultrametric depiction of the phylogeny (in which branch lengths are 

proportional to time). The ultrametric tree was the BEAST maximum clade probability tree. 

For each model, we ran 10000 simulated repetitions to compute the expected number of 

changes along each branch of the phylogeny as well as the ancestral haploid chromosome 

numbers at nodes. The maximum possible ancestral number of chromosomes was set to 10x 

higher than the highest number found in the empirical data, the minimum number was set to 

1. Species’ haploid chromosome numbers were obtained from Cusimano et al. (2012, 

Supplementary Data Table S1) and from the Index to Plant Chromosome Numbers 

(http://www.tropicos.org/Project/IPCN); species without known numbers were coded as 

‘unknown’ (X), and changes among character states (chromosome numbers) were assigned 

equal likelihood. Model fit was assessed via likelihood ratio tests using the Akaike 

information criterion (AIC). We adjusted the phylogram and the ultrametric tree such that 

both had a total length of 0.2. Results were plotted in R using the ChromEvol functions 

version 1 of N. Cusimano (http://www.sysbot.biologie.uni-

muenchen.de/en/people/cusimano/).  

 

 

http://www.tau.ac.il/~itaymay/cp/chromEvol/index.html
http://www.sysbot.biologie.uni-muenchen.de/en/people/cusimano/
http://www.sysbot.biologie.uni-muenchen.de/en/people/cusimano/
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Chromosome preparation, FISH analyses, and DNA probes 

Root tips were collected from potted plants cultivated in the greenhouses of the Munich 

Botanical Garden. Authors of species names and voucher material for each species are given 

in Table S1. Root tips were pre-treated in 2 mM 8-hydroxyquinoline for 20 h at 4°C, fixed in 

freshly prepared 3:1 (v/v) ethanol/glacial acetic acid at room temperature overnight and kept 

at -20°C. For chromosome preparations, fixed root tips were washed three times for 5 min in 

distilled water, digested with 1% cellulase (w/v; Onozuka RS, Serva), 0.4% pectolyase (w/v; 

Sigma), 0.4% cytohelicase (w/v; Sigma) in citric buffer, pH 4.8 for 30 min at 37°C in a humid 

chamber, dissected in a drop of 45% acetic acid and squashed. Coverslips were removed after 

freezing in dry ice, and preparations were air-dried at room temperature. The quality of 

spreads was checked microscopically using phase-contrast, and only preparations with at least 

10 well-spread metaphases were used for FISH.  

We performed FISH with probes for telomere repeats, 5S rDNA, and 45S rDNA. For 

some species, we had little material and could only use one or two of the three probes. To 

locate the rDNAs, we used the 18S-5.8S-25S rDNA repeat unit of Arabidopsis thaliana in the 

pBSK+ plasmid, labeled with digoxigenin-11-dUTP (Roche) by nick translation, and a 349-

bp fragment of the 5S rRNA gene repeat unit from Beta vulgaris cloned into pBSK+ (Schmidt 

et al., 1994) and labeled with biotin-16-dUTP (Roche) by PCR. Telomere repeats were 

visualized with the Arabidopsis-like telomere probe of Ijdo et al. (1991) using the oligomer 

primers (5´-TTTAGGG-3´)5 and (5´-CCCTAAA-3´)5, labeled with digoxigenin-11-dUTP by 

nick translation. Hybridization mixes consisted of 50% formamide (w/v), 2 x SSC, 10% 

dextran sulfate (w/v), and 70–200 ng of labeled probe. The hybridization mix was denatured 

at 75ºC for 10 min and immediately cooled on ice for 10 min; 10–15 µl of the mix was then 

added to each slide. Hybridization was carried out in a humid chamber at 37ºC for 20 h. The 

5S rDNA was detected with streptavidin-Cy3 conjugate (Sigma), and the 45S rDNA with 

anti-DIG-FITC conjugate (Roche) at 37ºC for 1 h. The chromosomes were counterstained 

with DAPI (2 µg/ml) and mounted in Vectashield (Vector).  

Slides were first analyzed with the probes for telomeres and 5S rDNA, then de-stained, 

and then analyzed with the probe for the 45S rDNA. For some species with multiple 45S 

rDNA sites or with interstitial telomere repeats, further single-probe experiments were carried 

out to confirm the number of signals. Images were taken with a Leica DMR microscope 

equipped with a KAPPA-CCD camera and the KAPPA software. They were optimized for 
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best contrast and brightness using Adobe Photoshop CS3 version 10.0.  

 

 Results 

 

Chromosomal evolution in the Araceae 

The plastid DNA matrix of 4928 aligned nucleotides for 174 species yielded a well-

supported maximum likelihood phylogeny that we used to infer the evolution of Araceae 

chromosome numbers (Figs. 1 and S1). The changes inferred on the ultrametric Araceae tree 

are shown in Fig. 1, a reconstruction on the phylogram in Fig. S1. The statistical support for 

both trees is shown in Figs. S2 and S3, and the inferred rates of change and numbers of events 

are summarized in Table 1. On the ultrametric tree, the four-parameter-constant-rate model, 

which assumes constant chromosome gain and loss rates and a polyploidization rate that 

differs from the demi-polyploidization rate, best explained the data (AIC = 732.6 compared to 

736.6 for the next best model), while on the phylogram, the best model was the four-

parameter-linear-rate model, which includes rates of gain and loss that depend linearly on the 

current chromosome number (AIC = 844.4 compared to 982.8 for the next best). In both trees, 

chromosomes loss was the most common event. On the ultrametric tree, the next most 

common events were duplication of the entire chromosome complement and demi-

duplications (Fig. 1 insets in the lower left, Table 1); on the phylogram, the next most 

common events were single chromosome gains, duplication of the entire set, and demi-

duplications (Fig. S1 insets in the lower left, Table 1). The inferred ancestral haploid numbers 

in the Araceae decrease from a = 16 to 15 and 14 on the ultrametric tree and from a = 16 to 14 

and 13 (and then back to a = 14) on the phylogram.  
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Table 1 Inferred chromosome number evolution in Araceae and their immediate outgroups under the 

best-fitting model. Column two refers to the factor used to multiply branch lengths to obtain a suitable 

root-to-tip length for the tree (Materials and Methods); columns three and four give the lengths 

obtained after adjusting branch lengths by the multiplication factor; column five gives the logarithmic 

likelihood, and column six the AIC scores to the likelihood ratio tests; the symbols for the rates 

inferred for all events in the tree are λ: chromosome gain rate; δ: chromosome loss rate; ρ: duplication 

rate; μ: demiduplication rate, and the number of events refers to the four event types with an 

expectation >0.5 (demi.: demiduplication). The last column shows the total number of events inferred 

on the respective tree. 

 

 

 

 

 

Fig. 1 (facing page) Chromosome number reconstruction for Araceae on an ultrametric tree, 

rooted on Acorus calamus. Pie charts represent the probabilities of inferred chromosome 

numbers, with the number inside a pie having the highest probability. Numbers above branches 

are color-coded by event type (gains, losses, duplications, demiduplication) as shown in the 

rectangular inset and represent the frequency with which event type(s) with a probability >0.5 

occurred along that branch. The color-coding of chromosome numbers is explained in the inset 

on the left. Species investigated by FISH are labeled in red.  
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Fig. 1 (continuation) 
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Fluorescence in situ hybridization (FISH) experiments 

Fluorescence in situ hybridization was performed in 14 species from 11 genera 

representing early and derived lineages of the Araceae (Table 2). We also here report new 

chromosome numbers for Cyrtosperma merkusii, Pothos repens, Spathiphyllum pygmaeum, S. 

tenerum, Stylochaeton puberulus, and Ulearum sagittatum. Their somatic numbers varied 

from 2n = 14 to 2n = 60 (Table 2). The chromosome variation found within each genus is 

presented in Table S2. Ulearum, with 2n = 14, has especially large chromosomes (Fig. 2a, d). 

The remaining species with relatively high chromosome numbers (2n = 24, 26, 28 and 30) 

have large or medium-sized chromosomes (Figs. 2, 3, and S4); species with 2n = 60 all have 

medium to small chromosomes (Figs. 3 and S4). 

Of the 12 species tested with the 5S rDNA probe, six had one interstitial site, five had 

one sub-terminal site (Fig. 2b, e, h, k, n; Fig. 3b, e, h, k; Fig. S4b, e; Table 2), and one 

(Anthurium wendlingeri) yielded no signal. In Rhaphidophora pteropoda, one 5S rDNA 

signal was detected on a single chromosome in some cells but its homologous pair was never 

seen (data not shown). In Cyrtosperma merkusii, with 2n = 39, and in Englerarum hypnosum 

(the former Alocasia hypnosa; Nauheimer and Boyce, 2013), with 2n = 24, three instead of 

two 5S rDNA signals were detected (Figs. 3h and S4e).  

Among the 11 species tested with the 45S rDNA probe, some had one, others up to eight 

sites, without any correlation between species’ chromosome numbers and 45S site numbers. 

For example, Ulearum donburgii and U. sagittatum, both with 2n = 14, had two sites just like 

Anthurium leuconerum with 2n = 30 (Fig. 2c, f, o), and Scindapsus lucens and 

Rhaphidophora pteropoda, both with 2n = 60 (Fig. S4c, i). The localization of 45S rDNA 

sites varied from terminal and subterminal to interstitial (Table 2; for lack of material, no 

experiments could be performed on Englerarum hypnosum and no 45S signal was found in 

Anthurium wendlingeri). In Cyrtosperma merkusii, three 45S rDNA signals were detected 

(Fig. 3i), the same number as that species’ 5S rDNA signals (Fig. 3h). Especially high 

numbers of 45S rDNA were found in Spathiphyllum (Fig. 3c, f), distributed close to, or inside, 

the pericentric region (DAPI-positive repetitive DNA). The distribution of 45S in Ulearum 

and Anthurium was similar, but their centromeric regions were not DAPI positive (Fig. 2c, f, 

o; Table 2). 

Of the 13 species tested with the telomere probe, all had telomeric signals at both 

chromosome ends (Fig. 2a, d, j; Fig. 3a, g, j; Fig. S4a, d, f, h), and three had additional 
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interstitial telomeric signals, namely Anthurium leuconerum, A. wendlingeri, and 

Spathiphyllum tenerum, with 12, multiple, or four interstitial signals localized in pericentric 

regions (Figs. 2m, 3d, and S4g).  

 

Table 2 Araceae species investigated with their chromosome number, presence of interstitial telomere 

repeats (ITRs), and the number and distribution of 5S and 45S rDNA sites. Authors of species names 

and voucher information are given in Table S1. Asterisks mark species for which chromosome counts 

were newly obtained. X indicates species where the hybridization did not work or the pattern was not 

clear, hence the question mark. The symbol ∞ means multiple signals, and ♦ means that no ITRs were 

seen. NA = non applicable. 

