
M�������� P������������, E�������� �� S����� S������ ��� 
H��������� B����������� �� D�����'� F�������� O������ 

(C����������) ��� S��� O������ (C�������� L����.)  

D����������� ��� F������� ��� B������� 
��� L�����-�����������-����������� M������

��������� ���

O���� A�������� P����-E������
M������, A���� 2016





i 
 

 

 

 

 

 

 

 

 

 

“Home is behind, the world ahead, 

and there are many paths to tread 

through shadows, to the edge of night, 

until the stars are all alight” 

-J.R.R. Tolkien, The Lord of the Rings 

 

 

 

 

 

 

 

 

 

 



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Molecular phylogenetics, evolution of sexual systems and historical biogeography of 

Darwin’s favourite orchids (Catasetinae) and Swan orchids (Cycnoches Lindl.) 

Oscar Alejandro Pérez-Escobar 

April, 2016 

Cover: Cycnoches pentadactylon Lindl. illustrated by the author. 



iii 
 

EIDESSTATTLICHE VERSICHERUNG UND ERKLÄRUNG 

Diese Dissertation wurde im Sinne von §12 der Promotionsordnung von Prof. Dr. Marc 

Gottschling betreut. Ich erkläre hiermit, dass die Dissertation nicht einer anderen 

Prüfungskommission vorgelegt worden ist und dass ich mich nicht anderweitig einer 

Doktorprüfung ohne Erfolg unterzogen habe.  

Ich versichere hiermit an Eides statt, dass die vorgelegte Dissertation von mir 

selbstständig und ohne unerlaubte Hilfe angefertigt wurde. 

 

 

 

 

 

 

Oscar Alejandro Pérez-Escobar, 13th April 2016 

(Unterschrift)   

  

 

 

 

 

 

 

1. Gutachter: Prof. Dr. Marc Gottschling 

2. Gutachter: Prof. Dr. Jochen Heinrichs 

Datum der mündlichen Prüfung: 7th July 2016 

 

 



iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

CONTENTS 

Eidesstattliche Versicherung und Erklärung …………………………………………iii 

List of publications ………………………………………………………..……….......vii 

Declaration of contribution as co-author …………………………………………….viii 

Oral presentations …………………………………...………………………………….x 

Poster presentations ……………………………………………………...……………..x 

Fieldwork …...……………………………………………………...…………………...xi 

Funding …...…………………………………………………………………………….xi 

Summary …...……………………………………………………………………......…xii 

Chapter 1: General Introduction …………………………………………………………1 

 Biology of orchids ………………………………………………..……………....3 

Contributions to the Colombian Orchid Flora and limitations of working with 

Neotropical biodiversity ………………………………….....……………………6 

Diversity and distribution of the subtribe Catasetinae …………………………….8 

Taxonomic history and molecular phylogenetic relationships of Catasetinae …...11 

Phylogenetic incongruence between nuclear and chloroplast DNA datasets ...….12 

Reproductive systems in Catasetinae …………………...……………………….14 

Historical biogeography, molecular phylogenetics and species delimitation in the 

genus Cycnoches ……………………………...……………...………………….16 

Aims of the thesis …………………………………………...…………………..22 

Chapter 2: Lepanthes elizabethae (Pleurothallidinae, Orchidaceae), a new species from 

Colombia ………………………………………………………....………..……………23 

Chapter 3: Rediscovery of Malaxis nana (Orchidaceae: Malaxideae) in Costa Rica, with 

an updated description …………………………………………………………..………31 

Chapter 4: Icones Orchidacearum, Fascicle 14. The genus Epidendrum Part 10: Species 

new and old in Epidendrum ……………………………………………………………...39 

Chapter 5: Rumbling orchids: How to assess divergent evolution between chloroplast 

endosymbionts and the nuclear host …………………………………………………......71 



vi 

 

Chapter 6: Sex and the Catasetinae (Darwin’s favourite orchids) ……...…………...…147 

Chapter 7: Historical biogeography of Cycnoches (Catasetinae): The improbable journeys 

of swan orchids across the Andes …………………………………...………………….159 

Chapter 8: General Discussion ……………………………………..…………………205 

 Phylogenetic relationships within Catasetinae and Cycnoches ……..………….207 

The utility of co-phylogenetic tools in phylogenetic incongruence quantification 

………………....……………………………………………………………….208 

 Evolution of sexual systems in Catasetinae ………………..…………………...210 

 Biogeography of Cycnoches ……………………………………..…………….212 

Species delimitation in Cycnoches using Next Generation Sequencing technologies 

………………………………………………………………………………….214 

References …………………………………………………..………………………...215 

Appendix ………………………………………………………………..…………….224 

Acknowledgements ………………………………………………………………...…226 

Curriculum Vitae ………………………………………………...…………………...227 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

LIST OF PUBLICATIONS 

Peer-reviewed journal articles 

PÉREZ-ESCOBAR, O.; KOLANOWSKA, M. AND E. PARRA. 2013. Lepanthes elizabethae 

(Pleurothallidinae, Orchidaceae), a new species from Colombia. Phytotaxa 79: 58-

62 

PÉREZ-ESCOBAR, O. AND M.A. BLANCO. 2014. Rediscovery of Malaxis nana 

(Orchidaceae: Malaxideae) in Costa Rica. Lankesteriana 14: 109-114. 

PÉREZ-ESCOBAR, O.; BALBUENA, J.A. AND M. GOTTSCHLING. 2016. Rumbling orchids: 

how to assess divergent evolution between chloroplast endosymbionts and the 

nuclear host. Systematic Biology 65: 51-65 

PÉREZ-ESCOBAR, O.; GOTTSCHLING, M.; WHITTEN, M.W.; SALAZAR, G. AND G. 

GERLACH. 2016. Sex and the Catasetinae (Darwin’s favourite orchids). Molecular 

Phylogenetics and Evolution 97: 1-10 

PÉREZ-ESCOBAR, O.; GOTTSCHLING, M. AND G. GERLACH. In revision. Historical 

biogeography of Cycnoches (Catasetinae): the improbable journeys of Sawn 

Orchids across the Andes. Journal of Biogeography. 

Monograph 

HÁGSATER, E.; SANTIAGO-AYALA, E.; PÉREZ-ESCOBAR, O.; SALDAÑA-SÁNCHEZ, L.; 

COLLANTES, B.; VALDIVIESO, P.; CHOCCE-PEÑA, M.; SÁNCHEZ, E.; KARREMANS, 

A.; GONZALEZ, R.; MENEGUZZO, T.; KOLANOWSKA, M.; TARAZONA, M.; ÁLVAREZ, 

L.; DALSTRÖM, S.; DODSON, C.; FERNÁNDEZ, M.; GARCÍA, D.; MEDINA, H.; 

MORMONTOY, R.; NAURAY, W.; RINCÓN-USECHE, C.; RUÍZ, S.; SERGUERA, M.; 

SMITH, C.; VILLAFUERTE, M.; VEGA, N. AND F. WERNER. 2015. Icones 

Orchidacearum Fascicle 14. The genus Epidendrum, Part 10: Species new and old 

in Epidendrum. Herbarium AMO. Instituto Chinoin, A.C. Mexico City, 209 p. 

 

 



viii 

 

DECLARATION OF CONTRIBUTION AS CO-AUTHOR 

In this thesis, I present the results from my doctoral research, carried out in Munich 

(Germany) from April 2012 to July 2016, under the guidance of Prof. Dr. Marc 

Gottschling. My thesis resulted in six manuscripts presented in Chapters 2 to 7, of which 

five have been published (Chapters 2 to 6), and one is in revisio (Chapter 7). I also gave 

conference talks and poster presentations listed below. I generated all data and conducted 

all analyses myself, except for the in-silico simulations and pipeline scripting (part of 

Chapter 5), which was done in collaboration with Dr. Juan Antonio Balbuena (University 

of Valencia, Spain), the morphological descriptions of new Epidendrum species (Chapter 

4), which was done with the help of Eric Hágsater, Elizabeth Santiago-Ayala and Luis 

Sánchez Saldaña (Herbarium AMO, Mexico), and observations on orchid phenology and 

reproduction (Chapter 6), which were done in collaboration with Dr. Gerardo Salazar 

(Universidad Nacional Autonoma de Mexico, Mexico). Writing and discussion involved 

collaboration with Prof. Dr. Marc Gottschling, Dr. Günter Gerlach and Dr. Mario Blanco. 

Detailed contributions to publications are provided as follows: 

 

Chapter II 

Pérez-Escobar, O.; Kolanowska, M. and E. Parra (2013) Phytotaxa 79: 58-62 

Own contribution: Field work (80%); morphological analysis (including plates and 

illustration: 100%); manuscript preparation (80%). 

 

Chapter III 

Pérez-Escobar, O. and M.A. Blanco (2014) Lankesteriana 14: 109-114 

Own contribution: Field work (100%); morphological analysis (including plates and 

illustration: 80%); manuscript preparation (60%). 

 

Chapter IV 

Hágsater, E.; Santiago-Ayala, E.; Pérez-Escobar, O.; Saldaña-Sánchez, L.; Collantes, B.; 

Valdivieso, P.; Chocce-Peña, M.; Sánchez, E.; Karremans, A.; Gonzalez, R.; Meneguzzo, 

T.; Kolanowska, M.; Tarazona, M.; Álvarez, L.; Dalström, S.; Dodson, C.; Fernández, M.; 

García, D.; Medina, H.; Mormontoy, R.; Nauray, W.; Rincón-Useche, C.; Ruíz, S.; 

Serguera, M.; Smith, C.; Villafuerte, M.; Vega, N. and F. Werner. (2015) Icones 

Orchidacearum Fascicle 14. The genus Epidendrum, Part 10: Species new and old in 



ix 
 

Epidendrum. Herbarium AMO. Instituto Chinoin, A.C. Mexico City, 209 p. (only co-

authored plates here shown - full monograph available at: 

http://www.herbarioamo.org/index_archivos/Fascicle14.pdf). 

Own contribution (to 12 co-authored plates): Field work (60%); morphological analysis 

(including plates and illustration: 70%); manuscript preparation (60%). 

 

Chapter V 

Pérez-Escobar, O.; Balbuena, J.; and M. Gottschling (2016) Syst. Biol. 65: 51-65 

Own contribution: Field work (80%); Laboratory work and sequence analysis (100%); in-

silico work, phylogenetic analysis and scripting (50%); manuscript preparation (40%); 

images (100%). 

 

Chapter VI 

Pérez-Escobar, O.; Gottschling, M.; Whitten, M.; Salazar, G. and G. Gerlach (2016) Mol. 

Phyl. Evol. 97: 1-10 

Own contribution: Field work (70%); Laboratory work and sequence analysis (100%); 

phylogenetic analysis (100%); manuscript preparation (40%); images (100%). 

 

Chapter VII 

Pérez-Escobar, O.; Gottschling, M. and G. Gerlach (in revision) Journal of Biogeography 

Own contribution: Field work (70%); Laboratory work and sequence analysis (100%); 

phylogenetic analysis (100%); manuscript preparation (50%); images (100%). 

 

 

 

 

 

 

Oscar Alejandro Pérez-Escobar  Prof. Dr. Marc Gottschling 

   (Signature)     (Signature) 

 

http://www.herbarioamo.org/index_archivos/Fascicle14.pdf


x 

 

ORAL PRESENTATIONS 

PÉREZ-ESCOBAR, O. Phylogenetics and Biogeography of Darwin’s favourite orchids. 9th 

Evolution, Ecology and Systematics Conference. Munich, Germany, October 8th 

2015. 

PÉREZ-ESCOBAR, O. Quantifying divergent evolution between nuclear host and chloroplast 

endosymbionts. Phylogeny Meets Genomics International Workshop. Munich, 

Germany, May 11th 2015. 

PÉREZ-ESCOBAR, O. How to assess divergent evolution between the nuclear host and 

chloroplast endosymbionts. 1st Programming for Evolutionary Biologist 

Conference. Porto, Portugal, April 27th 2015. 

 

POSTER PRESENTATIONS 

PÉREZ-ESCOBAR, O.; VALDIVIESO, P. PARRA, E.; RINCÓN-USÉCHE, C. AND L.K. 

RODRÍGUEZ. Novelties in Orchidaceae for the Colombian Flora. 4th Scientific 

Conference on Andean Orchids. Guayaquil, Ecuador, November 2nd, 2012. 

PÉREZ-ESCOBAR, O.; GOTTSCHLING, M. AND J.A. BALBUENA. Quantification of 

phylogenetic incongruence between organellar and nuclear genomes. 17th Annual 

Meeting of the Gesellschaft für Biologische Systematik. Munich, Germany, 21st 

February, 2016. 

 

 

 

 

 

 



xi 
 

FIELD WORK 

 Costa Rica: Punta Arenas, Alajuela, Limon. July 2013. 

 Panama: El Valle de Anton, Coclé, Cerro Punta. August 2013. 

 Nicaragua: San Juan del Sur, Boaco, Estelí, Managua. November 2014 

 Mexico: Chiapas, Veracruz, Oaxaca. February 2015. 

 

FUNDING 

 Research work (field trips, lab work) was supported by the Deutsche Forschungs 

Gemeinschaft (DFG GO 1459/8) 

 My Ph.D. was funded by the Colombian National Science Foundation 

(COLCIENCIAS). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 

 

SUMMARY 

 The Orchidaceae are one of the most species rich and widespread lineages among 

angiosperms. They have evolved numerous remarkable vegetative and reproductive traits 

that have allowed them to successfully adapt and diversify into a wide array of 

environments. More importantly, they have developed several intricate symbiotic 

relationships with different kinds of organisms (e.g. animals, fungi) that for centuries 

have attracted the attention of botanists, biologists, amateurs and naturalists. 

Nevertheless, despite the extensive research done so far on orchid biology and 

phylogenetics, very little is known about the biotic and environmental variables as well 

as the evolution of several key traits that seem to be linked with the successful 

diversification of this lineage. This dissertation is focused on three puzzling aspects of 

plant evolutionary biology, specifically the phylogenetic incongruence between nuclear 

and plastid genomes, the evolution of sexual systems, and lineage migration and 

isolation through time. To address these topics, I chose as a group of study the subtribe 

Catasetinae, an orchid lineage including ca. 350 species restricted to the Neotropical 

region. They show a remarkable set of sexual systems, namely protandry and 

Environmental Sex Determination (ESD), that were never studied before in a 

phylogenetic context. My dissertation includes as well a minor part on taxonomic and 

floristic work devoted to other representative orchid lineages of the Neotropical flora 

(i.e. Epidendrum and Lepanthes). Based on vegetal material collected during field trips, 

my taxonomic research resulted in the description of several new species and new 

chorological reports contributing to the Colombian and Costa Rican Floras. 

Using a set of nuclear and chloroplast loci obtained from material cultivated at 

the Botanic Garden Munich and collected during field work in several Latin American 

countries, I produced a well-supported and insofar the most representatively sampled 

phylogeny of Catasetinae. While gathering vegetal material, I encountered several 

complications such as extreme scarcity of individuals and worrisome, extensive 

bureaucratic administrative processes to obtain collection and research permits that 

finally undermined my taxon sampling. By studying in detail the Catasetinae internal 

phylogenetic relationships independently derived from nuclear and plastid loci, I came 

across several well supported conflicting phylogenetic positions. Most of the traditional 

phylogenetic methods developed to address these conflicts aim at the inference of a 

species tree only. In chapter 5, I explored the utility of co-phylogenetic tools (i.e. PACo 
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and ParaFit) to quantify the conflicts between nuclear and plastid genomes. These tools 

have been largely employed in host-parasite/endosymbiont studies, hence they have the 

power to assess the contribution of single Operational Terminal Units (OTUs) to the 

phylogenetic pattern observed. As a result, using the Catasetinae chloroplast and nuclear 

datasets and extensive simulation approaches, I demonstrate that PACo successfully 

detects conflicting OTUs and its performance is overall better than ParaFit. In addition, 

my research provided strong evidence towards the bias of input data type (i.e. 

phylograms and cladograms) on distance-based co-phylogenetic methods. A pipeline to 

execute PACo and ParaFit tools in the software R to detect conflicting sequences in 

either small or big datasets was designed  

After inferring a strongly supported phylogeny, and by carrying in-situ and ex-

situ observations plus searches of specialized literature on reproductive biology, I 

investigated the evolution of sexual systems of Catasetinae. I relied on Ancestral State 

Reconstruction (ASR) approaches and Bayesian statistical frameworks (chapter 6). As a 

result, ASR revealed three independent gains of ESD, once in the Last Common 

Ancestor (LCA) of Catasetum, Cycnoches and part of Mormodes, respectively, always 

derived from a protandrous ancestors. In contrast, protandry appears to have evolved 

only once, at the LCA of Catasetum, Clowesia, Cycnoches, Dressleria and Mormodes.  

The last chapter of this dissertation deals with the impact of the Andean uplift, 

the most important orographic event in South America, on evolution of epiphytic 

lowland Neotropical lineages. I used as a group of study Cycnoches (a member of the 

Catasetinae), which includes ca. 34 species and is distributed in Neotropical lowland wet 

forests. To address this goal, I produced the most completely sampled phylogeny of 

Cycnoches, and relied on Bayesian dating and Ancestral Area Estimation (AAE) 

approaches. The LCA of Cycnoches lived ca. 6 million years ago (MYA) in the 

Amazonian region. From this area, it expanded towards Central America and Choco in 

multiple migrations well after main Andean mountain building episodes. In addition, 

stochastic character mapping showed that within-region speciation (i.e. speciation in 

sympatric lineages) was a key process linked to diversification and range distribution 

evolution in Cycnoches. 
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Biology of orchids 

The orchid family (Orchidaceae) is one of the largest among flowering plants 

(Cribb et al., 2003). There is no consensus about the extant number of orchid species 

(Dressler, 1993), the Orchidaceae include about 25,000 species distributed in 736 genera 

(Chase et al., 2015; Givnish et al., 2015). To further complicate orchid diversity 

assessment, several new species and genera are described every year at an incredible 

pace (Padial & de la Riva, 2006; Chase et al., 2015), mostly by segregating species from 

monophyletic lineages into new genera and by using uninformative characters known to 

be extremely variable to propose new species. Within the angiosperm tree, orchids are 

placed as the sister group to all other members of the order Asparagales (Seberg et al., 

2012), and their origin traces back to the late Cretaceous (~94 MYA, Chomicki et al., 

2014a). Only three fossils are known for the orchid family, therefore absolute age 

estimation of orchid lineages is often challenging despite the unambiguous assignment of 

the few fossils to distantly related lineages (i.e. Dendrobium Sw., Earina Lindl.: 20-23 

MYA, Conran et al., 2009; †Meliorchis caribea: 15-20 MYA, Ramírez et al., 2007),  

 Orchids are distributed everywhere across the Globe in terrestrial habitats 

(excluding the polar circles) (Pridgeon et al., 1999; Givnish et al., 2015), yet the greatest 

diversity is concentrated in tropical regions (Dressler, 1993). Orchidaceae are herbs 

mostly adapted to humid habitats but many have also evolved a wide array of 

morphological adaptations allowing them to survive in a great variety of ecosystems, 

including arid and semi-arid habitats (González-Tamayo, 2002; Trujillo & Rodriguez, 

2011), and cold dry environments (e.g. Paramos: Chase, 1986). Orchid diversity 

distributed in temperate regions is often represented by terrestrial or lithophytic plants, 

whereas the majority of orchids occurring in tropical biomes are epiphytes (Pridgeon et 

al., 1999). Epiphytism is often regarded as the derived habit condition in orchids because 

of its appearance in the recent evolutionary history of tropical orchids (Givnish et al., 

2015), and as a key innovation that promoted rapid adaptive radiations (Dodson, 2003).  

Orchid plants usually have cylindrical or flattened roots that provide anchorage to 

the substrate (main orchid vegetative and reproductive structures are depicted in Fig. 1), 

but also serve as a photosynthetic, protective, water and nutrient absorption organs 

(Chomicki et al., 2014b). Those roots are often covered by an epidermal tissue called 

velamen, a structure predominantly present in epiphytic orchids (although it may occur 
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in some terrestrial taxa as well; Pridgeon et al., 1999). In terrestrial orchids, roots are 

often modified into storage organs (e.g. Orchis Tourn. ex L.) and instead of a velamen 

they have a simple rhizodermis provided with numerous radical trichomes. Orchid stems 

are classified as rhizomes and pseudobulbs (Dressler, 1993; Judd et al., 2007). The 

former term refers to a subterranean, horizontally growing stem that is embedded in the 

substrate whereas the latter is rather a thickened, modified stem that is exposed and 

serves as storage organ.  

Orchid leaves resemble a traditional monocot leaf, with parallel venation 

(although few taxa present reticulate venation, e.g. Epistephium Kunth; Szlachetko et al., 

2013), and they are either distichously or spirally arranged. Leaves in orchids perform 

photosynthesis (in the aphyllous orchid Dendrophylax lindenii (Lindl.) Benth. ex Rolfe it 

is performed by the roots, see Chomicki et al., 2014a) but also more specialized 

functions, such as pollinator attraction (i.e. Phragmipedium Rolfe: Ren et al., 2011). 

Perhaps one of the most fascinating aspect of orchids is the mesmerizing morphological 

diversity of their reproductive structures when compared with other monocot lineages. 

Orchid flowers are zygomorphic and generally consist of a set of three outer and three 

inner tepals, one of which is modified into a highly specialized structure called labellum 

(usually the median tepal of the inner whorl), and 1-3 stamens adnate to the style and 

stigma, forming a gynostemium (Bateman & Rudall, 2006; Judd et al., 2007; 

Mondragón-Palomino, 2013). Together with a 180° torsion of the flower during the 

development (i.e. resupination), the labellum and gynostemium are apomorphies that 

distinguish orchids from other monocot lineages (Judd et al., 2007). In most orchid 

species, the labellum is strongly ornamented (e.g. bearing appendages or calli) and plays 

a major role in pollination by serving as attractant and landing platform for pollinators 

(Darwin, 1877; Bateman & Rudall, 2006). 

Orchid fruits (capsules) are composed by three carpels; they are loculicidal and 

dehisce at maturity. Fruits are usually green, photosynthetic during the development but 

at maturation, they turn yellow, usually being unattractive to animals. Seeds, sometimes 

called “dust seeds” because of their minute size (ranging from 8-10 µm to 5 mm in 

length), have usually a thin testae with a highly variable ornamentation that has been 

traditionally employed for classification (Chase & Pippen, 1990; Pridgeon et al., 1999; 

Barthlott et al., 2014). Most of the orchid seeds are anemorchorous, although in some 
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exceptional cases (i.e. Cyrtosia Blume), fruits are consumed by birds and hence 

ornithochorous (Suetsugu et al., 2015).  

Figure 1. Schematic view of main orchid vegetative and reproductive structures. A. Plant: 1) 

Pseudobulb, 2) Root, 3) Leaf, 4) Inflorescence; B. Flower (3/4 view); C. Side view of ovary (5), 

column (6) and lip (7); D. Dissected flower: 8) outer tepals, 9) inner tepals; E. Pollinarium: 10) 

pollinia and 11) anther cap; F. Column (ventral view). Drawing by O. Pérez based on BGM 

2010/1942 M. 



6 

 

One peculiarity of orchid seeds is the lack of a nutritional tissue (endosperm and 

cotyledons – some rudiments of the latter still occurring in few taxa) (Dressler, 1993; 

Pridgeon et al., 1999). Instead, they have evolved mutualistic relationships with fungi, on 

which they rely during early stages of development (e.g. germination) for provision of 

major nutrients such as carbon (Cameron et al., 2006). These mutualistic associations 

(known as mycoheterotrophy) may persist throughout life history of some orchid species 

(e.g. achlorophyllous species such as Dendrophylax lindenii; Chomicki et al., 2014a). In 

other lineages however, mycoheterotrophy might not be life-lasting, as the vast majority 

of orchids produce green leaves and therefore are at least partially autotrophic (Cameron 

et al., 2006). The mode and tempo of evolution of this endosymbiosis is still elusive, but 

it might have appeared early in the history of orchids because it repeatedly occurs across 

all major orchid lineages, including early branching ones (e.g. Apostasioideae and 

Vanilloideae subfamilies; Warcup, 1981).  

 

Contributions to the Neotropical Orchid Flora, and the challenge of working with 

tropical plants 

 Orchids are one of the most prominent components of Neotropical plant 

biodiversity, but also a common ornamental plant in both urban and rural settlements. 

The orchid growing and collection trace back to the botanical explorations commanded 

under colonial powers almost three centuries ago. Some of the most popular botanist 

explorers in the Neotropical region were Alexander von Humboldt (Humboldt, 1820), 

Jose Celestino Mutis (Royal Expedition of the New Granada Kingdom), and Carl 

Friedrich Phillip von Martius (Cogniaux et al., 1883). The legacy of such laborious work 

resulted in detailed monographs and catalogues of local and regional Floras (e.g. 

Humboldt, 1820; Cogniaux et al., 1883).  Nowadays, several natural and anthropogenic 

variables pose new threats to natural orchid populations. Among these threats, habitat 

loss,  indiscriminate orchid collection and smuggling are perhaps the factors that affect 

the most natural populations (Davenport & Ndangalasi, 2003; Neng, 2010). This is 

particularly true because the vast majority of orchid species are confined to limited 

geographic ranges and often, their populations comprise only few individuals (Cribb et 

al., 2003). 
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 The imminent local and regional extinction of orchid populations urges botanists 

and ecologists to study in detail local and regional floras to gain essential knowledge on 

the abundance and richness of endangered species. Local and regional floristic 

inventories are key tools for biodiversity protection (Triana & Murillo, 2005) because 

they provide valuable insights on the conservation status (i.e. population abundance and 

distribution) of threatened species. Without the critical knowledge that these floristic 

treatments provide, governmental and private research institutions responsible for natural 

resources conservation hardly can propose measures to combat biodiversity loss. During 

my research work, I contributed to the knowledge of the Neotropical orchid flora with 

the description of several species previously unknown to science and with the report of 

chorological novelties as a result of intensive field work done in cloud forests of Central 

and South America (Andean region). These cloud forests are of great importance because 

they host a large part of the Neotropical orchid diversity (Orejuela-Gartner, 2012) and 

coincidentally, they are one of the most threatened biomes because of deforestation in 

several countries such as Colombia (Triana & Murillo, 2005). This taxonomic work was 

carried out in collaboration with leading researchers in orchid systematics (e.g. Eric 

Hágsater, Mexico) and was centred on two compelling orchid lineages: Epidendrum L. 

and Lepanthes Sw., which are an important component of the North Andean and Central 

American Montane Flora. This part of my research involved the study of major local and 

regional herbarium collections (e.g. HLDG, COL, CR, CUVC, JBL, VALLE), as well as 

plant material documentation (photographing, illustration). These floristic novelties were 

published as research articles in per-reviewed journals (Chapter 2, 3) or as contributed 

chapters to a monograph (Chapter 4). 

 Facing orchid local and regional population extinction, fortunately several 

international treaties and conventions controlling wildlife trade, its products and 

derivates have been established recently. Among the most famous worldwide treaties is 

the CITES (Convention on International Trade in Endangered Species of Wild Fauna and 

Flora). CITES is an international agreement signed insofar by ca. 160 member 

governments (Mulliken, 2009), whose aim is to ensure that international trade of wild 

animals and plants does not threaten their survival (www.cites.org). Although some 

authors have acknowledged the success of such treaty (e.g. Pritchard, 1989) on 

endangered orchid populations, there is still some controversy regarding the real impact 

of CITES on the conservation status of the orchid species included in their list (Mulliken, 
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2009). This is mostly because CITES operates in conjunction with several other local, 

national and international regulatory processes, some of which are subject to large and 

unfruitful bureaucratic procedures. Traditionally, to export orchid material, several 

certifications are required such as field collection, phytosanitary and export permits 

(Pritchard, 1989). Nevertheless, to obtain these permits sometimes represent a tedious, 

time expensive process for the researcher that is likely to result in a delayed expedition 

of the required documentation and sometimes in a loss of valuable material for study. 

 The focus of my dissertation project was centred on Neotropical orchids, all of 

which are often scarce in herbarium collections. Consequently, I relied mostly on plant 

material that I collected in the field, facing then several complications regarding 

collection and export permits issuing in some of the countries where I carried field trips 

(e.g. Nicaragua). More importantly, I was unable to get vegetal material in few other 

countries (e.g. Colombia and Ecuador) simply because regulations to get the required 

certifications are too stringent and time-consuming. To some extent, this limited my 

research goals because some of them were directly dependent on the availability of 

material from orchid species with very narrow distribution. However, thanks to the 

collaborative effort held between European botanical gardens (e.g. Botanischer Garten 

Heildelberg, Botanischer Garten München), valuable missing material was obtained from 

other living collection via garden exchanges. 

 

Diversity and distribution of the subtribe Catasetinae 

“I have reserved for separate description one sub-family of the Vandeae, namely the 

Catasetidae, which may, I think, be considered as the most remarkable of all Orchids” 

(Darwin, 1877, p. 211) 

The Neotropics are one the most biodiversity rich regions on Earth, harbouring 

about  90,000 – 110,000 seed plant species (Antonelli & Sanmartín, 2011). Among the 

angiosperm lineages distributed in the Neotropics with the highest degree of endemism 

and diversity are the orchids (Gentry & Dodson, 1987). Within such extraordinary 

diversity, the subtribe Catasetinae is an important component of the Neotropical flora 

(Funk et al., 2007), but also a remarkable lineage because of their peculiar reproductive 

biology (see section on sexual systems of this Introduction; Romero, 1990). The 

Catasetinae comprise approximately 350 species that are distributed in tropical and 
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subtropical regions of America (Fig. 2; Romero, 2009) and are classified in eight genera, 

namely Catasetum Rich. ex Kunth, Clowesia Lindl., Cyanaeorchis Barb.Rodr., 

Cycnoches Lindl., Dressleria Dodson, Galeandra Lindl., Grobya Lindl., and Mormodes 

Lindl. (Chase et al., 2015) (see Fig. 3). 

Catasetum, the species richest lineage in the subtribe, comprises 170 epiphyte 

species including several natural hybrids [e.g. Catasetum x roseoalbum (Hook.) Lindl.; 

Romero & Jenny, 2009]. Catasetum is widely distributed from Mexico to Southern 

Brazil and Argentina, although its centre of diversity is the Amazonian forest of Brazil 

(Pridgeon et al., 2009). Mormodes and Cycnoches, with 80 and 34 epiphyte species 

respectively, have similar distribution ranges and habitat preferences as Catasetum, and 

are best represented in Central America (Sosa & Rodríguez-Angulo, 2000; Pridgeon et 

al., 2009) and in the Amazonian region, respectively (Pridgeon et al., 2009; Carr, 2012). 

Galeandra, which includes 38 species, is the sole genus of the Catasetinae with both 

epiphytes and geophytes, the latter living in lowland gallery forests, savannas and humid 

areas. It  has a wider distribution than Catasetum and Cycnoches, ranging from Southern 

Florida to Southern Brazil and Argentina, but like for those lineages, the vast majority of 

its diversity is found in Brazil (Pridgeon et al., 2009; Monteiro et al., 2010).   

The remaining lineages (i.e. Clowesia, Dressleria, Grobya and Cyanaeorchis) 

have much narrower distribution ranges. Dressleria, for instance, includes 11 species 

distributed from Nicaragua to Peru. Rather than being represented in lowland tropical 

forests like most of the Catasetinae species, it is restricted to the cloud forest’ understory 

at mid to high elevations in the Andes (Dodson, 1975; Pridgeon et al., 2009). Clowesia, a 

clade with seven species, is distributed from Mexico to Ecuador. Plants of this small 

clade commonly live in tropical lowland wet forests, and its diversity is concentrated in 

Mexico (Dodson, 1975). Grobya comprises five epiphytic species restricted to 

southeastern Brazil. They are mostly found in Brazilian wet forests (Mata Atlantica) and 

rocky outcrops (Campos Rupestres) (Barros & Lourenço, 2004; Pridgeon et al., 2009). 

Finally, Cyanaeorchis, the smallest clade of the Catasetinae with three geophytic species, 

is restricted to northeastern Brazil, Argentina and Paraguay. Like in some species of 

Galeandra, plants of Cyanaeorchis are often found growing in humid grasslands and 

marshes (Batista et al., 2014).  
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Figure 2. Geographical range distribution of Catasetinae genera. 

 

 

 

 

 

 

 

 

 

 

Figure 3. Representative species of Catasetinae genera. A. Catasetum cernuum (Lindl.) Rchb.f.; 

B. Clowesia russelliana (Hook.) Dodson; C. Cyanaeorchis arundinae (Rchb.f.) Barb.Rodr.; D. 

Cycnoches rossianum Rolfe; E. Dressleria dilecta (Rchb.f.) Dodson; F. Galeandra leptoceras 

Schltr.; G. Grobya sp.; H. Mormodes ephippilabia Fowlie. Pictures: O. Pérez, G. Gerlach & L. 

Villez 



11 

 

Taxonomic history and molecular phylogenetic relationships of Catasetinae 

Recent discoveries of new species and expeditions to previously inaccessible 

areas made available material that was unreachable before. Hence taxonomic work on 

Catasetinae was done, leading to several changes on its circumscription during the last 

century. Of special interest is the generic delimitation of some of its members, which has 

been “fluctuating” during the last decades. The Catasetinae were erected by Lindley 

(1843) under the name of Catasetidae, and five genera were established: Catasetum, 

Clowesia, Cycnoches, Cyrtopodium R.Br. in W.T.Aiton and Mormodes. Almost 40 years 

later, Bentham (1881) transferred Catasetum, Cycnoches, and Mormodes to 

Stanhopeinae, another prominent Neotropical subtribe. Most botanists however, 

endorsed Lindley’s Catasetinae concept, including Catasetum, Mormodes, and 

Cycnoches, but also Clowesia (segregated from Catasetum) and Dressleria (Dodson, 

1975), all forming the so called “core Catasetinae”. Cyrtopodium in contrast, has been 

since then assigned to different subtribes (i.e. Cyrtopodiinae and Cymbidiinae) based on 

cladistic and phylogenetic inferences using anatomical characters (Stern and Judd, 2001) 

and nucleotide sequences (Whitten et al., 2014; Givnish et al., 2015), respectively. 

Therefore, Cyrtopodium will not be considered here as a member of Catasetinae because 

their phylogenetic placement is still a matter of debate. 

The advent of cladistic and molecular phylogenetic approaches brought new 

insights into the systematics and evolution of Catasetinae. The seminal works of Romero 

(1990) and Stern and Judd (2001), based on cladistic inferences from morphological and 

histological characters, supported the monophyly of Catasetinae sensu Dressler (1975) 

(i.e. core Catasetinae) by the presence of sunken foliar trichomes and the clinandrium 

antennae, a structure responsible for pollinarium ejection. Based on 30 morphological 

characters (of which 10 were informative), Romero (1990) placed Catasetum as sister 

group to the remainder of the core Catasetinae, and Clowesia was recovered as sister 

lineage of the clade Dressleria + (Cycnoches + Mormodes). Similar relationships were 

recovered by Stern and Judd (2001), with Cycnoches + Mormodes found as sister clade 

of the polytomy Dressleria-Clowesia-Catasetum.  

More recent studies based on DNA sequences have provided support for the 

monophyly of the core Catasetinae (Pridgeon & Chase, 1998) as well. More importantly, 

they have endorsed the inclusion of Cyanaeorchis, Galeandra and Grobya in 
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Catasetinae, previously assigned to four different subtribes (Chase et al., 2003; 

Freudenstein et al., 2004; Pridgeon et al., 2009; Batista et al., 2014) reflecting the lack of 

morphological cohesion within Catasetinae (Pridgeon et al., 2009). Using nuclear ITS 

and mitochondrial rps4 sequences, Pridgeon and Chase (1998) reconstructed Catasetum 

as sister group to Clowesia in a rather derived, strongly supported clade. The clade 

Dressleria + (Mormodes + Cycnoches) was in turn placed as sister to Catasetum + 

Clowesia, albeit in a moderately supported clade. Freundenstein et al. (2004) placed 

Galeandra and Grobya within Catasetinae as sister lineages to the core Catasetinae 

based on a Maximum Parsimony tree inferred from a concatenated matK-rbcL 

chloroplast dataset. Although the monophyly of the newly circumscribed Catasetinae 

received maximal statistical support, internal phylogenetic relationships were not 

strongly supported. Batista et al. (2014), using combined nuclear ITS and chloroplast 

matK, trnK and rbcL loci, later included Cyanaeorchis in their Catasetinae phylogeny 

and found it as sister group to Grobya in a strongly supported clade. This clade in turn 

was recovered as sister group to the remaining lineages of Catasetinae 

(Galeandra+(Catasetum+(Cycnoches+Dressleria))). All those studies however only 

included a limited taxon sample of the extant species richness, usually one or two taxa 

for each genus (Batista et al., 2014; Whitten et al., 2014; Freudenstein & Chase, 2015; 

Givnish et al., 2015), making it impossible to disentangle evolutionary relationships 

between species (Pridgeon et al., 2009).  

 

Phylogenetic incongruence between nuclear and chloroplast DNA datasets 

Understanding evolutionary relationships between organisms, genes, or 

molecules is a central question of evolutionary biology, with the phylogenetic tree 

playing an important role as a tool for analysis and depiction (Barraclough & Nee, 2001; 

Choi & Gomez, 2009). Nevertheless, inferring phylogenies of plant lineages is 

challenging, because the phylogenies independently derived from nuclear and 

chloroplast DNA sequences often reveal conflicting relationships (Hardig et al., 2000; 

Kim & Donoghue, 2008). During the past two decades, an astonishing number of 

research works reporting discordance between nuclear and chloroplast phylogenies in 

several plant lineages have been published (e.g. Araceae: Nauheimer et al., 2012; 

Asteraceae: Fehrer et al., 2007; Orchidaceae: van der Niet & Peter Linder, 2008; 
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Saxifragaceae: Soltis & Kuzoff, 1995),  indicating how frequent is this phenomenon in 

angiosperms. 

 Several factors have been acknowledged as potential causes of phylogenetic 

incongruence, such as non-biological artefacts (e.g. taxon sampling error, long branch 

attraction: van der Niet & Peter Linder, 2008), and biological processes such as 

Incomplete Lineage Sorting (ILS), chloroplast capture via hybridization and Horizontal 

Gene Transfer (HGT) (Rieseberg & Soltis, 1991; Soltis & Kuzoff, 1995; Fehrer et al., 

2007). Altogether they produce to some extent discordance between phylogenies, yet 

their relevance is dependent upon the lineage of interest, the molecule or DNA loci used 

for phylogenetic inference, the statistical support of the discordance and the process 

associated with the incongruence (Soltis & Kuzoff, 1995). I encountered several 

conflicting positions between independently derived nuclear and chloroplast phylogenies 

while investigating the internal phylogenetic relationships of Catasetinae. Unlike 

phylogenetic discordances reported insofar in other plant lineages (e.g. Nauheimer et al., 

2012; van der Niet et al., 2013), which are often not statistically supported, those in 

Catasetinae were recovered with high to maximal statistical support (Chapter 5 of this 

dissertation). 

A battery of techniques to handle incongruences between phylogenies are already 

available, and they have undergone major developments during the last decade (Choi & 

Gomez, 2009; de Vienne et al., 2012). These comparative methods have two main goals: 

1) quantify the incongruence or degree of difference between the datasets, and 2) infer a 

species tree from a set of incongruent trees (i.e. derived from genes or genomes), 

irrespectively of the biological process responsible for the incongruence (e.g. Kubatko et 

al., 2009; Larget et al., 2010; Liu et al., 2010). These methods have proven to be useful 

when species tree inference from conflicting datasets is desired, but their applicability is 

limited when the goal is to assess the contribution of specific Operational Terminal Units 

(OTU). For instance, these methods can reliably define the proportion of gene trees that 

support a given topology among a gene tree dataset (e.g BUCKy: Larget et al., 2010). 

However, they do not have the capability to assess the contribution of single OTUs to the 

observed phylogenetic pattern nor to determine the proportion of associations (i.e. any 

linked pair of OTUs in two phylogenies) that are conflicting among the tree dataset. Far 

from being an “obstacle” to evolutionary relationships inference, conflicting tree 

associations are of great interest because they often provide valuable information on 
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biological processes responsible of incongruences (e.g. HGT, ILS) (de Vienne et al., 

2012). 

Distance based co-phylogenetic approaches are comparative methods which 

employ distance matrices (e.g. patristic distances) to introduce phylogenetic information 

into a statistical framework (de Vienne et al., 2011). Based on the premise that changes 

in relationships of coevolving systems are reciprocally dependent and therefore result in 

topological similarity (Choi & Gomez, 2009; Balbuena et al., 2013), these methods have 

been largely applied to investigate co-phylogenetic structures as observed in host – 

parasite / endosymbiont systems (e.g. pocket gopher-cehweing lices: Legendre et al. 

2002; Monogenea-fishes: Simková et al., 2004; papilloma viruses-vertebrates: 

Gottschling et al., 2011). They have the power to determine similarities between sets of 

trees, and to assess the contribution of a particular set of OTUs (i.e. associations) to the 

phylogenetic pattern observed. Chloroplasts, which nowadays are recognized as 

organelles of endosymbiotic origin derived from free living cyanobacteria 

(Mereschkowsky, 1910; Margulis, 1993), are dependent onto the nucleated host cell. 

Hence, the evolutionary history of the chloroplast endosymbiont genome is expected to 

track that of the nuclear host cell. By applying the sample principle of parasite-host 

dependence employed by the above-cited co-phylogenetic methods to that of chloroplast 

endosymbiont-nucleated host cell, detection of conflicting associations on a statistical 

framework between derived chloroplast and nuclear trees is made possible. 

 

Reproductive systems in Catasetinae 

Perhaps the most striking traits of Catasetinae are the sexual systems and 

pollination syndromes they have evolved. They make this lineage an appealing group 

and hence it has received much attention from botanists, orchid growers, amateurs, and 

naturalists including Darwin himself. As a rule of thumb, orchids are monogamous and 

produce bisexual flowers, either dichogamous (i.e. with temporal separation of male and 

female reproductive structures) or adichogamous (i.e. no temporal separation of sexes) 

(Dressler, 1993). In Catasetinae however, some species produce unisexual flowers, and 

protandry and Environmental Sex Determination (henceforth referred to ESD) are the 

two predominant sexual systems whereas adichogamy occurs in a small number of 

species only. Protandry, defined as a form of dichogamy with earlier maturation of the 



15 

 

staminate structures in unisexual and bisexual flowers, is a widespread sexual system in 

angiosperms (De Jong et al., 2011; Renner, 2014). In orchids, it has independently 

evolved multiple times across distantly related lineages (e.g. Catasetinae, Stanhopeinae, 

Cranichidinae, Goodyerinae, Spiranthinae) (Ackerman, 1977; Singer & Sazima, 2001; 

Jersáková & Johnson, 2007). Within Catasetinae, protandry occurs in Dressleria, 

Clowesia and in some species of Mormodes. In these lineages, the pollinarium (which 

blocks the stigmatic chamber entrance – see Fig.1 of Chapter 6) must be removed 

before the pollinia can be deposited in the stigmatic chamber.  

Unlike protandry, ESD is an exceedingly rare sexual system, occurring in ca. 250 

species of  angiosperms only (Renner, 2014). Environmental sex determination, also 

known as “sex disphasy” or “plasticity” (Korpelainen, 1998; Renner, 2014) describes 

flexible changes of sex expression in response to (and entirely determined by) 

environmental variables such as type of substrate and sunlight photoperiod during an 

individual’s life span (Schlessman, 1988; Korpelainen, 1998). In orchids, ESD 

exclusively occurs in all species of Catasetum and Cycnoches, as well as in those species 

of Mormodes which not evolved protandry (Pridgeon et al., 2009). In these lineages, 

plants produce sexually dimorphic, functionally staminate or pistillate unisexual flowers 

in separate plants mostly, although intermixed inflorescences with flowers of both sexes 

are seldom produced (Fig. 4; Dressler, 1993; Gerlach, 2007; Pridgeon et al., 2009). Like 

in other plant lineages with ESD (e.g. Cucurbitaceae: Malepszy & Niemirowicz-Szczytt, 

1991; Krupnick et al., 2000; Boualem et al., 2015), enhanced ethylene production 

depending on the amount of light received by the plant is likely to regulate the 

production of flower sex in Catasetinae. Consequently, plants exposed to longer 

photoperiods will produce pistillate flowers, whereas those with restricted access to 

sunlight are likely to produce staminate flowers (Gregg, 1982, 1983; Zimmerman, 2011).  