 

 

Species  2n ITRs  # 5S 

rDNA 

Distribution # 45S 

rDNA 

Distribution 

Anthurium leuconerum 30 12 1 Subterminal 2 Pericentromeric 

Anthurium wendlingeri 30 ∞ X  ? X ? 

Cyrtosperma merkusii* 39 - 1(3) Subterminal 1(3) Terminal 

Englerarum hypnosum 24 - 1(3) Interstitial NA NA 

Monstera deliciosa 60 - 1 Interstitial 1 Terminal 

Rhaphidophora pteropoda 60 - X  ? 2 Terminal 

Scindapsus lucens 60 - 1 Subterminal  2  Terminal 

Spathiphyllum 

pygmaeum* 

30 - 1 Subterminal 3 Interstitial 

Spathiphyllum tenerum* 30 4 1 Subterminal 8 Interstitial 

Stenospermatium 

papayanense 

28 - 1 Interstitial 1 Terminal 

Stylochaeton puberulus*  26 ♦ 1 Interstitial 1 Terminal 

Ulearum donburgii  14 - 1 Interstitial 2 Pericentromeric 

Ulearum sagittatum* 14 - 1 Interstitial 2 Pericentromeric 

Pothos repens* 24 - NA NA NA NA 
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Fig. 2 Detection of telomeric signals, 5S and 45S rDNA sites in chromosomes of (a–c) Ulearum 

donburgii (2n = 14), (d–f) Ulearum sagittatum (2n = 14), (g–i) Stylochaeton puberulus (2n = 26), (j–l) 

Stenospermatium papayanense (2n = 28), and (m–o) Anthurium leuconerum (2n = 30) by FISH. The 

detection of the telomeres was not performed in Stylochaeton puberulus. Red arrowheads indicate the 

position of weak 5S rDNA sites in some cells, while green ones in (m) indicate ITRs. Insets in (m) 

show chromosomes, without being overlapped with DAPI, with weak ITRs treated with a differential 

brightness/contrast. Bars correspond to 5 μm, and are valid for plates in each row.   
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Fig. 3 Detection of telomeric signals, 5S and 45S rDNA sites in chromosomes of (a–c) Spathiphyllum 

pygmaeum (2n = 30), (d–f) Spathiphyllum tenerum (2n = 30), (g–i) Cyrtosperma merkusii (2n = 39), 

and (j–l) Monstera deliciosa (2n = 60) by FISH. Red arrowheads indicate the position of weak 5S 

rDNA sites in some cells, while green ones in (d) indicate the position of ITRs and in (f) of 45S rDNA 

signals. Insets in (d) display chromosome with telomeric probe without the overlapping with DAPI, 

and a chromosome from other cell (top) presenting similar telomeric distribution, and in (f) show 

chromosomes, without being overlapped with DAPI, with weak 45S rDNA signals treated with a 

differential brightness/contrast. Bars correspond to 5 μm, and are valid for plates in each row.   
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 Discussion 

 

Modeling of chromosome number change in the Araceae family 

The newly generated chromosome counts (Table 2) together with previously published 

numbers reveal an overall variation in the Araceae from 2n = 8 (Typhonium spp.) to 2n = 160 

(Lazarum spp.). However, different from what one might expect from such numbers, 

polyploidy does not appear to have played a large role. Instead, our model-based maximum-

likelihood inference of the likely direction in chromosome number change points to dysploidy 

as the predominant event in karyotype evolution in the family. This inference is now based on 

a family phylogeny with 163 species from all genera currently recognized, confirming an 

earlier study with just 112 species from 112 genera (Cusimano et al., 2012). A caveat in both 

analyses is that few chromosome counts are available for the outgroup families (Figs. 1 and 

S1) and that these families are phylogenetically far distant from the Araceae (which are the 

sister to a clade of all other Alismatales families), resulting in long genetic branches in the 

family phylogeny. To infer the most likely events, the ChromEvol approach (Mayrose et al., 

2010) uses the frequencies of tip states (i.e., chromosome counts in the included species) 

together with branch lengths in gene trees (as a proxy for time). It is therefore not surprising 

that the long branches and few counts near the base of the Araceae phylogeny result in great 

uncertainty for the inferred events near the root. As an example, the ancestral chromosome 

number has no statistical support; it is a = 16 in our trees (Figs. 1 and S1) as in the phylogram 

of Cusimano et al. (2012, but a = 18 on their ultrametric tree). The subsequent evolutionary 

downward trend in chromosome numbers is strongly supported, however, going from a = 16 

to 15 to 14 on the ultrametric tree (Fig. 1) and from a = 16 to 14 to 13 and back to 14 on the 

phylogram (Fig. S1). 

Previously inferred basic chromosome numbers for the Araceae were x = 7 (Larsen, 

1969; Marchant, 1973) or x = 14 (Petersen, 1993). These hypotheses were based on many 

fewer counts and a more limited understanding of phylogenetic relationships in the family 

compared to today. Especially important as regards chromosome number evolution in this 

family is the recognition that the five genera of Lemnoideae (in the past treated as 

Lemnaceae) are an early-divergent clade of the Araceae; all lemnoids have relatively high 

chromosome numbers (2n = 20 to 2n = 126; Cao, 2013). The haploid numbers found in this 

and other early lineages of Araceae are high (based on n = 13, 14, 15, 20, 24, and 30; Figs. 1 
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and S1: tips), leading to the inference of a = 16 as a possible ancestral haploid number in the 

newly circumscribed Araceae (Cusimano et al., 2012; the present study). Nevertheless and as 

stressed above, the inferences near the root have no statistical support and might change 

which the inclusion of more outgroup chromosome numbers and more early Araceae lineages.  

  

No evidence for polyploidy from the FISH data 

We performed FISH in 14 Araceae species of which 11 belong to early lineages of the 

family and three to derived lineages. Although chromosome numbers are known for some 

26% of the ca. 3790 species (Cusimano et al., 2012: Table S1), FISH studies were only begun 

recently, focusing on a relatively derived genus (Sousa et al., 2014). In the present study, we 

therefore sampled earlier-diverging lineages of Araceae, namely Anthurium, Pothos, 

Stenospermatium, Spathiphyllum, Monstera, Scindapsus, and Rhaphidophora (Figs. 1 and S1-

S3). The FISH results for these genera showed a conserved number of 5S rDNA sites (one) 

but variable numbers of 45S rDNA sites (one to eight; see Table 2). Atypical numbers of 

rDNA signals (3 instead of 4) were observed in Cyrtosperma merkusii (2n = 39; Fig. 3i) and 

Englerarum hypnosum (2n = 24; Fig. S4e). The evolutionary event that led to the reduction of 

rDNA sites in these species, either loss of an entire chromosome or just of the 45S rDNA 

locus, remains unclear. Also unclear is the evolutionary significance of odd chromosome 

numbers (Fig. 3h-i), such as found here in Cyrtosperma merkusii and earlier in 

Amorphophallus, Anthurium, Apoballis, Arisaema, Caladium, Cryptocoryne, Piptospatha, 

Schismatoglottis, Typhonium, and Xanthosoma (Cusimano et al., 2012: Table S1; Sousa et al., 

2014).  

Our FISH work revealed no correlation between the number of rDNA sites and ploidy 

level. Spathiphyllum species with 2n = 30 had three or eight 45S rDNA sites (S. pygmaeum 

and S. tenerum, Fig. 3c, f), while an Anthurium species with the same chromosome number 

(A. leuconerum, 2n = 30) had two sites (Fig. 2o), and another pair of close relatives, both with 

2n = 60, had one or two 45S rDNA sites (Monstera deliciosa and Scindapsus lucens, Figs. 3l 

and S1c). Polyploids may have twice the rDNA sites as their parental species (additive 

polyploidy; see Adams et al., 2000; Ansari et al., 2008; Sousa et al., 2014), but we found no 

such case. Interestingly, multiple rDNA sites found in the Spathiphyllum were mainly located 

in the pericentric region close to or within heterochromatic DAPI-positive bands (Fig. 3c, f). 
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Pericentric regions are prone to the insertion of mobile elements (Mai et al., 2007), which can 

mediate the amplification of rDNA in a genome (Raskina et al., 2008: review).   

 

Huge interstitial telomere repeats (ITRs)  

Telomere motif repeats at both ends of each chromosomes were seen in all species 

studied here (Fig. 2a, d, j; Fig. 3a, g, j; Fig. S4a, d, f, h), but three species had additional 

interstitial telomere repeats (Figs. 2e, 3d, and S4g). Unexpectedly, we found no ITRs in the 

two Ulearum species with the largest chromosomes, while Anthurium leuconerum and A. 

wendlingeri (Figs. 2m and S4d, g), with medium-sized chromosomes, had ITRs in most or all 

chromosomes. These sites were located close to the centromere or in subterminal regions (Fig. 

2m), and their number (12 and multiple signals) is the highest so far reported for any 

angiosperms. That they were discovered in Anthurium was unexpected because 80% of the 

171 species of Anthurium that have had their chromosomes counted (out of 835 species in the 

genus) have counts of 2n = 30 (Cusimano et al., 2012: Table S1). This consistent chromosome 

number makes the discovery of ITRs, which are a sign of chromosome restructuring, 

surprising. 

 Interstitial telomeric sites are rare, but are known from Vicia faba (Schubert et al., 

1995; Fuchs et al., 1995: Fig. 1), Eleocharis subarticulata (Da Silva et al., 2005), Sideritis 

montana (Raskina et al., 2008), and two species of Typhonium (Sousa et al., 2014). In Vicia 

faba, presence of ITRs was related to the existence of fusion-fission cycles, and in Typhonium 

to Robertsonian-fusion-like rearrangements. The latter mechanism differs from the former in 

involving the formation of a chromosome with a single centromere after a reciprocal 

translocation involving two acro- or telocentric chromosomes (Sousa et al., 2014). Anthurium 

leuconerum has one ITR per chromosome of a hybridization intensity similar to that of at the 

two chromosome ends. By contrast, A. wendlingeri has large ITR bands (Fig. S4g), indicative 

of massive repeat amplification. Such large ITR bands have so far only been reported from 

the gymnosperms Cycas revoluta, Pinus elliottii var. elliottii, Pinus densiflora, Pinus taeda, 

and Pinus sylvestris (Fuchs et al., 1995; Hizume et al., 1998; Schmidt et al., 2000; Shibata et 

al., 2005; Islam-Faridi et al., 2007), and in these species generally each chromosome displays 

more than one signal (up to 6). In P. elliottii var. elliottii and P. densiflora, some of the ITRs 

co-localize with positive DAPI bands, while the regular terminal telomere signals could not 

be detected or could be visualized only after differential brightness/contrast treatment 
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(Schmidt et al., 2000; Shibata et al., 2005; similarly in P. taeda, Fuchs et al., 1995). In the 

Araceae studied here, we also found co-localization of ITRs and positive DAPI bands in 

Anthurium wendlingeri and Spathyphyllum tenerum (Figs. 3d: inserts and S4g), suggestive of 

two chromosomes fused without being involved in a reciprocal translocation. Such an event 

would be incompatible with the telomeres’ regular function in protecting chromosome ends 

from fusion (Schubert and Lysak, 2011).  

 Telomere lengths range from 2 to 5 kb in Arabidopsis, 2-40 kb in corn, 20-60 kb in 

tomato, >150 kb in tobacco (Lamb et al., 2012), and up to 20 kb in Pinus (Schmidt et al., 

2000; Lamb et al., 2012). No estimates are available for any Araceae. The high number of 

interstitial telomere sites discovered in Anthurium leuconerum and A. wendlingeri (Figs. 2m 

and S4g) along with the signal brightness must indicate huge repeat-amplifications, so far 

unlinked to obvious karyotype changes. In Spathyllum tenerum (Fig. 3d), however, we could 

link the ITRs to Robertsonian fusion-like chromosome rearrangement, similar to the ones 

found in Typhonium laoticum (Sousa et al., 2014). Whatever their ultimate explanation, 

massive ITR bands as reported here suggest that nuclear genome assembly in the Araceae 

may be challenging. The importance of the FISH approach, especially multicolor FISH, as an 

aid in the de novo assembly of genomes of non-model plant species including Araceae is just 

beginning to be realized (Chamala et al., 2013: Amborella; Cao et al., 2013: Lemonoid 

Araceae).  
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 Appendices 

 

Table S1 List of species used in this study with author names, herbarium vouchers, and 

GenBank accession numbers for all sequences. Herbarium acronyms follow the Index 

Herbariorum (http://sciweb.nybg.org/science2/IndexHerbariorum.asp). 
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Table S2 Information on the genera newly studied here. # species refers to the total number of species 

in a genus; # species 2n known refers to the number of species with published chromosome counts; the 

percentage refers to these two numbers; 2n variation refers to the range of published diploid counts. 

Chromosome numbers in bold indicate the most representative 2n number(s). An asterisk marks a 

genus with many reports of B chromosomes.  

Genera  # species # species 

2n 

known 

% 2n variation References 

Anthurium*  905 171 19 20, 24, 26, 28, 

30, 31, 32, 34, 

36, 40, 48, 49, 

56, 60, 66, 84, 

ca. 90, ca. 124 

Cusimano et al. (2012);   

www.aroid.org/genera/130307

uberlist.pdf  

Cyrtosperma  13 4 30 24, 26 Cusimano et al. (2012);  

www.aroid.org/genera/130307

uberlist.pdf  

Englerarum  1 1 100 24 Cusimano et al. (2012); 

http://www.aroid.org/aroid/ 

Monstera  ca. 40 5 12 24, 56, 58, 60 Cusimano et al. (2012); 

Andrade and Mayo (1994) 

Rhaphidophora  ca.100 8 8 26, 42, 54, 56, 

60, ca. 120 

Boyce (2001); Cusimano et al. 

(2012) 

Scindapsus  ca. 35 8 23 48, 56, 58, 60, 

64 

Bogner and Boyce (1994); 

Cusimano et al. (2012) 

Spathiphyllum  49 9 18 18, 30, 60 Cusimano et al. (2012);  

www.aroid.org/genera/130307

uberlist.pdf  

Stenospermatium  50 4 8 28 Cusimano et al. (2012);  

www.aroid.org/genera/130307

uberlist.pdf  

Stylochaeton   25 4 16 28, 56 Cusimano et al. (2012);  

www.aroid.org/genera/130307

uberlist.pdf  

Ulearum  2 2 100 14 Cusimano et al. (2012); 
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Fig. S1 Chromosome number reconstruction for Araceae on a phylogram, rooted on Acorus calamus. 

Pie charts represent the probabilities of inferred chromosome numbers, with the number inside pie 

having the highest probability. Numbers above branches are color-coded by event type (gains, losses, 

duplications, demiduplication) as shown in the rectangular inset and represent the frequency with 

which event type(s) with a probability >0.5 occurred along that branch. The color-coding of 

chromosome numbers is explained in the elongate inset on the left. Species investigated by FISH are 

labeled in red.  
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Fig. S2 Chromosome number reconstruction for Araceae on a phylogram tree rooted on Acorus 

calamus. Bootstrap supports are indicated at nodes and the inferred frequency of the four 

possible events (gains, losses, duplications, demiduplications) with a probability >0.5 are shown 

above branches. The color-coding of event types is explained in the inset. Species investigated 

by FISH are labeled in red. 
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Fig. S3 Chromosome number reconstruction for Araceae on an ultrametric tree rooted on Acorus 

calamus. Posterior probabilities are indicated at nodes and the inferred frequency of the four 

possible events (gains, losses, duplications, demiduplications) with a probability >0.5 are shown 

above branches. The color-coding of event types is explained in the inset. Species investigated 

by FISH are labeled in red. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



136 

 

Fig. S4 (facing page) Detection of telomeric signals, 5S and 45S rDNA sites in chromosomes of (a–c) 

Scindapsus lucens (2n = 60); of telomeric signals and 5S rDNA sites in chromosomes of (d–e) 

Englerarum hypnosum (2n = 24); of only telomeric signals in chromosomes of (f) Pothos repens (2n = 

24) and (g) Anthurium wendlingeri (2n = 30); and of telomeric signals and 45S rDNA sites in 

chromosomes of (H-I) Rhaphidophora pteropoda (2n = 60) by FISH. Red arrowheads indicate the 

position of weak 5S rDNA sites, while green ones in (c) and (i) indicate the position of weak 45S 

rDNA signals. Empty plates named by NO indicate that experiments using these probes were not made 

in these species while by YES means that they were performed but the experiment did not work or the 

results were unsatisfactory. Bars correspond to 5 μm, and are valid for plates in each row.   
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 Molecular Cytogenetics (FISH, GISH) of  Coccinia 
grandis : A ca. 3 myr-Old Species of Cucurbitaceae 
with the Largest Y/Autosome Divergence in 
Flowering Plants 
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  a    Systematic Botany and Mycology, University of Munich (LMU),  Munich , and  b    Cytogenetics and Genome Analysis, 
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK),  Gatersleben , Germany 

view of plants with heteromorphic sex chromosomes reveal 
no relationship between species age and degree of sex chro-
mosome dimorphism. Its relatively small genome size (0.943 
pg/2C in males), large Y chromosome, and phylogenetic 
proximity to the fully sequenced  Cucumis sativus  make  C. 
grandis  a promising model to study sex chromosome evolu-
tion.  Copyright © 2012 S. Karger AG, Basel 

 Sex chromosomes in land plants are known from 48 
species in 20 families of liverworts, gymnosperms, and 
flowering plants, where they evolved independently and 
over widely different time spans [Ming et al., 2011]. In-
deed, the sex chromosomes of liverworts differ so funda-
mentally from those of vascular plants in functioning 
during the haploid phase of the life cycle, that they might 
better be considered a third chromosomal sex-determin-
ing system, besides X/Y and W/Z systems [Bachtrog et al., 
2011]. These independent origins offer the opportunity to 
compare incipient sex chromosomes, such as those of  Pa-
paya  and  Fragaria , which are just 0.5–2.2 myr old [Liu et 
al., 2004; Spigler et al., 2008, 2010; Yu et al., 2008], with 
older ones, such as those of  Silene  or  Rumex , which are 
thought to be over 10 myr old [Moore et al., 2003; Nava-
jas-Pérez et al., 2005; but see Discussion section]. So far, 

 Key Words 

 5S and 45S rDNA  �  C-Banding  �  FISH  �  GISH  �  Sex 
chromosome  �  Telomeres 

 Abstract 

 The independent evolution of heteromorphic sex chromo-
somes in 19 species from 4 families of flowering plants per-
mits studying X/Y divergence after the initial recombination 
suppression. Here, we document autosome/Y divergence in 
the tropical Cucurbitaceae  Coccinia grandis , which is ca. 3 
myr old. Karyotyping and C-value measurements show that 
the  C. grandis  Y chromosome has twice the size of any of the 
other chromosomes, with a male/female C-value difference 
of 0.094 pg or 10% of the total genome. FISH staining re-
vealed 5S and 45S rDNA sites on autosomes but not on the Y 
chromosome, making it unlikely that rDNA contributed to 
the elongation of the Y chromosome; recent end-to-end fu-
sion also seems unlikely given the lack of interstitial telomer-
ic signals. GISH with different concentrations of female 
blocking DNA detected a possible pseudo-autosomal region 
on the Y chromosome, and C-banding suggests that the en-
tire Y chromosome in  C. grandis  is heterochromatic. During 
meiosis, there is an end-to-end connection between the X 
and the Y chromosome, but the X does not otherwise differ 
from the remaining chromosomes. These findings and a re-
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heteromorphic sex chromosomes are reliably known 
from 19 species of Cannabaceae, Caryophyllaceae, Cu-
curbitaceae, and Polygonaceae [Ming et al., 2011]. About 
half of the 19 species have been studied with molecular-
genetic tools (e.g. Sakamoto et al. [2000]:  Cannabis  (Can-
nabaceae); Karlov et al. [2003], Divashuk et al. [2011], 
Grabowska-Joachimiak et al. [2011]:  Humulus  (Cannaba-
ceae); Ruiz Rejón et al. [1994], Shibata et al. [1999, 2000], 
Mariotti et al. [2006, 2009], Cuñado et al. [2007]:  Rumex 
 (Polygonaceae); Uchida et al. [2002], Lengerova et al. 
[2004], Hobza et al. [2006], Cermak et al. [2008], Kej-
novsky et al. [2009]:  Silene  (Caryophyllaceae)).

  Conspicuously neglected among the plants with het-
eromorphic sex chromosomes is the Cucurbitaceae  Coc-
cinia grandis . Classic cytogenetic work established that 
the Y chromosome in this species is much larger than the 
other chromosomes [Kumar and Deodikar, 1940; Bha-
duri and Bose, 1947; Chakravorti, 1948; Kumar and Vish-
veshwaraiah, 1952], and experimental work in the 1970s 
confirmed the sex-determining role of the single Y chro-
mosome [Roy and Roy, 1971]. In spite of the growing in-
terest in plant sex chromosomes [Ming et al., 2011], mod-
ern cytogenetic methods have not been applied to  C. 
grandis  nor has the size of its genome been determined. 
 C. grandis  belongs to a small genus (25 species) that is 
phylogenetically close to  Cucumis , the genus containing 
cucumber and melon [Schaefer and Renner, 2011]. A dat-
ed molecular phylogeny for 24  Coccinia  species including 
 C. grandis  is available [Holstein and Renner, 2011].