Despite the relatively frequent occurrence of protandry in angiosperms and 

orchids overall, no single study has addressed the evolution of this sexual system using 

phylogenetic tools. Likewise, for ESD only two pioneer studies have addressed the ESD 

mode of evolution in two angiosperm lineages, namely Siparunaceae and Acer (Renner 

& Won, 2001; Renner et al., 2007). This is perhaps because of the lack of densely 

sampled phylogenies and dedicated field work and observations on sexual systems 

occurrence. For the particular case of Catasetinae, based on a cladogram inferred from 

morphological characters (for details see “Taxonomic history of Catasetinae” section of 



16 

 

this Introduction), Romero (1990) found that protandry and ESD (referred as 

unisexuality in Romero’s work) were equally likely (based on the parsimony principle) 

to be the ancestral condition of core Catasetinae. Nevertheless, Romero’s hypothetical 

evolutionary scenarios and the distribution of protandry and ESD in Catasetinae has 

remained elusive because of the lack of a well resolved, supported phylogeny. 

 

Historical biogeography, molecular phylogenetics and species delimitations in the 

genus Cycnoches 

 Among the peculiar generic lineages of Catasetinae, Cycnoches is one of the most 

striking clades because of the remarkable sexual dimorphism of its unisexual flowers (a 

detailed description of sexual systems is provided in Chapter 6 – see also Fig. 4). 

Cycnoches comprises 34 species distributed from Southern Mexico to Northern Brazil 

and Bolivia (Fig. 3) (Pridgeon et al., 2009; Carr, 2012). The highest species diversity 

occurs in the Amazonian region of Bolivia, Brazil and Peru. Plants of Cycnoches are 

epiphytes living in lowland wet forests from 0 to 800 m., mostly on trunks of dead trees. 

They are characterized by having a pseudobulb with multiple internodes, alternate, 

distichous leaves, lateral, arched inflorescences, and functionally unisexual flowers. A 

schematic representation of a typical plant of Cycnoches is provided in Figs. 5 and 6.  

Cycnoches was erected by John Lindley (Lindley, 1843), using as a type 

specimen an Amazonian plant of Cycnoches loddigesii. About half a century later, Rolfe 

(1909) subdivided the genus into two sections: i) sect. Cycnoches, which includes 

species with similar functionally pistillate and staminate flowers, and a ventricose lip 

with entire margin (Fig. 5); and ii) sect. Heteranthae, consisting of species with 

markedly different functionally pistillate and staminate flowers and a lip bearing dactylar 

processes (Fig. 6). Since then, only one major taxonomic revision of the genus has been 

published (Allen, 1952), which endorsed Rolfe’s infrageneric classification. The 

taxonomy of Cycnoches has thus remained unattended until recently, after several new 

species have been described from the Amazonian forests of Bolivia (Carr, 2012). 
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Figure 4. Functional, sexually dimorphic pistillate (A) and staminate (B) flowers of Cycnoches 

ventricosum Bateman. Intermixed pistillate and staminate flowers in a single inflorescence of C. 

aff. powellii Schltr. (C) and C.aff. pachydactylon Schltr (D). Pictures by O.Pérez and G.Gerlach. 

 

Previous molecular phylogenetic studies involving Cycnoches (e.g. Pridgeon & 

Chase, 1998; Freudenstein et al., 2004; Freudenstein & Chase, 2015) rather focused on 

other genera of Catasetinae (i.e. Cyanaeorchis: Batista et al., 2014; Galeandra: Monteiro 

et al., 2010) and included no more than three species of the genus. Therefore, neither the 

internal phylogenetic relationships of Cycnoches nor the monophyly of sections 

Cycnoches and Heteranthae were reliably understood before my research work. The lack 

of a solid phylogenetic framework has precluded further research on several evolutionary 

aspects of Cycnoches, such as the biogeographical history and evolution of sexual 

dimorphism within this lineage.  
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Figure 5. Schematic view of a member of Cycnoches sect. Cycnoches (C. ventricosum 

Bateman). A. Plant; B. Flowers (side view); C. Column (transversal cut) of a staminate flower: 

1) non-functional stigmatic chamber, 2) rostellum band, 3) clinandrium, 3a) projections, 3b) 

filament; D. Lip: 4) claw, 5) calli, 6) hypochile, 7) epichile; E. Pollinarium: 8) pollinia, 9) stipe; 

10) viscidium. Drawing by O. Pérez based on BGM 2003/3993 M. 
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Figure 6. Schematic view of a member of Cycnoches sect. Heteranthae. A. Flowers; B. Side 

view of column (1), lip (2), ovary (3) and 4) pedicel; C. Column (transversal cut) of a staminate 

flower: 5) non-functional stigmatic chamber, 6) rostellum band, 7) clinandrium, 8a) projections, 

8b) filament; D. Pollinarium: 9) pollinia, 10) stipe, 11) viscidium, 12) anther cap; E. Lip: 13) 

claw, 14) calli, 15a-15d) dactylar processes, 16) apical callus, 17) hypochile, 18) epichile. 

Drawing by O. Pérez based on BGM 2012/0839 M. 
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Another puzzling aspect of Cycnoches is the extreme morphological variability of 

the reproductive structures occurring in some of the species (Gregg, 1983; Gerlach & 

Pérez-Escobar, 2014). This is reflected in the particular intricacy of the taxonomy in a 

group of species, denoted as the “Cycnoches egertonianum complex” (Romero and 

Gerlach, in press), which includes 10 entities (Appendix S1) distributed from southern 

Mexico to Southern Panama that are often difficult to identify from herbarium 

specimens. One peculiarity of all members from such complex is the large intraspecific 

variability of the lip dactylar processes (Fig. 6). For instance, Gregg (1983) reported for 

eight individuals of C. dianae Rchb. f (a member of C. egertonianum complex; Fig. 7) 

contrastingly different colour, forms and dactylar processes morphology, ranging from 

pink, rounded, very short to yellow-tan, oblong processes. Hence morphology does not 

provide useful information to delimitate species in the C. egertonianum complex. 

However, analysis of fragrances produced by Euglossine bee pollinated orchids such as 

Cycnoches is a powerful tool to carry on species delimitation because these fragrances 

are quite specific and often attract a single pollinator or a set of unique pollinators 

(Williams & Whitten, 1983). In addition, genome restriction-site-associated markers are 

a powerful approach to study genome divergences and address evolutionary questions at 

a population level because of the large number of reads of potential homologous loci it 

produces to perform comparisons between individuals (Eaton, 2014).  
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Figure 7. Schematic view of two flowers of Cycnoches dianae, drawn from different individuals. Note the different morphology of the dactylar processes in 

the labellum of both flowers. A. Dissected flower; B. Column (side view); C. Lip (3/4 view); D. Lip (side view); E. Detail of the dactylar processes; F. Lip 

(transversal cut). Drawing by O. Pérez based on Powell 186 AMES (left) and on BGM 00/3415 M (right). 
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Aim of the thesis 

 The main goal of my research was to better understand the role of biotic and 

abiotic factors on Neotropical orchid evolution by investigating the molecular 

phylogenetics, historical biogeography and trait evolution in Catasetinae and Cycnoches 

orchid lineages. In addition, because morphology does not provide useful information to 

delimitate species in the C. egertonianum complex, I investigated floral fragrance 

composition and genome divergence using Next Generation Sequencing data to better 

understand species boundaries in this complex. Furthermore, I aimed to explore the 

utility of two distance based co-phylogenetic tools, namely PACo (Procrustes 

Application to Cophylogeny – PACo: Balbuena et al., 2013) and ParaFit (Legendre et al., 

2002) to detect conflicting sequences in independently derived nuclear and chloroplast 

phylogenies of Catasetinae. In particular, the main questions I addressed were: i) how 

many times did sexual dimorphism evolved in Catasetinae? ii) did the LCA of 

Catasetinae bore bisexual, protandrous flowers? iii) when and where did the LCA of 

Cycnoches diversify? iv) Did the Andean uplift represent an isolative barrier for lowland 

epiphytic lineages such as Cycnoches? 

 To answer these questions, I compiled a more comprehensive, densely sampled 

molecular dataset of Catasetinae, from which I produced the most representatively 

sampled phylogeny of Catasetinae so far published (Chapters 5 and 6 of this thesis). 

Based on this new solid phylogenetic framework, I addressed the evolution of sexual 

systems by gathering information on mating system data and performing ASR using 

different approaches (Maximum Likelihood and Bayesian methods; Chapter 6). To 

quantify the utility of PACo and ParaFit tools to retrieve conflicting sequences, I 

analysed the Catasetinae nuclear and chloroplast derived trees as well as simulated 

datasets, which lately provided a solid statistical testing framework of these applications 

under different data conditions (Chapter 5). I also developed a pipe-line in cooperation 

with Dr. Juan Balbuena (University of Valencia) to automatize the outlier detection 

process and apply it to any set of trees (i.e. either large or small datasets – 50 to 200 

OTUs). Finally, to determine the role of the Andean uplift into geographic range 

evolution of lowland epiphytic lineages, I investigated the biogeographical history of 

Cycnoches using a well-resolved, novel chronogram and modern phylogenetic 

approaches (Chapter7). 
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Introduction

With over 800 species, Lepanthes Swartz (1799: 85) is one of the largest genera in Pleurothallidinae 
(Orchidaceae). It ranges from southern Mexico to Bolivia and northern Brazil. A high level of endemism is 
observed in the Andes of Colombia and Ecuador (Pridgeon 2005). Despite the large number of species described 
by Luer (1986, 1994, 1996, 2009), several new Lepanthes have been described by other authors (Catling & 
Catling 1988, Tremblay & Ackerman 1993, Ortiz 1998, Pupulin & Bogarín 2004, Pupulin et al. 2010). 

Plants of Lepanthes usually grow epiphytically in cloud forests and paramos, but some on rocks and the 
ground have also been reported (Farfán et al. 2003). Species of Lepanthes are easily recognized by their 
lepanthiform sheaths, successive inflorescences arising from the upper- or underside of the leaf, usually 
transversely bilobed petals and often bilobed lip (Farfán et al. 2003), usually with an appendix attached to the 
sinus of the body. Inflorescences are rarely simultaneous, as in L. foreroi P.Ortiz, O.Pérez & E.Sánchez (2009: 
137) and L. pleurorachis Luer (1983: 363). The greatest species diversity is found in Colombia with 305 
species (Vieira pers. com). New taxa and unreported species for the Colombian flora are described and 
published every year (Ortiz et al. 2009, 2010, Calderón 2010, Pérez et al. 2010). 

During field studies conducted in the department of Valle del Cauca, a new Lepanthes was found. It 
resembles L. lycocephala Luer & Escobar (1984: 147), from which it differs by the plant size and shape of 
upper lobes of petals, lip blades and lip appendix. 

Lepanthes elizabethae O.Pérez, Kolan & E.Parra, sp. nov. (Figs. 1, 2)

Type:—COLOMBIA. Valle del Cauca: Municipio de Yumbo, Corregimiento de DAPA, Bosque de Niebla residual entre 
las fincas Cielo Azul y DEBUSALE, ca. 1800 m, 10 October 2010,  Pérez, González & Buβ 999 (holotype CUVC!).

Lepanthes elizabethae is similar to L. lycocephala, from which it is easily distinguished by the minute plant habit, 
triangular, strongly acuminate upper lobe of the petals, dolabriform blades of the lip without erect lobes near the 
base, and rounded, trilobed appendix of the lip.

Epiphytic, minute plant, up to 13 mm tall. Roots filiform, 0.5 mm in diameter. Ramicaul slender, erect, ca. 3.7 
mm, covered by 2–4 ribbed lepanthiform sheaths with the ribs minutely denticulate and ostia minutely ciliate. 
Leaves suborbicular to obovate, obtuse, the apex slightly folded towards the abaxial surface, the base cuneate, 
contracted into a petiole 0.8 mm long, margin slightly undulate, shortly ciliate, 7.4 × ca. 5.0 mm. 
Inflorescence racemose, secund, successive, dense, 3.2 mm long, including the peduncle 1.6 mm long, borne 
from the abaxial surface of the leaf. Floral bracts cylindrical, 0.3–0.5 mm long. Pedicel 1 mm; ovary 1.2 mm 
long, smooth. Flowers minute, pink-reddish; slightly stained with yellow at the base of the sepals and petals. 
Sepals membranaceous, glabrous, ovate, acute, mucronate; the dorsal one triveined, entire, 3.6 × 2.1 mm, 
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including a tail 1 mm long; the lateral ones connate to 1.8 mm, biveined, margin strongly dentate, teeth 
obtuse, 5.3 × 2.0 mm, including a tail 2 mm long. Petals minutely pubescent, transversely bilobed, 1.0 × 5.4 
mm; the upper lobe triangular, strongly acuminate, 2.4 mm long; the lower lobe triangular, ending in a tail, 3.0 
mm long, excluding the tail 2.1 mm long. Lip bilaminate, basally adnate to the column, pubescent, blades 
dolabriform, base of the blades obtuse, apex truncate, connective cuneate, 1.3 × ca. 2.0 mm, the appendix 
small, rounded, tomentose, parallel to the connective, trilobed, the lobes short, obtuse. Column arcuate, 1.7 
mm long spread, with a pair of rounded apical wings. Pollinia 2, pyriform, ca. 0.5 mm long. Anther cap 
cordate in outline, base truncate, cucullate, translucent, 2-celled. 

FIGURE 1. Illustration of Lepanthes elizabethae. A. Plant habit. B. Flower. C. Floral dissection. D. Lip details. E. Column. F. 
Pollinarium and anther cap; drawn by O. Pérez from the holotype.
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FIGURE 2. Lepanthes elizabethae. A. Habit. B. Flowering plant. C. Sepals and one petal. D. Lip (side view). E. Lip (ventral view— 
note the appendix just below the sinus). F. Column. (Photos O. Pérez.)

Distribution and habitat:—Lepanthes elizabethae is only known from the eastern slope of the Western 
Cordillera of the Andes, vicinity of Dapa, department of Valle del Cauca, Colombia (figure 3). It grows 
epiphytically in remnant cloud forest at about 1800–2000 m elevation. Plants were found growing on 
Tibouchina sp. (Melastomataceae) inside the forest, near creeks. 

Conservation status:—According to the IUCN Red List (IUCN 2011), the species can be assigned as 
critically endangered (CR, criterion D2–very small or restricted population) due to the small population found 
only in the vicinity of Dapa in Colombia.

Eponymy:—Named after Elizabeth Santiago Ayala, researcher at the AMO herbarium, who has greatly 
contributed to the taxonomy of Epidendrum.

Discussion:—Lepanthes elizabethae is closely related to L. lycocephala Luer & Escobar (1984: 147), 
from which it differs by its minute habit, less than 1.3 cm tall, subrounded to obovate leaves (vs. ovate to 
elliptical,  acute to subacute), length of the sepalar tails (2 mm long in L. elizabethae vs. 1 mm in L. 
lycocephala), petals with the upper lobe triangular, strongly acuminate (vs. triangular, narrowly obtuse), 
blades of the lip dolabriform with an obtuse base (vs. zoomorphic lip, blades subquadrate with acute lobes at 
the base) and rounded, tomentose lip appendix (vs. oblong, pubescent). All differences between these species 
are summarized in the Table 1.
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FIGURE 3. Distribution of Lepanthes lycocephala (based on the herbarium specimens Luer et al. 4626 SEL!, Luer et al. 15554, 
16815, 17649 MO, Luer 16815 MO, and Hirtz 5866 MO) and L. elizabethae (type locality).

TABLE 1. Main differences between L. elizabethae and L. lycocephala.
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Lepanthes elizabethae Lepanthes lycocephala

Plant size up to 13 mm up to 70 mm

Leaves subrounded to obovate
7.4 × ca. 5.0 mm

ovate to elliptical
7.0–18.0 × 5.0–6.0 mm

Sepals margin entire (dorsal sepal); tails up to 2 
mm long

margin minutely denticulate (dorsal sepal); tails 1 mm 
long

Petals 1.00 × 5.30 mm; upper lobe strongly 
acuminate

0.75–1.00 × 3.75–4.00 mm; upper lobe narrowly obtuse

Lip base of the blades obtuse with erect, acute lobes near the base

Lip appendix rounded, trilobed; the lobes short, obtuse, 
tomentose

oblong, pubescent (Luer 1984), or with a massive tuft of 
long hairs (Luer 1996).
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Introduction. The genus Malaxis Sol. ex Sw. (1788: 
119; Orchidaceae) encompasses ca. 300 species 
(Todzia 1995, Dodson 2002, Dressler 2003, Cribb 
2005) distributed worldwide, with at ca. 100 species 
in the Western Hemisphere (Dodson 2002) and 
21 reported so far for Costa Rica (Pupulin 2002, 
Dressler 2003). According to a preliminary molecular 
phylogenetic analysis (Cameron 2005) the genus is 
at least diphyletic in its traditional circumscription. 
Here, we adopt the generic classification of tribe 
Malaxideae Lindl. of Cribb (2005; 13 genera), as 
well as his circumscription of Malaxis. Szlachetko 
and Margońska (2006) recognize at least two generic 
segregates of Neotropical Malaxis sensu Cribb 
(2005) (i.e., Microstylis (Nutt.) Eaton and Tamayorkis 
Szlach.); however, their rationale is not explicit, and 
the species treated here would still be included in 
their narrow circumscription of Malaxis.
	 Tropical species of Malaxis occur in a great 
variety of environments, ranging from lowlands rain 

forests to paramos (and reportedly also from semiarid 
environments; González-Tamayo 2002), from sea level 
to 3500 m elevation (González-Tamayo 2002). Plants 
of Malaxis are easily recognized by their herbaceous, 
sympodial habit, rhizomatous stems often with small 
pseudobulbs or corms covered by membranaceous 
cataphylls, one or two non-articulated leaves produced 
per sympodial unit, terminal inflorescences (either 
racemes or corymbs), and small, usually green 
flowers with a frequently concave disc (sometimes 
transversally divided by a longitudinal ridge) located 
at the base of the labellum.
	 During the botanical field course “Sistemática 
de Plantas Tropicales (OET 2013-18)” at Las Cruces 
Biological Station (southern Fila Costeña, Puntarenas 
Province, Costa Rica), a small epiphytic plant of 
Malaxis was found growing in late secondary forest 
at the base of a mature tree with ca. 50 cm of diameter 
at breast height (DBH); this plant was eventually 
identified as M. nana C. Schweinf. (1938: 89–91). 

REDISCOVERY OF MALAXIS NANA (ORCHIDACEAE: MALAXIDEAE) IN 
COSTA RICA, WITH AN UPDATED DESCRIPTION

Oscar A. Pérez-Escobar1,4 & Mario A. Blanco2,3

1 Department of Botany, Systematics and Mycology, Ludwig-Maximilians Universität, 
Menzinger Straβe 65, Münich, Germany

2 Escuela de Biología, Universidad de Costa Rica, 11501-2060, San Pedro de Montes de Oca, 
San José, Costa Rica

3 Research Associate, Jardín Botánico Lankester, Universidad de Costa Rica, 
Apdo. 302−7050 Cartago, Costa Rica

4 Corresponding author: oapereze@yahoo.com

Abstract. Malaxis nana C. Schweinf. is known from two herbarium specimens collected in 1925 in San Ramón, 
Alajuela province, and three additional specimens without detailed locality data collected in the late 1800’s, all 
of them in Costa Rica. This species had not been registered since. Malaxis nana is hereby first reported for Las 
Cruces Biological Station, Puntarenas province, in southern Costa Rica. An updated description, illustration, 
photographs and distribution map for this taxon are provided. 

Resumen. Malaxis nana C. Schweinf. se conoce de dos especímenes recolectados en 1925 en San Ramón, 
provincia de Alajuela, y tres especímenes adicionales sin datos de localidad detallados y recolectados en 
los finales de los 1800’s, todos de Costa Rica. Esta especie no había sido registrada desde entonces. Aquí 
informamos por vez primera sobre la existencia de Malaxis nana en la Estación Biológica Las Cruces, provincia 
de Puntarenas, en el sur de Costa Rica. Se presenta una descripción actualizada, ilustración, fotografías y mapa 
de distribución para este taxón. 

Key words: Alberto M. Brenes, Auguste R. Endrés, Las Cruces Biological Station
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After studying specimens from six herbaria in Costa 
Rica (CR, HLDG, INB, JBL, LSCR, and USJ) and 
other important herbarium databases available on-line 
(AMES, K, MO, NY and W), only three additional 
specimens of M. nana were found (Endres 138 
and Endres s.n. [2 specimens], both at W, collected 
somewhere in Costa Rica between 1866 and 1874; see 
discussion).
	 Because of the dearth of information on Malaxis 
nana, we provide an updated description, illustrations, 
a distribution map, and brief commentaries on the 
ecology of this taxon. 

Materials and methods. Live plants of Malaxis nana 
were collected on July 2013 in the forest preserve of 
Las Cruces Biological Station (see detailed locality 
data under “additional specimens examined”, below). 
The identification was made using the treatment of 
Dressler (2003) and verified by comparing the plant 
with the protologue (Schweinfurth 1938). A dry 
herbarium specimen was prepared, and flowers were 
also preserved in liquid (70% ethanol, 20% water, 10% 
glycerol). The updated description below was prepared 
based on all six collections of M. nana available to us 
(either as physical specimens or as digital images) by 
early 2014. Distribution maps were generated using 
DIVA-GIS. 

Taxonomic treatment

Malaxis nana C. Schweinf., Bot. Mus. Leafl. 5(6): 
89–91. 1938. (Figs. 1, 2)

Type: —COSTA RICA. [Alajuela: San Ramón,] bois 
à San Pedro de San Ramón, epiphyte, de 7 cm. haut., 
alt. 850 m, 27 June 1925, Brenes (96) 1301 (holotype: 
AMES [image!], mounted on same sheet as paratype).

	 Epiphytic, sympodial, cespitose herbs (usually 
with only 2 consecutive sympodial units present at 
any given moment), 2–6 cm tall (to the top of the 
inflorescence). Roots 1.0–1.9 mm in diameter, whitish, 
pilose, growing from the base of each pseudobulb. 
Pseudobulbs 5–13 × 4–6 mm, green, ellipsoid to 
ovoid, heteroblastic, covered by 1–2 membranaceous 
cataphylls 0.5–2.0 cm long. Leaves 2 per sympodial 
unit (produced from the apex of the pseudobulb), 
present only in the most recent sympodial unit, 
shortly pseudopetiolate; pseudopetioles (sheaths of 

the foliage leaves) U-shaped in cross section, 5–27 
× 3–4 mm (folded), erect, enveloping each other and 
the inflorescence, forming a pseudostem that projects 
above the hidden pseudobulb; blades 13.0−68.0 × 
2.1–36.0 mm (in flowering shoots), often slightly 
anisophyllous, horizontal to ascending, subopposite, 
broadly lanceolate to ovate, basally cuneate to round, 
apically acute, shiny green with crystalline texture 
adaxially, matte greyish green abaxially, herbaceous, 
9–16 veined, the midvein impressed. Inflorescences 
22–45 mm long (including peduncle), erect to 
arcuate; peduncle 23–41 mm long, minutely ribbed, 
of a single visible internode; rachis 2–4 mm long, 
corymbose, with up to 25 simultaneously open flowers 
and ca. 12 developing buds. Floral bracts up to 2 × 
1 mm, spreading, membranaceous, green, triangular, 
1-veined. Pedicel plus ovary 5–15 mm long, seemingly 
increasing in length with age during both before and 
during anthesis. Flowers relatively big for the size of 
the plant (open perianth ca. 9 mm long), secondarily 
non-resupinate (by 180 degree twisting and upward 
bending of the pedicel), emerald green, turning coppery 
orange when old (or “chestnut brown” according to 
one herbarium collection), membranaceous, sepals 
and petals lustrous and somewhat translucent. Dorsal 
sepal 6.0–7.6 × 1.2–2.0 mm, spreading, adpressed 
to the ovary, narrowly lanceolate, acute to long-
acuminate, entire, retrorse towards the apex, 3-veined. 
Lateral sepals 6.1–8.0 × 1.8 mm, free, spreading, 
obliquely narrowly lanceolate, acute to acuminate, 
entire, margins slightly revolute, 3-veined. Petals 6.0–
7.0 × 0.5–1.0 mm, spreading, slightly recurved upon 
the middle part, narrowly triangular to linear, acute, 
entire, 1-veined. Labellum 5.1–6.5 × 2.1–4.0 mm, 
spreading, ovate to lanceolate, long-acuminate, entire, 
fleshy, concave at the proximal half, disc cavity non-
divided, somewhat darker than the rest of the labellum. 
Column 1.1 × 2.0 mm (wider than long), dorsiventrally 
compressed, emarginate. Anther dorsal, with 2 
divergent thecae. Pollinia 4 in 2 hemipollinaria (1 per 
theca), each pollinium ca. 1 mm long, yellow, narrowly 
ovoid; the two pollinia in each hemipollinarium 
tightly appressed to each other, sharing a single apical 
caudicle ca. 0.2 mm long. Rostellum concave. Stigma 
ventral, transversally bilobed, ca. 0.7 × 1.5 mm. Fruit 
a capsule, 5 mm long when dehisced, apparently with 
2 narrow valves and 1 wider valve separating at apex.
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Figure 1. Malaxis nana. A. Flower, front view. B. Flower, side view. C. Flower, oblique view. D. Dissected perianth. E. 
Column, dorsal view, with hemipollinaria removed. F. Hemipollinaria. Drawn by O. Pérez from Pérez 1412.



LANKESTERIANA 14(2), August 2014. © Universidad de Costa Rica, 2014.

112 LANKESTERIANA

Additional specimens examined: COSTA RICA. 
Without additional data: Endrés s.n. (W no. 1889-
39091, image!), 1867, Endrés 138 (W no. 19521 
[image!] & 1889-40326 [image!]). [Alajuela: San 
Ramón,] Bosquet du Cerro de San Isidro de San 
Ramón, 1175 m, 10 July 1925, Brenes (131) 1334 
(AMES [image!, mounted on same sheet as holotype], 
CR!). Puntarenas: Coto Brus, San Vito, Estación 
Biológica Las Cruces, sendero Río Java, 1200 m, lat.: 
8.786788°, long.: -82.965540°, 14 July 2013, Pérez 
1412 (USJ!, JBL-liquid!).   

Distribution and ecology: Malaxis nana is considered 
endemic to Costa Rica and so far it is known only 
from Alajuela Province, San Ramón County (type 
locality and San Isidro Hill) and Puntarenas Province, 
Coto Brus County (Las Cruces Biological Station) 
(Fig. 3). The last locality is only 6 km away from the 

Panamanian border; thus, it is highly likely that the 
species also occurs in Panama.
	 Plants of Malaxis nana grow as epiphytes in the 
lower strata of premontane wet forests, in an elevational 
range of 850–1200 m. In Las Cruces Biological Station, 
plants of M. nana were observed growing on mature 
trees of ca. 50 cm DBH. When the present manuscript 
was in press, we learned that M. nana was collected again 
in Las Cruces Biological Station in June 2014, this time 
during the course “Tropical Plant Systematics” (voucher: 
Bonifacino & Damián 5001, to be deposited at USJ; 
verified by photos of the live plant sent to us), apparently 
from the very same colony as Pérez 1412. Flowering 
plants have been collected at least in June and July (the 
Endrés specimens do not indicate a collecting date).

Commentary: Malaxis nana was described by Charles 
Schweinfurth (1938: 89–91) from a plant collected 

Figure 2. Malaxis nana. A. Plant habit. B. Inflorescence, top view. C. Flowers, top view. Note flowers secondarily non-
resupinate by the 180 degree twisting and upward bending of the pedicels, and the old flowers turning yellowish orange. 
Photos by M. A. Blanco & O. Pérez.
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in San Ramón county, Alajuela province, and from 
another record from a nearby locality (San Isidro Hill); 
both plants were collected by Alberto M. Brenes (for 
information about Brenes’s collecting activities and 
the numbering of his collections see Barringer 1986). 
Three other herbarium specimens (unknown to 
Schweinfurth) were collected by Auguste R. Endrés 
in Costa Rica sometime between 1866 and 1874 
(during his stay in that country; Ossenbach et al. 
2010) – at least two of them in 1867 (see below). 
Endrés sent his specimens to H.G. Reichenbach in 
Hamburg, and they are currently deposited in the 
herbarium of the Naturhistorische Museum in Vienna 
(W). These three specimens lack additional locality 
information; however, they were possibly collected in 
the region of San Ramón, where Endrés lived during 
most of his time in Costa Rica (Ossenbach et al. 
2010). Like many other collections that Endrés sent 
to Reichenbach, these represented a then-undescribed 
species but Reichenbach never described it (see 

Pupulin et al. 2011). They were identified as Malaxis 
nana by Robert L. Dressler in 2001. Images of these 
and other Endrés collections are available through 
the Virtual Herbaria website (http://herbarium.univie.
ac.at/database/search.php). 
	 Two of the Endrés specimens have attached 
pieces of rag paper with the handwritten annotation 
“1867 […] Nº 138 Microstylis − fls. chestnutbrown 
(concolored)”. The first number probably refers to the 
year of collection. The second number is the “species 
number”; Endrés did not use collection numbers in 
the modern sense (i.e., to designate gatherings), but 
he used these numbers to correlate drawings and 
descriptions with plants that in his opinion belonged to 
the same species (Pupulin et al. 2011). It is interesting 
that the flowers of these specimens were described as 
“chestnut brown”, in contrast to the plant from Las 
Cruces, which had green flowers. None of the two 
Brenes collections have a description of the flower 
color.

Figure 3. Distribution of Malaxis nana (based on available herbarium specimens with locality data)
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	 In spite of more or less constant and intensive 
botanical explorations in Costa Rica ever since, 
no additional collections of this species were 
known until now. After 73 years of its description, 
hereby another population is reported, growing on 
a premontane wet forest from Puntarenas province, 
Coto Brus County (ca. 220 km SE from the type 
locality). Malaxis nana can be recognized from 
other Costa Rican congeners by the small size 
of the plant, very short pseudobulbs bearing two 
leaves each, very short rhizome segments, thyrsoid 
inflorescences, relatively large flowers, the entire, 

acuminate labellum without auricles or lobes at the 
base, and the non divided disc cavity.
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Foreword

We dedicate this volume to the memory of Father Pedro Ortiz Valdivieso, S.J., (31 January 1926 – 18 July 2012) 
who passed away last year in Bogota. He was an inspiration not only for Colombian orchidists, but for all who 
met him, and had the pleasure of visiting him or going out into the field with him. We had been corresponding 
since the early 70's; he shared his material with us, and we herewith dedicate a new species to him. He also co-
authors two new species, shared his photographic material, and acted as a reviewer for several texts. In 
addition, we appreciate the Latin translation of the diagnoses, when that was still a requirement in the 
Botanical Code of Nomenclature.

In this volume we present three novelties. First all texts have been reviewed by at least two reviewers, a process 
which has definitely helped in catching mistakes, sometimes questioning the author´s information or pointing 
out additional information which had not been originally considered. Second, we have added, where possible 
colored images of the species described. Third, the printed edition is published simultaneously with the 
electronic copy, which are identical. The electronic version is freely available to all at  

; whereas the printed copy is sent to libraries, as 
well as the subscribers and authors. The electronic texts are in searchable pdf form. The participation of 28 
authors and co-authors, 12 illustrators, and 43 photographers is appreciated, as well as 32 reviewers.

Up to now we have used the abbreviation used by Tropicos of the Missouri Botanical Garden, Icon. Orchid. 
(Mexico). However, the IPNI International Plant Nomenclature Index, a consortium including the Royal 
Botanic Gardens, Kew, and the Harvard University Herbaria indicate the abbreviation simply as Icon. Orchid. 
which we herewith adopt. 

We herewith present 77 species new to science, distributed from Mexico, through Central and South America, 
as far as Argentina. They are distributed in Colombia (33), Peru (27), Ecuador (15), Costa Rica (5), Brazil (3), 
French Guiana (2), and one each from Argentina, Bolivia, Mexico, Panama, Paraguay, Surinam, and 
Venezuela. They do not add up because some species are reported from more than one country.

Much material from Colombia has been studied, in preparation for the Orchids of the Valle del Cauca, which 
will be published shortly by Dariusz Szlachetko et al., where the team from the Herbario AMO has 
collaborated in the preparation of the genus Epidendrum. Much information has been provided by our 
Colombian collaborators, especially Oscar Alejandro Pérez Escobar and Edicson Parra Sánchez, but also many 
others.

We continue to work closely with several Peruvian botanists who have co-authored numerous species of that 
country, especially Benjamín Collantes Meza. We have been surprised to find the diversity between the 
northern, central and southern parts of Peru. Most of the older collections were made in the north, so having 
access to material from throughout the country, interesting differences appear. We illustrate the true 
Epidendrum paniculatum Ruiz and Pav. after piecing together the type material found in Madrid, and thanks to 
the help and information provided in part by Franco Pupulin and the curators of MA which we recently visited.

In tackling the Paniculatum Sub-group, we also took on the Brazilian species which have often been confused 
with that species, but represent a different group, the Densiflorum Group. Most specimens had been 
identified as Epidendrum densiflorum Hook., but aside from the new Epidendrum andres-johnsonii Hágsater & 
E.Santiago, we also recognize E. brachythrysus Kraenzl., E. hassleri Cogn, E. lindbergii Rchb.f., and E. noackii 
Cogn., all rather widespread in the southern half of Brazil and most down around Foz do Iguaçu, including 
neighboring Argentina and Paraguay. We wish to thank various Brazilian and Argentine amateurs and botanists 
for their information, and in particular Thiago E. C. Meneguzzo for his critical revision of this group. We wish to 
thank the curator of the herbaria CTES María Mercedes Arbo, as well as Irma Stella Insaurralde, Enrique 
Gandolla, and Miriam Valebella, all in Argentina.

A new sub-group within the Pseudepidendrum Group is established: the new Pluriracemosum Sub-group, 
which though similar to the Paniculatum Sub-group, it is recognized by the fact that it produces new racemes 
from the old inflorescence. The flowers are somewhat variable in color, from the basic green and white to 
purple-brown and pink and yellow. Epidendrum unguiculatum (C.Schweinf.) Garay & Dunst. and E. iguagoi 
Hágsater & Dodson belong here, together with the new E. pluriracemosum Hágsater & E.Santiago, E. 
humantupanorum Hágsater & E.Santiago, and E. oenochrochilum Hágsater, Ric.Fernández & E.Santiago.

Finally, Epidendrum hemihenomenum Hágsater & Dodson is illustrated from new material from Peru. The 
original drawing and description had been prepared from a poor flower in alcohol and photographs from 
Ecuador. This adds and corrects various details. Other corrections and additions to previously published icons 
are found in the appendix.

Eric Hágsater

 Mexico City, May 2013.

      

http://www.herbarioamo.org/index_archivos/Fascicle14.pdf

www.herbarioamo.org herbamo@prodigy.net.mx



“I found the gene of love in the orchids, the same that must awaken the heart in human beings”

PEDRO ORTIZ VALDIVIESO S.J.
January 31, 1926 – July 18, 2012

Germán Ortiz Plata*

We are fortunate to have known and shared moments in our lives with Father Pedro Ortiz, a special person who 
taught us to appreciate the marvels of creation and with his life showed us what we can achieve with faith and 
perseverance. 

Since an early age, he left his native Santander to pursue the Jesuit road, initially in the United States and later in 
various European countries. He was ordained as priest in Austria, and later studied a Doctorate in Sacred 
Scriptures in the Pontifical Institute in Rome. 

As translator of the Bible and facilitator of critical instruments for its study, he was part of a team that produced the 
latest Spanish version edited by the United Biblical Societies, entitled “Dios habla hoy”. In churches across 
Colombia today, every Sunday you listen to the Gospels of the New Testament which were translated into a 
version adapted to the popular language of this country. Many Colombian priests were his alumni in the Faculty of 
Theology at the Pontifical Xavierian University, of which he was a professor and dean for many years.

His studies lead him to learn over 10 languages and several dead ones, tools necessary for his professional work. 
Maybe that is why his discourse was characterized by its precision and effectiveness. He did not dedicate his time 
to banalities, and his search for the reason behind things was rigorously scientific. In addition to his outstanding 
work, he liked sciences and art, such as painting, photography, music and writing, astronomy, technology and 
botany. His taste for science lead him to study orchids. He enjoyed nature, esthetical taste and had scientific 
curiosity, which were all joined in the beauty of orchids which captivated him for the rest of his life.

He explored mountains and books like a scholar, photographed and illustrated like an artist, and studied and 
classified orchids with the patience of a researcher, and taught us with generosity and dedication. In spite of his 
deep knowledge of Colombian orchids, he never considered any plant as his own; the fact leaves us food for 
thought. His answers to the most simple or complicated query, made by friends and strangers alike, were never 
late in arriving. His legate to orchidology, more than his teachings in direct conversation, correspondence or 
lectures has been compiled in numerous books and articles, where he authored 105 taxa, covering new genera, 
species, varieties and combinations.

In spite of his saying he was no more than an amateur orchidophile, during his last years he worked on the Orchid 
Molecular Botanical Expedition project, supported by the Pontificia Universidad Javeriana. His objective in this 
field was the evaluation of genetic variability in Colombian orchids, extracting several DNA molecular markers.

He has left us his work, enthusiasm, his dedication and commitment, detachment, and love for people and things 
done, reminding us of the phrase that as a follower of St. Ignatius of Loyola guided his life “Know, love, serve Christ 
and be happy with God forever”. 

References: Without author, 2012, Bibliographia Orchidologica Ortiziana, Lankesteriana 12(2): 84-92. Ortiz 
Plata, Germán, 2012, Pedro Ortiz Valdivieso, Orquideología XXIX(2): 141-142.

Photographic credit: We were unable to determine the photographer, the digital image was found on Father Ortiz´s computer after he passed 
away. This article is translated from the original cited above; published with permission of the author and the editor.

*Sociedad Colombiana de Orquideología;   gortiz1812@gmail.com
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youngii Hágsater & E.Santiago*
yumboënse Hágsater, O.Pérez & E.Santiago*
yungasense Rolfe ................................................................................................
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AURA-USECHEAE Hagsatér, C.Rincón-Useche & O.Pérez



EPIDENDRUM AURA-USECHEAE Hágsater, C.Rincón-Useche et O.Pérez, sp. nov.
o

Type: COLOMBIA: Cundinamarca: Municipio de Junín; Vereda San Rafael, ca.1600 m, ca. 23  C, 20 Abril 2011, Cristian Camilo 
Rincón Useche 003. Holotype: COL! (Illustration voucher). Isotype: CUVC!

Simile Epidendri xanthini Lindl. sed margine apicali petalorum undulato, callo acervato labelli composito 12-14 tuberculis inaequalibus et 
margine labelli profunde fimbriato, fimbriis geniculatis quaquaversum fingentibus plane absentiam ordinis.
Terrestrial or lithophytic, sympodial, cespitose, erect herb, 54-142 cm tall including the inflorescence. Roots fleshy, 0.7-2.1 mm, basal, 
thick. Stems 38-105 x 0.35-0.86 cm, simple, cane-like, erect when young, arching when mature, purple at the base, pale purple in the 
middle, apically green. Leaves 26 distichous, alternate, dark green, distributed throughout upper 2/3 of the stem; sheaths 19.6-34.8 x 3.7-
8.6 mm, tubular, striated; blade 3-12 x 0.7-2.0 cm, narrowly elliptic-lanceolate, apex obtuse, faintly bilobed, coriaceous, smooth, green, 
unequal in size, the lower and upper leaves smaller. Spathaceous bract lacking. Inflorescence apical, racemose, successive, pluri-
racemose (producing new racemes through the time); each raceme compact, many-flowered, dense, peduncle elongate, terete up to 42.5 
cm long; covered by several tubular, acute, imbricating bracts, 4.2-7 cm long. Flowers numerous, successive, 12-16 open at one time, non-
resupinate, yellow, callus yellow to orange in mature flowers, column orange; no fragrance recorded. Floral bracts 3.1-12 mm long, much 
shorter than the ovary, triangular, acuminate. Ovary 3.27-3.95 cm long, thin, terete, not inflated. Sepals 8.3-9.2 x 3.2-3.8 mm, spreading, 
free, elliptic, slightly acute at the apex, 6-7-veined, margin entire; the lateral sepals with a low raised, dorsal keel. Petals 9 x 3.2 mm, free, 
spreading, obovate-spatulate, obtuse, margin erose along the apical half, basal half entire, 3-veined, lateral veins branching from the middle. 
Lip 7.5-8 x 6.5-7 mm spreading, united to the column, 3-lobed, base deeply cordate, margin deeply fimbriate, in natural position the 
fimbria are geniculate in all directions, appearing in total disorder; the calli complex, massive, occupying the isthmus and base of the lip, 
represented by a structure of 12-14 unequal tubercles, the basal pair and lateral pair more prominent; disc without keels; lateral lobes 2 x 4.2 
mm, trapezoid, deeply emarginate towards the posterior margin, almost forming a pair of additional lobes, appearing to be 5, anterior 
margin folded horizontally; mid-lobe 3.3 x 3.4 mm, deltate, base forming an elongate isthmus, apex slightly folded toward the adaxial part of 
the lip. Column 4.0-4.7 mm long, short, slightly arched, thin, with a pair of prominent apical, upturned wings, the apical margin truncate, 
and irregularly dentate. Clinandrium reduced, margin entire. Rostellum apical, slit. Lateral lobes of the stigmatic cavity prominent, 
occupying 1/3 of the cavity. Anther obovoid, apiculate, papillose, 4-celled. Pollinia 4, obovoid, laterally compressed, sub-equal, caudicles 
longer than the pollinia, formed by tetrads which appear like a pile of roof tiles. Nectary penetrating 1/3 of the ovary, papillose. Capsule 
narrowly elliptic, pedicel 11-14 mm long, apical neck short.
OTHER SPECIMENS: COLOMBIA: Antioquia: Quebrada at head-waters of Río Tenche, near Carolina, 2080 m, 15 V 1944, Core 719, US! 
W slope of Cordillera Occidental, 50 km NW of Antioquia and 75 km SE of Uramita, 1810 m, 9 X 1977, Gentry 20292, COL! MO! SEL! 
Mun. Frontino, km 10 of road Nutibara-Murrí, 1970 m, 26 IX 1987, Zarucchi 5814, MO! Boyacá: entre Santamaría y Piedra-campana, 800-
1100 m, 20-25 VII 1964, García-Barriga 18084, AMES! COL! Arcabuco-La Cumbre; ca. Serranía El Peligro, margen de carretera que 
conduce a Moniquirá, 2600 m, 02 IX 2011, Pérez 1162, VALLE! Cundinamarca: Alto de Quemara, Gazaunta Valley, 10 km NW of Medina, 
1430 m, 5 X 1944, Grant 10380, COL! US! WIS! Santander: alrededores de Bucaramanga, 1500 m, 27 VIII 1948, Araque 18S174, AMES! 
MEDEL! US! along road to Tona, 3 km off Bucaramanga-Pamplona, 1950 m, 3 V 1983, Croat 56401, MO x2! Mpio. de Virolín, 1800 m, 6-12 
V 1986, Fernández Alonso 6203, COL! (illustration, AMO!) between Piedecuesta and Las Vegas, 1200-2000 m, 19, XII 1926, Killip 15473, 
AMES! NY! US! Bucaramanga, ca. 1000, 16 II 1927, Killip 19341, AMES! NY! US! La Corcova (Tona), 1866 m, 12 X 1977, Rentería 650 (6), 
COL! MO!
OTHER RECORDS: COLOMBIA: Digital images by Pedro Ortiz Valdivieso, published in Gallery of Colombian Orchids as Epidendrum 
secundum (xanthinum), CD,Bogotá, 2007. Antioquia: Guadalupe, Camilo-Sánchez s.n., digital images by Camilo-Sanchez, AMO! Amalfi, 
Vélez s.n., digital images, AMO! Cundinamarca: Tenjo, Hurtado s.n., digital images by Ana B. Hurtado, AMO! Valle del Cauca: vía al mar 
km 13, 1400 m, 8 XI 2007, J. Farfán s.n., digital image, AMO!
DISTRIBUTION AND ECOLOGY: Widespread in Colombia, registered north of Bogotá, in Antioquia, and Valle del Cauca in the south; in 
rocky outcrops in grassland and among low shrubs at 1200-2600 m altitude. Forming large populations and apparently not hybridizing 
(Farfán, pers. comm. 2011). Flowering in January to May. 
RECOGNITION: Epidendrum aura-usecheae belongs to the Secundum Group which is recognized by the caespitose habit, numerous 
coriaceous leaves, and generally an elongate peduncle to a pluri-racemose inflorescence, brightly colored flowers generally pollinated by 
hummingbirds, and the caudicles of the pollinarium granulose, the tetrads appearing like a loose pile of roof-tiles, without any spathaceous 
bracts; and Elongatum Sub-group, recognized by the non-resupinate flowers with a complicated callus. This species is lithophytic with 
yellow flowers, the margins of the lip deeply fimbriate with the fimbria bent in all directions, giving an impression of total disorder; the 
column wings are prominent, bent upwards and apically truncate, the margin irregularly dentate. It is color-wise very similar to Epidendrum 
xanthinum, described from Minas Geraes, Brazil, which has the margins of the larger lip (7-8 x 9-10 mm), spreading flat, and deeply dentate. 
Epidendrum melinanthum Schltr. described from the Valle del Cauca has a much simpler callus formed by 3 tubercles, the lip is T shaped, 
with a deeply dentate margin, and the mid-lobe bifid, into two square, somewhat divergent lobes with a mucro in the sinus. The more 
common species in the area north of Bogotá is the purple-pink Epidendrum arachnoglossum Rchb.f. Epidendrum fimbria Rchb.f. has orange 
colored flowers, shorter leaves, ca. 3.5-7 cm long, the lateral lobes of the lip are semi-ovate with the margin lacerate, and the mid-lobe is 
cuneate with the dentate.
NOTE: It is curious that this entity appears to be widespread in Colombia. The shape and general disorder of the fimbria of the lip are easily 
visible feature, even in herbarium specimens, as are the generally narrow leaves. 
ETYMOLOGY: Named in honor to Aura Delia Useche Barbosa, mother of the second author, who always has given him her knowledge and 
unconditional love and is his inspiration and moral support on field trips.
CONSERVATION STATUS: NT. Not threatened. Widespread and common in northern Colombia, growing in disturbed habitats and among 
grasses in full sunlight.