  Here, we characterize the karyotype of male and fe-
male  C. grandis  using mitotic and meiotic cell prepara-
tions, flow cytometry, FISH with telomere and 5S and 
45S rDNA probes, and GISH to evaluate differences be-
tween the sexes. We also review XY chromosome size 
differences in land plants (including the haploid-domi-
nant bryophytes), relating the differences to species ages 
inferred from molecular-clock studies. The questions we 
wanted to answer were (i) if rDNA or end-to-end fusions 
likely have contributed to the elongation of the Y chro-
mosome in  C. grandis  and (ii) if there is a relationship 
between the age of vascular plant sex chromosomes and 
the extent of X/Y or Y/autosome morphological diver-
gence.

  Materials and Methods 

 Plant Material 
  C. grandis  (L.) Voigt (including the illegitimate name  C. indica  

Wight & Arn.) ranges from tropical Africa to subtropical and 
tropical Asia and is an invasive weed on Hawaii, other Pacific is-

lands, and in tropical Australia. It belongs to  Coccinia , a genus of 
25 species in sub-Saharan Africa, all of them dioecious climbers. 
A recent revision of the genus has clarified the boundaries among 
the species [Holstein, 2012], and a dated molecular phylogeny that 
includes all but one of the species indicates that the entire genus 
evolved over just 7 myr [Holstein and Renner, 2011].

  Seeds for this study were collected in spring 2011 on the cam-
pus of Kakatiya University in Vidyaranyapura, located in the 
northern part of Bangalore, state of Warangal, India. In Munich, 
they were germinated on moist filter paper and then transferred 
to plastic pots with standard potting soil. Female and male plants 
were identified by chromosome preparations, and later verified by 
checking if their flowers were male or female. Plants are still in 
cultivation in the greenhouses of the Botanical Garden Munich, 
and a voucher has been deposited in the herbarium of Munich 
(Sousa and Silber 1 and 2).

  Flow Cytometric Genome Size Measurement 
 Nuclei were isolated from young leaves of 1 male and 1 female 

 C. grandis , the sex of which was known since the plants had flow-
ered. Measurements were made on 2 leaves per sex, with each 
measurement repeated 6 times on 2 different days. Roughly 50 
mm 2  of leaf tissue were co-chopped with equal amounts of young 
leaf tissue of  Glycine max , cv. Cina 5202 ‘Voran’ (IPK gene bank 
accession number SOJA 392; 2C = 2.23 pg; Borchert et al. [2007]) 
as an internal reference standard using a razor blade in a Petri dish 
containing 0.7 ml of nuclei isolation buffer [Galbraith et al., 1983] 
supplemented with 1% polyvinylpyrrolidone 25, 0.1% Tween 20 � , 
DNase-free RNase (50  � g/ml) and propidium iodide (50  � g/ml). 
The nuclei suspension was filtered through a 35- � m-mesh cell 
strainer cap into a 5-ml polystyrene falcon tube. After at least 15 
min of incubation, DNA content measurement was performed on 
the FACStar PLUS  cell sorter (BD Biosciences) equipped with an 
argon ion laser INNOVA 90C (Coherent). Approximately 10,000 
particles per sample were analyzed, and fluorescence intensities 
of nuclei were measured using the software CELL Quest ver. 3.3 
(BD Biosciences). The absolute DNA amounts were calculated 
based on the values of the G1 peak means.

  Chromosome Preparation 
 Mitotic metaphase chromosomes were prepared from root 

tips pre-treated in 2 m M  8-hydroxyquinoline for 20 h at 4   °   C, 
fixed in freshly prepared 3:   1 (v/v) ethanol/glacial acetic acid at 
room temperature overnight and kept at –20   °   C. Fixed root tips 
were washed 3 times for 5 min in distilled water, digested with 
1% cellulase (w/v; Onozuka RS, Serva), 0.4% pectolyase (w/v; Sig-
ma), 0.4% cytohelicase (w/v; Sigma) in citric buffer, pH 4.8 for 30 
min at 37   °   C, dissected in a drop of 45% acetic acid and squashed. 
Coverslips were removed after freezing in dry ice and prepara-
tions were air-dried at room temperature. The quality of spreads 
was checked microscopically using phase-contrast, and only 
preparations with at least 10 well-spread metaphases were used 
for FISH/GISH.

  Meiotic preparations were made from anthers of young buds. 
Anthers were fixed in 3:   1 (v/v) ethanol/glacial acetic acid at room 
temperature overnight and stored at –20   °   C. Fixed anthers were 
quickly washed in distilled water, dissected in a drop of 45% ace-
tic acid and squashed. Coverslips were removed after freezing, 
air-dried at room temperature, and the best slides were stained 
with DAPI (2  � g/ml). After taking pictures, slides were destained 
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in 3:   1 (v/v) ethanol/glacial acetic acid at room temperature for 30 
min, kept overnight at 10   °   C in 100% ethanol, air-dried and kept 
at room temperature until they were used for C-banding.

  DNA Probes 
 The heterologous ribosomal DNA sequences used as FISH 

probes were the 18S-5.8S-25S rDNA repeat unit of  Arabidopsis 
thaliana  in the pBSK+ plasmid, labeled with digoxigenin-11-
dUTP (Roche) by nick translation, and a 349-bp fragment of the 
5S rRNA gene repeated unit from  Beta vulgaris  cloned into pBSK+ 
[Schmidt et al., 1994], labeled with biotin-16-dUTP (Roche) by 
PCR. An  Arabidopsis -like telomeric probe was amplified by PCR 
according to Ijdo et al. [1991] using the oligomer primers (5 � -
TTTAGGG-3 � ) 5  and (5 � -CCCTAAA-3 � ) 5  and labeled with digoxi-
genin-11-dUTP by nick translation.

  For GISH, genomic DNA from  C. grandis  male and female 
plants was isolated using the DNeasy Plant Maxi Kit (QIAGEN). 
Genomic DNA (1  � g) was autoclaved for 2 min to a fragment size 
range of 200–400 bp and labeled with digoxigenin-11-dUTP or 
biotin-16-dUTP (Roche) by nick translation. Blocking DNA was 
obtained by autoclaving total genomic DNA for 5 min, yielding 
fragments of approximately 100–200 bp. In GISH experiments, 
the probe/block ratio was 1:   47, 1:   70 and 1:   100. Digoxigenin-la-
beled probes were detected with anti-digoxigenin conjugated 
with FITC (Roche) and biotin-labeled probes with ExtrAvidin 
conjugated with Cy3 (Sigma).

  FISH 
 FISH was carried out using the method of Schwarzacher and 

Heslop-Harrison [2000] with minor modifications. Slides were 
pre-treated with 100  � g/ml of RNase A in 2 !  SSC buffer for 1 h 
at 37   °   C and washed 3 times for 5 min in 2 !  SSC. They were then 
treated with 10  � g/ml Pepsin (Sigma) in 0.01  N  HCl for 20 min at 
37   °   C, washed twice for 5 min in 2 !  SSC, post-fixed in 4% form-
aldehyde solution (Roth) for 5 min at room temperature, washed 
again 3 times for 5 min in 2 !  SSC, dehydrated for 5 min in a 70 
and 100% ethanol series and air-dried for at least 1 h at room tem-
perature. Hybridization mixtures consisted of 50% formamide 
(w/v), 2 !  SSC, 10% dextran sulfate (w/v) and 70–200 ng of labeled 
probe. The hybridization mix was denatured at 75   °   C for 10 min 
and immediately cooled on ice for 10 min; 10–15  � l of the mix was 
then added to each slide and covered with a glass coverslip. For 
hybridization, the chromosomes, together with the hybridization 
mixture, were denatured for 5 min at 75   °   C. Hybridization was 
carried out in a humid chamber at 37   °   C for 20 h. After hybridiza-
tion, the slides were washed 3 times for 5 min in 2 !  SSC at 42   °   C, 
5 min in 2 !  SSC at room temperature and 5 min in 2 !  SSC/0.1% 
(v/v) Tween 20 at room temperature. For digoxigenin and biotin 
detection, slides were incubated in blocking buffer (2% BSA in 2 !  
SSC) in a humid chamber for 30 min at 37   °   C, followed by incuba-
tion with anti-DIG-FITC conjugate (Roche) and streptavidin-Cy3 
conjugate (Sigma) at 37   °   C for 1 h. Excess of antibody was removed 
by washing the slides twice for 7 min in 2 !  SSC and for 7 min in 
2 !  SSC/0.1% (v/v) Tween 20 at 42   °   C. The chromosomes were 
counterstained with DAPI (2  � g/ml) and mounted in Vectashield 
(Vector).

  GISH 
 The GISH procedure resembled the FISH procedure except 

that blocking DNA was added to the hybridization mixture. The 

latter thus consisted of 50% formamide (w/v), 2 !  SSC, 10% dex-
tran sulfate (w/v), 83 ng of digoxigenin-labeled  C. grandis  male 
DNA probe, and 3,500–8,500 ng of non-labeled genomic DNA of 
a  C. grandis  female. To achieve a 1:   47, 1:   70 or 1:   100 ratio between 
probe and blocking DNA we used  C. grandis  female DNA at con-
centrations of 3,928, 6,017 and 8,300 ng.

  C-Banding 
 C-banding was performed according to Schwarzacher et al. 

[1980] with minor modifications. Slides were left for 3 d at room 
temperature and then incubated in 45% acetic acid at 60   °   C for 10 
min, washed for 1 min in running tap water, dried using an air 
pump, and incubated in barium hydroxide (Roth) at room tem-
perature for 10 min. The crystals of barium hydroxide were re-
moved by briefly washing the slides in running tap water, fol-
lowed by a rinse in 45% acetic acid, another 2 min in running tap 
water and a final rinse in distilled water. The slides were dried us-
ing an air pump, and incubated in 2 !  SSC at 60   °   C for 1 h 20 min. 
After the incubation, the slides were washed in distilled water, 
dried, counterstained with DAPI (2  � g/ml), and mounted in 
Vectashield (Vector).

  Image Analysis 
 Images were taken with a Leica DMR microscope equipped 

with a KAPPA-CCD camera and the KAPPA software. They were 
optimized for best contrast and brightness using Adobe Photo-
shop CS3 version 10.0.

  Karyotype Analysis 
 Chromosomes and positions of rDNA sites were measured us-

ing Adobe Photoshop CS3, and idiograms were constructed based 
on the analysis of 4 well-spread metaphases, with chromosomes 
ordered from the largest to the shortest pair, except for the Y chro-
mosome. The X chromosome was assumed to be the smallest 
chromosome not pairing with an equal-sized autosome; no spe-
cific X probes are so far known for  C. grandis . The chromosome 
arm ratio (AR, defined as length of the long arm/length of the 
short arm) was used to classify chromosomes as metacentric
(AR = 1–1.4), submetacentric (AR = 1.5–2.9), or acrocentric
(AR  6  3.0) following Guerra [1986].

  Review of X/Y or Y/Autosome Size Differences in Land Plants 
 Vascular plants with heteromorphic sex chromosomes were 

tabulated based on Ming et al. [2011] and the most recent available 
data on their karyotypes, chromosome lengths, and male/female 
C-value differences were compiled from the literature. Diver-
gence times for the relevant species inferred with molecular 
clocks were compiled from phylogenetic studies.

  Results 

 Karyotype, Idiogram, Meiosis and FISH Results 
  C. grandis  females have a karyotype of 2n = 22 + XX 

and males have 2n = 22 + XY. As the unpaired large chro-
mosome correlates with maleness in the phenotype,  C .  
grandis  has heteromorphic sex chromosomes. On an aga-
rose gel (online suppl. fig. 1, for all online suppl. materi-
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als, see www.karger.com/doi/10.1159/000345370), auto-
claved  C. grandis  female DNA was more stable than male 
DNA.

  Two 45S rDNA sites and one 5S rDNA site were de-
tected in both male and female individuals. The two 45S 
rDNA sites were always located at the terminal regions of 
the chromosomes, and the 5S rDNA site was adjacent to 
one 45S rDNA site ( fig. 1 C, F). Secondary constrictions 
were observed in at least 1 chromosome per karyotype in 
both sexes (see arrowheads in  fig. 1 A, D and their insets). 
The  Arabidopsis -like telomeric probe revealed telomere 
sequences at the ends of all chromosomes in both females 
and males ( fig. 1 B, E), but no interstitial telomere sites. 

 Figure 2  shows idiograms of  C. grandis  male and female 
individuals. rDNA sites are presented in  figure 2  only in 
males; females had the same numbers and positions of 
rDNA.

  In meiosis, 12 bivalents could be seen in late prophase 
I (diakinesis) and in the metaphase plate ( fig. 3 ). Clear 
end-to-end connections between the X and the Y chro-
mosome were observed ( fig. 3 A, C, E; as also reported by 
Bhaduri and Bose [1947]).

  GISH and C-Banding Results 
 GISH experiments were performed with males, using 

male and female genomic probes.  Figure 1 H shows that 
the male genomic probe labeled the (peri-)centromeric 
and some subterminal regions plus the complete Y chro-
mosome. When the same metaphase preparation was hy-
bridized with the female genomic probe ( fig. 1 I), the cen-
tromeric regions and the Y chromosome again were in-
tensely labeled. The overlap of male and female probes 
( fig. 1 I, inset using DAPI in gray) on the Y chromosome 
shows that the centromeric region was not well-labeled in 
comparison to the other chromosomes (arrowheads 
 fig. 1 H, I), suggesting that the centromere sequences of 
the autosomes/X chromosome and the Y chromosome 
differ in DNA composition. In a few chromosomes, in-
cluding the Y chromosome, the subterminal regions were 
predominantly labeled with male genomic probe (these 
chromosomes are marked by brackets in  fig. 1 H, I), indi-
cating that subterminal repetitive sequences may have ac-
cumulated on the Y chromosome.

  Fig. 1.  FISH ( A – F ) and GISH ( G – L ) on mitotic metaphase chromo-
somes of  C. grandis .  A ,  D  DAPI stained chromosomes (2n = 24) 
with 24 homomorphic chromosomes in a female plant, and 23 
homomorphic chromosomes and a large heteromorphic Y chro-
mosome in a male plant, respectively. Insets show magnified 
chromosomes with arrowheads marking satellites.  B ,  E  Distribu-
tion of telomeric sequences (small green dots located at the end
of the chromosomes) and 45S rDNA (4 strong green signals).  C–

F  Bicolor FISH with 45S rDNA (green) and 5S rDNA probe (red). 
DAPI male metaphase ( G ), and GISH using male genomic probe 
( H ) and female genomic probe ( I ). Arrowheads in  H  and  I  show the 
Y centromere region; the Inset ( I ) shows an enlarged Y chromo-
some with its centromeric region not strongly labeled by either 
genomic probe.  J–L  GISH using 47 ! , 70 ! , and 100 !  excess of 
female blocking DNA, respectively. Arrowheads in  L  show small 
hybridization gaps. Scale bars correspond to 5  � m. 

  Fig. 2.  Idiograms of the haploid chromo-
some complement of  C. grandis , including 
5S (red) and 45S (green) rDNA sites (al-
though only shown in the male, they are 
equally distributed in the female). Chro-
mosome pairs were put together by simi-
larity. The X chromosome is shown beside 
the Y chromosome in the male. Telomere 
sites were detected in all chromosome 
ends and are not represented in this idio-
gram. Bar corresponds to 5  � m. 
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  When male genomic probes were used with female 
blocking DNA in different concentrations, the intensity 
of the hybridization signals in the centromeric region of 
the chromosomes decreased or disappeared entirely with 
increasing concentration of female DNA. With 47 !  ex-
cess of blocking DNA, the Y chromosome was well-la-
beled as were most of the chromosomes ( fig. 1 J); with 70 !  
excess of blocking DNA, the Y chromosome still was 
well-labeled, but a few chromosomes exhibited no or 
weak hybridization signals ( fig. 1 K); with 100 !  excess of 
blocking DNA, the Y chromosome started to present hy-
bridization gaps not labeled by the male genomic probe, 
and 1 terminal region did not show any detectable hy-

bridization signal ( fig. 1 L, arrowheads). The reduction of 
the signal strength presumably is associated with similar 
repetitive sequences shared by male and female C. gran-
dis.

  C-banded heterochromatic regions in females were 
mostly concentrated in centromeric/pericentromeric re-
gions ( fig.  4 B, C) while in males ( fig.  4 E, F) they were
diffusely pericentromeric/subterminal. The Y chromo-
some showed the same DAPI intensity before and after 
C-banding, again suggesting that the Y chromosome in
 C. grandis  is heterochromatic. Using Giemsa staining 
( fig. 4 C, F), female pre-metaphase chromosomes were all 
more or less well-stained while male pre-metaphases 
showed only few chromosomes, including the Y chromo-
some, with strong Giemsa-labeling.

  In meiotic cells stained with DAPI, bivalents in meta-
phase I displayed few differences before and after C-
banding (see  fig.  3 C, D). The terminal region of the X 
chromosome, but not the Y chromosome, was DAPI-pos-
itive, implying that the pseudoautosomal region is main-
ly euchromatic ( fig. 3 D). The autosomes were more in-
tensely stained in the internal region of each bivalent, and 
no detectable morphological distinction could be ob-
served between the X and the autosomes ( fig. 3 D). With 
Giemsa-staining ( fig. 3 F), some bivalents in late prophase 
I exhibited less labeling than others (see arrowheads) af-
ter C-banding, and the free terminal region of the X chro-
mosome was less strongly labeled than its other end, con-
nected to the Y chromosome.

  Chromosome Measurements, C-Values and 
Comparison with Other Vascular Plant Sex 
Chromosomes 
 Chromosome lengths in the female varied from 1.35 

to 2.26  � m and in the male from 1.33 to 4.71  � m. The 
largest autosome in males was 2.28  � m long, meaning 
that the Y chromosome, with 4.71  � m, is around twice as 
long as the largest chromosome. On the basis of their cen-
tromere position, all  C. grandis  chromosomes have an AR 
index of 1–1.4, making them metacentric (see  table  1 ). 
Based on measurements on nuclei isolated from young 
leaf tissue, female individuals have a C-value of 0.849 
pg/2C and male individuals of 0.943 pg/2C ( table 2 ).

   Table  3  summarizes data on X and Y chromosome 
lengths, C-values, and inferred ages for vascular plant spe-
cies with heteromorphic sex chromosomes. Species with 
sex chromosomes are usually characterized by ARs (p/q) 
and relative, not absolute lengths because length to some 
extent depends on the preparation protocol and environ-
mental factors. The data available so far reveal no relation-

A B

C D

E F

  Fig. 3.  Meiosis I in a  C. grandis  male, with the position of the sex 
chromosomes (X/Y) indicated in all cells.  A  Twelve bivalents in 
metaphase I moving together along the metaphase plate.  B  Early 
anaphase I with the migration of bivalents and X/Y chromosomes 
to opposite poles of the cell.  C ,  E  Cells stained with DAPI before 
C-banding ( D ,  F ).  D  Bivalents stained with DAPI showing no de-
tectable morphological distinction between the X and autosomes. 
 F  Cell stained with Giemsa showing weakly stained bivalents (ar-
rowheads) including the terminal region of X chromosome. Bar 
corresponds to 5 μm. 
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A B C

D E F

  Fig. 4.  C-banding in a  C. grandis  female ( A – C ) and male ( D – F ).
 A ,  D  Metaphases stained with DAPI before C-banding. Chromo-
somes are stained along their entire length.  B ,  E  Metaphases show-
ing centromeric and subterminal DAPI-positive regions, hence 
heterochromatic. The Y chromosome in  D  and  E  shows similar 
DAPI intensity before and after C-banding.  C ,  F  Pre-metaphases 

stained with Giemsa after C-banding. The heterochromatin is 
well-distributed on all chromosomes in  C  while it is concentrated 
on the Y chromosome in  F . Arrows in  D – F  indicate the Y chromo-
some. Bar in  B  valid for  A , and in  E  valid for  D . Bars correspond 
to 5  � m. 

Table 1. M orphology of C. grandis male and female chromosomes

Chromosome pairs Chromosome size, �m AR C hromosome type

male female male female ma le female

1 2.2880.25 2.2680.06 1.13 1.21 m m
2 2.0180.14 2.0380.13 1.12 1.24 m m
3 1.8780.14 2.0180.06 1.17 1.22 m m
4 1.8780.14 1.9680.05 1.15 1.19 m m
5a 1.7580.21 1.8580.03 1.19 1.16 m m
6 1.7380.11 1.7880.02 1.28 1.14 m m
7b 1.6680.14 1.7580.04 1.29 1.23 m m
8 1.6680.14 1.6980.05 1.23 1.14 m m
9 1.6080.06 1.6580.04 1.28 1.36 m m
10 1.5680.03 1.6080.06 1.22 1.32 m m
11 1.4480.04 1.5880.08 1.14 1.26 m m
12Xc 1.3380.05 1.3580.12 1.09 1.21 m m
12Y 4.7180.34 1.18 m

a C hromosome pairs with only 45S. b Chromosome pairs with 45S and 5S rDNA. c Likely X chromosome/X chromosome pair.
m = Metacentric. The length of satellites is not included in the chromosome length.
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ship between the ages of sex chromosomes and the extent 
of Y/autosome or X/Y divergence. In terms of total genome 
size,  C. grandis  has the smallest genomes of all vascular 
plants with heteromorphic sex chromosomes ( table 3 ).