Authors: E. Hágsater, C. Rincón-Useche & O. Pérez  Illustrators: C. Rincón-Useche & O. Pérez Photo: O. Pérez Editors: E. Hágsater & L. Sánchez S.
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GERLACHIANUM Hágsater, O.Pérez & E.Santiago



EPIDENDRUM GERLACHIANUM Hágsater, O.Pérez et E.Santiago, sp. nov. 
Type: COLOMBIA: Cundinamarca: Municipio de Guasca; Páramo de Guasca, junto a la carretera que conduce a Ubalá, ca. 3100 

m, ca. 7° C, 22 July 2011, Oscar Alejandro Pérez Escobar & Gustavo Morales 1104. Holotype: CUVC! (Illustration and photo 
voucher). Digital images of pretype, AMO!

Epidendro steyermarki A.D.Hawkes simile, sed inflorescentia corymbosa subsubessile, floribus majoribus, sepalis lanceolatis oblongis 
acuminatis marginibus revolutis, petalis linearis oblongis, callis prominentibus triangulis recedit.
Terrestrial, monopodial, erect herb, to 170 cm tall. Roots 2.7-7.5 mm in diameter, produced along the basal 1/3 of the stem, fleshy, thick, 
scarce. Stems cane-like, 163 x 0.56-1.2 cm, simple when young, branching near the apex with time, terete, erect, straight. Leaves 
numerous, 29 in the type, alternate, articulate, coriaceous, deciduous, similar in size and shape; sheaths tubular, 28-58 x 10.9-14.5 mm, 
striated and rugose, ochre-colored, somewhat tinged reddish; blade elliptic to lanceolate, 3.1-12.1 x 1.8-3 cm, apex rounded, short 
bilobed, margin entire, green with the margin tinged reddish, somewhat lustrous. Spathaceous bract lacking. Inflorescence (5 cm long 
including the flowers), apical, corymbose, flowering only once, erect, compact, few-flowered; peduncle 2 mm long, very short, obsolete, 
terete, thick, bare; rachis very short, 17 mm long,. Floral bracts 9.3 mm long, much shorter than the ovary, narrowly lanceolate, acute, 
amplexicaul. Flowers 6, successive, but eventually all open at one time, resupinate, yellowish green; the column and lip white including 
the calli; fragrance not registered. Ovary 39-40 mm long, teretes to slightly flattened ventrally, not inflated, unornamented. Sepals 41-44 
x 9 mm, oblong-lanceolate, acuminate, aristate, free, spreading, fleshy, 5-veined, margin entire, somewhat revolute; lateral sepals 
obliquely fused to the basal part of the column, slightly oblique. Petals linear-oblong, 40-41 x 6-7 mm, free, spreading, slightly convex, 
acuminate, 3-veined, branching somewhat below the middle, margin entire, somewhat revolute. Lip united to the column, 3-lobed, 27 
x 14 mm, base truncate, fleshy; bicallose, the calli prominent, triangular, laminar; provided with 3 smooth, elongate ribs which disappear 
before reaching the apex of the mid-lobe; lateral lobes widely reniform-truncate, 5 x 10 mm, spreading, short, the corners narrowly 
rounded, margin slightly erose; mid-lobe oblong, 15 x 7 mm, apex obtuse, the apical 1/3 slightly bent downwards towards the adaxial 
surface of the lip, apiculate, margin entire. Column 23 mm long, slightly arched, robust, widened towards the apex. Clinandrium-hood 
short, margin entire. Anther sub-spherical, the apical half exposed and surpassing the apex of the column, 4-celled. Pollinia 4, obovoid, 
laterally compressed, unequal, the inner pair slightly smaller; caudicles soft and granulose, as long as the pollinia. Rostellum apical, slit. 
Lateral lobes of the stigma prominent, occupying 1/3 of the stigmatic cavity, papillose. Nectary not inflated, minutely papillose, 
penetrating 2/3 of the ovary. Capsule not seen.
OTHER SPECIMENS: COLOMBIA: Cundinamarca: Nemocón, 2750 m, 21 IV 1968, García Barriga 19379, COL!
OTHER RECORDS: VENEZUELA: Táchira: Párarmo La Negra, photo published as Epidendrum steyermarkii (Morillo, 2011). Morillo s.n., 
digital image, AMO!
DISTRIBUTION AND ECOLOGY: presently known from the eastern Cordillera of the Andes, in Cundinamarca, Central Colombia, in 
the Páramo de Guasca, at 3100 m altitude and neighboring Venezuela; growing as a terrestrial along the road-side, in bush vegetation 
dominated mainly by Befaria, Gaultheria and Chusquea species.
RECOGNITION: Epidendrum gerlachianum belongs to the Andean Group and Cernuum subgroup, which is characterized by the 
monopodial, branching habit, the erect cane-like stems with a sub-apical branching, racemose, nutant inflorescence, compact, fleshy 
flowers, with the lip three-lobed. The species is recognized by the tall, erect, stem, erect, compact inflorescence, the large flowers with 
oblong-lanceolate sepals 41-44 mm long, linear-oblong petals 40-41 mm long, and the mid-lobe of the lip oblong, obtuse and apiculate, 
the apical 1/3 somewhat bent downwards towards the ventral surface of the lip, 15 mm long. It is similar to Epidendrum steyermarkii 
A.D.Hawkes, which has lax-flowered inflorescence, 5-7 cm long peduncle and rachis; large flowers with oblanceolate to oblong-elliptic 
sepals 26-35 mm long, oblanceolate to sub-spatulate petals 26-28 mm long, mid-lobe of the lip oblong and apiculate, 11-14 mm long. 
Epidendrum pichinchae Schltr. has taller plants, 2 m high, branched above, smaller flowers, the floral segments long-acuminate, lateral 
sepals falcate, [15]18-21 mm long, the mid-lobe of the lip sub-rhombic towards the apical half, with a long, parallel-sided isthmus, and a 
prominent apiculus.
CONSERVATION STATUS: DD. Data deficient.
ETYMOLOGY: In honor of Günter Gerlach (Germany, 1953- ), Scientific Director of the living collection at the Botanische Garten 
München, in recognition of his contribution to the taxonomy and phytochemistry of the Subtribe Stanhopeinae. He is an authority of the 
genus Coryanthes and is currently working on the systematics os several general in Catasetinae and Zygopetalinae.
REFERENCES: Morillo, Gilberto, 2011, Familia Orchidaceae in Morillo, G., B. Briceño & J F. Silva (eds.) Botánica y Ecología de las 
Monocotiledónes de los Páramos en Venezuela. 1: 344, photo 28. Santiago, E., & E. Hágsater, 2009, Epidendrum steyermarkii, in 
The Genus Epidendrum, Part 8, Species New and Old in Epidendrum, E. Hágsater & L. Sánchez Saldaña (eds.), Icon. Orchid. 12: 
t. 1294.

Authors: E. Hágsater, O. Pérez & E. Santiago      Illustrator: O. Pérez        Photo: O. Pérez      Editors: E. Hágsater & L. Sánchez S.
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GIRALDO-CANNASII Hágsater, O.Pérez & E.Santiago



EPIDENDRUM GIRALDO-CANNASII Hágsater, O.Pérez et E.Santiago, sp. nov.
Type: COLOMBIA: Valle del Cauca: Municipio de Yumbo; Dapa, ca. 1800 m, 15 Febrero 2011, Oscar Alejandro 

Pérez Escobar & Edicson Parra Sánchez 1103. Holotype: CUVC! (Illustration voucher).
Similar to Epidendrum peraltum Schltr. but the leaves green, the underside purple, flowers delicately fragrant, sepals 
dorsally magenta, ventrally ochraceous, lip with the lateral lobes dolabriform, and the lobes of the mid-lobe straight, 
opposite.
Epiphytic, sympodial, caespitose herb up to 120 cm tall. Roots ca, 3 mm in diameter, basal, fleshy, white. Stems 77 x 1 
cm, simple, cane-like, terete, straight, ascending; the basal 1/3 covered by non-foliar, tubular sheaths 3.1-5.2 cm long, 
minutely striated, scarious. Leaves 11, distributed along the apical 2/3 of the stem, alternate, articulate, spreading, 
unequal in size, the basal ones smaller; sheaths 24-70 x 3.5-10 mm, tubular, minutely striated, purple; blade 4.1-14.5 x 3-
4 cm, elliptic, acuminate, coriaceous, the upper face green, the underside purple, margin entire, spreading. Spathaceous 
bract lacking. Inflorescence 40 cm long, apical, paniculate, flowering only once, laxly many-flowered, arched-nutant; 
peduncle 6 cm long, short, straight, thin, totally hidden by a single tubular bract 7.5 cm long, acuminate, amplexicaul; 
rachis 34 cm long, terete, gradually becoming thinner towards the apex, with some 8 few-flowers racemes 11-15 cm 
long, each subtended by a bract 2-4.5 cm long, linear-triangular, long-acuminate, amplexicaul. Floral bracts 3-17 mm 
long, small, much shorter than the ovary, narrowly triangular, acuminate, amplexicaul. Ovary 31 mm long, terete, 
striated, papillose, magenta colored, slightly inflated along the apical half, and bent at the middle into an angle of 135°. 
Flowers ca. 100, resupinate, most of them simultaneously at anthesis (only a few apical flowers in bud), sepals dorsally 
magenta, internally ochraceus, petals and lip light pink, column magenta, somewhat yellowish at base; fragrance diurnal, 
delicate, agreeable. Sepals 13.5 x 3.6 mm, partly spreading, free, oblanceolate, acute, apiculate, fleshy, slightly concave 
near the apex, 3-veined, margin entire, spreading; the lateral sepals slightly oblique. Petals 11 x 0.6 mm, partly spreading, 
free, filiform, slightly oblique, apex sub-acute, 1-veined, margin entire, spreading. Lip 6.4 x 7.5 mm, united to the 
column, 3-lobed, base cordate; bicallose, the calli thin, prominent, elongate to the base of the mid-lobe; disc provided 
with 3 fleshy, parallel ribs, the mid-rib reaching the apical sinus, the lateral pair shorter and lower; lateral lobes 3 x 5 mm, 
dolabriform, margin somewhat erose; mid-lobe 1.5 x 7 mm, forming a pair opposite lobes 3.5 x 0.6 mm, horn-like, 
falcate, apex narrowly rounded. Column 11 mm long, straight, thin at the base, gradually dilated towards the apical half, 
apex bidentate. Clinandrium-hood reduced, margin entire. Anther ovoid, 4-celled. Pollinia 4, bird-wing type; caudicles 
laminar, shorter than the pollinia. Rostellum apical, slit. Lateral lobes of the stigma not seen. Nectary penetrating nearly 
half of the ovary, not inflated, unornamented. Capsule not seen.
OTHER RECORDS: COLOMBIA: Valle del Cauca: Cali-Buenaventura, 2000-2050 m, col. 24 IV 1983, pressed cult. 28 
VI 1992, Hágsater 7306, AMO! (Illustration, AMO!)
DISTRIBUTION AND ECOLOGY: Endemic to southern Colombia. Known from the eastern slope of the Cordillera 
Occidental of the Andes. Grows as epiphyte in cloud forests, at ca. 2000 m. Flowering in February to April.
RECOGNITION: Epidendrum giraldo-canasii belongs to the Pseudepidendrum Group, which is characterized by 
caespitose plants, cane-like stems, acute to acuminate leaves, apical inflorescence without spathaceous bract, the petals 
filiform and the lip usually 3-lobed, with 3 parallel fleshy ribs, the apical lobe often bifurcate, and the pollinia “bird-wing 
type” and Porphyreum Subgroup which has flowers colored reddish orange, deep purple or lilac-pink, the calli generally 
prominent, sometimes horn-like. The species is recognized by the intense purple color of the lower surface of the leaves, 
stems stained with purple, the prominent calli of the lip elongated until the base of the mid-lobe, lateral lobes of the lip 
dolabriform, 3 x 5 mm, and by the hastate, linear lobes of the mid-lobe, strongly divaricated, as long as the lateral lobes. It 
is similar to Epidendrum peraltum, which has larger plants, green, concolor leaves, and somewhat larger yellowish-green, 
un-fragrant flowers tinged with pink or totally dirty pink, lateral lobes of the lip falcate-oblong, strongly retrorse, and the 
mid-lobe with a short isthmus, ended in a pair of lobes strongly divaricated shorter than the lateral lobes. Epidendrum 
capricornu Kraenzl. endemic to Peru and Ecuador, has shorter plants, sepals with the outer surface purple brown, the 
inner surface yellow, slightly wider between the lateral lobes of the lip than between the apical lobes, and the mid-lobe 
strongly emarginate, forming a pair of linear-horn-like lobes, slightly divaricate. 
CONSERVATION STATUS: DD. Data deficient.
ETYMOLOGY: Named after Dr. Diego Giraldo Cañas, professor and researcher of the Universidad Nacional de Colombia 
(Bogotá) at the Instituto de Ciencias Naturales, (ICN), who has greatly contributed to the knowledge of the systematic of 
the families Marcgraviaceae and Poaceae, through the publication of several scientific papers and books. He was an 
advisor of O.Pérez during his undergraduate studies.

 

Authors: E. Hágsater, O. Pérez & E. Santiago        Illustrator: O. Pérez  Photos: O. Pérez         Editors: E. Hágsater & L. Sánchez S.
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KOLANOWSKAE Hágsater, O.Pérez & E.Santiago



EPIDENDRUM KOLANOWSKAE Hágsater, O.Pérez et E.Santiago, sp. nov.
Type: COLOMBIA: Valle del Cauca: Municipio de Yumbo; Dapa, en frente de la Finca “Cielo Azul”, 1900 m, ca. 20° C, 1 August 

2010, Oscar Alejandro Pérez Escobar 821. Holotype: CUVC! (Illustration voucher).

Similar to Epidendrum paniculorotundifolium Hágsater, M.Kolanowska & E.Santiago, but the leaves variable in shape from orbicular to 
elliptic (even on the same stem), and the disc of the lip with purple markings at the base of the lobes, surrounding the ribs.

Epiphytic or lithophytic, sympodial, caespitose, decumbent herb, ca. 42 cm tall. Roots 2-3 mm in diameter, basal, fleshy, thin. Stems 
simple, cane-like, 16-30 x 0.3-0.6 cm, terete, straight; the basal half covered by non-foliar, tubular sheaths 1.8-2.5 cm long Leaves 7-13, 
distributed throughout the apical half of the stem, alternate, articulate, erect-spreading, amplexicaul, some unequal in size, green and 
concolor when young, the underside turning purple when mature; sheath tubular, 1.8-2.0 x 0.3-0.6 cm, minutely striated, green; blade 
orbicular to elliptic, 2.6-7.5 x 1.8-2 cm, acute, sub-coriaceous, margin entire, spreading. Spathaceous bracts lacking. Inflorescence 
apical, 26 cm long, racemose or paniculate, flowering only once, lax, few-flowered; peduncle 7 cm long, elongate, straight, thin, 
provided with 2 lanceolate, acuminate, amplexicaul bracts, 8 mm long; rachis 19 cm long, when paniculate, with a spreading basal, 
short, few-flowered branch subtended by a basal narrowly triangular, acuminate, amplexicaul bract. Floral bracts 12-20 mm long, 
prominent, unequal in size, the basal ones about half as long as the ovary, the apical ones 1/4 the length of the ovary, linear-triangular, 
acuminate, amplexicaul. Ovary 25-28 mm long, terete, thin, not inflated. Flowers 8-17, simultaneous, resupinate, sepals, petals and 
basal half of the column green, lip and apical half of the column with the disc surrounded by pale purple spots spilling onto the lobes of 
the lip. Sepals 13 x 3.5 mm, reflexed, free, oblanceolate-spatulate, obtuse, fleshy, slightly concave towards the apex, 4-5-veined, margin 
entire, spreading. Petals 13 x 0.3 mm, reflexed, free, filiform, slightly falcate, 1-veined, apex rounded, margin entire, spreading 
(illustration insert shows large size of cells). Lip united to the column, 8.3 x 13 mm, slightly convex, fleshy, 3-lobed, base cordate, margin 
entire; bicallose, the calli prominent, rectangular-cubical, disc provided with 3 parallel ribs which extend to apical sinus, fleshy; lateral 
lobes 3.6 x 4.6 mm, dolabriform; mid-lobe bilobed, divaricate, lobes linear-oblong, oblique, apex acute, revolute, each lobe 6.6 x 2.3 
mm. Column 11 mm long, straight, thin at the base, dilated towards the apical half. Clinandrium-hood reduced, margin entire. Anther 
ovoid, 4-celled. Pollinia 4, bird-wing type, the inner pair somewhat smaller, caudicles laminar, shorter than the pollinia. Rostellum 
apical, slit. Lateral lobes of the stigma, nectary and capsule not seen.

OTHER SPECIMENS: COLOMBIA: Without locality: Cult. Colomborquídeas, col. 1 VII 1992, press. 22 VII 1997, Hágsater 11668, 
AMO! (spirit & slide).  Antioquia: Fredonia: Cerro Bravo, 1770-2050 m, 6 VI 1992, Fonnegra 4384, COL! HUA! NY! Valle del Cauca: 
Municipio de Argelia, vereda “Las Brisas”, 1950 m, 22 I 1983, Franco 1746, COL! Versalles, 2 VII 2012, Rincón-Useche & Ríos 43, COL! 

OTHER RECORDS: COLOMBIA: Valle del Cauca: Municipio de Yumbo; Dapa, 21 XII 2010, Pérez 1023, digital image, VALLE! AMO! 
Versalles, 2 VII 2012, Rincón-Useche & Ríos 43, digital image, AMO! 

DISTRIBUTION AND ECOLOGY: Known from the forested summit of the Cordillera Occidental in Colombia, in the municipality of 
Yumbo, Valle del Cauca, and the Cordillera Central near Medellín, Antioquia. Epiphytic or lithophytic in conserved cloud forest at ca. 
1770-2050 m, altitude. Flowering from June to December.

RECOGNITION: Epidendrum kolanowskae belongs to the Pseudepidendrum Group, which is characterized by caespitose plants, cane-
like stems, acute to acuminate leaves, apical inflorescence without spathaceous bract, the petals filiform and the lip usually 3-lobed, with 
3 parallel fleshy ribs, the apical lobe often bifurcate, and the pollinia “bird-wing-type”, and Paniculatum Subgroup, which has bicolor 
flowers (generally green with the lip and apex of the column white), the disc sometimes marked with purple to red. The species is 
recognized by the intermediate sized plants, the racemose or paniculate inflorescence, leaves orbicular to elliptic, disc of the lip with 3 
ribs, surrounded by pale purple spots spilling onto the lobes. Epidendrum weerakitianum Hágsater, O.Pérez & E.Santiago always has 
elliptic leaves; sepals 3-veined, the lip with 5 ribs on the disc which is clearly marked with purple turning reddish-purple with age. 
Epidendrum paniculorotundifolium has orbicular-elliptic leaves, sepals 5-veined, and the disc of the lip also has 3 ribs, but the lip is 
immaculate. It is similar to Epidendrum paniculatum Ruiz & Pav. which has elliptic leaves, the lip marked with reddish-purple, the lateral 
lobes of the lip sub-orbicular and the mid-lobe bilobed, formed by a pair of strongly divaricate, falcate lobes; it is endemic to NW Peru.

CONSERVATION STATUS: DD. Data deficient.

ETYMOLOGY: In honor of Marta Kolanowska, a Ph.D. student of the University of Gdansk (Poland) who has worked for the past 3 years 
in the study of the orchid flora of Valle del Cauca (Colombia), and recently authored (Kolanowska et al., 2011) An Illustrated field guide to 
the orchids of the Yotoco Forest Reserve (Colombia).

REFERENCE: Kolanowska, Marta, Oscar Alejandro Pérez Escobar, Edicson Parra Sánchez & Dariusz L. Szlachetko, 2011, An Illustrated 
field guide to the orchids of the Yotoco Forest Reserve (Colombia), Gdansk, Poland.
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LEONORAE Hágsater, O.Pérez & E.Santiago



EPIDENDRUM LEONORAE Hágsater, O.Pérez et E.Santiago sp. nov.
Type: COLOMBIA: Valle del Cauca: Municipio de Yumbo; Dapa, growing on a dead branch of a Melastomataceae tree, 2000 m, 

18°C, 2 December 2010, Oscar A. Pérez E. & Julián González 1000. Holotype: VALLE! (Illustration and photo voucher).

Simile Epidendri moscozoi Hágsater & E.Santiago sed floribus albo-viridaceis roseo suffusis, ovario inflato a tergo perianthi, sepalis 3-
nervatis, sepalo dorsali extenso, apice labelli emarginato et minute apiculato geminis lobulis semicircularibus externe dentatis.

Epiphytic, monopodial, reclined, branching herb, the main stem 9.1-15 cm tall. Roots 1.4 mm in diameter, basal, from the main stem, 
fleshy, thin. Stems branching; the main stem 8.3-14 x 0.14 cm; the branches 2.5-3.5 x 0.18 mm; cane-like, terete at the base, slightly 
laterally compressed towards the apex, very thin. Leaves 6 on the main stem, 4-6 on the branches, distributed throughout the stems, 
alternate, articulate; sheath 1-7.5 x 1.4-1.8 mm, somewhat infundibuliform, striated; blade  5-17 x 1.5-3.5 mm, linear-lanceolate, 
obtuse, minutely apiculate, margin entire, sub-coriaceous. Spathaceous bract lacking. Inflorescence 4-9.5 mm long, apical, racemose, 
short, 2-flowered. Floral bract 1.7-2 mm long, shorter than the ovary, triangular, acuminate, amplexicaul. Flowers 2, resupinate, 
greenish-white, with tinged pink to purple at the base of the petals and mid-part of the column and anther; without fragrance. Ovary 8 
mm long, terete, thin, smooth, ventrally inflated behind the perianth to form a vesicle. Sepals 3-veined, margin entire, spreading, free; 
the dorsal sepal 5.5 x 2 mm, sub-spatulate, obtuse; the lateral sepals 5.5 x 2.5 mm, obliquely elliptic, acute, with a prominent low dorsal 
keel. Petals 5.5 x 0.5-0.7 mm, spreading, free, linear-filiform, slightly expanded towards the apex, 1-veined, margin slightly erose at the 
apex, spreading. Lip 4 x 6.5 mm, united to the column, markedly convex  transversely elliptic, base slightly cordate, apex emarginate, 
apiculate, flanked by a pair of semi-circular small lobes terminated in a pair of prominent teeth on the outer margin, margin erose-
crenate; bicallose, the calli, globose, large; disc fleshy. Column 5 mm long, straight, narrowed in the middle. Clinandrium-hood short, 
margin entire. Anther  and pollinia not seen. Rostellum apical, slit. Lateral lobes of the stigma not seen. Nectary not seen. Capsule 22-
24 x 8-9 mm, globose; pedicel 3-4 mm long, terete; short, thin; body 12-14 x 8.5-9 mm; apical neck 6-7 mm long.

OTHER SPECIMENS: PERU: Huánuco: San Pedro Carpish, 2755 m, 18 II 2007, Trujillo 354, HURP! (Flowers in spirit: MOL; Illustration, 
Photos AMO!)

OTHER RECORDS: COLOMBIA: Antioquia: Serranía de Las Baldías, Corregimiento de San Félix, Municipio de Bello, 2900 m, 27 I 
2012, Calderón-Franco & Zuleta s.n. Digital series, AMO! 

DISTRIBUTION AND ECOLOGY: Known from the forested summit of the Cordillera Occidental in the municipality of Yumbo, Valle del 
Cauca, Colombia, and the Cordillera Central north of Medellín, Antioquia, as well as Carpish, Huánuco, Perú. Epiphytic in disturbed 
cloud forest in regeneration process, growing on Tibouchina lepidota (Bonpl.) Baill., at 2000-2900 m altitude. Flowering in December 
and February.

RECOGNITION: Epidendrum leonorae belongs to the Soratae Subgroup of the Scabrum Group which is characterized by the branching 
habit starting on a monopodial, primary stem, infundibuliform, rugose leaf-sheaths, lanceolate, aristate, acute leaves, racemose sub-
capitate inflorescence on a short, thin peduncle, and the bicallose lip. The species is recognized by the small plants with thin stem and 
very short branches, linear-lanceolate, short leaves, small greenish-white flowers, lateral sepals obliquely elliptic, 5.5 mm long , and a 
transversely elliptic lip, base slightly cordate, apex emarginate, apiculate, the apiculus flanked by a pair of semi-circular lobes terminating 
in a pair of prominent teeth at the outer margin, the margin crenate. It is similar to Epidendrum moscozoi, which has white flowers with 1-
veined, ovate lateral sepals (the dorsal one reflexed) 3.7-4 mm long, and a reniform lip with a unicarinate disc, the ovary is 10-14 mm 
long. Epidendrum obliquum Schltr. has plants to 57 cm tall and a reniform, emarginate lip with entire margin, the ovary is not inflated. 
Epidendrum soratae Rchb.f. has taller plants (to 27 cm), yellowish-green flowers with sepals 6.8-7 mm long, and a reniform, emarginate, 
somewhat 3-lobed lip with the base deeply cordate, and margin entire.

CONSERVATION STATUS: DD. Data deficient.

ETYMOLOGY: Named after Leonor Escobar Sora, mother of the second author, in recognition to her unconditional support given for his 
academic formation.

ACKNOWLEDGEMENT: We wish to thank Diego Calderón-Franco and Julián Zuleta, ornithologists from Medellín, for sharing their 
information, images, and the sighting of this new species near Medellín.

,
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LUIS-SANCHEZII Hágsater, E.Parra & O.Pérez



EPIDENDRUM LUIS-SANCHEZII Hágsater, E.Parra et O.Pérez, sp. nov.
Type: COLOMBIA: Valle del Cauca: Cerrito, Tenerife, 3500 m, 6 de Febrero de 2011, Edicson Parra Sánchez 381. 

Holotype: VALLE! (Illustration voucher).
Simile Epidendri aylacotoglossi Hágsater sed foliis ovato-ellipticis, labello obscure trilobato, ecalloso, disco praedito 
carina lata et humili attingente apicem laminae; petalorum apices acuti et columna recta.
Epiphytic, sympodial, erect herb, 20 cm tall or more, where the new stem originates from a sub-apical internode of the 
previous stem. Roots produced from the base of the primordial stem, thick. Stems 16.5 x 0.4 cm, terete, the new stem 
produced from a sub-apical internode of the previous stem, below the leaves; the basal ¾ covered by tubular, non-foliar, 
striated, scariose sheaths, 1.3-3.8 cm long. Leaves 3, aggregate towards the apex of the stem, unequal in size, sub-
coriaceous, alternate, articulate; sheaths 1.4 x 0.5 cm, tubular, striated; blade 6-9 x 2.5-3 cm, obovate-elliptic, obtuse, 
margin entire. Spathaceous bract lacking. Inflorescence 5.4 cm long, apical, flowering only once, densely few-
flowered; peduncle 1.6 cm long, terete, thin, straight, short. Floral bracts 7.5 mm long, half as long as the ovary, 
triangular, acuminate, amplexicaul. Flowers 10-15, fleshy, successive, though several are open at one time, yellow, the 
ovary greenish yellow, darker towards the base; without fragrance. Ovary 12 mm long, terete, arched near the apex, not 
inflated, somewhat grooved. Sepals partly spreading to spreading, free, obovate, acute, 3-5-veined, margin entire, 
spreading; the dorsal sepal 11 x 4.5 mm; the lateral sepals 13 x 5.5 mm, oblique with a prominent, serrulate, awned 
dorsal keel. Petals 10.5 x 2.8 mm, partly spreading, the apical 2/3 hidden beneath the lip in natural position, 
oblanceolate, acute, 1-veined, the vein branched around its mid-point, margin entire, spreading. Lip 9 x 15 mm, united 
to the column, obscurely 3-lobed, widely reniform, base cordate, concave in front of the column, the rest of the lip 
convex, margin entire; ecallose, the disc with a wide, low rib spreading from the base to the apex of the lip; lateral lobes 
7.0 x 7.5 mm, semi-orbicular; mid-lobe 1.4 x 6 mm, short, transversely rectangular, the apex emarginate, minutely 
apiculate, forming a pair of small, rounded lobes. Column 6 mm long, straight, short, thick; the apex with a pair of 
prominent rounded wings. Rostellum apical, slit. Lateral lobes of the stigma not seen. Clinandrium-hood reduced, 
margin entire. Anther 1 mm wide, obovoid, ornamented, papillose, 4-celled. Pollinia 4, obovoid; caudicles as long as the 
pollinia. Rostellum sub-apical, slit. Nectary and capsule not seen. 
OTHER SPECIMENS: None seen.
DISTRIBUTION AND ECOLOGY: Endemic to southern Colombia, on the western slope of the Central Cordillera of the 
Andes. So far known only from the remnant paramune vegetation of the Cerrito Municipality, Tenerife village, Valle del 
Cauca. Epiphytic in secondary humid cloud forest, at 3500 m altitude. Flowering in March. 
RECOGNITION: Epidendrum luis-sanchezii belongs to the Arbuscula Group which is characterized by the erect habit 
with successive lateral growths produced from the middle of the previous growth, few leaves aggregate towards the apex 
of the stems, roots generally only from the base of the primordial stem, and the Incomptum Subgroup which has a short 
apical inflorescence with fleshy yellowish to green to violet-green to black flowers with short ovaries, the lip entire to 3-
lobed. The species is recognized by obovate-elliptic leaves, the yellow flowers, sepals with a prominent, acute and 
serrulate keel on the ventral side, the apical ¾ of the petals hidden beneath the ecallose lip which is obscurely 3-lobed, 
the mid-lobe emarginate, apiculate, forming a pair of rounded lobes, with a low thick rib running the length of the lip. 
Epidendrum aylacotoglossum Hágsater has elliptic leaves, the clearly 3-lobed lip with a pair of low calli and a short canal in 
the middle, and the column sigmoid. Epidendrum envigadoënse Hágsater has narrow, lanceolate leaves, a wider lip (17.5-
19 mm) with a pair of small calli and the apex emarginate, not apiculate. Epidendrum amayense Hágsater has linear-
lanceolate leaves (0.5-0.6 mm wide), somewhat smaller, green flowers, the sepals (9 mm long) with a low dorsal keel, and 
the lip without any thickened rib. Epidendum oligophyllum F.C. Lehm. & Kränzl. is vegetatively very similar, with oblong-
elliptic to elliptic leaves, olive-brown flowers, the lip bicallose and the column 10 mm long. Epidendrum morae P.Ortiz, 
Hágsater & L.E.Álvarez has elliptic leaves, pale yellow flowers somewhat tinged pink-violaceous, the sepals have no dorsal 
keel, and the 3-lobed lip is bicallose with 3 low ribs on the disc.
CONSERVATION STATUS: DD. Data deficient.
ETYMOLOGY: In honor of Luis M. Sánchez Saldaña, Mexican orchid researcher at the AMO Herbarium, who has 
contributed to the taxonomy of neotropical orchids, for his support in the research of native Colombian orchids.

Authors: E. Hágsater, E. Parra & O. Pérez           Illustrator: E. Parra       Photo: E. Parra           Editors: E. Hágsater & L. Sánchez S.

Herbario AMO                               México, D.F. MÉXICO                                ICONES ORCHIDACEARUM 14. 2013.      Plate 1452

8



EPIDENDRUM                                          Plate 1453

THE GENUS EPIDENDRUM PART 10                                                                                    ICONES ORCHIDACEARUM 14. 2013

MACROPHYSUM Hágsater, O.Pérez & E.Santiago



EPIDENDRUM MACROPHYSUM Hágsater, O.Pérez et E.Santiago sp. nov.
Type: COLOMBIA: [Chocó]: Municipio de San José del Palmar, El Tabor, ca. 1400 m, 13 November 2011, Oscar Alejandro 

Pérez-Escobar & Duvan García-Ramírez 1400. Holotype: CUVC! (Illustration voucher) Isotype: VALLE!
Similar to Epidendrum jefeallenii Hágsater & García-Cruz but the leaves narrower, the peduncle filiform, racemes of the 
inflorescence shorter, the margin of the sepals revolute and the ovary forming a very prominent vesicle, disc of the lip with 3 ribs. 
Epiphytic, caespitose, sympodial , 40 cm tall.  basal fleshy.  16.8-20 x 0.1-0.28 cm, cane-like, simple, straight, 
thin, basal half terete, ancipitose towards the apex. Leaves 4-5, distributed along the apical half of the stem, the basal one smaller, 
green, concolor; sheaths 2.9-4.45 x 0.12-0.28 cm, tubular, ancipitose, striated; blade 3-15.4 x 0.2-1 cm, linear-lanceolate, long-
acuminate, with a central vein and a pair of evident secondary veins on the upper face, margin entire. Spathaceous bract 1.1 cm 
long, single, at the apex of the peduncle, narrowly elliptic, obtuse, conduplicate, ancipitose, similar to the floral bracts but larger. 
Inflorescence 20.5 cm long, apical, pluri-racemose, arching pendant, producing up to 4 racemes from within the apex of the 
peduncle; peduncle 19 cm long, filiform, ancipitose, two-winged, progressively narrower, the wings notorious at the base, thin; 
racemes ca. 1 cm long, short, densely few-flowered, rachis totally hidden by the floral bracts. Floral bracts 4-4.6 x 3.2-3.4 mm, 
shorter than the ovary, the basal ones sub-oblong, the apical ones elliptic, the apex rounded to minutely apiculate, conduplicate, 
dorsally carinate, distichous, imbricated at the base, persistent, pale green with small irregular, lilac spots. Flowers successive, 1 
at a time per raceme, resupinate, pale green, the apex of the column greenish white at the height of the clinandrium-hood, callus 
and disc greenish white, the vesicle of the ovary and ovary with small, irregular lilac spots. Ovary 15.5 mm long, terete, thin, 
strongly inflated at the apex, forming a prominent ventricose vesicle. Sepals 9 x 2.4 mm, spreading, free, spatulate-lanceolate, 
sub-obtuse, 5-veined, margin entire, revolute; the lateral sepals oblique. Petals 9 x 0.4 mm, inflexed, free, linear, apex rounded, 
1-veined, margin spreading, entire. Lip 3.9 x 4.5 mm, united to the column, entire, convex, sub-orbicular, cordiform when 
spread; bicallose, the calli prominent, fleshy, laterally compressed; disc with 3 fleshy, thin, parallel ribs, the surface rugose, the 
central rib slightly longer than the outer pair, though without reaching the apex of the lip. Column 7.2-7.6 mm long, thin along 
the basal 2/3, gradually widened towards the apex, slightly arched. Clinandrium-hood prominent (though without surpassing 
the body of the column, margin entire. Rostellum sub-apical, slit. Lateral lobes of the stigma prominent, covering half the 
stigmatic cavity. Nectary penetrating ca. 1/3 of the ovary, inflated, unornamented. Anther ca. 1 mm wide, 4-celled, transversely 
elliptic. Pollinia 4, slightly laterally compressed, sub-lenticular. Capsule 20 x 7.3 mm, ellipsoid, green with lilac spots on the 
pedicel and body, pedicel 6 mm long, body 11 x 7.3 mm, apical neck 3 mm long.
OTHER SPECIMENS: None seen.
DISTRIBUTION AND ECOLOGY: So far know from the western slope of the western range of the Los Andes, Department of 
Chocó, municipality of San José de El Palmar. Grows as an epiphyte in cloud forests at 1400-1500 m, where the populations are 
abundant. 
RECOGNITION: Epidendrum macrophysum belongs to the Albertii Group which is characterized by the sympodial habit, 
laterally compressed to ancipitose or somewhat fusiform-thickened stems, the apical or apical and lateral racemose, distichous 
inflorescence more or less with imbricating bracts on the peduncle, producing one flower at a time, and the Allenii Subgroup 
which is characterized by the stems with numerous leaves, the inflorescence apical (rarely lateral), peduncle elongated, bare, 
non-bract bearing, two-winged, the rachis short, covered by rounded, usually imbricating bracts. The species is recognized by 
the almost filiform and long peduncle of the inflorescence, which is almost as long as the stem, the sub-oblong to elliptical, 
rounded floral bracts of 4-4.6 mm long, which somehow are a reminiscent of the glumes' flowers of some Fimbristylis species 
(Cyperaceae) and other sedges, the ventricose, prominent vesicle of the ovary and by the sub-orbicular to cordiform lip with a 
disc with three sub-equal ribs, 3.9 x 4.5 mm. It is similar to E. jefeallenii Hágsater & García-Cruz from Panama, which has more 
ancipitose peduncles, two-winged, the wings prominent; the inflorescence with larger racemes with 5-10 successive flowers; 
ovary slightly inflated in the apical third and a cordiform lip with emarginate apex, 4-5 x 5-6 mm, with a single rib spreading from 
the base to the half of the lip. It is also similar to Epidendrum adnatum Ames & C.Schweinf., from Costa Rica and Panama, which 
has shorter inflorescences with ancipitose peduncles, two-winged, the wings prominent towards the base; an ovary dilated just 
behind the perianth; oblanceloate, sub-acute, mucronate, sepals; and a ovate, sub-acute, apiculate lip with the margin slightly 
erose.
CONSERVATION STATUS: DD. Data deficient.
ETYMOLOGY: From the Greek μακρος, large, and φυσα, bladder, in reference to the very large inflated vesicle on the 
ventral, apical side of the ovary, much larger than is normal for this group of species.

herb Roots Stems
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PACHYCOLEUM Hágsater, O.Pérez & E.Santiago



EPIDENDRUM PACHYCOLEUM Hágsater, O.Pérez et E.Santiago, sp. nov.
Type: COLOMBIA: Valle del Cauca; Municipio el Cerrito; Tenerife, Páramo “Pan de Azúcar” [Páramo Las Hermosas], 
3600 m, 6 January 2011, Oscar Alejandro Pérez Escobar & Marta Kolanowska 873. Holotype: CUVC! (Illustration 

voucher), digital images of pretype, AMO!
Similar to Epidendrum serpens Lindl. but the pseudobulb 1-2-leaved, leaves elliptic, acute, and a single reddish-violet 
flower.
Epiphytic, sympodial, rhizomatous herb ca. 5 cm tall. Roots 1-2 mm thick, basal, thin, fleshy, scarce, green with white and 
burgundy-red tinges. Stems 0.45-1 x 0.6-0.7 cm, aggregate, thickened, forming globose, homoblastic, pseudobulbs; 
covered by 1-3 bracts 11-14 x 8-10 mm, imbricated, unequal in size, papiraceous, the veins prominent. Leaves 1-2, 
apical, leaf apparently not articulate to the very fleshy, appresed sheath which appears to be part of the pseudobulb, 
coriaceous, dark green tinged violet towards the margins and underside, the juvenile leaves burgundy-red; blade 1.0-2.5 
x 0.5-1.0 cm, elliptic, acute, margin hyaline, spreading, erose. Spathaceous bract lacking. Inflorescence apical, 2-3-
flowered, sessile, rachis very short and thick. Floral bracts ca. 2 mm long, very small, triangular, obtuse. Ovary 6 mm long, 
terete, not inflated, unornamented. Flower 2-3, flowers developing in succession, with 2 sometimes open at one time, 
resupinate, reddish violet, the column and the disc of the lip yellowish red; fragrance not registered. Sepals spreading, 
free, ovate, acute, fleshy, 3-veined, margin entire, spreading; dorsal sepal 7 x 3 mm, lateral sepals 7.3 x 4 mm, oblique, 
dorsally pustulate, with an apical low, dorsal keel. Petals ca. 7 x 2.1 mm, free, spreading, narrowly oblong, acute, 1-2-
veined, margin entire, spreading. Lip 5.5 x 8 mm, united to the column, widely cordiform, apiculate, slightly concave in 
natural position, margin irregularly dentate; ecallose, with a wide, low, central, prominent rib, elongated to the apicule. 
Column 3.5 mm long, short, thick, straight, forming a right angle with the ovary. Clinandrium-hood reduced, entire. 
Anther not seen. Pollinia 4, obovoid, sub-equal; caudicles soft and granulose, slightly longer than the pollinia, wide; 
viscidium semi-liquid. Rostellum sub-apical, slit. Lateral lobes of the stigma not seen. Nectary not seen. Capsule not 
seen
OTHER SPECIMENS: COLOMBIA: Valle del Cauca: Mpio: Tuluá: Alto de Barragán, Cañón Garrapatas, ca. 3300 m, 27 
IV 2012, E. Parra 912, digital image series, AMO!
DISTRIBUTION AND ECOLOGY: Known from two localities in the Valle del Cauca, Colombia: near the summit of the 
Cordillera Central, at 3300-3600 m altitude. Flowering in January. It grows epiphyitically on small, isolated shrubs found 
reaching the paramo, beside the road.
RECOGNITION: Epidendrum pachycoleum belongs to the Kalopternix Group, which has single to few reddish-brown to 
purple flowers, often resupinate, the petals narrower than the sepals, lip more or less cordiform, sometimes apically 3-
lobed, ecallose, usually with a thickened, low, rounded rib running down the middle, the column short, forming a right 
angle with the ovary, which is short, and the Serpens Subgroup which has plants with aggregate, globose pseudobulbs 
with fleshy-coriaceous leaves, and a sessile inflorescence, and one or few fleshy, compact, star-shaped flowers, often 
burgundy red in color, lip entire, more or less cordiform. The species is recognized by the erect plant, 1-2-leaved, 
aggregate, homoblastic pseudobulbs, elliptic leaves, the apical one often much reduced, sessile flowers, produced in 
succession, sometimes 2 open at one time, sepals 7.0-7.3 mm long. Epidendrum serpens Lindl. also has an erect plant, but 
2-3 leaves per pseudobulb, 4-5 simultaneous flowers, leaves ovate-lanceolate,  linear-lanceolate petals, the lip sub-
rounded–ovate. Epidendrum platyphylloserpens Hágsater, from Ecuador, has pendent leaf, oblong-elliptic, acute, with up 
to 9 flowers opening in succession, several open at one time, the sepals are 5-veined, 8.5 mm long. Epidendrum 
pachacuteqianum Hágsater & Collantes, from Peru, has a single erect leaf per stem, small, successive, non-resupinate 
flowers, sepals 6-8 mm long, the margin of the lip and petals minutely papillose.
CONSERVATION STATUS: DD. Data deficient.
ETYMOLOGY: From the Greek B"PLH, thick, 6@8g@H, vagina, in reference to the thickened, fleshy sheath of the lower leaf 
which envelops the pseudobulb. 
REFERENCES: Hágsater, E., 2001, Epidendrum platyphylloserpens, in The Genus Epidendrum, Icon. Orchid. 4: pl. 473. 
Hágsater, E., & B. Collantes, 2006, Epidendrum pachuteqianum, in The Genus Epidendrum, Icon. Orchid. 8: pl. 864.
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EPIDENDRUM PARRA-SANCHEZII Hágsater, O.Pérez et L.Sánchez, sp. nov.
Type: COLOMBIA: Valle del Cauca: municipio de Buenaventura, San Cipriano, aprox. 100 m.s.n.m., 30°C, 20 III 2010, Oscar 

Alejandro Pérez Escobar, Edicson Parra Sánchez, Carlos Jaramillo & Paola Narváez 631. Holotype: CUVC! (Illustration voucher).