  Discussion 

 The Extent of Y/Autosome Divergence in C. grandis 
 Our results show that  C. grandis  has the greatest Y/au-

tosome size difference documented in vascular plants 
(2.43  � m;  table 1 ): The Y chromosome of  C. grandis  is 
2.06 times larger than the largest chromosome (in con-
trast to previous reports of it being 2.5 !  or 3–4 !  longer 
than the largest autosome; Bhaduri and Bose [1947]; Guha 
et al. [2004]). Experimental work on  C. grandis , using 
diploid individuals and artificial polyploids, has estab-
lished the male-determining effect of the presence of the 
Y chromosome; individual tetraploid plants with a karyo-
type of XXXY still were normal males [Roy and Roy, 
1971]. As previously reported, the chromosome number 

of  C. grandis  is 2n = 22 + XX or 22 + XY [Kumar and 
Deodikar, 1940 probably by mistake reported 2n = 26 for 
both sexes; Bhaduri and Bose, 1947; Chakravorti, 1948; 
Kumar and Vishveshwaraiah, 1952].

  The degree of divergence of the male and female ge-
nome in  C. grandis  is evident also from the C-values: The 
difference between the male and female genomes is al-
most 0.1 pg of DNA, which is in the range of an entire 
small plant genome ( Genlisea margaretae , 1C = 0.065 pg; 
Greilhuber et al. [2006]) and amounts to ca. 10% of the  C. 
grandis  genome (0.094 pg/2C). In  Silene latifolia , the male 
genome weighs 5.85 pg/2C, the female 5.73 pg/2C, with 
the Y chromosome making up ca. 9% of the male genome 
and the X chromosome ca. 8% of the female genome 
[Siroky et al., 2001].

  Autosome sizes in  C. grandis  vary from 2.28 to 1.44 
 � m in males and from 2.26 to 1.58  � m in females ( ta-
ble 1 ), both sexes having exclusively metacentric chromo-
somes ( fig.  2 ), with the X chromosome probably the 
smallest chromosome of the complement, an assumption 
that needs testing. Both sexes also have the same number 

Table 2. F low cytometric measurements for male and female C. grandis

Leaves Samples DNA content, pg/2C SD

Male 2 12 0.943 0.005
Female 2 12 0.849 0.005

Table 3. C hromosome numbers, lengths, 2C-values, and inferred age of sex chromosomes in vascular plant species with heteromorphic 
sex chromosomes

Species Chromosome 
number, 2n

Chromosomal sex 
determination

X chromosome length
�m

Y chromosome length
�m

DNA content (2C)
pg

Age of species 
or clade, myr

References (studies
with age estimates)

Podocarpus macrophyllus 37, 38 X1X2/Y unknown 9.1 unknown unknown Hizume et al. [1988]

Coccinia grandis 24 XX/XY indistinguishable from
autosomes

4.71 (10% of male
genome weight)

M = 0.943
F = 0.849

3–6 Holstein and Renner 
[2011]; Holstein [2012]

Humulus japonicus 16, 17 XX/XY1Y2 3.11 Y1 = 2.98
Y2 = 2.75

M = 3.522 unknown Grabowska-Joachimiak 
et al. [2006]

Humulus lupulus 20 XX/XY 2.39a 1.63 M = 5.523 unknown Grabowska-Joachimiak 
et al. [2006]

Rumex acetosa 14, 15 XX/XY1Y2 3% of female genome
weight

Y1 = 7.5
Y2 = 6.9
(20% of male genome 
weight)

M = 7.498
F = 7

15–16 Kurita and Kuroki 
[1970]; Błocka-Wandas 
et al. [2007]

Silene latifolia 24 XX/XY slightly smaller than
autosomes (8% of female 
genome weight)

much longer than
autosomes (9% of
male genome weight)

M = 5.85
F = 5.73

3.5–24 Siroky et al. [2001] 
(Moore et al. [2003]; 
Nicolas et al. [2005]; 
Rautenberg et al. [2012])

a Putative X chromosome.
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and distribution of rDNA sites on the autosomes ( fig. 1 C, 
F) while no rDNA site was detected on the Y chromo-
some. At least one of the chromosome pairs of  C. grandis  
labeled with 45S rDNA bears a secondary constriction, 
but in contrast to previous reports [Bhaduri and Bose, 
1947; Agarwal and Roy, 1984; Chattopadhyay and Shar-
ma, 1991] no secondary constriction was seen on the Y 
chromosome. In species of  Silene ,  Rumex  and  Humulus  
with heteromorphic sex chromosomes, the rDNA sites 
are also restricted to autosomes [Siroky et al., 2001; Kar-
lov et al., 2003; Cuñado et al., 2007; Grabowska-Joachi-
miak et al., 2011], but  Spinacia oleracea  has a 45S rDNA 
site on the X chromosome [Lan et al., 2006]. It thus ap-
pears that rDNA does not greatly or regularly contribute 
to the morphological divergence of plant Y chromo-
somes.

  Of the heteromorphic sex chromosomes that have 
been studied, most have undergone extensive rearrange-
ments or end-to-end fusions. Thus, in  Podocarpus mac-
rophyllus  (2n = 34 + X 1 X 2 Y;  table 3 ), females have 38 telo-
centric chromosomes while males have 36 telocentric and 
1 large submetacentric Y chromosome. In meiosis I, the 
 P. macrophyllus  Y chromosome pairs with 2 telocentric 
chromosomes to form a trivalent, suggesting it may have 
originated from a telocentric fusion of 2 telocentric chro-
mosomes [Hizume et al., 1988]. In  Humulus japonicus , a 
species with an XY 1 Y 2  sex chromosome system ( table 3 ), 
interstitial telomeric sites on 1 autosome pair also point 
to a fusion event having led to the reduction of the chro-
mosome number from 18 to 14 + XY 1 Y 2  [Grabowska-
Joachimiak et al., 2011]. And in  S. latifolia  telomere-ho-
mologous sequences on the sex chromosomes provide 
evidence of a translocation of subtelomeric sites [Uchida 
et al., 2002]. In  C. grandis , however, we did not find any 
telomeric sequences at interstitial sites ( fig. 1 B, E), sug-
gesting that such fusions have not contributed, at least not 
recently, to the elongation of this species’ Y chromosome.

  Our GISH experiments revealed the preferential dis-
tribution of repetitive sequences in male and female indi-
viduals of  C. grandis . In plants with small genomes, GISH 
signals tend to be unclear and restricted to pericentro-
meric heterochromatin blocks [Ali et al., 2004]. In  C. 
grandis  males, however, male and female genomic probes 
clearly differed in spite of the small genome size of the 
species (female individuals 0.849 pg/2C; male individuals 
0.943 pg/2C). Male genomic DNA ( fig. 1 H) hybridized to 
centromeric and some subterminal regions of the chro-
mosomes, while female genomic DNA ( fig. 1 I) hybridized 
mainly to centromeric regions. Both genomic probes hy-
bridized to the Y chromosome, and C-banding results 

indicate that the Y chromosome is indeed mostly hetero-
chromatic ( fig. 4 D, F). This fits with repetitive sequences 
forming large clusters in the centromeric and subtermi-
nal regions of the autosomes and having accumulated on 
the Y.

  The types of repetitive DNA in the centromere of the 
 C. grandis  Y appear to be different from those in the cen-
tromeres of the autosomes and X chromosome ( fig. 1 I, 
inset). The situation might resemble that found in  S. lati-
folia , where the centromeres of the autosomes and X 
chromosome are rich in  Silene  tandem repeat centromer-
ic sequences and transposable elements, while the Y cen-
tromere contains  Silene  tandem repeat Y sequences [Cer-
mak et al., 2008; Kejnovsky et al., 2009]. In  C. grandis  Y 
chromosomes, male-specific regions became progres-
sively more visible with increasing concentrations of fe-
male blocking DNA ( fig. 1 J–L), and terminal regions that 
failed to label with either male or female DNA probably 
are pseudoautosomal regions, still engaged in recombi-
nation. In meiosis, there is an end-to-end connection be-
tween the X and the Y chromosome, but the X does not 
otherwise differ from the remaining chromosomes.

  Ages of Plant Y Chromosomes and Their Size Change 
over Time 
 An increase in the size of some, but not all ( table 3 ), 

vascular plant Y chromosomes has been attributed to the 
accumulation of repetitive DNA, especially transposable 
elements (Bergero et al. [2008], Cermak et al. [2008],
Kejnovsky et al. [2009]:  Silene latifolia ; Mariotti et al. 
[2006, 2009], Cuñado et al. [2007]:  Rumex acetosa ). Such 
accumulation is thought to occur because of inefficient 
selection in non-recombining regions [Charlesworth and 
Charlesworth, 2000]. The best studied plant Y chromo-
some, that of  S. latifolia , indeed does show signs of degen-
eration, including reduced levels of polymorphism, re-
duced gene expression levels, and transposable element 
insertion in Y genes [Filatov et al., 2000; Marais et al., 
2008]. The degeneration, however, is less pronounced 
than that documented from animal sex chromosomes, 
perhaps because they are older or because of purifying 
selection during the haploid stage of the embryophyte life 
cycle [Armstrong and Filatov, 2008; Bergero and Charles-
worth, 2011; Chibalina and Filatov, 2011]. An estimated 
62% of the genes of  A. thaliana  are expressed in its hap-
loid pollen tubes [Honys and Twell, 2003]. In liverworts, 
in which the haploid gametophyte is the predominant 
stage and in which there is no XX recombination, sex 
chromosome dimorphism may follow a different trajec-
tory from that in vascular plants, where the diploid spo-
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The main purpose of placing chromosome numbers in a phylogenetic context is to 

infer the direction of change that may have occurred during the course of evolution, from high 

to low numbers or the other way around. Until the turn of the millennium, cytogenetic studies 

did not explicitly consider phylogenetic relationships, and attempts to combine insights from 

microscopic studies with those from comparative (cladistic) frameworks were fraught with 

problems (cf. the Introduction of this thesis). Even with the availability of DNA phylogenies, 

the erroneous interpretation or use of sampled chromosome numbers for entire plant orders or 

families (e.g., Bedini et al., 2012) and the concept of a basic number (“x”) inferred in ad hoc 

ways (Soltis et al., 2005), have persisted. In my doctoral research, I have contributed 

empirically as well as theoretically towards a new framework in which to think about the 

evolution of chromosome numbers. 

 

Chromosome number and phylogenetics: How good is this combination? 

 

The large monocot family Araceae was selected in this thesis to test the combination 

of cytogenetics and phylogenetics (Chapter 2, 3, and 4). The high frequency of 2n = 28 in the 

well-counted clade Aroideae (Cusimano et al., 2012: Table S1; Sousa et al., 2014) probably 

unduly influenced early ideas about a (supposed) basic number x of 7 or 14 in the Araceae 

(Larsen, 1969; Marchant, 1973). These earlier hypotheses were developed before the 

relatively complete phylogenetic information for the Araceae that is available today, most 

importantly before the insight that the five genera of Lemnoideae (in the past treated as 

Lemnaceae) are nested inside the Araceae. The Lemnoideae have chromosome numbers of n 

= 10, 15, and 20, numbers that greatly affect the overall range of chromosome numbers found 

in early-diverging Araceae: The haploid numbers known so far are n = 13, 14, 15, 20, 24, and 

30, and thus are relatively high. Using a phylogeny for the family that I enlarged to better 

cover certain chromosomally important groups and the approach developed by Mayrose and 

collaborators (2010), I found an evolutionary trend in the family from higher to lower 

chromosome numbers, rather than the other way around (n = 16 and 18: Chapter 2; n = 16: 

Chapter 4). The data also suggest a small role of polyploidization in the Araceae, different 

from many other groups of flowering plants. 

 Research on polyploidy in angiosperms began with Gates (1909) who discovered a 

tetraploid mutant of Oenothera lamarckiana, which exhibits larger cells and nuclei containing 
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28 instead 14 chromosomes. Just a few years earlier, P. Pernice (1889) had discovered the 

power of colchicine to inhibit microtubule formation, resulting in experimentally induced 

doubling of the entire complement of a cell’s chromosome set, a method then perfected by 

Blakeslee (1939). With these tools in hand, interest in knowing and estimating how many 

plants are polyploid exploded. In 1994, Jane Masterson estimated, based on the relation 

between chromosome number and guard cell diameter that up to 80% of angiosperms may be 

polyploids. Using a different way of estimation, Wood et al. (2009) arrived at 31% in ferns 

and 15% in angiosperms. Such estimates, of course, greatly depend on the total number of 

angiosperm species that is assumed. This ranges from 304,419 accepted in Plant List 

(http://www.theplantlist.org/1.1/browse/A/#statistics vs. 1.1. of 13 Sep. 2013, accessed 12 

Jan. 2014) to 352,000 (Patton et al., 2008). Earlier estimates were much lower and for many 

years the accepted number was 240,000 (Brumitt et al. 1992). A second, just as large, problem 

is that only a small fraction of angiosperms have had their chromosomes counted. 

Chromosome counts exist for 60,000 of the 300,000 to 352,000 species of flowering plants 

(Bennett, 1998; http://www.theplantlist.org/browse/A/), and many are listed in an electronic 

database for chromosome numbers, the 'Index of Plant Chromosome numbers' 

(http://mobot.mobot.org/W3T/Search/ipcn.html). Given the incomplete knowledge of 

angiosperm chromosome numbers, any percentages of polyploid angiosperms remain rough 

guesses. 

Whatever the true fractions of polyploid species of ferns and flowering plants may 

turn out to be, only very few clades have had their history of polyploidization studied by the 

combination of cytogenetic and phylogenetic methods that is the sine qua non for inferring 

evolutionary direction (i.e. Dahlia: Gatt et al., 1999; Nicotiana: Chase et al., 2003; 

Rhynchospora: Vanzela et al. 2003; Tragopogon: Soltis et al., 2004; Arabidopsis: Lysak et al., 

2006; Tolmiea, Galax, Chamerion , Heuchera, and Vaccinium: Soltis et al., 2007; Trifolium: 

Ansari et al., 2008; Coffea: Cenci et al., 2012). Much work is needed in this area.   

As I have explained in the Introduction to this thesis and in Chapter 2, ancestral 

chromosome numbers today can no longer be inferred simply from published haploid or 

diploid numbers. A drastic example comes from the historically inferred “ancestral” haploid 

numbers in the Araceae. For example, if somebody would take my new Araceae counts from 

Chapter 3 and infer the basic number x in the traditional way, the result would be that Araceae 

have x = 4, this being the lowest reported count from the family. Other problems with the 

http://www.theplantlist.org/1.1/browse/A/#statistics
http://www.theplantlist.org/browse/A/
http://mobot.mobot.org/W3T/Search/ipcn.html
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concept of an ancestral “x” were discussed in the Introduction (pp. 5 and 6), among them the 

failure to consider information from outgroups.  

The focus on the role of polyploidization in plant diversification has led to attempts to 

combine chromosome number, genome size, and phylogeny (e.g., Oyama et al., 2008; 

Sánchez-Jiménez et al., 2012; Soza et al, 2013; Pellicer et al., 2013; Pellicer et al., 2014). 

Several studies of this kind have disregarded that chromosome number and genome size are 

not evolutionary linked (Leitch and Bennett, 2004). The latter review showed for a sample of 

546 monocots and 981 eudicots from many families that in many investigated cases, species 

with higher ploidy levels had smaller genome sizes than expected, in spite of their high 

chromosome numbers. The mechanism responsible for this empirical observation is genome 

downsizing, thought to be a common event, where hybridization is accompanied by extensive 

elimination of repetitive DNA and duplicated genes. This can completely mask the history of 

genomic and chromosome number change. For example, in maize, which underwent recent 

whole-genome duplication in addition to an ancient one, >50% of the duplicated genes have 

been deleted (Abrouk et al., 2010). Sometimes, the elimination of redundant DNA in a newly 

formed polyploid species is directional, leaving more of the DNA of one of the progenitors 

than of the other (Shaked et al., 2001; Chase et al., 2003). So far, only in ferns (2n = 18 to 

c.1440) is there a good linear relationship between chromosome number and genome size 

(Leitch and Leitch, 2012).  

Phylogenetic modeling of chromosome number change, using the event-based 

approach of Mayrose et al. (2010), seems to be the best current manner of “reconstructing” 

ancestral chromosome numbers. At least this approach is reproducible. A caveat is that only 

with a dense sample of counted species, can we hope to arrive at solid inferences. In the 

Araceae, few chromosome counts are available for the outgroup families (see Chapter 4). 

Moreover, the outgroups are phylogenetically distant from the Araceae, which are the sister to 

a clade of all other Alismatales families, a divergence that is at least 120 million years old 

(Nauheimer et al., 2012). It is therefore not surprising that the long genetic branches and 

sparse counts near the base of the Araceae phylogeny result in great uncertainty for all 

inferred events near the root. However, the subsequent evolutionary downward trend in 

chromosome numbers is statistically well supported, going from a = 16 to 15 to 14 on the 

ultrametric tree and from a = 16 to 14 to 13 and back to 14 on the phylogram (Figs. 1 and S1 

in Chapter 4).  
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 Another problem is that there is no criterion for which depiction of the input 

phylogeny is preferable, a phylogram in which branch lengths are proportional to numbers of 

apomorphic substitutions or an ultrametric tree in which branch lengths are proportional to 

time, with time either relative (without a scale) or absolute (typically in million years). The 

two types of branch-length depiction can give similar or drastically different inference of 

chromosome numbers at internal nodes (Figs. 1 and S1 in Chapter 4). This problem is 

discussed in Cusimano and Renner (in review), who recommend carrying out inferences on 

both types of trees and then to use outside evidence to choose a preferred scenario. A good 

example showing this was the genus Portulaca, where ancestral chromosome numbers a = 4 

or 5 were obtained on the phylogram but a = 12 on the ultrametric tree. Based on the observed 

chromosome number for this group, a = 12 is the more plausible result because it is similar to 

the chromosome numbers of the outgroups and because n = 4 is found in only one derived 

species while most others have numbers closer to n = 12. Cusimano and Renner (in review) 

also found that in some data sets, reconstructions are unaffected by the way branch lengths are 

modeled, and they suggest that simpler scenarios, explaining the data with fewer inferred 

steps, should probably be preferred. This might be one way to decide in cases where 

phylograms and ultrametric trees yield models of different complexity. 

 

Molecular cytogenetic data support certain ancestral state reconstructions 

 

A total of 29 species from 12 genera of Araceae were newly investigated in my 

cytogenetic work, and I used FISH with three DNA markers (5S and 45S rDNA, and 

Arabidopsis-like telomeres) on 24 of them and found new chromosome numbers in 21 

(Chapters 3 and 4). The number of 5S rDNA sites (one) was conserved, and only in two 

species (Cyrtosperma merkusii with 2n = 39 and Englerarum hypnosum with 2n = 24) did I 

see atypical signals (see Chapter 4). However, the chromosomal distribution of 5S rDNA 

signals was highly variable among species (Chapters 3 and 4), and the number of 45S rDNA 

sites also varied. In the genus Typhonium (Chapter 3), most species (6) exhibited two 45S 

rDNA sites, with the exception of two that had polymorphic number of signals (five instead of 

four), one species with only one site, and other species with eight sites. On the other hand, 2 

species of Spathiphyllum with 2n = 30 had three or eight 45S rDNA sites (S. pygmaeum and 

S. tenerum), while an Anthurium species with the same chromosome number (A. leuconerum, 
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2n = 30) had two sites, and another pair of close relatives, both with 2n = 60, had one or two 

45S rDNA sites (Monstera deliciosa and Scindapsus lucens; Chapter 4). Telomeres were 

detected at the chromosome ends of all 24 species, and also in interstitial position in five 

species (Typhonium laoticum and T. spec. H.AR. 664: Chapter 3; Anthurium leuconerum, A. 

wendlingeri, and Spathiphyllum tenerum: Chapter 4).  

From these results it is clear that the power of the cytogenetic tools is that they point 

us (visually) to likely chromosome rearrangements that could have been responsible for the 

increase/decrease of chromosome numbers. My FISH results for the Typhonium genus 

(Chapter 3) supported three model-based ancestral chromosome number reconstructions: Two 

chromosome number reductions (by the observation of interstitial telomere repeats [ITR]) and 

one polyploidization event (higher number of 45S rDNA). Interstitial telomere repeats have 

been related mainly to three kinds of chromosome rearrangements (Fig. 1 reproduced here 

from Chapter 3, Fig. S5). For T. laoticum with 2n = 9, the existence of two interstitial 

telomere repeats (ITR) in the proximal region of the largest chromosome pair, seems to 

involve a different mechanism. I am explaining this by a reciprocal translocation between two 

acrocentric chromosomes, with one experiencing a break in its telomere sequence array and 

the other a break close to the centromeric region of its long arm. The products of this 

translocation would be a metacentric chromosome with a weakly detectible ITR, no longer 

functional, and a small chromosome comprising only part of the telomere sequence from one 

donor and the entire short arm and centromere of the other donor. Alternatively, only part of a 

telomere sequence might come from one donor and a centromere and the complete telomere 

sequence array from the other donor (Fig. 2 reproduced here from Chapter 3, Fig. 5). 

 Similar events (Fig. 2) could have occurred in Spathiphyllum tenerum (2n = 30) but 

hardly can explain the multiple signals found in T. spec. H.AR. 664 (2n = 8), Anthurium 

leuconerum and Anthurium wendlingeri (both with 2n = 30). For these species, I am assuming 

a mechanism similar to what has been suggested for Pinus (Schmidt et al., 2000). Telomere-

like repeats are highly amplified in Pinus elliottii and not restricted to the ends of 

chromosomes; instead they form large intercalary and pericentric blocks, attributed to random 

short sequence arrays, perhaps extended by slippage replication, insertion of extra-

chromosomal linear DNA fragments, or inversions (Biessmann and Mason, 1992). The high 

number of ITR discovered in Anthurium leuconerum and A. wendlingeri (Chapter 4) along 
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with the signal brightness must indicate huge repeat-amplifications, so far unlinked to obvious 

karyotype changes. 