Similar to Epidendrum sympetalostele Hágsater & L.Sánchez, the petals free, lip bilobed, reniform, apical margin sinuate, disc deep 
green, with two lateral ridges which delimit it and form a fleshy, lustrous, shallow cavity, column apex with a small, acute tooth on each 
side. 

Epiphytic, erect, sympodial, caespitose herb ca. 12 cm tall. Roots 0.5-1.0 cm in diameter, basal, fleshy, filiform. Stems 5.0-6.5 x 0.4-0.5 
cm, simple, cane-like, laterally compressed towards the apex, flexuous. Leaves 3-4, distributed throughout the stem; sheath 2.0-2.2 cm 
long, tubular, laterally compressed, smooth; blade 2-7 x 0.5-1.9 cm, elliptic to lanceolate-elliptic, apex retuse to asymmetrically bilobed, 
minutely aristate, coriaceous, green, the primary veins marked pale green on the dorsal surface, margin entire, spreading, pale green. 
Spathaceous bract lacking. Inflorescence apical, 1-2-flowered, sessile. Flowers 2, simultaneous, resupinate, sepals, petals, lip and 
proximal and middle part of the column pale green; disc, calli and distal part of the column deep green; fragrance not registered. Ovary 
21.0 x 2.6 mm, terete, inflated, unornamented. Sepals spreading, free, acute, membranaceous, 7-8-veined, with many short, 
interconnecting secondary veins, margin entire, revolute; dorsal sepal 32.0 x 5.5 mm, erect, narrowly elliptic; lateral sepals 30-31 x 5.2-
6.0 mm, reflexed, oblanceolate, slightly constricted towards the base, obscurely falcate. Petals 28-29 x 3 mm, partly spreading, linear-
lanceolate, obscurely falcate, acute, membranaceous, 3-veined, margin entire. Lip 10 x 16 mm, united to the column, bilobed, strongly 
convex in natural position, reniform, base cordate, apex sinuate, when flattened the apical margin of the lip will overlap, so it may thus 
appear apiculate, perpendicular to the axis of the column, margin entire; bicallose, calli small, sub-globose; disc deep green, with two 
lateral ridges which delimit it and form a fleshy, lustrous, shallow cavity. Column 11.2 mm long, slightly arched with a small, acute tooth 
in each side of the apex. Clinandrium-hood prominent, irregularly dentate. Anther obovoid, apex obtuse; 4-celled. Pollinia 4, 
reniform, laterally compressed, caudicles granulose, very short. Rostellum sub-apical, slit. Lateral lobes of the stigma small, covering 
1/2 of the stigmatic cavity. Nectary penetrating 2/3 of the ovary, unornamented. Capsule not seen.

OTHER SPECIMENS: COLOMBIA: Valle del Cauca: Municipio de Buenaventura, La Delfina, aprox. 100 m, 30 III 2007, Pérez 468, 
CUVC! Ibid. 4 I 2011, Kolanowska 269, UGDA! Digital images of live plant taken by Marta Kolanowska, AMO! (Photo voucher.)

DISTRIBUTION AND ECOLOGY: Endemic to the Chocó biogeographic region and known only from the Buenaventura municipality on 
the department of Valle del Cauca, epiphytic, at low elevations (ca. 100 m), on isolated, mature, trees in disturbed places. Individuals and 
small populations have been seen growing on mature trees of Jacaranda sp. (probably J. caucana Pittier) and Inga sp. Flowering January-
March.

RECOGNITION: Epidendrum parra-sanchezii belongs to the Difforme Group which is characterized by the caespitose, sympodial 
plants, fleshy pale green to glaucous leaves, apical inflorescence without the spathaceous bract, sessile, rarely with a short peduncle, one-
flowered to corymbose, fleshy, and flowers green to yellowish-green, rarely white. The species is recognized by the its small plants (ca. 12 
cm tall), stems laterally compressed, with 3-4 elliptic to lanceolate-elliptic leaves, inflorescences 1-2-flowered, a bilobed, reniform, 
convex lip, disc bordered by two ridges, which delimit it, forming a fleshy and lustrous, deep green, shallow cavity. Epidendrum 
sympetalostele is vegetatively similar, but differs mainly by the sub-erect petals adnate to the basal half of the column, disc without ridges 
on the side, and prominent bifid lobes at the sides of the apex of the column. Epidendrum kerryae Hágsater & L.Sánchez has a single, large 
flower, trigonous ovary with a ventral vesicle which is dorsally flat, and an erose clinandrium-hood, the lip is entire, sub-orbicular, disc 
unornamented. Epidendrum putumayoënse Hágsater & L.Sánchez from the Amazonas slope of the southern of Colombia and northern 
Ecuador, has 1-flowered inflorescences, a 3-lobed, obtrapezoid lip, disc wrinkled at the base with three low ribs, the central one 
prominent, extended until the apex, the lateral ones reaching the middle of the lip, column straight, truncate, clinandrium-hood 
irregularly toothed.

CONSERVATION STATUS: DD. Data deficient.

ETYMOLOGY: In honor of Edicson Parra-Sánchez, agronomy engineer graduate from the Universidad Nacional de Colombia, and 
colleague and friend of the second author. He is an enthusiastic student of orchid taxonomy and has contributed with his work and 
dedication to the knowledge of the Orchid Flora of the department of Valle del Cauca, Colombia.

REFERENCES: Hágsater, E. & L. M. Sánchez Saldaña, 1994, Epidendrum kerryae, una nueva especie de Colombia, Orquideología 
19(2): 37-42. Hágsater, E. & L. Sánchez Saldaña, 1993, Epidendrum sympetalostele, in E. Hágsater & G. A. Salazar (eds.) Icon. Orchid. 2: 
pl. 191. Hágsater, E. & L. Sánchez Saldaña, 1999, Epidendrum putumayoënse, in Hágsater, E., L. Sánchez Saldaña & J. García-Cruz (eds.) 
Icon. Orchid. 3: pl. 377.

Authors: E. Hágsater, O. Pérez & L. Sánchez S.  Illustrator: O. Pérez  Photo: M. Kolanowska   Editors: E. Hágsater & L. Sánchez S.
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SUSANNAE Hágsater, O.Pérez & E.Parra



EPIDENDRUM SUSANNAE Hágsater, O.Pérez et E.Parra sp. nov.
Type: COLOMBIA: Boyacá: Municipio de Arcabuco; Alto de Gaitas, ca. Reserva “Rogitama”, ca. 2600 m, aprox. 7° 
C, 3 October 2011, Oscar Alejandro Pérez Escobar & Edicson Parra Sánchez 1105. Holotype: VALLE! (Illustration 

voucher).
Simile Epidendri reflexilobi C.Schweinf. sed floribus maioribus colore roseo-magenteo, labello pallide lilacino, callis albis 
et callis apicalibus prominentibus, praesertim centrali.
Terrestrial, caespitose, erect herb, to 265 cm tall. Roots 1.3-2.3 mm in diameter, produced from the base of the stems, 
fleshy, thick. Stems simple, cane-like, 143 x 0.9-1.18 [1.3] cm, terete, thick, straight. Leaves 8-15, articulate, distributed 
along the upper half of the stem; sheaths tubular, 3.12-6.7 x 1.0-1.4 cm, smooth to striated, green tinged with dark 
purple; blade 9.2-16 x 2.9-4.3 cm, lanceolate, coriaceous, apex obtuse, rounded, short bilobed, margin entire. 
Spathaceous bract lacking. Inflorescence 122 cm long, apical, erect, pluri-racemose; peduncle 87.6 cm long, elongate, 
terete, thin, generally covered by amplexicaul bracts; each many-flowered raceme 8.6-19.8 cm long, compact, dense, its 
peduncle covered by 5 tubular bracts 1.9-3.6 cm long, acute, scarious, becoming fibrous with time. Flowers numerous, 
19-45 per raceme, successive, 5-6 open at one time, non-resupinate, rose-magenta, the lip pale lilac with the throat 
orange-yellow, the calli and margin of the clinandrium white. Floral bracts 3-13.8 mm long, much shorter than the ovary, 
triangular, acuminate, gradually shorter towards the apex of the rachis. Ovary 21.4-40 mm long, thin, not inflated, 
striated, angulate towards the base. Sepals 18-19.1 x 5-6.1 mm, spreading to slightly recurved, free, oblong-elliptic, 
acute, minutely apiculate, 7-veined, the veins branched so as to appear 8-9 veined, margin entire, spreading; lateral 
sepals oblique. Petals 19.5-20 x 6-6.1 mm, spreading to slightly recurved, free, oblanceolate, slightly oblique, acute, 5-
veined, the lateral veins branched, so as to appear 8-veined, apical half of the margin erose, spreading. Lip 13 x 15 mm, 
united to the column, 3-lobed, base cordate, apical margin of the lobes fimbriate; callus massive, formed by two, small, 
basal, bilobed calli, followed by 3 calli, the central one large, smooth, terminating in a short, thin rib that disappears before 
the apical sinus, the lateral pair smaller; lateral lobes 6 x 8 mm, dolabriform, the forward margin conduplicate in natural 
position; mid-lobe 8 x 10 mm, with a short, narrow isthmus at the base, then bilobed, emarginate, with a small mucro in 
the sinus, the lobes flabellate, divaricate. Column 9-12 mm long, short, straight, thin at the base, and gradually thicker 
towards the apical half. Clinandrium-hood reduced, margin dentate. Anther ovoid, acute, 4-celled. Pollinia 4, obovoid, 
laterally slightly compressed, similar in size, caudicles twice as long as the pollinia, formed by imbricated tetrads, 
appearing as a pile of tiles. Rostellum apical, slit. Lateral lobes of the stigma not seen. Nectary penetrating 1/3 of the 
ovary, thin, not inflated, papillose. Capsule ovoid, green with the valves tinged pale purple. 
OTHER SPECIMENS: None seen. 
OTHER RECORDS: COLOMBIA: Boyacá: Mpio. Arcabuco; Alto de Gaitas, ca. Reserva “Rogitama”, 2600 m, 3 X 2011, 
Pérez s.n. Digital images, AMO! (Image voucher).
DISTRIBUTION AND ECOLOGY: So far known only from the Cordillera Oriental of the Andes, in Boyacá Department, 
Arcabuco municipality, at 2600 m. Just two individuals are reported from the type locality, growing as terrestrial at the 
border of a fragmented forest.
RECOGNITION: Epidendrum susannae belongs to the Secundum Group which is recognized by the caespitose habit, 
numerous coriaceous leaves, and generally an elongate peduncle to a pluri-racemose inflorescence, brightly colored 
flowers generally pollinated by hummingbirds, and the caudicles of the pollinarium granulose, the tetrads appearing like a 
loose pile of roof-tiles, without any spathaceous bracts; and Elongatum Sub-group, recognized by the non-resupinate 
flowers with a complicated callus. This species is terrestrial and has bright purple flowers, the lip pale lilac, with the throat 
at the base of the lip orange-yellow, and the calli white, formed by two basal, lateral calli, and the main body by a large 
central entire tubercle, embraced by a pair of shorter lateral tubercles. Epidendrum reflexilobum C.Schweinf. from 
Huánuco, Peru, has scarlet flowers with the disc of the lip yellow, sepals 12-13 mm long, disc with 3 short fleshy keels, the 
central one longest and the lateral ones with the fleshy lobulated base spread onto the lateral lobes of the lip. Epidendrum 
arachnoglossum André, a common species around Bogotá, has violet-crimson flowers, a many-lobed white and orange-
yellow callus, and the deeply fringed lip forms a nearly entire, orbicular lamina, the base cordate.
CONSERVATION STATUS: D.D. Data deficient
ETYMOLOGY: in honor of Dr. Susanne S. Renner (Germany, 1954), Professor at the Ludwig-Maximilians Universität, 
Chief Director of the Botanische Garten München and mentor of the second author, in recognition to her important 
contributions to the knowledge on phylogeny and biogeography of Cucurbitaceae, Melastomataceae and several other 
monocot families, as well as in the field of evolution of reproductive systems.

Authors: E. Hágsater, O. Pérez & E. Parra Illustrators: O. Pérez & R. Jiménez M. Photo: O. Pérez Editors: E. Hágsater & L. Sánchez S.
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WEERAKITIANUM Hágsater, O.Pérez & E.Santiago



EPIDENDRUM WEERAKITIANUM Hágsater, O.Pérez et E.Santiago, sp. nov.
Type: COLOMBIA: Valle del Cauca: Municipio de Yumbo; Dapa, 3 April 2011, Oscar Alejandro Pérez Escobar & 

Edicson Parra Sánchez 1106. Holotype: VALLE! (Illustration voucher).
Simile Epidendri paniculati Ruiz & Pav. sed floribus paulo maioribus, lobulis lateralibus labelli dolabriformibus y disco 
praedito 5 costis fortiter purpureo signatis, basi lobulorum labelli similiter purpureo signatis.
Lithophytic, rupicolous, sympodial, caespitose, decumbent herb, ca. 65 cm tall. Roots ca. 3 mm in diameter, basal, fleshy, 
thin. Stems simple, cane-like, terete, 50 x 0.6 cm; the basal half covered by non-foliar, minutely striated, tubular sheaths 1.5-
3.6 cm long. Leaves 12, distributed throughout the apical half of the stem, alternate, articulate, amplexicaul, erect-
spreading, similar in size; sheath tubular, 1.2-3.0 x 0.3-0.6 cm, minutely striated, green; blade elliptic, 7-11 x 2-3.3 cm, 
acute, sub-coriaceous, margin entire, spreading. Spathaceous bract lacking. Inflorescence apical, 14 cm long, paniculate, 
flowering only once, lax-, few-flowered; peduncle short, 5 cm long, straight, thin, provided with 1 lanceolate, acuminate, 
amplexicaul bract 1.5 cm long; rachis 9 cm long. Floral bracts 6-8 mm long, much shorter than the ovary, narrowly 
triangular, acuminate, amplexicaul. Ovary 21-22 mm long, terete, thin, not inflated, arching at the apical 1/3. Flowers 10-
20, simultaneous, resupinate, sepals, petals and basal half of the column green, apical half of the column and lip white 
(turning yellowish with time), the lip with 5 reddish-purple lines on the ribs, lobes of the lip densely spotted with reddish-
purple: fragrance not recorded. Sepals 15 x 4.3 mm, reflexed, free, oblanceolate-spatulate, obtuse, fleshy, slightly concave 
towards the apex, 3-veined, margin entire, spreading. Petals 17 x 0.7 mm, reflexed, free, filiform, apex rounded, 1-veined, 
oblique, margin entire, spreading. Lip united to the column, 10 x 15 mm, slightly convex, fleshy, 3-lobed, base cordate, 
margin entire; bicallose, the calli prominent, rectangular, disc provided with 5 , fleshy, parallel ribs, which extend nearly to 
the apical sinus; lateral lobes dolabriform, 4.3 x 6 mm; mid-lobe 4.7 x 15 mm, widely emarginate, forming a pair of linear, 
acute, slightly divaricate lobes, each lobe 7.2 x 3.2 mm. Column 10 mm long, straight, thin along the basal 2/3, and gradually 
dilated towards the apex. Clinandrium-hood reduced, margin entire. Anther ovoid, 4-celled, with a low dorsal keel. 
Pollinia 4, bird-wing type; caudicles laminar, somewhat shorter than the pollinia. Rostellum apical, slit. Lateral lobes of the 
stigma prominent. Nectary thin, unornamented, without penetrating the ovary. Capsule not seen. 
OTHER SPECIMENS: COLOMBIA: Valle del Cauca: Represa del Calima, 17 IX 1966, Espinal 2041, MO!
OTHER RECORDS: COLOMBIA: Without locality data, as E. aff paniculatum(1 y 2) photo C. Uribe s.n. (Ortiz & Uribe, 
2007). Ibid. as E. rodrigoi 2 photos C. Uribe s.n., (Ortiz & Uribe, 2007). Antioquia: without locality data, G. Escobar 677, 
slide, AMO! Quindio: Circasia, without collector data, photo published as Epidendrum paniculatum (Mejía de Moreno, 
2007). Valle del Cauca: localidad Yumbo; corregimiento de Dapa, 1800 m, 13 XII 2009, Parra & Pérez s.n., digital image, 
AMO!
DISTRIBUTION AND ECOLOGY: Known only from the Cordillera Occidental in southern Colombia the Cordillera Central 
in Quindío and Antioquia, lithophytic at 1770-2050 m altitude. Flowering from September to December, April.
RECOGNITION: Epidendrum weerakitianum belongs to the Pseudepidendrum Group which is characterized by caespitose 
plants, cane-like stems, acute to acuminate leaves, usually apical inflorescence, the mostly filiform petals and the lip usually 
3-lobed (with 3 parallel fleshy keels), the apical lobe often bifurcate, the “bird-wing” type pollinia, at least the inner pair, and 
Paniculatum Subgroup, which has filiform petals, all pollinia “bird-wing” type, green and white flowers, often marked with 
purple on the disc of the lip and apex of the column. The species is recognized by the mid-sized plants (65 cm tall), elliptic 
leaves, lax, few-flowered inflorescences, green colored flowers with the apex of the column and lip white, the lip with 5 ribs 
stained with purple, the reddish-purple spots spilled out towards the base of the lateral lobes. Epidendrum 
paniculorotundifolium Hágsater, M.Kolanowska & E.Santiago has similar plants, but with elliptical-orbicular leaves, green 
colored flowers with the column and lip white, disc of the lip with three ribs, immaculate. Epidedrum kolanowskae Hágsater, 
O.Pérez et E.Santiago has elliptic leaves, green colored flowers, with the apex of the column and lip white, the lip with three 
ribs and the disc stained of purple pale around the ribs of the disc and incipiently spilled out over the lobes of the lip. 
Epidendrum paniculatum Ruiz & Pav. has smaller flowers, (sepals 10-12 mm long), the lateral lobes of the lip sub–orbicular, 
and the mid-lobe formed by two linear-oblong, falcate, strongly divaricate lobes, the 3-ribbed disc is immaculate and 
surrounded by reddish-purple marks.
CONSERVATION STATUS: DD. Data deficient.
ETYMOLOGY: In honor of Weerakit Harnpariphan (1955- ), a medical doctor from Bangkok (Thailand), who has 
contributed greatly to the conservation of Colombian flora, especially of native species of Magnoliaceae from this country.
REFERENCES: Mejía de Moreno, E. 2009. Orquídeas del Quindío, Litografía Luz Armenia, pág. 58, Colombia. Ortiz V., P. & 
C. Uribe V. 2007, Gallery of Colombian Orchids, Da Vinci Editores, Bogotá-Colombia (DVD).

 

 

Authors: E. Hágsater, O. Pérez & E. Santiago     Illustrator: O. Pérez  Photos: G. Escobar        Editors: E. Hágsater & L. Sánchez S.
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YUMBOËNSE Hágsater, O.Pérez & E.Santiago



EPIDENDRUM YUMBOËNSE Hágsater, O.Pérez et E.Santiago, sp. nov. 
Type: COLOMBIA: Valle del Cauca: Municipio de Yumbo; Dapa, growing on trees of Meriania and Tibouchina (Melastomataceae), 

2000 m, 20° C, 28 August 2010, Oscar Alejandro Pérez Escobar, Terry González & Ángela González 831. Holotype: VALLE! 
(Illustration voucher). Isotype: CUVC! (Digital images of pretype, AMO! photo voucher.)

Simile Epidendri podocarpophili Schltr. sed floribus pallide roseis disco aurantiaco, petalis ovatis marginibus integris et labello late 
reniformi-pentagonali praedito 3 carinis singularibus, brevibus atque tenuibus coalescentibus in unam carinam versus apicem laminae.
Epiphytic, monopodial, branching herb 28-41 cm tall. Roots basal, both from the basal stem as well as occasionally from branches, 
fleshy, white. Stems cane-like, terete, thin, erect, straight; main stem 20 x 0.3 cm; branching when mature, the branches 10 x 0.3 cm, 
arising from the sub-apical internodes of the previous stem. Leaves 6-7, distributed along the apical half of the stems, erect-spreading, 
alternate, articulate, coriaceous, green with the margin tinged purple; sheaths 3-20 x 3-4 mm, tubular, striated, purple-green; blade 11-
40 x 3.7-6.5 mm, oblong-lanceolate, apex truncate, bilobed, minutely aristate, margin entire. Spthaceous bract lacking. Inflorescence 
apical, racemose, arching-nutant, short, dense-flowered, peduncle ca. 7 mm long, rachis very short. Floral bracts 2-5 mm long, much 
shorter than the ovary, triangular-lanceolate, acuminate. Flowers 9, simultaneous, resupinate, small, fleshy, glabrous, pustulate at the 
upper side of the elements of the perianth, pale pink to yellow with the disc orange-yellow; fragrance not registered. Ovary 8.5 mm long, 
slightly flattened, ventrally inflated along the apical 2/3, forming an obvious elongate vesicle, scarcely pustulate, arched towards the 
apex. Sepals spreading, free, slightly concave, 3-veined, margin entire, spreading; dorsal sepal 5 x 4 mm, ovate-orbicular, apex 
rounded; the lateral sepals 6 x 4 mm, obovate, sub-obtuse, apex mucronate. Petals 5 x 3.1 mm, spreading, free, ovate, wide, apex 
rounded, base oblique, unequal, 3-veined, margin entire, spreading. Lip 5.5 x 7.5 mm, united to the basal half of the column, widely 
reniform-pentagonal, base cordate, apex shallow-emarginate, margin irregularly erose-denticulate, entire towards the base; ecallose, 
disc with 3 smooth ribs extending to the apex of the lip, and fused towards the base into one wide thickening. Column 3 mm long, short, 
thick, slightly arched with respect to the ovary, straight. Clinandrium-hood short, margin entire. Anther reniform, 4-celled. Pollinia 4, 
obovate, laterally compressed, hard. Rostellum apical, slit. Lateral lobes of the stigma not seen. Nectary deep, penetrating ¾ of the 
ovary, wide, unornamented. Capsule note seen.
OTHER SPECIMENS: COLOMBIA: Valle del Cauca: Cordillère Occidentale de Cali, 2000 m, 15 VIII 1883, Lehmann 3022, G! Yumbo, 
Dapa, en frente de la Finca “Cielo Azul”, ca. 1900 m, 31 VII 2010, Pérez 818, CUVC! Cerro El Ingles, Serranía de los Paraguas, 2260-
2300 m, 3 I 1987, Silverstone-Sopkin 2903, AMO! CUVC! MO!
OTHER RECORDS: COLOMBIA: Valle del Cauca: Mun. El Cairo, Reserva Natural Cerro El Ingles, 2169 m, 12 VII 2011, García-Revelo 
13, digital image, AMO!
DISTRIBUTION AND ECOLOGY: So far only known from the upper Pacific slope of the western Cordillera of the Andes, in southern 
Colombia, in the Valle del Cauca. Epiphytic at 2000-2300 m in cloud forest; grows frequently on trees of Meriania sp. and Tibouchina sp. 
(Melastomataceae), at the edge of forest. Flowering from July to January.
RECOGNITION: Epidendrum yumboënse belongs to the Diothonea Group and Subgroup, characterized by the branching habit, linear-
lanceolate to lanceolate, bilobed leaves, arching-nutant, racemose inflorescence, membranaceous or rarely fleshy flowers, the lip entire 
to 3-lobed, with an erose margin, ecallose, without or with 1-10 thin, smooth to erose keels, the column united to the lip from totally to 
obliquely to free. The species is recognized by the oblong-lanceolate leaves 1.1-4 cm long, ovary ventrally inflated along the apical 2/3, 
forming an obvious elongate vesicle, sparsely pustulate, inflorescence with some 9, pale pink to yellow flowers, the disc orange-yellow, 
sepals 5-6 mm long, ovate-orbicular to obovate, oblique, petals ovate, wide, ca. 5 x 3 mm, the lip entire, widely reniform-pentagonal, 
shallowly emarginate with 3 smooth keels, fused at the base, and extending to the apex. Epidendrum podocarpophilum Schltr. has pale 
orange flowers, the ovary is not inflated, oblong-elliptic sepals, obovate-spatulate petals and a 3-lobed lip has 3 short, rounded keels. 
Epidendrum caesaris Hágsater & E.Santiago has oblong-lanceolate leaves 3.8-8.5 cm long, inflorescence with 4-19 pale pink, 
translucent-colored flowers, ovary slightly inflated, sepals widely elliptical, 8-8.5 mm long, petals narrowly ovate, 7 x 2.9 mm, and a 
cordiform lip with 3-5 smooth keels than only reach the middle of the lip, and a strongly arched column. Epidendrum restrepoanum 
A.D.Hawkes has carmine-red flowers, the ovary is not inflated, sepals are elliptic-obovate, 6-9 mm long, petals narrowly elliptic, margin 
slightly erose, 6.8-7.5 mm long. 
CONSERVATION STATUS: DD. Data deficient.
ETYMOLOGY: Named after the municipality of Yumbo, Valle del Cauca, where this species has been collected, at higher altitudes in 
cloud forest. 
REFERENCES: Hágsater, E., & E. Santiago, 2007, Epidendrum caesaris, in E. Hágsater & L. Sánchez S. (eds.) Icon. Orchid. 9: t. 915. 
Hágsater, E., & E. Santiago, 2007, Epidendrum restrepoanum, in E. Hágsater & L. Sánchez S. (eds.) Icon. Orchid.  9: t. 979. Santiago, E., 
& E. Hágsater, 2009, Epidendrum podocarpophilum, in E. Hágsater & L. Sánchez S. (eds.) Icon. Orchid. 12: t. 1277.
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Abstract.—Phylogenetic relationships inferred from multilocus organellar and nuclear DNA data are often difficult to
resolve because of evolutionary conflicts among gene trees. However, conflicting or “outlier” associations (i.e., linked
pairs of “operational terminal units” in two phylogenies) among these data sets often provide valuable information on
evolutionary processes such as chloroplast capture following hybridization, incomplete lineage sorting, and horizontal
gene transfer. Statistical tools that to date have been used in cophylogenetic studies only also have the potential to test for
the degree of topological congruence between organellar and nuclear data sets and reliably detect outlier associations. Two
distance-based methods, namely ParaFit and Procrustean Approach to Cophylogeny (PACo), were used in conjunction to
detect those outliers contributing to conflicting phylogenies independently derived from chloroplast and nuclear sequence
data. We explored their efficiency of retrieving outlier associations, and the impact of input data (unit branch length and
additive trees) between data sets, by using several simulation approaches. To test their performance using real data sets, we
additionally inferred the phylogenetic relationships within Neotropical Catasetinae (Epidendroideae, Orchidaceae), which is
a suitable group to investigate phylogenetic incongruence because of hybridization processes between some of its constituent
species. A comparison between trees derived from chloroplast and nuclear sequence data reflected strong, well-supported
incongruence within Catasetum, Cycnoches, and Mormodes. As a result, outliers among chloroplast and nuclear data sets,
and in experimental simulations, were successfully detected by PACo when using patristic distance matrices obtained from
phylograms, but not from unit branch length trees. The performance of ParaFit was overall inferior compared to PACo, using
either phylograms or unit branch lengths as input data. Because workflows for applying cophylogenetic analyses are not
standardized yet, we provide a pipeline for executing PACo and ParaFit as well as displaying outlier associations in plots
and trees by using the software R. The pipeline renders a method to identify outliers with high reliability and to assess the
combinability of the independently derived data sets by means of statistical analyses. [chloroplast capture; cophylogenetic
tool; hybridization; orchids; organelle/host nucleus coevolution; topological incongruence.]

INTRODUCTION

Chloroplasts are among the most distinctive
organelles and highly specialized compartments in
the cells of land plants and algae. Their main role
is to perform photosynthesis, converting energy
captured from sunlight into chemical bonding of
organic substance (Staehelin 2003; Marín-Navarro et al.
2007). Today, it is widely accepted that chloroplasts
are of endosymbiotic origin, having evolved from
a previously free-living cyanobacterium and hosted
by a nucleated, initially heterotrophic cell (the same
applies for mitochondria, likely derived from an
�-proteobacterium). A plastid genome and distinct
plastid ribosomes strongly support an endosymbiotic
origin (Mereschkowsky 1910; Margulis 1993; Archibald
2015). The resulting enkaptic and permanent cellular
system comprises two principally different genetic
units: the eukaryotic host nucleus usually performs
recombination during life history, whereas sexual
reproduction is known neither from free-living
cyanobacteria nor from plastids (Birky 1995; Pyke
1999; Lane 2011; Lodé 2012). Divisions of plastids are
structurally independent from the division of the host
cell’s nucleus (first recognized by Sachs 1882), hence
intracellular plastid populations are separated (and
frequently intensely cloned) during mitosis in parallel to

the host’s daughter nuclei (Possingham 1980; Heinhorst
and Cannon 1993).

Chloroplast loci have been excessively used for
phylogenetic inference because of the great abundance
of plastid DNA and the subsequent facility of PCR
amplification and sequencing (Rieseberg and Soltis 1991;
Schäferhoff et al. 2010; Ruhfel et al. 2014; Weigend
et al. 2014). However, the plastid genome has not
necessarily tracked the same evolutionary history as
the host genome. As a result, the linked but putatively
varying evolution of both the (sexually reproducing)
nuclear and (solely cloning) plastid genomes may lead
to significantly differing substitution rates. Moreover,
biological phenomena such as chloroplast capture (e.g.,
after hybridization or introgression) and incomplete
lineage sorting (ILS) of separated plastid populations
(Rieseberg and Soltis 1991; Soltis and Kuzoff 1995; Fehrer
et al. 2007) may even result in conflicting topologies
when molecular trees are inferred separately.

Demonstrating the absence of significant
incongruence between any data set partitions is
essential for accurate phylogenetic inference (Salichos
and Rokas 2013), and this assessment is a general
challenge (Wiens and Hollingsworth 2000; van der Niet
and Linder 2008). Several comparative methods have
been developed to quantify the difference, or the degree
of congruence, between two given topologies (e.g.,
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partition metrics: Robinson and Foulds 1981; likelihood
and Bayesian approaches: Kishino and Hasegawa 1989;
Holmes 2005; Charleston 2009). Some others aim at
inferring a species tree from a set of genes or entire
genomes (e.g., BUCKy: Larget et al. 2010; MP-est: Liu
et al. 2010; STEM: Kubatko et al. 2009), irrespectively
of the different evolutionary histories reflected by, and
despite possible incongruence of, each data partition.
The applicability of these approaches is particularly
limited for the problem discussed here, because they
do not assess the contribution of any given association
between the partitions. More importantly, most of these
methods are on a “quest for the species tree,” and so
they neither demonstrate nor explain the existence
of phylogenetic incongruence between any two given
data sets. Therefore, there is a clear need for a test
that can assess not only topological (in)congruence
between nuclear and chloroplast data sets, but also
the particular associations that contribute significantly
to topological incongruence. The recognition of those
“outlier” associations (i.e., linked pairs of operational
terminal units: OTUs) tracking different phylogenetic
histories are doubtlessly of interest (Salichos and Rokas
2013). From an evolutionary perspective, identification
of outlier OTUs is even more exciting when it provides
useful information on biological events and processes
such as horizontal gene transfer (HGT) and ILS (de
Vienne et al. 2012).

Most approaches of species tree reconciliation
either refer to methodological/computational problems
(Ronquist 1995; Page and Charleston 1997; Charleston
1998; Libeskind-Hadas and Charleston 2009; Nakhleh
et al. 2009; Larget et al. 2010; Liu et al. 2010) or to biological
(intragenomic) phenomena such as gene duplication
and loss (Arvestad et al. 2004; Åkerborg et al. 2009), but
not to the intergenomic clash investigated in this
study. Despite the impact on studies based on multiple
molecular loci (Tepe et al. 2011), few approaches have the
potential to quantify the contribution of specific taxa to
the conflicting phylogenetic patterns observed. We now
have at hand a new generation of software applications
and tools, which investigate putative cophylogenetic
structures in more detail, as they can be observed in,
for example, parasite/host systems. They have only
been used sporadically so far for specific groups of
organisms (e.g., Monogenea/fish: Šimková et al. 2004;
papillomaviruses/vertebrates: Gottschling et al. 2011),
although they provide a powerful approach to identify
those particular associations that are responsible for
conflicts.

One of the more frequently employed tools for
cophylogenetic analysis has been ParaFit (Legendre et al.
2002), a distance-based approach that globally tests for
the coevolution between host and parasite phylogenies
and the significance of each parasite/host association.
Using patristic/genetic distances transformed into
Principal Coordinate (PCo) matrices, it assesses whether
the phylogenetic positions of associated taxa in
host and parasite trees are congruent (Legendre
et al. 2002). In addition, ParaFit also provides

two statistics (ParaFitLink1 and ParaFitLink2), which
determine the links that significantly contribute to
the cophylogenetic pattern observed (by means of
randomization processes of a presence/absence matrix
with respect to parasite/host associations).

The Procrustean Approach to Cophylogeny (PACo;
Balbuena et al. 2013) is also a global-fit method
that assesses similarities between host and parasite
trees by comparison of Euclidean embeddings derived
from distance matrices. Like ParaFit, it assesses the
contribution of each association to the cophylogenetic
structure observed. To test for codivergence between
two given data sets, PACo uses patristic distances,
which are in turn transformed into PCo matrices and
are then combined using an association matrix of the
parasite/host links. In contrast to ParaFit, PACo assumes
that the parasite phylogeny is dependent on the host
phylogeny, therefore it scales and rotates the parasite
matrix to fit that one of the host. It is thus suitable for
systems where the dependence of a phylogeny upon
another is assumed (Balbuena et al. 2013), as is true
for the chloroplast/host nucleus system. Additionally,
it provides a graphical output of the direct contribution
of each association to the phylogenetic pattern recovered
from the data sets.

One important, but hardly considered, aspect dealing
with cophylogenetic distance-based methods (such as
PACo and ParaFit) and their efficiency is the type
of input (i.e., ultrametric phylograms, additive, and
unit branch length trees) employed to perform data
analyses. Depending on the kind of tree data set used
for analyses, distance-based methods may take into
account evolutionary rates when calculating patristic
distances between the OTUs. When additive trees are
employed for comparison purposes, branch lengths are
therefore considered to compute patristic distances,
bringing closer OTUs exhibiting short branch lengths
and separating those with longer branches (de Vienne
et al. 2012). The potential bias resulting from use of
contrasting branch lengths has been discussed by some
authors (de Vienne et al. 2012; Balbuena et al. 2013), but its
influence in the assessment of phylogenetic congruence
between data sets has never been tested empirically.

To detect plastid outliers diverging phylogenetically
from the evolutionary history of the nuclear host, we
here apply the PACo and ParaFit methods to a molecular
sequence data set of Catasetinae. This group of orchids
encompasses approximately 300 species distributed
from Southern Florida to Northern Argentina (Romero
and Pridgeon 2009). Previous phylogenetic studies of
Catasetinae have only been based on few (if not
single) molecular loci and limited taxon samplings
(Pridgeon and Chase 1998; Batista et al. 2014; Whitten
et al. 2014). Particularly, Catasetum Rich ex Kunth,
Cycnoches Lindl., and Mormodes Lindl. are known for
the spectacular sexual dimorphism (an exceedingly rare
trait among orchids: Pérez-Escobar et al. forthcoming)
and a great interspecific variation of floral morphologies.
Catasetinae is particularly suitable for our investigation,
as natural hybridization because of pollinator sharing
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has been reported from Catasetum (Dressler 1968a;
Romero and Carnevali 1990, 1991, 1992; Romero and
Jenny 1992), Mormodes (Dressler 1968a), and it might also
occur in Cycnoches (Pérez-Escobar et al. forthcoming).

Distance-based cophylogenetic analyses have been
widely used inside the parasite/host coevolutionary
framework, but this is—to the best of our knowledge—
the first time that they are applied to test for congruence
and detect outlier associations in organelle/host nucleus
systems. In this study, we test the effectiveness of PACo
and ParaFit by comparing molecular trees separately
inferred from organellar and nuclear data sets. Through
simulations and analysis of real data sets, we herein
show that this approach not only efficiently detects these
outlier associations when applied to independently
derived organellar and nuclear trees, but also allows
the user to evaluate the contribution of each single
association in either small or large data sets. We
also perform simulations to assess the influence of
contrasting branch lengths between trees in distance-
based methods such as PACo, using randomly generated
additive and congruent unit branch length trees with
branches randomly added, which naively recreate
taxa that have undergone evolutionary processes such
as chloroplast capture after hybridization and ILS
occurring at shallow levels of phylogenies.

Workflows for applying cophylogenetic analyses are
not standardized at this moment, and we therefore
provide a pipeline for managing tree input, executing
PACo and ParaFit, and spotting outlier associations
from trees or alignments in the public domain software
R (R Development Core Team 2015). This pipeline
implements a method to identify outlier associations
with high reliability based on associate squared
residuals produced by PACo exceeding a threshold
value. To better orient end-users with little or no
experience through the use of the pipeline, a complete
tutorial is also provided with a worked example
of nuclear ribosomal and chloroplast phylogenies of
Satyrium Sw., another orchid taxon, in which topological
conflict has been reported (van der Niet and Linder
2008).

MATERIAL AND METHODS

Laboratory Techniques, Taxon Sample, and Phylogenetic
Analyses

Genomic DNA was extracted from herbarium and
fresh leaf material (preserved in silica gel and partly
cultivated at the botanical gardens of Hannover and
Munich, Germany) with the NucleoSpin®plant kit
(Macherey-Nagel; Düren, Germany), following the
manufacturer’s protocol. We sequenced the nuclear
ribosomal external and internal transcribed spacers (ETS
and ITS, respectively), the nuclear low copy gene Xdh, a
∼1500 bp long portion of the chloroplast gene ycf 1, as
well as the trnS-trnG intergenic spacer. Amplification
settings and sequencing primers used for ITS, ETS,
Xdh, trnS–trnG, and ycf 1 are specified in Table S1. PCR

products were purified with the ExoSap clean-up kit
(Fermentas; St. Leon-Rot, Germany), and sequencing
reactions were run on an ABI 3130 capillary sequencer
(Applied Biosystems; Carlsbad, CA, USA), following the
manufacturer’s protocol. Sequence editing was carried
out using the trial version of CodonCode Aligner v. 4.0.4.
(CodonCode Corporation; Centerville, MA, USA).

We investigated 50 OTUs representing 47 species
and covering the known diversity of Catasetinae
at the generic and sectional level. In addition, 10
outgroup taxa were included in phylogenetic analyses
for rooting purpose. We compiled sequences from
six loci, namely ETS+ITS+Xdh (consistently treated
as “n” in the following) and matK+trnS–trnG+ycf 1
(“o”). The concatenated “o” + “n” alignment consisted
of 142 empty out of 366 cells. Supplementary Table
S2 (available as Supplementary Material on Dryad
at http://dx.doi.org/10.5061/dryad.q6s1f) provides an
accession list with full species names, geographic
origins, vouchered specimens, and GenBank accession
numbers (including newly generated sequences) of taxa
included in phylogenetic analyses.

We performed two main phylogenetic analyses using
data matrices with (i) all “n” OTUs and (ii) all “o” OTUs.
Additionally, we performed phylogenetic analyses of
each locus for all corresponding OTUs separately.
Aligning of single loci was carried out separately using
MAFFT version 7.1 (Katoh and Standley 2013; freely
available at http://mafft.cbrc.jp/alignment/software/;
accessed October 11, 2015) and the default parameters.
Data matrices of each locus were concatenated
afterwards. For multiple alignments of the nuclear
ribosomal loci, the Q-INS-i strategy was employed,
which takes secondary structure information into
account (Katoh and Toh 2008). Alignments of each locus
retrieved from MAFFT were also manually inspected.
The complete alignment is available as a *.nex file on
Dryad at http://dx.doi.org/10.5061/dryad.q6s1f.

Individual and concatenated analyses were carried
out under Bayesian, maximum likelihood (ML), and
maximum parsimony (MP) criteria. The best-fitting
evolutionary models for Bayesian and ML analyses (for
individual data sets) were selected from 56 models
implemented in jModelTest version 2.1.3 (Darriba et al.
2012), employing the likelihood ratio test (LRT) and the
Akaike information criterion (Supplementary Table S3).
Bayesian and ML analyses were implemented in
MrBayes version 3.2.2 (Ronquist et al. 2012) and
RAxML-HPC Blackbox version 8.0.0 (Stamatakis 2014),
respectively, via the CIPRES Science Gateway computing
facility (Miller et al. 2010, freely available at http://
www.phylo.org). Bayesian inference was carried out
performing two independent runs of four Markov
chain Monte Carlo (MCMC) analyses with 20 million
generations each, sampled every 1000th generation,
and using mean default settings and a Dirichlet prior
distribution. The performance and convergence of the
parameters of the Bayesian inference were checked
using the software TRACER version 1.5 (freely available
at http://beast.bio.ed.ac.uk/Tracer; accessed October
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11, 2015). Statistical support was assessed via 1000
bootstrap replicates. Parsimony ratchet analyses were
implemented in Winclada version 1.0 (freely avai-
lable at http://www.cladistics.com/about_winc.htm;
accessed October 11, 2015) using the following settings:
heuristic search, uninformative characters deactivated,
500 iterations, holding 1 tree per iteration, amb-
poly=default. Statistical support values (BPP: Bayesian
posterior probabilities, LBS: ML bootstrap support,
PBS: parsimony bootstrap support) were drawn on the
resulting, best scoring ML tree.

Testing Divergent Evolution among Chloroplast
and Nuclear Data Sets

We assessed the contribution of specific
organelle/host nucleus associations to topological
conflicts to detect outliers that may correspond to
evolutionary events potentially of particular interest
using PACo (Balbuena et al. 2013) and ParaFit (Legendre
et al. 2002), implemented in the R software packages
“ape” v3.0-8 (Paradis et al. 2004) and “vegan” v2.0-
9 (Oksanen et al. 2013). To determine whether the
chloroplast phylogeny tracks the same phylogenetic
history as that of the nucleus, we applied the same
principle of parasite/host codivergence to our “o” and
“n” data sets (note that this principle is also applicable
to “n” and any other organelle genome). Thus, the
tree derived from the nuclear sequences is considered
the “host” phylogeny, while the tree derived from
chloroplast sequences correspond to the “parasite” (or
endosymbiont) phylogeny.

To test the null hypothesis that “the similarity between
the trees is not higher than expected by chance,” we
transformed “o” and “n” trees into matrices of patristic
distances and applied PACo and ParaFit. Throughout
the present study, transformation of patristic distances
into the Euclidean PCo space required by both PACo
and ParaFit was achieved using the method proposed
by de Vienne et al. (2011), which imposes less distortion
into the original distances compared with regular
eigenvalue corrections. The significance of both tests
was established by different permutational approaches
(see Legendre et al. 2002; Balbuena et al. 2013 for
details) based on 100,000 random permutations of the
association matrix. In a first step, we executed PACo
and ParaFit using phylograms as input trees. To account
for the effect of large distances between particular
associations because of highly different branch lengths
in the corresponding trees (although the topologies may
be identical), we also conducted the tests using unit
branch length trees as input. Additionally, PACo and
ParaFit analyses were optimized on 10,000 post burn-
in trees obtained from Bayesian inferences, to consider
the effect of phylogenetic uncertainty and statistical
support. Every branch length within these trees was then
converted to a value of one (to obtain unit branch length
trees) in R using the function compute.brlen in package
“ape.”

In PACo, m2
XY represents the sum of squared residuals

of each “o”/“n” association e2
i . Thus, the latter provides

a direct measure of the contribution of each association
to the global fit (Balbuena et al. 2013). This measure can
be normalized as a proportion of m2

XY (i.e., ε2
i =e2

i /m2
XY).

In case of perfect congruence between both phylogenies,
the ε2

i ’s are expected to follow a uniform distribution
with expected mean 1/N, where N = number of “o”/“n”
associations. Therefore, 1/N provides a threshold value
and any ε2

i linked to a conflicting association is expected
to be >1/N. In ParaFit, we used the value of the
ParaFitLink2 statistic (pfl2i) to evaluate the contribution
of each link association, since it is more appropriate
than ParaFitLink1 in one-to-one association scenarios
(Legendre et al. 2002). This statistic is constructed
similarly to a partial F-statistic and is expected to be ≈0
when a given link is conflicting (Legendre et al. 2002).

Both the ε2
i and pfl2i statistics were plotted as

a vector diagram representing each vector of the
“o”/“n” associations, where the magnitude and
orientation of each vector would indicate the degree
of topological association between the corresponding
OTU in the two trees. Ideally, it would produce two
distinct groups of vectors representing conflicting and
nonconflicting “o”/“n” associations, respectively (see
section “Simulations” for details). The efficiency of
PACo alone and PACo in combination with ParaFit
to separate the two groups of associations was
evaluated by the partitioning around medoids (PAM)
clustering algorithm (Kaufman and Rousseeuw 1990), as
implemented in the R package “cluster” v. 2.0 (Maecheler
et al. 2015). In particular, the average silhouette width
(Kaufman and Rousseeuw 1990) was used as a measure
of the ability to separate congruent and outlier “o”/“n”
associations.

Simulations
Gene trees were simulated to determine whether

the combined application of PACo and ParaFit
or the sole execution of PACo is appropriate to
detect divergences between the evolutionary history
of “o” and “n.” Simulations were carried out as
follows:

(1) One thousand random rooted ultrametric trees
were generated with the function evolver of the
software PAML (Yang 2007) using birth and death
rates of 0.5 and a sampling fraction of 0.0005. These
parameters were deemed realistic and biologically
meaningful to generate random phylogenetic trees
(Aris-Brosou and Yang 2003). We randomly chose
10 trees of this ultrametric set and simulated
sequence evolution with uniform sequence lengths
(1000 characters) under the GTR+� evolution
model, using “phylosim” v. 2.1.1 (Sipos et al. 2011).
Two sets of 10,000 post burn-in Bayesian trees
were estimated from each simulated alignment,
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using the same settings for Bayesian inferences
aforementioned.

(2) A subsample of 1000 trees derived from each of the
two parallel Bayesian runs was used to represent
the shared coevolutionary history of “o” and “n”
loci. That is, one tree set was assigned as the
organelle phylogeny and the counterpart from the
same pair as the “n” phylogeny.

(3) Biological processes rendering phylogenetic
distortion in evolutionary history (e.g.,
hybridization, ILS) were simulated by adding
a fixed number of random branches to different
nodes in the trees, using the function add.random
of “phytools” v. 0.4 (Revell 2012). This process
was carried out for each “o” and “n” Bayesian
set of trees, thereby rendering a pair of additive
trees sharing part of their topology but differing
in the position and length of the randomly added
branches. (We ensured in our simulation that
added random branches did not fall in the same
positions in both trees.) Thus, each pair can be
viewed as a pair of species trees reflecting the
evolutionary history of “o” and “n.”

(4) Matrices of patristic distances of each additive
tree and patristic distance matrices resulting from
setting all branch lengths = 1 (i.e., unit branch
length trees) were computed.

(5) For each “o”/“n” association, the corresponding
ε2
i (PACo) and pfl2i (ParaFit) were computed with

both types of distance matrices.

(6) The median ε2
i ’s obtained with PACo were

centered around 1/N and were plotted with
the corresponding median pfl2i values onto
a Cartesian plane yielding a vector diagram,
where the magnitude and orientation of each
vector is expected to be indicative of the
degree of topological congruence of each “o”/“n”
association.

(7) We performed cluster analysis using the PAM
algorithm (Kaufman and Rousseeuw 1990).
We aimed at determining the proportion of
associations correctly classified as either outliers
or congruent OTUs in relation to the phylogeny
size and the proportion of outlier/congruent
OTUs based on the standardized median values
of ε2

i and pfl2i. Clustering analyses were carried
out using two clusters (k =2) (occasionally, three
clusters were used because in some instances
pfl2 tended to split congruent associations in
two unnatural clusters, Supplementary Table S5).
The efficiency of the classification procedure
was evaluated by means of the proportion of
congruent, incongruent, and overall associations
correctly classified as well as by the average
silhouette width value (Kaufman and Rousseeuw
1990).

The following parameter combinations were used for
all simulation approaches:

a) Trees with 50 OTUs and 10%, 20%, 30%, and 40%
of random branches.

b) Trees with 100 OTUs and 10%, 20%, 30%, and 40%
of random branches.

c) Trees with 200 OTUs and 10%, 20%, 30%, and 40%
of random branches.

Using PACo Pipeline to Test for Topological Congruence
and Detecting Outlier Associations

We provide a pipeline to assess cophylogeny, in
terms of topological congruence, between “o” and “n”
phylogenies, and readily identify outlier taxa in both
phylogenies. The pipeline is based on PACo, ParaFit, and
other set of R functions applied in the packages “ape,”
“cluster,” “gplots” v. 2.17 (Warnes et al. 2011), “phytools,”
and “vegan.” It allows the user to convert phylograms
to trees with unit branch lengths (when necessary, see
section “Discussion”) and to display outlier associations
detected by PACo independently on trees derived from
each data set analyzed. It only requires a recent version
of R and the aforementioned packages installed on the
machine. The pipeline is also available on Dryad at
http://dx.doi.org/10.5061/dryad.q6s1f.

RESULTS

Testing PACo and ParaFit with Simulated Data:
Identification of Outlier Associations

A total of 240 simulations were executed, yielding
comparable results. The efficiency of classification
decreased overall with phylogeny size and proportion
of outlier taxa, and the best results were obtained
with additive trees (Fig. 1). Our approach to detect
conflicting associations using PACo combined with
ParaFit statistics showed high efficiency, particularly in
simulations with additive trees, where the number of
outliers was �20% of the total number of OTUs. In these
simulations, involving phylogenies of 200, 100, and 50
OTUs, PAM clustering correctly identified 1040 of 1050
outliers and all 5950 nonconflicting associations based
on the median values of the ε2

i and pfl2i statistics (Fig. 1,
Supplementary Figs S1 and S2, Supplementary Table S4).
Nonetheless, applying solely PACo for outlier detection
with PAM to the same phylogenies increased the number
of correctly identified outlier associations to 1048.

In general, using PACo alone yielded better
classification results. Under simulations of phylograms
with 100 OTUs (30 outliers), PACo misidentified, for
instance, 4 outliers versus 12 using PACo+ParaFit
(Fig. 2). In addition, the average silhouette width values
of classifications involving PACo were higher, indicating
a stronger clustering structure in all simulations, than
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FIGURE 1. Vector diagrams of squared residual values ε2
i and ParaFitLink2 statistic (pfl2) obtained by PACo and ParaFit using simulated data,

respectively. Vector magnitude and orientation is relative to the topological degree congruence of each “o”/“n” association. Outlier sequences
are shown in red, dashed lines, whereas nonconflicting associations are shown in black. a) Additive trees (left) and unit branch length trees
(right) with 50 terminals (5 outliers); b) with 100 terminals (20 outliers); c) with 200 terminals (60 outliers).

using PACo+ParaFit (Supplementary Table S4). In
particular, the average silhouette values obtained with
PACo alone ranged from 0.80 to 0.94 in simulations,
where the number of outliers was �20% of the total
number of associations, whereas the corresponding
range using PACo+ParaFit was 0.50–0.80.

Phylogenetic Incongruence within Catasetinae
In this study, 180 new sequences were generated

(Supplementary Table S2). The concatenated “n”
alignment was 2171 bp in length and included
584 parsimony informative positions, while the
concatenated “o” data set was 4300 bp long
comprising 392 parsimony-informative positions
(Supplementary Table S5). Bayesian, ML, and MP
trees of individual data partitions recovered similar
topologies (not shown). These reconstruction methods
provided maximal support for the monophyly of
Catasetinae as well as the subordinate (generic) lineages
Cyanaeorchis Barb.Rodr, Grobya Lindl., Galeandra Lindl.,
and core Catasetinae (i.e., Catasetum, Clowesia Lindl.,
Cycnoches, Dressleria Dodson, and Mormodes) (Fig. 3).

Additionally, they recovered very similar topologies at
the backbone placing almost all generic lineages (except
Galeandra) in equal phylogenetic positions.

Several conflicting and highly supported phylogenetic
placements were present within Catasetum, Cycnoches,
and Mormodes (conflicting associations highlighted red
and in black boldface in Fig. 3). Particularly, Cycnoches
was subjected to significantly diverging topologies
while comparing separately derived trees: Both data
sets retrieved two primary and maximally supported
subclades, whose compositions were different for a
number of OTUs. The most prominent example is
Cycnoches haagii Barb. Rodr.: It was sister species of the
remainder of Cycnoches in the “n” tree (1.00 BPP, 100 LBS,
100 PBS), whereas it appeared embedded within one
of the two strongly supported subclades of Cycnoches
(1.00 BPP, 99 LBS, 66 PBS) in the “o” phylogeny. Another
striking example of a taxon reconstructed as conflicting
with high statistical support was Cycnoches lehmannii
Rchb.f.: It was placed as sister species to one of the
two clades present in Cycnoches in the “n” phylogeny
(1.00 BPP, 100 LBS, 100 PBS) whereas in the “o” tree, it
clustered together with Cycnoches ventricosum Bateman
in a strongly supported clade (0.99 BPP, 82 LBS, 82 PBS).
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FIGURE 2. Average number of outlier (i) and congruent terminals (c) misidentified by PACo (right) and PACo+ParaFit (left) approaches using
a)–b) Additive trees and cladograms with 50 terminals; c)–d) 100 terminals; e)–f) 200 terminals. Proportion of outlier OTUs included in trees are
color-coded: blue, 10% of total number of tree terminals; red, 20%; green, 30%; purple, 40%.

Testing PACo and ParaFit Using Real Data: Detection of
Outliers Between Trees Independently Derived

from Plastid and Nuclear Loci
Using both ML phylograms and unit branch length

trees, statistical significance of the global value of PACo
and ParaFit yielded comparable results rejecting H0 (P=
0.0001 and P=0.001, respectively) and thus indicating
that the “o” and “n” phylogenies were to some extent
reflecting phylogenetic congruence. When using ML
phylograms of the “o” and “n” data sets as inputs,
PACo showed 21 associations, whose median squared
residuals ε2

i were higher than the cutoff value 1/N.
Seventeen (out of 26 true) recognized outliers were in
fact linking conflicting taxa (sequence names highlighted
in red in Fig. 3). Therefore, these associations were
confidently identified as potential outlier taxa (Fig. 4a).
In contrast, when PACo was applied to the “o” and
“n” unit branch length trees using the same threshold
value, 25 associations (of which 20 clearly presented
conflicting positions in both trees) were identified as

incongruent (indicated in red in Fig. 4b). Thus, PACo
erroneously identified slightly more potential outliers
when using unit branch length trees than additive trees.
Surprisingly, some conflicting associations that were not
successfully identified by PACo using additive trees were
indeed recovered as such when analyzing unit branch
length trees (e.g., “o”/“n” associations of Catasetum x
roseoalbum (Hook.) Lindl., Cycnoches guttulatum Schltr.,
Fig. 4b). In addition, associations identified by PACo
with the highest residual squared scores were those
that showed the most incongruent positions between
“o” and “n” trees. For instance, the three outlier OTUs
C. haagii, Galeandra devoniana M.R.Schomb. ex Lindl.,
and Galeandra sp. 92 having conflicting, well-supported
phylogenetic positions in “o” and “n” trees also showed
the highest contributions to the normalized squared
residuals (Fig. 4a, see above).

Detection of outliers in ParaFit was not as efficient
as in PACo, using either additive or unit branch length
trees as input data. Most of the links retrieved by ParaFit
as putative outliers were actually OTUs that were not
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FIGURE 3. Phylogenetic relationships of Catasetinae showing outlier taxa in Catasetum, Cycnoches, and Mormodes between ML trees
independently derived from “o” (matK, trnS-trnG, ycf 1) and “n” (ETS, ITS, Xdh) data sets. Outgroup taxa are highlighted in gray. Outlier
taxa successfully identified by PACo using phylograms as input are highlighted in red and underlined. Conflicting taxa not retrieved by PACo
are indicated in bold letters. Numbers on nodes indicate Bayesian posterior probabilities (BPP>0.90) and ML bootstrap values (LBS>90). Support
values in bold indicate parsimony bootstrap support values (PBS>70). Photos of Galeandra and Cyanaeorchis taken by G. Gerlach (Munich) and
E. Pansarin (São Paulo).

reconstructed with conflicting positions. In addition,
only a small proportion of truly conflicting associations
were recovered as outliers (Fig. 5). When using additive
trees as input data, for instance, seven of the associations
recovered by ParaFit as possible outliers (i.e., with the
highest ParaFitLink2 values, Fig. 5a) were actually not
conflicting associations. In addition, one of the most
divergent terminals (C. haagii) between the “o” and “n”
phylogenies was indicated as putatively not conflicting
(i.e., very low pfl2i value). Similar results were obtained
when ParaFit was executed using unit branch length
trees (Fig. 5b). For example, the species Catasetum collare
Cogn. (nonconflicting between “o” and “n”) yielded one
of the highest pfl2i values, thus wrongly indicating an
outlier.

The OTU classification executed by PACo and
PACo+ParaFit methods using additive trees was
validated by the PAM approach. Under the
PACo+ParaFit method, 38 OTUs were classified as
outliers (Fig. 6a). In addition, congruent and outlier
associations were classified into two weak cluster
structures (silhouette width value = 0.40). In contrast,
classifications carried out solely with PACo (Fig. 6b)
yielded comparable results to those obtained by PACo
ε2
i statistics using 1/N as cutoff value (see Fig. 3).

Under this method, 19 OTUs were positively classified
as outliers, and congruent and outlier associations
were separated into two reasonable cluster structures
(silhouette width value = 0.63, to be correct as S=0.625)
(Fig. 6b).
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FIGURE 4. Normalized squared residual values ε2
i of individual “o”/“n” associations obtained by PACo using a) phylograms and b) unit

branch length trees. Associations with squared residual values above the threshold (pink bars) are links identified by PACo as outliers. Outlier
associations identified by PACo that do not have conflicting positions in phylogenies are shown in underlined red letters.
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FIGURE 5. ParaFitLink2 (pfl2i) statistic of individual “o”/“n” associations obtained by ParaFit using a) phylograms and b) unit branch length
trees.
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FIGURE 6. Cluster plots of outlier (red, hollow circles) and congruent (blue, filled circles) terminals classified by PACo+ParaFit (a) and PACo
(b) methods validated using PAM algorithm. Silhouette width values (S) of each cluster analysis are also provided (inset).

DISCUSSION

Cophylogeny between Chloroplast and Nuclear Loci with
Detection of Outlier Associations

Chloroplasts (like other cellular organelles such as
mitochondria) are to be interpreted as endosymbionts,
having their own (reduced) genome and ribosome type.
Their evolution is strongly linked to that of the host
cell, but differing substitution rates of nuclear and
chloroplast loci (Wolfe et al. 1987; Tepe et al. 2011),
their structurally independent replication (Possingham
1980; Heinhorst and Cannon 1993), and other biological
processes (e.g., HGT during hybridization: Rieseberg
and Soltis 1991) may lead to divergent evolution
and incongruence between topologies inferred from
organellar and nuclear loci. This is statistically
demonstrated by the results of our study, in which we
present highly supported but contradicting topologies
for a number of associations while comparing nuclear
with chloroplast molecular trees. To the best of our
knowledge, the extreme degree of incongruence within
Cycnoches has not been shown for any other plant
lineage before; divergent nuclear and plastid topologies
are usually moderately if at all statistically supported
(Carlsward et al. 2006; Fehrer et al. 2007; Koehler et al.
2008; van der Niet and Linder 2008).

To investigate the phenomenon in detail, we here
have tested some cophylogenetic tools traditionally

applied to parasite/host systems. Based on the same
principle of coevolution (defined as the extent, to which
the host and parasite phylogenies are congruent, as
inferred by methods such as PACo and ParaFit), we
have determined the degree of topological congruence
between phylogenies independently derived from “o”
and “n” data sets. More importantly, we are not only
in search of the single (“true” species) tree (that
can be probably more effectively done with software
programs such as BUCKy: Larget et al. 2010 and MP-
Est: Liu et al. 2010), but we aim at inferring and
explaining two (gene) trees that are mostly congruent,
but in particular cases not. We thus seek to detect
and assess the contribution of each outlier association
to the phylogenetic relationships observed that may
correspond to exceptional evolutionary events (such as
chloroplast capture as result of HGT) in case of conflicts.

It must be acknowledged that in our simulation
approaches, we have naively reproduced evolutionary
events responsible for topological incongruence (i.e.,
hybridization, HGT, ILS) by randomly adding a certain
amount of OTUs to congruent trees. This of course
does not perfectly simulate, for instance, ancient ILS
processes, which are known to have occurred in several
seed plant lineages (e.g., Ceanothus: Hardig et al. 2000;
Juniperus: Terry et al. 2000; Hieracium: Fehrer et al. 2009),
especially those that have diversified following rapid
radiations (Degnan and Rosenberg 2009). Therefore,
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further efforts should be directed toward a more
thorough simulation of evolutionary events responsible
for topological incongruence that have taken place at
deeper phylogenetic levels, and their impact on the
performance of the approach here described.

While comparing “o” and “n” DNA trees, all
major lineages of Catasetinae are monophyletic and
their phylogenetic relationships (except Galeandra) are
not conflicting, reflecting overall cophylogeny of the
corresponding loci. This is also statistically supported
by the rejection of H0: topological incongruence by
PACo and ParaFit. The outliers identified by PACo
affect Catasetum, Cycnoches, and Mormodes, in which
major incongruences between the “o” and “n”data
sets have been detected. Natural hybridization has
been reported from Catasetum (Dressler 1968b; Romero
and Carnevali 1990, 1991, 1992; Romero and Jenny
1992), and it might occur in Cycnoches as well
(Pérez-Escobar et al. forthcoming). Hybridization may
lead to the introgression of a chloroplast genome
(and hence to a HGT process) from one lineage
into another represented by the phylogeny of the
nucleus (i.e., chloroplast capture: Tsitrone et al. 2003).
Chloroplast capture is often proposed as the explanation
for topological incongruence between chloroplast
and nuclear phylogenies (Rieseberg and Soltis 1991;
Stegemann et al. 2012), and it has also explanatory power
for our observations.

In some of our simulations, a number of outlier
associations have not distinguished from the
nonconflicting counterparts based on the values
of their normalized squared residuals (PACo) and
ParaFitLink2 statistics. However, our method is highly
efficient when applied to large phylogenies with a
moderate through low number of outliers (over 99% of
incongruent links identified). This range of conditions
may reflect in fact characteristics observed in real data
sets (Fehrer et al. 2007; Koehler et al. 2008; van der
Niet and Linder 2008) that end-users encounter when
analyzing cophylogeny between organellar and nuclear
data sets. Nevertheless, outlier detection using the
Catasetinae data set was not so efficient, when the
number of putative outlier associations accounts for up
to 40% of the total number of 51 OTUs. The efficiency
with these data is comparable to that observed in our
simulations with 30% and 40% of added outliers (Fig. 2,
Supplementary Table S4).

Classification of OTUs via clustering analysis stands
as a useful, complementary tool to validate, how PACo
performs retrieval of outliers. As demonstrated by our
simulated and real data sets, terminal classifications
are more reliable than those executed by PACo
combined with ParaFit. Therefore, our method based
on representation of phylogenetic relationships in
Euclidean space is appropriate to capture properties
of tree topologies, even though tree space (except for
ultrametric tree space, see Pavoine et al. 2005) is not
Euclidean (Cavalli-Sforza and Edwards 1967; Kidd and
Sgaramella-Zonta 1971; Holmes 2005). Nevertheless,
validation using PACo in combination with ParaFit

might be considered for implementation, as it allows
the end-user to easily visualize on a Cartesian plane
the relationships between the “o”/“n” associations and
determine “by eye” (under some data circumstances)
groups of outlier and congruent associations (as in
Fig. 1).

Effect of Input Data in Distance-Based Methods
PACo and ParaFit may be susceptible to differences

in evolutionary parameters of sequences, if patristic
distances derived from additive trees are used as input.
Although the use of patristic distances obtained from
additive trees affords incorporation of evolutionary
rates, it may also introduce artifacts in cophylogenetic
analyses, such as the attraction of OTUs with short
branch lengths and the departure of those exhibiting
longer branches. In contrast, when distances derived
from pure topologies (e.g., unit branch length trees)
are employed, rates of evolution are not considered
(de Vienne et al. 2012). To the best of our knowledge,
the effect of input data (and hence branch lengths) in
cophylogenetic distance-based methods has not been
investigated, using extensive simulation approaches and
real data, until the present study. Nevertheless, it is
still unclear how input data might affect cophylogenetic
distance-based methods under different conditions,
such as contrasting substitution rates between parasite/
host phylogenies (as observed in parasitic plants, which
exhibit accelerated substitution rates: Bromham et al.
2013; Bellot and Renner 2014). Further research should
focus on simulation approaches, in which contrasting
substitution rates between data sets are reproduced in
detail, allowing assessment of distance-based methods’
performance under these circumstances.

The effect of input data is statistically demonstrated
by simulations using patristic distances obtained from
additive trees, in which PACo is more efficient overall
retrieving outliers from nonconflicting associations than
in simulations based on unit branch length trees.
Nevertheless, an interesting pattern was observed when
PACo was applied to real data, in which lineages with
strongly differing branch length such as Dressleria and
Grobya are recognized by PACo as outliers when using
additive trees, even in the absence of phylogenetic
conflict. Using unit branch length trees as input data
can also be a reasonable alternative to evaluate the
potential impact of contrasting branch lengths in the
phylogenetic congruence context. In addition, it might
be useful to detect putative conflicting associations that
are not retrieved as such when analyzing phylograms (as
observed in our analysis of real data). Our simulations
indicate a reduced ability to detect conflicting links, but
the efficiency is still acceptable if phylogenies are large
and the number of such links is relatively low.

Handling PACo and ParaFit for the Pipeline
Distance-based methods such as PACo and ParaFit

are traditionally used in cophylogenetic studies, but
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such approaches have not been employed before to
comparative tree topologies in organelle/host nucleus
systems. To execute both methods, a set of three input
files are required: one set of organellar and one set
of nuclear trees and a binary association matrix (see
Balbuena et al. 2013), in which all sequence names
from both trees are included and linked. With prior
knowledge on the evolutionary rates of the data set, the
user may decide to use unit branch length or directly
additive trees as input data. End-users might well run
analyses using both kinds of input data for comparative
purposes, although our results with real data indicate
that the latter option is likely to produce more reliable
results.

Workflows for applying cophylogenetic analyses
are not standardized yet and therefore, we provide a
pipeline for managing input data (i.e., transforming
additive trees to unit branch lengths when desired),
applying PACo function and spot outliers on error
bar plots as well as directly on phylogenies in the
software R (available as an R script on Dryad at
http://dx.doi.org/10.5061/dryad.q6s1f; accessed
October 11, 2015). Owing to the fact that weakly
supported and internally unresolved clades may
produce artifacts in distance-based methods, the present
method accommodates phylogenetic uncertainty by
including in the analysis sets of trees derived either from
ML or Bayesian phylogenetic inferences. In addition, it
readily generates the binary matrix required to execute
PACo and eventually identifies outlier associations based
on 1/N as threshold value as outlined above. A complete
tutorial is provided at http://www.uv.es/cophylpaco/;
accessed October 11, 2015.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.q6s1f.
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USER GUIDE – MANAGING THE PIPELINE IN R 

An R (R Development core team 2015) script is presented to carry out tests of 

phylogenetic congruence, and detection of outlier associations, between trees derived 

from organellar and nuclear loci.  The script stands as a pipeline to execute PACo 

(Procustes Approach to Phylogeny: Balbuena et al. 2013) and ParaFit (Legendre et al. 

2002) that are traditionally employed in coevolutionary studies.  In addition, it also 

includes a set of functions useful to spot outliers in trees. 

To be executed, the pipeline requires two sets of posterior probability trees derived from 

Bayesian inference or Maximum Likelihood (ML) phylogenies, corresponding to the 

organellar and nuclear trees, respectively. The user can decide to run PACo and ParaFit 

either with phylograms or unit branch length trees as input, in order to take into account 

and compare the effects of considering evolutionary rates.  PACo yields a residual sum 

of squares (𝑚𝑋𝑌
2 ) that measures congruence between phylogenies and uses a permutation 

approach to test significance.  Squared residual values (ei
2) provide a direct measure of 

each ‘o’-/‘n’-association’s contribution to the global value 𝑚𝑋𝑌
2 .  This estimate can be 

normalized as a proportion of 𝑚𝑋𝑌
2  (i.e., 𝜀𝑖

2 =  ei
2/𝑚𝑋𝑌

2 ).  In case of complete congruence 

between both phylogenies, the 𝜀𝑖
2’s are expected to follow a uniform distribution with 

expected mean 1/N, where N = number of ‘o’-/‘n’-associations.  Therefore, 1/N provides 

a threshold value and any 𝜀𝑖
2 linked to a conflicting association is expected to be > 1/N. 

As for ParaFit, the pipeline computes the ParaFitLink2 statistic (pfl2i), which also 

evaluates the contribution of each link association and is more appropriate than 

ParaFitLink1 in one-to-one association scenarios (Legendre et al. 2002).  The pfl2i value 

of a given association is inversely proportional to the phylogenetic pattern observed.  

Therefore, outlier sequences are expected to have pfl2i ≈ 0.  The pipeline produces plots 

of the median and 95% empirical confidence intervals of 𝜀𝑖
2 and pfl2i values, and outlier 

associations can be identified by comparison with a given cut-off value.  Because in all 

simulations and real data set analyses PACo performed better than the pfl2 statistic, the 

respective 𝜀𝑖
2 value of each association only is plotted independently onto the nuclear and 

organelle phylogenies, thus providing a visual detection of outliers for the end-user. 

In order to assist users with little or no experience about R, we provide herein a tutorial 

to the pipeline.  All analyses can be executed by cutting and pasting the syntax in an R 

console.  The text in red represents parameters that should be set by the user in order to 



adapt the analysis to specific purposes.  The tutorial demonstrates the efficiency of PACo 

and the pipeline to detect outlier associations and to test for congruence using the plastid 

(matK, trnL–trnF, trnS–trnG) and nuclear-ribosomal (ITS) phylogenies of Satyrium Sw. 

(Orchidaceae), for which topological conflicts between trees derived from nuclear and 

plastid data sets have been reported (van der Niet and Linder 2008). We have made 

available separate chloroplast and nuclear derived posterior probability trees (Dryad 

repository, doi:10.5061/dryad.q6s1f) used throughout this tutorial, and a chloroplast-

/nuclear concatenated alignment is available at TreeBASE (Study ID S1221). 

 

RUNNING PROCEDURE 

In addition to the basic R installation, five dedicated packages need to be installed to 

implement the pipeline, namely “ape”, “cluster”, “gplots”, “phytools”, and “vegan” (see 

http://cran.r-project.org/doc/manuals/R-admin.html#Installingpackages for details).  For 

every running analysis, libraries required to execute the pipeline must be loaded.   

 

library (ape) 

library (cluster) 

library (gplots) 

library (phytools) 

library (vegan) 

 

PACo application 

A complete description of PACo is provided by Balbuena et al (2013), and we refer to 

this study for details describing syntaxes of functions.  To execute PACo and ParaFit, a 

set of functions have to be defined first.  In both cases, the method proposed by de Vienne 

et al. (2011) is used to transform of patristic distances into Euclidean space.  

 

PACo.dV <- function (H.dist, P.dist, HP.bin) {  

  HP.bin <- which(HP.bin > 0, arr.in=TRUE) 

  H.PCo <- pcoa(sqrt(H.dist), correction="none")$vectors  

  P.PCo <- pcoa(sqrt(P.dist), correction="none")$vectors  

  H.PCo <- H.PCo[HP.bin[,1],]  

  P.PCo <- P.PCo[HP.bin[,2],]  

  list (H.PCo = H.PCo, P.PCo = P.PCo) 

} 

 



The function D.wrapper will execute PACo and ParaFit for each of the trees included in 

the tree data sets (see below).  It also allows the end-user to compare the influence of 

evolutionary distances in Procrustes and ParaFit analyses by executing PACo using either 

phylograms or unit branch length trees as input data.  Unit branch length trees are obtained 

by computing branch lengths values of 1 to each branch of the tree data sets. 

 

D.wrapper <- function(n) { 

  DH.add <- cophenetic(treeH[[n]])  

  DP.add <- cophenetic(treeP[[n]])  

  DH.top <- cophenetic(compute.brlen(treeH[[n]], 1))    

  DP.top <- cophenetic(compute.brlen(treeP[[n]], 1)) 

  DH.add <- DH.add[rownames(NCP),rownames(NCP)] 

  DP.add <- DP.add[colnames(NCP), colnames(NCP)] 

  DH.top <- DH.top[rownames(NCP),rownames(NCP)] 

  DP.top <- DP.top[colnames(NCP), colnames(NCP)] 

   

  PACo.add <- PACo.dV(DH.add, DP.add, HP) 

  Proc.add <- procrustes(PACo.add$H.PCo, PACo.add$P.PCo)  

  add.res <- residuals(Proc.add) 

  HostX <- Proc.add$X 

  ParY <- Proc.add$Yrot 

  colnamesPACo <- paste(rownames(HostX),rownames(ParY), sep="_") 

   

  PACo.top <- PACo.dV(DH.top, DP.top, HP) 

  Proc.top <- procrustes(PACo.top$H.PCo, PACo.top$P.PCo)  

  top.res <- residuals(Proc.top) 

   

  PF.add <- parafit(sqrt(DH.add), sqrt(DP.add), HP, nperm=1, 

test.links=TRUE, silent=TRUE) 

  PFL2.add <- c(PF.add$link.table[,5]) 

   

  PF.top <- parafit(sqrt(DH.top), sqrt(DP.top), HP, nperm=1, 

test.links=TRUE, silent=TRUE) 

  PFL2.top <- c(PF.top$link.table[,5]) 

   

  write (add.res, file="PACo_res_add.txt", ncolumns = NLinks , 

append=TRUE, sep="\t") 

  write (top.res, file="PACo_res_top.txt", ncolumns = NLinks , 

append=TRUE, sep="\t") 

  write (PFL2.add, file="PFL2_add.txt", ncolumns = NLinks , 

append=TRUE, sep="\t") 



  write (PFL2.top, file="PFL2_top.txt", ncolumns = NLinks , 

append=TRUE, sep="\t") 

  write (colnamesPACo, "colnamesPACo.txt", ncolumns=NLinks, 

sep="\t") 

} 

 

Data input 

In order to execute the global test of congruence, two files must be loaded, namely 

consensus trees derived from the organellar and nuclear data sets.  For example, the 

consensus trees produced by the MrBayes application are to be used in this step.  In 

addition, a set of posterior probability trees obtained from Bayesian analysis or ML trees 

derived independently from the organellar and nuclear data sets are required for detection 

of outlier associations.  Using a tree set and not consensus tree for outlier detection is 

preferred, because the former option allows for inclusion of phylogenetic uncertainty into 

the analysis.  Trees may be uploaded in either Nexus or Newick format.  A third file 

required to execute PACo and ParaFit is a binary matrix, in which corresponding pairs of 

organellar and nuclear Operational Taxonomic units (OTUs) are associated.  However, 

this matrix is readily generated by the pipeline (see below) when both data sets share 

exactly the same number and names of OTUs.  The user should ensure that sequence 

names in the binary association matrix match exactly with those of the trees.  (Note also 

that the order of the taxa in the phylogenies should match with that of the binary matrix, 

but the pipeline includes a sorting algorithm to ensure this and no user intervention is 

required in this regard.)  If data sets contain unequal numbers of sequences, then end-

users must generate and upload the association matrix manually.  Note that input files 

should include OTU labels that match exactly in all files, and we recommend the use of 

short name labels for the sake of the interpretation of graphical outputs.  Use the following 

syntax to load trees in R: 

 

NTree <- read.tree(“myfilename.t”)  

CPTree <- read.tree(“myfilename.t”)  

 

If input phylogenies are instead in Nexus format: 

 

NTree <- read.nexus(“myfilename.t”) 

CPTree <- read.nexus(“myfilename.t”)  

 



For large data sets (e.g., trees with more than 200 OTUs), manual generation of the binary 

association matrix comprising organellar and nuclear OTUs can be time-consuming.  The 

binary matrix can be generated by the following code: 

 

NTaxa <- sort(NTree$tip.label) 

CPTaxa <- sort(CPTree$tip.label) 

NCP <- as.matrix(table(NTaxa, CPTaxa)) 

 

However, if small trees (e.g., trees with less than 50 OTUs) are being analyzed, or if the 

user already has a text file with the association matrix, it can be loaded into R: 

 

NCP <- as.matrix(read.table(“myfilename.txt”, header=TRUE))  

 

In order to accommodate for phylogenetic uncertainty into the analysis, a sets of trees in 

either Nexus or Newick format is required for detection of outlier sequences (see above):  

 

ByH <- "myfilename.t" 

ByP <- "myfilename.t" 

 

Trees in Newick format 

 

treeH <- read.tree(file= ByH) 

treeP <- read.tree(file= ByP) 

 

Trees in Nexus format 

 

treeH <- read.nexus(file= ByH) 

treeP <- read.nexus(file= ByP) 

 

Using the following script, the end-user may set a given number of trees to be discarded 

(burn-in) from the tree data set, in this example the first 18,000 trees are discarded: 

 

treeH <- treeH[18001: length(treeH)] 

treeP <- treeP[18001: length(treeP)] 

 

NLinks = sum(NCP) 

HP <- diag(NLinks)  

 

Testing cophylogeny between nuclear and chloroplast phylogenies 



To execute the global test of congruence between organellar and nuclear data sets, PACo 

requires patristic distances to obtain a global 𝑚𝑋𝑌
2  value.  Therefore, consensus organellar 

and nuclear trees (see data input) must be transformed into matrices of patristic distances: 

 

N.D <- cophenetic (NTree) 

CP.D <- cophenetic (CPTree) 

 

The organellar and nuclear matrices of patristic distances are then sorted to match the 

rows and the columns of the binary association matrix: 

 

N.D <- N.D[rownames(NCP),rownames(NCP)] 

CP.D <- CP.D [colnames(NCP), colnames(NCP)] 

 

Finally, to apply PACo: 

 

PACo.fit <- PACo.dV(N.D, CP.D, NCP) 

NCP.proc <- procrustes(PACo.fit$H.PCo, PACo.fit$P.PCo)  

 

The following syntax computes the residual sum of squares 𝑚𝑋𝑌
2  and randomizes the ‘o’-

/‘n’-association matrix to determine, whether the probability p under Ho (‘similarity 

between trees not higher than expected by chance’, see main text) is rejected.  The user 

must set a number of random permutations of the organelle-/host nucleus-matrix.  

Although we employed 100,000 in all analyses, a number ≤ 10,000 should be sufficient 

to obtain comparable results. 

 

m2.obs <- NCP.proc$ss  

N.perm = 10000  

P.value = 0 

set.seed(2)  

for (n in c(1:N.perm)) 

{ 

  if (NLinks <= nrow(NCP) | NLinks <= ncol(NCP))     

  {  flag2 <- TRUE  

     while (flag2 == TRUE)  {  

       NCP.perm <- t(apply(NCP,1,sample)) 

       if(any(colSums(NCP.perm) == NLinks)) flag2 <- TRUE else 

flag2 <- FALSE 

     }   

  } else { NCP.perm <- t(apply(NCP,1,sample))}  

  PACo.perm <- PACo.dV(N.D, CP.D, NCP.perm) 

  m2.perm <- procrustes(PACo.perm$H.PCo, PACo.perm$P.PCo)$ss  

  if (m2.perm <= m2.obs) 



  {P.value = P.value + 1}  

} 

P.value <- P.value/N.perm 

 

cat(" The observed m2 is ", m2.obs, "\n", "P-value = ", P.value, 

" based on ", N.perm," permutations.") 

 

Note that set.seed(2) sets a reproducible set of test permutations.  Changing the 

integer value will produce a different set, but should not change the p value substantially.  

R will print out the p value and 𝑚𝑋𝑌
2 : 

 

The observed m2 is 0.4655883  

P-value = 0.0001 based on 1000 permutations. 

 

Thus, the significance value at which H0 is rejected is 0.0001.  This shows that, despite 

the presence of outliers in the phylogenies, organellar and nuclear data sets in Satyrium 

reflect cophylogeny to some degree. 

 

Detecting outlier associations 

The contribution (ei
2) to the global squared residual value (𝑚𝑋𝑌

2 ) and the pfl2i (see 

methods) of each association, using phylograms and unit branch length trees is computed 

using:  

 

lapply(1:length(treeH), D.wrapper)  

 

At execution, tables containing ei
2 and pfl2i values for each association (for both PACo 

and ParaFit analyses using phylograms and unit branch length trees) will be generated 

and saved in your working directory (files PACo_res_add.txt, PACo_res_top.txt, 

PFL2_add.txt and PFL2_top.txt).  These tables are required by the pipeline (see 

below) to spot outlier sequences onto the phylogenies and can be loaded onto the 

workspace: 

 

colnamesPACo <- read.table(file="colnamesPACo.txt", header=TRUE) 

colnamesPACo <- colnames(colnamesPACo) 

 

pac.add <- read.table(file="PACo_res_add.txt", header=FALSE, 

col.names=colnamesPACo) 

pac.top <- read.table(file="PACo_res_top.txt", header=FALSE, 

col.names=colnamesPACo) 



pf2.add <- read.table(file="PFL2_add.txt", header=FALSE, 

col.names=colnamesPACo) 

pf2.top <- read.table(file="PFL2_top.txt", header=FALSE, 

col.names=colnamesPACo)  

 

Next, outlier associations will be spotted by the pipeline using a threshold value (1/N).  

The following syntax will transform the ei
2’s into 𝜀𝑖

2’s obtained from either phylograms 

or unit branch length trees and will compute their respective median.  Given the 

asymmetric distribution of the 𝜀𝑖
2’s, the median value was preferred over the mean as 

central tendency estimate: 

 

m2A <- apply(pac.add, 1, sum) 

pac.norm.add <- pac.add/m2A   

 

m2T <- apply(pac.top, 1, sum) 

pac.norm.top <- pac.top/m2T 

 

To plot the median 𝜀𝑖
2 and its 95% empirical confidence intervals obtained from 

sequences in phylograms and unit branch lengths, and to spot outlier taxa according to 

the threshold value (1/N), use the following script: 

 

op <- par(oma=c(3,2,1,1)) 

par (mfrow=c(1,1),mar = c(4,4,1,1))  

 

mA <- apply(pac.norm.add, 2, median)  

uCI.A <- apply(pac.norm.add, 2, quantile, probs = 0.975) 

lCI.A <- apply(pac.norm.add, 2, quantile, probs = 0.025) 

cols <- c("lightgreen", "mistyrose")[(mA > 1/NLinks) + 1]  

barplot2(mA, main = "PAco squared residuals - additive trees", 

xlab="Association", ylab="Normalized PACo sqr. residuals", 

        cex.axis=0.5, col=cols, border="lightgrey", 

names.arg=colnamesPACo, las=2, cex.names=0.5, plot.ci=T, 

ci.l=lCI.A, ci.u=uCI.A, ci.color="blue") 

abline(h=1/NLinks, col="red")  

 

mA <- apply(pac.norm.top, 2, median)  

uCI.A <- apply(pac.norm.top, 2, quantile, probs = 0.975) 

lCI.A <- apply(pac.norm.top, 2, quantile, probs = 0.025) 

cols <- c("lightgreen", "mistyrose")[(mA > 1/NLinks) + 1]  

barplot2(mA, main = "PAco squared residuals - unit branch length 

trees", xlab="Association", ylab="Normalized PACo 

sqr.residuals", cex.axis=0.5, col=cols, border="lightgrey", 



names.arg=colnamesPACo, las=2, cex.names=0.5, plot.ci=T, 

ci.l=lCI.A, ci.u=uCI.A, ci.color="blue") 

abline(h=1/NLinks, col="red")  

 

Two plots (Fig. S3, data with 𝜀𝑖
2’s obtained from unit branch length trees not shown) of 

all squared residual values determined from each ‘o’-/‘n’-association, and obtained from 

phylograms and unit branch lengths as well, will be plotted, respectively.  Associations 

with 𝜀𝑖
2’s  scores above the red line (i.e., 1/N threshold value) represent putative outlier 

sequences especially, if the lower bound of the associated 95% confidence interval is 

above the threshold.  In the working example of Satyrium, 15 ‘o’-/‘n’-associations were 

retrieved as outlier (Fig. S3).  Eleven of such links presented indeed contrasting 

phylogenetic positions on chloroplast and nuclear trees (red bars in Fig. S3).  All outlier 

associations detected by PACo as potentially outliers are shown in Figure S4.  Names in 

red correspond to associations retrieved by PACo that are true outliers, whereas names in 

black are associations identified by PACo as potential outliers, even though they did not 

recover conflicting phylogenetic positions.  In our simulations and real data set analyses 

pfl2i yielded suboptimal results, but the user may also wish to plot the pfl2i’s for 

comparative purposes: 

 

mA <- apply(pf2.add, 2, median)  

uCI.A <- apply(pf2.add, 2, quantile, probs = 0.975) 

lCI.A <- apply(pf2.add, 2, quantile, probs = 0.025) 

cols <- c("lightgreen", "mistyrose")[(mA > 0) + 1]  

barplot2(mA, main = "pfl2 statistic - additive trees", 

xlab="Association", ylab="Normalized PACo sqr. residuals", 

          cex.axis=0.5, col=cols, border="lightgrey", 

names.arg=colnamesPACo, las=2, cex.names=0.5, plot.ci=T, 

ci.l=lCI.A, 

          ci.u=uCI.A, ci.color="blue") 

abline(h=0, col="red")  

 

mA <- apply(pf2.top, 2,  median) 

uCI.A <- apply(pf2.top, 2, quantile, probs = 0.975) 

lCI.A <- apply(pf2.top, 2, quantile, probs = 0.025) 

cols <- c("lightgreen", "mistyrose")[(mA > 0) + 1]  

barplot2(mA, main = "pfl2 statistic - unit branch length trees", 

xlab="Association", ylab="Normalized PACo sqr. residuals",       

cex.axis=0.5, col=cols, border="lightgrey", 

names.arg=colnamesPACo, las=2, cex.names=0.5, plot.ci=T, 

ci.l=lCI.A, ci.u=uCI.A, ci.color="blue") 

abline(h=0, col="red")  



 

Validating classifications of outlier and congruent terminals with PAM 

Cluster analysis using the Partition Around Medoids (PAM) algorithm (Kaufman and 

Rousseeuw 1990) allows the end-user to determine the extent of properly classified 

associations into outlier or congruent OTUs in relation to the total number of OTUs and 

the proportion of outlier/congruent OTUs.  Our pipeline offers two alternatives to carry 

out clustering analyses, namely 1) using median 𝜀𝑖
2 and pfl2i values combined and 2) 

using median 𝜀𝑖
2’s alone.  Our simulations and real data set analyses show that the latter 

strategy yields stronger cluster structures, but comparison between the two approaches 

can still be useful to reveal doubtful associations.  Clustering starts by standardizing both 

statistics (𝜀𝑖
2 and pfl2i): 

 

sum.pac.add <- apply(pac.add, 1, sum)  

pac.add <- pac.add/sum.pac.add - 1/NLinks 

sum.pac.top <- apply(pac.top, 1, sum)  

pac.top <- pac.top/sum.pac.top - 1/NLinks 

 

im.paco.add <- apply(pac.add, 2, median) 

im.paco.top <- apply(pac.top, 2, median) 

im.pf2.add <- apply(pf2.add, 2, median) 

im.pf2.top <- apply(pf2.top, 2, median) 

 

x.paco.add <- mean(im.paco.add) ; x.pf2.add <- mean(im.pf2.add) 

sd.paco.add<- sd(im.paco.add)  ; sd.pf2.add <- sd(im.pf2.add) 

im.paco.stadd <- (x.paco.add - im.paco.add)/sd.paco.add 

im.pf2.stadd <- (x.pf2.add - im.pf2.add)/sd.pf2.add 

metrics.stadd <- data.frame(im.paco.stadd, im.pf2.stadd) 

 

x.paco.top <- mean(im.paco.top) ; x.pf2.top <- mean(im.pf2.top) 

sd.paco.top <- sd(im.paco.top)  ; sd.pf2.top <- sd(im.pf2.top) 

im.paco.sttop <- (x.paco.top - im.paco.top)/sd.paco.top 

im.pf2.sttop <- (x.pf2.top - im.pf2.top)/sd.pf2.top 

metrics.sttop <- data.frame(im.paco.sttop, im.pf2.sttop) 

 

The user must specify the number of clusters (k).  Initially, one should set k=2, as PAM 

is expected to separate the ‘o’-/‘n’-associations into non-conflicting and outlier.  

However, in some situations pfl2 tends to split non-conflicting associations into two 

unnatural clusters, and k has to be set to 3 in order to retrieve the group of outlier 

associations. 