 

Fig. 1. (next page) Explanations proposed so far for the observation of interstitial telomere repeats. a 

paracentric or pericentric inversions: This kind of chromosome rearrangement does not imply a 

reduction in chromosome number. b chromosome fusion by symmetrical reciprocal translocation 

involving the centromere: This gives rise to a single chromosome and a small fragment composed 

mainly of the centromere of one chromosome and short rests of both previous chromosomes and their 

telomeres. Such short fragments will be eliminated from the cell unless they carry essential genes. c 

fusion-fission cycle or Robertsonian rearrangement: This involves a reciprocal translocation with 

breakpoints within the telomeric arrays of two telocentric chromosomes. This preserves both 

chromosomes’ centromeres and telomere sequences although one of the centromeres and the 

interstitial telomeric sequences must be inactive. a modified from Schubert (2007) and b and c from 

Schubert and Lysak (2011). 
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Fig. 2. Proposed explanation for the observed ITR in the proximal region of the largest chromosome 

pair of T. laoticum. It assumes a reciprocal translocation between two acrocentric chromosomes with 

one chromosome having breaks in its telomere sequence array and the other close to the centromeric 

region of its long arm. The product of this translocation would be a metacentric chromosome 

(monocentric) with a weakly detectible ITR, no longer functional, plus a small chromosome 

comprising only part of the telomere sequence from one donor and the entire short arm and centromere 

of the other donor. Alternatively, only part of a telomere sequence might come from one donor and a 

centromere and complete telomere sequence array from the other donor. 

 

Interstitial telomere repeats are not always related to chromosome fusions 

 

Interstitial telomere repeats (ITRs) are rare in plants, but are known from Vicia faba 

(Schubert et al., 1995; Fuchs et al., 1995: Fig. 1), Othocallis siberica (Weiss-Schneeweiss et 

al., 2004), Eleocharis subarticulata (Da Silva et al., 2005), Sideritis montana (Raskina et al., 

2008), and two species of Typhonium (Sousa et al., 2014). In Vicia faba, presence of ITRs 

was related to the existence of fusion-fission cycles, and in Typhonium to Robertsonian-



162 

 

fusion-like rearrangements. The Robertsonian (Rb) fusion, a chromosome rearrangement 

involving centric fusion of two acro-(telo)centric chromosomes to form a single metacentric, 

is thought to be frequent in mammals (Slijepcevic, 1998). 

The best characterization of ITRs comes from studies on the human genome. Using 

FISH, Azzalin et al. (2001) detected multiple such interstitial telomere arrays (over 50) on 

human chromosomes, a finding difficult to explain by tandem fusion. In their investigation, 

three different classes of ITR were identified and characterized as (i) short ITR, composed of 

few, essentially exact vertebrate telomere repeat (T2AG3)n, (ii) subtelomeric ITR, composed 

of larger arrays (several hundred base pairs) including many degenerate units within 

subtelomeric domain units, and (iii) fusion ITR, in which two extended stretches of telomeric 

repeats are oriented head-to-head. Without actual sequence information, low copy telomere 

repeats nested in long terminal repeat elements in subterminal regions can be misinterpret as a 

fusion site, as demonstrated by Azzalin et al. (2001) using the 1477 bp fragment from clone 

p20. This study makes clear that many mechanisms are involved in the formation of the three 

classes of ITR in humans alone, and only 2 of the 50 ITRs likely originated by the fusion of 

two ancestral chromosomes (Azzalin et al., 2001). In the grass species Aegilops tauschii, 

genomic analyses identified 27 major translocation breakpoints, of which nine were fusions 

involving end-to-end / telomere-telomere sequence (Luo et al., 2009). The latter, however, 

was never cytologically tested using FISH.  

 Another example of the disconnection between interstitial telomere sites and past 

chromosome fusion is Othocallis siberica (Weiss-Schneeweiss et al., 2004). When the typical 

telomere repeat of plants (T3AG3)n was hybridized to the chromosomes of this species, only 

two signals were detected: one terminal and one ITR in distinct chromosomes (2 and 4). After 

hybridization with the telomere vertebrate repeat (T2AG3)n, it turned out that all terminals of 

the chromosomes matched this sequence, while the two interstitial/telomere repeats matched 

the Arabidopsis-like telomere probe and (T2AG3)n , forming large mixed blocks. Regardless 

of the mechanism(s) of its origin (double strand break repair by telomerase in the germ line of 

the cell, chromosome integration of extra-chromosomal segments via transposons carrying 

telomere sequences, or introgression via hybridization), the coexistence of these telomere 

repeats (vertebrate and Arabidopsis-like) in O. siberica and the observation of ITR composed 

of Arabidopsis-like telomere repeat in one chromosome together suggest that the latter may be 
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the remnants of ancestral genome rearrangements that occurred before the switch to 

vertebrate-type telomeric repeats (Weiss-Schneeweiss et al., 2004).  

 Although the visualization of interstitial telomere repeats detected by FISH can be 

interpreted as fusions sites, more studies on micro-dissection, cloning, sequencing and 

characterization are essential to fully understand their origin. Such studies so far have only 

been carried out for the human genome (Azzalin et al., 2001). Future work will require 

applying similar approaches as used to study the human karyotype in plants to classify and 

describe in detail the ITR sequences and to then undertake comparative analyses. 

 

Insights into the sex chromosomes of Coccinia grandis (Curcubitaceae) 

 

The last Chapter (5) of this thesis contains the first molecular-cytogenetic study in 

Coccinia grandis, a dioecious species with heteromorphic sex chromosomes. Although 

important studies in the 1950s and 1970s had established the male-determining effect of the 

presence of the Y chromosome (Kumar and Viseveshwaraiah, 1952; Roy and Roy, 1971), 

prior to my work the size of the C. grandis genome and details of its karyotype were 

unknown. Cytological photographs of C. grandis ♂ in Roy and Roy (1971) revealed a large Y 

chromosome with primary (centromere) and secondary (NOR) constrictions. With the goal of 

investigating if rDNA sequences could be involved in the lengthening of the Y chromosome 

and wanting to document the distribution of the repetitive DNA in the C. grandis genome, I 

analyzed male and female individuals with FISH (5S and 45S rDNA, and Arabidopsis-like 

telomeres), GISH, and C-banding techniques.    

 In the initial karyotype analysis, no secondary constriction was found on the Y 

chromosome, an observation supported by my FISH results. However, secondary 

constrictions were seen in one autosomal chromosome pair in mitotic metaphase and 

represent active nucleolar organizing regions (NORs), both are 45S rDNA-positive when 

detected by FISH. The absence of an rDNA site on the Y chromosome (judging by FISH) fits 

with its lack of a secondary constriction. In species of Silene, Rumex and Humulus with 

heteromorphic sex chromosomes, the rDNA sites also are confined to autosomes (Siroky et 

al., 2001; Karlov et al., 2003; Cuñado et al., 2007; Grabowska-Joachimiak et al., 2011), but 

Spinacia oleracea, which has homomorphic sex chromosomes, has a 45S rDNA site on the X 

chromosome (Lan et al., 2006). Based on these data, it appears that rDNA does not greatly 
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contribute to the morphological divergence of plant Y chromosomes. The distribution of 

telomere signals was restricted to the chromosome ends in all tested male and female 

individuals of C. grandis, suggesting that chromosome fusions also have not contributed, at 

least not recently, to the elongation of the Y chromosome (Sousa et al., 2013; Chapter 5). 

 The genomic in situ hybridization (GISH) showed two preferential distributions of 

repetitive DNA related to the sex. Male genomic DNA hybridized to centromeric and in some 

subterminal regions of the chromosomes, while female genomic DNA hybridized mainly to 

centromeric regions (Chapter 5). Both genomic probes hybridized to the Y chromosome, and 

C-banding results indicate that the Y chromosome is indeed mostly heterochromatic. This fits 

with repetitive sequences forming large clusters in the centromeric and subterminal regions of 

the autosomes and having accumulated on the Y. Interestingly, the type of repetitive DNA in 

the centromere of the C. grandis Y chromosome appears to be different from those in the 

centromeres of the autosomes/X chromosome. The Y centromeric region is not well labeled 

with male or female genomic probes and clearly differs from the dot signals seen in the 

centromeres of the remaining chromosomes of this species. In Silene latifolia, the centromeres 

of the autosomes/X chromosomes are rich in Silene TAndem Repeat Centromeric (STAR-C) 

sequences and transposable elements, while the Y centromere contains Silene TAndem 

Repeat Y (STAR-Y) chromosome sequences and transposable elements (Cermak et al., 2008; 

Kejnovsky et al., 2009). 

 Analysis of the C-value of C. grandis revealed a male/female genome difference of 

almost 0.1 pg of DNA, which is in the range of an entire plant genome (Genlisea margaretae, 

1C = 0.065 pg; Greilhuber et al., 2006). This difference in fact amounts to some 10% of the 

C. grandis genome (0.094 pg/2C). In Silene latifolia, the male genome weighs 5.85 pg/2C, the 

female 5.73 pg/2C, with the Y chromosome making up c. 9% of the male genome and the X 

chromosome c. 8% of the female genome (Siroky et al., 2001). Today, the sequencing and 

assembly of plant genomes without a closely related reference genome is technically feasible 

(Chamala et al., 2014), but C. grandis is closely related to the fully assembled species 

Cucumis sativus, Cucumis melo, Cucumis hystrix and Citrullus lanatus (Huang et al., 2009; 

Garcia-Mas et al., 2012; Guo et al., 2013; Yang et al., 2014) Therefore, a genomic approach 

could be used in C. grandis to identify sex chromosomal markers. My results have revealed 

that the Y chromosome in C. grandis is heterochromatic, similar to the Y chromosomes of 

Rumex acetosa, and thus different from the euchromatic Y chromosome of Silene latifolia; it 
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is more than two times larger than the largest chromosome in the genome; and its small 

genome (above) makes C. grandis and its con-generic species without heteromorphic sex 

chromosomes ideal system for sequencing and studying the molecular steps of sex 

chromosome differentiation in land plants.  

 

General conclusions 

 

The results of my doctoral research (Chapter 2, 3 and 4) contribute to our 

understanding of the evolution of plant chromosomes. Specifically, I combined molecular-

cytogenetic approaches with phylogenetic analytical approaches. I also produced new 

empirical data relevant for the phylogenetics of Araceae, their chromosome numbers and 

karyotypes, and the karyotype of Coccinia grandis, the angiosperm with the largest known 

XY size difference (Chapter 5). The next step towards a deeper understanding of 

chromosomal evolution in these clades now requires the addition of full genome sequencing 

and bioinformatics to the molecular-cytogenetic and phylogenetic approaches used here. 
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