 

nclust = my k  



 

To apply clustering analysis using PACo in combination with pfl2 with both phylograms 

and unit branch length trees use the following commands:  

 

par (mfrow=c(2,1)) 

K.PAM <- pam(metrics.stadd, nclust, diss=FALSE) 

plot(im.paco.add,im.pf2.add, 

col=c("red","blue")[K.PAM$clustering]) 

title(main=list("PACo-Parafit - additive trees", cex=0.8)) 

SPaPf.add <- silhouette(K.PAM) 

cat(summary(SPaPf.add)$avg.width) 

SPaPf.add  <- summary(SPaPf.add)$avg.width 

cat("\n") 

 

K.PAM <- pam(metrics.sttop, nclust, diss=FALSE) 

plot(im.paco.top,im.pf2.top, 

col=c("red","blue")[K.PAM$clustering]) 

title(main=list("PACo-pf2 - unit branch length trees", cex=0.8)) 

SPaPf.top <- silhouette(K.PAM)  

cat(summary(SPaPf.top)$avg.width) 

SPaPf.top  <- summary(SPaPf.top)$avg.width 

cat("\n") 

 

In contrast, the end-user might want to apply clustering analysis using solely PACo with 

phylograms and unit branch length trees:  

 

K.PAM <- pam(metrics.stadd[1], nclust, diss=FALSE) 

plot(im.paco.add,im.pf2.add, 

col=c("red","blue")[K.PAM$clustering]) 

title(main=list("PACo + additive trees", cex=0.8)) 

SPa.add <- silhouette(K.PAM)  

cat(summary(SPa.add)$avg.width) 

SPa.add <- summary(SPa.add)$avg.width 

cat("\n") 

 

K.PAM <- pam(metrics.sttop[1], nclust, diss=FALSE) 

plot(im.paco.top,im.pf2.top, 

col=c("red","blue")[K.PAM$clustering]) 

title(main=list("PACo - unit branch length trees", cex=0.8)) 

SPa.top <- silhouette(K.PAM) 

cat(summary(SPa.top)$avg.width) 

SPa.top <- summary(SPa.top)$avg.width 



cat("\n") 

 

All silhouette values from all clustering analysis on a single table can also be save on 

disk: 

 

Sall <- rbind(SPaPf.add, SPa.add, SPaPf.top, SPa.top) 

rownames(Sall) <- c("Silhouette PACo-Parafit additive", 

"Silhouette PACo additive", "Silhouette PAco-Parafit unit branch 

length", "Silhouette PACo unit branch length ") 

write.table(Sall, "Silhouette_values_all.txt") 

 

Spotting outlier associations on trees 

In order to allow the end-user a better representation of potential outlier associations on 

trees, our pipeline finally produces a cophylogenetic plot of organellar and nuclear trees 

with outlier OTUs directly labeled on trees by means of a color scale: 

 

op <- par(oma=c(1,1,1,1)) 

par (mfrow=c(1,2),mar = c(1,1,1,1)) 

 

mA <- apply(pac.norm.add, 2, median) 

mA[mA > 1/NLinks] <- 1 

mA[mA < 1/NLinks] <- 0 

mA <- as.data.frame(mA) 

out <- mA$mA 

names(out) <- NTree$tip.label 

out  

 

plotTree(NTree, setEnv = T, offset=0.5, fsize=0.5, lwd=1) 

title(main="Nuclear tree of Gene 1 - PACo potential conflicting 

associations", font.main=1, cex.main=0.8) 

tiplabels(pie = to.matrix(out, sort(unique(out))), piecol = 

c("lightgreen", "lightcoral"), cex = 0.5) 

legend("bottomleft", c("Congruent", "Conflicting"), 

       cex=0.9, pch=16, col=c("lightgreen", "lightcoral"))  

 

plotTree(CPTree, setEnv = T, offset=0.5, fsize=0.5, lwd=1) 

title(main="Chloroplast tree of Gene 2 - PACo potential 

conflicting associations", font.main=1, cex.main=0.8) 

tiplabels(pie = to.matrix(out, sort(unique(out))), piecol = 

c("lightgreen", "lightcoral"), cex = 0.5)  

 



This script will plot the consensus trees of each data set analyzed, with the corresponding 

OTUs names. Their individual 𝜀𝑖
2 scores are color-coded according to their values 

(conflicting or congruent). The color scale can be bespoke, by replacing the argument 

"piecol" with any alternative allowed by the function.  In the working example (results 

with unit branch length trees not shown), the cophylogenetic plot of the consensus 

chloroplast and nuclear trees, together with their color-coded 𝜀𝑖
2 scores (Fig. S5), largely 

reflects the results observed in the confidence interval plot (Fig. S3).  The script also 

allows to easily spot outlier OTUs in large phylogenies (see Figs S6, S7 for a barplot with 

PACo squared residual values and plotted simulated trees of 200 OTUs showing outlier 

associations highlighted by PACo as potential outliers, respectively).  
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FIGURES 

Figure S1. Vector diagrams of squared residual values 𝜀𝑖
2 and ParaFitLink2 statistic (pfl2) 

obtained by PACo and ParaFit, respectively, using simulated additive trees.  Vector 

magnitude and orientation are related to the topological degree congruence of each ‘o’-

/‘n’-association.  Outlier associations are shown in red and non-conflicting in black.  

Trees with 50 terminals including a) 5 outliers (10%); b) 10 outliers (20%); c) 15 outliers 

(30%); d) 20 outliers (40%); with 100 terminals including e) 10% outliers; f) 20%  

outliers; g) 30% outliers; h) 40% outliers; with 200 terminals including i) 10% outliers; 

j) 20% outliers; k) 30% outliers; l) 40% outliers. 
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Figure S2. Vector diagrams of squared residual values 𝜀𝑖
2 and ParaFitLink2 statistic (pfl2) 

using simulated unit branch length trees.  Vector magnitude and orientation are related to 

the topological degree congruence of each ‘o’-/‘n’-association.  Outlier associations are 

shown in red, non-conflicting in black. Trees with 50 terminals including a) 5 outliers 

(10%); b) 10 outliers (20%); c) 15 outliers (30%); d) 20 outliers (40%); with 100 terminals 

including e) 10% outliers; f) 20% outliers; g) 30% outliers; h) 40% outliers; with 200 

terminals including i) 10% outliers; j) 20% outliers; k) 30% outliers; l) 40% outliers. 
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Figure S3.  Normalized squared residual values 𝜀𝑖
2) of individual ‘o’-/‘n’-associations obtained by PACo using additive trees.  Pink bars indicate 

potential outlier associations identified by the pipeline.  Taxa names in black, bold, and underlined represent OTUs retrieved by PACo that do not 

actually demonstrate phylogenetic distortion as in truly outlier associations. 

 

 

 



Figure S4.  Cophylogenetic plot showing the nuclear (ITS, left) and chloroplast (matK, trnL–trnF, right) phylogenies of Satyrium.  Bayesian 

posterior probabilities > 0.95 are shown above corresponding branches.  Terminals in red, bold, and underlined represent associations identified by 

PACo as outliers that are indeed conflicting sequences.  Terminals in black, bold, and underlined represent associations retrieved by PACo that do 

not actually demonstrate phylogenetic distortion as in truly conflicting associations



Figure S5.  Cophylogenetic plot of nuclear (right) and chloroplast (left) trees of Satyrium showing outlier associations detected by PACo.  Scale-

color (bottom left) correspond to squared residual values 𝜀𝑖
2 of individual ‘o’-/‘n’-associations.  Potential outlier associations are indicated in purple, 

blue and light blue (see cutoff value 0.024 in Fig. S4). 



Figure S6.  Normalized squared residual values 𝜀𝑖
2 of individual associations obtained by 

PACo using simulated additive trees of 200 terminals, which 20% of those are conflicting.  

Pink bars indicate potential outlier associations identified by the pipeline, whereas light-

green bars represent non-conflicting associations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S7.  Cophylogenetic plot of two simulated gene trees showing outlier associations 

detected by PACo.  Red circles on tips correspond to potential outliers, whose squared 

residual values 𝜀𝑖
2 of individual associations are higher than the cutoff value (1/N).  Non-

conflicting associations are indicated in light-green circles. 

 

 



TABLES 

Table S1.  Primers and PCR settings used for amplifying chloroplast and nuclear DNA loci.  

Loci Primer Sequence Reference Pre-melt Amplification Final extension 
Number of 

amplification cycles 

ITS 

ITS 4 
TCC-TCC-GCT-TAT-TGA-

TAT-GC 
Baldwin (1992) 

95°C (3 min) 
95°C (30 secs) + 52°C 

(1 min) + 68°C (1 min) 
68°C (10 min) 39 

ITS 5 
GGA-AGT-AAA-AGT-

CGT-AAC-AAG-G 
95°C (3 min) 

95°C (30 secs) + 52°C 

(1 min) + 68°C (1 min) 
68°C (10 min) 39 

ETS 

EST-Orchid 
CAT-ATG-AGT-TGT-

TGC-GGA-CC (AT)-T 
Monteiro et al (2010) 95°C (3 min) 

95°C (30 secs) + 52°C 

(1 min) + 68°C (1 min) 
68°C (10 min) 39 

18-IGS 
AGA-CAA-GCA-TAT-

GAC-TAC-TGG-CAG-G 
Markos and Balwin (1998) 95°C (3 min) 

95°C (30 secs) + 52°C 

(1 min) + 68°C (1 min) 
68°C (10 min) 39 

Xdh 

X502F 
TGT-GAT-GTC-GAT-

GTA-TGC 

Górniak et al (2010) 

95°C (3 min) 

95°C (30 secs) + 53°C 

(1 min) + 68°C (1.5 

min) 

68°C (10 min) 39 

X1599R 
G(AT)G-AGA-GAA-

A(CT)TG-GAG-CAA-C 
95°C (3 min) 

95°C (30 secs) + 53°C 

(1 min) + 68°C (1.5 

min) 

68°C (10 min) 39 

Ycf1 

3720F 
TAC-GTA-TGT-AAT-

GAA-CGA-ATG-G 

Neubig et al (2009) 

95°C (3 min) 

95°C (30 secs) + 54°C 

(1 min) + 68°C (1.5 

min) 

68°C (10 min) 39 

5500R 

GCT-GTT-ATT-GGC-

ATC-AAA-CCA-ATA-

GCG 

95°C (3 min) 

95°C (30 secs) + 54°C 

(1 min) + 68°C (1.5 

min) 

68°C (10 min) 39 

trnS-G 

trn-S(GCU) 
GCC-GCT-TTA-GTC-

CAC-TCA-GC 

Hamilton (1999) 

95°C (3 min) 

95°C (30 secs) + 

51.5°C (1 min) + 68°C 

(1.5 min) 

68°C (10 min) 39 

trn-G(UCC) 
GAA-CGA-ATC-ACA-

CTT-TTA-CCA-C 
95°C (3 min) 

95°C (30 secs) + 

51.5°C (1 min) + 68°C 

(1.5 min) 

68°C (10 min) 39 



Table S2.  Species names and voucher information for material used in this study.  Taxa sequenced in this study are indicated in bold letters. 

   Nuclear - ribosomal dataset Chloroplast dataset 

Taxon 

DNA 

Source - 

voucher 

Distribution ITS spacer 
ETS 

spacer 
Xdh gene matK gene 

TrnS-G 

spacer 
ycf1 gene 

Catasetum collare Cogn. 

cult. 

BGM1 

5/1000 

(M) 

Brasil, Colombia, 

Ecuador, 

Venezuela 

KT768384 KT768350 KT768454 - KT768421 KT768491 

Catasetum juruenense Hoehne 

cult. BGM 

5/1223 

(M) 

Brazil KT768385 KT768351 KT768455 - KT768422 KT768492 

Catasetum macrocarpum Rich. 

ex Kunth 

cult. BGM 

96/3071 

(M) 

Brazil-Venezuela KT768386 KT768352 KT768456 - KT768423 KT768493 

Catasetum meeae Pabst 

cult. BGM 

97/3836 

(M) 

Brazil KT768387 KT768353 KT768457 - - - 

Catasetum x roseoalbum 

(Hook.) Lindl. 

cult. BGM 

6/2496 

(M) 

Venezuela KT768388 KT768354 KT768458 - KT768424 KT768494 

Catasetum sp. 1 ML086 - JF692010 - - - - JF692138 

Catasetum sp. 2 ML301 - JF692017 - - - - JF692140 

Catasetum sp. 3 SR1153 - JF691914 - - - - JF692061 

Catasetum sp. 4 SR1203 - JF691923 - - - - JF692066 

Catasetum sp. 5 SR1213 - JF691925 - - - - JF692067 

Catasetum sp. 6 SR1463 - JF691960 - - - - JF692150 

Clowesia russelliana (Hook.) 

Dodson 

cult. BGM 

98/2889 

(M) 

Central America, 

Colombia, 

Venezuela  

KT768389 - - - KT768425 KT768495 

Clowesia sp. 1 SR0703 - JF69204 - - - - JF692131  

Clowesia sp. 2 SR0716 - JF692041 - - - - JF692154 

Clowesia sp. 3 SR0726 - JF692042 - - - - JF692155 



Cyanaeorchis arundinae (Rchb. 

f.) Barb. Rodr. 
Klein 126 Brazil KF771817 - - KF771821 - - 

Cyanaeorchis minor Schltr. Klein 124 Brazil KF771818 - - KF771822 - - 

Cyanaeorchis praetermisa 

J.A.N.Bat. & Bianch. 

Batista et 

al. 3041 

(BHCB) 

Brazil KF771819 - - KF771823 - - 

Cycnoches aureum Lindl. & 

Paxton 

Pérez & 

Gerlach 

1473 (M) 

Panama KT768390 KT768355 KT768459 - KT768426 KT768496 

Cycnoches barthiorum 

G.F.Carr & Christenson 

cult. BGM 

12/1476 

(M) 

Colombia KT768391 KT768356 KT768460 - KT768427 KT768497 

Cycnoches chlorochilon 

Klotzch 

cult. BGM 

94/981 

(M) 

Panama, 

Colombia, 

Venezuela 

KT768392 KT768357 KT768461 - KT768428 KT768498 

Cycnoches cooperi Rolfe 
Whitten 

W3591 

(FLAS) 

Brazil, Peru KT768393 KT768358 KT768462 - KT768429 KT768499 

Cycnoches densiflorum Rolfe 

cult. BGH2 

Kusibab 

5/2004 

Colombia, 

Panama 
KT768394 KT768359 KT768463 - KT768430 KT768500 

Cycnoches dianae Rchb. f. 

Pérez & 

Gerlach 

1468 (M) 

Panama KT768395 KT768360 KT768464 - KT768431 KT768501 

Cycnoches egertonianum 

Bateman 

(1) Franke 

s.n. 

(MEXU) 

Southern Mexico, 

Guatemala, 

Belize, Honduras 

KT768397 KT768362 KT768466 - KT768433 KT768503 

  

(2) cult. 

BGM 

12/1471 

(M) 

Southern Mexico, 

Guatemala, 

Belize, Honduras 

KT768396 KT768361 KT768465 - KT768432 KT768502 



Cycnoches guttulatum Schltr. 

Pérez & 

Gerlach 

1476 (M) 

Panama KT768398 KT768363 KT768467 - KT768434 KT768504 

Cycnoches haagii Barb. Rodr. 

cult. BGH 

Brock 

10/72 

Surinam, 

Venezuela, 

Colombia, 

Ecuador, Brazil, 

Peru, Bolivia 

KT768399 KT768364 KT768468 - KT768435 KT768505 

Cycnoches herrenhusanum 

Jenny & G.A. Romero 

cult. BGH 

Hubein 

1/78 

Colombia KT768400 KT768365 KT768469 - KT768436 KT768506 

Cycnoches lehmannii Rchb. f. 

cult. BGH 

Portilla 

T1/97 

Ecuador, Peru KT768401 KT768366 KT768470 - KT768437 KT768507 

Cycnoches loddigesii Lindl. 
cult. BGH 

H9/70 

Colombia, 

Surinam, 

Venezuela 

KT768402 KT768367 KT768471 - KT768438 KT768508 

Cycnoches manoelae V.P. 

Castro & Campacci 

cult. BGM 

12/2255 

(M) 

Brazil KT768403 KT768368 KT768472 - KT768439 KT768509 

Cycnoches pachydactylon 

Schltr. 

Pérez & 

Gerlach 

1469 (M) 

Panama KT768404 KT768369 KT768473 - KT768440 KT768510 

Cycnoches pentadactylon Lindl. 

cult. BGH 

Kusibab 

1/11 

Brazil, Peru - KT768370 KT768474 - KT768441 KT768511 

Cycnoches peruvianum Rolfe 

(1) cult. 

BGM 

12/0839 

(M) 

Ecuador, Peru, 

Colombia 
KT768406 KT768372 KT768475 - KT768443 KT768513 

  

(2) cult. 

BGH 

Kusibab 

5/04  

Ecuador, Peru, 

Colombia 
KT768405 KT768371 - - KT768442 KT768512 



Cycnoches suarezii Dodson 

cult. BGM 

12/0836 

(M) 

Ecuador KT768408 KT768374 KT768476 - KT768444 KT768515 

Cycnoches ventricosum 

Bateman 

cult. BGM 

3/3992  

(M) 

Southern Mexico, 

Guatemala, 

Belize, Honduras, 

northern 

Nicaragua 

KT768409 KT768375 KT768477 - KT768445 KT768516 

Cycnoches warszewiczii Rchb. f. 
cult. BGH 

H1/73 

Southern 

Nicaragua, Costa 

Rica, Panama 

KT768410 KT768376 KT768478 - KT768446 KT768517 

Cycnoches sp. 1 
Rodríguez 

s.n. (M) 
- KT768407 KT768373 - - - KT768514 

Cycnoches sp. 2 SR1106 - JF691909 - - - - JF692056 

Cycnoches sp. 3 SR1139a - JF691912 - - - - JF692059 

Dressleria dilecta (Rchb.f.) 

Dodson 

Whitten 

1019 

(FLAS) 

Colombia, 

Panama, Costa 

Rica,  Nicaragua 

AF239411 - - AF239507 - EU490731.1 

Dressleria sp. 

cult. BGM 

11/1194 

(M) 

- KT768413 KT768377 - - - KT768521 

Galeandra devoniana R.H. 

Schomb. ex Lindl. 

(1) Silva 

1373 

(HUEFS); 

(2) 

Pupulin 

1133 

(JBL) 

Brazil, Colombia, 

Guyana, 

Venezuela 

(1) 

EU877142 

(2) 

EU877125 
- 

(2) 

KF660268 
- 

(2) 

KF660330 

Galeandra sp. ML092 - JF692011 - - - - JF692079 

Grobya galeata Lindl. MWC295 Brazil AF470487 - - AF47045 - - 

Mormodes badia Rolfe ex 

Watson  

cult. BGM 

2/2480 

(M) 

Mexico KT768415 KT768380 KT768484 - KT768450 KT768525 



Mormodes ephippilabia Fowlie 

cult. BGM 

3/0775 

(M) 

Honduras KT768416 KT768381 KT768485 - - KT768526 

Mormodes luxata Lindl. 

cult. BGM 

92/3103 

(M) 

Mexico KT768417 KT768382 KT768486 - - KT768527 

Mormodes punctata Rolfe 

Pérez & 

Gerlach 

1483 (M) 

Panama KT768418 KT768383 KT768487 - - KT768528 

Outgroup                 

Ansellia africana Lindl. 

cult. BGM 

X/0021 

(M) 

Sub-saharan 

Africa 
- - KT768453 - KT768420 KT768490 

Cymbidium eburneum Lindl. 
cult. BGM 

(M) 

Burma, China, 

India, Nepal, 

Vietnam 

KT768411 - KT768479 - KT768447 KT768518 

Cymbidium tracyanym Rolfe 
cult. BGM  

(M) 

Burma, China, 

Thailand, 

Vietnam 

KT768412 - KT768480 - - KT768519 

Cyrtopodium andersonii (Lamb. 

ex Andrews) R. Br. 

(1) Chase 

O-341; (2) 

Chase "no 

voucher" 

(K) 

Brazil, Colombia, 

Guyana, Surinam, 

Venezuela 

(1) 

AF470490 
- - 

(1) 

AF470460 
- 

(2) 

KF660329 

Cyrtopodium punctatum (L.) 

Lindl. 

Chase O-

126 (K) 

Middle-north 

South America to 

Mexico 

AF239412 - - AF239508 - - 

Eulophia petersii Rchb. f. 

cult. BGM 

11/3892 

(M) 

South Africa - - KT768481 - KT768448 KT768522 

Grammatophyllum 

measuresianum Sander 

cult. BGM 

Stoch 6/95 

(M) 

Philippines - KT768379 KT768483 - KT768449 KT768524 



Oeceoclades maculata (Lindl.) 

Lindl. 

cult. BGM 

96/4473 

(M) 

Tropical America, 

Africa 
- - KT768488 - KT768451 KT768529 

Oeceoclades pulchra (Thouars) 

M.A.Clem. & P.J. Cribb 

cult. BGM 

X/434 (M) 

Tropical Asia, 

Asutralia 
KT768414 - KT768482 - - KT768523 

Oncidium luteum Rolfe 

cult. BGM 

13/0100 

(M) 

Costa Rica - 

Panama 
KT768419 - KT768489 - KT768452 KT768530 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table S3.  Results of jModel test. 

 

Data partition AIC LRT 

ITS GTR+Γ GTR+Γ 

ETS TPM2uf+Γ GTR+Γ 

Xdh HKY+Γ GTR+Γ 

matK TVM+Γ GTR+Γ 

trnS-trnG TVM1+Γ GTR+Γ 

ycf1 TVM+Γ GTR+Γ 



 

Table S4.  Number of misclassified congruent (‘c’) and outlier (‘x’) associations in 10 

pairs of simulated additive and unit branch length gene trees based on the median values 

of PACo and ParaFitLink2 (PFL2) statistics using the Partionioning Around Medioids 

algorithm (PAM). Trees were simulated with a) 50, b) 100 and c) 200 and a corresponding 

number of 10%, 20%, 30% and 40% of outlier OTUs, respectively.  For each pair of trees, 

PACo and ParaFit were applied to 1000 sets of post burn-in trees obtained from Bayesian 

inferences by computing median statistics.  PAM was applied for separation between ‘c’ 

and ‘o’ links using PACo in combination with ParaFit, or only the PACo statistic.  Values 

of the average silhouette width (S) for each tree are also reported, as well as the total 

number of misidentified associations (Mis.T) and Average Silhouette width value (Av.S).  

Boldfaced values correspond to cases where the PAM algorithm required k=3 to separate 

‘x’ associations, given that PFL2 tended to separate ‘c’ associations into two artificial 

clusters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S4

(A)

Tree x c x c x c x c x c x c x c x c x c x c x c x c x c x c x c x c

1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 2 0 2 2 3 0 2 2

S

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2 0 1 0 4 0 4 0

S

3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 2 0 5 0 2 0 1 0 5 0 1 4 1 0

S

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2 0 1 0 0 0 3 0 5 0 4 0

S

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 3 0 0 0 3 0 0 0 6 0 5 0

S

6 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 2 0 1 0 2 0 2 0 2 0 2 0 6 0 4 0

S

7 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S

8 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 6 0 2 0 3 0 3 0 3 0 4 0

S

9 0 0 0 0 1 0 0 0 0 0 0 0 3 0 0 0 0 0 1 0 1 0 1 0 0 0 2 1 6 0 1 1

S

10 0 0 0 0 0 0 0 0 0 0 1 0 2 0 1 0 0 0 2 0 1 0 3 0 0 0 3 0 2 0 3 0

S

Mis. T 1 0 0 0 2 0 1 0 1 0 1 0 9 0 3 0 8 0 8 0 22 0 13 0 13 0 21 3 36 4 28 3

Av. S

Proportion of incongruent associations (%)

PACoPACo+PFL2

Additive tree Branch lengths = 1

10

PACo+PFL2 PACo

0.68 0.91 0.68 0.87

0.74

0.75

0.8

0.71

0.73

0.73

0.65

0.6

0.75

0.68

0.75

0.71

0.79

0.91

0.89

0.89

0.89

0.89

0.93

0.92

0.89

0.89

0.66

0.91

0.86

0.88

0.88

0.9

0.86

0.86

0.87

0.91

0.73

0.73

0.7

0.74

20

Additive tree

PACo+PFL2 PACo PACoPACo+PFL2

Branch lengths = 1

0.80.620.80.66

0.86

0.830.650.870.73

0.810.70.830.73

0.830.620.76

0.850.670.890.72

0.850.730.820.68

0.810.590.820.62

0.790.670.870.72

0.790.70.820.73

0.80.620.840.67

0.660.80.69

0.8

0.650.80.65

0.77

30

0.780.630.8

Additive tree Branch lengths = 1

PACo+PFL2 PACo PACo+PFL2 PACo

0.530.740.56

0.78

40

0.770.620.770.65

0.810.60.840.66 0.66

0.72

Additive tree Branch lengths = 1

PACo+PFL2 PACo PACo+PFL2 PACo

0.610.820.67

0.780.60.770.66

0.60.670.56

0.550.690.6

0.64

0.65

0.760.590.80.64

0.80.60.770.67

0.76

0.720.630.770.64

0.630.570.7

0.670.510.710.61

0.65

0.710.590.750.6

0.61

0.601 0.723 0.562 0.687

0.710.560.730.61

0.730.530.720.56

0.480.70.54

0.710.60.79

0.739 0.901 0.657 0.816 0.65 0.791 0.609 0.7810.692 0.88 0.702 0.842



(B)

Tree x c x c x c x c x c x c x c x c x c x c x c x c x c x c x c x c

1 0 0 0 0 0 0 0 0 1 0 1 0 2 0 2 0 1 0 0 0 1 0 1 0 1 0 2 0 3 0 3 0

S

2 0 0 0 0 0 0 0 0 1 0 0 0 3 0 2 0 0 0 0 0 2 0 1 0 3 0 3 0 3 0 5 0

S

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 5 0 4 0 3 0 2 0 6 0 3 0

S

4 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 3 0 0 0 1 0 1 0 11 0 3 0

S

5 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 2 0 1 0 2 0 1 2 2 0 0 0

S

6 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 3 0 1 0 4 0 1 0 1 0 3 0 8 2 6 5

S

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 1 0 2 0 1 0 5 0 2 0

S

8 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 4 0 1 0 3 0 1 0 2 0 3 0 2 0 0 0

S

9 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 4 0 2 0 4 0

S

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 1 0 5 0 7 0 6 0 5 0

S

Mis. T 0 0 0 0 2 0 1 0 3 0 1 0 9 0 7 0 12 0 4 0 27 0 11 0 20 0 27 2 48 2 31 5

Av. S

Proportion of incongruent associations (%)

Branch lengths = 1

PACo+PFL2 PACo

10

0.75

0.73

PACo+PFL2 PACo

Additive tree

0.9

0.88

0.91

0.94

0.89

0.9

0.91

0.9

0.92

0.92

0.7

0.71

0.76

0.74

0.7

0.72

0.63

0.7

0.930.74

0.920.75

0.8

0.910.74

0.58

0.910.74

0.910.75

0.920.7

0.890.7

0.90.7

0.910.74

0.9070.714

Additive tree Branch lengths = 1

20

PACo+PFL2 PACo PACo+PFL2 PACo

0.870.69

0.860.630.820.63

0.860.680.830.69

0.850.670.80.66

0.880.710.870.7

0.860.690.830.71

0.860.660.850.68

0.850.70.820.71

0.880.720.880.76

0.870.690.860.69

0.880.67

Additive tree Branch lengths = 1

PACo+PFL2 PACo PACo+PFL2 PACo

40

0.720.61

0.770.61

PACo+PFL2 PACo PACo+PFL2 PACo

0.760.63

0.750.61

0.770.640.760.66

0.840.72

0.850.7

0.790.60.890.68

30

Additive tree Branch lengths = 1

0.780.610.720.620.840.72

0.80.65

0.880.650.810.68

0.830.7

0.830.68

0.740.55

0.760.66

0.780.69

0.840.670.830.69

0.770.570.810.66

0.770.580.810.68

0.760.590.750.63

0.60.510.780.71

0.750.5970.7550.6530.818

0.770.64

0.770.610.760.67

0.760.65

0.790.6

0.6820.8430.692

0.80.66

0.6470.8280.6820.8650.90.714

0.810.680.840.7

0.820.62



(C)

Tree x c x c x c x c x c x c x c x c x c x c x c x c x c x c x c x c

1 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 2 0 2 0 2 0 4 0 4 0 4 0

S

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 0 7 0 6 0 3 0 4 0 4 0 2 0

S

3 0 0 0 0 1 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 1 0 1 0

S

4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3 0 1 0 2 19 8 1 24 0 2 0

S

5 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 3 0 2 0 33 1 22 5 2 0 3 0

S

6 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 1 3 0 2 0 5 0 3 4 7 0 2 0

S

7 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 2 0 1 0 15 5 9 5 13 0 8 0

S

8 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 1 0 3 4 3 4 4 0 4 0

S

9 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2 0 0 0 2 0 2 0 2 0 5 0 4 0 1 0

S

10 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 4 0 8 0 4 11 3 0

S

Mis. T 0 0 0 0 5 0 5 0 4 0 0 0 6 0 4 0 7 0 2 1 26 0 17 0 70 29 68 19 67 11 30 0

Av. S

Proportion of outliers (%)

PACo+PFL2 PACo

Additive tree

0.910.730.890.69

0.920.720.920.72

PACo+PFL2 PACo

Branch lengths = 1

10

0.920.540.920.72

0.920.710.930.73

0.910.740.930.74

0.90.690.910.72

0.90.71

0.73 0.92 0.5 0.89

0.910.730.910.71

0.920.720.910.71

0.910.75

Additive tree Branch lengths = 1

PACo+PFL2 PACo PACo+PFL2 PACo

20

0.870.69

0.880.690.880.7

0.890.690.840.67

0.90.75

0.880.680.880.71

0.910.730.880.73

0.880.680.890.72

0.840.7

0.890.690.860.7

Additive tree Branch lengths = 1

PACo+PFL2 PACo PACo+PFL2 PACo

0.640.820.66

0.850.670.820.68

0.84

PACo+PFL2 PACo PACo+PFL2 PACo

40

Additive tree Branch lengths = 1

0.86

0.810.66

0.870.670.820.66

0.860.610.820.65

0.730.810.7

0.59

0.760.6

0.70.63

0.760.570.630.5

0.770.570.650.5

0.820.67

0.760.58

0.820.690.70.63

0.820.680.80.65

0.80.630.810.66

0.810.640.80.62

0.780.580.620.59

0.860.718 0.914 0.683 0.911

0.880.690.810.67

0.860.67

0.698 0.868 0.595 0.723 0.617 0.786

0.720.540.76

0.870.68

0.890.70.870.68

0.699 0.888 0.677 0.817 0.677

0.810.67

30

0.880.7

0.880.68

0.840.660.810.66

0.870.730.840.76

0.870.7



Table S5.  Alignment characterization. 

 

Loci 
Length 

(bp) 
Parsimony Informative Sites 

Number of 

cells 

ETS 475 149 / 32% 35/61 

ITS 705 320 / 46% 57/61 

Xdh 991 115 / 12% 37/61 

matK 1721 76 / 4% 8/61 

trnS-G 936 107 / 11% 34/61 

ycf1 1643 209 / 8% 55/61 
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a b s t r a c t

Two sexual systems are predominant in Catasetinae (Orchidaceae), namely protandry (which has evolved
in other orchid lineages as well) and environmental sex determination (ESD) being a unique trait among
Orchidaceae. Yet, the lack of a robust phylogenetic framework for Catasetinae has hampered deeper
insights in origin and evolution of sexual systems. To investigate the origins of protandry and ESD in
Catasetinae, we sequenced nuclear and chloroplast loci from 77 species, providing the most extensive
data matrix of Catasetinae available so far with all major lineages represented. We used Maximum
Parsimony, Maximum Likelihood and Bayesian methods to infer phylogenetic relationships and evolution
of sexual systems. Irrespectively of the methods used, Catasetinae were monophyletic in molecular
phylogenies, with all established generic lineages and their relationships resolved and highly supported.
According to comparative reconstruction approaches, the last common ancestor of Catasetinae was
inferred as having bisexual flowers (i.e., lacking protandry and ESD as well), and protandry originated
once in core Catasetinae (comprising Catasetum, Clowesia, Cycnoches, Dressleria and Mormodes). In addi-
tion, three independent gains of ESD are reliably inferred, linked to corresponding loss of protandry
within core Catasetinae. Thus, prior gain of protandry appears as the necessary prerequisite for gain of
ESD in orchids. Our results contribute to a comprehensive evolutionary scenario for sexual systems in
Catasetinae and more generally in orchids as well.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Sexual systems in angiosperms display great diversity (Barret,
2013) that has attracted generations of naturalists, field botanists
and, more recently, population geneticists and ecologists for
almost two centuries (Devos et al., 2011). The term refers to
‘‘distribution and function of gamete-producing morphological
structures” (Renner et al., 2007). Different selective pressures
favouring, for example, outcrossing and therefore ‘‘optimal amount
of recombination” (Bawa and Beach, 1981), and better resource re-
allocation to male-/female reproductive functions (e.g., Charnov
and Bull, 1977; Charnov, 1979), have been proposed to explain
the great diversity of sexual systems.

As temporal differentiation of the two sexes, protandry is a
widespread sexual system in angiosperms (De Jong et al., 2011;
Renner, 2014). It is defined as a form of dichogamy, with earlier

maturation of the staminate function in unisexual and bisexual
flowers (Bertin and Newman, 1993; Forrest, 2014; Webb and
Lloyd, 1986). Several hypotheses have been put forth regarding
the evolutionary advantages of protandry, including avoidance of
mutual interference between the staminate and pistillate struc-
tures and reduction of self-pollination rates among flowers of the
same inflorescence (geitonogamy) (Webb and Lloyd, 1986; Bertin
and Newman, 1993; Jersáková and Johnson, 2007). Despite the
relative abundance of protandry in angiosperms (Bawa and
Beach, 1981), its multiple evolutionary origins in time and space
are still unclear. This might also refer to the absence of densely
sampled, well resolved phylogenies and in-situ observations on
such sexual system (Renner, 2014).

Environmental sex determination (ESD) is an extreme form of
labile sex expression (also known as ontogenic sex change, plastic-
ity or disphasy) (Renner, 2014) and describes sex change in a struc-
turally bisexual but functionally unisexual system (i.e., angiosperm
flower) in response to environmental constrains during an individ-
ual’s life history (Schlessman, 1988; Korpelainen, 1998). Thus, ESD
plants are able to produce staminate, pistillate or even bisexual

http://dx.doi.org/10.1016/j.ympev.2015.11.019
1055-7903/� 2015 Elsevier Inc. All rights reserved.
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flowers, either on the same or in separate individuals under certain
environmental conditions. In animals, ESD has evolved in a wide
range of lineages, including turtles and crocodiles (Janzen and
Paukstis, 1991) and fish (e.g., Atherinidae: Conover and Kynard,
1981). In these lineages, temperature is a key factor regulating
sex expression, although for specific clades some other variables
such as pH and water quality might play an important role in sex
determination (Korpelainen, 1990). Unlike protandry, plasticity in
sex expression is remarkably rare, occurring in only ca. 250 species
of angiosperms (Renner, 2014). When individual fitness (either
male or female function) is strongly influenced by environmental
factors, then ESD is favoured by natural selection (Charnov and
Bull, 1977), because sessile organisms such as plants have no
chance to change after establishment at a particular locality and
habitat. Pioneering studies on sexual labile expression evolution
(e.g., Renner and Won, 2001; Renner et al., 2007; see also
Renner, 2014 for a review on sexual systems in angiosperms) in
plant lineages such as Acer L. indicate that ESD might be inherita-
ble, as it occurs in sister species. However, whether ESD evolution-
ary is a derived or rather the ancestral character state in orchids
remains to be assessed.

Orchid pollination syndromes have received much attention of
researchers for centuries (Tremblay et al., 2005), but little is still
known about evolution of their sexual systems. Monoecy is a pre-
vailing mechanism in orchids, yet the number of gains and losses of
other sexual systems such as protandry and ESD is uncertain.
Charles Darwin, who extensively documented and studied sexual
systems in several plant species (Darwin, 1877), had a strong per-
sonal affinity to orchids, resulting in the publication of his seminal
work on orchid pollination mechanisms (Darwin, 1877). He was
thus pioneering on knowledge about sexual systems of Catasetum
Rich. ex Kunth and Cycnoches Lindl., members of Catasetinae,
which in Darwin’s own words are ‘‘the most remarkable of all
orchids” (Darwin, 1877: 211).

Catasetinae comprise approximately 290 species that are classi-
fied in eight generic lineages, namely Catasetum, Clowesia Lindl.,
Cyanaeorchis Barb.Rodr., Cycnoches, Dressleria Dodson, Galeandra
Lindl., Grobya Lindl. and Mormodes Lindl. (Chase et al., 2015;
Pérez-Escobar et al., 2015). They are distributed from southern
Florida to southern Brazil, northern Argentina and the Antilles
(Batista et al., 2014; Romero and Pridgeon, 2009). The remarkable
diversity with respect to reproductive biology makes Catasetinae
an excellent group to study evolution of sexual systems (including
ESD and protandry) and pollination syndromes. In Catasetinae,
protandry refers to the production of flowers, in which the polli-
narium must be removed before pollinia can be deposited in the
stigmatic cavity (Romero, 1990), and is present in all members of
Clowesia, Dressleria and some species ofMormodes (Fig. 1). Environ-
mental sex determination is an exceedingly rare system in orchids
(and angiosperms) and occurs in Catasetum, Cycnoches and in the
complementary species of Mormodes only. Most inflorescences of
such species consist of functionally either male or female flowers,
although they are also able to produce inflorescences with inter-
mixed staminate and pistillate flowers (intermediate, non-
functional bisexual flowers may occur rarely) (Fig. 1).

Sex expression in Catasetinae is entirely determined by envi-
ronmental variables such as light intensity and substrate type
(Gregg, 1983; Zimmerman, 2011). Unlike in animal lineages, sun
light is the most important factor determining sex in flowers
(Gregg, 1982). It stimulates ethylene production in reproductive
structures, being as much as 100 times higher in inflorescences
grown under direct sunlight than those grown under shade
(Gregg, 1983). Ethylene is known to be a natural regulator of sex
expression (Abeles et al., 1992) in several Cucurbitaceae species
(e.g., Cucumis sativus L.: Malepszy and Niemirowicz-Szczytt,
1991; Rudich et al., 1972; Cucurbita texana (Scheele) A. Garay:

Krupnick et al., 2000) and therefore, it might play the same regula-
tory role in orchids as well.

Phylogenetic trees are basic tools to shed light on the origin and
evolution of specialised sexual systems in plants lineages such as
Catasetinae. Analyses based on molecular and morphological data
have repeatedly sustained the monophyly of Catasetinae (Batista
et al., 2014; Freudenstein et al., 2004; Pérez-Escobar et al., 2015;
Romero, 1990; Whitten et al., 2014), but their internal phyloge-
netic relationships have not been reliably resolved. However, three
lineages are readily distinguished, namely Grobya, [Cyanaeorchis–
Galeandra] and the remainder (or core) Catasetinae (Batista et al.,
2014; Whitten et al., 2014; Pérez-Escobar et al., 2015). Notably,
specialised sexual systems (i.e., protandry and ESD) occur in core
Catasetinae only, as the remainder genera exhibit bisexual, adi-
chogamous flowers. As the phylogenetic backbone is not resolved
(see Whitten et al., 2014), it is unclear at present whether the last
common ancestor (LCA) of core Catasetinae has exhibited unisex-
ual flowers and ESD, or bisexual, adichogamous flowers. Based on
a cladogram inferred from vegetative and reproductive morpho-
logical traits, Romero (1990) proposed that protandry and unisex-
uality (i.e., ESD) are equally likely as the condition of core
Catasetinae’s LCA. However, he favoured a scenario, in which pro-
tandry has originated once and ESD has evolved two times inde-
pendently, once in Catasetum and again in Cycnoches–Mormodes’s
LCA (Romero, 1990).

The lack of knowledge about sexual system evolution in orchids
is primarily due to limited taxon sample and amount of sequence
data. In this study, we use comparative phylogenetic and ancestral
state reconstruction approaches to estimate the phylogenetic rela-
tionships of Catasetinae analysing sequence data from three
nuclear (‘n’) and two chloroplast (‘cp’) loci of 77 out of �290 extant
species of Catasetinae. Using a solid, explicitly phylogenetic frame-
work, we revisit the ideas of Romero (1990) that protandry has a
single origin in Catasetinae, while ESD may have evolved indepen-
dently multiple times. Our data matrix includes species exhibiting
bisexual flowers, protandry and ESD, all of which are present in
Catasetinae. We aim at the development of an evolutionary sce-
nario of sexual systems in Darwin’s favourite orchid lineage.

2. Materials and methods

2.1. Taxon sampling, DNA sequencing and phylogenetic analysis

Table S1 provides full species names, geographic origins, vou-
cher specimens and GenBank accession numbers of sequences
included in phylogenetic analyses. Genomic DNA was extracted
from herbarium and fresh leaf material with the NucleoSpin� plant
kit (Macherey–Nagel; Düren, Germany), following the manufac-
turer’s protocol. We amplified and sequenced ‘n’ ribosomal exter-
nal and internal transcribed spacers (ETS and ITS, respectively), a
fragment of the ‘n’ gene Xdh, a �1500 bp fragment of the ‘cp’ gene
ycf1, as well as the ‘cp’ trnS–trnG intergenic spacer. Amplification
settings and sequencing primers are specified in Table S2. PCR
products were purified with the ExoSap clean-up kit (Fermentas;
St. Leon-Rot, Germany), and sequencing reactions were run on an
ABI 3130 capillary sequencer (Thermo Fisher Scientific; Waltham,
USA) following the manufacturer’s protocol. Sequence editing
was carried out using Geneious software v. 7.1.7 (BiomattersCor-
poration; Auckland, New Zealand).

Each locus was aligned separately using MAFFT version 7.1
(Katoh and Standley, 2013). For aligning ‘n’ ribosomal DNA loci
and ‘cp’ trnS–trnG spacer, secondary structure of molecules was
taken into account (i.e., using the -qINSi option). Congruence
between ‘n’ and ‘cp’ data sets was assessed following Pérez-
Escobar et al. (2015), using the PACo application (Balbuena et al.,
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2013). That procedure is now available as a pipeline (http://data-
dryad.org/review?doi=doi:10.5061/dryad.q6s1f) and it was also
employed to identify and remove sequences from the ‘cp’ data
set that were found to be conflicting with the ‘n’ data sets. Conflict-
ing chloroplast sequences were removed from the concatenated
alignment because often phylogenies derived from chloroplast
sequence data are in conflict with evolutionary interpretations of
morphology, which are in agreement with phylogenies inferred
from nuclear loci (e.g. Nauheimer et al., 2012). In addition, sexual-
ity is linked to eukaryotic cells but neither from chloroplast nor
their bacterial ancestor (Lodé, 2012). After removing conflicting
sequences, matrices of each locus were re-aligned, concatenated
and analysed under three different phylogenetic methods (see
below).

Analyses of the separate and concatenated datasets were car-
ried out under Maximum Likelihood (ML), Maximum Parsimony
(MP) and Bayesian criteria. The best-fitting evolutionary models
for ML and Bayesian analyses (for each data partition) were
selected from 44 models implemented in jModelTest version
2.1.6 (Darriba et al., 2012), employing the Likelihood Ratio Test
(LRT) and the Akaike information criterion (AIC) (Table S3). The
ML and Bayesian analyses were conducted with RAxML-HPC Black-
box version 8.0.0 (Stamatakis, 2014) and MrBayes version 3.2.2
(Ronquist et al., 2012), respectively, both run at the CIPRES Science
Gateway computing facility (Miller et al., 2010). Bayesian inference
was carried out with two independent runs of four Markov chain
Monte Carlo (MCMC) analyses with 20 million generation each,
sampling trees every 1000th generation, and using default prior
settings. The performance and convergence of the Bayesian chains

were verified using TRACER version 1.5 (Rambaut and Drummond,
2007). Ratchet parsimony analyses were implemented in Winclada
version 1.0 (Nixon, 2002) using the following settings: heuristic
search, uninformative characters deactivated, 500 iterations,
holding 1 tree per iteration, amb-poly = default. Statistical support
values (BPP: Bayesian posterior probabilities, LBS: ML bootstrap
support, PBS: Parsimony Bootstrap Support) were drawn on the
resulting majority-rule Bayesian consensus trees.

2.2. Ancestral state reconstructions and evolutionary pathway of
sexual systems

Twenty-five of the 164 known species with ESD (15%) and 23 of
89 known protandrous species (25%) of core Catasetinae were
included in the analyses. The sister group of the Catasetinae is
unclear (Whitten et al., 2014), but we selected two representatives
each of Eulophiinae and Cymbidiinae (both Cymbidieae) as out-
groups, plus Polystachya Hook. (Vandae, Polystachyinae). In such
lineages, both protandry and ESD are absent well (Romero and
Pridgeon, 2009; Cribb et al., 2014). Based on the phylogenetic tree
of Whitten et al. (2014) trees were rooted with Polystachya.

Ancestral State Reconstructions (ASRs) were conducted using
phylograms obtained from ML inference (see above) and ultramet-
ric trees (see below) following Cusimano and Renner (2014). Diver-
gence time estimates were obtained with BEAST v. 2.1.3 (Bouckaert
et al., 2014) using the CIPRES Science Gateway portal (Miller et al.,
2010). Strict and uncorrelated lognormal molecular clock models,
both with pure birth speciation models as recommended for
species-level sampling (Bouckaert et al., 2014), were compared to

Fig. 1. Diversity of sexual systems in Catasetinae. (A) Inflorescence of Mormodes lineata Bateman ex Lindl. with sexually dimorphic, functionally pistillate (below) and
staminate (above) flowers. (B) Functionally staminate (right) and pistillate (left) flowers ofM. lineata. (C) Sexually dimorphic, functionally staminate and (D) pistillate flowers
of Cycnoches guttulatum Schltr. (E) Protandrous flower of Mormodes maculata (Klotzsch) L.O. Williams in staminate (left) and pistillate (right) phase. Photos: G. Salazar & O.
Pérez.
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explore clock-likeness of the data. For calibrating the strict and
relaxed clock model, there are unambiguously placed fossils avail-
able for Orchidaceae (Ramírez et al., 2007), but these are assigned
to lineages very distantly related to Catasetinae (i.e., Agrostophyl-
linae, Dendrobiinae, Epidendreae, Malaxideae: Chase et al., 2015).
Therefore, we assigned a normally distributed prior of 20 (±4 stan-
dard deviations) Ma to the crown group of Catasetinae obtained in
the fossil-calibrated Orchidaceae chronogram of Chomicki et al.
(2014). Secondary calibrations are best applied as normally dis-
tributed priors (Bouckaert et al., 2014). For each clock model, we
ran two MCMC analysis with 20 million generations each, sampled
every 1000th generation. Parameter convergence was confirmed
using TRACER (available from http://beast.bio.ed.ac.uk/Tracer).
Because fossil record is wanting for Catasetinae and closely related
lineages (see above), and problems associated to secondary
calibrations (see Forest, 2009; Graur and Martin, 2004), we do
not discuss evolution of sexual systems in terms of absolute time
estimates.

For coding, ESD (absence, state a; presence, state b) and sex dis-
tribution (bisexual, not protandrous flowers, state 0; protandrous,
bisexual flowers, state 1; unisexual flowers, state 2) were person-
ally observed for each species or obtained from the literature
(Gregg, 1983; Romero and Nelson, 1986; Romero and Pridgeon,
2009). All species with ESD (state b) included in our sampling were
simultaneously coded for unisexual sex distribution (state 2),
because Catasetinae species having evolved ESD will produce
always functionally unisexual flowers (see Introduction). Table S4
provides a list with all species sampled, their corresponding coding
of each sexual system and the relevant references.

We carried out ML and Bayesian ancestral character reconstruc-
tion using the function ace of the package ‘‘APE” (Paradis et al.,
2004), implemented in R (R Development Core Team, 2014) and
the package Multistate of the software BayesTraits (Pagel, 1994),
respectively. Under the ML approach, we fitted single (ER) and
Asymmetrical Rate (ARD) models using a maximum clade credibil-
ity dated tree obtained from BEAST and a phylogram obtained from
ML phylogenetic inference. Because ML reconstructions using both
chronograms and phylograms yielded virtually the same output
(results not shown), we used a chronogram (derived from BEAST
analysis using a relaxed clock model, see Results section) instead
of a phylogram, as ace function requires a fully bifurcating tree
with positive branch lengths. To test the null hypothesis of ‘‘tran-
sition rates are equal between states of each character”, a Likeli-
hood Ratio Test (LTR) was performed to compare the likelihood
obtained from the equal transition and the all-different transition
models. Inferred character states of the best fitting model were
plotted onto the dated phylogeny. Each trait was also inferred
using a Bayesian approach and a set of ultrametric trees for com-
parison with the results obtained in the ML reconstruction and to
take into account phylogenetic uncertainty. Character polarity
with respect to protandry and ESD was investigated by estimating
the rate coefficients of evolutionary transitions within states of
each trait. For ASR of protandry, two models were fitted into
Markov chains to determine which of the proposed models
explains best the evolutionary scenario of the corresponding trait:

(1) A modelM1, in which all transitions are free (q01, q10, q12, q21,
qab, qba, not restricted).

(2) M2, in which transitions that involved direct switches from
states 0 to 2 (i.e., q02: bisexual, not protandrous flowers?
unisexual) and vice versa (q20), plus reversals from the sates
1 to 0 (q10: bisexual, protandrous flowers? bisexual, not
protandrous flowers), were set to 0 (i.e., not occurring).

Each of the models were compared to an equal transition rates
model (M0) via Bayes Factors (BF) tests, and the best model was

chosen to reconstruct ancestral states. To obtain posterior proba-
bilities and to infer character states at key nodes, independent
reversible jump Markov chains (RJ MC) were ran for 30 million
generations. The first 10 thousand iterations were discarded as
burn-in, and the sampling fraction was set to every 1000th itera-
tion. As rate transitions are not reliably known, gamma distribu-
tions ranging from 0 to 100 were chosen as priors. The RJ MC
was executed using 5000 trees randomly sampled from those
(�20 thousand) drawn by the Markov chain in the BEAST analysis.
Random tree sampling was carried out in the software R, using the
function samples.trees (available at http://coleoguy.blogspot.de/
2012/09/randomly-sampling-trees.html). To better understand
the parameters of the models visited by the RJ MC, the posterior
distributions of the rate coefficients were plotted in the software
R, using the function plot.mcmc of the package ‘‘CODA” (Plummer
et al., 2006).

3. Results

3.1. Phylogenetic relationships and molecular clock dating within
Catasetinae

We obtained new sequences of 77 Catasetinae species plus 5
outgroup taxa (a total of 154 new GenBank entries; see
Table S1). The concatenated ‘n’ + ‘cp’ alignment was 2480
+ 4321 bp in length and included 503 + 359 parsimony-
informative positions (20% and 8%, respectively). Table 1 provides
details of the aligned character matrices. Individual phylogenetic
analyses of ‘n’ and ‘cp’ alignments provided high support for most
nodes in trees (Fig. S1). After exclusion of chloroplast conflicting
sequences (potential outliers detected by PACo are shown in
Fig. S2, see Section 2), MP, ML and Bayesian trees of the ‘n’ and
‘cp’ data partitions recovered very similar, non-conflicting phylo-
genies (data not shown).

Fig. 2 shows the Bayesian majority-rule consensus tree as
inferred from the concatenated alignment, with many nodes
exhibiting high if not maximal support. Irrespectively of the
method used, Catasetinae were monophyletic (100LBS, 100PBS,
1.00BPP) and included Cyanaeorchis (100LBS, 100PBS, 1.00BPP),
Grobya (100LBS, 100PBS, 1.00BPP), Galeandra (100LBS, 100PBS,
1.00BPP) and the core Catasetinae (100LBS, 100PBS, 1.00BPP). All
established generic lineages of core Catasetinae were strongly sup-
ported as well, with clearly resolved relationships: ((Catasetum,
Clowesia), ((Cycnoches,Mormodes), (Dressleria))). Neither protan-
drous species, nor those exhibiting ESD, formed monophyletic
groups. Instead, protandrous Clowesia and Dressleriawere each clo-
sely allied to the ESD taxa Catasetum and Cycnoches, respectively,
and Mormodes included a paraphyletic species group exhibiting
protandrous flowers, from which a third ESD lineage arose.

3.2. Ancestral state reconstructions

Analysis of the log files generated under the relaxed clock
model indicated that the concatenated ‘n’ + ‘cp’ alignment did
not behave clock-like (coefficient of variation mean: 0.337). We

Table 1
Alignment characterisation.

Loci Length (bp) Parsimony informative sites (%) Number of cells

ITS 925 273/29.6 81/82
ETS 549 170/31 42/82
Xdh 1006 60/6 33/82
matK 1679 155/9 17/82
ycf1 1738 126/7 30/82
trnS-G 904 78/8 27/82
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therefore employed for ASR an ultrametric tree derived from
BEAST analysis under a relaxed clock model. Maximum Likelihood
ASR yielded comparable results using either phylograms or ultra-
metric trees (i.e., dated phylogeny) (results not shown). However,
ultrametric trees were chosen (in favour of phylograms), as they
are fully bifurcating, which is a requirement for ASR approaches
such as the ML reconstruction implemented here. For the trait
‘protandry’ (Table 2), the Asymmetrical Rate Model (ARD) was
favoured against equal rates evolutionary model (ER) as best
fitting in ML approach and was employed for ASR inference.

Nevertheless, no strong statistical support was obtained for the
trait ‘ESD’ to reject the null hypothesis of equal rates, and we
inferred the character using the ER model. For the ASR of ‘protan-
dry’ under the Bayesian approach, the M2 model (q02, q20, q10 = 0)
was favoured over the M1 model (all transitions free) via BF test.
Table 3 provides harmonic means of the models tested and their
corresponding BF scores.

A maximum clade credibility tree obtained from the BEAST
analysis is presented in Fig. 3, with ancestral character states of
ESD (left) and protandry (right) independently inferred under the

Fig. 2. 50% majority rule consensus tree inferred by Bayesian analysis showing strongly supported phylogenetic relationships of the Catasetinae. Likelihood (LBS), Parsimony
Bootstrap Support (PBS) and Bayesian Posterior Probability (BPP) higher than 80%, 70% and 0.90 are indicated on the phylogeny with ticker branches, black circles and
asterisks, respectively. Proportion of sampled (coloured portion of the circle) and extant species (numbers in grey inside the circle) of each genera of the Catasetinae are also
provided. The percentages of sampled extant species for each lineage of the Catasetinae are also provided. Pictures: G. Gerlach, O. Pérez and J. Batista. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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ML and Bayesian approaches at key nodes of the tree. Bayesian
reconstructions yielded similar results to those obtained under
the ML method for all the selected nodes, although not all recon-
structions were statistically reliable (i.e., see standard deviations
in Table 4).

With high confidence, the LCA of Catasetinae (node marked
with a star in Fig. 3) bore bisexual, not protandrous flowers
(100LBS, 1.00BPP) and did not exhibit ESD (95LBS, .65BPP). Such
ancestral conditions were present also in the LCA of Grobya (node
C), Cyanaeorchis (node B) and Galeandra (node O). The LCA of core
Catasetinae (node N) bore bisexual, protandrous flowers, and ESD
was likely not present. At nodes G (LCA of Catasetum + Clowesia)

and M (LCA of Dressleria + Cycnoches +Mormodes), the protandrous
condition was retained, but ESD was absent. At node L, the LCA of
Cycnoches and Mormodes had protandrous flowers probably cou-
pled with absence of ESD. In the respective LCAs of Catasetum
(node F) and Cycnoches (node I) as only lineages consistently
exhibiting ESD, unisexual flowers were present, and the derived
status of ESD was thus confirmed.

Fig. 4 provides best model posterior distribution of rate coeffi-
cients for each transition between character states, together with
their means, standard deviations, and the proportion of time each
rate was assigned to a zero (Z) value. The transition rate coeffi-
cients obtained from the Bayesian approach reflects state recon-
struction obtained with both ML and Bayesian RJ MC approaches.
Posterior distributions of rate coefficients were assigned to two
distinct classes of rates. (1) Rates almost never assigned to zero,
and (2) rates assigned to zero more than 20% of chain iteration
time. All transitions but one (see below) were associated to rate
coefficients with positive values during most of the chain iteration
time (rate class no. 1). Only the transition qab (representing
switches from absence to presence of ESD) presented zero values
more than 20% of the chain iteration time (rate class no. 2).

Table 2
Model testing (Equal Rate – ER, vs. Asymmetrical Rate Model – ARD) for ancestral state reconstruction under the ML approach by means of Likelihood Ratio Test (LRT).

Trait States Models LRT

Equal Rates (ER) Asymmetrical Rates (ARD)

ESD Abscence (0) Prescence (1) �33.42951 �31.61023 3.63856
Protandry Protandrous (0) Not protandrous (1) �41.57455 �30.68626 21.77658

Table 3
Model testing (Equal Rate – M0 vs. all rates free – M1 and q02, q20, q10 = 0 � M2) for
ancestral state reconstruction under the Bayesian approach by means of Bayes Factor
(BF) test. Model chosen for ASR is highlighted in boldface.

Model Harmonic mean BF

M0: Equal transition rates �42.0350 –
M1: All rates free (no restriction) �80.8788 �77.688
M2: q02, q20, q10 = 0 �39.8809 4.308

Fig. 3. Maximum Likelihood optimizations under an Asymmetrical Rate Model (ARD) of the sexual systems of (A) environmental sex determination (ESD) and (B) protandry
of Catasetinae on a BEAST maximum credibility clade phylogeny (ages not shown). Posterior probabilities of each state occurrence obtained from Bayesian reconstructions are
shown at key node at the phylogeny (labelled with letters, see Table 4 for detailed values). The LCA of Catasetinae is indicated with a black star.
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4. Discussion

Previous phylogenetic studies of Catasetinae (Batista et al.,
2014; Chase and Pippen, 1990; Pérez-Escobar et al., 2015;
Pridgeon and Chase, 1998; Romero, 1990; Stern and Judd, 2001;
Whitten et al., 2014) have included a few species of the established

generic lineages only, and the resulting trees have been thus not
representatively sampled. Our analysis of a larger sampling of
species, including all established generic lineages of Catasetinae,
confirms their monophyly and also receives strong statistical
support for almost all their internal relationships. Therefore, it
provides a robust phylogenetic framework for the rigorous study

Table 4
Reconstruction of trait evolution (Pr = protandry, ESD = environmental sex determination), on selected nodes of the Catasetinae phylogeny using a RJ-MCMC approach. Standard
deviations of posterior probabilities are also provided.

Node P(Pr = 0) SD P(Pr = 1) SD P(Pr = 2) SD P(ESD = 0) SD P(ESD = 1) SD

MRCA 1 0 0 0 0 0 0.6500 0.3700 0.353 0.374
A 1 0 0 0 0 0 0.9900 0.0010 0 0.002
B 1 0 0 0 0 0 0.9100 0.0850 0.087 0.085
C 1 0 0 0 0 0 0.8349 0.1250 0.165 0.125
D 1 0 0 0 0 0 0.9372 0.0720 0.063 0.072
E 0.0020 0.0036 0.8344 0.1534 0.1637 0.1534 0.9511 0.0530 0.049 0.053
F 0.0001 0.0003 0.1479 0.1366 0.8521 0.1367 0.0156 0.0310 0.984 0.031
G 0.0031 0.0051 0.5589 0.1090 0.4380 0.1093 0.4187 0.2400 0.581 0.249
H 0.0005 0.0010 0.9228 0.1139 0.0767 0.1138 0.9858 0.0210 0.014 0.021
I 0.0001 0.0004 0.1966 0.1445 0.8033 0.1447 0.0241 0.0410 0.976 0.042
J 0.0002 0.0004 0.8622 0.1655 0.1377 0.1655 0.7590 0.4100 0.241 0.413
K 0.00002 0.0001 0.5522 0.2867 0.4477 0.2867 0.5035 0.3800 0.497 0.382
L 0.0015 0.0023 0.5797 0.1240 0.4188 0.1241 0.4140 0.2400 0.586 0.246
M 0.0023 0.0042 0.6281 0.1517 0.3696 0.1524 0.5610 0.3200 0.439 0.321
N 0.0020 0.0039 0.6034 0.1491 0.3947 0.1498 0.5321 0.3000 0.468 0.308
O 1 0 0 0 0 0 0.7940 0.1400 0.206 0.141

Fig. 4. Posterior distribution of rate coefficients and their respective mean and standard deviation obtained from 30,000 observations sampled from 50 million iterations of a
RJ MC and their corresponding flow chart indicating the most likely evolutionary scenario of protandry and ESD in the Catasetinae. Thick arrows correspond to transition rates
whose posterior probability were seldom or never assigned to zero (rate class no. 1). The ancestral character state of the LCA of Catasetinae is shown in bold, as inferred from
ML and Bayesian approaches.
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of sexual system evolution and other traits of interest (such as pol-
lination syndromes) in this lineage.

Few studies have addressed the evolution of mating systems in
orchids (e.g., Pleurothallidinae: Borba et al., 2011), and they have
drawn conclusions based solely on extensive observations without
test using a well resolved phylogenetic tree as basic tool. For core
Catasetinae (as circumscribed in the Introduction), either protan-
dry or unisexuality (i.e., ESD) has been considered the apomorphy
and thus the ancestral state for the LCA’s descendants (Romero,
1990). Our ASRs favour the assumption, in which core Catasetinae
initially have bisexual, protandrous flowers (i.e., without ESD). Pro-
tandry has evolved independently several times, also in Orchi-
daceae across only distantly related lineages (e.g., Catasetinae
and Stanhopeinae, Cranichidinae, Goodyerinae, Manniellinae and
Spiranthinae, Neottieae and Satyriinae: Ackerman, 1977; Darwin,
1877; Jersáková and Johnson, 2007; Singer and Sazima, 2001;
Salazar et al., 2002; Singer and Koehler, 2003). However, we
demonstrate that protandry has a single origin during the early
evolutionary history of Catasetinae, with several subsequent losses
in descendant lineages.

Environmental sex determination is an exceedingly rare trait
among Orchidaceae, which has exclusively developed in some of
the core Catasetinae and specifically in Catasetum, Cycnoches and
some species of Mormodes. It is thus a striking result of our study
to show three independent origins of ESD within core Catasetinae,
always evolved from a protandrous ancestor. In other plant
lineages with this character (e.g., Acer, Aceraceae; Elaeis Jacq.,
Arecaceae; Gurania (Schltdl.) Cogn. and Psiguria Neck. Ex Arn.,
Cucurbitaceae: Renner et al., 2007), ESD has a single origin only
and is thus homologous. Moreover, gain of ESD is linked to loss
of protandry in core Catasetinae, and this is also supported for all
key nodes of our trees with confidence under all ASR approaches
executed. Thus, prior gain of protandry is the necessary prerequi-
site for gain of ESD.

Detailed studies in several plant lineages (e.g., Fuchsia L., Hebe
Comm. ex Juss.: Atsatt and Rundel, 1982; Delph, 1990) have shown
that labile sexual expression is involved in transitions to and out of
dioecy (Delph andWolf, 2004). Although plants of core Catasetinae
exhibiting ESD are not fully dioecious (mixed inflorescences with
staminate and pistillate flowers are produced at least occasionally;
Fig. 1A and B), there is a strongly biased production of inflores-
cences bearing solely unisexual flowers in natural populations
(e.g., Romero and Nelson, 1986; O.A. Pérez-Escobar, pers. obs.).
Therefore, it appears that ESD might be indeed an intermediary
stated between the evolution of monoecy and dioecy, as stated
by Delph and Wolf (2004).

The transition rate coefficients provide a likely evolutionary
scenario for sexual systems such as protandry and ESD in Cataseti-
nae (Fig. 4). Transition rates leading from the state of bisexual,
non-protandrous flowers to bisexual, protandrous flowers (q01), is
in line with ASR of core Catasetinae’s LCA inferred under alterna-
tive approaches. Additionally, it supports the single gain of protan-
dry in the LCA of core Catasetinae (node N in Fig. 3) because
transition rate of reversions back to non-protandrous, bisexual
flowers (q10) is 0 (the model of choice does not allow such rever-
sals). Alternate models, in which this transition is allowed, are
less-fitted as inferred with BF (see Table 3 for model comparisons).
This is also reflected in our ASRs, since the lineages presenting
protandrous, bisexual flowers (i.e., Clowesia, Dressleria and some
species of Mormodes) have retained this condition and therefore,
no reversals to bisexual, non-protandrous flowers are observed at
descendant nodes. Transitions leading to unisexual flowers (q12)
with ESD (qab) also reflect the multiple gains of unisexuality and
ESD recovered in other reconstruction approaches (e.g., nodes
F and I), indicating that this sexual systemmight be in fact a homo-
plasious character.

Putative transitions towards secondary loss of ESD (qba) and
reversals towards bisexual, protandrous flowers (q21) may also be
a result of phylogenetic uncertainty that has been taken into
account when inferring this trait using a set of trees under a
Bayesian approach (see Section 2). Interestingly, gains of ESD
(qab) may have occurred slower (transition assigned to rate class
no. 2) than losses of this trait (qba), supporting the assumption that
complex traits are indeed more easily lost than gained (Pagel,
2006; Barret, 2013). Additionally, the repetitive gains and reversals
of ESD and unisexuality might also indicate that presence of such
traits apparently does not represent an evolutionary advantage
for these lineages.

In conclusion, evolution of sexual systems implies that non-
protandrous, bisexual flowers without ESD are the ancestral char-
acter state in Catasetinae (as it probably can be stated generally for
angiosperms). Protandry has been gained once by the LCA of core
Catasetinae and subsequently lost three times independently,
always coupled with gains of ESD. In addition, ESD is a homopla-
sious character, whereas protandry is an apparently inherited, con-
served trait (as observed in Catasetum, Cycnoches andMormodes for
ESD and the core Catasetinae for protandry). The multiple inferred
origins of ESD is contrastingly different from other angiosperms,
for which trait homology has been shown (Renner et al., 2007).
Bertin and Newman (1993) suggested that protandry is a ‘‘phyloge-
netic relic” (conserved character) in lineages, where other spe-
cialised systems favouring outcrossing have evolved. As inferred
from our ASRs, protandry is the prerequisite (a state retained by
Clowesia, Dressleria and some species of Mormodes) for unisexual
flowers with ESD. Finally, to determine whether ESD and protandry
are truly correlated sexual systems, research must clarify the
underlying genetic mechanisms controlling both systems and their
corresponding driving evolutionary forces.
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Abstract: 25 

Aim: The Andean uplift is one of the major orographic events in the New World, 26 

responsible for the diversification of numerous Neotropical plant lineages. Despite its 27 

importance for historical biogeography, the specific role in geological times as a dispersal 28 

barrier between South and Central American lowland lineages is still poorly understood. 29 

The rare swan orchids (Cycnoches, Catasetinae) comprise ca. 34 epiphytic species 30 

distributed in altitudes below 800 m in lowland and pre-montane forests of Central and 31 

South America. Here we study the biogeographical history of the swan orchids to better 32 

understand the impact of the Andean uplift on the diversification of Neotropical lowland 33 

centred lineages. 34 

Location: northern South America and Central America. 35 

Methods: Three nuclear loci and two chloroplast DNA regions were sequenced for 23 36 

species representing the currently known distribution of Cycnoches. Nine outgroup taxa 37 

distributed in different tropical regions were also included in our sampling to ensure 38 

unbiased ancestral area inference. Absolute ages were inferred under strict and relaxed 39 

molecular clock models, and ancestral areas were estimated under several models in a 40 

Maximum Likelihood framework. 41 

Results: The last common ancestor of Cycnoches may have lived in the Amazonian region 42 

ca. 6 mya and dispersed towards the Choco region and Central America in multiple 43 

migration events. Stochastic mapping revealed that speciation despite sympatric occurrence 44 

played an important role on shaping the current range distribution of Cycnoches species.  45 



Main conclusions: The Amazonian lowland is an important area of origin for epiphytes 46 

such as Cycnoches. Multiple migrations from the Amazonian region to Central America 47 

(and later also back) have occurred well after major mountain building periods. The Andes 48 

thus do not appear as an effective barrier for lineages such as orchids having a great 49 

potential for dispersal dynamics because of the very light, anemochorous seeds.  50 

 51 

Key words: ancestral area, Cycnoches, model testing, molecular clock, orchids, 52 

anemochory 53 

 54 

  55 



Introduction 56 

Neotropical landscapes have ever drawn the attention of ecologists, botanists and 57 

more recently molecular biologists (e.g., Humboldt, 1820; Darwin, 1846; Antonelli et al., 58 

2010; Batalha-Filho et al., 2014) because of the rich biodiversity and their remarkable 59 

levels of endemism (Jaramillo et al., 2006; Antonelli & Sanmartín, 2011). The combination 60 

of molecular phylogenies with evidence from distribution and the fossil record has 61 

enlightened different biotic and abiotic factors responsible for diversification in the 62 

Neotropics (Antonelli et al., 2009; Hoorn et al., 2010; Bacon et al., 2015). However, 63 

biogeographical studies applying such approaches are available for few Neotropical plant 64 

clades only (e.g. Antonelli et al., 2009, 2010; Luebert et al., 2011; Chacón et al., 2012; 65 

Bacon et al., 2013). They have demonstrated the importance of geological processes such 66 

as Andean mountain uplift and establishment of the Isthmus of Panama for the evolution of 67 

Neotropical plants. 68 

One of the most relevant abiotic processes in the diverse geological history of the 69 

Americas is the rise of the Andes (Luebert et al., 2011). Andean mountain building was 70 

driven by plate tectonic re-adjustments that started during the Paleogene and continued 71 

until the Pliocene (Hoorn et al., 2010). Fossil record (e.g., palynological data: Jaramillo et 72 

al., 2006) and geological data (e.g., isotope measurements: Ghosh et al., 2006; sediment 73 

loads, apatite fission-track data: Hoorn et al., 2010) indicate that the Andean uplift was a 74 

partially constant process alternating with discrete periods of intensified mountain building. 75 

Newly formed mountain ranges may had an enormous impact on the adjacent 76 

Amazonas landscape and the inhabiting organisms by transformation of its drainage 77 

systems (Hoorn et al., 1995), but also in local weather by forming the only barrier to 78 

atmospheric circulation in the region (Gregory-Wodzicki, 2000). More importantly, 79 



Andean uplift has provided a great variety of new, partly very fine-scaled habitats 80 

(Vuilleumier, 1971) as well as physical-ecological barriers in greater dimensions. The 81 

efficiency of the Northern Andes as migration barrier has been also shown for Central 82 

American woody species of Sapranthus Seem. and Tridimeris Baill. (Annonaceae), which 83 

are animal dispersed (Janzen & Martin, 1982) and confined to the Colombian Pacific coast 84 

(Pirie et al., 2006). 85 

Some studies provide solid evidence for the important role of Andean uplift in 86 

diversification of several geophyte highland plant groups (e.g., Lupinus L.: Hughes & 87 

Eastwood, 2006; Bartsia L.: Uribe-Convers & Tank, 2015), but the impact of such 88 

orographic processes for the lowland flora is still poorly understood (Antonelli et al., 2009). 89 

Nevertheless, few available studies for lowland geophyte plant clades have shown that the 90 

Andean uplift indeed has acted as a physical barrier. In Rubiaceae, for instance, the LCA of 91 

the sister clades Cinchoneae and Isertieae is inferred to have had a lowland distribution ~42 92 

mya. Diversification of Isertieae may have taken place in Amazonian lowland forests 93 

during Middle to Late Miocene, while the LCA of Cinchoneae is considered to have 94 

diversified in higher altitudes in Northern and Central Andes (Antonelli et al., 2009). The 95 

diversification of these lineages remarkably coincides with mountain building periods of 96 

the Eastern Cordillera in Northern Andes (Hoorn et al., 1995).  97 

The question remains whether Andean uplift has indeed been an abiotic barrier to 98 

migrate for epiphytic lineages such as lowland orchids and bromeliads. Epiphytic diversity 99 

is dramatically greater in the Neotropics than in any other tropical region of the world 100 

(Kreft et al., 2004), being as twice as high than, for instance, in Australasia (Gentry & 101 

Dodson, 1987). Several traits shared by Neotropical epiphytic taxa, related all with their 102 

reproductive biology, might explain such overwhelming difference in diversity. One of the 103 



most prominent shared traits are the lightness and very small size of the propagules (e.g., 104 

bromeliads, ferns, orchids, Utricularia L.) occasionally with highly elaborated epidermis 105 

(Gentry & Dodson, 1987). The capability of dust-like seeds for anemochory may indicate 106 

their potential for longer distance dispersals compared to other plant clades with propagules 107 

rather locally dispersed by animals (e.g., Araceae: Nauheimer et al., 2012). Nonetheless, 108 

whether lowland epiphyte lineages have been able to disperse across large distance and 109 

cross geographic barriers such the Andes is largely unknown, last but not least because of a 110 

general lack of representatively sampled phylogenies available for such clades. 111 

Several anemochorous plant lineages (e.g., Begonia L., bromeliads) span across the 112 

Neotropical region, many of which are restricted to lowland elevations. One such example 113 

is the orchid tribe Cymbidieae comprising ca 3900 species that are distributed mostly in the 114 

Neotropics (but with few representatives in the Old World Tropics: Pridgeon et al., 2009). 115 

Among the Neotropical taxa of Cymbidieae is the swan orchid Cycnoches Lindl., and the 116 

members are known for the striking sexual dimorphism (Fig. 1 A-C; Pérez-Escobar et al., 117 

in press). Molecular phylogenetic and morphological studies conducted to date confirm the 118 

inclusion of Cycnoches in Catasetinae (Chase & Pippen, 1990; Romero, 1990; Stern & 119 

Judd, 2001), as sister group of Mormodes Lindl. (Batista et al., 2014; Whitten et al., 2014; 120 

Pérez-Escobar et al., in press.). 121 

Cycnoches encompasses 34 species (Carr, 2012) that are distributed from Southern 122 

Mexico to Central Brazil and Bolivia. They commonly inhabit tropical wet forests and 123 

lowlands, ranging from 0 to 800 m., although sporadically, herbarium records push the 124 

altitudinal range limit to 1200 m. Unlike all other Orchidaceae, flowers of Cycnoches and 125 

other members of the Catasetinae such as Mormodes and Catasetum Rich ex Kunth are 126 

sexually dimorphic, and a single plant is able to exhibit functional staminate or pistillate 127 



flowers (Fig 1 D-G) (Gerlach, 2007). Cycnoches can be further distinguished from other 128 

Catasetinae by having an elongate column in functionally staminate flowers (Gerlach & 129 

Pérez-Escobar, 2014) (Fig. 1D).  130 

Swan orchids have attracted the attention of several prominent botanists including 131 

Charles Darwin (1877), but doubts still surround their taxonomy. Previous phylogenetic 132 

studies have included no more than three species of Cycnoches (Chase & Pippen, 1990; 133 

Romero, 1990; Pridgeon & Chase, 1998; Batista et al., 2014; Whitten et al., 2014) and 134 

hence, the internal phylogenetic relationships are elusive to present. An evidence of the 135 

intricate taxonomy of the lineage is the existence of species complexes including extremely 136 

variable morphological species that are often difficult to determine. One such example is 137 

the Cycnoches egertonianum species complex (Romero and Gerlach, in press) that 138 

encompasses ten entities distributed from southern Mexico to Southern Panama and 139 

Colombia (Fig. 3; see Gerlach and Pérez, 2014 for a detailed description on the species 140 

complex). Anyhow, the lack of a solid, internal phylogeny of Cycnoches has precluded 141 

researchers to address specific questions concerning the role of Andean uplift in the 142 

biogeographic history of this lineage. 143 

In this study, we use three nuclear and two chloroplast loci from 24 of 34 known 144 

species to infer internal phylogenetic relationships of Cycnoches. Based on a solid 145 

phylogenetic framework, we use Ancestral Area Estimation (AAE) analysis to test whether 146 

Andean uplift has influenced clade diversification within Cycnoches, as observed in other 147 

plant lineages such as Rubiaceae (Antonelli et al., 2009) and Annonaceae (Pirie et al., 148 

2006). By determining the putative area and geological time of origin, we aim to provide an 149 

evolutionary scenario for Cycnoches with the potential to explain diversification also in 150 

other plants group with diverse epiphytic growth forms. 151 



Material and methods 152 

 153 
Taxon sampling, DNA sequencing and phylogenetic analysis 154 

Table S1 of Appendix S1 provides species names, geographic origins, voucher specimens 155 

and GenBank accession numbers of sequences included in phylogenetic analyses. Genomic 156 

DNA was extracted from herbarium and fresh leaf material with the NucleoSpin® plant kit 157 

(Macherey-Nagel; Düren, Germany), following the manufacturer’s protocol. We amplified 158 

and sequenced nuclear (consistently referred as ‘n’ henceforth) ribosomal external and 159 

internal transcribed spacers (ETS and ITS, respectively), a fragment of the ‘n’ gene Xdh, a 160 

~1500 bp fragment of the chloroplast (henceforth referred as ‘cp’) gene ycf1, as well as the 161 

‘cp’ trnS–trnG intergenic spacer. Amplification settings and sequencing primers used for 162 

ITS, ETS, Xdh, trnS–trnG and ycf1 are specified in Tab. S2 of Appendix S1. Amplified 163 

PCR products were purified with the ExoSap clean-up kit (Fermentas; St. Leon-Rot, 164 

Germany), and sequencing reactions were run on an ABI 3130 capillary sequencer (Thermo 165 

Fisher Scientific; Waltham USA) following the manufacturer’s instructions. Sequence 166 

editing was carried out using Geneious software v. 7.1.7 (Biomatters Corporation; 167 

Auckland, New Zealand).  168 

Loci were aligned separately using MAFFT version 7.1 (Katoh & Standley, 2013). 169 

For ‘n’ ribosomal RNA loci and ‘cp’ trnS–trnG spacer, secondary structure of molecules 170 

were taken into account (i.e., the --qINSi option). Congruence between ‘n’ and ‘cp’ data 171 

sets was assessed following Pérez-Escobar et al. (2015), using PACo application (Balbuena 172 

et al., 2013). The procedure is now available as a pipeline (http://www.uv.es/cophylpaco/) 173 

and was also employed to identify outlier Operational Terminal Units (OTUs) from the ‘cp’ 174 

data set that were found to be conflicting with the ‘n’ data set (potential outliers detected by 175 



PACo are shown in Fig. S1 in Appendix S1). After removing outliers, matrices of each 176 

locus were re-aligned and concatenated.  177 

Phylogenetic analyses of separate and concatenated loci were carried out under 178 

Maximum Likelihood (ML) and Bayesian criteria using the GTR+ substitution model 179 

(with four categories). For this purposes, software programs RAxML-HPC version 8.2.4 180 

(Stamatakis, 2014) and MrBayes version 3.2.2 (Ronquist et al., 2012) were used at the 181 

CIPRES Science Gateway computing facility (Miller et al., 2010). Bayesian inferences 182 

were carried out with two independent runs of four Markov chain Monte Carlo (MCMC) 183 

analyses with 20 million generation each, sampled every 1000th generation and using 184 

default prior settings. Statistical support values (BPP: Bayesian posterior probabilities, 185 

LBS: ML bootstrap support) were drawn on the best scoring ML tree. 186 

Molecular clock dating 187 

Divergence time estimates were conducted using BEAST v. 2.1.3 (Drummond & 188 

Bouckaert, 2014) at the CIPRES Science Gateway computing facility and a concatenated 189 

‘n’-‘cp’ subset of the data obtained after PACo analysis (see above). Strict and uncorrelated 190 

lognormal molecular clock models, both with pure birth speciation models as recommended 191 

for species level sampling (Bouckaert et al., 2014), were compared to explore clock-192 

likeness of the data. For calibrating the relaxed clock model, there are fossils available 193 

unambiguously to be placed for Orchidaceae (Ramírez et al., 2007), but these are assigned 194 

to lineages very distantly related to Cycnoches (i.e., Dendrobium Sw., Earina Lindl., both 195 

Vandeae). Secondary calibrations are therefore best applied as normally distributed priors 196 

(Bouckaert et al., 2014), for which we used 20 and 27.1 (±4 and ±6 standard deviation) 197 

mya. Such values corresponded to the crown group of Catasetinae and to the root of our 198 



trees (LCA of Eulophiinae + Catasetinae), respectively, as obtained from fossil-calibrated 199 

Orchidaceae chronogram of Chomicki et al. (2014). For strict molecular clock calibration, 200 

we placed only a single constraint at the tree root (27.1 mya ±6 standard deviation). For 201 

each clock model, we ran two MCMC analysis with 20 million generations each, sampled 202 

every 1000th generation. Parameter convergence was confirmed using TRACER (available 203 

from http://beast.bio.ed.ac.uk/Tracer).  204 

Ancestral Area Estimation 205 

 Species ranges were coded from the literature (Carr, 2006; Romero, 2009) and from 206 

herbarium specimens (AMES, COL, F, M, MO, SEL, US). Distribution data was also 207 

obtained from own field observations. Distribution maps of the orchids under investigation 208 

(Fig. S2 of Appendix S1) as well as distributions observed in other plant lineages (e.g., 209 

Rubiaceae: Antonelli et al., 2009) allowed for distinction of three main distribution areas: 210 

1) Central America (comprising southern Mexico through Panama); 2) Amazonia, 211 

including pre-montane forests (encompassing lowlands and montane forest below 1200 m 212 

in Colombia, Ecuador, Peru, Brazil, Venezuela, Guyana, Suriname and French Guiana: 213 

Antonelli et al., 2009). 3) Chocó (comprising lowlands below 500 m of the western Andes 214 

in Colombia and Ecuador).; 4) Africa (distribution range of Eulophia petersii (Rchb.f.) 215 

Rchb.f., outgroup taxon chosen for rooting purposes). A map with coded distribution areas 216 

is provided in Fig. 3 (inset), and all species under investigation were assigned to one of 217 

those regions. 218 

 For AAE in Cycnoches, we used the package BioGeoBEARS (Biogeography with 219 

Bayesian and Likelihood Evolutionary Analysis in R script: Matzke, 2014) as implemented 220 

in the free software R (R Development Core Team, 2014). Unlike previously provided 221 



applications such as LAGRANGE: Ronquist, 1997; Ree & Smith, 2008), BioGeoBEARS 222 

evaluates altogether several processes that were taken into account to explain today’s 223 

observed distributions (i.e., range expansions, local extinctions, founder-event speciation, 224 

vicariance, and speciation despite sympatry) in a joint statistical framework. It is therefore 225 

capable of model testing and hence determines which process fits best the geographical and 226 

phylogenetic data for any particular clade (Matzke, 2013). In order to test whether the 227 

Andes was an effective isolative barrier in Cycnoches, no dispersals constrains were 228 

defined for AAE approaches. In addition, the maximum number of estimated areas at nodes 229 

were set to two, following the maximum number of areas occupied by extant species coded 230 

in our phylogeny. In order to estimate the mean number of migrations, dispersals, local 231 

extinctions and speciation events despite sympatry from our phylogeny, we used 232 

Biogeographical Stochastic Mapping (BSM) (Matzke, 2014) under the best fitting model, 233 

as likewise implemented in the package BioGeoBEARS.   234 

 235 

  236 



Results 237 

Phylogeny of Cycnoches 238 

In this study, 80 sequences were newly generated (Appendix S6). Our phylogeny 239 

comprised 22 out of 34 described species. Tab. S3 of Appendix S1 provides detailed 240 

alignment descriptions. The concatenated ‘n’ alignment was 2395 bp and included 310 241 

parsimony informative sites, while the concatenated ‘cp’ alignment was 2419 bp and 242 

comprised 171 parsimony informative positions. Individual ML and Bayesian analysis of 243 

each partition recovered virtually the same topology (data not shown), and they provided 244 

maximal support for the monophyly of Cycnoches. Nevertheless, independently derived 245 

concatenated ‘n’ and ‘cp’ phylogenies revealed conflicting and highly supported 246 

phylogenetic placements (see below). Fig. S3 of Appendix S1 shows trees individually 247 

derived from concatenated ‘n’ and ‘cp’ datasets together with outlier OTUs retrieved by 248 

PACo method (see materials and methods; Fig. S1). 249 

Figure 2 provides the best scoring ML tree inferred from non-conflicting, 250 

concatenated ‘n’ and ‘cp’ datasets showing the internal phylogenetic relationships of 251 

Cycnoches. Virtually, all backbone nodes of the phylogeny were highly, if not maximally 252 

supported by LBS and BPP values. Cycnoches segregated into three main lineages (clades 253 

A, B and C), each of which included species with similar morphological traits (Fig. 2). All 254 

accessions of Cycnoches haagii Barb.Rodr. (clade A) were sister group of the remaining 255 

species of Cycnoches placed into clades B and C. The Cycnoches egertonianum species 256 

complex (five taxa here sampled: C. amparoanum Schltr., C. egertonianum Bateman, C. 257 

densiflorum Rolfe, C. guttulatum Schltr., C. pachydactylon Schltr., C. rossianum Rolfe) 258 

was recovered as polyphyletic. In contrast, it clustered in two strongly supported lineages 259 

within Clade C (Fig. 2). The first clade comprised C. egertonianum var. egertonianum, C. 260 



egertonianum var. viride Lindl. and C. rossianum occuring in southern Mexico, 261 

southeastern Costa Rica and north eastern Panama. The remaining clade included C. 262 

densiflorum, C. guttulatum and C. pachydactylon, which are distributed from west to south 263 

east of Panama and Northern Colombia. 264 

Molecular clock dating 265 

 Estimations of absolute ages of main divergence events under strict and relaxed 266 

clock models are shown in Table 1. Such estimations slightly differed under these models 267 

and across all tree nodes (dated phylogenies inferred under both clock models are shown in 268 

Figure S4–S5 of Appendix S1). Analysis of the log file produced by dating analysis under 269 

the relaxed clock yielded a coefficient of variation value (CV) of 0.245 (ESS value of 270 

2489). A chronogram showing absolute ages estimated under a relaxed clock is presented in 271 

Figure 3. Cycnoches and Mormodes shared a common ancestor during the middle Miocene 272 

(11 mya). Diversification of Cycnoches took place around 6 mya during the late Miocene. 273 

The split between clades B and C of Cycnoches occurred somewhere during late Pliocene 274 

(3.93 mya). Clades B and C together were estimated to 2.29 and 1.82 mya, respectively. 275 

The split between the two lineages of the Cycnoches egertonianum species complex was 276 

estimated to 1.5 mya (node L, Fig. 3) during the Pleistocene. 277 

Ancestral Area Estimation 278 

 Table 2 provides model test statistics for all models employed in AAE. The best 279 

fitting model for our phylogenetic and geographical data was the Dispersal and Vicariance 280 

model (DIVA), including the founder- event speciation (free parameter j, -32.72 Ln L, Tab. 281 

1) as inferred in BioGeoBEARS. The LCA of Cycnoches originated in Amazonia (Fig. 4, 282 

Node G) and also later, descendant species corresponding to nodes H, I and J, respectively, 283 

may have been migrated towards that region. Several long-distance dispersal events from 284 



Amazonia to Choco and Central America could be stated. For example, two lineages 285 

(namely C. lehmannii Rchb.f., C. barthiorum G.F.Carr & Christenson and C. 286 

herrenhusanum Jenny & G.A.Romero) independently colonised the Choco region, the 287 

former from Amazonas region whereas the two latter taxa likely from Central America 288 

(Fig. 3). Moreover, a nested lineage in clade C (Fig. 3, node L) colonised Central America 289 

and subsequently diversified here (eight species). Nevertheless, the LCA’ ancestral area of 290 

such clade and its corresponding Chocoan based sister clade was ambiguously 291 

reconstructed (Fig. 3), and therefore it is unknown whether colonization occurred from 292 

Amazonas region. Independent colonisation from Amazonia region to Central America was 293 

also observed in two members of clade B, namely C. ventricosum Bateman and C. 294 

warszewiczii Rchb.f..  295 

Count events of BioGeoBEARS parameters estimated by BSM method under the 296 

DIVA and DIVA+J model are presented in Table 3. Under the DIVA+J process, the most 297 

relevant causes for Cycnoches speciation were within region (mean 16.34, y parameter) and 298 

founder-event speciation processes (mean 6.62, j parameter). In contrast, under DIVA 299 

model, dispersal (d parameter), sympatry and vicariance (v parameter) were the most 300 

frequent phenomena (mean 6.74, 16.16 and 6.84, respectively). 301 

 302 

  303 



Discussion 304 

Supported phylogenetic relationships within Cycnoches 305 

Previous phylogenetic studies about Catasetinae have included not more than three 306 

species of Cycnoches (Chase & Pippen, 1990; Romero, 1990; Pridgeon & Chase, 1998; 307 

Batista et al., 2014; Whitten et al., 2014). Our larger, being the most representative 308 

sampling of Cycnoches available at present confirms and strongly supports its monophyly 309 

inferred from both nuclear and chloroplast sequence data sets. Missing taxa in our sampling 310 

belonged mostly to Amazonian species, from which only inaccessible type collections are 311 

known (e.g., C. carrii Christenson, C. jarae Dodson & D.E.Benn.). Morphologically, the 312 

monophyly of Cycnoches is corroborated by the presence of a unique arched, elongated, 313 

slender column in staminate flowers.  314 

Because of the limited taxon sample of previous studies, the internal relationships of 315 

Cycnoches have remained unresolved as well. Our phylogenetic inferences strongly support 316 

its division into three main lineages (Clade A, B and C: Fig. 3). This result conflicts with 317 

Rolfe's (1909) traditional infrageneric classification into sections Cycnoches 318 

(morphological similarity between staminate and pistillate flowers) and Heteranthae (with 319 

dissimilar staminate and pistillate flowers). Rather, analysis of our nuclear data set provides 320 

strong evidence for two independent origins of strong sexual dimorphism in Cycnoches, 321 

firstly within clade B (i.e., LCA of C. cooperi Rolfe and C. pentadactylon Lindl.) and 322 

secondly in clade C (Fig. 2).  323 

Biogeographical history and diversification of Cycnoches 324 

Our study provides a solid phylogenetic framework for divergence time estimation and 325 

ancestral area reconstruction in Cycnoches. The following discussion is focused on ages 326 

obtained under the relaxed clock model (CV value of 0.245, see results) fitting best to our 327 



data as inferred from log file analysis (Drummond and Bouckaert, 2014). Central America 328 

has been considered the most likely region of origin for Cycnoches, followed by accelerated 329 

species diversification particularly in Panama lowland forests (Romero and Gerlach, in 330 

press). However, this scenario is rejected by our AAR, as it supports an Amazonian origin 331 

of Cycnoches. The LCA may have lived in the late Miocene (~6 mya, Fig. 3), well after one 332 

of the most intense Andean mountain building events (ca. 12 mya; Hoorn et al., 2010). 333 

 The Amazonas is inferred the most important source area for Cycnoches, as all 334 

dispersals towards the Choco region and Central America have occurred exclusively from 335 

that region. Such range expansion events have taken place fairly recently, from middle to 336 

late Pleistocene. Additionally, a single, very young (ca. 1 Mya) re-colonisation of C. 337 

densiflorum from Central America to Amazonia is observed in our AAR. Likewise, only a 338 

biotical exchange can be stated between Central America and Choco despite their 339 

adjacency. Nevertheless, it remains unclear whether Cycnoches species from clade B have 340 

radiated from a common ancestor either distributed in the Choco region or Central America 341 

because of statistical uncertainty. 342 

 One of the most striking results of our study is that all migration and re-colonisation 343 

processes imply multiple dispersal events across the Andes. In late Miocene (i.e., the time 344 

when Cycnoches has started to diversify), Colombian and Venezuelan Northern Andes have 345 

already reached elevations up to 3000 m and more (Hoorn et al., 2010). Furthermore, 346 

intense migrations from Amazonia to Central America and back have taken place ~1 mya, 347 

when the Northern Andes already peaked around 4000 m elevations (see mean Northern 348 

Andean elevation in Fig. 3 – inset). Similar biogeographic patterns have been reported for 349 

bromeliads, in which several lineages such as Tillandsioidae and Hechtioideae have 350 

diversified from Guyana Shield and subsequently migrated across the Andes to Central 351 



America around 15 mya (Givnish et al., 2011). Thus, efficiency of the Andes as barrier for 352 

reproductive isolation appears low for epiphyte, wind dispersed plant lineages. 353 

The Cycnoches egertonianum species complex is composed of two clades showing 354 

a clear geographic separation (Fig. 2). Plants of the first clade (i.e., C. amparoanum, C. 355 

egertonianum var. egertonianum, C. egertonianum var. viride and C. rossianum) occur 356 

from southern Mexico, south-eastern Costa Rica and possibly north-eastern Panama, while 357 

those of the other clade (i.e., C. densiflorum, C. guttulatum and C. pachydactylon) are 358 

distributed from western to south-eastern Panama and northern Colombia. Surprisingly, the 359 

split between the two lineages has been dated to the late Pliocene, and their diversification 360 

may coincide with the formation of the Cordillera of Talamanca. The rise of this mountain 361 

range extending from the southern region of El Valle in Costa Rica to western Panama has 362 

taken place likewise during the Pliocene (6 to 3.4 mya) (Boer et al., 1995). Mountain 363 

building time of Cordillera of Talamanca has predated by almost 1.5 mya the 364 

diversification time of Cycnoches’ Central American lineages nested in Clade C (Figure 3). 365 

Therefore, our results suggest that Northern Central American clades might have diverged 366 

from a common ancestor, which successfully crossed that range that reaches from 1800 to 367 

3820 m.  368 

Our biogeographical stochastic mapping reveals that within region speciation is 369 

among one of the most relevant phenomena (mean counts=16.34) identified for 370 

diversification of Cycnoches. The establishment of lineages in subtle but distinct micro-371 

habitats in lowland wet forest has been invoked as one of the drivers of extremely high 372 

epiphyte diversity in the Amazonian region (Gentry & Dodson, 1987), and might have 373 

explanatory power for the high within-region diversity of Cycnoches as well. Niche 374 

accomplishment at particularly fine scale is assumed for epiphytes when they establish 375 



populations in very specific, restricted microhabitats (e.g., understory, canopy, middle-376 

story), which abound in lowland wet forests due to their large spatial heterogeneity (Baker, 377 

1970). This is reflected in very high levels of endemism and abundance of vascular 378 

epiphytic species observed in relatively small lowland Amazonian forests patches. For 379 

example, Kreft et al. (2004) reported 8762 epiphytic individuals assigned to 146 different 380 

species on a 0.1 ha plot located at Tiputini (western Amazonas, Ecuador). Similar scenarios 381 

for within region speciation because of microhabitat specialisation have been also reported 382 

for other epiphytic orchid lineages such as the Neotropical Telipogon Kunth. Here, endemic 383 

species distributed in very small areas (e.g., "Nudo" de Pasto, Colombia, Northern Andes) 384 

compared with the entire geographic range of the lineage, are distributed each in very 385 

specific areas (slopes or valleys) (Gentry & Dodson, 1987).  386 
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Tables 611 

Table 1. Estimated node ages for selected divergence events lineages under a strict and relaxed molecular clock models. Bayesian 612 

posterior probabilities (BPP) for every node are provided. Maximum and minimum intervals correspond to 95% posterior probability 613 

interval values. 614 

 

Strict clock Relaxed clock 

node Age 

Minimum 

interval 

Maximum 

interval BPP Age 

Minimum 

interval 

Maximum 

interval BPP 

Root (A) 31.65 19.28 45.39 1 27.87 15.46 53.77 1 

LRCA Catasetinae (B) 21.76 15.24 28.39 1 21.73 14.79 28 1 

C 17.62 11.9 26.3 1 17.94 11.05 26.09 1 

Catasetum (D) 1.87 0.76 4.27 1 1.87 0.56 6.2 1 

E 14.68 9.73 21.11 1 14.64 8.19 23.43 1 

Mormodes + Cycnoches (F) 12.21 8.28 17.68 1 11.81 6.44 18.98 1 

LRCA Cycnoches (G) 5.95 3.59 9.2 1 6.15 3.18 12.21 1 

LRCA Clade B + C (H) 3.74 2.22 6.14 1 3.93 1.98 7.82 1 

Clade B (I) 1.75 0.89 3.54 1 2.29 0.9 5.56 1 

Clade C (J) 2.17 1.07 3.9 1 1.82 0.8 5.46 1 

Mormodes (K) 5.04 3 8.01 1 5.24 2.34 11.66 1 

 615 

 616 



Table 2. Comparison of different models as implemented in DEC, DIVA and BAYAREALIKE. Akaike Information Criterion (AIC) 617 

results, including model weights and the corresponding ratios are provided.  618 

 619 

  
Parameter estimates Likelihood Ratio Test AIC analysis 

Model Ln L 

Numbe

r d e j 

Alt Ln 

L 

null 

Ln L D 

P-

value 

AIC

1 

AIC

2 

wt

1 wt2 Ratio 

DEC 

-

50.2386 2 

0.023154

4 

0.01480

4 - 
-33.414 

-

50.238

6 

33.6

5 

6.60E

-09 
72.83 104.5 1 

1.30E

-07 
7453181 

DEC+J 

-

33.4145 3 1.00E-12 

1.00E-

12 

0.0763

6 

DIVALIKE 

-

51.0356 2 

0.029868

4 

0.01530

9 - 
-

32.718

0 

-

51.035

6 

36.6

4 

1.40E

-09 
71.44 106.1 1 

3.00E

-08 

3.32E+0

7 

DIVALIKE+J 

-

32.7180 3 1.00E-12 

1.00E-

12 

0.0730

3 

BAYAREALIKE 

-

72.3620 2 0.048978 

0.10558

9 - 
-

34.346

4 

-72.362 
76.0

3 

2.80E

-18 
74.69 148.7 1 

8.40E

-17 

1.19E+1

6 

BAYAREALIKE+J 

-

34.3464 3 1.00E-07 

1.00E-

07 0.0773 

 
  

            d: Dispersal; e: Extinction; j: Founder 

 620 



Table 3. Biogeographical stochastic mapping event counts in 50 iterations. Mean and 621 

standard deviation for every event are provided.  622 

 623 

 

DIVA DIVA+J 

Parameter mean  SD mean  SD 

d (dispersal) 6.74 0.78 0 0 

e (extinction) 0 0 0 0 

a (range switching) 0 0 0 0 

y (sympatry) 16.16 0.91 16.34 0.89 

s (subset sympatry) 0 0 0 0 

v (vicariance) 6.84 0.91 0.04 0.2 

j (founder) 0 0 6.62 0.85 

 624 
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Figures 636 

Figure 1. Main morphological traits of Cycnoches. Habit of C. peruvianum Rolfe (A), C. 637 

rossianum (B) and C. egertonianum (C). Homoblastic pseudobulbs are pointed with an 638 

arrow. Functionally staminate (D) and pistillate (E) flowers of C. ventricosum, a member of 639 

sect. Cycnoches. Functionally staminate (F) and pistillate G) flowers of C. herrenhusanum, 640 

a member of sect. Heteranthae. Note the difference between the elongated column of the 641 

staminate flowers (pointed with an arrow in D and F) and the, short, stout column in the 642 

pistillate flowers (pointed with an arrow in E and G). 643 

Figure 2. Best scoring, ML tree of Cycnoches obtained from non-conflicting concatenated 644 

nuclear ETS, ITS, Xdh and chloroplast trnS-G, ycf1 loci. Node charts indicate Likelihood 645 

Bootstrap Support (LBS > 75), in where fully red diagrams indicate LBS 100. Numbers at 646 

nodes indicate Bayesian Posterior Probability (BPP > .95). Representatives of each clade 647 

are shown in pictures. For clade A, Cycnoches haagii; for clade B, C. chlorochilon 648 

Klotzsch; for clade C, C. herrenhusanum (up), C. peruvianum (middle) and C. guttulatum 649 

(bottom).  650 

Figure 3. Chronogram for Cycnoches obtained under a relaxed clock model, applied to a 651 

non-conflicting, concatenated nuclear (ITS, ETS, Xdh) and chloroplast (trnS-G, ycf1) loci. 652 

Node bars indicate 95% posterior probability intervals. Numbers at nodes indicate Bayesian 653 

Posterior Probability (BPP > .95). Age estimations, including maximum and minimum 654 

intervals for labeled nodes, are provided in Table 1. Calibration points (LCA of Catasetinae 655 

and tree root) is highlighted with a black circle. Time scale is provided in million years 656 

(mya). Node charts correspond to ancestral areas estimated under the dispersal-vicariance 657 

model, including founder event process (J). Blue arrows indicate estimated times of some 658 

major mountain building processes in Northern Andes. Pink and green lines indicate mean 659 



elevations (m) on Colombian and Venezuelan Northern Andes, respectively (adapted from 660 

Hoorn et al 2010). Members of the Cycnoches egertonianum species complex are 661 

highlighted in bold. (Inset) Coded areas used for biogeographic analysis are listed as 662 

follows: Central America (blue); Choco (green); Amazonas (yellow). Political divisions 663 

and elevation data from DIVA-GIS (http://www.diva-gis.org/gdata) 664 
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Additional Supporting Information may be found in the online version of this article: 681 

Appendix S1. Individual nuclear and chloroplast derived phylogenies, results of PACo 682 

analysis, species distribution map, voucher list, primers, alignment characterization and 683 

strict and relaxed molecular clock models derived chronograms. 684 
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Figure S1. Conflicting nuclear – chloroplast associations (i.e. pair of nuclear / chloroplast taxa) obtained by PACo analysis, using 26 

posterior probability trees. Taxa with normalized squared residual values above the cut-off value (red line; see species names highlighted 27 

in red) indicate potential conflicting associations. 28 



Figure S2. Distribution map of Cycnoches based on herbarium and field records. 29 



Figure S3. Phylogenetic relationships of Cycnoches independently derived from nuclear (ITS, ETS, Xdh) and chloroplast loci (trnS-G, 30 

ycf1) datasets. Node charts indicate Likelihood Bootstrap Support (LBS > 75), in where fully red diagrams indicate LBS 100. Numbers 31 

on node indicate Bayesian Posterior Probability (BPP > .95). Clades recovered in the nuclear phylogeny are color coded onto the 32 

chloroplast phylogeny. 33 
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Figure S4. Chronogram for Cycnoches obtained under a strict clock model, applied to a non-conflicting, concatenated nuclear (ITS, 51 

ETS, Xdh) and chloroplast (trnS-G, ycf1) loci. Node bars indicate 95% posterior probability intervals. Age estimations, including 52 

maximum and minimum intervals for labeled nodes, are provided in Table 1. 53 

 54 
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Figure S5. Chronogram for Cycnoches obtained under a relaxed clock model, applied to a non-conflicting, concatenated nuclear (ITS, 56 

ETS, Xdh) and chloroplast (trnS-G, ycf1) loci. Node bars indicate 95% posterior probability intervals. Age estimations, including 57 

maximum and minimum intervals for labeled nodes, are provided in Table 1. 58 

 59 

 60 



Table S1. Species names and voucher information for material used in this study. Taxa sequenced in this study are indicated in bold. 61 

Species Voucher Distribution ITS ETS Xdh TrnS-G ycf1 

Cycnoches amparoanum Schltr. Perez 1413 (M) Costa Rica #GBN #GBN #GBN #GBN #GBN 

Cycnoches aureum Lindl. & Paxton (1) Perez & Gerlach 1473 (M) 
Panama 

#GBN #GBN #GBN #GBN #GBN 

  (2) Perez & Gerlach 1480 (M) #GBN #GBN  -  - #GBN 

Cycnoches barthiorum G.F.Carr & Christenson BGM 12/1476 (M) Colombia #GBN #GBN #GBN #GBN #GBN 

Cycnoches chlorochilon Klotzsch BGM 94/0981 (M) Colombia, Venezuela #GBN #GBN #GBN #GBN #GBN 

Cycnoches cooperi Rolfe Whitten W-3591 (FLAS) Peru #GBN #GBN #GBN #GBN  - 

Cycnoches densiflorum Rolfe (1) BGH Kusibab 5/2004 (M) 
Colombia, Panama 

#GBN #GBN #GBN #GBN #GBN 

  (2) Perez 1486 (M) #GBN #GBN  -  - #GBN 

Cycnoches dianae Rchb. f. (1) BGM 12/0841 (M) 

Panama 

#GBN #GBN  - #GBN #GBN 

  (2) Perez & Gerlach 1468 (M) #GBN #GBN #GBN  - #GBN 

  (3) Perez & Gerlach 1470 (M) #GBN #GBN #GBN  - #GBN 

Cycnoches egertonianum Bateman (1) Whitten 3821 (FLAS) 

S. Mexico to N. 

Costa Rica 

#GBN #GBN  -  - #GBN 

  (2) BGM 12/1471 (M) #GBN #GBN #GBN #GBN  - 

  (3) Franke sn (MEXU) #GBN #GBN #GBN #GBN #GBN 

  (4) BGM 13/2483 (M) #GBN #GBN #GBN #GBN #GBN 

  (5) Perez 1463 (M) #GBN #GBN  -  - #GBN 

Cycnoches guttulatum Schltr. (1) BGM 13/2505 (M)  

Panama 

#GBN #GBN #GBN  -  - 

  (2) BGM 12/2124 (M) #GBN #GBN  -  - #GBN 

  (3) Perez & Gerlach 1476 (M) #GBN #GBN #GBN #GBN #GBN 

Cycnoches haagii Barb. Rodr. (1) BGH Brock 10/72 (M) 
Brazil, Bolivia, Peru, 

Venezuela 

#GBN #GBN #GBN #GBN #GBN 

  (2) BGM 05/1232 (M) #GBN #GBN  -  - #GBN 

  (3) BGM 12/0843 (M) #GBN #GBN #GBN #GBN #GBN 

Cycnoches herrenhusanum Jenny & G.A. 

Romero 
(1) BGH Hubein 1/78 (M) 

Colombia 
#GBN  -  - #GBN #GBN 

(2) BGM 12/0871 (M)  #GBN #GBN #GBN #GBN #GBN 

Cycnoches lehmannii Rchb. f. (1) BGH T1/97 (M) 
Ecuador 

#GBN #GBN #GBN #GBN #GBN 

  
(2) Whitten ABG 1989-342 

(FLAS) 
#GBN #GBN #GBN 

 - #GBN 

Cycnoches loddigesii Lindl. (1) BGH H9/70 (M) French Guiana, 

Suriname, 

Venezuela, Brazil 

#GBN #GBN  - #GBN #GBN 

  
(2) BGM 93/3573 (M) 

#GBN #GBN #GBN 
 - #GBN 



Cycnoches manoelae V.P. Castro & Campacci (1) BGM 12/2255 (M) 
Brazil 

#GBN #GBN #GBN #GBN #GBN 

  (2) Gerlach 05/1231 (FLAS) #GBN #GBN #GBN  - - 

Cycnoches pachydactylon Schltr. (1) Gerlach 00/3415 (FLAS) 

Panama 

#GBN  -  -  -  - 

  (2) Perez & Gerlach 1469 (M) #GBN #GBN #GBN #GBN #GBN 

  (3) Perez & Gerlach 1471 (M) #GBN  -  -  -  - 

Cycnoches pentadactylon Lindl. (1) BGM 13/1195 (M) 
Brazil, Peru 

#GBN #GBN  -  - #GBN 

  (2) H. Hills F1814 (FLAS) #GBN #GBN  -  -  - 

Cycnoches peruvianum Rolfe (1) BGH Kusibab 5/04 (M) 

Ecuador, Peru 

#GBN  - #GBN #GBN #GBN 

  (2) BGM X/1351 (M)  #GBN #GBN #GBN #GBN #GBN 

  (3) Perez 1402 (M) #GBN #GBN #GBN  - #GBN 

Cycnoches quatuorcristis D.E.Benn. Whitten 3834 (FLAS) Peru #GBN #GBN  -  -  - 

Cycnoches rossianum Rolfe (1) Gomez & Perez 1496  (M) S. Mexico to N. 

Costa Rica 

#GBN  -  -  -  - 

  (2) BGM 14/1832 (M) #GBN #GBN #GBN #GBN #GBN 

Cycnoches suarezii Dodson BGM 12/0836 (M) Ecuador #GBN #GBN #GBN #GBN #GBN 

Cycnoches ventricosum Bateman (1) Franke sn (MEXU) S. Mexico to N. 

Nicaragua 

#GBN #GBN  - #GBN #GBN 

  (2) Perez 1401 (M) #GBN #GBN #GBN  - #GBN 

Cycnoches warszewiczii Rchb. f. (1) BGH H1/73 (M) S.Nicaragua to 

Panama 

#GBN #GBN #GBN #GBN #GBN 

  (2) BGH Horich 12/75 (M) #GBN #GBN #GBN #GBN #GBN 

OUTGROUP 

Catasetum collare Cogn. BGM 05/1000 (M) Brazil, Venezuela #GBN #GBN #GBN  - #GBN 

Catasetum juruenense Hoehne BGM 05/1223 (M) Brazil #GBN #GBN #GBN  - #GBN 

Dressleria severiniana H.G.Hills BGM 14/1196 (M) Panama #GBN  - #GBN  - #GBN 

Eulophia petersii (Rchb.f.) Rchb.f. BGM 11/3891 (M) Tropical Africa #GBN  -  - #GBN #GBN 

Galeandra leptoceras Schltr. BGM 12/2403 (M)  Colombia #GBN #GBN #GBN #GBN #GBN 

Mormodes badia Rolfe ex W.Watson BGM 02/2840 (M)  Mexico #GBN #GBN #GBN #GBN #GBN 

Mormodes ephippilabia Fowlie 
BGM 03/0775 (M) 

Honduras, Costa 

Rica 
#GBN #GBN #GBN 

 - #GBN 

Mormodes luxata Lindl. BGM 92/3103 (M) Mexico #GBN #GBN #GBN  - #GBN 

Mormodes punctata Rolfe Perez & Gerlach 1483 (M) Panama #GBN #GBN #GBN #GBN #GBN 

Mormodes tigrina Barb. Rodr. BGM 03/0773 (M)  Brazil #GBN #GBN #GBN #GBN #GBN 

Mormodes tigrina Barb. Rodr. BGM 03/773  Brazil #GBN #GBN #GBN #GBN #GBN 

62 



Table S2. Primer and PCR settings used for amplifying chloroplast and nuclear DNA loci. 63 

Loci Primer Sequence Reference Pre-melt Amplification 
Final 

extension 

Number of 
amplification 

cycles 

ITS 

ITS 4 
TCC-TCC-GCT-TAT-TGA-TAT-
GC 

Baldwin (1992) 

95°C (3 min) 
95°C (30 secs) + 
52°C (1 min) + 
68°C (1 min) 

68°C (10 min) 39 

ITS 5 
GGA-AGT-AAA-AGT-CGT-
AAC-AAG-G 

95°C (3 min) 
95°C (30 secs) + 
52°C (1 min) + 
68°C (1 min) 

68°C (10 min) 39 

ETS 

EST-
Orchid 

CAT-ATG-AGT-TGT-TGC-
GGA-CC (AT)-T 

Monteiro et al. (2010) 95°C (3 min) 
95°C (30 secs) + 
52°C (1 min) + 
68°C (1 min) 

68°C (10 min) 39 

18-IGS 
AGA-CAA-GCA-TAT-GAC-
TAC-TGG-CAG-G 

Balwin and Markos (1998) 95°C (3 min) 
95°C (30 secs) + 
52°C (1 min) + 
68°C (1 min) 

68°C (10 min) 39 

Xdh 

X502F TGT-GAT-GTC-GAT-GTA-TGC 

Górniak et al. (2010) 

95°C (3 min) 
95°C (30 secs) + 
53°C (1 min) + 
68°C (1.5 min) 

68°C (10 min) 39 

X1599R 
G(AT)G-AGA-GAA-A(CT)TG-
GAG-CAA-C 

95°C (3 min) 
95°C (30 secs) + 
53°C (1 min) + 
68°C (1.5 min) 

68°C (10 min) 39 

Ycf1 

3720F 
TAC-GTA-TGT-AAT-GAA-
CGA-ATG-G 

Neubig et al. (2009) 

95°C (3 min) 
95°C (30 secs) + 
54°C (1 min) + 
68°C (1.5 min) 

68°C (10 min) 39 

5500R 
GCT-GTT-ATT-GGC-ATC-
AAA-CCA-ATA-GCG 

95°C (3 min) 
95°C (30 secs) + 
54°C (1 min) + 
68°C (1.5 min) 

68°C (10 min) 39 

trnS-G 

trn-
S(GCU) 

GCC-GCT-TTA-GTC-CAC-TCA-
GC 

Hamilton (1999) 

95°C (3 min) 
95°C (30 secs) + 
51.5°C (1 min) + 
68°C (1.5 min) 

68°C (10 min) 39 

trn-
G(UCC) 

GAA-CGA-ATC-ACA-CTT-
TTA-CCA-C 

95°C (3 min) 
95°C (30 secs) + 
51.5°C (1 min) + 
68°C (1.5 min) 

68°C (10 min) 39 

64 



Table S3. Alignment characterisation. 65 

 66 

 ETS ITS Xdh trnS-G ycf1 

Number of cells 49/56 56/56 39/56 31/56 47/56 

Alignment length (bp) 544 848 1004 792 1642 

Parsimony Informative 
Sites (no/%) 

123/23% 140/16% 49/5% 80/10% 114/7% 

 67 
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Phylogenetic relationships within Catasetinae and Cycnoches 

Internal phylogenetic relationships of Catasetinae were poorly understood 

because of the lack of a comprehensively sampled dataset. Likewise, previous molecular 

phylogenetic studies of Cycnoches included no more than three species in their sampling 

(e.g. Pridgeon & Chase, 1998; Batista et al., 2014; Whitten et al., 2014), thus keeping 

elusive their internal relationships. The molecular phylogeny of Catasetinae (Chapter 5 

and 6) I produced during my research is the first to include representative taxa from all 

accepted eight lineages, sampled from nuclear and chloroplast loci. In addition, the 

molecular phylogeny of Cycnoches stands as the first effort to investigate the internal 

phylogenetic relationships of this lineage and as the most comprehensive phylogeny 

produced to date by including nuclear and chloroplast sequences of 23 of the 34 known 

extant species. Therefore, these studies have significantly contributed to the knowledge 

of the Orchidaceae by enlightening previously obscured phylogenetic relationships and 

providing a solid foundation for further studies about evolution of sexual systems 

(Chapter 6), pollination syndromes and historical biogeography (Chapter 7). 

 In Catasetinae, the inclusion of samples from previously unavailable lineages 

(e.g. Catasetum, Mormodes and Cycnoches), results in a representatively sampled 

phylogeny with maximal statistical support (Bayesian posterior probability and 

Maximum Likelihood bootstrap support) for all generic lineages and provides high 

statistical support for almost all nodes across the phylogeny. I aimed at including as 

many representatives as possible from each generic lineage of Catasetinae, and in the 

particular case of Cycnoches, all extant taxa. To achieve such comprehensive sampling, I 

did intensive field work in many Latin American countries, namely Colombia, Costa 

Rica, Mexico, Nicaragua and Panama, but also gathered material from herbarium 

specimen loans from five major herbaria. Nevertheless, it was a very challenging task to 

get samples from representative species of certain biogeographical regions. This is 

because i) often orchid species have very narrow distribution ranges (Cribb et al., 2003; 

Dodson, 2003); ii), individuals are very scarce due habitat loss and selective extraction 

by orchid smugglers (Neng, 2010) and iii) orchid material is scarce in herbarium 

collections as well for the reasons before mentioned. Moreover, once the samples were 

obtained, I encountered collection permit and export documentation issues to legally 

access and use the material for research purposes. For this reason, I could not rely on 

material obtained in Colombia and Nicaragua to increase my sampling. These conditions 
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have hindered primary research on several Latin American countries for many years 

already, and have been often encountered by many researchers working with Neotropical 

biodiversity, especially with endangered flora and fauna (Mulliken, 2009). 

 

The utility of co-phylogenetic tools in the quantification of phylogenetic 

incongruence and their potential biological causes in Catasetinae 

Incongruent phylogenetic relationships between nuclear and organelle DNA 

sequences are commonly found across several angiosperm lineages (Rieseberg et al., 

1990; Fehrer et al., 2007, 2009; Salichos et al., 2014). More importantly, they often 

represent a huge challenge for researchers because they “undermine” reconstruction of 

evolutionary relationships (Rokas et al., 2003).  In my research, the Catasetinae 

phylogeny derived from nuclear ETS, ITS, and Xdh DNA sequences reveals several 

highly supported conflicting phylogenetic positions when compared with the 

corresponding chloroplast trnL-F and ycf1 tree (Fig. 3 of Chapter 5). Several features of 

Catasetinae orchids such as reported natural hybrids (i.e. potential for hybridization: 

Romero-González & Carnevali, 1990, 1991, 1992; Romero & Jenny, 2009) and the 

occurrence of phylogenetic conflicts provide a unique opportunity to study in detail the 

utility of alternative approaches to address the discordance and detect putative 

conflicting associations between phylogenies. In addition, it offers a suitable opportunity 

to address a largely overlooked aspect of comparative phylogenetic methods (e.g. PACo 

and ParaFit), namely the efficiency of these approaches under different input data 

settings (i.e. phylograms and cladograms) (de Vienne et al., 2011; Cusimano & Renner, 

2014). 

The output of extensive simulation approaches and analysis of Catasetinae 

nuclear and chloroplast datasets illustrates the higher reliability of PACo compared with 

ParaFit in retrieving potential outlier associations (Fig. 4 of Chapter 5). It reveals that 

the performance of this approach is inversely proportional to the proportion of 

conflicting terminals included in the analysed datasets. ParaFit in contrast, do not 

successfully retrieves potential outliers, either with small or large proportion of 

conflicting OUTs included in the phylogenies (Supplementary Fig. S7 of Chapter 5), a 

result that was recovered by Balbuena et al., (2013) as well. Therefore, the number of 

correctly retrieved potential outlier decreases in PACo when the number of conflicting 
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OTUs is high in relation to the total number of OTUs included in the datasets. More 

importantly, the in-silico simulations indicate an underestimation of the number of 

potential conflicting outliers retrieved by PACo and ParaFit when cladograms are used 

over phylograms as input data. This is of particular importance because such tools and 

other distance-based comparative phylogenetic methods are often used, generally 

without indicating the kind of input data employed (de Vienne et al., 2011). 

Nevertheless, the branch length impact of input trees on the performance of these tools 

has been elusive. Even though the efficiency of PACo and Parafit is overall poor with 

cladograms, the use of phylograms or cladograms as input represents for the end-user a 

trade-off between accounting for evolutionary distances from the taxa analysed or for the 

pure topology only. By employing phylograms as input data, relative rates of evolution 

are considered at the cost of producing artefacts by the attraction in the distance matrix 

of unrelated taxa with short branches and departure of those with longer branches (de 

Vienne et al., 2012). This problem however might be tackled by including in the analysis 

comparisons with cladograms, which will consider only consensus topologies but not 

evolutionary rates. Hence, for a more sensitive analysis, the results of my study 

encourage the use of both phylograms and cladograms. 

Several biological phenomena (e.g. ILS, HGT) are responsible for discordances 

between phylogenies, but all of them are very hard to identify in phylogenies when a few 

set of gene trees are available only (van der Niet & Linder, 2008). Phylogenetic 

incongruence in Catasetinae might be derived from chloroplast capture via past 

hybridization events. Chloroplast capture, the result of the introgression of a chloroplast 

genome from a foreign plant species into another, has been invoked as an explanation for 

topological incongruence between nuclear and chloroplast phylogenies (Tsitrone et al., 

2003; Okuyama et al., 2005; Renoult et al., 2009; Nauheimer et al., 2012; Stegemann et 

al., 2012). Tsitrone et al (2003) provides a theoretical model to demonstrate that 

conditions (in lineages with chloroplast maternal inheritance) such as partial or complete 

cytoplasmic male sterility, increase of female fitness and partial selfing promote 

chloroplast capture. According to this model, chloroplast capture might have explanatory 

power for the phylogenetic incongruences observed in Catasetum, Cycnoches and 

Mormodes. Even though chloroplast pattern heritability in the Catasetinae is unknown, 

there is reliable evidence of its maternal inheritance in few orchid lineages such as 

Anacamptis Rich., Doritis Lindl., and Phalaenopsis Blume (Chang et al., 2000; Cafasso 
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et al., 2005). Moreover, all species of Catasetum, Cycnoches, and some of Mormodes are 

able to produce (though rare) intermixed inflorescences with pistillate and staminate 

flowers on the same individual (Gerlach, 2007; Gerlach & Pérez-Escobar, 2014). 

Therefore, they are facultative geitonogamous, as bees visiting male flowers might 

subsequently pollinate female flowers produced in the same inflorescence. 

Field observations on pollination and floral fragrance profile studies indicate that 

hybridization is plausible in Euglossine bee pollinated orchid lineages such as 

Catasetum, Cycnoches and Mormodes (e.g., Gongora Ruiz & Pav., Stanhopea J.Frost ex 

Hook.: Williams & Whitten, 1983; Ramirez et al., 2011). These orchids produce a blend 

of volatile compounds, which attract male Euglossine bees. Pollination occurs while bees 

collect chemical compounds produced by specialised flower tissues (Gerlach & Schill, 

1991). Species-specific production of floral blends and therefore attraction of a unique 

set of pollinator(s) has been accounted as an isolative reproductive barrier (Dressler, 

1968; Ramirez et al., 2011) in Euglossine bee pollinated orchids. Nevertheless, 

sporadically intra-specific variation of the floral compound blend in several orchids such 

as Stanhopea (Williams & Whitten, 1983) and even in Cycnoches (Gregg, 1983) has 

been reported. Floral blend variation may result in the attraction of a set of pollinators 

that are shared by sympatrically occurring species with similar composition of the blend 

profile, hence favouring hybridisation to take place (Williams & Whitten, 1983). Little is 

known about specific pollinators of Cycnoches, but own observations of pollinator 

sharing between species (Fig. 8) and occurrence of species complexes (see “species 

delimitation” section of this Introduction) and polymorphic species might be the 

outcome of past and ongoing hybridisation processes.  

 

Evolution of sexual systems in Catasetinae 

The ample diversity of sexual systems is a remarkable trait of angiosperm 

lineages, and their lability and evolutionary transitions are key factors of lineage 

diversification (Barrett, 2013). Two sexual systems are predominant in Catasetinae, 

namely protandry and ESD (see “Reproductive systems in Catasetinae” section in 

Introduction), yet their mode and tempo of evolution in orchids have remained unknown. 

This is particularly true for ESD, which is an extremely rare sexual system in 

angiosperms (Renner, 2014) and for which there are very few studies available (e.g. 
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Renner et al., 2007). My detailed search of literature and in-situ and ex-situ observations 

on sexual systems in several taxa unveils an uneven distribution of protandry and ESD 

across Catasetinae. Interestingly, species having evolved ESD clustered in species rich 

lineages (e.g. Catasetum, Cycnoches), whereas protandrous species belonged to poorer 

species clades (e.g. Clowesia, Dressleria). Such uneven distribution is reflected in ML 

and Bayesian Ancestral State Reconstruction approaches, which strikingly reveals three 

independent origins of ESD (see Fig. 3 of Chapter 6), always derived from a 

protandrous ancestor. In addition, it endorses one of the equally parsimonious 

assumptions of Romero (1990), in which bisexual flowers (and hence plants with 

protandry) were proposed as the ancestral state of the last common ancestor of the “core 

Catasetinae” (see Taxonomic history of Catasetinae in Introduction).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Pollinator sharing in Cycnoches guttulatum (A) and C. dianae Rchb.f (B). Note the 

multiple in-situ visits (Panama) including pollinaria removal by the same bee species Euglossa 

cyanura Cockerell. 
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No positive correlation of the independent gains of ESD with ecological traits 

could be detected, contrary to what is observed in other angiosperm lineages with 

different sexual systems such as dioecy (e.g. Siparunaceae: Renner & Won, 2001). 

Nonetheless, the fact that in Catasetinae, species poor clades are associated with 

protandry and species rich lineages are related with ESD suggest that the latter might 

promote speciation in orchid lineages. ESD is favoured by natural selection when either 

male or female individual’s fitness is affected by environmental conditions (Charnov & 

Bull, 1977; Korpelainen, 1998). Sex ratios in plants of Catasetinae with ESD are strongly 

biased depending on environmental conditions (Romero & Nelson, 1986; Zimmerman, 

2011), with light intensity as a critical variable for sex determination (Gregg, 1982). 

Often Catasetinae orchids with ESD having more access to longer photoperiods produce 

female flowers and bigger pseudobulbs (hence they have bigger energetic resources) 

(Gerlach, 2007; Zimmerman, 2011). Surprisingly, these plants also bear capsules of 

considerable size, compared with those from closely related lineages (e.g. Clowesia, 

Dressleria) with protandry (Pérez-Escobar, pers. obs.; Salazar G., pers. com.). For 

instance, capsules of Cycnoches chlorochilon Klotzsch (also a member of Catasetinae 

with ESD) have on average three times more seeds (3,770,000) than the capsules of 

Cymbidium tracyanum L.Castle (850,000), an adichogamous species closely related to 

Catasetinae (Arditti & Ghani, 2000). Unfortunately, the lack of morphological data for 

all Catasetinae (no representative herbarium specimens with capsules found) precluded 

the statistical testing of this assumption during my research. Future studies should 

involve extensive field work to understand more about the reproductive biology of 

Catasetinae orchids, which ultimately will further enlighten reproductive systems’ 

lability and their evolutionary transitions.  

 

Biogeography of Cycnoches 

 Three nuclear and three chloroplast loci recovers strongly supported internal 

phylogenetic relationships of Cycnoches and provides a solid phylogenetic framework 

for Ancestral Area Estimation and biogeographical hypothesis testing. Absolute time 

estimates reveal that Cycnoches diversified during the late Miocene, around 6 MYA in 

the lowland wet forests of the Amazonian region (Fig. 3, Chapter 7), at a time when the 

Central and Northern Andes ranges already peaked elevations of 4500 m (Hoorn et al., 
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2010). Andean uplift is one of the most important orographic events in the geographic 

history of South America (Hoorn et al., 2010; Luebert et al., 2011), because it had a 

profound impact on the regional landscape (Hoorn, 1994; Hoorn et al., 1995). Andean 

orogeny was a constant geological process with discrete periods of time of accelerated 

building (Hoorn et al., 1995; Ghosh et al., 2006; Antonelli et al., 2009) that greatly 

altered the climatic patterns of the subcontinent (Hoorn et al., 2010), brought forth 

several novel habitats at mid and high elevations (Hughes & Eastwood, 2006; Moore & 

Donoghue, 2007) and lastly, it settled a geographic barrier that isolated populations in 

either side of the range (Pirie et al., 2006; Antonelli et al., 2009). The latter is particularly 

evident in some clades of terrestrial plant lineages such as the Neotropical Rubiaceae and 

Annonaceae, which show clear east-west Andes or lowland vs. highland restrictive 

disjunctive distributions (Pirie et al., 2006; Antonelli et al., 2009).  Nevertheless, the role 

of the Andes as an isolative barrier for lowland, epiphytic anemochorous angiosperm 

lineages (a prominent component of the Neotropical flora; Kreft et al., 2004; Funk et al., 

2007), is still poorly understood. 

My absolute ages estimates and AAE reveals a younger origin of Cycnoches 

compared with Andean paleo-altitude, suggesting trans-Andean dispersals from the 

Amazonas region towards Central America and Choco. Hence, this mountain range do 

not represent an important physical, isolative barrier neither for Cycnoches and probably 

nor for other epiphytic, anemochorous lineages. Orchid seeds, often called dust-like 

seeds (Dressler, 1993; Arditti & Ghani, 2000), are very small sized (from 0.05 to 6 mm) 

and their testae often presents a highly elaborated morphology, thus allowing them to 

float in the air for prolonged periods and distances. These characteristics facilitate long 

distance dispersal and therefore rare trans-Andean migrations were likely to occur in 

Neotropical orchids. My results are in line with biogeographic patterns observed in other 

epiphytic, wind-dispersed lineages such as bromeliads. A unique study on historical 

biogeography of bromeliads (Givnish et al., 2011) revealed long distance trans-Andean 

dispersals in the Bromelioideae from the Brazilian Shield towards Central America 

around 6 MYA.  

 Changes in diversification rates are often associated with the evolution of novel 

morphological traits that promote speciation (e.g. nectar spurs and heterospory in seed 

plants; Bateman & DiMicehele, 1994; Hodges, 1997). In Cycnoches however, radiations 

in areas such as Central America (~ 1.5 MYA) might be associated rather with the 
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colonization of regions followed by habitat specialization. Similar rapid diversifications 

after colonization have been observed in other terrestrial angiosperm clades such as the 

Adoxaceae and Valerianaceae (Moore & Donoghue, 2007) and more recently in the 

taxon Bartsia L. (Orobranchaceae; Uribe-Convers & Tank, 2015). In the latter lineage, 

the establishment and diversification in South American Andean highlands of 

representatives derived from a Eurasian LCA, correlates with Andean uplift ages that 

created new habitats similar to those observed in Alpine landscapes. Diversification 

because of microhabitat specialization is known from mid-high altitude terrestrial 

lineages, but my research reports for first time this diversification mode for epiphytic 

lowland clades. The phytosociological composition of Central American and Amazonian 

lowland wet forests are divergent (Cuatrecasas, 1958; Rangel-Ch et al., 1997; Lentz, 

2000), but the environmental conditions such as rainfall and relative humidity that are 

crucial for epiphytism (Kreft et al., 2004) might have been similar during the 

diversification of Cycnoches, hence facilitating the radiation of this lineage in both 

Central America and Amazonia (Fig. 3 of Chapter 7). 

 

Species delimitation in Cycnoches using Next Generation Sequencing technologies 

Because morphology does not provide useful information to delimitate species in 

the C. egertonianum complex, I investigated floral fragrance composition and restriction-

site-associated genomic markers (obtained via high throughput sequencing) to better 

understand species boundaries in this complex. For the fragrance profile analysis, I have 

collected so far 200 samples from 40 individuals (Appendix S1), which have been 

analyzed at the laboratory of Prof. Stefan Dötterl (Universität Salzburg), with the 

assistance of Dr. Irmgard Schäfer. In addition, samples of 35 individuals have been 

sequenced using Genotyping by Sequencing approach (GBS) at the laboratory of Dr. 

Frank Blattner (IPK – Gatersleben), where I learned to analyse the results using 

bioinformatics tools (i.e. PyRAD: Eaton, 2014) (Appendix S2). I am still working on the 

analysis of the output data of both the fragrances analyses and the GBS, which are thus 

only presented as appendixes of this dissertation, and will be employed in population 

structure and phylogenetic analyses for further publications. 
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APPENDIX 

Table S1. List of species of which fragrance profiles have been sampled (marked with 

“+”). Members of the Cycnoches egertonianum complex are indicated in boldface. 

 

 

 

 

 

 

 

 

 

Species Fragrance analysis 

Cycnoches amparoanum Schltr. - 

Cycnoches aureum Lindl. & Paxton + 

Cycnoches barthiorum G.F.Carr & Christenson + 

Cycnoches chlorochilon Klotzch + 

Cycnoches densiflorum Rolfe - 

Cycnoches dianae Rchb. f. + 

Cycnoches egertonianum var. egertonianum Bateman + 

Cycnoches egertonianum var. viride Lindl. + 

Cycnoches guttulatum Schltr. + 

Cycnoches haagii Barb.Rodr. + 

Cycnoches herrenhusanum Jenny & G.A. Romero + 

Cycnoches lehmannii Rchb.f. + 

Cycnoches manoelae P.Castro & Campacci + 

Cycnoches pachydactylon Schltr. - 

Cycnoches peruvianum Rolfe + 

Cycnoches powellii Schltr. - 

Cycnoches rossianum Rolfe + 

Cycnoches stenodactylon Schltr. - 

Cycnoches ventricosum Bateman + 

Cycnoches warszewiczii Rchb.f. + 
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Table S2. List of sequenced samples of Cycnoches individuals using GBS approach. 

Putative species identity Accession/voucher 

Cycnoches aureum Lindl. & Paxton BGM 2013/2503w 

Cycnoches barthiorum G.F.Carr & Christenson BGM 2012/1476 

Cycnoches chlorochilon Klotzch BGM 2013/2436w 

Cycnoches dianae Rchb. f. Pérez & Gerlach 1468 

Cycnoches dianae Rchb. f. Pérez & Gerlach 1470 

Cycnoches egertonianum Bateman 

Perez 1509 

Perez, Machorro & Rodriguez 1522 

Perez, Martinez, Castillo 1535 

Pérez 1463 

Cycnoches cf. egertonianum Bateman BGM 2013/2483w 

Cycnoches egertonianum var. viride Lindl. 

BGM 2012/1471 

Perez, Machorro & Rodriguez 1534 

Cash & Perez 1505 

Cycnoches guttulatum Schltr. 

BGM 2013/2507w 

BGM 2013/2500w 

Pérez & Gerlach 1478 

Pérez & Gerlach 1476 

BGM 2013/2505w 

Cycnoches cf. guttulatum Schtrl. BGM 2012/2124 

Cycnoches herrenhusanum Jenny & G.A. Romero BGM 2012/1473 

Cycnoches aff. pachydactylon Schltr.  Pérez & Gerlach 1471 

Cycnoches pachydactylon Schltr. Pérez & Gerlach 1469 

Cycnoches peruvianum Rolfe BGM X/1351 

Cycnoches rossianum Rolfe 

BGM 2014/1832w 

Gomez & Perez 1496 

Treminio & Perez 1497 

Pérez & M.A. Blanco 1467 

Pérez & M.A. Blanco 1466 

Cycnoches sp. Gomez & Perez 1498B 

Cycnoches sp. Gomez & Perez 1498A 

Cycnoches sp. BGM 2013/2502w 

Cycnoches sp. BGM 2013/2504w 

Cycnoches sp. Perez et al. 1491 

Cycnoches sp. Perez et al. 1492 

Cycnoches sp. Perez 1510 
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